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I want to explain about a fascinating subject of huge importance in both mathematics and
physics: Coxeter and Dynkin diagrams. Not to keep you in suspense, I’ve already shown you the
Dynkin diagrams on the front page of these notes. Coxeter diagrams are a bit different, but similar.

I’ll start by explaining how Coxeter diagrams can be used to classify “finite reflection groups”:
that is, finite groups of linear transformations of Rn generated by reflections. Then I’ll explain
how Dynkin diagrams classify lattices in Rn having finite reflection groups as symmetries. Next, I’ll
explain how we use Dynkin diagrams to classify compact simple Lie groups and their Lie algebras—
and what those things are! Finally, I’ll say how the “simply-laced” Dynkin diagrams—the ones
without arrows on them—can be used to classify integral lattices with a basis of vectors v with
∥v∥2 = 2, quivers with tame representation theory, and finite subgroups of the group of rotations of
3-dimensional Euclidean space.

In short, Coxeter and Dynkin diagrams show up all over the place when you start trying to
classify beautiful and symmetrical things. In fact, we’ll see that the Platonic solids:

are connected to Coxeter and Dynkin diagrams in two separate ways!

Coxeter diagrams and finite reflection groups

Okay, so what the heck is a Coxeter diagram? We get these when we try to classify “finite reflection
groups.” Say we are in n-dimensional Euclidean space. Then given any nonzero vector v, there is a
reflection that takes v to −v and doesn’t do anything to the vectors orthogonal to v. Let’s call this
a reflection through v. A finite reflection group is a finite group of transformations of Euclidean
space such that every element is a product of such reflections. For example, the group of symmetries
of a regular n-gon is a finite reflection group. Showing this is a useful exercise if you don’t see it
right off the bat.

Note that if we do two reflections, we get a rotation. In particular, suppose we have vectors v
and w at an angle θ from each other, and let r and s be the reflections through v and w, respectively.
Then rs is a rotation by the angle 2θ. Draw a picture and check it! This means that if θ = π/m,
then (rs)n is a rotation by the angle 2π, which is the same as no rotation at all, so (rs)m = 1. On
the other hand, if θ is not a rational number times π, we never have (rs)n = 1, so r and s can not
both be in some finite reflection group.
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So, if r and s are two distinct reflections in a finite reflection group we must have

r2 = s2 = 1

since doing a reflection twice gets you back where you started, but also

(rs)m = 1

for some m = 2, 3, . . . .
Using this, we can see that any finite reflection group has a presentations described by a Coxeter

diagram. The idea is that the group is generated by reflections through vectors that are at angles
of π/m from each other for various choices of m = 2, 3, . . . . To keep track of this, we draw a dot for
each one of these vectors. Then, suppose two of the vectors are at an angle π/m from each other.
If m = 2, the reflections must commute, and we don’t bother drawing a line between the two dots.
Otherwise we draw a line between them and label it with the number m.

Conversely, if someone hands us a Coxeter diagram we get a group called a Coxeter group with

• one generator r for each dot,

• one relation r2 = 1 for each generator,

• one relation (rs)2 = 1 for each pair of generators with no line connecting their dots,

• one relation (rs)m = 1 for each pair of generators with a line labeled by the number m
connecting their dots.

For example, the Coxeter diagram

• •
7
•

•4

3

3

gives us the Coxeter group with presentation

r2 = s2 = t2 = u2 = 1
(rs)3 = (st)7 = (ru)4 = (ut)3 = 1

(rt)2 = (tu)3 = 1.

However, in this game a lot of edges wind up being labeled with the number 3. People usually leave
out the label when this happens. Then we draw the above diagram like this:

• •
7
•

•4

Now for some big theorems. First, it turns out that if a Coxeter group is finite, it’s a finite
reflection group! Not every diagram yields a finite group. But we can classify all possible Coxeter
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diagrams giving finite groups! They have names, and they are famous: they’re like the rock stars of
finite group theory.

First there is An, which has n dots in a row, like this:

• • • •
For example, the group of symmetries of the equilateral triangle is the Coxeter group A2. The group
of symmetries of a regular tetrahedron is A3.

More generally, An is the group of symmetries of a regular n-dimensional simplex —which is just
the group of all permutations of the n+ 1 vertices.

Then there is BCn, which has n dots:

• • •
4
•

Only the last edge is labeled with a 4. Later we’ll see how BCn spawns two Dynkin diagrams called
Bn and Cn; this accounts for its strange name.

The Coxeter group BC2 is the symmetry group of a square, while BC3 is the symmetry group of
the cube or its dual, the regular octahedron.

In general, BCn is the group of symmetries of an n-dimensional hypercube, or its dual, whose
vertices lie at the centers of the faces of this hypercube. The dual of a hypercube could be called a
“regular hyperoctahedron”, but it’s actually called a cross-polytope or orthoplex. Here’s how the
duality works for n = 3:
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The next infinite series of finite reflection groups is Dn, which has n dots arranged in a row that
branches at the end. Here is D6:

• • • •
•

•
Since Dn

∼= An for n < 4, the first really exciting case is D4:

• •
•

•
and the symmetry of this diagram, called triality, gives birth to many remarkable things.

The Coxeter group Dn is the symmetry group of the n-dimensional demihypercube, whose
vertices are gotten by taking every other vertex of a hypercube: that is, half the hypercube’s vertices,
with no two right next to each other. This is easiest to visualize when n = 3. Here are the two
demicubes in a cube:

They’re just regular tetrahedra! We might have expected this, since D3
∼= A3. A 4-dimensional

demihypercube has one of these tetrahedra “on top” and the other “on the bottom”.
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Then there are E6, E7, and E8:

• • • • •

•
• • • • • •

•
• • • • • • •

•
Interestingly, this series does not go on. Thus the An, Bn, and Dn Coxeter diagrams are called
“classical” while the E series is called “exceptional”.

A polytope is the higher-dimensional generalization of a polygon or polyhedron. The E6,E7

and E8 Coxeter groups are symmetries of some remarkably subtle polytopes:

• The E8 Coxeter group is the symmetry group of an 8-dimensional polytope with 240 vertices
called the E8 root polytope. To build this, take a sphere 8 dimensions and get as many
equal-sized spheres as possible to touch it. There will be 240. The centers of these spheres
are the vertices of an E8 root polytope.

• The E7 Coxeter group is the symmetry group of a 7-dimensional polytope with 126 vertices
called the E7 root polytope. To build this, pick any vertex of the E8 root polytope. Draw a
line through it and the center of that polytope. The vertices in the 7d space orthogonal to this
line are the vertices of a E7 root polytope.

• The E6 Coxeter group is the symmetry group of a 6-dimensional polytope with 72 vertices
called the E6 root polytope. Pick any 6 vertices of the E8 root polytope forming a regular
hexagon in some plane containing the center of that polytope. The vertices in the 6d space
orthogonal to this plane are the vertices of an E7 root polytope.

We will eventually give more manageable descriptions of these polytopes.
Then there is F4:

• •
4
• •

The F4 Coxeter group is the symmetry group of a 4-dimensional polytope with 24 vertices and
24 octahedral faces, called the 24-cell. To build a 24-cell, first draw a 4-dimensional hypercube
centered at the origin. Put a point in the center of each face to get the vertices of a 4d orthoplex.
Then expand the orthoplex until its vertices are as far from origin as the hypercube’s vertices. Then
the vertices of the hypercube and orthoplex, taken together, are the vertices of a 24-cell!

Regular polytopes are the most obvious higher-dimensional generalization of Platonic solids.
In all dimensions n > 4 there are just three regular polytopes: the n-simplex, the n-dimensional
hypercube and the n-dimensional orthoplex. In dimension 4 there are three more! One is the
24-cell. We shall meet the other two soon.
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Then there is G2:

•
6
•

The G2 Coxeter group is just the symmetry group of the regular hexagon. There are infinitely many
regular polygons; we’ll see later why the equilateral triangle (with symmetry group A2, the square
(with symmetry group B2 and the hexagon (with symmetry group G2 are singled out as special. If
you’ve ever tried to tile your floor with regular pentagons or heptagons maybe you can guess!

Then there are H3 and H4:

•
5
• • •

5
• • •

H3 is the group of symmetries of the regular dodecahedron or icosahedron.

H4 is the group of symmetries of the remaining two 4d regular polytopes. They could be called the
“hyperdodecahedron” and “hypericosahedron”, but in fact they are called the 120-cell and 600-cell.

To get your hands on these things, it is quickest to start with a regular dodecahedron. It has 60
rotational symmetries since you can rotate your favorite faces to any of the 12 faces, and in 5 ways.
These rotational symmetries form a group Γ that’s a subgroup of SO(3), the group of all rotations in
3d space. There’s a 2-1 map from SU(2) to SO(3), so two elements of SU(2) map to each element
of Γ. These element of SU(2) form a 120-element subgroup of SU(2). But geometrically SU(2) is a
sphere in 4d space: for example, it’s isomorphic to the group of unit quaternions. So, Γ consists of
120 points on a sphere in 4d space... and these are the vertices of the 600-cell.

The 600-cell has 120 vertices and 600 tetrahedral faces. If we put a point at the center of each
face, we get the vertices of the dual polytope, which has 600 vertices and 120 tetrahedral faces.
This is called the 120-cell.

Finally, there is another very simple infinite series, Im:

•
m
•

The Coxeter group coming from this diagram is the symmetry group of the regular m-gon. Notice
that

I3 ∼= A2, I4 ∼= B2, I6 ∼= G2.

So, the only new Coxeter diagrams here are Im for m = 5 and m ≥ 7.
We can get other finite reflection groups from disjoint unions of the Coxeter diagrams we’ve al-

ready seen: they’re just products of the Coxeter groups we’ve already seen. But our list of connected
Coxeter diagrams giving finite reflection groups is done!

Let’s list them without repetitions:
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• An, n > 0

• • • •
• BCn, n > 1

• • •
4
•

• Dn, n > 3

• • • •
•

•
• E6, E7, E8

• • • • •

•
• • • • • •

•
• • • • • • •

•
• F4

• •
4
• •

• G2

•
6
•

• H4, H5

•
5
• • •

5
• • •

• Im

•
m
•
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The proof that these are the only possibilities is a rather elaborate inductive argument. For details,
see for example Finite Reflection Groups and Coxeter Groups by Humphreys.

Note that the symmetry groups of the Platonic solids and their higher-dimensional relatives fit
in nicely into this classification. Later we shall see a more mysterious relation between Platonic
solids and these diagrams. But first we need to introduce Dynkin diagrams! These show up when
we think about lattices.

Dynkin diagrams and lattices

We get a lattice by taking n linearly independent vectors in n-dimensional Euclidean space and
forming all linear combinations with integer coefficients.

Sometimes lattices have interesting symmetry groups. Every lattice in n dimensions has Zn acting
as translation symmetries, so let’s focus on symmetries that fix the origin: that is, combinations of
rotations and reflections that map the lattice to itself. To do this, we can exploit the classification
of finite reflection groups.

So, suppose we have a connected Coxeter diagram that gives a finite reflection group. If our
diagram has n dots, this group acts on Rn. When is there a lattice in Rn having this group as
symmetries?

If one exists, we say our group satisfies the crystallographic condition. The only ones that do
are

An, Bn, Dn, E6, E7, E8, F4, and G2!

In other words, Coxeter diagrams with any edges labeled by numbers m = 5 or m ≥ 7 are ruled out.
So, we can’t find lattices whose symmetries include the symmetry groups of the regular pentagon,
the regular heptagon, or regular polygons with more sides. This has big implications for crystals,
but also for pure math.

Say we have a finite reflection group Γ obeying the crystallographic condition. How can get a
lattice with Γ as symmetries? It turns out we can always do it by taking linear combinations of
vectors, one for each dot in the Coxeter diagram. The reflections generating Γ will be reflections
through these vectors.

To get this to work, the angle between two of these vectors needs to be π/m when the edge
between the dots is labeled by m. But remember: in this game an unlabeled edge counts as an edge
labeled by 3, so then the vectors need to be at a π/3 angle from each other. No edge at all counts
as an edge labeled by 2, so then the vectors need to be at an angle of π/2 from each other—that is,
at right angles.

For example, take A2:

•
3
•
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where I’m writing the 3 to clarify some patterns. To get a lattice with this Coxeter group as symme-
tries, take two vectors of the same length at an angle of π/3 from each other. Their integer linear
combinations form the lattice we want. It’s the lattice of vertices of the triangular tiling:

Or consider B2:

•
4
•

To get a lattice with this Coxeter group as symmetries, we can use two vectors at an angle of π/4
from each other. But they can’t be of equal length! One must be

√
2 times as long as the other. Then

their integer linear combinations form the lattice we want. It’s the lattice of vertices of the square
tiling:

Similarly, for G2:

•
6
•

To get a lattice with this Coxeter group as symmetries, we can use two vectors at an angle of π/6
from each other. One must be

√
3 times as long as the other. Then their integer linear combinations

form a lattice with the symmetries we want. It’s the lattice of vertices of the hexagonal tiling:
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No, it’s not! I was just checking to see if you’re paying attention! The vertices of the hexagonal
tiling don’t form a lattice. To get a lattice you can throw in an extra point at the center of each
hexagon, but then you get the triangular tiling again. In fact the G2 lattice looks just like the A2

lattice, at least up to a rotation and rescaling. The difference is that now we’re considering it with
a bigger symmetry group: A2 gives the symmetry group of an equilateral triangle, while G2 gives
that of a regular hexagon.

In general, a Coxeter diagram can only give a group preserving a lattice if all its edges are
labelled by m = 3, 4 or 6. To build this lattice we need to pick a basis of vectors, one for each dot in
the diagram. Now suppose two dots are connected by an edge.

• If m = 3, we choose vectors for them with the same length.

• If m = 4, we choose one vector to be
√
2 times as long as the other.

• If m = 6, we choose one vector to be
√
3 times as long as the other.

When m = 4 or 6 we need to decide which vector is longer. So, we draw an arrow on the edge from
the dot with the longer vector to the dot with the shorter vector. These arrows are enough to specify
a lattice on which our Coxeter group acts as symmetries!—at least up to rotations, reflections and
rescalings.

For example, in the diagram F4 we have two choices:

• • >

4
• •

and

• • <

4
• •

However, in this case the resulting diagrams with arrows are isomorphic: you can turn one around
and get the other.

In fact, you can check that for every type of Coxeter diagram except BCn with n ≥ 3, you
get isomorphic diagrams with arrows no matter how you point the arrows! So, except in those
cases, there is only one lattice having that group of symmetries—up to rotations, reflections and
rescalings. But for BCn with n ≥ 3 there are two! Recall that the diagram BCn looks like this, with
n dots:

• • •
4
•

with n dots. The two ways to draw arrows on the last edge are called Bn and Cn:

• Bn:

• • • >

4
•

• Cn:

• • • <

4
•
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The points near the origin in the B3 lattice lie on a cube, while those in the C3 lie on an octahedron:

That’s how it works in higher dimensions too, with a hypercube and orthoplex.
People also use another style of diagram to describe what’s going on here: “Dynkin diagrams”.

For these, we take our Coxeter diagram with arrows on it, and:

• replace any edge labeled with a 4 by two parallel edges;

• replace any edge labeled with a 6 by three parallel edges.

Yes, I know this sounds confusing at first! It’s just a different way to draw the same information.
I guess people like it because you can draw pictures without any numbers. Let me do a couple of
examples. Our friend G2, with an arrow on it:

• <

6
•

gets drawn as this Dynkin diagram:

••<
while our friend B3:

• • >

4
•

gets drawn as this Dynkin diagram:

• ••>
The upshot is that any Dynkin diagram with n dots describes a collection of vectors v1, . . . , vn ∈

Rn such that:

1. integer linear combinations of these vectors form a lattice L ⊂ Rn

2. reflections through these vectors generate a finite reflection group Γ

3. the action of Γ on Rn preserves the lattice L.
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People usually normalize these vectors so that the shortest ones have vi · vi = 2, for reasons that
should become clear later. This determines them up to rotations and reflections. Furthermore, if
the action of Γ on Rn is indecomposable, meaning we can’t chop Rn into a direct sum of two
nontrivial subspaces both preserved by Γ, then any collection of vectors obeying 1–3 comes from a
connected Dynkin diagram!

And here are all the connected Dynkin diagrams, drawn in a more artistic style by R. A.
Nonemacher. The dots are drawn as big circles:

Compact simple Lie algebras

Now let us turn to the theory of Lie groups. Lie groups are the most important “continuous” (as
opposed to discrete) symmetry groups. Examples include the real line with addition as the group
operation, the circle with addition modulo 2π, and the so-called “classical groups”, which include:
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• The general linear group GL(N,C), consisting of all invertible linear transformations of CN ,
or in other words, all N ×N complex matrices with nonzero determinant.

• The special linear group SL(N,C), consisting of all linear transformations of CN with deter-
minant 1.

• The unitary group U(N), consisting of all unitary linear transformations of CN .

• The special unitary group SU(N), consisting of all unitary linear transformations of CN with
determinant 1.

All these Lie groups are incredibly important in both physics and mathematics. Thus it is wonderful,
and charmingly ironic, that the same Dynkin diagrams that classify the oh-so-discrete lattices with
finite reflection groups as symmetries also classify some of the most beautiful of Lie groups: the
“simple” Lie groups.

There is a vast amount known about semisimple Lie groups, and everyone really serious about
mathematics winds up needing to learn some of this stuff. I took courses on Lie groups and their
Lie algebras in grad school, but it was only later that I really came to appreciate the beauty of
the simple Lie groups. One reason I found them frustrating was that the work involved in their
classification was so algebraic, and I preferred the more geometrical aspects of Lie groups. This
algebraic approach de-emphasized the Lie groups themeselves, and emphasized an tool for working
with Lie group: namely, Lie algebras.

So what’s the basic idea? Let me summarize two semesters of grad school, and tell you the basic
stuff about Lie groups and the classification of simple Lie groups. Forgive me if it’s a bit rushed and
sketchy: hopefully the main ideas will shine through the murk better this way.

A Lie group is a group that’s also a manifold, for which the group operations (multiplication
and taking inverses) are smooth functions. This lets you form the tangent space to any point in
the group, and the tangent space at the identity plays a special role. It’s called the Lie algebra of
the group. If we have any element x in the Lie algebra, we can exponentiate it to get an element
exp(x) in the group, and we can keep track of the noncommutativity of the group by forming the
Lie bracket of elements x and y in the Lie algebra:

[x, y] =
d

dt

d

ds
exp(sx) exp(ty) exp(−sx) exp(−ty)

∣∣∣∣
s,t=0

where s and t are real numbers. Note that [x, y] = 0 if the group is commutative. This bracket
operation satisfies some axioms, and algebraists call anything a Lie algebra that satisfies those
axioms. Just to satisfy your curiosity, a Lie algebra is a vector space g with a bracket operation
such that

• the bracket is linear in the second argument:

[x, ay + bz] = a[x, y] + b[x, z] for all x, y, z ∈ g, a, b ∈ R

• the bracket is antisymmetric:

[x, y] = −[y, x] for all x, y ∈ g

and thus linear in the first argument as well,
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• bracketing with any element x satisfies a version of the product rule

[x, [y, z]] = [[x, y], z] + [y, [x, z]] for all x, y, z ∈ g

called the Jacobi identity

All our Lie algebras will be finite-dimensional real vector spaces. For example, you could take n×n
real matrices and let [x, y] = xy − yx.

I will not actually do anything with these axioms, since this is not really a course on Lie algebras.
But these axioms are part of why Lie algebras are so wonderful. They’re all about linear algebra—
they’re just a vector space with a bracket operation obeying some axioms—and yet we can almost
recover any Lie group from its Lie algebra.

Why “almost”? Well, first of all, we can’t do it unless we require that our Lie group is connected.
The reason is that we could add extra connected components without changing the tangent space at
the identity or its bracket operation. For example, every finite group is a Lie group with Lie algebra
{0}. And second of all, we can’t do it unless we require a bit more. The reason is that any connected
covering space of a connected Lie group is another Lie group with the same Lie algebra. Luckily,
every connected Lie group has a “universal cover” which has no covering spaces except itself. This
guy is both connected and simply connected.

With these caveats we’re okay: we can recover a connected and simply connected Lie group
from its Lie algebra. Even better, every finite-dimensional Lie algebra comes from a connected and
simply connected Lie group!

This reduces the problem of classifying connected and simply connected Lie groups to a problem
in linear algebra. Unfortunately it’s an incredibly hard problem in linear algebra. It appears to be
hopeless unless we stick to low dimensions. There are just too many ways to build bigger Lie
groups, or Lie algebras, from smaller ones. But the problem becomes much easier if we stick to
compact Lie groups—so that’s what we will do.

The Lie algebra of a compact Lie group is called a compact Lie algebra. It’s not that the Lie
algebra is literally compact: it’s a vector space. But compact Lie algebras are very nice. It turns out
that we can take direct sums of Lie algebras by defining operations componentwise, and a compact
Lie algebra is always the direct sum of an “abelian” Lie algebra and a “semisimple” one. These lie
at opposite extremes.

To understand these it helps to think about the “Killing form” of a Lie algebra g. For any x ∈ g
there’s a linear operator on g given by bracketing with x; it’s usually called adx : g → g.

adx(y) = [x, y].

The Killing form is a bilinear form on g given by

B(x, y) = tr(ad(x)ad(y)).

By the cyclic property of the trace,
B(x, y) = B(y, x).

This is great: it’s a bit like getting an inner product for free! But stay tuned: it’s a bit subtler than
that.

Here are the two kinds of Lie algebras I mentioned:

• A Lie algebra is abelian if [x, y] = 0 for all x and y.
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• A Lie algebra is semisimple if the Killing form is nondegenerate: if ⟨x, y⟩ = 0 for all y then
x = 0.

Note that the Killing form of an abelian Lie algebra is zero, which is at the opposite extreme from
being nondegenerate. The Killing form of a semisimple Lie algebra is not really an inner product—
it doesn’t need to be positive definite. But it comes very close for a compact semisimple Lie
algebra—that is, a semisimple Lie algebra that’s the Lie algebra of a compact Lie group. Namely:
for such a Lie algebra, the Killing form is negative definite, so

⟨x, y⟩ = −B(x, y)

is an inner product.
There’s one abelian Lie algebra of each dimension, and every abelian Lie algebra is the Lie

algebra of a torus, which is a product of finitely many circles. So all the hard work lies in under-
standing the semisimple Lie algebras. A connected Lie group whose Lie algebra is semisimple is
called—surprise!—a semisimple Lie group.

Now let’s start with a compact semisimple Lie group G and see how there’s a Dynkin diagram
hiding inside it. For starters, inside G there is always some subgroup T that’s a torus not contained
in any larger torus. Such a subgroup is called a maximal torus of G. It’s basically unique: there are
a bunch of maximal tori, but any two are conjugate to each other in G. So, people often sloppily
talk about “the” maximal torus.

Let Lie(T ) stand for the Lie algebra of a maximal torus T . The inner product on Lie(G) restricts
to an inner product on Lie(T ). So, Lie(T ) is isomorphic to good old Rn with its usual inner product.
Futhermore, sitting inside Lie(T ) there is a lattice L, consisting of all elements x with exp(x) = 1.
This is how lattices in Rn sneak into the picture!

How do finite reflection groups sneak into the picture? Note that for some elements g in G, if
we conjugate T by g, that is, form the set of all elements gtg−1 where t is in T , we get T back. In
other words, these elements of G act as symmetries of the torus T . But some elements of g ∈ G act
trivially on T : they have gtg−1 = t for all t ∈ T . So, the quotient group

W (G) =
{g ∈ G| gtg−1 ∈ T for all t ∈ T}
g ∈ G| gtg−1 = t for all t ∈ T}

acts on our maximal torus T . And W (G) is called the Weyl group of G. (In reality it also depends
on our choice of maximal torus, but changing our maximal torus to another one gives an isomorphic
Weyl group, so our notation ignores the dependence on T .)

If a group acts as symmetries of something, it also acts as symmetries of everything naturally
cooked up from that thing. For this reason, the Weyl group of G also acts as symmetries of Lie(T )
and of the lattice L sitting inside Lie(T ). So we have a lattice together with a group of symmetries
acting on it.

And here come two nonobvious theorems. First, the Weyl group is actually a finite reflection
group acting on Lie(T )! From what we learned in the previous section, this means our lattice and
its Weyl group of symmetries is determined, up to isomorphism, by some Dynkin diagram. And
second, it turns out that the Lie algebra of G is determined, up to isomorphism, by the lattice L and
the finite reflection group acting on it!

Putting everything together, we get one-to-one correspondences between the following three
things, each considered up to the relevant sort of isomorphism:
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• Dynkin diagrams

• compact semisimple Lie algebras

• connected and simply connected compact Lie groups.

Furthermore, it turns out that the operation of taking direct sums of Lie groups of this sort corre-
sponds to taking direct sums of their Lie algebras, which corresponds to taking disjoint unions of
Dynkin diagrams. So to get the “building blocks”, from which everything else can be built via di-
rect sums, we only need to worry about the connected Dynkin diagrams, which we have completely
classified:

The compact semisimple Lie algebras coming from connected Dynkin diagrams are called com-
pact simple Lie algebras. But what are they actually like? People have figured them out. Amaz-
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ingly, those that come in infinite series are all related to rotations in real, complex or quaternionic
vector spaces. So let me give you a crash course on those:

1. The real-linear transformations of Rn that preserve its usual inner product

⟨v, w⟩ =
n∑

i=1

viwi

form a compact Lie group called the orthogonal group O(n). The subgroup consisting of
transformations with determinant 1 is a compact Lie group called the special orthogonal
group SO(n). Its Lie algebra is called so(n), and it consists of n × n real matrices that have
trace zero and are minus their own transpose. This is a compact simple Lie algebra when
n ≥ 3. What is it when n = 1 or 2?

2. The complex-linear transformations of Cn that preserve its usual inner product

⟨v, w⟩ =
n∑

i=1

viwi

form a compact Lie group called the unitary group U(n). The subgroup consisting of transfor-
mations with determinant 1 is a compact Lie group called the special unitary group SU(n).
Its Lie algebra is called su(n), and it consists of n × n complex matrices that have trace zero
and are minus their own conjugate transpose. This is a compact simple Lie algebra when
n ≥ 2. What is it when n = 1?

3. The quaternion-linear transformations of Hn that preserve its usual inner product

⟨v, w⟩ =
n∑

i=1

viwi

form a Lie group called the quaternionic unitary group Sp(n). (With Dieudonne’s definition
of the quaternionic determinant, all matrices in this group have determinant 1.) The Lie
algebra of Sp(n) is called sp(n), and it consists of n× n quaternionic matrices that have trace
zero and are minus their own conjugate transpose. This is a compact simple Lie algebra when
n ≥ 1.

The third item looks a lot like the first two, but you may be unfamiliar with the quaternions H. For
now I’ll just say that there are three finite-dimensional associative algebras over R equipped with a
norm obeying

|ab| = |a||b|.

These are the real numbers R, the complex numbers C, and most excitingly the quaternions

H = {a+ bi+ cj + dk | a, b, c, d ∈ R}

where multiplication is determined by the equations Hamilton carved into a wall on on the 16th of
October in 1843:

i2 = j2 = k2 = ijk = −1.
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We can define conjugation for quaternions by

q = a+ bi+ cj + dk =⇒ q = a− bi− cj − dk

and then the norm is given by
|q| =

√
qq∗ =

√
q∗q.

The space Hn acts like a “quaternionic vector space” even though H is not a field: we can multiply
vectors on the left or the right by quaternions, and we say that T : Hn → Hn is quaternion-linear
if

T (vq) = T (v)q for all v ∈ Hn, q ∈ H.

With this convention, left multiplication by any n × n matrix of quaternions gives a quaternion-
linear map T : Hn → Hn. While the quaternions are a fascinating subject, this is all you need to
know for now.

Now we are ready to list the four infinite series of compact simple Lie algebras:

• An: This Dynkin diagram gives the compact simple Lie algebra su(n+ 1).

• Bn: This Dynkin diagram gives the compact simple Lie algebra so(2n+ 1).

• Cn: This Dynkin diagram gives the compact simple Lie algebra sp(n).

• Dn: This Dynkin diagram gives the compact simple Lie algebra so(2n).

These are called the classical compact simple Lie algebras, and they would be pretty easy to
reinvent for yourself, or get interested in for all sorts of reasons. It may seem weird that SO(2n) is
so different from SO(2n+1), but it’s true! For example, can put n orthogonal planes in R2n, and by
doing a rotation in each of these planes you get an element of SO(2n) that fixes only the origin. But
in odd dimensions there’s one dimension left over, so any rotation must fix some nonzero vector.

The remaining five compact simple Lie algebras are called exceptional, and they are much
more mysterious. They were only discovered when people like Killing and Cartan figured out the
classification of simple Lie algebras. And as it turns out, they are all related to the octonions! The
octonions O are the only finite-dimensional nonassociative algebra over R that is equipped with a
norm obeying

|ab| = |a||b|.

They are an amazing freak of nature, which begets many other strange things. I am somewhat
obsessed with them, but I won’t say much about them here: see the references for more.

Here are the 5 exceptional compact simple Lie algebras. It is quickest to describe them using
compact Lie groups. I’ll list them in order of dimension, not alphabetical order:

1. G2: This Dynkin diagram gives a 14-dimensional compact simple Lie algebra called g2. The
automorphism group of the octonions is a compact Lie group whose Lie algebra is g2.

2. F4: This Dynkin diagram gives a 52-dimensional compact simple Lie algebra called f4. The
octonions give a 16-dimensional projective plane called OP2. This is a Riemannian manifold,
and its isometry group—the group of diffeomorphisms preserving the Riemannian metric—is
a compact Lie group whose Lie algebra is f4.
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3. E6: This Dynkin diagram gives a 78-dimensional compact simple Lie algebra called f4. The
octonions tensored with the complex numbers give a 32-dimensional projective plane called
(C ⊗ O)P2. This is a Riemannian manifold, and its isometry group is a compact Lie group
whose Lie algebra is e6.

4. E7: This Dynkin diagram gives a 133-dimensional compact simple Lie algebra called e7. The
octonions tensored with the quaternions give a 64-dimensional Riemannian manifold called
(H⊗O)P2, even though it is not technically a projective plane. Its isometry group is a compact
Lie group whose Lie algebra is e7.

5. E8: This Dynkin diagram gives a 248-dimensional compact simple Lie algebra called e8. The
octonions tensored with the octonions give a 128-dimensional Riemannian manifold called
(O⊗O)P2, even though it is not technically a projective plane. Its isometry group is a compact
Lie group whose Lie algebra is e8.

A tragic fact is that currently nobody know how to get their hands on the Riemannian manifolds
(H ⊗ O)P2 and (O ⊗ O)P2 without building their isometry groups first, or at the same time. Thus
the explanations we have given of e7 and e8, while true, are not as useful as we might like. This is
especially frustrating for e8, since this is the “king” of simple Lie algebras, connected to many other
amazing exceptional structures in mathematics.

We’ve listed the compact simple Lie algebras, but what about their Lie groups? This is an
important subject, since Lie algebras are ultimately just a tool for working with Lie groups. But
we need to be a bit careful, since a Lie algebra may be the Lie algebra of several nonisomorphic
connected Lie groups. Remember, taking a covering space of a Lie group does not change its Lie
algebra. For example, the Dynkin diagram coincidence A1

∼= B1 implies that su(2) ∼= so(3), but the
Lie group SU(2) is not isomorphic to SO(3): it’s a double cover of SO(3).

People usually take a relaxed attitude and call any connected Lie group whose Lie algebra is a
compact simple Lie algebra a compact simple Lie group. This is true even though such a group
may have nontrivial normal subgroups, so it is not simple in the usual sense of group theory. For
example SU(2) has a 2-element normal subgroup, its center, containing ±1. Yet we call it a compact
simple Lie group.

With this terminology in place, we get a one-to-one correspondence between these three things,
each considered up to the relevant sort of isomorphism:

• connected Dynkin diagrams

• compact simple Lie algebras

• simply connected compact simple Lie groups.

Among the the classical compact simple Lie groups it turns out that SU(n) and Sp(n) are simply
connected, while SO(n) is not: for n ≥ 3, which is all that matters here, SO(n) has a simply
connected double cover called the spin group Spin(n). This group is very important in physics
and also differential geometry, since it has important representations called “spinors” that are not
representations of SO(n). I have written quite a bit about the exceptional compact simple Lie
groups, but here I’ll just mention that any connected Lie group with Lie algebra g2, f4, e6, e7 or e8 is
called G2,F4,E6,E7 or E8. This is uncreative and a bit ambiguous, but that’s that way it is.
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Simply-laced Dynkin diagrams

We’ve seen that any Dynkin diagram with n dots describes a collection of vectors v1, . . . , vn ∈ Rn

such that:

1. integer linear combinations of these vectors form a lattice L ⊂ Rn

2. reflections through these vectors generate a finite reflection group Γ

3. the action of Γ on Rn preserves the lattice L.

Unfortunately, we can’t always choose all the vectors vi to have the same length. But we’ve seen
that this problem doesn’t happen when all these vectors are at an angle of π/2 or π/3 from each
other. This happens when our Dynkin diagram is simply laced: all its edges are unlabeled.

Here are all the connected simply-laced Dynkin diagrams:

• An, which has n dots like this:
• • • •

• Dn, which has n dots, where we can assume n > 3 since Dn
∼= An for n = 1, 2, 3:

• • • •

•

•

• E6, E7, and E8:
• • • • •

•
• • • • • •

•
• • • • • • •

•
These diagrams are ubiquitous in mathematics. But before getting into that I should describe the
corresponding lattices more explicitly, to make it clear how simple they really are.

So, what are the A,D, and E lattices?

• An: We can describe the An lattice as the set of all (n + 1)-tuples of integers (x1, . . . , xn+1)
such that

x1 + · · ·+ xn+1 = 0.
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It’s a fun exercise to show that A2 is a 2-dimensional hexagonal lattice, the sort of lattice you
use to pack pennies as densely as possible. Similarly, A3 gives a standard way of packing
cannon balls, which is the densest lattice packing of equal-sized spheres in 3 dimensions. A
much harder fact, due to Hales, is that no non-lattice packing of equal-sized spheres can beat
the density of the A3 lattice.

• Dn: We can describe the Dn lattice as the set of all n-tuples of integers (x1, . . . , xn) such that

x1 + · · ·+ xn is even.

Or, if you like, you can imagine taking an n-dimensional checkerboard, coloring the cubes
alternately red and black, and taking the center of each red cube. In four dimensions, D4

gives a denser packing of spheres than A4; in fact, it gives the densest lattice packing possible.
Moreover, D5 gives the densest lattice packing of in dimension 5. However, in dimensions 6,
7, and 8, the En lattices give the densest lattice packings. In fact Viasovska showed that in
8 dimensions, no non-lattice packing of equal sized spheres can beat the density of the E8

lattice!

• E6,E7,E8: We can describe the E8 lattice as the set of 8-tuples (x1, . . . , x8) such that the xi

are either all integers or all integers plus 1/2 and

x1 + · · ·+ x8 is even.

Each point in this lattice has 240 nearest neighbors. For example, the nearest neighbors of
the origin have length

√
2, and you can check there are 240 of them.

Alternatively, if you take the D8 lattice and use it to pack equal-sized spheres that just touch
each other, there is actually just enough room to slip in another D8 lattice of equal-sized
spheres in the remaining space, doubling the density! And if you do this, your spheres will be
centered at points in the E8 lattice.

Once you have E8 in hand, you can get its little pals E7 and E6 as follows. To get E7, just
take all the vectors in E8 that are perpendicular to one lattice vector of length

√
2. To get E6,

find a copy of the lattice A2 in E8 generated by 2 vectors of length
√
2, and then take all the

vectors in E8 perpendicular to everything in that copy of A2.

The A, D and E Dynkin diagrams show up in many places throughout mathematics, in a spooky
sort of way. Let me sketch three of the most famous.

First, Witt’s theorem says that the A, D, and E lattices and their direct sums are the only integral
lattices having a basis consisting of vectors v with ∥v∥2 = 2. Here a lattice is integral if the dot
product of any two vectors in it is an integer. In fact, any integral lattice having a basis consisting
of vectors with ∥v∥2 equal to 1 or 2 is a direct sum of copies of A, D, and E lattices and the integers,
thought of as a 1-dimensional lattice.

Second, a quiver is just some dots with arrows between them. A representation of a quiver
is a way of assigning a finite-dimensional complex vector space to each dot and a linear map
between these vector spaces to each arrow. There’s an obvious category of representations Rep(Q)
of any quiver Q. Gabriel proved an astounding result about these categories Rep(Q). We say
a quiver Q has finite representation type if Rep(Q) has finitely many isomorphism classes of
indecomposable objects: objects that aren’t direct sums of others. And, it turns out the quivers of
finite representation type are just those coming from simply-laced Dynkin diagrams!
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Actually, for this to make sense, you need to take your Dynkin diagram and turn it into a quiver
by putting arrows along the edges. If you have a simply-laced Dynkin diagram, you get a quiver of
finite representation type no matter which way you let the arrows point.

Third, there is a cool relationship between the ADE diagrams and the symmetry groups of the
Platonic solids, called the McKay correspondence. Here is one way to get it. First, take the
rotational symmetry group of a Platonic solid, not including reflections, or more generally any
finite subgroup G of SO(3). Since SO(3) has SU(2) as a double cover, you can get a double cover
of G, say G̃, sitting inside SU(2). Since G̃ is finite, it has finitely many irreducible representations
on complex vector spaces (up to isomorphism). Draw a dot for each of these. One comes from
the obvious representation of SU(2) on C2. When you tensor this one with any other irreducible
representation R, you get a direct sum of irreducible representations. Draw one line from the dot
for R to another dot for each time that other irreducible representation appears in your direct sum.
What do you get?

You get an “affine Dynkin diagram”, which is like a usual Dynkin diagram but with an extra dot
thrown in—corresponding to the trivial rep of G̃. And if you throw out that extra dot, you get a
simply laced Dynkin diagram! In fact you get all all the connected simply laced Dynkin diagrams
this way!

The correspondence goes like this:

• An: this corresponds to the cyclic group sitting inside SO(n) as the rotational symmetries of
a regular n-gon, where we don’t let ourselves flip this polygon over.

• Dn: this corresponds to the dihedral group sitting inside SO(n) as the symmetries of a regular
n-gon, where we do let ourselves flip this polygon over.

• E6: this corresponds to the rotational symmetry group of the regular tetrahedron.

• E7: this corresponds to the rotational symmetry group of the regular cube, or octahedron.
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• E8: this corresponds to the rotational symmetry group of the regular dodecahedron, or icosa-
hedron.

We saw another relation between Platonic solids and Coxeter diagrams near the start of this paper,
but that one made sense. This one is black magic.
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