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Abstract. Settling a conjecture from an earlier paper, we prove that the monoid
M(n, k) of n× n matrices in a field k of characteristic zero is the ‘walking monoid
with an n-dimensional representation’. More precisely, if we treat M(n, k) as a
monoid in affine schemes, the 2-rig Rep(M(n, k)) of algebraic representations of
M(n, k) is the free 2-rig on an object x with Λn+1(x) ∼= 0. Here a ‘2-rig’ is a
symmetric monoidal k-linear category that is Cauchy complete. Our proof uses
Tannaka reconstruction and a general theory of quotient 2-rigs and 2-ideals. We
conclude with a series of conjectures about the universal properties of representa-
tion 2-rigs of classical groups.
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1. Introduction

The monoid M(n, k) of n× n matrices with entries in a field k, with matrix mul-
tiplication as its monoid structure, plays a distinguished role in linear algebra and
representation theory. It is the ‘walking monoid with an n-dimensional representa-
tion’. At a superficial level, this says that any n-dimensional representation of any
monoid factors through the tautologous representation of M(n, k) on kn. But there
is another deeper sense in which this is true.
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The Tannakian philosophy directs us to study an algebraic structure through its
category of representations. Here we show, roughly speaking, that the category of
algebraic representations of M(n, k) is the free 2-rig on an object of dimension n.
But this statement needs some clarification.

A 2-rig is a categorified form of a rig, or ‘ring without negatives’. In a 2-rig of
representations, addition is the direct sum of representations while multiplication
is the tensor product. There are various ways to make this idea precise, but for
our present purposes we define a 2-rig over a field k to be a symmetric monoidal
k-linear category that is Cauchy complete. Examples include categories of vector
bundles, group representations, coherent sheaves, and so on. In our previous papers
[BMT1, BMT2] we developed the theory of such 2-rigs, showing that if the field k
has characteristic zero, the free 2-rig on one object is a semisimple category whose
simple objects correspond to Young diagrams. Here we further develop that theory
and apply it to the 2-rig of representations of M(n, k).
However, two words of clarification are in order. First, if we treat M(n, k) as

mere monoid, its category of representations on finite-dimensional vector space over
k can be extremely complicated. Already when n = 1, each automorphism of the
field k gives a different one-dimensional representation, so we are led into issues
of Galois theory. To eliminate these complexities, we limit ourselves to ‘algebraic’
representations. Very concretely, an algebraic representation of M(n, k) on the vector
space km is a monoid homomorphism ρ : M(n, k) → M(m, k) such that each matrix
entry of ρ(x) is a polynomial in the entries of M(n, k). There is a 2-rig of algebraic
representations of M(n, k), which we denote by Rep(M(n, k)). Our goal is to show
that Rep(M(n, k)) is characterized by an appealing universal property.

Second, our work [BMT2] has uncovered several choices of what it can mean for
an object of a 2-rig to have dimension n. One can define the exterior powers Λn(x) of
any object x in any 2-rig over a field of characteristic zero. We then say an object x
has ‘bosonic dimension n’ if Λn(x) has an inverse with respect to the tensor product,
and ‘bosonic subdimension n’ if Λn+1(x) ∼= 0. For example, a vector bundle on a
topological space may have different ranks on different connected components. It has
bosonic subdimension n precisely when it has rank at most n on every component,
and bosonic dimension n when it has rank exactly n on every component. The theory
of 2-rigs has a kind of built-in ‘supersymmetry’, so there are also fermionic versions
of dimension and subdimension defined using symmetric powers, but we do not need
these here, so we omit the adjective ‘bosonic’ from now on.

Our main theorem is a strengthened version of an earlier conjecture [BMT2, Conj.
8.7]:

Theorem 1. If k is a field of characteristic zero, the 2-rig Rep(M(n, k)) is the free
2-rig on an object of subdimension n. That is, given any 2-rig R containing an object
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r of subdimension n, there is a map of 2-rigs F : Rep(M(n, k)) → R with F (kn) = r,
unique up to a uniquely determined monoidal natural isomorphism.

Here a map of 2-rigs is a symmetric monoidal k-linear functor between 2-rigs.
The proof goes roughly as follows. We begin with the the free 2-rig on one object.

We call this kS, since it can be obtained by the following three-step process [BMT1]:

• First form the free symmetric monoidal category on one object x. This is
equivalent to the groupoid of finite sets and bijections, which we call S, with
disjoint union providing the symmetric monoidal structure.

• Then form the free k-linear symmetric monoidal category on S by freely
forming k-linear combinations of morphisms. This is called kS.

• Then Cauchy complete kS. The result, kS, is the coproduct, as Cauchy
complete k-linear categories, of the categories of finite-dimensional represen-
tations of all the symmetric groups Sn.

We then construct the free 2-rig on an object of subdimension n by taking the
‘quotient’ of kS by the ‘2-ideal’ generated by the object Λn+1(x), or Λn+1 for short.
We call this quotient 2-rig kS/⟨Λn+1⟩. Of course, to define and work with this 2-rig
we need to develop the theory of 2-ideals and quotient 2-rigs. In the process we prove
that kS/⟨Λn+1⟩ is a semisimple abelian category.

By the universal property of kS/⟨Λn+1⟩, there is a 2-rig map

kS/⟨Λn+1⟩

FinVect,

j

unique up to isomorphism, sending x to the vector space kn. We prove that j is
faithful and exact.

Then we use Tannaka reconstruction. To begin with, this theory implies that if a
2-rig R is an abelian category equipped with a faithful exact 2-rig map

R

FinVect

U

then R is equivalent to the 2-rig Comod(B) of finite-dimensional comodules of some
commutative bialgebra B(U). Furthermore, this bialgebra can be constructed as a
coend

B(U) =

∫ r∈R
U(r)⊗ U(r)∗.
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By calculating this coend in the case at hand we show that

B(j) ∼= S(kn ⊗ (kn)∗)

where S stands for the symmetric algebra. To understand the bialgebra structure
on B(j), note that the vector space kn ⊗ (kn)∗ is isomorphic to M(n, k)∗, so that
its symmetric algebra is isomorphic to the algebra of functions on M(n, k) that are
polynomials in the matrix entries:

S(kn ⊗ (kn)∗) ∼= O(M(n, k)).

The latter algebra becomes a bialgebra with comultiplication coming from matrix
multiplication, and we show that this gives the relevant bialgebra structure on B(j).
We thus conclude that

kS/⟨Λn+1⟩ ≃ Comod(O(M(n, k)))

as 2-rigs. Finally, we use the fact that algebraic representations of M(n, k) are
equivalent to finite-dimensional comodules of O(M(n, k)), and obtain the desired
equivalence of 2-rigs:

kS/⟨Λn+1⟩ ≃ Rep(M(n, k)).

Here is the plan of the paper. In Section 2 we review the theory of affine monoids
and their algebraic representations. Lemma 11 makes precise the sense in which every
every affine monoid M has a 2-rig of representations that is equivalent to the 2-rig
of finite-dimensional comodules of a cocommutative bialgebra O(M), not merely as
abstract 2-rigs, but as 2-rigs over FinVect. We pay special attention to the case where
M = M(n, k) is the ‘full linear monoid’ of the vector space kn: the monoid of n× n
matrices, treated as an affine monoid.

In Section 3 we review the theory of Tannaka reconstruction. This leads up to The-
orems 16 and 17, concerning an adjunction between the category of cocommutative
bialgebras and the category of 2-rigs over FinVect. These theorems give conditions
under which a 2-rig over FinVect is equivalent to the category of finite-dimensional
comodules of some cocommutative bialgebra.

In Section 4 we develop the theory of quotient 2-rigs and 2-ideals. In Theorem 18
we show that when a 2-rig R is also a semisimple abelian category, any 2-rig map
F : R → R′ factors as R → P → R′ where P is the quotient of R by a 2-ideal, the
‘kernel’ of F , and P itself is a semisimple abelian category. The 2-rig map R → P is
essentially surjective and full, while P → R′ is faithful.
In Section 5 we apply the results of the previous section to 2-rig maps kS →

FinVect. We show that up to isomorphism there is one such map for each natural
number, with the nth one, say ϕn : kS → FinVect, sending the generating object
x ∈ kS to the vector space kn. We show that the kernel of ϕn is the 2-ideal ⟨Λn+1⟩
and that the 2-rig kS/⟨Λn+1⟩ is a semisimple abelian category.
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In Section 6 we prove our main theorem, Theorem 1. To do this, in Lemma 32
we prove the intuitively obvious fact that kS/⟨Λn+1⟩ is the free 2-rig on an object of
subdimension n. Then we carry out the Tannaka reconstruction argument sketched
above, to show that this 2-rig is equivalent to Rep(M(n, k)).

Finally, in Section 7 we state some conjectures concerning the universal properties
of the 2-rigs of representations of various classical groups.

Notation. We use sans-serif font for 1-categories such as Vect, and bold serif font
for 2-categories such as 2-Rig.

2. Representations of affine monoids

There is a long tradition of studying representations of linear algebraic groups
[B, H, M], but more recently this line of work has been generalized to monoids [Br, R].
A ‘linear algebraic monoid’ is simply a set of n × n matrices over k, closed under
matrix multiplication, that is picked out by a collection of polynomial equations in
the matrix entries.

Formal aspects of the theory become easier if we work more generally with ‘affine
monoids’, namely monoid objects in the category of affine schemes over k.

Definition 2. The category AffSch of affine schemes over k, or affine schemes
for short, is the opposite of the category CommAlg of commutative algebras over k.

Definition 3. An affine monoid scheme over k, or affine monoid for short, is
a monoid internal to (AffSch,×).

Any finite-dimensional algebra over k gives an affine monoid. To see this, note
that there is a symmetric lax monoidal functor

Φ: (FinVect,⊗) → (AffSch,×)

given as the composite

(FinVect,⊗)
(−)∗−−→ (FinVect,⊗)op

Symop

−−−→ (CommAlg,⊗)op = (AffSch,×).

In the first step, taking the dual is a symmetric strong monoidal functor from
(FinVect,⊗) to (FinVect,⊗)op. In the second step, Sym: (FinVect,⊗) → (CommAlg,⊗)
sends any vector space V to the free commutative algebra on V , also known as the
symmetric algebra Sym(V ). This functor Sym is symmetric oplax monoidal since it is
left adjoint to the forgetful functor U : (CommAlg,⊗) → (FinVect,⊗), which is strong
symmetric monoidal. Thus Symop : (FinVect,⊗)op → (CommAlg,⊗)op is symmetric
lax monoidal. It follows that the composite Φ is symmetric lax monoidal. Thanks
to this fact, Φ sends internal monoids to internal monoids, so any finite-dimensional
algebra A over k gives an affine monoid Φ(A).
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This construction yields the primordial example of an affine monoid, which is the
subject of this paper:

Definition 4. For any finite-dimensional vector space V over k, the full linear
monoid M(V ) is the affine monoid obtained by applying Φ to the algebra of endo-
morphisms of V . In particular, the full linear monoid M(n, k) is the affine monoid
obtained by applying Φ to the algebra of n× n matrices over k.

To define the category of algebraic representations of an affine monoid, we can use
the symmetric lax monoidal functor Φ to convert categories enriched in FinVect into
categories enriched in AffSch.

Definition 5. Let FinLinCat be the 2-category of categories, functors and natural
transformations enriched over FinVect. We call these finite-dimensional linear
categories, linear functors and natural transformations.

Definition 6. Let AffSchCat be the 2-category of categories, functors and natural
transformations enriched over AffSch. We call these affine categories, algebraic
functors and natural transformations.

Lemma 7. Base change along Φ gives a 2-functor

(−)∼ : FinLinCat → AffSchCat

sending any finite-dimensional linear category C to the affine category C∼ that has
the same objects, with hom-objects defined by

C∼(x, y) = Φ(C(x, y)),

and composition and units defined using the functoriality of Φ.

Proof. This is Lemma 5.8 of [BMT2]. □

Definition 8. Given an affine category C let

Rep(C) = AffSchCat(C,FinVect∼).

The objects of Rep(C) are algebraic functors F : C → FinVect∼, which we call al-
gebraic representations of C, and the morphisms are natural transformations
between these, which we call maps between algebraic representations.

We are especially interested in algebraic representations of affine monoids, which
can be seen as one-object affine categories. For this it is important that the category
of affine monoids is the opposite of the category of commutative bialgebras over k.
To see this, note that (AffSch,×) ≃ (CommAlg,⊗)op, where ⊗ denotes the tensor
product of commutative algebras over k, which is their coproduct. But a monoid in
(CommAlg,⊗)op is the same as a comonoid in (CommAlg,⊗), and the latter is exactly
a commutative bialgebra. Thus, any affine monoid has a corresponding commutative
bialgebra, which we call its coordinate bialgebra O(M).
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Lemma 9. The category Rep(M) of algebraic representations of an affine monoid
M is equivalent, as a k-linear category over FinVect, to the category Comod(O(M))
of finite-dimensional comodules of its coordinate bialgebra. There is a strictly com-
muting triangle of k-linear functors

Rep(M) Comod(O(M))

FinVect

∼=
E

W U

where E an isomorphism and U (resp. W ) is the forgetful functor sending a comodule
(resp. algebraic representation) to its underlying vector space.

Proof. An equivalence between Rep(M) and Comod(O(M)) was constructed in the
proof of Lemma 5.14 of [BMT2], but in fact the equivalence constructed there is an
isomorphism making the above triangle strictly commute, since it sends any algebraic
representation of M on a finite-dimensional vector space V to a comodule with the
same underlying vector space. □

Next we enhance the triangle in Lemma 9 to a commuting triangle of 2-rig maps.
First, note that for any commutative bialgebra C, Comod(C) with the usual tensor
product of comodules is an abelian 2-rig: a 2-rig that is also an abelian category.
Second, note that the forgetful functor

U : Comod(C) → FinVect

is faithful and exact (preserves exact sequences). It becomes a symmetric strict
monoidal k-linear functor if we define the symmetric monoidal structure on Comod(C)
as follows: the tensor product of two comodules (V, γ : V → V ⊗C) and (V ′, γ′ : V ′ →
V ′⊗C) is V ⊗V ′ at the underlying vector space level, with comodule structure being
the obvious composite

V ⊗ V ′ V ⊗ C ⊗ V ′ ⊗ C V ⊗ V ′ ⊗ C ⊗ C V ⊗ V ′ ⊗ C
γ⊗γ′ 1⊗σ⊗1 1⊗1⊗m

where σ denotes a symmetry isomorphism and m denotes the algebra multiplication
for C. The symmetry V ⊗ V ′ ∼= V ′ ⊗ V at the level of underlying vector spaces is a
comodule map if commutativity of m is assumed. It therefore follows that

U : Comod(C) → FinVect

is a (strict monoidal) map of 2-rigs. Summarizing:

Lemma 10. For any commmutative bialgebra C, U : Comod(C) → FinVect is strict
monoidal, exact, faithful 2-rig map between abelian 2-rigs.
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Next suppose C = O(M) for an affine monoidM . If we transfer the 2-rig structure
from Comod(O(M)) to Rep(M) using the isomorphism E in Lemma 9 we get the
following result:

Lemma 11. For any affine monoid M ,

Rep(M) Comod(O(M))

FinVect

∼=
E

W U

is a strictly commuting triangle where all the arrows are strict monoidal exact maps
between abelian 2-rigs. U and V are faithful, while E is an isomorphism.

The central focus of this paper is the case where M is the full linear monoid
M(N, k). In [BMT2, Ex. 5.10] we discussed the coordinate bialgebra of this affine
monoid, and we expand on that material here.

Example 12. The vector space ofN×N matrices has a basis of elementary matrices,
so its dual has a dual basis, say eij for 1 ≤ i, j ≤ N . The coordinate bialgebra

O(M(n, k)) is the polynomial algebra on these elements eij, with comultiplication
given by

∆(eij) =
N∑
k=1

eik ⊗ ekj

and counit given by
ε(eij) = δij

where δ is the Kronecker delta.
This example also has a useful basis-independent description. To give this we

begin by associating to any finite-dimensional vector space V a coalgebra V ∗ ⊗ V .

Definition 13. For any finite-dimensional vector space V , the dual of the algebra
of endomorphisms FinVect(V, V ) ∼= V ⊗ V ∗ is the coendomorphism coalgebra

(V ⊗ V ∗)∗ ∼= V ∗ ⊗ V.

To explicitly describe the comultiplication and counit in the coendomorphism coal-
gebra, we use the fact that any finite-dimensional vector space V and its dual V ∗ are
equipped with a counit

ε : V ∗ ⊗ V → k
f ⊗ v 7→ f(v)

(1)

and unit
η : k → FinVect(V, V ) ∼= V ⊗ V ∗

1 7→ 1V
(2)
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obeying the triangle equations in the definition of an adjunction. An adjunction in
any bicategory gives a comonad in that bicategory. As a consequence, the adjunction
between V and V ∗ makes into a coalgebra whose comultiplication ∆ is the composite

V ∗ ⊗ V V ∗ ⊗ k ⊗ V V ∗ ⊗ V ⊗ V ∗ ⊗ V
∼=

∆

1⊗η⊗1

and whose counit is ε.
The coordinate bialgebra of M(V ) is canonically isomorphic to the free commuta-

tive algebra on V ∗ ⊗ V :

O(M(V )) ∼= Sym((V ⊗ V ∗)∗) ∼= Sym(V ∗ ⊗ V ).

Since Sym: Vect → Vect is oplax monoidal, it maps coalgebras to coalgebras. This
makes Sym(V ∗ ⊗ V ) and thus O(M(V )) into a coalgebra.

Thus, the comultiplication and counit for V ∗ ⊗ V extend uniquely to algebra
homomorphisms

Sym(V ∗ ⊗ V ) → Sym(V ∗ ⊗ V )⊗ Sym(V ∗ ⊗ V ),

Sym(V ∗ ⊗ V ) → k

which we again call these ∆ and ε, and these give O(M(V )) ∼= Sym(V ∗ ⊗ V ) its
coalgebra structure.

3. Tannaka reconstruction

Thanks to Lemma 11, to prove our main theorem we just need to show that the
free 2-rig on an object of subdimension N is the 2-rig of finite-dimensional comodules
of the commutative bialgebra O(M(N, k)). For this we use Tannaka reconstruction.
This characterizes 2-rigs of finite-dimensional comodules of commutative bialgebras,
and lets us reconstruct a commutative bialgebra from its 2-rig of finite-dimensional
comodules.

Here we recall the facts we need about Tannaka reconstruction; for more details
see the papers by Deligne [D], Deligne–Milne [DM], and Joyal–Street [JS]. We start
with a simplified version that works for coalgebras, and then turn to commutative
bialgebras.

Let k be a field. Let LinCat ↓ FinVect be the category whose objects are k-linear
categories C equipped with a k-linear functor U : C → FinVect, and whose morphisms
(C, U) → (D, V ) are k-linear functors F : C → D such that U = V ◦F (strictly). Let
Coalg be the category of coalgebras over k. There is a functor

Comod : Coalg → LinCat ↓ FinVect
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taking a coalgebra C to the category Comod(C) of its finite-dimensional right co-
modules together with the forgetful functor U : Comod(C) → FinVect. As we shall
see, for more or less tautological reasons, there is a left adjoint to Comod,

End∨ : LinCat ↓ FinVect → Coalg

taking an object (C, U) to a coalgebra that will be denoted as End(C, U)∨, or just
End(U)∨. Tannaka reconstruction for coalgebras then comes in two parts. Here is
the first part:

Theorem 14 (Tannaka Reconstruction for Coalgebras 1). The counit of the
adjunction End∨ ⊣ Comod, evaluated at any coalgebra C, is an isomorphism
End(Comod(C), U)∨ → C.

For the second part, observe that Comod(C) is an abelian category for any coal-
gebra C, and that the forgetful functor U : Comod(U) → FinVect is faithful and
exact.

Theorem 15 (Tannaka Reconstruction for Coalgebras 2). The unit of the
adjunction End∨ ⊣ Comod, evaluated at any pair (C, U) where C is an abelian
category and U is faithful and exact, is an equivalence of k-linear categories C →
Comod(End(U)∨).

Proofs of these results can be found in the references [D, DM, JS]. Here we
just describe the adjunction between Comod and End, which we need to concretely
reconstruct a coalgebra from its 2-rig of representations.

For any coalgebra C, let Comod(C) denote its category of finite-dimensional right
comodules, and U : Comod(C) → FinVect the forgetful functor to finite-dimensional
spaces. Each object c ∈ Comod(C) has a comodule structure, which is a linear map

γc : U(c) → U(c)⊗ C,

which induces a linear map

ϕc : U(c)
∗ ⊗ U(c) → C

where U(c)∗ ⊗ U(c) is the coendomorphism coalgebra of U(c), as introduced in Def-
inition 13. Here ϕc is the composite

U(c)∗ ⊗ U(c) U(c)∗ ⊗ U(c)⊗ C k ⊗ C ∼= C
1⊗γc ε⊗1

where ε is defined as in Eq. (1). In fact, linear maps of type ϕc correspond bijectively
to linear maps of type γc, using the adjunction isomorphism

hom(U(c)∗ ⊗ Uc,C) ∼= hom(U(c), U(c)⊗ C).

The condition that γ : U(c) → C ⊗ U(c) is a comodule structure is equivalent to
the condition that ϕ : U(c)∗ ⊗ U(c) → C is a coalgebra map; this is dual to how
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R-module structures R ⊗ V → V correspond to R-algebra maps R → hom(V, V ).
Thus, comodule structures γc : U(c) → U(c)⊗C are in bijection with coalgebra maps
ϕc : U(c)

∗ ⊗ U(c) → C.
Moreover, the assignment c 7→ γc is a transformation that is natural with respect

to comodule maps f : c → d, simply by virtue of the definition of comodule map.
It follows that the indexed family of coalgebra maps c 7→ ϕc, indexed over objects
c, is dinatural with respect to comodule maps f : c → d. This family therefore
corresponds to a uniquely determined linear map

ΦC :

∫ c:Comod(C)

U(c)∗ ⊗ U(c) → C.

and this linear map is a coalgebra map, with respect to the coalgebra structure on
the coend whose comultiplication[∫ c

U(c)∗ ⊗ U(c)

]
−→

[∫ c

U(c)∗ ⊗ U(c)

]
⊗

[∫ c

U(c)∗ ⊗ U(c)

]
corresponds to the dinatural family expressed by the composite

U(c)∗⊗U(c) 1⊗η⊗1−→ U(c)∗⊗U(c)⊗U(c)∗⊗U(c) i⊗i−→
[∫ c

U(c)∗ ⊗ U(c)

]
⊗
[∫ c

U(c)∗ ⊗ U(c)

]
(using i to denote a coend coprojection). That ΦC is indeed a coalgebra map is
immediate from the definition of the coalgebra structure on the coend, together with
the fact that the components ϕc are coalgebra maps.
Now we reenact this argument but do it more generally. Suppose we are given a

small k-linear category C together with a k-linear functor F : C → FinVect. To give
a morphism (C, F ) → (Comod(C), U) in LinCat ↓ FinVect, i.e., a functor G : C →
Comod(C) such that F = U ◦G, or in other words a lift G of F through the forgetful
functor from comodules to vector spaces, is precisely to endow F with a C-comodule
structure. That is to say, it is precisely to give a transformation F → F ⊗ C, i.e., a
family of linear maps

F (c) → F (c)⊗ C

natural in objects c of C, and obeying the axioms for an internal C-comodule struc-
ture in [C,FinVect]. By the same reasoning as in the preceding paragraph, such
comodule structures are in natural bijection with coalgebra maps∫ c:C

F (c)∗ ⊗ F (c) → C

and this coend defines the construction End(C, F )∨. Again, this coend may be cal-
culated at the level of vector spaces; its coalgebra structure is determined, by dinat-
urality, from the coalgebra structures on the F (c)∗ ⊗ F (c).
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This argument shows that for each coalgebra C and each object (C, F : C →
FinVect) in LinCat ↓ FinVect, there is a natural bijection between

• maps (C, F ) → (Comod(C), U)

and

• coalgebra maps End(C, F )∨ → C,

and this establishes the Tannaka adjunction. The canonical map

ΦC :

∫ c:Comod(C)

U(c)∗ ⊗ U(c) → C

established above is the counit (at the coalgebra C) of this adjunction.
Tannaka reconstruction for commutative bialgebras is a refinement of the ideas

we have just seen. Let 2-Rig ↓ FinVect be the category whose objects are 2-rigs C
equipped with a 2-rig map U : C → FinVect, and whose morphisms (C, U) → (D, V )
are 2-rig maps F : C → D such that U = V ◦ F . Let CommBialg be the category of
commutative bialgebras over k. By Lemma 10, any commutative bialgebra C gives
an object of 2-Rig ↓ FinVect, namely the forgetful functor

U : Comod(C) → FinVect

which is a strict monoidal, exact, and faithful map between abelian 2-rigs. This
construction is functorial, so it defines a functor

Comod : CommBialg → 2-Rig ↓ FinVect.

This functor Comod has a left adjoint End∨, as in the coalgebra case. The algebra
structure on End(C, U)∨ is built on the condition that U is a strong symmetric
monoidal functor: its requisite algebra multiplication,(∫ c

U(c)∗ ⊗ U(c)

)
⊗
(∫ d

U(d)∗ ⊗ U(d)

)
→

∫ e

U(e)∗ ⊗ U(e),

is the universal map induced by the evident dinatural family

[Uc, Uc]⊗ [Ud, Ud] [Uc⊗ Ud, Uc⊗ Ud] [U(c⊗ d), U(c⊗ d)]
∫ e

[Ue, Ue]
[θ−1

cd ,θcd]

where θcd : Uc ⊗ Ud → U(c ⊗ d) is the structural constraint for U to be symmetric
monoidal, and [V,W ] denotes internal hom of vector spaces, and taking advantage
of Uc∗ ⊗ Uc ∼= [Uc, Uc].

The Tannaka reconstruction at the coalgebra level lifts to Tannaka reconstruction
at the bialgebra level. That is to say, one side of the lifted adjunction concerns
bialgebra maps of the form End(C, F )∨ → C, while the other side concerns 2-rig
maps C → Comod(C) that preserve the given 2-rig maps down from these 2-rigs to
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FinVect. The assertion is that there is a natural bijection between these classes of
maps.

To see this is just a matter of checking that the diagrams of coalgebra maps
expressing preservation of multiplication and unit (respectively), correspond to di-
agrams expressing how G : C → Comod(C), the linear lift of the given 2-rig map
F : C → FinVect, respects the monoidal product and monoidal unit of C-comodules
(respectively). And this in turn is just a matter of unpacking the definitions. On
one side, the condition that ∫ c

F (c)∗ ⊗ F (c) → C

preserves multiplication amounts to the assertion that a family of diagrams of coal-
gebras of the form

[F (c), F (c)]⊗ [F (d), F (d)] C ⊗ C

[Fc⊗ Fd, Fc⊗ Fd]

[F (c⊗ d), F (c⊗ d)] C

ϕc⊗ϕd

∼=

m

∼=

ϕc⊗d

are commutative (where the bottom left vertical arrow uses θcd : Fc⊗Fd→ F (c⊗d)
and its inverse). If ϕ̃c : F (c) → F (c) ⊗ C denotes the comodule structure mated to
the coalgebra map ϕc : F (c)

∗ ⊗ F (c) → C, then the diagram above is mated to a
diagram of the form

Fc⊗ Fd Fc⊗ C ⊗ Fd⊗ C Fc⊗ Fd⊗ C ⊗ C Fc⊗ Fd⊗ C

F (c⊗ d) F (c⊗ d)⊗ C

ϕ̃c⊗ϕ̃d ∼= 1⊗1⊗m

∼=∼=
ϕ̃c⊗d

where the vertical isomorphisms are θ−1
cd , θcd, respectively. The bottom horizon-

tal map expresses the structure of the comodule G(c ⊗ d), and the top compos-
ite expresses the structure of the comodule G(c) ⊗ G(d), hence G preserves the
monoidal product up to coherent isomorphism. The demonstration that G preserves
the monoidal unit is left to the reader.

In this way, the Tannaka adjunction lifts to the level of bialgebras and 2-rigs. We
have a functor

Comod : CocommBialg → 2-Rig ↓ FinVect



14 BAEZ AND TRIMBLE

taking a cocommutative bialgebra C to the category Comod(C) of its finite-dimensional
comodules together with the forgetful functor U : Comod(C) → FinVect. This functor
has a left adjoint

End∨ : 2-Rig ↓ FinVect → CocommBialg,

and the resulting adjunction has these properties:

Theorem 16 (Tannaka Reconstruction for Commutative Bialgebras 1). The
counit of the adjunction End∨ ⊣ Comod, evaluated at any commutative bialgebra C,
is an isomorphism End(Comod(C), U)∨ → C.

Theorem 17 (Tannaka Reconstruction for Commutative Bialgebras 2). The
unit of the adjunction End∨ ⊣ Comod, evaluated at any pair (C, U) where C is abelian
and U is faithful and exact, is an equivalence of 2-rigs C → Comod(End(U)∨).

4. Quotient 2-rigs

We plan to construct the free 2-rig on an object of subdimension n as a quotient
of the free 2-rig on one object, kS. Since kS is semisimple, we use some results on
quotients of semisimple 2-rigs, which can be summarized in this theorem:

Theorem 18. If F : R → R′ is a map of 2-rigs and R is semisimple, then F factors
up to 2-isomorphism in 2-Rig as

R → P → R′

where P is a semisimple 2-rig, R → P is essentially surjective and full, and P → R′

is faithful. The functors R → P and P → R′ are exact.

To understand this statement, we need to understand the 2-category of 2-rigs and
also the concept of a semisimple 2-rig.

Definition 19. Let 2-Rig denote the 2-category whose

• objects are 2-rigs: symmetric monoidal Cauchy complete k-linear categories,
• morphisms are maps of 2-rigs: symmetric monoidal k-linear functors,
• 2-morphisms are symmetric monoidal k-linear natural transformations.

To define semisimplicity for 2-rigs, first recall that an object of an abelian category
is defined to be simple if it has no nontrivial quotients, and semisimple if it is a
coproduct of simple objects. A k-algebra R is said to be semisimple if it is semisimple
as a left R-module (or, it turns out, equivalently, a right R-module). Then:

Definition 20. A k-linear category R is semisimple if it is Cauchy complete and
every endomorphism algebra R(A,A) is semisimple.

In what follows we use some standard facts [AF, EGNO]:

(1) A quotient of a semisimple algebra is semisimple.
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(2) By Wedderburn–Artin theory, every semisimple algebra is a finite product of
algebras, each of which is isomorphic to a matrix ring Mn(D) where D is a
division algebra over k.

(3) A semisimple k-linear category is the same as an abelian category in which all
exact sequences split and every object is a finite coproduct of simple objects.

The following result is immediate from the splitting of exact sequences in semisim-
ple categories:

Lemma 21. If F : R → R′ is a k-linear functor and R is semisimple, then F is exact,
i.e., it preserves exact sequences.

For any functor between categories F : R → R′, not necessarily k-linear, there is
factorization of F as

R → P → R′

where the first functor R → P is essentially surjective and full (denote this by R ↠ P),
and the second functor P → R′ is faithful (denote this by P ↣ R′). This factorization
is uniquely determined up to categorical equivalence. An explicit description is as
follows:

• Objects of P are the objects of R, and the functor R → P is the identity on
objects;

• Morphisms of P are equivalence classes of morphisms of R, where two mor-
phisms f, g of the form A → B are equivalent, f ∼ g, if F (f) = F (g). The
functor R → P takes a morphism f of R to its equivalence class [f ].

Thus there are local epi-mono factorizations of the canonical maps R(A,B) →
R′(FA, FB) between homsets,

R(A,B) ↠ P(A,B) ↣ R′(FA, FB).

Now assume F is a map of 2-rigs, and that R is semisimple. Here are some basic
facts about the (es+full, faithful) factorization R ↠ P ↣ R′ of F .

Lemma 22. P is a k-linear category, and the functors R → P and P → R′ are
k-linear.

Proof. P acquires the structure of k-linear category, and the functors R → P and
P → R′ are k-linear functors, since the epi-mono factorizations of the k-linear maps
R(A,B) → R′(FA, FB) lift from sets to vector spaces. □

Lemma 23. The functor R → P preserves monos and epis.

Proof. The exact functor F : R → R′ preserves monos and epis: if a morphism f in
R is monic/epic, then F (f) is monic/epic in R′. The image [f ] in P is monic/epic in
P, because F (f) is monic/epic in R′, and any faithful functor, for instance P → R′,
reflects monos and epis. □
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Lemma 24. P is Cauchy complete as a k-linear category.

Proof. If A⊕B is a biproduct of A and B in R, with injections and projections

iA : A→ A⊕B, iB : B → A⊕B, pA : A⊕B → A, pB : A⊕B → B,

satisfying the equations pAiA = 1A, pBiB = 1B, pAiB = 0, pBiA = 0, iApA + iBpB =
1A⊕B, then the same equations transfer along the k-linear functor R → P, making
A⊕B the biproduct of A and B in P.

Let [e] : A→ A be an idempotent in P. This is the image of some map e : A→ A
in R, not necessarily idempotent. But e does have a mono-epi factorization in R,

A
r
↠ im(e)

i
↣ A.

Note that [r] is epi in P and [i] is monic in P, since the functor R → P preserves
monos and epis. The pair [r], [i] splits [e], since [e] = [i][r] by functoriality, and also

[i][r][i][r] = [e][e] = [e] = [i][1im(e)][r]

whence [r][i] = [1im(e)] follows from [r] being epic and [i] being monic. □

Lemma 25. The k-linear category P is semisimple.

Proof. P is Cauchy complete, so by our definition of semisimple k-linear categories
it only remains to show that each endomorphism algebra P(A,A) is semisimple. But
P(A,A) is a quotient of the semisimple algebra R(A,A), and as earlier observed,
quotients of semisimple algebras are semisimple. □

Lemma 26. P is a 2-rig, and the functors R → P and P → R′ are 2-rig maps.

Proof. The monoidal product ⊗ : P × P → P is defined objectwise as in R. For
morphisms [f ] : A→ C and [g] : B → D in P, define [f ]⊗ [g] : A⊗B → C ⊗D to be
[f ⊗g]. To see this is well-defined (is independent of the f, g in R chosen to represent
[f ], [g]), let

ϕAB : FA⊗ FB → F (A⊗B)

be the (invertible) structural constraint on the symmetric monoidal functor F . Then
F (f ⊗ g) is uniquely determined from Ff and Fg via the composite

F (A⊗B) FA⊗ FB FC ⊗ FD F (C ⊗D).
ϕ−1
AB Ff⊗Fg ϕCD

Well-definedness of [f ⊗ g] then follows from faithfulness of the functor J : P → R′ in
the factorization, where Ff = J([f ]) and Fg = J([g]) and F (f ⊗ g) = J([f ⊗ g] for
uniquely determined maps [f ], [g], [f ⊗ g] in P, hence [f ⊗ g] is uniquely determined
from [f ] and [g]. All structural constraints (associativity, symmetry, etc.) for the
tensor product on P descend from those in R, and the rest of the proof is routine, again
taking advantage of faithfulness of J , where all necessary equations that must hold
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in P (functoriality and k-linearity of ⊗, etc.) are reflected from the corresponding
equations holding in R′. □

The last two propositions prove the theorem at the head of this section, Theo-
rem 18, but a few more concepts will be useful for us.

For F : R → R′ a 2-rig map, define the kernel of F to be the full subcategory
of R consisting of objects r ∈ R such that F (r) ∼= 0. It is easy to see that if F
is faithful, then ker(F ) consists only of zero objects. Clearly ker(F ) also has the
following properties:

• It is closed under biproducts and retracts in R.
• It is replete: if r ∈ ker(F ) and r ∼= s, then s ∈ ker(F ).
• If r ∈ ker(F ) and s ∈ R, then r ⊗ s ∈ ker(F ).

We define a 2-ideal of R to be a full subcategory of R having these properties. In
the special case where R is semisimple, we may adduce a few more properties.

Lemma 27. If R is semisimple, then any 2-ideal I in R is a Serre subcategory (it is
closed under subobjects, quotients and extensions). Moreover, I is the (replete) finite
coproduct closure of the simple objects it contains.

Definition 28. Let I be a 2-ideal of a semisimple 2-rig R. Define the quotient R/I
to be the following category:

• The objects of R/I are the objects of R,
• The morphisms of R/I are equivalence classes of morphisms of R, where
f, g : a → b are equivalent, f ∼ g, if f − g factors through an object I ∈ I.
(Equivalently by the preceding lemma, if im(f − g) ∈ I, since the image will
be a subquotient of any I that f − g factors through.)

A few things have to be checked, of course. Obviously∼ is reflexive and symmetric.
It is transitive because if f −g factors through I ∈ I and g−h factors through I ′ ∈ I,
then their sum f − h factors through I ⊕ I ′ ∈ I. If f ∼ g : A → B and h : B → B′,
then hf ∼ hg since hf −hg = h(f − g) factors through any object that f − g factors
through; dually, fh ∼ gh for any h : A′ → A. It follows that ∼ is a categorical
congruence: the category structure on R descends to a category structure on R/I.
Through similarly routine arguments, largely parallel to arguments given earlier

in this section and left for the reader to verify, the following result holds:

Lemma 29. If I a 2-ideal of a semisimple 2-rig R, R/I inherits from R a 2-rig
structure, so that the quotient functor R → R/I is a 2-rig map. R/I is a semisimple
2-rig.

Another way to view R/I is that it is the localization of R obtained by formally
inverting zero maps I → 0 for all I ∈ I. This point of view is implicit in the proof of
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the next result, which could be called a “first isomorphism theorem” for 2-rig maps
F : R → R′ (again assuming R is semisimple).

Lemma 30. Given a semisimple 2-rig R and a 2-rig map F : R → R′, with (es+full,
faithful) factorization R → P → R′, the 2-rig P is identified with R/ ker(F ).

Proof. Both P and R/ ker(F ) are declared to have the same objects as R, and in
both cases the morphisms are defined as equivalence classes of morphisms in R; it is
simply a matter of checking that the equivalence relations are the same. We have
that [f ] = [g] in P iff F (f) = f(g) iff F (f − g) = 0. The claim is that the last
is equivalent to F (im(f − g)) ∼= 0, which by definition means im(f − g) ∈ ker(F );
as observed earlier, this last condition is equivalent to the condition that f and g
are equivalent in R/ ker(F ), which would complete the proof. Thus all that remains
is to verify the claim. For brevity, put h = f − g. Applying F to the epi-mono
factorization of h, and the fact that F preserves monos and epis, leads to

F (h) = (FA
p
↠ F (im(h))

i
↣ FB)

and the hypothesis that the composite F (h) is 0 means 0 = i◦p = i◦0, whence p = 0
by monicity of i. If p = 0: FA → F (im(h)) is epic, conclude that 1F (im(h)) ◦ p =
0 = 0F (im(h)) ◦ p, whence 1F (im(h)) = 0F (im(h)), i.e., F (im(h)) ∼= 0, thus proving the
claim. □

Notice that this result stands in stark contrast to the situation for ordinary (com-
mutative) rigs: there is no first isomorphism theorem there, because the kernel of
a rig map f : R → S generally will not suffice to describe the rig congruence on R
arising from the epi-mono factorization of f through a quotient of R. This is the case
even when addition in R is cancellative. For example, for R = N, the smallest rig
congruence ∼ on N that identifies 2 with 3 induces a quotient rig map q from N to
a 3-element rig, but the kernel of that q is zero. It is in recognition of this fact that
we take some extra care over mundane details in the proof above, and not assume
analogies based on a hasty interpretation of ‘categorification’.

5. Quotients of the free 2-rig on one generator

By Theorem 18, if R is any semisimple 2-rig and F : R → FinVect is a 2-rig map,
then the (es+full, faithful) factorization of F induces a 2-rig map

J : R/ ker(F ) → FinVect

and moreover R/ ker(F ) is semisimple, while J is faithful and exact. Therefore,
by Theorem 17, R/ ker(F ) is the category of finite-dimensional comodules of some
commutative bialgebra. Equivalently, by Lemma 10, it is the category Rep(M) of
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algebraic representations of some affine monoid M . In this section we explore the
possibilities when R = kS, the free 2-rig on one generator.

Because there is an equivalence

2-Rig(kS,FinVect) ≃ FinVect

given by evaluating a 2-rig map ϕ : kS → FinVect at the generator x, such 2-rig maps
are determined up to isomorphism by the isomorphism class of V = ϕ(x), which
is in turn determined up to isomorphism by n = dim(V ). Therefore 2-rig maps
ϕ : kS → FinVect are classified by natural numbers n; we define ϕn : kS → FinVect
to be the unique (up to isomorphism) 2-rig map that sends x to kn. We proceed to
compute its (es+full, faithful) factorization,

kS ↠ kS/ ker(ϕn) ↣ FinVect.

Let Λn(x) ∈ kS be the nth exterior power of the generating object x ∈ kS; this
object corresponds to the sign representation of Sn. It generates a 2-ideal we denote
as ⟨Λn⟩. In other words, ⟨Λn⟩ is defined to be the smallest 2-ideal containing Λn(x).

Lemma 31. There is an equality of 2-ideals ker(ϕn) = ⟨Λn+1⟩.

Proof. The inclusion ⟨Λn+1⟩ ⊆ ker(ϕn) follows from the fact that ϕn⟨Λn+1⟩ ∼= 0,
which is clear because

ϕn(Λ
n+1) ∼= Λn+1(kn) ∼= 0

in FinVect.
To prove the inclusion ker(ϕn) ⊆ ⟨Λn+1⟩, start from the fact that a 2-ideal is

uniquely determined by the simple objects it contains, indeed it is the finite coproduct
closure of the class of its simple objects. The simple objects of ⟨Λn+1⟩ are those that
occur as retracts of Schur objects Λn+1 ⊗ x⊗m. By a simple application of Pieri’s
rule, these simple objects correspond to partitions λ1 ≥ λ2 ≥ · · · ≥ λn+1 ≥ . . . (i.e.,
to Young diagrams with more than n rows), so it remains to show that there is no
simple object ρλ in ker(ϕn) that corresponds to a Young diagram λ with at most n
rows, or to a partition λ1 ≥ · · · ≥ λn. That is to say, that ϕn(ρλ) ≇ 0: this means
that, letting m be the number of boxes in λ, the vector space

ϕn(ρλ) = ρλ ⊗kSm (kn)⊗m

has positive dimension. But the dimension of this space equals the number of semis-
tandard Young tableaux of type λ with boxes labeled in {1, 2, . . . , n}, and obviously
there is at least one such tableau (for example, the one where all boxes in row k, for
1 ≤ k ≤ n, are labeled by k). This completes the proof. □
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6. Proof of the main theorem

We have seen that there is a map of 2-rigs

ϕn : kS → FinVect,

unique up to isomorphism, sending the generating object x of the free 2-rig on one
object to kn ∈ FinVect, and that the kernel of ϕn is the 2-ideal generated by Λn+1.
It follows that the (es+full, faithful) factorization of ϕn is the evident pair

kS
q
↠ kS/⟨Λn+1⟩

j
↣ FinVect.

We call the object q(x) simply x, since kS/⟨Λn+1⟩ has the same objects as kS and q
is the identity on objects.

Lemma 32. kS/⟨Λn+1⟩ is the free 2-rig on an object of subdimension n. That is to
say, it is the representing object for the functor Subdimn : 2-Rig → Cat that assigns
to each 2-rig R the full subcategory of objects of subdimension n in R. In particular,
given any 2-rig R containing an object r of subdimension n, there is a map of 2-
rigs F : kS/⟨Λn+1⟩ → R with F (x) = r, unique up to uniquely determined monoidal
natural isomorphism.

Proof. Evaluation at the object x ∈ kS induces a 2-rig map 2-Rig(kS/⟨Λn+1⟩,R) → R
given by the composite

2-Rig(kS/⟨Λn+1⟩,R) → 2-Rig(kS,R)
evx−→ R.

All values of this functor are objects of subdimension n, since for any 2-rig map
A : kS/⟨Λn+1⟩ → R, the object A(x) satisfies Λn+1(A(x)) ∼= A(Λn+1) ∼= A(0) ∼= 0
because A preserves exterior powers and Λn+1 ∼= 0 as an object in kS/⟨Λn+1⟩. We
thus have a 2-rig map

ev : 2-Rig(kS/⟨Λn+1⟩,R) → Subdimn(R)
A 7→ A(x).

To prove that kS/⟨Λn+1⟩ is the representing object for Subdimn we shall show
that ev is an equivalence. We begin by showing it is essentially surjective. If r ∈
Subdimn(R), there is a 2-rig map G : kS → R with G(x) = r, and from Λn+1(r) ∼= 0
we deduce G(Λn+1) ∼= Λn+1(G(x)) = Λn+1(r) ∼= 0. It follows that ⟨Λn+1⟩ ⊆ kerG,
since ⟨Λn+1⟩ is by definition the smallest 2-ideal containing Λn+1. This implies the
well-definedness of the functor F : kS/⟨Λn+1⟩ → R for which F (ρ) = G(ρ) for all
objects ρ of kS and F ([f ]) = G(f) for all morphisms f of kS. Indeed, if [f ] = 0,
then im(f) ∈ ⟨Λn+1⟩ by definition of the quotient 2-rig, so im(f) ∈ ker(G), i.e.,
G(im(f)) ∼= 0, whence G(f) = 0. The functor F can be shown to be a 2-rig map
using the fact that G is a 2-rig map. Thus ev is essentially surjective.
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This map ev is also full and faithful. Indeed, the functor from which it descends,

evx : 2-Rig(kS,R) → R,

again given by evaluation at x, is full and faithful. So, for each f : r → r′ in
Subdimn(R), with r = G(x) and r′ = G′(x) for G,G′ ∈ 2-Rig(kS,R), there is a
unique monoidal natural transformation ϕ : G⇒ G′ such that ϕ(x) = f . The map ϕ
descends to a monoidal natural transformation ψ : F ⇒ F ′ in 2-Rig(kS/⟨Λn+1⟩,R),
evidently unique, for which ψ(x) = f . This establishes full faithfulness.
The final statement of the lemma is a simple consequence of the representability

statement. If F,G : kS/⟨Λn+1⟩ ⇒ R are two 2-rig maps such that F (x) = G(x) = r,
then evaluation at x, being full and faithful, induces an isomorphism of hom-sets

2-Rig(kS/⟨Λn+1⟩,R)(F,G) evx−→ Subdimn(R)(r, r),

and the unique 2-cell α : F → G that maps to 1r is the asserted monoidal natural
transformation. □

We are now ready to prove the main theorem:

Theorem 1. The 2-rig Rep(M(n, k)) is the free 2-rig on an object of subdimension n.
That is, given any 2-rig R containing an object r of subdimension n, there is a map
of 2-rigs F : Rep(M(n, k)) → R with F (kn) = r, unique up to a uniquely determined
monoidal natural isomorphism.

Proof. By Lemma 32 we know that kS/⟨Λn+1⟩ is the free 2-rig on an object of sub-
dimension n. It thus suffices to show that kS/⟨Λn+1⟩ is equivalent, as a 2-rig, to
Rep(M(n, k)). In fact we shall show that

j : kS/⟨Λn+1⟩ → FinVect

is isomorphic in 2-Rig ↓ FinVect to

W : Rep(M(n, k)) → FinVect

where W is the forgetful functor. Thanks to Lemma 11 we know that the latter is
isomorphic to

U : Comod(O(M(n, k))) → FinVect

which by Example 12 is equal to

U : Comod(Sym(V ∗ ⊗ V )) → FinVect

where V = kn. Thus, it suffices to show

j : kS/⟨Λn+1⟩ → FinVect

is isomorphic to
U : Comod(Sym(V ∗ ⊗ V )) → FinVect
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in 2-Rig ↓ FinVect.
Since j is a faithful, exact 2-rig map we know by Tannaka reconstruction that it

is equivalent to the forgetful functor

Comod(B) → FinVect

for some commutative bialgebra B. In fact we know by Theorem 17 that B is the
coend End(j)∨. Thus, to prove the main theorem, we just need to show that

End(j)∨ ∼= Sym(V ∗ ⊗ V ).

We turn to this now.
Note that ϕn factors as

kS → Rep(M(n, k)) → FinVect

where Rep(M(n, k)) ≃ Comod(Sym(V ∗ ⊗ V )). Since the second 2-rig map above is
faithful, there is a further factoring as

kS → kS/⟨Λn+1⟩ → Rep(M(N, k))
i→ FinVect

where the latter two arrows are faithful 2-rig maps, equivalently written in the form

kS/⟨Λn+1⟩ α−→ Comod(Sym(V ∗ ⊗ V ))
i−→ FinVect.

We can regard α as a morphism from j to i in LinCat ↓ FinVect. We now show
that the canonical bialgebra map End(j)∨ → Sym(V ∗⊗V ) adjoint to this morphism
α : j → i is an isomorphism. This will complete the proof.

The calculation of the coend

End(j)∨ =

∫ R:kS/⟨Λn+1⟩
j(R)∗ ⊗ j(R)

is much simplified by the following observations:

• Since the j(R) are finite-dimensional, the coend may be written in the form∫ R:kS/⟨Λn+1⟩
FinVect(j(R), j(R))

• In this formula, kS/⟨Λn+1⟩ can be replaced by kS, and j by ϕn. This is
a simple consequence of essential surjectivity and fullness of the quotient

map q : kS → kS/⟨Λn+1⟩. Indeed, very generally, any coend
∫ c∈C

F (c, c) is a
coequalizer of an evident pair of maps∑

c,c′

C(c, c′)⊗ F (c′, c) ⇒
∑
c

F (c, c).
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Assuming WLOG that q : D → C is full and an identity on objects, then∫ d∈D
F (qd, qd) ∼=

∫ c∈C
F (c, c), because the coend over d is the coequalizer of

parallel composites∑
d=c,d′=c′

D(d, d′)⊗ F (qd′, qd)
π−→

∑
c,c′

C(c, c′)⊗ F (c′, c) ⇒
∑
c

F (c, c)

where π is an epimorphism induced by surjective maps D(d, d′) ↠ C(qd, qd′)
(fullness of q). But the coequalizer of a pair of maps aπ, bπ is isomorphic to
the coequalizer of a, b on condition that π is epic. In our situation, this gives∫ R:kS/⟨Λn+1⟩

FinVect(j(R), j(R)) ∼=
∫ R∈kS

FinVect(jq(R), jq(R))

=
∫ R∈kS

FinVect(ϕn(R), ϕn(R)).

• This type of coend, related to the trace of an enriched category, can be seen
as a composite of Vect-enriched profunctors

k FinVectop ⊗ FinVect kS
op ⊗ kS k.

homFinVect (ϕop
n ⊗ϕn)∗

∫ kS

• Since equivalences in the bicategory of profunctors are categorical Morita
equivalences, it is harmless to replace this coend, as a profunctor composite,
by the corresponding coend∫ x⊗m∈kS

FinVect(ϕn(x
⊗m), ϕn(x

⊗m))

where the coend is now over the full subcategory kS of kS consisting of only
the representable objects x⊗n of kS, which is Morita equivalent to kS.

• As ϕn preserves tensor products, and ϕn(x) = V = kn, the hom-spaces in the
previous coend may be rewritten as FinVect((kn)⊗m, (kn)⊗m).

The object x⊗m appearing in the coend superscript is the regular representation
of the group algebra kSm. Since the only arrow of type kSm → kSn in kS (for m
different from n) is the zero arrow, it follows that the last coend breaks up as a
coproduct ∑

m≥0

∫ x⊗m∈kSm

FinVect((kn)⊗m, (kn)⊗m).

This may be rewritten as∑
m≥0

∫ kSm

([kn]⊗m)∗ ⊗ (kn)⊗m =
∑
m≥0

([kn]⊗m)∗ ⊗kSm (kn)⊗m.
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Finally, this last expression is isomorphic to
∑

m≥0 Sym
m((kn)∗ ⊗ (kn)), which is the

symmetric algebra Sym(V ∗ ⊗ V ). This completes the proof that

End(j)∨ ∼= Sym(V ∗ ⊗ V ). □

7. Conclusions

The work here suggests that a number of related questions are now within reach.
One was left as a conjecture in our previous paper [BMT2, Conj. 8.8]:

Conjecture 33. If k is a field of characteristic zero, the 2-rig Rep(GL(n, k)) is the
free 2-rig on an object of dimension n, that is, an object x for which Λn(x) has an
inverse with respect to the tensor product.

This requires further techniques beyond what we have developed here, since
Rep(GL(n, k)) is not a mere quotient of kS, but it would be interesting to develop
these techniques, which may let us characterize the representation 2-rigs of other
so-called ‘classical’ groups [W]. We expect the following conjectures to hold for any
field k of characteristic zero:

Conjecture 34. If k is a field of characteristic zero, the 2-rig Rep(SL(n, k)) is the
free 2-rig on an object x equipped with an isomorphism Λn(x) ∼= I, where I is the
unit for the tensor product.

Conjecture 35. If k is a field of characteristic zero, the 2-rig Rep(Sp(n, k)) is the
free 2-rig on a self-dual object x of dimension n whose counit ϵ : x ⊗ x → I is
antisymmetric: ϵ ◦ Sx,x = −ϵ.

In the remaining conjectures we assume k is algebraically closed, so that all non-
degenerate symmetric bilinear forms on an n-dimensional vector space over k are
isomomorphic.

Conjecture 36. If k is an algebraically closed field of characteristic zero, the 2-rig
Rep(O(n, k)) is the free 2-rig on a self-dual object x of dimension n whose counit
ϵ : x⊗ x→ I is symmetric: ϵ ◦ Sx,x = ϵ.

Conjecture 37. If k is an algebraically closed field of characteristic zero, the 2-rig
Rep(SO(n, k)) is the free 2-rig on an object x that is equipped with an isomorphism
Λn(x) ∼= I and is also self-dual with symmetric counit ϵ : x⊗ x→ I.

Going beyond the classical groups, it seems Cvitanovic [C] has shown that the 2-
rigs of representations of exceptional groups can be characterized by subtler universal
properties involving cubic and quartic forms x⊗3 → I and x⊗4 → I.

In another direction, it would be interesting to see how the story presented here
changes over fields of nonzero characteristic. In this paper, and the papers this one
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relies on [BMT1, BMT2], we made heavy use of the fact that working in character-
istic zero, categories of finite-dimensional representations of symmetric groups are
semisimple. This fails in nonzero characteristic.
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