
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Rewriting Structured Cospans: A Syntax For Open Systems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Daniel Cicala

June 2019

Dissertation Committee:

Dr. John C. Baez, Chairperson
Dr. Wee Liang Gan
Dr. Jacob Greenstein

Copyright by
Daniel Cicala

2019

The Dissertation of Daniel Cicala is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost, I would like to thank my advisor John Baez. In these past

few years, I have learned more than I could have imagined about mathematics and the job

of doing mathematics. I also want to thank the past and current Baez Crew for the many

wonderful discussions. I am indebted to Math Department at the University of California,

Riverside, which has afforded me numerous opportunities to travel to conferences near and

far.

Almost certainly, I would never have had a chance to pursue my doctorate had

it not been for my parents who were there for me through every twist and turn on this,

perhaps, too scenic route that I traveled.

Most importantly, this project would have been impossible without the full-hearted

support of my love, Elizabeth.

I would also like to acknowledge the previously published material in this disser-

tation. The interchange law in Section 3.1 was published in [15]. The material in Sections

3.2 and 3.3 appear in [16]. Also, the ZX-calculus example in Section 4.3 appears in [18].

iv

Elizabeth. It’s finally over, baby!

v

ABSTRACT OF THE DISSERTATION

Rewriting Structured Cospans: A Syntax For Open Systems

by

Daniel Cicala

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2019

Dr. John C. Baez, Chairperson

The concept of a system has proliferated through natural and social sciences. While myriad

theories of systems exist, there is no mathematical general theory of systems. In this thesis,

we take a first step towards formulating such a theory. Our focus is on developing a syntax for

compositional systems equipped with a rewriting theory. We pull from category theory and

linguistics to accomplish this. The basic syntactical unit is a structured cospan and rewriting

is introduced via the double pushout method. Two versions of rewriting are proposed: one

that tracks intermediate steps and another disregards them. Benefits and drawbacks of

both versions are discussed. We apply our results to the decomposition of closed systems,

obtaining a structurally inductive viewpoint of rewriting such systems.

vi

Contents

List of Figures ix

0 Introduction 1

1 Structured cospans 21
1.1 Structured cospans as a compositional framework 26
1.2 Structured cospans as objects . 34
1.3 A double category of structured cospans . 38
1.4 Spans of structured cospans . 41

2 Double pushout rewriting 44
2.1 A brief history of rewriting . 44
2.2 Rewriting in topoi . 49

3 Fine rewriting and structured cospans 55
3.1 The interchange law . 64
3.2 A symmetric monoidal structure . 72
3.3 A compact closed bicategory of spans of cospans 76

4 Bold rewriting and structured cospans 84
4.1 A double category of bold rewrites of structured cospans 88
4.2 A bicategory of relations for bold rewriting of structured cospans 94
4.3 The ZX-calculus . 103

5 Decomposing systems 127
5.1 Expressiveness of underlying discrete grammars 129
5.2 Rewriting structured cospans . 137

6 Conclusions 149

A An account of some category theory topics 151
A.1 Enrichment and bicategories . 152
A.2 Internalization and double categories . 157
A.3 Bicategories of relations . 168

vii

A.4 Duality in bicategories . 179
A.5 Adhesive categories . 183
A.6 Topoi . 186

Bibliography 194

viii

List of Figures

0.1 A compositional physical system . 3
0.2 Chapter dependencies . 17

1.1 An open graph . 22
1.2 Various systems . 23

4.1 String diagrams . 85
4.2 Generators for the ZX-calculus diagrams . 105
4.3 Relations in the category ZX . 109
4.4 Basic ZX-diagrams as graphs over Γ . 114
4.5 Basic ZX-diagrams as structured cospans . 117

5.1 Stacked double pushout diagrams . 141

A.1 A square in a double category . 162
A.2 The swallowtail diagrams for the unit and counit. 182

ix

Chapter 0

Introduction

Systems exist everywhere and there are many different languages used to describe

them. The diversity of languages reflect those who study systems. Physicists, chemists,

biologists, ecologists, economists, sociologists, linguists, mathematicians, computer scientists

all work with systems and all have their own idiosyncratic methods to describe them. This

parallels diversity in the natural languages where location and communication needs are but

two factors contributing to a language’s development.

Just as linguists glean knowledge about humanity from studying languages, we can

glean knowledge about our world from studying languages of systems. Still, no fully general

mathematical theory of systems exists. Should it?

We say ‘yes’. To develop a fully general mathematical theory of systems is a wor-

thy pursuit. Successfully creating a formal language of systems can bestow many gifts. For

instance, with a better understanding of systems, engineers get a better toolkit for their

designs. One such engineered system, the power grid—a keystone to our way of life—is

vulnerable due to increased energy demands inflicted by climate change [50]. A better un-

1

derstanding of systems eases translation across disciplines. By placing, say, systems ecology

[52] and the programming language R [48] in the same formalism, ecological models can be

more faithfully translated into mathematical models. A better understanding of systems

directs us to new paths of inquiry. An abstract understanding of systems places them into

a “space of systems” where they can be compared and contrasted. With this space, we can

craft analogies and narratives. This new perspective should present questions previously not

apparent. So yes, aspiring to a general mathematical theory of systems is worthwhile.

Often, one studies a system. The social network described by Facebook is a single

system frequently studied. Another is the logistics of shipping Amazon packages the world

over. In reality, systems rarely exist in isolation. The Facebook network is affected by other

social media networks. Amazon’s shipping networks are affected by the economics of oil

prices. That is, systems interact with each other to form new systems and this ought to be

a component of an honest general mathematical systems theory. One way systems interact

is to not exert any influence over each other, which should evoke to a mathematician the

disjoint union operation. But to exert influence necessitates each system to have points on

which the interaction can occur. For example, a point of interaction of a building’s electrical

system is an outlet, where one can connect a blender forming a composite electrical-blender

system. A point of interaction with a pulley system is a dangling rope that one can pull,

upon which we obtain the composite pulley-musculoskeletal system.

When connecting systems together, one may veer into the principle of composi-

tionality. Compositionality is present when the whole of a system is equal to the sum of its

parts. This can be exploited to great effect when analyzing complicated systems by allowing

for its decomposition into simpler pieces. For instance, the physical system of two pendu-

2

Figure 0.1: A compositional physical system

lums connected together with a spring (see Figure 0.1) can be fully analyzed by separately

considering the two pendulums and the spring. In mathematical terms, this amounts to

coupling the corresponding differential equations.

Compositionality lies in contrast to so-called emergent systems where new features

burst into existence upon connection. Life is believed to have emerged from complex systems

of ribonucleic acid (better known as RNA). No sign of life is present in a single RNA molecule

but somehow life appears in a system comprising only RNA.

The two methods of interaction described above, disjoint union and connecting

along points of interaction, have clear analogies to fundamental mathematical concepts:

addition and composition. From the many areas of mathematics, the one that stands out in

its singular focus on addition and composition is the theory of monoidal categories. Category

theory takes as fundamental the composition of ‘arrows’ and endowing a category with a

‘monoidal structure’ allows us to “add” the arrows together. Therefore, monoidal categories

3

are an excellent foundation on which to base a general mathematical theory of compositional

systems.

What is this thesis about?

Here, we take first steps in towards building a theory of compositional systems.

What do these first steps look like? In short, we are setting up a syntax for compositional

systems.

The term ‘syntax’ appears most often in linguistics where it refers to rules and

principles that an arrangement of words must satisfy to be a well-formed sentence. It

means roughly the same for us except that we are working with compositional systems, not

words and sentences. In this analogy, compositional systems correspond to both words and

sentences in that, instead of building sentences by arranging words, we are building larger

systems by connecting smaller systems. To do so, we need a set of rules and principals

governing how to connect systems together.

The yin to syntax’s yang is semantics. This concept, also from linguistics, refers

to the meaning of a sentence. In our context, semantics refers to the behavior of a system.

Resistor circuits are a nice example to highlight the distinction between syntax and seman-

tics. First, recall that resistors wired in series have the same resistance as a single resistor

with the aggregate resistance. Now, while a circuit with a 25Ω and 35Ω resistors wired in

series is syntactically different from a circuit with a single 60Ω resistor, their resistance is

equal meaning they have the same semantics. While semantics is important to any theory of

systems, we do not directly consider it in this thesis. However, we do consider it indirectly.

4

Granting that syntax and semantics are separate entities, it is often useful for

syntax to reflect semantics. We do not want to say that the two resistor circuits are equal.

That is too strong. But we do want to establish a formal relationship between them. More

than that, we want a way to propagate this relationship through a suitable space of circuits

so that every circuit with resistors wired in series relates to the circuit with a single resistor

in their place. Of course, our method of propagating such a relationship must be abstract

enough to handle more systems than just resistor circuits.

Again we turn to linguistics, this time the study of formal languages. These are

different from natural languages like English, Italian, or Afrikaans that ebb and flow under

so many social forces. Formal languages are designed and can be controlled. They can

approximate natural languages. This makes them useful in studying natural languages.

However, the “formal languages” we are interested in do not contain words and sentences.

The formal languages we are interested in are systems connected together.

From the study of formal languages comes rewriting theory. Originally used to

generate well-formed sentences, rewriting has since evolved through being studied by math-

ematicians, logicians, and computer scientists for whom it provides a mechanism to replace

terms with distinct but equivalent terms. As mentioned above, rewriting is syntactic but

meant to reflect semantics. This means that rewriting relates syntactical terms if they be-

have in the same way. For example, a programming language that can perform addition

would have a ‘rewrite rule’ saying that ‘2+2’ can be rewritten into ‘4’ because they mean

the same thing. There would not be a rule rewriting ‘2+2’ into ‘5’ because they never mean

the same thing. Moreover, rewriting theory provides a way to extend this rule to longer

strings containing ‘2+2’, for instance, the string ‘(3*(2+2))/(2+2+3)’ can be rewritten into

5

‘(3*4)/(4+3)’. Crucially, rewriting also prevents erroneous applications such as rewriting

‘2+2(x+y)’ into ‘4(x+y)’. The first expansion of rewriting theory beyond the realm of char-

acters and words was into combinatorial graphs where rewrite rules tell us when one graph

can replace another. If we were modeling the internet as a directed graph with websites as

nodes and a link from one website to another as edges, then we are likely uninterested in

self-loops, which represent a webpage that links to itself. So we can introduce a rule that

deletes self-loops. Informally, this would say that the graph

•

can be rewritten into the graph

•

This rule can be extended to remove loops from more complicated graphs like

• •

•

being rewritten into

6

• •

•

To formalize this requires abstract mathematics, namely category theory. Fortunately, be-

cause the category theory involved in rewriting graphs is so abstract, we can use it to rewrite

syntax developed for compositional systems.

What does rewriting do for us? It allows us to simplify our syntax, whether that

syntax is based on characters or combinatorial graphs or other types of systems. The ability

to simplify syntax is a powerful tool for any would-be analyst simply because of how complex

syntactical terms can grow. The graph model of the internet is massive with over 1.5 billion

nodes, each an individual website.

Our goal in this thesis is to present a syntax for compositional systems proposed by

Baez and Courser [5] called ‘structured cospans’ and combine it with a theory of rewriting.

A road map for the thesis

The larger goal of creating a general mathematical theory for compositional systems

is still aspirational, but we stride within these several chapters, developing a syntax and

rewriting theory. To assist the reader in navigating these chapters, we sketch their contents

and give the highlights. We visualize the dependencies between the chapters with Figure

0.2.

7

In Chapter 1, we present a syntax for compositional systems. Baez and Courser

introduced this syntax under the name ‘structured cospans’. A cospan is a diagram in a

category with shape

a b c
f g

where a, b, c are objects in the category and f, g are arrows in the category. For a structured

cospan, we have a specific interpretation in mind: the object b is a system with inputs a

and outputs c. The arrows f and g maps the inputs and outputs to the system.

To formalize this perspective, our starting data is an adjunction

A X

L

R

⊥

between topoi A and X. We interpret A as a topos whose objects are the interface types; that

is the objects that can serve as inputs or outputs to our systems, and X as a topos whose

objects are the system types. Often, A is the topos Set of sets and functions. And X can

be whatever system we are working with, for example a category whose objects are resistor

circuits. The functor L : A→ X translates the interface types into degenerate system types

so that they can interact via a structured cospan, which is a cospan of the form

La x Lb
f g

This structured cospan is a system x with inputs La and outputs Lb. A resistor circuit as

a structured cospan would look like

8

•a

•b

a•

b• 10Ω

5Ω

• 15Ω •c •c

The left-hand graph L({a, b}) gives the inputs and the right-hand graph L({c}) gives the

outputs.

We devote Section 1.1 to composing structured cospans. As is standard in cospan

categories, composition uses pushout. For example, any resistor circuit with a single input,

say

•c c• 5Ω •d •d

can be connected to the resistor circuit above that has a single output as follows

•a

•b

a•

b• 10Ω

5Ω

• 15Ω •c

•c

c• 5Ω •d

•d

We then pushout over the common interface

9

•c

to get the single structured cospan

•a

•b

a•

b• 10Ω

5Ω

• 15Ω • 5Ω •d •d

that represents a single circuit with input nodes a, b and output node d.

Starting with the adjunction L : A� X : R, where A and X are symmetric monoidal

categories with their respective coproducts, we then package structured cospans into a com-

pact closed category (LCsp,⊗, 0A) whose objects are the interface types, that is objects of

A, and the arrows of type a→ b are the structured cospans La→ x← Lb.

Our stated goal is to introduce a rewriting theory to structured cospans. To do this,

we must ensure that structured cospans are sufficiently nice to accommodate rewriting. This

entails designing a topos where structured cospans are the objects. Constructing this topos is

the topic of Section 1.2. We define a category LStrCsp whose objects are structured cospans

and whose arrows between the structured cospans La → x ← Lb and La′ → x′ ← Lb′ are

commuting diagrams

10

La x Lb

La′ x′ Lb′

Lf h g

in X. The main result of this section is

Theorem 8. For any adjunction

A X

L

R

⊥

between topoi, the category LStrCsp is a topos.

This result is the keystone that stabilizes the combination of structured cospans

and rewriting. Because of this fact, structured cospans do accommodate a rewriting theory.

By this, we mean that the local Church–Rosser and concurrency properties hold. We do

not investigate these properties in this thesis, but Corradini, et. al. thoroughly discuss these

properties [25]. We also show in Theorem 9 that constructing LStrCsp is functorial in L.

Viewing structured cospans through the two categories LCsp and LStrCsp in which

they appear, we note that they play two roles. In LCsp, structured cospans form the arrows.

In LStrCsp, structured cospans form the objects. We combine these two perspectives into a

single framework using double categories in Section 1.3. The final section of Chapter 1 sets

the groundwork for rewriting structured cospans by defining spans of structured cospans.

In Chapter 2, we discuss the theory of rewriting with just enough detail to provide

the reader with an appreciation for the subject and enough tools to read this text. We begin

with its linguistic beginnings but quickly move to the axiomatization of the double pushout

method of rewriting. The axioms of rewriting theory are captured in their full generality by

11

so-called ‘adhesive categories’. However, this is too general for our needs, so we restrict to

rewriting in a topos, a type of adhesive category.

By fixing a topos T, we learn how to apply a rewrite rule, which manifests as a

span

`← k → r

in T . We interpret this rule to say ` can be rewritten into r. We apply this rule by identifying

a copy of ` inside another object `′ via an arrow `→ `′ of T and there are objects k′ and r′

of T fitting into a ‘double pushout diagram’

` k r

`′ k′ r′

We then say that `′ can be rewritten to r′. The double pushout diagram encodes that we

first identify a copy of ` in `′, remove and replace it by r, and this results in r′. In this way,

an initial set of rewrite rules propagate throughout T by collecting all possible applications

of all the initial rules.

In Chapter 3, we introduce the first of two styles of rewriting structured cospans.

A ‘fine rewrite rule’ of structured cospans is a diagram with shape

La x La′

Lb y Lb′

Lc z Lc′

∼=

∼=

∼=

∼=

12

taken up to isomorphism. The marked arrows are monic and an isomorphism to another

fine rewrite of structured cospans

La x La′

Lb y′ Lb′

Lc z Lc′

∼=

∼=

∼=

∼=

is an invertible arrow y → y′ such that the evident diagrams commute. Admittedly, we are

being rather brusque by saying ‘evident’, though Definition 14 spells this out in detail. The

main result of this section is the construction of a double category LFineRewrite whose

objects are interface types from A, horizontal arrows are structured cospans, and squares

are fine rewrites of structured cospans. This result is listed as Proposition 25. Proving the

interchange law is quite technical, so we devote all of Section 3.1 to this. In Section 3.2 we

equip the double category LFineRewrite with a symmetric monoidal structure. In the final

section of Chapter 3, we appease those readers who prefer bicategories to double categories.

There, we extract from the double category LFineRewrite a compact closed bicategory

LFineRewrite.

In Chapter 4, we introduce the counterpart to fine rewriting called ‘bold rewriting’.

A bold rewrite rule is the connected component of a diagram

13

La x La′

Lb y Lb′

Lc z Lc′

∼=

∼=

∼=

∼=

By connected component, we mean the equivalence class generated by relating the above

diagram to

La x La′

Lb y′ Lb′

Lc z Lc′

∼=

∼=

∼=

∼=

if there is an arrow y → y′ such that the evident diagrams commute. This chapter largely

mirrors that on fine rewriting. We define a double category LBoldRewrite whose objects

are the interface types from A, whose horizontal arrows are structured cospans, and whose

squares are bold rewrites. Again, we extract a bicategory from the double category. We

show that this bicategory LBoldRewrite is a bicategory of relations.

In the final section of Chapter 4, we illustrate bold rewriting with the ZX-calculus.

This is a language consisting of string diagrams used to reason about a corner of quantum

mechanics favored by quantum computer theorists. Coecke and Duncan, the inventors of

the ZX-calculus, organized it into a dagger compact category whose arrows are the very

diagrams that constitute the ZX-calculus. Using the machinery laid out in this chapter,

14

we expand this dagger compact category to a symmetric monoidal double category that

encodes the ZX-calculus. The benefit of this is that, instead of merely equating ZX-calculus

diagrams when there exists a rewrite rule between them, the squares of our double category

actually witness these equations. This should satisfy mathematical constructivists. Overall,

the double category structure we build is richer than the category.

We complete this thesis with Chapter 5. Most academic work on systems focuses

on closed systems, those with an empty interface. Physicists often represent a closed system

with a phase space. Chemical reactions are worked out as if the rest of the world does

not exist (or is reduced to a triviality). Petri nets do not interact with each other. Markov

chains are never combined. One hope of this research program is to provide the mathematical

resources to change this, so that open networks become the norm. Then the phase spaces

of two different systems could be connected. Chemical reactions could more easily consider

their environment. Petri nets and Markov chains could be composed together. This final

chapter motivates using open systems to study closed systems.

Specifically, we construct a mechanism to rewrite closed systems using structural

induction. That is, we can decompose a given closed system into open sub-systems each

of which can be rewritten independently of each other. After simplifying each sub-system

via this rewriting procedure, we reconnect them together into an equivalent version of the

original closed system. In short, we introduce an inductive process that simplifies closed

systems. This is characterized by the following theorem.

Theorem 74. Fix a adjunction L : A � X : R with monic counit. Let (X, P) be

a grammar such that for every X-object x in the apex of a production of P , the Heyting

algebra Sub(x) is well-founded. Given g, h ∈ X, then g ∗ h in the rewriting relation for a

15

grammar (X, P) if and only if there is a square

LR0 g LR0

LR0 d LR0

LR0 h LR0

in the double category Lang(LStrCsp, P
′).

In less technical terms, this theorem says that, under suitable hypotheses, one

closed system can be rewritten into another precisely when there is a square between their

corresponding structured cospans. This square is built inductively from rewrites between

open sub-systems.

This marks the end of the thesis proper. However, we anticipate that the results

contained within may be of interest to a wide audience including certain network theorists,

systems theorists, computer scientists, and mathematicians. Therefore, we organized the

thesis so that background material is mostly confined to the appendices. This way, it will

not distract those familiar with it and it is readily available to those readers who are not.

Here are the topics of the appendices.

Appendix A.1 Enriched categories and bicategories. This material is used in Sections 3.3

and 4.2 where bicategories are extracted from double categories;

Appendix A.2 Internalization and double categories are useful throughout as double cat-

egories are a main character in our story. Also, this section covers internal monoids

which are used to show that the bicategory of bold rewrites LBoldRewrite is a bi-

16

category of relations in Section 4.2;

Appendix A.3 Bicategories of relations, which are used in Section 4.2;

Appendix A.4 Duality in bicategories, which is used for the bicategories in both Sections

3.3 and 4.2;

Appendix A.5 Adhesive categories, which are the result of axiomatizing rewriting theory

and, though useful throughout because of the central role played by rewriting in this

thesis, we pack most of the required information into the next section of the appendix;

Appendix A.6 Topoi, which are used throughout.

Ch. 1 Structured cospans Ch. 2 Double pushout rewriting

Ch. 3 Fine rewriting Ch. 4 Bold rewriting

Ch. 5 Structural induction for rewriting

Figure 0.2: Chapter dependencies

Global notation and assumptions

As usual in mathematics, we systematically select notation to orient the reader.

Here, we lay out the logic behind our notation.

17

Categorical structures Three types of categorical structure are used throughout:

• Categories and topoi, which we denote with the font A, X, C, T. A and X are

used are topoi used to build structured cospans, C is a generic category, and T is

a generic topos.

• Bicategories, which we denote with bold font C. The two most important bicat-

egories for us are FineRewrite and BoldRewrite.

• Double categories, which we denote with blackboard bold font C. The two most

important double categories for us are FineRewrite and BoldRewrite.

Objects Objects in a category are denoted by lower case letters. The most common cat-

egories we work with are labeled as A and X and we refer to their respective objects

are a, b, c, . . . and . . . x, y, z.

Arrows Both categories and graphs frequent these pages. To distinguish whether a drawing

is of a graph or a diagram in a category, look at the arrow tips. An arrow in a category

uses

while an arrow in a graph uses

Also, we reserve tailed arrows

to mean a monic arrow in a category. We do not often refer to specific arrows, but when

we do, we use lower case letters f, g, h, etc. Occasionally, if an arrow is of particular

18

importance we distinguish it with a lower case Greek letter.

2-arrows We refer to 2-arrows in higher categories using Greek letters. In particular,

when using λ, ρ, α without explicitly stating what they are, then they are monoidal

coherence maps for left unity, right unity, and associativity.

Rewrite relation Central to the theory of rewriting is the ‘rewriting relation’. This is

built in two steps from a given rewriting system. First, a b says that a can be

rewritten into b by applying a single rewrite rule. The rewriting relation, which we

denote by ∗, is the reflexive and transitive closure of .

Systems and networks Our work concerns both open and closed systems, the former

more prominently. Therefore, when using the term system or network without a

qualifier, we mean ‘open’ by default. Only when we explicitly say ‘closed’ do we mean

a closed system or network.

Cospans of graphs Many graph morphisms are drawn throughout the following pages.

Too much detail tends to clutter the drawings, so we leverage the geometry of the

page to suggest the definition of the morphisms. Only in cases where this suggestion

lacks clarity do we explicitly spell out the meanings. In Chapter 2, we see the drawing

•

•

•

•
•

which consists of three directed graphs each in a box and two graph morphisms.

Note the differences between the arrow heads. Also, the definitions of these graph

19

morphisms are not explicitly spelled out, but they are apparent nonetheless because

of the location of the graph nodes on the page.

20

Chapter 1

Structured cospans

Researchers traditionally study closed systems, those that lack the ability to inter-

act with outside agents. A research program initiated by John Baez centralizes the study of

open systems, those with ability to interact with outside agents [6, 7, 8, 9].

In this thesis, our primary example of an open system is an open graphs. We use

them throughout to illustrate new concepts and definitions. For this reason, we start with a

set theoretical definition of open graphs and modify our understanding of them in parallel

to building our structured cospan formalism. We use this approach to provide a concrete

example to ground us through the development of our theory. Open graphs are not new

[27, 35], but our structured cospan perspective is new.

Definition 1 (Open and closed graphs). An open graph G := (E,N, r, s, t, I, O) is a

directed reflexive multi-graph (E,N, r, s, t) equipped with two non-empty subsets I,O ⊆ N

of nodes. We call elements of I the inputs of the graph and the elements of O the outputs

of the graph. In the case that I and O are empty, then we call G a closed graph.

21

a• •b

c•

d• •e

•f
a, b, d ∈ I

c, d ∈ O

Figure 1.1: An open graph

This definition deserves several remarks. First, note that a closed graph is simply a

graph in the classical sense. We append the qualifier ‘closed’ to highlight the fact that it has

no inputs or outputs. Second, the terms ‘input’ and ‘output’ do not imply causal structure

or directionality. Finally, the author prefers reflexive graphs to non-reflexive graphs because

(i) they are truncated simplicial sets so have nicer topological features, (ii) unlike graphs,

the “points” of reflexive graphs (the nodes) correspond to maps from the terminal object,

and (iii) the category of reflexive graphs RGraph is monadic over Set.

An open graph is illustrated in Figure 1.1. We suppress the reflexive loops in

drawing reflexive graphs. In that figure, the nodes are a, b, c, d, e, and f . The input nodes

are a, b, and d. The output nodes are c and d.

A non-exhaustive list of other systems of interest to Baez’s research program are

Petri nets [49], Markov processes [6], passive linear circuits [8], reaction networks [9], the

ZX-calculus [18]. See Figure 1.2 for depictions of these various systems. These systems are

traditionally studied as closed systems. To “open” them, they need an interface along which

compatible systems can be connected. This is the purpose of introducing the input and

output nodes.

22

Chemical Reaction Network Petri Net

Control Network

Feynman Diagram

Figure 1.2: Various systems

Example 2 (Connecting open graphs). We can connect together two open graphs when

the inputs of one is equal to the outputs of the other. To illustrate this, consider the open

graphs

a•

b• •d

•e

•c

a, c, d ∈ inputs

d, e ∈ outputs

d•

e•

•f

d, e ∈ inputs

e, f ∈ outputs

23

Connect these open graphs by gluing like-nodes together. This results in

a•

b• •d

•e

•c

•f

a, c, d ∈ I

e, f ∈ O

The operation of gluing open graphs together can be defined set theoretically.

However, we prefer to define this operation as a composition of morphisms in an appropriate

category. This ensconces the gluing operation as fundamental. In this chapter, we discuss

the formalism of structured cospans. These offer a language better equipped to describe

open systems than do more traditional set theory styled definitions.

A cospan in a category is a pair of arrows

x→ y ← z

with common codomain. A structured cospan is a special sort of cospan. The rough idea of

a structured cospan is that the common codomain is some system and the domains are the

inputs and outputs of that system. In other words, we interpret a structured cospan as the

diagram

inputs
ι−→ system

ω←− outputs

where ι chooses the part of the system to serve as inputs and ω chooses the outputs. Section

1.1 is devoted to constructing a category whose arrows are the structured cospans.

The motivation for using composition to describe the connection of open systems

also has a philosophical component. We study systems through the lens of compositionality.

24

A pithy description of compositionality is “the opposite of emergent”. That is, the behavior

of a compositional system is fully determined by the behavior of the sub-systems comprising

it. Here are some examples of compositionality.

• Set functions are compositional. Given functions f : X → Y and g : Y → Z, then we

know everything about the composite function g ◦ f : X → Z.

• Given two computer programs, one that approximates a smooth solution to a given

differential equation and another that outputs a visualization of a smooth function,

then we know that the composite program renders a drawing of an approximate smooth

solution to a given differential equation.

• If one manufacturing line inputs various wood pulp and outputs paper and another

manufacturing line inputs paper and outputs notebooks, then the composite manufac-

turing line inputs wood-pulp and outputs notebooks.

Already, we have mentioned examples of systems we are interested in. Each of these

examples are useful tools applied by various scientists or engineers. Naturally, each formalism

has developed idiosyncrasies, inflating the differences between them. However, there remain

clear qualitative similarities between the different formalisms that ought to be exploited to

transport results determined with one formalism to results about another formalism. As

cross-disciplinary collaboration increases, the importance of translating between formalisms

grows. We propose the structured cospan serve as a medium of translation.

The analogy to languages runs deeper than mere translation. Indeed, languages

have both syntactic and semantic content. Systems do too. We intend to clearly delineate

between the two. William Lawvere’s ‘functorial semantics’ [45] serves as inspiration. This is

25

a categorical approach to universal algebra where algebraic theories are separated into two

pieces: one category capturing the structure and properties of a type of algebraic object A

and another category containing the “stuff” underlying an instance of A (e.g. the underlying

set). A functor between the categories selects an instance of an algebraic object of type A.

In our context, we separate open systems, not algebraic object types, into two categories.

One category contains the system syntax and the other category the system semantics. In

this perspective, categories with structured cospans for arrows serve as syntax and their

compositionality manifests as a functor into a category of semantics.

In this chapter, we define structured cospans and two categories in which they

appear. The first categories LCsp was introduced by Baez and Courser [5] and encodes

open systems are arrows. The second category LStrCsp houses the morphisms of structured

cospans which are used to define their rewriting. To ensure that structured cospans support

a good theory of rewriting, we show that LStrCsp is a topos. We close this chapter by

combining LCsp and LStrCsp into a double category. Most of the work in this chapter

appeared previously in [17].

1.1 Structured cospans as a compositional framework

In this section, we define a structured cospan and fit them as arrows into a category.

There are several technical components we need to consider, each serving a purpose. So

instead of providing the definition here, we build up to it discussing each technicality along

the way.

26

When thinking of a structured cospan, we have in mind a diagram

inputs→ system← outputs

sitting in a category. Often, the inputs and outputs of a system will be sets. For sets to exist

in the same category as the systems—as is needed to have the inputs, outputs, and system

represented in the same diagram—we consider sets as degenerate systems. For instance, the

open graph

a•

b• •d

•e

•c

a, c, d ∈ inputs

d, e ∈ outputs

presented using Definition 1 is realized as the structured cospan

•

•

•

•

• •

•

•

•

•

(1.1)

Inside this picture, we have three graphs enclosed in the boxes. The left and right-most

graphs are really just sets considered as edgeless graphs or, in our parlance, as “degenerate

systems”. The arrows between the graphs are graph morphisms defined as suggested by the

layout. These arrows choose the components of the central graph to serve as inputs and

outputs.

27

To model open graphs with structured cospans, we do not want to allow arbitrary

graphs in the feet of the cospan. We only want sets qua edgeless graphs. To accomplish

this, we define a functor

L : Set→ RGraph (1.2)

that turns a set a into a graph La with node set a and no non-reflexive edges. Now, the

open graph in (1.1) has form

La→ x← Lb

where a is a three element set, b is a two element set, and x is the graph

a•

b• •d

•e

•c

The functor L in (1.2) is crucial to the definition of a structured cospan. To capture

open systems more general than open graphs, we allow L to be of type A→ X for categories

A and X. Now, a structured cospan based on a functor L : A → X is a cospan in X of the

form La → x ← Lb. We do not use this as a definition because for rewriting we require

more from L, A, and X.

One such need is to construct a category where structured cospans La→ x← Lb

are arrows. Hence, given another structured cospan Lb → y ← Lc, we need to define the

composite. As is typical in cospan categories [11], we compose by pushout. That is, the

28

composite of the structured cospans

La→ x← Lb and Lb→ y ← Lc

is the structured cospan

La→ x+Lb y ← Lc

Using this composition, we henceforth require X to have pushouts.

Let us unpack this composition. We have a pair of systems x and y, where the

outputs of x are chosen by the arrow Lb → x and the inputs of y are chosen by the arrow

Lb→ y. Considered together, we have a span x← Lb→ y. The pushout of this span is

x

yLb

x+Lb y

A useful intuition of this pushout is that the system x+Lb y is obtained by gluing the image

of Lb in x to the image of Lb in y. The composite system x+Lb y has inputs chosen by the

composite La→ x→ x+Lb y and outputs chosen by the composite Lc→ y → x+Lb y. The

composite structured cospan is then

La→ x+Lb y ← Lc

From this composition, a functor L : A→ X where X has pushouts gives a category

whose objects are those of A and whose arrows of type a → b are structured cospans

La→ x← Lb. For our needs, however, we ask more of L, A, and X.

In Chapter 2, we introduce a theory of rewriting structured cospans. To do so,

we need a topos—discussed in Appendix A.6—in which structured cospans are the objects.

29

We find this topos in Theorem 8 and so our theory requires the assumptions held there.

Precisely, we need L to be a pullback preserving left adjoint and for both A and X to be

topoi. Section 1.2 contains further discussion about how these assumptions figure into our

goal of modeling systems. In the meantime, we fix these assumptions once and for all.

Fix a adjunction

A X

L

R

⊥

with L preserving pullbacks. How does our theory of systems map onto this adjunction?

Interpret the topos X as a category whose objects are systems and whose arrows are the ho-

momorphism of systems. These systems are closed, in that they cannot interact with outside

agents, specifically other systems of the same type. To provide a compositional structure

to these systems, we introduce a topos A that we interpret as a category of interfaces types

and their morphisms. By transporting the interface types along L, we can include them in

the cospans with systems in X. The arrows of a structured cospan equip a system with its

interface. Once equipped with a (non-empty) interface, a system is open in that they can

interact with compatible systems. There is no explicit role for R. It is the properties of L

that exists in light of L being an adjunction that we use. However, we can still interpret

R as returning the maximal (by inclusion) interface of a system. The existence of R is a

side-effect that we leverage in Theorem 8.

Using the adjunction L : A� X : R we construct a compositional framework having

systems as arrows in a cospan category. Composition of arrows uses pushout which encodes

connecting a pair of compatible systems. Because cospans are too general for our needs, we

restrict our attention to structured cospans.

30

Definition 3 (Structured cospan). A structured cospan is a cospan of the form La →

x← Lb. When we want to emphasize L, we use the term L-structured cospans.

Structured cospans fit into two different categories that are central to our theory.

The first one, that we meet now, was proved by Baez and Courser to actually be a category

[5]. To start, we define an isomorphism of structured cospans from La → x ← Lb to

La → x′ ← Lb to be an invertible arrow h : x → x′ in X that fits into the commuting

diagram

La Lb

x

x′

f g

f ′ g′

h

Definition 4. The category LCsp has as objects the objects of A and arrows a → b are

structured cospans La→ x← Lb up to isomorphism.

Composing La→ x← Lb with Lb→ y ← Lc uses pushout

La

x+Lb y

Lc

In a sense, pushouts glue objects together making it a sensible way to model system con-

nection. The composition above is like connecting along Lb. Using structured cospans, we

now improve our earlier definition of open graphs.

31

Example 5. There is a geometric morphism (see Definition 112)

Set RGraph

L

R

⊥

where Rx is the node set of graph x and La is the edgeless graph with node set a. An open

graph is a cospan La → x ← Lb for sets a, b, and graph x. An illustrated example, with

the reflexive loops suppressed, is

•

•

•

•
• • •

The boxed items are graphs and the arrows between boxes are graph morphisms defined as

suggested by the illustration. In total, the three graphs and two graph morphisms make

up a single open graph whose inputs and outputs are, respectively, the left and right-most

graphs.

Open graphs are compositional. For instance, we can compose

•

•

•

•
• j• •j

with

j• j•
•
•
•

•
•
•

32

to get the open graph

•

•

•

•
• j•

•
•
•

•
•
•

which is obtained by composing structured cospans. Note that this is composition in LCsp

for L : Set→ RGraph.

In general, interpret La → x ← Lb as consisting of a system x equipped with an

interface comprised of inputs La and outputs Lb. The terms ‘input’ and ‘output’ do not

imply any causal structure. They are merely meant to provide a way to connect a pair of

systems along a proper subset of their interfaces. Decomposing the interface into inputs and

outputs distinguish the portion of the interface that is used in a connection from the portion

of the interface that is not used. The specific connection formed determines the interface

decomposition and every possibility exists as an arrow in LCsp. This is reflected in the fact

that LCsp is compact closed (see Definition 100).

Proposition 6. (LCsp,⊗, 0A), where

⊗ : LCsp× LCsp→ LCsp

a⊗ b 7→ a+ b(
La

f−→ x
g←− Lb

)
⊗
(
La′

f ′−→ x′
g′←− Lb′

)
7→
(
L(a+ a′)

f+f ′−−−→ x+ x′
g+g′←−−− L(b+ b′)

)

is compact closed.

Proof. It is a matter of course to show that (LCsp,⊗, 0A) is a symmetric monoidal

category. Though, we point out that we are being a bit casual with our definition of ⊗. The

33

tensor product actually returns the structured cospan

L(a+ a′)
σ−1
a−−→ La+ La′

f+f ′−−−→ x+ x′
g+g′←−−− Lb+ Lb′

σ−1
b←−− L(b+ b′)

where σ is the structure map arising from the preservation of + by L. The symmetry rests

on the fact that both (A,+, 0A) and (X,+, 0X) are symmetric monoidal categories.

Regarding compactness, each object is self-dual. For an object a, the evaluation

map a⊗ a→ I is

L(a+ a)
L∇−−→ La

!←− L0A

and the coevaluation map is

L0
!−→ La

L∇←−− L(a+ a)

where ∇ denotes the codiagonal. Checking the triangle identities are straightforward.

1.2 Structured cospans as objects

Lack and Sobocinski provided a way to rewrite objects in what are called adhesive

categories [42]. To provide a theory of rewriting structured cospans using adhesive categories,

we need a category in which structured cospans are the objects. This, of course, requires a

notion of structured cospan morphism.

Definition 7. A morphism between L-structured cospans La→ x← Lb and Lc→ y ← Ld

is a triple of arrows (f, g, h) that fit into the commuting diagram

La x Lb

Lc y Ld

Lf g Lh

34

There is a category LStrCsp whose objects are structured cospans and arrows are these

morphisms.

We now come to the first of our main results: that LStrCsp is a topos. This result

is critical for our theory because, as each topos is adhesive [43], it allows the introduction

of rewriting onto structured cospans.

Theorem 8. For any adjunction

A X

L

R

⊥

between topoi A and X, the category LStrCsp is a topos.

Proof. Note that LStrCsp is equivalent to the category whose objects are cospans

of form a→ Rx← b and morphisms are triples (f, g, h) fitting into the commuting diagram

w Ra x

y Rb z

f Rg h

This, in turn, is equivalent to the comma category (A × A ↓ ∆R), where ∆: A → A × A is

the diagonal functor. But this diagonal functor is right adjoint to the coproduct functor.

Therefore, ∆R is also a right adjoint so (A × A ↓ ∆R) is an instance of Artin gluing [60],

hence a topos.

We now show that constructing LStrCsp is functorial in L. The codomain of this

functor is comprised of topoi and adjoint pairs, the left of which preserves pullbacks. We call

this category AdjTopos. The domain this functor is the arrow category of AdjTopos, which

we denote by [• → •,AdjTopos]. In this category, the objects are adjunctions between topoi,

35

the left adjoint preserving pullbacks, and an arrow from L : A� X : R to L′ : A′ � X′ : R′ is

a pair of adjoints F a G and F ′ a G′ fitting into a diagram

A

A′

X

X′

G

L

F

L′

R

G′

R′

F ′

⊥

⊥

a a

such that LF = F ′L′ and GR = R′G′.

Theorem 9. There is a functor

(−)StrCsp : [• → •,AdjTopos]→ AdjTopos

defined by

X

X′

A

A′

G′F ′

L

R

R′

L′

F G

⊥

⊥

a a (−)StrCsp7−−−−−−→ LStrCsp L′StrCsp⊥

Θ

Θ′

36

which is in turn given by

La x Lb

Lc y Ld

m n

o p

Lf g Lh Θ7−→

L′G′a Gx L′G′b

L′G′c Gy L′G′d

Gm Gn

Go Gp

L′G′f Gg L′G′h

and

L′a′ x′ L′b′

L′c′ y′ L′d′

m′ n′

o′ p′

L′f ′ g′ L′h′ Θ′7−→

LF ′a′ Fx′ LF ′b′

LF ′c′ Fy′ LF ′d′

Fm Fn′

Fo′ Fp′

LF ′f ′ Fg′ LF ′h′

Proof. In light of Theorem 8, it suffices to show that Θ a Θ′ gives an adjunction

and Θ preserves pushouts.

Denote the structured cospans

La
m−→ x

n←− Lb

in LStrCsp by ` and

L′a′
m′−→ x′

n′←− L′b′

in L′StrCsp by `′. Denote the unit and counit for F a G by η, ε and for F ′ a G′ by η′, ε′.

The assignments

(
(f, g, h) : `→ Θ′`′

)
7→
(
(ε′ ◦ F ′f, ε ◦ Fg, ε′ ◦ F ′h) : Θ`→ `′

)
(
(f ′, g′, h′) : Θ`→ `′

)
7→
(
(G′f ′ ◦ η′, Gg′ ◦ η,G′h′ ◦ η′) : `→ Θ′`′

)
give a bijection hom(Θ`, `′) ' hom(`,Θ′`′). The naturality of ` and `′ rest on natural

maps η, ε, η′, and ε′. The left adjoint Θ′ preserves finite pullbacks because they are taken

pointwise and L, F , and F ′ all preserve finite limits.

37

The arrows LStrCsp →L′ StrCsp that we are interested in act on the systems and

their interfaces.

Definition 10. Fix a pair of structured cospan categories LStrCsp and L′StrCsp using the

adjunctions

A X

L

R

⊥ and A′ X′

L′

R′

⊥

with L and L′ preserving pullbacks. A structured cospan functor of type

LStrCsp→L′ StrCsp

is a pair of finitely continuous and cocontinuous functors F : X → X′ and G : A → A′ such

that the diagrams

A X

A′ X′

L

L′

G F

A X

A′ X′

R

R′

G F

commute.

Structured cospan categories and their morphisms form a category which we leave

unnamed.

1.3 A double category of structured cospans

We use (pseudo) double categories (see Definition 85) to combine into a single

instrument the competing perspectives of structured cospans as objects and as arrows.

Definition 11 (Structured cospan double category). There is a double category LStrCsp

given by the following data:

38

• the objects are the A-objects

• the vertical arrows a→ b are the A-arrows,

• the horizontal arrows a→ b are the cospans La→ x← Lb, and

• the squares are the commuting diagrams

La x Lb

Lc y Ld

Lf g Lh

Baez and Courser proved that this truly is a double category [15, Cor. 3.9]. More-

over, when A and X are cocartesian, their coproducts can be used to define a symmetric

monoidal structure on LStrCsp. The meaning of this structure is that the disjoint union

of two systems can be considered a single system. The following example illustrates the

squares and tensor product.

Example 12. Consider the double category LStrCsp where L is left adjoint to the un-

derlying node functor R : RGraph → Set. A square in this double category is a diagram in

RGraph such as

39

•

•

•

•

• •

• • • •

The tensor is the disjoint union of open graphs. For example, tensoring

•

•

• •

•

0

together with

• • • •

gives the open graph

40

•

•

•

• •

•

• • •

This double category is explored further by Baez and Courser [5]. For us, it is a

nice structure in which to simultaneously present the compositional role and the object role

of structured cospans.

1.4 Spans of structured cospans

For this final section of the chapter, we define spans of structured cospans. These

are the objects that serve as rewrite rules. We bring the two flavors of rewriting, fine and

bold, to structured cospans in Chapter 3 and Chapter 4. This section segues to those two

chapters.

We continue to work with a adjunction

A X

L

R

⊥

with L preserving pullbacks.

41

Definition 13. A span of structured cospans is a commuting diagram

La x La′

Lb y Lb′

Lc z Lc′

Spans of cospans (not structured cospans) were considered by Kissinger in his thesis

[41] and also by Grandis and Paré in [36]. They did not fit them into a categorical structure

as we do in latter chapters. For us, they will be squares in a double category for which we

need to introduce horizontal composition ◦h and vertical composition ◦v. The compositions

use pushouts and pullbacks, which are only defined up to isomorphism. It follows that we

will need to consider classes of spans of cospans, the specifics of which we put off until

introducing the fine rewriting and bold rewriting of structured cospans. For now, we define

a morphism of spans of structured cospans.

Definition 14. A morphism of spans of structured cospans from

La x Lb

Lc y Ld

Le z Lf

to

La x Lb

Lc y′ Ld

Le z Lf

42

is an arrow θ : y → y′ that fits into a commuting diagram

La

Lb

Lc

x
y

y′

z

La′

Lb′

Lc′

θ

If θ is invertible, then the morphism is an isomorphism.

We now have our syntactical device in hand. As previously stated, our goal is to

incorporate rewriting. To do so, we spend the next chapter covering rewriting in a general

setting before moving on to focus solely on rewriting structured cospans.

43

Chapter 2

Double pushout rewriting

Our primary aim is to develop a theory of rewriting for open systems. This goal

fits into a larger program of studying the “linguistics” of open systems. By this we mean

designating syntax and semantics. Rewriting lives on the syntactical side of this divide.

To develop an intuition for rewriting, we provide a sliver of its broader story. We

chase from its beginnings in linguistics to double pushout graph rewriting to the modern

day axioms of adhesive categories (see Appendix A.5). The most important example of

an adhesive category for us is a topos. This fact highlights the importance of structured

cospans forming a topos (Theorem 8) and it cements our ability to rewrite open systems.

2.1 A brief history of rewriting

We prefer to sketch the theory of rewriting rather than delve into details. For us,

it is enough to build an intuition for rewriting prior to introducing it to open systems via

structured cospans.

44

The theory of rewriting arose from Chomsky’s work in formal languages [14]. He

used rewriting as a device to generate well-formed sentences. While a well-formed sentence

must be grammatically sound, it need not mean anything. Chomsky’s [14] classic example

of a grammatically sound but meaningless sentence is

‘Colorless green ideas sleep furiously.’

That this sentence is syntactically good but semantically bad helps to highlight the difference

between syntax and semantics. How does one use rewriting, in Chomsky’s sense, to build

that sentence?

We begin with a collection of rewrite rules:

1. a sentence is a noun phrase followed by a verb phrase;

2. a verb phrase consists of a verb and the option to follow with an adverb;

3. a noun phrase can be a noun with, optionally, a preceding determiner such as an

article, demonstrative, quantifier, etc;

4. a noun phrase can be a noun with, optionally, a preceding adjective phrase or, option-

ally, a prepositional phrase.

These rules are denoted as follows:

S→ NP VP

VP→ VP (Adv.)

NP→ (Det.) NP

NP→ (AP) NP (PP)

45

To derive a sentence, first apply a rule to S, then apply a rule to that first step’s

output, and so on. Eventually, no further rules are applicable at which point we are left

with a grammatically sound sentence. The derivation of the above sentence is

Colorless green ideas sleep furiously

AP AP NP VP Adv.

NP VP

NP

S

The success of rewriting in linguistics led to its use in logic and mathematics. One

evolution of rewriting into mathematics is an Abstract Rewriting System, a set A together

with a binary relation A9 A. An element of this relation (a, b) means that you can ‘reduce’

a to b. Often, one studies the transitive and reflexive closure of A 9 A which we denote

by adorning the arrow with an asterisk A 9∗ A. This so-called rewriting relation 9∗

accounts for reflexive and multi-step reductions.

Example 15. The word problem can be expressed in terms of abstract rewriting. Let M

be the set underlying a monoid, let FM be the free monoid on M , and let 9 be a binary

relation on FM given by x1 · · ·xn 9 x, with xi ∈M , whenever x1 · · ·xn = x in the monoid

M . The word problem asks, “if given words w, w′ in FM , does w 9∗ w′ and w′ 9∗ w”?

As just seen, we can determine whether syntactical expressions, such as words in a

free monoid, are equivalent using rewriting. It is in this sense, not in generating sentences,

that we are interested in rewriting.

We are particularly interested ‘structured cospans’, a syntactical device Baez and

46

Courser introduced [5] as a written language for open systems. In order to develop a theory

of rewriting for structured cospans, we need more sophisticated machinery than abstract

rewriting systems.

A first step in that direction is graph rewriting, invented by Ehrig, et. al. [34],

where graphs are used in place of words and sentences. Rules are used to choose a subgraph

and replace it with another equivalent1 graph. Ehrig, et. al. encode rewrite rules in spans

of graphs and apply a rule using pushouts. That is, a rule is a span of graphs

`← k → r

We interpret this rule to say any instance of a sub-graph isomorphic to ` can be replaced by

the graph r.

Given such a rule and a graph g, how do we identify a copy of ` inside of g and

then replace it with r? The answer lies in the following definition.

Definition 16 (Double pushout). A double pushout diagram is a a pair of pushouts

` d r

g k h

that share an arrow as depicted.

While double pushout diagrams make sense in any category, graph rewriting re-

stricts to the category Graph of directed graphs and their morphisms. So in the diagram

above, each letter represents a graph and the arrows are graph morphisms. The rule being
1 We mean ‘equivalent’ in a semantic sense, thus varying with context.

47

applied is ` ← k → r and the output of applying this rule to g is the graph h. The graph

k is what holds fixed as r replaces ` and d is what holds fixed as h replaces g. A concrete

example of this is given below in Equation (2.3).

Observers noticed that the mechanisms did not require anything specific about

graphs to work. Pushouts and spans are basic constructions in category theory, so it is

reasonable to consider extending double pushout rewriting to a broader class of categories

than just Graph. There were a number of attempts to axiomatize the important properties

of graph rewriting, the most prominent example being ‘high level replacement systems’ [32],

which we discuss in Section A.5. The drawback of HLRS’s was the sheer number of axioms.

Lack and Sobocinski eventually found a much shorter list of axioms. They called categories

that satisfy their axioms ‘adhesive categories’ [42] (see Appendix A.5). Adhesive categories

are currently the most general setting in which rewriting theory holds. However, we don’t

need the full generality of adhesive categories and instead focus on topoi, each of which is

adhesive.

As mentioned earlier, there are different ways to interpret what a rewriting is. For

instance, ‘a rewriting is making a choice’ or ‘a rewriting is a simplification’. The interpre-

tation for our needs is ‘a rewriting is to replace by a behaviorally indistinguishable system’.

The linguistic analogy is ‘synonym’.

Though the focus of this thesis is on the syntax of open systems, the semantics

of systems cannot fully be ignored. By the syntax of a system, we mean the rules followed

by its diagrammatic representations. By the semantics of a system, we mean the behavior

of a system. For example, consider resistor systems. It is a syntactic issue that the circuit

48

diagram

25Ω 35Ω

makes sense but
25Ω

35Ω

does not. A semantic consideration is that the resistor circuit

25Ω 35Ω

behaves in the same exact way as the circuit

60Ω

This follows from Ohm’s law. Syntactically, these are two different circuits. Building a

rewriting theory into our structured cospan formalism provides our system syntax a mech-

anism to recognize semantically (i.e. behaviorly) indistinguishable systems.

2.2 Rewriting in topoi

Fix a topos T. Rewriting starts with the notion of a rewrite rule, or simply rule.

In its most general form, a rule is a span

`← k → r

in T. The arrows are left unnamed unless we need to refer to them. For us, rules come in

two flavors. A fine rule is one in which both of the span arrows are monic. A bold rule

49

is one without restriction on the arrows.

Remark 17. Both fine and bold approaches are considered in the rewriting literature, but

often by the name ‘linear’ and ‘non-linear’, respectively. Fine rewriting is more common.

Habel, Muller, and Plump compared these alternatives in the context of graph rewriting

[37]. The distinction between the two cases does not appear in this chapter, and everything

we say carries through in either case. We do take care to ensure that constructions are

well-defined in the monic case.

The conceit of a rule is that r replaces ` while k identifies a subsystem of ` that

remains fixed. For example, suppose we were modeling some system using graphs where

self-loops were meaningless. In the introduction, we considered modeling the internet with

a graph with websites as nodes and links as edges. If we did not care about websites with

a link to itself, we would introduce a rule that replaces a node with a loop with a node

• • •

(2.1)

For another example, suppose we had another system modeled on graphs where

an edge between two nodes is equivalent to having a single node. This is captured with the

rule

•

•

•

•
•

(2.2)

50

This rule appears in the ZX-calculus example from Section 4.3. Observe that the first

example is a fine rewrite and the second is a bold rewrite.

To apply a rule `← k → r to an object g, we require an arrow m : `→ g such that

there exists a pushout complement, an object d fitting into a pushout diagram

` k

g d

m

A pushout complement need not exist, but when it does and the map k → ` is monic, then

it is unique up to isomorphism [42, Lem. 15].

For each application of a rule, we derive a new rule.

Definition 18 (Derived rule). A derived rule is any span g ← d → h fitting into the

bottom row of the double pushout diagram

` k r

g d h

When the arrows of the rule ` ← k → r are both monic, the arrows of the span

g ← d → h are also monic because pushouts preserve monics in topoi [42, Lem. 12]. The

intuition of this diagram is that ` → g identifies a copy of ` in g and we replace that copy

with r, resulting in a new object h.

To illustrate, let us return to a system modeled with graphs and where self-loops

are meaningless. Then we can apply Rule (2.1) to any node with a loop. This application

51

is captured with the double pushout diagram

• • •

• •

•

• •

•

• •

•

(2.3)

We identified a self-loop in the bottom left graph then applied the rule to remove it. The

result is the bottom right graph. The reader can check that the two squares are pushouts.

Usually when modeling a system, there is a set of rewrite rules that accompany it.

For example, in resistor circuits there are parallel, series, and star rules. Just like in natural

languages, we call a collection of rules a grammar.

Definition 19 (Grammar). A topos T together with a finite set P of rules {`j ← kj → rj} in

T is a grammar. When the all rules in a grammar have monic arrows, we say the grammar

is fine. Else, the grammar is bold. An arrow of (fine, bold) grammars (S, P)→ (T, Q) is a

pullback and pushout preserving functor F : S→ T such that for each rule ` f←− k g−→ r in P ,

the rule F` Ff←−− Fk Fg−−→ Fr is in Q. Together these form a category Gram.

A grammar is a seed. Like a seed, the grammar gives birth to something entirely

new and more complex called the language. It is this language that we are interested more so

52

than the grammar. We can certainly learn about the language from the grammar, but what

we actually study is the ‘rewrite relation’ which informs us about how different components

of the language relate. Every grammar (T, P) gives rise to a relation on the objects of T

defined by g h whenever there exists a rule g ← d → h derived from a production in P .

For instance, the above double pushout diagram would relate

•a •b

•c to

•a •b

•c

But is too small to capture the full behavior of the language. For one, it is not true in

general that g g holds. Also, does not capture multi-step rewrites. That is, there may

be derived rules witnessing g g′ and g′ g′′ but not a derived rule witnessing g g′′.

We want to relate a pair of objects if one can be rewritten into another with a finite sequence

of derived rules. Therefore, we actually want the following.

Definition 20 (Rewrite relation). To each grammar (T, P), assign a relation on the objects

of T defined by setting g h whenever there is a rewrite rule `← k → r in P and an object

d of T that fit into a double pushout diagram

` k r

g d h

The rewrite relation ∗ is the transitive and reflexive closure of .

Every grammar determines a unique rewrite relation in a functorial way. We devote

53

Section 5.2 to proving this fact, though, we restrict ourselves working with grammars of

structured cospan categories.

54

Chapter 3

Fine rewriting and structured cospans

In this chapter, we introduce a theory of fine rewriting to structured cospans.

Rewriting is fine when the rewrite rules are spans with monic legs. Our primary goal is to

define a double category whose squares are fine rewrites of structured cospans. The rough

idea is that this double category, denoted LFineRewrite, has interface types for objects,

structured cospans for horizontal arrows, isomorphisms of interface objects for vertical ar-

rows, and fine rewrite rules of structured cospans for squares. We prove in Proposition 25

that LFineRewrite actually is a double category. The first step to proving this is to ensure

the fine rewrite rules are suitable squares for our double category, we define them as follows.

Definition 21 (Fine rewrite). A fine rewrite of structured cospans is an isomorphism

55

class of spans of structured cospans of the form

La x Lb

Lc y Ld

Le z Lf

∼= ∼=

∼= ∼=

The marked arrows are monic.

In a double category, the squares have two composition operations. Horizontal

composition uses pushout as is typical with cospan categories. The vertical composition

uses pullback as is typical in span categories. But because there are no higher order ar-

rows traversing the squares in a double category, and because pushouts and pullbacks are

only defined up to isomorphism, we take isomorphism classes of structured cospan rewrite

rules. With the squares of LFineRewrite defined, we can introduce the two composition

operations.

Definition 22. The horizontal composition of fine rewrite rules is given by

La

Lb

Lc

v

w

x

La′

Lb′

Lc′

La′

Lb′

Lc′

v′

w′

x′

La′′

Lb′′

Lc′′

◦h :=

56

La

Lb

Lc

v +La′ v
′

w +Lb′ w
′

x+Lc′ x
′

La′′

Lb′′

Lc′′

The vertical composition of fine rewrite rules is

La

Lb

Lc

v

w

x

La′

Lb′

Lc′

Lc

Ld

Le

x

y

z

Lc′

Ld′

Le′

◦v :=

La

L(b×c d)

Le

v

w ×x y

z

La′

L(b′ ×c′ d′)

Le′

We defined ◦h and ◦v using representatives of isomorphism classes, however this

operation is well-defined. It is less clear, however, that these operations preserve the monic

arrows in the fine rewrites of structured cospans. In Proposition 24, we show that horizontal

and vertical composition do preserve these monic arrows. To prove this, we require the

following lemma.

57

Lemma 23. The diagram
x y z

x′ y′ z′

∼=

(3.1)

induces a pushout

x+ z x+y z

x′ + z′ x′ +y′ z

ρ

ρ′

γ γ′

(3.2)

such that the canonical arrows γ and γ′ are monic.

Proof. The universal property of coproducts implies that γ factors through x′+ z

as in the diagram

x

x′

x+ z

x′ + z

x′ + z′

z

z′

ιx

ιx′
ιz

ιz′

It is straightforward to check that both squares are pushouts. By Lemma 116, it follows

that γ is monic.

Diagram 3.2 commutes because of the universal property of coproducts. To see

58

that it is a pushout, arrange a cocone

x+ z

x′ + z′

x+y z

x′ +y′ z
′

c

ρ

ρ′

γ γ′

ψ′

ψ

(3.3)

Denote by ιx any map that includes x. Then ψ′ιx′ , ψ′ιz′ , and c form a cocone under the

span x′ ← y′ → z′ from the bottom face of Diagram 3.1. This induces the canonical map

ψ′′ : x′ +y′ z
′ → c. It follows that ψ′ιx′ = ψ′′ρ′ιx′ and ψ′ιz′ = ψ′′ρ′ιz′ . Therefore ψ′ = ψ′′ρ′

by the universal property of coproducts.

Furthermore, ψριz, ψριz, and c form a cocone under the span x ← y → z on the

top face of Diagram 3.1. then ψριx = ψ′γιx = ψ′′ρ′γιx = ψ′′ψ′ριx and ψριz = ψ′γιz =

ψ′′ρ′γιz = ψ′′γ′ριz meaning that both ψ and ψ′′ψ′ satisfy the canonical map x +y z → d.

Hence ψ = ψ′′ψ′.

The universality of ψ′′ with respect to Diagram 3.3 follows from the universality

of γ′′ with respect to x′ +y′ z
′.

Lemma 24. Horizontal and vertical composition of fine rewrites are fine rewrites.

Proof. We can see that the span of cospan obtained by horizontal composition of

59

fine rewrites

La

Lb

Lc

v

w

x

La′

Lb′

Lc′

∼= ∼=

∼= ∼=

La′

Lb′

Lc′

v′

w′

x′

La′′

Lb′′

Lc′′

∼= ∼=

∼= ∼=

◦h :=

La

Lb

Lc

v +La′ v
′

w +Lb′ w
′

x+Lc′ x
′

La′′

Lb′′

Lc′′

∼= ∼=

∼= ∼=

is again a fine rewrite, that is the arrows w +Le x → u +Lb v and w +Le x → y +Lh z are

monic, by applying Lemma 23 to the diagrams

v

w

La′

Lb′

v′

w′

∼= and

w

x

Lb′

Lc′

w′

x′

∼=

The result for vertical composition

La

Lb

Lc

v

w

x

La′

Lb′

Lc′

∼= ∼=

∼= ∼=

Lc

Ld

Le

x

y

z

Lc′

Ld′

Le′

∼= ∼=

∼= ∼=

◦v :=

60

La

L(b×c d)

Le

v

w ×x y

z

La′

L(b′ ×c′ d′)

Le′

∼= ∼=

∼= ∼=

holds because pullback preserves monomorphisms.

With horizontal and vertical composition in hand, we construct the double category

LFineRewrite. Actually, we delay discussing the interchange law until Section 3.1 because

it is difficult enough to warrant its own section.

Proposition 25. Let

A X

L

R

⊥

be a adjunction with L preserving pullbacks. There is a double category LFineRewrite

whose objects are the A-objects, horizontal arrows of type a → b are structured cospans

La → x ← Lb, vertical arrows are spans in A with invertible arrows, and squares are fine

rewrites of structured cospans

La x La′

Lb y Lb′

Lc z Lc′

∼= ∼=

∼= ∼=

61

Proof. This proof requires we check the axioms of a double category as laid out

in Definition 85. For simplicity, we denote LFineRewrite by R in this proof.

The object category R0 is given by objects of A and isomorphism classes of spans in

A such that each leg is an isomorphism. The arrow category R1 has as objects the structured

cospans

La→ x← La′

and as morphisms the fine rewrites of structured cospans.

The functor U : R0 → R1 acts on objects by mapping a to the identity cospan on

La and on morphisms by mapping La ← Lb → Lc, whose legs are isomorphisms, to the

square
La

Lb

Lc

La

Lb

Lc

La

Lb

Lc

The functor S : R1 → R0 acts on objects by sending La→ x← La′ to a and on morphisms

by sending a square
La

Lb

Lc

x

y

z

La′

Lb′

Lc′

62

to the span La← Lb→ Lc. The functor T is defined similarly sends an object

La→ x← La′

of R1 to a′ a square
La

Lb

Lc

x

y

z

La′

Lb′

Lc′

to the span La′ ← Lb′ → Lc′.

The horizontal composition functor

� : R1 ×R0 R1 → R1

acts on objects by composing cospans with pushouts in the usual way. It acts on morphisms

by

La

Lb

Lc

v

w

x

La′

Lb′

Lc′

v′

w′

x′

La′′

Lb′′

Lc′′

�7−→

La

Lb

Lc

v +La′ v
′

w +Lb′ w
′

x+Lc′ x
′

La′′

Lb′′

Lc′′

Section 3.1 is devoted to proving that � is functorial, that is, it preserves composition. It

is straightforward to check that the required equations are satisfied. The associator and

unitors are given by natural isomorphisms that arise from universal properties.

63

And now, our double category of fine rewrites is defined. It remains to prove the

interchange law, which we do next.

3.1 The interchange law

Here we prove the most technical part of the proof that LFineRewrite is a double

category: the interchange law. This law relates the horizontal and vertical composition

defined in the previous section.

Theorem 26. Given four fine rewrites of structured cospans

α :=

La

Ld

Lg

u

w

y

Lb

Le

Lh

∼=

∼=

∼=

∼=

β :=

Lg

Ld′

La′

y

w′

x′

Lh

Le′

Lb′

∼=

∼=

∼=

∼=

α′ :=

Lb

Le

Lh

v

x

z

Lc

Lf

Li

∼=

∼=

∼=

∼=

β′ :=

Lh

Le′

Lb′

z

x′

v′

Li

Lf ′

Lc′

∼=

∼=

∼=

∼=

(3.4)

it is true that

(α ◦h α′) ◦v (β ◦h β′) = (α ◦v β) ◦h (α′ ◦v β′). (3.5)

64

We devote the remainder of this section proving Theorem 26. The first thing we

do is deconstruct Equation (3.5), starting with the left hand side.

The horizontal compositions α ◦h α′ and β ◦h β′ are, respectively,

La

Ld

Lg

u+Lb v

w +Le x

y +Lh z

Lc

Lf ′

Lc′

∼=

∼=

∼=

∼=

Lg

Ld′

La′

y +Lh z

w′ +Le′ x
′

x′ +Lb′ v
′ Lc′

Lf ′

Li

∼=

∼=

∼=

∼=

Lemma 24 ensures that the marked arrows above are monic. The vertical composition of

these is

(α ◦h α′) ◦v (β ◦h β′) =

La

Ld×Lg Ld′

La′

u+Lb v

(w +Le x)×(y+Lhz) (w′ +Le′ x
′)

x′ +Lb′ v
′

Lc

Lf +Li Lf
′

Lc′

∼=

∼=

∼=

∼=

Again, the marked arrows are monic due to Lemma 24. The outside, vertical arrows are

isomorphisms because pullbacks preserve isomorphism.

To compute the right hand side of Equation (3.5), we start with the vertical com-

65

posites α ◦v β and α′ ◦v β′, which are the respective diagrams

La

L(d×g d′)

La′

u

w ×y w′

x′

Lb

L(e×h e′)

Lb′

∼=

∼=

∼=

∼=

Lb

L(e×h e′)

Lb′

v

x×z x′

v′

Lc

L(f ×i f ′)

Lc′

∼=

∼=

∼=

∼=

Lemma 24 ensures the marked arrows are monic. The horizontal composition of these is

(α ◦v β) ◦h (α′ ◦v β′) =

La

Ld×Lg Ld′

La′

u+Lb v

(w ×y w′) +L(e×he′) (x×z x′)

x′ +Lb′ v
′

Lc

Lf +Li Lf
′

Lc′

∼=

∼=

∼=

∼=

It follows that the proof of Theorem 26 comes down to finding an isomorphism

(w ×y w′) +L(e×he′) (x×z x′)→ (w +Le x)×(y+Lhz) (w′ +Le′ x
′)

66

To simplify our diagrams, we introduce new notation. We write

p := (w ×y w′) + (x×z x′), p′ := (w ×y w′) +L(e×he′) (x′ ×z x′),

q := (w + x)×y+z (w′ + x′), q′ := (w +Lg x)×y+Lhz (w′ +Li x
′).

In this notation, the isomorphism we seek is

θ′ : p′ → q′ (3.6)

Also, because Lb, Le, Lh, Le′, Lb′, and therefore L(e×he′) are all isomorphic, we simply write

L∗ to mean any of these. Each are interchangeable in the diagrams below, and adjusting

this notation will not cause any false reasoning. While we do lose the ability to discern

between these objects, context should help the reader determine this. Despite losing this

ability, we gain a breezier exposition and a more readable proof.

Apply Lemma 23 to the diagram

w ×y w′ L∗ x×z x′

y L∗ z

=

to get the pushout
p p′

y + z y +L∗ z

ψ ψ′

Similarly, we get pushouts

p p′

w + x w +L∗ x

σ σ′ and

p p′

w′ + x′ w′ +L∗ x
′

φ φ′

67

Now, p forms a cone over the cospan w + x → y + z ← w′ + x′ via the maps ψ, σ, and φ.

And so, we get a canonical map θ : p→ q.

Lemma 27. The commuting diagram

Lg

L∗

t Li

induces a canonical isomorphism between Lg ×L∗ Li and Lg ×t L∗.

Proof. Via the projection maps, Lg ×L∗ Li forms a cone over the cospan Lg →

t← Li and, also, Lg ×t Li forms a cone over the cospan Lg → L∗ ← Li, though the latter

requires the monic L∗� t to do so. Universality implies that the induced maps are mutual

inverses and they are the only such pair.

Lemma 28. The map θ : p→ q is an isomorphism.

Proof. Because colimits are stable under pullback [47, Thm. 4.7.2], we get an

isomorphism

γ : (w ×y+z w
′) + (w ×y+z x

′) + (x×y+z w
′) + (x×y+z x

′)→ q.

But w ×y+z x
′ and w′ ×y+z x are initial. To see this, recall that in a topos, all maps to the

68

initial object are isomorphisms. Now, consider the diagram

w ×y+z x
′

z′

0 z

w y y + z

whose lower right square is a pullback because coproducts are disjoint in topoi. Similarly,

x×y+z w
′ is initial. Hence we get a canonical isomorphism

γ′ : (w ×y+z w
′) + (x×y+z x

′)→ q (3.7)

that factors through γ. But Lemma 27 gives unique isomorphisms

w ×y w′ ∼= w ×y+z w
′ and x×z x′ ∼= x×y+z x

′.

This produces a canonical isomorphism

γ′′ : p→ (w ×y+z w
′) + (x×y+z x

′).

One can show that θ = γ′ ◦ γ′′ using universal properties.

Having shown that θ : p→ q is an isomorphism, we can write p in place of

(w + x)×(y+z) (w′ + x′)

69

in the following diagram

p

p′ q′

y + z

w + x

w′ + x′

y +L∗ z

w +Le x

w′ +Le′ x
′

φ

σ

σ′

θ′

φ′

ω

ρ

(3.8)

where θ′ from Equation (3.6) finally appears. It and ρ are the canonical maps arising from

the pullback on the bottom. Observe that ρ factors through θ′ in the above diagram. This

follows from the universal property of pullbacks.

Lemma 29. The map θ′ : p′ → q′ is an isomorphism.

Proof. Because we are working in a topos, it suffices to show that θ′ is both monic

and epic. It is monic because σ′ is monic.

To see that θ′ is epic, it suffices to show that ρ is epic. The front and rear right

faces of (3.8) are pushouts by Lemma 23. Then because the top and bottom squares of

(3.8) are pullbacks consisting of only monomorphisms, Lemma 117 implies that the front

and rear left faces are pushouts. However, as pushouts over monomorphisms, Lemma 116

tells us they are pullbacks. But in a topos, regular epimorphisms are stable under pullback,

and so ρ is epic.

It remains to show that θ′ serves as an isomorphism between fine rewrites. This

70

amounts to showing that

La

L(d×g d′)

La

u+L∗ v Lc

L(f ×i f ′)

Lc′x′ +L∗ v
′

p′

q′

g

h

j

k

θ′ fp

(3.9)

commutes. Here g and k are induced from applying vertical composition before horizontal,

h from applying horizontal composition before vertical, j is from composing in either order,

f is from horizontal composition as given in Definition 22 and ω is from (3.8). The top and

bottom face commute by construction.

Lemma 30. The inner triangles of diagram (3.9) commute. That is, we have k = fρθ′ and

h = θ′g.

Proof. To see that k = fωθ′, consider the diagram

L∗

L∗

w ×y w′

w

x×z x′

x

p′

y +L∗ z u+L∗ v

∼=
k

ιus

ιvt

f
σ′

The bottom face is exactly the pushout diagram from which f was obtained. Universality

implies that k = fσ′ and, as seen in (3.8), σ′ = ρθ′.

71

That h = θ′g follows from

fρh = j = kg = fρθ′g

and the fact that fρ is monic.

Of course, we have only shown that two of the four inner triangles commute, but

we can replicate our arguments to show the remaining two commute as well. This lemma

was the last step in proving Theorem 26, the interchange law.

3.2 A symmetric monoidal structure

The double category LFineRewrite can be equipped with a symmetric monoidal

structure lifted from the cocartesian structure on A and X. Proving this amounts to checking

the axioms of Definition 86.

Lemma 31. LFineRewrite is a symmetric monoidal double category.

Proof. We denote LFineRewrite by R for convenience. Let us first show that the

category of objects R0 and the category of arrows R1 are symmetric monoidal categories.

We obtain the monoidal structure (⊗0, 0A) on R0 by lifting the cocartesian structure

on A to the objects and by defining

(a
f←− b g−→ c)⊗0 (a′

f ′←− b′ g
′
−→ c′) := (a+ a′

f+g←−− b+ b′
f ′+g′−−−→ c+ c′)

on morphisms. Universal properties provide the associator and unitors as well as the coher-

ence axioms. This monoidal structure is clearly symmetric.

72

Next, we have the category R1 whose objects are the structured cospans and mor-

phisms are their fine rewrites. We obtain a symmetric monoidal structure

(⊗1, L0A → L0A ← L0A)

on the objects via

(La→ x← La′)⊗1 (Lb→ y ← Lb′) := (L(a+ b)→ x+ y ← L(a′ + b′))

and on the morphisms by

La

Lb

Lc

v

w

x

La′

Lb′

Lc′

⊗1

La′′

Lb′′

Lc′′

v′

w′

x′

La′′′

Lb′′′

Lc′′′

:=

L(a+ a′′)

L(b+ b′′)

L(c+ c′′)

v + v′

w + w′

x+ x′

L(a′ + a′′′)

L(b′ + b′′′)

(c′ + c′′′)

Again, universal properties provide the associator, unitors, and coherence axioms. Hence

both R0 and R1 are symmetric monoidal categories.

It remains to find globular isomorphisms x and u and their coherence. To find x,

fix horizontal 1-morphisms

La→ x← La′, La′ → x′ ← La′′,

Lb→ y ← Lb′, Lb′ → y′ ← Lb′′.

73

The globular isomorphism x is an invertible 2-morphism with domain

L(a+ b)→ (x+ y) +L(a′+b′) (x′ + y′)← L(a′′ + b′′)

and codomain

L(a+ b)→ (x+La′ y) + (x′ +Lb′ y
′)← L(a′′ + b′′)

This comes down to finding an isomorphism in X between the apexes of the above cospans.

Such an isomorphism exists, and is unique, because both apexes are colimits of the non-

connected diagram

La

x

La′
x′

La′′ Lb

y

Lb′
y′

Lb′′

Moreover, the resulting globular isomorphism is a fine rewrite of structured cospans because

the universal maps are isomorphisms. The globular isomorphism u is similar.

Finally, we check that the coherence axioms, namely (a)-(k) of Definition 86, hold.

These are straightforward, though tedious, to verify. For instance, if we have

La

x

La′
M1 = M2 =

La′
x′

La′′
M3 =

La′′
x′′

La′′′

Lb

y

Lb′
N1 = N2 =

Lb′
y′

Lb′′
N3 =

Lb′′
y′′

Lb′′′

then following Diagram (5) around the top right gives the sequence of cospans

L(a+ b)

((x+ y) +L(a′+b′) (x′ + y′)) +L(a′′+b′′) (x′′ + y′′)

L(a′′ + b′′)

((M1 ⊗N1)� (M2 ⊗N2))� (M3 ⊗N3) =

L(a+ b)

((x+La′ x
′) + (y +Lb′ y

′)) +L(a′′+b′′) (x′′ + y′′)

L(a′′ + b′′)

((M1 �M2)⊗ (N1 �N2))� (M3 ⊗N3) =

74

L(a+ b)

((x+La′ x
′) +La′′ x

′′) + ((y +Lb′ y
′) +Lb′′ y

′′)

L(a′′ + b′′)

((M1 �M2)�M3)⊗ ((N1 �N2)�N3) =

L(a+ b)

(x+La′ (x
′ +La′′ x

′′)) + (y +Lb′ (y
′ +Lb′′ y

′′))

L(a′′ + b′′)

(M1 � (M2 �M3))⊗ (N1 � (N2 �N3)) =

Following the diagram (5) around the bottom left gives another sequence of cospans

L(a+ b)

((x+ y) +L(a′+b′) (x′ + y′)) +L(a′′+b′′) (x′′ + y′′)

L(a′′ + b′′)

((M1 ⊗N1)� (M2 ⊗N2))� (M3 ⊗N3) =

L(a+ b)

(x+ y) +L(a′+b′) ((x′ + y′) +L(a′′+b′′) (x′′ + y′′))

L(a′′′ + b′′′)

(M1 ⊗N1)� ((M2 ⊗N2)� (M3 ⊗N3)) =

L(a+ b)

(x+ y) +L(a′+b′) ((x′ +La′′ x
′′) + (y′ +Lb′′ y

′′))

L(a′′′ + b′′′)

(M1 ⊗N1)� ((M2 �M3)⊗ (N2 �N3)) =

L(a+ b)

(x+La′ (x
′ +La′′ x

′′)) + (y +Lb′ (y
′ +Lb′′ y

′′))

L(a′′′ + b′′′)

(M1 � (M2 �M3))⊗ (N1 � (N2 �N3)) =

75

Putting these together gives the following commutative diagram.

L(a+ b) ((x+ y) +L(a′+b′) (x′ + y′)) +L(a′′+b′′) (x′′ + y′′) L(a′′′ + b′′′)

L(a+ b) ((x+La′ x
′) + (y +Lb′ y

′)) +L(a′′+b′′) (x′′ + y′′) L(a′′′ + b′′′)

L(a+ b) ((x+La′ x
′) +La′′ x

′′) + ((y +Lb′ y
′) +Lb′′ y

′′) L(a′′′ + b′′′)

L(a+ b) (x+La′ (x
′ +La′′ x

′′)) + (y +Lb′ (y
′ +Lb′′ y

′′)) L(a′′′ + b′′′)

L(a+ b) (x+ y) +L(a′+b′) ((x′ + y′) +L(a′′+b′′) (x′′ + y′′)) L(a′′′ + b′′′)

L(a+ b) (x+ y) +L(a′+b′) ((x′ +la′′ x
′′) + (y′ +La′′ y

′′)) L(a′′′ + b′′′)

L(a+ b) (x+La′ (x
′ +La′′ x

′′)) + (y +Lb′ (y
′ +Lb′′ y

′′)) L(a′′′ + b′′′)

The vertical 1-morphisms on the left and right are the the respective identity spans on

L(a + b) and L(a′′′ + b′′′). The vertical 1-morphisms in the center are isomorphism classes

of monic spans where each leg is given by a universal map between two colimits of the same

diagram. The horizontal 1-morphisms are given by universal maps into coproducts and

pushouts. The top cospan is the same as the bottom cospan, making a bracelet-like figure

in which all faces commute. The other diagrams witnessing coherence are given in a similar

fashion.

3.3 A compact closed bicategory of spans of cospans

Double categories have many nice features yet are not as established in the world

of higher categories as bicategories. For those who more comfortable with bicategories, we

76

write this section to discuss a bicategory of fine rewrites of structured cospans. Intuitively,

it is straightforward to pass from the double category LFineRewrite to a bicategory of fine

rewrites. By only accepting the squares of LFineRewrite that fix the inputs and outputs,

that is disallow permutations, then the only vertical arrows left are identities. But a double

category with only identity vertical arrows is virtually a bicategory. Care is needed, though,

because to actually remove a bicategory of fine rewrites from LFineRewrite requires more

rigor than simply picking out only the vertical arrows that are the identity.

More than a bicategory, we can actually extract a compact closed bicategory from

the symmetric monoidal double category LFineRewrite. To obtain a symmetric monoidal

bicategory from LFineRewrite, we use machinery developed by Shulman [58]. To show

that this bicategory is also compact closed, we use work by Stay [59].

First, let us extract the ‘horizontal bicategory’ of LFineRewrite, so named because

we remove the vertical arrows.

Definition 32. Define LFineRewrite to be the bicategory whose objects are the objects

of A, 1-arrows are structured cospans, and 2-arrows are fine rewrite rules of form

La x Lb

La y Lb

La z Lb

id

id

id

id

That this is a double category follows from Shulman’s construction mentioned in

Definition 89. Had we used the same notation as that definition, we would let LFineRewrite :=

77

H(LFineRewrite).

Shulman’s construction continues to be useful, as we use it to show that LFineRewrite

is symmetric monoidal. The first step towards this is showing that LFineRewrite is isofi-

brant (see Definition 88).

Lemma 33. The symmetric monoidal double category LFineRewrite is isofibrant.

Proof. The companion of a vertical 1-morphism

f = (a
θ←− b ψ−→ c)

is given by

f̂ = (La
Lθ−1

−−−→ Lb
Lψ−1

←−−− Lc)

The required 2-arrows are given by

La

Lb

Lc

Lb

Lc

Lc

Lc

Lc

Lc

and

La

La

La

La

La

Lb

La

Lb

Lc

The conjoint of f is given by f̌ = f̂op.

Because the symmetric monoidal double category LFineRewrite is isofibrant, The-

orem 90 extracts a symmetric monoidal bicategory LFineRewrite comprised of the same

objects, structured cospans as arrows, and isomorphism classes of fine rewrites of structured

78

cospans with form
La

La

La

v

w

x

La′

La′

La′

id

id

id

id

The difference between these fine rewrites and the squares of LFineRewrite is that the

vertical arrows are identities. This is necessary given that bicategories have no vertical

arrows. However, the isofibrancy condition ensures that information carried by the vertical

arrows is encoded the horizontal arrows.

Theorem 34. LFineRewrite is a symmetric monoidal bicategory.

Proof. Lemma 33 states that LFineRewrite is isofibrant. The result then follows

from Theorem 90.

It remains to show that this bicategory is compact closed. This structure of

LFineRewrite is another benefit of bicategories over double categories. Currently, there is

no notion of compact closedness for double categories. However, it is a nice feature to have

in a category that serves as the syntax for open systems with inputs and outputs. Here,

we mention again that the terms ‘inputs’ and ‘outputs’ do not imply a causal structure.

Instead, they partition the interface of an open system into two parts, the purpose of which

manifests when composing a pair of systems. If we connect an open system, considered as

an structured cospan La→ x← La′, to another system, then La is parts of the connection

and La′ is not or vice versa. That is, partitioning an interface into inputs and outputs allows

79

a portion of the interface to be part of a connection and the remain portion to be left out

of the connection. Compact closedness formalizes the viewpoint that how an interface is

partitioned is arbitrary. Indeed, every possible partition of the interface exists as an arrow

in LFineRewrite. That is, given a system x with interface i, then for any two subobjects

a, a′ of i such that a+ a′ ∼= i, there is an an arrow La→ x← La′ in LFineRewrite.

Example 35. Denote by x the graph

•a

•b

•c

•d

with interface {a, c, d}. Then x appears as an arrow in LFineRewrite where L is from

Set RGraph

L

R

⊥

as all of the following

{a, c, d} → x← 0 {a, c} → x← {d}

{a, d} → x← {c} {c, d} → x← {a}

{a} → x← {c, d} {c} → x← {a, d}

{d} → x← {a, c} 0→ x← {a, b, c}

The ability to change an input to an output and vice versa comes from the compact

closed structure. We take the remainder of this section to show that LFineRewrite is

compact closed.

80

We start with the following lemma. For this lemma, we introduce the notation

∇ : a+ a→ a for the folding map, which arises from the coproduct diagram

a a+ a a

a

ι ι

id id∇

Lemma 36. In a category with coproducts, the diagram

a+ a+ a

a+ a

a+ a

a

id +∇

∇+ id ∇

∇

is a pushout square.

Proof. Suppose that we have two maps f, g : a+ a→ b forming a cocone over the

span inside the above diagram. Let the arrow ιm : a→ a+ a+ a include a into the middle

copy. Observe that ιl := (∇ + a) ◦ ιm and ιr := (a +∇) ◦ ιm are, respectively, the left and

right inclusions a→ a+ a. Then f ◦ ιl = g ◦ ιr is a map a→ b, which we claim is the unique

map making

a+ a+ a

a+ a

a+ a

a

b

id +∇

∇+ id ∇

∇

81

commute. Indeed, given h : a→ b such that f = h◦∇ = g, then g◦ιr = f ◦ιl = h◦∇◦ιl = h.

In the following theorem, we will make a slight abuse of notation by writing ∇ to

mean

L(a+ a)→ La+ La
∇−→ La.

Here, L(a+a)→ La+La is the structure map which is invertible because, as a left adjoint,

L preserves coproducts.

Theorem 37. The symmetric monoidal bicategory LFineRewrite is compact closed.

Proof. First we show that each object is its own dual. For an object a, define the

counit ε : a+ a→ 0 and unit η : 0→ a+ a to be the following cospans:

ε := (L(a+ a)
∇−→ La← 0), η := (0→ La

∇←− L(a+ a)).

Next we define the cusp isomorphisms, α and β. Note that α is a 2-morphism whose domain

is the composite

a
ιl−→ a+ a

id +∇←−−− a+ a+ a
∇+id−−−→ a+ a

ιr←− a

and whose codomain is the identity cospan on a. From Lemma 36 we have the equations

∇ + id = ιl ◦ ∇ and id +∇ = ιr ◦ ∇ from which it follows that the domain of α is the

identity cospan on a, and the codomain of β is also the identity cospan on a obtained as the

composite

a
ιr−→ a+ a

∇+id←−−− a+ a+ a
X+∇−−−→ a+ a

ιl←− a

Take α and β each to be the isomorphism class determined by the identity 2-morphism on

a, which in particular is a monic span of cospans. Thus we have a dual pair (a, a, ε, η, α, β).

82

By Theorem 103, there exists a cusp isomorphism β′ such that (a, a, ε, η, α, β′) is a coherent

dual pair, and thus LFineRewrite is compact closed.

83

Chapter 4

Bold rewriting and structured

cospans

We contrast this section with the previous section on fine rewriting with an ex-

ample. In the fine rewriting of structured cospans, we ask for rewrite rules with the monic

arrows as in the diagram
La x La′

Lb y Lb′

Lc z Lc′

∼=

∼=

∼=

∼=

There are situations, however, where requiring those monic arrows is untenable. Consider,

for instance, the string calculi so frequently use to reason in monoidal categories. For this

example, we permit ourselves to ignore details and subtleties so that we do not muddy the

84

point we mean to illustrate. For a detailed and complete look at string calculi, Selinger’s

survey [57] provides an excellent overview.

Given a monoidal category (C,⊗, I), objects are represented by certain isotopy

classes of strings and arrows are represented by nodes. This is illustrated in Figure 4.1. The

diagrams read from left to right. Now, to draw a string for an identity arrow, we do not

include the node, giving the diagram

a a

to represent id : a→ a. Composing with id another arrow should result in nothing changing,

as captured in this equation

a f b = a f b

From this, we observe that the length of the string does not matter. This accords with

defining strings up to isotopy. In particular, we want to have a string be equivalent to a

point. In the parlance of this thesis, we want to be able to rewrite a string, with two distinct

endpoints, into a single point. Yet, this is not possible to do with a fine rewrite rule.

fa b

A string representing an arrow f : a→ b

g
a

b

a

b′

A string representing an arrow g : a⊗ b→ a′ ⊗ b′

Figure 4.1: String diagrams

Indeed, suppose we are working with strings in some topos of spaces and we want

85

to finely rewrite a string into a point. Such a rewrite rule would be a span

•

•
? •

(4.1)

with ‘?’ replaced by a subobject of both the string on the left and point on the right. Thus,

‘?’ must either be empty or a point. Choosing the empty string does not scale. A simple

counter example is

• • 0 •

• •

•

•

? •

•

•

To see this more clearly, we reframe the question to take advantage of the fact that pushing

out over 0 is the same as taking a disjoint union. So we can ask whether

• •

•

•

is the disjoint union of

• •

and something else. Of course, it is not.

86

But maybe the issue was pushing out over 0 in the first place. What about replacing

0 with a point? A simple counter example to illustrate the failure of this idea is

• • • •

•

•

• •

•

•

?

•

•

•

•

•

θ

where we define θ to choose the left or the right point; the failure will occur regardless of the

choice. Again, there is nothing that we can place into the center, bottom square to give a

double pushout diagram. To see why, we use the fact that if we could fill in ‘?’, we already

know what it must be. The right square must also be a pushout. This forces us to fill the

blank with the graph

•

•

•

•

•

But then the left square is not a pushout.

And so, fine rewriting can be insufficient. In this chapter, we define bold rewriting

of structured cospans to handle situations like this one found in string calculi. We see that,

though it largely mirrors the fine rewriting of structured cospans, it has its own character:

the bicategory we extract is a bicategory of relations. At the end of the chapter, we illustrate

bold rewriting using the string calculus from quantum computer science known as the ZX-

87

calculus.

4.1 A double category of bold rewrites of structured cospans

In this section, we define a double category LBoldRewrite whose objects are in-

terface types, whose vertical arrows are spans of interface types with invertible legs, whose

horizontal arrows are structured cospans, and whose squares are bold rewrites of structured

cospans. The only difference between the definitions of LFineRewrite and LBoldRewrite

is in the squares. The objects, horizontal arrows, and vertical arrows are the same in

each case. This winds up having an interesting effect on the horizontal bicategory of

LBoldRewrite which we explore in Section 4.2. Before turning to that, we need to prop-

erly define LBoldRewrite, Fortunately, most of the work has been done when constructing

LFineRewrite, so we begin by defining the squares.

Recall from Definition 13 that a morphism of spans of structured cospans is an

arrow θ that fits into a commuting diagram

La

Lb

Lc

x
y

y′

z

La′

Lb′

Lc′

θ

Using a morphism of structured cospans, we can define the connected components

88

of structured cospans. We first define a relation ∼ setting

La x La′

Lb y Lb′

Lc z Lc′

∼

La x La′

Lb y′ Lb′

Lc z Lc′

if there is a morphism from the rewriting on the left side of ∼ to that on the right. A

connected component of structured cospans is an equivalence class generated by ∼.

The coarseness of the classes of squares is the most important distinction between fine and

bold rewriting.

Definition 38 (Bold rewrite). A bold rewrite of structured cospans is a connected

component of structured cospans whose representative has the form

La x La′

Lb y Lb′

Lc z Lc′

∼=

∼=

∼=

∼=

The horizontal and vertical compositions for bold rewrites of structured cospans

are defined in the same way as for fine rewrites. The classes are different, but the operation

on the class representatives work in the same way.

Definition 39. The horizontal composition ◦h of bold rewrites of structured cospans

89

are defined by the operation

La x La′

Lb y Lb′

Lc z Lc′

◦h

La′ x′ La′′

Lb′ y′ Lb′′

Lc′ z′ Lc′′

:=

La x+La′ x
′ La′′

Lb y +Lb′ y
′ Lb′′

Lc z +Lc′ z
′ Lc′′

The vertical composition of bold rewrites of structured cospans is defined by

La v La′

Lb w Lb′

Lc x Lc′

◦h

Lc x Lc′

Ld y Ld′

Le z Le′

:=

La v La′

Lb×Lc Ld w ×x y Lb′ ×Lc′ Ld′

Le z Le′

90

Unlike for fine rewrites of structured cospans, the interchange law is straightforward

to prove. The coarser classes of rewrites of structured cospans vastly simplifies concocting

the isomorphism.

Lemma 40. Let

α :=

La v La′

Lb w Lb′

Lc x Lc′

α′ :=

La′ v′ La′′

Lb′ w′ Lb′′

Lc′ x′ Lc′′

β :=

Lc x Lc′

Ld y Ld′

Le z Le′

β′ :=

Lc′ x′ Lc′′

Ld′ y′ Ld′′

Le′ z′ Le′′

be bold rewrites of structured cospans. Then

(α ◦h α′) ◦v (β ◦h β′) = (α ◦v β) ◦h (α′ ◦v β′).

That is, the interchange law holds.

91

Proof. The left hand side of the equation is the bold rewrite of structured cospans

La v +La′ v
′ La′′

Lb×Lc Ld (w +Lb′ w
′)×(x+Lc′x

′) (y ×Ld′ y′) Lb×Lc′ Ld′

Le z +Le′ z
′ Le′′

while the right hand side is

La v +La′ v
′ La′′

Lb×Lc Ld (w ×x y) +(Lb′×Lc′Ld′) (w′ ×x′ y′) Lb×Lc′ Ld′

Le z +Le′ z
′ Le′′

To show that these are equal as bold rewrites of structured cospans, it suffices to find a

morphism between them. Precisely, we need a morphism

(w ×x y) +(Lb′×Lc′Ld′) (w′ ×x′ y′)→ (w +Lb′ w
′)×(x+Lc′x

′) (y ×Ld′ y′)

We can obtain the two objects as follows. Let C be the walking cospan category

{• → • ← •} and let S be the walking span category {• ← • → •}. Then C × S is the

92

walking cospan of spans category

• • •

• • •

• • •

Let F : C× S→ X be the functor that returns the diagram

w Lb′ w′

x Lc′ x′

y Ld′ y′

which is the middle of the diagram obtained by gluing α, β, α′, and β′ together along their

coinciding edges. There is a canonical morphism of type

colimS lim
C
F → lim

C
colimS F

where the domain is the image of F under the composite functor

XC×S ∼=−→ (XC)S
limC−−→ XS colimS−−−−→ X

and the domain is the image of F under the composite functor

XC×S ∼=−→ (XS)C
colimS−−−−→ XC limC−−→ X.

93

One can check that this canonical morphism gives the morphism of bold rewrites of struc-

tured cospans we need.

4.2 A bicategory of relations for bold rewriting of structured

cospans

There are two philosophies in rewriting. One is that we care about how one object

is rewritten into another, and so we keep track of certain data to describe the rewriting. The

other perspective is that we do not care about how an object is rewritten into another, only

that the rewriting is possible. Bold rewriting of structured cospans belongs to the latter

philosophy. This is realized explicitly through the fact that the horizontal bicategory forms

a bicategory of relations, specifically that it is locally posetal. Appendix A.3 discusses the

theory of such bicategories.

The first goal of this section is to define the bicategory in question. We take the

same approach as finding the horizontal bicategory of fine rewrites of structured cospans in

Section 3.3. After extracting the bicategory, we show that it is a bicategory of relations (see

Definition 98).

This next theorem is proved with virtually the same argument as Lemma 31.

Theorem 41. LBoldRewrite is a symmetric monoidal double category.

From here, we prove a series of lemmas that, when put together, prove that the

horizontal bicategory LBoldRewrite of LBoldRewrite is a bicategory of relations. The

first lemma in this string is proved by replicating the proof of Lemma 33 and the second

follows from Theorem 90.

94

Lemma 42. LBoldRewrite is isofibrant.

Lemma 43. LBoldRewrite is a symmetric monoidal bicategory.

In the following lemma, we use ∇ := [id, id] : a + a → a to denote the codiagonal

map and ! to denote a canonical arrow from the initial object.

Lemma 44. For each object a of LBoldRewrite, define operations

∆a : a→ a+ a and εa : a→ 0

to be the structured cospans

La
id−→ La

L∇a←−−− L(a+ a) and La
id−→ La

!←− L0

respectively. Then (a,∆a, εa) is a cocommutative comonoid.

Proof. Proving this amounts to showing that the coassociativity, counitality, and

cocommutativity diagrams commute. The coassociativity diagram

a a+ a

a+ a a+ (a+ a) (a+ a) + a

∇

∇

α id⊗∇

∇⊗ id

commutes because the top path, which is the composite

La L(a+ a) L((a+ a) + a)

La L((a+ a) + a

La

id L∇ id L(∇+ id)

id L∇

95

equals the bottom path, which is the composite

La L(a+ a) L(a+ (a+ a)) L((a+ a) + a

La L(a+ a) L(a+ (a+ a))

La L(a+ a)

La

id L∇ id L(id +∇) id L(α)

id L∇ id L(id +∇)

id L∇

The counitality diagram

0⊗ a a⊗ a a⊗ 0

a

λ ∇ ρ

ε⊗ id id⊗ε

commutes because the composite

La L(a+ a) La

La L(a+ a)

L(0 + a)

id L∇ id L(! + id)

id L∇

96

is equal to the left unitor and

La L(a+ a) La

La L(a+ a)

La

id L∇ id L(id +!)

id L∇

is the right unitor. Finally, the cocommutative diagram

a⊗ a a⊗ a

a

∇ ∇

β

commutes because the composite ∇β is given by

La L(a+ a) L(a+ a)

La L(a+ a)

La

id L∇ β id

id L∇

which is exactly the comuliplication.

In the following lemma, we follow the convention of writing f ≤ g to represent a

2-arrow from f to g in a locally posetal bicategory. This notation is faithful to the fact that

the hom-categories are actually hom-posets. This is discussed further in Section A.3.

Lemma 45. Let (a,∆a, εa) and (b,∆b, εb) be cocommutative comonoid objects in LBoldRewrite.

Every structured cospan La→ x← Lb in LBoldRewrite is a lax comonoid homomorphism.

97

That is,

∆bx ≤ (x+ x)∆a and εbx ≤ εa

Proof. The first 2-arrow is

La+L(a+a) (x+ x)

La La+L(a+a) (x+ x) L(b+ b)

x

x+ x

f

ψ

ψ

〈g, g〉

g + gθ

∇

θ(g + g)id

where the dashed line is the universal arrow formed in reference to f and ∇. The source of

this 2-arrow is the composite

La Lb L(b+ b)

x Lb

x

f g id L∇

id g

and the target is the composite

La L(a+ a) L(b+ b)

La x+ x

La+L(a+a) (x+ x)

id L∇ f + f g + g

ψ θ

98

The second is witnessed by the 2-arrow

x

La La L0

La

id

id

f

!

!

!

id

f

where target 2-arrow is the composite

La Lb L0

x Lb

x

f g id !

id g

Lemma 46. For any object a in LBoldRewrite, each cocommutative comonoid structure

map

∇ :=
(
La

id−→ La
L∇a←−−− L(a+ a)

)
and ε :=

(
La

id−→ La
!←− L0

)
has a right adjoint (see Definition 95), respectively,

∇∗ :=
(
L(a+ a)

L∇a−−−→ La
id←− La

)
and ε∗ :=

(
L0

!−→ La
id←− La

)
.

99

Proof. The unit of the adjunction ∇ a ∇∗ is

La

La La La

La

id

id

id

id

id

id

id

id

where the target is the composite 1-arrow

La L(a+ a) La

La La

La

id ∇ ∇ id

id id

The counit of ∇ a ∇∗ is the 2-arrow

L(a+ a)

L(a+ a) L(a+ a) L(a+ a)

La

∇

id

id

∇

id

id

∇

id

100

where the source is the composite 1-arrow

L(a+ a) La L(a+ a)

La La

La

∇ id id ∇

id id

Checking the triangle identities is straightforward.

The unit of the adjunction ε a ε∗ is the 2-arrow

L(a+ a)

La L(a+ a) La

La

id

λ

λ

id

ρ

ρ

∇

id

where the target is the composite 1-arrow

La L0 La

La La

L(a+ a)

id ! ! id

λ ρ

101

the counit of ε a ε∗ is the 2-arrow

La

L0 La L0

La

!

!

!

!

!

!

id

id

where the source is the composite 1-arrow

L0 La L0

La La

La

! id id !

id id

Again, the triangle equations are straightforward to check.

The following lemma refers to a ‘Frobenius monoid’, a monoid and comonoid that

satisfy some nice properties that we spell out in Definition 82.

Lemma 47. For any object a of LBoldRewrite, (a,∇∗, ε∗,∇, ε) is a Frobenius monoid.

In particular,

∇∇∗ = (∇∗ ⊗ id) (id⊗∇) (4.2)

102

Proof. The left-hand side of Equation 4.2 is given by the composite

L(a+ a) La L(a+ a)

La La

La

∇ id id ∇

id id

The right-hand side is given by

L(a+ a) L(a+ a+ a) L(a+ a)

L(a+ a) L(a+ a)

La

id
L(id +∇) L(∇+ id)

id

L∇
L∇

These both compose to L(a+ a)
L∇−−→ La

L∇←−− L(a+ a).

The following structure theorem follows from this string of lemmas.

Theorem 48. LBoldRewrite is a bicategory of relations.

4.3 The ZX-calculus

Perhaps one of the most interesting features of quantum mechanics is the incom-

patibility of observables. Roughly, an observable is a measurable quantity of some system,

for instance the spin of a photon. In classical physics, measureable quantities are compara-

ble, meaning that we can obtain arbitrarily precise values at the same time. For example,

103

given a Porsche speeding down the highway, we can simultaneously measure its velocity

and its mass with arbitrary precision. Knowledge about its velocity does not preclude us

from obtain information about its mass. The situation is quite different in quantum me-

chanics. Given two measurable quantities, knowledge of one may prevent us from obtaining

knowledge about the other. This is illustrated by the famous Heisenberg uncertainty prin-

ciple which quantifies the limits of precision to which one can simultaneously measure the

position and momentum of a particle. In general, the strength of this restriction depends

on the situation. The most extreme case is that knowing one quantity with total precision

implies total uncertainty about the other quantity. Such a pair of observables are called

complementary.

Historically, a quantum physicist would reason about observables, complementary

or otherwise, using Hilbert spaces. Given the rapid progress of quantum physics in the

twentieth century, this framework seems to have worked quite well for scientists. Working

with Hilbert spaces, however, is challenging even for skilled researchers. But the language of

quantum physics is now relevant to a wider audience since the dawn of quantum computing.

Given the challenge of working with Hilbert spaces, perhaps developing a simpler language

is worth pursuing.

Such a high-level language was invented by Coecke and Duncan [24]. This language,

called the ZX-calculus, was immediately used to generalize both quantum circuits [51] and

the measurement calculus [26]. Its validity was further justified when Duncan and Perdrix

presented a non-trivial method of verifying measurement-based quantum computations [31].

At its core, the ZX-calculus is an intuitive graphical language in which to reason about

complementary observables.

104

Wire

α.
.
.

.

.

.m n

Green Spider

β
.
.
.

.

.

.m n

Red Spider
Hadamard Diamond

Figure 4.2: Generators for the ZX-calculus diagrams

In this section, we illustrate our framework with the ZX-calculus. The backstory

of the ZX-calculus dates to Penrose’s tensor networks [54] and, more recently, to the re-

lationship between graphical languages and monoidal categories [39, 57]. Abramsky and

Coecke capitalized on this relationship when inventing a categorical framework for quantum

physics [1]. Soon after, Coecke and Duncan introduced a diagrammatic language in which

to reason about complementary quantum observables [19]. After a fruitful period of devel-

opment [20, 23, 30, 31, 29, 53], a full presentation of the ZX-calculus was published [24].

The completeness of the ZX-calculus for stabilizer quantum mechanics was later proved by

Backens [4].

The ZX-calculus begins with the five diagrams depicted in Figure 4.2. On each

diagram, the dangling wires on the left are inputs and those on the right are outputs. By

connecting inputs to outputs, we can form larger diagrams, which we call ZX-diagrams.

These diagrams generate the arrows of a dagger compact category ZX whose objects, the non-

negative integers, count the inputs and outputs of a diagram. Below, we give a presentation

of ZX along with a brief discussion on the origins of its generating arrows (Figure 4.2) and

relations (Figure 4.3).

Our goal with this example is to generate, using the machinery laid out in this

chapter, a bicategory of relations ZX to provide a syntax for the ZX-calculus. We show

105

that ZX extends ZX in a way we make precise below.

The five basic diagrams in the ZX-calculus are depicted in Figure 4.2 and are to

be read from left to right. They are

• a wire with a single input and output,

• green spiders with a non-negative integer number of inputs and outputs and paired

with a phase α ∈ [−π, π),

• red spiders with a non-negative integer number inputs and outputs and paired with

a phase β ∈ [−π, π),

• the Hadamard node with a single input and output, and

• a diamond node with no inputs or outputs.

The wire plays the role of an identity, much like a wire without resistance in an electrical

circuit, or straight pipe in a plumbing system. The green and red spiders each arise from a

pair of complementary observables. In categorical quantum mechanics [1], observables cor-

respond to certain commutative Frobenius algebras A living in a dagger symmetric monoidal

category (C,⊗, I), the classic example C := FinHilb being the category of finite dimensional

Hilbert spaces and linear maps. A pair of complementary observables gives a pair of Frobe-

nius algebras whose operations interact via laws like those of a Hopf algebra [21, 22]. This is

particularly nice because Frobenius algebras have beautiful string diagram representations.

There is an morphism C(I, A)→ C(A,A) of commutative monoids that gives rise to a group

structure on A known as the phase group, which Coecke and Duncan detail [24, Def. 7.5].

The phases on the green and red spider diagrams arise from this group. The Hadamard

106

node embodies the Hadamard gate. The diamond is a scalar obtained when connecting a

green and red node together. A deeper exploration of these notions goes beyond the scope

of this paper. For those interested, the original paper on the topic [24] is an excellent place

learn more.

In the spirit of compositionality, we present a category ZX whose arrows are gen-

erated by the five basic diagrams. We sketched ZX at the beginning of this section, but we

now detail the construction.

We start by allowing the basic ZX-diagrams from Figure 4.2 generate the arrows

of a free dagger compact category whose objects are the non-negative integers. We then

subject the arrows (ZX-diagrams) to the relations given in Figure 4.3, to which we add

equations obtained by exchanging red and green nodes, daggering, and taking diagrams up

to ambient isotopy in 4-space. These listed relations are called basic. Spiders with no phase

indicated have a phase of 0.

This category, denoted as ZX, was introduced by Coecke and Duncan [24] and

further studied by Backens [4]. To compose in ZX, connect compatible diagrams along a

bijection between inputs and the outputs. For example

◦ =

A monoidal structure is given by adding numbers and taking the disjoint union of ZX-

107

diagrams. The identity on n is the disjoint union of n wires:

...

The symmetry and compactness of the monoidal product provide a braiding, evaluation,

and coevaluation morphisms: respectively,

.

.

.2n
.
.
. 2n

The evaluation and coevalutation arrows are of type 2n → 0 and 0 → 2n for each object

n ≥ 1 and the empty diagram for n = 0. On the spider diagrams, the dagger structure

swaps inputs and outputs then multiplies the phase by −1:

α
.
.
.

.

.

.m n
†7−→

−α
.
.
.

.

.

.n m

The dagger acts trivially on the wire, Hadamard, and diamond elements.

A major advantage of using string diagrams, apart from their intuitive nature, is

that computations are more easily programmed into computers. Indeed, graphical proof as-

sistants like Quantomatic [10, 28] and Globular [10] were made for such graphical reasoning.

The logic of these programs are encapsulated by double pushout rewrite rules. However,

the algebraic structure of ZX and other graphical calculi do not contain the rewrite rules

as explicit elements. On the other hand, the framework developed in this thesis explicitly

includes the rewrite rules.

To model the ZX-calculus using structured cospans, we need an appropriate ad-

junction L : A � X : R. Determining the correct pieces to fill in requires some discussion.

Before providing the details, we sketch the process. Let A := FinSet be the topos of finite

108

α

β

.

.

.

.

.

.

.

.

.

.

.

.

. . .

m

m′

n

n′

=

α+ β

.

.

.
.
.
.

m+m′
n+ n′

Spider

=

Bialgebra

=

Copy

=
π...m

π

π

...m

π-Copy

=

Cup

=

Trivial Spider

=
π α −α π

π-Commutation

=
α .

.

.
.
.
.m n

α .
.
.

.

.

.m n

Color Change

=

Loop

=

Diamond

Figure 4.3: Relations in the category ZX

109

sets and functions. Let X := FinGraph ↓ Γ be the over-category where we chose a graph Γ to

provide the objects of X := FinGraph/Γ with the same type information as the ZX-diagrams.

The functor L turns a finite set a into a certain discrete graph over Γ so that La can serve

as inputs or outputs. To unpack what this all means, we start with the over-category.

Definition 49. Let g be a graph. By a graph over g, we mean a graph morphism x→ g.

A morphism between graphs over g is a graph morphism x→ y such that

x y

g

commutes.

One way to think of a graph over g is as a g-typed graph. Consider the following

simple example.

Example 50. Let g be the graph

A B

F

G

Let x be the graph

a b

c

d

e

f

g

h

110

that lies over g via the map

a, b 7→ A e, f 7→ F

c, d 7→ B g, h 7→ G

If we think of the nodes and edges of g as types, then these types are transported to x along

the fibers of this map. Thus x is a graph with the following type-assignment:

a : A b : A c : B
d : B e : F f : F
g : G h : G

where ‘:’ should be read ‘is type’. Any graph over g can have two node types A,B and two

edge types F,G. Edges can only go from an A-type node to a B-type node or vice versa.

Edges cannot traverse nodes of the same type simply because there are no looped edges in

g.

A compact way to draw a graph over g is to label its nodes and edges with their

types. Thus, the over-graph x→ g can be drawn as

(a,A) (b, A)

(c,B)

(d,B)

(e, F)

(f, F)

(g,G)

(h,G)

One might recognize the class of graphs over g as something like a bipartite graph.

The difference between graphs over g and bipartite graphs is that bipartite graphs are usually

defined by graph theorists to satisfy the property that the nodes can be partitioned into two

classes and the source and target of each edge must belong to different classes. On the other

111

hand, graphs over g are graphs equipped with extra structure, namely the type information.

This distinction does not appear in the graphs themselves, so we look at their morphisms.

A morphism of graphs over g must respect the type information. So if x→ g and

y → g are graphs over g, then a morphism between them is a graph morphism x→ y such

that the diagram
x y

g

commutes. Suppose that x is a single node typed A and y is a single node typed B. There

is no morphism between them because the node in x must be sent to a node of type A.

However, any two bipartite graphs with a single node and no edges are isomorphic. The

moral of this example is by adding the type information, we added structure instead of

imposing a property. We denote by Graph ↓ g the category of graphs over g and their

morphisms.

We exploit this method of defining ‘typed graphs’ to transform typical combinato-

rial graphs into ZX-diagrams. The types needed to make ZX-diagrams from graphs encoded

into the graph Γ that we define now.

Definition 51. Let Γ be the graph

α β

α, β ∈ [−π, π)

. (4.3)

We have not drawn the entirety of Γ. In actuality, the green and red nodes run

112

through [−π, π) and each of them have a single arrow to and from the white node

Note that the graphs over Γ are completely determined by the function’s behavior

on the nodes. This is because there is at most one arrow between any two nodes. When

comparing the Γ-types to the types appearing in the basic ZX-diagrams of Figure 4.2, there

is a clear correlation except, perhaps, for the white node. To explain the white node,

first observe that ZX-diagrams have dangling wires on either end. Dangling edges are not

permitted in our definition of graphs, so the white node anchors them.

To draw graphs over Γ, we attach the type information to the nodes by rendering

the nodes as red, greed, white, black, or yellow. This manner of drawing is more economical

than drawing a graph and describing its map to Γ. For example, consider the graph

•a •b •c

with the map to Γ determined by
a, c 7→

b 7→ β

We draw this as

β

In our adjunction L : A� X : R, we let X be FinGraph ↓ Γ. This is a topos by the

fundamental theorem of topos theory, which we present in Theorem 113.

The most important objects in FinGraph ↓ Γ are those corresponding to the basic

ZX-diagrams. These are displaying in Figure 4.4. To choose a category A of interface

types, we want to faithfully represent the fact that ZX-diagrams have a non-negative integer

113

Wire

...

α

...

Green Spider

...

α

...

Red Spider

Hadamard Diamond

Figure 4.4: Basic ZX-diagrams as graphs over Γ

number of inputs and outputs. Therefore, we let A be the topos FinSet of finite sets and

functions.

We still need to define L and R in the adjunction

FinSet FinGraph ↓ Γ

L

R

⊥

Define

L : FinSet→ FinGraph ↓ Γ

by letting La be the edgeless graph with node set a that is constant over the whites node in

Γ. A function f : a→ b of finite sets becomes of morphism Lf of graphs over Γ that simply

reinterprets the action of f on elements of a set to white nodes in a graph. Define

R : FinGraph ↓ Γ→ FinSet

114

by defining R(x→ Γ) as the fiber in x of the white node. Given a morphism of graphs over

Γ, R restricts it to the function on only the white nodes.

Lemma 52. The functor pair

FinSet FinGraph ↓ Γ

L

R

⊥

forms an adjunction and L preserves pullbacks.

Proof. Observe that the composite RL is the identity functor. So the unit η : a→

RLa is the identity which is natural in a. The counit ε : LRx → x is the inclusion of the

white nodes of x into x. Given an arrow f : x→ y in FinGraph ↓ Γ, the diagram

LRx x

LRy y

εx

εy

LRf f

commutes since LRf is a restriction of f . To show that L preserves pullbacks, take a cospan

a→ b← c

in Set with pullback a×b c and apply L to get the diagram

La Lb

Lc

Γ

115

comprised of edgeless graphs La, Lb, and Lc that are constant over the white node in Γ.

The pullback of this diagram is La×Lb Lc→ Γ which is constant over the white node. This

is isomorphic to L(a×b c)→ Γ which is constant over the white node.

With our adjunction established, we can define structured cospans of graphs over Γ

and therefore the symmetric monoidal double category of bold rewrites LBoldRewrite for

the functor L : FinSet → FinGraph ↓ Γ defined above. This double category has as objects

the finite sets, as horizontal 1-arrows the structured cospans of graphs over Γ, as vertical

1-arrows the spans of finite sets with invertible legs, and as squares all possible bold rewrites

of structured cospans. Clearly, LBoldRewrite is far bigger than the ZX-calculus because it

contains graphs over Γ with no corresponding ZX-diagram. This does not mean, however,

that LBoldRewrite serves no purpose. It plays the role of an ambient space in which we

chisel out a sub-double category that does correspond to the ZX-calculus.

To begin the process of constructing this sub-double category of LBoldRewrite,

we identify structured cospans to capture the basic ZX-diagrams and identify bold rewrites

of structured cospans for the basic ZX-relations. We also include some additional structured

cospans to give the desired structure. Figure 4.5 depicts the basic ZX-diagrams as structured

cospans.

Translating the relations between ZX-diagrams to structured cospans is quite straight-

forward. We provide several examples.

116

Wire

...
...

α ...

Green Spider

...
...

...
α ...

Red Spider

...

Hadamard

0

Diamond

0

...
...

Cup

0 0 ...

Cap

...

Multiplication Comultiplication

0

Unit Counit

0

Braid

Figure 4.5: Basic ZX-diagrams as structured cospans

117

Spider Relations

...

...

...

...

...

...

· · ·

...

...

...
...

...
...

...
...

...

Cup Relation

0

0

0

The remaining relations from Figure 4.3 can be translated into spans of structured

118

cospans in this way. We include an additional rewrite

Wire Relation

to account for the fact that the wire structured cospan in Figure 4.5 is, a priori, not an

identity. This wire relation ensures that the wire structured cospan is an identity.

We are now ready to define the double category ZX.

Definition 53. Let

FinSet FinGraph ↓ Γ

L

R

⊥

be the adjunction defined so that L assigns a set to the discrete graph that is constant over

the white node on that set and where R returns the set of white nodes of a graph over Γ.

Define ZX to be the isofibrant symmetric monoidal sub-double of LBoldRewrite generated

by the basic structured cospans and the basic rewrites for ZX-diagrams.

In this definition, using LBoldRewrite as an ambient double category ensures

that generating ZX is well-defined. All of the required structure and properties are in place

and LBoldRewrite bounds the generation. Now, because ZX is an isofibrant symmet-

ric monoidal category—true by construction—we use Shulman’s work [58] to provide the

symmetric monoidal bicategory ZX.

119

Proposition 54. There is a symmetric monoidal bicategory ZX whose objects are finite

sets, 1-arrows are generated by the basic L-structured cospans in Figure 4.5, and 2-arrows

are bold rewrites generated by the basic rewrites of ZX-diagrams.

The ZX-diagrams appear in ZX as horizontal 1-arrows and in ZX as 1-arrows.

Composing the ZX-diagrams works as it does in the original ZX-calculus; pushout formal-

izes the gluing of dangling edges. Indeed, composing basic diagrams provides ‘compound’

diagrams. For example, composing

α β

gives

α β

120

To this, we can apply the Spider Relation

α β

α+ β

Because the vertical 1-arrows are identities, this 2-arrow exists in both ZX and ZX. The

spider relation simplifies the ZX-diagram in the top row to that in the bottom row.

Theorem 55. The bicategory ZX is a bicategory of relations.

Proof. Because ZX includes the structure maps to give every object a Frobenius

monoid structure, every requirement descends from ambient category LBoldRewrite being

a bicategory of relations (see Theorem 48).

This bicategory extends the original category ZX. To show this, we will show the

‘decategorification’ of ZX is ZX. The process of decategorification essentially turns an n-

category into an n − 1-category. For us, we turn a (weak) 2-category into a 1-category by

identifying any 1-arrows connected by a zig-zag of 2-arrows.

Definition 56. Define decat(ZX) to be the category whose objects are those of ZX and

whose arrows the 1-arrows of ZX modulo the equivalence relation ∼ generated by f ∼ g if

121

and only if there is a 2-arrow f ⇒ g in ZX.

Theorem 57. The category decat(ZX) is dagger compact via the identity on objects functor

described by

...

...
α ...

...
†7−→ ...

...
−α ...

...

...

...
α ...

...
†7−→ ...

...
−α ...

...

as well as by identity on the wire, Hadamard, and diamond morphisms.

Proof. Compact closedness follows from the self duality of objects via the evalu-

ation

...

...

0

and coevaluation arrows

0

...

...

122

obtained by applying the braiding maps to the disjoint union of cups and caps. Moreover,

we can derive the snake equation as follows. Decompose the arrow

into

which by the cup relation, illustrated in Figure 4.3, equals

123

This can be composed to get

which equals

because of the spider relation. Finally, this equals the identity because of the trivial spider

and wire relations. Showing that the described functor is a dagger functor is a matter of

checking some easy to verify details.

We now show that ZX is an extension of ZX in the sense that the category

decat(ZX) obtained from ZX is equivalent to ZX.

Theorem 58. The identity on objects, dagger compact functor E : ZX→ decat(ZX) given

124

by

α.
.
.

.

.

.m n 7→ ...
...

α ...
...

β
.
.
.

.

.

.m n 7→ ...
...

α ...
...

7→

7→ 0 0

7→

is an equivalence of categories.

Proof. Essential surjectivity follows immediately from E being identity on objects.

Fullness follows from the fact that the morphism generators for decat(ZX) are all in the

image of E.

Faithfulness is more involved. Let f, g be ZX-morphisms. Let Ẽf , Ẽg be the

representatives of Ef , Eg obtained by directly translating the graphical representation of

f, g to structured cospans of graphs of Γ. For faithfulness, it suffices to show that the

existence of a 2-arrow Ẽf ⇒ Ẽg in ZX implies that f = g.

Observe that any 2-arrow α in ZX can be written, not necessarily uniquely, as

sequence α1� · · ·�αn of length n where each αi is a basic 2-cell and each box is filled in

with ‘◦h’, ‘◦v’, or ‘+’. By ‘◦h’ and ‘◦v’, we mean horizontal and vertical composition. We

will induct on sequence length. If α : Ẽf ⇒ Ẽg is a basic 2-arrow, then there is clearly

125

a corresponding basic relation equating f and g. Suppose we have a sequence of length

n+ 1 such that the left-most square is a ‘+’. When we have a 2-arrow α1 + α2 : Ef ⇒ Eg

where α1 is a basic 2-arrow and α2 can be written with length n. By fullness, we can write

α1 + α2 : Ef1 + EF2 ⇒ Eg1 + Eg2 where αi : Efi ⇒ Egi. This gives that fi = gi and the

result follows. A similar argument handles the cases when the left-most operation is vertical

or horizontal composition.

126

Chapter 5

Decomposing systems

The idea of decomposing a whole into parts has long been useful. It exists across

so many human disciplines, be it academic, artistic, or artisanal. A biologist decomposes

life-forms into genuses and species. A literary critic decomposed a play into acts and scenes.

A sommelier decomposes a wine into color, viscosity, aroma, and taste. In this chapter,

as do the biologist, critic, and sommelier, we decompose. Though for us, we decompose a

closed system into open sub-systems.

This may seem to conflict with the aim of this thesis, which is to advance a theory

of open systems. However, we still recognize the value of closed systems. We just believe

that our ideas on open systems are useful for closed systems.

As mathematicians, we must bring rigor to our decomposition. In this chapter,

we do just that. We start by formalizing closed systems as structured cospans with an

empty interface 0 → x ← 0. Then, using the fine rewriting paradigm from Chapter 3, we

place structured cospans into the double category LFineRewrite as horizontal 1-arrows. To

127

decompose a closed system

L0→ x← L0

is to write an arrow as a composite of arrows

L0→ x1 ← La1 → x2 ← La2 · · ·Lan−1 → xn ← L0

We use such decompositions to prove our main result which states that two structured

cospans

L0→ x← L0 and L0→ x′ ← L0

are equivalent precisely when there is a square between them. We interpret this result in

three ways.

1. It shows that the rewriting relation for a closed system is functorial and is characterized

using squares in a double category.

2. A closed system decomposes into open systems, and simplifying each open system

simplifies the composite closed system.

3. Open systems provide a local perspective on the closed perspective via this decompo-

sition.

There are two main thrusts to this proof. The first generalizes a classification of

formal graph grammars given by Ehrig, et. al. [34]. This is Theorem 69. Gadducci and

Heckel proved this in the case of graphs [35], but our result generalizes this to structured

cospans. Our proof mirrors theirs.

128

5.1 Expressiveness of underlying discrete grammars

As mentioned above, we want to decompose closed systems into open systems. We

did not yet mention which open systems are available to use. This depends on context.

That is, whatever type of system one has, there is an appropriate grammar stipulated by a

theory that describes that system. To illustrate, for an electrical system, a corresponding

grammar would have rules for adding resistors in series, or adding the reciprocal of resistors

in parallel. Therefore, our starting data is a grammar (X, P)—a topos X and a set of fine

rewrite rules P := {`j ← kj → rj}—plus a closed system x in X. Eventually entering the

story is a topos A of input types and an adjunction between A and X. For now, however,

we focus on the set of rewrite rules P .

We can prove the main result of this section, Theorem 69, by controlling the form

of the rewrite rules. In particular, we want the intermediary of the rules, the kj ’s, to be

‘discrete’. In what follows, we discuss what we mean by ‘discrete’ and show that the grammar

obtained by discretizing (X, P) is just as expressive as (X, P), by which we mean that the

induced rewriting relations are equal. This result generalizes a characterization of discrete

graph grammars given by Ehrig, et. al. [34, Prop. 3.3].

Our concept of ‘discreteness’ is borrowed from the flat modality on a local topos.

However, we avoid the lengthy detour required to discuss the ‘flat modality’ and a ‘local

topos’. The background does not add to our story, so we point curious readers elsewhere

[38, Ch. C3.6]. By avoiding that detour, we instead require the concept of a comonad, which

we present in Definition 96.

To start our discussion on discreteness, we define a ‘discrete comonad’. The defini-

129

tion is straightforward enough, but its purpose may seem alien at first. After the definition,

we explain its role in rewriting structured cospans.

Definition 59 (Discrete comonad). A comonad on a topos is called discrete if its counit

is monic. We use [to denote a discrete comonad.

Secretly, we have been working with a discrete comonad all along. The adjunction

Set RGraph

L

R

⊥

induces the comonad LR on RGraph. Applying LR to a graph x returns the edgeless graph

underlying x, hence the term ‘discrete’. For example

•

•

•

•

•

•

LR

The counit εx : LRx → x of the comonad LR includes the underlying edgeless graph LRx

into the original graph x. For example

•

•

•

•

•

•

ε

130

Abstractly, this inclusion is why we ask for the counit to be monic. The property we

capture with a discrete comonad comes from the systems interpretation of the adjunctions

A X

L

R

⊥

between topoi. That is, R takes a system x, identifies the largest sub-system that can serve

as an interface and turns that sub-system into an interface type Rx. Then L takes that

interface type and turns it back into a system LRx. This process effectively strips away

every part of a system leaving only those parts that can connect to the outside world. That

means LRx is a part of x or, in the parlance of category theory, LRx is a subobject of x.

Hence, we ask for a monic counit.

How do we plan to use discrete comonads? We use them to control the form of our

grammars. In general, a rewrite rule has form

`← k → r

where there are no restrictions on what k can be. However, recall that k identifies the part

of ` that is fixed throughout the rewrite. It does not direct how the rewrite is performed.

Therefore, we can deform it a bit without changing the outcome of the applying the rewrite.

In particular, we can discretize it by replacing k with [k. And because [has a monic counit,

we can insert [k right into the middle of the fine rewrite rule.

Definition 60 (Discrete grammar). Given a grammar (X, P), define the set P[as consisting

of the rules

`← k ← [k → k → r

for each rule `← k → r in P . We call (X,P[) the discrete grammar underlying (X, P).

131

Discrete grammars are easier to work with than arbitrary grammars. So when

given an opportunity to work with a discrete grammar instead of a non-discrete grammar,

we should take it. Theorem 69 gives a sufficient condition that allows us to swap (X, P) for

(X, P[) without consequence. To prove this, however, we borrow from lattice theory which

requires that we make a brief turn to fill in some required background.

Definition 61 (Lattice). A lattice is a poset (S,≤) equipped with all finite joins
∨

and all

finite meets
∧
. It follows that there is a minimal element and maximal element, realized as

the empty meet and join respectively, which we denote by 0 and 1.

Joins and meets are also known as suprema and infima. We are using the definition

of a lattice common in the category theory literature. This leaves out objects that some

mathematicians might consider lattices. Below we give one counter-example and several

examples of lattices, the last one being the most relevant.

Example 62 (Integer Lattice). The integers with the usual ordering ≤ do not form a lattice

because there is no minimal or maximal element.

Example 63 (Lattice of power sets). For any set S, its powerset PS is a poset via subset

inclusion. The powerset becomes a lattice by taking join to be union a ∨ b := a ∪ b, and

meet to be intersection a ∧ b := a ∩ b. In general, union and intersection are defined over

arbitrary sets, thus realizing arbitrary joins
∨
aα and arbitrary meets

∧
aα.

Those few examples provide intuition about lattices, but the next example is the

most important lattice for us. It is the mechanism by which the power set is generalized

into topos theory. It is called the subobject lattice.

132

Example 64 (Subobject lattice). Let T be a topos and t be an object. There is a lattice

Sub(t) called the subobject lattice of t. The elements of Sub(t) are called subobjects. They

are isomorphism classes of monomorphisms into t. Here, two monomorphisms f, g into t are

isomorphic if there is a commuting diagram

a b

t

f g

∼=

The order on Sub(t) is given by f ≤ g if f factors through g, meaning there is an arrow

h : a→ b such that f = gh. Note that h is necessarily monic. The meet operation in Sub(t)

is given by pullback

a ∨ b

a

b

t

and join is given by pushout over the meet

a ∨ b

a

b

a ∧ b

t

We use subobject lattices to characterize which grammars are as expressive as

their underlying discrete grammars. To do this, we require subobject lattices with arbitrary

meets. The powerset lattice mentioned above has this property, but when do subobject

133

lattices have this property? Here are several sufficient conditions, starting with a well-known

result coming from the domain of order theory.

Proposition 65. Any lattice that has all joins also has all meets.

Proof. Consider a subset S of a lattice. Define the meet of S to be the join of the

set of all lower bounds of S.

Proposition 66. Consider a topos T and object t. The subobject lattice Sub(t) has arbi-

trary meets when the over category T ↓ t has all products.

Proof. Because T ↓ t is a topos, it has equalizers. Thus giving it all products

ensures the existence of all limits, hence meets.

Corollary 67. Consider a topos T and object t. The subobject lattice Sub(t) has arbitrary

meets when the over category T ↓ t has all coproducts.

Proof. Combine Propositions 65 and 66.

Corollary 68. Consider a presheaf category SetC
op

on a small category C. For any presheaf

x, Sub(x) has all meets.

Proof. The category SetC
op

↓ x of presheaves over x is again a presheaf category

by Theorem 114 so has all products.

At last, we combine the discrete comonad, the discrete grammar, and the complete

subobject lattice into a result on the expressiveness on discrete grammars.

Theorem 69. Let T be a topos and [: T → T be a discrete comonad. Let (T, P) be

a grammar such that for every rule ` ← k → r in P , the subobject lattice Sub(k) has all

134

meets. Then the rewriting relation for (T, P) equals the rewriting relation for the underlying

discrete grammar (T, P[).

Proof. Suppose that (T, P) induces g h. That means there exists a rule

`← k → r in P and a derivation

` k r

g d h (5.1)

we can achieve that same derivation using rules in P[. This requires we build a pushout

complement w of the diagram

k [k

d

ε

Define

w :=
∧
{z : z ∨ k = d} ∨ [k,

This comes with inclusions [k → w and w → d. This w exists because Sub(k) has all meets.

Note that w ∨ k = d and w ∧ k = [k which means that

k [k

d w

135

is a pushout. It follows that there is a derivation

` k [k k r

g d w d h (5.2)

with respect to P[because, the top row is a rule in P[. Therefore, g h via P in Diagram

(5.1) implies that g ∗ h via P[as shown in Diagram (5.2).

For the other direction, suppose g h via P[, giving a derivation

` [k r

g d h
ψ

m θ m′

(5.3)

By construction of P[, the rule `← [k → r in P[was induced from a rule

`
τ←− k → r

in P , meaning that the map [k → ` factors through τ . Next, define d′ to be the pushout of

the diagram

[k k

d d′

ε

θ

ε̂

θ̂

By invoking the universal property of this pushout with the maps

ψ : d→ g and mτ : k → `→ g,

we get a canonical map d′ → g that we can fit into a commuting diagram

136

`

g

k

d′

[k

d

ε

θ

ψ ε̂

m θ̂

τ

whose back faces are pushouts. Using a standard diagram chasing argument, we can show

that the front face is also a pushout. Similarly, the square

k r

d′ h

is a pushout. Sticking these two pushouts together

` k r

g d′ h

m f m′

shows that g h arises from P .

Because the relation is the same for P and P[, it follows that ∗ is also the

same as claimed.

5.2 Rewriting structured cospans

Equipped with knowledge about when grammars and their underlying discrete

grammars generate the same rewriting relation, we continue towards goal of decomposing

closed systems. First, we revisit Section 2.2 to get some facts about grammars. We then

137

obtain the language associated to a grammar in a functorial way. Finally, we show how to

decompose into open subsystems a given system equipped with a grammar.

Recall the category Gram. The objects of Gram are pairs (T, P) where T is a topos

and P is a set of rewrite rules in T. The arrows (T, P)→ (T′, P ′) of Gram are rule-preserving

functors T→ T′. Our interest now lies in the full subcategory of structured cospan grammars

StrCspGram whose objects are the grammars of form (LStrCsp, P) where P consists of fine

rewrites of structured cospans, meaning they have the form

La x La′

Lb y Lb′

Lc z Lc′

∼=

∼=

∼=

∼=

and the left adjoint L has a monic counit.

It is on this category StrCspGram that we define a functor encoding the rewrite

relation to each grammar. We denote this functor

Lang : StrCspGram→ DblCat

where Lang is short for ‘language’. This is an appropriate term as this functor provides

(i) the terms formed by connecting together open systems (instead of, in linguistics, con-

catenating units of syntax) and (ii) the rules governing how to interchange open systems

(instead of parts of speech). To help visualize this, we sketch a simple example.

138

Example 70. Start with the, by now familiar, adjunction

Set RGraph

L

R

⊥

For this L, LStrCsp is the category of open graphs. Make a grammar from LStrCsp by

defining a P to have the single rule

• • •

• • •

• • •

The language associated to this grammar consists of all open graphs. The rewrite relation

says g ∗ h if we obtain h be removing loops from g. We illustrate this with the following

square in the double category Lang(LStrCsp, P).

139

•

•

•

•

• • •

•

•

•

•

• •

•

•

•

•

• • •

To actually construct Lang, we use functors D : StrCspGram → StrCspGram and

S : StrCspGram → DblCat. Roughly, D sends a grammar (LStrCsp, P) to all of the rewrite

rules derived from P and S generates a double category on the squares obtained from the

rewrite rules of a grammar (LStrCsp, P). In this way, we get the language of a grammar as

a double category where the squares are the rewrite rules. The next lemma defines D and

gives some of its properties.

Lemma 71. There is an idempotent functor D : StrCspGram → StrCspGram defined as

140

follows. On objects define D(LStrCsp, P) to be the grammar (LStrCsp, PD), where PD

consists of all rules g ← h → d witnessing the relation g h with respect to (LStrCsp, P).

On arrows, define DF : D(LStrCsp, P) → D(L′StrCsp, Q) to be F . Moreover, the identity

on StrCspGram is a subfunctor of D.

Proof. That D(LStrCsp, P) actually gives a grammar follows from the fact that

pushouts respect monics in a topos [42, Lem. 12].

To show that D is idempotent, we show that for any grammar (LStrCsp, P), we

have D(LStrCsp, P) = DD(LStrCsp, P). Rules in DD(LStrCsp, P) appear in the bottom

row of a double pushout diagram whose top row is a rule in D(LStrCsp, P), which in turn

is the bottom row of a double pushout diagram whose top row is in (LStrCsp, P). Thus, a

rule in DD(LStrCsp, P) is the bottom row of a double pushout diagram whose top row is in

(LStrCsp, P). See Figure 5.1.

g d h

g′ d′ h′

g′′ d′′ h′′

Figure 5.1: Stacked double pushout diagrams

The identity is a subfunctor of D because ` r for any production `← k → r in

141

(LStrCsp, P) via a triple of identity arrows. Hence there is a monomorphism

(LStrCsp, P)→ D(LStrCsp, P)

induced from the identity functor on LStrCsp.

In this lemma, we have created a functorD that sends a grammar to a new grammar

consisting of all derived rules. That D is idempotent means that all rules derived from P

can be derived directly; multiple applications of D are unnecessary. That the identity is a

subfunctor of D means that set of the derived rules PD contains the set of initial rules P .

The next stage in defining Lang is to define S : StrCspGram → DblCat. On ob-

jects, let S(LStrCsp, P) be the sub-double category of LStrCsp generated by the rules in P

considered as squares. On arrows, S sends

F : (LStrCsp, P)→ (L′StrCsp, P
′)

to the double functor defined that extends the mapping between the generators of S(LStrCsp, P)

and S(L′StrCsp, P
′). This preserves composition because F preserves pullbacks and pushouts.

Definition 72. (Language of a grammar) The language functor is defined to be Lang :=

SD.

To witness the rewriting relation on a closed system as a square in a double category,

we require this next lemma that formalizes the analogy between rewriting the disjoint union

of systems and tensoring squares.

Lemma 73. If x ∗ y and x′ ∗ y′, then x+ x′ ∗ y + y′

Proof. If the derivation x ∗ y comes from a string of double pushout diagrams

142

`1 k1 r1 `2 k2 r2 `n kn rn

x d1 w1 d2 w2 wn−1 dn y

· · ·

and the derivation x′ ∗ y′ comes from a string of double pushout diagrams

`′1 k′1 r′1 `′2 k′2 r′2 `′m k′m r′m

x′ d′1 w′1 d′2 w′2 w′m−1 d′m y′

· · ·

realize x+ x′ ∗ y + y′ by

`1 k1 r1

· · ·

rn `′1 k′1 r′1

· · ·

k′m r′m

x+ x′ d1 + x′ w1 + x′ y + x′ y + d′1 y + w′1 y + d′m y + y′

As promised, we can now decompose closed systems into open systems. For this,

we need a topos of closed systems X equipped with a grammar (X, P). The closed systems

need interfaces, meaning we need to introduce an adjunction

A X

L

R

⊥

where L preserves pullbacks and has a monic counit. At this point, the material from the

previous section returns. This adjunction gives a discrete comonad [:= LR from which we

143

form the discrete grammar (X, P[). Now define the structured cospan grammar (LStrCsp, P̂[)

where P̂[contains the rule
L0 ` LRk

L0 LRk LRk

L0 r LRk (5.4)

for each rule `← LRk → r of P[. We use (LStrCsp, P̂[) to prove our main theorem.

Before stating the theorem, we note that this theorem generalizes work by Gadducci

and Heckel [35] whose domain of inquiry was graph rewriting. The arc of our proof follows

theirs.

Theorem 74. Fix an adjunction (L a R) : X � A with monic counit. Let (X, P) be a

grammar such that for every X-object x in the apex of a production of P , the lattice Sub(x)

has all meets. Given g, h ∈ X, then g ∗ h in the rewriting relation for a grammar (X, P)

if and only if there is a square

LR0 g LR0

LR0 d LR0

LR0 h LR0

in the double category Lang(LStrCsp, P̂[).

Proof. We show sufficiency by inducting on the length of the derivation. If g ∗ h

144

in a single step, meaning that there is a diagram

` LRk r

g d h

then the desired square is the horizontal composition of

L0 ` LRk d L0

L0 LRk LRk d L0

L0 r LRk d L0

The left square is a generator and the right square is the identity on the horizontal arrow

LRk → d← L0. The square for a derivation g ∗ h j is the vertical composition of

L0 g L0

L0 d L0

L0 h L0

L0 e L0

L0 j L0

The top square is from g ∗ h and the second from h j.

145

Conversely, proceed by structural induction on the generating squares of Lang(LStrCsp, P̂[).

It suffices to show that the rewrite relation is preserved by vertical and horizontal composi-

tion by generating squares. Suppose we have a square

L0 w L0

L0 x L0

L0 y L0

corresponding to a derivation w ∗ y. Composing this vertically with a generating square,

which must have form
L0 y L0

L0 L0 L0

L0 z L0

corresponding to a production y ← L0→ z gives

L0 w L0

L0 L0 L0

L0 z L0

which corresponds to a derivation w ∗ y z. Composing horizontally with a generating

146

square
L0 ` L0

L0 LRk L0

L0 r L0

corresponding with a production `← LRk → r results in the square

L0 w + ` L0

L0 x+ LRk L0

L0 y + r L0

But w + ` ∗ y + r as seen in Lemma 73.

With this result, we have completely described the rewrite relation for a grammar

(X, P) with squares in Lang(LStrCsp, P̂[) framed by the initial object of X. These squares

are rewrites of a closed system in the sense that the interface is empty. We can instead

begin with a closed system x in X as represented by a horizontal arrow L0 → x ← L0 in

Lang(LStrCsp, P̂[) and decompose it into a composite of sub-systems, that is a sequence of

composable horizontal arrows

L0

x1

La1

x2

La2 · · · Lan−1

xn

L0

147

Rewriting can be performed on each of these sub-systems

L0 x1 La1

L0 x′1 La′1

L0 x′′1 La′′1

∼=

∼=

∼=

∼=

Lan−1 xn L0

Lan−1 x′n L0

Lan−1 x′′n L0

∼=

∼=

∼=

∼=

L0 y1 La1

L0 y′1 La1

L0 y′′1 La1

∼=

∼=

∼=

∼=

Lan−1 yn L0

Lan−1 y′n L0

Lan−1 y′′n L0

∼=

∼=

∼=

∼=

· · ·

...

· · ·

...

The composite of these squares is a rewriting of the original system.

148

Chapter 6

Conclusions

Our work here demarcates a starting line on the path towards a fully general

mathematical theory of systems. We now have a syntax to reason with. Built into this

syntax is a mechanism to identify when distinct systems behave similarly. That is, our

syntax reflects semantics.

The semantics side requires attention. We can conjecture that the category Rel

of sets and relations will be the most appropriate category to serve as our semantic uni-

verse. The naive idea behind this belief is that semantics should describe the relationship

between inputs and outputs possible for a particular system. If not Rel, then something

structurally similar such as the category Hilb of Hilbert spaces and linear maps. This would

be appropriate semantics for the ZX-calculus.

Given a more robust theory of semantics to work with, we can fill in the larger

picture of a general language for systems. To do this, Lawvere’s ‘functorial semantics’ [45] is

a promising area from which to pull. Functorial semantics has been successful in developing

universal algebra, and the author believes that we can leverage Lawvere’s thinking in the

149

systems context. To what extent, however, remains an open question.

150

Appendix A

An account of some category theory

topics

Category theory has been in mainstream mathematical discourse for decades now.

This section does not seek to add to an already crowded literature on category theory.

Instead, we give just enough background for those readers coming to this thesis without

much knowledge about category theory. For a more in depth study of category theory, there

are many excellent resources [2, 44, 46, 56].

As a baseline, we assume basic knowledge of category theory. This includes the

definitions of categories, functors, natural transformations, limits, colimits, adjunctions,

monoidal categories, and symmetric monoidal categories. But our needs extend beyond

these basic concepts, so we provide the reader with a brief account of some more advanced

topics.

151

A.1 Enrichment and bicategories

The most familiar examples of categories are built from mathematical widgets and

their homomorphisms. For example, the category VectF whose objects are vector spaces

over a fixed field F and arrows are linear maps. Yet, as a category, VectF does not truly

capture everything we like about vector spaces. We are missing the fact that, for any two

vector spaces V and W , the space of linear maps from V to W form a vector space by

pointwise addition and scaling. Yet the hom-set VectF (V,W) is merely a collection of linear

maps without additional structure. The theory of enriched categories fixes this drawback.

Many familiar categories are actually enriched. For example, the category Set of

sets has that, for any two sets x, y, the collection of arrows Set(x, y) is actually a set. We

say that Set is enriched over Set. Given the category ModR whose objects are modules over

an arbitrary ring R and any two such modules x, y, the collections of arrows ModR(x, y) is

actually a Z-module. Thus we say that ModR is enriched over ModZ. However, to be an

enriched category, it is not enough for the collections of arrows to simply have additional

structure. Cohesion is needed.

Definition 75 (Enriched category). Let (M,⊗, I, α, λ, ρ) be a monoidal category. A cate-

gory C is enriched over M consists of

• a class ob(C) of objects,

• an object C(a, b) of M for each pair a, b ∈ ob(C) that collects the arrows of type a→ b

• an arrow 1a : I → C(a, a) in M that chooses an identity arrow on a

152

• an arrow

◦abc : C(b, c)⊗ C(a, b)→ C(a, c)

for each triple of objects a, b, c ∈ ob(C) that defines the composition

together with a commuting diagram expressing associativity

(C(c, d)⊗ C(b, c))⊗ C(a, b) C(b, d)⊗ C(a, d)

C(a, d)

C(c, d)⊗ (C(b, c)⊗ C(a, b)) C(c, d)⊗ C(a, c)

◦ ⊗ id

◦

α

id⊗◦

◦

and commuting diagrams expressing left and right unity

I ⊗ C(a, b)

C(a, b)

C(b, b)⊗ C(a, b)

λ

1⊗ id

◦

C(a, b)⊗ I

C(a, b)

C(a, b)⊗ C(a, a)

ρ

id⊗1

◦

When M is actually a 2-category and the above diagrams only commute up to natural

isomorphism, then we say that C is weakly enriched over M.

In this thesis, the we are interested in one example of an weakly enriched category:

a bicategory. In short, a bicategory is a category weakly enriched in the 2-category Cat. Thus

a bicategory has a category of arrows between objects, not merely a collection of arrows.

Defining a bicategory to be a category weakly enriched in Cat is elegant but hardly

illuminating. Thus, the definition is worth unpacking but, for clarity’s sake, we only approx-

153

imate the definition by providing the important information to know and ignoring technical

details.

Definition 76 (Bicategory). A bicategory C consists of

• a collection of objects ob(C)

• for each pair of objects x, y, a collection of arrows of type x→ y which compose, that

is

(x
f−→ y

g−→ z) 7→ (x
gf−→ z)

• for each pair of arrows f, g : x→ y of the same type, a collection of 2-arrows

x y

f

g

⇓

together with operations expressing a horizontal composition

x y z

f

g

f ′

g′

⇓α ⇓β x z

f ′f

g′g

⇓α◦hβ◦h7−→

and vertical composition

x y
⇓α

⇓β

x y⇓β◦vα◦v7−→

that satisfy the interchange law

(α ◦h β) ◦v (α′ ◦h β′) = (α ◦v α′) ◦h (β ◦v β′)

154

The interchange law states that given an array of 2-arrows

x y z

⇓α

⇓α′

⇓β

⇓β′

performing the two horizontal compositions

x z

⇓α◦hβ

⇓α′◦hβ

followed by the vertical composition

x z⇓(α◦hβ)◦v(α′◦hβ′)

gives exactly the same 2-arrow as first performing the two vertical compositions

x y z⇓α◦vβ ⇓α′◦vβ′

followed by the horizontal composition

x z⇓(α◦vα′)◦h(β◦vβ′)

155

That definition deconstructs a bicategory, laying out all of the components. Next,

we give a definition in the spirit of enrichment.

Definition 77 (Bicategory). Consider the monoidal 2-category (Cat,×, 1). A bicategory

C has

• a collection of objects ob(C)

• for each pair of objects a, b ∈ ob(C), a category C(a, b) of arrows

• for each object a ∈ ob(C), a functor ida : 1→ C(a, a) that chooses the identity element

• for each triple of objects a, b, c ∈ ob(C), a functor

◦a,b,c : C(b, c)×C(a, b)→ C(a, c)

expressing composition

such that, for all a, b, c, d ∈ ob(C), the associativity diagram

(C(c, d)×C(b, c))×C(a, b) C(c, d)× (C(b, c)×C(a, b)

C(b, d)×C(a, b) C(c, d)×C(a, c)

C(a, d)

⇓∼=

α

◦ × id id×◦

◦ ◦

and the left and right unitor diagrams

1×C(a, b) C(b, b)×C(a, b)

C(a, b)

⇓∼=

ib × id

λ
◦

C(a, b)× 1 C(a, b)×C(a, a)

C(a, b)

⇓∼=

ia × id

ρ
◦

156

commute up to a natural isomorphism.

We observe that the objects of the hom-category C(a, b) are arrows in C and the

arrows of C(a, b) are 2-arrows in C. Composition in C(a, b) is the vertical composition in

C. The composition of the arrows and horizontal composition of 2-arrows in C is given by

the functor ◦ which, by light of it preserving composition, gives the interchange law.

A.2 Internalization and double categories

Most treatments of mathematics base definitions on set theory. The definitions for

a monoid, topological space, poset, and so on all begin by establishing a set. An alternative

viewpoint is to internalize such gadgets in a category.

For example, a monoid is traditionally defined to be a set M together with an

identity element e ∈ M equipped with a binary operation M ×M → M such that for all

x, y, z ∈M , we have ex = x = xe and (xy)z = x(yz). However, we can also define a monoid

internal to a category.

Definition 78 (Internal monoid). Let (C,⊗, I) be a monoidal category. Amonoid internal

to C consists of an object m ∈ ob(C) and two arrows in C

• (multiplication) µ : m⊗m→ m,

• (unit) η : I → m

157

such that the associator diagram

(m⊗m)⊗m m⊗ (m⊗m) m⊗m

m⊗m m

α id⊗µ

µµ⊗ id

µ

and unitor diagram

I ⊗m m⊗m m⊗ I

m

η ⊗ id

λ
µ

id⊗η

ρ

commute.

A morphism of monoids is an arrow f : m → m′ in C between two monoid

objects (m,µ, η) and (m′, µ′, η′) that preserve multiplication and the unit as expressed by

the following commuting diagrams

m⊗m m′ ⊗m′

m m′

f ⊗ f

µ

f

µ′

I m

m′

η

η′
fand

We can also provide an internal monoid with a commutative structure.

Definition 79 (Internal commutative monoid). Given a symmetric monoidal category

(C,⊗, I, τ) where τ is the twist map, a commutative monoid internal to C is, first,

a monoid internal to C with the additional property that the diagram

158

m⊗m m⊗m

m

τ

µ µ

commutes

Algebraic structures often have dual counterparts, and internal monoids are no

exception.

Definition 80 (Internal comonoid). Given a monoidal category (C,⊗, I), a comonoid

internal to C is a monoid internal to Cop. If (C,⊗, I, τ) is a symmetric monoidal category,

then a cocommutative comonoid internal to C is a cocommutative comonoid internal

to Cop.

In other words, we define comonoids exactly as we did monoids in Definitions 78

and 79 except we turn the arrows around. Many familiar algebraic objects can be exhibited

as monoids internal to select categories.

Example 81. A monoid internal to Set is an ordinary monoid. A monoid internal to the

category Ab of abelian groups is a ring. A monoid internal to a category [C,C] of endofunctors

is a monad on C.

As in algebra, objects can have multiple structures simultaneously. The most

important for us is the Frobenius monoid.

Definition 82 (Frobenius monoid). An object (m,µ, η, δ, ε) in a monoidal category (C,⊗, I)

is called a Frobenius monoid if (m,µ, η) is a monoid object, (m, δ, ε) is a comonoid

159

structure and the equation

(id⊗µ)(δ ⊗ id) = δµ = (µ⊗ id)(id⊗δ).

holds.

Internalization can be extended to constructions beyond monoids and their vari-

ants. The most important construction for us is the internalization of a category.

Definition 83 (Internal category). Let D be a category. A category C internal to D

consists of the data

• an object C0 ∈ ob(D) of objects of C

• an object C1 ∈ ob(D) of arrows of C

• source and target arrows s, t : C1 → C0 in D

• an identity arrow e : C0 → C1 in D

• a composition arrow ◦ : C1 ×C0 C1 → C1

together with commuting diagrams

• that specify the source and target of the identity arrow

C0 C1

C0

e

id s

C0 C1

C0

e

id t

160

• that specify the source and target of composite arrows

C1 ×C0 C1 C1

C1 C0

◦

p1 s

s

C1 ×C0 C1 C1

C1 C0

◦

p2 t

t

• that specify associativity

C1 ×C0 C1 ×C0 C1 C1 ×C0 C1

C1 ×C0 C1 C1

◦ ×C0
id

id×C0
◦ ◦

◦

• that specify unit laws

C0 ×C0 C1 C1 ×C0 C1 C1 ×C0 C0

C0

e×C0
id id×C0

e

p2 p1

If we are instead working in an ambient 2-category D and the diagrams only commute up

to natural isomorphism, we say that C is weakly internal to D.

The most important example of an internal category for us is a (pseudo) double

category. A (pseudo) double category C is a category weakly internal to Cat. This can

be unpacked.

Roughly, a double category consists of two categories C0 and C1 that we consider

as follows.

• The C0-objects are called the objects of C.

161

• The C0-arrows are called the vertical arrows in C.

• The C1-objects are called the the horizontal arrows in C.

• The C1-arrows are called the squares of C.

This data is depicted in Figure A.1. When the vertical arrows are both identities,

we call the square globular.

Double categories often arise when a mathematical object has two different sorts

of morphisms. One morphism type becomes the horizontal arrows, which we denote by →,

and the other morphism type becomes the vertical arrows, which we denote by →.

Example 84. There is a double category whose objects are sets, vertical arrows f : x→ y

are functions, horizontal arrows r : x→ y are relations r ⊆ x× y, and squares

x y

x′ y′

r

f g

s

⇓

are inclusions of relations gr ⊆ sf .

c d

c′ d′

m

f g

n

c, c′, d, d′ ∈ ob(C0)

f, g ∈ arr(C0)

m,n ∈ ob(C1)
⇓ θ

θ ∈ arr(C1)

Figure A.1: A square in a double category

162

The first definition for a double category we gave—a category weakly internal to

Cat—is too terse to provide much meaningful interpretation. So we unpack it.

Definition 85 (Double category). A pseudo double category C, or simply double

category, consists of a category of objects C0 and a category of arrows C1 together with

the following functors

U : C0 → C1,

S, T : C1 → C0,

� : C1 ×C0 C1 → C1

where the pullback C1 ×C0 C1 is taken over S and T . These functors satisfy the equations

SUa = a = TUa (A.1)

S(x� y) = Sy (A.2)

T (x� y) = Tx. (A.3)

This also comes equipped with natural isomorphisms

α : (x� y)� z → x� (y � z) (A.4)

λ : Ua� x→ x (A.5)

ρ : x� Ua→ x (A.6)

such that S(α), S(λ), S(ρ), T (α), T (λ), and T (ρ) are each identities and that the coherence

axioms of a monoidal category are satisfied.1

1 Sometimes the term horizontal 1-cell is used for these [58], and for good reason. A (n× 1)-category
consists of categories Di for 0 ≤ i ≤ n where the objects of Di are i-cells and the morphisms of Di are
vertical i + 1-morphisms. A double category is then just a (1 × 1)-category. From this perspective, ‘cells’
are always objects with morphisms going between them.

163

As for notation, we write vertical and horizontal morphisms with the arrows →

and →, respectively, and 2-morphisms we draw as in Figure A.1.

One can define double functors and double transformations, but we refrain having

no need of them in this thesis. Double categories, double functors, and double transforma-

tions form a 2-category DblCat.

Like categories, we can equip double categories with additional structure. We focus

on adding a monoidal structure. As is typical in category theory, we can provide definitions

at various levels of abstraction. As such, a symmetric monoidal double category is a monoid

weakly internal to DblCat. This uses the same definition of a monoid internal to a category

D as above, though the diagrams commute up to invertible transformation. It is worth

unpacking this definition.

Definition 86 (Monoidal double category). A monoidal double category (C,⊗) is a

double category C equipped with a functor ⊗ : C× C→ C such that

1. C0 and C1 are both monoidal categories.

2. If I is the monoidal unit of C0, then UI is the monoidal unit of C1.

3. The functors S and T are strict monoidal and preserve the associativity and unit

constraints.

4. There are globular 2-isomorphisms

x : (x⊗ y)� (x′ ⊗ y′)→ (x� x′)⊗ (y � y′)

and

u : U(a⊗ b)→ Ua⊗ Ub

164

5. The following diagrams that express the constraint data for the double functor ⊗

commute

((x⊗ y)� (x′ ⊗ y′))� (x′′ ⊗ y′′) ((x� x′)⊗ (y � y′))� (x′′ ⊗ y′′)

(x⊗ y)� ((x′ ⊗ y′)� (x′′ ⊗ y′′)) ((x� x′)� x′′)⊗ ((y � y′)� y′′)

(x⊗ y)� ((x′ � x′′)⊗ (y′ � y′′)) (x� (x′ � x′′))⊗ (y � (y′ � y′′))

α

1� x

x

α⊗ α

x� 1

x

(x⊗ y)� U(a⊗ b)

x⊗ y

(x⊗ y)� (Ua⊗ Ub)

(x� Ua)⊗ (y � Ub)

1� u

ρ

ρ⊗ ρ
x

U(a⊗ b)� (x⊗ y)

x⊗ y

(Ua⊗ Ub)� (x⊗ y)

(Ua� x)⊗ (Ub� y)

u� 1

λ

λ⊗ λ
x

6. The following diagrams commute expressing the associativity isomorphism for ⊗ is a

transformation of double categories.

((x⊗ y)⊗ z)� ((x′ ⊗ y′)⊗ z′) (x⊗ (y ⊗ z))� (x′ ⊗ (y′ ⊗ z′))

((x⊗ y)� (x′ ⊗ y′))⊗ (z � z′) (x� x′)⊗ ((y ⊗ z)� (y′ ⊗ z′))

((x� x′)⊗ (y � y′))⊗ (z � z′) (x� x′)⊗ ((y � y′)⊗ (z � z′))

x

x⊗ 1

x

1⊗ x

a� a

a

U((a⊗ b)⊗ c) U(a⊗ (b⊗ c))

U(a⊗ b)⊗ Uc Ua⊗ U(b⊗ c)

(Ua⊗ Ub)⊗ Uc Ua⊗ (Ub⊗ Uc)

u

u⊗ 1

u

id⊗u

Ua

a

7. The following diagrams commute expressing that the unit isomorphisms for ⊗ are

165

transformations of double categories.

(x⊗ UI)� (y ⊗ UI)

x� y

(x� y)⊗ (UI � UI)

(x� y)⊗ UI

r � r

x

1⊗ ρ

r

U(a⊗ I)

Ua⊗ UI

Ua

u

Ur

r

(UI ⊗ x)� (UI ⊗ y)

x� y

(UI � UI)⊗ (x� y)

UI ⊗ (x� y)

`� `

x

λ⊗ 1

`

U(I ⊗ a)

UI ⊗ Ua

Ua

u

U`

`

A braided monoidal double category is a monoidal double category such that:

8. C0 and C1 are braided monoidal categories.

9. The functors S and T are strict braided monoidal functors.

10. The following diagrams commute expressing that the braiding is a transformation of

double categories.

(x� x′)⊗ (y � y)

(x⊗ y)� (x′ ⊗ y′)

(y � y′)⊗ (x� x′)

(y ⊗ x)� (y′ ⊗ x′)

x

s

x

s� s

Ua⊗ Ub

Ub⊗ Ua

U(a⊗ b)

U(b⊗ a)

s

u

Us

u

Finally, a symmetric monoidal double category is a braided monoidal double category

C such that

11. C0 and C1 are symmetric monoidal.

In Example 84, we saw a double category whose vertical arrows are functions and

horizontal arrows are relations. But, functions are examples of relations. So in a sense,

the vertical arrows are redundant because that information is contained in the horizontal

arrows. The next definitions formalizes this observation.

166

Definition 87 (Companion and conjoint). Let C be a double category and f : a → b a

vertical arrow. A companion of f is a horizontal arrow f̂ : a→ b together with squares

a b

b b

f̂

f id

Ub

⇓ and

a a

a b

Ua

a f

f̂

⇓

such that the following equations hold:

a a

a b

b b

id

f

f

id

Ua

f̂

Ub

⇓

⇓

=

a a

b b

f f

Ua

Ub

⇓ Uf

(A.7)

a

a

a

b

b

b

id f id

Ua f̂

f̂ Ub

⇓ ⇓ =

a b

a b

id b

f̂

f̂

⇓ id
f̂

(A.8)

A conjoint of f , denoted f̌ : b → a, is a companion of f in the double category Ch·op

obtained by reversing the horizontal 1-morphisms, but not the vertical 1-morphisms.

Definition 88 (Fibrant double category). We say that a double category is fibrant if

every vertical 1-morphism has both a companion and a conjoint. If every invertible vertical

1-morphism has both a companion and a conjoint, then we say the double category is

isofibrant.

167

In some sense, a double category is more than a bicategory. One might believe

that there is some way to extract a bicategory from a double category. In fact you can.

Definition 89 (Horizontal edge bicategory). Given a double category C, the horizontal

edge bicategory H(C) of C is the bicategory whose objects are those of C, arrows are

horizontal arrows of C, and 2-arrows are the globular squares.

Even though we can turn any double category into a bicategory by throwing out

the vertical arrows, what becomes of double categories with additional structure? The next

theorem partially answers this puzzle.

Theorem 90 ([58, Theorem 5.1]). Let C be an isofibrant symmetric monoidal double cat-

egory. Then H(C) is a symmetric monoidal bicategory.

The wonderful thing about this theorem is that the axioms for the symmetric

monoidal bicategory definition are typically much harder to check than the axioms for

symmetric monoidal double category, and so it provides a streamlined way to construct

a symmetric monoidal bicategory.

A.3 Bicategories of relations

In the early days of bicategory theory, when concerned mathematicians were explor-

ing additional structures placed on bicategories, they discovered that the coherence involved

tended to be convoluted. And so they did what mathematicians typically do, restrict their

considerations to a more manageable case.

Looking at the definition of a monoidal bicategory, one is confronted with many dia-

grams commuting. By placing certain restrictions on the type of 2-arrows in your monoidal

168

bicategory, this coherence is greatly simplified. The particular case we are interested in

comes when the tensor ⊗ behaves like a product in the sense that there is a diagonal arrow

∆x : x→ x⊗ x and a terminal object I (the empty product a.k.a. the unit for product). A

motivating example comes from studying relations.

Relations are pervasive throughout mathematics. They play an central role in the

theory of rewriting as evidenced through the importance of the rewriting relation. Classi-

cally, a relation is thought of as a subset of a product of sets R ⊆ A×B. This set-theoretic

perspective on relations has a category-theoretic counterpart. Given any category C, we can

talk about relations internal to C. To foster our intuition, we first look at relations internal

to Set.

Example 91. A relation internal to Set from x to y is a subobject r � x × y. Set-

theoretically speaking, r is a subset of x× y. This matches the classical notion of relation.

However, defining a relation internal to a category C as a subobject of a binary

product is poor form. Not all categories have products. Hence the following definition is

given.

Definition 92 (Internal relation). A relation internal to a category C, denoted x9 y

for x, y ∈ ob(C), is a jointly monic span

x
f←− r g−→ y.

That is, for any pair of arrows f ′, g′ : u→ r such that ff ′ = fg′ and gf ′ = gg′, then f ′ = g′.

When C has binary products, this is equivalent to the pairing 〈f, g〉 : r → x × y being a

monomorphism.

169

The categorical minded mathematician might see this and ask if we can construct

category from the objects of C and its internal relations. If C is a topos, then the answer

is yes. This is not the broadest class of categories for which this construction works, but

the class of topoi is as broad as we can go without writing another section of this appendix.

Given a topos C, there is a category Rel(C) called the category of relations internal

to C. Its objects are those of C and arrows Rel(C)(x, y) are internal relations x ← r → y.

Composition is given by pullback

(x9 y 9 z)
◦7−→

x y z

r s

r ×y s

In fact, Rel(C) can be promoted to a bicategory Rel(C) by taking as 2-arrows maps

of spans. Specifically, a 2-arrow between internal relations x ← r → y to x ← s → y is an

arrow f : r → s of C fitting into the commuting diagram

x y

s

r

It follows from the jointly monic condition that given any other arrow g : r → s fitting into

the above diagram, it follows that f = g. The parallel between relations in Set is clear: a

morphism of relations is like a subset inclusion.

Remark 93. There is a name to the property of Rel(C) that between parallel arrows,

either a single 2-arrow exists or none does. It is called being locally posetal. Another

way of saying this is that Rel(C) is a category enriched in Pos, the category of posets and

170

order preserving functions. This means that for any objects x, y of Rel(C), there is a poset

Rel(C)(x, y) whose elements are the relations from x 9 y that are internal to C and the

ordering is defined by setting r ≤ s whenever there is an arrow r → s in C such that the

diagram

x y

s

r

commutes. Because of this, we denote 2-arrows in locally posetal bicategories by ≤ instead

of ⇒. We explain enriched category theory basics in Appendix A.1.

Fix a cartesian category (T,×, 1) with T a topos. This cartesian structure provides

Rel(T) with some nice structure of its own. First, there is a tensor product in the form of

a pseudo-functor

⊗ : Rel(T)×Rel(T)→ Rel(T)

defined by (x, y) 7→ x × y where × is the product in T, and pointwise application of × on

the jointly monic spans. We also have natural isomorphisms

• x→ x⊗ 1 given by the internal relation

x x× 1

x

id ∼=

171

• x⊗ y → y ⊗ x given by the internal relation

x× y

x× y

y × x

id ∼=

• (x⊗ y)⊗ z → (x⊗ y)⊗ z given by the internal relation

(x× y)× z

(x× y)× z

(x× y)× z

id ∼=

that satisfy the required coherence conditions. Because Rel(T) is locally posetal, the 1-

category coherence laws for unity, symmetry, and associativity suffice.

Because the definition of ⊗ uses the cartesian structure on T, there is a cartesian-

like quality to ⊗ in Rel(T). However, 2-limits are difficult, so we characterize this quality

via comonoids. Before talking about comonoids in Rel(T), we look at comonoids in T.

Observe that by taking T to be cartesian, every object in T has a comonoid structure: the

comultiplication ∆x : x → x × x is given by the diagonal map and the counit εx : x → 1 is

the unique map to the terminal object 1. We lift this to define a comonoid structure on

Rel(T) by setting the comultiplication ∆: x→ x⊗ x as the internal relation

x

x

x× x

id 〈id, id〉

172

and the counit to be the internal relation

x

x

1

id !

Every arrow in Rel(T) plays nicely with the comonoid structure. Suppose we have

an arrow r : x9 y, hence a jointly monic span

x

r

y

Then r is a lax comonoid homomorphism in that there are 2-arrows ∆yr ≤ (r ⊗ r)∆x and

εyr ≤ tx. The lax preservation of comultiplication is the 2-arrow

x

r ×y y

y

x×x×x (r × r)

where r ×y y ∼= r and one can determine that r × r is a subobject of x ×x×x (r × r). The

2-arrow then is the composite

r ×y y
∼=−→ r

∆−→ r × r� x×x×x (r × r).

173

The lax preservation of unit is the 2-arrow

x y

r ×y y

x

obtained as the composite

r ×y y
∼=−→ r → x.

Also, because we are working with spans, we can turn them around to give a

monoid structure ∆∗x : x⊗ x9 x and ε∗x : 1 9 x given by the respective spans

x× x

x

x

∆ id

1

x

x

! id

What Carboni and Walters did was to take this structure as primitive to define a

Cartesian bicategory. Though they went farther by axiomatizing another important property

of Rel(T). Namely that any object x of Rel(T) is a Frobenius monoid (see Definition 82)

which, recall, requires the equation

(id⊗µ)(δ ⊗ id) = δµ = (µ⊗ id)(id⊗δ).

174

to hold. The left hand side of this equation is given by the composite

x× x x x× x

x x

x

δ id id δ

id id

and the right-hand side of the equation is given by the composite

x× x x× x× x x× x

x× x x× x

x

id
id×δ

δ × id
id

δ δ

Hence, the equality of the composite spans. In Section A.4, we axiomatize the structures

and properties found in a category of relations internal to a topos.

Having though about Rel(T), we can now axiomatize some important structures.

The first structure needed is a tensor product for a bicategory. In general, the coherence

can be quite complicated but simplifies significantly when restricting our attention to locally

posetal bicategories.

Definition 94. A tensor product ⊗ : B × B → B on a locally posetal bicategory B is a

pseudo-functor equipped with an unit object I and natural isomorphisms

ρ : x→ x⊗ I λ : x→ I ⊗ x

σ : x⊗ y → y ⊗ x α : (x⊗ y)⊗ z → x⊗ (y ⊗ z)

175

that satisfy the classical coherence conditions.

We also need to place the concept of adjoint functors into a general bicategory. The

data of an adjoint pair—two functors and two natural transformations—are merely 1-arrows

and 2-arrows in Cat. However, this structure can be supported by bicategories other than

Cat.

Definition 95 (Adjunction). Let B be a bicategory. We say the 1-arrows

` : x→ y and r : y → x

form an adjunction, with ` the left adjoint and r the right adjoint if there exist 2-arrows

y y⇓ η

id

`r

x x⇓ ε

r`

id

respectively named the unit and the counit such that each composite

x y

⇓ id⊗η

⇓ ε⊗ id

`

`r`

`

yx

⇓ η ⊗ id

⇓ id⊗ε

r

r`r

r

is an identity.

Closely related to adjoint arrows are the dual concepts of monad and comonad.

Also like adjunctions, the most common monads and comonads are internal to the 2-category

Cat. Comonads in particular are relevant for us in Section 5.1.

176

Definition 96 ((Co)monad). In a bicategory B, an arrow m : b → b is called a monad if

there are 2-arrows µ : mm→ m and η : idb → m such that

b b b⇓ id ⇓ µ

⇓ µ

m mm

m m

m

b b b⇓ µ ⇓ id

⇓ µ

mm m

m m

m

=

and also

b b b⇓ η ⇓ id

⇓ µ

id m

m m

m

b b b⇓ id ⇓ η

⇓ µ

m id

m m

m

=

When the 2-arrows are reversed, we get a comonad

There is a close relationship between adjunctions, monads, and comonads. Instead

of exploring this relationship in its full generality, we restrict our attention to adjunctions,

monads, and comonads in Cat.

For any adjunction

A X

L

R

⊥

with unit η and counit ε, we define a monad RL : A→ A with unit

A A

id

RL

⇓ η

and multiplication RεL : RLRL⇒ RL given by the horizontal composite

A X X A

L RL R

⇓ idL ⇓ ε ⇓ idR

L id R

177

The adjunction also induces a comonad with counit

X X

LR

id

⇓ ε

and comultiplication LηR : LR⇒ LRLR given by the composite

X A A X

R id L

⇓ idR ⇓ η ⇓ idL

R LR L

We use this latter fact in Section 5.1.

The opposite direction, from monads to adjunctions, is a more subtle issue because

to each monad is associated a family of adjunctions. This is not used in this thesis, however,

so we point the reader to a standard reference [46] to learn more.

We now have all of the background needed to define a cartesian bicategory.

Definition 97 (Cartesian bicategory). A cartesian bicategory consists of the following data:

• a locally posetal bicategory B

• a tensor product ⊗ : B×B→ B

• for every object x of B, a cocommutative monoid structure ∆x : x → x ⊗ x and

εx : x→ x⊗ I

such that

• every arrow r : x→ r is a lax comonoid homomorphism, that is

∆yr ≤ (r ⊗ r)∆x and εyr ≤ εx

178

• for each object x, comultiplication ∆x and counit εx have right adjoints ∆∗x and ε∗x

that give a commutative monoid structure to x.

Such a bicategory is called cartesian because of its similarities to a cartesian cate-

gory.

Another nice feature we saw in our favorite cartesian bicategory Rel(C) is that

each object x is a Frobenius monoid. When we append this axiom to those for a cartesian

bicategory, we obtain a more complete axiomatization of Rel(C). Because of this we call

such a gadget a bicategory of relations.

Definition 98 (Bicategory of relations). A bicategory of relations is a cartesian bicat-

egory B such that for all objects x, the structure maps ∆x, εx,∆
∗
x, ε
∗
x satisfy the Frobenius

law

∆x∆∗x = (id⊗∆x)(∆∗x ⊗ id).

It follows from the Frobenius law that in a bicategory of relations, every object is

its own dual. This brings us to our next section on duality in bicategories.

A.4 Duality in bicategories

One’s first encounter with the term ‘dual’ is typically in linear algebra. Recall that

given a K-vector space V and its dual V ∗, there is a linear map V ∗ ⊗K V → K. Also,

K is the identity with respect to ⊗K , that is K ⊗K V ∼= V . The fact every object in

the monoidal category (VectK ,⊗K ,K) of K-vector spaces and K-linear maps has such a

dual can be generalized to other monoidal categories. Such categories are called compact

closed.

179

Briefly returning to the previous section, we left off saying that in a bicategory of

relations every object is its own dual. And though the coherence is more complicated for

bicategories in general, locally posetal bicategories, such as bicategories of relations, skirt

this issue. Due to the restriction on 2-arrows, showing that a locally posetal bicategory is

compact closed is exactly the same as showing a categories is compact closed. Hence our

next theorem, that a bicategory of relations is necessarily compact closed, holds true and it

is the Frobenius law that provides this structure.

Theorem 99. A bicategory of relations is compact closed.

Proof. See Theorem 2.4 in Carboni and Walters [13].

For the remainder of this section, we move beyond locally posetal bicategories to

discuss compact closure for generic monoidal bicategories.

To define ‘compact closed bicategories’ as conceived by Stay [59], we discuss a

notion of duality suitable for bicategories. We write LR for the tensor product of objects L

and R and fg for the tensor product of morphisms f and g.

Definition 100 (Dual pair, category). A dual pair in a symmetric monoidal category

(C,⊗, I) is a tuple (L,R, e, c) with objects L and R, called the left and right duals, and

morphisms

e : LR→ I c : I → RL,

called the counit and unit, respectively, such that the following diagrams commute.

L

L

LRLL

Lc

eL

R

R

RLRR

cR

Re

180

A category such such that every object has a dual is called compact closed.

Definition 101 (Dual pair, bicategory). Inside a monoidal bicategory, a dual pair is a

tuple (L,R, e, c, α, β) with objects L and R, morphisms

e : LR→ I c : I → RL,

and invertible 2-morphisms

L

LI

L(RL) (LR)L

IL

L

Lc eL

L

⇓ α

R

RI

(RL)R R(LR)

RI

R

cR Re

R

⇓ β

called cusp isomorphisms. If this data satisfies the swallowtail equations in the sense that

the diagrams in Figure A.2 are identities, then we call the dual pair coherent.

Recall that a symmetric monoidal category is called compact closed if every

object is part of a dual pair. We can generalize this idea to bicategories by introducing

2-morphisms and some coherence axioms. The following definition is due to Stay [59].

Definition 102 (Compact closed bicategory). A compact closed bicategory is a symmetric

monoidal bicategory for which every object R is part of a coherent dual pair.

The difference between showing compact closedness in categories versus bicate-

gories might seem quite large because of the swallowtail equations. Looking at Figure A.2,

181

I

LR LR

II

I(LR) (LR)I

(LR)(LR)(IL)R L(RI)

((LR)L)R L(R(LR))

(L(RL))R L((RL)R)

(LI)R L(IR)

LR

' '

'

' '

' '

'

'

'

' αR Lβ '

e−1 e−1

λ−1 ρ−1

λ−1 ρ−1

Ie−1 e−1I

e−1(LR)
(LR)e−1

λ−1R Lρ−1

a−1 a

(e−1L)R
a−1

L(Re−1)a

aR La−1

a

(Lc−1)R L(c−1R)

a

ρ−1R Lλ−1

LR LR

I

RL RL

II

I(RL) (RL)I

(RL)(RL)(IR)L R(LI)

((RL)R)L R(L(RL))

(R(LR))L R((LR)L)

(RI)L R(IL)

RL

' '

'

' '

' '

'

'

'

' αR Lβ '

c c

λ−1 ρ−1

λ−1 ρ−1

Ic cI

c(RL) (RL)c

λ−1L Rρ−1

a−1 a

(cR)L
a−1

R(Lc)a

aL Ra−1

a

(Re)L R(eL)

a

ρ−1L Rλ−1

RL RL

Figure A.2: The swallowtail diagrams for the unit and counit.

182

it is no surprise that these can be incredibly tedious to work with. Fortunately, Pstrá-

gowski [55] proved a wonderful strictification theorem that effectively circumvents the need

to consider the swallowtail equations.

Theorem 103 ([55, p. 22]). Given a dual pair (L,R, e, c, α, β), we can find a cusp isomor-

phism β′ such that (L,R, e, c, α, β′) is a coherent dual pair.

A.5 Adhesive categories

After Ehrig, et. al. introduced double pushout graph rewriting [34], there were

several attempts at axiomatizing it. The first successful attempt is called High-Level Re-

placement Systems (HLRS) [32, 33]. To be thorough, we include the axioms of an HLRS.

Definition 104 (High level replacement system). A category C is called a High Level

Replacement System if

1. pushouts exist for all spans a← b→ c such that one arrow is monic;

2. pullbacks exist for all cospans a→ b← c where both arrows are monic;

3. pushouts and pullbacks respect monomorphisms;

4. for any diagram
a b c

d e f

such that the marked arrows are monic, the outside rectangle is a pushout, and the

right square is a pullback, then the left square is a pushout;

183

5. binary coproducts exist;

6. any pushout of a span with a monic arrow is also a pullback.

This collection of axioms was curated to prove theorems such as the local Church–

Rosser and concurrency, the presence of which provide a rich rewriting theory. Lack and

Sobociński later provided a more compact set of axioms that also allowed local Church–

Rosser and concurrency theorems [42]. To earn the shorter list of axioms, they packed quite

a bit of information into an axiom by using a ‘Van Kampen square’.

A Van Kampen square is a pushout

a b

c d

that, when placed on the bottom of a cube

c

a

d

b

c′

a′

d′

b′

such that the back faces are pullbacks, then the front faces are pullbacks if and only if the

top face is a pushout.

184

Definition 105 (Adhesive category). An adhesive category

1. has pushouts along monomorphisms;

2. has pullbacks;

3. pushouts along monomorphisms are Van Kampen squares.

Roughly, the Van Kampen condition places adhesive categories in the company

of distributive categories and extensive categories in the sense of a compatibility between

certain finite limits and finite colimits. In the case of distributive categories, there is a

compatibility between products and coproducts. For extensive categories, pullbacks and

coproducts play nicely together. The Van Kampen condition stipulates the compatibility

between pullback and pushout.

Certainly, the definition of an adhesive category is more elegant than that of an

HLRS. The price of elegance is the dense Van Kampen condition. While adhesive categories

are not exactly HRLS’s, they are closely related as one might expect.

Proposition 106 ([42, Lem. 29]). An adhesive category with an initial object is an HLRS.

Though fewer in number, the axioms for an adhesive category are non-trivial. Also,

adhesive categories are not so well-known outside of rewriting theory. Therefore, instead of

working with adhesive category, we work with a much more well-known class of category: a

topos. Fortunately, every elementary topos is adhesive. This result is the subject of a paper

by Lack and Sobociński [43].

Theorem 107. Every elementary topos is adhesive.

185

Because topoi are our categories of choice for the present work and in light of

Theorem 107, we leave our discussion of adhesive categories here. In the next section, we

cover topos theory, but just enough for our needs. This includes facts that morally belong

to adhesive category theory and also hold true for topoi.

A.6 Topoi

When searching the literature on topos theory, one finds myriad descriptions of

what a topos is like. Suffice to say, any topos has a geometric aspect and a logical aspect.

With regards to the geometric aspect, a topos is like a generalized space, where the objects

are subspaces and the arrows describe how the various subspaces relate to one another. But

to each topos, there is an internal logic from which we can recover various logics by using

the arrows to and from the subobject classifier which we define now2.

Definition 108 (Subobject classifier). A subobject classifier is a monomorphism

true : 1→ Ω

from the terminal object with the property that, for every objects t ∈ T and subobject

s→ t, there exists a unique arrow χs fitting into the pullback diagram

s

t

1

Ωχs

In the category Set, any two element set is a subobject classifier. Take the set

{0, 1}. Then any function into that set determines a subobject, here just a subset, by taking
2 For a full account of logic via topos theory, see Part D of Johnstone’s Sketches of an Elephant [38].

186

the fiber of 1. Similarly, any subobject s → t determines a map χs : t → {0, 1} by sending

an element of t to 1 if it belongs to s and sending an element of t to 0 if it does not belong

to s.

Definition 109 (Topos). A topos T is a category with finite limits, is cartesian closed,

and has a subobject classifier.

The examples we give below cover our needs.

Example 110. 1. The archetypal topos is the category Set. The subobject classifier is

the two-element set {0, 1} where we interpret 0 as ‘false’ and 1 as ‘true’.

2. Presheaf categories SetC
op

are topoi when C is a small category. The subobject classifier

is the functor Cop → Set that sends any object c in C to the set of subfunctors of C(−, c).

This is called a ‘sieve’ of c.

3. Finite presheaf categories are topoi. These are functor categories of the type FinSetC
op

for C finite.

Of these classes of examples, the presheaf topoi are the most pertinent. There is

one specific presheaf topos that we particularly like.

Example 111. Our favorite example of a presheaf topos is RGraph, the category of reflexive

directed multi-graphs. This is the category of presheaves on

C
op

:= e n

s

t

t

187

such that all arrows n → n are the identity. A presheaf g : C
op → Set then consists of two

sets g(e) and g(n) considered as sets of edges and nodes. Then there are two arrows of

type g(e) → g(n) assigning each edge its source and target and one arrow of type g(n) →

g(e) assigning a reflexive edge to each node. This is exactly a reflexive graph. A natural

transformation θ between presheaves g, h : C
op → Set is a pair of functions θe : g(e) → h(e)

and θn : g(n)→ h(n) such that the squares

h(e)

g(e)

h(n)

g(n)

θe θn

g(t)

h(t)
h(e)

g(e)

h(n)

g(n)

θe θn

g(t)

h(t)
h(e)

g(e)

h(n)

g(n)

θe θn

g(t)

h(t)

commute. These squares assert that the natural transformations preserve source, targets,

and reflexive nodes. Hence, this is precisely the data of a reflexive graph morphism.

Because topoi have both geometric and logical aspects, there are morphisms of

topos for each.

Definition 112 (Geometric morphism). A geometric morphism between topoi X → A

is an adjunction

A X

L

R

⊥

such that L preserves finite limits. We call L the inverse image functor and R the direct

image functor.

Geometric morphisms abstract from continuous maps between spaces f : S → T .

Denote by OS and OT the open sets of S and T . Then f induces the direct image map

188

f∗ : OS → OT that sends a set A ⊆ S to its image {t ∈ T |∃a ∈ A.fa = t}. But f also

induces an inverse image map f∗ : OT → OS that sends a set B ⊆ T to its preimage

{s ∈ S|∃b ∈ B.fs = b}. Observe that f∗ preserves finite intersections and f∗ preserves

finite intersection and unions. This mirrors the fact that, in a geometric morphism the right

adjoint preserves finite limits and the left adjoint preserves finite limits and colimits.

Now that the basic definition of a topos are given, we provide just enough theory

to develop the ideas in this thesis.

The first result we give is often called the fundamental theorem of topos theory

[38, A.2.3.2].

Theorem 113. Given a topos T and an object t of T, then the over-category T ↓ t is also

a topos.

The operation of ‘slicing over an object’ is stable in presheaf topoi. This result uses

a construction called the category of elements. Given a functor f : C → Set, its category

of elements, denoted
∫ f

C, has for objects pairs (c, x) where c is an object of C and x is

an element of the set fc. The arrows (c, x) → (d, y) are the set functions fc → fd such

that x 7→ y. The category of elements is a first foray into the much larger topic called ‘the

Grothendieck construction’. However, it is not useful for us to pursue this topic.

Theorem 114. Let C be a small category and F : C
op → Set a presheaf. Then the over-

category SetC
op

↓ F is equivalent to the topos of presheaves on the category of elements∫ F
C.

This result is used in Section 4.3. We illustrate it here with graphs.

189

Example 115. In this example, we illustrate the equivalence of Theorem 114 by translating

an object from SetC
op

↓ F to a presheaf in the category Set
∫ F C for a specific choice of F

and C.

Let Cop be the walking graph category. That is,

e n
s

t

We call this the walking graph category to suggest that the presheaves on C
op are exactly

graphs and natural transformations between these functors are exactly the graph morphisms.

Let F be the graph

b• •b′
β

β′

β′′

As a functor, F : C
op → Set returns the edge set Fe := {β, β′, β′′}, the node set Fn := {b, b′},

the source map Fs : Fe→ Fn defined by

Fs(β) := b, Fs(β′) := b, Fs(β′′) := b′

and the target map Ft : Fe→ Fn defined by

Ft(β) := b′, F t(β′) := b′, F t(β′′) := b′.

190

The graph morphism G→ F , depicted by

a• •a′

•a′′

α′

α′′α b• •b′
β

β′

β′′

θ

where θ is given by,

θ(a) := b θ(a′), θ(a′′) := b′ θ(α) := β θ(α′) := β′ θ(α′′) := β′′

is an object in SetC
op

↓ F

According to Theorem 114, we can translate G→ F to a presheaf on the category

of elements
∫ F

C, which we depict as

(e, β)

(e, β′)

(e, β′′)

(n, b)

(n, b′)

(s, β)

(s, β)

(s, β)

(t, β)

(t, β′)

(t, β′′)

with the objects corresponding to the circles. The presheaf on this category that corresponds

191

to G→ F is given by the
∫ F

C-shaped diagram in Set

{α}

{α′}

{α′′}

{a}

{a′, a′′}

a

a

a′

a′

a′′

a′′

where the arrows are labeled to suggest the function they represent. The sets in this diagram

are given by the fibers of θ. The edge and node functors determined by the arrows contain

the information about where Gs and Gt send the elements in the fibers.

We have now finished the topos theory needed for this thesis. The remaining

discussion morally belongs to the theory of rewriting and, in particular, adhesive category

theory. However, because all topoi are adhesive and we restrict our attention to topoi, we

place the discussion in here.

The following two lemmas are used.

Lemma 116 ([42, Lem. 4.2-3]). In a topos, monomorphisms are stable under pushout. Also,

pushouts along monomorphisms are pullbacks.

192

Lemma 117 ([42, Lem. 6.3]). In a topos, consider a cube

•

• •

•
•

• •

•

whose top and bottom faces consist of only monomorphisms. If the top face is a pullback

and the front faces are pushouts, then the bottom face is a pullback if and only if the back

faces are pushouts.

Two properties that are desirable for rewriting systems are local Church–Rosser

and concurrency. We do not use these results in this thesis, so we choose to not discuss

them. Instead, we point the reader to the existing literature [25, 42]

193

Bibliography

[1] S. Abramsky, B. Coecke. A categorical semantics of quantum protocols. Logic in Com-
puter Science. Proceedings of the 19th Annual IEEE Symposium. 2004. Also available
at arXiv:quant-ph/0402130.

[2] S. Awody. Category Theory. Oxford University Press. 2010.

[3] F. Baader, T. Nipkow. Term Rewriting and All That. Cambridge University Press.
1999.

[4] M. Backens. Completeness and the ZX-Calculus. 2016. Available as arXiv:1602.08954.

[5] J. Baez, K. Courser. Structured cospans. In preparation.

[6] J. Baez, K. Courser. Course-graining Markov processes. 2017. Available as
arXiv:1710.11343.

[7] J. Baez, B. Fong, B. Pollard. A compositional framework for Markov processes.
J. Math. Phys. Vol. 57, No. 3. 2016. Also available as arXiv:1508.06448.

[8] J. Baez, B. Fong, B. Pollard. A compositional framework for passive linear networks.
2015. Available as arXiv:1504.05625.

[9] J. Baez, B. Pollard. A compositional framework for reaction networks. Rev. Math. Phys.
Vol. 29, No. 09. 2017. Also available as arXiv:1504.02051.

[10] K. Bar, A. Kissinger, J. Vicary. Globular: an online proof assistant for higher-
dimensional rewriting. 1st International Conference on Formal Structures for Com-
putation and Deduction. LIPIcs. Leibniz Int. Proc. Inform. Vol. 52. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern. 2016. http://globular.science

[11] J. Bénabou. Introduction to bicategories. Reports of the Midwest category theory sem-
inar. Springer, Berlin, Heidelberg. 1967.

[12] H. Bernstein, H. Byerly, F. Hopf, R. Michod, G.K. Vemulapalli. The Darwinian Dy-
namic. The Quarterly Review of Biology. Vol. 58, No. 2, Pp. 185–207. 1983.

[13] A. Carboni, R. Walters. Cartesian bicategories, I. J. Pure Appl. Algebra. Vol. 49, No. 1-
2, Pp. 11-32. 1987.

194

 https://arxiv.org/abs/quant-ph/0402130
 https://arxiv.org/abs/1602.08954
 https://arxiv.org/abs/1710.11343
 https://arxiv.org/pdf/1508.06448.pdf
 https://arxiv.org/abs/1504.05625
 https://arxiv.org/abs/1704.02051
http://globular.science

[14] N. Chomsky. Syntactic Structures. Walter de Gruyter. 2002.

[15] D. Cicala. Spans of Cospans. Theory Appl. Categ. Vol. 33, No. 6, Pp. 131-147. 2018.
Available at http://www.tac.mta.ca/tac/volumes/33/6/33-06.pdf.

[16] D. Cicala, K. Courser. Spans of cospans in a topos. Theory Appl. Categ. Vol. 33, No. 1,
Pp. 1-22. 2018. Available at http://www.tac.mta.ca/tac/volumes/33/1/33-01.pdf

[17] D. Cicala. Rewriting structured cospans. In preparation.

[18] D. Cicala. Categorifying the ZX-calculus. 14th International Conference on Quantum
Physics and Logic. Electron. Proc. Theor. Comput. Sci. Vol. 266, Pp. 294-314. 2018.
Also available as arXiv:1704.07034.

[19] B. Coecke, R. Duncan. Interacting quantum observables. Automata, languages and
programming. Part II. Lecture Notes in Comput. Sci. Vol. 5126. Springer, Berlin. 2008.
Also available at https://ora.ox.ac.uk

[20] B. Coecke, B. Edwards, R. Spekkens. Phase groups and the origin of non-locality for
qubits. Electron. Notes Theor. Comput. Sci. Vol. 270, No. 2. 2011. Also available as
arXiv:1003.5005.

[21] B. Coecke, D. Pavlovic. Quantum measurements without sums. Mathematics of quan-
tum computation and quantum technology. Chapman & Hall. Appl. Math. Nonlinear
Sci. Ser. 2008. Also available at arXiv:0608035,

[22] B. Coecke, D. Pavlovic, J. Vicary. A new description of orthogonal bases. Math. Struc-
tures Comput. Sci. Vol. 23, No. 3. 2013. Also available at arXiv:0810.0812.

[23] B. Coecke, S. Perdrix. Environment and classical channels in categorical quan-
tum mechanics. Log. Methods Comput. Sci. Vol. 4, No. 4. 2012. Also available as
arXiv:1004.1598

[24] B. Coecke, R. Duncan. Interacting quantum observables: categorical algebra and dia-
grammatics. New J. Phys. Vol. 13. 2011. Also available as arXiv:0906.4725

[25] A. Corradini, H. Ehrig, R. Heckel, M. Loewe, U. Montanari. Algebraic Ap-
proaches to Graph Transformation, Part I: Basic Concepts and Double Pushout
Approach. University of Pisa. 1996. Available at http://www.ncstrl.org:
8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Aunipi_
it%3Ancstrl.unipi_it%2F%2FTR-96-17.

[26] V. Danos, E. Kashefi, P. Panangaden. The measurement calculus. J. ACM. Vol. 54,
No. 2. 2007. Also available as arXiv:0704.1263

[27] L. Dixon, R. Duncan, A. Kissinger. Open graphs and computational reasoning. 2010.
Available as arXiv:1007.3794

[28] L. Dixon, R. Duncan, A. Kissinger. Quantomatic. https://sites.google.com/site/
quantomatic/

195

 http://www.tac.mta.ca/tac/volumes/33/6/33-06.pdf
 http://www.tac.mta.ca/tac/volumes/33/1/33-01.pdf
 https://arxiv.org/abs/1704.07034
 https://ora.ox.ac.uk/objects/uuid:77175185-265b-4467-a81a-a9593ed329e7/download_file?file_format=pdf&safe_filename=Interacting%252520Quantum%252520Observables.pdf&type_of_work=Conference+item
 https://arxiv.org/abs/1003.5005
 https://arxiv.org/pdf/quant-ph/0608035.pdf
 https://arxiv.org/pdf/0810.0812.
 https://arxiv.org/pdf/1004.1598.pdf
 https://arxiv.org/abs/0906.4725
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Aunipi_it%3Ancstrl.unipi_it%2F%2FTR-96-17
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Aunipi_it%3Ancstrl.unipi_it%2F%2FTR-96-17
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Aunipi_it%3Ancstrl.unipi_it%2F%2FTR-96-17
 https://arxiv.org/abs/0704.1263
 https://arxiv.org/abs/1007.3794
https://sites.google.com/site/quantomatic/
https://sites.google.com/site/quantomatic/

[29] R. Duncan, J. Evans, A. Lang, P. Panangaden. Classifying all mutually unbiased bases
in Rel. 2009. Available as arXiv:0909.4453

[30] R. Duncan, S. Perdrix. Graph states and the necessity of Euler decomposition. Math-
ematical theory and computational practice. Lecture notes in Comput. Sci. Vol. 5635.
Springer, Berlin. 2009. Also available as arXiv:0902.0500

[31] R. Duncan, S. Perdrix. Rewriting measurement-based quantum computations with gen-
eralised flow. Automata, Languages, and Programming. Springer. 2010. Also available
at http://citeseer.ist.psu.edu

[32] H. Ehrig, A. Habel, H.J. Kreowski, F. Parisi-Presicce. From graph grammars to high
level replacement systems. In 4th Int. Workshop on Graph Grammars and their Appli-
cation to Computer Science. Lect. Notes Comput. Sc. Vol. 532, Pp. 269–291. Springer
Verlag. 1991.

[33] H. Ehrig, A. Habel, H.J. Kreowski, F. Parisi-Presicce. Parallelism and concurrency in
high-level replacement systems. Math. Struct. in Comp. Science. Vol. 1. 1991.

[34] H. Ehrig, M. Pfender, H.J. Schneider. Graph-grammars: An algebraic approach. In
Switching and Automata Theory, 1973. SWAT’08. IEEE Conference Record of 14th
Annual Symposium. Pp. 167–180. IEEE. 1973.

[35] F. Gadducci, R. Heckel. An inductive view of graph transformation. International Work-
shop on Algebraic Development Techniques. Pp. 223–237. Springer. 1998. Also available
at academia.edu

[36] R. Grandis, M. Paré. Intercategories. Theory Appl. Categ. Vol. 30, Pp. 1215-1255. 2015.
Also available as arXiv:1412.0144.

[37] A. Habel, J. M uller, D. Plump. Double pushout graph transformations revisited.
Math. Structures Comput. Sci. Vol. 11, No. 5, Pp. 637–688. 2001. Also available at
researchgate.net

[38] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford Univer-
sity Press. 2002.

[39] A. Joyal, R. Street. The geometry of tensor calculus. Adv. Math. Vol. 88, No. 1. 1991.

[40] A. Kissinger, V. Zamdzhiev. Quantomatic: a proof assistant for diagrammatic rea-
soning. Automated deduction—CADE 25. Lecture Notes in Comput. Sci. Vol. 9195.
Springer. 2015. Also available as arXiv:1503.01034

[41] A. Kissinger. Pictures of processes: automated graph rewriting for monoidal categories
and applications to quantum computing. Ph.D. Thesis. University of Oxford. Available
as arXiv:1203.0202.

[42] S. Lack, P. Sobocinski. Adhesive categories. International Conference on Foundations
of Software Science and Computation Structures. Pp. 273–288. Springer, Berlin. 2004.
Also available at https://link.springer.com/

196

 https://arxiv.org/abs/0909.4453
 https://arxiv.org/pdf/0902.0500.pdf
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.708.1968&rep=rep1&type=pdf
 https://s3.amazonaws.com/academia.edu.documents/7603118/inductive_view_graph_transformations.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1555740829&Signature=l0TSHkxvt5W0J%2FZNhIJS1esYTVc%3D&response-content-disposition=inline%3B%20filename%3DAn_inductive_view_of_graph_transformatio.pdf
 https://arxiv.org/pdf/1412.0144.pdf
 https://www.researchgate.net/profile/Detlef_Plump/publication/303547092_Double-pushout_graph_transformation_revisited/links/5755603e08ae10c72b6682d1.pdf
 https://arxiv.org/abs/1503.01034
 https://arxiv.org/abs/1203.0202
 https://link.springer.com/content/pdf/10.1007/978-3-540-24727-2_20.pdf

[43] S. Lack, P. Sobocinski. Toposes are adhesive. International Conference on Graph Trans-
formations. Lecture Notes in Comput. Sci. Vol. 4178, Pp. 184–198. 2006. Also available
at http://citeseerx.ist.psu.edu/

[44] W. Lawvere, S. Schanuel. Conceptual Mathematics: a First Introduction to Categories.
Cambridge University Press. 2009.

[45] W. Lawvere. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A.
Vol. 50, No. 3, Pp. 869–872. 1963. Available at https://www.ncbi.nlm.nih.gov

[46] S. MacLane. Categories for the Working Mathematician. Graduate Texts in Mathemat-
ics. Springer-Verlag. New York. 1998.

[47] S. MacLane, I. Moerdijk. Sheaves in geometry and logic: A first introduction to topos
theory. Springer-Verlag. New York. 1994.

[48] T. Mailund. Functional Programming in R: Advanced Statistical Programming for Data
Science, Analysis, and Finance. Apress. 2017.

[49] J. Master. Open Petri nets. Available as arXiv:1808.05415.

[50] S. Mukherjee, R. Nateghi. A Data-Driven Approach to Assessing Supply Inadequacy
Risks Due to Climate-Induced Shifts in Electricity Demand. Risk Analysis. 2018. Avail-
able at https://onlinelibrary.wiley.com

[51] M. Nielson, I. Chuang. Quantum computations and quantum information. Cambridge
University Press. 2000.

[52] H.T. Odum. Systems Ecology; An Introduction. John Wiley and Sons. New York. 1983.

[53] D. Pavlovic. Quantum and classical structures in non-deterministic computation. Quan-
tum Interaction. Lecture Notes in Comput. Sci. Vol. 5494. Springer, Berlin. 2009. Also
available as arxiv:0812.2266.

[54] R. Penrose. Applications of negative dimensional tensors. Combinatorial Mathemat-
ics and its Applications. Proc. Conf. Academic Press, London. 1971. Available at
http://homepages.math.uic.edu/.

[55] P. Pstrągowski. On dualizable objects in monoidal bicategories, framed surfaces and
the Cobordism Hypothesis. Available as arXiv:1411.6691.

[56] E. Riehl. Category Theory in Context. Courier Dover Publications. 2017. Available at
http://math.rochester.edu/

[57] P. Selinger. A survey of graphical languages for monoidal categories. New structures for
physics. Lecture Notes in Phys. Vol. 813. Springer, Heidelberg. 2011. Also available as
arXiv:0908.3347.

[58] M. Shulman, Constructing symmetric monoidal bicategories. Available as
arXiv:1004.0993.

197

 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.6130&rep=rep1&type=pdf
 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC221940/pdf/pnas00239-0081.pdf
 https://arxiv.org/pdf/1808.05415.pdf
 https://onlinelibrary.wiley.com/doi/pdf/10.1111/risa.13192
 https://arxiv.org/abs/0812.2266
 http://homepages.math.uic.edu/~kauffman/Penrose.pdf
 https://arxiv.org/abs/1411.6691
 https://web.math.rochester.edu/people/faculty/doug/otherpapers/Riehl-CTC.pdf
 https://arxiv.org/abs/0908.3347
 http://arxiv.org/abs/1004.0993

[59] M. Stay, Compact closed bicategories. Theory Appl. Categ. Vol. 31, Pp. 755-798 2016.
Available as arXiv:1301.1053.

[60] G. Wraith. Artin gluing. J. Pure Appl. Algebra. Vol. 4, Pp. 345–348. 1974.

198

 http://arxiv.org/abs/1301.1053

	List of Figures
	Introduction
	Structured cospans
	Structured cospans as a compositional framework
	Structured cospans as objects
	A double category of structured cospans
	Spans of structured cospans

	Double pushout rewriting
	A brief history of rewriting
	Rewriting in topoi

	Fine rewriting and structured cospans
	The interchange law
	A symmetric monoidal structure
	A compact closed bicategory of spans of cospans

	Bold rewriting and structured cospans
	A double category of bold rewrites of structured cospans
	A bicategory of relations for bold rewriting of structured cospans
	The ZX-calculus

	Decomposing systems
	Expressiveness of underlying discrete grammars
	Rewriting structured cospans

	Conclusions
	An account of some category theory topics
	Enrichment and bicategories
	Internalization and double categories
	Bicategories of relations
	Duality in bicategories
	Adhesive categories
	Topoi

	Bibliography

