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ABSTRACT OF THE DISSERTATION

Open Systems: A Double Categorical Perspective

by

Kenny Allen Courser

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, March 2020

Professor John Baez, Chairperson

Fong developed ‘decorated cospans’ to model various kinds of open systems: that is, sys-

tems with inputs and outputs. In this framework, open systems are seen as the morphisms

of a category and can be composed as such, allowing larger open systems to be built up from

smaller ones. Much work has already been done in this direction, but there is a problem: the

notion of isomorphism between decorated cospans is often too restrictive. Here we introduce

and compare two ways around this problem: structured cospans, and a new version of deco-

rated cospans. Structured cospans are very simple: given a functor L : A→ X, a ‘structured

cospan’ is a diagram in X of the form L(a)→ x← L(b). If A and X have finite colimits and

L is a left adjoint, there is a symmetric monoidal category whose objects are those of A and

whose morphisms are isomorphism classes of structured cospans. However, this category

arises from a more fundamental structure: a symmetric monoidal double category. Under

certain conditions this symmetric monoidal double category is equivalent to one built using

our new version of decorated cospans. We apply these ideas to symmetric monoidal double

categories of open electrical circuits, open Markov processes and open Petri nets.
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Chapter 1

Introduction

This is a thesis about compositional frameworks for describing ‘open networks’, which

are networks with prescribed ‘inputs’ and ‘outputs’. One well-known type of network is a

‘Petri net’. Petri nets are important in computer science, chemistry and other subjects. For

example, the chemical reaction that takes two atoms of hydrogen and one atom of oxygen

and produces a molecule of water can be represented by this very simple Petri net:

H

O

α H2O

Here we have a set of ‘places’ (or in chemistry, ‘species’) drawn in yellow and a set of

‘transitions’ (or ‘reactions’) drawn in blue. The disjoint union of these two sets then forms

the vertex set of a directed bipartite graph, which is one description of a Petri net.

Networks can often be seen as pieces of larger networks. This naturally leads to the idea

of an open Petri net, meaning that the set of places is equipped with inputs and outputs.

We can do this by prescribing two functions into the set of places that pick out these inputs
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and outputs. For example:

H

O

α H2O

1

2

3

a b

4

The inputs and outputs let us compose open Petri nets. For example, suppose we have

another open Petri net that represents the chemical reaction of two molecules of water

turning into hydronium and hydroxide:

H2O β

OH−

H3O+

5

6

cb

4

Since the outputs of the first open Petri net coincide with the inputs of the second, we can

compose them by identifying the outputs of the first with the inputs of the second:

H

O

α H2O β

OH−

H3O+

1

2

3

5

6

a c
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Similarly we can ‘tensor’ two open Petri nets by placing them side by side:

H

O

α H2O

1

2

3

4

H2O β

OH−

H3O+

5

6

b+ ca+ b

4

The compositional nature of these open Petri nets, and of open networks in general, is sug-

gestive of an underlying categorical structure. Moreover, the ability to tensor these open

networks naturally leads to a symmetric monoidal structure on these categories. In this

thesis we study two frameworks for constructing and working with symmetric monoidal

categories whose morphisms are open networks. The first, ‘decorated cospans’, was in-

troduced by Brendan Fong [7]. The second, ‘structured cospans’, is new. Here we study

both frameworks using symmetric monoidal double categories, which have 2-morphisms that

describe maps between open networks.

The outline of the thesis is as follows. In Chapter 2, we present Fong’s decorated cospans

and give some examples in which they have been applied: graphs, electrical circuits, Markov

processes and Petri nets. In Chapter 3, we introduce the framework of structured cospans.

In Chapter 4, we revisit decorated cospans but at the level of double categories. In Chapter

5, we explore some of the similarities between double categories and bicategories, and in

Chapter 6, we give an application of double categories to Markov processes and ‘coarse-

grainings’ and show that coarse-graining is compatible with black-boxing. This last ap-

plication is constructed using neither structured cospans nor decorated cospans due to the
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complexity of its 2-morphisms, but is nevertheless a great example of how the rich structure

of double categories and their appropriate maps can be used to model complicated open

dynamical systems.

The first piece of work that this thesis is built upon, A bicategory of decorated cospans

[18], was an initial attempt at categorifying Fong’s theory of ‘decorated cospans’, which we

introduce in Chapter 2. Following a suggestion of Mike Shulman [37], this attempt made

extensive use of double categories, and it was here that the current author’s journey into

double categories began. Over the course of this journey, John Baez noticed a flaw with the

decorated cospans framework, which we explain in Section 2.2.1 and also at the beginning

of Chapter 3. Thus, Baez conceived another framework which simultaneously corrected

this flaw and was more convenient to use: ‘structured cospans’. This is the main content

of Chapter 3. This new framework also employs double categories, and several applications

which were previously illustrated using decorated cospans were explored using structured

cospans in a recent paper with Baez, Structured cospans [3]. Then, following along on

this double categorical campaign, a more direct fix to decorated cospans was introduced

by Baez, Vasilakopoulou and the author in Structured versus decorated cospans [4]. This

material constitutes Chapter 4: the main result is that the new improved decorated cospans

are equivalent to structured cospans under certain mild conditions. Tangential to all of this,

Baez and the current author wrote Coarse-graining open Markov processes [2]. While this

work also makes use of double categories, it uses neither decorated nor structured cospans,

due to some more sophisticated structure that is necessary. This material makes up Chapter

6.
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Chapter 2

Decorated cospan categories

This chapter is devoted to Fong’s theory of decorated cospans and a few of its applica-

tions. Fong’s theory of decorated cospans is well-suited to describing open networks: that

is, networks with prescribed inputs and outputs. We can build larger networks from smaller

ones by attaching the inputs of one to the outputs of another. This suggests that we should

treat open networks as morphisms in a category. In addition to composing open networks,

we can also put them side by side in parallel, giving a monoidal category. Fong’s Theorem

on decorated cospans provides a framework that captures all of this structure and more.

Fong’s decorated cospan categories can then serve as syntax categories for functors that

describe the behavior of open networks, such as the ‘black-box’ functors studied by Baez,

Fong, Master and Pollard [2, 7, 8, 9, 10].

In Section 2.1, we present Fong’s Theorem. For definitions of the terms used in this

theorem, see Appendix A. In Section 2.2, we present some previously studied applications of

decorated cospans which will later be revisited in subsequent chapters from the perspective
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of other compositional frameworks. These examples include open graphs, open electrical

circuits, open Markov processes and open Petri nets.

2.1 Fong’s Theorem

Definition 2.1.1. A cospan in any category C is a diagram of the form

b

a1 a2

i o

In other words, a cospan is an ordered pair of morphisms i and o in C whose target coincide.

A result of Fong [23] which has been fundamental in the inspiration of a large portion

of this thesis is the following.

Theorem 2.1.2 (Fong). Let C be a category with finite colimts and F : (C,+, 0) →

(Set,×, 1) a symmetric lax monoidal functor. Then there exists a symmetric monoidal

category FCospan which has:

(1) objects as those of C and

(2) morphisms as isomorphism classes of F -decorated cospans in C, which are pairs:

b

a1 a2

d ∈ F (b)
i o

6



Two F -decorated cospans are in the same isomorphism class if the following diagrams

commute:
b

a1 a2

b′

1

F (b)

F (b′)

i o

i′ o′

f ∼

d

d′

F (f)

for some isomorphism f . The composite of two composable F -decorated cospans

b

a1 a2 a2

b′

a3

d′ ∈ F (b′)d ∈ F (b)

i o i′ o′

is given by

b

a1 a2

b′

a3

b+ b′

b+a2 b
′

i o i′ o′

ψ ψ

j

jψi jψo′

1
λ−1

−−→ 1× 1
d×d′−−−→ F (b)× F (b′)

φb,b′−−−→ F (b+ b′)
F (j)−−−→ F (b+a2 b

′)

where ψ is the natural map into a coproduct, j is the natural map from a coproduct into

a pushout, and φb,b′ : F (b) × F (b′) → F (b + b′) is the natural transformation coming

from the structure of the symmetric lax monoidal functor F : (C,+, 0)→ (Set,×, 1).

The tensor product of two objects a1 and a2 is given by their binary coproduct a1 + a2

in C.

7



The tensor product of two F -decorated cospans is given pointwise:

b

a1 a2 a′1

b′

a′2

d′ ∈ F (b′)d ∈ F (b)

⊗ =

a1 + a′1

b+ b′

a2 + a′2

d+ d′ ∈ F (b+ b′)

i o i′ o′ i+ i′ o+ o′

d+ d′ := 1
λ−1

−−→ 1× 1
d×d′−−−→ F (b)× F (b′)

φb,b′−−−→ F (b+ b′)

We will also need a variant of Fong’s Theorem that gives a merely monoidal category:

Theorem 2.1.3. Let C be a category with finite colimts and F : (C,+, 0) → (Set,×, 1) a

lax monoidal functor. Then there exists a monoidal category FCospan where the relevant

structure is given as in Theorem 2.1.2.

The necessity of this weaker result was pointed out by an anonymous referee of Moeller

and Vasilakopoulou [35], which we explain in the introduction of Chapter 3 on ‘structured

cospans’.

2.2 Applications

In this section we present some examples of applications of decorated cospans which

have been studied in previous works [7, 8, 10, 12, 23].

2.2.1 Graphs

Our first example is the category of ‘open graphs’. This makes clear some difficulties

in Fong’s approach to decorated cospans—problems that will be solved using our double

8



category approach. Let (FinSet,+, 0) denote the category of finite sets and functions made

symmetric monoidal using coproducts. To apply Fong’s Theorem, we seek a symmetric lax

monoidal functor F : (FinSet,+, 0)→ (Set,×, 1) that assigns to a finite set N the set of all

graphs whose underlying set of vertices is N . So, we define a graph structure on N to be

a diagram in FinSet of the following form.

E N

s

t

Here E is the set of edges of the graph while s, t : E → N are the source and target

functions, respectively.

If we naively try to take F (N) to be the set of graph structures on N , we immediately

notice a problem: this is not a set, but rather a proper class. Fong [23] gets around this

by replacing FinSet with an equivalent small category, which by abuse of notation we shall

call FinSet. Using this small version of FinSet in the definition of graph structure, we see

that there is an actual set F (N) of graph structures on any N ∈ FinSet. Given a function

f : N → N ′ we define F (f) : F (N) → F (N ′) as follows. Given a graph structure on N ,

the function f induces a graph structure on N ′ if we demand that the following diagrams

commute:

E

N

N ′

E

N

N ′

f f

s

s′

t

t′

This results in a graph structure on N ′ given by s′, t′ : E → N ′ where s′ = fs and t′ = ft.

In other words, we are pushing forward the set E of edges along the function f in such

9



a way that sources and targets of edges are preserved. It is clear that this procedure is

associative and preserves identities, and thus defines a functor F : FinSet→ Set.

The next question is whether F is lax monoidal. For this, note that given a graph

structure d1 on a finite set N1 and a graph structure d2 on another finite set N2, there is a

graph structure d1 + d2 on N1 +N2, given by taking pointwise coproducts of the respective

graph structures on N1 and N2:

E1 + E2 N1 +N2

s1 + s2

t1 + t2

One can check that there is a natural transformation

µN1,N2 : F (N1)× F (N2)→ F (N1 +N2)

mapping (d1, d2) to d1 + d2, as one would expect if F were lax monoidal and µ were its

laxator. Note the non-invertibility of the maps µN1,N2 . For example, the figure below

shows two graphs d1 ∈ F (N1) and d2 ∈ F (N2) in black; taking them together we get

d1 + d2 ∈ F (N1 +N2). If we also include the red edge we obtain a graph that is not in the

image of the laxator µN1,N2 , but is a perfectly fine element of F (N1 +N2).

v1 v2

v3

w1 w2

w3 w4

Γ1 ∈ F (N1) Γ2 ∈ F (N2)

e′1

e′3 e′2

e′4

e1

e2e3
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We also have a morphism µ : 1→ F (∅) which is, in fact, an isomorphism as the empty graph

with no edges is the only possible graph structure on ∅. However, as pointed out by the

anonymous referee of Moeller and Vasilakopoulou’s paper [35], µ does not obey the hexagon

law required of a lax monoidal functor! We explain why at the start of Chapter 3. To fix

this, we can use Mac Lane’s Theorem to choose a small strict monoidal category equiva-

lent to (FinSet,+, 0)—that is, one for which the associator and unitors are identities. (See

Theorem 3.0.1 below.) Henceforth we use (FinSet,+, 0) to denote this small strict monoidal

category. Then we obtain the desired lax monoidal functor F : (FinSet,+, 0) → (Set,×, 1),

so we can apply Theorem 2.1.3 and get a monoidal category of decorated cospans. Unfor-

tunately, we cannot use Fong’s Theorem (Theorem 2.1.2) to make this category symmetric

monoidal, as there is no symmetric monoidal category equivalent to (FinSet,+, 0) for which

the symmetries are identities. By Theorem 2.1.3, we have the following:

Corollary 2.2.1. Let F : (FinSet,+, 0)→ (Set,×, 1) be the lax monoidal functor described

above which assigns to N ∈ FinSet set of all graph structures whose underlying set of vertices

is N . Then there exists a monoidal category FCospan which has:

(1) objects as those of (FinSet,+, 0) and

(2) morphisms as isomorphism classes of open graphs, where an open graph is given by

a pair of diagrams:

N

X Y

E N

s

t

i o

11



Two open graphs are in the same isomorphism class if the following diagrams com-

mute:
N

X Y

N ′

f ∼

i o

i′ o′

E

N

N ′

E

N

N ′

f f

s

s′

t

t′

for some isomorphism f . Composition and tensoring of objects and morphisms are

given as in Theorem 2.1.2.

Again we emphasize that in the above theorem we are using (FinSet,+, 0) to mean some

small strict monoidal category equivalent to the usual category of this name. For any object

N in this category, F (N) is the set of all graph structures on N defined using this equivalent

category. Thus, given graph structures on objects N1, N2 and N3:

E1 N1 E2 N2 E3 N3

s1

t1

s2

t2

s3

t3

the following two graph structures are equal:

E1 + (E2 + E3) N1 + (N2 +N3) (E1 + E2) + E3 N1 + (N2 +N3)

s1 + (s2 + s3)

t1 + (t2 + t3)

(s1 + s2) + s3

(t1 + t2) + t3

12



This strictification in the graph structures is necessary in order for the functor F of the

previous corollary to be lax monoidal. We will also employ this strictification of structures

in the following two applications.

2.2.2 Electrical circuits

The remaining two applications, while taking on more of an applied flavor, are struc-

turally very similar.

Definition 2.2.2. Given a field k, a field with positive elements is a pair (k, k+) where

k+ ⊂ k is a subset such that r2 ∈ k+ for every nonzero r ∈ k and such that k+ is closed

under addition, multiplication and division.

Definition 2.2.3. Let k be a field with positive elements. A k-graph is given by a diagram:

k+ E N

s

t

r

where r(e) ∈ k+ is the resistance along the edge e ∈ E.

Following the same ideas as in the previous example and using a small strict monoidally

equivalent copy of FinSet, we see there is a lax monoidal functor that assigns to any N ∈

FinSet the set of all k-graph structures on N . Thus, by Theorem 2.1.3, we have the following.

Theorem 2.2.4. Let F : (FinSet,+, 0) → (Set,×, 1) be the lax monoidal functor which

assigns to any N ∈ FinSet the set of all k-graph structures on N . Then there exists a

monoidal category FCospan which has:

(1) objects as those of (FinSet,+, 0) and

13



(2) morphisms as isomorphism classes of open k-graphs, where an open k-graph is given

by a pair of diagrams:

N

X Y

k+ E N
r

s

t

i o

Two open graphs are in the same isomorphism class if the following diagrams com-

mute:
N

X Y

N ′

f ∼

i o

i′ o′

k+ E E

N

N ′

E

N

N ′

f f

r s

s′r′

t

t′

for some isomorphism f . Composition and tensoring of objects and morphisms are

given as in Theorem 2.1.2.

An electrical circuit made of resistors can then be seen as a k-graph in which we take

the field k to be R and take k+ to consist of the positive real numbers. Baez and Fong

also consider more general circuits containing resistors, inductors and capacitors, using a

larger field with positive elements [7]. They study the behavior of these circuits using a

‘black-boxing’ functor from FCospan to a category of linear relations.

14



2.2.3 Petri nets

Our final example involves Petri nets, which have been studied extensively by Baez and

Master in a recent work [9].

Definition 2.2.5. A Petri net is given by the following diagram in Set.

T N[S]

s

t

We call S the set of species and T the set of transitions; N[S] stands for the free com-

mutative monoid on S.

In this example, we wish to use Fong’s Theorem with a functor F that assigns to each

set S the set F (S) of all Petri nets having S as their set of species. Unfortunately, if we

do this, F (S) is not a set: it is a proper class. To avoid this problem, we invoke the axiom

of universes and choose a Grothendieck universe U . We call sets in U small and arbitrary

sets large.

We let (Set,+, 0) be a strict monoidal category that is monoidally equivalent to the

category of small sets with coproduct as its monoidal structure. The category (Set,+, 0) is

a large category: more precisely, it is a category with a large set of objects and a large set

of morphisms. For any S ∈ (Set,+, 0), there is a large set F (S) of Petri nets having S as its

set of species and some T ∈ (Set,+, 0) as its set of transitions. We write (SET,×, 1) for the

category of large sets with product as its monoidal structure. We can make F : (Set,+, 0)→

(SET,×, 1) into a lax monoidal functor where the natural transformation

µS1,S2 : F (S1)× F (S2)→ F (S1 + S2)
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is obtained in the same way as the previous natural transformations in the last three exam-

ples, namely by considering two individual Petri nets in parallel as a single Petri net. By

Fong’s Theorem 2.1.3, we have the following.

Theorem 2.2.6. Let F : (Set,+, 0)→ (SET,×, 1) be the lax monoidal functor that assigns

to a set S the large set F (S) of all Petri nets whose set of species is given by the set S.

Then there exists a monoidal category FCospan which has:

(1) objects as those of (Set,+, 0) and

(2) morphisms as isomorphism classes of open Petri nets which are given by pairs of

diagrams:
S

X Y

T N(S)

s

t

i o

Two open Petri nets are in the same isomorphism class if the following diagrams

commute:
S

X Y

S′

f ∼

i o

i′ o′

T

N[S]

N[S′]

T

N[S]

N[S′]

N[f ] N[f ]

s

s′

t

t′

for some isomorphism f . Composition and tensoring of objects and morphisms is

given as in Theorem 2.1.2.
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Following ideas similar to those in the last two examples, Baez and Master study the

reachability relation of states of open Petri nets via black-boxing [9]. They in fact go further

and construct a ‘double category’ of open Petri nets and a corresponding black box double

functor which shows a certain compatibility relation between ‘maps of open Petri nets’ and

their black-boxings. Double categories are at the heart of this thesis and we will begin using

them in the next chapter.
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Chapter 3

Structured cospan double

categories

The present chapter is about a particular kind of double categories, namely ‘foot-replaced

double categories’. The first main result of this chapter is the construction of foot-replaced

double categories in Theorem 3.1.1 and the corresponding symmetric monoidal versions of

these in Theorem 3.1.2. The most important kind of foot-replaced double categories are the

‘structured cospan double categories’, which are the content of Theorem 3.2.3. In Section

3.3 we revisit the applications of Section 2.2, but from the perspective of structured cospans.

In Section 3.4 we define maps of foot-replaced double categories, of which maps between

structured cospan double categories are a special case. But first, let us explain the need for

some of these concepts. At this point it would be fruitful for readers unfamiliar with double

categories to read Appendix A.2.
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Recall the first example of Fong’s theory of decorated cospans introduced in the previous

chapter. Let F : FinSet→ Set be the symmetric lax monoidal functor that assigns to a finite

set b the (large) set of all possible graph structures on the finite set b, where a graph structure

on b is given by a diagram in Set of the form:

E b.

s

t

Let b = {v1, v2} be a two element set. Then one element of the (large) set F (b), which is

the collection of all graph structures on the finite set b, is given by a single edge e whose

source and target are v1 and v2, respectively.

v1 v2
e

Denote this element of F (b) as d : 1→ F (b). Let a1 = {1} and a2 = {2} and define functions

i : a1 → b and o : a2 → b by i(1) = v1 and o(2) = v2. Then we have an F -decorated cospan:

a1 b a2 1 F (b)
i o d

which is given by this open graph:

1 2

i o

v1 v2
e

There are some subtleties to this framework; consider two decorated cospans with the

same inputs and outputs.

a1 b a2 a1 b′ a2

1 F (b) 1 F (b′)

i o i′ o′

d d′
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For these two F -decorated cospans to be in the same isomorphism class, the following

triangle is to commute:

1

F (b)

F (b′)

d

d′

F (f)

This commutative triangle in Set in the context of the symmetric lax monoidal functor

F : FinSet→ Set says the following: given a decoration d ∈ F (b), which is a graph structure

with underlying set of vertices b, the function F (f) pushes forward the graph structure

d to the graph structure d′ ∈ F (b′) with underlying set of vertices b′, and precisely this

graph structure. The graph structure is given by the set of edges of d. For example, take

b = {v1, v2} as before and let d ∈ F (b) be given by:

1 2

i o

v1 v2
e

Let b′ = {w1, w2} and define a bijection f : b → b′ by f(vi) = wi for i = 1, 2. Then the

requirement F (f)(d) = d′ says that d′ ∈ F (b′) must be given by:

1 2

i′ o′

w1 w2
e

The important point is that the single edge of d′ must also be e. If we were to label it say,

e′, there is no bijection f : b → b′ such that the triangle above commutes, and hence no
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isomorphism between these two F -decorated cospans.

1

F (b)

F (b′)

1 2

i o

i′ o′

@F (f) ⇓

v1 v2

w1 w2

d

d′

@F (f)

e

e′

Thus, these two F -decorated cospans constitute distinct isomorphism classes! This nui-

sance is amplified when viewed from a higher categorical perspective, as seen in the first

attempt at building a bicategory of decorated cospans [18]. In the first proposed bicategory

FCospan(C), there is no 2-morphism from the former single-edged graph to the latter,

when clearly there ought to be. The theory of foot-replaced double categories serves to

remedy this situation. Again, for an introduction to double categories, see Appendix A.2.

Another obstacle with decorated cospans was pointed out by an anonymous referee of

Moeller and Vasilakopoulou [35]. For the original incarnation of decorated cospans, we

start with a symmetric lax monoidal functor F : (C,+, 0)→ (Set,×, 1) where C is a finitely

cocomplete category made symmetric monoidal with chosen binary coproducts and an initial

object. The anonymous referee has pointed out that even in the simplest of examples,

namely the example of open graphs in Section 2.2.1, the ‘laxator hexagon’ required to

commute in the definition of symmetric lax monoidal functor (Definition A.1.8) may do so

only up to isomorphism. This can be seen explicitly with the following example.
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Let F : (FinSet,+, 0) → (Set,×, 1) be the functor of Section 2.2.1. In order for F to

actually be a lax monoidal functor, the following laxator hexagon must commute:

(F (a)⊗ F (b))⊗ F (c) F (a)⊗ (F (b)⊗ F (c))

F (a⊗ b)⊗ F (c) F (a)⊗ F (b⊗ c)

F ((a⊗ b)⊗ c) F (a⊗ (b⊗ c))

α′

µa,b ⊗ 1F (c) 1F (a) ⊗ µb,c

µa⊗b,c µa,b⊗c
F (α)

Let a = {a1, a2}, b = {b1, b2} and c = {c1, c2} all be two-element sets, and let da ∈ F (a),

db ∈ F (b) and dc ∈ F (c) be given by the following graph structures:

a1 a2 b1 b2 c1 c2
ea eb ec

Then the graph (da×db)×dc ∈ (F (a)⊗F (b))⊗F (c) = (F (a)×F (b))×F (c) is an object of

the category given by the top left corner of the above hexagon. Starting from this top left

corner and traversing the object (da × db) × dc through the hexagon right and then down

to F (a ⊗ (b ⊗ c)) = F (a + (b + c)) results in a graph with vertex set a + (b + c) and edge

set {ea} + ({eb} + {ec}), whereas traversing the hexagon down and then right results in a

graph with the same vertex set a + (b + c) but now edge set ({ea} + {eb}) + {ec}. These

two graphs would visually appear to be the same and indeed have the same sets of vertices,

but their edge sets would only be (naturally) isomorphic, causing the above hexagon to not

commute on-the-nose as required by the definition of lax monoidal functor.

One remedy to this as suggested by John Baez is to replace the finitely cocomplete

category (FinSet,+, 0) containing our graph structures with an equivalent strictified version

courtesy of a theorem of Mac Lane:
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Theorem 3.0.1 (Mac Lane [34]). Given a (braided, symmetric) monoidal category C, there

exists a strict (braided, symmetric) monoidal category C′ and a (braided) monoidal equiva-

lence F : C→ C′.

A monoidal equivalence F is a functor that is simultaneously a monoidal functor and an

equivalence, and a strict (braided, symmetric) monoidal category is a (braided, symmetric)

monoidal category in which the associator and left and right unitors are identity morphisms.

By taking our graph structures from the strict monoidal category (FinSet,+, 0), the two

graphs each with vertex sets a + (b + c) and edge sets {ea} + ({eb} + {ec}) and ({ea} +

{eb}) + {ec} are now identified and thus the laxator hexagon commutes. A similar problem

arises with two unitality squares which is also resolved by this strictification, and thus we

obtain the lax monoidal functor F : (FinSet,+, 0)→ (Set,×, 1) of Section 2.2.1 and are able

to utilize Theorem 2.1.3. Unfortunately, we are unable to obtain the desired symmetric

monoidal category of Fong’s original Theorem 2.1.2. Structured cospans will also serve as

a remedy to this problem.

3.1 Foot-replaced double categories

The main content of this chapter are foot-replaced double categories as introduced in a

work with Baez [3]. A special case of foot-replaced double categories are given by structured

cospan double categories. A cospan in any category is diagram of the form:

b

a1 a2

i o
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We call b the apex of the cospan, i and o the legs of the cospan, and a1 and a2 the feet

of the cospan. In the framework of structured cospan double categories, given a functor

L : A→ X a structured cospan is a cospan in X of the form:

x

L(a1) L(a2)

i o

Formally, this is a cospan in X whose feet are objects of X, but from the perspective of

structured cospans, the feet of this cospan are the objects a1 and a2 in A. Here we are

replacing the feet of the cospan in X with objects from another category A, hence the name

‘foot-replaced double category’.

Theorem 3.1.1. Given a double category X and a functor L : A → X0, there is a unique

double category LX for which:

• an object is an object of A,

• a vertical 1-morphism is a morphism of A,

• a horizontal 1-cell from a to a′ is a horizontal 1-cell L(a)
M−→ L(a′) of X,

• a 2-morphism is a 2-morphism in X of the form:

L(a) L(b)

L(a′) L(b′),

⇓ α

M

L(f) L(g)

N

• composition of vertical 1-morphisms is composition in A,

• composition of horizontal 1-morphisms are defined as in X,
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• vertical and horizontal composition of 2-morphisms is defined as in X,

• the associator and unitors are defined as in X.

The proof is a straightforward verification using the definition of a double category, which

is Definition A.2.5. Throughout this thesis we use ‘double category’ to mean ‘pseudo double

category’: composition of horizontal 1-cells need not be strictly associative. However, if the

double category X is strict, so is the foot-replaced double category LX.

There is also a version of Theorem 3.1.1 for symmetric monoidal double categories.

Theorem 3.1.2. If X is a symmetric monoidal double category, A is a symmetric monoidal

category and L : A→ X0 is a (strong) symmetric monoidal functor, then the double category

LX becomes symmetric monoidal in a canonical way.

Proof. As noted in Definition A.2.5, every double category D has not only a category of

objects D0, but also a category of arrows D1 with horizontal 1-cells of D as objects and

2-morphisms of D as morphisms. The definition of a symmetric monoidal double category,

which is Definition A.2.13, can be expressed in terms of structure involving these categories.

For the double category LX, the category of objects LX0 is just A. The category of

arrows LX1 has horizontal 1-cells in X of this form:

L(a)
M−→ L(b)

as objects and diagrams in X of this form:

L(a) L(b)

L(a′) L(b′)

⇓ α

M

L(f) L(g)

N
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as morphisms, which are composed vertically.

As explained in Definition A.2.12, to make LX into a monoidal double category we need

to do the following:

(1) We must choose a monoidal structure for LX0 = A and for LX1. The category A is

monoidal by hypothesis; we give LX1 a monoidal structure using the fact that X1 and the

functor L are strong monoidal, as follows. Given two objects of LX1:

L(a1)
M−→ L(a2) L(b1)

N−→ L(b2)

their tensor product is

L(a1 ⊗ b1)
φ−1
a1,b1−−−−→ L(a1)⊗ L(b1)

M⊗N−−−−→ L(a2)⊗ L(b2)
φa2,b2−−−−→ L(a2 ⊗ b2),

defined using the laxator φa,b : L(a) ⊗ L(b) → L(a ⊗ b) for L. Note that φ is invertible

because L is strong monoidal. Given two morphisms of LX1:

L(a1) L(a2) L(b1) L(b2)

L(a′1) L(a′2) L(b′1) L(b′2)

⇓ α ⇓ β

M

L(f1) L(f2)

M ′

N

L(g1) L(g2)

N ′

their tensor product is defined to be

L(a1 ⊗ b1) L(a2 ⊗ b2)

L(a′1 ⊗ b′1) L(a′2 ⊗ b′2).

⇓ α⊗ β

φa2,b2 (M ⊗N)φ−1
a1,b1

L(f1 ⊗ g1) L(f2 ⊗ g2)

φa′
2
,b′

2
(M ′ ⊗N ′)φ−1

a′
1
,b′

1

The monoidal unit for LX1 is

L(I)
Û(L(I))−−−−−→ L(I) (3.1)
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where I is the monoidal unit for A and Û : X0 → X1 is the identity-assigning functor for

X. The associator and unitors for LX1 are built from those in X1. Explicitly, given three

horizontal 1-cells M,N and P in LX1:

L(a) L(a′) L(b) L(b′) L(c) L(c′)
M PN

the associator αM,N,P : (M ⊗N)⊗ P ∼−→M ⊗ (N ⊗ P ) in LX1 is given by:

L((a⊗ b)⊗ c) L((a′ ⊗ b′)⊗ c′)

L(a⊗ (b⊗ c)) L(a′ ⊗ (b′ ⊗ c′))

⇓ αM,N,P

φa′⊗b′,c′ (φa′,b′ ⊗ 1L(c′))((M ⊗N)⊗ P )(φ−1
a,b ⊗ 1L(c))φ

−1
a⊗b,c

L(αa,b,c) L(αa′,b′,c′ )

φa′,b′⊗c′ (1L(a′) ⊗ φb′,c′ )(M ⊗ (N ⊗ P ))(1L(a) ⊗ φ−1
b,c )φ−1

a,b⊗c

(2) Any double category D has an identity-assigning functor U : D0 → D1, and for D

to be monoidal we need U to preserve the monoidal unit. This is true for LX because

U : A→ LX1 maps any object a ∈ A to

L(a)
Û(L(a))−−−−−→ L(a),

so U maps the monoidal unit I ∈ A to the monoidal unit for LX1, given in Equation (3.1).

(3) In a monoidal double category D the source and target functors S, T : D1 → D0 must

be strict monoidal. For LX this is easy to check, given the monoidal structures defined in

item (1), because the source and target of an object

L(a)
M−→ L(b)

of LX1 are a ∈ LX0 and b ∈ LX0, respectively, and the source and target of a morphism

L(a) L(b)

L(a′) L(b′)

⇓ α

M

L(f) L(g)

N
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in LX1 are the morphisms f : a→ a′ and g : b→ b′ in LX0, respectively. We can choose the

images of the source and target functors to ensure that they are strict symmetric monoidal,

meaning that for two horizontal 1-cells M and N ,

S(M ⊗N) = a⊗ a′ = S(M)⊗ S(N)

and likewise for the target morphism T . The unit for the tensor product in LX1 is given in

Equation (3.1), and applying S or T we obtain I ∈ LX0.

(4) A globular 2-morphism in a double category D is a morphism α in D1 such that

Sα and Tα are identity morphisms in D0. In a monoidal double category D we must have

invertible globular 2-morphisms

χ : (M1 ⊗N1)� (M2 ⊗N2)
∼−→ (M1 �M2)⊗ (N1 �N2)

and

µ : UA⊗B
∼−→ (UA ⊗ UB)

expressing the compatiblity of the composition functor � : D1 ×D0 D1 → D1 and identity-

assigning functor U : D0 → D1 with the tensor product. These must make three diagrams

commute, as detailed in Definition A.2.12. In the case of LX this follows from the com-

mutativity of the corresponding diagrams in X together with the natural isomorphisms

given by the invertible laxators of the strong monoidal functor L : A→ X. Explicitly, given

composable horizontal 1-cells M1,M2, N1 and N2 in LX1:

L(a1) L(a2) L(b1) L(b2)

L(a2) L(a3) L(b2) L(b3)

M1

M2

N1

N2
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the globular 2-morphism χ for LX is given by:

L(a1 ⊗ b1) L(a1)⊗ L(b1) L(a3)⊗ L(b3)

L(a1)⊗ L(b1) L(a3)⊗ L(b3)

L(a3 ⊗ b3)

L(a1 ⊗ b1) L(a3 ⊗ b3)

⇓ χ

φ−1
a1,b1 φa3,b3

1 1

φ−1
a1,b1 φa3,b3

(M1 ⊗N1)� (M2 ⊗N2)

1 1

(M1 �M2)⊗ (N1 �N2)

where the middle χ in the above diagram in the corresponding globular 2-morphism for the

symmetric monoidal double category X and φai,bi : L(ai)⊗L(bi)→ L(ai⊗ bi) is the natural

isomorphism of the strong monoidal functor L : A → X0. Similarly, the other globular

2-morphism µ for LX is given by:

L(a⊗ b) L(a⊗ b)

L(a⊗ b) L(a⊗ b)

⇓ µ1 1

U(L(a⊗ b))

φa,b(U(L(a))⊗ U(L(b)))φ−1
a,b

(5) In a monoidal double category, the associator and left and right unitors must be

transformations of double categories. This means that six diagrams must commute, as

detailed in Definition A.2.12. In the case of LX this follows from the commuting of the

corresponding diagrams in X together with the natural isomorphisms given by the invertible

laxators of the strong monoidal functor L : A → X. For instance, one of the diagrams

required to commute is given by:

(M ⊗N)� Ua⊗b

M ⊗N

(M ⊗N)� (Ua ⊗ Ub)

(M � Ua)⊗ (N � Ub)

1� µ

ρ

ρ⊗ ρ

χ
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For the symmetric monoidal double category LX, this diagram may be seen as:

⇑ 1� µ

⇑ ρ

⇓ χ

⇓ ρ⊗ ρ

(M ⊗N)� (Ua ⊗ Ub)L(a⊗ b) L(a′ ⊗ b′)

(M ⊗N)� Ua⊗bL(a⊗ b) L(a′ ⊗ b′)

M ⊗NL(a⊗ b) L(a′ ⊗ b′)

(M � Ua)⊗ (N � Ub)L(a⊗ b) L(a′ ⊗ b′)

M ⊗NL(a⊗ b) L(a′ ⊗ b′)

ρ

1� u

χ

ρ⊗ ρ

φa′,b′ (M ⊗N)φ−1
a,bφa,b(U(L(a))⊗ U(L(b)))φ−1

a,b

φa′,b′ (M ⊗N)φ−1
a,bU(L(a⊗ b))

1 1

φa′,b′ (M ⊗N)φ−1
a,b

1 1

φa′,b′ ((M � U(L(a)))⊗ (N � U(L(b))))φ−1
a,b

1 1

φa′,b′ (M ⊗N)φ−1
a,b

1 1

Here we have ‘unrolled’ the diagram to make it fit on the page; the reader should identify

the objects at the top of the diagram with those at the bottom.

Similarly, a braided monoidal double category is a monoidal double category with the

following additional structure.

(6) D0 and D1 are braided monoidal categories.

(7) The functors S and T are strict braided monoidal (i.e. they preserve the braidings).

(8) The following diagrams commute, expressing that the braiding is a transformation

of double categories.

(M1 �M2)⊗ (N1 �N2)
s
//

χ

��

(N1 �N2)⊗ (M1 �M2)

χ

��

(M1 ⊗N1)� (M2 ⊗N2)
s�s
// (N1 ⊗M1)� (N2 ⊗M2)

UA ⊗ UB
µ
//

s

��

UA⊗B

Us

��

UB ⊗ UA µ
// UB⊗A

.
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These follow from the fact that X0 and X1 are braided monoidal categories and that the

corresponding functors S and T of X are strict braided monoidal and we can choose the

source and target functors of LX to agree with the braidings of LX0 and LX1, meaning that

β′(S(M ⊗N)) = β′(S(M)⊗ S(N)) = β′(a⊗ a′) = a′ ⊗ a = S(N ⊗M) = S(β(M ⊗N))

and likewise for the target morphism T . The above diagrams commute in LX as the cor-

responding diagrams commute in X and the laxators of the strong monoidal functor L are

invertible.

(9) D0 and D1 are symmetric monoidal categories.

This follows from the fact that A, X0 and X1 are symmetric monoidal categories. Ex-

plicitly, the triangle identity for LX1 is given by:

⇓ αM,1
LX1 ,N

⇑ r ⊗ 1N

⇓ 1M ⊗ `

M ⊗ (1⊗N)L(a⊗ (1A ⊗ b)) L(a′ ⊗ (1A ⊗ b′))

(M ⊗ 1)⊗NL((a⊗ 1A)⊗ b) L((a′ ⊗ 1A)⊗ b′)

M ⊗NL(a⊗ b) L(a′ ⊗ b′)

M ⊗NL(a⊗ b) L(a′ ⊗ b′)

r ⊗ 1N

αM,1
LX1 ,N

1M ⊗ `

φa′,1A⊗b′ (M ⊗ (φ1A,b
′ (1

LX1
⊗N)φ−1

1A,b
))φ−1

a,1A⊗b

φa′⊗1A,b
′ ((φa′,1A

(M ⊗ 1
LX1

)φ−1
a,1A

)⊗N)φ−1
a⊗1A,b

L(αa,1A,b) L(αa′,1A,b
′ )

φa′,b′ (M ⊗N)φ−1
a,b

L(r′ ⊗ 1b) L(r′ ⊗ 1b′ )

φa′,b′ (M ⊗N)φ−1
a,b

L(1a ⊗ `′) L(1a′ ⊗ `′)

Here we have again ‘unrolled’ the diagram to make it fit on the page; the objects at the top

of the diagram should be identified with those at the bottom.

Now for notation, let M,N,P and Q be horizontal 1-cells in LX given by:

L(a) L(a′) L(b) L(b′)

L(c) L(c′) L(d) L(d′)

M

P

N

Q
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As horizontal 1-cells of the symmetric monoidal double category X together with the asso-

ciator α̂ of X, the following pentagon commutes:

((M ⊗N)⊗ P )⊗Q

(M ⊗ (N ⊗ P ))⊗Q

M ⊗ ((N ⊗ P )⊗Q)

(M ⊗N)⊗ (P ⊗Q) M ⊗ (N ⊗ (P ⊗Q))

α̂M,N,P⊗1Q α̂M,N⊗P,Q

α̂M⊗N,P,Q

α̂M,N,P⊗Q

1M⊗α̂N,P,Q

Unrolling the pentagon identity for LX1, we obtain the following diagram:

⇓ αM,N,P ⊗ 1Q

⇑ αM⊗N,P,Q

⇓ αM,N⊗P,Q

⇓ 1M ⊗ αN,P,Q

⇑ αM,N,P⊗Q

L((a⊗(b⊗c))⊗d) L((a′⊗(b′⊗c′))⊗d′)

L(((a⊗b)⊗c)⊗d) L(((a′⊗b′)⊗c′)⊗d′)

L((a⊗b)⊗(c⊗d)) L((a′⊗b′)⊗(c′⊗d′))

L(a⊗((b⊗c)⊗d)) L(a′⊗((b′⊗c′)⊗d′))

L(a⊗(b⊗(c⊗d))) L(a′⊗(b′⊗(c′⊗d′)))

L(a′⊗(b′⊗(c′⊗d′)))L(a⊗(b⊗(c⊗d)))

L(αa,b,c⊗d) L(αa′,b′,c′⊗d′ )

(φ
a′,b′⊗(c′⊗d′))(1L(a′)⊗φb′,c′⊗d′ )(1L(a′)⊗(1

L(b′)⊗φc′⊗d′ ))(M⊗(N⊗(P⊗Q)))(1L(a)⊗(1L(b)⊗φ
−1
c,d

))(1L(a)⊗φ
−1
b,c⊗d)(φ

−1
a,b⊗(c⊗d))

(φ
a′⊗(b′⊗c′),d′ )(φa′,b′⊗c′⊗1

L(d′))((1L(a′)⊗φb′,c′ )⊗1
L(d′))((M⊗(N⊗P ))⊗Q)((1L(a)⊗φ

−1
b,c

)⊗1L(d))(φ
−1
a,b⊗c⊗1L(d))(φ

−1
a⊗(b⊗c),d)

(φ
(a′⊗b′)⊗c′,d′ )(φa′⊗b′,c′⊗1

L(d′))((φa′,b′⊗1
L(c′))⊗1

L(d′))(((M⊗N)⊗P )⊗Q)((φ
−1
a,b
⊗1L(c))⊗1L(d))⊗(φ

−1
a⊗b,c⊗1L(d))(φ

−1
(a⊗b)⊗c,d)

L(αa,b,c ⊗ 1d) L(αa′,b′,c′ ⊗ 1d′ )

(φ
a′⊗b′,c′⊗d′ )(φa′,b′⊗φc′,d′ )((M⊗N)⊗(P⊗Q))(φ

−1
a,b
⊗φ−1

c,d
)(φ
−1
a⊗b,c⊗d)

L(αa⊗b,c,d) L(αa′⊗b′,c′,d′ )

(φ
a′,(b′⊗c′)⊗d′ )(1L(a′)⊗φb′⊗c′,d′ )(1L(a′)⊗(φ

b′,c′⊗1
L(d′)))(M⊗((N⊗P )⊗Q))(1L(a)⊗(φ

−1
b,c
⊗1L(d)))(1L(a)⊗φ

−1
b⊗c,d)(φ

−1
a,(b⊗c)⊗d)

L(αa,b⊗c,d) L(αa′,b′⊗c′,d′ )

(φ
a′,b′⊗(c′⊗d′))(1L(a′)⊗φb′,c′⊗d′ )(1L(a′)⊗(1

L(b′)⊗φc′⊗d′ ))(M⊗(N⊗(P⊗Q)))(1L(a)⊗(1L(b)⊗φ
−1
c,d

))(1L(a)⊗φ
−1
b,c⊗d)(φ

−1
a,b⊗(c⊗d))

L(1a ⊗ αb,c,d) L(1a′ ⊗ αb′,c′,d′ )

in which the top and the bottom tensor products of horizontal 1-cells coincide. The red is

to highlight that the pentagon identity of X1 is nested within the pentagon identity of LX1,

and likewise for the triangle identity on the previous page, although that one we have not

colored.
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3.2 Structured cospan double categories

The most important example of a double category in this thesis is given by Csp(X) for

some category X with pushouts. This double category has:

(1) objects as those of X,

(2) vertical 1-morphisms as morphisms of X,

(3) horizontal 1-cells as cospans in X, and

(4) 2-morphisms as maps of cospans in X given by commutative diagrams of the form:

x yz

x′ y′z′

o

f hg

i

i′ o′

That Csp(X) is indeed a double category when X is a category with pushouts was shown

by Niefield [32]; see also [18]. This also follows from Theorem 4.1.1 when the decorations

are taken to be trivial—see Corollary 4.1.2.

Theorem 3.2.1. Let L : A → X be a functor where X is a category with pushouts. Then

there exists a double category LCsp(X) for which:

• an object is an object of A,

• a vertical 1-morphism is a morphism of A,

• a horizontal 1-cell from a to b is an L-structured cospan, meaning a cospan in X

of the form:

L(a) x L(b)
i o
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• a 2-morphism is a map of L-structured cospans, meaning a commutative diagram

in X of this form:

L(a) L(b)x

L(a′) L(b′)x′

o

L(α) L(β)f

i

i′ o′

• composition of vertical 1-morphisms is morphism composition in A,

• composition of horizontal 1-cells is done using chosen pushouts in X:

L(a)

x

L(b)

y

L(c)

x+L(b) y

i1 o1 i2 o2

jx jy

where jx and jy are the canonical morphisms from x and y into the pushout,

• the horizontal composite of two 2-morphisms:

L(a) x L(b)

L(a′) x′ L(b′)

L(b) y L(c)

L(b′) y′ L(c′)

i1

i′1 o′1

o1

L(α) L(β)f

i2 o2

L(β)

i′2 o′2

L(γ)g

is given by

L(a) x+L(b) y L(c)

L(a′) x′ +L(b′) y
′ L(c′).

L(α) L(γ)f +L(β) g

jxi1 jyo2

jx′ i
′
1 jy′o

′
2
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• The vertical composite of two 2-morphisms:

L(a) y L(b)

L(a′) y′ L(b′)

L(α) L(β)f

i o

i′ o′

L(a′) y′ L(b′)

L(a′′) y′′ L(b′′)

L(α′) L(β′)f ′

i′ o′

i′′ o′′

is given by

L(a) y L(b)

L(a′′) y′′ L(b′′).

L(α′α) L(β′β)f ′f

i o

i′′ o′′

• The associator and unitors are defined using the universal property of pushouts.

Proof. We apply Theorem 3.1.1 to the double category Csp(X).

If the category X has not only pushouts but also finite colimits, meaning pushouts and

an initial object which will serve as the unit object for tensoring, then the aforementioned

double category Csp(X) is in fact symmetric monoidal.

Corollary 3.2.2. Given a category X with finite colimits, the double category Csp(X) is

symmetric monoidal with the monoidal structure given by chosen coproducts in X. Thus:

• the tensor product of two objects x1 and x2 is x1 + x2,

• the tensor product of two vertical 1-morphisms is given by

x

y

x′

y′

x+ x′

y + y′

⊗ =f f ′ f + f ′
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• the tensor product of two horizontal 1-cells is given by

x

y

z

⊗

x′

y′

z′

=

x+ x′

y + y′

z + z′,

i o i′ o′ i+ i′ o+ o′

• the tensor product of two 2-morphisms is given by

x1 z1y1

x2 z2y2

x′1 z′1y′1

x′2 z′2y′2

⊗

x1 + x′1 z1 + z′1y1 + y′1

x2 + x′2 z2 + z′2,y2 + y′2

=

o1

f hg

i1

i2 o2

o′1

f ′ h′g′

i′1

i′2 o′2

o1 + o′1

f + f ′ h+ h′g + g′

i1 + i′1

i2 + i′2 o2 + o′2

• The unit for the tensor product is a chosen initial object of X,

• The symmetry for any two objects x and y is defined using the canonical isomorphism

x+ y ∼= y + x.

Proof. This is just a special case of Theorem 4.1.3 where, as in Corollary 4.1.2, each F -

decorated cospan is once again equipped with the trivial decoration.

We then have the following symmetric monoidal double category of structured cospans,

the primary result of the aforementioned work [3].

Theorem 3.2.3. Let L : A → X be a functor preserving finite coproducts, where A has

finite coproducts and X has finite colimits. Then the double category LCsp(X) is symmetric

monoidal with the monoidal structure given by chosen coproducts in A and X. Thus:
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(1) the tensor product of two objects a1 and a2 is a1 + a2,

(2) the tensor product of two vertical 1-morphisms is given by

a1

b1

a2

b2

a1 ⊗ a2

b1 ⊗ b2

⊗ =f1 f2 f1 + f2

(3) the tensor product of two horizontal 1-cells is given by

L(a)

x

L(b)

⊗

L(a′)

x′

L(b′)

=

L(a+ a′)

x+ x′

L(b+ b′)

i o i′ o′ (i+ i′)φ (o+ o′)φ

where the feet use the tensor product of A and the legs and apices use the tensor

product of X and invertible laxators of L, and likewise

(4) the tensor product of two 2-morphisms is given by:

L(a1) L(b1)x1

L(a2) L(b2)x2

L(a′1) L(b′1)x′1

L(a′2) L(b′2)x′2

⊗

L(a1 + a′1) L(b1 + b′1)x1 + x′1

L(a2 + a′2) L(b2 + b′2)x2 + x′2

=

o1

L(f) L(g)α

i1

i2 o2

o′1

L(f ′) L(g′)α′

i′1

i′2 o′2

(o1 + o′1)φ

L(f + f ′) L(g + g′)α+ α′

(i1 + i′1)φ

(i2 + i′2)φ (o2 + o′2)φ

The unit for the tensor product is the initial object of X which is isomorphic to the image

of the unit object of A under the functor L, and the symmetry for any two objects a and b

is defined using the canonical isomorphism a+ b ∼= b+ a.
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Theorem 3.2.3 is one of the main results on structured cospans in a joint work with Baez

[3]. The method of proof used there however is different from the more direct approach taken

here in this thesis. The word ‘rex’ is a standard abbreviation of ‘right exact’, which means

finitely cocontinuous, i.e., preserving finite colimits. Denoting by Rex the 2-category of

finitely cocomplete categories, finitely cocontinuous functors and natural transformations,

it is shown that if A ∈ Rex, then Csp(A) is a ‘pseudocategory object’ in Rex—see Definition

A.2.2. A morphism L : A → X then yields the above symmetric monoidal double category

LCsp(X) being realized as a pseudocategory object in Rex. Denoting by SymMonCat

the 2-category of symmetric monoidal categories, (strong) symmetric monoidal functors and

monoidal natural transformations, there exists a 2-functor Φ: Rex→ SymMonCat which

turns a finitely cocomplete category into a symmetric monoidal category by prescription of

chosen binary coproducts for every pair of objects to serve as their tensor product and a

chosen initial object to serve as the monoidal unit. The rest of the symmetric monoidal

structure is then induced by these choices. This 2-functor Φ preserves the necessary pull-

backs and applying this 2-functor Φ to LCsp(X) then results in Φ(LCsp(X)) as a pseudo-

category object in SymMonCat. A pseudocategory object in the 2-category Cat is the

same as a double category. A pseudocategory object in SymMonCat is almost the same

as a symmetric monoidal double category, but not quite, because the source and target

functors S and T are not required to be strict symmetric monoidal functors. Luckily, an

easy verification shows that that this is indeed the case for Φ(LCsp(X)), so it is a symmetric

monoidal double category.
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Analogous comments also apply for maps between structured cospan double categories,

which are given by weakly commuting squares in Rex:

A X

A′ X′

α ⇒

L

F0 F1

L′

Assuming L : A → X is a morphism in Rex is stronger than the hypothesis used in

Theorem 3.2.3, but this simplifies many proofs and also produces stronger results: not

only can we tensor and compose structured cospans as we can in an ordinary symmetric

monoidal double category of structured cospans, but we can even take finite colimits of

structured cospans, themselves. This is not the case for the symmetric monoidal double

category LCsp(X) of Theorem 3.2.3 due to A only being required to have finite coproducts

and only requiring finite coproducts be preserved by L.

A well-known result regarding adjoints is the following.

Proposition 3.2.4. Every left adjoint L : A → X preserves all colimits and every right

adjoint R : X→ A preserves all limits.

The following is a particularly useful result on structured cospan double categories.

Corollary 3.2.5. Let L : A→ X be a left adjoint between two categories A and X with finite

colimits. Then the double category LCsp(X) is symmetric monoidal with the monoidal

structure given as in Theorem 3.2.3.

The examples we present of structured cospan double categories, which are to be seen as

improvements of the corresponding examples of decorated cospans of the previous chapter,
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will be applications of the above corollary. Another application may be found in the work of

Cicala [15] who uses structured cospan double categories to study rewrite rules in a topos.

3.3 Applications

3.3.1 Graphs

Definition 3.3.1. Let FinGraph be the category whose objects are finite graphs, which are

diagrams in FinSet of the form:

E N

s

t

and whose morphisms are given by pairs of functions (f, g) such that the following two

squares commute:

E

E′

N

N ′

E

E′

N

N ′

f f

s

s′

g g

t

t′

Define a functor L : FinSet→ FinGraph where given a set N , L(N) is the discrete graph

on N (with no edges) and given a function f : N → N ′, L(f) : L(N)→ L(N ′) is the graph

morphism that takes vertices of L(N) to L(N ′) as prescribed by the function f . This functor

L preserves finite coproducts as it is left adjoint to the forgetful functor R : FinGraph →

FinSet that takes a graph (E,N, s, t) where N and E are finite to its underlying set of

vertices N . The categories FinSet and FinGraph both have finite colimits. By Corollary

3.2.5, we have the following.
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Theorem 3.3.2. Let L : FinSet → FinGraph be the left adjoint defined above. Then there

exists a symmetric monoidal double category LCsp(FinGraph) which has:

(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) open graphs which are cospans of graphs of the form

L(a) x L(b)

as horizontal 1-cells, and

(4) maps of open graphs which are maps of cospans of graphs as 2-morphisms, as in

the following commutative diagram:

L(a) L(b)x

L(a′) L(b′)y

L(f) L(g)h

3.3.2 Electrical circuits

Recall from Section 2.2.2 that given a field k, a field with positive elements is a pair

(k, k+) where k+ ⊂ k is a subset such that r2 ∈ k+ for every nonzero r ∈ k and such that

k+ is closed under addition, multiplication and division. A recent work of Baez and Fong

[7] studies k-graphs where a k-graph Γ is given by a diagram in Set of the form:

k+ E N
r

s

t

where E and N are finite sets. Here k is a field with positive elements and the finite sets E

and N denote the sets of edges and nodes, respectively, of the k-graph Γ. An open k-graph
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is then given by a cospan of finite sets:

a N b
i o

where the apex N is decorated with a k-graph as above. Fong and Baez use the decorated

cospan machinery of Fong to construct a monoidal category FCospan from a lax monoidal

functor F : FinSet→ Set. This functor F is defined on objects by:

N 7→ {k+ E N}
r

s

t

and on morphisms by

N

N ′

7→ k+ E E

N

N ′

E

N

N ′

f f f

r s

s′r′

t

t′

To fit the above construction into the framework of structured cospans, first we define a

category FinGraphk whose objects are given by finite k-graphs:

k+ E N
r

s

t

and a morphism from this k-graph to another:

k+ E′ N ′
r′

s′

t′

consists of a pair of functions f : N → N ′ and g : E → E′ such that the following diagrams

commute:

k+

E

E′

E

E′

N

N ′

E

E′

N

N ′

f f

r

s

s′
r′

g g g

t

t′
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Next, we define a left adjoint L : FinSet→ FinGraphk which is defined on sets by:

N 7→ k+ ∅ N
r

s

t

and on morphisms by:

N

N ′

7→ k+

∅

∅

N

N ′

f f

r

s

t

r′

!
s′

t′

Lemma 3.3.3. The functor L : FinSet → FinGraphk defined above is left adjoint to the

forgetful functor R : FinGraphk → FinSet.

Proof. The functor L : FinSet→ FinGraphk has a right adjoint given by the forgetful functor

R : FinGraphk → FinSet which maps a finite k-graph

k+ E N
r

s

t

to its underlying vertex set N . We then have a natural isomorphism homFinGraphk(L(c), d) ∼=

homFinSet(c,R(d)).

Lemma 3.3.4. The category FinGraphk has finite colimits.

Proof. The category FinGraphk has an initial object given by the empty k-graph as well as

pushouts given by taking the pushout of the underlying span of finite graphs which is done

pointwise.

Theorem 3.3.5. Let L : FinSet → FinGraphk be the left adjoint as described above. Then

there exists a symmetric monoidal double category LCsp(FinGraphk) which has:
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(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) open k-graphs: that is, cospans of finite sets where the apex is equipped with a

k-graph

L(a) N L(b)
i o

k+ E N
r

s

t

as horizontal 1-cells, and

(4) maps of cospans of finite sets equipped with a map of k-graphs

L(a) N L(b)

L(a′) N ′ L(b′)

i o

i′ o′

L(h1) L(h2)f

k+

E

E′

E

E′

N

N ′

E

E′

N

N ′

f f

r

s

s′
r′

g g g

t

t′

as 2-morphisms.

Proof. As FinGraphk has finite colimits, we get a symmetric monoidal double category

Csp(FinGraphk) and hence a symmetric monoidal structured cospan double category

LCsp(FinGraphk).

3.3.3 Petri nets

For the last example, Baez and Pollard have constructed a black-boxing functor

� : Dynam → SemiAlgRel [10]. Here, Dynam is a symmetric monoidal category of ‘open
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dynamical systems’ and SemiAlgRel is a symmetric monoidal category of ‘semialgebraic re-

lations’. A particular kind of dynamical system is given by a Petri net with rates. Petri

nets have also been studied extensively by Baez and Master [9] in the context of double

categories and double functors.

Recall that a Petri net consists of a set S of species, a set T of transitions and functions

s, t : S × T → N. For a species σ ∈ S and a transition τ ∈ T , s(σ, τ) is the number of times

the species σ appears as an input for the transition τ and t(σ, τ) is the number of times the

species σ appears as an output for the transition τ .

Definition 3.3.6. A Petri net with rates is a Petri net with finite sets of species and

transitions together with a function r : T → [0,∞) where r(τ) is the rate of the transition

τ .

We can also say that a Petri net with rates is a diagram of the form:

[0,∞) T N[S]
r

s

t

where S and T are finite sets and N[S] is the free commutative monoid on S. An open Petri

net with rates is then given by a cospan of finite sets whose apex is equipped with a Petri

net with rates.

X S Y [0,∞) T N[S]
r

s

t

i o
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A map of Petri nets with rates is given by a pair of functions f : S → S′ and g : T → T ′

which make the following diagrams commute:

[0,∞)

T

T ′

T

T

N[S]

N[S′]

T

T ′

N[S]

N[S′]

N[f ] N[f ]

r
s

s′
r′

g g g

t

t′

Two Petri nets with rates are then in the same isomorphism class if the following diagrams

commute:

X

S

S′

Y

i

i′

f

o

o′

∼

[0,∞) T T

N[S]

N[S′]

T

N[S]

N[S′]

N[f ] N[f ]

r s

s′r′

t

t′

for some isomorphism f . Define a functor L : FinSet → Petrirates where for a finite set S,

L(S) is the discrete Petri net with rates with S as its set of species and no transitions. In

other words,

S 7→ [0,∞) ∅ N[S]
r

s

t

Lemma 3.3.7. The functor L : FinSet → Petrirates defined above is left adjoint to the for-

getful functor R : Petrirates → FinSet.

Proof. This is similar as to why the functors used in the previous two applications are also

left adjoints.
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Lemma 3.3.8. The category Petrirates has finite colimits.

Proof. This is similar to the proof of Lemma 3.3.4 — the category Petrirates has pushouts

and an initial object.

Theorem 3.3.9. Let L : FinSet→ Petrirates be the left adjoint described above. Then there

exists a symmetric monoidal double category LCsp(Petrirates) which has:

(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) cospans of sets whose apices are equipped with the stuff of a Petri net with rates as

horizontal 1-cells, and

(4) maps of cospans as above as 2-morphisms, as in the following commutative diagrams.

L(a) L(b)S

L(a′) L(b′)S′

o

L(h1) L(h2)f

i

i′ o′

[0,∞)

T

T ′

T

T

N[S]

N[S′]

T

T ′

N[S]

N[S′]

N[f ] N[f ]

r
s

s′
r′

g g g

t

t′

Proof. This follows from Corollary 3.2.5, Theorem 3.3.7 and Lemma 3.3.8.
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3.4 Maps of foot-replaced double categories

In this section we define maps between foot-replaced double categories. In Theorem

3.1.1 we showed how to construct a foot-replaced double category LX starting from a pair

(X, L : A→ X0)

where X is a double category and L : A → X0 is a functor that maps the category A,

which contains the objects and morphisms of the foot-replaced double category LX, into

the category of objects X0 of the double category X. Suppose that we have two foot-replaced

double categories: LX obtained from a pair (X, L : A→ X0) and L′X′ obtained from a pair

(X′, L′ : A′ → X′0). Then we can construct a map from LX to L′X′ given a functor F : A→ A′

together with a double functor F : X→ X′ such that the following diagram commutes up to

a specified isomorphism θ:

A X0

A′ X′0

⇒
θ

L

F F0

L′

In the case where LX and L′X′ are symmetric monoidal and we wish to construct a symmetric

monoidal double functor between them, we will then require that both the functor F and

double functor F be symmetric monoidal, and that θ be monoidal as well. (For the definition

of ‘symmetric monoidal double functor’, see Definition A.2.14, and for the definition of

‘monoidal transformation’, see Definition A.1.11.)

Theorem 3.4.1. Let LX and L′X′ be two foot-replaced double categories. Given a functor

F : A → A′ and a double functor F : X → X′ such that the following diagram commutes up
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to isomorphism:

A X0

A′ X′0

⇒
θ

L

F F0

L′

the triple (F,F, θ) results in a double functor FF : LX→ L′X′. This double functor FF maps

objects, vertical 1-morphisms, horizontal 1-cells and 2-morphisms as follows:

(1) Objects:

a 7→ F (a)

(2) Vertical 1-morphisms:

a

7→

F (a)

a′ F (a′)

f F (f)

(3) Horizontal 1-cells:

L(a) L(b)

L′(F (a)) ∼= F0(L(a)) F0(L(b)) ∼= L′(F (b))

7→

M

θbF1(M)θ−1
a

(4) 2-morphisms:

L(a) F0(L(a))L′(F (a))

L′(F (a′))

L′(F (b))

L′(F (b′))

F0(L(b))

F0(L(a′)) F0(L(b′))

7→ ⇓ F1(α)

L(b)

L(a′) L(b′)

⇓ α L′(F (f)) L′(F (g))

θ−1
a

θ−1
a′

θb

θb′

M

L(f) L(g)

N

F1(M)

F0(L(f)) F0(L(g))

F1(N)
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Proof. We will show that from the triple (F,F, θ) we can produce a double functor FF : LX→

L′X′. This means that we must have

FF0 = F : LX0 → L′X′0

and

FF1 : LX1 → L′X′1

such that the following diagrams commute:

LX1 LX1 L′X′1

LX0 L′X′0

L′X′1

LX0 L′X′0

F F1

S S′

F

F F1

T T ′

F

where S, T and S′, T ′ are the source and target functors of the double categories LX and

L′X′, respectively, together with natural transformations

FF� : FF(M)� FF(N)→ FF(M �N)

for every pair of composable horizontal 1-cells M and N of LX and a natural transformation

FFU : U ′F (a) → FF(Ua)

for every object a ∈ LX that satisfy the standard coherence axioms of a monoidal category

given by the laxator hexagon and unitality squares.

The functors FF0 = F and FF1 are defined as in the statement of the theorem. To

see that the above squares commute, if we focus on the left one, starting at the upper left

corner, for an object of LX1 which is given by a horizontal 1-cell, we have going right that:

L(a) L(b)

L′(F (a)) ∼= F0(L(a)) F0(L(b)) ∼= L′(F (b))

7→

M

θbF1(M)θ−1
a
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and then going down yields source F (a). If we go down and then right, we get that the

source of the top horizontal 1-cell is the object a which then maps to F (a) under the double

functor FF. A morphism in LX1 is given by a 2-morphism of the form

L(a) L(b)

L(a′) L(b′)

⇓ α

M

L(f) L(g)

M ′

so, again focusing on the left square, going right gives

L′(F (a)) L′(F (b))

L′(F (a′)) L′(F (b′))

⇓ θgF1(α)θ−1
f

θbF1(M)θ−1
a

L′(F (f)) L′(F (g))

θb′F1(N)θ−1
a′

and then going down yields source F (f). On the other hand, going down we get that the

source of the original 2-morphism is f which then maps to F (f) under the double functor

FF, and so the left square commutes. The right square is analogous.

That FF is functorial on vertical 1-morphisms is clear, as the pair FF acts as the func-

tor F : A → A′ on objects and vertical 1-morphisms. Given two vertically composable

2-morphisms in LX:

L(a)

L(a′) L(b′)

L(a′′) L(b′′)

⇓ β

L(b)

L(a′) L(b′)

⇓ α

M

L(f) L(g)

M ′

M ′

L(f ′) L(g′)

M ′′
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we wish to show that FF1 is functorial. If we first compose the above two 2-morphisms in

LX, we get:

L(a) L(b)

L(a′′) L(b′′)

⇓ βα

M

L(f ′f) L(g′g)

M ′′

and then the image of this 2-morphism under FF1 is given by:

L′(F (a)) L′(F (b))

L′(F (a′′)) L′(F (b′′))

⇓ θg′gF1(βα)θ−1
f ′f

θbF1(M)θ−1
a

L′(F (f ′f)) L′(F (g′g))

θb′′F1(M ′′)θ−1
a′′

On the other hand, if we first map over the two 2-morphisms, we get

L′(F (a)) L′(F (b))

L′(F (a′)) L′(F (b′))

⇓ θgF1(α)θ−1
f

θbF1(M)θ−1
a

L′(F (f)) L′(F (g))

θb′F1(M ′)θ−1
a′

L′(F (a′)) L′(F (b′))

L′(F (a′′)) L′(F (b′′))

⇓ θg′F1(β)θ−1
f ′

θb′F1(M ′)θ−1
a′

L′(F (f ′)) L′(F (g′))

θb′′F1(M ′′)θ−1
a′′

and then composing these in L′X′ yields

L′(F (a)) L′(F (b))

L′(F (a′′)) L′(F (b′′))

⇓ θg′gF1(βα)θ−1
f ′f

θbF1(M)θ−1
a

L′(F (f ′f)) L′(F (g′g))

θb′′F1(M ′′)θ−1
a′′

52



by the functoriality of F0 = F,F1 and L′.

Now let M and N be two composable horizontal 1-cells in LX given by:

L(a) L(b) L(b) L(c)
M N

We then have a natural transformation

FFM,N : FF(M)� FF(N)→ FF(M �N)

given by:

L′(F (a)) L′(F (b)) L′(F (c))

L′(F (a)) L′(F (c))

⇓ FFM,N := FM,N ◦ �X′1 1

θbF1(M)θ−1
a

θcF1(M �N)θ−1
a

θcF1(N)θ−1
b

and for any object a, a natural transformation

FFa : U ′
F F(a) → FF(Ua)

given by:

L′(F (a)) L′(F (a))

F0(L(a))F0(L(a))

⇓ Fa

L′(F (a))

L′(F (a))

L′(F (a))

L′(F (a))

1

1

θa

1

1

θ−1
a

U ′
F (a)

θ−1
a

F1(Ua)

θ−1
a

The double functor FF is pseudo, lax or oplax depending on whether the double functor F

is pseudo, lax or oplax, respectively.

If both F : A → A′ and F : X → X′ are (strong) symmetric monoidal and θ : F0L : L′F

a monoidal natural isomorphism, then FF : LX → L′X′ is a (strong) symmetric monoidal

double functor.
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Theorem 3.4.2. Let LX and L′X′ be symmetric monoidal foot-replaced double categories

obtained from pairs (X, L : A→ X0) and (X′, L′ : A′ → X′0), respectively, via Theorem 3.1.2.

If FF : LX→ L′X′ is a foot-replaced double functor obtained from a square

A X0

A′ X′0

⇒
θ

L

F F0

L′

as in Theorem 3.4.1 with θ monoidal and F and F (strong) symmetric monoidal, then FF

is a (strong) symmetric monoidal double functor of foot-replaced double categories.

Proof. Since the functor F : A→ A′ is symmetric monoidal, for every pair of objects a and

b of A, we have a natural transformation

µa,b : F (a)⊗ F (b)→ F (a⊗ b)

together with a morphism

ε : 1
L′X′ → F (1

LX)

where the unit object of L′X′ is given by 1
L′X′ = 1A′ ∼= F (1A) and the unit object of LX is

given by 1
LX = 1A. These together make the following diagrams commute for every triple

of objects a, b, c of LX, which are just objects of A. Note that the object component of the

double functor FF is just FF0 = F .

(F (a)⊗ F (b))⊗ F (c)
α′
//

µa,b⊗1

��

F (a)⊗ (F (b)⊗ F (c))

1⊗µb,c
��

F (a⊗ b)⊗ F (c)

µa⊗b,c
��

F (a)⊗ F (b⊗ c)
µa,b⊗c
��

F ((a⊗ b)⊗ c) Fα
// F (a⊗ (b⊗ c))
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F (a)⊗ 1
L′X′ F (a)

F (a)⊗ F (1LX) F (a⊗ 1LX)

1
L′X′ ⊗ F (a)

F (1LX)⊗ F (a)

F (a)

F (1LX ⊗ a)

1⊗ ε F (ra)

rF (a)

µa,1
LX

ε⊗ 1

µ1
LX,a

`F (a)

F (`a)

Moreover, the following diagram commutes where by an abuse of notation, we denote the

braidings in both categories A and A′ as β.

F (a)⊗ F (b) F (b)⊗ F (a)

F (a⊗ b) F (b⊗ a)

µa,b µb,a

βF (a),F (b)

F (βa,b)

The double functor F : X→ X′ is also symmetric monoidal, which means that for every pair

of horizontal 1-cells M and N , we have a natural transformation

FM,N : F(M)⊗ F(N)→ F(M ⊗N)

and a morphism

δ : U1A′ → F(U1A)

which satisfy the usual axioms. From these, we can construct the corresponding transfor-

mations for FF. Given horizontal 1-cells M and M ′ in LX:

L(a) L(b) L(a′) L(b′)
M M ′

their images FF(M) and FF(M ′) are given by:

L′(F (a)) L′(F (b)) L′(F (a′)) L′(F (b′))
θbF1(M)θ−1

a θb′F1(M ′)θ−1
a′

and their tensor product FF(M)⊗ FF(M ′) is given by:

L′(F (a)⊗ F (a′)) L′(F (b)⊗ F (b′))
σF (b),F (b′)(θbF1(M)θ−1

a ⊗ θb′F1(M ′)θ−1
a′ )σ−1

F (a),F (a′)
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where σF (a),F (a′) : L′(F (a)) ⊗ L′(F (a′)) → L′(F (a) ⊗ F (a′)) is the natural isomorphism

coming from the (strong) symmetric monoidal functor L′ : A′ → X0
′, σ′a,a′ : L(a)⊗ L(a′)→

L(a⊗a′) is the natural isomorphism coming from the (strong) symmetric monoidal functor

L : A → X0, and µ′x,y : F0(x)⊗ F0(y) → F0(x⊗ y) is the natural isomorphism coming from

the (strong) symmetric monoidal functor F0 : X0 → X′0. On the other hand, M ⊗M ′ is

given by:

L(a⊗ a′) L(b⊗ b′)
µb⊗b′ (M ⊗M ′)µ−1

a⊗a′

and the image FF(M ⊗M ′) is given by:

L′(F (a⊗ a′)) L′(F (b⊗ b′))
θb⊗b′F0(µb⊗b′ )F1(M ⊗M ′)F0(µ−1

a⊗a′ )θ
−1
a⊗a′

We then have a natural transformation

ν ′M,M ′ : FF(M)⊗ FF(M ′)→ FF(M ⊗M ′)

given by the 2-isomorphism:

L′(F (a)⊗ F (a′)) L′(F (b)⊗ F (b′))

L′(F (a⊗ a′)) L′(F (b⊗ b′))

⇓ FFM,M′

σF (b),F (b′)(θbF1(M)θ−1
a ⊗ θb′F1(M ′)θ−1

a′ )σ−1
F (a),F (a′)

θb⊗b′F0(µb⊗b′ )F1(M ⊗M ′)F0(µ−1
a⊗a′ )θ

−1
a⊗a′

L′(τa,a′ ) L′(τb,b′ )

which we can rewrite as:

L′(F (a)⊗ F (a′)) L′(F (b)⊗ F (b′))

L′(F (a⊗ a′)) L′(F (b⊗ b′))

⇓ FFM,M′

(σF (b),F (b′)(θb ⊗ θb′ ))(F1(M)⊗ F1(M ′))(σF (a),F (a′)(θa ⊗ θa′ ))−1

(θb⊗b′F0(µb⊗b′ ))F1(M ⊗M ′)(θa⊗a′F0(µa⊗a′ ))
−1

L′(τa,a′ ) L′(τb,b′ )

For the unit constraint, the horizontal 1-cell unit of LX is given by UL(1A):

L(1A) L(1A)
UL(1A)
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and the image FF(UL(1A)) is given by:

L′(F (1A)) L′(F (1A))
θ1AF1(UL(1A))θ

−1
1A

On the other hand, the horizontal 1-cell unit of L′X′ is given by UL′(1A′ ):

L′(1A′) L′(1A′)
UL′(1A′ )

and we then get a natural transformation δ′ : UL′(1A′ ) → FF(UL(1A)) given by:

L′(F (1A)) L′(F (1A))

L′(1A′) L′(1A′)

⇓ FFU
θ1AF1(UL(1A))θ

−1
1A

UL′(1A′ )

L′(τ) L′(τ)

where τ : 1A′ → F (1A) comes from the (strong) symmetric monoidal functor F : A→ A′.

These transformations ν ′ and δ′ together make the following diagrams commute for every

triple of horizontal 1-cells M,N,P of LX.

(FF(M)⊗ FF(N))⊗ FF(P )
α′
//

ν′M,N⊗1

��

FF(M)⊗ (FF(N)⊗ FF(P ))

1⊗ν′N,P
��

FF(M ⊗N)⊗ FF(P )

ν′M⊗N,P
��

FF(M)⊗ FF(N ⊗ P )

ν′M,N⊗P
��

FF((M ⊗N)⊗ P )
F F(α)

//
FF(M ⊗ (N ⊗ P ))

FF(M)⊗ U1
L′X
′ FF(M)

FF(M)⊗ FF(U1
LX) FF(M ⊗ U1

LX)

U1
L′X
′ ⊗ FF(M)

FF(U1
LX)⊗ FF(M)

FF(M)

FF(U1
LX ⊗M)

1⊗ δ′ F F(rM )

r
F F(M)

ν′M,U1
LX

δ′ ⊗ 1
ν′U1

LX ,M

`
F F(M)

F F(`M )
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By another abuse of notation, the following diagram commutes where we denote the braiding

in both LX1 and L′X′1 by β.

FF(M)⊗ FF(N)

FF(M ⊗N)

FF(N)⊗ FF(M)

FF(N ⊗M)

ν′M,N

F F(βM,N )

β
F F(M),F F(N)

ν′N,M

Lastly, we have transformations ΦM,N : ⊗ ◦(FF, FF) ⇒ FF ◦ ⊗ and ΦU : I
L′X′ ⇒ FF ◦ ILX

satisfying the axioms of a symmetric monoidal functor with respect to ⊗ which come from

the corresponding transformations ΨM,N : ⊗ ◦(F,F) ⇒ F ◦ ⊗, ΨU : IX′ ⇒ F ◦ IX of the

symmetric monoidal double functor F, the natural isomorphisms µa,b and µ of the symmetric

(strong) monoidal functor F : A → A′, and the monoidal natural isomorphism θ : F0L ⇒

L′F .

3.5 Transformations of foot-replaced double categories

We can also consider double transformations between these foot-replaced double functors

and symmetric monoidal versions of such. By the previous section, we can produce a map

between two foot-replaced double categories LX = (X, L : A→ X0) and L′X′ = (X′, L′ : A′ →

X′0) from a triple (F,F, θ) as in the following diagram.

A X0

A′ X′0

⇒
θ

L

F0F

L′

This leads to a double functor FF : LX → L′X′ by Theorem 3.4.1. Given another double

functor GG : LX → L′X′ coming from a triple (G,G, ψ), we can construct a foot-replaced
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double transformation from FF to GG from a pair (φ,Φ) where φ : F ⇒ G is a natural

transformation and Φ: F ⇒ G is a double transformation such that the following diagram

commutes
A

X0

A′

X′0

φ⇐

Φ0 ⇐⇒
ψ

⇒
θ

L

G0 F0

G F

L′

meaning that the following composites are equal.

A X0

A′ X′0

A X0

A′ X′0

φ⇐ Φ0 ⇐
⇒
θ

⇒
ψ=

L L

G0F0 F0G GF

L′ L′

We will denote the double transformation that results from the pair (φ,Φ) as φΦ: FF⇒G G.

Theorem 3.5.1. Let FF : LX→ L′X′ and GG : LX→ L′X′ be double functors obtained from

triples (F,F, θ) and (G,G, ψ) via Theorem 3.4.1, respectively. Given a double transforma-

tion Φ: F ⇒ G and a transformation φ : F ⇒ G such that the diagrams above commute,

then from the pair (φ,Φ) we can construct a double transformation Ξ = φΦ: FF⇒ GG (see

Definition A.2.9). The object component Ξ0 is given by the composite

Ξa = ψ−1
a L′(φa)θa : FF(a)→ GG(a)
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and the arrow component Ξ1 is given by Φ1, the arrow component of the double transfor-

mation Φ.

Proof. Because Φ: F⇒ G is a double transformation and the diagram on the previous page

commutes, we have that the following equations hold.

FF(a) FF(b) FF(c)

GG(a) GG(c)

FF(a) FF(c) =

FF(b)

GG(a) GG(b) GG(c)

⇓ FF�

⇓ Φ1M�N

FF(a)

GG(a)

FF(c)

GG(c)

⇓ Φ1M ⇓ Φ1N

⇓ GG�

1

Ξa

1

Ξc

F F(M)

F F(M �N)

F F(N)

GG(M �N)

Ξa

1

Ξb

GG(N)GG(M)

GG(M �N)

F F(M) F F(N)

Ξc

1

FF(a) FF(a)

GG(a) GG(a)

FF(a) FF(a) = GG(a) GG(a)

⇓ FFU

⇓ Φ1Ua

FF(a)

GG(a)

FF(a)

GG(a)

⇓ UΞa

⇓ GGU

1

Ξa

1

Ξa

U
F F(a)

F F(Ua)

GG(Ua)

Ξa

1

U
GG(a)

GG(Ua)

U
F F(a)

Ξa

1

Here we use the isomorphisms θa : F0(L(a))
∼−→ L′(F (a)) and ψa : G0(L(a))

∼−→ L′(G(a))

together with the natural transformation φ : F ⇒ G to cook up the object component

of the double natural transformation φΦ: FF ⇒ GG. In detail, every object of LX is

of the form L(a) for some a in A. We thus have for every object L(a) in LX a map

θa : F0(L(a))
∼−→ L′(F (a)). The natural transformation φ : F ⇒ G evaluated at a then

gives a map φa : F (a)→ G(a) and applying the functor L′ to the map φa then gives a map

L′(φa) : L′(F (a))→ L′(G(a)). Then, we use the other natural isomorphism ψa : G0(L(a))→

L′(G(a)) to obtain a map ψ−1
a : L′(G(a))

∼−→ G0(L(a)), and thus

Ξa = ψ−1
a L′(φa)θa : FF(a)→ GG(a).
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Moreover, the map Ξa for each object a will make the above equations hold for φΦ: FF⇒ GG

as

Ξa = ψ−1
a L′(φa)θa = ψ−1

a ψaΦ0L(a) = Φ0L(a)

and the corresponding equations utilizing the component Φ0L(a) hold as Φ: X ⇒ X′ is a

double transformation.

Finally, because Φ: F⇒ G is a double transformation and by the commutativity of the

diagram on the previous page, for a horizontal 1-cell M in LX we have that S(Φ1M ) = ΞS(M)

and T (Φ1M ) = ΞT (M).

The double transformation φΦ is a double natural isomorphism if and only if φ is a

natural isomorphism and Φ is a double natural isomorphism.

As with functors of foot-replaced double categories, if both the transformation φ : F ⇒ G

and the double transformation Φ: F ⇒ G are symmetric monoidal, then φΦ: FF ⇒ GG is

a symmetric monoidal double transformation of symmetric monoidal foot-replaced double

functors.

Theorem 3.5.2. Let φΦ: FF ⇒ GG be a foot-replaced double transformation between two

symmetric monoidal foot-replaced double functors FF : LX → L′X′ and GG : LX → L′X′,

where LX = (X, L : A → X0) and L′X′ = (X′, L′ : A′ → X′0). If φ : F ⇒ G is a monoidal

transformation and Φ: F⇒ G is a monoidal double transformation, then φΦ: FF⇒ GG is

a monoidal double transformation (see Definition A.2.15) of foot-replaced double functors.
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Proof. The double transformation φΦ acts as Ξ (defined above) on objects and vertical

1-morphisms. This means that the following diagrams commute.

FF(a)⊗ FF(b)

FF(a⊗ b)

GG(a)⊗ GG(b)

GG(a⊗ b)

µa,b

Ξa⊗b

Ξa ⊗ Ξb

µ′a,b

1
L′X′

FF(1LX)

GG(1LX)

ε φ1
LX

ε′

Similarly, the double transformation φΦ acts as Φ on horizontal 1-cells and 2-morphisms,

which means that the following diagrams commute.

FF(M)⊗ FF(N) GG(M)⊗ GG(N)

FF(M ⊗N) GG(M ⊗N)

Φ1M ⊗ Φ1N

µ′M,NµM,N

Φ1M⊗N

U1
L′X
′

FF(U1
LX)

GG(U1
LX)

δ Φ1U1
LX

δ′

Hence both the object and arrow components are monoidal natural transformations and

thus φΦ: FF⇒ GG is a symmetric monoidal double transformation.
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Chapter 4

Decorated cospan double

categories

In this chapter we present an improved version of Fong’s theory of decorated cospan

categories [23] from the perspective of double categories. The main difference here is that,

given a category A with finite colimits, we instead start with a pseudofunctor F : A→ Cat

rather than functor F : A → Set. The additional structure of Cat viewed as a 2-category

then allows us more flexibility in defining what the isomorphism class of an F -decorated

cospan consists of. This ultimately results in a second solution to the problems with the

original incarnation of decorated cospans, structured cospans being the first.

Given a finitely cocomplete category A and a lax monoidal pseudofunctor F : A→ Cat,

the first result is the existence of a double category FCsp in which F -decorated cospans

appear as horizontal 1-cells, except now we can exploit the 2-categorical structure of Cat

to define 2-morphisms. This is Theorem 4.1.1. In Theorem 4.1.3 we show that when this
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lax monoidal pseudofunctor F is symmetric, then the resulting double category FCsp is in

fact symmetric monoidal. We then define maps between decorated cospan double categories

in Section 4.2. Finally, as both structured cospan double categories and decorated cospan

double categories are solutions to the problems with Fong’s original decorated cospans,

in Section 4.3 we show that under certain conditions these approaches lead to equivalent

symmetric monoidal double categories, the main result being Theorem 4.3.15.

4.1 A double category of decorated cospans

Theorem 4.1.1. Let A be a category with finite colimits and F : (A,+, 0)→ (Cat,×, 1) a

lax monoidal pseudofunctor. Then there exists a double category FCsp for which:

(1) an object is an object of A,

(2) a vertical 1-morphism is a morphism of A,

(3) a horizontal 1-cell is an F -decorated cospan in A, which is a pair:

a m b x ∈ F (m)
i o

(4) a 2-morphism is a map of F -decorated cospans in A, which is a pair consisting

of a commutative diagram:

a

a′

m b

b′m′

x ∈ F (m)

x′ ∈ F (m′)

i o

f g

i′ o′

h

and a morphism ι : F (h)(x)→ x′ in F (m′),
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(5) composition of vertical 1-morphisms is composition in A,

(6) the composite of two horizontal 1-cells:

a m b

x ∈ F (m)

b n c

y ∈ F (n)

i o i′ o′

is done using chosen pushouts in A:

a

m

b

n

c

m+ n

m+b n

i o i′ o′

j j′

ψ

ψji ψj′o′

where the decoration x� y on the apex is given by:

1
λ−1

−−→ 1× 1
x×y−−→ F (m)× F (n)

φm,n−−−→ F (m+ n)
F (ψ)−−−→ F (m+b n)

(7) the vertical composite of two 2-morphisms:

a

a′

m b

b′m′

x ∈ F (m)

x′ ∈ F (m′)

ια : F (h)(x)→ x′

a′

a′′

m′ b′

b′′m′′

x′ ∈ F (m′)

x′′ ∈ F (m′′)

ια′ : F (h′)(x′)→ x′′

i o

f g

i′ o′

h

i′ o′

f ′ g′

i′′ o′′

h′
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is given by:

a

a′′

m b

b′′m′′

x ∈ F (m)

x′′ ∈ F (m′′)

ια′α : F (h′h)(x)→ x′′

i o

f ′f g′g

i′′ o′′

h′h

where the morphism ια′α comes from the pasting of the two diagrams representing the

morphisms ια and ια′:

1

F (m)

F (m′′)

⇒
ια′α = 1

F (m)

F (m′)

F (m′′)

⇒
ια

⇒
ια′

F (h)

F (h′)

x

x′

x′′

x

x′′

F (h′h)

(8) the horizontal composite of two 2-morphisms:

a

a′

m b

b′m′

x ∈ F (m)

x′ ∈ F (m′)

b n c

b′ n′ c′

y ∈ F (n)

y′ ∈ F (n′)

ια : F (h1)(x)→ x′ ιβ : F (h2)(y)→ y′

i1 o1

f g

i′1 o′1

h1

i2

g h2

i′2

o2

k

o′2

also uses chosen pushouts in A and is given by:

a

a′

m+b n c

c′m′ +b′ n
′

x� y ∈ F (m+b n)

x′ � y′ ∈ F (m′ +b′ n
′)

ια�β : F (h1 +g h2)(x� y)→ x′ � y′

jψmi1 jψno2

f k

jψm′ i
′
1 jψn′o

′
2

h1 +g h2
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where the morphism of decorations ια�β is given by the diagram:

ια × ιβ
⇒

1
λ−1

−−−→ 1× 1

F (m)× F (n)

F (m′)× F (n′)

F (m+ n)

F (m′ + n′)

F (m+b n)

F (m′ +b′ n
′)

φm,n

φm′,n′

F (jm,n)

F (jm′,n′ )

F (h1 +g h2)F (h1 + h2)

x× y

x′ × y′

F (h1)× F (h2)

Proof. We begin by defining the functors

U : FCsp0 → FCsp1

S, T : FCsp1 → FCsp0

and

� : FCsp1 ×FCsp0
FCsp1 → FCsp1

necessary to obtain a double category. The functor U : FCsp0 → FCsp1 is defined on

objects as:

a 7→ a a a !a ∈ F (a)
1 1

where !a ∈ F (a) is the trivial decoration on a given by the composite of the unique map

F (!) : F (0)→ F (a) and the morphism φ : 1→ F (0) which comes from the structure of the

lax monoidal pseudofunctor F : A→ Cat. For morphisms, the functor U is defined as:

a

a′

a

a′

a a

a′a′

!a ∈ F (a)

!a′ ∈ F (a′)

7→

1 1

f f

1 1

ff

together with the morphism ιf = F (f)F (!)φ : 1 → F (a′). We also have source and target

functors S, T : FCsp1 → FCsp0 where the source of the horizontal 1-cell

a m b x ∈ F (m)
i o
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is the object a in A and the source of the 2-morphism

a

a′

m b

b′m′

x ∈ F (m)

x′ ∈ F (m′)

ι : F (h)(x)→ x′

i o

f g

i′ o′

h

is the source of the underlying map of cospans in A, namely the morphism f in A; the target

functor is defined similarly. These functors satisfy the equations

SU(a) = a = TU(a)

for all objects and morphisms of A.

Given two composable horizontal 1-cells M and N :

a m b

x ∈ F (m)

b n c

y ∈ F (n)

i o i′ o′

the composite N �M is given by:

a

m

b

n

c

m+ n

m+b n

i o i′ o′

j j′

ψ

ψji ψj′o′

with the corresponding decoration of the apex x� y ∈ F (m+b n) being the element deter-

mined by:

1
λ−1

−−→ 1× 1
x×y−−→ F (m)× F (n)

φm,n−−−→ F (m+ n)
F (ψ)−−−→ F (m+b n)
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where ψ : m + n → m +b n is the natural map from the coproduct to the pushout and

φm,n : F (m) × F (n) → F (m + n) is the natural transformation coming from the structure

of the lax monoidal pseudofunctor F : A→ Cat. The source and target functors satisfy the

equations S(N �M) = S(M) and T (N �M) = T (N).

Given three composable horizontal 1-cells M1,M2 and M3:

a m1 b

x ∈ F (m1)

b m2 c

y ∈ F (m2)

c m3 d

z ∈ F (m3)

i o i′ o′ i′′ o′′

we get a natural isomorphism aM1,M2,M3 : (M1�M2)�M3 →M1� (M2�M3) which is the

globular 2-morphism given by a map of cospans (1, σ, 1):

a

a

(m1 +b m2) +c m3 d

dm1 +b (m2 +c m3)

(x� y)� z ∈ F ((m1 +b m2) +c m3)

x� (y � z) ∈ F (m1 +b (m2 +c m3))

1 1σ

with the decorations on the cospan’s apices given by:

(x�y)�z := 1
ζ1−→ F (m1+bm2)×F (m3)

φm1+bm2,m3−−−−−−−−→ F ((m1+bm2)+m3)
F (jm1+bm2,m3 )
−−−−−−−−−−→ F ((m1+bm2)+cm3)

ζ1 = (1× z)ρ−1F (jm1,m2)φm1,m2(x× y)λ−1

and

x�(y�z) := 1
ζ2−→ F (m1)×F (m2+cm3)

φm1,m2+cm3−−−−−−−−→ F (m1+(m2+cm3))
F (jm1,m2+cm3 )
−−−−−−−−−−→ F (m1+b(m2+cm3))

ζ2 = (x× 1)λ−1F (jm2,m3)φm2,m3(y × z)ρ−1

together with the isomorphism ισ : F (σ)((x � y) � z) → x � (y � z). The map σ : (m1 +b

m2) +c m3 → m1 +b (m2 +c m3) is the universal map between two colimits of the same
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diagram. We can also define left and right unitors as follows. Given a horizontal 1-cell M :

a m b x ∈ F (m)
i o

if we, say, compose with the identity horizontal 1-cell of b on the right:

a m b

x ∈ F (m)

b b b

!b ∈ F (b)

i o 1 1

where !b = F (!)φ : 1→ F (b) is the trivial decoration on b, the result is:

a m+b b b x�!b ∈ F (m+b b)
jψmi jψb

where ψm : m → m + b is the natural map into the coproduct and likewise for ψb and

j : m+ b→ m+b b is the natural map from the coproduct to the pushout. The decoration

x�!b : 1→ F (m+b b) is given by:

1
λ−1

−−→ 1× 1
x×!b−−−→ F (m)× F (b)

φm,b−−−→ F (m+ b)
F (jm,b)−−−−−→ F (m+b b).

We then have that the right unitor R : M � 1b
∼−→ M is given by the globular 2-morphism

(1, r, 1) from the above composite to M :

a

a

m+b b b

bm

x�!b ∈ F (m+b b)

x ∈ F (m)

jψmi jψb

1 1

i o

r

where the isomorphism r : m +b b
∼−→ m is a universal map together with the isomorphism

ιr : F (r)(x�!b)→ x. The left unitor is similar. The source and target functor applied to the

left and right unitors and associators yield identities, and the left and right unitors together

with the associator satisfy the standard pentagon and triangle identities of a monoidal

70



category or bicategory. Finally, for the interchange law, given four 2-morphisms α, β, α′

and β′:

a

a′

m b

b′m′

x ∈ F (m)

x′ ∈ F (m′)

b n c

b′ n′ c′

y ∈ F (n)

y′ ∈ F (n′)

ια : F (h1)(x)→ x′ ιβ : F (h2)(y)→ y′

a′

a′′

m′ b′

b′′m′′

x′ ∈ F (m′)

x′′ ∈ F (m′′)

b′ n′ c′

b′′ n′′ c′′

y′ ∈ F (n′)

y′′ ∈ F (n′′)

ια′ : F (h′1)(x′)→ x′′ ιβ′ : F (h′2)(y′)→ y′′

i1 o1

f g

i′1 o′1

h1

i2

g h2

i′2

o2

k

o′2

i′1 o′1

f ′ g′

i′′1 o′′1

h′1

i′2

g′ h′2

i′′2

o′2

k′

o′′2

if we first compose horizontally we obtain:

a

a′

m+b n c

c′m′ +b′ n
′

x� y ∈ F (m+b n)

x′ � y′ ∈ F (m′ +b′ n
′)

ια�β : F (h1 +g h2)(x� y)→ x′ � y′

a′

a′′

m′ +b′ n
′ c′

c′′m′′ +b′′ n
′′

x′ � y′ ∈ F (m′ +b′ n
′)

x′′ � y′′ ∈ F (m′′ +b′′ n
′′)

ια′�β′ : F (h′1 +g′ h
′
2)(x′ � y′)→ x′′ � y′′.

jψmi1 jψno2

f k

jψm′ i
′
1 jψn′o

′
2

h1 +g h2

jψm′ i
′
1 jψn′o

′
2

f ′ k′

jψm′′ i
′′
1 jψn′′o

′′
2

h′1 +g′ h
′
2

To obtain the morphism of decorations for a horizontal composite, we have as initial data:

ια
⇒

1

F (m)

F (m′)

ιβ
⇒

1

F (n)

F (n′)

x

x′

F (h1)

y

y′

F (h2)
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These two 2-morphisms ια and ιβ are two 2-morphisms in the monoidal 2-category

(Cat,×, 1) and so we can tensor them which results in:

ια × ιβ
⇒

1
λ−1

−−−→ 1× 1

F (m)× F (n)

F (m′)× F (n′)

F (m+ n)

F (m′ + n′)

F (m+b n)

F (m′ +b′ n
′)

φm,n

φm′,n′

F (jm,n)

F (jm′,n′ )

F (h1 +g h2)F (h1 + h2)

x× y

x′ × y′

F (h1)× F (h2)

where the middle square commutes since F is a lax monoidal pseudofunctor and the right

square commutes because we have taken a commutative square and applied the pseud-

ofunctor F to it. The decorations x � y and x′ � y′ are given respectively by top and

bottom composite of arrows and the morphism of decorations ια�β is given by composing

ια × ιβ with the two commuting squares, which can equivalently be viewed as a morphism

in F (m′ +b′ n
′).

Returning to the interchange law, composing the two horizontal compositions above

vertically then results in:

a

a′′

m+b n c

c′′m′′ +b′′ n
′′

x� y ∈ F (m+b n)

x′′ � y′′ ∈ F (m′′ +b′′ n
′′)

ι(a′�β′)(α�β) : F ((h′1 +g′ h
′
2)(h1 +g h2))(x� y)→ x′′ � y′′.

jψmi1 jψno2

f ′f k′k

jψm′′ i
′′
1 jψn′′o

′′
2

(h′1 +g′ h
′
2)(h1 +g h2)

The vertical composite of two morphisms of decorations is straightforward. On the other

hand, if we first compose vertically we obtain:

a

a′′

m b

b′′m′′

x ∈ F (m)

x′′ ∈ F (m′′)

b n c

b′′ n′′ c′′

y ∈ F (n)

y′′ ∈ F (n′′)

ια′α : F (h′1h1)(x)→ x′′ ιβ′β : F (h′2h2)(y)→ y′′

i1 o1

f ′f g′g

i′′1 o′′1

h′1h1

i2

g′g h′2h2

i′′2

o2

k′k

o′′2
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and then composing horizontally results in:

a

a′′

m+b n c

c′′m′′ +b′′ n
′′

x� y ∈ F (m+b n)

x′′ � y′′ ∈ F (m′′ +b′′ n
′′)

ι(α′α)�(β′β) : F ((h′1h1) +g′g (h′2h2))(x� y)→ x′′ � y′′.

jψmi1 jψno2

f ′f k′k

jψm′′ i
′′
1 jψn′′o

′′
2

(h′1h1) +g′g (h′2h2)

As usual for the interchange law in double categories of this nature, only the ‘interior’ of the

two composites appears different, but the two morphisms (h′1 +g′ h
′
2)(h1 +g h2) : m+b n→

m′′+b′′ n
′′ and (h′1h1) +g′g (h′2h2) : m+b n→ m′′+b′′ n

′′ are the same universal map realized

in two different ways. The two morphisms of decorations ι(α′�β′)(α�β) and ι(α′α)�(β′β) are

obtained as two different compositions of four 2-morphisms in Cat, namely horizontally

then vertically and vertically then horizontally. As Cat is a 2-category, the interchange law

for these 2-morphisms already holds, and as a result, the decoration morphisms

ι(α′�β′)(α�β) : F ((h′1 +g′ h
′
2)(h1 +g h2))(x� y)→ x′′ � y′′

and

ι(α′α)�(β′β) : F ((h′1h1) +g′g (h′2h2))(x� y)→ x′′ � y′′

are also the same. Thus the interchange law for 2-morphisms holds and FCsp is a double

category.

Corollary 4.1.2. Given a category A with pushouts, Csp(A) is a double category with the

relevant structure given as in Theorem 4.1.1.

Proof. This is a special case of Theorem 4.1.1 where each F -decorated cospan is equipped

with the trivial decoration. Namely, given a cospan in A:

a m b
i o
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the trivial decoration on the apex m is given by the composite

!m = F (!)φ : 1→ F (m)

where φ : 1 → F (0) is the morphism between monoidal units coming from the structure of

a lax monoidal pseudofunctor and ! : 0→ m is the unique morphism from the initial object

0 of A to the object m. By equipping each F -decorated cospan with the trivial decoration,

all of the diagrams involving decorations commute trivially, and the proof of Theorem 4.1.1

reduces to a proof that Csp(A) is a double category.

If the lax monoidal pseudofunctor F : (A,+, 0)→ (Cat,×, 1) is symmetric lax monoidal,

then the above double category FCsp is also symmetric monoidal.

Theorem 4.1.3. Let A be a category with finite colimits and F : (A,+, 0)→ (Cat,×, 1) a

symmetric lax monoidal pseudofunctor. Then the double category FCsp of Theorem 4.1.1

is symmetric monoidal where:

(1) the tensor product of two objects a1 and a2 is a chosen coproduct a1 + a2,

(2) the tensor product of two vertical 1-morphisms is given by:

a1

b1

a2

b2

a1 + a2

b1 + b2

⊗ =f1 f2 f1 + f2

(3) the tensor product of two horizontal 1-cells:

a1 m1 b1

x1 ∈ F (m1)

a2 m2 b2

x2 ∈ F (m2)

i1 o1 i2 o2
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is given by:

a1 + a2 m1 +m2 b1 + b2 x1 + x2 ∈ F (m1 +m2)
i1 + i2 o1 + o2

where the decoration on the apex is given by:

x1 + x2 := 1
λ−1

−−→ 1× 1
x1×x2−−−−→ F (m1)× F (m2)

φm1,m2−−−−−→ F (m1 +m2)

where φm1,m2 : F (m1) × F (m2) → F (m1 + m2) is the laxator of the lax monoidal

pseudofunctor F ,

(4) the tensor product of two 2-morphisms:

a1

a′1

m1 b1

b′1m′1

x1 ∈ F (m1)

x′1 ∈ F (m′1)

a2 m2 b2

a′2 m′2 b′2

x2 ∈ F (m2)

x′2 ∈ F (m′2)

ια1 : F (h1)(x1)→ x′1 ια2 : F (h2)(x2)→ x′2

i1 o1

f1 g1

i′1 o′1

h1

i2

f2 h2

i′2

o2

g2

o′2

is given by:

a1 + a2

a′1 + a′2

m1 +m2 b1 + b2

b′1 + b′2m′1 +m′2

x1 + x2 ∈ F (m1 +m2)

x′1 + x′2 ∈ F (m′1 +m′2)

ια1+α2 : F (h1 + h2)(x1 + x2)→ x′1 + x′2

i1 + i2 o1 + o2

f1 + f2 g1 + g2

i′1 + i′2 o′1 + o′2

h1 + h2

where ια1+α2 is given by the diagram:

ια1 × ια2

⇒
1
λ−1

−−−→ 1× 1

F (m1)× F (m2)

F (m′1)× F (m′2)

F (m1 +m2)

F (m′1 +m′2)

φm1,m2

φm′
1
,m′

2

F (h1 + h2)

x1 × x2

x′1 × x′2

F (h1)× F (h2)

The unit for the tensor product is a chosen initial object of A and the symmetry for any

two objects a and b is defined using the canonical isomorphism a+ b ∼= b+ a.
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Proof. First we note that the category of objects FCsp0 = A is symmetric monoidal under

binary coproducts and the left and right unitors, associators and braidings are given as

natural maps. The category of arrows FCsp1 has:

(1) objects as F -decorated cospans which are pairs:

a m b x ∈ F (m)
i o

and

(2) morphisms as maps of cospans in A

a

a′

m b

b′m′

x ∈ F (m)

x′ ∈ F (m′)

i o

f g

i′ o′

h

together with a morphism ι : F (h)(x)→ x′.

Given two objects M1 and M2 of FCsp1:

a1 m1 b1

x1 ∈ F (m1)

a2 m2 b2

x2 ∈ F (m2)

i1 o1 i2 o2

their tensor product M1 ⊗M2 is given by taking the coproducts of the cospans of A

a1 + a2 m1 +m2 b1 + b2 x1 + x2 ∈ F (m1 +m2)
i1 + i2 o1 + o2

and where the decoration on the apex is obtained using the natural transformation of the

symmetric lax monoidal pseudofunctor F :

x1 + x2 := 1
λ−1

−−→ 1× 1
x1×x2−−−−→ F (m1)× F (m2)

φm1,m2−−−−−→ F (m1 +m2).
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The monoidal unit 0 is given by:

0 0 0 !0 ∈ F (0)
! !

where 0 is the monoidal unit of A and !0 : 1 → F (0) is the morphism which is part of the

structure of the symmetric lax monoidal pseudofunctor F : A→ Cat. Tensoring an object

with the monoidal unit, say, on the left:

0 0 0

!0 ∈ F (0)

a m b

x ∈ F (m)

⊗
! ! i o

results in:

0 + a 0 +m 0 + b !0 + x ∈ F (0 +m)
! + i ! + o

where !0 + x ∈ F (0 +m) is given by

1
λ−1

−−→ 1× 1
!0×x−−−→ F (0)× F (m)

φ0,m−−−→ F (0 +m).

The left unitor is then an isomorphism in FCsp1 given by:

0 + a

a

0 +m 0 + b

bm

!0 + x ∈ F (0 +m)

x ∈ F (m)

! + i ! + o

` `

i o

`

where ` is the left unitor of (A,+, 0), together with the isomorphism ιλ : F (`)(!0 + x)→ x.

The right unitor is similar.

Given three objects M1,M2 and M3 in FCsp1:

a1 m1 b1

x1 ∈ F (m1)

a2 m2 b2

x2 ∈ F (m2)

a3 m3 b3

x3 ∈ F (m3)

i1 o1 i2 o2 i3 o3
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tensoring the first two and then the third results in (M1 ⊗M2)⊗M3:

(a1 + a2) + a3 (m1 +m2) +m3 (b1 + b2) + b3

(x1 + x2) + x3 ∈ F ((m1 +m2) +m3)

(i1 + i2) + i3 (o1 + o2) + o3

where (x1 + x2) + x3 : 1→ F ((m1 +m2) +m3) is given by:

1
(x1×x2)×x3−−−−−−−→ (F (m1)×F (m2))×F (m3)

φm1,m2×1
−−−−−−→ F (m1+m2)×F (m3)

φm1+m2,m3−−−−−−−→ F ((m1+m2)+m3)

whereas tensoring the last two and then the first results in M1 ⊗ (M2 ⊗M3):

a1 + (a2 + a3) m1 + (m2 +m3) b1 + (b2 + b3)

x1 + (x2 + x3) ∈ F (m1 + (m2 +m3))

i1 + (i2 + i3) o1 + (o2 + o3)

where x1 + (x2 + x3) : 1→ F (m1 + (m2 +m3)) is given by:

1
x1×(x2×x3)−−−−−−−→ F (m1)×(F (m2)×F (m3))

1×φm2,m3−−−−−−→ F (m1)×F (m2+m3)
φm1,m2+m3−−−−−−−→ F (m1+(m2+m3)).

If we let a denote the associator of (A,+, 0), the associator of FCsp1 is then a map of

cospans in A from (M1 ⊗M2)⊗M3 to M1 ⊗ (M2 ⊗M3) given by:

(a1 + a2) + a3

a1 + (a2 + a3)

(m1 +m2) +m3 (b1 + b2) + b3

b1 + (b2 + b3)m1 + (m2 +m3)

(x1 + x2) + x3 ∈ F ((m1 +m2) +m3)

x1 + (x2 + x3) ∈ F (m1 + (m2 +m3))

(i1 + i2) + i3 (o1 + o2) + o3

a a

i1 + (i2 + i3) o1 + (o2 + o3)

a

together with the isomorphism ιa : F (a)((x1 +x2)+x3)→ x1 +(x2 +x3). These associators

and left and right unitors together satisfy the pentagon and triangle identities of a monoidal

category. If we denote the above associator simply as a and the left and right unitors as λ
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and ρ, respectively, then given four objects in FCsp1, say M1,M2,M3 and M4:

a1 m1 b1

x1 ∈ F (m1)

a2 m2 b2

x2 ∈ F (m2)

a3 m3 b3

x3 ∈ F (m3)

a4 m4 b4

x4 ∈ F (m4)

i1 o1 i2 o2

i3 o3 i4 o4

the following pentagon of underlying cospans and maps of cospans commutes:

((M1 ⊗M2)⊗M3)⊗M4

(M1 ⊗M2)⊗ (M3 ⊗M4)

M1 ⊗ (M2 ⊗ (M3 ⊗M4))

(M1 ⊗ (M2 ⊗M3))⊗M4 M1 ⊗ ((M2 ⊗M3)⊗M4)

a a

a⊗ 1

a

1⊗ a

as well as the following pentagon of corresponding decorations in the category F (m1+(m2+

(m3 +m4))):

F (aa)(((x1 + x2) + x3) + x4)

F (a)((x1 + x2) + (x3 + x4))

x1 + (x2 + (x3 + x4))

F ((1⊗ a)a)((x1 + (x2 + x3)) + x4) F (1⊗ a)(x1 + ((x2 + x3) + x4))

F (a)(ιa) ιa

F ((1⊗ a)a)(ιa⊗1)

F (1⊗ a)(ιa)

ι1⊗a

since

F (aa)(((x1 + x2) + x3) + x4) = F ((1⊗ a)a(a⊗ 1))(((x1 + x2) + x3) + x4)

as the corresponding pentagon of cospan apices in the symmetric monoidal category (A,+, 0)

commutes, and then appliying the pseudofunctor F to this commutative pentagon yields a

commutative pentagon in Cat.
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Similarly, if we denote the left and right unitors as λ and ρ, respectively, then the

following triangle of cospans and underlying maps of cospans commutes:

(M1 ⊗ 0)⊗M2

M1 ⊗M2

M1 ⊗ (0⊗M2)

ρ⊗ 1 1⊗ λ

a

as well as the following triangle of corresponding decorations in the category F (m1 +m2):

F (ρ⊗ 1)((x1 + 0) + x2)

x1 + x2

F (1⊗ λ)(x1 + (0 + x2))

ιρ⊗1 ι1⊗λ

F (1⊗ λ)(ιa)

since

F (ρ⊗ 1)((x1 + 0) + x2) = F ((1⊗ λ)a)((x1 + 0) + x2)

as the corresponding triangle of cospan apices in the symmetric monoidal category (A,+, 0)

commutes and applying the pseudofunctor F to this commutative triangle results in a

commutative triangle in Cat.

For a tensor product of objects M1 ⊗ M2 in FCsp1, the source and target functors

S, T : FCsp1 → FCsp0 satisfy the following equations:

S(M1 ⊗M2) = S(M1)⊗ S(M2)

T (M1 ⊗M2) = T (M1)⊗ T (M2).

For two objects M1 and M2 in FCsp1, we have a braiding βM1,M2 : M1 ⊗M2 → M2 ⊗M1

given by:

a1 + a2

a2 + a1

m1 +m2 b1 + b2

b2 + b1m2 +m1

x1 + x2 ∈ F (m1 +m2)

x2 + x1 ∈ F (m2 +m1)

i1 + i2 o1 + o2

βa1,a2 βb1,b2

i2 + i1 o2 + o1

βm1,m2
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ιβM1,M2
: F (βm1,m2)(x1 + x2)

∼−→ x2 + x1

where the vertical 1-morphisms are given by braidings in (A,+, 0). This braiding makes the

following triangle of underlying cospans commute:

M1 ⊗M2

M1 ⊗M2

M2 ⊗M1

1 βM2,M1

βM1,M2

as well as the following diagram of corresponding decorations in the category F (m1 +m2):

x1 + x2

x1 + x2

F (βm2,m1)(x2 + x1)

1 ιβM2,M1

F (βm2,m1 )(ιβM1,M2
)

since F (βm2,m1βm1,m2)(x1 + x2) = x1 + x2. Thus FCsp1 is also symmetric monoidal.

Next we derive the globular isomorphisms required in the definition of a symmetric

monoidal double category relating horizontal composition and the tensor product. Given

four horizontal 1-cells M1,M2, N1 and N2 respectively by:

a m1 b

x1 ∈ F (m1)

b m2 c

x2 ∈ F (m2)

a′ n1 b′

y1 ∈ F (n1)

b′ n2 c′

y2 ∈ F (n2)

i1 o1 i2 o2

i′1 o′1 i′2 o′2

we have that (M1 ⊗N1)� (M2 ⊗N2) is given by:

a+ a′ (m1 + n1) +b+b′ (m2 + n2) c+ c′

(x1 + y1)� (x2 + y2) ∈ F ((m1 + n1) +b+b′ (m2 + n2))

jψ(i1 + i′1) jψ(o2 + o′2)
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where the decoration (x1 + y1)� (x2 + y2) ∈ F ((m1 + n1) +b+b′ (m2 + n2)) is given by:

1

1× 1

(1× 1)× (1× 1)

(F (m1)× F (n1))× (F (m2)× F (n2))

F (m1 + n1)× F (m2 + n2)

F ((m1 + n1) + (m2 + n2))

F ((m1 + n1) +b+b′ (m2 + n2))

λ−1

λ−1 × λ−1

(x1 × y1)× (x2 × y2)

φm1,n1 × φm2,n2

φm1+n1,m2+n2

F (jm1+n1,m2+n2 )

and (M1 �M2)⊗ (N1 �N2) is given by:

a+ a′ (m1 +b m2) + (n1 +b′ n2) c+ c′

(x1 � x2) + (y1 � y2) ∈ F ((m1 +b m2) + (n1 +b′ n2))

(jψi1) + (jψi′1) (jψo2) + (jψo′2)
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where the decoration (x1 � x2) + (y1 � y2) ∈ F ((m1 +b m2) + (n1 +b′ n2)) is given by:

1

1× 1

(1× 1)× (1× 1)

(F (m1)× F (m2))× (F (n1)× F (n2))

F (m1 +m2)× F (n1 + n2)

F (m1 +b m2)× F (n1 +b′ n2)

F ((m1 +b m2) + (n1 +b′ n2))

λ−1

λ−1 × λ−1

(x1 × x2)× (y1 × y2)

φm1,m2 × φn1,n2

F (jm1,m2 )× F (jn1,n2 )

φm1+bm2,n1+b′n2

and where ψ and j are the natural maps into a coproduct and from a coproduct into a

pushout, respectively. We then get a globular 2-morphism

χ : (M1 ⊗N1)� (M2 ⊗N2)→ (M1 �M2)⊗ (N1 �N2)

given by:

a+ a′

a+ a′

(m1 + n1) +b+b′ (m2 + n2) c+ c′

c+ c′(m1 +b m2) + (n1 +b′ n2)

(x1 + y1)� (x2 + y2) ∈ F ((m1 + n1) +b+b′ (m2 + n2))

(x1 � x2) + (y1 � y2) ∈ F ((m1 +b m2) + (n1 +b′ n2))

jψ(i1 + i′1) jψ(o2 + o′2)

1 1

(jψi1) + (jψi′1) (jψo2) + (jψo′2)

χ̂

ιχ̂ : F (χ̂)((x1 + y1)� (x2 + y2))→ (x1 � x2) + (y1 � y2)
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where χ̂ is the universal map between two colimits of the same diagram. For two objects

a, b ∈ A, Ua+b is given by:

a+ b a+ b a+ b

!a+b ∈ F (a+ b)

1a+b 1a+b

where

!a+b : 1
φ−→ F (0)

F (!a+b)−−−−−→ F (a+ b).

Similarly, we have Ua and Ub given respectively by:

a a a

!a ∈ F (a)

b b b

!b ∈ F (b)

1a 1a 1b 1b

and then Ua + Ub is given by:

a+ b a+ b a+ b

!a+!b ∈ F (a+ b)

1a + 1b 1a + 1b

where

!a+!b : 1
λ−1

−−→ 1× 1
φ×φ−−−→ F (0)× F (0)

F (!a)×F (!b)−−−−−−−→ F (a)× F (b)
φa,b−−→ F (a+ b).

We then have the second globular isomorphism

µa,b : Ua+b → Ua + Ub

given by the identity 2-morphism:

a+ b

a+ b

a+ b a+ b

a+ ba+ b

!a+b ∈ F (a+ b)

!a+!b ∈ F (a+ b)

1a+b 1a+b

1 1

1a + 1b 1a + 1b

1
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ιa,b : !a+b
∼−→!a+!b

where !a+b and !a+!b are both initial objects in F (a+ b), hence isomorphic.

There are many coherence laws to be checked, most of which are similar in flavor and

make use of the two above globular isomorphisms. We check a few to give a sense of what

these are like. For example, given horizontal 1-cells Mi, Ni, Pi for i = 1, 2, the following

commutative diagram expresses the associativity isomorphism as a transformation of double

categories.

((M1 ⊗N1)⊗ P1)� ((M2 ⊗N2)⊗ P2) (M1 ⊗ (N1 ⊗ P1))� (M2 ⊗ (N2 ⊗ P2))

((M1 ⊗N1)� (M2 ⊗N2))⊗ (P1 � P2) (M1 �M2)⊗ ((N1 ⊗ P1)� (N2 ⊗ P2))

((M1 �M2)⊗ (N1 �N2))⊗ (P1 � P2) (M1 �M2)⊗ ((N1 �N2)⊗ (P1 � P2))

a� a

χ χ

χ⊗ 1 1⊗ χ
a

Here, a is the associator of FCsp1 and χ is the first globular isomorphism above. To see

that this diagram does indeed commute, we first consider this diagram with respect to only

the underlying cospans of each horizontal 1-cell. For notation:

a m1 bM1 = N1 = a′ n1 b′ P1 = a′′ p1 b′′

b m2 cM2 = N2 = b′ n2 c′ P2 = b′′ p2 c′′

x1 ∈ F (m1)

x2 ∈ F (m2)

y1 ∈ F (n1)

y2 ∈ F (n2)

z1 ∈ F (p1)

z2 ∈ F (p2)
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The above diagram when written out as cospans then becomes:

(a+ a′) + a′′ ((m1 + n1) + p1) +((b+b′)+b′′) ((m2 + n2) + p2) (c+ c′) + c′′

a+ (a′ + a′′) (m1 + (n1 + p1)) +(b+(b′+b′′)) (m2 + (n2 + p2)) c+ (c′ + c′′)

a+ (a′ + a′′) (m1 +b m2) + ((n1 + p1) +(b′+b′′) (n2 + p2)) c+ (c′ + c′′)

a+ (a′ + a′′) (m1 +b m2) + ((n1 +b′ n2) + (p1 +b′′ p2)) c+ (c′ + c′′)

(a+ a′) + a′′ ((m1 + n1) +(b+b′) (m2 + n2)) + (p1 +b′′ p2) (c+ c′) + c′′

(a+ a′) + a′′ ((m1 +b m2) + (n1 +b′ n2)) + (p1 +b′′ p2) (c+ c′) + c′′

a+ (a′ + a′′) (m1 +b m2) + ((n1 +b′ n2) + (p1 +b′′ p2)) c+ (c′ + c′′)

a� a ι1

χ ι2

1⊗ χ ι3

χ ι4

χ⊗ 1 ι5

a ι6

which does indeed commute. Here, all of the vertical 1-morphisms on the left and right

are associators or identities, the middle vertical 1-morphisms labeled on the left are the 2-

morphisms from the previous commutative diagram, and the cospan legs are natural maps

into each colimit, all of which are naturally isomorphic to each other as all the middle

objects are colimits of the same diagram, namely the previous collection of cospans, taken

in various ways. By identifying the top and bottom edges of the above diagram, it can be

visualized as a hexagonal prism. Every face of this prism commutes. As for the morphisms

of decorations, which are labeled on the right of the interior vertical 1-morphisms, each

isomorphism ιn goes from the domain under the image of the functor F applied to the

natural isomorphism adjacent to it to the codomain as written, meaning that, for example:

ι1 : F (a� a)(((x1 + y1) + z1)� ((x2 + y2) + z2))→ (x1 + (y1 + z1))� (x2 + (y2 + z2)).
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The following diagram commutes in the category F ((m1 +bm2)+((n1 +b′ n2)+(p1 +b′′ p2))):

F (a(χ⊗ 1)χ)(((x1 + y1) + z1)� ((x2 + y2) + z2)) F ((1⊗ χ)χ)((x1 + (y1 + z1))� (x2 + (y2 + z2)))

F (a(χ⊗ 1))(((x1 + y1)� (x2 + y2)) + (z1 � z2)) F (1⊗ χ)((x1 � x2) + ((y1 + z1)� (y2 + z2)))

F (a)(((x1 � x2) + (y1 � y2)) + (z1 � z2)) (x1 � x2) + ((y1 � y2) + (z1 � z2))

F ((1⊗ χ)χ)(ι1)

F (a(χ⊗ 1))(ι4) F (1⊗ χ)(ι2)

F (a)(ι5) ι3

ι6

since

F (a(χ⊗1)χ)(((x1+y1)+z1)�((x2+y2)+z2)) = F ((1⊗χ)χ(a�a))(((x1+y1)+z1)�((x2+y2)+z2))

as the hexagon formed by the morphisms between the cospan apices of the above underlying

diagram of maps of cospans commutes and then applying the pseudofunctor F to this

hexagon yields a commutative hexagon in Cat.

Another requirement for a double category to be symmetric monoidal is that the braiding

β(−,−) : FCsp1 × FCsp1 → FCsp1 × FCsp1

be a transformation of double categories, and one of the diagrams that is required to com-

mute is the following:

(M1 �M2)⊗ (N1 �N2) (N1 �N2)⊗ (M1 �M2)

(M1 ⊗N1)� (M2 ⊗N2) (N1 ⊗M1)� (N2 ⊗M2)

β

χχ
β � β
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Using the same notation as the previous coherence diagram, the diagram for the underlying

maps of cospans becomes:

a+ a′ (m1 +b m2) + (n1 +b′ n2) c+ c′

a′ + a (n1 +b′ n2) + (m1 +b m2) c′ + c

a′ + a (n1 +m1) +(b′+b) (n2 +m2) c′ + c

a+ a′ (m1 + n1) +(b+b′) (m2 + n2) c+ c′

a′ + a (n1 +m1) +(b′+b) (n2 +m2) c′ + c

β ι1

χ ι2

χ ι3

β � β ι4

All the comments about the previous underlying coherence diagram of maps of cospans

apply to this one. As for the decorations, the following diagram commutes in the category

F ((n1 +m1) +(b′+b) (n2 +m2)):

F (χβ)((x1 � x2) + (y1 � y2)) F (χ)((y1 � y2) + (x1 � x2))

F (β � β)((x1 + y1)� (x2 + y2)) (y1 + x1)� (y2 + x2)

F (χ)(ι1)

ι2F (β � β)(ι3)

ι4

since

F (χβ)((x1 � x2) + (y1 � y2)) = F ((β � β)χ)((x1 � x2) + (y1 � y2))

as the square formed by the morphisms between the cospan apices of the above underlying

diagram of maps of cospans commutes and then applying the pseudofunctor F to this

square yields a commutative square in Cat. The other diagrams are shown to commute

similarly.
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4.2 Maps of decorated cospan double categories

Given another symmetric lax monoidal pseudofunctor F ′ : A′ → Cat, we can obtain

another symmetric monoidal double category F ′Csp. A map from FCsp to F ′Csp will

then be a double functor H : FCsp → F ′Csp whose object component is given by a finite

colimit preserving functor H0 = H : A → A′ and whose arrow component is given by a

functor H1 defined on horizontal 1-cells by:

a c b

d ∈ F (c)

7→ H(a) H(c) H(b)

θcE(d)φ ∈ F ′(H(c))

i o H(i) H(o)

and on 2-morphisms by:

a

a′

c b

b′c′

d ∈ F (c)

d′ ∈ F (c′)

ι : F (h)(d)→ d′

H(a)

H(a′)

H(c) H(b)

H(b′)H(c′)

θcE(d)φ ∈ F ′(H(c))

θc′E(d′)φ ∈ F ′(H(c′))

E(ι) : F ′(H(h))(θcE(d)φ)→ (θc′E(d′)φ)

7→f gh H(f) H(g)H(h)

where E : Cat → Cat is a symmetric lax monoidal pseudofunctor such that the following

diagram commutes up to a monoidal natural isomorphism θ : EF ⇒ F ′H:

A Cat

A′ Cat

⇒
θ

F

H E

F ′

We summarize this in the following theorem:

Theorem 4.2.1. Given two finitely cocomplete categories A and A′, two symmetric lax

monoidal pseudofunctors F : A→ Cat and F ′ : A′ → Cat, a finite colimit preserving functor

H : A → A′, a symmetric lax monoidal pseudofunctor E : Cat → Cat and a monoidal
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natural isomorphism θ : EF ⇒ F ′H as in the following diagram, the triple (H,E, θ) induces

a symmetric monoidal double functor H : FCsp→ F ′Csp as defined above.

A Cat

A′ Cat

⇒
θ

F

H E

F ′

Proof. Recall that we can think of the object d ∈ F (c) as a morphism d : 1→ F (c) and the

morphism ι : F (h)(d)→ d′ of F (c′) as a natural transformation in Cat:

1

F (c)

F (c′)

⇒
ι

d

d′

F (h)

Applying the symmetric lax monoidal pseudofunctor E : Cat→ Cat to this diagram yields:

1
φ−→ E(1)

E(F (c))

E(F (c′))

⇒
E(ι)

E(d)

E(d′)

E(F (h))

Then because the above square commutes up to the isomorphism θ : EF ⇒ F ′H, we get:

1
φ−→ E(1)

E(F (c))

E(F (c′))

⇒
E(ι)

F ′(H(c))

F ′(H(c′))

θc

θc′

F ′(H(h))

E(d)

E(d′)

E(F ((h))

which results in a 2-morphism E(ι) : F ′(H(h))(θcE(d)φ) → (θc′E(d′)φ) in F ′(H(c′)). To

check that the above recipe is functorial, suppose we are given two vertically composable
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2-morphisms in FCsp:

a

a′

c b

b′c′

d ∈ F (c)

d′ ∈ F (c′)

ι : F (h)(d)→ d′

a′

a′′

c′ b′

b′′c′′

d′ ∈ F (c′)

d′′ ∈ F (c′′)

ι′ : F (h′)(d′)→ d′′

f gh

f ′ g′h′

If we first compose these, the result is:

a

a′′

c b

b′′c′′

d ∈ F (c)

d′′ ∈ F (c′′)

ι′ι : F (h′h)(d)→ d′′

f ′f g′gh′h

and then the image of this 2-morphism under the double functor H is given by:

H(a)

H(a′′)

H(c) H(b)

H(b′′)H(c′′)

θcE(d)φ ∈ F ′(H(c))

θc′′E(d′′)φ ∈ F ′(H(c′′))

E(ι′ι) : F ′(H(h′h))(θcE(d)φ)→ (θc′′E(d′′)φ).

H(f ′f) H(g′g)H(h′h)
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On the other hand, applying the double functor H first gives:

H(a)

H(a′)

H(c) H(b)

H(b′)H(c′)

θcE(d)φ ∈ F ′(H(c))

θc′E(d′)φ ∈ F ′(H(c′))

E(ι) : F ′(H(h))(θcE(d)φ)→ (θc′E(d′)φ)

H(a′)

H(a′′)

H(c′) H(b′)

H(b′′)H(c′′)

θc′E(d′)φ ∈ F ′(H(c′))

θc′′E(d′′)φ ∈ F ′(H(c′′))

E(ι′) : F ′(H(h′))(θc′E(d′)φ)→ (θc′′E(d′′)φ)

H(f) H(g)H(h)

H(f ′) H(g′)H(h′)

and then composing these gives:

H(a)

H(a′′)

H(c) H(b)

H(b′′)H(c′′)

θcE(d)φ ∈ F ′(H(c))

θc′′E(d′′)φ ∈ F ′(H(c′′))

E(ι′ι) : F ′(H(h′h))(θcE(d)φ)→ (θc′′E(d′′)φ).

H(f ′f) H(g′g)H(h′h)

Thus H1 is functorial on 2-morphisms, and it is evident that H satisfies the equations

SH = HS and TH = HT .

Given two composable horizontal 1-cells M and N in FCsp:

a1 c1 b

dM ∈ F (c1)

b c2 a2

dN ∈ F (c2)

i1 o1 i2 o2

composing first gives M �N :

a1 c1 +b c2 a2

dM�N ∈ F (c1 +b c2)

ψjc1 i1 ψjc2o2

where

d : 1
λ−1

−−→ 1× 1
d1×d2−−−−→ F (c1)× F (c2)

φc1,c2−−−−→ F (c1 + c2)
F (j)−−−→ F (c1 +b c2).
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The image of this horizontal 1-cell is then given by H(M �N):

H(a1) H(c1 +b c2) H(a2)

dH(M�N) = θc1+bc2E(dM�N )φ ∈ F ′(H(c1 +b c2))

H(ψjc1 i1) H(ψjc2o2)

where

dH(M�N) = θc1+bc2E(dM�N )φ : 1
φ−→ E(1)

E(dM�N )−−−−−−→ E(F (c1 +b c2))
θc1+bc2−−−−−→ F ′(H(c1 +b c2)).

On the other hand, the image of each horizontal 1-cell under the double functor H is given

respectively by H(M) and H(N):

H(a1) H(c1) H(b)

θc1E(dM )φ ∈ F ′(H(c1))

H(b) H(c2) H(a2)

θc2E(dN )φ ∈ F ′(H(c2))

H(i1) H(o1) H(i2) H(o2)

Composing these then gives H(M)�H(N):

H(a1) H(c1) +H(b) H(c2) H(a2)

dH(M)�H(N) ∈ F ′(H(c1) +H(b) H(c2))

ΨjH(c1)H(i1) ΨjH(c2)H(o2)

where

dH(M)�H(N) : 1
(θc1×θc2 )(E(dM )×E(dN ))φ

−−−−−−−−−−−−−−−−−→F ′(H(c1))×F ′(H(c2))
ΦH(c1),H(c2)−−−−−−−−→F ′(H(c1)+H(c2))

F ′(J)−−−→F ′(H(c1)+H(b)H(c2)).

We then have a comparison constraint:

HM,N : H(M)�H(N)
∼−→ H(M �N)

given by the globular 2-isomorphism:

H(a1)

H(a1)

H(c1) +H(b) H(c2) H(a2)

H(a2)H(c1 +b c2)

dH(M)�H(N) ∈ F ′(H(c1) +H(b1) H(c2))

dH(M�N) ∈ F ′(H(c1 +b c2))

ικ−1 : F ′(κ−1)(dH(M)�H(N))→ dH(M�N).

ΨjH(c1)H(i1) ΨjH(c2)H(o2)

1 1

H(ψjc1 i1) H(ψjc2o2)

κ−1
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where κ is the natural isomorphism

κ : H(c1 +b c2)
∼−→ H(c1) +H(b) H(c2)

which comes from the finite colimit preserving functor H : A → A′. The above diagram

commutes by a similar argument to the one used in Theorem 4.3.15. Similarly, for every

object c ∈ A, we have a unit comparison constraint

HU : UH(c) → H(Uc)

given by the globular 2-isomorphism:

H(c)

H(c)

H(c) H(c)

H(c)H(c)

!H(c) ∈ F ′(H(c))

θcE(!c)φ ∈ F ′(H(c))

1 1

1 1

1 1

1

where the morphism of decorations is the morphism ι : !H(c) → (θcE(!c)φ) in F ′(H(c)).

These comparison constrains satisfy the coherence axioms of a monoidal category, namely

that these diagrams commute:

(H(M)�H(N))�H(P )

H(M �N)�H(P )

H((M �N)� P )

H(M)� (H(N)�H(P ))

H(M)�H(N � P )

H(M � (N � P ))

HM,N � 1

HM�N,P

a

H(a′)

HM,N�P

1� HN,P

UH(a) �H(M) H(Ua)�H(M)

H(M) H(Ua �M)

H(M)� UH(b) H(M)�H(Ub)

H(M) H(M � Ub)

HU � 1

λ HUa,M
H(λ′)

1� HU

ρ HM,Ub
H(ρ′)

The diagrams involving the morphisms of decorations are similar to those in Theorem 4.1.3.

This shows that H = (H,E, θ) is a double functor. Next we show that this double functor
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is symmetric monoidal. First, that the object component H0 = H is symmetric monoidal

is clear as H : A→ A′ preserves finite colimits. As for the arrow component H1, given two

horizontal 1-cells M1 and M2 in FCsp:

a1 c1 b1

dM1 ∈ F (c1)

a2 c2 b2

dM2 ∈ F (c2)

i1 o1 i2 o2

their tensor product M1 ⊗M2 in FCsp is given by:

a1 + a2 c1 + c2 b1 + b2

dM1⊗M2 ∈ F (c1 + c2)

i1 + i2 o1 + o2

dM1⊗M2 : 1
d1×d2−−−−→ F (c1)× F (c2)

φc1,c2−−−−→ F (c1 + c2)

and the image of this horizontal 1-cell under the double functor H is H(M1⊗M2) given by:

H(a1 + a2) H(c1 + c2) H(b1 + b2)

dH(M1⊗M2) = θc1+c2E(dM1⊗M2)φ ∈ F ′(H(c1 + c2)).

H(i1 + i2) H(o1 + o2)

On the other hand, the image of M1 and M2 is given by H(M1) and H(M2):

H(a1) H(c1) H(b1)

dH(M1) = θc1E(dM1)φ ∈ F ′(H(c1))

H(a2) H(c2) H(b2)

dH(M2) = θc2E(dM2)φ ∈ F ′(H(c2))

H(i1) H(o1) H(i2) H(o2)

and their tensor product H(M1)⊗H(M2) is given by:

H(a1) +H(a2) H(c1) +H(c2) H(b1) +H(b2)

dH(M1)⊗H(M2) ∈ F ′(H(c1) +H(c2))

H(i1) +H(i2) H(o1) +H(o2)

dH(M1)⊗H(M2) : 1
(φ×φ)(λ−1×λ−1)−−−−−−−−−−−→E(1)×E(1)

(θc1×θc2 )(E(dM1
)×E(dM2

))

−−−−−−−−−−−−−−−−−−→F ′(H(c1))×F ′(H(c2))
ΦH(c1),H(c2)−−−−−−−−→F ′(H(c1)+H(c2)).
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We then have a natural 2-isomorphism µM1,M2 : H(M1)⊗H(M2)→ H(M1 ⊗M2) in F ′Csp

given by:

H(a1) +H(a2)

H(a1 + a2)

H(c1) +H(c2) H(b1) +H(b2)

H(b1 + b2)H(c1 + c2)

dH(M1)⊗H(M2) ∈ F ′(H(c1) +H(c2))

dH(M1⊗M2) ∈ F ′(H(c1 + c2))

H(i1) +H(i2) H(o1) +H(o2)

κ κ

H(i1 + i2) H(o1 + o2)

κ

ικ : F ′(κ)(dH(M1)⊗H(M2))→ dH(M1⊗M2)

where κ denotes the natural isomorphism arising from H preserving finite colimits. This

natural 2-isomorphism together with the associators of FCsp and F ′Csp, respectively α

and α′, make the following diagram commute:

(H(M1)⊗H(M2))⊗H(M3)

H(M1 ⊗M2)⊗H(M3)

H((M1 ⊗M2)⊗M3)

H(M1)⊗ (H(M2)⊗H(M3))

H(M1)⊗H(M2 ⊗M3)

H(M1 ⊗ (M2 ⊗M3))

µM1,M2
⊗ 1

µM1⊗M2,M3

α′

H(α)

µM1,M2⊗M3

1⊗ µM2⊗M3

with the corresponding diagram of decorations in F ′(H(c1 + (c2 + c3))):

F ′(ακ(κ+ 1))(d(H(M1)⊗H(M2))⊗H(M3))

F ′(ακ)(dH(M1⊗M2)⊗H(M3))

F ′(α)(dH((M1⊗M2)⊗M3))

F ′(κ(1 + κ))(dH(M1)⊗(H(M2)⊗H(M3)))

F ′(κ)(dH(M1)⊗H(M2⊗M3))

dH(M1⊗(M2⊗M3))

F ′(ακ)(ικ + 1)

F ′(α)(ικ)

F ′(κ(1 + κ))(ια′ )

ια

ικ

F ′(κ)(1 + ικ)

where

F ′(ακ(κ+ 1))(d(H(M1)⊗H(M2))⊗H(M3)) = F ′(κ(κ+ 1)α′)(d(H(M1)⊗H(M2))⊗H(M3))
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as the corresponding hexagon for the finite colimit preserving functor H : A→ A′ commutes.

The map µM1,M2 is also compatible with the braidings β and β′ of FCsp1 and F ′Csp1,

respectively, and make the necessary square commute as a consequence of the corresponding

commutative square involving braidings from the finite colimit preserving functor H : A→

A′.

The monoidal unit of FCsp1 is given by:

1A 1A 1A

!1A ∈ F (1A)

1 1

where 1A is the monoidal unit of the finitely cocomplete category A. The image of this

horizontal 1-cell under H is given by:

H(1A) H(1A) H(1A)

θ1AE(!1A)φ ∈ F ′(H(1A))

1 1

as H preserves finite colimits. We then have a 2-isomorphism in F ′Csp given by:

µ : 1F ′Csp1
→ H(1FCsp1

)

1A′

H(1A)

1A′ 1A′

H(1A)H(1A)

!1A′ ∈ F
′(1A′)

θ1AE(!1A)φ ∈ F ′(H(1A))

1 1

κ κ

1 1

κ

together with the morphism ιµ : F ′(κ)(!1A′ ) → (θ1AE(!1A)φ) in F ′(H(1A)). The following

square then commutes for any horizontal 1-cell M of FCsp:

1A′ ⊗H(M) H(1A)⊗H(M)

H(M) H(1A ⊗M)

µ⊗ 1

` µ1A,M

H(`′)
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where we have abbreviated the monoidal units of FCsp1 and F ′Csp1 as 1A and 1A′ , respec-

tively. The diagram of corresponding decorations is given by:

F ′(`)(d!1
A′
⊗ dH(M))

dH(M)

F ′(H(`′)κ)(d!H(1A)
⊗ dH(M))

F ′(H(`′))(dH(1A⊗M))

ι`

F ′(H(`′)κ)(ιµ⊗1)

F ′(H(`′))(ικ)

ιH(`′)

where

F ′(`)(d!1A′
⊗ dH(M)) = F ′(H(`′)κ(µ⊗ 1))(d!1A′

⊗ dH(M))

since the corresponding square involving left unitors for the finite colimit preserving functor

H : A → A′ commutes. The other square involving the right unitors r and r′ is similar.

The comparison and unit constraints HM,N and HU are monoidal transformations and this

suffices for a functor of symmetric monoidal double categories which are isofibrant, which

FCsp and F ′Csp are by Lemma 5.2.1. Note that because the comparison constraints µ

and µ(−,−) are both isomorphisms, the symmetric monoidal double functor H is strong.

4.3 Structured cospans versus decorated cospans

In this section we compare the double categories obtained via structured cospans and dec-

orated cospans. Under conditions discovered by Christina Vasilakopoulou, the two frame-

works will be shown to be equivalent as double categories. This is Theorem 4.3.15 and the

main content of this section. But first, we make precise what it meant by an ‘equivalence

of double categories’.
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We define an equivalence of double categories following Shulman [38]. Given a double

category A, we write fAg(M,N) for the set of 2-morphisms in A of the form:

A |M //

f
��
⇓a

B

g
��

C |
N
// D

We callM andN the horizontal source and target of the 2-morphism a, respectively, and

likewise we call f and g the vertical source and target of the 2-morphism a, respectively.

Thus fAg(M,N) denotes the set of 2-morphisms in A with horizontal source and target M

and N and vertical source and target f and g.

Definition 4.3.1. A (possibly lax or oplax) double functor F : A→ X is full (respectively,

faithful) if F0 : A0 → X0 is full (respectively, faithful) and each map

F1 : fAg(M,N)→F(f) XF(g)(F(M),F(N))

is surjective (respectively, injective).

Definition 4.3.2. A (possibly lax or oplax) double functor F : A → X is essentially

surjective if we can simultaneously make the following choices:

(1) For each object x ∈ X, we can find an object a ∈ A together with a vertical 1-

isomorphism αx : F(a)→ x, and

(2) For each horizontal 1-cell N : x1 → x2 of X, we can find a horizontal 1-cell M : a1 → a2

of A and a 2-isomorphism aN of X as in the following diagram:

F(a1) |
F(M)
//

αx1

��

⇓aN

F(a1)

αx2

��

x1 |
N
// x2
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Definition 4.3.3. A double functor F : A → X is strong if the comparison and unit

constraints are globular isomorphisms, meaning that for each composable pair of horizontal

1-cells M and N we have a natural isomorphism

FM,N : F(M)� F(N)
∼−→ F(M �N)

and for each object a ∈ A a natural isomorphism

Fa : ÛF(a)
∼−→ F(Ua).

Shulman [38, Theorem 7.8] proved that a strong double functor is part of a ‘double

equivalence’ if and only if it is full, faithful and essentially surjective in the sense of a

double functor as given above. We will take this theorem and use it as the definition of a

double equivalence.

Definition 4.3.4. Given a strong double functor F : A→ X, F is part of a double equiv-

alence if and only if F is full, faithful and essentially surjective. We say that F : A→ X is

a double equivalence and that A and X are equivalent as double categories.

Definition 4.3.5. Given a double equivalence F : A→ X, if F, A and X are all symmetric

monoidal, then F is a symmetric monoidal double equivalence, and A and X are

equivalent as symmetric monoidal double categories.

Given a symmetric lax monoidal pseudofunctor F : (A,+, 0) → (Cat,×, 1), one can

obtain a functor R :
∫
F → A by the Grothendieck construction, as explained in Definition

4.3.9. Moreover, if the pseudofunctor F : A → Cat factors through Rex → Cat as an

ordinary pseudofunctor, the category
∫
F will have finite colimits and this functor R will

preserve finite colimits and be right adjoint to a fully faithful left adjoint L : A →
∫
F
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between two categories with finite colimits which then allows for the construction of a

structured cospan double category. The bridge which allows us to obtain a left adjoint

L : (A,+, 0) → (
∫
F,+, 0) from a lax monoidal pseudofunctor F : (A,+, 0) → (Cat,×, 1)

is established in Lemma 4.3.11, Corollary 4.3.12 and Proposition 4.3.13. In this case, the

resulting decorated cospan double category FCsp and structured cospan double category

LCsp(
∫
F ) are equivalent as symmetric monoidal double categories.

First we find conditions under which an opfibration has a left adjoint. This bridge

between the notions of opfibration and left adjoint is due to Christina Vasilakopoulou, who

together with Baez and the author have investigated this situation and its consequences in

more detail [4].

The definitions of 2-category and pseudofunctor are given in Definitions A.3.2 and A.3.4,

respectively, of the Appendix.

Definition 4.3.6. Let Rex denote the 2-category of categories with finite colimits and

finite colimit preserving functors.

Definition 4.3.7. A functor R : X→ A is a Grothendieck opfibration if for any object

a ∈ A and every object x ∈ X such that R(x) = a, for any morphism f : a→ b there exists

a cocartesian lifting of f . This means that there exists a morphism β in X whose domain

is x which satisfies the following universal property: for any morphism g : b → b′ in A and

morphism γ : x→ y′ in X such that R(γ) = g ◦ f , there exists a unique morphism δ : y → y′
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such that γ = δ ◦ β and R(δ) = g.

y′

��

x
β

//

��

γ
22

y

��

∃!δ

66

in X

b′

a
f=R(β)

//

g◦f=R(γ)
22

b
g

55

in A

We call X the total category and A the base category of the opfibration R : X→ A.

For any object a ∈ A, the fiber category Xa consists of all objects x ∈ X such that

R(x) = a and all morphisms γ : x → x′ such that R(f) = 1a. The axiom of choice allows

us to select a cocartesian lifting for any f : a→ b which we denote by

Cocart(f, x) : x→ f!(x).

This choice also induces reindexing functors

f! : Xa → Xb

between any two fiber categories Xa and Xb. Note that by the universal property of a

cocartesian lifting, we have natural isomorphisms (1a)!
∼= 1Xa and for any composable

morphisms f and g in A, (f ◦ g)!
∼= f! ◦ g!. If these natural isomorphisms are equalities, we

say that R is a split opfibration.

Definition 4.3.8. Let OpFib(A) be the 2-subcategory of the slice 2-category of Cat/A

of opfibrations over A, cocartesian lifting preserving functors and natural transformations

with vertical components.

There is a 2-equivalence between opfibrations and pseudofunctors which is given by the

well known ‘Grothendieck construction’.
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Definition 4.3.9. Given a pseudofunctor F : A → Cat where A is a category with trivial

2-morphisms, the Grothendieck category
∫
F has:

(1) objects as pairs (a, x ∈ F (a)) and

(2) a morphism from a pair (a, x ∈ F (a)) to another pair (b, y ∈ F (b)) is given by a pair

(f : a → b, ι : F (f)(x) → y) in A × F (b). Note that a morphism can be viewed as a

morphism together with a 2-morphism:

a

b

1

F (a)

F (b)

ι
⇒

f

x

y

F (f)

There is an opfibration R :
∫
F → A where the fiber categories are given by (

∫
F )a = F (a)

and the associated reindexing functors are given by f! = F (f). We call the entirety of this

the Grothendieck construction of the pseudofunctor F .

The Grothendieck construction provides one direction of a well known equivalence.

Theorem 4.3.10. (1) Every opfibration R : X → A gives rise to a pseudofunctor

FR : A→ Cat.

(2) Every pseudofunctor F : A→ Cat gives rise to an opfibration RF :
∫
F → A.

(3) The above two correspondences give rise to an equivalence of 2-categories

[A,Cat]ps ' OpFib(A)

such that FRF
∼= F and RFR

∼= R.
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Moeller and Vasilakopoulou [35] have generalized the Grothendieck construction to the

monoidal situation, meaning that lax monoidal pseudofunctors F : A → Cat correspond

bijectively to monoidal structures on the total category
∫
F such that the corresponding

opfibration RF :
∫
F → A is a strict monoidal functor and the tensor product ⊗∫

F preserves

cocartesian liftings. If A is cocartesian monoidal, there is a further correspondence given

by:

lax monoidal pseudofunctors F : (A,+, 0)→ (Cat,×, 1)

'

monoidal opfibrations R : (X,⊗, I)→ (A,+, 0) (4.1)

'

pseudofunctors F : A→MonCat

The second equivalence is due to Shulman [38]. In detail, given a lax monoidal structure

(φ, φ0) on a pseudofunctor F , each fiber category inherits a monoidal structure via:

⊗a : F (a)× F (a)
φa,a−−→ F (a+ a)

F (∇)−−−→ F (a) (4.2)

Ix : 1
φ0−→ F (0)

F (!)−−→ F (a).

These correspondences further restrict when the Grothendieck category
∫
F is cocarte-

sian monoidal itself. In this case, the monoidal opfibration clauses for R : (X,+, 0) →

(A,+, 0) results in a functor (strictly) preserving coproducts and the initial object, and

these bijectively correspond to pseudofunctors F : A→ cocartCat where cocartCat is the
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2-category of cocartesian categories, coproduct preserving functors and natural transforma-

tions. The following statement, which relates the existence of any class of colimits in the

total category of an opfibration to their existence in the fibers, then brings pushouts into

the picture by addressing when opfibrations preserve all finite colimits. For more details,

see the work of Hermida [29].

Lemma 4.3.11. Let J be a small category and R : X → A an opfibration. If the base

category A has J-colimits, then the following are equivalent:

(1) All the fiber categories have J-colimits and all reindexing functors preserve them.

(2) The total category X has J-colimits and R preserves them.

The first part regards the existence of colimits locally in each fiber which can equivalently

be expressed as the image of the associated pseudofunctor F : A→ Cat landing in the sub-

2-category Rex of finitely cocomplete categories and finite colimit preserving functors. The

second part regards the existence of colimits globally in the total category
∫
F . These two

combine to result in:

Corollary 4.3.12. Let A be a category with finite colimts and F : (A,+, 0)→ (Cat,×, 1) a

lax monoidal pseudofunctor. If the pseudofunctor A→MonCat via the correspondence in

Equation 4.1 factors through Rex, meaning that each F (a) is finitely cocomplete and that

the associated reindexing functors are finitely cocontinuous, then the Grothendieck category∫
F has all finite colimits and the corresponding opfibration RF :

∫
F → A preserves them.

For applications to structured cospans, we want a left adjoint LF to the induced monoidal

opfibration RF :
∫
F → A of the Grothendieck construction of F . Gray found sufficient

conditions for the existence of such a left adjoint.
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Proposition 4.3.13 ([27, Prop. 4.4]). Let R : X→ A be an opfibration. Then R is a right

adjoint left inverse, meaning that the unit η : 1A → RL is an identity, if and only if its

fibers have initial objects which are preserved by the reindexing functors.

Proof. The left adjoint L : A → X maps an object a to the initial object in its fiber which

we denote by ⊥a or !a in other sections of this thesis. By construction, we have that

R(L(a)) = R(⊥a) = a. For a morphism f : a→ a′, L(f) is given by:

⊥a
Cocart(f,⊥a)−−−−−−−−→ f!(⊥a) −→ ⊥a′

where the second arrow is the unique isomorphism between initial objects in the fiber above

a′ as f! preserves them. For more details, see Gray [27, Proposition 4.4].

Notice that under Lemma 4.3.11, if A has an initial object 0A, then the above conditions

are equivalent to X having an initial object 0X above 0A. Then ⊥a is the cocartesian lifting

of the unique map !a : 0A → a in the base category A:

0X

��

Cocart(!a,0X)
// (!a)!(0X) =: ⊥a

��

in X

0A
!a

// a in A

Furthermore, if R = RF for a pseudofunctor F : A→ Cat as in Theorem 4.3.10, the rein-

dexing functors (!a)! of the opfibration are given by F (!a) and therefore ⊥a = (a, F (!a)(0X)).

Lastly, if the pseudofunctor (F, φ, φ0) : (A,+, 0)→ (Cat,×, 1) is lax monoidal to begin with,

the Grothendieck construction in the cocartesian case expresses ⊥a as the image of the com-

posite

1
φ0−→ F (0A)

F (!a)−−−→ F (a).
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Regarding the opposite direction, which is not needed in the proof of the main result of

this chapter below, we have the following result. For a discussion on the ‘strict cocontinuity’

condition, we refer to the work of Cicala and Vasilakopoulou [16].

Proposition 4.3.14. Suppose that R : X→ A is a right adjoint and left inverse. If X and

A both have chosen pushouts and initial objects and R strictly preserves them, then R is an

opfibration.

Before presenting the main proof, we outline a sketch. Given a lax monoidal pseud-

ofunctor F : (A,+, 0A) → (Cat,×, 1), the double category of decorated cospans FCsp

has A as its category of objects, horizontal 1-cells as F -decorated cospans given by pairs

(a → m ← b, x ∈ F (m)) and 2-morphisms as maps of cospans k : m → m′ together with a

morphism F (k)(x)→ x′ as in Theorem 4.1.3.

When the pseudofunctor F factors through Rex, by Corollary 4.3.12, the Grothendieck

construction yields a finitely cocomplete Grothendieck category
∫
F such that the corre-

sponding opfibration RF : (
∫
F,+, 0)→ (A,+, 0) preserves all finite colimits. In particular,

the initial object is preserved and so Lemma 4.3.11 and Corollary 4.3.13 apply to obtain a

left adjoint LF : A→
∫
F which is right inverse to RF . This left adjoint is explicitly defined

on objects by L(a) = (a,⊥a) where ⊥a is initial in the finitely cocomplete category F (a).

We can also express ⊥a as ⊥a = F (!a)φ0. Diagrammatically, this process can be expressed

as:

F : A→ Cat 7→
∫F

A

RF
7→ A ∫F

LF

⊥
RF
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From this left adjoint LF : A →
∫
F which goes between finitely cocomplete cate-

gories and preserves finite colimits, we can obtain a double category of structured cospans

LFCsp(
∫
F ). This double category will also have A as its category of objects, but now

horizontal 1-cells are given by cospans of the form LF (a)→ x← LF (b) in the Grothendieck

category
∫
F . Explicitly, horizontal 1-cells are given by:

(a,⊥a)


i : a→ m in A

! : F (i)(⊥a)→ x in F (m)

−−−−−−−−−−−−−−−−→ (m,x)


o : b→ m in A

! : F (o)(⊥b)→ x in F (m)

←−−−−−−−−−−−−−−−− (b,⊥b) (4.3)

where x ∈ F (m), as in Definition 4.3.9. A 2-morphism is given explicitly by:

(a,⊥a) (m,x) (b,⊥b)

(a′,⊥a′) (m′, x′) (b′,⊥b′)


i : a→m in A

! : F (i)(⊥a)→x in F (m)


f : a→a′ in A

χa : F (f)(⊥a)∼=⊥a′ in F (a′)


k : m→m′ in A

ι : F (k)(x)→x′ in F (m′)


o : b→m in A

! : F (o)(⊥b)→x in F (m)


g : b→b′ in A

χb : F (g)(⊥b)∼=⊥b′ in F (b′)


i′ : a′→m′ in A

! : F (i′)(⊥a′ )→x′ in F (m′)


o′ : b′→m′ in A

! : F (o′)(⊥b′ )→x′ in F (m′)

where the three vertical 1-morphisms in the middle come from LF applied to vertical 1-

morphisms in FCsp, which are just morphisms of A. Each of the above squares commutes
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which says that ki = i′f and ko = o′g in A. Then in the Grothendieck category, we have:

F (k ◦ i)(⊥a)
∼=−→ Fk(Fi(⊥a))

Fk(!)−−−→ Fk(x)
ι−→ x′ = (4.4)

F (i′ ◦ f)(⊥a)
∼=−→ Fi′(Ff(⊥a))

Fi′(χa)−−−−→ Fi′(⊥a′)
!−→ x′

in F (m′). Note that all the maps in the above equality are unique and originate from initial

objects, which are preserved by reindexing functors. Thus no extra conditions are imposed

on these morphisms, and likewise for the square involving o and o′.

We define a double functor E : LFCsp(
∫
F ) → FCsp whose object component is the

identity on the category A. Given a horizontal 1-cell:

(a,⊥a)


i : a→ m in A

! : F (i)(⊥a)→ x in F (m)

−−−−−−−−−−−−−−−−→ (m,x)


o : b→ m in A

! : F (o)(⊥b)→ x in F (m)

←−−−−−−−−−−−−−−−− (b,⊥b) (4.5)

the image is given by

a
i−→ m

o←− b together with the decoration x ∈ F (m).

Note that this is actually a bijective correspondence as the unique maps from the initial

objects in the fibers provides no extra information. Given a 2-morphism of LF -structured

cospans as in Equation (4.3), the image is given by the following map of cospans in A:

a m b

a′ m′ b′

i

f k

o

g

i′ o′

together with the morphism ι : F (k)(x)→ x′ as in Equation (4.3). This is again a bijective

correspondence and commutativity of Equation (4.4) holds by initiality of the domain.
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The double functor E = (E0,E1) is in fact strong. We have natural isomorphisms:

E(M)� E(N)
∼−→ E(M �N)

ÛE(m)
∼−→ E(Um)

for any composable horizontal 1-cells:

M = (a,⊥a)
i−→ (m,x)

o←− (b,⊥b)

and

N = (b,⊥b)
i′−→ (n, y)

o′←− (c,⊥c)

and any object m ∈ LFCsp(
∫
F ). The horizontal composite E(M) � E(N) is given as in

Theorem 4.1.1 via a pushout and decoration:

m+b n

a c,

jm◦i jn◦o′
1 F (m)× F (n) F (m+ n)

F (m+b n)

x×y φm,n

F (j)

where jm : m → m +b n and jn : n → m +b n are the canonical maps into a pushout. If

we first compose M and N in the structured cospan double category LFCsp(
∫
F ) by using

fiberwise pushouts constructed using Lemma 4.3.11, we obtain:

(m+b n, F (jm)x+⊥m+bn
F (jn)y)

(m,x) (n, y)

(a,⊥a) (b,⊥b) (c,⊥c)

and the image of this composite is given by the cospan a −→ m+b n←− c together with the

same decoration as the following diagram commutes:

F (m)× F (n) F (m+ n)

F (m+b n)× F (m+b n) F ((m+b n) + (m+b n)) F (m+b n)

φ

F (jm)×F (jn) F (j)

φ F (∇)
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as the pushout is over an initial object and hence really a coproduct. The fiberwise coprod-

uct in F (m+b n) is given as in Equation (4.2).

Lastly, for the identity morphisms, we have that Um is given by:

(m,⊥m) −→ (m,⊥m)←− (m,⊥m)

with 1m as the A-component of the cospan legs together with isomorphisms between initial

objects in the fibers. Hence E(Um) is the identity cospan on m in A together with the

‘initial decoration’ or ‘trivial decoration’ ⊥m ∈ F (m). On the other hand, UE(m) is the

same cospan and decoration. This concludes the outline that E is a strong double functor.

Finally, here is the main result relating structured and decorated cospans [4].

Theorem 4.3.15. Let A be a category with finite colimits and F : A → Cat a symmetric

lax monoidal pseudofunctor such that F factors through Rex as above. Then the symmet-

ric monoidal double category LCsp(
∫
F ) built using structured cospans and the symmetric

monoidal double category FCsp built using decorated cospans are equivalent as symmetric

monoidal double categories.

We will sometimes denote a decoration x ∈ F (m) as dE(M) ∈ F (R(x)) where M is a

horizontal 1-cell of

LCsp(X) =LF Csp(

∫
F ),

and given an object a ∈ LCsp(X), the initial decoration or trivial decoration will be denoted

as ⊥a ∈ F (a) or !a ∈ F (a). Note, that as mentioned above, ⊥a is determined by the unique

map !a : 0A → a. The object dE(M) is not to be mistaken for an object of A which we will

denote by a, b and c, or m and n with various primes and subscripts.
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Proof of Theorem 4.3.15. As each F : A → Cat factors through Rex, there exists a fully

faithful left adjoint L : A →
∫
F of the Grothendieck construction R :

∫
F → A of F ,

∫
F

is finitely cocomplete and R preserves finite colimits.

Next we define a double functor E, prove it is a double equivalence, and show it is

symmetric monoidal. For notation, let
∫
F = X. We define a double functor E : LCsp(X)→

FCsp as follows: the object component of the double functor E is given by E0 = 1A as both

double categories LCsp(X) and FCsp have objects and morphisms of A as objects and

vertical 1-morphisms, respectively. The functor E0 is trivially an equivalence of categories.

Given a horizontal 1-cell M of LCsp(X), which is a cospan in X of the form:

L(c) x L(c′)
i o

the image E1(M) is given by the pair:

c R(x) c′ x ∈ F (R(x))
R(i)ηc R(o)ηc′

where R : X→ A is the right adjoint to the functor L : A→ X and η : 1A → RL is the unit

of the adjunction L a R which is an isomorphism since L is fully faithful. Similarly, the

image of a 2-morphism α : M → N in LCsp(X):

L(c1) x L(c2)

L(c′1) x′ L(c′2)

i o

i′ o′

L(f) α L(g)

is given by the 2-morphism E1(α) : E1(M)→ E1(N) in FCsp given by:

c1 R(x) c2

c′1 R(x′) c′2

x ∈ F (R(x))

x′ ∈ F (R(x′))

R(i)ηc1 R(o)ηc2

R(i′)ηc′
1

R(o′)ηc′
2

f R(α) g
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together with a morphism ι : F (R(α))(x) → x′ in F (R(x′)) which comes from the

Grothendieck construction of the pseudofunctor F : A → Cat. That E0 is a functor is

clear. For E1, given two vertically composable 2-morphisms M and M ′ in LCsp(X),

L(c1) x L(c2)

L(c′1) x′ L(c′2)

L(c′1) x′ L(c′2)

L(c′′1 ) x′′ L(c′′2 )

i o

i′ o′

L(f) α L(g)

i′ o′

i′′ o′′

L(f ′) α′ L(g′)

their vertical composite M ′M is given by:

L(c1) x L(c2)

L(c′′1 ) x′′ L(c′′2 )

i o

i′′ o′′

L(f ′f) α′α L(g′g)

and the image of this 2-morphism E1(M ′M) is given by:

c1 R(x) c2

c′′1 R(x′′) c′′2

x ∈ F (R(x))

x′′ ∈ F (R(x′′))

R(i)ηc1 R(o)ηc2

R(i′′)ηc′′
1

R(o′′)ηc′′
2

f ′f R(α′α) g′g
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together with a morphism ιM ′M : F (R(α′α))(x)→ x′′ in F (R(x′′)). On the other hand, the

individual images E1(M) and E1(M ′) are given by:

c1 R(x) c2

c′1 R(x′) c′2

x ∈ F (R(x))

x′ ∈ F (R(x′))

c′1 R(x′) c′2

c′′1 R(x′′) c′′2

x′ ∈ F (R(x′))

x′′ ∈ F (R(x′′))

R(i)ηc1 R(o)ηc2

R(i′)ηc′
1

R(o′)ηc′
2

f R(α) g

R(i′)ηc′
1

R(o′)ηc′
2

R(i′′)ηc′′
1

R(o′′)ηc′′
2

f ′ R(α′) g′

together with morphisms ιM : F (R(α))(x)→ x′ in F (R(x′)) and ιM ′ : F (R(α′)(x′)→ x′′ in

F (R(x′′)), respectively. The vertical composite E1(M ′)E1(M) of the above two 2-morphisms

is given by E1(M ′M) as R is a functor and ιM ′M = ιM ′ιM . The functors E0 and E1 satisfy

the equations E0S = SE1 and E0T = TE1.

To show that E is part of a double equivalence, we need to show it is essentially surjective,

full, faithful and strong. To show it is essentially surjective, given a horizontal 1-cell in

FCsp:

c1 c c2 x ∈ F (c)
i o

we can find a 2-isomorphism in FCsp whose codomain is the above horizontal 1-cell and

whose domain is the image of the following horizontal 1-cell in LCsp(X):

L(c1) x L(c2)
i′ o′
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with the 2-isomorphism in FCsp given by:

c1 R(x) c2

c1 c c2

x ∈ F (R(x))

x ∈ F (c)

R(i′)ηc1 R(o′)ηc2

i o

1 (R(e)ηc)
−1 1

ι : F ((R(e)ηc)
−1)(x)→ x

where e : L(c)→ x is given by the unique map from the trivial decoration on c to x ∈ F (c).

The object and arrow components E0 and E1 satisfy the equations SE1 = E0S and TE1 =

E0T .

To show that the double functor E is full and faithful, we need to show that the map

E1 : fLCsp(X)g(M,N)→ E(f)FCspE(g)(E(M),E(N))

is bijective for arbitrary vertical 1-morphisms f and g and horizontal 1-cells M and N of

LCsp(X). Consider a 2-morphism in LCsp(X) with horizontal source and target M and N ,

respectively and vertical source and target f and g, respectively:

L(c1) x L(c2)

L(c′1) x′ L(c′2)

M

f

N

g

i o

i′ o′

L(f) α L(g)

Thus the set

fLCsp(X)g(M,N)

consists of triples

(f, α, g)
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rendering the above diagram commutative where f and g are morphisms of A and α is

a morphism of X. The image of the above 2-morphism under the double functor E has

horizontal source and target given by E(M) and E(N), respectively, and vertical source and

target given by E(f) and E(g), respectively:

c1 R(x) c2

c′1 R(x′) c′2

x ∈ F (R(x))

x′ ∈ F (R(x′))

E(M)

E(f)

E(N)

E(g)

R(i)ηc1 R(o)ηc2

R(i′)ηc′
1

R(o′)ηc′
2

f R(α) g

together with a morphism ι : F (R(α))(x)→ x′ of F (R(x′)). Thus the set

E(f)FCspE(g)(E(M),E(N))

consists of 4-tuples

(f,R(α), g, ι)

rendering the above diagram commutative and where f, g and R(α) are morphisms of A and

ι is a morphism in F (R(x′)). The morphisms R(α) : R(x)→ R(x′) and ι : F (R(α))(x)→ x′

together determine the morphism α : x → x′ in X and conversely: given two objects x =

(c, x ∈ F (c)) and x′ = (c′, x′ ∈ F (c′)) of X =
∫
F , a morphism from α : x→ x′ is a pair

(h : c→ c′, ι : F (h)(x)→ x′)

where h : c→ c′ is given by R(α) : R(x)→ R(x′). This shows that E is fully faithful.

Next we show that the double functor E is strong by exhibiting a natural isomorphism

EM,N : E(M)� E(N)
∼−→ E(M �N)
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for every pair of composable horizontal 1-cells M and N of LCsp(X) and for every object

c ∈ LCsp(X) a natural isomorphism

Ec : ÛE(c)
∼−→ E(Uc)

where U and Û are the unit functors of LCsp(X) and FCsp, respectively. For any object

c, the horizontal 1-cell ÛE(c) is given by Ûc which is given by the pair:

c c c !c ∈ F (c)
1 1

The horizontal 1-cell Uc is given by

L(c) L(c) L(c)
1 1

and so E(Uc) is given by the pair:

c R(L(c)) c !c ∈ F (R(L(c)))
ηc ηc

We can then obtain the natural isomorphism Ec : ÛE(c)
∼−→ E(Uc) as the 2-morphism

c c c

c R(L(c)) c

!c ∈ F (c)

!R(L(c)) ∈ F (R(L(c)))

1 1

ηc ηc

1 ηc 1

ι : F (ηc)(!c)
!−→!R(L(c))

in FCsp.

Next, given composable horizontal 1-cells M and N in LCsp(X):

L(c1) x L(c2) L(c2) x′ L(c3)
i o i′ o′
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their images E(M) and E(N) are given by:

c1 R(x) c2 c2 R(x′) c3

x ∈ F (R(x)) x′ ∈ F (R(x′))

R(i)ηc1 R(o)ηc2 R(i′)ηc2 R(o′)ηc3

and so E(M)� E(N) is given by:

c1 R(x) +c2 R(x′) c3

dE(M)�E(N) ∈ F (R(x) +c2 R(x′))

jψR(i)ηc1 jψR(o′)ηc3

dE(M)�E(N) : 1
λ−1

−−→1×1
x×x′−−−→F (R(x))×F (R(x′))

φR(x),R(x′)−−−−−−−→F (R(x)+R(x′))
F (jR(x),R(x′))

−−−−−−−−−→F (R(x)+c2R(x′))

where ψ denotes each natural map into the coproduct and j denotes the natural map from

the coproduct to the pushout. On the other hand, M �N is given by

L(c1) x+L(c2) x
′ L(c3)

Jζi Jζo′

where ζ is a natural map into a coproduct and J is the natural map from the coproduct to

the pushout. Then E(M �N) is given by

c1 R(x+L(c2) x
′) c3

dE(M�N) = x+L(c2) x
′ ∈ F (R(x+L(c2) x

′))

R(Jζi)ηc1 R(Jζo′)ηc3

and so EM,N : E(M)� E(N)
∼−→ E(M �N) is given by the 2-morphism:

c1 R(x) +c2 R(x′) c3

c1 R(x+L(c2) x
′) c3

dE(M)�E(N) ∈ F (R(x) +c2 R(x′))

dE(M�N) ∈ F (R(x+L(c2) x
′))

jψR(i)ηc1 jψR(o′)ηc3

R(Jζi)ηc1 R(Jζo′)ηc3

1 σ 1

First, the right adjoint R also preserves finite colimits and so we have a natural isomorphism

κ : R(x) +R(L(c2)) R(x′)→ R(x+L(c2) x
′).
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Also, since the left adjoint L : A → X is fully faithful, the unit of the adjunction L a R at

the object c2 gives a natural isomorphism ηc2 : c2 → R(L(c2)) which results in a natural

isomorphism

jηc2 : R(x) +c2 R(x′)→ R(x) +R(L(c2)) R(x′).

Composing these two results in a natural isomorphism

σ : = κjηc2 : R(x) +c2 R(x′)→ R(x+L(c2) x
′).

Next, to see that the above diagram commutes, it suffices to show that for the object c1 ∈ A,

R(J)R(ζ)R(i)ηc1(c1) = R(Jζi)ηc1(c1)
!

= σjψR(i)ηc1(c1) = κjηc2ψR(i)ηc1(c1).

This follows as R(i)ηc1 : c1 → R(x) and the following diagram commutes:

R(x) R(x) +R(x′) R(x) +c2 R(x′)

R(x+L(c2) x
′)R(x+ x′)

R(x) +R(L(c2)) R(x′)

jψ

R(J)

R(ζ)

jηc2

σ

κ

Lastly, this map of cospans comes with an isomorphism ι : F (σ)(dE(M)�E(N)) → dE(M�N)

in F (R(x +L(c2) x
′)). This shows that E is strong, and so E : LCsp(X)

∼−→ FCsp is part of

a double equivalence by a Theorem of Shulman [38, Theorem 7.8].

Next we will show that this equivalence of double categories E : LCsp(X)→ FCsp is sym-

metric monoidal. First, note that we have a natural isomorphism ε : 1FCsp → E(1
LCsp(X))

and natural isomorphisms µc1,c2 : E(c1) ⊗ E(c2) → E(c1 ⊗ c2) for every pair of objects

c1, c2 ∈ LCsp(X) both of which are given by identities since both double categories LCsp(X)

119



and FCsp have A as their category of objects and E0 = 1A. The diagrams utilizing these

maps that are required to commute do so trivially.

For the arrow component E1, we have a natural isomorphism δ : U1FCsp → E(U1
LCsp(X)

)

where the horizontal 1-cell U1FCsp is given by:

1A 1A 1A !1A ∈ F (1A)
1 1

where !1A = φ : 1 → F (1A) is the trivial decoration which comes from the structure of the

symmetric lax monoidal pseudofunctor F : A→ Cat. The horizontal 1-cell U1
LCsp(X)

is given

by:

L(1A) L(1A) L(1A)
1 1

where here we make use of the fact that the left adjoint L : (A,+, 1A)→ (X,+, 1X) preserves

all colimits and thus L(1A) ∼= 1X. The horizontal 1-cell E(U1
LCsp(X)

) is then given by the

pair:

1A R(L(1A)) 1A !R(L(1A)) ∈ F (R(L(1A)))
η1A η1A

The natural isomorphism δ is then given by the 2-morphism:

1A 1A 1A

1A R(L(1A)) 1A

!1A ∈ F (1A)

!R(L(1A)) ∈ F (R(L(1A)))

1 1

η1A η1A

1 η1A 1

ιη1A
: F (η1A)(!1A)→!R(L(1A))

of FCsp. This is just the natural isomorphism E1A from earlier.

Given two horizontal 1-cells M and N of LCsp(X):

L(c1) x L(c2) L(c′1) x′ L(c′2)
i o i′ o′
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their images E(M) and E(N) are given by:

c1 R(x) c2 c′1 R(x′) c′2

x ∈ F (R(x)) x′ ∈ F (R(x′))

R(i)ηc1 R(o)ηc2
R(i′)ηc′

1
R(o′)ηc′

2

and so E(M)⊗ E(N) is given by:

c1 + c′1 R(x) +R(x′) c2 + c′2

dE(M)⊗E(N) ∈ F (R(x) +R(x′))

R(i)ηc1 +R(i′)ηc′
1

R(o)ηc2 +R(o)ηc′
2

where

dE(M)⊗E(N) : 1
λ−1

−−→ 1× 1
x×x′−−−→ F (R(x))× F (R(x′))

φR(x),R(x′)−−−−−−−→ F (R(x) +R(x′)).

On the other hand, M ⊗N is given by

L(c1 + c′1) x+ x′ L(c2 + c′2)

(i+ i′)φ−1
c1,c
′
1

(o+ o′)φ−1
c2,c
′
2

and E(M ⊗N) is given by:

c1 + c′1 R(x+ x′) c2 + c′2

dE(M⊗N) = x+ x′ ∈ F (R(x+ x′)).

R((i+ i′)φ−1
c1,c
′
1
)ηc1+c′

1
R((o+ o′)φ−1

c2,c
′
2
)ηc2+c′

2

We then have a natural 2-isomorphism µM,N : E(M)⊗E(N)
∼−→ E(M ⊗N) in FCsp given

by:

c1 + c′1 R(x) +R(x′) c2 + c′2

c1 + c′1 R(x+ x′) c2 + c′2

dE(M)⊗E(N) ∈ F (R(x) +R(x′))

dE(M⊗N) ∈ F (R(x+ x′))

ιµ : F (κ)(dE(M)⊗E(N))→ dE(M⊗N)

R(i)ηc1 +R(i′)ηc′
1

R(o)ηc2 +R(o′)ηc′
2

R((i+ i′)φ−1
c1,c
′
1
)ηc1+c′

1
R((o+ o′)φ−1

c2,c
′
2
)ηc2+c′

2

1 κ 1
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where κ is the isomorphism which comes from R : X→ A preserving finite colimits.

The natural isomorphisms δ and µ satisfy the left and right unitality squares, associa-

tivity hexagon and braiding square. To see this, let M1,M2 and M3 be horizontal 1-cells in

LCsp(X) given by:

L(c1) x1 L(c′1) L(c2) x2 L(c′2) L(c3) x3 L(c′3)
i1 o1 i2 o2 i3 o3

The left unitality square:

1FCsp ⊗ E(M1) E(1
LCsp(X))⊗ E(M1)

E(M1) E(1
LCsp(X) ⊗M1)

δ ⊗ 1

µ1,M1λ′

E(λ)

has an underlying diagram of maps of cospans given by:

E(1
LCsp(X))⊗ E(M1)1A + c1 R(L(1A)) +R(x1) 1A + c′1

1FCsp ⊗ E(M1)1A + c1 1A +R(x1) 1A + c′1

E(M1)c1 R(x1) c′1

E(1
LCsp(X) ⊗M1)1A + c′1 R(L(1A) + x1) 1A + c′1

E(M1)c1 R(x1) c′1

λ

δ ⊗ 1

µ1,M1

E(λ)

η1A +R(i1)ηc1
η1A +R(o1)ηc′

1

1 +R(i1)ηc1
1 +R(o1)ηc′

1

1 η1A + 1 ι2 1

R(i1)ηc1
R(o1)ηc′

1

λA λA ι1 λA

(µL(1A),d1 )(η1A +R(i1)ηc1 ) (µL(1A),d1 )(η1A +R(o1)ηc′
1
)1 µL(1A),x1 ι3 1

R(i1)ηc1
R(o1)ηc′

1

λA R(λX) ι4 λA

with the corresponding maps of decorations amounting to the following commutative dia-

gram in F (R(x1)):

F (λA)(!1A + x1) F (R(λX)(µL(1A),x1))(!R(L(1A)) + x1)

x1 F (R(λX))(x!+1)

F (R(λX)(µL(1A),x1 ))(ι2)

ι1

ι4

F (R(λX))(ι3)
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where x!+1 is the decoration x1 on the object R(L(1A) + x1) ∈ A. The above square

commutes because

F (λA)(!1A + x1) = F (R(λX)(µL(1A),x1
)(η1A + 1))(!1A + x1)

as the corresponding left unitality square for the finite colimit preserving functor

R : (X, 1X,+) → (A, 1A,+) commutes. The right unitality square is similar. The associ-

ator hexagon:

(E(M1)⊗ E(M2))⊗ E(M3) E(M1 ⊗M2)⊗ E(M3) E((M1 ⊗M2)⊗M3)

E(M1)⊗ (E(M2)⊗ E(M3)) E(M1)⊗ E(M2 ⊗M3) E(M1 ⊗ (M2 ⊗M3))

µM1,M2
⊗ 1 µM1⊗M2,M3

1⊗ µM2,M3
µM1,M2⊗M3

a′ E(a)
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has underlying maps of cospans given by:

(E(M1)⊗ E(M2))⊗ E(M3)

E(M1 ⊗M2)⊗ E(M3)

E((M1 ⊗M2)⊗M3)

E(M1 ⊗ (M2 ⊗M3))

E(M1)⊗ (E(M2)⊗ E(M3))

E(M1)⊗ E(M2 ⊗M3)

E(M1 ⊗ (M2 ⊗M3))

(c1 + c2) + c3 (R(x1) +R(x2)) +R(x3) (c′1 + c′2) + c′3

(c1 + c2) + c3 R(x1 + x2) +R(x3) (c′1 + c′2) + c′3

(c1 + c2) + c3 R((x1 + x2) + x3) (c′1 + c′2) + c′3

c1 + (c2 + c3) R(x1 + (x2 + x3)) c′1 + (c′2 + c′3)

c1 + (c2 + c3) R(x1) + (R(x2) +R(x3)) c′1 + (c′2 + c′3)

c1 + (c2 + c3) R(x1) +R(x2 + x3) c′1 + (c′2 + c′3)

c1 + (c2 + c3) R(x1 + (x2 + x3)) c′1 + (c′2 + c′3)

µM1,M2
⊗ 1

µM1⊗M2,M3

E(a)

a′

1⊗ µM2,M3

µM1,M2⊗M3

(R(i1)ηc1 +R(i2)ηc2 ) +R(i3)ηc3
(R(o1)ηc′

1
+R(o2)ηc′

2
) +R(o3)ηc′

3

R(i1 + i2)ηc1+c2 +R(i3)ηc3
R(o1 + o2)ηc′

1
+c′

2
+R(o3)ηc′

3

1 κ+ 1 ι1 1

R((i1 + i2) + i3)η(c1+c2)+c3
R((o1 + o2) + o3)η(c′

1
+c′

2
)+c′

3

1 κ ι2 1

R(i1 + (i2 + i3))ηc1+(c2+c3)
R(o1 + (o2 + o3))ηc′

1
+(c′

2
+c′

3
)

aA R(aX) ι3 aA

R(i1)ηc1 + (R(i2)ηc2 +R(i3)ηc3 ) R(o1)ηc′
1

+ (R(o2)ηc′
2

+R(o3)ηc′
3
)

aA aA ι4 aA

R(i1)ηc1 +R(i2 + i3)ηc2+c3
R(o1)ηc′

1
+R(o2 + o3)ηc′

2
+c′

3

1 1 + κ ι5 1

R(i1 + (i2 + i3))ηc1+(c2+c3)
R(o1 + (o2 + o3))ηc′

1
+(c′

2
+c′

3
)

1 κ ι6 1

Here, due to limited space, we have omitted the natural isomorphisms φci,cj : L(ci)+L(cj)→

L(ci + cj) on the inward pointing morphisms which make up the legs of each cospan.

The corresponding maps of decorations amount to the following commutative diagram in
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F (R(x1 + (x2 + x3))):

F ((κ)(1 + κ)(aA))((x1 + x2) + x3) F ((R(aX))(κ))((x1 + x2) + x3)

F (R(aX))((x1 + x2) + x3)

x1 + (x2 + x3)

F ((κ)(1 + κ))((x1 + x2) + x3)

F (κ)(x1 + (x2 + x3))

F ((R(aX))(κ))(ι1)

F (R(aX))(ι2)

ι3

F ((κ)(1 + κ))(ι4)

F (κ)(ι5)

ι6

The above hexagon commutes because

F ((κ)(1 + κ)(aA))((x1 + x2) + x3) = F ((R(aX))(κ)(κ+ 1))((x1 + x2) + x3)

as the corresponding associator hexagon for the finite colimit preserving functor

R : (X, 1X,+)→ (A, 1A,+) commutes. Lastly, the braiding square:

E(M1)⊗ E(M2) E(M2)⊗ E(M1)

E(M1 ⊗M2) E(M2 ⊗M1)

β′

µM2,M1
µM1,M2

E(β)

has underlying map of cospans given by:

E(M1)⊗ E(M2)

E(M2)⊗ E(M1)

E(M2 ⊗M1)

E(M1 ⊗M2)

E(M2 ⊗M1)

c1 + c2 R(x1) +R(x2) c′1 + c′2

c2 + c1 R(x2) +R(x1) c′2 + c′1

c2 + c1 R(x2 + x1) c′2 + c′1

c1 + c2 R(x1 + x2) c′1 + c′2

c2 + c1 R(x2 + x1) c′2 + c′1

β′

µM2,M1

µM1,M2

E(β)

R(i1)ηc1 +R(i2)ηc2
R(o1)ηc′

1
+R(o2)ηc′

2

R(i2)ηc2 +R(i1)ηc1
R(o2)ηc′

2
+R(o1)ηc′

1

βA βA ι1 βA

R(i2 + i1)ηc2+c1
R(o2 + o1)ηc′

2
+c′

1

1 κ ι2 1

R(i1 + i2)ηc1+c2
R(o1 + o2)ηc′

1
+c′

2

1 κ ι3 1

R(i2 + i1)ηc2+c1
R(o2 + o1)ηc′

2
+c′

1

βA R(βX) ι4 βA

Again, we have omitted the natural isomorphisms φci,cj on the inward pointing morphisms

on each cospan leg due to space restrictions. The corresponding maps of decorations amount
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to the following commutative diagram in F (R(x2 + x1)):

F ((κ)(βA))(x1 + x2) F (κ)(x2 + x1)

F (R(βX))(x1 + x2) x2 + x1

F (κ)(ι1)

F (R(βX))(ι3)

ι4

ι2

The above square commutes because

F ((κ)(βA))(x1 + x2) = F ((R(βX))(κ))(x1 + x2)

as the corresponding braiding square for the finite colimit preserving functor

R : (X, 1X,+) → (A, 1A,+) commutes. The comparison and unit constraints EM,N and

Ec are monoidal natural transformations, and as both LCsp(X) and FCsp are isofibrant by

Lemmas 5.1.2 and 5.2.1, respectively, the double functor E : LCsp(X)→ FCsp is symmetric

monoidal.

4.4 Applications

In this section we present the three examples that were illustrated with the original

decorated cospans as well as structured cospans. The first example regarding graphs was

mentioned in the introduction and is the easiest example to keep in mind. The next two

examples, taking on more of an applied flavor, consist of electrical circuits and Petri nets.

Each of these has been studied extensively in work on ‘black-boxing’ [5, 7, 8, 9, 10]. Black-

boxing is a way of describing the behavior of an open system, that is, a system with

prescribed inputs and outputs such as the terminals of an electrical circuit, by observing

the activity at the inputs and the outputs, typically while the system is in a ‘steady state’.

The relation between the activity at inputs and outputs can be seen as a morphism in some
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category of relations. A black-boxing functor sending open electrical circuits to Lagrangian

linear relations was first constructed using Fong’s theory of decorated cospans [7], and

later via the theory of props [5]. A black-boxing double functor sending open Petri nets

to relations was constructed using structured cospans [9]. A black-boxing functor for a

special class of Markov processes was constructed using decorated cospans [8]; later it was

generalized and enhanced to a double functor [2], as explained in Chapter 6.

4.4.1 Graphs

As a first example, let L : FinSet→ FinGraph be the functor that assigns to a set N the

discrete graph L(N) which is the edgeless graph with N as its set of vertices. Both FinSet

and FinGraph have finite colimits and the functor L : FinSet → FinGraph is left adjoint to

the forgetful functor R : FinGraph→ FinSet which assigns to a finite graph G its underlying

finite set of vertices, R(G). Using structured cospans and appealing to Theorem 3.2.3, we

get a symmetric monoidal double category LCsp(FinGraph) which has:

(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) open graphs, or cospans of graphs of the form

L(N) G L(M)
I O

as horizontal 1-cells, where L(N) and L(M) are discrete graphs on the sets N and

M , respectively, G is a graph and I and O are graph morphisms, and
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(4) maps of cospans of graphs of the form

L(N1) G1 L(M1)

L(N2) G2 L(M2)

I1 O1

I2 O2

L(f) α L(g)

as 2-morphisms, where L(f) and L(g) are maps of discrete graphs induced by the

underlying functions f and g, respectively, and α : G1 → G2 is a graph morphism.

This is precisely Theorem 3.3.2. We can obtain a similar symmetric monoidal double

category using decorated cospans. Let F : FinSet → Cat be the symmetric lax monoidal

pseudofunctor that assigns to a finite set N the category of all graph structures whose

underlying set of vertices is N . Thus, F (N) is the category where:

(1) objects are given by graphs each having N as their set of vertices

E N

s

t

and

(2) morphisms are given by maps of edges f : E → E′ making the following two triangles

commute:
E

E′

N

E

E′

N

s

s′

f f

t

t′

The laxator

µN1,N2 : F (N1)× F (N2)→ F (N1 +N2)

for this symmetric lax monoidal pseudofunctor F is analogous to the laxator for the

monoidal functor F of Section 2.2.1. By Theorem 4.1.3, we have the following:
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Theorem 4.4.1. Let F : FinSet→ Cat be the symmetric lax monoidal pseudofunctor which

assigns to a finite set N the category of all graph structures whose underlying set of vertices

is N . Then there exists a symmetric monoidal double category FCsp which has:

(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) horizontal 1-cells as pairs:

N P M G ∈ F (P )
i o

which can also be thought of as open graphs, and

(4) 2-morphisms as maps of cospans of finite sets

N1

N2 M2

P1 M1

P2

G1 ∈ F (P1)

G2 ∈ F (P2)

i1 o1

f g

o2i2

h

together with a graph morphism ι : F (h)(G1)→ G2 in F (P2).

Proof. This follows immediately from Theorem 4.1.3.

We thus have two symmetric monoidal double categories: LCsp(FinGraph) obtained

from structured cospans and FCsp obtained from decorated cospans. Both of these double

categories have FinSet as their categories of objects, open graphs as horizontal 1-cells and

maps of open graphs as 2-morphisms, and by Theorem 4.3.15, we have an equivalence of

symmetric monoidal double categories LCsp(FinGraph) ' FCsp.
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Corollary 4.4.2. The symmetric monoidal double category LCsp(FinGraph) of Theorem

3.3.2 and the symmetric monoidal double category FCsp of Theorem 4.4.1 are equivalent.

Proof. This follows immediately from Theorem 4.3.15.

4.4.2 Electrical circuits

In a previous work [10], Baez and Fong attempted to use decorated cospans to construct

a symmetric monoidal category of open k-graphs. Now we can fix the problems in this

construction. Recall from Definition 2.2.3 that given a field k with positive elements, a

k-graph is given by a diagram in Set of the form:

E Vk+
r

s

t

Here the finite sets E and V are the sets of edges and vertices, respectively, and if we take

the field k = R, the function r : E → R+ assigns to each edge e ∈ E a positive real number

r(e) ∈ R+ which can be interpreted as the resistance at the edge e. We restrict to finite

sets to avoid convergence issues with certain summations. An open k-graph is then given

by a cospan of finite sets

V YX
i o

where the apex V is equipped with the structure of a k-graph. See the original paper for

more details [10].

Let FinGraphk be the category whose objects are given by k-graphs and morphisms

by morphisms of k-graphs, where a morphism of k-graphs is given by a pair of functions

f : E → E′ and g : V → V ′ between the edge sets and vertex sets, respectively, of two
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k-graphs that respect the source and target functions of each, and such that the resistances

of each edge are preserved. In the original work introducing structured cospans, it is shown

that the category FinGraphk has finite colimits [3]. We can then obtain a double category

of open k-graphs by defining a left adjoint L : FinSet → FinGraphk that assigns to a finite

set V the discrete k-graph L(V ) given by the k-graph with V as its set of vertices and no

edges. The resulting symmetric monoidal double category LCsp(FinGraphk) has:

(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) open k-graphs as horizontal 1-cells

V YX k+ E V
r

s

t

i o

and

(4) maps of cospans as 2-morphisms together with a map of k-graphs between the apices.

X1

X2 Y2

V1 Y1

V2

i1 o1

h h′

o2i2

g

k+

E1

E2

E1

E2

V1

V2

E1

E2

V1

V2

g g

r1

s1

s2

r2

f f f

t1

t2

We can also obtain a similar double category using decorated cospans: define a pseudofunc-

tor F : FinSet → Cat that assigns to a finite set V the category of all k-graph structures
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on the set V and to a function f : V → V ′ the corresponding functor F (f) : F (V )→ F (V ′)

between decoration categories. Both categories FinSet and Cat are symmetric monoidal

and the pseudofunctor F : FinSet → Cat is symmetric lax monoidal, as given a k-graph

structure on a finite set V1 denoted by an element K1 ∈ F (V1) and a k-graph structure

on a finite set V2 denoted by an element K2 ∈ F (V2), there is a natural k-graph structure

φV1,V2(K1,K2) on V1 + V2. Thus we get a natural transformation

φV1,V2 : F (V1)× F (V2)→ F (V1 + V2)

as well as a morphism φ : 1 → F (∅) which together satisfy the coherence conditions of a

monoidal functor. The braiding is also clear as the following diagram commutes:

F (V1)× F (V2) F (V2)× F (V1)

F (V1 + V2) F (V2 + V1)

φV1,V2 φV2,V1

β′V1,V2

F (βV1,V2
)

Thus the pseudofunctor F is symmetric lax monoidal and so by Theorem 4.1.3 we have the

following:

Theorem 4.4.3. Let F : FinSet→ Cat be the symmetric lax monoidal pseudofunctor which

assigns to a finite set N the category of all k-graph structures whose underlying set of vertices

is N . Then there exists a symmetric monoidal double category FCsp which has:

(1) objects as finite sets,

(2) vertical 1-morphisms as functions,
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(3) horizontal 1-cells as cospans of sets together with the structure of a k-graph given by

an element of the image of the apex under the pseudofunctor F :

U V W K ∈ F (V )
i o

which are open k-graphs, and

(4) 2-morphisms as maps of cospans of finite sets

U1 W1V1

U2 W2V2

K1 ∈ F (V1)

K2 ∈ F (V2)

o1

f gh

i1

i2 o2

together with a morphism of k-graphs ι : F (h)(K1)→ K2 in F (V2).

Corollary 4.4.4. The symmetric monoidal double category LCsp(FinGraphk) of Theorem

3.3.5 and the symmetric monoidal double category FCsp of Theorem 4.4.3 are equivalent.

Proof. This follows immediately from Theorem 4.3.15.

4.4.3 Petri nets

In a previous work, Baez and Master used the framework of structured cospans to obtain

a symmetric monoidal double category of ‘open Petri nets’ [9]. Recall from Definition 2.2.5

that a Petri net is given by a diagram in Set of the form:

T N[S].

s

t

Here, T is the finite set of transitions and S is the finite set of species, and N[S] is the free

commutative monoid on the set S. Each transition then has a formal linear combination of
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species given by an element of N[S] as its source and target as prescribed by the functions

s and t, respectively. An example of a Petri net is given by:

H

O

α H2O

This Petri net has a single transition α with 2H + O as its source and H2O as its target.

See the original paper for more details on Petri nets [9].

Each set of species S gives rise to a discrete Petri net L(S) with S as its set of species and

no transitions. Baez and Master note the existence of a left adjoint L : Set → Petri where

Petri is the category whose objects are Petri nets and whose morphisms are ‘morphisms

of Petri nets’. They also show that Petri has finite colimits and thus using Theorem 3.2.3

obtain a symmetric monoidal double category Open(Petri) of open Petri nets which has:

(1) objects given by sets,

(2) vertical 1-morphisms given by functions,

(3) horizontal 1-cells as open Petri nets which are given by cospans in Petri of the form:

L(X) P L(Y )
I O

and

(4) 2-morphisms as maps of cospans in Petri of the form:

L(X1) L(Y1)P1

L(X2) L(Y2)P2

O1

L(f) L(g)α

I1

I2 O2
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We can also obtain a similar double category using decorated cospans: define a pseudo-

functor F : Set → Cat where given a set s, F (s) is the category of all Petri net structures

with s as its set of species. This pseudofunctor F is symmetric lax monoidal as both

(Set,+, ∅) and (Cat,×, 1) are symmetric monoidal and given Petri nets P ∈ F (s) and

P ′ ∈ F (s′), we can place them side by side and consider them together as a single Petri

net P + P ′ ∈ F (s+ s′) with set of species s+ s′, and thus we have natural transformations

φs,s′ : F (s) × F (s′) → F (s + s′) for any two sets s and s′. The other structure morphism

between monoidal units φ : 1→ F (∅) is defined by the unique morphism from the terminal

category to the empty Petri net with the empty set for its set of species, which is the only

possible Petri net on the empty set. All of the diagrams that are required to commute are

straightforward. Appealing to Theorem 4.1.3, we have the following:

Theorem 4.4.5. Let F : Set → Cat be the symmetric lax monoidal pseudofunctor which

assigns to a set S the category of all Petri nets whose set of species is S. Then there exists

a symmetric monoidal double category FCsp which has:

(1) objects given by sets,

(2) vertical 1-morphisms given by functions,

(3) horizontal 1-cells given by open Petri nets presented as pairs:

X Z Y P ∈ F (Z)
i o

and
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(4) 2-morphisms as maps of cospans in Set:

X1 Y1Z1

X2 Y2Z2

P1 ∈ F (Z1)

P2 ∈ F (Z2)

o1

f gh

i1

i2 o2

together with a morphism of Petri nets ι : F (h)(P1)→ P2 in F (Z2).

Thus we have a symmetric monoidal double category Open(Petri) of open Petri nets

obtained from structured cospans and a symmetric monoidal double category FCsp of

open Petri nets obtain from decorated cospans, and these two symmetric monoidal double

categories are equivalent.

Corollary 4.4.6. The symmetric monoidal double category Open(Petri) constructed by

Baez and Master [9] utilizing structures cospans and the symmetric monoidal double category

FCsp of Theorem 4.4.5 are equivalent.

Proof. This follows immediately from Theorem 4.3.15.

We may also construct a symmetric monoidal double category of open Petri nets with

rates using decorated cospans, and this is equivalent to the symmetric monoidal double

category LCsp(Petrirates) of Theorem 3.3.9.
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Chapter 5

A brief digression to bicategories

If one prefers bicategories to double categories, one will be happy to learn that all of

the main results in this thesis on double categories have bicategorical analogues thanks to a

result of Mike Shulman [37]. Bicategories are defined in Section A.3 of the Appendix. First

we discuss the relationship between 2-categories and double categories. As we are mainly

interested in symmetric monoidal double categories, we are similarly primarily interested in

‘symmetric monoidal bicategories’. We will not define monoidal, braided monoidal, ‘syllep-

tic’ monoidal or symmetric monoidal bicategories here. These definitions can be found in a

work of Mike Stay [39].

The first thing we point out is that 2-categories are just a special case of strict double

categories and that every strict double category has at least two canonical underlying 2-

categories. Given a strict double category C, there exists:

(1) a 2-category H(C) called the horizontal 2-category of C which has:

(a) objects as objects of C,
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(b) morphisms as horizontal 1-cells of C, and

(c) 2-morphisms as 2-morphisms of C with identity vertical 1-morphisms, also known

as globular 2-morphisms of C.

(2) a 2-category V(C) called the vertical 2-category of C which has:

(a) objects as objects of C,

(b) morphisms as vertical 1-morphisms of C, and

(c) 2-morphisms as 2-morphisms of C with identity horizontal 1-cells, where now

composition of 2-morphisms is given by horizontal composition of 2-morphisms

in C.

Every pseudo double category C has an underlying bicategory H(C) given by as above.

Using our conventions, there is no underlying vertical bicategory V(C) as restricting the

horizontal source and target of 2-morphisms, namely the horizontal 1-cells, to be identities

does not force the horizontal source and target of the composite 2-morphisms in C to also

be identities, due to the composition of horizontal 1-cells in a pseudo double category being

neither strictly unital nor associative.

Sometimes when the pseudo double category C is symmetric monoidal, the symmetric

monoidal structure can be lifted to the horizontal bicategory H(C). This is due to the

following result of Shulman [37]. The definitions of ‘isofibrant’ and ‘symmetric monoidal

double category’ are given in Definitions A.2.7 and A.2.12, respectively.

Theorem 5.0.1 ([37, Thm. 1.2]). Let X be an isofibrant symmetric monoidal pseudo double

category. Then the horizontal bicategory H(X) of X is a symmetric monoidal bicategory

which has:

138



(1) objects as those of X,

(2) morphisms as horizontal 1-cells of X, and

(3) 2-morphisms as globular 2-morphisms of X.

The property of being isofibrant, meaning fibrant on vertical 1-isomorphisms, is precisely

what allows the horizontal bicategory H(X) to inherit the portion of the symmetric monoidal

structure that resides in the category of objects of X, namely, the associators, left and right

unitors and braidings.

In the previous chapters we constructed various symmetric monoidal double categories

which are in fact isofibrant, and thus have underlying symmetric monoidal bicategories.

5.1 Foot-replaced bicategories

Every foot-replaced double category LX has an underlying foot-replaced bicategory

H(LX) given by taking the 2-morphisms of H(LX) to be globular 2-morphisms of LX.

Lemma 5.1.1. Given a double category X, a category A and a functor L : A → X0, there

is a bicategory H(LX) for which:

• objects are objects of A,

• morphisms from a ∈ A to a′ ∈ A are horizontal 1-cells M : L(a)→ L(a′) of LX,

• 2-morphisms are globular 2-morphisms of LX,

• composition of morphisms is horizontal composition of horizontal 1-cells in LX,
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• vertical and horizontal composition of 2-morphisms is vertical and horizontal compo-

sition of 2-cells in LX.

If the double category X is isofibrant symmetric monoidal and we have a strong sym-

metric monoidal functor L : A → X0, then Shulman’s Theorem 5.0.1 allows us to lift the

monoidal structure of the foot-replaced double category LX to obtain a symmetric monoidal

foot-replaced bicategory H(LX).

Lemma 5.1.2. If X is an isofibrant symmetric monoidal double category, A is a symmetric

monoidal category and L : A → X0 is a (strong) symmetric monoidal functor, then the

bicategory H(LX) becomes symmetric monoidal in a canonical way.

Lemma 5.1.3. If X is a category with finite colimits, then the symmetric monoidal double

category Csp(X) is isofibrant.

Proof. A vertical 1-isomorphism in Csp(X) is a isomorphism f : x → y in X. We take its

companion f̂ to be the cospan

x y y.
f 1

The unit horizontal 1-cells Ux and Uy are given respectively by

x x x and y y y
1 1 1 1

and the accompanying 2-morphisms are given by

x yy

y yy

and

x xx

x yy

1

f 11

f

1 1

1

1 ff

1

f 1

respectively. An easy calculation verifies Equation (A.1).
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Theorem 5.1.4. Let L : A → X be a functor where X is a category with pushouts. Then

there is a bicategory H(LCsp(X)) for which:

(1) an object is an object of A,

(2) a morphism from a to b is given by a cospan in X of the form:

L(a) x L(b)

with composition the same as composition of horizontal 1-cells in Theorem 3.2.1 and

(3) 2-morphisms are given by maps of cospans which are commutative diagrams of the

form:

L(a) L(b)

x

x′

α

with horizontal and vertical composition of 2-morphisms given by horizontal and ver-

tical composition of globular 2-morphisms in Theorem 3.2.1.

Theorem 5.1.5. Let L : A→ X be a functor preserving finite coproducts, where A has finite

coproducts and X has finite colimits. Then the bicategory of Theorem 5.1.4 is symmetric

monoidal with the monoidal structure given by:

(1) the tensor product of two objects a1 and a2 is a1 + a2,

(2) the tensor product of two morphisms is given by the tensor product of two horizontal

1-cells in Theorem 3.2.3 and
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(3) the tensor product of two 2-morphisms is given by:

L(a1)

x1

x′1 x′2 x′1 + x′2

L(a′1) ⊗ L(a2)

x2

L(a′2) = L(a1 + a2)

x1 + x2

L(a′1 + a′2)

i1 o1

i′1 o′1

i2 o2

i′2 o′2

(i1 + i2)φ−1 (o1 + o2)φ−1

(i′1 + i′2)φ−1 (o′1 + o′2)φ−1

α1 α2 α1 + α2

where φ is the natural isomorphism φa1,a2 : L(a1)⊗ L(a2)→ L(a1 + a2) of the strong sym-

metric monoidal functor L. The unit for the tensor product is the initial object of A,

and the symmetry for any two objects a and b is defined using the canonical isomorphism

a+ b ∼= b+ a.

5.1.1 Graphs

In Section 3.3.2, we constructed a symmetric monoidal double category LCsp(FinGraph)

of open graphs. This double category is isofibrant by Lemma 5.1.3, and so we may extract

from it a symmetric monoidal bicategory in which open graphs appear as morphisms.

Theorem 5.1.6. There exists a symmetric monoidal bicategory OpenFinGraph =

H(LCsp(FinGraph)) which has:

(1) finite sets as objects,

(2) open graphs: that is, cospans of graphs of the form

L(a) x L(b)

as morphisms, and
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(3) maps of cospans of graphs as 2-morphisms, as in the following commutative diagram:

L(a) L(b)

x

y

h

We can then decategorify this symmetric monoidal bicategory OpenFinGraph to ob-

tain a symmetric monoidal category D(OpenFinGraph) which has:

(1) finite sets as objects, and

(2) isomorphism classes of open graphs

L(a) x L(b)

as morphisms, where two open graphs are isomorphic if the following diagram com-

mutes:

L(a) L(b)

x

y

h ∼

Here, the graph isomorphism h : x → y is really a pair of bijections f : N → N ′ and

g : E → E′ between the vertex and edge sets of the graphs x and y that make the following

diagram commute:

x

y

E

E′

N

N ′

E

E′

N

N ′

h f f

s

s′

g g

t

t′
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5.1.2 Electrical circuits

In Section 3.3, we constructed a symmetric monoidal double category of open k-graphs.

This symmetric monoidal double category is in fact isofibrant by Lemma 5.1.3, so we can

apply Theorem 5.0.1 to obtain a symmetric monoidal bicategory:

Theorem 5.1.7. There exists a symmetric monoidal bicategory OpenFinGraphk =

H(LCsp(FinGraphk)) where:

(1) objects are finite sets,

(2) morphisms are open k-graphs:

L(a) N L(b)
i o

k+ E N
r

s

t

which are open graphs where the apex of the cospan representing the open graph is

equipped with the structure of a k-graph, and

(3) 2-morphisms are maps of open k-graphs, which are maps of cospans such that the

following diagrams commute

L(a)

N

L(b)

N ′

i o

i′ o′

f

k+

E

E′

E

E′

N

N ′

E

E′

N

N ′

f f

r

s

s′
r′

g g g

t

t′
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for some morphisms f and g.

Proof. We obtain OpenFinGraphk = H(LCsp(FinGraphk)) by applying Theorems 5.1.4

and 5.1.5 to the functor L : FinSet→ FinGraphk of Theorem 3.3.5.

We can then decategorify this symmetric monoidal bicategory OpenFinGraphk to

obtain a symmetric monoidal category D(OpenFinGraphk) where:

(1) objects are finite sets, and

(2) morphisms are isomorphism classes of open k-graphs, where two open k-graphs are in

the same isomorphism class if the following diagrams commute:

L(a)

N

L(b)

N ′

i o

i′ o′

f ∼

k+

E

E′

E

E′

N

N ′

E

E′

N

N ′

f f

r

s

s′
r′

g g g

t

t′

for some isomorphisms f and g.

To make contact with Baez and Fong’s original work on black-boxing electrical circuits [7],

recall that we have a monoidal category FCospan obtained from the original incarnation

of decorated cospans. The monoidal category D(OpenFinGraphk) constructed in this

section is not only symmetric, but also contains more isomorphisms. For example, consider

the following two open k-graphs:

a N b a N b
i o i o
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k+ E N k+ E′ N
r

s

t

r′
s′

t′

where E 6= E′ but there exists a bijection g : E
∼−→ E′ such that s = s′ ◦ g and t = t′ ◦ g;

this just says that the two networks look the same but have different edge labels. Then

these two open k-graphs give different morphisms in FCospan, but the same morphism in

D(OpenFinGraphk).

We can define a functor G : FCospan → D(OpenFinGraphk) that is the identity on

objects and that identifies open graphs that are isomorphic in the sense of (2) above. Then

we can consider the following diagram:

D(OpenFinGraphk)

FCospan LagRelk

G
�

�

Here the top functor � : FCospan→ LagRelk is the original black-boxing functor constructed

by Baez and Fong [7]. While we shall not prove it here, one can extend this functor

to a new one, also called �, defined on D(OpenFinGraphk). This also promotes the

original black-box functor from a mere monoidal functor to a symmetric monoidal functor

� : D(OpenFinGraphk)→ LagRelk.

5.1.3 Petri nets

In Section 3.3.3, we constructed a symmetric monoidal double category of open Petri

nets with rates. This symmetric monoidal double category is also isofibrant by Lemma

5.1.3, so we can apply Theorem 5.0.1 to obtain a symmetric monoidal bicategory:
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Theorem 5.1.8. There exists a symmetric monoidal bicategory Petrirates =

H(LCsp(Petrirates)) where:

(1) objects are finite sets,

(2) morphisms are open Petri nets with rates:

L(a) S L(b)
i o

T N[S][0,∞)
r

s

t

which are cospans of Petri nets whose apices are equipped with a function r : T →

[0,∞) assigning a rate r(t) to every transition t ∈ T , and

(3) 2-morphisms are maps of open Petri nets with rates, which are maps of open

Petri nets such that the following diagrams commute:

L(a)

S

S′

L(b)

i

i′

f

o

o′

[0,∞)

T

T ′

T

T ′

N[S]

N[S]

T

T ′

N[S]

N[S]

N[f ] N[f ]

r
s

s′
r′

g g g

t

t′

for some morphisms f and g.

Proof. We obtain Petrirates = H(LCsp(Petrirates)) by applying Theorems 5.1.4 and 5.1.5

to the functor L : FinSet→ Petrirates of Theorem 3.3.9.
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Once again, we can then decategorify this bicategory Petrirates to obtain a symmetric

monoidal category D(Petrirates) where:

(1) objects are finite sets, and

(2) morphisms are isomorphism classes of open Petri nets with rates, where two open

Petri nets with rates are in the same isomorphism class if the following diagrams

commute:

L(a)

S

S′

L(b)

i

i′

f

o

o′

[0,∞)

T

T ′

T

T ′

N[S]

N[S]

T

T ′

N[S]

N[S]

N[f ] N[f ]

r
s

s′
r′

g g g

t

t′

for some isomorphisms f and g.

We can define a functor G : Petrirates → D(Petrirates) that is the identity on objects and

identifies morphisms in Petrirates, if they are in the same isomorphism class in the sense of

(2) above. We can then consider the following diagram:

Petrirates

D(Petrirates)

SemiAlgRel

G

�

�

Here the top functor � : Petrirates → SemiAlgRel was constructed by Baez and Pollard [10].

While we shall not prove it here, one can extend this functor to a new one, also called �,

defined on D(Petrirates).
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5.1.4 Maps of foot-replaced bicategories

A result of Hansen and Shulman [28] not only allows us to lift symmetric monoidal

double categories to their underlying symmetric monoidal horizontal-edge bicategories, but

also maps between such.

Corollary 5.1.9. Given two symmetric monoidal foot-replaced double categories LX and

L′X′ and a symmetric monoidal double functor FF : LX →L′ X′ between the two, the sym-

metric monoidal double functor FF induces a functor of symmetric monoidal bicategories

between the underlying horizontal-edge bicategories of the foot-replaced double categories LX

and L′X′.

H(FF) : H(LX)→ H(L′X′)

Proof. This follows immediately from the work of Hansen and Shulman [28].

5.2 Decorated cospan bicategories

Lemma 5.2.1. The double category FCsp constructed in Theorem 4.1.1 is fibrant.

Proof. Let f : c → c′ be a vertical 1-morphism in FCsp. We can lift f to the companion

horizontal 1-cell f̂ :

c c′ c′

!c′ ∈ F (c′)

f 1
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and then obtain the following two 2-morphisms:

c

c′

c′ c′

c′c′

!c′ ∈ F (c′)

!c′ ∈ F (c′)

c c c

c c′ c′

!c ∈ F (c)

!c′ ∈ F (c′)

ι1c′ = 1!c′ ιf : F (f)(!c)→!c′

f 1

f 1

1 1

1

1

1 f

f

1

f

1

which satisfy the equations:

c c c!c ∈ F (c)

c

c′

c′ c′

c′c′

!c′ ∈ F (c′)

!c′ ∈ F (c′)

c c c

c′ c′ c′

!c ∈ F (c)

!c′ ∈ F (c′)

ιf : F (f)(!c)→!c′

ιc′ = 1!c′

ιf : F (f)(!c)→!c′

=

1 1

1 f f

f 1

f 1

1 1

1

1

f f

1

1

f

1

c

c′

c

c

c

c′

c′ c′

c′c′

!c′ ∈ F (c′)

!c′ ∈ F (c′)

ιc′ = 1!c′

!c ∈ F (c)

!c′ ∈ F (c′)

ιf : F (f)(!c)→!c′

∼=

c

c

c′

c′

c′

c′

!c′ ∈ F (c′)

!c′ ∈ F (c′)

ιc′ = 1!c′

1 1 1

f

f

1

1

f 1

f 1

1 1

1

1

f

1f

1

1

The right hand sides of the above two equations are given respectively by the 2-morphisms

Uf and 1f̂ . The conjoint of f is given by the F -decorated cospan f̌ which is just the opposite

of the companion above:

c′ c′ c !c′ ∈ F (c′)
1 f
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Corollary 5.2.2. Let (C,+, 0) be a category with finite colimts and F : C → Cat a sym-

metric lax monoidal pseudofunctor. Then there exists a symmetric monoidal bicategory

FCsp : = H(FCsp) which has:

(1) objects as those of A,

(2) morphisms as F -decorated cospans:

a c b d ∈ F (c)
i o

and

(3) 2-morphisms as maps of cospans in A of the form:

a

c

b

c′

d ∈ F (c)

d′ ∈ F (c′)

i o

i′

h

o′

together with a morphism ι : F (h)(d)→ d′ in F (c′).

Proof. This follows immediately from Shulman’s Theorem 5.0.1 above applied to the fibrant

symmetric monoidal double category FCsp.

This symmetric monoidal bicategory FCsp is a superior version of the symmetric

monoidal bicategory FCospan(A) constructed earlier in a previous work [18], in that there

is greater flexibility in what 2-morphisms are allowed.

5.2.1 Maps of decorated cospan bicategories

Just as a result of Hansen and Shulman [28] allows us to lift maps of symmetric monoidal

foot-replace double categories to maps between their underlying horizontal-edge bicate-
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gories, we can also lift maps between symmetric monoidal decorated cospan double cate-

gories to maps between their underlying horizontal-edge bicategories.

Corollary 5.2.3. Given two symmetric monoidal decorated cospan double categories FCsp

and F ′Csp and a symmetric monoidal double functor H : FCsp→ F ′Csp between the two,

the symmetric monoidal double functor H induces a functor of symmetric monoidal bicat-

egories between the underlying horizontal-edge bicategories of the decorated cospan double

categories FCsp and F ′Csp.

H(H) : H(FCsp)→ H(F ′Csp)

Proof. This follows immediately from the work of Hansen and Shulman [28].

5.2.2 Decorated cospans revisited

We can then decategorify the symmetric monoidal bicategory FCsp to obtain a sym-

metric monoidal category similar to the monoidal one obtained using Fong’s result, but

symmetric and with larger isomorphism classes of morphisms:

Corollary 5.2.4. Given a symmetric lax monoidal pseudofunctor F : A→ Cat where A is

a category with finite colimits whose monoidal structure is given by binary coproducts, there

exists a symmetric monoidal category FCsp: = D(FCsp) where:

(1) objects are those of A and

(2) morphisms are isomorphism classes of F -decorated cospans of A, where an F -decorated

cospan is given by a pair:

a c b d ∈ F (c)
i o
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and given another F -decorated cospan:

a c′ b d′ ∈ F (c′)
i′ o′

these two F -decorated cospans are in the same isomorphism class if there exists an

isomorphism f : c→ c′ such that following diagram commutes:

a

c

c′

b

i′ o′

i o

f

and there exists an isomorphism ι : F (f)(d)→ d′ in F (c′).

In this symmetric monoidal category, isomorphism classes are as they should morally be,

and the instance of two graphs having different but isomorphic edge sets does not prevent

them from being in the same isomorphism class.

5.3 A biequivalence of compositional frameworks

In Chapter 4, it is mentioned that given a symmetric monoidal pseudofunctor

F : (A,+, 0)→ (Cat,×, 1) such that F factors as an ordinary pseudofunctor F → Rex ↪→

Cat, where Rex is the 2-category of finitely cocomplete categories, finite coproduct pre-

serving functors and natural transformations, we can obtain a fully faithful left adjoint

L : (A,+, 0) → (X,+, 0) where (X,+, 0) := (
∫
F,+, 0). Furthermore, the right adjoint

R : X → A preserves finite colimits. From the pseudofunctor F : A → Cat, we can ob-

tain a symmetric monoidal double category of decorated cospans by Theorem 4.1.3. From

the left adjoint L : A → X, we can obtain a symmetric monoidal double category of struc-

tured cospans by Theorem 3.2.3. By Theorem 4.3.15, we have an equivalence of symmetric
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monoidal double categories FCsp ' LCsp(X). In the previous sections of the present chap-

ter, we proved that each of these symmetric monoidal double categories are fibrant and give

rise to underlying symmetric monoidal bicategories FCsp and H(LCsp(X)), respectively,

by Theorem 5.0.1 due to Shulman. We can use another result due to Shulman [38] to lift

the double equivalence of double categories to a biequivalence of bicategories.

Proposition 5.3.1 ([38, Prop. B.3]). An equivalence of fibrant double categories induces a

biequivalence of horizontal bicategories.

Corollary 5.3.2. The bicategories FCsp and H(LCsp(X)) are biequivalent.

Both the double equivalence and biequivalence are in fact isomorphisms. See [4] for more

details.
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Chapter 6

Coarse-graining open Markov

processes

6.1 Introduction

A ‘Markov process’ is a stochastic model describing a sequence of transitions between

states in which the probability of a transition depends only on the current state. The only

Markov processes we consider here are continuous-time Markov chains with a finite set of

states. Such a Markov process can be drawn as a labeled graph:

a

b

c d

4

2
2

1

1/2

In this example the set of states isX = {a, b, c, d}. The numbers labeling edges are transition

rates, so the probability πi(t) of being in state i ∈ X at time t ∈ R evolves according to a
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linear differential equation

d

dt
πi(t) =

∑
j∈X

Hij πj(t)

called the ‘master equation’, where the matrix H can be read off from the diagram:

H =



−1/2 0 0 0

0 −2 1 0

1/2 2 −5 2

0 0 4 −2


.

If there is an edge from a state j to a distinct state i, the matrix entry Hij is the number

labeling that edge, while if there is no such edge, Hij = 0. The diagonal entries Hii are

determined by the requirement that the sum of each column is zero. This requirement says

that the rate at which probability leaves a state equals the rate at which it goes to other

states. As a consequence, the total probability is conserved:

d

dt

∑
i∈X

πi(t) = 0

and is typically set equal to 1.

However, while this sum over all states is conserved, the same need not be true for

the sum of πi(t) over i in a subset Y ⊂ X. This poses a challenge to studying a Markov

process as built from smaller parts: the parts are not themselves Markov processes. The

solution is to describe them as ‘open’ Markov processes. These are a generalization in which
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probability can enter or leave from certain states designated as inputs and outputs:

a

b

c dinputs outputs
4

2
2

1

1/2

In an open Markov process, probabilities change with time according to the ‘open master

equation’, a generalization of the master equation that includes inflows and outflows. In

the above example, the open master equation is

d

dt



πa(t)

πb(t)

πc(t)

πd(t)


=



−1/2 0 0 0

0 −2 1 0

1/2 2 −5 2

0 0 4 −2





πa(t)

πb(t)

πc(t)

πd(t)


+



Ia(t)

Ib(t)

0

0


−



0

0

0

Od(t)


.

To the master equation we have added a term describing inflows at the states a and b and

subtracted a term describing outflows at the state d. The functions Ia, Ib and Od are not

part of the data of the open Markov process. Rather, they are arbitrary smooth real-valued

functions of time. We think of these as provided from outside—for example, though not

necessarily, from the rest of a larger Markov process of which the given open Markov process

is part.

Open Markov processes can be seen as morphisms in a category, since we can compose

two open Markov processes by identifying the outputs of the first with the inputs of the

second. Composition lets us build a Markov process from smaller open parts—or conversely,

analyze the behavior of a Markov process in terms of its parts. Categories of this sort have
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been studied in a number of papers [7, 8, 24, 36], but here we go further and construct a

double category to describe coarse-graining.

‘Coarse-graining’ is a widely used method of simplifying a Markov process by mapping its

set of states X onto some smaller set X ′ in a manner that respects, or at least approximately

respects, the dynamics [1, 14]. Here we introduce coarse-graining for open Markov processes.

We show how to extend this notion to the case of maps p : X → X ′ that are not surjective,

obtaining a general concept of morphism between open Markov processes.

Since open Markov processes are already morphisms in a category, it is natural to treat

morphisms between them as 2-morphisms. To this end, we construct a double category

Mark with:

(1) finite sets as objects,

(2) functions as vertical 1-morphisms,

(3) open Markov processes as horizontal 1-cells,

(4) morphisms between open Markov processes as 2-morphisms.

Composition of open Markov processes is only weakly associative, so this double category

is not strict. In fact, Mark is symmetric monoidal: this captures the fact that we can not

only compose open Markov processes but also ‘tensor’ them by setting them side by side.

For example, if we compose this open Markov process:

inputs outputs

2

12

1 1
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with the one shown before:

inputs outputs
4

2
2

1

1/2

we obtain this open Markov process:

inputs outputs
4

22

1

1/2

2

12

1 1

but if we tensor them, we obtain this:

inputs outputs

4

2
2

1

1/2

2

12

1 1

If we fix constant probabilities at the inputs and outputs, there typically exist solutions

of the open master equation with these boundary conditions that are constant as a function

of time. These are called ‘steady states’. Often these are nonequilibrium steady states,

meaning that there is a nonzero net flow of probabilities at the inputs and outputs. For

example, probability can flow through an open Markov process at a constant rate in a

nonequilibrium steady state.
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In previous work, Baez, Fong and Pollard studied the relation between probabilities and

flows at the inputs and outputs that holds in steady state [8, 10]. They called the process

of extracting this relation from an open Markov process ‘black-boxing’, since it gives a

way to forget the internal workings of an open system and remember only its externally

observable behavior. They proved that black-boxing is compatible with composition and

tensoring. This result can be summarized by saying that black-boxing is a symmetric

monoidal functor.

For the main result [2], we show that black-boxing is compatible with morphisms between

open Markov processes. To make this idea precise, we prove that black-boxing gives a map

from the double category Mark to another double category, called LinRel, which has:

(1) finite-dimensional real vector spaces U, V,W, . . . as objects,

(2) linear maps f : V →W as vertical 1-morphisms from V to W ,

(3) linear relations R ⊆ V ⊕W as horizontal 1-cells from V to W ,

(4) squares

V1 V2

W1 W2

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

obeying (f ⊕ g)R ⊆ S as 2-morphisms.

Here a ‘linear relation’ from a vector space V to a vector space W is a linear subspace

R ⊆ V ⊕W . Linear relations can be composed in the same way as relations [6]. The double
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category LinRel becomes symmetric monoidal using direct sum as the tensor product, but

unlike Mark it is strict: that is, composition of linear relations is associative.

The main result, Theorem 6.6.3, says that black-boxing gives a symmetric monoidal

double functor

� : Mark→ LinRel.

The hardest part is to show that black-boxing preserves composition of horizontal 1-cells:

that is, black-boxing a composite of open Markov processes gives the composite of their

black-boxings. Luckily, for this we can adapt a previous argument [10] due to Baez and

Pollard. Thus, the new content of this result concerns the vertical 1-morphisms and espe-

cially the 2-morphisms, which describe coarse-grainings.

An alternative approach to studying morphisms between open Markov processes would

use bicategories rather than double categories. The symmetric monoidal double categories

Mark and Linrel can be converted into symmetric monoidal bicategories using Shulman’s

technique [37]. In [2], Baez and the author conjectured that the black-boxing double functor

would determine a functor between these symmetric monoidal bicategories, and Hansen and

Shulman [28] consequently proved this conjecture: see Theorem 6.6.4. However, double

categories seem to be a simpler framework for coarse-graining open Markov processes.

It is worth comparing some related work. Baez, Fong and Pollard constructed a sym-

metric monoidal category where the morphisms are open Markov processes [8, 10]. As in

this chapter, they only consider Markov processes where time is continuous and the set of

states is finite. However, they formalized such Markov processes in a slightly different way

than is done here: they defined a Markov process to be a directed multigraph where each

edge is assigned a positive number called its ‘rate constant’. In other words, they defined
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it to be a diagram

(0,∞) E
r
oo

t
//

s
// X

where X is a finite set of vertices or ‘states’, E is a finite set of edges or ‘transitions’ between

states, the functions s, t : E → X give the source and target of each edge, and r : E → (0,∞)

gives the rate constant of each edge. They explained how from this data one can extract a

matrix of real numbers (Hij)i,j∈X called the ‘Hamiltonian’ of the Markov process, with two

familiar properties:

(1) Hij ≥ 0 if i 6= j,

(2)
∑

i∈X Hij = 0 for all j ∈ X.

A matrix with these properties is called ‘infinitesimal stochastic’, since these conditions are

equivalent to exp(tH) being stochastic for all t ≥ 0.

Here we skip the directed multigraphs and work directly with the Hamiltonians. Thus,

we define a Markov process to be a finite set X together with an infinitesimal stochastic

matrix (Hij)i,j∈X . This allows us to work more directly with the Hamiltonian and the

all-important master equation

d

dt
π(t) = Hπ(t)

which describes the evolution of a time-dependent probability distribution π(t) : X → R.

Clerc, Humphrey and Panangaden have constructed a bicategory [17] with finite sets

as objects, ‘open discrete labeled Markov processes’ as morphisms, and ‘simulations’ as

2-morphisms. In their framework, ‘open’ has a similar meaning as it does in the works

listed above. These open discrete labeled Markov processes are also equipped with a set

of ‘actions’ which represent interactions between the Markov process and the environment,
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such as an outside entity acting on a stochastic system. A ‘simulation’ is then a function

between the state spaces that map the inputs, outputs and set of actions of one open discrete

labeled Markov process to the inputs, outputs and set of actions of another.

Another compositional framework for Markov processes is given by de Francesco Al-

basini, Sabadini and Walters [25] in which they construct an algebra of ‘Markov automata’.

A Markov automaton is a family of matrices with nonnegative real coefficients that is in-

dexed by elements of a binary product of sets, where one set represents a set of ‘signals

on the left interface’ of the Markov automata and the other set analogously for the right

interface.

6.2 Open Markov processes

Before explaining open Markov processes we should recall a bit about Markov processes.

As mentioned in the Introduction, we use ‘Markov process’ as a short term for ‘continuous-

time Markov chain with a finite set of states’, and we identify any such Markov process with

the infinitesimal stochastic matrix appearing in its master equation. We make this precise

with a bit of terminology that is useful throughout the chapter.

Given a finite set X, we call a function v : X → R a ‘vector’ and call its values at points

x ∈ X its ‘components’ vx. We define a ‘probability distribution’ on X to be a vector

π : X → R whose components are nonnegative and sum to 1. As usual, we use RX to

denote the vector space of functions v : X → R. Given a linear operator T : RX → RY we

have (Tv)i =
∑

j∈X Tijvj for some ‘matrix’ T : Y ×X → R with entries Tij .
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Definition 6.2.1. Given a finite set X, a linear operator H : RX → RX is infinitesimal

stochastic if

(1) Hij ≥ 0 for i 6= j and

(2)
∑

i∈X Hij = 0 for each j ∈ X.

The reason for being interested in such operators is that when exponentiated they give

stochastic operators.

Definition 6.2.2. Given finite sets X and Y , a linear operator T : RX → RY is stochastic

if for any probability distribution π on X, Tπ is a probability distribution on Y .

Equivalently, T is stochastic if and only if

(1) Tij ≥ 0 for all i ∈ Y , j ∈ X and

(2)
∑

i∈Y Tij = 1 for each j ∈ X.

If we think of Tij as the probability for j ∈ X to be mapped to i ∈ Y , these conditions make

intuitive sense. Since stochastic operators are those that preserve probability distributions,

the composite of stochastic operators is stochastic.

In Lemma 6.3.7 we recall that a linear operator H : RX → RX is infinitesimal stochastic

if and only if its exponential

exp(tH) =

∞∑
n=0

(tH)n

n!

is stochastic for all t ≥ 0. Thus, given an infinitesimal stochastic operator H, for any time

t ≥ 0 we can apply the operator exp(tH) : RX → RX to any probability distribution π ∈ RX

and get a probability distribution

π(t) = exp(tH)π.
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These probability distributions π(t) obey the master equation

d

dt
π(t) = Hπ(t).

Moreover, any solution of the master equation arises this way.

All the material so far is standard [33, Sec. 2.1]. We now turn to open Markov processes.

Definition 6.2.3. We define a Markov process to be a pair (X,H) where X is a finite

set and H : RX → RX is an infinitesimal stochastic operator. We also call H a Markov

process on X.

Definition 6.2.4. We define an open Markov process to consist of finite sets X, S and

T and injections

S

X

T

i o

together with a Markov process (X,H). We call S the set of inputs and T the set of

outputs.

Thus, an open Markov process is a cospan in FinSet with injections as legs and a Markov

process on its apex. We do not require that the injections have disjoint images. We often

abbreviate an open Markov process as

S

(X,H)

T

i o

or simply S
i
� (X,H)

o
� T .

Given an open Markov process we can write down an ‘open’ version of the master

equation, where probability can also flow in or out of the inputs and outputs. To work with

the open master equation we need two well-known concepts:
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Definition 6.2.5. Let f : A→ B be a map between finite sets. The linear map f∗ : RB →

RA sends any vector v ∈ RB to its pullback along f , given by

f∗(v) = v ◦ f.

The linear map f∗ : RA → RB sends any vector v ∈ RA to its pushforward along f , given

by

(f∗(v))(b) =
∑

{a: f(a)=b}

v(a).

If we write f∗ and f∗ as matrices with respect to the standard bases of RA and RB, they

are simply transposes of one another.

Now, suppose we are given an open Markov process

S

(X,H)

T

i o

together with inflows I : R → RS and outflows O : R → RT , arbitrary smooth functions

of time. We write the value of the inflow at s ∈ S at time t as Is(t), and similarly for the

outflows and other functions of time. We say that a function v : R → RX obeys the open

master equation if

dv(t)

dt
= Hv(t) + i∗(I(t))− o∗(O(t)).

This says that for any state j ∈ X the time derivative of vj(t) takes into account not only

the usual term from the master equation, but also those of the inflows and outflows.

If the inflows and outflows are constant in time, a solution v of the open master equation

that is also constant in time is called a steady state. More formally:
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Definition 6.2.6. Given an open Markov process S
i
� (X,H)

o
� T together with I ∈ RS

and O ∈ RT , a steady state with inflows I and outflows O is an element v ∈ RX such that

Hv + i∗(I)− o∗(O) = 0.

Given v ∈ RX , we call i∗(v) ∈ RS and o∗(v) ∈ RT the input probabilities and output

probabilities, respectively.

Definition 6.2.7. Given an open Markov process S
i
� (X,H)

o
� T , we define its black-

boxing to be the set

�
(
S

i
� (X,H)

o
� T

)
⊆ RS ⊕ RS ⊕ RT ⊕ RT

consisting of all 4-tuples (i∗(v), I, o∗(v), O) where v ∈ RX is some steady state with inflows

I ∈ RS and outflows O ∈ RT .

Thus, black-boxing records the relation between input probabilities, inflows, output prob-

abilities and outflows that holds in steady state. This is the ‘externally observable steady

state behavior’ of the open Markov process. It has already been shown [8, 10] that black-

boxing can be seen as a functor between categories. Here we go further and describe it as

a double functor between double categories, in order to study the effect of black-boxing on

morphisms between open Markov processes.

6.3 Morphisms of open Markov processes

There are various ways to approximate a Markov process by another Markov process

on a smaller set, all of which can be considered forms of coarse-graining [14]. A common

approach is to take a Markov process H on a finite set X and a surjection p : X → X ′ and
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create a Markov process on X ′. In general this requires a choice of ‘stochastic section’ for

p, defined as follows:

Definition 6.3.1. Given a function p : X → X ′ between finite sets, a stochastic section

for p is a stochastic operator s : RX′ → RX such that p∗s = 1X′ .

It is easy to check that a stochastic section for p exists if and only if p is a surjection. In

Lemma 6.3.9 we show that given a Markov process H on X and a surjection p : X → X ′,

any stochastic section s : RX′ → RX gives a Markov process on X ′, namely

H ′ = p∗Hs.

Experts call the matrix corresponding to p∗ the collector matrix, and they call s the

distributor matrix [14]. The names help clarify what is going on. The collector matrix,

coming from the surjection p : X → X ′, typically maps many states of X to each state of

X ′. The distributor matrix, the stochastic section s : RX′ → RX , typically maps each state

in X ′ to a linear combination of many states in X. Thus, H ′ = p∗Hs distributes each state

of X ′, applies H, and then collects the results.

In general H ′ depends on the choice of s, but sometimes it does not:

Definition 6.3.2. We say a Markov process H on X is lumpable with respect to a

surjection p : X → X ′ if the operator p∗Hs is independent of the choice of stochastic section

s : RX′ → RX .

This concept is not new [14]. In Theorem 6.3.10 we show that it is equivalent to another

traditional formulation, and also to an even simpler one: H is lumpable with respect to p if

and only if p∗H = H ′p∗. This equation has the advantage of making sense even when p is
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not a surjection. Thus, we can use it to define a more general concept of morphism between

Markov processes:

Definition 6.3.3. Given Markov processes (X,H) and (X ′, H ′), a morphism of Markov

processes p : (X,H)→ (X ′, H ′) is a map p : X → X ′ such that p∗H = H ′p∗.

There is a category Mark with Markov processes as objects and the morphisms as defined

above, where composition is the usual composition of functions. But what is the meaning of

such a morphism? Using Lemma 6.3.7 one can check that for any Markov processes (X,H)

and (X ′, H ′), and any map p : X → X ′, we have

p∗H = H ′p∗ ⇐⇒ p∗ exp(tH) = exp(tH ′)p∗ for all t ≥ 0.

Thus, p is a morphism of Markov processes if evolving a probability distribution on X via

exp(tH) and then pushing it forward along p is the same as pushing it forward and then

evolving it via exp(tH ′).

We can also define morphisms between open Markov processes:

Definition 6.3.4. A morphism of open Markov processes from the open Markov

process S
i
� (X,H)

o
� T to the open Markov process S′

i′

� (X ′, H ′)
o′

� T ′ is a triple of

functions f : S → S′, p : X → X ′, g : T → T ′ such that the squares in this diagram are

pullbacks:

S

S′ T ′

X T

X ′

i

i′ o′

o

f gp

and p∗H = H ′p∗.
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We need the squares to be pullbacks so that in Lemma 6.6.1 we can black-box morphisms

of open Markov processes. In Lemma 6.4.2 we show that horizontally composing these

morphisms preserves this pullback property. But to do this, we need the horizontal arrows

in these squares to be injections. This explains the conditions in Definitions 6.2.4 and 6.3.4.

As an example, consider the following diagram:

a

b2

b1

cinputs outputs

6

68

4

7

This is a way of drawing an open Markov process S
i
� (X,H)

o
� T where X = {a, b1, b2, c},

S and T are one-element sets, i maps the one element of S to a, and o maps the one element

of T to c. We can read off the infinitesimal stochastic operator H : RX → RX from this

diagram and obtain

H =



−15 0 0 0

8 −10 0 0

7 4 −6 0

0 6 6 0


.
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The resulting open master equation is

d

dt



va(t)

vb1(t)

vb2(t)

vc(t)


=



−15 0 0 0

8 −10 0 0

7 4 −6 0

0 6 6 0





va(t)

vb1(t)

vb2(t)

vc(t)


+



I(t)

0

0

0


−



0

0

0

O(t)


.

Here I is an arbitrary smooth function of time describing the inflow at the one point of S,

and O is a similar function describing the outflow at the one point of T .

Suppose we want to simplify this open Markov process by identifying the states b1 and

b2. To do this we take X ′ = {a, b, c} and define p : X → X ′ by

p(a) = a, p(b1) = p(b2) = b, p(c) = c.

To construct the infinitesimal stochastic operator H ′ : RX′ → RX′ for the simplified open

Markov process we need to choose a stochastic section s : RX′ → RX for p, for example

s =



1 0 0

0 1/3 0

0 2/3 0

0 0 1


.

This says that if our simplified Markov process is in the state b, we assume the original

Markov process has a 1/3 chance of being in state b1 and a 2/3 chance of being in state b2.
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The operator H ′ = p∗Hs is then

H ′ =



−15 0 0

15 −6 0

0 6 0


.

It may be difficult to justify the assumptions behind our choice of stochastic section, but

the example at hand has a nice feature: H ′ is actually independent of this choice. In other

words, H is lumpable with respect to p. The reason is explained in Theorem 6.3.10. Suppose

we partition X into blocks, each the inverse image of some point of X ′. Then H is lumpable

with respect to p if and only if when we sum the rows in each block of H, all the columns

within any given block of the resulting matrix are identical. This matrix is p∗H:

H =



−15 0 0 0

8 −10 0 0

7 4 −6 0

0 6 6 0


=⇒ p∗H =



−15 0 0 0

15 −6 −6 0

0 6 6 0


.

While coarse-graining is of practical importance even in the absence of lumpability, the

lumpable case is better behaved, so we focus on this case.

So far we have described a morphism of Markov processes p : (X,H) → (X ′, H ′), but

together with identity functions on the inputs S and outputs T this defines a morphism of

open Markov processes, going from the above open Markov process to this one:

a b cinputs outputs

615
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The open master equation for this new coarse-grained open Markov process is

d

dt



va(t)

vb(t)

vc(t)


=



−15 0 0

15 −6 0

0 6 0





va(t)

vb(t)

vc(t)


+



I(t)

0

0


−



0

0

O(t)


.

In Section 6.4 we construct a double category Mark with open Markov processes as

horizontal 1-cells and morphisms between these as 2-morphisms. This double category is

our main object of study. First, however, we should prove the results mentioned above. For

this it is helpful to recall a few standard concepts:

Definition 6.3.5. A 1-parameter semigroup of operators is a collection of linear

operators U(t) : V → V on a vector space V , one for each t ∈ [0,∞), such that

(1) U(0) = 1 and

(2) U(s+t) = U(s)U(t) for all s, t ∈ [0,∞). If V is finite-dimensional we say the collection

U(t) is continuous if t 7→ U(t)v is continuous for each v ∈ V .

Definition 6.3.6. Let X be a finite set. A Markov semigroup is a continuous 1-

parameter semigroup U(t) : RX → RX such that U(t) is stochastic for each t ∈ [0,∞).

Lemma 6.3.7. Let X be a finite set and U(t) : RX → RX a Markov semigroup. Then

U(t) = exp(tH) for a unique infinitesimal stochastic operator H : RX → RX , which is given

by

Hv =
d

dt
U(t)v

∣∣∣∣
t=0

for all v ∈ RX . Conversely, given an infinitesimal stochastic operator H, then exp(tH) =

U(t) is a Markov semigroup.
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Proof. This is well known. For a proof that every continuous one-parameter semigroup of

operators U(t) on a finite-dimensional vector space V is in fact differentiable and of the

form exp(tH) where Hv = d
dtU(t)v

∣∣
t=0

, see Engel and Nagel [22, Sec. I.2]. For a proof that

U(t) is then a Markov semigroup if and only if H is infinitesimal stochastic, see Norris [33,

Theorem 2.1.2].

Lemma 6.3.8. Let U(t) : RX → RX be a differentiable family of stochastic operators defined

for t ∈ [0,∞) and having U(0) = 1. Then d
dtU(t)

∣∣
t=0

is infinitesimal stochastic.

Proof. Let H = d
dtU(t)

∣∣
t=0

= limt→0+(U(t) − 1)/t. As U(t) is stochastic, its entries are

nonnegative and the column sum of any particular column is 1. Then the column sum of

any particular column of U(t)− 1 will be 0 with the off-diagonal entries being nonnegative.

Thus U(t)−1 is infinitesimal stochastic for all t ≥ 0, as is (U(t)−1)/t, from which it follows

that limt→0+(U(t)− U(0))/t = H is infinitesimal stochastic.

Lemma 6.3.9. Let p : X → X ′ be a function between finite sets with a stochastic section

s : RX′ → RX , and let H : RX → RX be an infinitesimal stochastic operator. Then H ′ =

p∗Hs : RX′ → RX′ is also infinitesimal stochastic.

Proof. Lemma 6.3.7 implies that exp(tH) is stochastic for all t ≥ 0. For any map p : X → X ′

the operator p∗ : RX → RX′ is easily seen to be stochastic, and s is stochastic by assumption.

Thus, U(t) = p∗ exp(tH)s is stochastic for all t ≥ 0. Differentiating, we conclude that

d

dt
U(t)

∣∣∣∣
t=0

=
d

dt
p∗ exp(tH)s

∣∣∣∣
t=0

= p∗ exp(tH)Hs|t=0 = p∗Hs

is infinitesimal stochastic by Lemma 6.3.8.
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We can now give some conditions equivalent to lumpability. The third is widely found in

the literature [14] and the easiest to check in examples. It makes use of the standard basis

vectors ej ∈ RX associated to the elements j of any finite set X. The surjection p : X → X ′

defines a partition on X where two states j, j′ ∈ X lie in the same block of the partition if

and only if p(j) = p(j′). The elements of X ′ correspond to these blocks. The third condition

for lumpability says that p∗H has the same effect on two basis vectors ej and ej′ when j

and j′ are in the same block. As mentioned in the example above, this condition says that

if we sum the rows in each block of H, all the columns in any given block of the resulting

matrix p∗H are identical.

Theorem 6.3.10. Let p : X → X ′ be a surjection of finite sets and let H be a Markov

process on X. Then the following conditions are equivalent:

(1) H is lumpable with respect to p.

(2) There exists a linear operator H ′ : RX′ → RX′ such that p∗H = H ′p∗.

(3) p∗Hej = p∗Hej′ for all j, j′ ∈ X such that p(j) = p(j′).

When these conditions hold there is a unique operator H ′ : RX′ → RX′ such that p∗H =

H ′p∗, it is given by H ′ = p∗Hs for any stochastic section s of p, and it is infinitesimal

stochastic.

Proof. (i) =⇒ (iii). Suppose that H is lumpable with respect to p. Thus, p∗Hs : RX′ →

RX′ is independent of the choice of stochastic section s : RX′ → RX . Such a stochastic

section is simply an arbitrary linear operator that maps each basis vector ei ∈ RX′ to a

probability distribution on X supported on the set {j ∈ X : p(j) = i}. Thus, for any
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j, j′ ∈ X with p(j) = p(j′) = i, we can find stochastic sections s, s′ : RX′ → RX such that

s(ei) = ej and s′(ei) = ej′ . Since p∗Hs = p∗Hs
′, we have

p∗Hej = p∗Hs(ei) = p∗Hs
′(ei) = p∗Hej′ .

(iii) =⇒ (ii). Define H ′ : RX′ → RX′ on basis vectors ei ∈ RX′ by setting

H ′ei = p∗Hej

for any j with p(j) = i. Note that H ′ is well-defined: since p is a surjection such j exists,

and since H is lumpable, H ′ is independent of the choice of such j. Next, note that for any

j ∈ X, if we let p(j) = i we have p∗Hej = H ′ei = H ′p∗ej . Since the vectors ej form a basis

for RX , it follows that p∗H = H ′p∗.

(ii) =⇒ (i). Suppose there exists an operator H ′ : RX′ → RX′ such that p∗H = H ′p∗.

Choose such an operator; then for any stochastic section s for p we have

p∗Hs = H ′p∗s = H ′.

It follows that p∗Hs is independent of the stochastic section s, so H is lumpable with respect

to p.

Suppose that any, hence all, of conditions (i), (ii), (iii) hold. Suppose that H ′ : RX′ →

RX′ is an operator with p∗H = H ′p∗. Then the argument in the previous paragraph shows

that H ′ = p∗Hs for any stochastic section s of p. Thus H ′ is unique, and by Lemma 6.3.9

it is infinitesimal stochastic.
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6.4 A double category of open Markov processes

One of the main results of a joint work with Baez [2] is the construction of a double

category Mark of open Markov processes, The pieces of the double category Mark work as

follows:

(1) An object is a finite set.

(2) A vertical 1-morphism f : S → S′ is a function.

(3) A horizontal 1-cell is an open Markov process

S (X,H) T .
i o

In other words, it is a pair of injections S
i
� X

o
� T together with a Markov process

H on X.

(4) A 2-morphism is a morphism of open Markov processes

S

S′ T ′.

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

f gp

In other words, it is a triple of maps f, p, g such that these squares are pullbacks:

S

S′ T ′,

X T

X ′

i1

i′1 o′1

o1

f gp

and H ′p∗ = p∗H.
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Composition of vertical 1-morphisms in Mark is straightforward. So is vertical com-

position of 2-morphisms, since we can paste two pullback squares and get a new pullback

square. Composition of horizontal 1-cells is a bit more subtle. Given open Markov processes

S (X,H) T,
i1 o1

T (Y,G) U
i2 o2

(6.1)

we first compose their underlying cospans using a pushout:

X +T Y

X

j
::

Y

k
dd

S

i1

;;

T

o1

dd

i2

::

U

o2

cc

Since monomorphisms are stable under pushout in a topos, the legs of this new cospan are

again injections, as required. We then define the composite open Markov process to be

S (X +T Y,H �G) U
ji1 ko2

where

H �G = j∗Hj
∗ + k∗Gk

∗. (6.2)

Here we use both pullbacks and pushforwards along the maps j and k, as defined in Defi-

nition 6.2.5. To check that H � G is a Markov process on X +T Y we need to check that

j∗Hj
∗ and k∗Gk

∗, and thus their sum, are infinitesimal stochastic:

Lemma 6.4.1. Suppose that f : X → Y is any map between finite sets. If H : RX → RX

is infinitesimal stochastic, then f∗Hf
∗ : RY → RY is infinitesimal stochastic.
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Proof. Using Definition 6.2.5, we see that the matrix elements of f∗ and f∗ are given by

(f∗)ji = (f∗)ij =


1 f(j) = i

0 otherwise

for all i ∈ Y , j ∈ X. Thus, f∗Hf
∗ has matrix entries

(f∗Hf
∗)ii′ =

∑
{j,j′: f(j)=i,f(j′)=i′}

Hjj′ .

To show that f∗Hf
∗ is infinitesimal stochastic we need to show that its off-diagonal entries

are nonnegative and its columns sum to zero. By the above formula, these follow from the

same facts for H.

Another formula for horizontal composition is also useful. Given the composable open

Markov processes in Equation (6.1) we can take the copairing of the maps j : X → X +T Y

and k : Y → X +T Y and get a map ` : X + Y → X +T Y . Then

H �G = `∗(H ⊕G)`∗ (6.3)

where H ⊕G : RX+Y → RX+Y is the direct sum of the operators H and G. This is easy to

check from the definitions.

Horizontal composition of 2-morphisms is even subtler:

Lemma 6.4.2. Suppose that we have horizontally composable 2-morphisms as follows:

S

S′ T ′

(X,H) T T

T ′ U ′

(Y,G) U

(X ′, H ′) (Y ′, G′)

i1

i′1 o′1

o1

f gp

i2 o2

g

i′2 o′2

hq
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Then there is a 2-morphism

S

S′ U ′

(X +T Y,H �G) U

(X ′ +T ′ Y
′, H ′ �G′)

i3 o3

f hp+g q

i′3 o′3

whose underlying diagram of finite sets is

S

S′

X X +T Y Y U

X ′ X ′ +T ′ Y
′

Y ′ U ′,

i1 j k o2

f p+g q h

i′1 j′ k′ o′2

where j, k, j′, k′ are the canonical maps from X,Y,X ′, Y ′, respectively, to the pushouts X+T

Y and X ′ +T ′ Y
′.

Proof. To show that we have defined a 2-morphism, we first check that the squares in

the above diagram of finite sets are pullbacks. Then we show that (p +g q)∗(H � G) =

(H ′ �G′)(p+g q)∗.

For the first part, it suffices by the symmetry of the situation to consider the left square.

We can write it as a pasting of two smaller squares:

S

S′

X X +T Y

X ′ X ′ +T ′ Y
′

i1 j

f p p+g q

i′1 j′

By assumption the left-hand smaller square is a pullback, so it suffices to prove this for

the right-hand one. For this we use that fact that FinSet is a topos and thus an adhesive
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category [30, 31], and consider this commutative cube:

T

T ′

X +T Y

X

Y

X ′ +T ′ Y
′

X ′

Y ′

o1

i2

o′1

i′2

p

j

k

p+g q

j′

k′

g

q

By assumption the top and bottom faces are pushouts, the two left-hand vertical faces are

pullbacks, and the arrows o′1 and i′2 are monic. In an adhesive category, this implies that the

two right-hand vertical faces are pullbacks as well. One of these is the square in question.

To show that (p +g q)∗(H � G) = (H ′ � G′)(p +g q)∗, we again use the above cube.

Because its two right-hand vertical faces commute, we have

(p+g q)∗j∗ = j′∗p∗ and (p+g q)∗k∗ = k′∗q∗

so using the definition of H �G we obtain

(p+g q)∗(H �G) = (p+g q)∗(j∗Hj
∗ + k∗Gk

∗)

= (p+g q)∗j∗Hj
∗ + (p+g q)∗k∗Gk

∗

= j′∗p∗Hj
∗ + k′∗q∗Gk

∗.

By assumption we have

p∗H = H ′p∗ and q∗G = G′q∗

so we can go a step further, obtaining

(p+g q)∗(H �G) = j′∗H
′p∗j

∗ + k′∗G
′q∗k

∗.
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Because the two right-hand vertical faces of the cube are pullbacks, Lemma 6.4.3 below

implies that

p∗j
∗ = j′∗(p+g q)∗ and q∗k

∗ = k′∗(p+g q)∗.

Using these, we obtain

(p+g q)∗(H �G) = j′∗H
′j′∗(p+g q)∗ + k′∗G

′k′∗(p+g q)∗

= (j′∗H
′j′∗ + k′∗G

′k′∗)(p+g q)∗

= (H ′ �G′)(p+g q)∗

completing the proof.

The following lemma is reminiscent of the Beck–Chevalley condition for adjoint functors:

Lemma 6.4.3. Given a pullback square in FinSet:

A B

DC

g

f

k

h

the following square of linear operators commutes:

RA RB

RDRC

g∗

f∗

k∗

h∗
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Proof. Choose v ∈ RB and c ∈ C. Then

(g∗f
∗(v))(c) =

∑
{a:g(a)=c}

v(f(a)),

(k∗h∗(v))(c) =
∑

{b:h(b)=k(c)}

v(b),

so to show g∗f
∗ = k∗h∗ it suffices to show that f restricts to a bijection

f : {a ∈ A : g(a) = c} ∼−→ {b ∈ B : h(b) = k(c)}.

On the one hand, if a ∈ A has g(a) = c then b = f(a) has h(b) = h(f(a)) = k(g(a)) = k(c),

so the above map is well-defined. On the other hand, if b ∈ B has h(b) = k(c), then by the

definition of pullback there exists a unique a ∈ A such that f(a) = b and g(a) = c, so the

above map is a bijection.

Theorem 6.4.4. There exists a double category Mark as defined above.

Proof. Let Mark0, the category of objects, consist of finite sets and functions. Let Mark1,

the category of arrows, consist of open Markov processes and morphisms between these:

S

S′ T ′.

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

f gp

To make Mark into a double category we need to specify the identity-assigning functor

u : Mark0 →Mark1,
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the source and target functors

s, t : Mark1 →Mark0,

and the composition functor

� : Mark1 ×Mark0 Mark1 →Mark1.

These are given as follows.

For a finite set S, u(S) is given by

S (S, 0S) S
1S 1S

where 0S is the zero operator from RS to RS . For a map f : S → S′ between finite sets,

u(f) is given by

S (S, 0S) S

S′ S′(S′, 0S′)

f ff

The source and target functors s and t map a Markov process S
i
� (X,H)

o
� T to S and

T , respectively, and they map a morphism of open Markov processes

S

S′ T ′

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

f gp

to f : S → S′ and g : T → T ′, respectively. The composition functor � maps the pair of

open Markov processes

S (X,H) T T (Y,G) U
i1 o1 i2 o2
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to their composite

S (X +T Y,H �G) U
ji1 ko2

defined as in Equation (6.2), and it maps the pair of morphisms of open Markov processes

S

S′ T ′

(X,H) T T

T ′ U ′

(Y,G) U

(X ′, H ′) (Y ′, G′)

i1

i′1 o′1

o1

f gp

i2 o2

g

i′2 o′2

hq

to their horizontal composite as defined as in Lemma 6.4.2.

It is easy to check that u, s and t are functors. To prove that � is a functor, the main

thing we need to check is the interchange law. Suppose we have four morphisms of open

Markov processes as follows:

S

S′ T ′

(X,H) T T

T ′ U ′

(Y,G) U

(X ′, H ′) (Y ′, G′)

S′

S′′ T ′′

(X ′, H ′) T ′ T ′ (Y ′, G′) U ′

T ′′ U ′′(X ′′, H ′′) (Y ′′, G′′)

f gp g hq

f ′ g′p′ g′ h′q′
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Composing horizontally gives

S

S′ U ′

S′′ U ′′,

(X +T Y,H �G) U

(X ′ +T ′ Y
′, H ′ �G′)

S′ (X ′ +T ′ Y
′, H ′ �G′) U ′

(X ′′ +T ′′ Y
′′, H ′′ �G′′)

f hp+g q

f ′ h′p′ +g′ q
′

and then composing vertically gives

S

S′′ U ′′.

(X +T Y,H �G) U

(X ′′ +T ′′ Y
′′, H ′′ �G′′)

f ′ ◦ f h′ ◦ h(p′ +g′ q
′) ◦ (p+g q)

Composing vertically gives

S (X,H) T T (Y,G) U

S′′ T ′′ T ′′ U ′′,(X ′′, H ′′) (Y ′′, G′′)

f ′ ◦ f g′ ◦ gp′ ◦ p g′ ◦ g h′ ◦ hq′ ◦ q

and then composing horizontally gives

S

S′′ U ′′.

(X +T Y,H �G) U

(X ′′ +T ′′ Y
′′, H ′′ �G′′)

f ′ ◦ f h′ ◦ h(p′ ◦ p) +(g′◦g) (q′ ◦ q)
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The only apparent difference between the two results is the map in the middle: one has

(p′+g′ q
′) ◦ (p+g q) while the other has (p′ ◦ p) +(g′◦g) (q′ ◦ q). But these are in fact the same

map, so the interchange law holds.

The functors u, s, t and ◦ obey the necessary relations

su = 1 = tu

and the relations saying that the source and target of a composite behave as they should.

Lastly, we have three natural isomorphisms: the associator, left unitor, and right unitor,

which arise from the corresponding natural isomorphisms for the double category of finite

sets, functions, cospans of finite sets, and maps of cospans. The triangle and pentagon

equations hold in Mark because they do in this simpler double category [18].

Next we give Mark a symmetric monoidal structure. We call the tensor product ‘addi-

tion’. Given objects S, S′ ∈ Mark0 we define their sum S + S′ using a chosen coproduct

in FinSet. The unit for this tensor product in Mark0 is the empty set. We can similarly

define the sum of morphisms in Mark0, since given maps f : S → T and f ′ : S′ → T ′ there

is a natural map f + f ′ : S + S′ → T + T ′. Given two objects in Mark1:

S1 (X1, H1) T1 S2 (X2, H2) T2

i1 o1 i2 o2

we define their sum to be

S1 + S2 (X1 +X2, H1 ⊕H2) T1 + T2

i1 + i2 o1 + o2

where H1 ⊕ H2 : RX1+X2 → RX1+X2 is the direct sum of the operators H1 and H2. The

unit for this tensor product in Mark1 is ∅ � (∅, 0∅) � ∅ where 0∅ : R∅ → R∅ is the zero
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operator. Finally, given two morphisms in Mark1:

S1

S′1 T ′1 S′2 T ′2

(X1, H1) T1 S2 (X2, H2) T2

(X ′1, H
′
1) (X ′2, H

′
2)

i1 o1

f1 g1

i′1 o′1

p1

i2 o2

f2 g2

i′2 o′2

p2

we define their sum to be

S1 + S2

S′1 + S′2 T ′1 + T ′2.

(X1 +X2, H1 ⊕H2) T1 + T2

(X ′1 +X ′2, H
′
1 ⊕H ′2)

i1 + i2 o1 + o2

f1 + f2 g1 + g2

i′1 + i′2 o′1 + o′2

p1 + p2

We complete the description of Mark as a symmetric monoidal double category in the proof

of this theorem:

Theorem 6.4.5. The double category Mark can be given a symmetric monoidal structure

with the above properties.

Proof. First we complete the description of Mark0 and Mark1 as symmetric monoidal

categories. The symmetric monoidal category Mark0 is just the category of finite sets with

a chosen coproduct of each pair of finite sets providing the symmetric monoidal structure.

We have described the tensor product in Mark1, which we call ‘addition’, so now we need

to introduce the associator, unitors, and braiding, and check that they make Mark1 into a

symmetric monoidal category.

Given three objects in Mark1

S1 (X1, H1) T1 S2 (X2, H2) T2 S3 (X3, H3) T3
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tensoring the first two and then the third results in

(S1 + S2) + S3 ((X1 +X2) +X3, (H1 ⊕H2)⊕H3) (T1 + T2) + T3

whereas tensoring the last two and then the first results in

S1 + (S2 + S3) (X1 + (X2 +X3), H1 ⊕ (H2 ⊕H3)) T1 + (T2 + T3).

The associator for Mark1 is then given as follows:

(S1 + S2) + S3 ((X1 +X2) +X3, (H1 ⊕H2)⊕H3) (T1 + T2) + T3

(X1 + (X2 +X3), H1 ⊕ (H2 ⊕H3))S1 + (S2 + S3) T1 + (T2 + T3)

a aa

where a is the associator in (FinSet,+). If we abbreviate an object S � (X,H) � T of

Mark1 as (X,H), and denote the associator for Mark1 as α, the pentagon identity says

that this diagram commutes:

(((X1, H1)⊕ (X2, H2))⊕ (X3, H3))⊕ (X4, H4)

((X1, H1)⊕ (X2, H2))⊕ ((X3, H3)⊕ (X4, H4))

(X1, H1)⊕ ((X2, H2)⊕ ((X3, H3)⊕ (X4, H4)))

(X1, H1)⊕ (((X2, H2)⊕ (X3, H3))⊕ (X4, H4))((X1, H1)⊕ ((X2, H2)⊕ (X3, H3)))⊕ (X4, H4)

α α

α⊕ 1(X4,H4)

α

1(X1,H1) ⊕ α

which is clearly true. Recall that the monoidal unit for Mark1 is given by ∅� (∅, 0∅) � ∅.

The left and right unitors for Mark1, denoted λ and ρ, are given respectively by the following

2-morphisms:

∅+ S

S T S T

(∅+X, 0∅ ⊕H) ∅+ T S + ∅ (X + ∅, H ⊕ 0∅) T + ∅

(X,H) (X,H)

` `` r rr
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where ` and r are the left and right unitors in FinSet. The left and right unitors and

associator for Mark1 satisfy the triangle identity:

((X,H)⊕ (∅, 0∅))⊕ (Y,G)

(X,H)⊕ (Y,G)

(X,H)⊕ ((∅, 0∅)⊕ (Y,G)).

ρ⊕ 1 1⊕ λ

α

The braiding in Mark1 is given as follows:

S1 + S2

S2 + S1 T2 + T1

(X1, H1)⊕ (X2, H2) T1 + T2

(X2, H2)⊕ (X1, H1)

bS1,S2
bT1,T2

bX1,X2

where b is the braiding in (FinSet,+). It is easy to check that the braiding in Mark1 is

its own inverse and obeys the hexagon identity, making Mark1 into a symmetric monoidal

category.

The source and target functors s, t : Mark1 → Mark0 are strict symmetric monoidal

functors, as required. To make Mark into a symmetric monoidal double category we must

also give it two other pieces of structure. One, called χ, says how the composition of

horizontal 1-cells interacts with the tensor product in the category of arrows. The other,

called µ, says how the identity-assigning functor u relates the tensor product in the cate-

gory of objects to the tensor product in the category of arrows. We now define these two

isomorphisms.

Given horizontal 1-cells

S1 (X1, H1) T1 T1 (Y1, G1) U1

S2 (X2, H2) T2 T2 (Y2, G2) U2
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the horizontal composites of the top two and the bottom two are given, respectively, by

S1 (X1 +T1 Y1, H1 �G1) U1 S2 (X2 +T2 Y2, H2 �G2) U2.

‘Adding’ the left two and right two, respectively, we obtain

S1 + S2 (X1 +X2, H1 ⊕H2) T1 + T2 T1 + T2 (Y1 + Y2, G1 ⊕G2) U1 + U2.

Thus the sum of the horizontal composites is

S1 + S2 ((X1 +T1 Y1) + (X2 +T2 Y2), (H1 �G1)⊕ (H2 �G2)) U1 + U2

while the horizontal composite of the sums is

S1 + S2 ((X1 +X2) +T1+T2 (Y1 + Y2), (H1 ⊕H2)� (G1 ⊕G2)) U1 + U2.

The required globular 2-isomorphism χ between these is

S1 + S2

S1 + S2 U1 + U2

((X1, H1)� (Y1, G1))⊕ ((X2, H2)� (Y2, G2)) U1 + U2

((X1, H1)⊕ (X2, H2))� ((Y1, G1)⊕ (Y2, G2))

1S1+S2 1U1+U2χ̂

where χ̂ is the bijection

χ̂ : (X1 +T1 Y1) + (X2 +T2 Y2)→ (X1 +X2) +T1+T2 (Y1 + Y2)

obtained from taking the colimit of the diagram

S1

X1

T1

Y1

U1 S2

X2

T2

Y2

U2
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in two different ways. We call χ ‘globular’ because its source and target 1-morphisms are

identities. We need to check that χ indeed defines a 2-isomorphism in Mark.

To do this, we need to show that

((H1 ⊕H2)� (G1 ⊕G2)) χ̂∗ = χ̂∗ ((H1 �G1)⊕ (H2 �G2)). (6.4)

To simplify notation, let K = (X1 +T1 Y1)+(X2 +T2 Y2) and K ′ = (X1 +X2)+T1+T2 (Y1 +Y2)

so that χ̂ : K
∼→ K ′. Let

q : X1 +X2 + Y1 + Y2 → K, q′ : X1 +X2 + Y1 + Y2 → K ′

be the canonical maps coming from the definitions of K and K ′ as colimits, and note that

q′ = χ̂q

by the universal property of the colimit. A calculation using Equation (6.3) implies that

(H1 �G1)⊕ (H2 �G2) = q∗ ((H1 ⊕H2)⊕ (G1 ⊕G2)) q∗

and similarly

(H1 ⊕H2)� (G1 ⊕G2) = q′∗((H1 ⊕H2)⊕ (G1 ⊕G2))q′∗.

Together these facts give

(H1 ⊕H2)� (G1 ⊕G2) = χ̂∗q∗ ((H1 ⊕H2)⊕ (G1 ⊕G2)) q∗χ̂∗

= χ̂∗ ((H1 �G1)⊕ (H2 �G2) χ̂∗.

and since χ̂ is a bijection, χ̂∗ is the inverse of χ̂∗, so Equation (6.4) follows.

For the other globular 2-isomorphism, if S and T are finite sets, then u(S + T ) is given

by

S + T (S + T, 0S+T ) S + T
1S+T 1S+T
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while u(S)⊕ u(T ) is given by

S + T (S + T, 0S ⊕ 0T ) S + T
1S + 1T 1S + 1T

so there is a globular 2-isomorphism µ between these, namely the identity 2-morphism. All

the commutative diagrams in the definition of symmetric monoidal double category [37] can

be checked in a straightforward way.

6.4.1 A bicategory of open Markov processes

If one prefers to work with bicategories as opposed to double categories, then one can lift

the above symmetric monoidal double category Mark to a symmetric monoidal bicategory

Mark using a result of Shulman. This bicategory Mark will have:

(1) finite sets as objects,

(2) open Markov processes as morphisms,

(3) morphisms of open Markov processes as 2-morphisms.

To do this, we need to check that the symmetric monoidal double category Mark is

isofibrant—meaning fibrant on vertical 1-morphisms which happen to be isomorphisms.

See the Appendix for details.

Definition 6.4.6. Let D be a double category. Then the horizontal bicategory of D,

which we denote as H(D), is the bicategory with

(1) objects of D as objects,

(2) horizontal 1-cells of D as 1-morphisms,
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(3) globular 2-morphisms of D (i.e., 2-morphisms with identities as their source and target)

as 2-morphisms,

and vertical and horizontal composition, identities, associators and unitors arising from

those in D.

Lemma 6.4.7. The symmetric monoidal double category Mark is isofibrant.

Proof. In what follows, all unlabeled arrows are identities. To show that Mark is isofibrant,

we need to show that every vertical 1-isomorphism has both a companion and a conjoint

[37]. Given a vertical 1-isomorphism f : S → S′, meaning a bijection between finite sets,

then a companion of f is given by the horizontal 1-cell:

S (S′, 0S′) S′
f

together with two 2-morphisms

S (S′, 0S′) S′

S′ S′(S′, 0S′)

S (S, 0S) S

S S′(S′, 0S′)

f

f f

f

f

such that vertical composition gives

S (S, 0S) S

S S′(S′, 0S′)

S′ (S′, 0S′) S′

=

S

S′

(S, 0S) S

(S′, 0S′) S′

f

f

f

f

f ff
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and horizontal composition gives

S (S, 0S) S

S S′(S′, 0S′)

(S′, 0S′)

(S′, 0S′)

S′

S′

=

S (S′, 0S′) S′

S (S′, 0S′) S′

f

f

f

f f

f

A conjoint of f : S → S′ is given by the horizontal 1-cell

S′ (S′, 0S′) S
f

together with two 2-morphisms

S′ (S′, 0S′) S

S′ S′(S′, 0S′)

S (S, 0S) S

S′ S(S′, 0S′)

f

f f

f

f

that satisfy equations analogous to the two above.

Theorem 6.4.8. The bicategory Mark is a symmetric monoidal bicategory.

Proof. This follows immediately from Theorem 5.0.1 of Shulman: Mark is an isofibrant

symmetric monoidal double category, so we obtain the symmetric monoidal bicategory

Mark as the horizontal bicategory of Mark.

6.5 A double category of linear relations

The general idea of ‘black-boxing’, as mentioned in Chapter 2, is to take a system and

forget everything except the relation between its inputs and outputs, as if we had placed
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it in a black box and were unable to see its inner workings. Previous work of Baez and

Pollard [10] constructed a black-boxing functor � : Dynam→ SemiAlgRel where Dynam is a

category of finite sets and ‘open dynamical systems’ and SemiAlgRel is a category of finite-

dimensional real vector spaces and relations defined by polynomials and inequalities. When

we black-box such an open dynamical system, we obtain the relation between inputs and

outputs that holds in steady state.

A special case of an open dynamical system is an open Markov process as defined in

this chapter. Thus, we could restrict the black-boxing functor � : Dynam → SemiAlgRel

to a category Mark with finite sets as objects and open Markov processes as morphisms.

Since the steady state behavior of a Markov process is linear, we would get a functor

� : Mark → LinRel where LinRel is the category of finite-dimensional real vector spaces

and linear relations [6]. However, we will go further and define black-boxing on the double

category Mark. This will exhibit the relation between black-boxing and morphisms between

open Markov processes.

The symmetric monoidal double category LinRel of linear relations introduced in this

section will serve as the codomain of a symmetric monoidal black-box double functor in

Section 6.6. This double category LinRel will have:

(1) finite-dimensional real vector spaces U, V,W, . . . as objects,

(2) linear maps f : V →W as vertical 1-morphisms from V to W ,

(3) linear relations R ⊆ V ⊕W as horizontal 1-cells from V to W ,
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(4) squares

V1 V2

W1 W2

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

obeying (f ⊕ g)R ⊆ S as 2-morphisms.

The last item deserves some explanation. A preorder is a category such that for any pair

of objects x, y there exists at most one morphism α : x→ y. When such a morphism exists

we usually write x ≤ y. Similarly there is a kind of double category for which given any

‘frame’

A B

C D

M

gf

N

there exists at most one 2-morphism

A B

C D

⇓ α

M

gf

N

filling this frame. For lack of a better term let us call this a degenerate double category.

Item (4) implies that LinRel will be degenerate in this sense.

In LinRel, composition of vertical 1-morphisms is the usual composition of linear maps,

while composition of horizontal 1-cells is the usual composition of linear relations. Since

composition of linear relations obeys the associative and unit laws strictly, LinRel will be

a strict double category. Since LinRel is degenerate, there is at most one way to define
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the vertical composite of 2-morphisms

U1 U2

V1 V2

⇓ α

W1 W2

⇓ β

=

U1 U2

W1 W2

⇓ βα

R ⊆ U1 ⊕ U2

gf

f ′

T ⊆W1 ⊕W2

g′

S ⊆ V1 ⊕ V2

R ⊆ U1 ⊕ U2

g′gf ′f

T ⊆W1 ⊕W2

so we need merely check that a 2-morphism βα filling the frame at right exists. This

amounts to noting that

(f ⊕ g)R ⊆ S, (f ′ ⊕ g′)S ⊆ T =⇒ (f ′ ⊕ g′)(f ⊕ g)R ⊆ T.

Similarly, there is at most one way to define the horizontal composite of 2-morphisms

V1 V2

W1 W2

⇓ α

V3

W3

⇓ α′ =

V1 V3

W1 W3

⇓ α′ ◦ α

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

R′ ⊆ V2 ⊕ V3

h

S′ ⊆W2 ⊕W3

R′R ⊆ V1 ⊕ V3

f

S′S ⊆W1 ⊕W3

h

so we need merely check that a filler α′ ◦ α exists, which amounts to noting that

(f ⊕ g)R ⊆ S, (g ⊕ h)R′ ⊆ S′ =⇒ (f ⊕ h)(R′R) ⊆ S′S.

Theorem 6.5.1. There exists a strict double category LinRel with the above properties.

Proof. The category of objects LinRel0 has finite-dimensional real vector spaces as objects

and linear maps as morphisms. The category of arrows LinRel1 has linear relations as
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objects and squares

V1 V2

W1 W2

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

with (f ⊕g)R ⊆ S as morphisms. The source and target functors s, t : LinRel1 → LinRel0

are clear. The identity-assigning functor u : LinRel0 → LinRel1 sends a finite-dimensional

real vector space V to the identity map 1V and a linear map f : V → W to the unique

2-morphism

V V

W W .

1V

ff

1W

The composition functor � : LinRel1 ×LinRel0 LinRel1 → LinRel1 acts on objects by the

usual composition of linear relations, and it acts on 2-morphisms by horizontal composition

as described above. These functors can be shown to obey all the axioms of a double

category. In particular, because LinRel is degenerate, all the required equations between

2-morphisms, such as the interchange law, hold automatically.

Next we make LinRel into a symmetric monoidal double category. To do this, we

first give LinRel0 the structure of a symmetric monoidal category. We do this using a

specific choice of direct sum for each pair of finite-dimensional real vector spaces as the

tensor product, and a specific 0-dimensional vector space as the unit object. Then we give

LinRel1 a symmetric monoidal structure as follows. Given linear relations R1 ⊆ V1 ⊕W1
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and R2 ⊆ V2 ⊕W2, we define their direct sum by

R1 ⊕R2 = {(v1, v2, w1, w2) : (v1, w1) ∈ R1, (v2, w2) ∈ R2} ⊆ V1 ⊕ V2 ⊕W1 ⊕W2.

Given two 2-morphisms in LinRel1:

V1 V2

W1 W2

V ′1 V ′2

W ′1 W ′2

⇓ α′⇓ α

R ⊆ V1 ⊕ V2

gf

S ⊆W1 ⊕W2

R′ ⊆ V ′1 ⊕ V ′2

g′f ′

S′ ⊆W ′1 ⊕W ′2

there is at most one way to define their direct sum

V1 ⊕ V ′1 V2 ⊕ V ′2

W1 ⊕W ′1 W2 ⊕W ′2

⇓ α⊕ α′

R⊕R′ ⊆ V1 ⊕ V ′1 ⊕ V2 ⊕ V ′2

g ⊕ g′f ⊕ f ′

S ⊕ S′ ⊆W1 ⊕W ′1 ⊕W2 ⊕W ′2

because LinRel is degenerate. To show that α⊕ α′ exists, we need merely note that

(f ⊕ g)R ⊆ S, (f ′ ⊕ g′)R′ ⊆ S′ =⇒ (f ⊕ f ′ ⊕ g ⊕ g′)(R⊕R′) ⊆ S ⊕ S′.

Theorem 6.5.2. The double category LinRel can be given the structure of a symmetric

monoidal double category with the above properties.

Proof. We have described LinRel0 and LinRel1 as symmetric monoidal categories. The

source and target functors s, t : LinRel1 → LinRel0 are strict symmetric monoidal functors.

The required globular 2-isomorphisms χ and µ are defined as follows. Given four horizontal

1-cells

R1 ⊆ U1 ⊕ V1, R2 ⊆ V1 ⊕W1,
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S1 ⊆ U2 ⊕ V2, S2 ⊆ V2 ⊕W2,

the globular 2-isomorphism χ : (R2 ⊕ S2)(R1 ⊕ S1) ⇒ (R2R1) ⊕ (S2S1) is the identity 2-

morphism

U1 ⊕ U2 W1 ⊕W2

U1 ⊕ U2 W1 ⊕W2.

(R2 ⊕ S2)(R1 ⊕ S1)

11

(R2R1)⊕ (S2S1)

The globular 2-isomorphism µ : u(V ⊕W )⇒ u(V )⊕ u(W ) is the identity 2-morphism

V ⊕W V ⊕W

V ⊕W V ⊕W .

1V⊕W

11

1V ⊕ 1W

All the commutative diagrams in the definition of symmetric monoidal double category

[37] can be checked straightforwardly. In particular, all diagrams of 2-morphisms commute

automatically because LinRel is degenerate.

6.5.1 A bicategory of linear relations

We can also promote the symmetric monoidal double category LinRel of linear relations

from the previous section to a symmetric monoidal bicategory LinRel of linear relations

due to Shulman’s Theorem 5.0.1 by showing LinRel is isofibrant.

Lemma 6.5.3. The symmetric monoidal double category LinRel is isofibrant.

Proof. Let f : X → Y be a linear isomorphism between finite-dimensional real vector spaces.

Define f̂ to be the linear relation given by the linear isomorphism f and define 2-morphisms
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in LinRel

X Y

Y Y

X X

X Y

αf ⇓ fα ⇓

f̂

f 1

1

1

1 f

f̂

where αf and fα, the unique fillers of their frames, are identities. These two 2-morphisms

and f̂ satisfy the required equations, and the conjoint of f is given by reversing the direction

of f̂ , which is just f−1 : Y → X. It follows that LinRel is isofibrant.

Theorem 6.5.4. There exists a symmetric monoidal bicategory LinRel with

(1) finite-dimensional real vector spaces as objects,

(2) linear relations R ⊆ V ⊕W as morphisms from V to W ,

(3) inclusions R ⊆ S between linear relations R,S ⊆ V ⊕W as 2-morphisms.

Proof. Apply Shulman’s result, Theorem 5.0.1, to the isofibrant symmetric monoidal double

category LinRel to obtain the symmetric monoidal bicategory LinRel as the horizontal

edge bicategory of LinRel.

6.6 Black-boxing for open Markov processes

In this section we present the main result of the chapter which is a symmetric monoidal

double functor � : Mark→ LinRel. We proceed as follows:

(1) On objects: for a finite set S, we define �(S) to be the vector space RS ⊕ RS .
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(2) On horizontal 1-cells: for an open Markov process S
i
� (X,H)

o
� T , we define its

black-boxing as in Definition 6.2.7:

�(S
i
� (X,H)

o
� T ) =

{(i∗(v), I, o∗(v), O) : v ∈ RX , I ∈ RS , O ∈ RT and H(v) + i∗(I)− o∗(O) = 0}.

(3) On vertical 1-morphisms: for a map f : S → S′, we define �(f) : RS⊕RS → RS′⊕RS′

to be the linear map f∗ ⊕ f∗.

What remains to be done is define how � acts on 2-morphisms of Mark. This describes

the relation between steady state input and output concentrations and flows of a coarse-

grained open Markov process in terms of the corresponding relation for the original process:

Lemma 6.6.1. Given a 2-morphism

S (X,H) T

(X ′, H ′)S′ T ′,

f g

i o

i′ o′

p

in Mark, there exists a (unique) 2-morphism

�(S) �(T )

�(S′) �(T ′)

�(S
i
� (X,H)

o
� T )

�(g)�(f)

�(S′
i′
� (X′, H′)

o′
� T ′)

in LinRel.
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Proof. Since LinRel is degenerate, if there exists a 2-morphism of the claimed kind it is

automatically unique. To prove that such a 2-morphism exists, it suffices to prove

(i∗(v), I, o∗(v), O) ∈ V =⇒ (f∗i
∗(v), f∗(I), g∗o

∗(v), g∗(O)) ∈W

where

V = �(S
i
� (X,H)

o
� T ) =

{(i∗(v), I, o∗(v), O) : v ∈ RX , I ∈ RS , O ∈ RT and H(v) + i∗(I)− o∗(O) = 0}

and

W = �(S′
i′

� (X ′, H ′)
o′

� T ′) =

{(i′∗(v′), I ′, o′∗(v′), O′) : v′ ∈ RX
′
, I ′ ∈ RS

′
, O′ ∈ RT

′
and H ′(v′) + i′∗(I

′)− o′∗(O′) = 0}.

To do this, assume (i∗(v), I, o∗(v), O) ∈ V , which implies that

H(v) + i∗(I)− o∗(O) = 0. (6.5)

Since the commuting squares in α are pullbacks, Lemma 6.4.3 implies that

f∗i
∗ = i′∗p∗, g∗o

∗ = o′∗p∗.

Thus

(f∗i
∗(v), f∗(I), g∗o

∗(v), g∗(O)) = (i′∗p∗(v), f∗(I), o′∗p∗(v), g∗(O))

and this is an element of W as desired if

H ′p∗(v) + i′∗f∗(I)− o′∗g∗(O) = 0. (6.6)

To prove Equation (6.6), note that

H ′p∗(v) + i′∗f∗(I)− o′∗g∗(O) = p∗H(v) + p∗i∗(I)− p∗o∗(O)

= p∗(H(v) + i∗(I)− o∗(O))
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where in the first step we use the fact that the squares in α commute, together with the

fact that H ′p∗ = p∗H. Thus, Equation (6.5) implies Equation (6.6).

The following result is a special case of a result by Pollard and Baez on black-boxing

open dynamical systems [10]. To make this chapter self-contained we adapt the proof to

the case at hand:

Lemma 6.6.2. The black-boxing of a composite of two open Markov processes equals the

composite of their black-boxings.

Proof. Consider composable open Markov processes

S
i−→ (X,H)

o←− T, T
i′−→ (Y,G)

o′←− U.

To compose these, we first form the pushout

X +T Y

X

j
::

Y

k
dd

S

i

;;

T

o

dd

i′
::

U

o′
cc

Then their composite is

S
ji−→ (X +T Y,H �G)

ko′←− U

where

H �G = j∗Hj
∗ + k∗Gk

∗.

To prove that � preserves composition, we first show that

�(Y,G) �(X,H) ⊆ �(X +T Y,H �G).
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Thus, given

(i∗(v), I, o∗(v), O) ∈ �(X,H), (i′
∗
(v′), I ′, o′

∗
(v′), O′) ∈ �(Y,G)

with

o∗(v) = i′
∗
(v′), O = I ′

we need to prove that

(i∗(v), I, o′
∗
(v′), O′) ∈ �(X +T Y,H �G).

To do this, it suffices to find w ∈ RX+TY such that

(i∗(v), I, o′
∗
(v′), O′) = ((ji)∗(w), I, (ko′)

∗
(w), O′)

and w is a steady state of (X +T Y,H �G) with inflows I and outflows O′.

Since o∗(v) = i′∗(v′), this diagram commutes:

R

X

v

>>

Y

v′
__

T

o

``

i′

??

so by the universal property of the pushout there is a unique map w : X +T Y → R such

that this commutes:

X

X +T Y

Y

T

R

w

i′o

v′v

j k

(6.7)
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This simply says that because the functions v and v′ agree on the ‘overlap’ of our two open

Markov processes, we can find a function w that restricts to v on X and v′ on Y .

We now prove that w is a steady state of the composite open Markov process with inflows

I and outflows O′:

(H �G)(w) + (ji)∗(I)− (ko′)∗(O
′) = 0. (6.8)

To do this we use the fact that v is a steady state of S
i
� (X,H)

o
� T with inflows I and

outflows O:

H(v) + i∗(I)− o∗(O) = 0 (6.9)

and v′ is a steady state of T
i′

� (Y,G)
o′

� U with inflows I ′ and outflows O′:

G(v′) + i′∗(I
′)− o′∗(O′) = 0. (6.10)

We push Equation (6.9) forward along j, push Equation (6.10) forward along k, and sum

them:

j∗(H(v)) + (ji)∗(I)− (jo)∗(O) + k∗(G(v′)) + (ki′)∗(I
′)− (ko′)∗(O

′) = 0.

Since O = I ′ and jo = ki′, two terms cancel, leaving us with

j∗(H(v)) + (ji)∗(I) + k∗(G(v′))− (ko′)∗(O
′) = 0.

Next we combine the terms involving the infinitesimal stochastic operators H and G, with

the help of Equation (6.7) and the definition of H �G:

j∗(H(v)) + k∗(G(v′)) = (j∗Hj
∗ + k∗Gk

∗)(w)

= (H �G)(w).

(6.11)
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This leaves us with

(H �G)(w) + (ji)∗(I)− (ko′)∗(O
′) = 0

which is Equation (6.8), precisely what we needed to show.

To finish showing that � is a functor, we need to show that

�(X +T Y,H �G) ⊆ �(Y,G) �(X,H).

So, suppose we have

((ji)∗(w), I, (ko′)
∗
(w), O′) ∈ �(X +T Y,H �G).

We need to show

((ji)∗(w), I, (ko′)
∗
(w), O′) = (i∗(v), I, o′∗(v′), O′) (6.12)

where

(i∗(v), I, o∗(v), O) ∈ �(X,H), (i′∗(v′), I ′, o′∗(v′), O′) ∈ �(Y,G)

and

o∗(v) = i′∗(v′), O = I ′.

To do this, we begin by choosing

v = j∗(w), v′ = k∗(w).

This ensures that Equation (6.12) holds, and since jo = ki′, it also ensures that

o∗(v) = (jo)∗(w) = (ki′)∗(w) = i′
∗
(v′).

To finish the job, we need to find an element O = I ′ ∈ RT such that v is a steady state of

(X,H) with inflows I and outflows O and v′ is a steady state of (Y,G) with inflows I ′ and
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outflows O′. Of course, we are given the fact that w is a steady state of (X +T Y,H �G)

with inflows I and outflows O′.

In short, we are given Equation (6.8), and we seek O = I ′ such that Equations (6.9)

and (6.10) hold. Thanks to our choices of v and v′, we can use Equation (6.11) and rewrite

Equation (6.8) as

j∗(H(v) + i∗(I)) + k∗(G(v′)− o′∗(O′)) = 0. (6.13)

Equations (6.9) and (6.10) say that

H(v) + i∗(I)− o∗(O) = 0

G(v′) + i′∗(I
′)− o′∗(O′) = 0.

(6.14)

Now we use the fact that

X +T Y

X

j
::

Y

k
dd

T

o

dd

i′

::

is a pushout. Applying the ‘free vector space on a finite set’ functor, which preserves

colimits, this implies that

RX+TY

RX

j∗

::

RY

k∗

dd

RT
o∗

dd

i′∗

::

is a pushout in the category of vector spaces. Since a pushout is formed by taking first a

coproduct and then a coequalizer, this implies that

RT
(0,i′∗)

//

(o∗,0)
// RX ⊕ RY

[j∗,k∗]
// RX+TY
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is a coequalizer. Thus, the kernel of [j∗, k∗] is the image of (o∗, 0)− (0, i′∗). Equation (6.13)

says precisely that

(H(v) + i∗(I), G(v′)− o′∗(O′)) ∈ ker([j∗, k∗]).

Thus, it is in the image of (o∗, 0) − (0, i′∗). In other words, there exists some element

O = I ′ ∈ RT such that

(H(v) + i∗(I), G(v′)− o′∗(O′)) = (o∗(O),−i′∗(I ′)).

This says that Equations (6.9) and (6.10) hold, as desired.

This is the main result of the paper on coarse-graining open Markov processes [2]:

Theorem 6.6.3. There exists a symmetric monoidal double functor � : Mark → LinRel

with the following behavior:

(1) Objects: � sends any finite set S to the vector space RS ⊕ RS.

(2) Vertical 1-morphisms: � sends any map f : S → S′ to the linear map

f∗ ⊕ f∗ : RS ⊕ RS → RS′ ⊕ RS′.

(3) Horizontal 1-cells: � sends any open Markov process S
i
� (X,H)

o
� T to the linear

relation given in Definition 6.2.7:

�(S
i
� (X,H)

o
� T ) =

{(i∗(v), I, o∗(v), O) : H(v) + i∗(I)− o∗(O) = 0 for some I ∈ RS , v ∈ RX , O ∈ RT }.
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(4) 2-Morphisms: � sends any morphism of open Markov processes

S (X,H) T

(X ′, H ′)S′ T ′

f g

i o

i′ o′

p

to the 2-morphism in LinRel given in Lemma 6.6.1:

�(S) �(T )

�(S′) �(T ′).

�(S
i
� (X,H)

o
� T )

�(g)�(f)

�(S′
i′
� (X′, H′)

o′
� T ′)

Proof. First we must define functors �0 : Mark0 → LinRel0 and �1 : Mark1 → LinRel1.

The functor �0 is defined on finite sets and maps between these as described in (i) and (ii)

of the theorem statement, while �1 is defined on open Markov processes and morphisms

between these as described in (iii) and (iv). Lemma 6.6.1 shows that �1 is well-defined on

morphisms between open Markov processes; given this is it easy to check that �1 is a functor.

One can verify that �0 and �1 combine to define a double functor � : Mark→ LinRel: the

hard part is checking that horizontal composition of open Markov processes is preserved, but

this was shown in Lemma 6.6.2. Horizontal composition of 2-morphisms is automatically

preserved because LinRel is degenerate.

To make � into a symmetric monoidal double functor we need to make �0 and �1 into

symmetric monoidal functors, which we do using these extra structures:

• an isomorphism in LinRel0 between {0} and �(∅),
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• a natural isomorphism between �(S) ⊕ �(S′) and �(S + S′) for any two objects

S, S′ ∈Mark0,

• an isomorphism in LinRel1 between the unique linear relation {0} → {0} and �(∅�

(∅, 0∅) � ∅), and

• a natural isomorphism between

�((S � (X,H) � T ) ⊕ �(S′ � (X ′, H ′) � T ′)

and

�(S + S′ � (X +X ′, H ⊕H ′) � T + T ′)

for any two objects S � (X,H) � T , S′ � (X ′, H ′) � T ′ of Mark1.

There is an evident choice for each of these extra structures, and it is straightforward

to check that they not only make �0 and �1 into symmetric monoidal functors but also

meet the extra requirements for a symmetric monoidal double functor listed in Hansen

and Shulman’s paper [28], which may also be found in Definition A.2.14. In particular, all

diagrams of 2-morphisms commute automatically because LinRel is degenerate.

6.6.1 A corresponding functor of bicategories

We have symmetric monoidal bicategories Mark and LinRel, both of which come from

discarding the vertical 1-morphisms of the symmetric monoidal double categories Mark and

LinRel, respectively. Morally, we should be able to do something similar to the symmetric

monoidal double functor � : Mark → LinRel to obtain a symmetric monoidal functor of

bicategories � : Mark → LinRel, and indeed we can by a result of Hansen and Shulman

[28].
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Theorem 6.6.4 ([28, Thm. 6.17]). There exists a symmetric monoidal functor � : Mark→

LinRel that maps:

(1) any finite set S to the finite-dimensional real vector space �(S) = RS ⊕ RS,

(2) any open Markov process S
i
� (X,H)

o
� T to the linear relation from �(S) to �(T )

given by the linear subspace

�(S
i
� (X,H)

o
� T ) =

{(i∗(v), I, o∗(v), O) : H(v) + i∗(I)− o∗(O) = 0} ⊆ RS ⊕ RS ⊕ RT ⊕ RT ,

(3) any morphism of open Markov processes

S

S T

(X,H) T

(X ′, H ′)

i1

i′1 o′1

o1

1S 1Tp

to the inclusion

�(X,H) ⊆ �(X ′, H ′).

Proof. This was proved by Hansen and Shulman [28, Theorem 6.17], by applying a

more general result [28, Theorem 5.11] to the strong symmetric monoidal double functor

� : Mark→ LinRel of Theorem 6.6.3.
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Chapter 7

Possible future work

In this final chapter before the Appendix, I will touch on a few possible avenues in which

the work in this thesis can be improved. The three main results are the contents of Chapter

3, Chapter 4 and Chapter 6.

Chapter 3 presents the results regarding the foot-replaced double categories formalism.

We showed how to build a symmetric monoidal double category LCsp(X) from an adjoint

functor L : A → X between categories with finite colimits. One possible generalization

would be to let L be a ‘2-adjoint’ between two 2-categories A and X with finite ‘2-colimits’.

In the conjectured symmetric monoidal double category LCsp(X) obtained from this 2-

adjoint L, composing two horizontal 1-cells—two cospans in X—would involve taking ‘2-

pushouts’, which involve the typical pushout square commuting not on the nose but only

up to isomorphism.

We can also generalize foot-replaced double categories. The idea of replacing the category

of objects of a double category X with some other category A is easily transferable to even

higher level categorifications. For example, if X is a ‘triple category’, which would involve
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a category X0 of objects, a category X1 of arrows and a category X2 of ‘faces’, we could

replace the category of objects X0 with some other category A, or even both the category

of objects X0 and category of arrows X1 with some double category A in the event that the

pair (X0,X1) form a double category. One version of a triple category due to Grandis and

Parè [26] is an ’intercategory’ which is, roughly speaking, a pair of double categories sharing

a common ‘side category’.

Chapter 4 explores improvements to Fong’s original conception of decorated cospans

[23]. Here, the main insight was to not consider a set of decorations but a category of

decorations. Even further generalizations could be made here by replacing the finitely

cocartesian category A with a finitely 2-cocartesian 2-category A and viewing Cat as a

3-category and defining an appropriate functor F : A→ Cat. In this framework, we could

then decorate objects with ‘higher level stuff ’ [11], such as a decoration that makes a 2-

category C into a monoidal 2-category (C,⊗, 1).

Above are only some possible improvements to the frameworks themselves, but each

framework is suitable to applications not mentioned in this thesis. Biological sciences,

economics and even social sciences are bound to have situations which can be modeled by

either of the above frameworks. Anytime a concept or an idea can be thought of as a set

equipped with some extra structure, decorated cospans are lurking in the background, and

very often a trivial form of this structure is captured by a left adjoint.

Chapter 6 applies double categories to coarse-graining open Markov processes. Here, the

Markov processes we consider are really finite state Markov chains, but more general Markov

processes can be considered. Moreover, more general forms of coarse-graining outside of

lumpability can also be considered, but would require a different definition of 2-morphism
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in the resulting double category. In a ‘triple category’ of coarse-grainings, 3-morphisms

would then represent maps between two different ways of applying a coarse-graining to a

Markov process. This idea would not be well suited for the double category of coarse-

grainings presented here, as the category of arrows Mark1 is locally posetal, meaning that

there is at most one coarse-graining as we have defined it [2] between two open Markov

processes.
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Appendix A

Definitions

A.1 Everyday categories

This is a thesis largely about applications of double categories in network theory. The

most obvious place to start is with the following question: What is a category?

Definition A.1.1. A category C consists of a collection of objects denoted Ob(C) and a

collection of morphisms denoted Mor(C) such that:

(1) every morphism f ∈ Mor(C) has a source object s(f) ∈ Ob(C) and a target object

t(f) ∈ Ob(C). A morphism f with source x and target y we denote as f : x→ y, and

we denote the collection of all morphisms with source x and target y by hom(x, y) or

homC(x, y).

(2) Given a morphism f : x → y and a morphism g : y → z, there exists a composite

morphism gf : x→ z. In other words, for any triple of objects x, y, z ∈ Ob(C), there
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is a well-defined map

◦ : hom(x, y)× hom(y, z)→ hom(x, z)

called composition.

(3) Composition of morphisms is associative, meaning that given three composable mor-

phisms f, g, h ∈ Mor(C) we have h(gf) = (hg)f .

(4) Every object x ∈ Ob(C) has an identity morphism 1x : x → x such that for any

morphism f : x→ y, we have

f1x = f = 1yf.

If both Ob(C) and Mor(C) are sets, we say that C is a small category. If for every pair

of objects x, y ∈ Ob(C) we have that hom(x, y) is a set, we say that C is a locally small

category. Here are some examples:

(1) The primordial example of a category is Set of sets and functions.

(2) The category Grp of groups and group homomorphisms.

(3) The category Top of topological spaces and continuous maps.

(4) The category Mat(k) of natural numbers and n ×m matrices with entries in a field

(or more generally, a ring or rig) k with composition given by matrix multiplication.

(5) Every monoid is a locally small category with a single object whose morphisms are

given by the elements of the monoid.

(6) The category Cat of categories and functors.
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(7) The category Vect of vector spaces and linear maps.

(8) The category Diff of smooth manifolds and smooth maps.

(9) The category Rel of sets and relations.

(10) The category PreOrd of preordered sets and monotone functions.

(11) The category Graph of (directed) graphs and graph morphisms, which are pairs of

functions preserving the source and target of each edge.

(12) Any set S gives rise to a category S whose objects are the elements of the set S

containing only identity morphisms.

(13) There is a category 1 with only one object ? and only an identity morphism 1?.

Even though a category is usually named after its objects, it is the morphisms of a

category that are the real stars of the show. In fact, we can ‘do away’ with all the objects

as the collection of all identity morphisms tell us precisely what the objects of a category

are.

Any sort of mathematical gizmo is boring and pointless to study unless that mathemat-

ical gizmo can ‘talk’ to other similar mathematical gizmos via maps between the two. So,

how do categories talk to each other?

Definition A.1.2. Given categories C and D, a functor F : C → D consists of a map

Ob(F ) : Ob(C) → Ob(D) and a map Mor(F ) : Mor(C) → Mor(D) respecting source and

target, meaning that s(F (f)) = F (s(f)) and t(F (f)) = F (t(f)), such that:

(1) For any two composable morphisms f : x→ y and g : y → z in C, we have F (f)F (g) =

F (fg), and

219



(2) For any object x ∈ C, we have F (1x) = 1F (x).

We usually denote the maps Ob(F ) and Mor(F ) simply as F .

Here are some examples:

(1) For any category C, there is an identity functor 1C : C → C that maps every object

and morphism of C to itself.

(2) There is a forgetful functor R : Grp → Set, which we call R as it is a right adjoint,

that maps any group G to its underlying set U(G) and any group homomorphism

f : G→ G′ to its underlying function U(f) : U(G)→ U(G′).

(3) For any category C, there is a functor ! : C → 1 which maps every object of C to the

one object ? of 1 and any morphism in C to the only morphism 1? of 1.

(4) There is a functor F : Set → Cat which maps any set S to the discrete category on

S whose objects are given by elements of S and whose only morphisms are identity

morphisms.

(5) Given categories C and D and an object d ∈ D, there is a functor Fd : C → D called

the constant functor at d which maps every object C to the object d in D and every

morphism of C to the morphism 1d.

Functors may look a little similar to functions in that they are maps between objects

that we are interested in. However, in the same way that the morphisms are the real stars

of the show in a category, one could make the same argument that it is functors that are

the real stars of category theory: after all, a category C is ultimately determined by the

identity functor 1C on that category. But we will not go down that road. The real fun of
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category theory starts when we start to consider maps between maps. Our first examples of

a map between maps, which are also one of the main reasons that Eilenberg and Mac Lane

invented category theory in the 1940’s, are natural transformations.

Definition A.1.3. Let F : C → D and G : C → D be functors. Then a natural trans-

formation α : F ⇒ G consists of a family of morphisms αx : F (x)→ G(x) indexed by the

objects of C such that for any morphism f : x → y in C, the following naturality square

commutes.

F (x) F (y)

G(x) G(y)

F (f)

G(f)

αx αy

We call αx the component of α at x. If each map αx is an isomorphism, then we say that

α : F ⇒ G is a natural isomorphism.

Here are some examples of natural transformations:

(1) For any functor F : C → D, there is an identity natural transformation 1: F ⇒ F

in which the component at each object x is the identity 1F (x). This is a natural

isomorphism.

(2) Given a functor Fd : C → D which is constant at some object d ∈ D and another

functor G : C → D, a natural transformation α : Fd ⇒ G is a cone over D, which

consists of a family of morphisms αx : d→ G(x) which make a cone-like commutative
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diagram in which all the top triangular faces commute.

d

G(x)

G(y)

G(z)

αx

αy

αz

(3) Let Grp denote the category of groups and group homomorphisms, AbGrp the cate-

gory of abelian groups and group homomorphisms and Ab : Grp→ AbGrp the functor

sending each group to its abelianization, namely Ab(G) := G/[G,G] where [G,G] is

the commutator subgroup of G. Then there is a natural transformation π : 1Grp ⇒ Ab

where the component at each group is given by πG : G → Ab(G). For any group

homomorphism f : G→ H, the following square commutes.

G H

Ab(G) Ab(H)

f

Ab(f)

πG πH

This is not a natural isomorphism.

(4) Given a field k and a finite dimensional vector space V over k, there is a canonical

isomorphism αV : V → V ∗∗ from the vector space V to its double dual. This gives a

natural transformation α : 1FinVectk ⇒ ∗∗ where ∗∗ : FinVectk → FinVectk is the functor

sending each finite dimensional vector space V to its double dual V ∗∗. The following

square then commutes for every linear map L : V →W of finite dimensional k-vector
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spaces.

V W

V ∗∗ W ∗∗

L

L∗∗

αV αW

This is a natural isomorphism if all the vector spaces are finite dimensional. If we

allow for infinite dimensional vector spaces, we still have a natural transformation,

but each map αV : V → V ∗∗ is no longer an isomorphism.

(5) Given commutative rings R and S and a ring homomorphism f : R → S, the ring

homomorphism f : R → S restricts to a group homomorphism f× : R× → S× where

R× denotes the group of units of the commutative ring R. This defines a functor

× : CommRing → AbGrp. There are also well-known groups of linear transforma-

tions GLn(R) and GLn(S), and every ring homomorphism f : R → S induces a map

GLn(f) : GLn(R)→ GLn(S) given by application of f to every entry of H ∈ GLn(R).

This defines another functor GLn : CommRing → AbGrp. There is then a natural

transformation det : GLn ⇒ × where given H ∈ GLn(R), detR(H) is the determinant

of H. The following square commutes for every ring homomorphism f : R→ S.

GLn(R) GLn(S)

R× S×

GLn(f)

f×

detR detS
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Definition A.1.4. Given a two categories A and X and two functors going in opposite

directions between the two:

A X

L

R

we say that L and R are adjoint, with L the left adjoint and R the right adjoint, if for

every a ∈ A and x ∈ X there is a natural isomorphism

homX(L(a), x) ∼= homA(a,R(x)).

A.1.1 Monoidal categories and monoidal functors

Next we introduce ‘monoidal’ categories, which are largely the kinds of categories that

this thesis is about. Roughly speaking, a monoidal category is a category with a binary

operation in which we can multiply or ‘tensor’ two objects in the category much like we can

multiply two objects in a monoid.

Definition A.1.5. A monoidal category is a category C equipped with the extra struc-

ture of:

(1) a functor ⊗ : C× C→ C called the tensor product of C,

(2) an object I ∈ C called the (monoidal) unit of C,

(3) for any three objects a, b, c ∈ C, a natural isomorphism called the associator

α : ((−)⊗ (−))⊗ (−)
∼−→ (−)⊗ ((−)⊗ (−))

whose components are of the form

αa,b,c : (a⊗ b)⊗ c ∼−→ a⊗ (b⊗ c)
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(4) for any object c, a natural isomorphism called the left unitor

λ : (I ⊗ (−))
∼−→ (−)

whose components are of the form

λc : I ⊗ c ∼−→ c

(5) for any object c, a natural isomorphism called the right unitor

ρ : ((−)⊗ I)
∼−→ (−)

whose components are of the form

ρc : c⊗ I ∼−→ c

such that the following two diagrams commute, giving equations called the pentagon

identity:

((a⊗ b)⊗ c)⊗ d

(a⊗ b)⊗ (c⊗ d)

a⊗ (b⊗ (c⊗ d))

(a⊗ (b⊗ c))⊗ d a⊗ ((b⊗ c)⊗ d)

αa⊗b,c,d αa,b,c⊗d

αa,b,c ⊗ 1d

αa,b⊗c,d

1a ⊗ αb,c,d

and the triangle identity:

(a⊗ I)⊗ b

a⊗ b

a⊗ (I ⊗ b)

ρa ⊗ 1b 1a ⊗ λb

αa,1C,b
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Sometimes we abbreviate a monoidal category C with tensor product ⊗ and monoidal

unit 1C as (C,⊗, 1C). Some examples of monoidal categories which are relevant in this thesis

are the following:

(1) The category Set together with the tensor product given by cartesian product and

monoidal unit given by a singleton {?}.

(2) If C is a category with finite colimits, then C is monoidal with the tensor product

given by binary coproducts and monoidal unit given by an initial object 0.

(3) The large category Cat together with the tensor product given by the product of two

categories and monoidal unit given by a terminal category 1.

Sometimes there is a relationship between the two tensor products a ⊗ b and b ⊗ a for

two objects a and b in a monoidal category (C,⊗, I).

Definition A.1.6. A braided monoidal category is a monoidal category (C,⊗, I)

equipped with a natural isomorphism

βa,b : a⊗ b ∼−→ b⊗ a

called the braiding such that the following hexagons commute.

(a⊗ b)⊗ c a⊗ (b⊗ c)

(b⊗ a)⊗ c (b⊗ c)⊗ a

b⊗ (a⊗ c) b⊗ (c⊗ a)

αa,b,c

βa,b ⊗ 1c βa,b⊗c

αb,a,c αb,c,a
1b ⊗ βa,c
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a⊗ (b⊗ c) (a⊗ b)⊗ c

a⊗ (c⊗ b) c⊗ (a⊗ b)

(a⊗ c)⊗ b (c⊗ a)⊗ b

α−1
a,b,c

1a ⊗ βb,c βa⊗b,c

α−1
a,c,b α−1

c,a,b
βa,c ⊗ 1b

All of the above examples of monoidal categories are in fact braided monoidal categories.

Sometimes the braiding β is its own inverse, which finally brings us to:

Definition A.1.7. A symmetric monoidal category is a braided monoidal category

(C,⊗, I) such that for any two objects a and b of C, the braiding β is its own inverse,

meaning that

βb,aβa,b = 1a⊗b.

All of the above examples are in fact symmetric monoidal categories. What about maps

between various such categories?

Definition A.1.8. Let (C,⊗, IC) and (D,⊗, ID) be monoidal categories. A (lax) monoidal

functor is a functor F : C→ D such that:

(1) there exists an morphism µ : ID → F (IC) and

(2) for every pair of objects a and b of C, there exists a natural transformation

µa,b : F (a)⊗ F (b)→ F (a⊗ b)

which make the following diagrams commute:

(F (a)⊗ F (b))⊗ F (c) F (a)⊗ (F (b)⊗ F (c))

F (a⊗ b)⊗ F (c) F (a)⊗ F (b⊗ c)

F ((a⊗ b)⊗ c) F (a⊗ (b⊗ c))

a′

µa,b ⊗ 1F (c) 1F (a) ⊗ µb,c

µa⊗b,c µa,b⊗c
F (a)
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F (a)⊗ ID F (a)

F (a)⊗ F (IC) F (a⊗ IC)

ID ⊗ F (a)

F (IC)⊗ F (a)

F (a)

F (IC ⊗ a)

1F (a) ⊗ µ F (ρa)

ρ′
F (a)

µa,IC

µ⊗ 1F (a)

µIC,a

λ′
F (a)

F (λa)

The monoidal functor F is called strong if the morphism µ and natural transformation

µ−,− are an isomorphism and natural isomorphism, respectively, and the monoidal functor

F is called oplax or colax if F : Cop → Dop is a lax monoidal functor.

Definition A.1.9. A (possibly lax or oplax) monoidal functor F : C → D is a braided

monoidal functor if C and D are braided monoidal categories and the following diagram

commutes.

F (a)⊗ F (b) F (b)⊗ F (a)

F (a⊗ b) F (b⊗ a)

µa,b µb,a

β′

F (β)

Definition A.1.10. A (possibly lax or oplax) symmetric monoidal functor is a braided

monoidal functor F : C→ D between symmetric monoidal categories.

Definition A.1.11. Given monoidal functors F : (C,⊗, 1C) → (D,⊗, 1D) and

G : (C,⊗, 1C) → (D,⊗, 1D), a monoidal natural transformation α : F ⇒ G is a trans-
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formation α : F ⇒ G such that the following diagrams commute.

F (x)⊗ F (y) G(x)⊗G(y)

F (x⊗ y) G(x⊗ y)

ID

F (IC) G(IC)

µ

αIC

µ′

αx ⊗ αy

αx⊗y

µx,y µ′x,y

A monoidal transformation α is braided monoidal or symmetric monoidal if the func-

tors F and G are braided monoidal or symmetric monoidal, respectively.

A.1.2 Colimits

Definition A.1.12. Given an arbitrary category C, a diagram in the category C is given

by a functor F : D→ C.

Here, the category D serves as the ‘shape’ of the diagram in the category C.

Definition A.1.13. Given a diagram F : D → C in C, a limit of the diagram F , denoted

limF , is given by an object which we also denote by limF , together with with a family

of morphisms φi : limF → F (di) for every i ∈ D such that for any morphism f : di → dj

in D, we have that F (f)φi = φj . Moreover, the object limF together with the family of

morphisms {φi : i ∈ D} are universal among such, meaning that given another object c

together with a family of morphisms ψi : c → F (di) such that F (f)ψi = ψj , there exists

a unique morphism θ : c → limF such that ψi = φiθ for every i ∈ D. A limit is finite if

the category D is finite. Then, a colimit is just a limit in the opposite category, meaning

that given a functor F : D → C, a colimit of F , denoted by colimF , is given by a limit of

F op : Dop → Cop.
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Limits and colimits are only unique up to a unique isomorphism, hence the usage of the

indefinite articles ‘a’ and ‘an’ rather than the definite article ‘the’.

We largely work with finite colimits in this thesis, and so the examples presented next

will be of such. The most famous examples of finite colimits are easily the following:

(1) initial objects

(2) binary coproducts

(3) coequalizers

(4) pushouts

In fact, a category C has finite colimits iff C has an initial object and pushouts iff C has

binary coproducts and coequalizers. We discuss pushouts in the next section, but let us

briefly introduce the other three famous finite colimits.

Definition A.1.14. An initial object 0 is a colimit of the empty functor F : ∅ → C.

Unraveling what this means, it means that an initial object is an object 0 in C together

with an empty family of morphisms satisfying no properties such that for any other object c

together with an empty family of morphisms satisfying no properties, there exists a unique

morphism !c : 0→ c which satisfies no properties. In other words, it is just an object 0 of C

with a unique morphism to any other object of C. If C = Set, then 0 = ∅, and surely there

is a unique function !S : ∅ → S for any set S.

Definition A.1.15. A binary coproduct is a colimit of a functor F : {? ?} → C where

{? ?} denotes the category with two objects and only identity morphisms.
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Unraveling what this means, given two objects c1 and c2 in C, a binary coproduct of c1

and c2 is an object which we denote as c1+c2 together with two morphisms φc1 : c1 → c1+c2

and φc2 : c2 → c1 + c2 such that for any other object c also with morphisms ψ1 : c1 → c and

ψ2 : c2 → c, there exists a unique morphism θ : c1 + c2 → c such that ψi = θφi for i = 1, 2.

c1 c2

c1 + c2

c

φ1 φ2

∃!θ
ψ1 ψ2

In other words, such an object c1 + c2 and morphisms (φ1, φ2) are initial among such. A

typical example of a binary coproduct is the disjoint union of two sets together with the

natural injection maps of each set into the disjoint union, or the direct sum of two vector

spaces V1 and V2 together with the maps ((1V1 , 0), (0, 1V2)) into the direct sum.

Definition A.1.16. A coequalizer is a colimit of a functor F : {? ⇒ ?} → C where

{? ⇒ ?} denotes the category with two objects, two morphisms from one object to the

other, and two identity morphisms.

Unraveling what this means, given two morphisms f, g : c → c′ in C, a coequalizer of

f and g is an object coeq(f, g) together with a morphism φ : c′ → coeq(f, g) such that

φf = φg. Such an object and morphism are universal among such, meaning that given

another object ĉ and morphism ψ : c′ → ĉ such that ψf = ψg, there exists a unique
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morphism θ : coeq(f, g)→ ĉ such that θφ = ψ.

c c′ coeq(f, g)

ĉ

f

g

φ

ψ ∃!θ

In other words, such an object coeq(f, g) and morphism θ are initial among such. An

example of a coequalizer is in the category Grp: given any group homomorphism f : G→ H,

there is always a unique group homomorphism 0: G → H which sends every element of G

to the identity element of H, in which case coeq(f, 0) = ker(f).

Definition A.1.17. A span in any category C is a diagram of the form:

b

a1 a2

i o

A pushout is a colimit of a span, or equivalently, a colimit of a functor F : {?← ?→ ?} → C

where {?← ?→ ?} denotes the category with three objects and two non-identity morphisms

with a common source and distinct targets.

Unraveling what this means, a pushout of the above span is an object a1 +b a2 together

with a pair of maps j : a1 → a1 +b a2 and k : a2 → a1 +b a2 making the induced square

commute, meaning that ji = ko. Such an object and pair of maps are universal among

such, meaning that given another object q and maps j′ : a1 → q and k′ : a2 → q such that
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j′i = k′o, there exists a unique ψ : a1 +b a2 → q such that j′ = ψj and k′ = ψk.

b

a1 a2

a1 +b a2

q

i o

j k

!ψ
j′ k′

In other words, a pushout is initial among such triples (j′, k′, q).

We compose cospans by taking pushouts. In other words, given two composable cospans

b

a1 a2 a2

b′

a3

i o i′ o′

we take the pushout of the span formed by the morphisms o and i′

b

a1 a2

b′

a3

b+a2 b
′

i o i′ o′

j k
ji ko′

and then the resulting cospan is given by taking the composite of the outer morphisms

leading up to the apex.

b+a2 b
′

a1 a3

ji ko′
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A.2 Double categories

Definition A.2.1. Given a category A with finite limits, a category internal to A consists

of:

(1) an object of objects a0 ∈ A

(2) an object of morphisms a1 ∈ A

(3) source and target assigning morphisms s, t : a1 → a0

(4) an identity assigning morphism i : a0 → a1

(5) a composition assigning morphism c : a1 ×a0 a1 → a1

such that the following square is a pullback

a1 ×a0 a1 a1

a1 a0

p2

p1 s

t

and that the following diagrams commute:

a0 a1

a1 a0

1

i

i t

s

which specifies the source and target of an identity morphism,

a1 ×a0 a1 a1 ×a0 a1 a1

a1 a0

a1

a1 a0

c

p1 s

s

c

p2 t

t
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which say that the source and target of a composite of morphisms are the source and target

of the first and second morphisms, respectively,

a1 ×a0 a1 ×a0 a1 a1 ×a0 a1

a1 ×a0 a1 a1

1× c

c× 1 c

c

which says that composition of morphisms is strictly associative, and

a0 ×a0 a1 a1 ×a0 a1 a1 ×a0 a0

a1

i×a0 1 1×a0 i

c
p2 p1

which says how the left and right unit laws are compatible with composition.

In the previous and following definitions, we do not really need all finite limits; it is

enough for the stated pullbacks to exist.

Definition A.2.2. Any 2-category (see Definition A.3.2) has an underlying category with

the same objects and morphisms, and we say that a 2-category has finite limits if its

underlying category does. Given a 2-category A with finite limits, a pseudocategory

object in A consists of the same data as a category object internal to the underlying

category of A, except that the following diagrams commute up to isomorphism.

a1 ×a0 a1 ×a0 a1 a1 ×a0 a1

a1 ×a0 a1 a1

α ⇒

1× c

c× 1 c

c

a0 ×a0 a1 a1 ×a0 a1 a1 ×a0 a0

a1

λ
⇒

ρ ⇒

i×a0 1 1×a0 i

c
p2 p1
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The isomorphisms α, λ and ρ satisfy the pentagon and triangle identities of a monoidal

category.

Definition A.2.3. A strict double category is a category object internal to Cat (which

is a category with finite limits).

Definition A.2.4. A (pseudo) double category is a pseudocategory object internal to

Cat (which is a 2-category with finite limits).

In a nutshell, a strict double category is a category internal to the category Cat of

categories and functors, similar to how an ordinary small category is a category internal to

the category Set of sets and functions. What this means is that instead of having a set of

objects and a set of morphisms, we will instead have a category of objects and a category

or morphisms. There are various kinds of double categories one can consider depending

on how strict we are with the internalizations; whereas Set is a mere category, Cat is a 2-

category which allows us to consider a triple composite of morphisms up to a 2-morphism.

Internalizing a category object in the ordinary category Cat leads to what are typically

known as strict double categories, whereas internalizing a category object in Cat viewed

as a 2-category, also known as a pseudocategory object, leads to pseudo double categories,

where the left and right unitors and associators no longer hold on-the-nose but only up

to isomorphism. These latter pseudo double categories are the ones that we are primarily

interested in.
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It is helpful to have the following picture in mind. A double category has 2-morphisms

shaped like this:

A B

C D

⇓ a

M

gf

N

We call A,B,C and D objects or 0-cells, f and g vertical 1-morphisms, M and N

horizontal 1-cells and a a 2-morphism. Note that a vertical 1-morphism is a morphism

between 0-cells and a 2-morphism is a morphism between horizontal 1-cells. We denote both

vertical 1-morphisms and horizontal 1-cells using single arrows, namely ‘→’. We follow the

notation of Shulman [37] with the following definitions.

Definition A.2.5. A pseudo double category D, or double category for short, consists

of a category of objects D0 and a category of arrows D1 with the following functors

U : D0 → D1

S, T : D1 ⇒ D0

� : D1 ×D0 D1 → D1 (where the pullback is taken over D1
T−→ D0

S←− D1)

such that

S(UA) = A = T (UA)

S(M �N) = SN

T (M �N) = TM

equipped with natural isomorphisms

α : (M �N)� P ∼−→M � (N � P )
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λ : UB �M
∼−→M

ρ : M � UA
∼−→M

such that S(α), S(λ), S(ρ), T (α), T (λ) and T (ρ) are all identities and that the coherence

axioms of a monoidal category are satisfied. Following the notation of Shulman, objects of

D0 are called 0-cells or objects and morphisms of D0 are called vertical 1-morphisms.

Objects of D1 are called horizontal 1-cells and morphisms of D1 are called 2-morphisms.

The morphisms of D0, which are vertical 1-morphisms, will be denoted f : A → C and we

denote a horizontal 1-cell M with S(M) = A, T (M) = B by M : A → B. Then a 2-

morphism a : M → N of D1 with S(a) = f, T (a) = g would look like:

A B

C D

⇓ a

M

gf

N

The horizontal and vertical composition of 2-morphisms together obey a ‘middle-four’ in-

terchange law, or simply, interchange law, expressing the compatibility of horizontal and

vertical composition with each other. Specifically, given four 2-morphisms as such:

A B

C D

B E

D F

⇓ a ⇓ b

C D

G H

D F

H I

⇓ a′ ⇓ b′

M

gf

N

O

hg

P

N

g′f ′

Q

P

h′g′

R
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the following equality holds, where � denotes horizontal composition and juxtaposition

denotes vertical composition.

(a′ � b′)(a� b) = (a′a)� (b′b)

The key difference between a strict double category and a pseudo double category is

that in a pseudo double category, horizontal composition is associative and unital only up

to natural isomorphism. The natural isomorphisms α, λ and ρ are identities in a strict

double category. Let us look at a few examples.

If C is any category, there exists a strict double category Sq(C), where ‘Sq’ denotes

‘square’, which has:

(1) objects given by those of C,

(2) vertical 1-morphisms given by morphisms of C,

(3) horizontal 1-cells also given by morphisms of C, and

(4) 2-morphisms as commutative squares in C.

Composition of horizontal 1-cells coincides with composition of morphisms in C and both

the horizontal and vertical composite of 2-morphisms is given by composing the edges of

the commutative squares.

If C is a category with pushouts, then an example of a pseudo double category, and

probably the most important example of a double category in this thesis, is given by Csp(C),

where “Csp” denotes “cospan”, which has:

(1) objects as those of C,
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(2) vertical 1-morphisms as morphisms of C,

(3) horizontal 1-cells as cospans in C, and

(4) 2-morphisms as maps of cospans in C which are given by commutative diagrams of

the form:

a1 b

a′1 b′

a2

a′2

i1 o1

gf

i2 o2

h

Composition of vertical 1-morphisms and the vertical composite of 2-morphisms is given

by composition of morphisms in C, and composition of horizontal 1-cells and the horizontal

composite of 2-morphisms is given by pushouts in C

a1 b

a′1 b′

a2

a′2

�

a2 c

a′2 c′

a3

a′3

=

a1 b+a2 c

a′1 b′ +a′
2
c′

a3

a′3

i1 o1

gf

i2 o2

h

i3 o3

kh

i4 o4

l

Jψi1 Jψo3

g +h kf

Jψi2 Jψo4

l

where ψ is the natural map into a coproduct and J is the natural map from a coproduct

to a pushout, for example, ψ : b → b + c and J : b + c → b +a2 c. More about this double

category and others similar to it may be found in the work of Niefield [32].

The pseudo double categories that we are interested in all share a certain ‘lifting’ property

between the vertical 1-morphisms and horizontal 1-cells.

Definition A.2.6. Let D be a double category and f : A → B a vertical 1-morphism. A

companion of f is a horizontal 1-cell f̂ : A→ B together with 2-morphisms

A B

B B

f̂

f 1

UB

⇓ and
A A

A B

UA

1 f

f̂

⇓
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such that the following equations hold.

A A

A B

B B

1

f

f

1

UA

UB

⇓

⇓

f̂ =
A A

B B

f f

UA

UB

⇓ Uf and

A

A

A

B

B

B

A B

1 f 1

UA f̂

f̂

1 1

⇓ ⇓

⇓ λf̂

f̂ UB =
A A B

A B

UA f̂

1 1

f̂

⇓ ρf
(A.1)

A conjoint of f , denoted f̌ : B → A, is a companion of f in the double category Dh·op

obtained by reversing the horizontal 1-cells, but not the vertical 1-morphisms, of D.

Definition A.2.7. We say that a double category is fibrant if every vertical 1-morphism

has both a companion and a conjoint and isofibrant if every vertical 1-isomorphism has

both a companion and a conjoint.

The property of isofibrancy in a double category is key as we are primarily interested

in symmetric monoidal double categories and bicategories, and it is precisely the property

of isofibrancy that allows us to lift the portion of the monoidal structure of a symmetric

monoidal double category that resides in the category of objects, such as the unitors, asso-

ciators and braidings, to obtain a symmetric monoidal bicategory using a result of Shulman

[37].

Next, we define the kinds of maps between double categories.

Definition A.2.8. Let A and B be pseudo double categories. A lax double functor is a

functor F : A→ B that takes items of A to items of B of the corresponding type, respecting

vertical composition in the strict sense and the horizontal composition up to an assigned

comparison φ. This means that we have functors F0 : A0 → B0 and F1 : A1 → B1 such that

the following equations are satisfied:

S ◦ F1 = F0 ◦ S
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T ◦ F1 = F0 ◦ T

Sometimes for brevity, we will omit the subscripts and simply say F; as to whether we

mean F0 or F1 will be clear from context. Furthermore, every object a is equipped with

a special globular 2-morphism φa : 1F(a) → F(1a) (the identity comparison), and every

composable pair of horizontal 1-cells N1�N2 is equipped with a special globular 2-morphism

φ(N1, N2) : F(N1)� F(N2) → F(N1 �N2) (the composition comparison), in a coherent

way. This means that the following diagrams commute.

(1) For a horizontal composite, β � α,

F(A) |
F(N2)
//

��
F(α)

F(B)

��

|
F(N1)
//

F(β)

F(C)

��

F(A) |
F(N2)
//

φ(N1,N2)1
��

F(B) |
F(N1)
// F(C)

1
��

F(A′) |
F(N4)
//

φ(N3,N4)1
��

F(B′) |
F(N3)
// F(C ′)

1
��

= F(A) |
F(N1�N2)

//

��
F(β�α)

F(C)

��

F(A′) |
F(N3�N4)

// F(C ′) F(A′) |
F(N3�N4)

// F(C ′)

. (A.2)

(2) For a horizontal 1-cell N : A → B, the following diagrams are commutative (under

horizontal composition).

F(N)� 1F(A) F(N)

F(N)� F(1A) F(N � 1A)

1F(B) � F(N)

F(1B)� F(N)

F(N)

F(1B �N)

1� φA Fρ

ρF(N)

φ(N, 1A)

φB � 1

φ(1B , N)

λF(N)

Fλ

(3) For consecutive horizontal 1-cells N1, N2 and N3, the following diagram is commuta-

tive.
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(F(N1)� F(N2))� F(N3)
a′
//

φ(N1,N2)�1

��

F(N1)� (F(N2)� F(N3))

1�φ(N2,N3)

��

F(N1 �N2)� F(N3)

φ(N1�N2,N3)

��

F(N1)� F(N2 �N3)

φ(N1,N2�N3)

��

F((N1 �N2)�N3)
Fa

// F(N1 � (N2 �N3))

We say the double functor F is strict if the comparison constraints φa and φN1,N2 are

identities, strong if the comparison constrains are globular isomorphisms, pseudo if the

comparison constraints are isomorphisms, and oplax if the comparison constraints go in

the opposite direction.

We can also consider maps between maps of double functors, also known as double

transformations. These are only used in Section 3.4 of this thesis.

Definition A.2.9. A double transformation α : F ⇒ G between two double functors

F : A → B and G : A → B consists of two natural transformations α0 : F0 ⇒ G0 and

α1 : F1 ⇒ G1 such that for all horizontal 1-cells M we have that S(α1M ) = α0S(M) and

T (α1M ) = α0T (M) and for composable horizontal 1-cells M and N , we have that

F(a) F(b) F(c)

G(a) G(c)

F(a) F(c) =

F(b)

G(a) G(b) G(c)

⇓ FM,N

⇓ α1M�N

F(a)

G(a)

F(c)

G(c)

⇓ α1M ⇓ α1N

⇓ GM,N

1

α0a

1

α0c

F(M)

F(M �N)

F(N)

G(M �N)

α0a

1

α0b

G(N)G(M)

G(M �N)

F(M) F(N)

α0c

1
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F(a) F(a)

G(a) G(a)

F(a) F(a) = G(a) G(a)

⇓ FU

⇓ α1Ua

F(a)

G(a)

F(a)

G(a)

⇓ Uα0a

⇓ GU

1

α0a

1

α0a

UF(a)

F(Ua)

G(Ua)

α0a

1

UG(a)

G(Ua)

UF(a)

α0a

1

We call α0 the object component and α1 the arrow component of the double transfor-

mation α.

A.2.1 Monoidal double categories

Let Dbl denote the 2-category of double categories, double functors and double trans-

formations. One can check that Dbl has finite products, and in any 2-category with finite

products we can define a ‘pseudomonoid’ or a ‘weak’ monoid, which is a categorified ana-

logue of a monoid in which the left and right unitors and associators are not identities

but natural isomorphisms. It is the 2-categorical structure of Dbl, or more generally, any

2-category with finite limits, that enables us to do this. For example, a pseudomonoid in

Cat is a monoidal category. We are primarily concerned with the (weak) monoidal double

categories in which the associators and left and right unitors are natural isomorphisms.

Definition A.2.10. Let (C,⊗, I) be a monoidal category. A monoid internal to C

consists of an object M ∈ C together with a morphism m : M ⊗M →M for multiplication
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and a morphism i : I →M for the multiplicative identity satisfying the associative law:

(M ⊗M)⊗M

M ⊗ (M ⊗M)

M ⊗M

M ⊗M M

α 1⊗m

m⊗ 1
m

m

and left and right unit laws:

I ⊗M

M

M ⊗ IM ⊗M

λ ρ

i⊗ 1

m

1⊗ i

A pseudomonoid internal to a monoidal 2-category (C,⊗, I) consists of an object M

together with a morphism m : M ⊗M → M and a morphism i : I → M such that the

above diagrams commute up to specified 2-isomorphisms:

(M ⊗M)⊗M

M ⊗ (M ⊗M)

M ⊗M

M ⊗M M

⇒
A

α 1⊗m

m⊗ 1
m

m

I ⊗M

M

M ⊗ IM ⊗M

⇒L ⇒ R
λ ρ

i⊗ 1

m

1⊗ i

Furthermore, the 2-isomorphisms A,L and R are required to satisfy two equations which

can be found in the work of Day and Street [19].
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Definition A.2.11. A braided pseudomonoid is a pseudomonoid M equipped with the

extra structure of a braiding isomorphism β : ⊗ ∼= ⊗ ◦ t where t is the ‘twist’ isomorphism

t : M ⊗M →M ⊗M

that together with the associators make the usual hexagons of a braided monoidal category

commute. A symmetric pseudomonoid is a braided pseudomonoid such that the braiding

isomorphism β : ⊗ ∼= ⊗ ◦ t is self-inverse.

Definition A.2.12. A monoidal double category is a pseudomonoid in the monoidal

2-category Dbl.

Explicitly, a monoidal double category is a double category equipped with double func-

tors ⊗ : D × D → D and I : ∗ → D where ∗ is the terminal double category, along with

invertible double transformations called the associator:

A : ⊗ ◦ (1D ×⊗)⇒ ⊗ ◦ (⊗× 1D),

left unitor:

L : ⊗ ◦ (1D × I)⇒ 1D,

and right unitor:

R : ⊗ ◦ (I × 1D)⇒ 1D

satisfying the pentagon axiom and triangle axioms of a monoidal category.

This is a very nice and compact definition which encapsulates the structure of a monoidal

double category. Unraveling this a bit, this means that:

(1) D0 and D1 are both monoidal categories.
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(2) If I is the monoidal unit of D0, then UI is (coherently isomorphic to) the monoidal

unit of D1.

(3) The functors S and T are strict monoidal, meaning that

S(M ⊗N) = SM ⊗ SN

and

T (M ⊗N) = TM ⊗ TN

and S and T also preserve the associativity and unit constraints.

(4) We have globular isomorphisms

χ : (M1 ⊗N1)� (M2 ⊗N2)
∼−→ (M1 �M2)⊗ (N1 �N2)

and

µ : UA⊗B
∼−→ (UA ⊗ UB)

which arise from weakly-commuting squares:

(D1 ×D0 D1)× (D1 ×D0 D1) D1 ×D0 D1

D1 × D1 D1

D0 × D0

D1 × D1

D0

D1

⇒
µ

⇒
χ�×� �

⊗×D0
⊗

⊗

U × U

⊗

⊗

U

expressing the weak commutativity of ⊗ with the functors U and �.

These globular isomorphisms χ and µ make the following diagrams commute:
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(5) The following diagrams commute expressing that ⊗ : D × D → D is a pseudo double

functor.

((M1 ⊗N1)� (M2 ⊗N2))� (M3 ⊗N3) ((M1 �M2)⊗ (N1 �N2))� (M3 ⊗N3)

(M1 ⊗N1)� ((M2 ⊗N2)� (M3 ⊗N3)) ((M1 �M2)�M3)⊗ ((N1 �N2)�N3)

(M1 ⊗N1)� ((M2 �M3)⊗ (N2 �N3)) (M1 � (M2 �M3))⊗ (N1 � (N2 �N3))

α

1� χ

χ

α⊗ α

χ� 1

χ

(M ⊗N)� UC⊗D

M ⊗N

(M ⊗N)� (UC ⊗ UD)

(M � UC)⊗ (N � UD)

1� µ

ρ

ρ⊗ ρ

χ

UA⊗B � (M ⊗N)

M ⊗N

(UA ⊗ UB)� (M ⊗N)

(UA �M)⊗ (UB �N)

µ� 1

λ

λ⊗ λ

χ

(6) The following diagrams commute expressing the associativity isomorphism for ⊗ is a

transformation of double categories.

((M1 ⊗N1)⊗ P1)� ((M2 ⊗N2)⊗ P2) (M1 ⊗ (N1 ⊗ P1))� (M2 ⊗ (N2 ⊗ P2))

((M1 ⊗N1)� (M2 ⊗N2))⊗ (P1 � P2) (M1 �M2)⊗ ((N1 ⊗ P1)� (N2 ⊗ P2))

((M1 �M2)⊗ (N1 �N2))⊗ (P1 � P2) (M1 �M2)⊗ ((N1 �N2)⊗ (P1 � P2))

χ

χ⊗ 1

χ

1⊗ χ

α� α

α

U(A⊗B)⊗C UA⊗(B⊗C)

UA⊗B ⊗ UC UA ⊗ UB⊗C

(UA ⊗ UB)⊗ UC UA ⊗ (UB ⊗ UC)

µ

µ⊗ 1

µ

1⊗ µ

Uα

α
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(7) The following diagrams commute expressing that the unit isomorphisms for ⊗ are

transformations of double categories.

(M ⊗ UI)� (N ⊗ UI)

M �N

(M �N)⊗ (UI � UI)

(M �N)⊗ UI

r � r

χ

1⊗ ρ

r

UA⊗I

UA ⊗ UI

UA

µ

Ur

r

(UI ⊗M)� (UI ⊗N)

M �N

(UI � UI)⊗ (M �N)

UI ⊗ (M �N)

`� `

χ

λ⊗ 1

`

UI⊗A

UI ⊗ UA

UA

µ

U`

`

Thus we define a monoidal double category to be a pseudomonoid object weakly internal

to the 2-category Dbl of double categories, double functors and double transformations. In

other words, a monoidal double category is a pseudomonoid internal to categories weakly

internal to Cat. But beware: this is not the same as a category weakly internal to the 2-

category MonCat of monoidal categories, strong monoidal functors and monoidal natural

transformations. In a monoidal double category, the functors S and T are strict monoidal.

In a category weakly internal to MonCat, they would only need to be strong monoidal.

Definition A.2.13. A braided monoidal double category is a braided pseudomonoid

internal to Dbl.

This means that a braided monoidal double category is a monoidal double category

category equipped with an invertible double transformation

β : ⊗ ⇒ ⊗ ◦ τ

called the braiding, where τ : D × D → D × D is the twist double functor sending pairs

in the object and arrow categories to the same pairs in the opposite order. The braiding
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is required to satisfy the usual two hexagon identities [34, Sec. XI.1]. If the braiding is

self-inverse we say that D is a symmetric pseudomonoid internal to Dbl and that D is a

symmetric monoidal double category.

Unraveling this a bit, we get that a braided monoidal double category is a monoidal

double category such that:

(8) D0 and D1 are braided monoidal categories.

(9) The functors S and T are strict braided monoidal functors.

(10) The following diagrams commute expressing that the braiding is a transformation of

double categories.

(M1 �M2)⊗ (N1 �N2)

(M1 ⊗N1)� (M2 ⊗N2)

(N1 �N2)⊗ (M1 �M2)

(N1 ⊗M1)� (N2 ⊗M2)

χ

β

χ

β � β

UA ⊗ UB

UB ⊗ UA

UA⊗B

UB⊗A

β

µ

Uβ

µ

Finally, a symmetric monoidal double category is a braided monoidal double category D

such that:

(11) D0 and D1 are symmetric monoidal categories.

A.2.2 Monoidal double functors and transformations

We also have maps between symmetric monoidal double categories, which, just as maps

between ordinary symmetric monoidal categories, can come in three flavors according to

direction of the comparison maps φ(−,−).

Definition A.2.14. A (strong) monoidal lax double functor F : C → D between

monoidal double categories C and D is a lax double functor F : C→ D such that

250



• F0 and F1 are (strong) monoidal functors, meaning that there exists

(1) an isomorphism ε : 1D → F(1C)

(2) a natural isomorphism θA,B : F(A) ⊗ F(B) → F(A ⊗ B) for all objects A and B

of C

(3) an isomorphism δ : U1D → F(U1C)

(4) a natural isomorphism νM,N : F(M)⊗F(N)→ F(M⊗N) for all horizontal 1-cells

N and M of C

such that the following diagrams commute: for objects A,B and C of C,

(F(A)⊗ F(B))⊗ F(C)
α′
//

θA,B⊗1

��

F(A)⊗ (F(B)⊗ F(C))

1⊗θB,C
��

F(A⊗B)⊗ F(C)

θA⊗B,C
��

F(A)⊗ F(B ⊗ C)

θA,B⊗C
��

F((A⊗B)⊗ C)
Fα

// F(A⊗ (B ⊗ C))

F(A)⊗ 1D F(A)

F(A)⊗ F(1C) F(A⊗ 1C)

1D ⊗ F(A)

F(1C)⊗ F(A)

F(A)

F(1C ⊗A)

1⊗ ε F(rA)

rF(A)

θA,1C

ε⊗ 1

θ1C,A

`F(A)

F(`A)

and for horizontal 1-cells N1, N2 and N3 of C,

(F(N1)⊗ F(N2))⊗ F(N3)
α′
//

νN1,N2
⊗1

��

F(N1)⊗ (F(N2)⊗ F(N3))

1⊗νN2,N3

��

F(N1 ⊗N2)⊗ F(N3)

νN1⊗N2,N3

��

F(N1)⊗ F(N2 ⊗N3)

νN1,N2⊗N3

��

F((N1 ⊗N2)⊗N3)
Fα

// F(N1 ⊗ (N2 ⊗N3))
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F(N1)⊗ U1D F(N1)

F(N1)⊗ F(U1C) F(N1 ⊗ U1C)

U1D ⊗ F(N1)

F(U1C)⊗ F(N1)

F(N1)

F(U1C ⊗N1)

1⊗ δ F(rN1 )

rF(N1)

νN1,U1C

δ ⊗ 1

νU1C ,N1

`F(N1)

F(`N1 )

• SF1 = F0S and TF1 = F0T are equations between monoidal functors, and

• the composition and unit comparisons φ(N1, N2) : F1(N1) � F1(N2) → F1(N1 � N2)

and φA : UF0(A) → F1(UA) are monoidal natural transformations.

• The following diagrams commute expressing that θ and ν together constitute a trans-

formation of double categories:

(F(M1)⊗ F(N1))� (F(M2)⊗ F(N2)) F(M1 ⊗N1)� F(M2 ⊗N2)

(F(M1)� F(M2))⊗ (F(N1)� F(N2)) F((M1 ⊗N1)� (M2 ⊗N2))

F(M1 �M2)⊗ F(N1 �N2) F((M1 �M2)⊗ (N1 �N2))

χ′

φM1,M2
⊗ φN1,N2

φM1⊗N1,M2⊗N2

F(χ)

νM1,M2 � νN1,N2

νM1�M2,N1�N2

UF(A)⊗F(B) UF(A⊗B)

UF(A) ⊗ UF(B) F(UA⊗B)

F(UA)⊗ F(UB) F(UA ⊗ UB)

µ

φA ⊗ φB

φA⊗B

µ

UθA,B

νF(A),F(B)

The monoidal lax double functor is braided if F0 and F1 are braided monoidal func-

tors and symmetric if they are symmetric monoidal functors, and lax monoidal or

oplax monoidal if instead of the isomorphisms and families of natural isomorphisms in
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items (1)-(4), we merely have morphisms and natural transformations going in the appro-

priate directions. If the double functor F : C → D is a double functor between isofibrant

symmetric monoidal double categories, also known as ‘symmetric monoidal framed bicate-

gories’ [38], instead of θ and ν together constituting a transformation of double categories,

it suffices that the comparison and unit constraints FM,N and Fc be monoidal natural trans-

formations.

Definition A.2.15. Given monoidal double functors (F, φ), (G, ψ) : C → D, a monoidal

double transformation α : F ⇒ G is a double transformation α such that both the

object component α0 : F0 ⇒ G0 and arrow component α1 : F1 ⇒ G1 are monoidal natural

transformations. This means that the following equations hold:

F(a)⊗ F(c) F(b)⊗ F(d)

G(a⊗ c) G(b⊗ d)

F(a⊗ c) F(b⊗ d) = G(a)⊗G(c) G(b)⊗G(d)

⇓ φM,N

⇓ α1M⊗N

F(a)⊗ F(c)

G(a⊗ c)

F(b)⊗ F(d)

G(b⊗ d)

⇓ α1M ⊗ α1N

⇓ ψM,N

φa,c

α0a⊗c

φb,d

α0b⊗d

F(M)⊗ F(N)

F(M ⊗N)

G(M ⊗N)

α0a ⊗ α0c

ψa,c

G(M)⊗ G(N)

G(M ⊗N)

F(M)⊗ F(N)

α0b ⊗ α0d

ψb,d

1D 1D

G(1C) G(1C)

F(1C) F(1C) =

G(1C) G(1C)

⇓ φ1

⇓ α1U1C

1D 1D

⇓ ψ1

φ0

α01C

φ0

α01C

U1D

F(U1C )

G(U1C )

ψ0

G(U1C )

U1D

ψ0

A.3 Bicategories and 2-categories

Definition A.3.1. A bicategory C is a double category (see Definition A.2.5) C =

(C0,C1) such that the category of objects C0 is discrete, meaning that C0 contains only
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identity morphisms. In a bicategory, we refer to the objects of C1, which are horizontal

1-cells, as morphisms.

Unraveling this a bit, a bicategory C consists of:

(1) a collection of objects a, b, c, d, . . .,

(2) for every pair of objects a and b, a category homC(a, b), called the hom category of

a and b, where objects are called morphisms from a to b and whose morphisms are

called 2-morphisms,

(3) for every object a, a functor 1a : 1 → homC(a, a) which picks out the identity

morphism for the object a and for every triple of objects a, b and c, a functor

◦ : homC(a, b)× homC(b, c)→ homC(a, c) for composition,

(4) for every pair of objects a and b and morphism f ∈ homC(a, b), a natural isomorphism

λ : 1bf ⇒ f

called the left unitor and a natural isomorphism

ρ : f1a ⇒ f

called the right unitor,

(5) for every quadruple of objects a, b, c and d, a natural isomorphism

α : ◦ (1× ◦)⇒ ◦(◦ × 1)

where

◦(1× ◦), ◦(◦ × 1) : homC(a, b)× homC(b, c)× homC(c, d)→ homC(a, d)
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such that the left and right unitors satisfy the triangle identity and the associator satisfies

the pentagon identity.

Definition A.3.2. A 2-category C is a bicategory C in which the left and right unitors

and associators are identity 2-morphisms.

Equivalently, a 2-category is a strict double category in which the category of objects is

discrete.

The primordial example of a 2-category is Cat, the 2-category of categories, functors

and natural transformations: natural transformations make up the morphisms in each hom

category homC(a, b). A 2-category is sometimes called a ‘strict’ 2-category and a bicategory

a ‘weak’ 2-category. Strict 2-categories along with double categories were first discovered

by Ehresmann [20, 21], and bicategories are due to Bénabou [13].

Definition A.3.3. Given a 2-morphism α : f ⇒ g : c → d and a morphism h : b → c in a

2-category C:

b c d⇓ α
h

f

g

the left whiskering of α by h, denoted by 1h � α, is given by the horizontal composite

of the 2-morphism α with the identity 2-morphism of h:

b c d⇓ 1h ⇓ α

h

h

f

g

Right whiskering is defined analogously.
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A.3.1 Pseudofunctors and pseudonatural transformations

Definition A.3.4. Given bicategories C and D, a pseudofunctor F : C→ D consists of:

(1) for each object c ∈ C, an object F (c) ∈ D,

(2) for each category C(c, c′), a functor F : C(c, c′)→ D(F (c), F (c′)),

(3) for each object c ∈ C, a 2-isomorphism Fc : 1F (c) ⇒ F (1c)

(4) for every triple of objects a, b, c ∈ C and pair of composable morphisms f : a→ b and

g : b→ c in C, a 2-isomorphism Ff,g : F (f)F (g)⇒ F (fg) natural in f and g

such that the following diagrams commute:

(F (f)F (g))F (h) F (f)(F (g)F (h))

F (fg)F (h) F (f)F (gh)

F ((fg)h) F (f(gh))

a′

Ff,g � 1F (h) 1F (f) � Fg,h

Ffg,h Ff,gh
F (a)

F (f)1F (a) F (f)

F (f)F (1a) F (f1a)

1F (b)F (f)

F (1b)F (f)

F (f)

F (1bf)

1F (f) � Fa F (rf )

r′
F (f)

Ff,1a

Fb � 1F (f)

F1b,f

`′
F (f)

F (`f )

Here, all of the arrows in the diagrams are given by 2-morphisms in D, a, `, r denote the

associator, left and right unitors for morphism composition in C, similarly a′, `′, r′ denote

the associator, left and right unitors for morphism composition in D, juxtaposition is used

to denote morphism composition in both C and D and � denotes whiskering in D (see

Definition A.3.3).
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Definition A.3.5. Given two pseudofunctors F,G : A→ B, a pseudonatural transfor-

mation σ consists of:

(1) for each object a ∈ A, a morphism σa : F (a)→ G(a) in B and

(2) for each morphism f : a → b in A, an invertible natural 2-morphism σf : G(f)σa
∼−→

σbF (f) in B which is compatible with composition and identities.

Let [A,Cat]ps denote the 2-category of pseudofunctors, pseudonatural transformations

and ‘modifications’ from an ordinary category A viewed as a 2-category with trivial 2-

morphisms. We call [A,Cat]ps the 2-category of opindexed categories, as an indexed

category is a contravariant pseudofunctor into Cat. A lax monoidal pseudofunctor

F : A → B between monoidal bicategories [39] is then a pseudofunctor equipped with

pseudonatural transformations with components

µa,b : F (a)⊗ F (b)
∼−→ F (a⊗ b)

and

µ0 : 1B → F (1A)

together with coherent invertible modifications for associativity and unitality. This is also

known as a weak monoidal pseudofunctor. A symmetric lax monoidal pseudofunctor

is then a lax monoidal pseudofunctor between symmetric monoidal bicategories together

with invertible modifications F (β)µa,b
∼−→ µb,aβ

′.
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