UNIVERSITY OF CALIFORNIA
RIVERSIDE

The Grothendieck Construction in Categorical Network Theory

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Mathematics
by
Joseph Patrick Moeller

December 2020

Dissertation Committee:

Dr. John C. Baez, Chairperson
Dr. Wee Liang Gan
Dr. Carl Mautner

Copyright by
Joseph Patrick Moeller
2020

The Dissertation of Joseph Patrick Moeller is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First of all, I owe all of my achievements to my wife, Paola. I couldn’t have gotten here
without my parents: Daniel, Andrea, Tonie, Maria, and Luis, or my siblings: Danielle,
Anthony, Samantha, David, and Luis.

I would like to thank my advisor, John Baez, for his support, dedication, and his
unique and brilliant style of advising. I could not have become the researcher I am under
another’s instruction. I would also like to thank Christina Vasilakopoulou, whose kindness,
energy, and expertise cultivated a deeper appreciation of category theory in me. My expe-
rience was also greatly enriched by my academic siblings: Daniel Cicala, Kenny Courser,
Brandon Coya, Jason Erbele, Jade Master, Franciscus Rebro, and Christian Williams, and
by my cohort: Justin Davis, Ethan Kowalenko, Derek Lowenberg, Michel Manrique, and
Michael Pierce.

I would like to thank the UCR math department. Professors from whom I learned
a ton of algebra, topology, and category theory include Julie Bergner, Vyjayanthi Chari,
Wee-Liang Gan, José Gonzalez, Jacob Greenstein, Carl Mautner, Reinhard Schultz, and
Steffano Vidussi. Special thanks goes to the department chair Yat-Sun Poon, as well as
Margarita Roman, Randy Morgan, and James Marberry, and many others who keep the
whole thing together.

The material in Chapter 2 consists of work from both Network models joint with
John Baez, John Foley, and Blake Pollard [BFMP20]. Chapter 3 consists of work done in
my paper Noncommutative network models [Moe20]. Chapter 4 arose from Network models
from Petri nets with catalysts joint with Baez and Foley [BFM19]. Chapter 5 consists of
joint work with Christina Vasilakopoulou appearing in our paper Monoidal Grothendieck
construction [MV20]. Part of this work was performed with funding from a subcontract with
Metron Scientific Solutions working on DARPA’s Complex Adaptive System Composition
and Design Environment (CASCADE) project.

v

To Teresa Danielle Moeller.

ABSTRACT OF THE DISSERTATION

The Grothendieck Construction in Categorical Network Theory
by
Joseph Patrick Moeller

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, December 2020
Dr. John C. Baez, Chairperson

In this thesis, we present a flexible framework for specifying and constructing operads
which are suited to reasoning about network construction. The data used to present these
operads is called a network model, a monoidal variant of Joyal’s combinatorial species. The
construction of the operad required that we develop a monoidal lift of the Grothendieck
construction. We then demonstrate how concepts like priority and dependency can be
represented in this framework. For the former, we generalize Green’s graph products of
groups to the context of universal algebra. For the latter, we examine the emergence of
monoidal fibrations from the presence of catalysts in Petri nets.

vi

Contents

1 Introduction

2 Network Models

2.1 Introduction e
2.2 Omne-Colored Network Models
2.3 General Network Models
2.4 Operads from Network Models
3 Noncommutative Network Models
3.1 Introduction e
3.2 Graph Products.
3.3 Free Network Models
3.4 Commitment Networks

4 Petri Nets

4.1 Introduction L
4.2 PetriNets o o o
4.3 Catalysts L
4.4 Premonoidal Categories o

5 Monoidal Grothendieck Construction

5.1 Introduction e
5.2 Monoidal Fibres and Monoidal Fibrations
5.3 Indexed Categories and Monoidal Structures
5.4 Two Monoidal Grothendieck Constructions
5.5 Summary of Structures
5.6 The (Co)cartesian Case
5.7 Examples
A Monoidal Categories
A.1 Definitions e
A2 Examples e

vii

13
19
25

33
33
36
46
o1

53
93
95
o8
65

A3 Monoid Objects e 106

A.4 The Eckmann—Hilton Argument 108
A.5 Characterizing (co)cartesian monoidal categories 109
B Monoidal 2-Categories and Pseudomonoids 115
B.1 Monoidal 2-Categories 115
B.2 Pseudomonoids 117
C Fibrations and Indexed Categories 121
C.1 Fibrations e 121
C.2 Indexed Categories o e 123
C.3 The Grothendieck Construction 125
C.4 Examples e 127
D Species and Operads 131
D.1 Combinatorial Species 131
D.2 Operads e e 132
Bibliography 137

viii

Chapter 1

Introduction

Search and Rescue

Imagine that you have a network of boats, planes, and drones tasked with rescuing
sailors who have fallen overboard in a hurricane. You want to be able to task these agents
to search certain areas for survivors in an intelligent way. You do not want to waste time
and resources by double searching some areas while other areas get neglected. Also, if one
of the searchers gets taken out by the storm, you must update the tasking so that other
agents can cover the areas which the downed agent has yet to search, as well as recording
that there is a new known person in need of rescue.

In 2015, DARPA launched a program called Complex Adaptive System Composi-
tion and Design Environment, or CASCADE. The goal of this program was to write software
that would be able to handle this sort of tasking of agents in a network in a flexible and
responsive way. The bulk of this thesis was developed while I was working on this project
with Metron Scientific Solutions Inc., developing a mathematically principled foundation
around which this software could be designed. John Baez, John Foley, Blake Pollard, and
I developed the theory of network models to address this challenge [BEMP20].

Network Operads

Large complex networks can be viewed as being built up from small simple pieces.
This sort of many-to-one composition is perfectly suited to being modeled using operads.
While a category can be described as a system of composition for a collection of arrows
which have a specified input type and a specified output type, an operad is a system of
composition for a collection of trees which have a specified family of input types and a
single specified output type.

YYYWW

We use the word “operations” instead of “trees”, hence the name operad. Like categories,
operads were originally developed in algebraic topology [May72, BV73]. Also like categories,
operads have since found applications elsewhere, including physics and computer science
[MSS02, Ménl15]. We include a review of the basics of operads needed for this thesis in
Appendix D.2.

In a network operad, the operations describe ways of sticking together a collection
of networks to form a new larger network. To get a network operad, we treat a network as
one of these operations and define the composition as overlaying a bunch of small networks
on top of a large base network. For example, in the following picture, we are considering
simple graphs as a sort of network. On the left, we are starting with a base network
consisting of nine nodes and four edges, and we are attempting to attach more edges by
overlaying three smaller graphs. The result of the operadic composition is on the right.

This example is fairly elementary, and it is probably not too difficult for someone
comfortable with the notions to define this operad. However, it is not just simple graphs that
one needs when talking about managing and tasking complex networks of various sorts of
agents with various forms of communication and capabilities. One could continue replicating
the procedure for constructing network operads for each type of network whenever needed,
but this is an inefficient strategy. Instead, we devised a general recipe for constructing such
an operad for a given network type, and a general method for specifying a network type in
an efficient way, using what we call a network model. All of this is done in the language of
category theory, so we also have a theory of how morphisms between network models give
morphisms between their operads.

Constructing Network Operads

There is a well-known trick for extracting an operad from any symmetric monoidal
category. An operation in the operad is defined to be a morphism from a tensor product
of a finite family of objects to a single object. This is called the underlying operad of the
symmetric monoidal category. So now we have shifted the problem of defining an operad

where the operations are networks to defining a symmetric monoidal category where the
morphisms are networks. To achieve this, we can use the famous Grothendieck construc-
tion—though we need to enhance it to suit our purposes.

Monoidal Grothendieck Construction

The Grothendieck construction is a well-known trick for turning a family of cate-
gories indexed by the objects of some other category into a single category in an intelligent
way [Gro71]. What we really would like is that morphisms in the indexing category trans-
late into morphisms in our total category between objects from the corresponding indices.
The classic example is the family of categories Modp of R-modules, indexed by the objects
of Ring, the category of rings. Sometimes, one would like to talk about a single category of
modules over all possible rings to study the interactions between such modules. The naive
thing to do would be to just take the coproduct, defining

Mod= [Modg.
ReRing

However, in this category an R-module and an S-module would have no morphisms between
them. This runs counter to the goal of having a single category for reasoning about the
interactions of modules over potentially different rings. If f: R — S is a ring homomor-
phism, there is a way of turning S-modules into R-modules using f, called pullback. If M
is an S-module, m € M, and r € R, pulling back M along f defines an R-module structure
on the underlying abelian group of M. We define the action of » € R on m € M by the
following formula.
r-m=f(r)-m

This construction turns out to give a functor
f*: Modg — Modg.

We should hope also that the data of these functors is included in the total category we
construct. Indeed, the Grothendieck construction accomplishes precisely this.

However, it is not simply a category that we need, but a symmetric monoidal
category. So we built an enhanced version of the Grothendieck construction, which takes
family of categories indexed by a symmetric monoidal category and constructs a symmetric
monoidal category [BFMP20]. Christina Vasilakopoulou and I extended this modification
to solve the monoidality problem in the Grothendieck correspondence [MV20].

These two steps constitute the construction of the desired network operad: we
start with a monoidal indexed category, use the monoidal Grothendieck construction to
produce a symmetric monoidal category, and then take its underlying operad. This leads
to another question though: what monoidal indexed categories should we feed into this
construction in order to produce network operads?

Network Models

The answer is that we should take a monoidal version of Joyal’s combinatorial
species [Joy81]. A combinatorial species is a functor F': FinBij — Set. One way of looking
at this is as a family of symmetric group actions, one for each natural number. Another
way of looking at it is as a particular type of indexed category, where there is a family of
discrete categories (sets) indexed by the natural numbers, and functors (functions) between
them corresponding to the morphisms in FinBij. So this is something to which we can apply
the Grothendieck construction. The resulting total category is a groupoid which has all the
elements in all the sets as the objects, and an isomorphism between these elements if they
are in the same orbit under the symmetric group action.

Recall our example of a network operad where an operation is a simple graph. To
build this, we can start with the species of simple graphs SG: FinBij — Set. We give this
the structure of a lax monoidal functor (FinBij, +) — (Set, x) by equipping it with a natural
map SG(m) x SG(n) — SG(m + n) given by disjoint union. We include the data of the
overlaying of graphs as a monoid structure on the set SG(n) of simple graphs on n nodes.
The product of two graphs on n nodes is another graph on n nodes given by identifying
corresponding nodes, and including an edge wherever either of the original graphs had one.
So now we have a lax symmetric monoidal functor (SG,U): (FinBij,+) — (Mon, x). We
call such a map a network model. When we take the Grothendieck construction of this, we
treat the monoids as one-object categories. By doing this, the resulting category has objects
given by finite sets, a morphism n — n is given by a simple graph on n nodes, composition
overlays the graphs, and tensor sets them side by side.

Constructing Network Models

Network operads are constructed from network models. How do we get our hands
on some network models? We know about a few examples of network models: simple graphs,
directed graphs, multigraphs, colored vertices, etc. Ideally, we would have a (functorial)
way to generate network models from some simple description of what we want a network
to look like.

We can begin by examining the basic example: simple graphs. It consists of a
family of monoids SG(n) where the elements are simple graphs on n nodes, with symmetric
group actions which permute the nodes, and a “disjoint union” operation LI: SG(m) X
SG(n) — SG(m+mn). The level-0 and level-1 monoids are both trivial. The first interesting
one is level-2, where the monoid is isomorphic to the Boolean truth values with the “or”
operation. The rest of the monoids in this network model can be seen as built from SG(2).
A simple graph with n nodes has (’;) places where it can either have or not have an edge. We
can define the monoid SG(n) to be the product of (}) copies of SG(1), indexed by distinct
pairs of nodes. This leads to the general construction: given a monoid M, let M(n) be the
monoid given by the product (g) copies of M. Then the collection of these monoids M is
a network model, where a network has an element of M between every pair of nodes, and
overlaying two networks simply requires performing the monoid operation at every pair of
nodes. This construction covers the example of simple graphs by design, but also includes

multigraphs, directed graphs, graphs with colored edges, and many other examples.

Noncommutative Network Models

Another property we wanted to be able to represent within the network operads
framework was forms of communication which had a built-in limitation on the number of
connections. This is a natural issue in the search and rescue domain problem [Moe20].

There is no natural way to decide which edges not to include when the limit of
connections is reached. This means that the network must have some extra data built into
it. In particular, it must remember the order in which the connections were added to each
node. For this, we need the edge components of the constituent monoids to not commute
with each other. Due to a variant of the Eckmann-Hilton argument, edge components of a
network model’s constituent monoid actually must commute with each other if they do not
share any of their nodes. This means the most we can ask for is that edge components of
the network model do not commute with each other when edges have a node in common.

We cannot simply take iterated products of the monoid as we did before because
the edge components of the resulting monoids always commute with each other. We also
cannot simply take coproducts because the edge components do not commute with each
other in way that are necessary for a network model. Therefore, we must have a mix
of products and coproducts depending on which edges share a node and which do not.
Specifically, if two edges share a node, then elements of the corresponding edge components
of the monoid must not commute with each other, and if they do not share a node, they
must commute with each other. Such a monoid can be constructed using graph products of
monoids, introduced for groups in Elisabeth Green’s thesis [Gre90]. The idea is to produce
a new monoid from a finite set of monoids by assigning them to the nodes in a graph, taking
the coproduct of them all, then imposing commutativity relations between elements coming
from monoids which had an edge between them in the graph.

What indexing graph should we use though? We want a copy of the monoid for
every possible edge. So our indexing graph should have (Z) nodes, one for every subset of
cardinality 2. We want to impose commutativity between two edge components whenever
the corresponding edges do not share a node, so we add an edge for each pair of cardinality
2 subsets which have empty intersection. This is precisely the definition of what are called
the Kneser graphs! The first few non-empty ones are depicted below.

SEVARAN

For a given monoid M, we thus define the corresponding network model to be the
graph product of M with itself indexed by the corresponding Kneser graph. In fact, this

construction gives the free network model on M, forming a left adjoint to the functor which
evaluates a network model at 2. This provides a solution to the problem of representing
degree limited networks in the language of network operads. This construction gives a
network operad where the networks are graphs such that every vertex has degree < N, and
the network does not take an edge if this limit would be exceeded.

Petri Nets with Catalysts

Network models are also able to describe scenarios where there is an agent or
agents that can manipulate and transport resources within the network [BFM19]. Baez,
Foley, and I use a simple structure called a Petri net to represent resources and processes
that transform them [BB18]. A Petri net can be drawn as a directed graph with vertices of
two kinds: places or species, which we draw as yellow circles below, and transitions, which
we draw as blue squares:

t

Petri nets are intended to model resources in a network of processes. Sometimes, we repre-
sent the resources by a finite number of tokens in each place:

éfﬁ

This is called a marking. We can then “run” the Petri net by repeatedly changing the
marking using the transitions. For example, the above marking can change to this:

and then this:

i

Thus, the places represent different types of resource, and the transitions describe ways that
one collection of resources of specified types can turn into another such collection.

An agent might pick up a box and carry it over to a truck, and then drive the
truck over to a new warehouse, and then unload the box. In this scenario, the gasoline in
the truck might be a resource that considered to be consumed by this process, but the agent
is not. This qualitative difference between the agent as a resource and the gasoline as a
resource leads to a quantitative difference. Specifically, the number of agents in this network
is never changing, but the number of gallons of gasoline is. What this means for the Petri

net model of this network is that there is no combination of transition firing that change
the number of agents. This gives us a fibration of the commutative monoidal category of
executions for the Petri net. However, unlike the monoidal fibrations described earlier, the
fibres here are only premonoidal in general, not quite monoidal. This gives an example of
a generalized network model, one where the monoids in the original definition are replaced
with categories.

Outline of the Thesis

I begin by laying out the theory of network models and network operads in Chap-
ter 2. Section 2.2 and Section 2.3 contain basic definitions and examples. The construction
of a network operad from a network model and several examples of algebras of network
operads are given in Section 2.4.

In Chapter 3, more constructions of network models are given. The construction
of free network models from a given monoid is detailed in Section 3.3. This depends on a
generalization of Green’s graph products given in Section 3.2. In section 3.4, an example of
an algebra for a noncommutative network model arising from limitations on communication
networks is given.

Chapter 4 discusses the construction of network models from Petri nets with cat-
alysts. In Section 4.2, the basic notions for the categorical treatment of Petri nets are
recalled. Section 4.3 explains what it means for a Petri net to have catalysts. Section 4.4
describes how catalysts induce a premonoidal fibration on the category of executions, and
explain how this gives an example of a generalized network model.

I finish with a self-contained treatment of the monoidal Grothendieck construction
in Chapter 5. As the theoretical underpinning of the theory of network models, it is the
most technically dense, and thus saved for the most enduring of readers. Section 5.2 and
Section 5.3 describe monoidal fibrations and indexed categories. Section 5.4 details the
corresponding Grothendieck constructions for each monoidal variant. Section 5.6 discusses
the special case of when the base category is co/cartesian. In Section 5.5, we give a nuts-and-
bolts description of the monoidal structures constructed in various scenarios. Section 5.7
demonstrates the potential usefulness of the construction with examples from categorical
algebra and dynamical systems.

I wanted to include my own explanations and several references for preliminary ma-
terials, but did not want this to clutter the primary narrative of the thesis. I have included
much of this in several appendices. I discuss some of the basic theory of monoidal categories
in Appendix A; monoidal 2-categories and Gray monoids in Appendix B; fibrations, indexed
categories, and the Grothendieck construction in Appendix C; and combinatorial species
and operads in Appendix D.

Chapter 2

Network Models

2.1 Introduction

In this chapter, we study operads suited for designing networks. These could be
networks where the vertices represent fixed or moving agents and the edges represent com-
munication channels. More generally, they could be networks where the vertices represent
entities of various types, and the edges represent relationships between these entities, e.g.
that one agent is committed to take some action involving the other. The work done is
this chapter arose from an example where the vertices represent planes, boats and drones
involved in a search and rescue mission in the Caribbean [BFMP16, BEMP17]. However,
even for this one example, we want a flexible formalism that can handle networks of many
kinds, described at a level of detail that the user is free to adjust.

To achieve this flexibility, we introduce a general concept of network model. Simply
put, a network model is a kind of network. Any network model gives an operad whose
operations are ways to build larger networks of this kind by gluing smaller ones. This
operad has a canonical algebra where the operations act to assemble networks of the given
kind. But it also has other algebras, where it acts to assemble networks of this kind equipped
with extra structure and properties. This flexibility is important in applications.

What exactly is a kind of network? At the crudest level, we can model networks
as simple graphs. If the vertices are agents of some sort and the edges represent commu-
nication channels, this means we allow at most one channel between any pair of agents.
However, simple graphs are too restrictive for many applications. If we allow multiple
communication channels between a pair of agents, we should replace simple graphs with
multigraphs. Alternatively, we may wish to allow directed channels, where the sender and
receiver have different capabilities: for example, signals may only be able to flow in one
direction. This requires replacing simple graphs with directed graphs. To combine these
features we could use directed multigraphs. It is also important to consider graphs with
colored vertices, to specify different types of agents, and colored edges, to specify different
types of channels. This leads us to colored directed multigraphs. All these are examples of
what we mean by a kind of network. Even more complicated kinds, such as hypergraphs
or Petri nets, are likely to become important as we proceed. Thus, instead of separately
studying all these kinds of networks, we introduce a unified notion that subsumes all these

variants: a network model. Namely, given a set C' of vertex colors, a network model F’ is
a lax symmetric monoidal functor F': S(C') — Cat, where S(C) is the free strict symmetric
monoidal category on C' and Cat is the category of small categories, considered with its
cartesian monoidal structure. Unpacking this definition takes a little work. It simplifies in
the special case where I’ takes values in Mon, the category of monoids. It simplifies further
when C is a singleton, since then S(C') is the groupoid S, where objects are natural numbers
and morphisms from m to n are bijections o: {1,...,m} — {1,...,n}. If we impose both
these simplifying assumptions, we have what we call a one-colored network model: a
lax symmetric monoidal functor F: S — Mon. As we shall see, the network model of simple
graphs is a one-colored network model, and so are many other motivating examples.

Joyal began an extensive study of functors F': S — Set, which are now commonly
called species [Joy81, Joy86, BLLI8]. Any type of extra structure that can be placed on
finite sets and transported along bijections defines a species if we take F'(n) to be the set
of structures that can be placed on the set {1,...,n}. From this perspective, a one-colored
network model is a species with some extra operations.

This perspective is helpful for understanding what a one-colored network model
F:S — Mon is actually like. If we call elements of F'(n) networks with n vertices, then:

1. Since F(n) is a monoid, we can overlay two networks with the same number of
vertices and get a new one. We denote this operation by

U: F(n) x F(n) — F(n).

oo’ a's o

2. Since F' is a functor, the group S,, acts on the monoid F(n). Thus, for each o € S,
we have a monoid automorphism that we call

o: F(n) = F(n).

For example:

For example, if 0 = (23) € Ss3, then

Y

3. Since F' is lax monoidal, we have an operation
U: F(m) x F(n) = F(m+n)

We call this operation the disjoint union of networks. For example:

4L d L

The first two operations are present whenever we have a functor F': S — Mon. The last two
are present whenever we have a lax symmetric monoidal functor F': S — Set. When F is a
one-colored network model we have all three—and unpacking the definition further, we see
that they obey some equations, which we list in Theorem 2.3. For example, the interchange
law

(gUg)U(hUR) = (gUh)U (g UN)
holds whenever g,¢’ € F(m) and h,h’ € F(n).

In Section 2.2 we study one-colored network models more formally, and give many
examples. In Section 2.2.1 we describe a systematic procedure for getting one-colored
network models from monoids. In Section 2.3 we study general network models and give
examples of these. In Section 2.3.1 we describe a category NetMod of network models, and
show that the procedure for getting network models from monoids is functorial. We also
make NetMod into a symmetric monoidal category, and give examples of how to build new
networks models by tensoring old ones.

Our main result is that any network model gives a typed operad, also known as
a colored operad or symmetric multicategory [Yaul6]. A typed operad describes ways of
sticking together things of various types to get new things of various types. An algebra of
the operad gives a particular specification of these things and the results of sticking them
together. We review the definitions of operads and their algebras in Appendix D.2. A bit
more precisely, a typed operad O has:

e a set T of types,
e sets of operations O(ty,...,t,;t) where t;,t € T,
e ways to compose any operation
fFEO(tr,... ty;t)

with operations
gi € O(ti1, - .-, tig;; i) (1<i<n)

to obtain an operation
f o (gly cee ’gn) € O(tliv cee)tlkl) cee 7tn17 .. 'tnkn;t)v

e and ways to permute the arguments of operations,

which obey some rules [Yaul6]. An algebra A of O specifies a set A(t) for each type t € T'
such that the operations of O act on these sets. Thus, it has:

e for each type t € T, a set A(t) of things of type t,

e ways to apply any operation

to things
a; € A(t;) (1<i<n)

to obtain a thing

Again, we demand that some rules hold [Yaul6].

In Theorem 2.30 we describe the typed operad Op arising from a one-colored
network model F'. The set of types is N, since we can think of ‘network with n vertices’ as
a type. The sets of operations are given as follows:

OF(nl,...7nk,n)_{San(n) lfnl—f_'..—i_nk:n

N 0 otherwise.

The key idea here is that we can overlay a network in F'(n) on the disjoint union of networks
with ny,...,ng vertices and get a new network with n vertices as long as ny + - - -np = n.
We can also permute the vertices; this accounts for the group S,,. But the most important
fact is that networks serve as operations to assemble networks, thanks to our ability to
overlay them.

Using this fact, we show in Example 2.32 that the operad Or has a canonical
algebra Ap whose elements are simply networks of the kind described by F:

In this algebra any operation
(0,9) € Op(ny,...,ng;n) =S, X F(n)
acts on a k-tuple of networks
hi € Ap(n;) = F(n;) (1<i<k)
to give the network
a(o,g)(h1,...,hg) =gUo(hiU---Uhg) € Ap(n).

In other words, we first take the disjoint union of the networks h;, then permute their
vertices with o, and then overlay the network g.

An example is in order, since the generality of the formalism may hide the simplic-
ity of the idea. The easiest example of our theory is the network model for simple graphs.
In Example 2.4 we describe a one-colored network model SG: S — Mon such that SG(n) is
the collection of simple graphs with vertex set n = {1,...,n}. Such a simple graph is really
a collection of 2-element subsets of n, called edges. Thus, we may overlay simple graphs
9,9 € SG(n) by taking their union g U ¢’. This operation makes SG(n) into a monoid.

Now consider an operation f € Osc(3,4,2;9). This is an element of Sg x SG(9):
a permutation of the set {1,...,9} together with a simple graph having this set of vertices.
If we take the permutation to be the identity for simplicity, this operation is just a simple

11

graph g € SG(9). We can draw an example as follows:

ffffffffffffff

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

The dashed circles indicate that we are thinking of this simple graph as an element of
0(3,4,2;9): an operation that can be used to assemble simple graphs with 3, 4, and 2
vertices, respectively, to produce one with 9 vertices.

Next let us see how this operation acts on the canonical algebra Aga, whose
elements are simple graphs. Suppose we have elements a1 € Agg(3), as € Agg(4) and
asz < AS(;(Q):

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,

We can act on these by the operation f to obtain a(f)(ai,as,a3) € Asg(9). It looks like

12

this:

w
(=}

We have simply taken the disjoint union of a1, as, and ag and then overlaid g, obtaining a
simple graph with 9 vertices.

The canonical algebra is one of the simplest algebras of the operad Ogg. We can
define many more interesting algebras for this operad. For example, we might wish to use
this operad to describe communication networks where the communicating entities have
locations and the communication channels have limits on their range. To include location
data, we can choose A(n) for n € N to be the set of all graphs with n vertices where each
vertex is an actual point in the plane R?. To handle range-limited communications, we
could instead choose A(n) to be the set of all graphs with n vertices in R? where an edge is
permitted between two vertices only if their Euclidean distance is less than some specified
value. This still gives a well-defined algebra: when we apply an operation, we simply omit
those edges from the resulting graph that would violate this restriction.

Besides the plethora of interesting algebras for the operad Ogg, and useful homo-
morphisms between these, one can also modify the operad by choosing another network
model. This provides additional flexibility in the formalism. Different network models give
different operads, and the construction of operads from network models is functorial, so
morphisms of network models give morphisms of operads.

In Section 2.4 we apply the machinery provided by Chapter 5 to build operads from
network models. We also describe some algebras of these operads, and in Example 2.35 we
discuss an algebra whose elements are networks of range-limited communication channels.

2.2 One-Colored Network Models

We begin with a special class of network models: those where the vertices of the
network have just one color. To define these, we use S to stand for a skeleton of the groupoid
of finite sets and bijections:

Definition 2.1. Let S, the symmetric groupoid, be the groupoid for which:

e objects are natural numbers n € N,

13

e a morphism from m to n is a bijection o: {1,...,m} — {1,...,n}
and bijections are composed in the usual way.

There are no morphisms in S from m to n unless m = n. For each n € N, the
endomorphisms of n form the symmetric group S,,. It is convenient to write n for the set
{1,...,n}, so that a morphism o: n — n in S is the same as a bijection o: n — n.

There is a functor +: S x S — S defined as follows. Given m,n € N we let m +n
be the usual sum, and given ¢ € S, and 7 € S,,, let ¢ + 7 € S;,,4, be as follows:

L o(7) if 1 <m
(e +7)0) = {T(j —m)+m otherwise. 21)

For objects m,n € S, let By, , be the block permutation of m + n which swaps the first m
with the last n. For example By3: 7 — 7 is the permutation (1473625):

The tensor product + and braiding B give S the structure of a strict symmetric monoidal
category. This follows as a special case of Proposition 2.16.

Definition 2.2. A one-colored network model is a lax symmetric monoidal functor
F:S — Mon.

Here Mon is the category with monoids as objects and monoid homomorphisms as mor-
phisms, considered with its cartesian monoidal structure.

Algebraically, a network model is a family of monoids {M,, } ,en each with a group
action of the corresponding symmetric group S, such that the product of any two embed
into the one indexed by the sum of their indices equivariantly, i.e. in a way which respects
the group action: M, x M, — M1p.

Many examples of network models are given below. A pedestrian way to verify
that these examples really are network models is to use the following result:

Theorem 2.3. A one-colored network model F': S — Mon is the same as:
e a family of sets {F(n)}nen
e distinguished identity elements e, € F(n)
e a family of overlay functions U: F(n) x F(n) — F(n)
e a bijection o: F(n) — F(n) for each o € Sy
e a family of disjoint union functions U: F(m) x F(n) — F(m +n)

satisfying the following equations:

14

7. 1(g) =g
1. e,Ug=gUe, =g

8. emUen =eéemin

2. g1U(g2Ug3) = (91U g2) Ugs

3. o(g1Ugs) =091 Uoge 9. cgUth=(c+7)(gUh)

4. oe, =ep 10. g1 U (92U g3) = (g1 LU g2) U gs
5. (0201)g = 02(019) 11. egUg=glUey =g

6.

(91Ug2)U(h1Uhg) = (g1Uh1)U(g2Uh2) 12. Byn(hUg) =gUh

for g,g9; € F(n), hyh; € F(m), 0,0; € Sy, T € Sy, and 1 the identity of S,,.

Proof. Having a functor F': S — Mon is equivalent to having the first four items satisfying
Equations 1-6. The binary operation U gives the set F'(n) the structure of a monoid, with
en acting as the identity. Equation 1 tells us e, acts as an identity, and Equation 2 gives the
associativity of U. Equations 3 and 4 tell us that ¢ is a monoid homomorphism. Equations
5 and 6 say that the map (0, g) — og defines an action of S,, on F(n) for each n. All of
these actions together give us the functor F': S — Mon.

That the functor is lax monoidal is equivalent to having item 5 satisfying Equations
7-11. Equations 7 and 8 tell us that LI is a family of monoid homomorphisms. Equation
9 tells us that it is a natural transformation. Equation 10 tells us that the associativity
hexagon diagram for lax monoidal functors commutes for F. Equation 11 implies the
commutativity of the left and right unitor square diagrams. That the lax monoidal functor
is symmetric is equivalent to Equation 12. It tells us that the square diagram for symmetric
monoidal functors commutes for F'. O

This is one of the simplest examples of a network model:

Example 2.4 (Simple graphs). Let a simple graph on a set V be a set of 2-element
subsets of V', called edges. There is a one-colored network model SG: S — Mon such that
SG(n) is the set of simple graphs on n.

To construct this network model, we make SG(n) into a monoid where the product
of simple graphs g1, g2 € SG(n) is their union g; U go. Intuitively speaking, to form their
union, we ‘overlay’ these graphs by taking the union of their sets of edges. The simple graph
on n with no edges acts as the unit for this operation. The groups .S, acts on the monoids
SG(n) by permuting vertices, and these actions define a functor SG: S — Mon.

Given simple graphs g € SG(m) and h € SG(n) we define gUh € SG(m +n) to be
their disjoint union. This gives a monoid homomorphism L: SG(m) x SG(n) — SG(m+n)
because

(91U g2) U (h1 Uhg) = (g1 Uh1) U (g2 U h2).

This in turn gives a natural transformation with components

Umn: SG(m) x SG(n) = SG(m + n),

15

which makes SG into lax symmetric monoidal functor.

One can prove this construction really gives a network model using either Theo-
rem 2.3, which requires verifying a list of equations, or Theorem 2.11, which gives a general
procedure for getting a network model from a monoid M by letting elements of I'j;(n) be
maps from the complete graph on n to M. If we take M = B = {F,T} with ‘or’ as the
monoid operation, this procedure gives the network model SG = I'y. We explain this in
Example 2.12.

There are many other kinds of graph, and many of them give network models:

Example 2.5 (Directed graphs). Let a directed graph on a set V' be a collection of
ordered pairs (4,) € V2 such that i # j. These pairs are called directed edges. There is
a network model DG: S — Mon such that DG(n) is the set of directed graphs on n. As in
Example 2.4, the monoid operation on DG(n) is union.

Example 2.6 (Multigraphs). Let a multigraph on a set V' be a multiset of 2-element
subsets of V. If we define MG(n) to be the set of multigraphs on n, then there are at least
two natural choices for the monoid operation on MG(n). The most direct generalization of
SG of Example 2.4 is the network model MG: S — Mon with values (MG(n),U) where U is
now union of edge multisets. That is, the multiplicity of {i,7} in g U h is maximum of the
multiplicity of {7,j} in ¢ and the multiplicity of {4, 7} in h. Alternatively, there is another
network model MG™: S — Mon with values (MG(n), +) where + is multiset sum. That is,
g + h obtained by adding multiplicities of corresponding edges.

Example 2.7 (Directed multigraphs). Let a directed multigraph on a set V' be a
multiset of ordered pairs (i,5) € V2 such that i # j. There is a network model DMG: S —
Mon such that DMG(n) is the set of directed multigraphs on n with monoid operation the
union of multisets. Alternatively, there is a network model with values (DMG(n), +) where
+ is multiset sum.

Example 2.8 (Hypergraphs). Let a hypergraph on a set V' be a set of nonempty subsets
of V, called hyperedges. There is a network model HG: S — Mon such that HG(n) is the
set of hypergraphs on n. The monoid operation HG(n) is union.

Example 2.9 (Graphs with colored edges). Fix a set B of edge colors and let SG: S —
Mon be the network model of simple graphs as in Example 2.4. Then there is a network
model H: S — Mon with

H(n) =SG(n)?

making the product of B copies of the monoid SG(n) into a monoid in the usual way. In this
model, a network is a B-tuple of simple graphs, which we may view as a graph with at most
one edge of each color between any pair of distinct vertices. We describe this construction
in more detail in Example 2.24.

There are also examples of network models not involving graphs:

Example 2.10 (Partitions). A poset is a lattice if every finite subset has both an infimum
and a supremum. If L is a lattice, then (L, V) and (L, A) are both monoids, where z V y is
the supremum of {z,y} C L and x A y is the infimum.

16

Let P(n) be the set of partitions of the set n. This is a lattice where 7 < 7’ if the
partition 7 is finer than 7/. Thus, P(n) can be made a monoid in either of the two ways
mentioned above. Denote these monoids as PY(n) and P"(n). These monoids extend to
give two network models PV, P": S — Mon.

2.2.1 One-colored network models from monoids

There is a systematic procedure that gives many of the network models we have
seen so far. To do this, we take networks to be ways of labelling the edges of a complete
graph by elements of some monoid M. The operation of overlaying two of these networks
is then described using the monoid operation.

For example, consider the Boolean monoid B: that is, the set { F, T} with ‘inclusive
or’ as its monoid operation. A complete graph with edges labelled by elements of B can be
seen as a simple graph if we let T" indicate the presence of an edge between two vertices and
F the absence of an edge. To overlay two simple graphs gi, go with the same set of vertices
we simply take the ‘or’ of their edge labels. This gives our first example of a network model,
Example 2.4.

To formalize this we need some definitions. Given n € N, let £(n) be the set
of 2-element subsets of n = {1,...,n}. We call the members of £(n) edges, since they
correspond to edges of the complete graph on the set n. We call the elements of an edge
e € £(n) its vertices.

Let M be a monoid. For n € N, let I'j;(n) be the set of functions g: £(n) — M.
Define the operation U: I'ps(n) x Tar(n) — Tar(n) by (91 Ug2)(e) = gi(e)ga(e) for e € E(n).
Define the map U: 'y (m) x T'pr(n) — Tpr(m + n) by

g1(e) if both vertices of e are <m
(g1 U g2)(e) = g2(e) if both vertices of e are > m
the identity of M otherwise

The symmetric group S, acts on I'js(n) by o(g)(e) = g(a71(e)).

Theorem 2.11. For each monoid M the data above gives a one-colored network model
Ty S — Mon.

Proof. We can define I'j; as the composite of two functors, £: S — Inj and M~ : Inj — Mon,
where Inj is the category of sets and injections.

The functor £: S — Inj sends each object n € S to £(n), and it sends each
morphism o: n — n to the permutation of £(n) that maps any edge e = {x,y} € £(n)
to o(e) = {o(x),o(y)}. The category Inj does not have coproducts, but it is closed under
coproducts in Set. It thus becomes symmetric monoidal with + as its tensor product and
the empty set as the unit object. For any m,n € S there is an injection

Pmn: E(m) +E(n) = E(m +n)

expressing the fact that a 2-element subset of either m or n gives a 2-element subset of
m + n. The functor £: S — Inj becomes lax symmetric monoidal with these maps fiy,
giving the lax preservation of the tensor product.

17

The functor M~ : Inj — Mon sends each set X to the set M made into a monoid

with pointwise operations, and it sends each function f: X — Y to the monoid homomor-
phism M/ : MX — MY given by

(M g)(w) :{ g(f~H(y)) if y €im(f)

1 otherwise

for any g € M~. Using the natural isomorphisms MXtY 2 MX x MY and M? = 1 this
functor can be made symmetric monoidal.

As the composite of the lax symmetric monoidal functor £: S — Inj and the
symmetric monoidal functor M~ : Inj — Mon, the functor I'j;: S — Mon is lax symmetric
monoidal, and thus a network model. With the help of Theorem 2.3, it is easy to check
that this description of I'j; is equivalent to that in the theorem statement. O

Example 2.12 (Simple graphs, revisited). Let B = {F, T} be the Boolean monoid. If
we interpret 7" and F' as ‘edge’ and ‘no edge’ respectively, then I'p is just SG, the network
model of simple graphs discussed in Example 2.4.

Recall from Example 2.6 that a multigraph on the set n is a multisubset of £(n),
or in other words, a function g: £(n) — N. There are many ways to create a network model
F:'S — Mon for which F(n) is the set of multigraphs on the set n, since N has many monoid
structures. Two of the most important are these:

Example 2.13 (Multigraphs with addition for overlaying). Let (N, +) be N made
into a monoid with the usual notion of addition as +. In this network model, overlaying two
multigraphs g1, g2: £(n) — N gives a multigraph g: £(n) — N with g(e) = g1(e) + g2(e). In
fact, this notion of overlay corresponds to forming the multiset sum of edge multisets and
I'(n,4) is the network model of multigraphs called MG in Example 2.6.

Example 2.14 (Multigraphs with maximum for overlaying). Let (N, max) be N made
into a monoid with max as the monoid operation. Then Iy ax) is @ network model where
overlaying two multigraphs g1, g2: £(n) — N gives a multigraph g: £(n) — N with g(e) =
g1(e) max ga(e). For this monoid structure overlaying two copies of the same multigraph
gives the same multigraph. In other words, every element in each monoid F(N,max)(n) is
idempotent and I'(y jax) is the network model of multigraphs called MG in Example 2.6.

Example 2.15 (Multigraphs with at most k£ edges between vertices). For any k € N,
let By be the set {0,...,k} made into a monoid with the monoid operation & given by

r®y=(r+y) mink

and 0 as its unit element. For example, By is the trivial monoid and B; is isomorphic to the
Boolean monoid. There is a network model I', such that I'g, (n) is the set of multigraphs
on n with at most k edges between any two distinct vertices.

18

2.3 General Network Models

The network models described so far allow us to handle graphs with colored edges,
but not with colored vertices. Colored vertices are extremely important for applications in
which we have a network of agents of different types. Thus, network models will involve a
set C' of vertex colors in general. This requires that we replace S by the free strict symmetric
monoidal category generated by the color set C. Thus, we begin by recalling this category.

For any set C, there is a category S(C') for which:

e Objects are formal expressions of the form
1Ry
forn € Nand ci,...,c, € C. We denote the unique object with n =0 as I.

e There exist morphisms from ¢; ® -+ ® ¢, to ¢} @ -+ ® ¢}, only if m = n, and in that
case a morphism is a permutation o € S,, such that c; G = Ci for all .

i

e Composition is the usual composition of permutations.

Note that elements of C' can be identified with certain objects of S(C'), namely the
one-fold tensor products. We do this in what follows.

Proposition 2.16. S(C) can be given the structure of a strict symmetric monoidal category
making it into the free strict symmetric monoidal category on the set C. Thus, if A is
any strict symmetric monoidal category and f: C — Ob(A) is any function from C to
objects of the A, there exists a unique strict symmetric monoidal functor F: S(C) — A
with F(c) = f(c) for all c € C.

Proof. This is well-known; see for example Sassone [Sas94, Sec. 3] or Gambino and Joyal
[GJ17, Sec. 3.1]. The tensor product of objects is ®, the unit for the tensor product is I,
and the braiding

(C1® - @en) (A ® V) > (1® Q)R (1® - ®cm)

is the block permutation By, ,. Given f: C'— Ob(A), we define F': S(C') — A on objects
by
Flaa®: ®cn) = fla) @+ @ flen),

and it is easy to check that F' is strict symmmetric monoidal, and the unique functor with
the required properties. O

Definition 2.17. Let C be a set, called the set of vertex colors. A C-colored network
model is a lax symmetric monoidal functor

F:S(C) — Cat.

A network model is a C-colored network model for some set C.

19

If C has just one element, S(C) = S and a C-colored network model is a one-colored
network model in the sense of Definition 2.2. Here are some more interesting examples:

Example 2.18 (Simple graphs with colored vertices). There is a network model of
simple graphs with C-colored vertices. To construct this, we start with the network model
of simple graphs SG: S — Mon given in Example 2.4. There is a unique function from
C to the one-element set. By Proposition 2.16, this function extends uniquely to a strict
symmetric monoidal functor

F:S(C)—S.

An object in S(C) is formal tensor product of n colors in C; applying F' to this object
we forget the colors and obtain the object n € S. Composing F' and SG, we obtain a lax
symmetric monoidal functor

S(C) £ 5 =5 Mon

which is the desired network model. We can use the same idea to ‘color’ any of the network
models in Section 2.2.

Alternatively, suppose we want a network model of simple graphs with C-colored
vertices where an edge can only connect two vertices of the same color. For this we take
a cartesian product of C' copies of the functor SG, obtaining a lax symmetric monoidal
functor

SGY: S¢ — Mon®.

There is a function h: C — Ob(S®) sending each ¢ € C to the object of SC that equals
1 € S in the cth place and 0 € S elsewhere. Thus, by Proposition 2.16, h extends uniquely
to a strict symmetric monoidal functor

He: S(C) — S©.
Furthermore, the product in Mon gives a symmetric monoidal functor
IT: Mon® — Mon.
Composing all these, we obtain a lax symmetric monoidal functor
S(O) fie, g0 Sii Mon® L5 Mon

which is the desired network model.
More generally, if we have a network model F.: S — Mon for each color ¢ € C, we
can use the same idea to create a network model:

Fe
S(C) He SCHCEC Mon® —Ls Mon

in which the vertices of color ¢ € C partake in a network of type Fr.

Example 2.19 (Petri nets). Petri nets are a kind of network widely used in computer
science, chemistry and other disciplines [BP17]. A Petri net (S,7,4,0) is a pair of finite

20

sets and a pair of functions ¢,0: S xT — N. Let P(m,n) be the set of Petri nets (m, n, i, 0).
This becomes a monoid with product

(m,n,i,0) U (m,n,i,0) = (m,n,i+i, o+ 0)
The groups S,, x S, naturally act on these monoids, so we have a functor
P:S% — Mon.
There are also ‘disjoint union’ operations
U: P(m,n) x P(m',n') = P(m+m/,n+n)

making P into a lax symmetric monoidal functor. In Example 2.18 we described a strict
symmetric monoidal functor Ho: S(C) — SY for any set C. In the case of the 2-element
set this gives

Hy: S(2) — S°.

We define the network model of Petri nets to be the composite
S(2) 252 P, Mon.

2.3.1 Categories of network models

For each choice of the set C of vertex colors, we can define a category NetMod¢
of C-colored network models. However, it is useful to create a larger category NetMod
containing all these as subcategories, since there are important maps between network
models that involve changing the vertex colors.

Definition 2.20. For any set C', let NetMod¢ be the category for which:

e an object is a C-colored network model, that is, a lax symmetric monoidal functor
F:S(C) — Cat,

e a morphism is a monoidal natural transformation between such functors:

S(C) ﬂg Cat
u
F/
and composition is the usual composition of monoidal natural transformations.

In particular, NetMod; is the category of one-colored network models. For an
example involving this category, consider the network models built from monoids in Sec-
tion 2.2.1. Any monoid M gives a one-colored network model I'j; for which an element
of T'j(n) is a way of labelling the edges of the complete graph on n by elements of M.
Thus, we should expect any homomorphism of monoids f: M — M’ to give a morphism of
network models I'y: I'yy — I'pp for which

Ff(n): FM(TL) — FM/(n)

21

applies f to each edge label.
Indeed, this is the case. As explained in the proof of Theorem 2.11, the network
model I'p; is the composite

s-&, Inj M5 Mon.
The homomorphism f gives a natural transformation
fTiM =M~
that assigns to any finite set X the monoid homomorphism
e M* - M
g = fog

It is easy to check that this natural transformation is monoidal. Thus, we can whisker it
with the lax symmetric monoidal functor £ to get a morphism of network models:
M-
e TR
S £ ﬂf* Mon
~_"
M’
and we call this I'y: I'yy — I'pyr.

Theorem 2.21. There is a functor
I': Mon — NetMod;

sending any monoid M to the network model I'py; and any homomorphism of monoids
f: M — M’ to the morphism of network models T'p: T'pp — Tapr.

Proof. To check that I' preserves composition, note that

equals

s—*¢& Inj (f'f)~ Mon

Mll—

since f'~f~ = (f'f)”. Similarly I" preserves identities. O

22

It has been said that category theory is the subject in which even the examples
need examples. So, we give an example of the above result:

Example 2.22 (Imposing a cutoff on the number of edges). In Example 2.13 we
described the network model of multigraphs MG™ as I'nv,4)- In Example 2.15 we described
a network model I'g, of multigraphs with at most k edges between any two distinct vertices.
There is a homomorphism of monoids

f: (N,+) —)]Bk

n+— nmink
and this induces a morphism of network models
Ff: F(N’_;'_) — FBk-

This morphism imposes a cutoff on the number of edges between any two distinct vertices:
if there are more than k, this morphism keeps only k of them. In particular, if &k = 1, By, is
the Boolean monoid, and

Iy MGT — SG

sends any multigraph to the corresponding simple graph.

One useful way to combine C-colored networks is by ‘tensoring’ them. This makes
NetMod¢ into a symmetric monoidal category:

Theorem 2.23. For any set C, the category NetModc can be made into a symmetric
monoidal category with the tensor product defined pointwise, so that for objects F,F' €
NetModo we have

(F & F')(@) = Fx) x F'(x)

for any object or morphism x in S(C), and for morphisms ¢,¢" in NetModo we have

(0@ ¢)e = ¢u X ¢,
for any object x € S(C).

Proof. More generally, for any symmetric monoidal categories A and B, there is a symmetric
monoidal category SymMonCat(.A, B) whose objects are lax symmetric monoidal functors
from A to B and whose morphisms are monoidal natural transformations, with the tensor
product defined pointwise. The proof in the ‘weak’ case was given by Hyland and Power
[HP02], and the lax case works the same way. O

If F, F': S(C) — Mon then their tensor product again takes values in Mon. There
are many interesting examples of this kind:

Example 2.24 (Graphs with colored edges, revisited). In Example 2.9 we described
network models of simple graphs with colored edges. The above result lets us build these
network models starting from more basic data. To do this we start with the network model
for simple graphs, SG: S — Mon, discussed in Example 2.4. Fixing a set B of ‘edge colors’,

23

we then take a tensor product of copies of SG, one for each b € B. The result is a network
model SG®B: S — Mon with
SG®B(n) = SG(n)?

for each n € N.

Example 2.25 (Combined networks). We can also combine networks of different kinds.
For example, if DG: S — Mon is the network model of directed graphs given in Example 2.5
and MG: S — Mon is the network model of multigraphs given in Example 2.6, then

DG ® MG: S — Mon

is another network model, and we can think of an element of (DG ® MG)(n) as a directed
graph with red edges together with a multigraph with blue edges on the set n.

Next we describe a category NetMod of network models with arbitrary color sets,
which includes all the categories NetMod¢ as subcategories. To do this, first we introduce
‘color-changing’ functors. Recall that elements of C' can be seen as certain objects of S(C),
namely the 1-fold tensor products. If f: C' — C’ is a function, there exists a unique strict
symmetric monoidal functor f.: S(C) — S(C’) that equals f on objects of the form ¢ € C.
This follows from Proposition 2.16.

Next, we define an indexed category NetMod_ : Set®® — CAT that sends any set C
to NetMod¢ and any function f: C — D to the functor that sends any D-colored network
model F': S(D) — Cat to the C-colored network model given by the composite

s() I s(p) £ cat.
Applying the Grothendieck construction (see Appendix C) to this indexed category, we
define the category of network models to be

NetMod :/NetMod.

In elementary terms, NetMod has:

e pairs (C, F) for objects, where C' is a set and F': S(C') — Cat is a C-colored network
model.

e pairs (f,g9): (C,F) — (D,G) for morphisms, where f: C' — D is a function and
g: F = G o f, is a morphism of network models.

Example 2.26 (Simple graphs with colored vertices, revisited). In Example 2.18 we
constructed the network model of simple graphs with colored vertices. We started with the
network model for simple graphs, which is a one-colored network model SG: S — Mon. The
unique function !: C' — 1 gives a strict symmetric monoidal functor !,: S(C') — S(1) = S.
The network model of simple graphs with C-colored vertices is the composite

S(C) <5 S 2% Mon

and there is a morphism from this to the network model of simple graphs, which has the
effect of forgetting the vertex colors.

24

In fact, NetMod can be understood as a subcategory of the following category:
Definition 2.27. Let SymMonlCat be the category where:

e objects are pairs (C, F') where C is a small symmetric monoidal category and F': C —
Cat is a lax symmetric monoidal functor, where Cat is considered with its cartesian
monoidal structure.

e morphisms from (C, F) to (C’, F”) are pairs (G, g) where G: C — (' is a lax symmetric
monoidal functor and g: F = F’o(is a symmetric monoidal natural transformation:

We shall use this way of thinking in the next two sections to build operads from
network models. It must be said that SymMonlCat is naturally a 2-category where a 2-
morphism &: (G, g) = (G',¢') is a natural transformation £: G — G’ such that

C . !

7
C

and here we are considering its 1-dimensional truncation. The 2-dimensional structure
is detailed in Appendix C, and utilized in Chapter 5. This lets us define 2-morphisms
between network models, extending NetMod to a 2-category. We do not seem to need these
2-morphisms in our applications, so we suppress 2-categorical considerations in most of
what follows.

Cat = G QH Cat.

C/

2.4 Operads from Network Models

Next we describe the operad associated to a network model. This construction
is given in two steps. For the first step, we can use the strict symmetric Grothendieck
construction of Section 5.4 to define a strict symmetric monoidal category [F from a given
network model F': S(C') — Cat. For the second step, we then use the underlying operad
construction (recalled in Proposition D.11) to build an operad Op.

Definition 2.28. Given a network model F': S(C') — Cat, define the network operad O
to be Op([F).

25

For the sake of the unfamiliar reader, we give a brief description of these construc-
tions in the specific context of network models, which does not assume prior knowledge.
We recall the ordinary Grothendieck construction in Appendix C, and Chapter 5 is entirely
dedicated to studying the (braided/symmetric) monoidal variants of it. We give a nuts-
and-bolts description of the symmetric monoidal category ([F,®4) built from a network
model (F, ¢): (S(C),®) — (Mon, x).

The objects of [F correspond to objects of S(C'), which are formal expressions of
the form ¢; ® - - ® ¢,, with n € N and ¢; € C. The morphisms of [F are pairs (o, g) where
0:C1®QCp — Co1 Q-+ & Cop 18 a morphism in S(C), and ¢ is an element of the monoid
F(co1 ® -+ ® ¢opn). Composition is given by (o,g) o (1,h) = (07,9 - Fo(h)). The tensor
product of two objects is given by concatenation. The tensor product of two morphisms is
given by (0,9)® (1,h) = (0 @7, ¢(g,h)). The unit object is (I, ¢g), where I is the monoidal
unit for S(C) and ¢y is the unit laxator for F'.

For a one-object network model F', a more compact description of the category
[F can be given by the following formula, where monoids and groups are being considered
as one-object categories by default.

/F% [T F(n) xS,

neN

The network operad OF is a typed operad where the types are ordered k-tuples of
elements of C'. For objects z;, z of [F, the operations in Op are given by Op(x1, ..., Ty x) =
[F(z1 Q- @ xp, x).

Now suppose that F' is a one-colored network model, so that F: S — Mon.
Then the objects of S are simply natural numbers, so Op is an N-typed operad. Given
ni,...,nk,n € N, we have

Op(ni,...,ng;n) = homfF(nl + - 4 ng,n).

By definition, a morphism in this homset is a pair consisting of a bijection o: n1+---+ng —
n and an element of the monoid F'(n). So, we have

Or(n1,..

.,nk;n)—{ S x Fln) it mi + - omg =n (2.2)

B 0 otherwise.
Here is the basic example:

Example 2.29 (Simple network operad). If SG: S — Mon is the network model of sim-
ple graphs in Example 2.4, we call Ogq the simple network operad. By Equation (2.2),
an operation in Ogg(n1,...,ng; k) is an element of S,, together with a simple graph having
n={1,...,n} as its set of vertices.

The operads coming from other one-colored network models work similarly. For
example, if DG: S — Mon is the network model of directed graphs from Example 2.5, then
an operation in Ogg(nq,...,ng;n) is an element of S, together with a directed graph having
n as its set of vertices.

In Theorem 2.3 we gave a pedestrian description of one-colored network models.
We can describe the corresponding network operads in the same style:

26

Theorem 2.30. Suppose F is a one-colored network model. Then the network operad Op
1s the N-typed operad for which the following hold:

1. The sets of operations are given by
Ortme i) = { O
2. Composition of operations is given as follows. Suppose that
(0,9) € Sp X F(n) = Op(ny,...,ng;n)
and for 1 <i <k we have
(Tis hi) € Sp; x F(ni) = Op(nit, -« s Mg, i 1)
Then
(o,9)0 ((t1,h1)s- oy (Thy b)) = (o(T1 + -+ + T1),gUo(hy U--- U hy))
where + is defined in Equation (2.1), while U and U are defined in Theorem 2.3.

3. The identity operation in Op(n;n) is (1,ey,), where 1 is the identity in S, and e, is
the identity in the monoid F(n).

4. The right action of the symmetric group Sy on Op(ny,...,ng;n) is given as follows.
Given (0,9) € Op(ni,...,ng;n) and T € Sk, we have

(0,9)T = (07, 9).

Proof. This is a straightforward combination of the underlying operad of a symmetric
monoidal category and the symmetric monoidal structure on [F'. O

The construction of operads from symmetric monoidal categories described in
Proposition D.11 is functorial, so the construction of operads from network models is as
well.

Theorem 2.31. The assignment of a network model F: S(C) — Cat to the operad Op =
Op([G) and a morphism of network models (G, g): (C,F) — (C', F'G'") to the operad mor-
phism Og = Op(I') is a functor

O: NetMod — Opd.

Proof. There is a functor
[: NetMod — SymMonCat

given by restricting the strict symmetric monoidal Grothendieck construction of Theo-
rem 5.8 to NetMod. Composing this with the functor

Op: SymMonCat — Opd

constructed in Proposition D.12 we obtain a functor O: NetMod — Opd with the properties
stated in the theorem. Since these properties specify how O acts on objects and morphisms,
it is unique. O

27

2.4.1 Algebras of network operads

Our interest in network operads comes from their use in designing and tasking
networks of mobile agents. The operations in a network operad are ways of assembling
larger networks of a given kind from smaller ones. To describe how these operations act
in a concrete situation we need to specify an algebra of the operad. The flexibility of this
approach to system design takes advantage of the fact that a single operad can have many
different algebras, related by homomorphisms.

An algebra A of a typed operad O specifies a set A(t) for each type t € T such that
the operations of O can be applied to act on these sets. That is, each algebra A specifies:

e for each type t € T, a set A(t), and

e for any types t1,...,t,,t € T, a function
a: O(ty, ... ty;t) = hom(A(ty) x -+ x A(ty), A(t))

obeying some rules that generalize those for the action of a monoid on a set [Yaul6]. All
the examples in this section are algebras of network operads constructed from one-colored
network models F': S — Mon. This allows us to use Theorem 2.30, which describes Op
explicitly.

The most basic algebra of such a network operad Op is its ‘canonical algebra’,
where it acts on the kind of network described by the network model F:

Example 2.32 (The canonical algebra). Let F': S — Mon be a one-colored network
model. Then the operad O has a canonical algebra Ap with

Ap(n) = F(n)
for each n € N, the type set of Op. In this algebra any operation
(0,9) € Op(ny,...,ng;n) =S, X F(n)
acts on a k-tuple of elements
hi € Arp(n;) = F(n;) (1<i<k)
to give
a(o,g)(h1,...,hg) =gUo(hiU---Uhg) € A(n).

Here we use Theorem 2.3, which gives us the ability to overlay networks using the monoid
structure U: F(n)x F(n) — F(n), take their ‘disjoint union’ using maps U: F(m)x F(m’) —
F(m+m’), and act on F(n) by elements of S,,. Using the equations listed in this theorem
one can check that a obeys the axioms of an operad algebra.

When we want to work with networks that have more properties than those cap-
tured by a given network model, we can equip elements of the canonical algebra with extra
attributes. Three typical kinds of network attributes are vertex attributes, edge attributes,
and ‘global network’ attributes. For our present purposes, we focus on vertex attributes.
Vertex attributes can capture internal properties (or states) of agents in a network such as
their locations, capabilities, performance characteristics, etc.

28

Example 2.33 (Independent vertex attributes). For any one-colored network model
F:S — Mon and any set X, we can form an algebra Ax of the operad Op that consists of
networks whose vertices have attributes taking values in X. To do this, we define

Ax(n) = F(n) x X"
In this algebra, any operation
(0,9) € Op(ni,...,ng;n) =S, X F(n)
acts on a k-tuple of elements
(hi,x;) € F(n;) x X™ (1<i<k)
to give

ax(o,g9) = (gUa(h1l_I"-I_Ihk),a(xl,...,wk)).

Here (z1,...,z;) € X™ is defined using the canonical bijection

k
xXr e] xm
i=1

when ny; 4+ ---+nx = n, and o € S, acts on X™ by permutation of coordinates. In other
words, ay acts via « on the F'(n;) factors while permuting the vertex attributes X" in the
same way that the vertices of the network h; U - -- U hy are permuted.

One can easily check that the projections F'(n) x X™ — F(n) define a homomor-
phism of Op-algebras, which we call

TX - A X — A.
This homomorphism ‘forgets the vertex attributes’ taking values in the set X.

Example 2.34 (Simple networks with a rule obeyed by edges). Let Osg be the
simple network operad as explained in Example 2.29. We can form an algebra of the
operad Ogq that consists of simple graphs whose vertices have attributes taking values in
some set X, but where an edge is permitted between two vertices only if their attributes
obey some condition. We specify this condition using a symmetric function

p: X xX—>B

where B = {F,T}. An edge is not permitted between vertices with attributes (z1,z2) €
X x X if this function evaluates to F.
To define this algebra, which we call A, we let A,(n) € SG(n) x X" be the set
of pairs (g, z) such that for all edges {7, j} € g the attributes of the vertices i and j make p
true:
p(a(i), 2(j)) = T.

There is a function
Tp: Ax(n) — Ap(n)

29

that discards edges {i,j} for which p(x(i),z(j)) = F. Recall that Ax(n) = SG(n) x X",
and recall from Example 2.12 that we can regard SG(n) as the set of functions g: £(n) — B.
Then we define 7, by
(9, %) = (9, 7)

e i) i plali),a() =T

e g{i, i} it p(x(i),z(j)) =

it ={ G Oy
We can define an action «y, of Ogg on the sets A,(n) with the help of this function. Namely,
we take «y, to be the composite

, L
, T

Osg(ni,...,nE;n) X Ap(ng) x -+ x Ap(ng)

/

Osa(n1, .. ngsn) x Ax(ng) x -+ x Ax(ng)

[ox

Ax(n)

yp

Ap(n)

where the action axy was defined in Example 2.33. One can check that o, makes the sets
Ap(n) into an algebra of Ogq, which we call A,. One can further check that the maps 7
define a homomorphism of Ogg-algebras, which we call

T Ax — Ap.

Example 2.35 (Range-limited networks). We can use the previous examples to model
range-limited communications between entities in a plane. First, let X = R? and form the
algebra Ax of the simple network operad Osg. Elements of Ax(n) are simple graphs with
vertices in the plane.

Then, choose a real number L > 0 and let d be the usual Euclidean distance
function on the plane. Define p: X x X — B by setting p(z,y) = T if d(z,y) < L and
p(x,y) = F otherwise. Elements of Aj,(n) are simple graphs with vertices in the plane such
that no edge has length greater than L.

Example 2.36 (Networks with edge count limits). Recall the network model for
multigraphs MG™, defined in Example 2.6 and clarified in Example 2.13. An element of
MGT™(n) is a multigraph on the set n, namely a function g: £(n) — N where £(n) is the
set of 2-element subsets of n. If we fix a set X we obtain an algebra Ax of Oy g+ as
in Example 2.33. The set Ax(n) consists of multigraphs on n where the vertices have
attributes taking values in X.

Starting from Ax we can form another algebra where there is an upper bound
on how many edges are allowed between two vertices, depending on their attributes. We
specify this upper bound using a symmetric function

b: X x X - N.

30

To define this algebra, which we call 4y, let A,(n) € MG™(n) x X™ be the set of
pairs (g, z) such that for all {i,j} € £(n) we have

9(i,j) < b(x(i), z(j))-
Much as in Example 2.34 there is function
m: Ax(n) = Ap(n)

that enforces this upper bound: for each g € Ax(n) its image 7(g) is obtained by reducing
the number of edges between vertices ¢ and j to the minimum of ¢(¢,j) and (i, j):

W(g)(i,j) = g(i7j) mlnﬁ(%])

We can define an action «p of Oyg on the sets Ay(n) as follows:

Oma(ny, ... s n) X Ap(ny) X -+ x Ap(ng)
Owma(n, ..., ngsn) X Ax(ng) x -+ X Ax(ng)
ax
Ax(n)
Ap(”)

One can check that ap indeed makes the sets Ay(n) into an algebra of Oy;q+, which we call
Ay, and that the maps 7, define a homomorphism of Oy;q+-algebras, which we call

Tp: AX — Ab.

Example 2.37 (Range-limited networks, revisited). We can use Example 2.36 to
model entities in the plane that have two types of communication channel, one of which has
range L; and another of which has a lesser range Ly < L;. To do this, take X = R? and
define b: X x X — N by

0 ifd(z,y) > L1
blr,y) =< 1 if Ly < d(z,y) < L4
2 ifd(x,y) < Lo

Elements of Ap(n) are multigraphs with vertices in the plane having no edges between
vertices whose distance is > L1, at most one edge between vertices whose distance is < I
but > Lg, and at most two edges between vertices whose distance is < Ls.

Moreover, the attentive reader may notice that the action o of Oyq+ for this
specific choice of b factors through an action of OFBQ, where I'g, is the network model
defined in Example 2.15. That is, operations Ory, (n1,...,ng;n) = Sy x I'p,(n) where
I'p,(n) is the set of multigraphs on n with at most 2 edges between vertices are sufficient
to compose these range-limited networks. This is due to the fact that the values of this
b: X x X — N are at most 2.

31

These examples indicate that vertex attributes and constraints can be systemati-
cally added to the canonical algebra to build more interesting algebras, which are related
by homomorphisms. Example 2.33 illustrates how adding extra attributes to the networks
in some algebra A can give networks that are elements of an algebra A’ equipped with a
homomorphism 7: A’ — A that forgets these extra attributes. Example 2.36 illustrates
how imposing extra constraints on the networks in some algebra A can give an algebra A’
equipped with a homomorphism 7: A — A’ that imposes these constraints: this works only
if there is a well-behaved systematic procedure, defined by 7, for imposing the constraints
on any element of A to get an element of A’.

The examples given so far scarcely begin to illustrate the rich possibilities of net-
work operads and their algebras. In particular, it is worth noting that all the specific
examples of network models described here involve commutative monoids. However, non-
commutative monoids are also important. Suppose, for example, that we wish to model
entities with a limited number of point-to-point communication interfaces—e.g. devices
with a finite number p of USB ports. More formally, we wish to act on sets of degree-
limited networks Ageg(n) C SG(n) x N® made up of pairs (g,p) such that the degree of
each vertex i, deg(i), is at most the degree-limiting attribute of i: deg(i) < p(i). Naively,
we might attempt to construct a map Tgeg: ANy — Adeg as in Example 2.36 to obtain an
action of the simple network operad Ogg. However, this is turns out to be impossible. For
example, if attempt to build a network from devices with a single USB port, and we attempt
to connect multiple USB cables to one of these devices, the relevant network operad must
include a rule saying which attempts, if any, are successful. Since we cannot prioritize links
from some vertices over others—which would break the symmetry built into any network
model—the order in which these attempts are made must be relevant. Since the monoids
SG(n) are commutative, they cannot capture this feature of the situation.

The solution is to use a class of noncommutative monoids dubbed ‘graphic monoids’
by Lawvere [Law89b]: namely, those that obey the identity aba = ab. These allow us to
construct a one-colored network model I': S — Mon whose network operad Or acts on Ageg-
For our USB device example, the relation aba = ab means that first attempting to connect
some USB cables between some devices (a), second attempting to connect some further
USB cables (b), and third attempting to connect some USB cables precisely as attempted
in the first step (a, again) has the same result as only performing the first two steps (ab).
We explore more applications of noncommutativity in network models in Chapter 3.

32

Chapter 3

Noncommutative Network Models

3.1 Introduction

In Theorem 2.11, we gave a functorial construction of a network model from a
monoid, which we call the ordinary network model for weighted graphs. In this chapter, we
provide a different construction in order to realize a larger class of networks as algebras
of network operads, which we call the free varietal network model for weighted graphs. In
Section 3.4, we give an example of a family of networks which cannot form an algebra for any
ordinary network model for weighted graphs, but does for a varietal one. In this chapter, we
give a construction for the free network model on a given monoid. This describes networks
which look like the given monoid when you restrict to looking at the combinatorial behavior
at a single pair of nodes. In Section 3.3, we give a concrete construction of a left adjoint to
the functor which evaluates a network model at its second level. This requires a categorical
treatment and generalization of Green’s theory of products of groups indexed by a graph,
(i.e. graph products of groups) [Gre90], which we give in Section 3.2.

This construction is designed to model networks which carry information on the
edges. For example, with N a monoid under addition, 'y is a network model for loopless
undirected multigraphs where overlaying is given by adding the number of edges. A similar
example is I'g = SG. There is a monoid homomorphism N — B which sends all but 0
to T'. This induces a map of network models I'y — I'g. Essentially this map reduces the
information of a graph from the number of connections between each pair of vertices to just
the existence of any connection.

Example 3.1 (Algebra for range-limited communication). Consider a communica-
tion network where each node represents a boat and an edge between two nodes represents
a working communication channel between the corresponding boats. Some forms of com-
munication are restricted by the distance between those communicating. Assume that there
is a known maximal distance over which our boats can communicate. Networks of this sort
form an algebra of the simple graphs operad in the following way.

Let (X, d) be a metric space, and 0 < L € R. Our boats will be located at points
in this space. The operad Osg has an algebra (Ag 1, o) defined as follows. The set Ay 1, (n)
is the set of pairs (h, f) where h € SG(n) is a simple graph and f: n — X is a function
such that if {v1, v} is an edge in ¢ then d(f(v1), f(v2)) < L. The number L represents the

33

maximal distance over which the boat’s communication channels operate. Notice that this
condition does not demand that all connections within range must be made. An operation
(0,9) € Osa(ny,...,ng;n) acts on a k-tuple (hy, fi) € Agr(n;) by

a(o,9)((h1, f1)s- -5 (e, fr)) = (gUo(ha U~ Uhg), frd--- U fp).

Elements of this algebra are simple graphs in the space X with an upper limit on edge
lengths. When an operation acts on one of these, it tries to put new edges into the graph,
but fails to when the range limit is exceeded [BFMP20].

A characteristic of the construction given in Theorem 2.11 is that elements of
the resulting monoids that correspond to different edges automatically commute with each
other. For example, for a monoid M, the fourth constituent monoid of the ordinary M
network model is I'y;(4) = MS. Then the element (m1,0,0,0,0,0) represents a graph with
one edge with weight m; € M, the element (0,m2,0,0,0,0) represents a graph with a
different edge with weight ms € M, and

(m17 07 07 07 07 O) U (07 ma, 07 07 07 0) = (m19m27 07 07 07 0)
— (0,m2,0,0,0,0) U (m1,0,0,0,0,0).

This commutativity between edges means that networks given by ordinary network
models cannot record information about the order in which edges were added to it. The
ability to record such information about a network is desirable, for example, if one wishes
to model networks which have a limit on the number of connections each agent can make
to other agents.

The degree of a vertex in a simple graph is the number of edges which include
that vertex. The degree of a graph is the maximum degree of its vertices. A graph is said
to have degree bounded by k, or simply bounded degree, if the degree of each vertex
is less than or equal to k. Let By(n) denote the set of networks with n vertices and degree
bound k. One might guess that the family of such networks could form an algebra for the
simple graphs operad.

Question. Does the collection of networks of bounded degree form an algebra of a network
operad? If so, is there such an algebra which is useful in applications?

Specifically, can networks of bounded degree form an algebra of Ogq, the simple
graph operad? Setting two graphs next to each other will not change the degree of any
of the vertices. Overlaying them almost definitely will, which makes defining an action of
SG(n) on Bg(n) less obvious.

Ordinary network models are not sufficient to model this type of network because
the graph monoids it produced could not remember the order that edges were added into a
network. Even if M is a noncommutative monoid, since I'); is a product of several copies
of M, one for each pair of vertices, it cannot distinguish the order that two different edges
touching v; were added to a network if their other endpoints are different.

Instead of taking the product of (g) copies of M, we consider taking the coproduct,
S0 as not to impose any commutativity relations between the edges. Since the lax structure

34

map LI: F(m) x F(n) — F(m + n) associated to a network model F': S — Mon must be a
monoid homomorphism, then

(aUb)U (cUd) = (aUc)U(bUd).

In particular, if we let () denote the the identity of F'(n) for any n, then

This is reminiscent of the Eckmann—Hilton argument (see Appendix A), but notice that the
domains of the operations U and U are not the same. This equation says that elements which
correspond to disjoint edges must commute with each other. Simply taking the coproduct
of (Z) copies of M cannot give the constituent monoids of a network model.

For a collection of monoids {M;};cr, elements of the product monoid which come
from different components always commute with each other. In the coproduct, they never
do. A graph product (in the sense of Green [Gre90]) of such a collection allows one to impose
commutativity between certain components and not others by indicating such relations via a
simple graph. The calculation above shows that the constituent monoids of a network model
must satisfy certain partial commutativity relations. We use graph products to construct
a family of monoids with the right amount of commutativity to both answer the question
above and satisfy the conditions of being a network model. The following theorems are
proven in Section 3.3.

Theorem 3.2. The functor NetMod — Mon defined by F — F(2) has a left adjoint
I'_ Mon: Mon — NetMod.

The fact that this construction is a left adjoint tells us that the network models
constructed are ones in which the only relations that hold are those that follow from the
defining axioms of network models.

A wvariety of monoids is the class of all monoids satisfying a given set of identities.
For example, Mon has subcategories CMon of commutative monoids and GMon of graphic
monoids which are varieties of monoids satisfying the equations

ab=0ba and aba = ab

respectively. Given a variety of monoids V, let NetMody be the subcategory of NetMod
consisting of V-valued network models. We recreate graph products in varieties of monoids
to obtain a more general result.

Theorem 3.3. The functor NetMody — V defined by F — F(2) has a left adjoint
I'_y:V — NetMody.

In particular, if V = CMon, since products and coproducts are the same in CMon,
the ordinary M network model and the CMon varietal M network model are also the same.

35

Note that this does not indicate that I'_), is a complete generalization of I'_ from Theorem
2.11, since I'j; is not an example of I'_ y, when M is not commutative.

The ordinary construction for a network model given a monoid M has constituent
monoids given by finite cartesian powers of M. To include the networks described in the
question above into the theory of network models, we must construct a network model from
a given monoid which does not impose as much commutativity as the ordinary construction
does, specifically among elements corresponding to different edges. The first attempt at a
solution is to use coproducts instead of products. However, in this section we saw that we
cannot create the constituent monoids of a network model simply by taking them to be
coproducts of M instead of products. There must be some commutativity between different
edges, specifically between edges which do not share a vertex.

Given a monoid M, we want to create a family of monoids indexed by N, the nth
of which looks like a copy of M for each edge in the complete graph on n, has minimal com-
mutativity relations between these edge components, but does have commutativity relations
between disjoint edges. Partial commutativity like this can be described with Green’s graph
products, which we describe in Section 3.2.1. The type of graph which describes disjoint-
ness of edges in a graph as we need is called a Kneser graph, which we describe in Section
3.2.2. Besides concerning ourselves with relations between edge components, sometimes we
also want the constituent monoids in a network model to obey certain relations which M
obeys. In Section 3.2.4 we describe varieties of monoids and a construction which produces
monoids in a chosen variety. In Section 3.3 we prove this construction is functorial, and in
Section 3.4 we use this construction to give a positive answer to the question.

3.2 Graph Products

This section is dedicated to constructing the constituent monoids for the network
models we want. In this section there are two different ways that graphs are being used.
It is important that the reader does not get these confused. One way is the graphs which
are elements of the constituent monoids of the network models we are constructing. The
other way we use graphs is to index the Green product (which we define in Section 3.2.1)
to describe commutativity relations in the constituent monoids of the network models we
are constructing.

A network model is essentially a family of monoids with properties similar to the
simple graphs example, so we think of the elements of these monoids as graphs, and we
think of the operation as overlaying the graphs. These monoids have partial commutativity
relations they must satisfy, as we see in Section 2.2. The graphs we use in the Green prod-
uct, the Kneser graphs, are there to describe the partial commutativity in the constituent
monoids.

3.2.1 Green Products

Given a family of monoids {M,},cy indexed by a set V', there are two obvious
ways to combine them to get a new monoid, the product and the coproduct. From an
algebraic perspective, a significant difference between these two is whether or not elements

36

that came from different components commute with each other. In the product they do.
In the coproduct they do not. Green products, or commonly graph products, of groups were
introduced in 1990 by Green [Gre90], and later generalized to monoids by Veloso da Costa
[VelO1]. The idea provides something of a sliding scale of relative commutativity between
components. We follow [FK09] in the following definitions.

By a simple graph G = (V,E), we mean a set V' which we call the set of
vertices, and a set F C (‘2/), which we call the set of edges. A map of simple graphs
f:(V,E) = (V',E') is a function f: V — V' such that if {u,v} € E then {f(u), f(v)} € E'.
Let SimpleGph denote the category of simple graphs and maps of simple graphs.

For a set V', a family of monoids {M,},cv, and a simple graph G = (V, E), the
G Green product (or simply Green product when unambiguous) of { M, },cy, denoted

G(M,), is
G(M,) = (H Mv> /Rc

veV

where R¢ is the congruence generated by the relation
{(mn,nm)|m € M,,n € M,,u,v are adjacent in G}

where the operation in the free product is denoted by concatenation. If G is the complete
graph on n vertices, then G(M,) = [[M,. If G is the n-vertex graph with no edges, then
G(M,) = [M,.

We call each M, a component of the Green product. Elements of G(M,) are
written as expressions as in the free product, m{* ... m;* € G(M,) where the superscript
indicates that m; € M,,. We often consider Green products of several copies of the same
monoid, so this notation allows one to distguish elements coming from different components
of the product, even if they happen to come from the same monoid. The intention and result
of the imposed relations is that for an expression m{"*...m;* of an element, if there is an
i such that {v;,vi41} € E, then we can rewrite the expression by replacing m;*m;"" with
m;{'my". This move is called a shuffle, and two expressions are called shuffle equivalent
if one can be obtained from the other by a sequence of shuffles. An expression mi*...m;*
is reduced if whenever i < j and v; = vj, there exists [with ¢ <[< j and {v;,v} ¢ E.
If two reduced expressions are shuffle equivalent, they are clearly expressions of the same
element. The converse is also true.

Theorem 3.4 ([FK09], Thm. 1.1). Every element of M is represented by a reduced ex-
pression. Two reduced expressions represent the same element of M if and only if they are
shuffle equivalent.

In this section, we use a categorical description of Green products to define a
similar construction in a more general context. The relevant property of Mon that we need
for this generalization is that Mon is a pointed category.

Let C be a category. An object of C which is both initial and terminal is called a
zero object. If C has such an object, C is called a pointed category [Qui67]. For any two
objects A, B of a pointed category, there is a unique map 0: A — B which is the composite
of the unique map from A to the zero object, and the unique map from the zero object

37

to B. If C is a pointed category with finite products, then for two objects A, B of C, the
objects admit canonical maps A — A x B.

So we have the following maps

B
1A y
x B
™A m
B
satisfying the following properties.
TAlA =14 mBip = 1B
mRiga =0 matg =0

This is suggestive of a biproduct, but in a general pointed category A x B is not necessarily
isomorphic to A + B.

In Section 3.3, we use a generalized Green product to construct network models.
A generalized Green product is a colimit of a diagram whose shape is derived from a given
graph. We describe the shapes of the diagrams here with directed multi-graphs. We refer
to them here as quivers to help distinguish them from other variants of graphs and the role
they play in this chapter. A quiver is a pair of sets F/, V, respectively called the set of edges
and set of vertices, and a pair of functions s,t: E — V assigning to each edge its starting
vertex and its terminating vertex respectively. A map of quivers is a pair of functions

E1L>E2

ol

Vi—— VW
fv

such that the s-square and the t-square both commute.
We will use the word cospan to refer to the quiver with the following shape.

e — 0<— @O

Define a functor IC': SimpleGph — Quiv which replaces every edge with a cospan (IC' stands
for ‘insert cospan’). Specifically, given a simple graph (V, E) where E C (g), define the

38

quiver Q1 = Qo where Qo = VUE and Q1 = {(v,e) € V X E|v € e}, then define the source
map s: Q1 — Qo by projection onto the first component, and the target map t: Q1 — Qo
by projection onto the second component. For example, the simple graph

gives the quiver
1 — {1,2} «—— 2

AN l

{1,4} {1,3} {2,3}

N

4

Let G = (V,E) and G' = (V', E’) be simple graphs, and f: G — G’ a map of
simple graphs. Define a map of quivers ICf: IC(G) — IC(G') by ICfy = fy U fr and
ICfi(v,e) = (fv(v), fE(e)).

10y, X% 1o,

IC(G)O TfO) IC(G/)O
This construction gives a coproduct preserving functor IC': SimpleGph — Quiv.

Let F': Quiv — Cat denote the free category (or path category) functor [ML9S§].
Since F' is a left adjoint, it preserves colimits. Notice that any quiver of the form IC(G)
would never have a path of length greater than 1. Thus the free path category on IC(G)
simply has identity morphisms adjoined.

The objects in the category F(IC(G)) come from two places. There is an object
for each vertex of G, and there is an object at the apex of the cospan for each edge in
G. We call these two subsets of objects vertex objects and edge objects. We abuse
notation and refer to the object given by the vertex w by the same name, and similar for
edge objects.

If {M,}yev is a family of monoids indexed by the set V', that means that there
is a functor M: V — Mon from the set V' thought of as a discrete category. Notice that
if G is a simple graph with vertex set V', then the discrete category V is a subcategory of
F(IC(G)). We can then extend the functor M to

D: F(IC(G)) — Mon

39

in the following way. Obviously we let D(u) = M,, for a vertex object u. If {u,v} is an edge
in G, then D({u,v}) = M, x M,. The morphism (u,{u,v}) is sent to the canonical map
M, — M, x M,. For example, for a family of monoids {Mj, ... M4}, we have the following
diagram.

M1—>M1XM2%M2

| ™~ |

My x My My x M3 My x M3
M4 M3

Since there are no non-trivial pairs of composable morphisms in categories of the form
F(IC(G)), nothing further needs to be checked to confirm D is a functor.

Despite the way we are denoting these products, we are not considering them to
be ordered products. Alternatively, we could have used a more cumbersome notation that
does not suggest any order on the factors.

Theorem 3.5. Let V' be a set, {My,},ev be a family of monoids indezed by V, and G =
(V,E) be a simple graph with vertex set V.. The G Green product of M, is the colimit of
the diagram D: F(IC(G)) — Mon defined as above.

G(My) = colimD.

Proof. We show that G(M,) satisfies the necessary universal property. The vertex objects
in the diagram have inclusion maps into the edge objects i, ,: M, — M, x M,, and all the
objects have inclusion maps into G(M,), ju: M, — G(M,) and j,: M, x M, — G(M,)
such that jy, ., 04y = ju. Note that due to the fact that we have unordered products for
objects, there is some redundancy in our notation, namely j, , = juu. If we have a monoid
Q@ and maps f,: M, — Q and fy,: M, x M, — @ such that

fu,v = fv,u
fu,v © Z'u,v = fu:

then we define a map ¢: G(M,) — Q by ¢(mi*...m*) = fu,(m1) ... fu,(my). Since this
map is defined via expressions of elements, Theorem 3.4 tells us that to check this map is
well-defined, we need only check that the values of two expressions that differ by a shuffle
are the same. Let mi" .. mZ" be an expression, and ¢ such that {v;,v;y1} € E.

S(mi m) = fo, (mi) fury (mis1)
= fosvipr (M, Mig1)
= foipr (Mig1) fo, (M)
= ¢(mgyy'm;")
It is clear that

p(mi* .. mp*) = o(mit ..om) e(mim) e(m L mpk),

40

so two shuffle equivalent expressions have the same value under ¢, and ¢ is well-defined. It
is clearly a monoid homomorphism, and has the property ¢ o j, = f, and ¢ o ju o = fu-
To show this map is unique, assume there is another such map ¢: G(M,) — Q. Since
¥ 0 jy = fu, then 1/}(mu) = f(u)7 and

= for(ma) ... fo, (M)

= ¢(mi*...mJ*). O
This result makes it reasonable to generalize Green products in the following way.

Definition 3.6. Let C be a pointed category with finite products and finite colimits, V' a
set, {A,}vev a family of objects of C indexed by V', and G a simple graph with vertex set
V. Let D: F(IC(G)) — C be the diagram defined by v — A,, {u,v} — A, x A,, and the
morphism (u, {u,v}) is mapped to the inclusion A, — A, x A, as above. The G Green
product of {A,},cv is the colimit of D in C,

G¢(A,) = colimD.
If C = Mon, we denote the Green product simply as G(A,).

In Section 3.3, we use this general notion of graph products in varieties of monoids
to construct network models whose constituent monoids are in those varieties. Note that
since F o IC' is a functor, the group Aut(G) of graph automorphisms of G naturally acts on

GC(A,).

3.2.2 Kneser Graphs

We focus here on a special family of simple graphs known as the Kneser graphs
[Lov78]. The Kneser graph KG),, ,, has vertex set (;), the set of m-element subsets of an
n-element set, and an edge between two vertices if they are disjoint subsets. Since a simple
graph is defined as a collection of two-element subsets of an n-element set, the Kneser graph
K@), 2 has a vertex for each edge in the complete graph on n, and has an edge between
every pair of vertices which correspond to disjoint edges. So the Kneser graph KG,, » can be
thought of as describing the disjointness of edges in the complete graph on n. For instance,

the complete graph on 5 is

41

and the corresponding Kneser graph KGs 5 is the Petersen graph:

For sets X,Y and a function f: X — Y, let f[U] = {f(z)|x € U} for U C X. Let Finlnj
denote the category of finite sets and injective functions.

Lemma 3.7. For k € N, there is a functor (;) Finlnj — Finlnj which sends X to ()k() the
set of k-element subsets of X, and injections f: X — Y to the functions (i) ()k() — (3;)

defined by (£)(U) = fU].

Note that this result holds for Inj the category of sets and injective functions, but
we only require Finlnj for our purposes.

Proof. If f: X — Y is an injection, then |f[U]| = |U| for U C X. It then makes sense
to restrict the induced map on power sets to subsets of a fixed cardinality. The map
(D) (7)) — () defined by ({)(U) = f[U] is then well defined. If f[U] = f[V] and a € U,
then f(x) € flU] = f[V], which implies there is a y € V such that f(y) = f(x). Since f is
injective, then x =y € V. Thus U = V by symmetry. O

Let ix and iy denote the following inclusion maps.

X Y
X+Y

Since these maps are injective, they induce maps (Z,ff), (’Z), and we get a map ®x y: ()k{) +
(}l:) — (X ZY) by the universal property in the following way.

42

Lemma 3.8. The functor (;) 1s made lax symmetric monoidal

(<;>,<I>,¢): (Finlnj, +,0) — (Finlnj, +,0)

where the components of ® are defined as above.

Proof. The family of maps {®x y } is clearly a natural transformation. There is no choice for
the map ¢:) — (2) The left and right unitor laws hold trivially. Checking the coherence
conditions for the associator and the symmetry are straightforward computations. O

n

For n,k € N, the simple graph KG,, ; has vertex set V = (k) and edge set
{{u,v} C (‘2/)|u Nov = 0}. If f: m — n is injective, then we get a map ({:) between
the vertex sets of KGy, and KGp . Let {u,v} € (g) be an edge in KGy, ;. Then
flu] N flv] = 0 by injectivity, so {f[u], flv]} is an edge of KG, . An injection f then
induces a map of graphs, denoted KG: KGy,p — KGp . Since ({) is injective, KG
is an embedding. Nothing about this construction requires finiteness of the sets involved,
but our applications only call for finite graphs.

Proposition 3.9. For k € N, there is functor KG_ : Finlnj — SimpleGph which sends n
to KGpp and f:m —n to KGjy.

Not only does KG), ;, embed into K G, , when m < n, but KG,, .+ KG,, ;, embeds
into KGpqn k- We construct the embedding KGy, . + KG), 1. — KGyyqn i by using the lax
structure map from Lemma 3.8 for the vertex map, ®,, p: (T,?) + (Z) — (m;") Restricting
this map to either (') (resp. (})) gives the map (Zg‘) (resp. (Z,g)) which we already know
induces a map of graphs. Thus ®,,, induces a map of graphs, which we call ¥, ;.

Proposition 3.10. The functor KG_j, is made lax (symmetric) monoidal
(KG_ 1, ¥): (Inj,+) — (SimpleGph, +)
where the components of ¥ are defined as above.

Proof. All the necessary properties for W are inherited immediately from &. O

Let (L,A): (Inj,+) — (Cat,+) be the composite L = F o IC o KG_ 5 with the
obvious laxator. Let M be a monoid. Then from the construction given in the previous
subsection, for each n we get a diagram D,,: L(n) — Mon which sends all vertex objects to
M, all edge objects to M x M, and all nontrivial morphisms to inclusions M — M x M.
Taking the colimit of D,, then gives the Green product KG,, 2(M). Note that we identify
constituent monoids with the corresponding submonoid of the graph product when this can
be done without confusion.

Proposition 3.11. Let M, be a (";") family of monoids, and G1 and Ga be graphs with m
and n vertices respectively. Let ax € Mp, 4, with p1,q1 < m and az € My, 4, with pa, g2 > m,
and let @y, az be their values under the canonical inclusions My, — (G1UG2)(Myp4). Then
aias = asai in (Gl L GQ)(Mqu).

Proof. By definition, there is an edge in the Kneser graph KG),4y2 between the vertices
p1,q1 and ps, ga2. This imposes the desired commutativity relation.]

43

3.2.3 Varieties of Monoids

A finitary algebraic theory or Lawvere theory is a category T with finite
products in which every object is isomorphic to a finite cartesian power 2" = [["x of a
distinguished object z [Law63, ALRO03]. An algebra of a theory T, or T-algebra, is a
product preserving functor T — Set. Let T'Alg denote the category of T-algebras with
natural transformations for morphisms. We are primarily concerned with monoids in this
chapter. The theory of monoids Tyen has morphisms m: x @ — 2 and e: 2° — x, which
makes the following diagrams commute.

1zxXm 1, Xe ex1
a3 22 g2 xx 0 == x2 a0 x
mxlg m \ lm/
2 —— T
m

A variety of T-algebras is a full subcategory of T'Alg which is closed under prod-
ucts, subobjects, and homomorphic images. Birkhoff’s theorem implies that this is equiva-
lent to the category T"Alg of algebras of another theory T’ which has the same morphisms,
but satisfies more commutative diagrams [BS81]. For example, commutative monoids are
given by algebras of the theory of commutative monoids Tcmon, Wwhich has morphisms m, e
as in Twon, satisfies the same commutative diagrams as Tyon, but also satisfies the following

commutative diagram

2 by g2

|m
m

X
2 2

where b : x* — z° is the braid isomorphism. We only use varieties of monoids in this
chapter, so we give these “extra” conditions by equations, e.g. commutative monoids are
those which satisfy the equation ab = ba for all elements a,b. We call the extra equations
the defining equations of the variety.

A graphic monoid is a monoid which satisfies the graphic identity: aba = ab for
all elements a,b. Graphic monoids are algebras of a theory Tgmon- A semigroup obeying this
relation is known as a left regular band [MSS20]. The term graphic monoid was introduced
by Lawvere [Law89a]. Let M be a graphic monoid. If we let b be the unit of M, then the
graphic relation says that > = a. Every element of M is idempotent. If a,c € M, then
ca = c if ¢ already has a as a factor.

Graphic monoids are present when talking about types of information where a
piece of information cannot contain the same piece of information twice. A simple example
can be seen in the powerset of a given set X, given the structure of a monoid by union.
Of course, this example is overly simple because the operation is commutative idempotent,
which is stronger than graphic. A more interesting example can be seen by considering the

following simple graph. v
X
(2] (b [c]

We will define a monoid structure on the set M = {1,a,b,c,z,y} in the following way.
First, 1 is a freely adjoined identity element. For p,q € M \ {1}, define pq as follows. Pick a

44

generic point f in p and a generic point g in ¢. Then move a small distance along a straight
line path from f to g. We define the product pg to be the component of the graph you land
in. Here are some example computations:

ab==x aa = a
bc=y b=z
ac =T ca =1y

The last two demonstrate that this monoid is not commutative. More complicated examples
can be constructed by using the same idea for the operation, but applying it to different
spaces.

The following fact is critical in Chapter 2. It follows immediately from the defini-
tions.

Lemma 3.12. Every variety of monoids is a pointed category and has finite colimits.

3.2.4 Varietal Network Models

Our motivation for using graphic monoids is that we use the graphic relation to
model “commitment” in the following way. Let M be a graphic monoid, where we think
of an element of M as a task or list of tasks. If we first commit to doing task z, and then
commit to doing task y, then we have the element zy as our task list, indicating that we
committed to x before y. If we then try to commit to to doing x, the graphic relation saves
us from recording this information twice. The relation also preserves the order in which we
committed to x and y: if = is a task list of the form z = ab, and we have committed to zy,
and then try to commit to be, we get (zy)(be) = (aby)(bec) = a(byb)c = a(by)c = abyc = xyc.

We want to construct a network model from a monoid in a variety V which has
constituent monoids that are also in V. If M is a monoid in a variety V, then each constituent
monoid I'jz(n) is a product of several copies of M, and so is also in V by definition. Thus
the ordinary network model (given in Theorem 2.11) restricted to a variety gives a functor
Y — NetMody, where NetMody, denotes the category of V-valued network models.

The free product of two monoids is a monoid, M + N an element of which is given
by a list with entries in the set M LN such that if two consecutive entries of a list are either
both elements of M or both elements of IV, then the list is identified with the list that is the
same everywhere except that those two entries are reduced to one entry occupied by their
product. Note that the empty list is identified with both the singleton list consisting of the
identity element of M, and the singleton list consisting of the identity element of N. Free
products of monoids gives the coproduct in the category of monoids Mon. Free products
of monoids are very similar to free products of groups, which can be found in most books
introducing group theory [Hun74].

If two monoids M and N are in a variety V, taking their free product will not nec-
essarily produce a monoid in V, i.e. varieties are not necessarily closed under the coproduct
of Mon. It is easy to find an example demonstrating this. Consider IMon, the variety of
idempotent monoids, i.e. monoids satisfying the equation 22 = x for all elements z. The
boolean monoid B is an object in IMon. The free product of B with itself B + B can be

45

generated by elements a and b which correspond to the element 1 in each copy of B. The
element ab € B + B is not idempotent, as abab # ab. However, every variety V does have
coproducts. The coproduct in a variety of monoids is the quotient of the free product by
the congruence relation generated by the variety’s defining equations. In Section 3.3 we
give a construction ¥V — NetMod) which uses colimits in order to impose minimal relations.

Lemma 3.12 tells us that it makes sense to talk about Green products in a variety,
which we call varietal Green products. In the next section, we use varietal Green products
with Kneser graphs to construct network models.

3.3 Free Network Models

In this section, we state and prove the main result of this chapter. It says that
given a monoid M in a variety V, we can construct a network model whose constituent
monoids are also in V, while avoiding to impose commutativity relations when possible. In
the following section, we see how this construction resolves the dilemma presented in the
question.

Let M be a monoid in a variety V. Define I'y7y(n) to be the KG,, o Green product
of (%) copies of M.

Theorem 3.13. For V a variety of monoids, I'_y: V — NetMody is a functor, as given
above. The network model I'yry is called the V-varietal network model for M-weighted
graphs, or just the varietal M network model.

In order to prove this, we must first show that a monoid M gives a network
model, i.e. a lax symmetric monoidal functor. The laxator for Iy is canonically defined,
but perhaps it is not as immediate as the one for the ordinary M network model. We treat
this first before returning to the proof of the main theorem.

Let A and B be objects in a pointed category with finite products and coproducts.
Let pa: AxB — Aand pp: AxB — B denote the canonical projections, andia: A — A+B
and ig: B — A+ B the canonical inclusions. The category CMon of commutative monoids
is such a category. Recall that the operation of a monoid is a monoid homomorphism if and
only if the monoid is commutative. We have

A+ B A+ B A+ B

where * denotes the operation in the commutative monoid A + B, and the dashed arrow
is < i4pa,ippp > given by universal property. The composite of the two maps going
down the middle is the inverse to the canonical map A+ B — A x B. The operation in a
noncommutative monoid is not a monoid homomorphism, but all the above maps still exist
as functions. Recall that we let U denote the operation in the monoids I'y7y(n). There is

46

always a homomorphism ¢y, »: I'nsp(m) + Tary(n) — I'ap(m + n) by universal property
of coproducts. Let

v (Cary(m) +Tary(n)) x (Cagy(m) +Tary(n)) = Tarp(m) + Tarp(n)

denote the monoid operation of the coproduct.

Tary(m) x Tarp(n

/\

TCazv(m) (Cary(m) +Tary(n)) x (Cary(m) +Tazry(n) Tarv(n)

Tary(m) + Tary(n) Tay(m) + Tarp(n) Tuy(m) + Tarp(n)

Tay(m+n)

The monoids I'j7y(n) are constructed specifically so that ¢ o yo < ;0 py,ig0opy > is a
monoid homomorphism despite the fact that ~ is not.

In the proof of the following theorem, we utilize a string diagrammatic calculus
suited for reasoning in a symmetric monoidal category. We refer the reader to Selinger’s
thorough exposition of such string diagramatic languages and their use in category theory
[Selll].

Lemma 3.14. The function I'prp(m) xTaryp(n) — Taryp(m+n) given by ¢o(ijopiUigops)
is a monoid homomorphism. Moreover, the family of maps of this form gives a natural
transformation, denoted L.

Proof. We have the following actors in play:

e the monoid operations Uy: I'yrp(k) for & = m,n,m + n (we leave off the subscripts
below)

e the monoid operation of the coproduct
v (Cary(m) + Pary(n) x (Carv(m) + Tary(n)) = Tary(m) + Tary(n)

e the canonical inclusion maps i1: T'aryp(m) = Tarp(m) = Ty p(n) and io: Tagy(n) —
Loy (m) = Tarp(n)

e the canonical map ¢: I'ysyp(m) + Ty p(n) = Typ(m +n)

47

We represent these string diagramatically (read from top to bottom) as follows. Note
that these are digrams in Set with its cartesian monoidal structure, because the monoid
operations Ui and v are not necessarily monoid homomorphisms.

7”’

We define U: T'arp(m) x T'arp(n) = Tap(m +n) as follows.

(3.1)

Proposition 3.11 gives the following equation.

(3.2)

(3.3)

48

Since i1 and io are homomorphisms, we get the following equations.

49

Let 0 € 5,, and 7 € S,,. Then

Tapv(o+7)(gUh) =Tay(o+7)é(i1(g) Uiz(h))
=Tmy(0)o(ii(g)) UT v (7)p(ia(h))
=Tauy(o(9)) UTamy(7(R)),

so the following diagram commutes.

Tay(m) x Tary(n) —— Tary(m +n)
T,y (o) XFM,V(T)\L iFM,v(UJrT)

Lap(m) x Tap(n) —5= Pay(m +n)

Thus L is a natural transformation. O

Proof of Theorem 3.13. Checking the coherence conditions for U to be a laxator is a straight-
forward computation. Let f: M — N. Then define the natural transformation fy: I'ary —
',y with components (fy),: I'arp(n) = I'yyp(n) given by the universal property. Com-
position is clearly preserved.]

Theorem 3.15. The functor I'_y is left adjoint to E': NetMody, — V where E(F) = F(2)
for (F,®): (S,+) — (V, xX) a V-network model.

Because of this, we call I'js) the free V-valued network model on the monoid
M or the free V network model on M.

Proof. By construction, I'ys(2) = M, so let the unit n = 1;,,: 1y — T'_ 1,(2).

We use the universal property of I'j7) to construct the counit. We define a map
F(2) — F(n) for each vertex in KG, 2, and a map F(2) x F(2) — F(n) for each edge in
KG,, 2.

If i,j < m, then F((1 9)(2 j)): F(n) — F(n). If e is the unit of the monoid
F(n —2), and m € F(2), then ®2,_2(m,e) € F(n). Define maps ¢; j: F(2) — F(n) by

ciy = F((10)(2) (®2.0-2(m,e)).

The intuition here is that m is a value on one edge of the graph, and e is a graph with n — 2
vertices and no edges. Then ®(m,e) is the graph with n vertices, and just one m-valued
edge between vertices 1 and 2. Then the permutation (1 ¢)(2 j) permutes this one-edge
graph to put m between vertex i and vertex j. So the map ¢; ; places the one-edge monoid
M at the i, j-position in the n-vertex monoid.

Define maps ¢; jpq: F(2) X F(2) — F(n) by ¢ jpq(m,m’) = c¢;j(m)ecyq(m’). The
second gives a monoid homomorphism precisely because (F, ®) is a network model.

Then we get a map (er)n: I'p(2),v(n) — F(n) by universal property, which gives
a monoidal natural transformation automatically. That these maps form the components
of a natural transformation can be seen by a routine computation.

50

Notice that

(F-v)m = eryy = oy,
(Coymm =T1y = 1ryy,
(Be)r = E(er) = (er)2 = 1p(2),
(ME)F =1p@) = 1r@)-
Thus, checking that the snake equations hold is routine.]

Example 3.16. In CMon, products and coproducts are isomorphic. In particular, for a
commutative monoid M, I'yr cmon = 'y

Note that this does not indicate that varietal network models completely encom-
pass ordinary network models. If M is a noncommutative monoid,then I'y;cmon is not
defined, but I'y; is.

3.4 Commitment Networks

The motivating example of network models in general is SG, the network model of
simple graphs. By Example 3.16, this network model is an example of the main construction
of this chapter, SG = I'z.cmon- The boolean monoid is not only an object in CMon, it is
also an object in GMon, the variety of graphic monoids. Then we can consider the network
models FB,Mon and FB,GMon-

Example 3.17. Elements of the monoid I'g mon(n) are words ep, 4, - . . €p, ¢, These words
are interpreted as graphs with edges that look like they were built with popsicle sticks, and
if two edges lie directly on top of each other, they are identified. Besides that relation, you
can stack edges as high as you want by placing them between different pairs of vertices, but
sharing one vertex.

There are networks one could imagine building with this popsicle stick intuition
which are not allowed by this formalism. For instance, consider a network with three
nodes and an edge for each pair of nodes, each overlapping exactly one of its neighbors,
forming an Escher-esque ever-ascending staircase. This sort of network is not allowed by
the formalism, since networks are actually equivalence classes of words, where letters have a
definite position relative to each other. This is an important feature for this network model
as it is necessary to guarantee that the procedure in the following example is well-defined,
giving an algebra of the related network operad. What this means in terms of popsicle stick
intuition is that allowed networks are built by placing popsicle sticks one at a time.

Example 3.18. Elements of the I'g gmon(n) are similar to those in the previous example,
except that they must obey the graphic identity, zyxz = xy for all z,y € I'g gmon(n). What
this means in the graphical interpretation is that all edges can be identified with the lowest
occuring instance of an edge on the same vertex pair. This means that these networks in
reduced form have at most as many edges as the complete simple graph with the same
number of edges. Essentially these networks are simple graphs with a partial order on the
edges which respects disjointness of edges.

51

The networks in the previous example have exactly what we need in a network
model to realize networks of bounded degree as an algebra of a network operad.

Example 3.19 (Networks of bounded degree, revisited). The degree of a vertex in
a simple graph is the number of edges in the graph which contain that vertex. For k € N,
we say that a simple graph is k-bounded if all vertices have degree less than or equal to
k. Then we can consider the set Bi(n) of k-bounded simple graphs. We can define an
action of I'g gmon(n) on By(n) in the following way. Let g = e1...e; € I'ggmon(n) and
h € Bi(n). Choose a graph h' € I'z gmon () which has the same edges as h. Define hg = I/,
then define h; = h;_1e; if that is k-bounded, else h; = h;_1. Let hg denote h;, which is a
k-bounded element of I'z gmon(n). Let FgGMon(n) denote the set of k-bounded elements of

I'5.6Mon(n). There is a function s: I'f cyon(n) — Bi(n). So we define hg to be s(h;). This
is independent of the choice of A’ and defines an action of I'z gmon 00 Bj(n).

The networks in the question in Section 3.1 can be represented by simple graphs
with vertex degrees bounded by k. Then By(n) gives an algebra of the operad Op gmon-
This resolves the conflict encountered in the question in Section 3.1. Ordinary network
models could not record the order in which edges were added to a network, which was
necessary to define a systematic way of attempting to add new connections to a network
which has degree limitations on each vertex.

52

Chapter 4

Petri Nets

4.1 Introduction

Petri nets are a widely studied formalism for describing collections of entities of
different types, and how they turn into other entities [GV13, Pet81]. In this chapter, we
combine Petri nets with network models. This is worthwhile because while both formalisms
involve networks, they serve different functions, and are in some sense complementary.

A Petri net can be drawn as a bipartite directed graph with vertices of two kinds:
places, drawn as circles below, and transitions drawn as squares:

t

In applications to chemistry, places are also called species. When we run a Petri net, we
start by placing a finite number of tokens in each place:

éfﬁ

This is called a marking. Then we repeatedly change the marking using the transitions. For
example, the above marking can change to this:

and then this:

i

53

Thus, the places represent different types of entity, and the transitions describe ways that
one collection of entities of specified types can turn into another such collection.

Network models serve a different function than Petri nets: they are a general tool
for working with networks of many kinds. A network model is a lax symmetric monoidal
functor G: S(C') — Cat, where S(C) is the free strict symmetric monoidal category on a set
C. Elements of C represent different kinds of “agents”. Unlike in a Petri net, we do not
usually consider processes where these agents turn into other agents. Instead, we wish to
study everything that can be done with a fixed collection of agents. Any object = € S(C) is
of the form ¢; ® - - - ® ¢,, for some ¢; € C; thus, it describes a collection of agents of various
kinds. The functor G maps this object to a category G(z) that describes everything that
can be done with this collection of agents.

In many examples considered so far, G(z) is a category whose morphisms are
graphs whose nodes are agents of types cy, . .., ¢,. Composing these morphisms corresponds
to overlaying graphs. Network models of this sort let us design networks where the nodes
are agents and the edges are communication channels or shared commitments. In Chapter 2,
the operation of overlaying graphs was always commutative. In Chapter 3 we introduced
more general noncommutative overlay operations. This lets us design networks where each
agent has a limit on how many communication channels or commitments it can handle;
the noncommutativity allows us to take a first come, first served approach to resolving
conflicting commitments.

Here we take a different tack: we instead take G(z) to be a category whose mor-
phisms are processes that the given collection of agents, x, can carry out. Composition of
morphisms corresponds to carrying out first one process and then another.

This idea meshes well with Petri net theory, because any Petri net P determines
a symmetric monoidal category F'P whose morphisms are processes that can be carried
out using this Petri net. More precisely, the objects in F'P are markings of P, and the
morphisms are sequences of ways to change these markings using transitions, e.g.:

Given a Petri net, then, how do we construct a network model G: S(C') — Cat, and
in particular, what is the set C? In a network model the elements of C' represent different
kinds of agents. In the simplest scenario, these agents persist in time. Thus, it is natural
to take C' to be some set of “catalysts”. In chemistry, a reaction may require a catalyst to
proceed, but it neither increases nor decrease the amount of this catalyst present. For a
Petri net, catalysts are species that are neither increased nor decreased in number by any
transition. For example, species a is a catalyst in the following Petri net, so we outline it

54

in red:

Qg 1®

T2

but neither b nor c is a catalyst. The transition 7 requires one token of type a as input
to proceed, but it also outputs one token of this type, so the total number of such tokens
is unchanged. Similarly, the transition 7o requires no tokens of type a as input to proceed,
and it also outputs no tokens of this type, so the total number of such tokens is unchanged.

In Theorem 4.9 we prove that given any Petri net P, and any subset C of the
catalysts of P, there is a network model G: S(C') — Cat. An object € S(C) says how
many tokens of each catalyst are present; G(x) is then the subcategory of F'P where the
objects are markings that have this specified amount of each catalyst, and morphisms are
processes going between these.

From the functor G: S(C') — Cat we can construct a category [G by the Grothendieck
construction. Because G is symmetric monoidal we can make [G into a symmetric monoidal
category by the monoidal Grothendieck construction of Chapter 5. The tensor product in
| G describes doing processes in parallel. The category [G is similar to FP, but it is
better suited to applications where agents each have their own individuality, because F'P
is actually a commutative monoidal category, where permuting agents has no effect at all,
while [G is not so degenerate. In Theorem 4.12 we make this precise by more concretely
describing [G as a symmetric monoidal category, and clarifying its relation to F'P.

There are no morphisms between an object of G(x) and an object of G(z) unless
x = 2/, since no transitions can change the amount of catalysts present. The category F P
is thus a disjoint union, or more precisely a coproduct, of subcategories F'P; where i, an
element of free commutative monoid on C, specifies the amount of each catalyst present.
The tensor product on F'P has the property that tensoring an object in F'P; with one in
FP; gives an object in F'P;;, and similarly for morphisms.

However, in Prop. 4.15 we show that each subcategory F'P; also has its own tensor
product, which describes doing one process and then another while reusing catalyst tokens.
This tensor product makes F'P; into a premonoidal category—an interesting generalization
of a monoidal category which we recall. Finally, in Theorem 4.17 we show that these
monoidal structures define a lift of the functor G: S(C) — Cat to a functor G: S(C) —
PreMonCat, where PreMonCat is the category of strict premonoidal categories.

4.2 Petri Nets

A Petri net generates a symmetric monoidal category whose objects are tensor
products of species and whose morphisms are built from the transitions by repeatedly taking
composites and tensor products. There is a long line of work on this topic starting with
the papers of Meseguer—Montanari [MM90] and Engberg—Winskel [EW90], both dating to
roughly 1990. It continues to this day, because the issues involved are surprisingly subtle

95

[DMMS9, Sas94, Sas95, Sas96, SS05, Mas20]. In particular, there are various kinds of
symmetric monoidal categories to choose from. Following the work of Master and Baez
[BM20] we use ‘commutative’ monoidal categories. These are just commutative monoid
objects in Cat, so their associator:

Qg b’ (a®b) ®c = a® (b®c>7
their left and right unitor:
M I ®a "5 a, pa:a®@I —a,

and even their braiding:
Oab: a®@b—"b®a

are all identity morphisms. While every symmetric monoidal category is equivalent to one
with trivial associator and unitors, this ceases to be true if we also require the braiding
to be trivial. However, it seems that Petri nets most naturally serve to present symmetric
monoidal categories of this very strict sort. Thus, we shall describe a functor from the
category of Petri nets to the category of commutative monoidal categories, which we call
CMonCat:

F': Petri — CMonCat.

To begin, let CMon be the category of commutative monoids and monoid homo-
morphisms. There is a forgetful functor from CMon to Set that sends commutative monoids
to their underlying sets and monoid homomorphisms to their underlying functions. It has
a left adjoint N: Set — CMon sending any set X to the free commutative monoid on X. An
element a € N[X] is formal linear combination of elements of X:

a= g Qg T,
zeX

where the coefficients a, are natural numbers and all but finitely many are zero. The set
X naturally includes in N[X], and for any function f: X — Y, N[f]: N[X]| — N[Y] is the
unique monoid homomorphism that extends f. We often abuse language and use N[X] to
mean the underlying set of the free commutative monoid on X.

Definition 4.1. A Petri net is a pair of functions of the following form:
T $ N[S].

We call T the set of transitions, S the set of places or species, s the source function,
and t the target function. We call an element of N[S]| a marking of the Petri net.

For example, in this Petri net:

we have S = {a,b,c}, T = {7, 72}, and

S(Tl) =a+b t(Tl) =C
s(m) =c t(m) = 20.

The term ‘species’ is used in applications of Petri nets to chemistry. Since the concept of
‘catalyst’ also arose in chemistry, we henceforth use the term ‘species’ rather than ‘places’.

Definition 4.2. A Petri net morphism from the Petri net P to the Petri net P’ is a pair
of functions (f: T — T’, g: S — S’) such that the following diagrams commute:

T —— N T —1— NI[S]

[S]
fl |1t fl |1t

T ——N[$] T —— N[

Let Petri denote the category of Petri nets and Petri net morphisms with composition
defined by

(f.9)o(f,d)=(fof g09).
Definition 4.3. A commutative monoidal category is a commutative monoid object
in (Cat, x). Let CMonCat denote the category of commutative monoid objects in (Cat, x).

More concretely, a commutative monoidal category is a strict monoidal category
for which a ® b = b ® a for all pairs of objects and all pairs of morphisms, and the braid
isomorphism a ® b — b ® a is the identity map.

Every Petri net P = (s,t: T — N[S]) gives rise to a commutative monoidal cate-
gory F'P as follows. We take the commutative monoid of objects Ob(F'P) to be the free
commutative monoid on S. We construct the commutative monoid of morphisms Mor(F P)
as follows. First we generate morphisms recursively:

e for every transition 7 € T' we include a morphism 7: s(7) — t(7);
e for any object a we include a morphism 1,: a — a;

e for any morphisms f: a — b and g: a’ — b’ we include a morphism denoted f+g¢g: a+
a’ — b+ b to serve as their tensor product;

e for any morphisms f: a — b and ¢g: b — ¢ we include a morphism go f: a — ¢ to
serve as their composite.

Then we quotient by an equivalence relation on morphisms that imposes the laws of a
commutative monoidal category, obtaining the commutative monoid Mor(F'P).

Similarly, morphisms between Petri nets give morphisms between their commuta-
tive monoidal categories. Given a Petri net morphism

T ——= N[9]

‘.

T ——= N[9']

57

we define the functor F(f,g): FP — FP' to be N[g] on objects, and on morphisms to be
the unique map extending f that preserves identities, composition, and the tensor product.
This functor is strict symmetric monoidal.

Proposition 4.4. There is a functor F': Petri — CMonCat defined as above.

Proof. This is straightforward; the proof that F'is a left adjoint is harder [Mas20], but we
do not need this here. O

4.3 Catalysts

One thinks of a transition 7 of a Petri net as a process that consumes the source
species s(7) and produces the target species ¢(7). An example of something that can be
represented by a Petri net is a chemical reaction network [BB18, BP17|. Indeed, this is
why Carl Petri originally invented them. A ‘catalyst’ in a chemical reaction is a species
that is necessary for the reaction to occur, or helps lower the activation energy for reaction,
but is neither increased nor depleted by the reaction. We use a modest generalization of
this notion, defining a catalyst in a Petri net to be a species that is neither increased nor
depleted by any transition in the Petri net.

Given a Petri net s,t: T'— N[S], recall that for any marking a € N[S] we have

a= g Az
z€eS

for certain coefficients a, € N. Thus, for any transition 7 of a Petri net, s(7), is the
coefficient of the place z in the source of 7, while #(7), is its coefficient in the target of 7.

Definition 4.5. A species z € S in a Petri net P = (s,¢: T — N[S]) is called a catalyst
if s(7), = t(7), for every transition 7 € T'. Let Scat C S denote the set of catalysts in P.

Definition 4.6. A Petri net with catalysts is a Petri net P = (s,t: T — N[S]) with a
chosen subset C' C S¢at. We denote a Petri net P with catalysts C as (P, C).

Suppose we have a Petri net with catalysts (P, C). Recall that the set of objects
of FP is the free commutative monoid N[C]. We have a natural isomorphism

N[S] = N[C] x N[S \ C].

We write
7o N[S] — N[C]

for the projection. Given any object a € F'P, m¢(a) says how many catalysts of each species
in C occur in a.

Definition 4.7. Given a Petri net with catalysts (P, C) and any i € N[C], let F'P; be the
full subcategory of F'P whose objects are objects a € FP with m¢(a) = i.

58

Morphisms in F'P; describe processes that the Petri net can carry out with a
specific fixed amount of every catalyst. Since no transition in P creates or destroys any
catalyst, if f: @ — b is a morphism in F'P then

mc(a) = mc(b).
Thus, F'P is the coproduct of all the subcategories F'P;:
rpx= [FP
1€N[C]

as categories. The subcategories F'P; are not generally monoidal subcategories because if
a,b € FP and a + b is their tensor product then

mo(a+b) =mc(a) + 7o (b)
so for any ¢, 7 € N[C] we have
a€FP,be FP;=a+bec FPy,

and similarly for morphisms. Thus, we can think of F'P as a commutative monoidal category
‘graded’ by N[C]. But note we are free to reinterpret any process as using a greater amount
of various catalysts, by tensoring it with identity morphism on this additional amount of
catalysts. That is, given any morphism in F'F;, we can always tensor it with the identity
on j to get a morphism in F'P; ;.

Since N[C] is a commutative monoid we can think of it as a commutative monoidal
category with only identity morphisms, and we freely do this in what follows. Network
models rely on a similar but less trivial way of constructing a symmetric monoidal category
from a set C. Namely, for any set C' there is a category S(C') for which:

e Objects are formal expressions of the form
Q- -y
forn € Nand ci,...,¢, € C. When n = 0 we write this expression as I.
e There exist morphisms
f: cl®---®cm—>c'1®---®c;1

only if m = n, and in that case a morphism is a permutation ¢ € S, such that

c;(i):ci foralli=1,...,n.

e Composition is the usual composition of permutations.

In short, an object of S(C) is a list of catalysts, possibly empty, and allowing repetitions.
A morphism is a permutation that maps one list to another list.

As shown in Proposition 2.16, S(C) is the free strict symmetric monoidal category
on the set C. There is thus a strict symmetric monoidal functor

p: S(C) = N[C]

59

sending each object ¢; ®- - -®c,, to the object ¢+ - -+c¢,, and sending every morphism to an
identity morphism. This can also be seen directly. In what follows, we use this functor p to
construct a lax symmetric monoidal functor G: S(C') — Cat, where Cat is made symmetric
monoidal using its cartesian product.

Proposition 4.8. Given a Petri net with catalysts (P,C), there exists a unique functor
G: S(C) — Cat sending each object v € S(C) to the category F'Py,y and each morphism in
S(C) to an identity functor.

Proof. The uniqueness is clear. For existence, note that since N[C| has only identity mor-
phisms there is a functor H: N[C] — Cat sending each object x € N[C] to the category
FPy(y). If we compose H with the functor p: S(C) — N[C] described above we obtain the
functor G. O

Theorem 4.9. The functor G: S(C) — Cat becomes lax symmetric monoidal with the lax
structure map
Poy: Flpa) X FBp(y) = FPyaey)

given by the tensor product in F'P, and the map
¢:1— FP

sending the unique object of the terminal category 1 € Cat to the unit for the tensor product
in F'P, which is the object 0 € F'Fy.

Proof. Recall that G is the composite of p: S(C) — N[C] and H: N[C] — Cat. The functor
p is strict symmetric monoidal. The functor p is strict symmetric monoidal. One can check
that the functor H becomes lax symmetric monoidal if we equip it with the lax structure
map

FP; x FP; — FP;y;

given by the tensor product in F'P, and the map
1—F P[)

sending the unique object of 1 € Cat to the unit for the tensor product in F'P, namely
0 € N[S] = Ob(F'P). Composing the lax symmetric monoidal functor H and with the strict
symmetric monoidal functor p, we obtain the lax symmetric monoidal functor G described
in the theorem statement. O

We defined C-colored network model in Chapter 2 to be a lax symmetric
monoidal functor from S(C) to Cat.

Definition 4.10. We call the C-colored network model G: S(C') — Cat of Theorem 4.9 the
Petri network model associated to the Petri net with catalysts (P, C).

60

Example 4.11. The following Petri net P has species S = {a,b,c,d,e} and transitions
T ={m,m}:

@;*:n$@> a;@

Species a and b are catalysts, and the rest are not. We thus can take C' = {a, b} and obtain
a Petri net with catalysts (P, C'), which in turn gives a Petri network model G: S(C) — Cat.
We outline catalyst species in red, and also draw the edges connecting them to transitions
in red.

Here is one possible interpretation of this Petri net. Tokens in ¢ represent people
at a base on land, tokens in d are people at the shore, and tokens in e are people on a
nearby island. Tokens in a represent jeeps, each of which can carry two people at a time
from the base to the shore and then return to the base. Tokens in b represent boats that
carry one person at a time from the shore to the island and then return.

Let us examine the effect of the functor G: S(C') — Cat on various objects of S(C').
The object a € S(C) describes a situation where there is one jeep present but no boats.
The category G(a) is isomorphic to F X, where X is this Petri net:

O==1"==0) O

That is, people can go from the base to the shore in pairs, but they cannot go to the island.
Similarly, the object b describes a situation with one boat present but no jeeps, and the
category G(b) is isomorphic to F'Y', where Y is this Petri net:

O

Now people can only go from the shore to the island, one at a time.
The object a ® b € S(C') describes a situation with one jeep and one boat. The
category G(a ® b) is isomorphic to F'Z for this Petri net Z:

@j:ni;@> TQ>@

Now people can go from the base to the shore in pairs and also go from the shore to the
island one at a time.

Surprisingly, an object € S(C) with additional jeeps and/or boats always pro-
duces a category G(x) that is isomorphic to one of the three just shown: G(a),G(b) and
G(a®Vb). For example, consider the object b® b € S(C'), where there are two boats present
but no jeeps. There is an isomorphism of categories

b Gb) = G D)

defined as follows. Recall that G(b) = F'P, and G(b® b) = F Py, where F'P, and F Py,
are subcategories of F'P. The functor

—+b: FPy— FPyyy

61

sends each object x € F'P, to the object x 4+ b, and sends each morphism f: x — y in F' P,
to the morphism 1, + f: b+« — b+ y. That this defines a functor is clear; the surprising
part is that it is an isomorphism. One might have thought that the presence of a second
boat would enable one to carry out a given task in more different ways.

Indeed, while this is true in real life, the category F'P is commutative monoidal,
so tokens of the same species have no ‘individuality’: permuting them has no effect. There
is thus, for example, no difference between the following two morphisms in F Py p:

e using one boat to transport one person from the base to shore and another boat to
transport another person, and

e using one boat to transport first one person and then another.

It is useful to draw morphisms in F'P as string diagrams, since such diagrams
serve as a general notation for morphisms in monoidal categories [JS91]. For expository
treatments, see [BS11, Selll]. The rough idea is that objects of a monoidal category are
drawn as labelled wires, and a morphism f: 21 ® -+ @ &y, = Y1 ® -+ ® Yy, is drawn as a
box with m wires coming in on top and n wires coming out at the bottom. Composites of
morphisms are drawn by attaching output wires of one morphism to input wires of another,
while tensor products of morphisms are drawn by setting pictures side by side. In symmetric
monoidal categories, the braiding is drawn as a crossing of wires. The rules governing string
diagrams let us manipulate them while not changing the morphisms they denote. In the case
of symmetric monoidal categories, these rules are well known [JS91, Selll]. For commutative
monoidal categories there is one additional rule:

This says both that * ® y = y ® x and that the braiding 0, ,: * ® y — y ® x is the identity.
Here is the string diagram notation for the equation we mentioned between two
morphisms in F'P:

b b d d b b d d
T2 T2
T2 T2

b b e e b b e e

62

We draw the object b (standing for a boat) in red to emphasize that it serves as a catalyst.
At left we are first using one boat to transport one person from the base to shore, and
then using another boat to transport another person. At right we are using the same
boat to transport first one person and then another, while another boat stands by and
does nothing. These morphisms are equal because they differ only by the presence of the
braiding op4: b+ b — b+ b in the left hand side, and this is an identity morphism.

The above example illustrates an important point: in the commutative monoidal
category F'P, permuting catalyst tokens has no effect. Next we construct a symmetric
monoidal category [G in which permuting such tokens has a nontrivial effect. One reason
for wanting this is that in applications, the catalyst tokens may represent agents with their
own individuality. For example, when directing a boat to transport a person from base to
shore, we need to say which boat should do this. For this we need a symmetric monoidal
category that gives the catalyst tokens a nontrivial braiding.

To create this category, we use the symmetric monoidal Grothendieck construction
of Chapter 5. Given any symmetric monoidal category X and any lax symmetric monoidal
functor F': X — Cat, this construction gives a symmetric monoidal category [F equipped
with a functor (indeed an opfibration) [F — X. In Chapter 2, we used this construction
to build an operad from any network model, whose operations are ways to assemble larger
networks from smaller ones. Now this construction has a new significance.

Starting from a Petri network model G: S(C') — Cat, the symmetric monoidal
Grothendieck construction gives a symmetric monoidal category [G in which:

e an object is a pair (z,a) where x € S(C) and a € F'P(,).

e a morphism from (z,a) to (2/,d’) is a pair (o, f) where o: x — 2/ is a morphism in
S(C) and f: a — o’ is a morphism in FP.

e morphisms are composed componentwise.

e the tensor product is computed componentwise: in particular, the tensor product of
objects (z,a) and (2/,d’) is (x ® 2/, a + d').

e the associators, unitors and braiding are also computed componentwise (and hence
are trivial in the second component, since F'P is a commutative monoidal category).

The functor [G — S(C) simply sends each pair to its first component.

This is simpler than one typically expects from the Grothendieck construction.
There are two main reasons: first, G maps every morphism in S(C') to an identity morphism
in Cat, and second, the lax structure map for G is simply the tensor product in F'P. However,
this construction still has an important effect: it makes the process of switching two tokens
of the same catalyst species into a nontrivial morphism in [G. More formally, we have:

Theorem 4.12. If G: S(C') — Cat is the Petri network model associated to the Petri net
with catalysts (P, C), then [G is equivalent, as a symmetric monoidal category, to the full
subcategory of S(C) x FP whose objects are those of the form (x,a) with x € S(C) and
a € FPp(:):) .

63

Proof. One can read this off from the description of [G given above. O

The difference between [G and FP is that the former category keeps track of
processes where catalyst tokens are permuted, while the latter category treats them as
identity morphisms. In the terminology of Glabbeek and Plotkin, [G implements the
‘individual token philosophy’ on catalysts, in which permuting tokens of the same catalyst is
regarded as having a nontrivial effect [vGP09]. By contrast, F'P implements the ‘collective
token philosophy’, where all that matters is the number of tokens of each catalyst, and
permuting them has no effect.

There is a map from [G to FP that forgets the individuality of the catalyst
tokens. A morphism in [G is a pair (o, f) where o: © — 2’ is a morphism in S(C') and
f:a— d is a morphism in FP with a € G(z),a’ € G(2'). There is a symmetric monoidal
functor

/G — FP

that discards this extra information, mapping (o, f) to f. The symmetric monoidal Grothendieck
construction also gives a symmetric monoidal opfibration

JG = S(0)
which maps (o, f) to o, by Chapter 5.

Example 4.13. Let (P, C) be the Petri net with catalysts in Ex. 4.11, and G: S(C') — Cat
the resulting Petri network model. In [G the following two morphisms are not equal:

NV SN
T # <T
b b/ \e e b z,/ \e e

because the braiding of catalyst species in [G is nontrivial. This says that in [G we
consider these two processes as different:

e using one boat to transport one person from the base to shore and another boat to
transport another person, and

e using one boat to transport first one person and then another.

64

On the other hand, in [G we have

b b d d b b d d
T2 T2
T2 T2

b b e e b b e e

because these morphisms differ only by two people on the shore switching place before they
board the boats, and the braiding of non-catalyst species is the identity. In short, the [G
construction implements the individual token philosophy only for catalyst tokens; tokens of
other species are governed by the collective token philosophy.

4.4 Premonoidal Categories

We have seen that for a Petri net P, a choice of catalysts C' lets us write the
category F'P as a coproduct of subcategories F'P;, one for each possible amount i € N[C]
of the catalysts. The subcategory F'P; is only a monoidal subcategory when ¢ = 0. Indeed,
only F'Py contains the monoidal unit of F'P. However, we shall see that each subcategory
F'P; can be given the structure of a premonoidal category, as defined by Power and Robinson
[PRI7]. We motivate our use of this structure by describing two failed attempts to make
FP; into a monoidal category.

Given two morphisms in F'P; we typically cannot carry out these two processes
simultaneously, because of the limited availability of catalysts. But we can do first one and
then the other. For example, imagine that two people are trying to walk through a doorway,
but the door is only wide enough for one person to walk through. The door is a resource
that is not depleted by its use, and thus a catalyst. Both people can use the door, but not
at the same time: they must make an arbitrary choice of who goes first.

We can attempt to define a tensor product on F'P; using this idea. Fix some
amount of catalysts i € N[C]. Objects of F'P; are of the form i 4+ a with a € N[S — C]. On
objects we define

(i+a)®; (i+d)=i+a+d.
The unit object for ®; is therefore i + 0, or simply ¢. For morphisms

frita—i+0
fliivad =i+l

we define

fRif'=(f+1y)o(la+f).

65

The tensor product f ®; f' = (f + 1p) o (14 + f’) of morphisms in F'P; involves an
arbitrary choice: namely, the choice to do f’ first. This is perhaps clearer if we draw this
morphism as a string diagram in F'P.

a a’ 7

b/

/f
i b v

If instead we choose to do f first, we can define a tensor product ;® which is the same on
objects but given on morphisms by

fio f'=0Qe+ f)o(f+1a).

It looks like this:

7 a a

\f

! \
b i i

Unfortunately, neither of these tensor products makes F'P; into a monoidal category! Each
makes the set of objects Ob(F P;) and the set of morphisms Mor(F P;) into a monoid in such
a way that the source and target maps s,¢: Mor(F'P;) — Ob(F'F;), as well as the identity-
assigning map i: Ob(F P;) — Mor(F' P;), are monoid homomorphisms. The problem is that
neither obeys the interchange law, so neither of these tensor products defines a functor from
FP;, x FP; to F'P;. For example,

(1@ fo(f@il) # (f@il)o (1@ f).

The other tensor product suffers from the same problem.

What is going on here? It turns out that F'P; is a ‘strict premonoidal category’.
While these structures first arose in computer science [PR97], they are also mathematically
natural, for the following reason. There are only two symmetric monoidal closed structures

66

on Cat, up to isomorphism [FKL80]. One is the the cartesian product. The other is
the ‘funny tensor product’ [Web13]. A monoid in Cat with its cartesian product is a strict
monoidal category, but a monoid in Cat with its funny tensor product is a strict premonoidal
category. The funny tensor product COD of categories C and D is defined as the following
pushout in Cat:

C()XD()&C()X'D

I

C x Dy —— COD

Here Cy is the subcategory of C consisting of all the objects and only identity morphisms,
i: Cog — C is the inclusion, and similarly for j: Dy — D. Thus, given morphisms f: x — y
in C and f’: 2’ — 3’ in C, the category C1D in contains a square of the form

O 22, Oy’

fDll lfDl

/ / /
nyW&;Dy,

but in general this square does not commute, unlike the corresponding square in C x D.

Definition 4.14. A strict premonoidal category is a category C equipped with a functor
X: COC — C that obeys the associative law and an object I € C that serves as a left and
right unit for X.

Given two morphisms f: x — y, f': 2’ — ¢/ in a strict premonoidal category C we

obtain a square

c®a 2 x Xy

fﬁli lf&l

/ / /
x&ngp@y,

but this square may not commute. There are thus two candidates for a morphism from
x X2’ to yXy'. When these always agree, we can make C monoidal by setting f X f’
equal to either (and thus both) of these candidates. We shall give F'P; a strict premonoidal
structure where these two candidates do not agree: one is f ®; f’ while the other is f;® f’.
This explains the meaning of these two failed attempts to give F'P; a monoidal structure.

Thanks to the description of CLIC as a pushout, to know the tensor product X in
a strict premonoidal category C it suffices to know x Xy, z X f and f Xy for all objects
x,y and morphisms f of C. (Here we find it useful to write z X f for 1, X f and f Xy for
fX1,.) In the case at hand, we define

on objects by setting
(i+a)X;(i+d)=i+a+d

67

for all a,a’ € N[S — (], while for morphisms

frita—i+b
fliivad =i+l

we set

a®f'=f+1, [fRd=[f+1x
Proposition 4.15. The tensor product X; makes F P; into a strict premonoidal category.

Proof. This can be checked directly, but this is also a special case of a construction in
Power and Robinson’s paper on premonoidal categories [PR97, Ex. 3.4]. They describe a
construction, sometimes called ‘linear state passing’ [MS14], that takes any object i in any
symmetric monoidal category C and yields a premonoidal category C; where objects are of
the form 7 ® ¢ for ¢ € C' and morphisms are morphisms in C of the form f:i®c —i® .
We are considering the special case where C' = FP, and because F'P is commutative
monoidal the resulting premonoidal category is strict: all the coherence isomorphisms are
identities. O

Finally, we show that the tensor products X; on the categories F'P; let us lift our
network model G from Cat to the category of strict premonoidal categories.

Definition 4.16. Let PreMonCat be the category of strict premonoidal categories and
strict premonoidal functors, meaning functors between strict premonoidal categories
that strictly preserve the tensor product. Let U: PreMonCat — Cat denote the forgetful
functor which sends a strict premonoidal category to its underlying category.

Theorem 4.17. The network model G: S(C) — Cat lifts to a functor G: S(C') — PreMonCat:

PreMonCat

/l

—> Cat

where G(z) = F Py, with the strict premonoidal structure described in Prop. 4.15.

Proof. Since G sends each morphism in S(C') to an identity functor, so must G. O

68

Chapter 5

Monoidal Grothendieck
Construction

5.1 Introduction

The Grothendieck construction [Gro71] exhibits one of the most fundamental rela-
tions in category theory, namely the equivalence between contravariant pseudofunctors into
Cat and fibrations. In previous chapters, we have described how the to construct a total
category, denoted [F, from a functor of the form F': X°P — Cat. Actually, we really could
have been using pseudofunctors, since Cat is more naturally thought of as a 2-category. We
refer to pseudofunctors of the form F': X°P — Cat as indezed categories. The construction
of [F from a given indexed category essentially forgets the distinction between the cate-
gories F'xz for x € X, and incorporates the functors F'f: F'y — Fx as maps between the
objects of F'ly and Fx. The distinction between these categories could be remembered via
a fibration, a special sort of functor P: [F — X, which tells you how to take preimage
categories of the objects, P~!(z), and turn certain maps in | F into functors between the
preimage categories. For a general fibration P: A — X, the category X is called the base
category and the category A is called the total category. For an object x € X, the preimage
category P~!(z) is called the fibre of P over x. A fibration is precisely what is needed
to reconstruct all the data in the indexed category from its total category. Indeed, the
Grothendieck construction gives an equivalence between the 2-categories 1Cat of indexed
categories, and Fib of fibrations. This equivalence allows us to move between the worlds of
indexed categories and fibred categories, providing access to tools and results from both. We
recall the basic theory of fibrations, indexed categories, and the Grothendieck construction
in Appendix C.1.

Due to the importance of the Grothendieck construction, it is only natural that one
would be interested in extra structure these objects may have, and how the correspondence
extends. In particular, a version which handles monoidal structures on the various categories
in play could potentially be very useful, as monoidal categories are of central interest in
both pure and applied category theory. There are several categories to consider as equipped
with monoidal structures in this scenario: fibers P~1(z) of a fibration P: A — X, its
base category X, its total category A, the indexing category X of an indexed category

69

F: X°° — Cat, and the categories F'z indexed by F. Of course these options are not
really all distinct. The base of the fibrations correspond to the indexing category under the
equivalence, and the fibres correspond to the individual categories selected by the indexed
category. This boils our options down to two monoidal variants: fibre-wise, and global.

In the first variant—the fibre-wise approach—the fibres are equipped with a monoidal
structure, and the reindexing functors are equipped with a strict monoidal structure. The
additional structure this gives to the corresponding indexed categories turns them into
pseudofunctors into MonCat, which were called indexed monoidal categories by Hofstra and
de Marchi [HMOG6]. In the second variant—the global approach—the total category and the
base category of the fibration are each equipped with the structure of a monoidal category,
and the fibration is equipped with a strict monoidal structure. The corresponding structure
equipped to the related indexed category is a little less obvious. The indexing category is
equipped with a monoidal structure as in the fibration side of the picture, and the pseud-
ofunctor is now equipped with the structure of a lax monoidal structure into Cat with its
cartesian structure. We call these monoidally indexed categories or just monoidal indexed
categories.

Both of these variants can be seen as special cases of a much more general phe-
nomenon. Pseudomonoids are a categorification of monoid objects internal to a monoidal
category. It would be reasonable to call it “monoidal category internal to a monoidal
2-category”. We can see both of the monoidal variants of both fibrations and indexed cat-
egories described above as examples of pseudomonoids in certain 2-categories of fibrations
or indexed categories.

The 2-category ICat(X) of indexed categories over a fixed base category has finite
products, and thus a cartesian monoidal structure. Pseudomonoids taken with respect to
this monoidal structure are precisely pseudofunctors X°? — MonCat, i.e. the fibre-wise
monoidal indexed categories described above. Similarly, the 2-category Fib(X') of fibrations
over a fixed base category has a cartesian monoidal structure, for which pseudomonoids are
precisely the fibre-wise monoidal fibrations described above.

The 2-category ICat of indexed categories over different base categories has finite
products, and thus a cartesian monoidal structure. Pseudomonoids taken with respect to
this monoidal structure are precisely lax monoidal pseudofunctors (X°P, ®) — (Cat, x),
i.e. the global monoidal indexed categories described above. Similarly, the 2-category Fib
of fibrations over different base categories has a cartesian monoidal structure, for which
pseudomonoids are precisely the global monoidal fibrations described above.

An immediate consequence of this perspective on these objects is that the Grothendieck
construction lifts naturally into both settings. The 2-category of fibre-wise monoidal fibra-
tions is equivalent to the 2-category of fibre-wise monoidal indexed categories, c.f. The-
orem 5.8. Similarly, the 2-category of global monoidal fibrations is equivalent to the 2-
category of global monoidal indexed categories, c.f. Theorem 5.11.

When X is cartesian monoidal, a global monoidal structure can be constructed
from fibre-wise monoidal data, and vice versa, c.f. Theorem 5.13. We use our high-level
perspective to give a new proof of the result of Shulman giving an equivalence between
fibre-wise monoidal indexed categories and global monoidal fibrations over cartesian base
categories [Shu08].

70

The fact that the monoidal Grothendieck construction naturally arises in diverse
settings is what motivated the theoretical clarification presented here. We gather a few
examples in the last section of the chapter to exhibit the various constructions concretely,
and we are convinced that many more exist and would benefit from such a viewpoint. The
examples include standard (op)fibrations such as the (co)domain (op)fibration and families
classified in their monoidal contexts, as well as certain special algebraic cases of interest such
as monoid-(co)algebras as objects in monoidal Grothendieck categories. Moreover, global
categories of (co)modules for (co)monoids in any monoidal category, as well as (co)modules
for (co)monads in monoidal double categories also naturally fit in this context. Finally,
certain categorical approaches to systems theory employ algebras for monoidal categories,
namely monoidal indexed categories, as their basic compositional tool for nesting of systems;
clearly these also fall into place, giving rise to total monoidal categories of systems with
new potential to be explored.

In Section 5.2 and Section 5.3, we give the fibre-wise and global monoidal versions
of fibrations and indexed categories. In the first version, the fibers are equipped with
a monoidal structure. In the second, the base and total categories are monoidal, and the
fibration is (strict) monoidal. In Section 5.4, we lift the Grothendieck construction into these
monoidal settings as well. In Section 5.5, we give a detailed description of the monoidal
structures given by the correspondences.

5.2 Monoidal Fibres and Monoidal Fibrations

We begin by describing the two monoidal variants of fibrations. This requires
familiarity with notions such as monoidal 2-categories, pseudomonoids, and the 2-categories
Fib and Fib(X). The 2-categories Fib and OpFib of (op)fibrations over arbitrary bases,
explained in Appendix C.1, have a cartesian monoidal structure inherited from Cat?. For
two fibrations P and Q, their product in Cat?

PxQ@Q:AxB—Xx)Y (5.1)

is also a fibration, where a cartesian lifting is a pair consisting of a P-lifting and a Q-lifting;
similarly for opfibrations. The monoidal unit is the trivial (op)fibration 17: 1 — 1. Since
the monoidal structure is cartesian, they are both symmetric monoidal 2-categories. We
refer to a pseudomonoid in (Fib, X, 11) as a monoidal fibration. By the following result,
this aligns with the common notion of monoidal fibration [Shu08].

Proposition 5.1. A monoidal fibration P: A — X is a fibration for which both the total
A and base category X are monoidal, P is a strict monoidal functor and the tensor product
®4 of A preserves cartesian liftings.

Proof. The multiplication and unit are fibred 1-cells p = (®4,®x): P x P — P and
€= (I4,Ix): 1 — P displayed as follows.

Ax A 245 4 and 145 A
PxPl lp lll lp (5.2)
XAXxX — X 1 — X
®x Ix

71

A morphism (¢1,¢2) in A x A is P x P-cartesian if and only if ¢; and ¢2 are both P-
cartesian. The condition of (® 4, ®x) forming a fibred 1-cell tells us precisely that ¢; ® 4 2
is P-cartesian. The pieces of associativity and unitality 2-cells corresponding to A and to
X give precisely the associativity and unitality structures for each to be given the structure
of a monoidal category. The functor P is strict with respect to these monoidal structures
on A and X due to the fact that the diagrams above commute. O

A monoidal fibred 1-cell between two monoidal fibrations P: A — X and
Q: B — Y is a (strong) morphism of pseudomonoids between them, as defined in Ap-
pendix B.

Proposition 5.2. A monoidal fibred 1-cell between two monoidal fibrations P and Q) is a
fibred 1-cell (H, F') where both functors are monoidal, (H,®,¢o) and (F,,o), such that

Q(¢ap) = Ypa,pp and Qoo = Vo.

Proof. A monoidal fibred 1-cell amounts to a fibred 1-cell, i.e. a commutative square

A2, B
Pl l@ (5.3)

X*>F Yy

where H preserves cartesian liftings, along with invertible 2-cells Equation (B.7) in Fib
satisfying Equation (B.8). By Equation (C.6), these are fibred 2-cells

i
Z% \4
/”\

e
AT
s S

where ¢ and i are natural isomorphisms with components

PxP

Gap: Ha®@ Hb = H(a®b), s, Fro Fy = F(zx®y)

72

such that ¢ is above 1, i.e. the following diagram commutes:

Q(Ha ® Hb) —22" , QH(a ®b)

Equation (52)H HEquation (5.3)
QHa® QHb FP(a®b)
Equation (53)H HEquation (5.2)

FPa® FPb ——— F(Pa® Pb)
Ypa,Pb

Similarly, ¢o and vy have single components ¢g: Ig — H(I4) and g: [y — F(Iy) such
that Q(¢o) = 1. These two conditions in fact say that the identity transformation, a.k.a.
commutative square Equation (5.3) is a monoidal one, as expressed in [Shu08, 12.5]. The
relevant axioms dictate that (¢, ¢o) and (1,vg) give H and F the structure of strong
monoidal functors. O

For lax or oplax morphisms of pseudomonoids in Fib, we obtain appropriate notions
of monoidal fibred 1-cells, where the top and bottom functors of Equation (5.3) are lax or
oplax monoidal respectively.

Finally, a monoidal fibred 2-cell is a 2-cell between morphisms (H, F') and
(K, Q) of pseudomonoids P, @ in Fib.

Proposition 5.3. A monoidal fibred 2-cell between two monoidal fibred 1-cells is an ordi-
nary fibred 2-cell (a, 3) where both natural transformations are monoidal.

Proof. Unpacking the definition, we see that a monoidal fibred 2-cell is a fibred 2-cell as
described in Appendix C.1

A

]

X

satisfying the axioms Equation (B.9). These amount to the fact that both § and « are
monoidal natural transformations between the respective lax monoidal functors.]

:

H
— s 5
K

«—
Q

:

F
| o
G

We denote by PsMon(Fib) = MonFib the 2-category of monoidal fibrations, monoidal
fibred 1-cells and monoidal fibred 2-cells. By changing the notion of morphisms between
pseudomonoids to lax or oplax, we obtain 2-categories MonFibj,, and MonFib,,;. There
are also 2-categories BrMonFib and SymMonFib of braided (resp. symmetric) monoidal
fibrations, braided (resp. symmetric) monoidal fibred 1-cells and monoidal fibred
2-cells, defined to be BrPsMon(Fib) and SymPsMon(Fib) respectively; see Proposition B.3.

Dually, we have appropriate 2-categories of monoidal opfibrations, monoidal
opfibred 1-cells and monoidal opfibred 2-cells and their braided and symmetric vari-
ations, MonOpFib, BrMonOpFib and SymMonOpFib. All the structures are constructed

73

dually, where a monoidal opfibration, namely a pseudomonoid in the cartesian monoidal
(OpFib, x,11), is a strict monoidal functor such that the tensor product of the total category
preserves cocartesian liftings.

All the above 2-categories have sub-2-categories of monoidal (op)fibrations over
a fixed monoidal base (X,®,I), e.g. MonFib(Xx') and MonOpFib(X). The morphisms are
monoidal (op)fibred functors, i.e. fibred 1-cells of the form (H,1y) with H monoidal,
and the 2-cells are monoidal (op)fibred natural transformations, i.e. fibred 2-cells of
the form (3, 1;,) with 8 monoidal. These 2-categories correspond to the ‘global’ monoidal
part of the story.

Moreover, the above constructions can be adjusted accordingly to the context of
split fibrations. Explicitly, the 2-category PsMon(Fibs) = MonFibg has as objects monoidal
split fibrations, namely split fibrations P: A — X between monoidal categories which are
strict monoidal functors and ® 4 strictly preserves cartesian liftings (compare to Proposi-
tion 5.1). Furthermore, the hom-categories MonFibs(P, Q) between monoidal split fibrations
are full subcategories of MonFib(P, @) spanned by the monoidal fibred 1-cells which are split
as fibred 1-cells, namely (H, F) as in Proposition 5.2 where H strictly preserves cartesian
liftings.

We end this section by considering a different monoidal object in the context of
(op)fibrations, starting over from the usual 2-categories of (op)fibrations over a fixed base
X, (op)fibred functor and (op)fibred natural transformations Fib(X") and OpFib(X’). Notice
that contrary to the earlier devopment, there is no monoidal structure on X. Both these
2-categories are also cartesian monoidal, but in a different manner than Fib and OpFib, due
to the cartesian monoidal structure of Cat/X’; see for example [Jac99, 1.7.4]. Explicitly, for
fibrations P: A — X and Q: B — X, their tensor product PX (@ is given by any of the two
equal functors to X from the following pullback

AXxB—— A

l - PmJ (5.4)

—>X

since fibrations are closed under pullbacks and of course composition. The monoidal unit
isly: X —» X.

A pseudomonoid in (Fib(X),X,1y) is an ordinary fibration P: A — X equipped
with two fibred functors (u,1x): PR P — P and (e, 1x): 1x — P displayed as

Axy A —E 4 X — A

PN

along with invertible fibred 2-cells satisfying the usual axioms. In more detail, the pullback
A xx A consists of pairs of objects of A which are in the same fibre of P, and P X P
sends such a pair to their underlying object defining their fibre. The functor p maps any
(a,b) € A, to some m(a,b) ;== a®,b € A, and the map € sends an object x € X’ to a chosen

74

one, I, in its fibre. The invertible 2-cells and the axioms guarantee that these maps define
a monoidal structure on each fibre A,, providing the associativity, left and right unitors.
The fact that pu and € preserve cartesian liftings translate into a strong monoidal structure
on the reindexing functors: for any f: z — y and a,b € Ay, ffa ®; f*b = f*(a ®, b) and
Iy, = f*(1y).

A (lax) morphism between two such fibrations is a fibred functor Equation (C.4)
such that the induced functors H,: A, — B, between the fibres as in Equation (C.5) are
(lax) monoidal, whereas a 2-cell between them is a fibred natural transformation 5: H = K
Equation (C.7) which is monoidal when restricted to the fibers, 8z|a,: Hy = K. In this
way, we obtain the 2-category PsMon(Fib(X)) and dually PsMon(OpFib(X)). These 2-
categories correspond to the ‘fibrewise’ monoidal part of the story.

Finally, taking pseudomonoids in the 2-category of split fibrations over a fixed
base, we obtain the 2-category PsMon(Fibs(X')) with objects split fibrations equipped with a
fibrewise tensor product and unit as above, but now the reindexing functors strictly preserve
that monoidal structure since the top functors of Equation (5.5) strictly preserve cartesian
liftings: f*a®; f*b = f*(a®yb) and I, = f*(I,). Moreover, PsMon(Fib,(X))(P, Q) is the full
subcategory of PsMon(Fib(X'))(P, Q) spanned by split fibred functors, namely H: A — B
which strictly preserve cartesian liftings but still H, are monoidal functors between the
monoidal fibres as before.

As is evident from the above descriptions, the 2-categories MonFib(X') and PsMon(Fib(X))
are different in general. A monoidal fibration over X is a strict monoidal functor, whereas a
pseudomonoid in fixed-base fibrations is a fibration with monoidal fibres in a coherent way:
none of the base or the total category need to be monoidal.

5.3 Indexed Categories and Monoidal Structures

The 2-categories of indexed and opindexed categories ICat and OplCat, explained in
Appendix C.1, are both monoidal. Explicitly, given two indexed categories M: X°P — Cat
and N: Y°P — Cat, their tensor product M @ N: (X x Y)°? — Cat is the composite

(X x V)P = XP x YoP M—XN> Cat x Cat = Cat (5.6)

Le. (M@ N)(z,y) = M(x) x N(y) using the cartesian monoidal structure of Cat. The
monoidal unit is the indexed category Al: 1°P — Cat that picks out the terminal category
1 in Cat, and similarly for opindexed categories. Notice that this monoidal 2-structure,
formed pointwise in Cat, is also cartesian.

We call a pseudomonoid in (ICat,®, A1) a monoidal indexed category.

Proposition 5.4. A monoidal indexed category is a lax monoidal pseudofunctor
(M7 ,u‘7 NO) : (X0p7 ®Op7 I) — (Cat7 X? 1)7
where (X,®,1) is an (ordinary) monoidal category.

Proof. Unpacking the definition, we see that a monoidal indexed category is an indexed cat-
egory M: X°P — Cat equipped with multiplication and unit indexed 1-cells (®x, pu): M ®

75

M — M, (n,puo): A1 — M which by Equation (C.8) are as follows.

X°P x Xop 10p
W K
®°P I u Cat Iop U o Cat
%7 %
Xop Xop

These come equipped with invertible indexed 2-cells as in Equation (B.6); the axioms this
data is required to satisfy, on the one hand, render X a monoidal category with ®: X' x X —
X its tensor product functor and 7: 1 — X its unit. On the other hand, the resulting axioms
for the components

Py Mz x My — M(z ®y), po: 1 — M(I) (5.7)

of the above pseudonatural transformations precisely give M the structure of a lax monoidal
pseudofunctor, recalled in Appendix B. O

We then define a monoidal indexed 1-cell to be a (strong) morphism between
pseudomonoids in (ICat, ®, A1).

Proposition 5.5. A monoidal indexed 1-cell between two monoidal indexed categories M
and N is an indexed 1-cell (F,T), where the functor F is (strong) monoidal and the pseudo-
natural transformation T is monoidal.

Proof. Unpacking the definition, we see that a monoidal indexed 1-cell is an indexed 1-cell

(F,1): M= N

yor

between two monoidal indexed categories (M, p, o) and (N, v, 1) equipped with two in-
vertible indexed 2-cells (¢, m) and (¢, mg) as in Equation (B.7), which explicitly consist
of natural isomorphisms v, 1y and invertible modifications

MM

XOP x XOP XOP x XoP MM
®op \FOPXFOP ~U« TXT ®Opl “
~ " g
XepP VP x YP —nNeN— Cat = AP M—— Cat
© ‘U’ P ~ o o
Fep ® P\/1 U, v Fop U/ r
yop N yOp N yop N

id

76

10p Al 10pP Al
T SN

Xop Iop Cat mo X°P M——> Cat

FOP\L JQPO \ / Fopl \y‘
)oP s)oP N)op -

as dictated by the general form Equation (C.10) of indexed 2-cells. The natural isomor-
phisms ¢ and iy have components

VYoot Fr@Fy = F(x®vy), to: 1= F(I) inY®

whereas the modifications m and mq are given by families of invertible natural transforma-
tions

NFx x NFy FrFy/\/’(Fa:@Fy)

e T e y \N%
N(F

Max My U may NF(z®vy)

M(z®y)

(F1)

The appropriate coherence axioms ensure that the functor F': X —) has a strong monoidal
structure (F, 1), 1), and that the pseudonatural transformation 7: M = NoF°P is monoidal
with mg,, mo as in Equation (B.4). Notice that F'°P being monoidal makes F monoidal
with inverse structure isomorphisms.]

Finally, a monoidal indexed 2-cell is a 2-cell between morphisms of pseu-
domonoids in (ICat, ®, Al).

Proposition 5.6. A monoidal indexed 2-cell between two monoidal indexed 1-cells (F,)
and (G, o) is an indezed 2-cell (a,m) such that o is an ordinary monoidal natural trans-
formation and m is a monoidal modification.

Proof. Following the definition of Appendix B, an indexed 2-cell (a,m): (F,7) = (G,0): M —
N as in Equation (C.10), which consists of a natural transformation a: F' = G and a mod-
ification m with components

Tx

T

Mz U ma NFzx

%\)NGJ}/N%

is monoidal, exactly when «: F' = G is compatible with the strong monoidal structures of
F and G, and the modification m: 7 = Na°P o ¢ satisfies Equation (B.5) for the induced
monoidal structures on its domain and target pseudonatural transformations. O

77

We write PsMon(ICat) = MonlCat, the 2-category of monoidal indexed categories,
monoidal indexed 1-cells and monoidal indexed 2-cells. Moreover, their braided and sym-
metric counterparts form BrMonlCat and SymMonlCat respectively, as the 2-categories of
braided and symmetric pseudomonoids in (ICat, ®, A1) formally discussed in Appendix B.
Similarly, we have 2-categories of (braided or symmetric) monoidal opindexed cate-
gories, 1-cells and 2-cells MonOplCat, BrMonOplCat and SymMonOplCat.

All these 2-categories have sub-2-categories of monoidal (op)indexed categories
with a fixed monoidal domain (X, ®,I), and specifically

MonlCat(X) = Mon2Cats(X°P, Cat) (5.8)
MonOplCat(&X') = Mon2Catp (X, Cat)

the functor 2-categories of lax monoidal pseudofunctors, monoidal pseudonatural transfor-
mations and monoidal modifications.

Moreover, we can consider pseudomonoids in the strict context. Explicitly, the
2-category PsMon(ICats) = MonlCatg has as objects monoidal strict indexed categories
namely (2-)functors M: X°P — Cat from an ordinary monoidal category X which are lax
monoidal as before, but the laxator and unitor Equation (5.7) are strictly natural rather
than pseudonatural transformations. The hom-categories PsMon(ICats)(M,N) between
monoidal strict indexed categories are full subcategories of MonlCat(M,) spanned by
strict natural transformations—which are however still lax monoidal, i.e. equipped with
isomorphisms Equation (B.4).

Similarly to the previous Section 5.2 on fibrations, we end this section with the
study of pseudomonoids in a different but related monoidal 2-category, namely 1Cat(X) =
2Catps (AP, Cat) of indexed categories with a fixed domain X'. Working in this 2-category,
or in OplCat(X'), there is no assumed monoidal structure on X. Their monoidal structure
is again cartesian: for two X-indexed categories M, N : X°P — Cat, their product is

MEN: XP 2y xor x yor MN, e o Cat % Cat (5.9)

with pointwise components (M KN)(z) = M(z) x N'(z) in Cat. The monoidal unit is just
xor Lq AL Cat, which we will also call Al.

A pseudomonoid in (ICat(X),X, Al) is a pseudofunctor M: X°P — Cat equipped
with indexed functors Equation (C.9) p: M X M — M and e: A1 — M namely

xop 5 xor M car x Cat

1
A X '/ Al
Xop — U u T Cat xop U e\”‘ Ca

\//‘ \M/

M

t

with components p,: Max x Mz — Max and €,: 1 — Ma which are pseudonatural via

MxXMmMMyXMy 1———1
uzl ~ luy l S ly (5.10)
Mz 7 My Mz YT My

78

If we denote p, = ®, and ¢, = I, the pseudomonoid invertible 2-cells Equation (B.6)
and the axioms these data satisfy make each Mz into a monoidal category (Mz, ®y, I,),
and each M f into a strong monoidal functor: the above isomorphisms have components
Mf(a) @y Mf(b) = Mf(a®,0b) and I, = Mf(I,) for any a,b € Mz.

Such a structure, namely a pseudofunctor M : X°P — MonCat into the 2-category
of monoidal categories, strong monoidal functors and monoidal natural transformations,
was directly defined as an indezed strong monoidal category in [HMO6], and as indezed
monoidal category in [PS12]. We will avoid this notation in order to not create confusion
with the term monoidal indexed categories.

A strong morphism of pseudomonoids Equation (B.7) in (ICat(&X'), X, Al) ends
up being a pseudonatural trasformation 7: M = N: X°P — Cat (indexed functor) whose
components 7, : Mx — Nz are strong monoidal functors, whereas a 2-cell between strong
morphisms of pseudomonoids is an ordinary modification

whose components m, : 7, = o, are monoidal natural transformations.
We thus obtain the 2-categories PsMon(ICat(X)) as well as PsMon(OplCat(X));
from the above descriptions, it is clear that

PsMon(ICat(X)) = 2Catps(X°P, MonCat) (5.11)
PsMon(OplCat(X)) = 2Catps(X, MonCat)

which will also be rediscovered by Proposition 5.15.

Finally, taking pseudomonoids in strict X-indexed categories ICats(X) = [X°P, Cat]
produces the 2-category PsMon(ICats(X')) with objects functors M : X°P — MonCats; into
monoidal categories with strict monoidal functors: the isomorphisms Equation (5.10) are
now equalities due to strict naturality of the multiplication and unit. Then the hom-
categories PsMon(ICats (X)) (M, N) are full subcategories of PsMon(ICat(X")) (M,) spanned
by strictly natural transformations 7: M = A/, still with strong monoidal components 7.
For example, it would not be correct to write PsMon(ICats(X)) = [P, MonCaty)].

It is evident that MonlCat(X) and PsMon(ICat(X)) are in principle different. A
monoidal indexed category with base X is a lax monoidal pseudofunctor into Cat (and X
is required to be monoidal already), whereas a pseudomonoid in X-indexed categories is a
pseudofunctor from an ordinary category X into MonCat.

5.4 Two Monoidal Grothendieck Constructions

In Appendix C.1, we recalled the standard equivalence between fibrations and
indexed categories via the Grothendieck construction. We will now lift this correspondence
to their monoidal versions studied in Sections 5.2 and 5.3, using general results about
pseudomonoids in arbitrary monoidal 2-categories described in Appendix B.

79

Since both Fib and ICat are cartesian monoidal 2-categories, via Equation (5.1) and
Equation (5.6) respectively, our first task is to ensure that they are monoidally equivalent.

Lemma 5.7. The 2-equivalence Fib >~ ICat between the cartesian monoidal 2-categories of
fibrations and indexed categories is (symmetric) monoidal.

Proof. Since they form an equivalence, both 2-functors from Theorem C.1 preserve limits,
therefore are monoidal 2-functors. Moreover, it can be verified that the natural isomor-
phisms with components F = Fp,. and P = Pz, are monoidal with respect to the cartesian
structure, due to universal properties of products.]

Theorem 5.8. There are 2-equivalences

MonFib ~ MonlCat
BrMonFib ~ BrMonlCat
SymMonFib ~ SymMonlCat

between the 2-categories of monoidal fibrations and monoidal indexed categories, as well
as their braided and symmetric versions. Dually, there is a 2-equivalence MonOpFib ~
MonOplCat between the 2-categories of monoidal opfibrations and monoidal opindexed cat-
egories, as well as their braided and symmetric versions.

Proof. Since MonFib = PsMon(Fib) and MonlCat = PsMon(ICat), we obtain the equivalence
as a special case of Proposition B.5; similar for OpFib ~ OplCat. O

Corollary 5.9. The above 2-equivalences restrict to the sub-2-categories of fixed bases or
domains, which by Equation (5.8) are

MonFib(X) ~ Mon2Cats(X°P, Cat)
MonOpFib(X) ~ Mon2Catps(X°P, Cat)

These results correspond to the global monoidal structure of fibrations and indexed
categories. Even though they were directly derived via abstract reasoning, for exposition
purposes we briefly describe this equivalence on the level of objects; some relevant details
can also be found in [BFMP20, Sec 6]. Independently and much earlier, in his thesis [Shu09]
Shulman explores such a fixed-base equivalence on the level of double categories (of monoidal
fibrations and monoidal pseudofunctors over the same base).

Suppose that (M, u, po): (X°P,®,I) — (Cat, x,1) is a monoidal indexed cate-
gory, i.e. a lax monoidal pseudofunctor with structure maps Equation (5.7). The induced
monoidal product ®,: [M x [M — [M on the Grothendieck category is defined on
objects by

(z,a) @u (y,b) = (x @y, pay(a, b)) (5.12)
and I, = (I, po()) is the unit object. Clearly, the induced fibration [M — X which maps
each pair to the underlying X-object strictly preserves the monoidal structure. Moreover,
pseudonaturality of p implies that ®,, preserves cartesian liftings, so all clauses of Proposi-
tion 5.1 are satisfied. For a more detailed exposition of the structure, as well as the braided
and symmetric version, we refer the reader to the Section 5.5.1.

We can also restrict to the context of split fibrations and strict indexed categories.

80

Theorem 5.10. There are 2-equivalences

MonFibgs ~ MonlCatg
MonOpFib, ~ MonOplCat,

between monoidal split (op)fibrations and monoidal strict (op)indexed categories, as well as
for the fized-base case.

Proof. Again by applying PsMon(-) to the 2-equivalence ICatg ~ Fibs, we obtain equivalences
between the respective structures discussed in Sections 5.2 and 5.3, as the strict counter-
parts of Theorem 5.8 and Corollary 5.9. Recall that a monoidal strict indexed category
is a lax monoidal 2-functor X°? — Cat whose structure maps (¢, ¢p) are strictly natural
transformations, and corresponds to a split fibration which is monoidal like before, only the
tensor product of the total category strictly preserves cartesian liftings. O

We close this section in a similar manner to Sections 5.2 and 5.3, namely by working
in the cartesian monoidal 2-categories (Fib(X'), X, 1x) and (ICat(X'), X, A1) of fibrations and
indexed categories with a fixed base category.

Theorem 5.11. There are 2-equivalences between (op)fibrations with monoidal fibres and
strong monoidal reindexing functors, and pseudofunctors into MonCat

PsMon(Fib(&X')) ~ 2Catps(X°P, MonCat)
PsMon(OpFib(X')) ~ 2Catps(X°P, MonCat)

Moreover, these restrict to 2-equivalences between split (op)fibrations with monoidal fibres
and strict monoidal reindexing functors, and ordinary functors into MonCatgt.

Proof. Since Fib(X) ~ ICat(&X’) is also a monoidal 2-equivalence, Proposition B.5 applies
once more — recall Equation (5.11). O

These equivalences correspond to the fibrewise monoidal structure on fibrations
and indexed categories. In more detail, a pseudofunctor M: X°P — MonCat maps every
object x to a monoidal category Mz and every morphism f: x — y to a strong monoidal
functor M f: My — Mz; under the usual Grothendieck construction, these are precisely
the fibre categories and the reindexing functors between them for the induced fibration, as
described at the end of Section 5.2. Notice how, in particular, X' is not a monoidal category,
as was the case in Corollary 5.9.

A very similar, relaxed version of the fibrewise monoidal correspondence seems to
connect the concepts of an indexed monoidal category, defined in [HMO6] as a pseudofunctor
M: X°P — MonCaty.y, and that of of a lax monoidal fibration, defined in [Zaw11]. Notice
that these terms are misleading with respect to ours: an indexed monoidal category is not
a monoidal indexed category, and also a lax monoidal fibration is not a functor with a lax
monoidal stucture.

Briefly, there is a full sub-2-category Fibop(X) C Cat/X of fibrations, namely fi-
bred 1-cells Equation (C.3) which are not required to have a cartesian functor on top. As
discussed in [Shu08, Prop.3.6], this is 2-equivalent to 2Cat,s op (X °P, Cat), the 2-category of

81

pseudofunctors, oplax natural transformations and modifications. Describing pseudomonoids
therein appears to give rise to a fibration with monoidal fibres and lax monoidal reindexing
functors between them, or equivalently a pseudofunctor into MonCatj,x. We omit the details
so as to not digress from our main development.

5.5 Summary of Structures

The bulk of this chapter is dedicated to proving various monoidal variations of the
equivalence between fibrations and indexed categories, using general results in monoidal
2-category theory. In this section, we detail the descriptions of the (braided/symmetric)
monoidal structures on the total category of the Grothendieck construction, assuming the
appropriate data is present. We also provide a hands-on correspondence that underlies the
proof of Theorem 5.13 regarding the transfer of monoidal structure from a functor to its
target and vice versa. We hope this section can serve as a quick and clear reference on some
fundamental constructions of this chapter.

5.5.1 Monoidal Structures
As sketched under Corollary 5.9, let (X, ®, 1) be a monoidal category, and
(M, a1, po) : (X°P, @, T) — (Cat, x, 1)

a monoidal indexed category, a.k.a. lax monoidal pseudofunctor. Recall that p is pseudo-
natural transformation consisting of functors piz ,: Ma x My — M(z ® y) for any objects
x and y of X, and natural isomorphisms

MfxMg

Mz x Mw Max x My
/iz,wi ég i:u‘x,y
Mz w) — o M(z @)

for any arrows f: z — z and g: y — w in X. Also the unique component of g is the
functor po: 1 — M(I).

The induced tensor product functor on the total category, denoted as ®,,: [M X
JM — [M, is given on objects by

(2, 0) @pu (y,0) = (x @ Y, iy (a, b))
On morphisms (f: x — z,k: a - (Mf)c) and (¢9: y — w,: b — (Mg)d), we get
(1.0) @3 (9.0) = (2 @y =% 2@ w, iy gy (k.)

where the latter is the composite morphism

l‘«z,y(kl)

fay (@, D) pay (MF)(0); (Mg)(d) = M(f @ g)(pzw(c, d) in M(z @ y).

82

The monoidal unit is I, = (I, o).
Ifag,.: (2®y)®z—2® (y® z) denotes the associator in X, the associator for
(JM,®,,1,) is given by

Qb)) (2:d) = (Qayzs Way 2 (b, ¢, d))

where w is the invertible modification Equation (B.2).
Ifl,: I®x — xand r,: x ® I — x are the left and right unitors in X, the unitors
in [M are defined as

)\x = (lmvﬁu:cl(a)): (IHU’O) ®M (QZ,CL) - (.%',CL)
Pxr = (rzygz(a)): (x7a) Op (I, ,U()) — (x7 a)

where ¢ and ¢ are invertible modifications as in Equation (B.2).
We now turn to the correspondence between 1-cells of Theorem 5.8: given a
monoidal indexed 1-cell
(X, ®, 1)

Wa#o)

(Fyap,30)°P I~ (Cat, x,1)

%,Vo)

Y, @, 1)

where M and N are lax monoidal pseudofunctors and F is a monoidal functor, as in
Proposition 5.5, we first of all obtain an ordinary fibred 1-cell (P, F): Pyy — Py as
explained above Equation (C.12)

ML N

| e

X—>F y

with P(z,a) = (Fz,7;(a)). The functor F' is already monoidal, and P, obtains a monoidal
structure too: for example, there are isomorphisms

Pr(2,a) ®y Pr(y,b) = Pr((z,a) ®u (y,b)) in [N
between the objects

P (z,a) ®, Pr(y,b) = (Fz,72(a)) ®, (Fy,17y(b) = (Fr ® Fy, Vrg 1y (T2(a), 7y(b))
Pr((x,a) @, (y,0)) = Pr(z @y, przy(a,0)) = (F(x @ y), Tawy (pay(a,b)))

given by ¢, ,: Fx ® Fy — F(zr ® y) and by

VFx,Fy(Tx(a)v Ty(b)) = N(@Z’x,y)(Tx@y(Nx,y(aa b)))

83

essentially given by the monoidal pseudonatural isomorphism Equation (B.4) for 7: M =
NF°P. As a result, (Pr, F) is indeed a monoidal fibred 1-cell as in Proposition 5.2.
Finally, it can be verified that starting with a monoidal indexed 2-cell as in Proposi-
tion 5.6, the induced fibred 2-cell Equation (C.13) is monoidal, i.e. P, satisfies the conditions
of a monoidal natural transformation.
Regarding the induced braided and symmetric monoidal structures, suppose that
(X,®,1) is a braided monoidal category, with braiding b with components

Bx,y:x®y1>y®fv;

then X°P is braided monoidal with the inverse braiding, namely (X°P,®°P, I, 3~ !). Now
if (M, p,pp): X°P — Cat is a braided lax monoidal pseudofunctor, i.e. a braided monoidal
indexed category, by Theorem 5.8 we have an induced braided monoidal structure on

(JM,®y,1,), namely

B(m,a),(y,b) : (z,a) o (y,b) = (z®y, Hx,y(ay b)) — (y,b) Op (z,0) = (y® =, Ny,x(ba a))

are given by By: 2@y =y @z in X and (Vey)(ap): tey(a,b) = M(B,) (1ty.2(b,a)), where
v is as in Equation (B.11).
If M is a symmetric lax monoidal pseudofunctor, it can be verified that

Byp),(2,0) © B(z,a),(y.b) = Lz,a)@, ()

therefore [M is also symmetric monoidal, as is the monoidal fibration Prg: [M — X.

5.5.2 Monoidal Indexed Categories as Ordinary Pseudofunctors

Here we detail the correspondence between monoidal opindexed categories and a
pseudofunctors into MonCat when the domain is a cocartesian monoidal category, as estab-
lished by Theorem 5.13; the one for indexed categories is of course similar. We denote by
Vg: x4+ 2a — x the induced natural components due to the universal property of coproduct,
and ¢;: — = + y the inclusion into a coproduct.

Start with a lax monoidal pseudofunctor M: (X, +,0) — (Cat, x, 1) equipped with
Py M(x) x M(y) = M(xz+y) and po: 1 — M(0), which gives the global monoidal struc-
ture Equation (5.12) of the corresponding opfibration. There exists an induced monoidal
structure on each fibre M(x) as follows:

©0: M(z) x M(z) L% M(z + 2) 29,

MO ()

M(x) (5.13)
L. 125 M(0)

Moreover, each Mf: Mz — My is a strong monoidal functor, with ¢q4: (Mf)(a) @y
(M[)(b) = Mf(a®,b) and ¢g: I, = (M[)I, essentially given by the following isomor-

84

phisms

MxxMxMMyxMy 1 —" 5 M(0)
uml ult luy,y HOJ
M(x 4+) —M(f+f)— M(y +vy) M) = M() (5.14)
M(Vx)l ~ JM(Vy) M(!)l
Mz YT My Mz YT My

since V and ! are natural and M is a pseudofunctor.

In the opposite direction, take an ordinary pseudofunctor M: X — MonCat into
the 2-category of monoidal categories, strong monoidal functors and monoidal natural trans-
formations, with ®,: M(x) x M(z) - M(zx) and I, the fibrewise monoidal structures in
every Mxz. We can use those to endow M with a lax monoidal structure via

MDA, M+ y) x Mz +y) Z% M(a +y)

po: 122 M(0)

fay s M(x) x M(y)

The fact that all M f are strong monoidal imply that the above components form pseudo-
natural transformations, and all appropriate conditions are satisfied.

In the strict context, a lax monoidal 2-functor M: (X,+,0) — (Cat, x,1) with
natural laxator and unitor bijectively corresponds to a functor X — MonCaty since Equa-
tion (5.14) are in fact strictly commutative, by naturality of u, up and functoriality of M.

In the even more special case of an ordinary lax monoidal functor M: (X, +,0) —
(Cat, x, 1), the fibres M(z) turn out to be strict monoidal. For example, strict associativity
of the tensor is established by

Mz x Mz x Mz 1X®s sy Mx x Mz
1 ~
MM\) IxM()
Mz x M(z + x)
~
Mz a+x M(14V)
~ —
(+) Mz + 2+ 1)
1 ~
Hr+z,x M(V+1)
_—

M(x 4+ x) x Mz

P,z X1 ~
/ M(V)x1
~ —

Mz x Mx x Mz sy Mz x Mz

®a %1

where the three diamond-shaped diagrams on the right commute due to naturality of u as
well as associativity of V and functoriality of M already in the monoidal strict opindexed
case, whereas (x) is in general w from Equation (B.2) which in this case is an identity, and
the four triangular diagrams commute due to Equation (5.13).

85

5.5.3 Comparison with Higher-Dimensional Grothendieck Constructions

Monoidal categories are precisely bicategories with one object. As recalled in
Appendix C.1, there is a theory of fibred bicategories and indexed bicategories, and a
corresponding Grothendieck construction. It is natural to consider the possibility that the
monoidal Grothendieck constructions presented here are special cases of this bicategorical
version. However, it is easy to see that this cannot be the case. When one restricts their view
to just the objects, the bicategorical Grothendieck construction is just taking the disjoint
union of the object sets of the fibres. If you consider an indexed monoidal category as a
special case of an indexed bicategory, where each fibre has one object, then generally you
would not expect the total bicategory to have one object. It would have as many objects
as the base category. Thus, the result would not be a monoidal category. The construction
given here always produces a monoidal category.

5.6 The (Co)cartesian Case

In the previous section, we obtain two different equivalences between fixed-base
fibrations and fixed-domain indexed categories of monoidal flavor: Corollary 5.9 where
both total and base categories are monoidal, and Theorem 5.11 where only the fibres are
monoidal. Clearly, neither of these two cases implies the other in general. The global
monoidal structure as defined in Equation (5.12) sends two objects in arbitrary fibres to a
new object lying in the fibre of the tensor of their underlying objects in the base, whereas
having a fibre-wise tensor products does not give a way of multiplying objects in different
fibres of the total category.

In [Shu08], Shulman introduces monoidal fibrations (Proposition 5.1) as a building
block for fibrant double categories. Due to the nature of the examples, the results restrict
to the case where the base of the monoidal fibration P: A — X is equipped with specif-
ically a cartesian or cocartesian monoidal structure; the main idea is that these fibrations
form a “parameterized family of monoidal categories”. Formally, a central result therein
lifts the Grothendieck construction to the monoidal setting, by showing an equivalence be-
tween monoidal fibrations over a fixed (co)cartesian base and ordinary pseudofunctors into
MonCat.

Theorem 5.12 ([Shu08)). If X is cartesian monoidal,
MonFib(X') ~ 2Catps(X°P, MonCat) (5.15)
Dually, if X is cocartesian monoidal, MonOpFib(X) ~ 2Catps (X', MonCat).
Bringing all these structures together, we obtain the following.

Theorem 5.13. If X is a cartesian monoidal category,

MonFib(X) —=— Mon2Cat,s(X°P, Cat)

zﬂ ﬂz

PsMon(Fib(X)) — 2Cat,s(X°P, MonCat)

86

Dually, if X is a cocartesian monoidal category,

MonOpFib(X) —=— Mon2Cat,s(X, Cat)

zi ﬂz

PsMon(OpFib(X)) — 2Catps(X, MonCat)

In the strict context, the restricted equivalences give a correspondence between monoidal split
fibrations over X and functors X*° — MonCaty, and between monoidal split opfibrations
over X and functors X — MonCatg;.

The original proof of Theorem 5.12 is an explicit, piece-by-piece construction of
an equivalence, and employs the reindexing functors A* and #* induced by the diagonal
and projections in order to move between the appropriate fibres and build the required
structures. The global monoidal structure is therein called external and the fibre-wise
internal.

Here we present a different argument that does not focus on the fibrations side. The
equivalence between lax monoidal pseudofunctors X°? — Cat and ordinary pseudofunctors
X°P — MonCat, which essentially provides a way of transferring the monoidal structure
from the target category to the functor itself and vice versa, brings a new perspective on
the behavior of such objects.

Lemma 5.14. For any two monoidal 2-categories IC and L, the following are true.

1. For an arbitrary 2-category A,

2Catps (A, Mon2Catps (K, £)) >~ Mon2Catps(KC, 2Catps(A, £)) (5.16)

2. For a cocartesian 2-category A,

2Catps (A, Mon2Catps (K, £)) >~ Mon2Catps(A x K, £) (5.17)

Proof. First of all, recall [Str80, 1.34] that there are equivalences
2Catps(A, 2Catys (K, £)) >~ 2Catps(A x K, L) ~ 2Catps (K, 2Catps (A, L))

which underlie Equation (5.16) and Equation (5.17) for the respective pseudofunctors; so
the only part needed is the correspondence between the respective monoidal structures.
Notice that A x K is a monoidal 2-category since both A and K are, and also 2Catps(A, £)
is monoidal since £ is: define @y and Ijj by (F ®)G)(a) = Fa ®, Ga (similarly to Equa-
tion (5.9)) and Ij: A 15 L.

First, we prove 1. Take a pseudofunctor F: A — Mon2Catys(K, £). For every
a € A, its image pseudofunctor Fa is lax monoidal, i.e. comes equipped with maps in L:

vyt (Fa)(@) @c (Fa)(y) = (Fa)(z @k y), ¢5: Ic = (Fa)lk (5.18)

for every x,y € K, satisfying coherence axioms.

87

Now define the pseudofunctor F: K — 2Catps(A, £), with (Fz)(a) := (Fa)(z). It

has a lax monoidal structure, given by pseudonatural transformations
FroypFy= Flxecy), Ij=F(x)

whose components evaluated on some a € A are defined to be Equation (5.18). Pseudonat-
urality and lax monoidal axioms follow, and in a similar way we can establish the opposite
direction and verify the equivalence.

Now, we prove 2. If A is a cocartesian monoidal 2-category, a lax monoidal
pseudofunctor F: A — Mon2Cat,s(K, £) induces a pseudofunctor F:Ax K — L by

F(a,x) := (Fa)(z). Its lax monoidal structure is given by the composite

~ ~ P a,z),(b, od
Fla,x) @c F(b,y) ——--------=mm---- e — > Fla+b,x®xy)

I I
(Fa)(z) @c (Fb)(y) (Fla+0))(x @k y)

ma»m /aw

(Fla+b) () ©r (Fla+b))(y)

where a 2% a + b <% b are the inclusions, and ¥g: Iy ﬂ f(O, Ixc); the respective axioms
follow.

In the opposite direction, starting with some pseudofunctor G: AxXX — L equipped
with a lax monoidal structure ¥4) (b, and o, we can build G:A— Mon2Catps (K, £) for

which every Ga is a lax monoidal pseudofunctor, via

I I
G(a,z) ®c G(a,y) W Gla+a,z®cy) W G(a,z @k y)

G(,1)

o5 I o, G(0, Ix) — G(a,Ix)

The equivalence follows, using the universal properties of coproducts and initial object. [

Proof of Theorem 5.13. The top and bottom right 2-categories of the first square are equiv-
alent as follows, where X°P is cocartesian.

2Catps (X°P, MonCat) =~ 2Catpg(X°P, PsMon(Cat)) Equation (B.10)
o~ 2Catpg (X °P, Mon2Catps(1, Cat)) Equation (5.17)
~ Mon2Catps(X°P x 1, Cat)
~ Mon2Catp(X°P, Cat)

The strict context equivalence can be explicitly verified as a special case of the above, where
the corresponding 1-cells and 2-cells are as described in Section 5.2 and Section 5.3. O

88

The decisive step in the above proof is the much broader Lemma 5.14; for a
grounded explanation of the correspondence of the relevant structures, see Section 5.5.2.
In simpler words, a lax monoidal structure of a pseudofunctor F': (A, +,0) — (Cat, x,1)
gives a pseudofunctor F': A — MonCat and vice versa: in a sense, ‘monoidality’ can move
between the functor and its target.

As another corollary of Lemma 5.14, we can formally deduce that pseudomonoids
in (ICat(X),X, A1) are functors into MonCat, as described at the end of Section 5.3.

Proposition 5.15. For any X, PsMon(ICat(X)) ~ 2Catps(X°P, MonCat).

Proof. There are equivalences

PsMon(ICat(X')) = PsMon(2Catps(X°P, Cat))
~ Mon2Catps(1, 2Catys (X °P, Cat)) Equation (5.16)
=~ 2Catps (X P, Mon2Catp(1, Cat)) Equation (B.10)
~ 2Catps (X °P, PsMon(Cat))
~ 2Catps(X°P, MonCat)

as desired. O

As a first and meaningful example of Theorem 5.13, recall that the categories
Fib and ICat are themselves fibred over Cat, with fibres Fib(X') and ICat(X) respectively.
The base category in both cases is the cartesian monoidal category (Cat, x,1), therefore
Theorem 5.13 applies. The following proposition shows that the monoidal structures of
Fib, ICat and Fib(X), ICat(X'), instrumental for the study of global and fibre-wise monoidal
structures, follow the very same abstract pattern.

Proposition 5.16. The fibrations Fib — Cat and ICat — Cat are monoidal, and more-
over their fibres Fib(X') and 1Cat(X) are monoidal and the reindexing functors are strong
monoidal.

Proof. The pseudofunctors inducing Fib — Cat and 1Cat — Cat are

Cat®® ———— CAT Cat®® ——— CAT
X ——— Fib(X) X ———— ICat(X)
Fl 1P Fl t—oFoP
Y ——— Fib(Y) Y — ICat(Y)

where CAT is the 2-category of possibly large categories, F'* takes pullbacks along F' and
— o F°P precomposes with the opposite of F. These are both lax monoidal, with the
respective structures essentially being Equation (5.1) and Equation (5.6) giving the global
monoidal structure on the fibrations.

Since the base of both monoidal fibrations is cartesian, the global monoidal struc-
ture is equivalent to a fibre-wise monoidal structure, as per the theme of this whole section.
The induced monoidal structure on each Fib(X') is given by Equation (5.4) and on each
[Cat(X) by Equation (5.9), and F*, — o F°P are strong monoidal functors accordingly. [

89

The above essentially lifts the global and fibre-wise monoidal structure develop-
ment one level up, exhibiting fibrations and indexed categories as examples of the monoidal
Grothendieck construction themselves.

Concluding this investigation on monoidal structures of fibrations and indexed cat-
egories, we consider the (co)cartesian monoidal (op)fibration case; for example, a monoidal
fibration P: (A, x,1) — (X, x,1) as in Proposition 5.1 where P preserves products (or
coproducts for opfibrations) on the nose. As remarked in [Shu08, 12.9], the equivalence
Equation (5.15) restricts to one between pseudofunctors which land to cartesian monoidal
categories, and monoidal fibrations where the total category is cartesian monoidal. With
the appropriate 1-cells and 2-cells that preserve the structure, we can write the respective
equivalences as

2Catpg(X°P, Cart) ~ cMonFib(X) for cartesian X (5.19)
2Catps (X, Cocart) ~ cocMonOpFib(X) for cocartesian X

where the prefixes ¢ and coc correspond to the respective (co)cartesian structures. Explic-
itly, in order for the total category to specifically be endowed with (co)cartesian monoidal
structure, it is required not only that the base category is but also the fibres are and the
reindexing functors preserve finite (co)products.

This special case of the monoidal Grothendieck construction that connects the
existence of (co)products and initial/terminal object in the fibres and in the total category,
is reminiscent (and also an example of) the general theory of fibred limits originated from
[Gra66]. Explicitly, [Her99, Cor. 4.9] deduces that if the base of a fibration P: A — X
has J-limits for any small category 7, then the fibres have and the reindexing functors
preserve J-limits if and only if A has [J-limits and P strictly preserves them, and dually
for opfibrations and colimits. Hence for finite (co)products in (op)fibrations, Equation (5.19)
re-discovers that result using the monoidal Grothendieck correspondence.

Moreover, since the squares of Theorem 5.13 reduce to their (co)cartesian variants,
we would like to identify the conditions that the corresponding lax monoidal pseudofunctor
into Cat needs to satisfy in order to give rise to a (co)cartesian monoidal (op)fibration.
We employ Proposition A.17 to tackle the opfibration case: if, in a symmetric monoidal
category X, there exist monoidal natural transformations with components

Veix®r—x, ug:l—x
satisfying the commutativity of

I®:1:L®l>:c®w x®1&>x®x

m £vx N £Vx (5.20)

then X is cocartesian monoidal. In fact, it is the case that a symmetric monoidal category
is cocartesian if and only if Mon(X) = X'.
Suppose (M, i, pp): X — Cat is a (symmetric) lax monoidal pseudofunctor, such

that the corresponding Grothendieck category ([M,®,,1,) described in Section 5.4 is

90

cocartesian monoidal. This means there are monoidal natural transformations with com-
ponents

V(ac,a) : (.%', a) Qp (ZC, a) - (;Uv a) and U(z,a)* (Iau()(*)) - (ac,a)

making the diagrams Equation (5.20) commute. Explicitly, by Equation (5.12), V()
consists of morphisms f;: 2 @z — = in X and kq: (Mfy)(pz2(a,a)) = a in Mz, whereas
U(g,q) comnsists of iz: [— 2 in X and A,: (Miz)po — a in Mz.

The conditions Equation (5.20) say that the composites

U(z,a)Bul(z,a) V(z,a)
—

(LMO) ®M (x,a) (‘T7a) ®M (xva’) L (Ji,a)

V(z,a)

L(@,0)®nt(z,a)
) s (2,a) @y (2,0) — (2,a)

(33‘, a) ®,u (I7 Ho
are equal to the left and right unitor on x, where all respective structures are detailed
in Section 5.5.1. Using the composition inside [M analogously to Equation (C.11), these
conditions translate, on the one hand, to the base being cocartesian monoidal (X, +,0) with
fr =V, and i, = u,. On the other hand, x, and)\, form natural transformations

Mz x Mz "5 M(z +)

A () e M) (5.21)
Mz | x® Mz Mz (D Mz

_/\T/

1

1 2% M(0)

satisfying the commutativity of

MV 0 (g + 1)) (0,0 (Ho(+), @) —2—= (M(Va) © M + 1)) (g0, (10 (), @)
| M)tz 1)

M(Va) (pra, (M (uz) (o (%), a)))

id M) o0 2 7)

M(V2)(tiz2(a, a))

.k

M(le)(po,2(po(%), @) = > a

and a similar one with pg on second arguments. The above greatly simplifies if M is just
a lax monoidal functor: the first condition becomes 1, = k¥ o M(Vy)(ptiz2(AZ,1)), and the
second one 1, = k7 0o M(Vy)(fa,z(La, AL)).

Corollary 5.17. A laz monoidal pseudofunctor M: (X,+,0) — (Cat, x, 1) equipped with
natural transformations k and A as in Equation (5.21) corresponds to an ordinary pseud-
ofunctor M: X — Cocart, or equivalently Equation (5.19) to a cocartesian monoidal opfi-
bration.

91

5.7 Examples

In this section, we explore certain settings where the equivalence between monoidal
fibrations and monoidal indexed categories naturally arises. Instead of going into details that
would result in a much longer text, we mostly sketch the appropriate example cases up to
the point of exhibition of the monoidal Grothendieck correspondence, providing indications
of further work and references for the interested reader.

5.7.1 Fundamental Bifibration

For any category X, the codomain or fundamental opfibration is the usual functor
from its arrow category
cod: X2 — X

mapping every morphism to its codomain and every commutative square to its right-hand
side leg. It uniquely corresponds to the strict opindexed category, i.e. mere functor

X —— Cat

x—— X/x (5.22)
| Wy
y—— Xy

that maps an object to the slice category over it and a morphism to the post-composition
functor fi = f o — induced by it.

If the category has a monoidal structure (X, ®,I), this (2-)functor naturally be-
comes lax monoidal with structure maps

Xzx Xy x/(zoy), 15 x/I (5.23)

These components form strictly natural transformations, and for example the invertible
modification w Equation (B.2) has components the evident isomorphisms, for (f,g,h) €
X/x x X[y x X/z, between
a®(b®c)w>x®(y®z)%(x®y)®z (5.24)
(@@b)@c 22 oy @2
By Theorem 5.10, this monoidal strict opindexed category correspondes to a monoidal split
fibration, i.e. (X2, ®,1;) is monoidal and cod strict monoidal, where ® y2 strictly preserves
cartesian liftings via fik ® gif = (f ® g)1(k ® £) — which can of course be independently
verified. However in general, the slice categories X' /x do not inherit the monoidal structure:
there is no way to restrict the global monoidal structure to a fibrewise one.

According to Theorem 5.13, there is an induced monoidal structure on the cate-
gories X' /x and a strict monoidal structure on all f; only when the monoidal structure on
X is given by binary coproducts and an initial object (i.e. cocartesian). In that case, for
each k: a — z and ¢: b — x in the same fibre X' /z, their tensor product in X'/z is given by

k40 v
a—i—b%x%—x—”mg

92

as a simple example of Equation (5.13). In fact, this is precisely the coproduct of two objects
p p q) p y 1Y J

in X/x, and 0 1 & the initial object, due to the way colimits in the slice categories are
constructed. Therefore this falls under the cocartesian-fibres special case Equation (5.19),
bijectively corresponding to the cocartesian structure on X2 inherited from X

Now suppose an ordinary category X has pullbacks. This endows the codomain
functor also with a fibration structure, corresponding to the indexed category

X —— Cat

xr— X/ac
fl o
y—— Xy

with the same mapping on objects as Equation (5.22) but by taking pullbacks rather than
post-composing along morphisms, a pseudofunctorial assignment. This gives cod: X? — X
a bifibration structure, also by that classic fact that fi 4 f*.

In this case, if X has a general monoidal structure, there is no naturally induced
lax monoidal structure of that pseudofunctor as before: there is no reason for the pullback
of a tensor to be isomorphic to the tensor of two pullbacks. However, if X is cartesian
monoidal (hence has all finite limits), the components

Xjrx Xy X/(@xy), 125x1

are pseudonatural since pullbacks commute with products. Moreover, this bijectively cor-
responds to monoidal fibres and strong monoidal reindexing functors, in fact also cartesian
ones: for morphisms k: a — x and ¢: b — z in X /x, their induced product is given by

e — s axb

_
5* (kx0) ket

.CCL)CCX.T

and 1,: x — x is the unit of each slice X' /x, this indexed monoidal category also described
in [HMO6]. The monoidal fibration structure on cod: (X2, x,1;) — (X, x,1) is the evi-
dent one, so it again falls in the special case Equation (5.19) now for cartesian fibres, by
construction of products in slice categories.

As a final remark, analogous constructions hold for the domain functor which is
again a bifibration: its fibration structure comes from pre-composing along morphisms,
whereas its opfibration structure comes from taking pushouts along morphisms.

5.7.2 Family Fibration: Zunino and Turaev Categories

Recall that for any category C, the standard family fibration is induced by the
(strict) functor
[—,C]: Set? — Cat (5.25)

93

which maps every discrete category X to the functor category [X,C] and every function
f: X — Y to the functor f* = [f, 1], i.e. pre-composition with f. The total category of the
induced fibration Fam(C) — C has as objects pairs (X, M: X — C) essentially given by a
family of X-indexed objects in C, written { M, },cx, whereas the morphisms are

namely a function f: X — Y together with families of morphisms oy : M, — Ny, in C.
Notice the similarity of this description with Equation (C.8), which for the strict indexed
categories case looks like a non-discrete version of the family fibration, for C = Cat. More-
over, it is a folklore fact that Fam(C) is the free coproduct cocompletion on the category
C.

On the other hand, we could consider the opfibration induced by the very same
functor Equation (5.25), denoted by Maf(C) — SetP. The objects of Maf(C) are the same as
Fam(C), but morphisms { M, }rex — {Ny}yey between them are functions g: ¥ — X (i.e.
X — Y in Set®?) together with families of arrows 3,: My, — N, in C. Notice that these are
now indexed over the set Y rather than X like before, and in fact Maf(X’) = Fam(X°P)°P.

In the case that the category is monoidal (C,®,I), the (2-)functor [—,C| has a
canonical lax monoidal structure. Explicitly, by taking its domain Set°? to be cocartesian
by the usual cartesian monoidal structure (Set, x, 1), the structure maps are

bxy: [X,C]x [V,C] > [X xY,C], ¢o:1251,¢c]=C

where ¢x y corresponds, under the tensor-hom adjunction in Cat, to

[(X,C]x[V,C] x X xY 5 [X,C] x X x [V,C] x Y XX 0w ¢ & ¢
These are again natural components, and for example Equation (B.2) has components
the natural isomorphisms between the assignments Mz ® (Ny ® Uz) and (Mz ® Ny) ®
Uz. By Theorem 5.10, this monoidal strict indexed category endows the corresponding
split fibration Fam(&X’) — Set with a monoidal structure via {M,} ® {N,} = {M, ®
Ny} xxy. On the other hand, we could use the dual part of the same theorem, and instead
consider the induced monoidal split opfibration Maf(X) — Set®? corresponding to the same
([_7 C]a ¢7 QSO)

Moreover, since Set is cartesian, Theorem 5.13 also applies in both cases, giving
a monoidal structure to the fibres as well: for M: X — C and N: X — C, their fibrewise
tensor product and unit are given by

XS xxxMNeyee xhi1ie

which are precisely constructed as in Equation (5.13). Once again, notice the direct similary
with Equation (5.9), the fibrewise monoidal structure on 1Cat(X).

94

As an interesting example, consider C = Modp for a commutative ring R, with
its usual tensor product ®g. In [CDLO06|, the authors introduce a category 7 of Tu-
raev R-modules, as well as a category Z of Zunino R-modules, which serve as symmetric
monoidal categories where group-(co)algebras and Hopf group-(co)algebras, [Tur00], live as
(co)monoids and Hopf monoids respectively.

In more detail, the objects of both 7 and Z are defined to be pairs (X, M) where
X is a set and {M,},cx is an X-indexed family of R-modules, and their morphisms are
respectively

(T) S:Mg(y)—)Ny in MOdR =z t:Mx—)Nf(@ in MOdR
g: Y — X in Set f: X =Y in Set

There is a symmetric pointwise monoidal structure, {M, ®@r Ny}xxy, and there are strict
monoidal forgetful functors 7 — Set®®, Z — Set. It is therein shown that comonoids in
T are monoid-coalgebras and monoids in Z are monoid-algebras, i.e. families of R-modules
indexed over a monoid, together with respective families of linear maps

(T) Cg*h — Cy @ C}, (Z) Ag ® Ap — Ag*h
C.— R R— A,

satisfying appropriate axioms. Based on the above, it is clear that 7 = Maf(Modg) and
Z = Fam(Modpg), which clarifies the origin of these categories and can be directly used to
further generalize the notions of Hopf group-(co)monoids in arbitrary monoidal categories.

5.7.3 Global Categories of Modules and Comodules

For any monoidal category V, there exist global categories of modules and co-
modules, denoted by Mod and Comod [Vasl4, 6.2]. Their objects are all (co)modules over
(co)monoids in V, whereas a morphism between an A-module M and a B-module N is
given by a monoid map f: A — B together with a morphism k: M — N in V satisfying
the commutativity of

Ao M - M

ok Js

A®Nw>B®NT>N

where p denotes the respective action, and dually for comodules. Both these categories
arise as the total categories induced by the Grothendieck construction on the functors

Mon(V)? ——— Cat Comon(V) —— Cat
A > Mody(A) o » Comody(C) (5.26)
| T o Jo
B r-————--- > Mody(B) D v » Comody, (D)

95

where f* and ¢ are (co)restriction of scalars: if M is a B-module, f*(M) is an A-module
via the action
fo1 u
AR M — B M — M.

The induced split fibration and opfibration, Mod — Mon (V) and Comod — Comon(}), map
a (co)module to its respective (co)monoid.

Recall that when (V,®,1I,0) is braided monoidal, its categories of monoids and
comonoids inherit the monoidal structure: if A and B are monoids, then A ® B has also a
monoid structure via

A9Bo A9 B2 Ao A9 BB ™™ AeB, I~Tol¥ AsB

where m and j give the respective monoid structures. In that case, the induced split
fibration and opfibration are both monoidal. This can be deduced by directly checking the
conditions of Proposition 5.1, as was the case in the relevant references, or in our setting by
using Theorem 5.10 since both (2-)functors Equation (5.26) are lax monoidal. For example,
for any A, B € Mon(V) there are natural maps

¢A,B3 Modv(A) X MOdV(B) — MOdV(A®B) (250: 1— MOdV(I)

with ¢4, p(M,N) =M ® N, with the A ® B-module structure being

A9Ba Mo N 2% Ao MeoBo N X% Me N

and ¢g(*) = I, which are pseudoassociative and pseudounital in the sense that e.g. for any
M, N, P € Mody(A) xMody(B) xMody(C), M & (N & P) is only isomorphic to (M @ N)® P
as (A ® B) ® C-modules.

Notice that in general, the monoidal bases Mon(V) and Comon(V) are not (co)-
cartesian, since they have the same tensor as (V,®,1,0). Therefore this case does not
fall under Theorem 5.13, hence the fibre categories are not monoidal. For example in
(Vecty, ®x, k), the k-tensor product of two A-modules for a k-algebra A is not an A-module
as well.

We remark that the induced monoidal opfibration Comod — Comon(V) in fact
serves as the monoidal base of an enriched fibration structure on Mod — Mon(V) as
explained in [Vasl8], built upon an enrichment between the monoidal bases Mon(}V) in
Comon(V) established in [HLFV17]. Moreover, analogous monoidal structures are induced
on the (op)fibrations of monads and comonads in any fibrant monoidal double category, see
[Vas19, Prop. 3.18].

5.7.4 Systems as Monoidal Indexed Categories

In [SSV20] as well as in earlier works e.g. [VSL15], the authors investigate a cate-
gorical framework for modeling systems of systems using algebras for a monoidal category.
In more detail, systems in a broad sense are perceived as lax monoidal pseudofunctors

We — Cat

96

where W is the monoidal category of C-labeled boxes and wiring diagrams with types in a
finite product category C. Briefly, the objects in W, are pairs X = (X X°u) of finite sets
equipped with functions to obC, thought of as boxes

ai b1
X

am, bn,

where X™ = {ay,...,a,} are the input ports, X°' = {by,...,b,} the output ones and all
wires are associated to a C-object expressing the type of information that can go through
them. A morphism ¢: X — Y in this category consists of a pair of functions

¢in: Xin N Xout +Yin
{ d)out: Yout N Xout

that respect the C-types, which roughly express which port is ‘fed information’ by which.
Graphically, we can picture it as

(5.27)

Composition of morphisms can be thought of a zoomed-in picture of three boxes, and the
monoidal structure amounts to parallel placement of boxes as in

There is a close connection between the definition of W and that of Dialectica categories
as well as lenses; such considerations are the topic of work in progress [FHJT20].

The systems-as-algebras formalism uses lax monoidal pseudofunctors from this
category We to Cat that essentially receive a general picture such as

(which really takes place in the underlying operad of W¢) and assign systems of a certain
kind to all inner boxes; the lax monoidal and pseudofunctorial structure of this assignment
formally produce a system of the same kind for the outer box.

97

Examples of such systems are discrete dynamical systems (Moore machines in the
finite case), continuous dynamical systems but also more general systems with deterministic
or total conditions; details can be found in the provided references. Since all these systems
are lax monoidal pseudofunctors from the non-cocartesian monoidal category of wiring
diagrams to Cat, i.e. monoidal indexed categories, the monoidal Grothendieck construction
Theorem 5.8 induces a corresponding monoidal fibration in each system case, and this global
structure does not reduce to a fibrewise one.

For example, the algebra for discrete dynamical systems [SSV20, Sec. 2.3]

DDS: Wee — Cat (5.28)

assigns to each box X = (X', X°U) the category of all discrete dynamical systems with fixed
input and output sets being [] .y = and Hye yout Y Tespectively. There exist morphisms
between systems of the same input and output set, but not between those with different ones.
To each morphism, i.e. wiring diagram as in Equation (5.27), DDS produces a functor that
maps an inner discrete dynamical system to a new outer one, with changed input and output
sets accordingly. (Pseudo)functoriality of this assignment allows the coherent zoom-in and
zoom-out on dynamical systems built out of smaller dynamical systems, and monoidality
allows the creation of new dynamical systems on parallel boxes.

Being a monoidal indexed category, Equation (5.28) gives rise to a monoidal op-
fibration over Wse. Its total category [DDS has objects all dynamical systems with ar-
bitrary input and output sets, morphisms that can now go between systems of different
inputs/outputs, and also a natural tensor product inherited from that in Wse and the
laxator of [DDS. In a sense, this category has all the required flexibility for the direct com-
munication (via morphisms in the total category) between any discrete dynamical system,
or any composite of systems or parallel placement of them, whereas the wiring diagram al-
gebra Equation (5.28) focuses on the machinery of building new discrete dynamical systems
systems from old.

This classic change of point of view also transfers over to maps of algebras, i.e.
indexed monoidal 1-cells. As an example, see [SSV20, Sec. 5.1], discrete dynamical systems
can naturally be viewed as general total and deterministic machines denoted by Mch'?, via
a monoidal pseudonatural transformation

WSet

Inty

which also changes the type of input and output wires from sets to discrete interval sheaves

98

ITE];. This gives rise to a monoidal opfibred 1-cell

[DDS —— [Mch™

| |

which provides a direct functorial translation between the one sort of system to the other
in a way compatible with the monoidal structure.

As a final note, this method of modeling certain objects as algebras for a monoidal
category (a.k.a. strict or general monoidal indexed categories) carries over to further con-
texts than systems and the wiring diagram category. Examples include hypergraph cate-
gories as algebras on cospans [FS19] and traced monoidal categories as algebras on cobor-
disms [SSR17]. In all these cases, the monoidal Grothendieck construction gives a poten-
tially fruitful change of perspective that should be further investigated.

5.7.5 Graphs

As we show in Appendix C.4.2, the category of (directed, multi) graphs, is bifibred
over set, where the bifibration V: Grph — Set is given by sending a graph to its vertex set.

Since V: Grph — Set preserves products, then it can be given the structure of a
strict monoidal monoidal functor with respect to the cartesian monoidal structures on Grph
and Set. Since the cartesian morphisms are those that form pullback squares, and prod-
ucts in Grph are given pointwise, then the monoidal structure in Grph preserves cartesian
morphisms. We can then apply Corollary 5.9 to obtain a symmetric lax monoidal structure
for the pseudofunctor Grph*: Set®® — Cat. The lax structure map yx y : Grphy x Grphy —
Grph x .y is given by taking the product of the two graphs within Grph. Notice the product
has vertex set given by X x Y. Since the base category is cartesian monoidal, we can apply
Theorem 5.13, granting a symmetric monoidal structure to the fibres Grphy. The monoidal
product is given by the following composite.

Grphy x Grphy X, Grphyy x BN Grphy

Simply put, this operation is given by taking the product of the two graphs on X, and then
restricting to the vertices on the diagonal. Indeed, this is the cartesian monoidal structure
on Grphy.

Since the category Set also has all finite colimits, we obtain a symmetric lax
monoidal structure for the pseudofunctor Grph,: Set®® — Cat. The lax structure map
¢x,y: Grphx x Grphy — Grphy, y is given by taking the disjoint union of the two graphs.
Notice the disjoint union has vertex set given by X + Y. Since the base category is co-
cartesian monoidal, we can apply Theorem 5.13, granting a symmetric monoidal structure
to the fibres Grphy. The monoidal product is given by the following composite.

Grphy x Grphy d)X—X> Grphy, x EN Grphy

99

Simply put, this operation is given by taking the disjoint union of the edges. Indeed, this
is the cocartesian monoidal structure on Grphy. This is also the overlay operation for the

network model of directed multi graphs.

100

Appendix A

Monoidal Categories

Monoidal categories lie at the center of applied category theory. This section is
included mainly to establish notation and terminology used throughout this thesis. Some
standard references are [ML98] and [EGNO15].

A.1 Definitions

A.1.1 Monoidal, Braided, and Symmetric Categories
Definition A.1. A monoidal category (C,®, I, a, \, p) consists of

e a category C

a functor ®: C x C — C called the tensor

a functor I: 1 — C called the unit

a natural transformation o with components of the form oy 4 .: (2®@y)®2z = 2@ (YR 2)
called the associator

a natural transformation A with components of the form A, : I ® x — z called the left
unitor

a natural transformation p with components of the form p,: z ® I — x called the
right unitor

such that the following diagrams commute.

101

Pentagon identity:

(w©r)®(y©=2)

(wez)y)® =2

Qu,z,yRz
(W (r®y) 2

(XM}

w®((z0y)® 2)

Triangle identity:

Az, 1,y

2]y

® (I ®y)

x
(A.2)

TRy

A strict monoidal category is one where the associator, left unitor, and right unitor are
all identity.

A braided monoidal category [JS93] is a monoidal category equipped with a
natural transformation 3 called the braiding with components 3, ,: * ® y — y ® x, such
that the following diagrams commute.

—1

Ry @2 5 2w (y©2) @Yz 5 (1Y) @z
ﬂx,y@lzl lﬁx YRz 1m®ﬂy,zl lﬂx@y z

(y@z)® 2 (y@z2)®@x xR (z2QY) 2@ (x®y) (A.3)
Oly,a:,zl lay,z,x a;}%yl laz_’}c’y
VOEe) o ye(er) 00y (euey

A symmetric monoidal category is a braided monoidal category where the braiding
satisfies the equation 3y ;0 8.,y = lzgy for all objects z,y € C. A commutative monoidal
category is a symmetric monoidal category where the braiding is identity.

For general (braided/symmetric) monoidal categories, we write C, D, or £.

A.1.2 Monoidal, Braided, and Symmetric Functors

Definition A.2. Let (C,®c, Ic,a%, X, p€) and (D, ®p, Ip,aP, AP, pP) be monoidal cate-
gories. A lax monoidal functor from C to D consists of

102

e a functor F': C — D

e a natural transformation with components ¢, ,: F'x ®p Fy — F(x ®¢ y) called the
laxator

e a natural transformation with unique component ¢g: Ip — Fl¢ called the unit lax-
ator

such that the following diagrams commute.

D

(Fz @p Fy) @p Fz ey Py Fx®p (Fy®p Fz)
¢>z,y®’D1le llFm®D¢y,z
F(zx®cy)®p Fz Fz®p F(y ®c 2) (A4)

¢z®cy,zi i(bz,y@Cz

F((z ®cy) ®c z) ——F—— Flr®c (y ®c 2))

F(aS,.2)
AP px
Ip @p Fr ——— Fx Fe@plp ———— Fx
¢0®’D1le TF()‘g) 1FI®D¢O\L TF(Pg) (A.5)
ch®DFCL'¢*>F(Ic®Cl') Fa:@DFI(;?F(m@cIC)
Ic,z z,Ic

We say that F' is simply a monoidal functor when ¢ and ¢g are natural isomorphisms. It
is worth noting that there exists a notion of “oplax” monoidal functors, where the structure
map is reversed: ¢, ,: F(z ® y) - Faz ® Fy. However, oplax monoidal functors do not
appear in this thesis, so we spend no further time on them.

A lax braided monoidal functor is a lax monoidal functor (F, ¢, ¢o): (C,®¢, Ic) —
(D, ®p, Ip) where C and D are braided monoidal categories, with 3¢ and 5P being the re-
spective braidings, such that the following diagram commutes.

BE,
Fz®p Fy oty Fy®p Fzx

F(z ®cy) WF(K/&:%)

z,yY

A (lax) braided monoidal functor between symmetric monoidal categories is called a (lax)
symmetric monoidal functor with no further requirements.

Lemma A.3. Composition of lax monoidal functors is strictly associative.

We get categories MonCaty, MonCat, BrMonCaty;, BrMonCat, SymMonCat,, and
SymMonCat where the objects are monoidal categories, the functors are monoidal categories,
the prefix Br (resp. Sym) indicates the objects and morphisms are braided (resp. symmetric),
and the subscript £ indicated the morphisms are lax monoidal.

103

A.1.3 Monoidal Natural Transformations

Definition A.4. Let (F,¢,¢¢) and (G,v,7) be lax monoidal functors. A monoidal
natural transformation is a natural transformation 6: F' = G such that the following
diagrams commute.

0 [7)
Fz ®p Fy “22% Gz @p Gy Ip
- e y % (A7)
Flx®cy) ,— Gz ®cy) Flc GIc
9w®cy OIC

There are no new laws which can be imposed on a monoidal natural transformation between
braided or symmetric monoidal functors. So we do not specialize this concept any further.

A.2 Examples

Example A.5. Let (M,-,e) be a monoid. If we can consider M as a discrete category,
then it can be given a strict monoidal structure where the tensor is given by - and the unit
is e. The functor Mon — MonCat which realizes a monoid as a discrete monoidal category
is full and faithful. If we think of this as “forgetting discreteness”, then discreteness is a

property.

Example A.6. Given a monoidal category (C,®,I), we can define ®"V: C x C — C by

CxC e C

%%

CxC

This defines an idempotent automorphism on MonCat.

Example A.7. Given a monoidal category (C,®, I), the category C can be equipped with
a monoidal structure given by ®°P: CP x C°P — C°P and the same unit object. This defines
an idempotent automorphism on MonCat.

Example A.8. Any category C with finite products can be equipped with a symmetric
monoidal structure as follows. For every pair of objects ¢, d, choose some object satisfying
the universal property of the product of ¢ and d, call it ¢ x d. Given a pair of morphisms
f:a — band g: ¢ — d, the universal property gives a morphism f X g: a X b — ¢ x d as
follows.

104

We claim that this defines a functor x: C x C — (C. Consider a pair of morphisms

(f1, f2): (a1,a2) — (b1,b2) and (g1,92): (b1,b2) — (c1,¢c2). Since (g1 0 f1) X (g2 © g2) and
(g1 X g2) o (f1 X f2) both make the following diagram commute, they must be equal.

ap X a2

Identity maps are preserved because the identity map on a X b makes the diagram below
comimute.

o>~

S

.
/

&
<;
A
Q
IS
X ---- X
(=
/
o
e/
&

)

We define the unit object to be some chosen terminal object, call it 1. The asso-
ciator, unitors, pentagon, hexagon, braiding, hexagon law, and symmetric law can all be
derived from the universal property of products. This gives C the structure of a symmetric
monoidal category. This is called the cartesian monoidal structure, and (C, x,1) is
called a cartesian monoidal category.

Example A.9. Any category with finite coproducts can be equipped with a symmetric
monoidal structure by Example A.8 and Example A.7.

Example A.10. If C is monoidal and D is a category, the functor category CP can be
given a pointwise monoidal structure as follows. Define ®@,;: CP x CP — CP by @, =

®(F x G)oA. The unit object 1 — CP is given by currying the composite D 415 ¢. The
rest of the structures and the necessary properties all carry over from their counterparts
in C. Similarly, if C is braided or symmetric, then CP can be given a pointwise braided or
symmetric monoidal structure respectively.

Example A.11. Let C be a small monoidal category. Then the Day convolution tensor
product [Day70]
®Day Set®™ x Set®”” — Set®”

is the following left Kan extension.

C°P x C°p ﬂ Set

/,?
® o
l //’/ X®DayY
C°p

105

This can be given by the following coend formula [Lor19].

c1,c0€C
X ®Rpay Y: c»—>/ C(c1 ® ca,¢) X X(e1) X Y(e2)
Similarly, we can define the unit via left Kan extension.

1 —AL, Set

A
I -7
J/ /’/ IDay

Ccop

Day convolution gives the functor category Set®” a monoidal structure. Many nice proper-
ties of this structure can be found in the literature, e.g. [Lor19]. However, these properties
are not heavily used in this thesis, so we choose to leave them out.

A.3 Monoid Objects

A monoidal structure is exactly what a category needs to have if we want to define
monoid objects in this category.

Definition A.12. Let (C,®,I) be a monoidal category. A monoid object internal to C
consist, of

e an object x € C
e a morphism u: x®x — x
e a morphisme: I —»

such that the following diagrams commute.

Qx x,x

(z@r)@r ——————— 1R (z @ x)

M®;I<£ T T g;@M (A.8)

S A

I®xﬁ>x®x&x®l

k lﬂ / (A.9)

Alternatively, we can express these structures with string diagrams as follows.

e multiplication \TJ

106

e neutral element T

such that

(A.10)

Ve
S

Let (z,p,e) and (y,v,d) be monoids in C. A morphism f: z — y is called a
monoid homomorphism if the followmg diagrams commute.

®
rTR®x % Yy

1
Ml ly / N

In strings, these equations are depicted as follows.

Let Mon(C,®) denote the category of monoid objects in C and their homomorphisms. If C
is Set with its cartesian monoidal structure, we simply denote the category of monoids by
Mon.

Definition A.13. Let (C,®, I) be a braided monoidal category. A commutative monoid
in C is a monoid object in C where the following equation holds.

:
\T/ B (A.12)

Let CMon(C, ®) denote the category of commutative monoid objects in C and their homo-
morphisms. If C is Set with its cartesian monoidal structure, we simply denote the category
of commutative monoids by CMon.

107

A.4 The Eckmann—Hilton Argument

Theorem A.14. Let C be a braided monoidal category, and let x be an object equipped
with two distinct monoid structures (x, p,€) and (x,v,n) such that p and v are related by
the following equation.

po(v@v)=vpep) o(l®Axl) (A.13)

Thene=mn, u=v, and (z,u,c) is commutative.

It is important to note that if C is Set or some other concrete category, and the
operations are instead denoted by o and %, Equation (A.13) becomes (a 0 b) x (cod) =
(axc)o(bxd). Due to this formulation, this relation as it appears in many contexts is called
the middle-four interchange law.

Proof. We prove it using string diagrams, just for fun. Let the following string diagram
components represent ¢, i, 17, and v, respectively.

T R o

Then we can draw Equation (A.13) as follows.

First, we show that the units coincide.

VA AV

Since they are equal, we denote the unit with a black circle in the remainder of the proof.
Next, we show in one calculation that the two operations are equal and commutative.

ywﬁ\va\ywkﬁ -

Corollary A.15. We have the following equivalences of categories.

Mon(Mon, x) = Mon(CMon, x) = CMon(Mon, x) 2 CMon(CMon, x) = CMon

108

A.5 Characterizing (co)cartesian monoidal categories

In the previous section, we saw that a category with finite products can be equipped
with a canonical symmetric monoidal structure, and dually so can a category with finite
coproducts. In this section, we give conditions under which a symmetric monoidal category
is monoidally equivalent to one given by a (co)cartesian structure [Fox76].

Example A.16. Let C be a category with finite coproducts. By Example A.9, C can be
equipped with a cocartesian monoidal structure, with tensor denoted by +, and the unit
(which is an initial object) denoted by 0. Let = be any object in C. Universal property of
coproducts gives amap V: x +x — x

X X
T+ x
1o ivz 1y
\\/
X

We draw string diagrams with respect to the cocartesian monoidal structure on C. Then

the map V, is depicted as follows.

Also, the universal property of an initial object gives a map !,.: 0 — x, depicted as follows.

T

We show that this gives x the structure of a commutative monoid. We begin by
finding a formula for the left unitor of the cocartesian monoidal structure on C. Notice that
the left unitor makes the following diagram commute (by definition)

and thus does so uniquely. Compare this to the diagram

T 0

|~ 7

|

T z+0 x
\ ll_,_/

r+x

1 lvx 1
X

109

—_

whose frame is equal to that of the previous. Thus we get V, o (1,+!;) oi, = 1, and
similarly V, o (!, + 1,) 04!, = 1,, which we draw as follows.

Y- Y -

To show V; is associative, we want to show that the following equation holds.

We have three inclusion maps g, ¢1,%2: * — = + « + x, which are given in strings below.

SERERERE

The universal property of coproducts says that if the composites of the morphisms on the left
and right side of the associativity equation above with any of the three inclusions is always
the identity morphism on z, then those two morphisms must be equal. So we compute:

‘A -y

Yoy
-y oy
Yoy

Thus we have that V, is associative.
Recall that the braiding in C is derived from the universal property in the following

way.
X X
r+x
12 } i1
O
<4
r+x

110

Then the commutative diagram

i1
1

—
— 8

$

/ i

has precisely the frame for the universal construction of V,. Thus V, o o = V,, displayed

as follows.
Y §

Proposition A.17. A symmetric monoidal category is cocartesian if and only if each object
has a natural commutative monoid structure.

//

Proof. Given an object = in a cocartesian monoidal category C, we constructed a commu-
tative monoid structure on x in Example A.16.
We have to show that the multiplication maps

Veiz+zr—z
form the components of a natural transformation

V: +0A = 1.
For a given morphism f: x — y, the naturality square is

x+$ﬂ>y+y

in lVy

Recall that the map f + f is derived from the universal property of coproducts by the

following diagram.
x
12
>
Yy

r+x

f+/

y+y

X

%

e

111

We want to show that Vo (f + f) = foV,.

NN

T+ T+
i’l\J lﬂ% \ lv/
y+y z
Ly lvy 1y lf
Y Yy

The frames of the above diagrams are identical, and they are equal to the frame which
produces (f, f), the copairing of f with itself. So by universal property, they are equal.
The naturality square of the units collapses into the triangle below.

which commutes by initiality of 0.

We have shown one direction: that if C is cocartesian monoidal, then each object
has a natural commutative monoid structure. Now we must show the converse. Assume that
(C,®,I) is a symmetric monoidal category such that each object has a natural commutative
monoid structure m: ® oA = 1¢ and €: Al = 1¢. We represent the components of these
structures with string diagrams as follows.

The unit object is initial by naturality of €.

17
—

™
8

B— N

@(T'N
<

f

Now we must show that the monoidal structure on C is cocartesian, i.e. that the
unit object is initial and tensor is coproduct. To show that x ® y is actually the coproduct
of x and y, we first must provide inclusions, and then show that this cone satisfies the
appropriate universal property. We propose that the inclusion maps i;: * — =z ® y and
iy: Yy — T ®@y are given in string diagrams as follows.

v

112

Let ¢ be an object of C, and f: x — ¢ and g: y — ¢ be maps in C. Define the map
h: x ®y — g to be the following composite.

Then we show the diagram

Thus h is the unique such map. This demonstrates z ® y as the coproduct of z and y. [

There is a dual statement which characterizes cartesian monoidal categories, but
in order to state it, we must first define comonoid.

Definition A.18. A comonoid object in a monoidal category C is monoid in C°P. Equiv-
alently, a comonoid is an object z € C equipped with a comultiplication map u: z — z®x
and a counit map €: x — I, which we express as

/R,i

113

satisfying the following equations.

Al A

Let Comon(C,®) denote the category of comonoid objects in C and their homomorphisms.

Definition A.19. A cocommutative comonoid is a comonoid for which the following

equation holds.
A - R

Let CoComon(C, ®) denote the category of cocommutative comonoids in C and their homo-
morphisms.

Proposition A.20. A symmetric monoidal category is cartesian if and only if each object
has a natural cocommutative comonoid structure.

Proof. This is dual to Proposition A.17. O

Corollary A.21. Let (C,®,1) be a symmetric monoidal category. Then CMon(C,®) has
a cocartesian monoidal structure given by ®, and CoComon(C,®) has a cartesian monoidal
structure given by ®.

114

Appendix B

Monoidal 2-Categories and
Pseudomonoids

There are many sources for the basic theory of 2-categories and bicategories [Bén67,
KS74, Lacl0, JY21]. Below we sketch some basic definitions and constructions regarding
monoidal 2-categories, necessary for what follows; relevant references where explicit axioms
can be found are [Car95, GPS95, DS97, McC00].

B.1 Monoidal 2-Categories

A monoidal 2-category K is a 2-category equipped with a pseudofunctor ®: IC x
K — K and a unit object I: 1 — K which are associative and unital up to coherent
equivalence. A lax monoidal pseudofunctor F: K — L between monoidal 2-categories
is a pseudofunctor equipped with pseudonatural transformations

FXF

KxK—=LxL 1 Ir
®’Cl " l& I’Cl Ho (B.1)
Kﬁﬁ ICT>L‘

with components fiq4: Fa ® Fb — F(a®b), po: I — FI, and invertible modifications

3 ©cxl o 3 2exl po
}'x}'% il FxF Y ffo Txsp = \@j
e N
K3 2 k2 U L2 Kk b g2 (B2
~ ~
N, = e N, DF e g
K? —— K K2 —
K XK

115

subject to coherence conditions which can be found in Definition 2 in [DS97]. A monoidal
pseudonatural transformation 7: F = G between two lax monoidal pseudofunctors
(F, m,10) and (G,v,1p) is a pseudonatural transformation equipped with two invertible
modifications

FxF
o FxF
’CX’C»U«TXTLX;C KxK—/——= LxL
~_
ﬁxyg ® = ® Jiri p ® (B.3)
K— 1 K~ ur *r
g ~_
g
1— ¢ 1— ¢
o 4 no /
1k U v = I F
\
g ay
K K g
that consist of natural isomorphisms with components
Uap: Vap © (Ta @ Tp) — Tagh © Haps U0: Vo — TT O Ho (B.4)

satisfying coherence conditions which can be found in [GPS95, Section 3.3].

The above notions of course generalize those of an ordinary monoidal category, lax
monoidal functor and monoidal natural transformation. However, in our higher dimensional
setting, there is now room for a structure not present for monoidal 1-categories.

A monoidal modification between two monoidal pseudonatural transformations
(1,u,up) and (o, v,v9) is a modification

116

which consists of pseudonatural transformations m,: 7, = 0, compatible with the monoidal
structures, in the sense that

Ta®oyp Qa & gb Va,b ‘ra®‘rb/> Qa & Qb Va,b
7 \ SN

Fa@Fb Vv e — G@y) = Fa@Fb — 0% u,, Gla®b)
Ha,b J—_' Ta®b a® b Ta®b
(B.5)
/’/0_\ /’/0—\
I U Vo U’ uo

For any monoidal 2-categories IC, £ there are 2-categories Mon2Cats(K, L) de-

noted by WMonHom(/C, £) in [DS97] for bicategories. If we take lax monoidal 2-functors and
monoidal 2-transformations, the corresponding sub-2-category is denoted by Mon2Cat(/C, £).

B.2 Pseudomonoids

A pseudomonoid in a monoidal 2-category (K, ®, I) is an object a equipped with
multiplication m: a ® a — a, unit j: I — a, and invertible 2-cells

a®a®a1®ﬂ>a®a a®I*>a®a&I®a

etz | \lm 2 (B.6)

a®Qa —Fm>a

expressing associativity and unitality up to isomorphism, that satisfy appropriate coherence

conditions. A lax morphism between pseudomonoids a,b is a 1-cell f: a — b equipped

with 2-cells

a®aﬂ>b®b

I
ul 4 l (B.7)

117

such that the following conditions hold:

bobob ™ bob@a bobob 2 beb
f® fefef
fefef ll¢®1f/ \ / 1m
a®a®a "% a®a T a®a®a 1,06 bb 250

\ >/ o~ e g

a®aT> b®b

(B.8)
f f
a=a®l —212 s beb—3b 5 I®a—>b®b b
1:®¢o - = TR = $o®1y¢
19; ﬂ e Ud)/ o« Y0 \ ﬂ e U(ﬁ/
a®a —— a f a®aT>a

la

la

If (f, &, ¢0) and (g, 1, 1p) are two lax morphisms between pseudomonoids a and b,
a 2-cell between them o: f = ¢ in K which is compatible with multiplications and units,
in the sense that

85— b@b fof 5> b®b
/%@a/ \ / N

a®a — = ¢4 / b (B.9)
\gfg \a@

J J
17wl Ly T e

We obtain a 2-category PsMoni,(K) for any monoidal 2-category KC, which is
sometimes denoted by Mon(K) [CLS10]. By changing the direction of the 2-cells in Equa-
tion (B.7) and the rest of the axioms appropriately, or asking for them to be invertible, we
have 2-categories PsMon,p,(K) and PsMon(K) of pseudomonoids with oplax or (strong)
morphisms between them.

Example B.1. The prototypical example is that of the monoidal 2-category K = (Cat, x, 1)
of categories, functors, and natural transformations with the cartesian product of categories
and the unit category with a unique object and arrow. A pseudomonoid in (Cat, x,1) is a
monoidal category, a lax (resp. oplax, strong) morphism between two of these is precisely a
lax (resp. oplax, strong) monoidal functor, and a 2-cell is a monoidal natural transformation.
Therefore we obtain the well-known 2-categories MonCatj,y, MonCat,, and MonCat.

118

There is an evident similarity between the structures defined above, e.g. Equa-
tion (B.1) and Equation (B.7), or Equation (B.3) and Equation (B.9). This is due to the
fact that monoidal 2-categories, lax monoidal pseudofunctors and monoidal pseudonatural
transformations are themselves appropriate pseudomonoid-related notions in a higher level;
we do not get into such details, as they are not pertinent to the present work.

For our purposes, we are interested in a different observation: any pseudomonoid a
in a monoidal 2-category K can in fact be expressed as a lax monoidal normal pseudofunc-
tor A: 1 — K with A(%) = a, namely one where A(1,) is equal to 1,. Moreover, a monoidal
pseudonatural transformation 7: A = B: 1 — K bijectively corresponds to a strong mor-
phism between the pseudomonoids a and b, and similarly for monoidal modifications and
2-cells. Since every pseudofunctor is equivalent to a normal one, the 2-category of pseu-
domonoids PsMon(K) can be equivalently viewed as Mon2Cat(1, K), the 2-category of lax
monoidal pseudofunctors 1 — K, monoidal pseudonatural transformations and monoidal
modifications.

As was already shown in [DS97, Prop. 5], any lax monoidal 2-functor F: K — L
takes pseudomonoids to pseudomonoids, and in fact [McCO00] there is a functor PsMon(F)
that commutes with the respective forgetful functors

PsMon(K) Pebon(F), PsMon(L)

| |

K = L.

Based on the above, and since every pseudofunctor from 1 into a 2-category trivially pre-
serves composition on the nose and every pseudonatural transformation is really 2-natural,
we can define a hom-2-functor that clarifies these assignments.

Proposition B.2. There is a 2-functor
PsMon(—) ~ Mon2Cats(1, —): Mon2Cat — 2Cat (B.10)

which maps a monoidal 2-category to its 2-category of pseudomonoids, strong morphisms
and 2-cells between them.

The theory in [DS97, McCO00] extends the above definitions to the case of braided
and symmetric pseudomonoids in braided and symmetric monoidal 2-categories. Briefly
recall that a braiding for (IC, ®, I) is a pseudonatural equivalence with components 34 : a®
b — b ® a and invertible modifications, whereas a syllepsis is an invertible modification

aob S aba0b S bea S awb

which is called symmetry if it satisfies extra axioms. With the appropriate notions of
braided and symmetric lax monoidal pseudofunctors and monoidal pseudonatural trans-
formations (and usual monoidal modifications), we have 3-categories BrMon2Cat,s and
SymMon2Catps. Indicatively, a lax monoidal pseudofunctor comes equipped an invertible

119

modification with components

Fa® Fb 22 Fbo Fa

ﬁfa,]—'bl U vap \L]—-(Ba,b) (B.11)
fbxfawf(b@a)

As earlier, there exist 2-categories of braided and symmetric pseudomonoids with strong
morphisms between them, expressed as

BrPsMon(KC) = BrMon2Cat (1, K)

and

SymPsMon(K) = SymMon2Cat,) (1, K).
Proposition B.3. There are 2-functors
BrPsMon: BrMon2Cat — 2Cat, SymPsMon: SymMon2Cat — 2Cat

which map a braided or symmetric monoidal 2-category to its 2-category of braided or sym-
metric pseudomonoids.

Finally, recall the notion of a monoidal 2-equivalence arising as the equivalence
internal to the 2-category Mon2Cat.

Definition B.4. A monoidal 2-equivalence is a 2-equivalence F: K ~ £: G where both
2-functors are lax monoidal, and the 2-natural isomorphisms 1x = FG, GF = 1, are
monoidal. Similarly for braided and symmetric monoidal 2-equivalences.

As is the case for any 2-functor between 2-categories, PsMon as well as BrPsMon
and SymPsMon map equivalences to equivalences.

Proposition B.5. Any monoidal 2-equivalence K ~ L induces a 2-equivalence between the
respective 2-categories of pseudomonoids PsMon(KC) ~ PsMon(L). Similarly any braided or
symmetric monoidal 2-equivalence induces BrPsMon(K) ~ BrPsMon(L) or SymPsMon(K) =~
SymPsMon(L).

120

Appendix C

Fibrations and Indexed Categories

We recall some basic facts and constructions from the theory of fibrations and
indexed categories, as well as the equivalence between them via the Grothendieck construc-
tion. Several indicative references for the general theory are [Gra66, Bén85, Her94, Bor94,
Jac99, Joh02, Vis05, Str20, JY21].

C.1 Fibrations

Consider a functor P: A — X. A morphism ¢: ¢« — b in A over a morphism
f = P(¢): x — y in X is called cartesian if and only if, for all g: ' — z in X and
0:a — bin A with PO = f o g, there exists a unique arrow v¢: ¢’ — a such that Py =g
and 0 = ¢ o:

in A

=P Y in X
For x € ObX, the fibre of P over x written A,, is the subcategory of A which consists of
objects a such that P(a) = x and morphisms ¢ with P(¢) = 1,, called vertical morphisms.
The functor P: A — X is called a fibration if and only if, for all f: z — y in X and
b € Ay, there is a cartesian morphism ¢ with codomain b above f; it is called a cartesian
lifting of f to b. The category X is then called the base of the fibration, and A its total
category.

Dually, the functor U: C — X is an opfibration if U°P is a fibration, i.e. for every
c € Cp and h: x — y in X, there is a cocartesian morphism with domain ¢ above h, the

121

cocartesian lifting of h to ¢ with the dual universal property:

in C

in X

A bifibration is a functor which is both a fibration and opfibration.

If P: A — X is a fibration, assuming the axiom of choice we may select a cartesian
arrow over each f: x — y in X and b € A, denoted by Cart(f,b): f*(b) — b. Such a choice
of cartesian liftings is called a cleavage for P, which is then called a cloven fibration; any
fibration is henceforth assumed to be cloven. Dually, if U is an opfibration, for any ¢ € C,
and h: x — y in X we can choose a cocartesian lifting of h to ¢, Cocart(h,c): ¢ — hi(c). The
choice of (co)cartesian liftings in an (op)fibration induces a so-called reindexing functor
between the fibre categories

ffr A=A, and hi:Cp—Cy (C.2)

respectively, for each morphism f: x — y and h: x — y in the base category. It can be
verified by the (co)cartesian universal property that 14, = (1;)* and that for composable
morphism in the base category, g*o f* = (go f)*, as well as (1)1 = 1¢, and (koh) = kjoh,.
If these isomorphisms are equalities, we have the notion of a split (op)fibration.

A fibred 1-cell (H,F): P — @ between fibrations P: A — X and Q: B — Y is
given by a commutative square of functors and categories

A—H"2 .p
P Q (C~3)

X—>F Yy

where the top H preserves cartesian liftings, meaning that if ¢ is P-cartesian, then H¢ is
@-cartesian. In particular, when P and () are fibrations over the same base category, we
may consider fibred 1-cells of the form (H,1y) displayed as

A—H B

\ / €4

122

and H is then called a fibred functor. Dually, we have the notion of an opfibred 1-cell
and opfibred functor. Notice that any such (op)fibred 1-cell induces functors between the
fibres, by commutativity of Equation (C.3):

Hy: Ay — Bry (C.5)

A fibred 2-cell between fibred 1-cells (H,F) and (K,G) is a pair of natural
transformations (8: H = K,«a: F = G) with 8 above a, i.e. Q(8,) = ap, for all a € A,
displayed as

K (C.7)

Dually, we have the notion of an opfibred 2-cell and opfibred natural transformation
between opfibred 1-cells and functors respectively.

We thus obtain a 2-category Fib of fibrations over arbitrary base categories, fibred
1-cells and fibred 2-cells. There is also a 2-category Fib(X') of fibrations over a fixed base
category X, fibred functors and fibred natural transformations. Dually, we have the 2-
categories OpFib and OpFib(X'). Moreover, we also have 2-categories Fibs, and OpFib, of
split (op)fibrations, and (op)fibred 1-cells that preserve the cartesian liftings ‘on the nose’.

Notice that Fib and OpFib are both sub-2-categories of Cat? = [2, Cat], the arrow
2-category of Cat. Similarly, Fib(X) and OpFib(X) are sub-2-categories of Cat/X, the
slice 2-category of functors into X'. Due to that, both these (1-)categories form fibrations
themselves. Explicitly, the functor cod: Fib — Cat which maps a fibration to its base is a
fibration, with fibres Fib(X') and cartesian liftings pullbacks along fibrations. In fact, it is
a 2-fibration [Her99, Bucl4].

C.2 Indexed Categories

We now turn to the world of indexed categories. Given an ordinary category X,
an X-indexed category is a pseudofunctor

M: X°P — Cat

123

where X is viewed as a 2-category with trivial 2-cells; it comes with natural isomorphisms
5g.00 (Mg) o (Mf) = M(go f) and vyt Ipe — M(1,) for every € X and composable
morphisms f and g, satisfying coherence axioms. Dually, an X-opindexed category is an
X°P-indexed category, i.e. a pseudofunctor X — Cat. If an (op)indexed category strictly
preserves composition, i.e. is a (2-)functor, then it is called strict.

An indexed 1-cell (F,7): M — N between indexed categories M: X°P — Cat
and N: Y°P — Cat consists of an ordinary functor F': X —) along with a pseudonatural
transformation 7: M = N o F°P

yeor

with components functors 7, : Mz — N Fz, equipped with coherent natural isomorphisms
75t (NFf)ory = 10 (Mf) for any f: — y in X. For indexed categories with the same
base, we may consider indexed 1-cells of the form (1y,7)

X® | Cat (C.9)

which are called indexed functors. Dually, we have the notion of an opindexed 1-cell
and opindexed functor.
An indexed 2-cell (a,m) between indexed 1-cells (F,7) and (G, o), pictured as

XOP

consists of an ordinary natural transformation «: F = G and a modification m

M M

Xop U Cat X xop @ e Cat
/ m / (C.10)
N
N

Fop
yep Fop yep

given by a family of natural transformations m,: 7, = Na, o 0,. Notice that taking
opposites is a 2-functor (—)°P: Cat — Cat®, on which the above diagrams rely. An indexed

124

natural transformation between two indexed functors is an indexed 2-cell of the form
(11,,m). Dually, we have the notion of an opindexed 2-cell and opindexed natural
transformation between opindexed 1-cells and functors respectively.

Notice that an indexed 2-cell («,m) is invertible if and only if both « is a natural
isomorphism and the modification m is invertible, due to the way vertical composition is
formed.

We obtain a 2-category ICat of indexed categories over arbitrary bases, indexed
1-cells and indexed 2-cells. In particular, there is a 2-category ICat(X’) of indexed categories
with fixed domain X', indexed functors and indexed natural transformations, which coincides
with the functor 2-category 2Catp(X°P, Cat).

Dually, we have the 2-categories OplCat and OplCat(X) = 2Cat,s(X, Cat). Notice
that due to the absence of opposites in the world of opindexed categories, opindexed 2-cells
have a different form than Equation (C.10), namely

M M

O o Cat
i@y_/ %y/N'

Moreover, we have 2-categories of strict (op)indexed categories and (op)indexed 1-cells that
consist of strict natural transformations 7 Equation (C.8), i.e. ICat(X) = [X°P, Cat] and
OplCat,,(X) = [X, Cat] the usual functor 2-categories.

Notice that these categories also form fibrations over Cat, this time essentially
using the family fibration also seen in Section 5.7.2. The functor ICat — Cat sends an
indexed category to its domain and an indexed 1-cell to its first component. It is a split
fibration, with fibres 1Cat(X’) and cartesian liftings pre-composition with functors. In fact,
it is also a 2-fibration as explained in [Bucl4, 2.3.2].

C.3 The Grothendieck Construction

In the first volume of the Séminaire de Géométrie Algébrique du Bois Marie
[Gro71], Grothendieck introduced a construction for a fibration Ppy¢: [M — X from a
given indexed category M: A°P — Cat as follows. If § and v are the structure pseudonat-
ural transformations of the pseudofunctor M, the total category [M has

e objects (z,a) with x € X and a € Muz;

e morphisms (f,k): (z,a) — (y,b) with f: + — y a morphism in X, and k: a —
(Mf)(b) a morphism in Max;

e composition (g,¢) o (f,k): (z,a) — (y,b) = (2,¢) is given by go f:a = b — cin X
and

LN (Mf)(b) M (Mg o Mf)(c) M M(go f)(e) in Ma; (C.11)

125

e unit 1, q): (7,a) — (7,a) is given by 1,: x — x in X and
a = 1ypa 2% (M1y)(a) in Ma.

The fibration Prg: [M — X is given by (z,a) — x on objects and (f,k) — f on
morphisms, and the cartesian lifting of any (y,b) in [M along f: 2 — y in X is precisely
(f, L ampyp)- Its fibres are precisely Mz and the reindexing functors between them are Mf.

In the other direction, given a (cloven) fibration P: A — X, we can define an
indexed category Mp: X°P — Cat that sends each object = of X to its fibre category A,
and each morphism f: x — y to the corresponding reindexing functor f*: A, — A, as in
Equation (C.2). The isomorphisms of cartesian liftings f* o ¢* = (go f)* and 14, = 1%
render this assignment pseudofunctorial.

Details of the above, as well as the correspondence between 1-cells and 2-cells,
can be found in the provided references. Briefly, given a pseudonatural transformation
7: M — N o F°P Equation (C.8) with components 7,: Mx — N Fz, define a functor
P;: [M — [N mapping (z € X,a € Mz) to the pair (Fz € Y,7;(a) € NFz) and
accordingly for arrows. This makes the square

ML N
PMl lPN (C.12)

X —— Y

commute, and moreover P, preserves cartesian liftings due to pseudonaturality of 7. More-
over, given an indexed 2-cell (o, m): (F,7) = (G, o) as in Equation (C.10), we can form a
fibred 2-cell

/\
M P, [N

Fo (C.13)

where a: F' = G is piece of the given structure, whereas P, is given by components
(Pm)(@,a): Pr(z,a) = (Fa,720) = Py(z,a) = (Gx,0.a) in N

explicitly formed by a,: Fx — Gz in Y and (my)a: 7wa = (Nayg)oza in NFx.
The following theorem summarizes these standard results.

Theorem C.1.
1. FEvery fibration P: A — X gives rise to a pseudofunctor Mp: X°P—Cat.

2. Every indexed category M: X°P — Cat gives rise to a fibration Ppg: [M — X.

126

3. The above correspondences yield an equivalence of 2-categories
[Cat(X) ~ Fib(X)
so that Mp,, ~ M and Py, >~ P.

4. The above 2-equivalence extends to one between 2-categories of arbitrary-base fibrations
and arbitrary-domain indexed categories

ICat ~ Fib (C.14)

If we combine the above with the fact that the 2-categories Fib and ICat are fibred
over Cat with fibres Fib(X) and 1Cat(X) respectively, we obtain the following Cat-fibred

equivalence
= Fib
\ / (C.15)
Cat

There is an analogous story for opindexed categories and opfibrations that results into a
2-equivalences OplCat(X) ~ OpFib(X’) and OplCat ~ OpFib, as well as for the split versions
of (op)indexed and (op)fibred categories.

ICat

C.4 Examples

C.4.1 Fundamental Fibration

Let 2 denote the category with two objects, and one non-identity morphism x — e.
For a category X, the functor category X2 then consists of the arrows of X as objects, and
commuting squares between them as the morphisms.
For any category X, the codomain or fundamental opfibration is the usual functor
from its arrow category
cod: X2 — X

mapping every morphism to its codomain and every commutative square to its right-hand
side leg. It uniquely corresponds to the strict opindexed category, i.e. functor
X —— Cat

r—— X/ (C.16)
fl L
yr—— X/y

that maps an object to the slice category over it and a morphism to the post-composition
functor fi = f o — induced by it.

127

C.4.2 Graphs

Consider (directed, multi) graphs, i.e. presheaves on the category G = V ﬁ E .
t

For a presheaf g: G°P — Set, the set gy is the set of vertices of the graph, the set gg is the
set of edges of the graph, and the maps gs, g:: g5 — gy assign to an edge its starting and
terminating vertex respectively. Let Grph denoted the category of graphs, Set®”. Some-
times it is helpful to think of a graph as a single map of the form (g5, 97): g8 — gv X gv.
When convenient, we will abuse notation by simply referring to this map as g: gp — g%/.

Consider the inclusion of a terminal category 1 into G which selects the object V.
This induces a functor V: Grph — Set by precomposing, which sends a graph g to its vertex
set gy. As we show below, this functor is in fact a bifibration. The idea here is that if you
have a function f: — y, you can pull a graph on y back to a graph on z, and you can
also push a graph on z forward to a graph on y.

Proposition C.2. A morphism ¢: g — h in Grph is V-cartesian if and only if the square

QELhE

<gs,gt>l l(’“”h”

gy —5— i
92

is a pullback in Set.

Proof. A simple manipulation shows that the universal property of ¢ forming a pullback
square is the same as the universal property for it to be V-cartesian.]

Proposition C.3. The functor V: Grph — Set is a fibration.

Proof. Let f: x — y be a function, and g € Grph with gy = y. Then we can take a pullback
of the following diagram.

2 hs,h
22 L v = hi M hEg
By Proposition C.2, this map is a cartesian lift of f. O

By the Grothendieck correspondence, there is a indexed category Set®® — Cat.This
pseudofunctor assigns to a set X the category Grph y of graphs which have vertex set X, and
graph morphisms which fix the vertices. Given a function f: X — Y, this pseudofunctor
gives a functor f*: Grphy — Grphy which sends a graph g over Y to the pullback, as in the
proof of Proposition C.3. Since there is also an opindexed category with the same fibres,
we denote this by Grph*, referring to the action on morphisms.

To show that V is also an opfibration, it is actually easier to construct an explicit
splitting. We can derive a characterization of the cocartesian maps from there.

Proposition C.4. The functor V: Grph — Set is an opfibration.

128

Proof. Let g € Grph, y € Set, and f: gy — y a function. Then we can obtain a graph with
vertex set y by taking the following composite.
f2
98 > g = gv — ¢’

We claim the induced map of graphs displayed below is in fact a cocartesian lift of f.

1
9gg — 9JE

| e

G ——y

Let h be a graph, ¢: ¢ — h a map of graphs, and ¢: y — hy.

hg

The only map which may take the place of the dashed arrow is ¢g. O

Corollary C.5. A morphism ¢: g — h in Grph is V-cocartesian if and only if it is bijective
on edges.

By the Grothendieck correspondence, there is a corresponding opindexed category
Grph, : Set — Cat, again referring to the action on morphisms. This must have the same
fibres Grphy as the indexed category Grph* above. Given a function f: X — Y, this
pseudofunctor gives a functor f,.: Grphy — Grphy which sends a graph g over X to the
composite, as in the proof of Corollary C.5.

Corollary C.6. The functor V: Grph — Set is a bifibration.

C.4.3 Ring Modules

For a ring R, denote by Modp the category of R-modules and their homomor-
phisms. Given a ring homomorphism f: R — S, and an S-module N, we can give the
underlying abelian group of N the structure of an R-module, denoted f*N, by the formula

r.a = f(r).e
where r € R and x € N. This pullback construction is functorial:

#*: Modg — Modp,

129

and preserves ring homomorphism composition.
(feg) =g f"

Indeed, the above defines a functor Mod_: Ring®® — Cat, a (strict) indexed category. Note,
one could choose to be persnickety about size here, but we do not. We can then apply the
Grothendieck construction, resulting in a category Mod := [Mod_ where

e an object is a pair (R € Ring, M € Modpg)

e a morphism is a pair (f,¢) where f: R — S is a ring homomorphism, and ¢: M —
f*N is an S-module homomorphism.

The category Mod admits a fibration Mod — Ring which forgets the module in a ring-module
pair.

130

Appendix D

Species and Operads

D.1 Combinatorial Species

Combinatorial species were introduced by Joyal [Joy81]. A standard reference
for the combinatorial perspective is [BLL98]. In the previous section, we noted that the
category Set can be given both a cartesian and cocartesian monoidal structure. Moreover,
these satisfy a distributive law reminiscent of rings.

Ax(B4+C)2AxB+AxC

Consider the subcategory FinBij consisting of finite sets and bijections. This subcategory
is closed under both finite sums and products, and thus inherits both monoidal structures.
However, FinBij lacks the maps that would be the projections and inclusions necessary for
these structures to be cartesian or cocartesian themselves. By abuse of notation, we will
continue to denote them by + and Xx.

Definition D.1. A combinatorial species or simply species is a functor F': FinBij — Set.
The category of species is the functor category Set™ "B

There are several operations which have been defined on species. These operations
make up the building blocks of a calculus for counting families of combinatorial gadgets.

Definition D.2. Being a presheaf category, Set™ ™l has colimits given pointwise, thus
giving it a cocartesian structure. We refer to this operation simply as addition. On
objects, this operation is given by (F + G)(U) = F(U) + G(U).

Definition D.3. If we apply Day convolution as in Example A.11 to the + monoidal
structure on FinBij, we get the operation which we refer to as multiplication of species.
On objects, this operation is given by the following formula.

(F-G)(U)=)Y_ FV)xGU\V)
VCU
Definition D.4. Being a presheaf category, Set™™BU has products which are given pointwise,
thus giving a cartesian monoidal structure. This is called the Hadamard product. On

objects, it is given by (F x G)(U) = F(U) x G(U). This tends to be less useful than
multiplication, but it certainly has its purposes.

131

Definition D.5. We define the Dirichlet product on species to be the Day convolution
(as in Example A.11) of the x monoidal structure on FinBij.

To define differentiation of species, we will need to make use of the shift operator,
denoted +1, on FinBij, which is defined as the composite

FinBij -------- e » FinBij

| [+
FinBij x 1 ——— 7 FinBij x FinBj

where the map Al: 1 — FinBij is the monoidal unit with respect to x.

Definition D.6. The differentiation operator on species is given by D = +1*: Set™ "Bl _;
SetF"Bi . In other words, for a given species F, the derivative of F' is given by F/ = Fo+1,
or F/(U) = F(U + 1) on objects. The motivation for calling this operation differentiation
is that it actually corresponds to taking the formal derivative of its generation series.

Definition D.7. The composition product or substitution product is given by the
following formula.

(FoG)U)= > (F(W)XHG(p)>

7 partition of U pET

The species which acts as unit for this product is the singleton indicator functor, i.e. I5(U)
is a singleton is U is, and is empty otherwise. This monoidal structure is not symmetric.

D.2 Operads

An operad is a generalization of category which incorporates the notion of an arrow
having multiple inputs. A category is an arrow-like compositional system, consisting of a
collection of directed arrows, a collection of labels for the endpoints called objects, and a
rule for turning a path of such arrows into a single arrow which is associative and unital. An
operad is also a compositional system, but now tree-like. An operad consists of a collection
of directed “short” trees

a collection of labels for the endpoints called objects, and a rule for turning a big tree of
short trees

132

into a single short tree

\

which is associative and unital. There are several good references for the theory of operads
[MSS02, Yaul6, Ménl5, BD98, Kel05, Lei04]. Here, we follow the treatment given by Yau
in [Yau20].

D.2.1 Definition of Operad

Let C be a non-empty set, whose elements we call colors. Recall that we denote
the free symmetric monoidal category on C by S(C). Below, we define operads to be
monoids in the presheaf category Set>(@*C with respect to a certain monoidal structure.
First we must define this monoidal structure, which is somewhat involved.

For this section, we denote objects of S(C') by either c or (ci, ..., ¢,) depending on
context. We denote the monoidal structure on S(C') by +. For an object X € SetS(C)OpXC,
we denote the set assigned to (¢,d) € S(C)°P? x C by X(c;d).

Definition D.8. Let X,V € Set>(@*C For cach ¢ € S(C), define Y¢ by the following
coend formula.

{a;}ell}L, S(C)°P
W@z/

S(C)Op(gl ++Qm’b) X HY(ijcj)
j=1

The C-colored circle product of X and Y is given by
ceS(C)
XoY(bd) = / X(¢;d) @ Y4(b)

Define the unit object I as follows.

I(c;d) = {1 e=d

® otherwise

This reduces to the composition monoidal product of species in the case where
C=1.

Proposition D.9. (SetS(C)XC, o, 1) is a monoidal category.
Definition D.10. Let C be a set. Define the category of operads by
Opd = Mon(Set>(@*C o T).

We refer to an object of Opd as a C-colored operad, and a morphism as a color-fixing
C-operad functor. Let f: C' — D be a function. Let f(c) denote (f(c1),..., f(cn)) for
c € S(C). For a D-operad P, we can pullback along f to get a C-operad given by f*P(c;d) =
P(f(c); f(d)). For a color-fixing D-operad functor ¢: P — @, we get a color-fixing C-
operad functor f*¢: f*P — f*@Q which sends an operation 6 € f*P(c;d) = P(f(c);d) to
#0 € Q(f(c);d). These assignments give a functor f*: Opdy, — Opdp, and we get an
indexed category Opd_: Set®® — Cat. Define Opd = [Opd_. We refer to an object of Opd
as an operad, and to a morphism as an operad functor.

133

D.2.2 Operads from symmetric monoidal categories

There is a standard method of constructing an single-colored operad from an object
x in a strict symmetric monoidal category C. Namely, we define the set of n-ary operations
to be home (%", z), and compose these operations using composition in C. This gives the
so-called endomorphism operad of x. Here we give the generalization of this idea to the
multi-color case, using all the objects of C as the objects of the operad. In what follows we
let Ob(C) be the set of objects of a small category C.

Proposition D.11. If C is a small strict symmetric monoidal category then there is an
Ob(C)-colored operad Op(C) for which:

e the set of operations Op(C)(cy,...,cx;c) is defined to be home(cy ® « -+ ® g, €),

e given operations
Jf € home(c; ® -+ ® ¢y c)

and
g; € home(cij, ® -+ @ ¢4, ¢i)

for 1 <1i <k, their composite is defined by

folgt,--sgk) =fo(g1® - ®gr). (D.1)

e identity operations are identity morphisms in C, and
e the action of Sy on k-ary operations is defined using the braiding in C.

Proof. The various axioms of a colored operad can be checked for Op(C) using the corre-
sponding laws in the definition of a strict symmetric monoidal category. The associativity
axiom for Op(C) follows from associativity of composition and the functoriality of the ten-
sor product in C. The left and right unit axioms for Op(C) follow from the unit laws for
composition and the functoriality of the tensor product in C. The two equivariance axioms
for Op(C) follow from the laws governing the braiding in C. O

Proposition D.12. The assignment Op: SymMonCaty, — Opd defined on objects as in
Proposition D.11 and sending any strict symmetric monoidal functor F: C — C' to the
operad morphism Op(F): Op(C) — Op(C’) that acts by F on types and also on operations:

Op(F) = F: home(c1 @ -+ ® ¢p,) — homer (F(e1) @ -+ @ F(ey), F(c))
s a functor.

Proof. This is a straightforward verification. O

134

D.2.3 Operad Algebras

As a sort of monoid, operads exist to act. The elements of O(¢;d) for some operad
O are meant to be thought of as “abstract operations” with ¢ as the input types, and d as
the output type. When O acts on something, it is meant to be thought of as realizing these
abstract operations as real operations on some family of sets indexed by the elements of C.

Definition D.13. Let C be a set. A C-colored set is a functor C — Set, where C is
thought of as a discrete category. This is of course the same as a function C' — obSet.
For ¢ = (c1,...,¢,) € S(C), let X, denote the set [[i_; X¢;. A map of C-colored sets
f: X — Y is a natural transformation f: X = Y. This is the same as a family of functions
{fe: X¢ = Yc}eee with no further conditions. For ¢ = (c1,...,¢,) € S(C), let fo: X, — Y,
denote the function [[7_; fe;: [Tj—; Xe; — [Tj=; Ye,-

Definition D.14. Let O be a C-colored operad, with operad composition denoted by +,
and unit operation denoted by I. An O-algebra consists of

e a C-colored set X : C' — Set, also denoted { X, }.co
e for ce S(C) and d € C, amap 0: O(c;d) x X, — Xy

which makes the following diagrams commute for ¢, d,c; € C, ¢,b; € S(C), b= >""b;, and
o €Sy,

e associativity:

O(c,d) x [T1—y Olby. ¢) x Xj — O(bd) x X,

permutel%’

O(c;d) x [[}-1[0(b;, ¢5) x Xp] 0
1x]1; Gl
O(c d) x X¢ Xd

e unity:

O(¢;c)

1 x X,
o
XXC 9 Xc

e equivariance:

O(c;

O(co;d) X Xeo

d) % Xg oxo~ 1
x /
Xq

135

Definition D.15. A map of O-algebras (X,0) — (Y,¢) consists of a map of C-colored
sets a: X — Y such that the following diagram commutes.

O d) x Xe 2% 0(c:d) x v,

ei l&
X d % Yd

Let Alg(O) denote the category of O-algebras and maps of O-algebras.

136

Bibliography

[ALRO3]

[BB18§]

[BD9S]

[Bén67]

[Bén85)

[BEM19]

[BEMP16]

[BFMP17]

[BEMP20]

[BLLOS]

Jifif Adamek, F. William Lawvere, and Jifi Rosicky. On the duality between va-
rieties and algebraic theories. Algebra Universalis, 49(1):35-49, 2003. (Referred
to on page 44.)

John C. Baez and Jacob Biamonte. Quantum Techniques in Stochastic Mechan-
ics. World Scientific, 2018. Available as arXiv:1209.3632. (Referred to on page
6, 58.)

John C. Baez and James Dolan. Higher dimensional algebra III: n-categories
and the algebra of opetopes. Advances in Mathematics, 135(2):145-206, 1998.
(Referred to on page 133.)

Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category
Seminar, pages 1-77. Springer, 1967. (Referred to on page 115.)

Jean Bénabou. Fibered categories and the foundations of naive category theory.
The Journal of Symbolic Logic, 50(1):10-37, 1985. (Referred to on page 121.)

John C. Baez, John Foley, and Joe Moeller. Network models from Petri nets
with catalysts. Compositionality, 1(4), 2019. (Referred to on page iv, 6.)

John C. Baez, John Foley, Joe Moeller, and B.S. Pollard. Operads for communi-
cation networks. Technical report, DARPA CASCADE project, 2016. 37 pages.
(Referred to on page 8.)

John C. Baez, John Foley, Joe Moeller, and Blake S. Pollard. Compositional
tasking. Technical report, DARPA CASCADE project, 2017. 27 pages. (Re-
ferred to on page 8.)

John C. Baez, John Foley, Joe Moeller, and Blake S. Pollard. Network mod-
els. Theory and Applications of Categories, 35(20):700-744, 2020. Available
at http://www.tac.mta.ca/tac/volumes/35/20/35-20abs.html. (Referred to on
page iv, 1, 3, 34, 80.)

Francois Bergeron, Gilbert Labelle, and Pierre Leroux. Combinatorial Species
and Tree-like Structures. Cambridge University Press, 1998. (Referred to on
page 9, 131.)

137

https://arxiv.org/abs/1209.3632
http://www.tac.mta.ca/tac/volumes/35/20/35-20abs.html

[BM20]

[Bor94]

[BP17]

[BS81]

[BS11]

[Buc14]

[BV73]

[Car95]

[CDLO6]

[CLS10]

[Day70]

[DMMSY]

John C. Baez and Jade Master. Open Petri nets. Mathematical Structures in
Computer Science, 30(3):314-341, 2020. (Referred to on page 56.)

Francis Borceux. Handbook of Categorical Algebra. 2, volume 51 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University Press, 1994.
(Referred to on page 121.)

John C. Baez and B.S. Pollard. A compositional framework for reaction net-
works. Reviews in Mathematical Physics, 29, 2017. arXiv:1704.02051. (Referred
to on page 20, 58.)

Stanley Burris and Hanamantagouda P. Sankappanavar. A Course in Universal
Algebra, volume 78 of Graduate Texts in Mathematics. Springer, 1981). (Re-
ferred to on page 44.)

John C. Baez and Mike Stay. Physics, topology, logic and computation: A
rosetta stone. In Bob Coecke, editor, New Structures for Physics, volume 813
of Lecture Notes in Physics, pages 95-172. Springer, 2011. arXiv:0903.0340.
(Referred to on page 62.)

Mitchell Buckley. Fibred 2-categories and bicategories. Journal of Pure and
Applied Algebra, 218(6):1034-1074, 2014. (Referred to on page 123, 125.)

Michael Boardman and Rainer Vogt. Homotopy Invariant Algebraic Structures
on Topological Spaces, volume 347 of Lecture Notes in Mathematics. Springer,
1973. (Referred to on page 2.)

Sean Carmody. Cobordism Categories. PhD thesis, University of Cambridge,
1995. (Referred to on page 115.)

Stefaan Caenepeel and Marieke De Lombaerde. A categorical approach to Tu-
raev’s Hopf group-coalgebras. Communications in Algebra, 34(7):2631-2657,
2006. (Referred to on page 95.)

Dimitri Chikhladze, Stephen Lack, and Ross Street. Hopf monoidal comon-
ads. Theory and Applications of Categories, 24(19):554-563, 2010. Available
as http://www.tac.mta.ca/tac/volumes/24/19/24-19abs.html. (Referred to on
page 118.)

Brian Day. On closed categories of functors. In Reports of the Midwest Category
Seminar IV, volume 137 of Lecture Notes in Mathematics, pages 1-38. Springer,
1970. (Referred to on page 105.)

Pierpaolo Degano, José Meseguer, and Ugo Montanari. Ax-
iomatizing net computations and processes. In Logic in Com-
puter Science, pages 175-185. IEEE, 1989. Available at

https://www.computer.org/csdl/proceedings/lics/1989/1954 /00/00039172.pdf.
(Referred to on page 56.)

138

https://arxiv.org/abs/1704.02051
https://arxiv.org/abs/0903.0340
http://www.tac.mta.ca/tac/volumes/24/19/24-19abs.html
https://www.computer.org/csdl/proceedings/lics/1989/1954/00/00039172.pdf

[DS97]

[EGNO15]

[EW90]

[FHJ*20]

[FK09]

[FKLS0]

[Fox76]

[FS19]

[GJ17]

[GPSO5]

[Gra66)

[Gre90]

[GroT1]

Brian Day and Ross Street. Monoidal bicategories and Hopf algebroids. Ad-
vances in Mathematics, 129(1):99-157, 1997. (Referred to on page 115, 116,
117, 119.)

Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor
Categories, volume 205 of Mathematical Surveys and Monographs. American
Mathematical Society, 2015. (Referred to on page 101.)

Uffe Engberg and Glynn Winskel. Petri nets as models of linear logic. In
Colloguium on Trees in Algebra and Programming, pages 147-161. Springer,
1990. (Referred to on page 55.)

Brendan Fong, Jules Hedges, Michael Johnson, David Spivak, and Christina
Vasilakopoulou. The ubiquity of dialectics: wiring diagrams, lenses and related
structures. In preparation, 2020. (Referred to on page 97.)

John Fountain and Mark Kambites. Graph products of right cancellative
monoids. Journal of the Australian Mathematical Society, 87(2):227-252, 20009.
(Referred to on page 37.)

Francois Foltz, G. Maxwell Kelly, and Christian Lair. Algebraic categories with
few monoidal biclosed structures or none. Journal of Pure and Applied Algebra,
17:171-177, 1980. (Referred to on page 67.)

Thomas Fox. Coalgebras and cartesian categories. Communications in Algebra,
4(7):665-667, 1976. (Referred to on page 109.)

Brendan Fong and David Spivak. Hypergraph categories. Journal of Pure
and Applied Algebra, 223(11):4746-477, 2019. Available as arXiv:1806.08304.
(Referred to on page 99.)

Nicola Gambino and André Joyal. On operads, bimodules and analytic func-
tors, volume 249. American Mathematical Society, 2017. Available as
arXiv:1405.7270. (Referred to on page 19.)

Robert Gordon, A. John Power, and Ross Street. Coherence for tricategories.
Memoirs of the American Mathematical Society, 117(558):vi+81, 1995. (Re-
ferred to on page 115, 116.)

John W. Gray. Fibred and cofibred categories. In S. Eilenberg et al., editor,
Proceedings of the Conference on Categorical Algebra, pages 21-83. Springer,
1966. (Referred to on page 90, 121.)

Elisabeth R. Green. Graph Products of Groups. PhD thesis, University of Leeds,
1990. (Referred to on page 5, 33, 35, 37.)

Alexander Grothendieck. Categories fibrees et descente. In Revétements Etales
et Groupe Fondamental, pages 145-194. Springer, 1971. (Referred to on page 3,
69, 125.)

139

https://arxiv.org/abs/1806.08304
https://arxiv.org/abs/1405.7270

[GV13]

[Her94]

[Her99)

[HLFV17]

[HMOG]

[HP02]

[Hun74]

[Jac99]

[Joh02]

[Joy81]

[Joy86]

[JS91]

[1593]

Claude Girault and Riidiger Valk. Petri Nets for Systems Engineering: o Guide
to Modeling, Verification, and Applications. Springer, 2013. (Referred to on
page 53.)

Claudio Hermida. On fibred adjunctions and completeness for fibred categories.
In Fernando Orejas Hartmut Ehrig, editor, Recent Trends in Data Type Speci-
fication (Caldes de Malavella, 1992), volume 785 of Lecture Notes in Computer
Science, pages 235-251. Springer, 1994. (Referred to on page 121.)

Claudio Hermida. Some properties of Fib as a fibred 2-category. Journal of
Pure and Applied Algebra, 134(1):83-109, 1999. (Referred to on page 90, 123.)

Martin Hyland, Ignacio Lopez Franco, and Christina Vasilakopoulou. Hopf
measuring comonoids and enrichment. Proceedings of the London Mathematical
Society, 115(3):1118-1148, 2017. (Referred to on page 96.)

Pieter Hofstra and Federico De Marchi. Descent for monads. The-
ory and Applications of Categories, 16(24):668-699, 2006. Available as
http://www.tac.mta.ca/tac/volumes/16/24/16-24abs.html. ~ (Referred to on
page 70, 79, 81, 93.)

Martin Hyland and A. John Power. Pseudo-commutative monads and pseudo-
closed 2-categories. Journal of Pure and Applied Algebra, 175(1-3):141-185,
2002. (Referred to on page 23.)

Thomas W. Hungerford. Algebra, volume 73 of Graduate Texts in Mathematics.
Springer, 1974. (Referred to on page 45.)

Bart Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic
and the Foundations of Mathematics. North-Holland, 1999. (Referred to on
page 74, 121.)

Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
Vol. 1, volume 43 of Ozford Logic Guides. Oxford University Press, 2002. (Re-
ferred to on page 121.)

André Joyal. Une théorie combinatoire des séries formelles. Advances in Math-
ematics, 42(1):1-82, 1981. (Referred to on page 4, 9, 131.)

André Joyal. Foncteurs analytiques et especes de structures. In Gilbert Labelle
and Pierre Leroux, editors, Combinatoire Enumérative, pages 126—159. Springer,
1986. (Referred to on page 9.)

André Joyal and Ross Street. The geometry of tensor calculus I. Advances in
Mathematics, 88(1):55-112, 1991. (Referred to on page 62.)

André Joyal and Ross Street. Braided tensor categories. Advances in Mathe-
matics, 102(1):20-78, 1993. (Referred to on page 102.)

140

http://www.tac.mta.ca/tac/volumes/16/24/16-24abs.html

[JY21]

[Kel05]

[KS74]

[Lac10]

[Law63]

[Law89a)]

[Law89b]

[Lei04]

[Lor19]

[Lov78]

[Mas20]

[May72]

[McCO0]

Niles Johnson and Donald Yau. 2-Dimensional Categories. Oxford University
Press, 2021. Available as arXiv:2002.06055. (Referred to on page 115, 121.)

G. Maxwell Kelly. On the operads of J.P. May. Reprints in
Theory and Applications of Categories, 13:1-13, 2005. Available as
http://www.tac.mta.ca/tac/reprints/articles/13/tr13abs.html. (Referred to on
page 133.)

G. Maxwell Kelly and Ross Street. Review of the elements of 2-categories. In
G.M. Kelly, editor, Category Seminar, volume 420 of Lecture Notes in Mathe-
matics, pages 75-103. Springer, 1974. (Referred to on page 115.)

Stephen Lack. A 2-categories companion. In Peter May John Baez, editor,
Towards Higher Categories, volume 152 of IMA Volumes in Mathematics and
its Applications, pages 105-191. Springer, 2010. (Referred to on page 115.)

F. William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963. (Referred to on page 44.)

F. William Lawvere. Display of graphics and their applications, as exemplified
by 2-categories and the Hegelian “taco”. Proceedings of the First International
Conference on Algebraic Methodology and Software Technology, University of
Towa, pages 51-74, 1989. (Referred to on page 44.)

F. William Lawvere. Qualitative distinctions between some toposes of gener-
alized graphs. In Categories in computer science and logic (1987), volume 92,
pages 261-299. American Mathematical Society, 1989. (Referred to on page 32.)

Tom Leinster. Higher Operads, Higher Categories. Number 298 in London Math-
ematical Society Lecture Note Series. Cambridge University Press, Cambridge,
2004. (Referred to on page 133.)

Fosco Loregian. Coend Calculus. 2019. Available as arXiv:1501.02503. (Referred
to on page 106.)

Laszl6 Lovéasz. Kneser’s conjecture, chromatic number, and homotopy. Journal
of Combinatorial Theory, Series A, 25(3):319-324, 1978. (Referred to on page
A1)

Jade Master. Petri nets based on Lawvere theories. Mathematical Structures in
Computer Science, 30(7):833-864, 2020. Available as . (Referred to on page 56,
58.)

J. Peter May. The Geometry of Iterated Loop Spaces, volume 271 of Lectures
Notes in Mathematics. Springer, 1972. (Referred to on page 2.)

Paddy McCrudden. Balanced coalgebroids. Theory and Ap-
plications of Categories, 7(6):71-147, 2000. Available as
http://www.tac.mta.ca/tac/volumes/7/n6/7-06abs.html. (Referred to on
page 115, 119.)

141

https://arxiv.org/abs/2002.06055
http://www.tac.mta.ca/tac/reprints/articles/13/tr13abs.html
https://arxiv.org/abs/1501.02503
http://www.tac.mta.ca/tac/volumes/7/n6/7-06abs.html

[Mén15]

[MLOSg]

[MMO90]

[Moe20]

[MS14]

[MSS02]

[MSS20]

[MV20]

[Pet81]

[PRO7]

[PS12]

[Qui67]

[Sas94]

Miguel A. Méndez. Set Operads in Combinatorics and Computer Science.
Springer Briefs in Mathematics. Springer, 2015. (Referred to on page 2, 133.)

Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer, second edition, 1998. (Referred to
on page 39, 101.)

José Meseguer and Ugo Montanari. Petri nets are monoids. Information and
Computation, 88(2):105-155, 1990. (Referred to on page 55.)

Joe Moeller. Noncommutative network models. Mathematical Structures in
Computer Science, 30(1):14-32, 2020. (Referred to on page iv, 5.)

Rasmus Ejlers Mggelberg and Sam Staton. Linear usage of state. Logical Meth-
ods in Computer Science, 10(1):1-52, 2014. Also available as arXiv:1403.1477.
(Referred to on page 68.)

Martin Markl, Steve Shnider, and Jim Stasheff. Operads in Algebra, Topology
and Physics, volume 96 of Mathematical Surveys and Monographs. American
Mathematical Society, 2002. (Referred to on page 2, 133.)

Stuart Margolis, Franco Saliola, and Benjamin Steinberg. Cell complexes, poset
topology and the representation theory of algebras arising in algebraic combi-
natorics and discrete geometry. Available as arXiv:1508.05446. To appear in
Memoirs of the American Mathematical Society, 2020. (Referred to on page
44.)

Joe Moeller and Christina Vasilakopoulou. Monoidal Grothendieck construc-
tion. Theory and Applications of Categories, 35(31):1159-1207, 2020. Available
at http://www.tac.mta.ca/tac/volumes/35/31/35-31abs.html. (Referred to on
page iv, 3.)

James L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice—
Hall, 1981. (Referred to on page 53.)

A. John Power and Edmund Robinson. Premonoidal categories and notions
of computation. Mathematical Structures in Computer Science, 7(5):453-468,
1997. (Referred to on page 65, 66, 68.)

Kate Ponto and Michael Shulman. Duality and traces for indexed monoidal cat-
egories. Theory and Applications of Categories, 26(23):582-659, 2012. Available
as http://www.tac.mta.ca/tac/volumes/26/23/26-23abs.html. (Referred to on
page 79.)

Daniel Quillen. Homotopical Algebra, volume 43 of Lecture Notes in Mathemat-
ics. Springer, 1967. (Referred to on page 37.)

Vladimiro Sassone. Strong concatenable processes: An approach to the category
of Petri net computations. BRICS Report Series, 1(33), 1994. (Referred to on
page 19, 56.)

142

https://arxiv.org/abs/1403.1477
https://arxiv.org/abs/1508.05446
http://www.tac.mta.ca/tac/volumes/35/31/35-31abs.html
http://www.tac.mta.ca/tac/volumes/26/23/26-23abs.html

[Sas95]

[Sas96]

[Selll]

[Shu08]

[Shu09)]

[SS05]

[SSR17]

[SSV20]

[Str80]

[Str20]

[Tur00]

[Vas14]

[Vas18]

Vladimiro Sassone. On the category of Petri net computations. In Collo-
quium on Trees in Algebra and Programming. Springer, 1995. Available at
https://eprints.soton.ac.uk/261951/1/strong-conf.pdf. (Referred to on page 56.)

Vladimiro Sassone. An axiomatization of the algebra of Petri net concatenable
processes. Theoretical Computer Science, 170(1-2):277-296, 1996. Available at
https://eprints.soton.ac.uk/261820/1/P-of-N-Off.pdf. (Referred to on page 56.)

Peter Selinger. A survey of graphical languages for monoidal categories. In
Bob Coecke, editor, New Structures for Physics, pages 289-355. Springer, 2011.
(Referred to on page 47, 62.)

Michael Shulman. Framed bicategories and monoidal fibrations. The-
ory and Applications of Categories, 20(18):650-738, 2008. Available as
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html. ~ (Referred to on
page 70, 71, 73, 81, 86, 90.)

Michael Shulman. Double Categories and Base Change in Homotopy Theory.
PhD thesis, University of Chicago, 2009. (Referred to on page 80.)

Vladimiro Sassone and Pawel Sobocinski. A congruence for Petri nets. FElec-
tronic Notes in Theoretical Computer Science, 127:107-120, 2005. Available at
https://eprints.soton.ac.uk/262302/1/petriCongPNGToff.pdf. (Referred to on
page 56.)

David I. Spivak, Patrick Schultz, and Dylan Rupel. String diagrams for traced
and compact categories are oriented 1-cobordisms. Journal of Pure and Applied
Algebra, 221(8):2064-2110, 2017. (Referred to on page 99.)

Patrick Schultz, David I. Spivak, and Christina Vasilakopoulou. Dynami-
cal systems and sheaves. Applied Categorical Structures, 28(1):1-57, 2020.
arXiv:1609.08086. (Referred to on page 96, 98.)

Ross Street. Fibrations in bicategories. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 21(2):111-160, 1980. (Referred to on page 87.)

Thomas Streicher. Fibred categories a la Jean Bénabou. Available as
arXiv:1801.02927, 2020. (Referred to on page 121.)

Vladimir Turaev. Homotopy field theory in dimension 3 and crossed group-
categories. Available as arXiv:0005291, 2000. (Referred to on page 95.)

Christina Vasilakopoulou. Generalization of Algebraic Operations via Enrich-
ment. PhD thesis, University of Cambridge, 2014. Available as arXiv:1411.3038.
(Referred to on page 95.)

Christina Vasilakopoulou. On enriched fibrations. Cahiers de Topologie et
Géométrie Différentielle Catégoriques, 59(4):354-387, 2018. arXiv:1801.01386.
(Referred to on page 96.)

143

https://eprints.soton.ac.uk/261951/1/strong-conf.pdf
https://eprints.soton.ac.uk/261820/1/P-of-N-Off.pdf
http://www.tac.mta.ca/tac/volumes/20/18/20-18abs.html
https://eprints.soton.ac.uk/262302/1/petriCongPNGToff.pdf
http://arxiv.org/abs/1609.08086
https://arxiv.org/abs/1801.02927
https://arxiv.org/abs/math/0005291
https://arxiv.org/abs/1411.3038
https://arxiv.org/abs/1801.01386

[Vas19]

[VelO1]

[vGP09]

[Vis05]

[VSL15]

[Web13]

[Yaul6)

[Yau20]

[Zawll]

Christina Vasilakopoulou. Enriched duality in double categories: V-categories
and V-cocategories. Journal of Pure and Applied Algebra, 223(7), 2019. Avail-
able as arXiv:1704.00329. (Referred to on page 96.)

Antonio Veloso da Costa. Graph products of monoids. Semigroup Forum,
63:247-277, 2001. (Referred to on page 37.)

Rob van Glabbeek and Gordon D. Plotkin. Configuration structures, event
structures and Petri nets. Theoretical Computer Science, 410(41):4111-4159,
2009. arXiv:0912.4023. (Referred to on page 64.)

Angelo Vistoli. Grothendieck topologies, fibered categories and descent theory.
In Fundamental Algebraic Geometry, volume 123 of Mathematical Surveys and
Monographs, pages 1-104. American Mathematical Society, 2005. Available as
arXiv:0412512. (Referred to on page 121.)

Dmitry Vagner, David I. Spivak, and FEugene Lerman. Algebras of
open dynamical systems on the operad of wiring diagrams. Theory
and Applications of Categories, 30(51):1793-1822, 2015. Available as
http://www.tac.mta.ca/tac/volumes/30/51/30-51abs.html. (Referred to on
page 96.)

Mark Weber. Free products of higher operad algebras. The-
ory and Applications of Categories, 28(2):24-65, 2013. Available as
http://www.tac.mta.ca/tac/volumes/28/2/28-02abs.html. (Referred to on page
67.)

Donald Yau. Colored Operads. American Mathematical Society, 2016. (Referred
to on page 10, 11, 28, 133.)

Donald Yau. Homotopical Quantum Field Theory. World Scientific, 2020. Avail-
able as arXiv:1802.08101. (Referred to on page 133.)

Marek Zawadowski. Lax monoidal fibrations. In Models, Logics, and Higher-
Dimensional Categories, volume 53 of CRM Proceedings & Lecture Notes, pages
341-426. American Mathematical Society, 2011. (Referred to on page 81.)

144

https://arxiv.org/abs/1704.00329
https://arxiv.org/abs/0912.4023
https://arxiv.org/abs/math/0412512v4
http://www.tac.mta.ca/tac/volumes/30/51/30-51abs.html
http://www.tac.mta.ca/tac/volumes/28/2/28-02abs.html
https://arxiv.org/abs/1802.08101

	Introduction
	Network Models
	Introduction
	One-Colored Network Models
	General Network Models
	Operads from Network Models

	Noncommutative Network Models
	Introduction
	Graph Products
	Free Network Models
	Commitment Networks

	Petri Nets
	Introduction
	Petri Nets
	Catalysts
	Premonoidal Categories

	Monoidal Grothendieck Construction
	Introduction
	Monoidal Fibres and Monoidal Fibrations
	Indexed Categories and Monoidal Structures
	Two Monoidal Grothendieck Constructions
	Summary of Structures
	The (Co)cartesian Case
	Examples

	Monoidal Categories
	Definitions
	Examples
	Monoid Objects
	The Eckmann–Hilton Argument
	Characterizing (co)cartesian monoidal categories

	Monoidal 2-Categories and Pseudomonoids
	Monoidal 2-Categories
	Pseudomonoids

	Fibrations and Indexed Categories
	Fibrations
	Indexed Categories
	The Grothendieck Construction
	Examples

	Species and Operads
	Combinatorial Species
	Operads

	Bibliography

