University of MARYLAND

A brief introduction to the delights of non-equilibrium statistical physics

Chris Jarzynski
Institute for Physical Science and Technology
Department of Chemistry \& Biochemistry
Department of Physics
University of Maryland, College Park

In the beginning ...

- The energy of the universe is constant.
- The entropy of the universe tends toward a maximum.

Rudolf Clausius, 1865

Thermodynamics is organized logically around equilibrium states, in which "nothing happens".

State function: an observable that has a well-defined value in any equilibrium state. E.g. $\mathrm{U}=\mathrm{U}($ state $)=$ internal energy, $\mathrm{S}=\mathrm{S}($ state $)=$ entropy .

Thermodynamic process: a sequence of events during which a system evolves from one equilibrium state (A) to another (B).

During a reversible process, the system and its surroundings remain in equilibrium at all times.

First Law of Thermodynamics: $\quad \Delta \mathrm{U}=\mathrm{W}+\mathrm{Q}$

$\Delta \mathrm{U}=\mathrm{U}_{\mathrm{B}}-\mathrm{U}_{\mathrm{A}}=$ net change in system's internal energy
$\mathrm{W}=$ work performed on the system
(displacements dX against force F)
Q = heat absorbed by the system
(spontaneous flow of energy via thermal contact)

If we stretch the rubber band slowly: $\mathrm{W}>0, \mathrm{Q}<0$.

Second Law of Thermodynamics: $\quad \int_{A}^{B} \frac{d Q}{T} \leq \Delta S$

$d Q=$ energy absorbed by system as heat
$\mathrm{T}=$ temperature of thermal surroundings
$\Delta S=S_{B}-S_{A}=$ net change in system's entropy

Isothermal
processes:

$$
\begin{array}{ll}
\Delta S \geq \frac{Q}{T}=\frac{\Delta U-W}{T} & \\
W \geq \Delta F & \begin{aligned}
\mathrm{F} & =\text { U-TS } \\
& =\text { Helmholtz free energy }
\end{aligned}
\end{array}
$$

Thermodynamic cycles

$$
\begin{array}{ll}
\text { forward process : } \mathrm{A} \rightarrow \mathrm{~B} & \mathrm{~W}_{\mathrm{F}} \geq \Delta \mathrm{F} \\
\text { reverse process: } \mathrm{A} \mathrm{~B} & \mathrm{~W}_{\mathrm{R}} \geq-\Delta \mathrm{F}
\end{array}
$$

Kelvin-Planck statement of 2nd Law: $\quad \mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{R}} \geq 0$
We perform more work during the forward half-cycle $(A \rightarrow B)$ than we recover during the reverse half-cycle $(A \leftarrow B)$... No free lunch !

Stretching a microscopic rubber band

1. Begin in equilibrium

$$
\begin{aligned}
& \lambda=\mathrm{A} \\
& \lambda: \mathrm{A} \rightarrow \mathrm{~B}
\end{aligned}
$$

2. Stretch the molecule

$$
\mathrm{W}=\text { work performed } \geq \Delta \mathrm{F} \text { on average }
$$

3. End in equilibrium
$\lambda=\mathrm{B}$
4. Repeat
... fluctuations are important

Second Law, macro vs micro

Second Law, macro vs micro

Classical statistical mechanics

system: $\quad x=(q, p)=\left(q_{1}, \cdots q_{n}, p_{1}, \cdots p_{n}\right) \quad$ microscopic environment: $y=(Q, P) \quad$ degrees of freedom

$$
H(x, y ; \lambda)=H_{S}(x ; \lambda)+H_{E}(y)+h_{\mathrm{int}}(x, y)
$$

$$
1 / k_{B} T
$$

Equilibrium state:

$$
p^{e q}(x ; \lambda)=\frac{1}{Z} \exp \left[-\beta H_{S}(x ; \lambda)\right]
$$

State functions:

$$
\begin{aligned}
U & =H_{S}(x ; \lambda) \text { or } \int d x p^{e q} H_{S} \\
S & =-k_{B} \int p^{e q} \ln p^{e q} \\
F & =-k_{B} T \ln Z
\end{aligned}
$$

Classical statistical mechanics

$$
\begin{array}{rlrl}
\text { system: } & x & =(q, p)=\left(q_{1}, \cdots q_{n}, p_{1}, \cdots p_{n}\right) \\
\text { environment: } & y & =(Q, P) \\
H(x, y ; \lambda) & =H_{S}(x ; \lambda)+H_{E}(y)+h_{\mathrm{int}}(x, y)
\end{array}
$$

First law of thermodynamics: $\Delta \mathrm{U}=\mathrm{W}+\mathrm{Q}$

$$
\begin{array}{ll}
\frac{d H_{S}}{d t}=\frac{\partial H_{S}}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial H_{S}}{\partial \lambda} \frac{d \lambda}{d t}
\end{array}\left\{\begin{array}{l}
W=\int d t \frac{d \lambda}{d t} \frac{\partial H_{S}}{\partial \lambda}(x(t) ; \lambda(t)) \\
Q=\int d t \frac{d x}{d t} \cdot \frac{\partial H_{S}}{\partial x}(x(t) ; \lambda(t)) \\
\text { Second law (isothermal): }
\end{array} \quad<\mathrm{W}\right\rangle \geq \Delta \mathrm{F} \underbrace{\partial(\mathrm{~W})}_{\Delta \mathrm{F}}
$$

Classical statistical mechanics

$$
\begin{aligned}
& \text { system: } \quad x=(q, p)=\left(q_{1}, \cdots q_{n}, p_{1}, \cdots p_{n}\right) \\
& \text { environment: } \quad y=(Q, P) \\
& H(x, y ; \lambda)=H_{S}(x ; \lambda)+H_{E}(y)+h_{\mathrm{int}}(x, y) \\
& \begin{array}{l}
U=H_{S}(x ; \lambda) \quad \text { or } \quad \int p^{e q} H_{S} \\
S=-k_{B} \int p^{e q} \ln p^{e q} \quad, \quad F=-k_{B} T \ln Z \\
W=\int d t \frac{d \lambda}{d t} \frac{\partial H_{S}}{\partial \lambda} \quad, \quad Q=\int d t \frac{d x}{d t} \cdot \frac{\partial H_{S}}{\partial x}
\end{array} \quad \Delta \mathrm{U}=\mathrm{W}+
\end{aligned}
$$

- Some modifications required if $\mathrm{h}_{\text {int }}$ is not weak
- Same definitions apply if system's evolution is modeled stochastically (e.g. Brownian dynamics)

Beyond classical thermodynamics:

Fluctuation Theorems

$$
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F}
$$

$$
\text { C.J., PRL 78, } 2690 \text { (1997) }
$$

... places a strong constraint on $\rho(W)$.

Beyond classical thermodynamics:

Fluctuation Theorems

Relation to Second Law

$$
\left.\begin{array}{l}
\text { Jensen's } \\
\text { inequality }
\end{array}\left\langle e^{x}\right\rangle \geq e^{\langle x\rangle},\right\} \longrightarrow\langle W\rangle \geq \Delta F
$$

What is the probability that the 2nd law will be "violated" by at least ζ ?

$$
\begin{aligned}
P[W<\Delta F-\zeta] & =\int_{-\infty}^{\Delta F-\xi} d W \rho(W) \leq \int_{-\infty}^{\Delta F-\zeta} d W \rho(W) e^{\beta(\Delta F-\zeta-W)} \\
& \leq e^{\beta(\Delta F-\xi)} \int_{-\infty}^{+\infty} d W \rho(W) e^{-\beta W}=\exp (-\zeta / k T)
\end{aligned}
$$

Folding and unfolding of ribosomal RNA

$$
\frac{\rho_{\text {unfold }}(+W)}{\rho_{\text {refold }}(-W)}=\exp [\beta(W-\Delta F)]
$$

Nonequilibrium Steady States

(Gallavotti, Cohen, Evans, Searles, Kurchan, Lebowitz, Spohn ... 1990's)

Autonomous and non-autonomous feedback control

How to design a device with the desired specifications?

What can be achieved by an agent with given abilities of measurement and feedback?

Maxwell's Demon

"... the energy in A is increased and that in B diminished; that is, the hot system has got hotter and the cold colder and yet no work has been done, only the intelligence of a very observant and neat-fingered being has been employed"
J.C. Maxwell, letter to P.G. Tait, Dec. 11, 1867

Maxwell's Demon

Is a "mechanical" Maxwell demon possible?
M. Smoluchowski, Phys Z 13, 1069 (1912) no!
R.P. Feynman, Lectures
autonomous feedback control

Maxwell's Demon

Is a "mechanical" Maxwell demon possible?
R. Landauer, IBM J Res Dev 5, 183 (1961)
O. Penrose, Foundations of Statistical Mechanics (1970) yes, but ...
C.H. Bennett, Int J Theor Physics 21, 905 (1982)
autonomous feedback control

Second Law of Thermodynamics

... with measurement and feedback

$$
\begin{array}{cl}
\langle W\rangle \geq \Delta F-k_{B} T\langle I\rangle & \text { Sagawa \& Ueda, PRL 100, } 080403 \text { (2008) } \\
\left\langle e^{-\beta W-I}\right\rangle=e^{-\beta \Delta F} & \text { Sagawa \& Ueda, PRL 104, 090602 (2010) }
\end{array}
$$

Autonomous demons

H.T. Quan et al, PRL 97, 180402 (2006)
D. Mandal and C. Jarzynski, PNAS 109, 11641 (2012)
T. Sagawa and M. Ueda, PRL 109, 180602 (2012)
P. Strasberg et al, PRL 110, 040601 (2012)
J.M. Horowitz, T. Sagawa and J.M.R. Parrondo PRL 111, 010602 (2013)
A.C. Barato and U. Seifert, EPL 101, 60001 (2013)
D. Mandal, H.T. Quan and C. Jarzynski, PRL 111, 030602 (2013)
S. Deffner, PRE 88, 062128 (2013)
Z. Lu, D. Mandal and C. Jarzynski, Phys Today 67, 60 (Aug 2014)

Gedankenengineering:
Design a mechanical gadget that ...
(1) systematically withdraws energy from a single thermal reservoir,
(2) delivers that energy to raise a mass against gravity, and
(3) records information in a memory register.

Guessing the direction of the arrow of time

You are shown a movie depicting a thermodynamic process, $A \rightarrow B$.
Task: determine whether you are viewing the events in the order in which they actually occurred, or a movie run backward of the reverse process.

Two hypotheses:
The molecule was stretched (F)
The molecule was contracted (R)
$L(F \mid W)=\frac{1}{1+\exp [-\beta(W-\Delta F)]}$
~ Shirts et al, PRL 2003 ,
Maragakis et al, J Chem Phys 2008

Guessing the direction of the arrow of time

You are shown a movie depicting a thermodynamic process, $A \rightarrow B$.
Task: determine whether you are viewing the events in the order in which they actually occurred, or a movie run backward of the reverse process.

References

C.J., Annu Rev Cond Matt Phys 2, 329 (2011)
fluctuation theorems for work
Seifert, Rep Prog Phys 75, 126001 (2012)
stochastic thermodynamics
Sagawa, Progress Theor Phys 127, 1 (2012) information processing - non-autonomous
Deffner \& C.J., Phys Rev X 3, 041003 (2013)
information processing - autonomous

