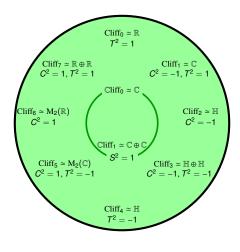
THE TENFOLD WAY



John Baez

There are ten of each of these things:

- Ways that Hamiltonians can get along with time reversal (T) and charge conjugation (C) symmetry.
- Associative real super division algebras.
- Morita equivalence classes of real and complex Clifford algebras.
- Classical families of compact symmetric spaces.

They're all connected! This is the **tenfold way**.

Let's start from the beginning: the threefold way.

Given two unit vectors ψ , ϕ in a Hilbert space **H**, the transition probability $|\langle \psi, \phi \rangle|^2$ does not change if we multiply ψ or ϕ by a phase.

So, pure states in quantum mechanics are really given, not by unit vectors, but by equivalence classes of unit vectors where

$$\psi' \sim \psi$$
 iff $\psi' = c\psi$ for some $c \in \mathbb{C}$ with $|c| = 1$

The set of these equivalence classes is the **projective space PH**.

Wigner's Theorem. Given a Hilbert space **H**, any map from **PH** to itself that preserves transition probabilities comes from either

▶ a unitary operator $U: \mathbf{H} \rightarrow \mathbf{H}$

$$U(\psi{+}\phi) = U\psi{+}U\phi \qquad U(c\psi) = c \ U\psi \qquad \langle U\phi, U\psi
angle = \langle \phi,\psi
angle$$

or

• an antiunitary operator $J: \mathbf{H} \to \mathbf{H}$

$$J(\psi+\phi)=J\psi+J\phi \qquad J(c\psi)=\overline{c}\,J\psi \qquad \langle J\phi,J\psi
angle=\overline{\langle\phi,\psi
angle}$$

Some important symmetries that square to the identity:

- P: parity
- C: charge conjugation
- T: time reversal

Systems may or may not have any of these symmetries. They may also be symmetric only under combinations like *CP*, *PT*, *CT* or *CPT*.

Suppose $f: \mathbf{PH} \to \mathbf{PH}$ preserves transition probabilities and $f^2 = 1$. By Wigner's theorem there are two options:

1. *f* comes from a unitary *U* with $U^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

2. *f* comes from an antiunitary *J* with $J^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

Suppose $f: \mathbf{PH} \to \mathbf{PH}$ preserves transition probabilities and $f^2 = 1$. By Wigner's theorem there are two options:

1. *f* comes from a unitary *U* with $U^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

Then $V = c^{-1/2}U$ is a unitary with $V^2 = 1$ that also gives *f*.

2. *f* comes from an antiunitary *J* with $J^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

Suppose $f: \mathbf{PH} \to \mathbf{PH}$ preserves transition probabilities and $f^2 = 1$. By Wigner's theorem there are two options:

1. *f* comes from a unitary *U* with $U^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

Then $V = c^{-1/2}U$ is a unitary with $V^2 = 1$ that also gives *f*.

2. *f* comes from an antiunitary *J* with $J^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

Then multiplying J by a phase does not change J^2 .

Suppose $f: \mathbf{PH} \to \mathbf{PH}$ preserves transition probabilities and $f^2 = 1$. By Wigner's theorem there are two options:

1. *f* comes from a unitary *U* with $U^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

Then $V = c^{-1/2}U$ is a unitary with $V^2 = 1$ that also gives *f*.

2. *f* comes from an antiunitary *J* with $J^2 = c$ for some $c \in \mathbb{C}$ with |c| = 1.

Then multiplying J by a phase does not change J^2 . Since $Jc = \overline{c}J$ yet $Jc = JJ^2 = J^2J = cJ$, we have $c = \pm 1$.

So:

If a symmetry $f: \mathbf{PH} \to \mathbf{PH}$ that squares to one is implemented by a unitary *U*, we can always find such a *U* with $U^2 = 1$.

But if *f* is implemented by an antiunitary *J*, precisely one of two options holds: $J^2 = 1$ or $J^2 = -1$.

If an antiunitary $J: \mathbf{H} \to \mathbf{H}$ has $J^2 = 1$ then it acts like complex conjugation!

We can define a *real* Hilbert space

$$\mathbf{H}_{\mathbb{R}} = \{ \psi \in \mathbf{H} : J\psi = \psi \}$$

and **H** is the complexification of this:

 $H=\mathbb{C}\otimes_{\mathbb{R}} H_{\mathbb{R}}$

If an antiunitary $J: \mathbf{H} \to \mathbf{H}$ has $J^2 = -1$ then the operators *i*, j = J, and k = ij obey the quaternion relations:

$$i^2 = j^2 = k^2 = ijk = -1$$

We can make **H** into a *quaternionic* Hilbert space $H_{\mathbb{H}}$, and **H** is the underlying complex Hilbert space of this:

$$\mathsf{H}=\mathbb{C}\otimes_{\mathbb{C}}\mathsf{H}_{\mathbb{H}}$$

So, \mathbb{R} , \mathbb{C} and \mathbb{H} all show up in quantum physics! What makes them special? Let's define an **algebra** to be a finite-dimensional real vector space *A* with an associative product that distributes over linear combinations, and a unit $1 \in A$.

A **division algebra** is an algebra where any nonzero element has a multiplicative inverse.

Frobenius' Theorem. There are three division algebras:

- ▶ the real numbers, ℝ
- the complex numbers, \mathbb{C} , with $i^2 = -1$
- ▶ the quaternions, \mathbb{H} , with $i^2 = j^2 = k^2 = ijk = -1$

The role of the division algebras in quantum physics becomes even clearer if we focus on systems with symmetry.

A unitary representation of a group *G* on a Hilbert space **H** consists of unitaries $\rho(g)$: **H** \rightarrow **H** with

$$\rho(gh) = \rho(g)\rho(h)$$
 and $\rho(1) = 1$

We say ρ is **irreducible** if the only closed subspaces $\mathbf{V} \subseteq \mathbf{H}$ with $\rho(g): \mathbf{V} \rightarrow \mathbf{V}$ for all g are $\mathbf{V} = \{0\}$ and $\mathbf{V} = \mathbf{H}$.

Schur's Lemma. Suppose ρ is an irreducible unitary representation of a group *G* on a Hilbert space **H**. Then the only unitary operators $U: \mathbf{H} \to \mathbf{H}$ that commute with all the $\rho(g)$ are phases: U = c1 for some |c| = 1.

The Threefold Way (Dyson). Suppose ρ is an irreducible unitary representation of a group *G* on a Hilbert space **H**. Then exactly one of these holds:

- -1. There is an antiunitary with $J^2 = -1$ commuting with all the $\rho(g)$. Then ρ is the underlying complex representation of a representation on a quaternionic Hilbert space, and we call ρ quaternionic.
 - 0. There is no antiunitary commuting with all the $\rho(g)$. Then we call ρ complex.
 - 1. There is an antiunitary with $J^2 = 1$ commuting with all the $\rho(g)$. Then ρ is the complexification of a representation on a real Hilbert space, and we call ρ real.

For example:

In the spin-*j* representation of SU(2), all the transformations coming from SU(2) commute with some antiunitary *J*.

This has $J^2 = 1$ when *j* is an integer and $J^2 = -1$ when *j* is a half-integer.

Indeed, the spin-1 representation of SU(2) on \mathbb{C}^3 is the complexification of a *real* representation on \mathbb{R}^3 .

On the other hand, the spin-1/2 representation of SU(2) on \mathbb{C}^2 is the underlying complex representation of a *quaternionic* representation on \mathbb{H} .

SU(2) acts on \mathbb{H} as right multiplication by quaternions q with |q| = 1.

Any unitary representation ρ of a compact Lie group ${\it G}$ is a direct sum

$$\rho = \rho(-1) \oplus \rho(0) \oplus \rho(1)$$

where:

- $\rho(-1)$ is a sum of irreducibles that are quaternionic.
- $\rho(0)$ is a sum of irreducibles that are complex.
- $\rho(1)$ is a sum of irreducibles that are real.

Moreover the set

$$\mathrm{III} = \{-1, 0, 1\} \subseteq \mathbb{R}$$

is closed under multiplication, and given two unitary representations ρ, ρ' we have

$$(\rho \otimes \rho')(j) = \bigoplus_{i,i' \in \text{III such that } ii'=j} \rho(i) \otimes \rho'(i')$$

Now, on to the tenfold way!

The tenfold way describes the options for charge conjugation and time reversal, which in condensed matter physics we assume are commuting antiunitary operators:

time-reversal symmetry

with $T^2 = 1$, with $T^2 = -1$, or no T symmetry

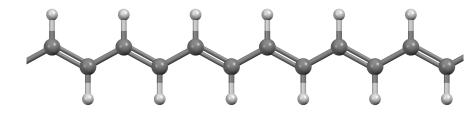
charge conjugation symmetry with C² = 1, with C² = -1, or no C symmetry.

or

only a combination of both, called S. Since S is unitary we may assume that S² = 1.

This gives $3 \times 3 + 1 = 10$ options.

For example, the Su–Schrieffer–Heeger model of superconductivity in polyacetylene doesn't have *C* or *T* symmetry separately. But it has the combined symmetry: a unitary *S* with $S^2 = 1$.



More fundamentally, the tenfold way arises from super Hilbert spaces.

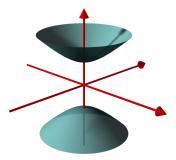
A super Hilbert space is simply a Hilbert space **H** that is written as a direct sum of two parts, $H_0 \oplus H_1$.

We call states $\psi \in \mathbf{H}_0$ even and states $\psi \in \mathbf{H}_1$ odd.

We can use super Hilbert spaces in various ways.

We can let \mathbf{H}_0 be the bosonic and \mathbf{H}_1 the fermionic states.

But condensed matter physics does not mainly apply super Hilbert spaces in this way! Instead.... We can let H_0 be a Hilbert space for particles and H_1 a Hilbert space for antiparticles, or holes.



We can have antiunitaries that are even:

$$T : \mathbf{H} \to \mathbf{H} \text{ with } T : \mathbf{H}_0 \to \mathbf{H}_0, \ T : \mathbf{H}_1 \to \mathbf{H}_1$$

and antiunitaries that are odd:

$$C \colon \mathbf{H} \to \mathbf{H}$$
 with $C \colon \mathbf{H}_0 \to \mathbf{H}_1, \ C \colon \mathbf{H}_1 \to \mathbf{H}_0$

A group *G* is $\mathbb{Z}/2$ -graded if it's written as the union of disjoint subsets G_0 , G_1 such that

if $g \in G_i$ and $h \in G_i$ then $gh \in G_{i+i}$ (with addition mod 2)

A unitary representation ρ of a $\mathbb{Z}/2$ -graded group G on a super Hilbert space **H** is an ordinary unitary representation of G on **H** such that

if $g \in G_i$ and $\psi \in \mathbf{H}_j$ then $\rho(g)\psi \in \mathbf{H}_{i+j}$ (with addition mod 2)

 ρ is **irreducible** if the only closed subspaces $\mathbf{V} = \mathbf{V}_0 \oplus \mathbf{V}_1$, $\mathbf{V}_i \subseteq \mathbf{H}_i$ with $\rho(g) : \mathbf{V} \to \mathbf{V}$ for all g are $\mathbf{V} = \{0\}$ and $\mathbf{V} = \mathbf{H}$. **The Tenfold Way.** The irreducible unitary representations ρ of a $\mathbb{Z}/2$ -graded group *G* on a super Hilbert space **H** come in 10 types, based on their **commutant**: the set of real-linear operators that commute with $\rho(g)$ for all *G*.

In 9 of these types the commutant contains:

▶ an even antiunitary *T* with either $T^2 = 1$, $T^2 = -1$, or no such *T*

and

▶ an odd antiunitary *C* with either $C^2 = 1, C^2 = -1$, or no such *C*.

In the 10th type the commutant contains:

• no such T or C, but an odd unitary S; we may assume $S^2 = 1$.

Note: phases always give even unitaries in the commutant.

The types listed above form a ten-element set. Call this set X.

If a unitary representation ρ of a $\mathbb{Z}/2$ -graded group G on a super Hilbert space is a direct sum of irreducibles, then

$$\rho = \bigoplus_{i \in \mathbf{X}} \rho(i)$$

where $\rho(i)$ is a sum of irreducibles of the *i*th type.

Moreover there is an addition + on the set X such that given two unitary representations ρ, ρ' we have

$$(\rho \otimes \rho')(j) = \bigoplus_{i,i' \in \mathbf{X} \text{ such that } i+i'=j} \rho(i) \otimes \rho'(i')$$

This makes X into a commutative monoid (not a group).

The commutative monoid X is the disjoint union of $\mathbb{Z}/8$ and $\mathbb{Z}/2$, with addition defined by

$$i+j = i+j \mod 8 \quad \text{if} \quad i,j \in \mathbb{Z}/8$$

$$i+j = i+j \mod 2 \quad \text{if} \quad i,j \in \mathbb{Z}/2$$

$$i+j = i+j \mod 2 \quad \text{if} \quad i \in \mathbb{Z}/8, j \in \mathbb{Z}/2$$

So, we can write

$$X = \{0, 1, 2, 3, 4, 5, 6, 7, 0, 1\}$$

and for example

$$2+3=5$$
, $1+1=0$, $6+1=1$

$Cliff_{-1} = \mathbb{R} \oplus \mathbb{R}$ $T^2 = 1$ $C^2 = 1$	$\begin{array}{l} \mathrm{Cliff}_0 = \mathbb{R} \\ \mathcal{T}^2 = 1 \end{array}$	$Cliff_1 = \mathbb{C}$ $T^2 = 1$ $C^2 = -1$
$\begin{array}{l} {\rm Cliff}_{-2}={\rm M}_2(\mathbb{R})\\ C^2=1 \end{array}$	$\mathbb{C}\mathrm{liff}_0 = \mathbb{C}$ $\mathbb{S}^2 = 1$ $\mathbb{C}\mathrm{liff}_1 = \mathbb{C} \oplus \mathbb{C}$	$\begin{array}{l} \operatorname{Cliff}_2 = \mathbb{H} \\ C^2 = -1 \end{array}$
$\begin{array}{l} \mathrm{Cliff}_{-3} = \mathrm{M}_2(\mathbb{C})\\ \mathcal{T}^2 = -1\\ \mathcal{C}^2 = 1 \end{array}$	$\begin{array}{l} \text{Cliff}_4 \simeq \mathbb{H} \\ T^2 = -1 \end{array}$	$Cliff_3 = \mathbb{H} \oplus \mathbb{H}$ $T^2 = -1$ $C^2 = -1$

Just as III was secretly the set of *division algebras*, X is secretly the set of *super division algebras*!

A superalgebra is an algebra $A = A_0 \oplus A_1$ such that

if $a \in A_i$ and $b \in A_i$ then $ab \in A_{i+i}$ (with addition mod 2)

We call $a \in A_0$ even and $a \in A_1$ odd.

A **super division algebra** is a superalgebra where any nonzero element that is either even or odd has a multiplicative inverse.

Example. We can make \mathbb{C} into a super division algebra in two ways. In one, both real and imaginary numbers are even. In the other, real numbers are even and imaginary numbers are odd.

Theorem (Wall, Deligne). There are 10 super division algebras.

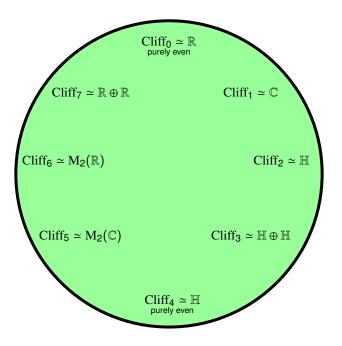
- Cliff₀ = ℝ is a super division algebra where every element is even.
- Cliff₁, the free superalgebra on an odd square root of -1.
 As an algebra Cliff₁ ≅ C.
- Cliff₂, the free superalgebra on 2 anticommuting odd square roots of −1. As an algebra Cliff₂ ≅ H.
- Cliff₃, the free superalgebra on 3 anticommuting odd square roots of −1. As an algebra Cliff₃ ≅ H ⊕ H.

- Cliff₋₁, the free superalgebra on an odd square root of 1.
 As an algebra Cliff₋₁ ≅ ℝ ⊕ ℝ.
- Cliff₋₂, the free superalgebra on 2 anticommuting odd square roots of 1. As an algebra Cliff₋₂ ≃ M₂(ℝ).
- Cliff₋₃, the free superalgebra on 3 anticommuting odd square roots of 1. As an algebra Cliff₋₃ ≅ M₂(ℂ).

Neither Cliff_4 nor $\operatorname{Cliff}_{-4}$ is a super division algebra. But both are 'Morita equivalent' to \mathbb{H} , a super division algebra where every element is even.

Two superalgebras A and B are **Morita equivalent**, or $A \simeq B$, if they have equivalent categories of representations on super vector spaces. In general

 $\operatorname{Cliff}_{n+8} \simeq \operatorname{Cliff}_n$

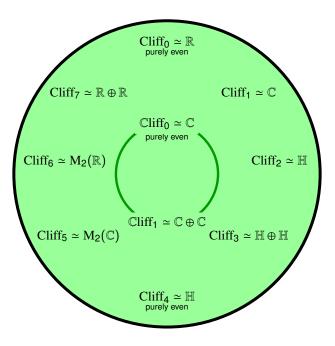


The other two super division algebras are *complex* Clifford algebras:

- Cliff₀ = C is a complex super division algebra where every element is even.
- Cliff₁, the free complex superalgebra on an odd square root of −1. As an algebra Cliff ≅ C ⊕ C.

In general

 $\mathbb{C}\mathrm{liff}_{n+2}\simeq\mathbb{C}\mathrm{liff}_n$



There is a one-to-one correspondence between:

- The 10 ways unitary and/or antiunitary operators commute with an irreducible unitary representation of a Z/2-graded group on a super Hilbert space.
- The 10 Morita equivalence classes of real and complex Clifford algebras, viewed as super algebras.
- The 10 super division algebras.

$Cliff_{-1} = \mathbb{R} \oplus \mathbb{R}$ $T^2 = 1$ $C^2 = 1$	$\begin{array}{l} \mathrm{Cliff}_0 = \mathbb{R} \\ \mathcal{T}^2 = 1 \end{array}$	$Cliff_1 = \mathbb{C}$ $T^2 = 1$ $C^2 = -1$
$\begin{array}{l} {\rm Cliff}_{-2}={\rm M}_2(\mathbb{R})\\ C^2=1 \end{array}$	$\mathbb{C}\mathrm{liff}_0 = \mathbb{C}$ $\mathbb{S}^2 = 1$ $\mathbb{C}\mathrm{liff}_1 = \mathbb{C} \oplus \mathbb{C}$	$\begin{array}{l} \operatorname{Cliff}_2 = \mathbb{H} \\ C^2 = -1 \end{array}$
$\begin{array}{l} \mathrm{Cliff}_{-3} = \mathrm{M}_2(\mathbb{C})\\ \mathcal{T}^2 = -1\\ \mathcal{C}^2 = 1 \end{array}$	$\begin{array}{l} \text{Cliff}_4 \simeq \mathbb{H} \\ T^2 = -1 \end{array}$	$Cliff_3 = \mathbb{H} \oplus \mathbb{H}$ $T^2 = -1$ $C^2 = -1$