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The purpose of these notes is to compare two distinct approaches to the
Lie operad. The first approach closely follows work of Joyal [9], which gives a
species-theoretic account of the relationship between the Lie operad and homol-
ogy of partition lattices. The second approach is rooted in a paper of Ginzburg-
Kapranov [7], which generalizes within the framework of operads a fundamental
duality between commutative algebras and Lie algebras. Both approaches in-
volve a bar resolution for operads, but in different ways: we explain the sense in
which Joyal’s approach involves a “right” resolution and the Ginzburg-Kapranov
approach a “left” resolution. This observation is exploited to yield a precise com-
parison in the form of a chain map which induces an isomorphism in homology,
between the two approaches.

1 Categorical Generalities

Let FB denote the category of finite sets and bijections. FB is equivalent to the
permutation category P, whose objects are natural numbers and whose set of
morphisms is the disjoint union

∑
n>0 Sn of all finite symmetric groups. P (and

therefore also FB) satisfies the following universal property: given a symmetric
monoidal category C and an object A of C, there exists a symmetric monoidal
functor P → C which sends the object 1 of P to A and this functor is unique
up to a unique monoidal isomorphism. (Cf. the corresponding property for the
braid category in [11].)

Let V be a symmetric monoidal closed category, with monoidal product ⊕
and unit 1. For the time being we assume V is complete and cocomplete: later
we will need to relax this condition.

Definition 1. A V -species is a functor FB → V . The category of V -species
and their natural transformations is denoted V FB.

The category V FB carries several monoidal structures. One is the Day con-
volution ([3]) induced by the monoidal product ⊕ on FB. To set this up. we
work in the context of V -enriched category theory (see [12]), and recall that
any locally small category C (such as FB) can be regarded as a V -category, by
composing hom: Cop×C → Set with the symmetric monoidal functor Set→ V
sending a set U to a U -indexed coproduct of copies of 1. Then Day convolution
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is given abstractly by the formula

(F ⊗G)[S] =

∫ W,X∈FB
F [W ]⊗G[X]⊗FB(S,W ⊕X).

Since each finite bijection φ : S → W ⊕X induces a decomposition of S as
a disjoint union T + U of subsets (setting T = φ−1(W ) and U = φ−1(X)), this
coend formula may be simplified:

(F ⊗G)[S] =
∑

S=T+U

F [T ]⊗G[U ].

(For the remainder of this paragraph, categorical terms such as “category”,
“functor”, “colimit”, etc. refer to their V -enriched analogues.) The product
F ⊗ G preserves colimits in the separate arguments F and G (i.e., − ⊗ G and
F ⊗ − are cocontinuous for all F and G). Since F and G may be canonically
presented as colimits of representables, one may define a symmetric monoidal
structure on this product, uniquely up to monoidal isomorphism, so that the
Yoneda embedding y : FBop → V FB is a symmetric monoidal functor, i.e., so
that there is a coherent isomorphism hom(W⊕X,−) ∼= hom(W,−)⊗hom(X,−).
In conjunction with the universal property of FB, we may state a universal
property of V FB: let C be a (V -)category which is symmetric monoidally co-
complete (meaning its monoidal product is separately cocontinuous), and let
A be an object of C. Then there exists a cocontinuous symmetric monoidal
functor V FB → C sending hom(1,−) to A, and this functor is unique up to
monoidal isomorphism.

This universal property may be exploited to yield a second monoidal struc-
ture on V FB. Let [V FB, C] denote the category of cocontinuous symmetric
monoidal functors V FB → C; then the universal property may be better ex-
pressed as saying that the functor [V FB, C] → C which evaluates a species
F : FB → V at 1 ∈ FB is an equivalence. In the case C = V FB, the left-hand
side of the equivalence carries a monoidal structure given by endofunctor com-
position. This monoidal structure transports across the equivalence to yield a
monoidal product on V FB, denoted by ◦.

An explicit formula for ◦ is given as follows. Under one set of conventions, a
V -species F may be regarded as a right module over the permutation category
P, so that the component F [n] carries an action F [n] ⊗ Sn → F [n]. The n-
fold Day convolution G⊗n carries, under the same conventions, a left Sn-action
Sn ⊗G⊗n → G⊗n. Thn the coend formula for F ◦G may be written as

(F ◦G)[S] =
∑
n≥0

F [n]⊗Sn G⊗n[S].

A special case of this “substitution product” ◦ is the analytic functor construc-
tion. For each object X in V there is a V -species X̂ such that X̂[0] = X and

X̂[n] = 0 otherwise. Letting Xn denote the n-fold tensor product in V , we have

(F ◦ X̂)[0] =
∑
n≥0

F [n]⊗Sn Xn
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and (F ◦X̂)[n] = 0 otherwise; we write the right-hand side of the above equation
as F (X). This defines a functor F (−) : V → V , which we call the analytic
functor attached to the species F . We often commit an abuse of language
and write F (X) for the analytic functor, thinking of the X as a variable or
placeholder for an argument, much as one abuses language by referring to a
function f(x) = sin(x).

The analytic functor F (−) : V → V determines, up to isomorphism, its
generating species F ; we describe this determination for the category V =
V ectk of vector spaces over a ground field k. Let Fn(X) denote the nth-degree
component F [n] ⊗Sn Xn, and let X be a vector space freely generated from a
set {x1, . . . , xn} whose cardinality equals that degree. Then the species value
F [n] can be recovered as the subspace of Fn(X) spanned by equivalence classes
of those expressions τ ⊗ xi(1) ⊗ . . .⊗ xi(n) in which each xi occurs exactly once.
We use the notations F [n] and F (X)[n] interchangeably for these species values.

If G[0] = 0, we have G⊗n[S] = 0 whenever n exceeds the cardinality |S|, in
which case F ◦G makes sense for V finitely cocomplete. For general n we have
in that case

G⊗n[S] =
∑

S=T1+...+Tn

G[T1]⊗ . . .⊗G[Tn]

where the sum is indexed over ordered partitions of S into n nonempty subsets
Ti. The group Sn permutes such ordered partitions in such a way that the
orbits correspond to unordered partitions, which are tantamount to equivalence
relations on S. Let Eq(S) denote the set of such equivalence relations, and let
π : S → S/R denote the canonical projection of S onto the set of R-equivalence
classes. Then the substitution product may be rewritten as

(F ◦G)[S] =
∑

R∈Eq(S)

F [S/R]⊗
⊗
x∈S/R

G[π−1(x)]

whenever G[0] = 0.

2 Operads

Definition 2. An operad in V is a monoid in the monoidal category (V FB, ◦).

The unit for the monoidal product ◦ will be denoted X; it is defined by
X[n] = 0 if n ≥ 1, and X[1] = I where I is the monoidal unit of V . (We repeat
that we also use X as abusive notation for a placeholder or variable with values
ranging over objects of V .)

Clearly an operad M induces a monad M ◦ − : V FB → V FB, which in
turn restricts to the analytic monad M(−) : V → V along the embedding

(̂−) : V → V FB if V is cocomplete. Many algebraic structures arising in practice
are algebras of analytic monads. For V = V ectk, we have, e.g.,

1. The tensor algebra T (X) = 1+X+X⊗2+ . . ., denoted 1
1−X . The algebras

of T (−) are associative algebras. The species value T [n] is the space
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freely generated from the set of linear orders on an n-element set, with
the evident Sn-action.

2. The symmetric algebra S(X) = 1 + X + X⊗2/S2 + . . ., denoted exp(X).
Algebras of S(−) are commutative associative algebras. The species value
exp[n] is the trivial 1-dimensional representation of Sn.

3. The Lie operad L[−] may be presented as an operad generated by a bi-
nary operation [−,−] ∈ L[2], subject to the Jacobi relation [−, [−,−]] +
[−, [−,−]]σ+[−, [−,−]]σ2 = 0 and the alternating relation [−,−]+[−,−]τ =
0, where σ is a 3-cycle and τ is a 2-cycle. The algebras of the analytic
monad L(−) are Lie algebras.

By way of contrast, Boolean algebras are not algebras of an analytic monad,
since the equation x ∧ x = x inevitably involves the use of a diagonal map not
available in FB.

Although analytic monads are obviously important, we stress that they are
simply restrictions of monads V FB → V FB, and that it is often more flexible to
work in the latter setting. For example, if V is only finitely cocomplete, then
analytic monads cannot be defined in general; for example, the free commutative
monoid construction does not define an analytic monad on finite-dimensional
vector spaces. However, if V is finitely cocomplete and M is a V -operad such
that M [0] = 0, then there is a monad M ◦ − acting on the orthogonal comple-
ment V ⊥ ↪→ V FB, i.e., the full subcategory of V -species G such that G[0] = 0.

This situation occurs often. For example, consider the operad M(X) =
exp(X)−1, whose V ectk-algebras are commutative monoids without unit. This
operad induces a monad M ◦ − on V ⊥ where V is the category of finite-
dimensional vector spaces; the algebras are again commutative (V ⊥-)monoids
without unit. The operad itself can be regarded as the free commutative algebra
without unit, M ◦ X, generated by the monoidal unit X considered as living
in the subcategory V ⊥. For other reasons, Markl ([14]) has also considered al-
gebras over monads M ◦ − and − ◦M , more general than algebras of analytic
monads; he refers to the former as “M -modules”.

A look ahead

In the next few sections, we will reprise the beautiful work of Joyal which
leads up to a computation of the Lie species L. Our general methodology is
to reinterpret Joyal’s approach via virtual species by appeal to dg-structures on
finite-dimensional super vector spaces; ultimately we feel that a proper approach
to virtual species should draw on the standard model category structure on this
category.

A second point of our approach is to place Joyal’s calculations within the
context of a particular bar construction. This will better enable us to compare
these calculations with those of Ginzburg-Kapranov, which involve a slightly
different bar construction.
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3 Poincaré-Birkhoff-Witt

From this section on, we fix a ground field k of characteristic 0, and V henceforth
denotes the category of finite-dimensional vector spaces over k.

To study the Lie operad L[−], Joyal and others (e.g. [8]) take as starting
point the Poincaré-Birkhoff-Witt (PBW) theorem. If L is a Lie algebra, then
its universal enveloping algebra U(L) carries a canonical filtration, inherited
as a quotient of the tensor algebra T (L) equipped with the degree filtration.
Embedded in T (L) as a filtered subspace is the symmetric algebra S(L), whose
homogeneous components Sn(L) may be realized as images of symmetrizing
operators acting on components Tn(L) = L⊗n:

πn : L⊗n → L⊗n

v1 ⊗ . . .⊗ vn 7→
1

n!

∑
σ∈Sn

vσ(1) ⊗ . . .⊗ vσ(n).

We obtain a composite of maps of filtered spaces

S(L)→ T (L)→ U(L)

and the PBW theorem concerns the application of the associated graded space
functor to this composite (denoted φ):

Theorem 1. The graded map φgr induces an isomorphism between Ugr(L) and
Sgr(L) as graded spaces.

If L(X) is the free Lie algebra on X, then U(L(X)) ∼= T (X) (as algebras
even) by an adjoint functor argument. Assembling some prior notation, it fol-
lows from PBW that there exists an isomorphism of analytic functors on V ectk:

1

1−X
∼= (exp ◦L)(X)

which in turn determines a species-isomorphism, which componentwise is an
isomorphism of Sn-representations:

1

1−X
[n] ∼= (exp ◦L)[n].

Notice both sides makes sense as V -species. A guiding idea behind the species
methodology is that the components of such species are structural analogues
of coefficients of formal power series. This analogy can be made precise. Let
V [[x]] denote the rig (ring without additive inverses) of isomorphism classes of
V -species, with + given by coproduct and · given by ⊗. Let N[[x]] denote the
rig of formal power series ∑

n≥0

anx
n

n!
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where the coefficients an are natural numbers. This may be equivalently de-
fined to be the rig of sequences an of natural numbers where two sequences are
multiplied according to the rule

(a · b)n =
∑
p

(
n

p

)
apbn−p

The rigs V [[x]] and N[[x]] also have a partially defined composition operation ◦,
where f ◦ g is defined whenever g(0) = 0. In the case of V [[x]], it is of course
the operation which is descended from the substitution product by passing to
isomorphism classes.

Proposition 1. ([10]) The function dim : V [[x]] → N[[x]], sending F to the
sequence of coefficients an = dim(F [n]), is a rig homomorphism which preserves
the ◦ operation.

It follows from the proposition and the preceding species isomorphism that
dim(L[n]) = (n − 1)!, since dim(L)(x) is the formal power series expansion of
− log(1− x). We are interested in finding an appropriate lift of − log(1− x) ∈
N[[x]] to a species − log(1 −X) in V [[x]], and hence an identification between
− log(1−X) and the Lie species l[−].

4 Virtual species

Before we construct the species log(1−X), it is convenient to complete the rig
V [[x]] to a ring. One proceeds exactly as in K-theory, where one passes from
vector bundles to virtual bundles.

Definition 3. V is the category of Z2-graded finite-dimensional vector spaces,
with monoidal product given by the formula

(V ⊗W )p =
∑

m+n=p

Vm ⊗Wn

and symmetry given by the formula

σ(xm ⊗ yn) = (−1)mnyn ⊗ xm

for xm ∈ Vm and yn ∈Wn.

Definition 4. Let F and G be V-species. Then F ∼ G (F and G are virtually
equivalent) if F0 ⊕G1

∼= F1 ⊕G0 as V -species.

• Remark: Exact sequences in V FB split. One can check this assertion
componentwise, where exact sequences of kSn-modules split since we as-
sumed char(k) = 0.

Lemma 1. The relation ∼ is an equivalence relation.
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Proof. Transitivity follows from cancellation: F ⊕H ∼= G ⊕H implies F ∼= G.
This in turn follows from the remark.

It is of course crucial here to work with finite-dimensional vector spaces
throughout, in order to avoid the Eilenberg swindle.

Lemma 2. The relation ∼ is respected by ⊕, ⊗, and ◦.

The proof is left to the reader; see also [9] and [16].
A virtual species is a virtual equivalence class of V-species. The ring of

equivalence classes is denoted V[[x]].
Many of our calculations refer to manipulations in the ring V[[x]] of virtual

species, but methodologically it is useful to distinguish the various ways in which
virtual equivalences arise. Part of the philosophy behind species is that clarity
is promoted and calculations are under good combinatorial control when power
series operations +, ·, and ◦ can be viewed as arising from categorified functorial
operations ⊕, ⊗, and ◦. Put differently, passage from VFB to V[[x]] loses
categorical information, and it helps to recognize when a virtual equivalence
F ∼ G comes from an isomorphism F ∼= G in VFB.

In practice, many virtual equivalences which do not come from isomorphisms
in VFB come about by applying the following remark.

• If an object C of VFB carries a differential structure (meaning V -species
maps ∂ : C0 → C1 and ∂ : C1 : C0 satisfying both instances of ∂2 = 0),
then C is virtually equivalent to its homology H(C). This observation
is tantamount to a structural Euler formula C0 − C1 ∼ H0(C) −H1(C),
which obtains because exact sequences in VFB split.

This principle can be quite powerful. Its application does not commit one
to any particular choice of differential structure on C, so that one is enabled
to choose differentials to suit the local occasion. The downside is that because
there is no canonical way to split exact sequences, it is sometimes harder to give
precise formulas that exhibit such virtual equivalences C ∼ H(C).

5 Logarithmic species

One of our goals is to lift the inversion

1

1− x
= exp(L(x)) implies − log(1− x) = L(x)

from the ring Z[[x]] to the ring V[[x]]. In either ring, a necessary condition for
F (x) to have an inverse F−1(x) (with respect to ◦) is that the 0th coefficient
F [0] be 0. Thus, instead of inverting exp(X), we invert exp(X) − 1. Suppose
then that log(1 +X) is a virtual inverse of exp(X)− 1:

log(1 +X) ◦ (exp(X)− 1) ∼ X ∼ (exp(X)− 1) ◦ log(1 +X).
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Proposition 2. If F and G are V-species such that F [0] = 0 = G[0], then
exp(F ⊕G) ∼= exp(F )⊗ exp(G).

Proof. It is immediate that exp(F ) =
∑
n≥0 F

⊗n/Sn is the free commutative

monoid in (VFB,⊗) generated from F , and the assertion says that the left
adjoint exp preserves coproducts.

Defining log((1 + F )⊗ (1 +G)) to be

log(1 +X) ◦ (F + F + F ⊗G),

it follows that log((1 + F )⊗ (1 +G)) ∼ log(1 + F ) + log(1 +G). In particular,

log(
1

1−X
) ∼ − log(1−X)

where of course −(F0, F1) is defined to be (F1, F0). The species log(1 − X) is
easily obtained from log(1 +X) by the following result.

Proposition 3. F (−X)[S] ∼= (−1)|S|F [S] ⊗ Λ[S], where Λ[S] denotes the top
exterior power Λ|S|(kS) of the vector space kS freely generated from S.

Proof. The V-species X, which by definition is the unit with respect to ◦, is
given by (X[1]0, X[1]1) = (k, 0) andX[n] = 0 otherwise. Thus (−X[1]0,−X[1]1) =
(0, k) and −X[n] = 0 otherwise. Hence

(F ◦ (−X))[S] =
∑

R∈Eq(S)

F [S/R]⊗
⊗
x∈S/R

(−X)[π−1(x)]

∼= F [S]⊗ (−X)[1]⊗|S|

Now (−X)[1]⊗n is 1-dimensional and is concentrated in degree n (mod 2) (whence
the sign (−1)|S|). A transposition in Sn induces a sign change in (−X[1]⊗n)n (mod 2),
by definition of symmetry: σ(x1 ⊗ y1) = −y1 ⊗ x1. This proves the claim.

We proceed to compute the inverse log(1 + X) to exp(X) − 1. Recalling
an earlier remark, F (X) = exp(X) − 1 is the operad such that algebras of the
monad F ◦ − (acting on V-species G such that G[0] = 0) are commutative
algebras without unit.

The underlying species F satisfies F [0] = 0, F [1] = 1 (i.e., = (k, 0)). Joyal
gives a general method due to G. Labelle for inverting such species. Introduce
an operator

δF : V[[x]]→ V[[x]]

H 7→ H ◦ F −H

so that (1 + δF )(H) = H ◦ F ; here 1 denotes the identity functor. Observe
that δF preserves sums, because − ◦ F : VFB → VFB is the restriction of a
cocontinuous monoidal functor which thus preserves coproducts.
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Let 0̂ denote the bottom element of the lattice eq(S) ordered by inclusion of
equivalence relations. This 0̂ is the discrete equivalence relation on S, so that
S/0̂ ∼= S. We have

δF (H)[S] = (
∑

R∈Eq(S)

H[S/R]⊗
⊗
x∈S/R

F [π−1(x)])−H[S]

and since H[S] ∼= H[S/0̂] ⊗
⊗

x∈S/0̂ F [1] by our assumptions on F , we may

rewrite the right-hand side (up to virtual equivalence) as∑
0̂<R

H[S/R]⊗
⊗
x∈S/R

F [π−1(x)].

Define the V-species δF (H) by the above expression, so that δF will be used
to denote a functor on V-species H, in addition to an operator on V[[x]]. In
particular, when F (X) = exp(X)− 1, we have

δF (H) =
∑
0̂<R

H[S/R].

In general, the nth iterate δnF (H)[S] is a sum of the form∑
0̂<R1<...<Rn

terms

where terms are indexed by strictly increasing chains of equivalence relations
on S. As soon as n ≥ |S|, there are no chains of that length, so this sum will
be empty. In this way, for each finite S, δnF (H)[S] = 0 for all sufficiently large
n, and so the expression

(1 + δF )−1(H) :=
∑
n≥0

(−1)nδnF (H)

makes sense as a functor on V-species H.
We may now construct the inverse species F−1(X):

F−1(X) = (1 + δF )−1(X) :=
∑
n≥0

(−1)nδnF (X)

Proposition 4. (F−1 ◦ F )(X) ∼ X.

Proof. We have

(F−1 ◦ F )(X) ∼ (1 + δF )(F−1)(X)) = (1 + δF )(
∑
n≥0

(−1)nδnF (X))

∼
∑
n≥0

(−1)nδnF (X) +
∑
n≥0

(−1)nδn+1
F (X)

which telescopes down to δ0F (X) = X.

• Remark: Under our hypotheses on F , one may prove by induction that
F ◦ G ∼ F ◦H implies G ∼ H. From this and the proposition, it easily
follows that (F ◦ F−1)(X) ∼ X.
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6 A bar construction

When F carries an operad structure, this construction of F−1 admits a more
categorical interpretation. Observe that there is an embedding

δnF (X) ↪→ F ◦ . . . ◦ F = F ◦n.

Let us regard the operad F as a monoid with multiplication m : F ◦ F → F
and unit u : X → F . There is a (necessarily unique) operad map ε : F → X,
called an augmentation, and this may be used to turn X into a left F -module
and also into a right F -module, in the usual way. We may thus form a two-sided
bar construction B(X,F,X), whose component in dimension n is isomorphic to
F ◦n.

The bar construction B(X,F,X) is a simplicial object in an additive cate-
gory, and hence gives rise to a Z-graded chain complex, where each differential
is a signed sum of face maps of the form

∂i : F ◦(n+1) F
◦(n−i)mF◦(i−1)

→ F ◦n.

By reduction of the grading, we may regard B(X,F,X) as a Z2-graded chain
complex, provided that the two components are taken as species valued in the
category of (possibly infinite-dimensional) vector spaces.

However, since we are dealing with virtual species, we want to cut back to
V-valued species, where the components are finite-dimensional. To this end,
notice that each of the maps ∂i restricts to a map

δn+1
F (X)→ δnF (X)

and the δnF (X) form a chain subcomplex. We regard this chain complex as our
preferred bar construction for F , or more precisely a right bar construction
Br(F ), as we now explain in more detail.

There is an exact sequence

0→ δF → (−) ◦ F → (−) ◦X → 0

making the functor δF , for an operad F , analogous to tensoring on the right
with an augmentation ideal IG of a group ring ZG, sitting in an exact sequence

0→ IG→ ZG→ Z→ 0.

Here δF (resp. − ⊗ IG) is regarded as a formal or virtual difference between
− ◦ F and − ◦X (resp. −⊗ ZG and −⊗ Z). In forming F−1(X) as

X + (−δF )(X) + (−δF )2(X) + . . . ,

we interpret the additive inverse −δF as the result of composing δF with the
degree 1 shift operator Σ acting on Z2-graded species, which plays the structural
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role of additive inverse. Hence the construction for F−1(X) above is analogous
to the normalized bar resolution

Z + Σ(IG) + (Σ(IG))⊗2 + . . .

originally introduced by Eilenberg-Mac Lane [4].

• Remark: The analogy between the complex Br(F ) and the classical nor-
malized bar resolution is imperfect, however, because the monoidal prod-
uct − ◦ − behaves rather differently from the tensor product − ⊗ −. In
particular, − ◦ − does not preserve colimits on each side; only − ◦ F pre-
serves colimits. This explains why, in our geometric series construction
for F−1(X), we must consistently apply the substitution product − ◦ F
with F appearing on the right. Also, whereas the classical bar resolution
produces a free algebra (or cofree coalgebra) construction on the shifted
augmentation ideal via a geometric series, the same geometric series con-
struction in the operadic context does not yield a cofree co-operad, again
because of failure of the monoidal product − ◦ − to preserve coproducts
in each of its separate arguments. We return to this point later.

To give further weight to the sense in which Br(F ) is a bar construction, we
assemble the components δnF (X) ◦ F of F−1 ◦ F into an acyclic chain complex
Er(F ) of V-species that will be a (right) F -free resolution of the unit operad
X. Indeed, there is an embedding

δnF (X) ◦ F ↪→ F ◦(n+1)

where now F ◦(n+1) is the degree n component of the two-sided bar resolution
B(X,F, F ) (as simplicial object). Again, the face maps

∂i : F ◦(n+1) ◦ F → F ◦n ◦ F

restrict to maps
δn+1
F (X) ◦ F → δnF (X) ◦ F

so that the δnF (X)◦F are components of a subcomplex Er(F ). This endows the
Z2-graded species F−1 ◦ F with a dg-structure.

Then, we may regard the virtual equivalence

(F−1 ◦ F )(X) ∼ X

as arising from a homotopy equivalence between dg-species:

. . . δn+1
F (X) δnF (X) . . . δ0F (X) 0

0 0 X

id

Indeed, we have an augmentation map B(X,F, F ) → X between simplicial
objects (regarding X on the right as a constant simplicial object). This restricts
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to an augmentation map Er(F )→ X which, by the Dold-Kan correspondence,
corresponds to a map between chain complexes as displayed above. To check
that the augmentation Er(F )→ X is a homotopy equivalence, one checks that
the standard contracting homotopy on B(X,F, F ), with components

F ◦n ◦ u : F ◦n ◦X → F ◦n ◦ F,

restricts to a contracting homotopy on Er(F ). In more detail, each component
δnF (X) ◦ F breaks up as a coproduct

7 The Lie species

We now return to our example F (X) = exp(X)− 1 and the construction of the
inverse F−1(X) = log(1 +X). By iterating the functor

δF : H 7→ (S 7→
∑
0̂<R

H[S/R]),

we derive an expression of δnF (X)[S] as the space whose basis elements are n-fold
chains of strict inclusions of equivalence relations

0̂ < R1 < . . . Rn = 1̂

where 1̂ denotes the top element of the lattice Eq(S), namely the indiscrete
equivalence relation with one equivalence class. Each such chain may be iden-
tified with an (n− 1)-fold chain in the poset Eq(S)− {0̂, 1̂}, in other words as
cells of dimension n − 2 in the simplicial complex underlying the nerve of this
poset. Let Ci[S] denote the set of cells of dimension i (or rather the vector space
it generates). Then for |S| > 2, we may identify the complex Br(F )[S],

0→ δ
|S|−1
F (X)[S]→ . . .→ δ2F (X)[S]→ δ1F (X)[S]→ X[S]→ 0,

with
0→ C|S|−3[S]→ . . .→ C0[S]→ k → 0→ 0

It follows that log(1 +X)[S] is virtually equivalent to reduced homology of the
simplicial complex C associated with Eq(S).

Definition 5. A finite lattice is geometric if every element x is a joint of atoms,
if every maximal chain beginning at 0 and ending at x has the same length ρ(x),
and if ρ(X ∨ y) + ρ(x∧ y) ≤ ρ(x) + ρ(y). (A finite lattice is modular iff this last
inequality is an equality.)

Now the lattice of equivalence relations is a geometric lattice, and a result
of Folkman is that the reduced homology of such a lattice is trivial except in
top degree; more exactly, Folkman’s result (the theorem below) implies that the
nerve of the poset Eq(S)−{0̂, 1̂} is a bouquet of spheres of dimension |S|−3, and
the number of spheres is given by the value µ(0̂, 1̂) of Rota’s Möbius function
on the lattice Eq(S).
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Theorem 2. ([5]) If L is a finite geometric lattice, then the reduced homology
of L − {0, 1} is trivial except in top dimension, where the Betti number is the
value µ(0, 1) of Rota’s Möbius function on the lattice.

Corollary 1. log(1 +X)[S] ∼ (−1)|S|−1H|S|−1(Br(F )[S]).

Proof. By the structural Euler formula, F−1(X)[S] = log(1 + X) as given by
the Z2-graded chain complex Br(F )[S] is virtually equivalent to its homology,
which in turn is equivalent to the reduced homology of C[S]. By Folkman’s
theorem, the reduced homology of C[S] is concentrated in top degree |S| − 3,
corresponding to the homology of Br(F )[S] sitting in degree |S| − 1.

Corollary 2. The Lie species L[S] is isomorphic to H|S|−1(Br(F )[S])⊗ Λ[S].

Proof. Starting from the PBW theorem

1

1−X
∼= exp(L(X)),

we were led to the virtual equivalence

− log(1−X) ∼ L(X).

Applying Joyal’s rule of signs to the previous theorem, − log(1 −X)[S] is vir-
tually equivalent to

−(−1)|S|(−1)|S|−1H|S|−1(Br(F )[S])⊗ Λ[S]

which boils down to H|S|−1(Br(F )[S])⊗Λ[S]. As virtual species, both this and
the Lie species value L[S] are concentrated in degree 0 (mod 2). But if two V-
species concentrated in degree 0 are virtually equivalent, they are isomorphic.

This concludes our rendition of Joyal’s calculation of L[S]. This calculation
does not specify the operad structure of L[−], but in view of the formula just
given for L[n], we make the following remark: given an operad in chain com-
plexes with components C[n], the homology operad H∗(C) contains a suboperad
with components Hn−1(C[n]). Unfortunately, this remark does not apply to
C[n] = Br(F )[n]⊗Λ[n], since the bar construction Br(F )[n] carries no obvious
operad structure. A different bar construction Bl(F ), or rather its dual cobar
construction, is better suited for applying the present remark.

8 Free operads

Let F be a V—operad such that F [O] = 0 and F [1] = 1. Our earlier construc-
tion for F−1(X), namely

∑
n≥0(−δF )n(X) is not a free operad on the suspension

−δF (X) of the augmentation ideal δF (X), due to the failure of −◦− to preserve
separate colimits.

To construct free operads, it is convenient to use the language of trees [2].

13



Definition 6. A rooted tree is an (undirected) acyclic connected finite graph
together with a distinguished node called the root.

Let N be the set of nodes of a rooted tree T with root r, and E the set
of edges. There is a bijection φ− : E

∼−→ N − {r}, uniquely determined by
the requirement that the node φ−(e) lie on the edge e. Let φ+(e) denote the
other node lying on e. One may give a rooted tree a canonical directed graph
structure, with source—target map 〈φ−, φ+〉 : E → N × N . The free category
on a directed graph has a terminal object r iff the directed graph comes from
a tree rooted at r. The free category on a rooted tree T defines a partial order
on its set of nodes: an atomic element in this poset is called a leaf of T . A
directed subgraph of T whose free category possesses a terminal object is called
a subtree. In particular, the slice over an object x comes from a subtree Tx
called the tree over x.

A rooted tree T may be characterized up to isomorphism by a function
fT : N −{r} → N , sending a node to its unique successor in the induced partial
order. Identifying functions of this form with based endofunctions (N, r) →
(N, r), the endofunctions which arise in this way are precisely those whose it-
erates converge to the constant function at r. If x is a node in T , the set
σx = f−1T (x) is called the sprout over x.

Up to isomorphism, a rooted tree whose set of leaves is S is characterized in
terms of S by the following data: an element C of the free commutative monoid
exp(PS) on the power set of S (i.e. a multiset of subsets of S), together with a
linear order on each set of repetitions in C of a given subset. To obtain such a
structure CT from a rooted tree T , assign to each node x the set λ(x) of leaves
≤ x and let CT be the multiset {λ(x) : x is a node of T}. There is a repetition
λ(y) = λ(x) whenever σx = {y}; in that case impose the order λ(y) < λ(x).
if on the other hand {y} is a proper subset of σx, there is a proper inclusion
λy ⊂ λ(x). The set CT contains S as λ(r), and contains each singleton {s} in
S as λ(s). The absence of cycles in the tree T implies a trichotomy law : for all
U, V ∈ CT , either U ⊆ V or V ⊆ U or U ∩ V = ∅. In view of the essential
equivalence between trees and such multisets, we make the following definition.

Definition 7. A tree on a finite set S is a finite multiset C of subsets of
S containing S and each singleton of S, and satisfying the trichotomy law,
together with a linear ordering on each set of repetitions. The set of trees on
S is denoted by T [S]. For T ∈ T [S], the set of singletons {s} ∈ T is identified
with S.

T [−] carries a structure of Set-species: to each bijection φ : S → T we form
a map T [S]→ T [T ] by relabelling along it.

Next, we introduce a grafting operation on trees. Suppose given a tree
T ∈ T [X] and for each x ∈ X a tree Tx rooted at x. Then the discrete graph
on X (having no edges and denoted again by X) is obviously embedded in T
and in the disjoint union of the Tx; the pushout of these two embeddings in the
category of undirected graphs gives an acyclic connected graph. Defining the
root of the pushout as the image of the root of T , the result is a rooted tree
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called a grafting, denoted by m(T ;Tx : x ∈ X). Let R be an equivalence relation
on S; put X = S/R. and let π : S → X be the canonical quotient. Then the
grafting operation just described induces a map

m[S] :
∑

R∈Eq(s)

T [S/R]⊗
⊗
x∈S/R

T [π−1(x)] −→ T [S]

There is a map u : X → T which sends the element r of X[1] to the rooted
tree consisting only of r. The triple (T ,m, u) defines a Set-operad: satisfaction
of the operad axioms follows easily from universal properties of pushouts. In
fact, it is not difficult to show that T is the free operad generated by the Set-
species exp(X) − 1. The unit map η : (exp(X) − 1) → T which generates it
is given componentwise by maps (exp(X) − 1)[S] → T [S] each of which, for
|S| > 0, sends the unique element in the domain to the “sprout“ on S: the
multiset S +

∑
s∈S{s}. It is clear that every structure of species T is obtained

by grafting together a collection of such sprouts and instances of u[1].
More generally, letting C be a complete cocomplete symmetric monoidal

closed category, we describe the free operad O(G) on a C-species G such that
G[0] = 0. Let N(T ) denote the set of nodes in a tree T ∈ T [S]. As a species,

O(G)[S] =
∑

T∈T [S]

⊗
x∈N(T )−S

G[σx]

for |S| > 0 and O(G)[0] = 0. If in addition G[1] = 0, a summand corresponding
to a tree T is 0 whenever there are nodes x ∈ N(T )−S such that σx is a singleton:
i.e., when there are repetitions of subsets. So if G[1] = 0, the summation can
be restricted to multisets without repetitions, i.e., to rooted trees where each
node is the join of the leaves below it. These shall be called proper trees.

• Remark: The description we have given of O(G) can be formulated as
a “wreath product” T ∫ G, as in unpublished notes of Kelly, similar to
the wreath product constructions pertaining to Kelly’s “clubs” [13]. The
essential point is that the multiplication on the operad O(G) is induced
from the grafting multiplication on . The unit map u : X → O(G) is also
induced from that of T ; the map u[1] factors through the summand where
the iterated tensor product is indexed over an empty set (empty products
are interpreted as the unit I for the tensor).

There is a familiar free—forgetful adjunction arising from the free operad
construction: it will be useful to describe the counit of this adjunction using
a kind of term-rewrite system. To begin, let T ∈ T [S] be a tree described as
a multiset, and U a subset of S occurring in T neither as λ(r) nor as λ(s) for
s ∈ S. Then we may delete U from T to obtain another tree T/U ∈ T [S], called
the contraction of T along U (deletion corresponds to contraction of an internal
edge in the tree). Contractions may be continued until one reaches a sprout,
i.e., the element in the image of the unit η : (exp(X) − 1)[S] → T [S]. This
iterated contraction reproduces the unique Set-species map T → exp(X) − 1,
necessarily a morphism of operads.
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If a tree is regarded as the result of grafting together a collection of sprouts.
then each contraction may be regarded as a tree surgery, where a subtree T ′

obtained by grafting together two sprouts is replaced by a sprout having the
same leaves as the subtree. More formally. suppose given two subsprouts with
leaf—sets of the form σx and σy, where y ∈ σx and λ(y) = U , the deleted set,
T ′, and the sprout which replaces it in T/U , both have x as root: we use the
notation x/y to denote the root. in the latter case. Both have the same set of
leaves. which we may write as σx/y. Observe there is an inclusion σy ↪→ σx/y
and a surjection πy : σx/y → σx: indeed. defining an equivalence relation R on
the set σx/y by zRw if z = w or z, w ∈ σy, the set σx is canonically identified
with the set of R—equivalence classes on σx/y.

Now suppose G carries an operad structure. In (G ◦ G)[σx/y] there is a
summand of the form

G[σx]⊗
⊗
z∈σx

G[π−1y (z)]

where |π−1y (z)| = 1 if z 6= y. There is a unit map I ∼= X[π−1y (z)] → G[π−1y (z)]
for z 6= y, and of course π−1y (y) = σy: therefore there is an induced map

G[σx]⊗G[σy] −→ (G ◦G)[σx/y]

whence, after composing with the multiplication on G, a map

G[σx]⊗G[σy] −→ G[σx/y]

Expand this by tensoring with identity maps to obtain a “G—contraction” map

mT/U :
⊗

x∈N(T )−S

G[σx] −→
⊗

x∈N(T/U)−S

G[σx]

on the T -summand of O(G)[S]. Such G—contractions may be iterated until a
sprout is reached, leading to a map⊗

x∈N(T )−S

G[σx] −→ G[S]

and by the operad axioms, this map is independent of the order in which con-
tractions are performed. Finally, all of these maps assemble to give a map

εG[S] : O(G)[S] −→ G[S]

which is the component at S of the counit εG of the adjuiiction.
We remark that if F is an operad and F [1] = 1, then εF restricts to a map

O(δF (X))−X → δF (X). In particular there are contraction maps

µT/U :
⊗

x∈N(T )−S

δF (X)[σx] −→
⊗

x∈N(T/U)−S

δF (X)[σx].
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9 The left bar construction

From this section on, F denotes a V—operad with F [0] = 0 and F [1] = 1. We
recall (see [6, 7]) a chain complex structure Bl(F ) on the free operad gener-
ated from the suspension G = −δF (X) (In this case O(G)[S] is a coproduct
over proper trees on S, so that both its Z2—graded components are finite-
dimensional.)

The grading on Bl(F )[S] is determined from the construction of O(−δF (X))
as a V—species: for example. if F is the V—operad exp(X) − 1, and T is a
proper tree then the summand⊗

x∈N(T )−S

(−δF (X))[σx]

is concentrated in degree given by the number n of sprouts σx (taken modulo
2). Taking F (X) = exp(X) − 1 as basic, we define differentials for Bl(F ). Let
Tj [S] denote those proper trees on S consisting of exactly j subsets of S aside
from S and {s} for s ∈ S. Arguing as we did in the proof of proposition 3,
O(−δF (X)) lifts to a Z-graded species O(ΣδF (X)) whose (j + 1)-st component
is given by ∑

T∈Tj [S]

Λ[T ].

If PS denotes the set PS−{S}−∪s∈S{{s}}, and Λj [S] the j-th exterior power
of a space freely generated from S, there is a monomorphism∑

T∈Tj [S]

Λ[T ] ↪→ Λj [PS].

To see this, first observe that every tree on S contains S and all singletons {s},
so no essential information is lost if we ignore these: thus there is a species
isomorphism ∑

T∈Tj [S]

Λ[T ] ∼=
∑

T∈Tj [S]

Λ[T − {S} − ∪s∈S{{s}}].

MISSING PAGE 16 OF THE ORIGINAL

to work with species valued in the category of Z2-graded spaces (rather than
just the finite—dimensional ones). We have inclusions

−F ◦ O(−δF (X)) O(−F ) ◦ O(−F ) O(−F )
η◦i m

and a differential structure on O(−F ) from the preceding discussion: by restric-
tion we get a differential structure on −F ◦ O(−δF (X)), and hence a complex
El(F ). To show El(F )→ X is a homotopy equivalence. it suffices to exhibit a
contracting homotopy for El(F )[S] when |S| > 1. We have

−F − ◦O(−δF (X)) ∼= (−δF (X) ◦ O(−δF (X)))⊕ (−X ◦ O(−δF (X)))
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and now we write down the restriction of the contracting homotopy h to each
summand. For the first summand we have

−δF (X) ◦ O(−δF (X))
η◦1−−→ O(−δF (X)) ◦ O(−δF (X))

m−→ O(−δF (X))

which we further compose with

O(−δF (X))
i−→ −X ◦ O(−δF (X))

−u◦1−−−→ −F ◦ O(−δF (X))

to obtain the first restriction h1; here the map i is a degree 1 shift of the
canonical isomorphism O(−δF (X)) ∼= X ◦ O(−δF (X)). The restriction h2 of
the contracting homotopy to the second summand −X ◦ O(−δF (X)) is just a
zero map. The proof that h = h1 + h2 is a contracting homotopy (which only
uses simplicial identities) is standard and left to the reader.

The virtual equality F ◦O(−δF (X)) ∼ X follows from the fact that El(F )→
X induces an isomorphism in homology. ThusO(−δF (X)) and

∑
n≥0(−δF )n(X)

both represent the virtual species F−1 ∈ V[[x]]. In the next section we exhibit
a chain map between their associated bar constructions Br(F ), Bl(F ) which is
a quasi-isomorphism.

10 A quasi-isomorphism

Under the hypotheses on an operad F used in the previous section, we describe
a chain map Bl(F )→ Br(F ) which induces an isomorphism] in homology.

As usual, it is easiest to begin with the case F (X) = exp(X) − 1. First we
exhibit a map

O(−δF (X)) −→
∑
n≥0

(−δF )n(X)

which comes from a map of Z-graded species with components∑
T∈Tj [S]

Λ[T ] −→ (δF )j+1(X)[S].

Let T be a proper tree on S whose elements, aside from S and the singleton
sets, are subsets U1, . . . , Uj of S. To each non-empty subset U ⊆ S we may
associate an equivalence relation RU on S defined by xRUy if x = y or x, y ∈ U .
If R,R′ ∈ Eq(S), let the sum R + R′ denote their join in this lattice. Suppose
the subsets Ui are arranged so that Ui ⊆ Uj implies i ≤ j, and let R(i) denote∑
k≤iRUk . Then there are strict inclusions R(i) < R(j) when i < j, and the

trichotomy law guarantees that 0 < R(i) < i for all i. We thus obtain a chain
in δj+1

F (X)[S] of the form

0 < R(1) < . . . < R(j) < R(j+1) := 1.

It is sometimes convenient to omit the last member from this chain, which
carries no essential information.
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The space Λ[T ] may be regarded as being generated by a j-fold exterior
product U1 ∧ . . . ∧ Uj . Let T denote the poset whose elements are the sets Ui
ordered by inclusion, and let [j] denote the poset {1 < . . . < j}. Consider the
set Ordb(T, [j]) of order-preserving bijections T → [j]: to each φ ∈ Ordb(T, [j])
we define a sign sgn(φ) as the sign of the permutation [j]→ [j] which sends the
element i to φ(Ui), and define equivalence relations

R
(i)
φ =

∑
k≤i

Rφ−1(k)

for 1 ≤ i ≤ j, which form a chain

Rφ = [0 < R
(1)
φ < . . . < R

(j)
φ < 1].

Finally. define a map

ιj [S] :
∑

T∈Tj [S]

Λ[T ] −→ (δF )j+1(X)[S]

U1 ∧ . . . ∧ Uj 7−→
∑

φ∈Ordb(T,[j])

sgn(φ) ·Rφ.

This is clearly well-defined and natural in S ∈ FB.

Proposition 5. The map ι : Bl(F ) → Br(F ) is a monomorphism of chain
complexes.

Proof. First we remark that chains of the form Rφ for φ ∈ Ordb(T, [j]) are chains
[0 < R1 < . . . < Rj < 1] such that, for all i, the equivalence relation Ri+1/Ri
on S/Ri (given by the kernel pair of the quotient S/Ri → S/Ri+1 with R0 = 0
and Rj+1 = 1 for convenience) is an equivalence relation RVi associated with
a subset Vi ⊆ S/Ri. Let us call chains which satisfy this property “good”. To
prove that ι is monic, it is enough to see that we can retrieve T and φ : T → [j]
from the data of a good chain. This is easy: letting πi : S → S/Ri be the
canonical quotient, T is the set of subsets Ui = π−1i (Vi), and φ is defined by
φ(Ui) = i. To show that ι preserves differentials, consider the differential of Rφ:

j∑
i=1

(−1)i[. . . < R
(i−1)
φ < R

(i+1)
φ < . . .]

By the trichotomy property for trees, either the i-th summand is a good chain,
or φ−1(i) ∩ φ−1(i + 1) is empty. In the latter case, consider φ′ ∈ Ordb(T, [j])
obtained by composing φ with the transposition (ii + 1). Clearly sgn(φ′) =
−sgn(φ), and one easily checks that the i-th summands in ∂(Rφ) and ∂(Rφ′)
are the same. Thus, in computing ∂(ι(U1 ∧ . . . ∧ Uj)), the “bad” chains cancel:
what remains is a linear combination of good chains Rφi , where φi denotes the
restriction of φ to T − φ−1(i). Specifically, we have

∂(ι(U1 ∧ . . . ∧ Uj)) =
∑

φ∈Ordb(T,[j])

sgn(φ) ·
j∑
i=1

(−1)iRφi
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and some painstaking care with signs shows this equals

j∑
i=1

(−1)i
∑

φ∈Ordb(T̂/Ui,[j−1])

sgn(φ) ·Rφ = ι(∂(U1 ∧ . . . ∧ Uj))

so that ι preserves differentials. This completes the proof.

Theorem 3. For F (X) = exp(X)−1, Br(F ) and Bl(F ) are quasi-isomorphic.

Proof. From theorem 2, H∗(Br(F )[n]) is concentrated in the top degree n− 1,
and from the results of [7], so is H∗(Bl(F )[n]). Since this is top degree, both of
these homologies are given by the cycle groups in that degree, and by proposition
5, the chain map ι restricts to a monomorphism

Zn−1(Bl(F )[n]) −→ Zn−1(Br(F )[n])

between these cycle groups. On the other hand, both of these homologies are
virtually equivalent since both represent the Sn—character log(1+X)[n]. Since
both are concentrated in the same degree, this virtual equivalence implies they
are isomorphic. Therefore the monomorphism above must itself be an isomor—
phism. This completes the proof.

Now consider more generally an operad F such that F [0] = 0, F [1] = 1. To
construct a chain map ι : Bl(F ) → Br(F ), we couple the construction for the
special case F (X) = exp(X)− 1 with a few simple observations. In this special
case there are inclusions

δj+1
F (X) ↪→ F ◦(j+1) ↪→ O(F )

so that each chain 0 < R1 < . . . < Rj < 1 of equivalence relations on S may be
regarded as a (non-proper) tree on S. Abbreviating δexp(X)−1 to δ, we have for
general F

δj+1
F (X)[S] =

∑
T∈δj+1(X)[S]

⊗
x∈N(T )−S

F [σx]

Let T ∈ Tj [S] be a proper tree and consider a map φ ∈ Ordb(T, [j]); earlier
we produced a chain Rφ of equivalence relations, which we now regard as a tree.
Observe that there is an isomorphism⊗

x∈N(T )−S

δF (X)[σx] ∼=
⊗

x∈N(Rφ)−S

F [σx]

since we assumed F [1] = 1. From this isomorphism, it is clear that there is an
induced chain map∑

T∈Tj [S]

Λ[T ]⊗
⊗

x∈N(T )−S

δF (X)[σx] −→
∑

T∈δj+1(X)[S]

⊗
x∈N(T )−S

F [σx]

which gives the desired map ι : Bl(F )→ Br(F ).
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It is not difficult to show, using theorem 3, that ι induces an isomorphism
in homology. This may suggest new techniques for deciding whether a given
quadratic operad satisfies Koszul duality ([7]). For example, in certain cases
one can establish Koszul duality through an appeal to theorem 2.

11 The Lie operad

Let F (X) = exp(X)− 1, and let Bl(F )′ denote the dual of the complex Bl(F ),
i.e., the cochain complex with differentials∑

T∈Tj−1[S]

Λ[T ]′ −→
∑

T∈Tj [S]

Λ[T ]′

obtained by transposing those of Bl(F )[S]. In [7] it is shown that the operad
multiplication and unit on O(−δF (X)), which is the graded species underlying
Bl(F )′, respect these differentials, so that Bl(F )′ carries a structure of an operad
valued in the category of Z2—graded cochain complexes. It is called the cobar
construction of F , and may be regarded as a lift of the virtual species F−1(X) =
log(1 +X) to an operad.

Since the operation of additive inverse on V[[x]] lifts to the Z2—graded sus-
pension (as an involution on VFB or on species valued in Z2-graded complexes),
we can transport the monad Bl(F )′◦(−) across the suspension to lift the virtual
species −F−1(−X) = − log(1−X) to an operad. We can describe this operad
using proposition 3. First, there is a V—operad with components

(−1)|S|−1Λ[S],

obtained by transporting the monad exp for free commutative monoids across
the Z2-graded suspension. This is described in detail in [7], where it is called the
determinantal operad. Next, if F and G are operads, then there is an obvious
operad structure on the species with components F [S] ⊗ G[S]. Putting this
together, there is an identification between operads given componentwise as

−Bl(F )′(−X)[S] ∼= Bl(F )′[S]⊗ (−1)|S|−1Λ[S]

and since cohomology with coefficients in a field preserves coproducts and tensor
products, there is an operad whose components are

Hn−1(Bl(F )[n])⊗ Λ[n]

in degree 0 (compare with corollary 2 and the remarks which follow it).

Theorem 4. ([tlot]) The Lie operad L is isomorphic to this operad.

Proof. (What follows is a sketch of the proof.) The cohomology space above is
a cokernel of a space generated by the set of binary trees in T [n], so that the
operad aboVe is an operad generated by a single binary operation (represented
by a sprout with two leaves. called a 2-sprout). The kernel of this cokernel
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is the space of trees in T [n] obtained by grafting a collection of 2—sprouts
with a 3-sprout (which represents a ternary operation), so that the operad
H∗(Bl(F )) is generated by a binary operation and subject to a single equation
in which the tertiary operation is set equal to zero. Upon twisting with the
determinantal operad in degree 3, one may verify by hand that this equation
is the Jacobi identity. Twisting with the determinantal operad in degree 2
gives the alternating identity, and these give a complete set of identities for the
operad. But these are exactly the identities governing the Lie operad.

• Remark: In [1], an explicit description is given for the correspondence
between certain elements in free Lie algebras (Lyndon basis elements)
and homology classes for partition lattices. Our notes here provide a
conceptual framework for this description, which can be extracted from
theorems 3 and 4 (compare with corollary 2).

Definition 8. A (Z2-graded) homotopy Lie algebra is an algebra over the op-
erad

(−1)n−1Bl(F )′[n]⊗ Λ[n]

(which is valued in the category of Z2-graded complexes).

• Remark: If F (X) = X
1−X is the operad governing associative algebras

without unit, then there is a virtual equivalence F (X) ∼ −F−1(−X). The
right-hand side is represented by an operad with components

(−1)|S|−1Bl(F )′[S]⊗ Λ[S],

which is easily (and classically) shown to be homotopy-equivalent to the
operad X

1−X . Algebras over this (right-hand) operad are called homotopy
associative algebras: they are equivalent to the A∞—algebras of [15].
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