From: baez@math.removethis.ucr.andthis.edu (John Baez)
Subject: This Week's Finds in Mathematical Physics (Week 277)
Organization: University of California, Riverside
Sender: baez@math.removethis.ucr.andthis.edu (John Baez)
Newsgroups: sci.physics.research,sci.physics,sci.math
Also available at http://math.ucr.edu/home/baez/week277.html
August 11, 2009
This Week's Finds in Mathematical Physics (Week 277)
John Baez
I'm very happy to have finished writing a huge paper with Aaron
Lauda... a paper we've been working on for 5 years! It's a chronology
of 20th century math and physics, focused on why people are starting to
use n-categories in physics:
1) John Baez and Aaron Lauda, A prehistory of n-categorical physics,
to appear in Deep Beauty: Mathematical Innovation and the Search for
an Underlying Intelligibility of the Quantum World, edited by Hans
Halvorson.
This is a companion to a paper I talked about in "week261":
2) John Baez and Mike Stay, Physics, topology, logic and
computation: a Rosetta Stone, to appear in New Structures in
Physics, edited by Bob Coecke. Available as arXiv:0903.0340.
Both of them are supposed to be gentle explanations of how
"diagrammatic thinking" unifies and clarifies our perspective on
many subjects. I can imagine merging them and expanding them to
form a book someday... but not today. Today I want to take a break
from n-categories, and talk about some basic physics.
Let's start with a riddle.
What's a million times thinner than paper, stronger than diamond,
a better conductor than copper, and absorbs exactly
pi alpha ~ 3.14159 / 137.035 ~ 2.29254%
of the light you shine through it?
Hint: alpha is the "fine structure constant" - a fundamental
dimensionless constant that specifies the strength of the
electromagnetic force.
Can't guess? Okay, here's the answer: graphene!
Graphene is what you get when you take one slice of a crystal of
graphite. It's a hexagonal array of carbon atoms, each connected
to three neighbors. I mentioned this substance back in "week262",
when I was visiting the National University of Singapore, because
researchers there were working on graphene as a possible substitute
for silicon chips, which might operate 1000 times faster. Now
a group there led by Barbaros Özyilmaz is trying to use graphene
for storing information:
3) Prachi Patel, A step towards superfast carbon memory,
Technology Review, Wednesday April 1, 2009, available at
http://www.technologyreview.com/computing/22377/
No, this is not an April Fool's joke.
Graphene was only discovered in 2004, but the easiest way to
make some is surprisingly lowtech. You press a chunk of
graphite onto some scotch tape, and hope a thin layer sticks:
4) Making graphene 101, Oyzilmaz' group, YouTube video,
available at http://www.youtube.com/watch?v=rphiCdR68TE
Graphene has some amazing properties. For starters, it acts
like a toy universe containing massless spin-1/2 particles,
which zip around at the speed of light. But in this toy
universe, light moves 300 times slower than in the real universe!
To understand this, you have to start by realizing that any sort of
wave also acts like a particle when you take quantum mechanics into
account. The idea is that when something can wiggle back and forth
at some frequency, it can wiggle a little or a lot - but it can't
wiggle just *any* amount. The amount of wiggling is "quantized" -
it comes in discrete steps. These steps are too small to see in
normal life, where for example you might see a rubber band seem to
vibrate with any amplitude it wants. But these quantized steps
are there nonetheless, no matter what is doing the wiggling - it
appears to be a completely general principle.
When the wiggles are waves that are moving along, these quantized
steps are called "particles". So, for example, when we have a wave
of light of some particular frequency that contains 500 times more
energy than the bare minimum, we say it consists of 500 "particles"
called photons. At first this may sound weird, but it turns out that
many things we normally consider particles - like electrons and
protons and neutrons - really are just quantized wiggles of some
sort or another.
In cases like these, the stuff that's doing the wiggling is rather
absract: for photons, we say it's the "electromagnetic field", and
for other particles we say it's various other fields.
But since the principle is completely general, there are also cases
where the stuff doing the wiggling is quite mundane. For example,
if you have a crystal, the crystal's atoms can wiggle. This is of
course how *sound* propagates. But this should mean that sound
comes in quantized packets called "phonons". And indeed, experiments
with crystals show that this is true!
5) Wikipedia, Phonon, http://en.wikipedia.org/wiki/Phonon
Different vibrational modes of the crystal have different numbers
of wiggles per *distance*, and different numbers of wiggles per
*time*; these give phonons with different *momentum* and *energy*.
The relation is simple:
momentum = h (wiggles per distance)
energy = h (wiggles per time)
where h is Planck's constant, a tiny little constant.
(Why am I talking about sound in crystals, rather than air? It's
because our story applies in its simplest form to vibrational
modes that don't interact much with other modes or get damped out
quickly by friction. These give rise to particles that don't
interact much with other particles, and don't decay very fast -
so they're easy to see.)
There are other things about a crystal that can vibrate besides
the atoms. For example, the atoms may have an angular momentum,
or "spin", that can change directions. Often each atom's spin
affects its neighbors through magnetic forces. This allows waves
of changed spin - "spin waves" - to propagate through the crystal.
And again, these waves come in quantized packets called "magnons":
6) Wikipedia, Spin wave, http://en.wikipedia.org/wiki/Magnon
A crystal can also have a "hole": an atom with a missing electron
These holes can move around, so they too act like particles.
This example is perhaps a bit more obvious than the previous ones...
so here I should probably emphasize that just as sound waves or
spin waves come in discrete particle-like units, these holes
act like waves!
Similarly, a crystal can have atom with an *extra* electron.
Here it's even *more* obvious that these electrons act like
particles - you probably want to just say they *are* particles.
But at this point it's crucial to emphasize that this example
is really like all the rest. In particular (pardon the pun),
we need to understand these extra electrons in terms of waves,
and we need to compute their energy and momentum using these
formulas:
momentum = h (wiggles per distance)
energy = h (wiggles per time)
so the relation between the energy and momentum depends completely
on the details of the crystal: you can't just use some formula
you may happen to know about a "free" electron in empty space.
So, electrons in crystals can do all sorts of crazy things that
you'd never expect, and indeed this is what makes things like
conductors and transistors possible.
Let's talk about relations between energy and momentum. For a
particle of mass m in empty space, special relativity says that
energy^2 = momentum^2 + mass^2
in units where the speed of light is 1. If we work in units
where the speed of light is some number c, the formula looks messier:
energy^2 = momentum^2 c^2 + mass^2 c^4
If you look at a particle at rest, its momentum is zero so a little
calculation reveals that:
energy = mass c^2
which is a pretty famous formula.
But if we go to the other extreme, and look at "massless" particle,
meaning one with mass = 0, we get
energy = momentum c
which is also famous, but less so. If we apply the formulas
momentum = h (wiggles per distance)
energy = h (wiggles per time)
we get
wiggles per time = c (wiggles per distance)
This fact is easy to believe if we imagine light as a wave moving
along, and c as the speed of this wave. Indeed, this fact was
important in helping people guess the relation between momentum and
"wiggles per distance", and energy and "wiggles per time", back
when they were first inventing quantum mechanics.
Now, the above formulas apply to photons in empty space. But my
real point is this: if we have any sort of substance and any sort of
wave that can move around in this substance, obeying these formulas,
it *acts like a massless particle*. So, we can use a lot of the same
math and intuition that we use for photons. But, quite likely the
value of c will be different than the real-world speed of light!
And this in fact is what happens for graphene. The calculation is
pathetically simple by ordinary physics standards, yet complicated
enough that I don't feel like presenting the details here. You
can see it near the beginning of this wonderful paper:
7) Jiannis K. Pachos, Manifestations of topological effects in graphene,
to appear in Contemp. Phys.. Also available as arXiv:0812.1116.
You start with a really simplified model: a planar hexagonal honeycomb
that can either have or lack an electron at each vertex. You ignore
the spin of the electron for some reason. It's a bit surprising you
can get away with that! You assume the energy is a bit less whenever
you've got electrons at both ends of any given edge of your hexagonal
honeycomb.
It helps to color the vertices of the honeycomb alternately black and
white. Then there are two kinds of electrons: "black" and "white"
ones. The formula for the energy can be expressed nicely in terms of
these, because it's a sum over pairs of neighboring vertices, one
black and one white. Note that whenever an electron moves, it changes
from black to white or vice versa.
Then you do a little calculating: you do a Fourier transform here,
you diagonalize a 2x2 matrix there, and... presto!
There turn out to be two different kinds of waves, each consisting of
a certain linear combination of black and white electrons. The energy of
these waves (or if you prefer, their number of wiggles per time) is
related to their momentum (or wiggles per distance) by a complicated
formula.
To write down this formula, we have to treat momentum as a *vector*,
since the energy of a wave depends on which direction it's going: the
hexagonal honeycomb means that not all direction behave the same. If
you plot the energy E as a function of the momentum vector p =
(p_x,p_y), you get a graph like this:
http://math.ucr.edu/home/baez/graphene_dispersion_relation.png
It's pretty fancy! But you can see it has hexagonal symmetry, as you'd
expect. And it's also periodic. This comes from the periodicity
of the crystal lattice - but in sneaky way: the crystal lattice in
actual space gives rise to a "dual lattice" in the space of momentum
vectors, and the energy stays the same if you take the momentum and
add any vector in this dual lattice. This is no big deal, it happens
for any crystal:
8) Wikipedia, Reciprocal lattice,
http://en.wikipedia.org/wiki/Reciprocal_lattice
In crystal jargon, the original crystal lattice is called the "Bravais
lattice" and its dual is called the "reciprocal lattice".
The big deal is that if you look carefully at certain points in the
graph, it looks almost like a cone. If we move the tip of this cone
to the origin, the formula for it is:
energy^2 = momentum^2 c^2
for some constant c. And this is just the relation we had for a
massless particle!
A digression: when I wrote this relation before, I took a square root
and got
energy = momentum c
But the above graph includes negative energies as well. What do the
negative energies mean, physically? That's an interesting puzzle,
which people had to confront when they were first trying to combine
special relativity and quantum mechanics. I don't want to talk about
it here, but if you're curious, see this:
9) M. I. Katnelson, K. S. Novoselov, A. K. Geim, Chiral tunnelling and
the Klein paradox in graphene, Nature Physics 2 (2006), 620.
Anyway, the upshot is that near one of these special points, graphene
acts like it has two kinds of massless particles in it: "black" and
"white". They are approximately described by the usual equation for
massless spin-1/2 particles, the Dirac equation - but in a universe
with just 2 dimensions of space! The speed c is about 1/300th of the
real-world speed of light. Also, a spin-1/2 particle in 2d space
usually comes in two states: it can rotate clockwise or counterclockwise.
But here those two states are certain linear combinations of "black"
and "white".
Furthermore, because the formula
energy^2 = momentum^2 c^2
remains unchanged when you rescale both distances and times by the
same factor, graphene reacts exactly the same way to light of
different wavelengths - at least within some range where all the
approximations we've made are good. And, it turns out to absorb
pi alpha of the light you shine through it:
10) A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel,
Universal infrared conductance of graphite, Phys. Rev. Lett. 100
(2008), 117401.
11) R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T.
J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, A. K.,
Fine structure constant defines visual transparency of graphene,
Science 320 (2008), 1308. Also available at
http://onnes.ph.man.ac.uk/nano/Publications/Science_2008fsc.pdf
So, graphene is an amazing physical system, but so far I've just
scratched the surface. Graphene also has "topological defects" and
"anyons", and there are wonderful applications of Euler's theorem and
its big brother, the Atiyah-Singer index theorem. All this in a
physical system you can make by pressing graphite against a piece of
tape!
I should say more about all this, but I need to go to bed and then
catch an early morning plane. So, I'll quit here - but I highly recomend
Pachos' paper "Manifestations of topological effects in graphene".
----------------------------------------------------------------------
Addenda: For more discussion visit the n-Category Cafe at:
http://golem.ph.utexas.edu/category/2009/08/this_weeks_finds_in_mathematic_38.html.html
----------------------------------------------------------------------
Quote of the Week:
Error and doubt no longer encumber us with mist;
We are now admitted to the banquets of the Gods;
We may deal with laws of heaven above; and we now have
The secret keys to unlock the obscure earth. - Halley
-----------------------------------------------------------------------
Previous issues of "This Week's Finds" and other expository articles on
mathematics and physics, as well as some of my research papers, can be
obtained at
http://math.ucr.edu/home/baez/
For a table of contents of all the issues of This Week's Finds, try
http://math.ucr.edu/home/baez/twfcontents.html
A simple jumping-off point to the old issues is available at
http://math.ucr.edu/home/baez/twfshort.html
If you just want the latest issue, go to
http://math.ucr.edu/home/baez/this.week.html