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There are ten of each of these things:
▶ Ways that Hamiltonians can get along with time reversal

(T ) and charge conjugation (C) symmetry.
▶ Associative real super division algebras.
▶ Morita equivalence classes of real and complex Clifford

algebras.
▶ Classical families of compact symmetric spaces.

They’re all connected! This is the tenfold way.

Let’s start from the beginning: the threefold way.



Given two unit vectors ψ, ϕ in a Hilbert space H, the transition
probability |⟨ψ, ϕ⟩|2 does not change if we multiply ψ or ϕ by a
phase.

So, pure states in quantum mechanics are really given, not by
unit vectors, but by equivalence classes of unit vectors where

ψ′ ∼ ψ iff ψ′ = cψ for some c ∈ C with |c| = 1

The set of these equivalence classes is the projective space
PH.



Wigner’s Theorem. Given a Hilbert space H, any map from PH
to itself that preserves transition probabilities comes from either
▶ a unitary operator U : H→ H

U(ψ+ϕ) = Uψ+Uϕ U(cψ) = c Uψ ⟨Uϕ,Uψ⟩ = ⟨ϕ, ψ⟩

or
▶ an antiunitary operator J : H→ H

J(ψ+ ϕ) = Jψ+ Jϕ J(cψ) = c Jψ ⟨Jϕ, Jψ⟩ = ⟨ϕ, ψ⟩



SYMMETRIES THAT SQUARE TO ONE

Some important symmetries that square to the identity:
▶ P: parity
▶ C: charge conjugation
▶ T : time reversal

Systems may or may not have any of these symmetries. They
may also be symmetric only under combinations like CP, PT ,
CT or CPT .



SYMMETRIES THAT SQUARE TO ONE

Suppose f : PH→ PH preserves transition probabilities and
f 2 = 1. By Wigner’s theorem there are two options:

1. f comes from a unitary U with U2 = c for some c ∈ C with
|c| = 1.

Then V = c−1/2U is a unitary with V 2 = 1 that also gives f .

2. f comes from an antiunitary J with J2 = c for some c ∈ C
with |c| = 1.

Then multiplying J by a phase does not change J2.
Since Jc = cJ yet Jc = JJ2 = J2J = cJ, we have c = ±1.
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SYMMETRIES THAT SQUARE TO ONE

So:

If a symmetry f : PH→ PH that squares to one is implemented
by a unitary U, we can always find such a U with U2 = 1.

But if f is implemented by an antiunitary J, precisely one of two
options holds: J2 = 1 or J2 = −1.



If an antiunitary J : H→ H has J2 = 1 then it acts like complex
conjugation!

We can define a real Hilbert space

HR = {ψ ∈ H : Jψ = ψ}

and H is the complexification of this:

H = C ⊗R HR



If an antiunitary J : H→ H has J2 = −1 then the operators i ,
j = J, and k = ij obey the quaternion relations:

i2 = j2 = k2 = ijk = −1

We can make H into a quaternionic Hilbert space HH, and H is
the underlying complex Hilbert space of this:

H = C ⊗C HH

So, R,C and H all show up in quantum physics!
What makes them special?



Let’s define an algebra to be a finite-dimensional real vector
space A with an associative product that distributes over linear
combinations, and a unit 1 ∈ A.

A division algebra is an algebra where any nonzero element
has a multiplicative inverse.

Frobenius’ Theorem. There are three division algebras:
▶ the real numbers, R
▶ the complex numbers, C, with i2 = −1
▶ the quaternions, H, with i2 = j2 = k2 = ijk = −1



The role of the division algebras in quantum physics becomes
even clearer if we focus on systems with symmetry.

A unitary representation of a group G on a Hilbert space H
consists of unitaries ρ(g) : H→ H with

ρ(gh) = ρ(g)ρ(h) and ρ(1) = 1

We say ρ is irreducible if the only closed subspaces V ⊆ H with
ρ(g) : V→ V for all g are V = {0} and V = H.



Schur’s Lemma. Suppose ρ is an irreducible unitary
representation of a group G on a Hilbert space H. Then the
only unitary operators U : H→ H that commute with all the ρ(g)
are phases: U = c1 for some |c| = 1.



The Threefold Way (Dyson). Suppose ρ is an irreducible
unitary representation of a group G on a Hilbert space H. Then
exactly one of these holds:
-1. There is an antiunitary with J2 = −1 commuting with all the

ρ(g). Then ρ is the underlying complex representation of a
representation on a quaternionic Hilbert space, and we call
ρ quaternionic.

0. There is no antiunitary commuting with all the ρ(g).Then
we call ρ complex.

1. There is an antiunitary with J2 = 1 commuting with all the
ρ(g). Then ρ is the complexification of a representation on
a real Hilbert space, and we call ρ real.



For example:

In the spin-j representation of SU(2), all the transformations
coming from SU(2) commute with some antiunitary J.

This has J2 = 1 when j is an integer and J2 = −1 when j is a
half-integer.

Indeed, the spin-1 representation of SU(2) on C3 is the
complexification of a real representation on R3.

On the other hand, the spin-1/2 representation of SU(2) on C2

is the underlying complex representation of a quaternionic
representation on H.

SU(2) acts on H as right multiplication by quaternions q with
|q| = 1.



Any unitary representation ρ of a compact Lie group G is a
direct sum

ρ = ρ(−1) ⊕ ρ(0) ⊕ ρ(1)

where:
▶ ρ(−1) is a sum of irreducibles that are quaternionic.
▶ ρ(0) is a sum of irreducibles that are complex.
▶ ρ(1) is a sum of irreducibles that are real.

Moreover the set
III = {−1,0,1} ⊆ R

is closed under multiplication, and given two unitary
representations ρ, ρ′ we have

(ρ ⊗ ρ′)(j) =
⊕

i ,i ′∈III such that ii ′=j

ρ(i) ⊗ ρ′(i ′)



Now, on to the tenfold way!

The tenfold way describes the options for charge conjugation
and time reversal, which in condensed matter physics we
assume are commuting antiunitary operators:
▶ time-reversal symmetry

with T 2 = 1, with T 2 = −1, or no T symmetry
▶ charge conjugation symmetry

with C2 = 1, with C2 = −1, or no C symmetry.
or
▶ only a combination of both, called S. Since S is unitary we

may assume that S2 = 1.
This gives 3 × 3 + 1 = 10 options.



For example, the Su–Schrieffer–Heeger model of
superconductivity in polyacetylene doesn’t have C or T
symmetry separately. But it has the combined symmetry: a
unitary S with S2 = 1.



More fundamentally, the tenfold way arises from
super Hilbert spaces.

A super Hilbert space is simply a Hilbert space H that is
written as a direct sum of two parts, H0 ⊕ H1.

We call states ψ ∈ H0 even and states ψ ∈ H1 odd.

We can use super Hilbert spaces in various ways.

We can let H0 be the bosonic and H1 the fermionic states.

But condensed matter physics does not mainly apply super
Hilbert spaces in this way! Instead....



We can let H0 be a Hilbert space for particles and H1 a Hilbert
space for antiparticles, or holes.

We can have antiunitaries that are even:

T : H→ H with T : H0 → H0, T : H1 → H1

and antiunitaries that are odd:

C : H→ H with C : H0 → H1, C : H1 → H0



A group G is Z/2-graded if it’s written as the union of disjoint
subsets G0,G1 such that

if g ∈ Gi and h ∈ Gj then gh ∈ Gi+j (with addition mod 2)

A unitary representation ρ of a Z/2-graded group G on a
super Hilbert space H is an ordinary unitary representation of G
on H such that

if g ∈ Gi and ψ ∈ Hj then ρ(g)ψ ∈ Hi+j (with addition mod 2)

ρ is irreducible if the only closed subspaces V = V0 ⊕ V1,
Vi ⊆ Hi with ρ(g) : V→ V for all g are V = {0} and V = H.



The Tenfold Way. The irreducible unitary representations ρ of
a Z/2-graded group G on a super Hilbert space H come in 10
types, based on their commutant: the set of real-linear
operators that commute with ρ(g) for all G.

In 9 of these types the commutant contains:
▶ an even antiunitary T with either T 2 = 1, T 2 = −1, or no

such T
and
▶ an odd antiunitary C with either C2 = 1,C2 = −1, or no

such C.

In the 10th type the commutant contains:
▶ no such T or C, but an odd unitary S; we may assume

S2 = 1.

Note: phases always give even unitaries in the commutant.



The types listed above form a ten-element set. Call this set X.

If a unitary representation ρ of a Z/2-graded group G on a
super Hilbert space is a direct sum of irreducibles, then

ρ =
⊕
i∈X

ρ(i)

where ρ(i) is a sum of irreducibles of the i th type.

Moreover there is an addition + on the set X such that given
two unitary representations ρ, ρ′ we have

(ρ ⊗ ρ′)(j) =
⊕

i ,i ′∈X such that i+i ′=j

ρ(i) ⊗ ρ′(i ′)

This makes X into a commutative monoid (not a group).



The commutative monoid X is the disjoint union of Z/8 and Z/2,
with addition defined by

i + j = i + j mod 8 if i , j ∈ Z/8
i + j = i + j mod 2 if i , j ∈ Z/2
i + j = i + j mod 2 if i ∈ Z/8, j ∈ Z/2

So, we can write

X = {0,1,2,3,4,5,6,7,0,1}

and for example

2 + 3 = 5, 1 + 1 = 0, 6 + 1 = 1





Just as III was secretly the set of division algebras, X is
secretly the set of super division algebras!

A superalgebra is an algebra A = A0 ⊕ A1 such that

if a ∈ Ai and b ∈ Aj then ab ∈ Ai+j (with addition mod 2)

We call a ∈ A0 even and a ∈ A1 odd.

A super division algebra is a superalgebra where any nonzero
element that is either even or odd has a multiplicative inverse.

Example. We can make C into a super division algebra in two
ways. In one, both real and imaginary numbers are even. In the
other, real numbers are even and imaginary numbers are odd.



Theorem (Wall, Deligne). There are 10 super division
algebras.
▶ Cliff0 = R is a super division algebra where every element

is even.
▶ Cliff1, the free superalgebra on an odd square root of −1.

As an algebra Cliff1 � C.
▶ Cliff2, the free superalgebra on 2 anticommuting odd

square roots of −1. As an algebra Cliff2 � H.
▶ Cliff3, the free superalgebra on 3 anticommuting odd

square roots of −1. As an algebra Cliff3 � H ⊕ H.



▶ Cliff−1, the free superalgebra on an odd square root of 1.
As an algebra Cliff−1 � R ⊕ R.

▶ Cliff−2, the free superalgebra on 2 anticommuting odd
square roots of 1. As an algebra Cliff−2 � M2(R).

▶ Cliff−3, the free superalgebra on 3 anticommuting odd
square roots of 1. As an algebra Cliff−3 � M2(C).

Neither Cliff4 nor Cliff−4 is a super division algebra. But both
are ‘Morita equivalent’ to H, a super division algebra where
every element is even.

Two superalgebras A and B are Morita equivalent, or A ≃ B,
if they have equivalent categories of representations on super
vector spaces. In general

Cliffn+8 ≃ Cliffn



purely even
Cliff0 ≃ R

Cliff1 ≃ C

Cliff2 ≃ H

Cliff3 ≃ H ⊕ H

purely even
Cliff4 ≃ H

Cliff5 ≃ M2(C)

Cliff6 ≃ M2(R)

Cliff7 ≃ R ⊕ R



The other two super division algebras are complex Clifford
algebras:
▶ Cliff0 = C is a complex super division algebra where every

element is even.
▶ Cliff1, the free complex superalgebra on an odd square

root of −1. As an algebra Cliff � C ⊕ C.

In general
Cliffn+2 ≃ Cliffn
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purely even
Cliff0 ≃ C

Cliff1 ≃ C ⊕ C



There is a one-to-one correspondence between:

▶ The 10 ways unitary and/or antiunitary operators commute
with an irreducible unitary representation of a Z/2-graded
group on a super Hilbert space.

▶ The 10 Morita equivalence classes of real and complex
Clifford algebras, viewed as super algebras.

▶ The 10 super division algebras.




