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There are 10 of each of these things:
▶ Kinds of real and complex Clifford algebras.
▶ Associative super division algebras.
▶ Ways that Hamiltonians can get along with time reversal

(T ) and/or charge conjugation (C) symmetry.

They’re all connected!

In 1926, Cartan showed there are 10 of these:
▶ Infinite families of compact symmetric spaces.

These are also connected! I’ll explain how these 10 families
arise from Clifford algebras. This is already visible in Milnor’s
book Morse Theory, but I want to expand on it.



What’s a symmetric space?

It’s a connected Riemannian manifold M such that for each
point p ∈ M there’s a metric-preserving smooth map

f : M → M

called inversion about p such that

f (p) = p and dfp = −1



For example: a sphere Sn with its usual metric is a compact
symmetric space.

•

So is the space of all m-dimensional subspaces of Rm+n, which
is the real Grassmannian

O(m + n)/O(m) × O(n)



SERIES OF COMPACT SYMMETRIC SPACES
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REAL AND COMPLEX CLIFFORD ALGEBRAS

Cliff0 � R

Cliff1 � C

Cliff2 � H

Cliff3 � H ⊕ H

Cliff4 � M2(H)

Cliff5 � M4(C)

Cliff6 � M8(R)

Cliff7 � M8(R) ⊕M8(R)

Cliff0 � C

Cliff1 � C ⊕ C



Here:
▶ The real Clifford algebra Cliffn is the algebra over R

freely generated by n square roots of −1, all of which
anticommute.

▶ The complex Clifford algebra Cliffn is the algebra over C
freely generated by n square roots of −1, all of which
anticommute.

We have Bott periodicity:

Cliffn+8 � M16(Cliffn) Cliffn+2 � M2(Cliffn)

so these Clifford algebras come in 10 different “kinds”.

How do we get the 10 infinite families of compact symmetric
spaces from these 10 kinds of Clifford algebras?



The key is to notice that Clifford algebras are ∗-algebras, and to
look at their ∗-representations.

For real Clifford algebras, the idea is roughly this:

We get a compact symmetric space by taking a
∗-representation of Cliffn and forming the space of all ways

of extending this to a ∗-representation of Cliffn+1.

Let’s see the details! Complex Clifford algebras work similarly.



In the real case the definitions go like this:

A ∗-algebra is a real associative algebra A with unit 1 ∈ A and
an operation ∗ : A→ A with

a∗∗ = a, (a + b)∗ = a∗ + b∗, (αa)∗ = αa∗, (ab)∗ = b∗a∗

for all a,b ∈ A and α ∈ R.



A ∗-representation of the ∗-algebra A on a finite-dimensional
real Hilbert space H is a linear operator ρ(a) : H → H for each
a ∈ A, obeying

ρ(a + b) = ρ(a) + ρ(b), ρ(αa) = αρ(a),

ρ(ab) = ρ(a)ρ(b), ρ(1) = 1, ρ(a∗) = ρ(a)†

for all a,b ∈ A and α ∈ R. Here for any linear map T : H → H ′

between real Hilbert spaces, T † : H ′ → H is defined by

⟨T †ψ, ϕ⟩ = ⟨ψ,Tϕ⟩

An orthogonal equivalence of ∗-representations of A, say ρ on
H and ρ′ on H ′, is a linear operator T : H → H ′ with

T ◦ ρ(a) = ρ′(a) ◦ T

for all a ∈ A, and also

T †T = 1H , TT † = 1H′ .



Let Rep(A) be the category of ∗-representations of the
∗-algebra A and orthogonal equivalences. For example:

▶ R is a ∗-algebra with

α∗ = α for all α ∈ R

Rep(R) is the category of finite-dimensional real Hilbert
spaces and orthogonal operators: real-linear T : H → H ′

with T †T = 1H and TT † = 1H′ .
▶ C is a ∗-algebra with

α∗ = α for all α ∈ C

Rep(C) is the category of finite-dimensional complex
Hilbert spaces and unitary operators.

▶ For any ∗-algebra A,

Rep(A) ≃ Rep(Mn(A))



Any Clifford algebra Cliffn becomes a ∗-algebra in a unique way
if for the generating square roots of −1, say e1, . . . ,en, we set

e∗i = −ei .

So let’s look at Rep(Cliffn). In what follows all Hilbert spaces
are finite-dimensional:
▶ Cliff0 � R, so Rep(Cliff0) ≃ Rep(R), the category of

real Hilbert spaces.
▶ Cliff1 � C, so Rep(Cliff1) ≃ Rep(C), the category of

complex Hilbert spaces.
▶ Cliff2 � H, so Rep(Cliff2) ≃ Rep(H), the category of

quaternionic Hilbert spaces.
▶ Cliff3 � H ⊕ H, so Rep(Cliff3) ≃ Rep(H ⊕ H), the category

of split quaternionic Hilbert spaces: quaternionic Hilbert
spaces H with a direct sum decomposition H � H ′ ⊕ H ′′.



▶ Cliff4 � M2(H), so Rep(Cliff4) ≃ Rep(H), the category of
quaternionic Hilbert spaces.

▶ Cliff5 � M4(C), so Rep(Cliff5) ≃ Rep(C), the category of
complex Hilbert spaces.

▶ Cliff6 � M8(R), so Rep(Cliff6) ≃ Rep(R), the category of
real Hilbert spaces.

▶ Cliff7 � M8(R) ⊕M8(R), so Rep(Cliff7) ≃ Rep(R ⊕ R), the
category of split real Hilbert spaces: real Hilbert spaces
H with a direct sum decomposition H � H ′ ⊕ H ′′.

After that we get

Rep(Cliffn+8) ≃ Rep(Cliffn)

If two ∗-algebras A and B have equivalent categories of
∗-representations we call them Morita equivalent and write
A ≃ B.



REAL CLIFFORD ALGEBRAS

Cliff0 ≃ R

Cliff1 ≃ C

Cliff2 ≃ H

Cliff3 ≃ H ⊕ H

Cliff4 ≃ H

Cliff5 ≃ C

Cliff6 ≃ R

Cliff7 ≃ R ⊕ R



∗-REPRESENTATIONS OF REAL CLIFFORD ALGEBRAS

real Hilbert spaces

Rep(Cliff0) ≃

complex Hilbert spaces

Rep(Cliff1) ≃

quaternionic Hilbert spaces

Rep(Cliff2) ≃

split quaternionic Hilbert spaces

Rep(Cliff3) ≃

quaternionic Hilbert spaces

Rep(Cliff4) ≃

complex Hilbert spaces

Rep(Cliff5) ≃

real Hilbert spaces

Rep(Cliff6) ≃

split real Hilbert spaces

Rep(Cliff7) ≃



Any ∗-representation of Cliffn+1 restricts to a ∗-representation
of Cliffn, so we get a “forgetful functor”

F : Rep(Cliffn+1)→ Rep(Cliffn)

For any object H ∈ Rep(Cliffn) there is a set of ways it can
come from some object of Rep(Cliffn+1). Let’s call this F−1(H).
This is either a compact symmetric space, or a finite union of
compact symmetric spaces!

This idea is a bit subtle. How exactly should we define the set
of ways H comes from some object in Rep(Cliffn+1)?

Luckily category theorists know all about this stuff. But let’s do
some examples!



▶ Cliff0 � R and Rep(Cliff0) is the category of real Hilbert
spaces.

▶ Cliff1 � C and Rep(Cliff1) is the category of complex
Hilbert spaces.

The functor
F : Rep(Cliff1)→ Rep(Cliff0)

takes a complex Hilbert space and gives the underlying real
Hilbert space.

If we take a real Hilbert space H it can be made into a complex
Hilbert space X by choosing a complex structure: a
real-linear J : H → H with

J2 = −1, JJ† = J†J = 1

We then have F (X ) = H.



The set of complex structures on a real Hilbert space H is

F−1(H) :=
{
J : H → H

∣∣∣∣ J2 = −1, JJ† = J†J = 1
}

If H is odd-dimensional, F−1(H) is empty.

If H is even-dimensional, it’s isomorphic to R2n with its usual
real Hilbert space structure. The group O(2n) acts on F−1(R2n)
by

J 7→ gJg−1

It acts transitively, and the subgroup that fixes the “standard”
complex structure on R2n is U(n), so

F−1(R2n) = O(2n)/U(n)

This is a compact symmetric space!



▶ Cliff1 � C and Rep(Cliff1) is the category of complex
Hilbert spaces.

▶ Cliff2 � H and Rep(Cliff2) is the category of quaternionic
Hilbert spaces.

Now the functor

F : Rep(Cliff2)→ Rep(Cliff1)

takes a quaternionic Hilbert space and gives the underlying
complex Hilbert space.

This case works like the last one: now F−1(H) is the set of
quaternionic structures on the complex Hilbert space H, and

F−1(C2n) � U(2n)/Sp(n)

is a compact symmetric space.



▶ Cliff2 � H and Rep(Cliff2) is the category of quaternionic
Hilbert spaces.

▶ Cliff3 � H ⊕ H and Rep(Cliff3) is the category of split
quaternionic Hilbert spaces.

Now the functor

F : Rep(Cliff3)→ Rep(Cliff2)

takes a split quaternionic vector space and gives the underlying
quaternionic Hilbert space.

Now F−1(H) is the set of splittings of H as an orthogonal direct
sum of two subspaces, so F−1(Hn) is a disjoint union of
quaternionic Grassmannians:

F−1(Hn) �
n⊔

d=0

Sp(n)/Sp(d) × Sp(n − d)

Each component is a compact symmetric space!



Theorem. For each n we have a functor

F : Rep(Cliffn)→ Rep(Cliffn−1)

and for each H ∈ Rep(Cliffn−1), the set F−1(H) naturally has
the structure of a compact symmetric space. Similarly we have
a functor

F : Rep(Cliffn)→ Rep(Cliffn−1)

and for each H ∈ Rep(Cliffn−1), the set F−1(H) naturally has
the structure of a compact symmetric space.

Moreover, all the compact symmetric spaces in Cartan’s 10
infinite series arise this way.



∗-REPRESENTATIONS OF REAL CLIFFORD ALGEBRAS

real Hilbert spaces

Rep(Cliff0) ≃

complex Hilbert spaces

Rep(Cliff1) ≃

quaternionic Hilbert spaces

Rep(Cliff2) ≃

split quaternionic Hilbert spaces

Rep(Cliff3) ≃

quaternionic Hilbert spaces

Rep(Cliff4) ≃

complex Hilbert spaces

Rep(Cliff5) ≃

real Hilbert spaces

Rep(Cliff6) ≃

split real Hilbert spaces

Rep(Cliff7) ≃



Rep(Cliff7) ≃ split real Hilbert spaces ≃ Rep(Cliff7)

direct sum doubling

Rep(Cliff6) ≃ real Hilbert spaces ≃ Rep(Cliff0)

complexification underlying real space

Rep(Cliff5) ≃ complex Hilbert spaces ≃ Rep(Cliff1)

quaternionification underlying complex space

Rep(Cliff4) ≃ quaternionic Hilbert spaces ≃ Rep(Cliff2)

doublingdirect sum

Rep(Cliff3) ≃ split quaternionic Hilbert spaces ≃ Rep(Cliff3)



SERIES OF COMPACT SYMMETRIC SPACES
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Some last remarks

▶ The correct way to define F−1(H) is subtle. We often have
X ∈ Rep(Cliffn) with F (X ) , H but F (X ) � H. This should
be good enough. But we usually have many X with
F (X ) � H. When do we count two as different elements of
F−1(H)? Luckily category theorists have figured this out:
we should let F−1(H) be the “essential fiber” of F over X .

▶ There is a simple, unified proof that F−1(H) is always a
disjoint union of compact symmetric spaces.

▶ What’s the best way to show that all infinite series of
compact symmetric spaces arise from Clifford algebras?
Currently we just check the list and notice that they do!

https://ncatlab.org/nlab/show/essential+fiber


Details: what is the essential fiber and how does it work?

Given any functor F : X→ H and any object H ∈ H, the
essential fiber over H is a category F−1(H) where:
▶ an object is a pair (X , α) consisting of an object X ∈ X and

an isomorphism α : F (X ) ∼→ H.
▶ a morphism from (X , α) to (X ′, α′) is a morphism
ϕ : X → X ′ with α = α′ ◦ F (ϕ).

F (X )

H

F (X ′)

α α′

F (ϕ)

But in our examples this category is “basically just a set”. What
does that mean, and why is it true?



We start with some easy lemmas.

Lemma 1. Suppose a functor F : X→ H is faithful: if
f ,g : X → X ′ are morphisms in X with F (f ) = F (g), then f = g.

Then for any object H ∈ H, the essential fiber F−1(H) is a
preorder: a category where any two morphisms with the same
source and target are equal.

Lemma 2. Suppose a functor F : X→ H is conservative: for
every morphism f in X, if F (f ) is an isomorphism then f is an
isomorphism.

Then for any object H ∈ H, the essential fiber F−1(H) is a
groupoid: a category where every morphism is an
isomorphism.



Lemma 3. Suppose a functor F : X→ H is faithful and
conservative. Then for any object H ∈ H, the essential fiber
F−1(H) is equivalent to the discrete category on some set S:
that is, the category with S as its set of objects and only identity
morphisms.

This follows straight from Lemmas 1 and 2, since any category
that is both a preorder and a groupoid is equivalent to the
discrete category on its set of isomorphism classes of objects.

In this situation we can treat F−1(H) as a set. We do this from
now on.



Lemma 4. Suppose any functor F : X→ H is faithful and
conservative. Then for any object H ∈ H,

F−1(H) �
⊔
X

Aut(H)

Aut(X )

where the disjoint union is taken over objects X , one from each
isomorphism class of objects with F (X ) � H.

Why? The automorphism group Aut(H) acts on F−1(H), with
β : H ∼→ H sending α : F (X ) ∼→ H to β ◦ α : F (X ) ∼→ H.
Whenever a group G acts on a set S we have

S �
⊔

x

G
Stabx

where Stabx ⊆ G is the subgroup fixing x ∈ S, and the disjoint
union is taken over points x ∈ S, one from each orbit.



All the conditions in Lemma 4 hold for the forgetful functor

F : Rep(Cliffn)→ Rep(Cliffn−1)

so:

Theorem 1. For any object H ∈ Rep(Cliffn−1),

F−1(H) �
⊔
X

Aut(H)

Aut(X )

where the disjoint union is taken over objects X ∈ Rep(Cliffn),
one in each isomorphism class of objects with F (X ) � H.

The analogous result is also true for

F : Rep(Cliffn+1)→ Rep(Cliffn)



Example 1. For the forgetful functor from complex Hilbert
spaces to real Hilbert spaces

F : Rep(Cliff1)→ Rep(Cliff0)

every complex Hilbert space X with F (X ) � H := R2n has
X � Cn so Theorem 2 gives

F−1(R2n) �
Aut(H)

Aut(X )
�

O(2n)
U(n)

as we’ve seen before.



Example 2. For the forgetful functor from split real Hilbert
spaces to real Hilbert spaces

F : Rep(Cliff7)→ Rep(Cliff6)

there are different nonisomorphic choices of split real Hilbert
spaces X with F (X ) � H := Rn.

Indeed, any Xd = Rd ⊕ Rn−d has F (Xd) � R
n. These are all the

choices, up to isomorphism, so Theorem 2 gives

F−1(Rn) �
n⊔

d=0

Aut(H)

Aut(Xd)
�

n⊔
d=0

O(n)
O(d) × O(n − d)

a disjoint union of real Grassmannians.

This disjoint union is not connected, but its components, the
Grassmannians, are compact symmetric spaces!



Details: why do we get symmetric spaces?

It’s a known fact that we get a symmetric space from any
compact simple Lie group G with an involution: that is, a
homomorphism σ : G → G with σ2 = 1. We can then define a
subgroup

K =
{
g ∈ G

∣∣∣ σ(g) = g
}

and G/K is a compact symmetric space.



Let
F : Rep(Cliffn)→ Rep(Cliffn−1)

be the forgetful functor. Suppose F (X ) = H. We’ve seen
Aut(X ) ⊆ Aut(H). I claim there’s an involution σ : Aut(H)→
Aut(H) with

Aut(X ) =
{
g ∈ Aut(H)

∣∣∣ σ(g) = g
}

Given this, we get:

Theorem 2. For any H ∈ Rep(Cliffn−1),

F−1(H) �
⊔
X

Aut(H)

Aut(X )

where the disjoint union is taken over objects X ∈ Rep(Cliffn),
one in each isomorphism class of objects with F (X ) � H, and
component Aut(X )/Aut(H) is a compact symmetric space.



What is the involution σ?

Cliffn has a representation ρ on X . H is X seen as a
representation of the subalgebra Cliffn−1. Thus an
automorphism g : H → H is an automorphism of X if it also
commutes with the last square root of −1 generating Cliffn.
So, if i = ρ(en):

Aut(X ) =
{
g ∈ Aut(H)

∣∣∣ i g = g i
}

Thus if we define σ : Aut(H)→ Aut(H) by

σ(g) = i g i−1

then σ is an involution and

Aut(X ) =
{
g ∈ Aut(H)

∣∣∣ σ(g) = g
}


