
COMPOSITIONAL THERMOSTATICS

JOHN C. BAEZ1,2, OWEN LYNCH3,4, AND JOE MOELLER5

Abstract. We define a thermostatic system to be a convex space of states together
with a concave function sending each state to its entropy, which is an extended real
number. This definition applies to classical thermodynamics, classical statistical
mechanics, quantum statistical mechanics, and also generalized probabilistic theories
of the sort studied in quantum foundations. It also allows us to treat a heat bath
as a thermostatic system on an equal footing with any other. We construct an
operad whose operations are convex relations from a product of convex spaces to
a single convex space, and prove that thermostatic systems are algebras of this
operad. This gives a general, rigorous formalism for combining thermostatic systems,
which captures the fact that such systems maximize entropy subject to whatever
constraints are imposed upon them.

1. Introduction

A large part of thermodynamics deals with systems in equilibrium: this deserves
to be called ‘thermostatics’. To treat this subject in a modern mathematical spirit,
we define a thermostatic system to be any convex space of ‘states’ together with a
concave function assigning to each state its entropy. Whenever several such systems
are combined and allowed to come to equilibrium, the new equilibrium state maximizes
the total entropy subject to constraints. We explain how to express this idea in a
rigorous and fully general way using an operad. Intuitively speaking, the operad
we construct has as operations all possible ways of combining thermostatic systems.
For example, there is an operation that combines two gases in such a way that they
can exchange energy and volume, but not particles—and another operation that lets
them exchange only particles, and so on.
Operads provide a way to take the business of combining physical systems, often

left to informal rules of thumb, and turn it into mathematics. Not only is this a
prerequisite for proving general theorems about compositionality, it can also serve
as the basis for software. For example, the AlgebraicJulia project has produced
several software packages based on operads that let users build complex models of
dynamical systems by composing simpler parts. The AlgebraicPetri package does
this with Petri nets [2], one common framework for describing systems of ordinary
differential equations, while the StockFlow package does it using a related framework:
stock and flow diagrams [4]. The Decapodes package uses operads to help users build
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‘multiphysics models’ involving partial differential equations for electromagnetism,
fluid mechanics and the like [1]. It is natural to extend this methodology to handle
systems of other sorts, including thermostatic systems. But first the underlying
mathematics must be worked out.

Our approach requires an abstract kind of convex space that need not be a subset
of a vector space, described in Section 2. In Section 3 we show how this lets us
systematically handle thermostatic systems in many contexts, including classical
thermodynamics, classical statistical mechanics, and quantum statistical mechanics.
Even the ‘heat bath’ becomes a rigorously well-defined thermostatic system on an
equal footing with the rest. In Section 4 we study the entropy maximization principle
for general thermostatic systems, and in Section 5 we use this to describe compositional
thermostatics using an operad. We end with a variety of examples.
Starting perhaps with the work of Gudder [12], abstract convex spaces have also

become important in the foundations of quantum mechanics, where they are used
to study both states and effects in so-called ‘generalized probabilistic theories’ [13].
Entropy has been studied in the context of these generalized probabilistic theories [5,
14, 22], and in Example 26 we show our framework applies also to these.

Acknowledgements. We thank Spencer Breiner, Tobias Fritz, Tom Leinster and Sophie
Libkind for helpful discussions. We thank the Topos Institute for supporting this
research.

2. Convex spaces

The central object in our thermostatics formalism is a notion of ‘convex spaces’
that need not be convex subsets of a vector space.

Definition 1. A convex space is a set X with an operation cλ : X ×X → X for
each λ ∈ [0, 1] such that the following identities hold:

• c1(x, y) = x,
• cλ(x, x) = x,
• cλ(x, y) = c1−λ(y, x),
• cλ(cµ(x, y), z) = cλ′(x, cµ′(y, z)) for all 0 ≤ λ, µ, λ′, µ′ ≤ 1 satisfying λµ = λ′

and 1− λ = (1− λ′)(1− µ′).

Given a set X, a convex structure on X is a collection of functions cλ : X×X → X
for λ ∈ [0, 1] obeying the above axioms.

Example 2. Any vector space is a convex space with the convex structure cλ(x, y) =
λx+ (1− λ)y.

The abstract definition of a convex space has been reinvented many times [9], but
perhaps the story starts in 1949 with Stone’s ‘barycentric algebras’ [25]. Beside the
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above axioms, Stone included a cancellation axiom: whenever λ ̸= 0,

cλ(x, y) = cλ(x
′, y) =⇒ x = x′.

This allowed him to prove that any barycentric algebra is isomorphic to a convex
subset of a vector space. Later Neumann [19] noted that a convex space, defined as
above, is isomorphic to a convex subset of a vector space if and only if the cancellation
axiom holds.
Dropping the cancellation axiom has convenient formal consequences, since the

resulting more general convex spaces can then be defined as algebras of a finitary
commutative monad [13, 26], giving the category of convex spaces very good properties.
But dropping this axiom is no mere formal nicety. We need the set of possible values
of entropy to be a convex space. One candidate is the set R≥0 = [0,∞). However, for
a well-behaved formalism based on entropy maximization, we want the supremum of
any set of entropies to be well-defined. This forces us to consider the larger set [0,∞],
which does not obey the cancellation axiom. But in fact, our treatment of the heat
bath starting in Example 21 forces us to consider negative entropies—not because the
heat bath can have negative entropy, but because the heat bath acts as an infinite
reservoir of entropy, and the change in entropy from its default state can be positive
or negative. This suggests letting entropies take values in the convex space R, but
then the requirement that any set of entropies have a supremum (including empty
and unbounded sets) forces us to use the larger convex space R = [−∞,∞], which
does not obey the cancellation axiom.

Of course, convexity has been widely used already in classical thermodynamics, in
particular for studying the Legendre transform [10, 20, 27]. Based on this and other
applications, convex analysis has grown into quite a large subject: see Rockafellar’s
book [21]. This will become important in future developments, but note that his text
only considers convex subsets of Rn.

We now consider some more examples of convex spaces:

Definition 3. A subset S of a convex space X is a convex subspace if for all
x, x′ ∈ S and all 0 ≤ λ ≤ 1 we have cλ(x, x

′) ∈ S.

A convex subspace of a convex space is a convex space in its own right.

Example 4. The positive orthant Rn
>0 ⊆ Rn is the subset of Rn consisting of vectors

with all positive coordinates: x ∈ Rn such that xi > 0 for all i. This is a convex
subspace of Rn, and thus a convex space in its own right.

Example 5. The n-simplex ∆n ⊆ Rn+1 is the set of probability distributions on the
set {0, . . . , n}:

∆n = {x ∈ Rn+1 | xi ≥ 0,
n∑

i=0

xi = 1}.
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This is a convex subspace of the vector space Rn+1, and thus a convex space in its
own right.

The next example does not obey the cancellation axiom:

Example 6. The set R of extended reals has a unique convex structure with

cλ(x, y) = λx+ (1− λ)y for x, y ∈ R
cλ(x,∞) = ∞ for x ∈ R

cλ(x,−∞) = −∞ for x ∈ R
cλ(−∞,∞) = −∞

for all λ ∈ (0, 1). This convex structure extends the usual one on R. To see that these
operations indeed obey the laws of a convex structure, note that if X is any convex
space and {∗} is some singleton, there is a unique convex structure on the disjoint
union X ⊔ {∗} extending that on X such that cλ(x, ∗) = ∗ for all λ ∈ (0, 1). Using
this trick once, we get a convex structure on (−∞,∞] = R ⊔ {∞}. Using it again,
we get the desired convex structure on R = (−∞,∞] ⊔ {−∞}. Note the asymmetry:
whenever we take a nontrivial convex combination of ∞ and −∞, we get −∞. There
is another convex structure on R with cλ(−∞,∞) = ∞ for λ ∈ (0, 1). However, our
choice is physically motivated: with the other choice, Lemma 27 would not hold.

We will now consider several notions of maps between convex spaces. The first
notion is perhaps the most straightforward: a function that preserves convex combi-
nations.

Definition 7. A convex-linear map from a convex space X to a convex space Y is
a convex relation f ⊆ X × Y that is a function. Equivalently, a convex-linear map is
a function f : X → Y such that for x, x′ ∈ X and all λ ∈ [0, 1],

f(cλ(x, x
′)) = cλ(f(x), f(x

′)).

Example 8. If V and W are vector spaces, any linear map L : V → W is convex-linear.
Any affine map is also convex-linear.

One extension of convex maps can be given in the case that we are mapping into a
convex space with an ordering: we then can relax the equality of convex-linearity to
an inequality.

Definition 9. Given a convex space X, a function f : X → R is concave if for all
x, x′ ∈ X and all 0 ≤ λ ≤ 1,

f(cλ(x, x
′)) ≥ cλ(f(x), f(x

′))

Example 10. log : R>0 → R is concave.
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Note that if we had chosen the convex structure on R with cλ(∞,−∞) = ∞ for
λ ∈ (0, 1) then a concave function f : X → R with f(x) = ∞ and f(x′) = −∞ would
need to be infinite on all nontrivial convex linear combinations of x and x′, since

f(cλ(x, x
′)) ≥ cλ(f(x), f(x

′)) = ∞.

With the convex structure we actually chose for R, we merely need

f(cλ(x, x
′)) ≥ cλ(f(x), f(x

′)) = −∞,

which is automatic. In fact, we need this looser second requirement in the proof of
Lemma 27, which is crucial to our work.

Just as we can generalize functions between sets to relations between sets, we can
also generalize convex-linear maps to convex relations. To define this, we first define
the product of two convex spaces.

Definition 11. Given two convex spaces X and Y , we may form their product,
X × Y . This has a convex structure given by

cλ((x, y), (x
′, y′)) = (cλ(x, x

′), cλ(y, y
′))

Definition 12. A convex relation from a convex space X to a convex space Y is a
convex subspace of X × Y .

Example 13. If f : X → Y is any convex-linear map, then its graph

{(x, y) ∈ X × Y | y = f(x)}

is a convex relation.

Example 14. If f : X → R is any concave map, then its subgraph

{(x, y) ∈ X × Y | y ≤ f(x)}

is a convex relation.

We will often think of convex relations in terms of “compatibility.” That is, a
convex relation R ⊆ X × Y expresses when some description of the system x ∈ X is
“compatible” with another description y. This compatibility need not necessarily be
functional: there could be any number of descriptions y compatible with x. Thus, we
use relations. We shall see many examples of convex relations in Section 4

Definition 15. Composition of convex relations is defined in the following way. If
R ⊆ X × Y and R′ ⊆ Y × Z, we define their composite R′ ◦R ⊆ X × Z by

R′ ◦R = {(x, z) ∈ X × Z | ∃y ∈ Y, (x, y) ∈ R, (y, z) ∈ R′}

Proposition 16. The composition of two convex relations is convex.
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Figure 1. The Ideal Gas

Definition 17. Let ConvRel denote the category of convex space and convex relations,
with composition as defined in Definition 15. Let Conv denote the subcategory of
convex spaces and convex-linear maps, where the inclusion is given by graphs as in
Example 13.

3. Thermostatic systems

A thermostatic system is a convex space of states with a concave function assigning
an entropy to each state. However, as already explained, we need to let entropy to
take values in R so that we can treat the heat bath as a thermostatic system and also
take suprema of arbitrary sets of entropies. We thus make the following definition:

Definition 18. A thermostatic system (X,S) is a convex space X together with
a concave function S : X → R, where R has the convex structure given in Example 6.
We call X the state space, call points of X states, and call S the entropy function.

There are many examples of thermostatic systems coming from classical thermody-
namics; here is a small sampling.

Example 19. The ideal gas is a familiar thermostatic system with state space X = R3
>0,

whose coordinates (U, V,N) describe the energy, volume, and particle number of the
gas. The entropy Sideal : X → R of the ideal gas is given by the Sackur–Tetrode
equation [11]. If we were to set up an experiment to study properties of the ideal gas,
we would want to be able to change these three parameters. A theoretical setup for
such an experiment is pictured in Fig. 1.

Example 20. A closed tank of an idealized incompressible liquid can change neither
its volume nor its number of particles; its state is solely determined by its total energy
U . Thus, the state space for this system is X = R>0. The entropy is defined as
Stank(U) = C log(U) for C ∈ R>0 a constant. Classically, the temperature T of a
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system is defined as
1

T
=

∂S

∂U
so we get

1

T
=

C

U
and hence

CT = U.

Therefore, we can identify C with the heat capacity of the system. Each unit of
increase in temperature leads to an increase in energy by C.

Example 21. The heat bath at constant temperature T0 ̸= 0 is an important thermo-
static system that our formalism treats on an equal footing with others. It has state
space X = R and entropy function S(U) = U/T0. We think of the single coordinate
U not as the total energy of the heat bath (which is infinite), but rather the net
energy transferred in or out of the heat bath. The infinite nature of the heat bath is
expressed by the fact that U can be arbitrarily negative: we can take out as much
heat as we want. Moreover, taking the derivative of S with respect to U , we find that

∂S

∂U
=

1

T0

.

Thus, the temperature is constant at T0, no matter how much energy we put in or
take out of the heat bath.

We can derive the heat bath as a certain limit of the tank, provided that we rescale
properly. Fix a temperature T . The tank with heat capacity C reaches temperature T
when it has energy U = CT . Now, consider for each C, the thermostatic system with
state variable ∆U ∈ [−CT,∞), and entropy function SC(∆U) = C log(CT +∆U)−
C log(CT ). For any fixed ∆U , as C → ∞, we have

C log(CT +∆U)− C log(CT ) = C log

(
CT +∆U

CT

)
= log

((
1 +

1

C

∆U

T

)C
)

→ log

(
exp

(
∆U

T

))
=

∆U

T
Thus, SC converges pointwise to Sbath at temperature T . This means that a tank
with a high heat capacity behaves like a heat bath for small fluctuations around a
given energy level.
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There are also many important examples of thermostatic systems coming from sta-
tistical mechanics. Thus, our approach puts classical thermodynamics and statistical
mechanics on an equal footing. In the following examples, and indeed throughout the
paper, we use units where Boltzmann’s constant k is 1.

Example 22. There is a thermostatic system whose state space is the set of probability
distributions on {0, . . . , n}, namely the convex space ∆n described in Example 5.
The natural choice of entropy function here is the Shannon entropy, given by

Ssh(p) = −
n∑

i=0

pi log(pi).

This is well-known to be concave [6, Thm. 2.73].

Example 23. More generally, for any measure space (X,µ) the set of probability
distributions P (X,µ) is a convex space, and this becomes a thermostatic system with
entropy function S : P (X,µ) → R given by

S(p) = −
∫
X

p(x) log(p(x)) dµ(x).

Example 24. We can also treat infinite-volume statistical mechanics with this frame-

work. Let Ω = {−1, 1}Zd
. The weak topology on Ω is given by ω(n) → ω iff ω

(n)
i → ωi

for all i ∈ Zd. Let Σ be the Borel σ-algebra corresponding to this topology, and
let M1,θ(Ω) be the convex space of translation-invariant probability measures on
this σ-algebra, where µ is translation-invariant if µ(U) = µ({ω ◦ ϕ | ω ∈ U}) for all
translations ϕ : Zd → Zd.
Then for any finite Λ ⊆ Zd, and any µ ∈ M1,θ(Ω), let µΛ be µ restricted to

{−1, 1}Λ. We use this to define the entropy density of a translation-invariant measure
µ as

s(µ) = lim
n→∞

Ssh(µB(n))

|B(n)|
where B(n) is the ball of radius n in Zd. This is well-defined and concave [8,
Proposition 6.75], so (Ω, s) is a thermostatic system.

Example 25. For any Hilbert space H, let X be the set of density matrices on
H, i.e. nonnegative self-adjoint operators ρ with Tr(ρ) = 1. Then this becomes a
thermostatic system with entropy function S : X → R given by the von Neumann
entropy

Svn(ρ) = −Tr(ρ log(ρ)).

More generally still, concave entropy functions can be defined on the convex spaces
of states in a large class of ‘generalized probabilistic theories’, making them into
thermostatic systems [5, 14, 22].
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Example 26. Fix a convex space X. Define a measurement to be a convex-linear
map e : X → ∆n for some n, where the n-simplex ∆n is defined as in Example 5.
Thus, for each state X the measurement gives a probability distribution on the set of
outcomes, {0, . . . , n}.

Given any convex space X equipped with a collection E of measurements, we can
define an entropy function SE : X → [0,∞) as follows:

SE(x) = inf
e∈E

Ssh(e(x))

Because the infimum of concave functions is concave, SE is concave. Thus, (X,SE) is
a thermostatic system.
Barnum et al. [5] take this approach and do not impose any restriction on the

collection E. Note however that ‘uninformative’ measurements tend to drive down
the entropy function SE. For example, if E includes the unique measurement with a
single outcome, f : X → ∆0, the entropy function SE is identically zero. To prevent
uninformative measurements from driving down the entropy, Short and Wehner take
E to be a collection of measurements that are ‘fine-grained’ in a certain precise sense
[22]. They argue that with this restriction, SE equals the usual Shannon entropy
when X = ∆n for some n, and the von Neumann entropy when X is the set of density
matrices on a finite-dimensional Hilbert space H.

4. Entropy maximization

It is well known that a system in thermodynamic equilibrium maximizes entropy
subject to the constraints imposed on its states. The key insight behind our approach
is that the constraints used in entropy maximization are typically parameterized. For
instance, in the system with two components that are constrained to have a fixed
total energy, the total energy parameterizes this constraint. The formal structure that
describes a parameterized collection of constraints is a convex relation R ⊆ X × Y .
This convex relation assigns to each y ∈ Y a constrained set {x ∈ X | (x, y) ∈ R}. In
the example of a two-component system with a fixed total energy, X = X1 ×X2 is
the convex set of states of the whole system, while Y is the set of possible energies,
and (x, y) ∈ R when the total energy of both components equals y.
Recall that convex spaces and convex relations form a category ConvRel. We use

this category to formalize this application of the maximum entropy principle by
constructing a functor

Ent : ConvRel → Set

sending any convex space X to the set of all concave functions S : X → R. Then,
given a concave function S : X → R and a convex relation R ⊆ X × Y , we define the
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function R∗S : Y → R by
R∗S(y) = sup

(x,y)∈R
S(x).

In this way, we can “coarse-grain” the thermostatic system (X,S) to make a system
(Y,R∗S). The entropy assigned to y ∈ Y is the supremum of the entropies of all the
states in X “compatible” with y: that is, related to y by the relation R.

Lemma 27. As defined above, Ent is a functor from ConvRel to Set.

Proof. First we check well-definedness. Fix convex spacesX and Y , a concave function
S : X → R and a convex relation R ⊆ X×Y ; we must show the function R∗S defined
above is concave. That is, we must show that for all y, y′ ∈ Y and 0 ≤ λ ≤ 1 we have

R∗S(cλ(y, y
′)) ≥ cλ(R∗S(y), R∗S(y

′)).

We consider several cases. Note that we need only consider λ ∈ (0, 1); if λ = 0 or
λ = 1 then the inequality is trivially true as an equation.

(1) Suppose R∗S(y), R∗S(y
′) ∈ R. Then for any ϵ > 0, by definition of R∗S as a

supremum, we can choose x and x′ such that (x, y), (x′, y′) ∈ R and

S(x) > R∗S(y)− ϵ,

S(x′) > R∗S(y
′)− ϵ.

Now fix λ ∈ (0, 1). By the convexity of R, (cλ(x, x
′), cλ(y, y

′)) ∈ R. It follows
that

cλ(R∗S(y), R∗S(y
′))− ϵ = cλ(R∗S(y)− ϵ, R∗S(y

′)− ϵ)

≤ cλ(S(x), S(x
′))

≤ S(cλ(x, x
′))

≤ R∗S(cλ(y, y
′)).

The second to last inequality is by concavity of S, and then the last inequality
is by definition of R∗S. Letting ϵ → 0, we have our desired inequality.

(2) Suppose R∗S(y) = ∞, R∗S(y
′) ∈ R. Then we can choose some (x′, y′) ∈ R

and choose x ∈ X such that (x, y) ∈ R with S(x) positive and as large as we
like. Now fix λ ∈ (0, 1). Then we have

λS(x) + (1− λ)S(x′) ≤ S(cλ(x, x
′))

≤ R∗S(cλ(y, y
′)).

Since R∗S(cλ(y, y
′)) is bounded below by a quantity that is as large as we like,

it is infinite. Thus the desired inequality holds.
(3) Suppose either R∗S(y) or R∗S(y

′) is −∞. In this case the inequality to be
proved is trivial since for λ ∈ (0, 1) we have cλ(R∗S(y), R∗S(y

′)) = −∞.
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Without loss of generality, all cases are equivalent to one of these three, so we have
proved concavity.
Next we check that Ent is a functor. We must show that given convex relations

R ⊆ X × Y , R′ ⊆ Y × Z we have

(R′ ◦R)∗ = R′
∗ ◦R∗.

The composite relation is defined so that if we fix z ∈ Z, we have

{x ∈ X | (x, z) ∈ R′ ◦R} = {x ∈ X | ∃y ∈ Y (x, y) ∈ R and (y, z) ∈ R′}.
It follows that

(R′
∗ ◦R∗)(S)(z) = sup

(y,z)∈R′
R∗(S)(y)

= sup
(y,z)∈R′

(
sup

(x,y)∈R
S(x)

)
= sup

(x,z)∈R′◦R
S(x)

= (R′ ◦R)∗(S)(z)

showing that Ent preserves composition. Identity maps are clearly preserved. □

Example 28. Consider a thermostatic system consisting of two tanks, with energy
U1 and U2 respectively. The state space for this thermostatic system is R2

>0, and the
entropy function is

S(U1, U2) = C1 log(U1) + C2 log(U2)

where C1 and C2 are the heat capacities of the two systems, respectively.
Now, consider the convex relation R ⊆ R2

>0 × R>0 given by the equation

U1 + U2 = U.

This relation lets us coarse-grain the thermostatic system with state space R2
>0 so

that we only consider the total energy. If we push S forward along R, we get

R∗S(U) = sup
U1+U2=U

S(U1, U2)

The meaning of this is that the entropy of the coarse-grained state U is the supremum
of the entropies of the fine-grained system states (U1, U2) compatible with U .

This supremum is in fact achieved when

∂

∂U1

C1 log(U1) =
∂

∂U2

C2 log(U2)

so
C1

U1

=
C2

U2

.
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Since Ui/Ci is the temperature of tank i, this says that the temperatures of the two
tanks are equal at equilibrium. If we substitute U − U1 for U2 we get

C1

U1

=
C2

U − U1

and thus

U1 =
C1

C1 + C2

U, U2 =
C2

C1 + C2

U.

This gives an explicit formula for R∗S as a function of U :

R∗S(U) = C1 log

(
C1

C1 + C2

U

)
+ C2 log

(
C2

C1 + C2

U

)
= (C1 + C2) log(U) +K

for some constant K depending on C1 and C2. As maximization behavior does not
change if we add a constant to entropy, this entropy function gives the same behavior
as a tank of heat capacity C1 + C2, as expected.

In this example, we saw how entropy maximization could be used to compose two
tanks. However, in order to construct this example, we had to use another general
principle: the entropy of two independent systems is the sum of their individual
entropies. We would like our framework to incorporate this principle. Our eventual
goal is to be able to take multiple thermostatic systems, compose them with some
constraints, and end up obtaining a single thermostatic system—in an automatic way,
with no further decisions required. The mathematical constructs we will use for this
are operads and operad algebras. However, we do not assume that the reader has
prior familiarity with the theory of operads. Thus, the next section reviews operads,
before developing the operad algebra of thermostatic systems.

Before we move on to that, however, we give two examples that clarify the meanings
of infinite and negative infinite entropy.

Example 29. Let Stank : R>0 → R be the entropy of a closed tank of incompressible fluid
as a function of its internal energy, given as in Example 20 by Stank(U) = C log(U).
Consider the convex relation R ⊆ R>0 × {∗} given by allowing all elements of R>0 to
be related to {∗}. Pushing the tank’s entropy forward along this relation, we obtain

R∗Stank(∗) = sup
U>0

Stank(U) = ∞.

This illustrates the meaning of infinite entropy: when a thermostatic system can
reach states of arbitrarily high entropy, its entropy in equilibrium is ∞.

Example 30. In the spirit of the last example, consider a relation R ⊆ R>0 × R given
by the graph of the inclusion R>0 ↪→ R. Let S be any entropy function on R>0. Then
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for any x ≤ 0,
R∗S(x) = sup

y>0,y=x
S(y) = −∞

because the supremum of the empty set is −∞. This illustrates the meaning of
negative infinite entropy: an entropy of −∞ represents an impossible state.

5. The operad algebra of thermostatic systems

In this section we construct an operad Op(ConvRel) where the operations are
convex relations from a product of several convex spaces to a single convex spaces.
These operations serve as ways to combine several thermostatic systems into a
single such system. We formalize this fact by proving that the collection of all
thermostatic systems forms an ‘algebra’ of the operad Op(ConvRel). This algebra is
called Op(Ent), for two reasons. Intuitively, the principle whereby thermodynamic
systems are combined is entropy maximization. Formally, Ent is the functor from
the category ConvRel to Set that assigns to any convex set X the set of all entropy
functions on X. In our main result, Theorem 40, we show that this functor defines
an algebra Op(Ent) of the operad Op(ConvRel).
Operads are a generalization of categories where the domain of a morphism is a

family of objects, but the codomain is still required to be a single object. Operads
originally arose in the study of iterated loop spaces [17], and continue to find use in
homotopy theory and higher category theory. Recently, operads have also appeared
in applied category theory [3, 7, 24]. More detail on operads may be found in [16, 18,
28].

Definition 31. An operad (also known as a symmetric multicategory) is a collection
O0 of types, and for any types X1, . . . , Xn, Y ∈ O0 a collection of operations
O(X1, . . . , Xn;Y ) satisfying the following properties.

• Given operations

f1 ∈ O(X1,1, . . . , X1,m1 ;Y1), . . . , fn ∈ O(Xn,1, . . . , Xn,mn ;Yn)

g ∈ O(Y1, . . . , Yn; z)

one can compose to construct a new operation

g(f1, . . . , fn) ∈ O(X1,1, . . . , Xn,mn ; z).

• For every type X there is an identity operation 1X ∈ O(X;X).
• Composition must be associative and unital with respect to the identity
operations.

• For every permutation σ ∈ Sn there is a bijection O(X1, . . . , Xn;Y ) →
O(Xσ(1), . . . , Xσ(n);Y ) which must satisfy certain compatibility conditions
[28].
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Figure 2. Composition in the little 2-disks operad.

Example 32. The little 2-disks operad is a famous operad which arises in topology
[23]. It has only one type, X, and an operation Xn → X is a labelled list of n
disjoint closed disks in the unit disk of R2. The composition of operations is simply
composition of inclusions, and can be seen in Fig. 2. This operad does not play a role
in our present framework, but one can draw similar looking pictures of operations in
the operad for thermostatic systems.

Symmetric monoidal structures on categories are another formalism that allows
one to discuss morphisms with multiple inputs, and to permute these inputs [15], and
in fact there is in fact a strong relationship between operads and symmetric monoidal
categories. Every symmetric monoidal category has an underlying operad.

Construction 33. Given a symmetric monoidal category (C,⊗), there is an operad
Op(C) defined by

Op(C)0 = C0

Op(C)(X1, . . . , Xn;Y ) = C(X1 ⊗ · · · ⊗Xn, Y )

The composition of the operad is constructed from the composition and monoidal
product of the category, and similar for identities.

Example 34. Applying Construction 33 to the cartesian monoidal category (Set,×, 1),
we obtain an operad S of sets, where the types are sets, and the operations are
multivariable functions: S(X1, . . . , Xn;Y ) = Set(X1 × . . .×Xn, Y ).

Example 35. In this example we put a symmetric monoidal structure on ConvRel
and then apply Construction 33 to get an operad whose types are convex spaces and
whose operations are convex relations R ⊆ (X1 × · · · ×Xn)× Y .

In Definition 11 we explained the product of convex spaces. This is in fact the
categorical product in Conv, the category of convex spaces and functions between
them. Thus (Conv,×) is a symmetric monoidal category [15]. The category ConvRel
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has the same objects as Conv, but more morphisms: convex relations rather than just
convex maps. Like Conv, ConvRel is a symmetric monoidal category where the tensor
product of convex spaces is X and Y is X × Y . However, this tensor product is no
longer the categorical product in ConvRel, just as the usual cartesian product of sets
is not the category product in Rel, the category of sets and relations. Thus we need
to define the tensor product of morphisms in ConvRel ‘by hand’. Luckily this is easy:
the usual product of subsets defines a product of relations, and the product of two
convex relations is again convex. We also need to endow ConvRel with some natural
isomorphisms: the associator

αX,Y,Z : (X × Y )× Z → X × (Y × Z),

the left unitor

λX : 1×X → X

where 1 denotes a chosen singleton, and the right unitor

ρX : X × 1 → X,

and the braiding

βX,Y : X × Y → Y ×X.

But these all maps are all the obvious ones—and they obey the necessary equations
for a symmetric monoidal category because (Conv,×) is symmetric monoidal. Thus
(ConvRel,×) is also symmetric monoidal, and we obtain an operad Op(ConvRel).

Definition 36. A map of operads F : O → P consists of a map of types

X ∈ O0 7→ F (X) ∈ P0

and for every X1, · · · , Xn, Y ∈ O0, a map of operations

f ∈ O(X1, . . . , Xn;Y ) 7→ F (f) ∈ P(F (X1), . . . , F (Xn);F (Y ))

This map of operations must commute with composition and identities, i.e.

F (g(f1, . . . , fn)) = F (g)(F (f1), . . . , F (fn))

and

F (1X) = 1F (X).

Let Oprd denote the category of operads and their maps.

Definition 37. For an operad O, an O-algebra is a map of operads from O to
Op(Set).

We can construct maps of operads, and indeed operad algebras, from ‘lax symmetric
monoidal functors’: see Mac Lane’s text [15] for these.
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Construction 38. Given a lax symmetric monoidal functor (G, ϵ) : (C,⊗C) →
(D,⊗D), we can construct a map of operads Op(G) : Op(C) → Op(D) in the fol-
lowing manner. For an object X of C, define Op(G)(X) = G(X). For a morphism
f ∈ Op(C)(X1, . . . , Xn;Y ) (i.e. f : X1 ⊗C · · · ⊗C X1 → Y ), define

Op(G)(f) = G(X1)⊗D · · · ⊗D G(Xn)
ϵX1,...,Xn−−−−−→ G(X1 ⊗C · · · ⊗C Xn)

G(f)−−→ G(Y ).

In this way, Op defines a functor SMCℓ → Oprd. In the case that G is a lax symmetric
monoidal functor to Set, then Op(G) is an Op(C)-algebra.

Using this construction, we can prove that the functor Ent : ConvRel → Set from
Lemma 27 defines an operad algebra of the operad Op(ConvRel) by showing that Ent
is a lax symmetric monoidal functor.

To do this, we need to equip the functor Ent with a ‘laxator’

ϵX1,X2 : Ent(X1)× Ent(X2) → Ent(X1 ×X2)

and a map ϵ0 : 1 → Ent(1). Given functions S1 ∈ Ent(X1) and S2 ∈ Ent(S2) we can
define an element S1 + S2 ∈ Ent(S1 × S2) as follows:

(S1 + S2)(x1, x2) = S1(x1) + S2(x2)

where addition in R is defined as usual for real numbers, but we set

x+∞ = ∞+ x = ∞ for x ∈ R ∪ {∞}
x+ (−∞) = −∞+ x = −∞ for x ∈ R ∪ {−∞}
∞+ (−∞) = −∞+∞ = −∞.

Thus, as in the convex structure, negative infinity “dominates” positive infinity. The
map ϵX1,X2 is defined to map (S1, S2) to S1 + S2. The map ϵ0 : 1 → Ent(1) simply
picks out the constant 0 function on the singleton.

Lemma 39. The natural transformation ϵX1,X2 : Ent(X1)×Ent(X2) → Ent(X1×X2)
and the map ϵ0 : 1 → Ent(1) define a lax symmetric monoidal structure on the functor
Ent: ConvRel → Set.

Proof. First we show that ϵ is natural. Let R1 : X1 → Y1 and R2 : X2 → Y2 be convex
relations, and let S1 ∈ Ent(X1) and S2 ∈ Ent(X2) be concave functions. We need to
show the following square commutes.

Ent(X1)× Ent(X2) Ent(X1 ×X2)

Ent(Y1)× Ent(Y2) Ent(Y1 × Y2)

R1∗×R2∗

ϵX1,X2

(R1×R2)∗

ϵY1,Y2
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Figure 3. The operation of pressure and temperature equalization.

We compute:

(R1 ×R2)∗ ◦ ϵX1,X2(S1, S2)(y1, y2) = (R1 ×R2)∗(S1 + S2)(y1, y2)

= sup
(x1,x2)(R1×R2)(y1,y2)

(S1 + S2)(x1, x2)

= sup
(x1,y1)∈R1,(x2,y2)∈R2

S1(x1) + S2(x2)

= sup
(x1,y1)∈R1

S1(x1) + sup
(x2,y2)∈R2

S2(x2)

= R1∗S1(y1) +R2∗S2(y2)

= (R1∗S1 +R2∗S2)(y1, y2)

= ϵY1,Y2(R1∗S1, R2∗S2)(y1, y2)

= ϵY1,Y2 ◦ (R1∗ ×R2∗)(S1, S2)(y1, y2).

To show that (Ent, ϵ, ϵ0) is a lax symmetric monoidal functor from ConvRel to Set
we need to check some equations, which are explained in Mac Lane’s text [15]. For
this we need to use the fact that addition makes R into a commutative monoid with
0 as its identity element. To see this, note that if X is any commutative monoid,
there is a unique commutative monoid structure on X ⊔ {∗} extending that on X
such that x+ ∗ = ∗ for all x ∈ X. Using this once, we get a commutative structure
on (−∞,∞] = R ⊔ {∞}, and using it again, we get the desired commutative monoid
structure on R = (−∞,∞] ⊔ {−∞}.



18 BAEZ, LYNCH, AND MOELLER

Let Si ∈ Ent(Xi), for i = 1, 2, 3. First we need to check that ϵ obeys the
hexagon identity relating it to the associator αX1,X2,X3 in ConvRel and the asso-
ciator αEnt(X1),Ent(X2),Ent(X3) in Set:

(αX1,X2,X3)∗ ◦ ϵX1×X2,X3◦[ϵX1,X2 × 1EntX3 ]((S1, S2), S3) = (αX1,X2,X3)∗ ◦ ϵX1×X2,X3(S1 + S2, S3)

= (αX1,X2,X3)∗((S1 + S2) + S3)

= S1 + (S2 + S3)

= ϵX1,X2×X3(S1, S2 + S3)

= ϵX1,X2×X3 ◦ [1Ent(X1) × ϵX2,X3 ](S1, (S2, S3))

= ϵX1,X2×X3 ◦ [1Ent(X1) × ϵX2,X3 ] ◦ αEnt(X1),Ent(X2),Ent(X3)((S1, S2), S3).

Next we need to check that ϵ obeys the triangle equation relating it to the left
unitor λX in ConvRel and the left unitor λEnt(X) : 1× Ent(X) → Ent(X) in Set:

(λX)∗ ◦ ϵ1,X ◦ [ϵ0 × 1Ent(X)](⋆, S) = (λX)∗ ◦ ϵ1,X(0, S)
= (λX)∗(0 + S)

= S

= λEnt(X)(⋆, S)

where ⋆ is the unique element of 1. The triangle equation for right unitor works
analogously. This proves that (F, ϵ, ϵ0) is a lax monoidal functor.

Finally, to show that this functor is lax symmetric monoidal, we need to check that
ϵX1,X2 is compatible with the braiding βX1,X2 in ConvRel and the braiding

βEnt(X1),Ent(X2) : Ent(X1)× Ent(X2) → Ent(X2)× Ent(X1)

in Set:

(βX1,X2)∗ ◦ ϵX1,X2(S1, S2) = (βX1,X2)∗(S1 + S2)

= S2 + S1

= ϵX2,X1(S2, S1)

= ϵX2,X1 ◦ βEnt(X1),Ent(X2)(S1, S2). □

With the help of this lemma, we can now prove our main result.

Theorem 40. Thermostatic systems form an operad algebra of the operad of convex
relations. That is, the lax symmetric monoidal functor Ent: ConvRel → Set defines
an operad algebra Op(Ent) of the operad Op(ConvRel).

Proof. To apply Construction 38 we only need that Ent is a lax symmetric monoidal
functor, which was shown in Lemmas 27 and 39. □



COMPOSITIONAL THERMOSTATICS 19

To understand the significance of this result it helps to consider many examples.

Example 41. In Fig. 3, we see a depiction of an operation

R ∈ Op(ConvRel)(R3
>0,R3

>0;R4
>0)

which takes two systems each having a volume, internal energy and particle number
and composes them. This operation imposes a constraint on the total volume and
total internal energy, while imposing no constraint on the particle numbers. Physically,
this operation can be implemented with chambers of gas as in Fig. 4.

When interpreted via the operad algebra Op(Ent), this operation becomes one that
takes in concave entropy functions S1 : R3

>0 → R and S2 : R3
>0 → R and constructs a

new entropy function
S = Ent(R)(S1, S2) : R4

>0 → R.
We think of the two input entropy functions S1, S2 as “filling in” the disks in the
middle of the diagram in Fig. 3, and S as the entropy function of the large disk.
The convex relation R is given by

U e = U1 + U2

V e = V1 + V2

N e
1 = N1

N e
2 = N2.

By the definition of Ent, the entropy function for the whole system, S(U e, V e, N e
1 , N

e
2 ),

is the supremum of S1(U1, V1, N1) + S2(U2, V2, N2) subject to the above constraints.
These constraints can be rephrased as V2 = V e − V1 and U2 = U e −U1. Thus, we can
formulate this problem as the problem of finding

S(U e, V e, N e
1 , N

3
2 ) = sup

U1∈[0,Ue],V1∈[0,V e]

S1(U1, V1, N
e
1 ) + S2(U

e − U1, V
e − V1, N

e
2 )

Assuming that S1 and S2 are differentiable, and taking partial derivatives with respect
to U1 and V1, we see that at any maximizing state not at the endpoints of the intervals
above,

∂

∂U1

S1(U1, V1, N
e
1 ) =

∂

∂U2

S2(U2, V2, N
e
2 )

and
∂

∂V1

S1(U1, V1, N
e
1 ) =

∂

∂V2

S2(U2, V2, N
e
2 )

Thus, the temperature and pressure have both equilibriated.

Example 42. In this example, we model the thermal connection of a gas to a heat
bath held at a constant temperature T . The gas has state space R3

>0 containing states
of the form (Ugas, Vgas, Ngas), while the heat bath has state space R containing states
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Figure 4. The physical setup for pressure and temperature equaliza-
tion.

Ubath as in Example 21. We shall compose these to obtain a thermostatic system
having state space R2

>0, where we can vary the volume and particle number but the
energy is determined by the entropy maximization principle.
Thus, the process of composition is the operation R ∈ Op(ConvRel)(R3

>0,R;R2
>0)

given by the relation R ⊆ (R3
>0 × R)× R2

>0 defined by the equations

Ugas + Ubath = 0

Vgas = V

Ngas = N

where (V,N) are coordinates on R2
>0. Given the entropy function of the gas,

Sgas : R3
>0 → R, and the entropy function of the heat bath, Sbath : R → R, the

entropy of the composed system is

S = Ent(R)(Sgas, Sbath) : R2
>0 → R.

Since the entropy of the bath is

Sbath(Ubath) = Ubath/T,

the entropy S(V,N) is the supremum of

Sgas(Ugas, V,N) +
Ubath

T
subject to the constraint Ugas + Ubath = 0. It follows that

S(V,N) = sup
Ugas≥0

(
Sgas(Ugas, V,N)− Ugas

T

)
.
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Viewed as a function of V,N and 1/T , this is a Legendre transform of Sgas. Thus,
composition of thermostatic systems can have the effect of taking a Legendre trans-
form.

Example 43. We can also connect a statistical mechanical system to a heat bath. Let
∆n be the convex space of probability distributions on the finite set {0, . . . , n}. This
becomes a thermostatic system with its Shannon entropy Ssh : ∆

n → R, defined as in
Example 22. Let R be the space of states of a heat bath, made into a thermostatic
system with entropy function Sbath(U) = U/T as in Example 21.

Let H : {0, . . . , n} → R be any function, which we think of as a Hamiltonian. We
write Hi for the value of this function at i ∈ {0, . . . , n}. We can define a relation
R ⊆ (∆n × R)× 1 by saying that (p, U) is related to the one element ∗ ∈ 1 iff

U +
n∑

i=0

Hipi = 0.

That is, the expected energy for our statistical mechanical system equals the energy
taken from the heat bath.

A relation with 1 is really just the same thing as a subspace of the domain; it is an
‘unparameterized’ constraint. Thus, the entropy

S = Ent(R)(Ssh, Sbath) : ∗ → R
amounts a single extended real number: the maximum possible entropy of the
statistical mechanical system combined with the heat bath at temperature T . Note
that the constraint U +

∑n
i=0Hipi = 0 implies

Sbath(U) = U/T = −β
n∑

i=0

Hipi

where β = 1/T . (Recall that we use units where Boltzmann’s constant is 1.) Thus,
by the definition of Ent,

S = sup
p∈∆n

(
Ssh(p)− β

n∑
i=0

Hipi

)
.

As well known, the supremum is obtained when p is the famous Boltzmann distribution

pi =
exp(−βHi)∑n
i=0 exp(−βHi)

.

Thus, the Boltzmann distribution can be obtained by connecting a statistical me-
chanical system to a heat bath. The same idea applies to statistical mechanical
systems where states are either probability distributions on general measure spaces
(Example 23) or density matrices (Example 25).



22 BAEZ, LYNCH, AND MOELLER

In Example 43 we obtained the Boltzmann distribution, or ‘canonical ensemble’,
by connecting a statistical mechanical system to a heat bath. We can also obtain the
grand canonical ensemble and microcanonical ensemble using our formalism.

Example 44. The grand canonical ensemble is obtained by coupling a statistical
mechanical system to both a heat bath and a ‘particle bath’, which is a thermostatic
system mathematically isomorphic to a heat bath, but with a different physical
interpretation.
Thus, we start with the thermostatic system Ssh : ∆

n → R as in Example 43, but
now we choose two functions H,M : {0, . . . , n} → R, one sending each state to its
energy, and the other sending each state to its number of particles. We then introduce
two other thermostatic systems: as before, a heat bath

Sbath,1 : R → R
U 7→ βU

where β ∈ R is the inverse temperature, but now also a particle bath

Sbath,2 : R → R
N 7→ βµN

where µ ∈ R is the chemical potential.
We couple these three systems using a relation R ⊆ (X × R × R) × 1 for which

(p, U, V ) is related to ∗ ∈ 1 iff

U +
n∑

i=0

Hipi = 0

and

N +
n∑

i=0

Mipi = 0.

Following reasoning like that of Example 43, the entropy

Sgrand = Ent(R)(Ssh, Sbath,1, Sbath,2) : ∗ → R

amounts to a single extended real number

Sgrand = sup
p∈X

(
Ssh(p)− β

n∑
i=0

Hipi − βµ
n∑

i=0

Mipi

)
.

As well known, the supremum is obtained when p is the grand canonical ensemble.

Example 45. The microcanonical ensemble is a probability distribution that represents
a system at a fixed energy U , thermally isolated from its environment. To derive
the microcanonical ensemble from our formalism, start with the thermostatic system
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Ssh : ∆
n → R and a Hamiltonian H : {0, . . . , n} → R. Define a relation R ⊆ ∆n × R

by saying that p is related to U iff Hi = U for all i ∈ {0, . . . , n} with pi > 0.
The entropy of the microcanonical ensemble is defined to be

Smicro = Ent(R)(Ssh) : R → R.
It follows that Smicro(U) is the supremum of Ssh(p) over probability distributions
having Hi = U for all i with pi > 0. This supremum is attained by the uniform
distribution over the set of i having energy U . Thus, Smicro(U) = log n if there are n
choices of i with energy U . If no such choices of i exist, then Smicro(U) = −∞. This
is another example of the point made in Example 30: an entropy of −∞ represents
an impossible state.

6. Conclusion

Having shown that convex spaces equipped with concave entropy functions form
a natural context for studying thermostatic systems and the operations of compos-
ing such systems, one obvious direction for further research involves the Legendre
transform. This transform is essential for deriving the multitude of ‘thermodynamic
potentials’ used in thermodynamics, of which the most famous are Gibbs free energy,
Helmholtz free energy and enthalpy [10, 20, 27]. As shown in Example 42, the
Legendre transform can be implemented in our framework by attaching a thermody-
namic system to a ‘bath’ system, either of heat, or pressure, or some other quantity.
This is satisfying because it gives a new physical interpretation of the Legendre trans-
form. However, there is much left to do to understand how the Legendre transform is
connected to our framework or some extension of it.
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