
Operads and the Tree of Life
John Baez and Nina Otter

http://commons.wikimedia.org/wiki/File:Phylogenetic_tree.svg


We have entered a new geological epoch, the Anthropocene, in
which the biosphere is rapidly changing due to human activities.

http://en.wikipedia.org/wiki/Anthropocene
http://www.globalwarmingart.com/wiki/File:Carbon_Dioxide_400kyr_Rev_png


http://arctic.atmos.uiuc.edu/cryosphere/


Last week two teams of scientists claimed the Western Antarctic
Ice Sheet has been irreversibly destabilized, and will melt causing
∼ 3 meters of sea level rise in the centuries to come.

http://johncarlosbaez.wordpress.com/2014/05/16/west-antarctic-ice-sheet-news/
http://johncarlosbaez.wordpress.com/2014/05/16/west-antarctic-ice-sheet-news/


So, we can expect that mathematicians will be increasingly focused
on biology, ecology and complex systems — just as last century’s
mathematics was dominated by fundamental physics.

Luckily, these new topics are full of fascinating mathematical
structures—and while mathematics takes time to have an effect, it
can do truly amazing things. Think of Church and Turing’s work
on computability, and computers today!



Trees are important, not only in mathematics, but also biology.

http://commons.wikimedia.org/wiki/File:Adansonia_digitata.jpg


The most important is the ‘tree of life’. Darwin thought about it:

http://en.wikipedia.org/wiki/Tree_of_life_%28biology%29#Darwin.27s_tree_of_life
http://en.wikipedia.org/wiki/Tree_of_life_%28biology%29#Darwin.27s_tree_of_life


In the 1860s, the German naturalist Haeckel drew it:

http://en.wikipedia.org/wiki/Tree_of_life_%28biology%29#Haeckel.27s_Tree_of_Life
http://en.wikipedia.org/wiki/Tree_of_life_%28biology%29#Haeckel.27s_Tree_of_Life


Now we know that the ‘tree of life’ is not really a tree, due to
endosymbiosis and horizontal gene transfer:

http://en.wikipedia.org/wiki/Endosymbiont
http://en.wikipedia.org/wiki/Horizontal_gene_transfer
http://en.wikipedia.org/wiki/Horizontal_gene_transfer


But a tree is often a good approximation. Biologists who try to
infer phylogenetic trees from present-day genetic data often use
simple models where:

I the genotype of each species follows a random walk, but

I species branch in two at various times.

These are called Markov models.

http://en.wikipedia.org/wiki/Models_of_DNA_evolution


The simplest Markov model for DNA evolution is the Jukes–Cantor
model. Consider a genome of fixed length: that is, one or more
pieces of DNA having a total of N base pairs, each taken from the
set {A,T,C,G}:

· · · ATCGATTGAGCTCTAGCG · · ·

As time passes, the Jukes–Cantor model says the genome changes
randomly, with each base pair having the same constant rate of
randomly flipping to any other.

So, we get a ‘Markov process’ on the set of genomes,

X ={A,T,C,G}N

I’ll explain Markov processes later!

http://en.wikipedia.org/wiki/Models_of_DNA_evolution#JC69_model_.28Jukes_and_Cantor.2C_1969.29.5B1.5D
http://en.wikipedia.org/wiki/Models_of_DNA_evolution#JC69_model_.28Jukes_and_Cantor.2C_1969.29.5B1.5D
http://en.wikipedia.org/wiki/Base_pair


However, a species can also split in two!

So, given current-day genome data from various species, biologists
try to infer the most probable tree where, starting from a common
ancestor, the genome undergoes a random walk most of the time
but branches in two at certain times.



For example, here is Elaine Ostrander’s reconstruction of the tree
for canids:

http://www.americanscientist.org/issues/pub/genetics-and-the-shape-of-dogs/2
http://www.americanscientist.org/issues/pub/genetics-and-the-shape-of-dogs/2


Define a phylogenetic tree to be a rooted tree with leaves
labelled by numbers 1, 2, . . . , n and edges labelled by times or
lengths in [0,∞). We require that:

I the length of every edge is positive, except perhaps for edges
incident to a leaf or the root;

I a vertex that is an only child cannot have only one child.



For example, here is a phylogenetic tree with 5 leaves:
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where t1, t2, t3 ≥ 0 and t4 > 0 The root is labelled 0, the leaves
1, 2, 3, 4, 5.



The embedding of the tree in the plane is irrelevant, so these are
the same phylogenetic tree:
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Let Phyln be the set of phylogenetic trees with n leaves. This has
an ‘obvious’ topology.

Here is a continuous path in Phyl4:

•
••

1 2 3 4

11

1 1 11

1.2

 • ••

1 2 3 4

0.51

1 1 11

1.2

 •
•

1 2 3 4

1

1 1 11

1.2



Phylogenetic trees reconstructed by biologists are typically binary.
There’s a heated debate about trees of higher arity: can a species
split into 3 or more species simultaneously?

Generically, no. Binary trees form an open dense set of Phyln,
except for Phyl1. But trees of higher arity matter when we
consider paths, paths of paths,... etc. in Phyln.

This was emphasized here:

I Louis Billera, Susan Holmes and Karen Vogtmann, Geometry
of the space of phylogenetic trees, Advances in Applied
Mathematics 27 (2001), 733–767.

http://www-stat.stanford.edu/%7Esusan/papers/lap.pdf
http://www-stat.stanford.edu/%7Esusan/papers/lap.pdf


Billera, Holmes and Vogtmann study the set Tn of phylogenetic
trees with n leaves where the lengths of external edges — edges
incident to the root and leaves — are fixed to a constant value.
The reason:

Phyln
∼= Tn × [0,∞)n+1

For example, they note T4 is the cone on the Petersen graph:

http://statweb.stanford.edu/~susan/papers/lap.pdf


The cone on any edge of the Petersen graph is a quadrant:

(All these drawings with upside-down trees are theirs!)

http://statweb.stanford.edu/~susan/papers/lap.pdf


The cone on any vertex of the Petersen graph is a ray, at which 3
quadrants meet:

http://statweb.stanford.edu/~susan/papers/lap.pdf


The cone on any pentagon in the Petersen graph looks like this:

This is a copy of the famous Stasheff pentagon!

http://statweb.stanford.edu/~susan/papers/lap.pdf


This should remind us of the connection between trees and
operads!

Today my operads will always be ‘permutative’, meaning we have
an action of Sn on On, compatible with composition.

They will also be ‘topological’, meaning that On is a topological
space, and composition and permutations act as continuous maps.



Proposition. There is an operad Phyl, the phylogenetic operad,
whose space of n-ary operations is Phyln. Composition and
permutations are defined in the visually evident way.

So:

I What is the mathematical nature of this operad?

I How is it related to ‘Markov processes with branching’?

I How is it related to known operads in topology?

Answer: Phyl is the coproduct of Com, the operad for
commutative semigroups, and [0,∞), the operad having only
unary operations, one for each t ∈ [0,∞). The first describes
branching, the second describes Markov processes. Phyl is closely
related to the Boardman–Vogt W construction applied to Com.
Let’s see how this works...



The point of operads is that they have ‘algebras’. An algebra of O
is a topological space X on which each operation f ∈ On acts as a
map

α(f ) : X n → X

obeying some plausible conditions.

These conditions simply say there’s an operad homomorphism
α : O→ End(X ), where End(X ) is the operad whose n-ary
operations are maps X n → X .

More generally we can consider an algebra of O in any symmetric
monoidal category C enriched over Top. This is an object X ∈ C
with an operad homomorphism α : O→ End(X ).

A coalgebra of O in C is an algebra of O in C op. We’ll see that
the phylogenetic operad has interesting coalgebras in FinStoch,
the category of finite sets and ‘stochastic maps’.



I’ll use [0,∞) as the name for the operad having only unary
operations, one for each t ∈ [0,∞), with composition of
operations given by addition.

The category FinStoch has finite sets as objects, and a morphism
f : X → Y is a map sending each point in X to a probability
distribution on Y .

Alternatively, a morphism f : X → Y is a Y × X -shaped matrix of
real numbers where:

I the entries are nonnegative,

I each column sums to 1.

Such a matrix is called stochastic. Composition of morphisms is
matrix multiplication.



FinStoch becomes a symmetric monoidal category enriched over
Top, where the tensor product of X and Y is X × Y .

A Markov process is an algebra of [0,∞) in FinStoch.

Concretely, a Markov process is a finite set X together with a
stochastic map α(t) : X → X for each t ≥ 0, such that:

I α(s + t) = α(s)α(t),

I α(0) = 1

I α(t) depends continuously on t.

Since [0,∞) is commutative, a coalgebra of [0,∞) in FinVect is
the same thing!

If X is a set of possible genomes, a Markov process on X describes
the random changes of the genome with the passage of time.



There’s a unique operad Com with one n-ary operation for each
n > 0, and none for n = 0.

Algebras of Com in Top are commutative topological semigroups:
there is just one way to multiply n elements for n > 0.



Any finite set X becomes a cocommutative coalgebra in FinStoch.
The unique n-ary operation of Com acts as the diagonal

∆n : RX → RX × · · · × RX

This is a map, a special case of a stochastic map.

This map describes the ‘n-fold duplication’ of a probability
distribution f on the set X of genomes when a species branches!

•

1 2 3

0



Any pair of operads O and O′ has a coproduct O + O′.

By general abstract nonsense, an algebra of O + O′ is an object X
that is both an algebra of O and an algebra of O′, with no
compatibility conditions imposed.

In fact:

Theorem. The operad Phyl is the coproduct Com + [0,∞).



And thus:

Corollary. Given any Markov process, its underlying finite set X
naturally becomes a coalgebra of Phyl in FinStoch.

Proof. X is automatically a coalgebra of Com, and the Markov
process makes it into a coalgebra of [0,∞). Thus, it becomes a
coalgebra of Phyl ∼= Com + [0,∞).



How is Phyl related to W(Com), where W is the construction
that Boardman and Vogt used to get an operad for loop spaces?

Define addition on [0,∞] in the obvious way, where

∞+ t = t +∞ =∞

Then [0,∞] becomes a topological monoid, so there’s an operad
with only unary operations, one for each t ∈ [0,∞].

Let’s call this operad [0,∞].

Theorem. For any operad O, Boardman and Vogt’s operad W(O)
is isomorphic to a suboperad of O + [0,∞].



Operations in O + [0,∞] are equivalence classes of planar rooted
trees with:

I vertices except for leaves and the root labelled by operations
in O,

I edges labelled by lengths in [0,∞], such that

I only external edges can have length 0.

The equivalence relation comes from permuting edges coming into
a vertex, e.g.:

1 2 3

• f σ

0

∼

2 3 1

• f

0

σ =

(
1 2 3
2 3 1

)



Here is an operation in O + [0,∞]:

• f

• h• g
t1

t2 t3
t4 t5

t6 t7

t8

3 1 4 5 2

0

where t1, t2, t3, t4, t5, t8 ≥ 0 and t6, t7 > 0.



An operation is in W(O) iff either

I it is the identity operation or

I all external edges have length ∞.

Here is an operation in W(O):

• f

• h• g
∞

∞ ∞ ∞ ∞

t1 t2

∞

3 1 4 5 2

0

where t1, t2 > 0.



Berger and Moerdijk showed: if Sn acts freely on On and O1 is
well-pointed, W(O) is a cofibrant replacement for O.

This is true for O = Assoc, the operad whose algebras are
topological semigroups, with n! operations of arity n > 0. This is
why Boardman and Vogt could use W(Assoc) as an operad for
loop spaces.

But Sn does not act freely on Comn. W(Com) is not a cofibrant
replacement for Com. It is not an operad for infinite loop spaces.

Nonetheless W(Com) is interesting because

W(Com)n ∼= Tn

where Tn is Billera, Holmes and Vogtmann’s space of phylogenetic
trees with external edges having fixed lengths.

http://arxiv.org/abs/math/0206094


And the larger operad Com + [0,∞], a compactification of
Phyl ∼= Com + [0,∞), is also interesting.

The reason is that any Markov process α : [0,∞)→ End(X )
approaches a limit as t →∞. Indeed, it extends uniquely to a
homomorphism of topological monoids α : [0,∞]→ End(X ).

We thus get:

Proposition. Given any Markov process, its underlying finite set X
naturally becomes a coalgebra of Com + [0,∞] in FinStoch.



Summary for topologists who don’t care about applications:

For any operad O we have weak equivalences

O

$$

W(O)oo

��

O + [0,∞)

''
O + [0,∞]

and if O is well-pointed and Sn acts freely on On, W(O) is
cofibrant.



Finally: the mystery of tropical trees!



The tropical rig is (−∞,∞] with minimization as + and addition
as ×. We can do algebraic geometry over this rig and define
‘tropical curves’.

In 2007, Gathmann, Kerber and Markwig showed that a certain
moduli space of genus 0 tropical curves with n + 1 marked points
is the space of trees Tn studied by Billera, Holmes and Vogtmann.

Also in 2007, Mikhalkin showed this moduli space has a
compactification that is a smooth compact tropical variety.

Nina Otter has shown this compactification is W(Com)n. The
operad structure on W (Com) corresponds to the ‘tropical
clutching map’ described by Abramovich, Caporaso and Payne in
2012.

The mystery: why are tropical curves related to phylogenetic
trees? Is this connection good for something?

http://arxiv.org/abs/0708.2268
http://arxiv.org/abs/0704.0839
http://arxiv.org/abs/1212.0373

