
COMBINATORICS OF POLYHEDRA FOR n-CATEGORIES

TODD TRIMBLE

In these notes, we give some combinatorial techniques for constructing various polyhedra which
appear to be intimately connected with the geometry of weak n-categories. These include

1. Associahedra (and “monoidahedra”; see below);
2. Permutoassociahedra, and the cellular structure of Fulton-MacPherson compactifications

of moduli spaces
3. “Functoriahedra” (related to the An maps of Stasheff)

Our basic techniques use derivations on operads and bar constructions. In part A, we introduce
derivations, which should be regarded as “boundary operators” on (set-valued) operads satisfying
a Leibniz rule. Such derivations can be used to construct poset-valued operads; taking nerves, one
gets polyhedral operads. In this way we reconstruct the associahedra and the Fulton-MacPherson
compactifications.

Part A. Derivations on operads

Sections A.1. and A.2. preface the main definitions which begin in section A.3: they establish
notation and terminology and categorical formalizations of fairly trivial facts. The reader may
wish to skip them or refer back to them as necessary.

A.1.

Initially, we work with set-valued non-permutative operads M , which may be viewed as models of
a multisorted algebraic theory with operations subk : Mp×Mq →Mp+q−1. (This is the appropriate
presentation when working with non-unital operads.) The sorts in this case are parametrized by
natural numbers p, so that we have for each operad M an underlying sequence of sets. Such a
sequence may be regarded as a functor N → Sets on the discrete category N of natural numbers.

When working with permutative operads, it is often convenient to work with functors on the
category of finite sets and bijections, rather than with functors on the permutation category (which
is a skeleton). (Logically it makes no difference, but some things are clearer and easier to describe
in the former setting.) There are analogues of the subk operations, parametrized by pairs (S,E)
where S is a finite set and E is a subset. Let S/E denote the (pointed) set in which all of the
points of E are identified with a basepoint; if E is empty then S/E is the disjoint sum of S with
a basepoint. Then there is a substitution map

subS,E : M(S/E)×M(E)→M(S). (1)

Throughout these notes, we work in a setting which can be adapted to both non-permutative and
permutative operads.

A.2.

The functor category [N,Sets] is a Boolean topos. In this case, this means that the power
object of a sequence is the sequence of power sets. We let P : [N,Sets] → [N,Sets] denote the
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covariant power object functor. Thus if f : X → Y is a morphism (= sequence of functions), then
Pf : PX → PY sends a sequence of subsets Sn to the sequence of images fn(Sn).

The functor P carries a structure of monoidal monad. The monoidal structure map PA×PB →
P (A×B) sends a pair of subsets to their product. The monad unit uX : X → PX sends a sequence
of elements to the corresponding sequence of singletons, and the multiplication mX : PPX → PX
sends a sequence of subset-collections to the corresponding sequence of unions. (It is easily checked
that u and m are monoidal natural transformations, so we do get a monoidal monad.)

The algebras of P are sup-lattice objects, i.e., sequences of sup-lattices. Using the monoidal
monad structure on P , one can produce a closed symmetric monoidal structure on P -Alg. There
is an underlying functor from P -Alg into the category of (idempotent) commutative monoids in
[N,Sets].

The morphisms A→ B in the Kleisli category of P are maps A→ PB in [N,Sets], i.e., relations
between A and B. Thus a binary relation on A is a Kleisli morphism A → A, and the hom-
object Kl(A,A) of binary relations is a monoid P -Alg(PA,PA) in the category of sup-lattices.
The reflexive transitive closure of a binary relation R on A may be defined as the geometric series
1 + R + R2 + . . . in this sup-lattice monoid. Of course, this is an incarnation of the free monoid
construction, although in this case, R∗ = 1 + R + R2 + . . . gives an idempotent monad T . A
poset may be defined as an object A together with a T -algebra in Kl(A,A). Here it just means a
sequence of ordinary posets.

All of this section carries over to species, braided species, and more generally permutation
representations of arbitrary groupoids, starting from the observation that each of these gives a
Boolean topos. In fact, the Boolean assumption isn’t even needed.

A.3.

On [N,Sets], we have a substitution tensor product whose monoids are non-permutative operads.
If X is a sequence of sets, we let OX denote the sequence underlying the free operad on X.

Using the monoidal structure on the covariant power set functor P , each operad M induces an
operad structure on PM . Thus we have for example an operad POX. It is very easy to see that
the elementhood relation eM �M × PM defines a suboperad.

Definition A.3.1. If A is a set-valued operad, and B an operad valued in commutative monoids,
then a derivation d : A→ B is a map in [N,Sets] such that d(subk(a, b)) = subk(da, b)+subk(a, db).

For the remainder of these notes, we take B to be of the form PM , and the main examples of
derivations take the form M → PM . Such derivations extend uniquely to derivations PM → PM
which preserve arbitrary sups.

Given a derivation d : M → PM , it is suggestive to regard the elements m of M as “cells”,
and d(m) as the collection of face-cells lying on the boundary of m. The idea is to use (M,d) as
combinatorial data to describe a polyhedral operad. (It seems that Clemens Berger has a notion
of “cellular operad”, but I don’t know his definition, or how it fits with the notions given here.)

Many examples occurring in nature are derivations of the form OX → POX. Notice that
derivations of this form correspond bijectively to maps X → POX (much as linear maps V → A
from a vector space V into an algebra A correspond bijectively to derivations TV → A on the
tensor algebra).

Example 1. Let X be empty in degrees 0 and 1, and terminal in degrees 2 and higher. Then
the elements of OX correspond bijectively to (combinatorial) planar rooted trees, in which every
vertex adjacent to fewer than two incoming edges must be a leaf. For n > 1, the unit map X → OX
sends the element in degree n to the “n-sprout” (no nodes except leaves and root). Let [n] denote
the n-sprout. Define X → POX by sending the element in Xn to the set of all trees in (OX)n of
the form subk([p], [q]). Extend this uniquely to a derivation d : OX → POX.
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This example is connected with Stasheff’s associahedra, as we explain in a moment. First, some
generalities.

Each derivation d : M → PM may be regarded as a binary relation on M . Consider its reflexive
transitive closure d∗, i.e., the poset generated by this binary relation, viewed as a map M → PM ,
or as a sup-lattice map PM → PM .

Proposition A.3.1. d∗ : PM → PM is an operad map.

Proof. We must show that d∗(subk(x, y)) = subk(d∗(x), d∗(y)). Being sup-lattice morphisms, the
subk operations distribute over arbitrary sums. Then we calculate, as with ordinary derivations
(except that we may drop binomial coefficients, on account of the idempotency of + in PM),

dn(subk(x, y)) =
∑

p+q=n

subk(dp(x), dq(y)) (2)

and since d∗ = 1 + d+ d2 + . . . , the desired equation follows easily. �

Remark. There is a well-known theorem that if A is a Banach algebra and if d : A → A is
a bounded linear derivation, then exp(d) : A → A is a Banach algebra map. The proposition
is analogous: algebra multiplication is replaced by operad substitution maps, the completeness
property of the Banach algebra by the sup-lattice property of PM , and exp(d) is replaced by the
geometric series d∗ = 1 + d+ d2 + . . .

Since P is a monoidal monad, the unit uM : M → PM is an operad morphism, and we
may compose this with d∗ : PM → PM to get an operad map M → PM , again denoted by
d∗ : M → PM . Now, if we pull back (take the inverse image of) the elementhood relation
eM →M × PM along the map 1× d∗ : M ×M →M × PM , we get a suboperad

R→M ×M, (3)

since this is obtained as a pullback in the category of operads. In other words, for each derivation
d : M → PM , we get a poset (M,R) in the category of operads, which is the same as an operad
in the category of posets.

Definition A.3.2. Given a derivation d : M → PM , we denote by Md the posetal operad whose
characteristic map is d∗ : M → PM .

Example 1 (continued). Given planar trees t, t′, let us write t′ → t if t′ belongs to d∗(t). Thus→
is a poset relation. From before, we have that t′ is contained in d([n]), where [n] is the n-sprout, if
t′ = subk([p], [q]), i.e., if t′ has exactly one internal edge, and [n] is obtained from t′ by contracting
that internal edge. In general, t′ → t if t is obtained by contracting a finite number of internal edges
of t′. Since contraction of all internal edges results in an n-sprout, we see that the n-th component
of the posetal operad (OX)d has [n] as terminal object, so that its nerve is contractible.

With a little work, one can show that the realization of the nerve of each component (OX)d(n)
is homeomorphic to an n-disk. Indeed, the nerve gives a natural triangulation of Stasheff’s asso-
ciahedron in dimension n.

The remainder of part A is devoted to the construction of a polyhedral operad which corresponds
to a natural triangulation of the Fulton-MacPherson compactification of moduli spaces (for Rk).
In this case, we need to work with permutative operads. We begin by defining a cell structure for
the moduli space.

For finite sets S of cardinality greater than 1, we let Fk[S] denote the spatial species of injective
functions S → Rk. For S = { 1, . . . , n }, this is usually denoted Fk[n]: the space of configurations
of n points in Rk. We partition Fk[n] into convex cells by using a kind of lexicographic order (in
which the j-th coordinate takes priority over the i-th coordinate if j > i [not j < i]). For example,
(x, y) < (x′, y′) if y < y′ or y = y′ and x < x′.

The points p1, . . . , pn of a configuration may be rearranged in ascending lexicographic order:
pf1 < · · · < pfn for some permutation f . (Note: if the species Fk is defined on finite sets S,

3



then we get an induced linear order on S, not a permutation.) Let us define the type of the
configuration to be a tuple (f ; k1, . . . , kn−1) where f is the permutation and kj is the index of the
last coordinate where pfj and pf(j+1) disagree. One often uses a “bar notation” for denoting such
types, by placing kj bars between f(j) and f(j + 1). For example, working with configurations
in the plane, 2||3|1 is the type of a configuration of three points where points 1 and 3 lie on the
same horizontal line lying above point 2, and point 3 is to the left of point 1. It is immediate that
the region of configurations of common type form a convex cell. Letting T (k, n) denote the set of
types, we have a typing function Fk[n] → T (k, n) whose convex fibers partition the configuration
space.

Let Mk[n] (“moduli space”) denote the orbit space of Fk[n] under the action of translations and
positive dilatations on Rk. Observe that the typing function factors through Mk[n], so that we
have an induced typing function Mk[n]→ T (k, n).

Keeping k fixed, we let Tn = T (k, n) for n > 1, and take T0 and T1 to be empty: this gives
a species T . We will define a boundary d : T → POT whose induced derivation d : OT →
POT provides data for a posetal operad, whose nerve components naturally triangularize the
Fulton-MacPherson (or really “Axelrod-Singer” for the real case) compactifications. First, a few
preliminaries.

First, it is convenient to view a type in terms of a collection of mutually disjoint transitive
relations |1, |2, . . . , |k on the set of indices { 1, . . . , n }, whose join (in the poset of transitive relations)
is a linear order f(1) < · · · < f(n). Namely, define these |j to be the minimal relations such that

(1) f(i)|jf(i+ 1) if there are j bars between f(i) and f(i+ 1);
(2) p|iq and q|jr implies p|max(i,j)r.

(The reader should consider what this means geometrically.) Instances of p|iq shall be called
“consequences” of the type. The maximum i where p|iq occurs is called the “degree” of the type.

By (2), and the fact that the transitive join of all the relations |i is a linear order on { 1, . . . , n },
we see that the transitive join of |i for i = 1 up to j must be a disjoint sum of linear orders. Each
of these orders will be called a j-connected component, or j-component for short. We may also
speak of the j-component of a given element in { 1, . . . , n }.

In what follows, we will need certain kinds of “shufflings”. Given two disjoint j-components A
and B in a type, a j-shuffle of them is a shuffle on the underlying linear orders, in such a way that
a in A is interposed between b and b′ in B only when b|jb′, and b in B is interposed between a
and a′ in A only when a|ja′. Together with all the |i relations on A and on B, one adjoins new
relations b|ja, a|jb′ in the former case, and a|jb, b|ja′ in the latter. As a special case, we have the
notion of “intercalating” one j-component within another, where one places the entire component
B between two successive elements a, c of A. Or, if a < b < c are successive elements in A, we get
the same thing by replacing b by B, and we speak then of intercalating B at b.

Now let us give rules for describing the boundary operator d : T → POT .

Rule (1) If t and t′ are two types, let us say t′ is in d(t) if t′ can be obtained from t as follows:
if t has the linear order f(1) < · · · < f(n), then there exists i such that f(i)|jf(i+1)
in t, and t′ is obtained by removing this pair and the set of consequences derived
using this pair, followed by (j − 1)-shuffling the (j − 1)-components of f(i) and
f(i+ 1), and deriving a new set of consequences from the relations which result.

Rule (2) The remaining elements in d(t) are of the form subE(t′, t′′), where E is a subset of
S = { 1, . . . , n }, t belongs to X[S] = Xn, t′ to X[S/E], and t′′ to X[E] (see section
A.1. for the subE operations). Such an element belongs to d(t) if the following
conditions hold. Let b be the basepoint in S/E, and suppose t′ has degree d. Then
the type t′′ on E should be the same as that obtained by restriction of t-consequences
on S to the subset E, and there should exist a list of sets C1, . . . , Cd, nested in
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ascending order, where each Cj is a j-component in t′′ which, when intercalated at
b in the j-component of b in t′, yields only correct consequences of t.

The ideas which govern this description are as follows. First, each type t represents a convex cell
in moduli space, and the boundary of t (in the moduli space) should be the set of types whose
cells are codimension 0 parts of the boundary of the cell for t. If p represents a configuration
moving through the closure of the t-cell, with the points of p ordered lexicographically, then p
undergoes a type transition when the relation between two points p(i) and p(i+ 1) changes at the
j-th coordinate, from p(i)j < p(i + 1)j to p(i)j = p(i + 1)j . (We are assuming p(i) and p(i + 1)
agree in coordinates with indices greater than j.) After the transition, the largest index where p(i)
and p(i+ 1) disagree is at most j − 1. And in order for p after the transition to be interior to the
codimension 0 stratum of the boundary, that largest index must be equal to j − 1. Now we take
into account the possible ways in which the (j−1)-th coordinates differ, while still maintaining the
order of points in p, and we are led to the first part of the description of the boundary operator.

As for the second part, the idea is that we are peering into a first-order infinitesimal neighborhood
of a singular configuration, blowing it up, and examining what types of moving non-singular
configurations can approach the inverse image or blow-up of the singular configuration. Now a
singular configuration, as a function from a finite set S into Rk, factors through a quotient S/ ∼
which maps injectively into Rk; in order to get the highest dimensional stratum (of the boundary
of a t-cell in the Fulton-MacPherson compactification), we restrict to equivalence relations on S
which merely squash a single subset E down to a point. Then we have a non-singular configuration
on S/E, so that the singularity is concentrated on E; after blowing up, the points of E are then
distinguished according to tangent directions, thus giving non-singular configurations on E in
the blow-up. The resulting pairing of a type on S/E with a type on E may be viewed as an
instance of a formal subE operation in the operad freely generated from the species of types,
and the description of how boundaries of types intersect these applications of subE merely reflect
properties of configuration-types as some of their points become infinitely close.

As this example of a polyhedral operad is somewhat complicated, it may be well to calculate
the explicit structure of a few cells. In what follows, ∗ denotes the basepoint E/E in a quotient
S/E of S. Hence sub(∗||3, 1|2) indicates the expression obtained by substituting 1|2 for ∗ in ∗||3.
Substituted expressions are indicated using a bracket notation, e.g., [1|2]||3.

Example 2. The boundary of 1||2 is { 1|2, 2|1 }, by rule (1), and 1|2, 2|1 each have empty bound-
aries. So the picture is

1|2
1||2

1|2 (4)

and one should think of a braiding cx,y : xy → yx.

Example 3. The boundary of 1||[2|3] = sub(1||∗, 2|3) is calculated by the Leibniz rule. We
get d(1||[2|3]) = sub(d(1||∗), 2|3) + sub(1||∗, d(2|3)) where the second summand is 0 since 2|3 has
empty boundary. From the preceding example, the first summand is sub(1|∗, 2|3) + sub(∗|1, 2|3) =
{ 1|[2|3], [2|3]|1 } so the picture becomes

1|[2|3]
1||[2|3]

[2|3]|1 (5)

which is reminiscent of cx,yz : x(yz)→ (yz)x.

Example 4. To calculate the boundary of 1|2|3, we use rule (2). The only consequences are 1|2,
2|3, and 1|3; and the only ones which occur as intercalated relations are 1|2 and 2|3. Hence the
boundary is { [1|2]|3, 1|[2|3] }. The picture is

[1|2]|3
1|2|3

1|[2|3] (6)

reminiscent of an associativity axyz : (xy)z → x(yz).

Example 5. It follows easily from Leibniz that d(1|[2||3]) = { 1|[2|3], 1|[3|2] }.
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Example 6. For 1|2||3, we first apply rule (1), where we remove the relation 2||3. This leaves
only the consequence 1|2, so we perform all possible 1-shufflings of 3 with 1|2. This produces 1|2|3,
1|3|2, 3|1|2 as part of the boundary.

We can also apply rule (2), which is trickier. Let us start by writing down the complete set
of consequences of 1|2||3: they are 1|2, 2||3, 1||3. Now, types involve two or more entries, so the
substituted expression must be one of these consequences. Now [1|2]||3 is clearly a boundary cell:
we have C1 = C2 = 1|2, and intercalating 1|2 for ∗ in ∗||3 gives the original type expression;
therefore this is OK. 1|[2||3] is also a boundary cell, which we verify by taking C1 = 2 as the 1-
component: intercalating 2 in 1|∗ gives the correct consequence 1|2. Finally, [1||3]|2 is a boundary:
by taking C1 = 1, intercalation in ∗|2 gives a correct consequence. It is easy to check that no other
boundary cells are possible.

Of course, these boundary cells also have non-trivial boundaries, which are calculated essentially
as in our prior examples. The reader might like to verify that the resulting poset has a nerve where
the star of 1|2||3 looks like

[1|2]|3
[1|2]||3

1|2|3

3|[1|2]

3|1|2

1|[2|3]

1|[2||3]

1|2||3 [3|1]|2

[1||3]|2

1|[3|2]
1|3|2

[1|3]|2

(7)

which of course is an instance of a braiding hexagon.

Example 7. For [1||2]||3, the boundary is calculated using Leibniz: it is easy to check that
this yields { [1|2]||3, [2|1]||3, [1||2]|3, 3|[1||2] }. These cells also have non-trivial boundaries, and the
resulting picture looks like an instance of naturality for the braiding.

Example 8. Here is our granddaddy example. We calculate the structure of 1||2||3. Using rule
(1), we can remove 1||2 and 1-shuffle the 1-components of 1 and 2 (which are just 1 and 2 again),
or remove 2||3 and 1-shuffle the 1-components of 2 and 3 (which are 2 and 3 again). This yields
the cells 1|2||3, 2|1||3, 1||2|3, 1||3|2.

Using rule (2), we first write the consequences 1||2, 2||3, 1||3. Now 1||3 is impossible as a
substituted expression, since it equals its own 2-component, and intercalating it in 2||∗ or ∗||2
leads to a consequences false in 1||2||3. The only correct possibilities are [1||2]||3 and 1||[2||3].

We have already done the essential calculations for obtaining the structure of these boundary
cells. To save space, we will not exhibit the full-blown 3-cell structure of 1||2||3: it turns out to
be a 3-cell which mediates between the two ways of giving a commutative diagram proof of the
Yang-Baxter identity in a braided monoidal category. In other words, it is a structure cell which
obtains in a braided monoidal 2-category.

Part B. Bar constructions

In this section, we initially work over a base topos Sets; all of our constructions apply in a
context where we work over a Grothendieck topos E as base. Later in this section, we take E to
be the topos of Joyal species.

Classically, bar constructions have been used to build classifying bundles, free resolutions for
group cohomology, and similar constructs. A common characteristic between these constructions
is the production of an acyclic algebraic structure (e.g., a contractible G-space EG, or a free
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resolution of a G-module). We begin by formalizing this characteristic in terms of a universal
property for bar constructions.

B.4. Acyclic structures

We follow the algebraists’ convention, taking the simplicial category to mean the category of
finite ordinals (including the empty ordinal) and order-preserving maps. It is well-known that ∆ is
initial amongst strict monoidal categories equipped with a monoid, which in ∆ is 1. This induces a
monad 1 + − on ∆, called the translation monad. By composition, this in turn induces a pullback
comonad P on simplicial sets; by the Kan construction, it has a left adjoint which is a monad C
on simplicial sets, called the cone monad.

To explain this terminology, we recall the topologists’ convention, where ∆ is restricted to the
full subcategory ∆+ of non-empty ordinals. If S-Sets denotes the category of simplicial sets under
the algebraists’ convention, and S+-Sets that under the topologists’ convention, then by restriction
we get a functor S-Sets → S+-Sets, which has a left adjoint. The left adjoint augments a S+ set
X by its set of path components π0(X). Starting with X, we can apply the left augmentation,
followed by the cone monad, followed by restriction S-Sets→ S+-Sets: this gives a monad which,
passing to geometric realization, is the mapping cone of X → π0(X). The right adjoint to this
monad carries a comonad structure; the category of algebras over the monad is equivalent to the
category of coalgebras over the comonad. This category of algebras/coalgebras could be called
the “acyclic topos”: the algebras X are acyclic as simplicial sets. More to the point, the algebra
structure CX → X witnesses this acyclicity by providing a representative basepoint for each
path component of X, together with a well-behaved simplicial homotopy which contracts each
component down to its basepoint.

Definition B.4.1. An acyclic structure is an algebra over C (or coalgebra over P ). An S-acyclic
structure is one augmented over a set S.

A morphism between acyclic structures is just a C-algebra map; a morphism between S-acyclic
structures is one whose component at S is the identity.

It doesn’t matter whether the monad C is taken under the algebraists’ or topologists’ convention:
the category of C-algebras in S-Sets is equivalent to the category of C-algebras in S+-Sets, since
given a C-algebra in S-Sets,

. . .
//
//
//
X1

//
// X0

// X−1 , (8)

it follows from acyclicity that this portion of the simplicial structure is a split coequalizer, so that
the augmentation map is the usual augmentation to its set of path components.

In the sequel, it will be useful to regard an acyclic structure, as a functor X : ∆op → Sets, as a
right coalgebra X T → X over the translation comonad T : ∆op → ∆op.

B.5. Abstract bar constructions

Next, let us recall the formalism which leads to bar constructions. Let U : A→ E be a monadic
functor over a category E (in most of our applications, E will be a topos). Let F : E → A be the
left adjoint, so that we have a monad M : E → E and a comonad C : A→ A. The comonad may
be regarded as a comonoid in the endofunctor category [A,A] (under the monoidal product given
by endofunctor composition). Since ∆op is initial amongst strict monoidal categories equipped
with a comonoid, there exists a unique monoidal functor

∆op → [A,A] (9)

sending the comonoid 1 to the comonoid C. Now if X is an object of A (i.e., an M -algebra), we
have an evaluation functor evX : [A,A]→ A. Thus we have the following composition which leads
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to a simplicial E-object:

∆op // [A,A]
evX // A

U // E (10)

and this defines what we mean by the bar construction, denoted B(M,M,X). More explicitly, this
is an augmented simplicial object of the form

. . .
//
//
//
MMX

µX //

M ξ
// MX

ξ
// X , (11)

and this simplicial object admits an acyclic structure where the contracting homotopy is built out
of components of the unit u of the monad M :

MnX
uMnX // Mn+1 X . (12)

(The “co-associativity” axiom for the right T -coalgebra structure holds by naturality of u.)

Definition B.5.1. An X-acyclic M -algebra is a simplicial M -algebra whose underlying simplicial
E-object admits an X-acyclic structure.

Notice that we do not require any compatibility between the M -algebra structure and the acyclic
structure: the acyclic structure map is not required, for example, to be a map of simplicial M -
algebras.

A morphism of X-acyclic M -algebras is just a map of simplicial M -algebras whose underlying
simplicial E-map is a morphism of X-acyclic structures. The category of X-acyclic M -algebras
may thus be rendered as a (2-)pullback of

X−Acyclic(E)

“forget”

��
[∆op, A]

[1,U ]
// [∆op, E]

(13)

where the vertical arrow is the obvious forgetful functor from the category of X-acyclic structures
in E.

The universal property of the bar construction is enunciated in the following

Theorem B.5.1. B(M,M,X) is initial in the category of X-acyclic M -algebras.

Proof. The method of proof closely parallels that of the acyclic models theorem familiar from
homological algebra. Let Y be an acyclic M -algebra augmented over X:

. . .
//
//
//
Y1

//
// Y0

// X , (14)

so that the T -coalgebra structure or contracting homotopy has the form X → Y0 → Y1 → . . .
In order to get the desired simplicial M -algebra map B(M,M,X) → Y which preserves the
contracting homotopies, we are forced to use the diagram

X
uX //

1

��

MX
uMX //

φ1

��

MMX
uMMX //

φ2

��

MMMX //

φ3

��

· · ·

X
h0

// Y0
h1

// Y1
h2

// Y2
// · · ·

(15)

where φn+1 is defined as the unique M -algebra map which extends (hn)(φn) along uMnX . Thus
uniqueness is clear; what remains is to check that the φn form the components of a simplicial map
φ. The proof of this is sketched in the lemma and corollary which follow. �

Let Simp(E) denote the category of simplicial objects in E. The pullback comonad P may
be regarded as a comonoid in the endofunctor category [Simp(E),Simp(E)], so that there is an
induced monoidal functor

∆op → [Simp(E),Simp(E)] (16)
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which we may compose with evaluation at a simplicial object Y . If moreover Y carries an acyclic
structure, then there is an induced acyclic structure on this composite, regarded as a simplicial
object in Simp(E):

∆op // [Simp(E), Simp(E)]
evY // Simp(E) (17)

We denote this bisimplicial object by B(Y, T, T ), where T is the aforesaid translation comonad.
Since P Y = Y T , it has the form

. . .
//
//
//
Y TT

//
// Y T // Y TT . (18)

Observe that applying evaluation Simp(E)→ E at the augmented component (the component we
had earlier indexed by the numeral −1), this yields Y again:

. . .
//
//
//
Y1

//
// Y0

// Y−1 = X . (19)

Lemma B.5.2. Let Y be an acyclic M -algebra. Let B(M,M,Y ) be the bisimplicial object formed
as the bar construction on Y . Then there exists a map of Y -acyclicM -algebras (valued in Simp(E))

B(M,M,Y )→ B(Y, T, T ) (20)

whose value at the terminal object 0 in ∆op is the identity map on Y .

Thinking of B(M,M,Y )→ B(T, T, Y ) as a transformation between functors of the form ∆op →
Simp(E), we may post-compose by evaluation Simp(E) → E at the augmented component. This
yields precisely

B(M,M,X)→ Y (21)

whence follows a corollary which completes the proof of the theorem:

Corollary 1. There exists an X-acyclic M -algebra map B(M,M,X)→ Y .

Proof of lemma. We construct B(M,M,Y )→ B(Y, T, T ) inductively, beginning with the identity
on Y . The next component is of the form θ1 : MY → Y T , namely the composite

MY
Mh // MY T

ξT
// Y T (22)

where h is the right T -coalgebra structure and ξ the M -algebra structure. It is immediate that
θ1 preserves the homotopy component (i.e., h = θ1(uY )), and since θ1 is an M -algebra map, it
quickly follows that (Y ep) θ1 = ξ, where ep is the counit of the comonad T .

We leave to the reader to check that if we inductively define θn : MnY → Y Tn as the composite

MnY
M1θn−1 // MY Tn−1

θ1T
n−1

// Y Tn (23)

then it easily follows that (θn)(uMn−1Y ) = (hTn−1)(θn−1), i.e., θ preserves the homotopies (pre-
serves acyclic structure). The fact that θn preserves face and degeneracy maps follows by induction:
since θn is an M -algebra map by construction, it suffices to check that the relevant diagrams which
obtain by precomposing with a unit u commute, but since θ preserves homotopies, one can exploit
the naturality of the homotopies to convert the diagrams into ones where the inductive assumption
applies. In short, the argument is similar to the usual one for the acyclic models theorem, and this
completes our sketch of the proof. �

B.6. Applications

A classical application of bar constructions is the Milgram bar construction of a classifying
bundle (say of a discrete group G). As is well known, the total space EG is a contractible space
on which G acts freely. What appears less well known is the following theorem.

Let us define a contractive space to be a space (in a suitable topological category, such as the
category of compactly generated Hausdorff spaces) which is an algebra over the cone monad. Here,
the cone monad means the mapping cone of the map X → 1 into the one-point space, and this
is the monad whose algebras are pointed spaces equipped with a continuous action by the unit
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interval I, the monoid whose multiplication is “inf”, such that multiplication by 0 sends every
point to the basepoint. An algebra structure may be viewed as a well-behaved homotopy which
contracts the space to a point.

Theorem B.6.1. EG is initial amongst G-spaces whose underlying space is equipped with a con-
tractive structure.

Proof. Let R : S-Sets → Top be geometric realization. EG is formed as RB(G,G, 1), where the
bar construction is applied to the monad G×− on Sets. This is a 1-acyclic space, i.e., a contractive
space. If X is any other contractive G-space, we wish to demonstrate that there is exactly one
contractive G-map EG→ X.

If S : Top→ S-Sets is the singularization functor right adjoint to R, then a map EG→ X gives
rise to B(G,G, 1) → SX. Since G × − as a functor Top → Top is cocontinuous, it is easy to see
that a G-map EG→ X gives rise to a G-map B(G,G, 1)→ S X. Next, let C be the cone monad
acting on the category of pointed spaces; then C is also cocontinuous (it has a right adjoint given
by the path space functor), and it follows as before that a C-map EG→ X gives rise to a C-map
B(G,G, 1) → SX. Indeed, contractive G-maps EG → X are in bijective correspondence with
1-acyclic G-maps B(G,G, 1) → SX in S-set, and there is exactly one of these by the theorem of
the last section. The proof is complete. �

Now let E be the topos of Joyal species, [P,Sets], where P denotes the permutation category.
If Op denotes the category of permutative operads, then the underlying functor Op → [P,Sets] is
monadic. Let O denote the monad for this adjunction. If M is an O-algebra (an operad), then
there is an associated bar construction B(O,O,M). Needless to say, it is acyclic.

Example 9 (Associahedra revisited). Let t+ be empty in degree 0, and terminal in higher degrees.
There is a unique operad structure on t+, as a suboperad of the terminal operad t.

Form the bar construction B(O,O, t+): this carries a simplicial O-algebra structure, i.e., a
simplicial operad structure. If we form the operad quotient in which every unary operation is
identified with the identity operation, then the operad which results is a permutative version of
the associahedral operad given in part A.

Example 10. Now let t be the terminal operad, and form the simplicial operad B(O,O, t). Again
take the operad quotient in which the operation in t of degree 1 is identified with the operad
identity. The result is a simplicial operad called the “monoidahedral operad”, denoted M .

The principle is that we have included a generating operation in degree 0, so that we obtain
not just higher associativity laws as in the associahedral operad, but higher unit laws as well. In
contrast to the associahedral operad, the nerve components here are infinite-dimensional (again,
due to the presence of a nullary operation).

This last example has interesting applications to Trimble’s work on Grothendieck’s fundamental
n-groupoids. Working in the category of bipointed spaces and bipointed maps, let I denote the
unit interval, bipointed by the pair (0, 1). On the category of bipointed spaces, there is a monoidal
product given by “wedges” X ∨ Y , where the second point of X is identified with the first point
of Y , and the wedge is bipointed by the first point of X followed by the second point of Y . Then
the n-fold wedge of I is canonically identified with the interval [0, n], bipointed by the pair (0, n).

Now suppose we adapt the monoidahedral operad to the non-permutative setting. Let Bip(I, In)
denote the space of bipointed maps from I to its n-fold wedge; this is the n-th component of a
tautological non-permutative operad structure. Notice that these spaces are convex, so that if we
take as basepoint in Bip(I, In) the map I → In given by multiplication by n, then by convexity
there is an induced contractive structure on each of these spaces. Thus we get a contractive spatial
operad Bip(I, I∗).

Then there is a 1-acyclic simplicial operad S(Bip(I, I∗)), obtained by applying singularization
to the aforesaid spatial operad. It follows that there is a unique 1-acyclic operad map M →
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S(Bip(I, I∗)). This map is used to identify higher associativity and higher unit laws present in
Bip(I, I∗).

Before giving the next few examples (which are relevant to weak n-functors and their geometry),
we need a new definition. If X and Y are species, we use X ·Y to denote their substitution product.

Definition B.6.1. Let A and B be operads. An A − B bimodule is a species X equipped with
structure maps A ·X → X and X ·B → X, compatible in the usual sense.

It is tempting to try to define bimodule composition, where if X is an A − B bimodule and
Y is a B − C bimodule, then the tensor product XY is an A − C bimodule given by an evident
coequalizer of the form

X ·B · Y
//
// X · Y // // XY (24)

The trouble is that bimodule composition fails to be associative, because while − · Y preserves
colimits, X · − does not. However, in practice many coequalizers of the type shown above split,
and we can refer to triple products XY Z without essential ambiguity if the coequalizers ending
with XY and Y Z split.

If M is an operad, then the free M -bimodule monad F is given by the assignment X 7→M ·X ·M ,
and if X is itself a bimodule, we obtain a bar construction B(F, F,X). Some examples follow.

Example 11. Let t+ be the permutative version of the operad of example 1, viewed as a bimodule
over itself. Then B(F, F, t+) is a contractive t-bimodule whose components are triangularized cubes.

Let us calculate this in detail. In the language of Joyal species and their analytic functors, we
have the linear fractional transformation

t+(X) =
X

1−X
. (25)

Let tn+ denote the n-fold substitution power of t+. Then the bar construction

. . .
//
//
//
t5+

//
// t3+

// t+ , (26)

has the form

. . .
//
//
//

X

1− 5X

//
//

X

1− 3X
// X

1−X
, (27)

Looking at coefficients, a structure of species X/(1− kX) on n points is given by a “combing”
or linear order on { 1, . . . , n } together with a function { 1, . . . , n } → { 1, . . . , k }. We abbreviate
the set of such structures by kn. Keeping the object n of the permutation category P fixed, we
get a simplicial object

( 5n
//
// 3n // 1 ) = ( 5

//
// 3 // 1 )

n
(28)

where the latter power denotes n-fold cartesian product in S-set.

Passing now to the topologists’ convention (i.e. truncating the augmented object 1), the claim
is that

. . .

//
//
//
//
7

//
//
//
5

//
// 3 (29)

is the nerve of a once-subdivided 1-cube : · − · − ·.

Certainly there are 3 0-cells, and 5 minus 3 non-degenerate 1-cells. If nk denotes the number of
non-degenerate k-cells, then we have

1 · (n0) = 3 (30)

1 · (n1) + 1 · (n0) = 5 (31)

1 · (n2) + 2 · (n1) + 1 · (n0) = 7 (32)
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etc. in Pascal triangle fashion, so that nk = 0 for k > 1. It is then very easy to demonstrate that
we thus in fact get a subdivided 1-cube for the component n = 1. For higher n, we take powers of
this 1-cube, and this leads to an n-cube, suitably triangularized.

Example 12. Let A be the associahedral operad of example 1, and consider t+ as an A − A
bimodule. Then the bar construction B(F, F, t+) gives a canonical triangulation of the polyhedra
which parametrize the operations of Stasheff’s An maps (see Homotopy Associativity of H-Spaces
I, II).

This example deserves further comments. There is a strong analogy between the cellular struc-
ture of the An maps, and the cellular structure of the data for bihomomorphisms, trihomomor-
phisms, etc., except that the An structures and An maps take account only of higher associativities
and their weak preservations, but do not take account of units.

To take account of units, the geometry of An maps should be replaced by the geometry of
the bar construction B(F, F, t), where the terminal operad t is regarded as a bimodule over the
monoidahedral operad M of example 2.

The polyhedra which result are again infinite-dimensional. I call these polyhedra “functori-
ahedra”; the claim/conjecture is that they carry all the cellular structure one desires of weak
n-functors.

c©1999 Todd H. Trimble
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