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Preface

These are the first 50 issues of This Week’s Finds of Mathematical Physics. This series has
sometimes been called the world’s first blog, though it was originally posted on a “usenet
newsgroup” called sci.physics.research — a form of communication that predated the
world-wide web. I began writing this series as a way to talk about papers I was reading
and writing, and in the first 50 issues I stuck closely to this format. These issues focus
rather tightly on quantum gravity, topological quantum field theory, knot theory, and
applications of n-categories to these subjects. However, there are also digressions into
Lie algebras, elliptic curves, linear logic and other subjects.

Tim Hosgood kindly typeset all 300 issues of This Week’s Finds in 2020. They will
be released in six installments of 50 issues each. I have edited the issues here to make
the style a bit more uniform and also to change some references to preprints, technical
reports, etc. into more useful arXiv links. This accounts for some anachronisms where I
discuss a paper that only appeared on the arXiv later.

I thank Blake Stacey and Fridrich Valach for helping me fix many mistakes. There are
undoubtedly many still remaining. If you find some, please contact me and I will try to
fix them.
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WEEK 1 JANUARY 19, 1993

Week 1

January 19, 1993

I thought I might try something that may become a regular feature on sci.physics.research,
if that group comes to be. The idea is that I'll briefly describe the papers I have enjoyed
this week in mathematical physics. I am making no pretense at being exhaustive or ob-
jective... what I review is utterly a function of my own biases and what I happen to
have run into. I am not trying to “rate” papers in any way, just to entertain some people
and perhaps inform them of some papers they hadn’t yet run into. “This week” refers
to when I read the papers, not when they appeared (which may be much earlier or also
perhaps later, since some of these I am getting as preprints).

1) J. Scott Carter and Masahico Saito, “Syzygies among elementary string interactions
in 241 dimensions”, Lett. Math. Phys. 23 (1991), 287-300.

J. Scott Carter and Masahico Saito, “On formulations and solutions of simplex
equations”, preprint.

J. Scott Carter and Masahico Saito, “A diagrammatic theory of knotted surfaces”,
preprint.

J. Scott Carter and Masahico Saito, “Reidemeister moves for surface isotopies and
their interpretations as moves to movies”, preprint.

The idea here is to take what has been done for knots in 3-dimensional space and gen-
eralize it to “knotted surfaces,” that is, embedded 2-manifolds in 4-dimensional space.
For knots it is convenient to work with 2-dimensional pictures that indicate over- and
under-crossings; there is a well-known small set of “Reidemeister moves” that enable
you to get between any two pictures of the same knot. One way to visualize knotted
surfaces is to project them down to R?; there are “Roseman moves” analogous to the
Reidemeister moves that enable to get you between any two projections of the same
knotted surface. Carter and Saito prefer to work with “movies” that display a knotted
surface as the evolution of knots (actually links) over time. Each step in such a movie
consists of one of the “elementary string interactions.” They have developed a set of
“movie moves” that connect any two movies of the same knotted surface. These papers
contain a lot of fascinating pictures! And there does seem to be more than a minor rela-
tion to string theory. For example, one of the movie moves is very analogous to the 3rd
Reidemeister move — which goes
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I won't try to draw the corresponding movie move, but just as the 3rd Reidemeister
move is the basis for the Yang-Baxter equation Ro3 R13R12 = R12R13R23 (the subscripts
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indicate which strand is crossing which), the corresponding movie move is the basis for a
variant of the “Frenkel-Moore” form of the “Zamolodchikov tetrahedron equation” which
first arose in string theory. This variant goes like S124.513552365456 = S156523651355124,
and Carter and Saito draw pictures that make this equation almost as obvious as the
Yang-Baxter equations.

In any event, this is becoming a very hot subject, since topologists are interested in
generalizing the new results on knot theory to higher dimensions, while some physicists
(especially Louis Crane) are convinced that this is the right way to tackle the “problem
of time” in quantum gravity (which, in the loop variables approach, amounts to study-
ing the relationship of knot theory to the 4th dimension, time). In particular, Carter
and Saito are investigating how to construct solutions of the Zamolodchikov equations
from solutions of the Yang-Baxter equation — the goal presumably being to find in-
variants of knotted surfaces that are closely related to the link invariants coming from
quantum groups. This looks promising, since Crane and Yetter have just constructed a 4-
dimensional topological quantum field theory from the quantum SU(2). But apparently
nobody has yet done it.

Lovers of category theory will be pleased to learn that the correct framework for
this problem appears to be the theory of 2-categories. These are categories with objects,
morphisms between objects, and also “2-morphisms” between objects. The idea is simply
that tangles are morphisms between sets of points (i.e., each of the tangles in the picture
above are morphisms from 3 points to 3 points), while surfaces in R* are 2-morphisms
between tangles. The instigators of the 2-categorical approach here seem to be Kapranov
and Voevodsky, whose paper “2-categories and Zamolodhikov tetrahedra equations”, to
appear in Proc. Symp. Pure Math., is something I will have to get ahold of soon by any
means possible (I can probably nab it from Oleg Viro down the hall; he is currently
hosting Kharmalov, who is giving a series of talks on knotted surfaces at 2-categories
here at UCR). But it seems to be Louis Crane who is most strongly proclaiming the
importance of 2-categories in physics.

2) Jorge Pullin, “Knot theory and quantum gravity in loop space: a primer”, to appear
in Proceedings of the Vth Mexican School of Particles and Fields, ed. J. L. Lucio, World
Scientific, Singapore, now available as hep-th/9301028.

This is a review of the new work on knot theory and the loop representation of
quantum gravity. Pullin is among a group who has been carefully studying the “Chern—
Simons state” of quantum gravity, so his presentation, which starts with a nice treatment
of the basics, leads towards the study of the Chern-Simons state. This is by far the best-
understood state of quantum gravity, and is defined by SU(2) Chern-Simons theory in
terms of the connection representation, or by the Kauffman bracket invariant of knots
in the loop representation. It is a state of Euclideanized quantum gravity with nonzero
cosmological constant, and is not invariant under CP. Ashtekar has recently speculated
that it is a kind of “ground state” for gravity with cosmological constant (evidence for
this has been given by Kodama), and that its CP violation may be a “reason” for why the
cosmological constant is actually zero (this part is extremely speculative). Louis Crane,
on the other hand, seems convinced that the Chern—-Simons state (or more generally
states arising from modular tensor categories) is the wavefunction of the universe. In
any event, it’s much nicer to have one state of quantum gravity to play with than none,
as was the case until recently.


https://arxiv.org/abs/hep-th/9301028
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3) Lee Smolin, “Time, measurement and information loss in quantum cosmology”,
preprint available as gr-qc/9301016.

This is, as usual for Smolin, a very ambitious paper. It attempts to sketch a solution of
some aspects of the problem of time in quantum gravity (in terms of the loop represen-
tation). I might as well quote from the introduction:

Thus, to return to the opening question, if we are, within a nonperturbative
framework, to ask what happens after a black hole evaporates, we must be
able to construct spacetime diffeomorphism invariant operators that can give
physical meaning to the notion of “after the evaporation.” Perhaps I can put
it in the following way: the questions about loss of information or breakdown
of unitary evolution rely, implicitly, on a notion of time. Without reference to
time it is impossible to say that something is being lost. In a quantum theory of
gravity, time is a problematic concept which makes it difficult to even ask such
questions at the nonperturbative level, without reference to a fixed spacetime
manifold. [I would prefer to say “fixed background metric” — JB] The main
idea, which it is the purpose of this paper to develop, is that the problem of time
in the nonperturbative framework is more than an obstacle that blocks any easy
approach to the problem of loss of information in black hole evaporation. It
may be the key to its solution.

As many people have argued, the problem of time is indeed the conceptual core of
the problem of quantum gravity. Time, as it is conceived in quantum mechanics
is a rather different thing than it is from the point of view of general relativity.
The problem of quantum gravity, especially when put in the cosmological con-
text, requires for its solution that some single concept of time be invented that
is compatible with both diffeomorphism invariance and the principle of super-
position. However, looking beyond this, what is at stake in quantum gravity is
indeed no less and no more than the entire and ancient mystery: What is time?
For the theory that will emerge from the search for quantum gravity is likely to
be the background for future discussions about the nature of time, as Newtonian
physics has loomed over any discussion about time from the seventeenth century
to the present.

I certainly do not know the solution to the problem of time. Elsewhere I have
speculated about the direction in which we might search for its ultimate resolu-
tion. In this paper I will take a rather different point of view, which is based on
a retreat to what both Einstein and Bohr taught us to do when the meaning of
a physical concept becomes confused: reach for an operational definition. Thus,
in this paper I will adopt the point of view that time is precisely no more and no
less than that which is measured by physical clocks. From this point of view, if
we want to understand what time is in quantum gravity then we must construct
a description of a physical clock living inside a relativistic quantum mechanical
universe.

Technically speaking, what Smolin does is roughly as follows. He considers quantum
gravity coupled to matter, modelled in such a way that the Hilbert space is spanned
by states labelled by isotopy classes of: any number N loops in a compact 3-manifold


https://arxiv.org/abs/gr-qc/9301016
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M (“space”) and N surfaces with boundary in M. (This trick is something I hadn’t seen
before, though Smolin gives references to it.) He then introduces a “clock field,” which is
just a free scalar field coupled to the gravity, and does gauge-fixing to see what evolution
with respect to this clock field looks like. I will have to read this a number of times!
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Week 2

January 24, 1993

Well, this week I have had guests and have not been keeping up with the literature. So
“this week’s finds” are mostly papers that have been sitting around in my office and that
I am now filing away.

1) Daniel Armand Ugon, Rodolfo Gambini, and Pablo Mora, “Link invariants for inter-
secting loops”, October 1992 preprint, available from Gambini, Instituto de Fisica,
Facultad de Ciencias, Tristan Narvaja 1674, Montevideo, Uruguay.

The authors generalize the standard trick for getting link invariants from solutions of the
Yang-Baxter equations, and show how to get link invariants applicable to generalized
links with 4-valent or 6-valent vertices, that is, transverse double points, like

>~

and transverse triple points. This involves working with a generalization of the braid
group that includes generators for these vertices as well as the usual generators for
crossings. In this case of 4-valent vertices, rigorously working out the generators and
relations was done by Joan Birman in the paper below, but various people had used the
answer already. The case of triple points is very important in physics due to the connec-
tion with the loop representation of quantum gravity (which is what Gambini is working
on these days). In this representation, states are invariants of (possibly generalized)
links, and only by considering links with triple points can one define operators such as
the “total volume of the universe”.

It is thus quite interesting that the authors make progress on determining the “right”
extension of the HOMFLY polynomial invariant of links to links with transverse triple
points — that is, the extension that one gets by doing calculations in SU(n) Chern—
Simons theory. In a special case, namely when the HOMFLY polynomial reduces to
the Kauffman bracket (which corresponds to the Lie group SU(2)), one gets a state of
quantum gravity that has been under extensive investigation these days. The authors
compute the Kaufmann bracket of links with triple points using first order perturbation
theory in Chern—-Simons theory. A nonperturbative calculation would be very good to
have!

2) Joan Birman, “New points of view in knot theory”, Bull. Amer. Math. Soc. 28
(1993), 253-287. Also available as math/9304209.

This is a nice review of the recent work on Vassiliev invariants of links. Given an invariant
of oriented links, one can extend it to links with arbitrarily many double points by setting
the value of the invariant on a link with a double point

>~
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to be the invariant of the link with the double point changed to

V\

minus the invariant of the link with the double point changed to

/\\/

Note that the link has to be oriented for this rule to make sense, and the strands shown
in the pictures above should be pointing downwards. Now, having made this extension,
we say a link invariant is a Vassiliev invariant of degree n if it vanishes on all links with
n + 1 or more double points.

It is interesting that this rule for extending link invariants to links with double points,
when applied to the Kauffman bracket, does not give the extension computed by Gambini
et al in the paper above. (This is not surprising, actually, but it shows that some interest-
ing things are going on in the subject of invariants for links with self-intersections and
Chern-Simons theory.)

3) Louis Kauffman and P. Vogel, “Link polynomials and a graphical calculus”, Jour. of
Knot Theory and its Ramifications, 1 (1992), 59-104.

This is another nice treatment of link invariants for generalized links with self-intersections.
It concentrates on the famous link invariants coming from Chern-Simons theory — the
HOMEFLY polynomial (from SU(n)) and the Kauffman polynomial (from SO(n)). Lots of
good pictures.

And, switching back to the category theory, 2-categories, and the like, let me list these
before filing them away:

4) Louis Crane, “Categorical physics”, available as hep-th/9301061.

Louis Crane and David Yetter, A categorical construction of 4d topological quantum
field theories, available as hep-th/9301062.

Louis Crane and Igor Frenkel, Hopf Categories and their representations, draft
version.

Louis Crane and Igor Frenkel, Categorification and the construction of topological
quantum field theory, draft version.

These outline Louis Crane’s vision of an approach to generally covariant 4-dimensional
quantum field theories (e.g. quantum gravity or a “theory of everything”) based on 2-
categories. “Categorical physics” sketches the big picture, while the paper with Yetter
provides a juicy mathematical spinoff — the first known four-dimensional TQFT, based
on the representations of quantum SU(2) and very similar in spirit to the Turaev—Viro
construction of a 3d TQFT from quantum SU(2). The papers with Frenkel (apparently
still not in their final form) describe the game plan and hint at marvelous things still
to come. The conjecture is stated: “a 4d TQFT can be reconstructed from a tensor 2-
category”. This follows up on Crane’s earlier work on getting 3d TQFTs from modular
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tensor categories (big example: the categories of representations of quantum groups at
roots of unity). And the authors define the notion of a Hopf category, show how the
category of module categories of a Hopf category is a tensor 2-category, and use “cate-
gorification” to turn the universal enveloping algebra of a quantum group into a Hopf
category. Sound abstract? Indeed it is. But the aim is clear: to cook up 4d TQFTs from
quantum groups. Such quantum field theories might be physically important; indeed,
the one associated to SU(2) is likely to have a lot to do with quantum gravity.

I am currently perusing Kapranov and Voevodsky’s massive paper on 2-categories,
which seems to be the starting point for Crane’s above papers and also those of Carter/Saito
that I mentioned last week. Next week I should post an outline of what this paper does.

5) S. W. Hawking, R. Laflamme and G. W. Lyons, “The origin of time asymmetry”,
preprint available as gr-qc/9301017.

I haven’t had a chance to read this one yet but it looks very ambitious and is likely to be
interesting. Let me just quote from the introduction to get across the goal:

The laws of physics do not distinguish the future from the past direction of time.
More precisely, the famous CPT theorem says that the laws are invariant under
the combination of charge conjugation, space inversion and time reversal. In
fact effects that are not invariant under the combination CP are very weak, so to
a good approximation, the laws are invariant under the time reversal operation
T alone. Despite this, there is a very obvious difference between the future and
past directions of time in the universe we live in. One only has to see a film run
backward to be aware of this.

There are several expressions of this difference. One is the so-called psychological
arrow, our subjective sense of time, the fact that we remember events in one
direction of time but not the other. Another is the electromagnetic arrow, the fact
that the universe is described by retarded solutions of Maxwell’s equations and
not advanced ones. Both of these arrows can be shown to be consequences of the
thermodynamic arrow, which says that entropy is increasing in one direction of
time. It is a non trivial feature of our universe that it should have a well defined
thermodynamic arrow which seems to point in the same direction everywhere we
can observe. Whether the direction of the thermodynamic arrow is also constant
in time is something we shall discuss shortly.

There have been a number of attempts to explain why the universe should have
a thermodynamic arrow of time at all. Why shouldn’t the universe be in a
state of maximum entropy at all times? And why should the direction of the
thermodynamic arrow agree with that of the cosmological arrow, the direction
in which the universe is expanding? Would the thermodynamic arrow reverse,
if the universe reached a maximum radius and began to contract?

Some authors have tried to account for the arrow of time on the basis of dy-
namic laws. The discovery that CP invariance is violated in the decay of the K
meson, inspired a number of such attempts but it is now generally recognized
that CP violation can explain why the universe contains baryons rather than
anti baryons, but it cannot explain the arrow of time. Other authors have ques-
tioned whether quantum gravity might not violate CPT, but no mechanism has
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been suggested. One would not be satisfied with an ad hoc CPT violation that
was put in by hand.

The lack of a dynamical explanation for the arrow of time suggests that it arises
from boundary conditions. The view has been expressed that the boundary con-
ditions for the universe are not a question for Science, but for Metaphysics or
Religion. However that objection does not apply if there is a sense in which the
universe has no boundary. We shall therefore investigate the origin of the ar-
row of time in the context of the no boundary proposal of Hartle & Hawking.
This was formulated in terms of Einsteinian gravity which may be only a low
energy effective theory arising from some more fundamental theory such as su-
perstrings. Presumably it should be possible to express a no boundary condition
in purely string theory terms but we do not yet know how to do this. However
the recent COBE observations indicate that the perturbations that lead to the
arrow of time arise at a time during inflation when the energy density is about
1012 of the Planck density. In this regime, Einstein gravity should be a good
approximation.

I'll skip some more technical stuff on the validity of perturbative calculations in quantum
gravity. ..

One can estimate the wave functions for the perturbation modes by considering
complex metrics and scalar fields that are solutions of the Einstein equations
whose only boundary is the surface S. When S is a small three sphere, the
complex metric can be close to that of part of a Euclidean four sphere. In this
case the wave functions for the tensor and scalar modes correspond to them
being in their ground state. As the three sphere S becomes larger, these com-
plex metrics change continuously to become almost Lorentzian. They represent
universes with an initial period of inflation driven by the potential energy of
the scalar field. During the inflationary phase the perturbation modes remain
in their ground states until their wave lengths become longer than the horizon
size. The wave function of the perturbations then remains frozen until the hori-
zon sizge increases to be more than the wave length again during the matter
dominated era of expansion that follows the inflation. After the wave lengths of
the perturbations come back within the horizon, they can be treated classically.

This behaviour of the perturbations can explain the existence and direction of
the thermodynamic arrow of time. The density perturbations when they come
within the horizon are not in a general state but in a very special state with a
small amplitude that is determined by the parameters of the inflationary model,
in this case, the mass of the scalar field. The recent observations by COBE indi-
cate this amplitude is about 10~°. After the density perturbations come within
the horizon, they will grow until they cause some regions to collapse as proto-
galaxies and clusters. The dynamics will become highly non linear and chaotic
and the coarse grained entropy will increase. There will be a well defined ther-
modynamic arrow of time that points in the same direction everywhere in the
universe and agrees with the direction of time in which the universe is expand-
ing, at least during this phase.

10
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The question then arises: If and when the universe reaches and maximum size,
will the thermodynamic arrow reverse? Will entropy decrease and the universe
become smoother and more homogeneous during the contracting phase?

I'll skip some stuff on why Hawking originally thought entropy had to decrease during
the Big Crunch if the no-boundary proposal were correct... and why he no longer thinks
SO.

The thermodynamic arrow will agree with the cosmological arrow for half the
history of the universe, but not for the other half. So why is it that we observe
them to agree? Why is it that entropy increases in the direction that the universe
is expanding? This is really a situation in which one can legitimately invoke the
weak anthropic principle because it is a question of where in the history of the
universe conditions are suitable for intelligent life. The inflation in the early
universe implies that the universe will expand for a very long time before it
contracts again. In fact, it is so long that the stars will have all burnt out and
the baryons will have all decayed. All that will be left in the contracting phase
will be a mixture of electrons, positrons, neutrinos and gravitons. This is not a
suitable basis for intelligent life.

The conclusion of this paper is that the no boundary proposal can explain the
existence of a well defined thermodynamic arrow of time. This arrow always
points in the same direction. The reason we observe it to point in the same
direction as the cosmological arrow is that conditions are suitable for intelligent
life only at the low entropy end of the universe’s history.

11
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Week 3

January 30, 1993
Here’s this week’s reading material. The first test will be in two weeks. :-)
1) Dror Bar-Natan, “On the Vassiliev knot invariants”, Harvard University “pre-preprint”.

I went to U.C. San Diego this week to give a talk, and the timing was nice, because
Dror Bar-Natan was there. He is a student of Witten who has started from Witten’s
ideas relating knot theory and quantum field theory and developed them into a beautiful
picture that shows how knot theory, the theory of classical Lie algebras, and abstract
Feynman diagrams are three faces of the same thing. To put it boldly, in a deliberately
exaggerated form, Bar-Natan has proposed a conjecture saying that knot theory and the
theory of classical Lie algebras are one and the same!

This won’t seem very exciting if you don’t know what a classical Lie algebra is. Let
me give a brief and very sketchy introduction, apologizing in advance to all the experts
for the terrible sins I will commit, such as failing to distinguish between complex and
real Lie algebras.

Well, remember that a Lie algebra is just a vector space equipped with a “bracket”
such that the bracket [z, y] of any two vectors x and y is again a vector, and such that the
following hold:

a) skew-symmetry: [x,y] = —[y, z].
b) bilinearity: [z, ay] = a[z,y], [z,y + 2] = [z, y] + [z, z]. (a is a number.)
¢) Jacobi identity: [z, [y, 1] + [y, [z a]] + [z, [z, ] = 0.

The best known example is good old R? with the cross product as the bracket. But
the real importance of Lie algebras is that one can get one from any Lie group — roughly
speaking, a group that’s also a manifold, and such that the group operations are smooth
maps. And the importance of Lie groups is that they are what crop up as the groups
of symmetries in physics. The Lie algebra is essentially the “infinitesimal version” of
the corresponding Lie group, as anyone has seen who has taken physics and seen the
relation between the group of rotations in R? and the cross product. Here the group is
called SO(3) and the Lie algebra is called so(3). (So R? with its cross product is called
50(3).) One can generalize this to any number of dimensions, letting SO(n) denote the
group of rotations in R” and so(n) the corresponding Lie algebra. (However, so(n) is
not isomorphic to R” except for n = 3, so there is something very special about three
dimensions.)

Similarly, if one uses complex numbers instead of real numbers, one gets a group
SU(n) and Lie algebra su(n). And if one looks at the symmetries of a 2n-dimensional
classical phase space — so-called canonical transformations, or symplectic transforma-
tions — one gets the group Sp(n) and Lie algebra sp(n). To be precise, SO(n) consists of
all n x n orthogonal real matrices with determinant 1, SU(n) consists of all n x n unitary
complex matrices with determinant 1, and Sp(n) consists of all (2n) x (2n) real matrices
preserving a nondegenerate skew-symmetric form.

12
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These are all very important in physics. Indeed, all the “gauge groups” of physics are
Lie groups of a certain sort, so-called compact Lie groups, and in the standard model
all the forces are symmetrical under some gauge group or other. Electromagnetism a la
Maxwell is symmetric under the group U(1) of complex numbers of unit magnitude, or
“phases”. The electroweak force (unified electromagnetism and weak force) is symmetric
under U(1) x SU(2), where one uses the fact that one can build up bigger semisimple
Lie groups as direct sums (also called products) of smaller ones. The gauge group for
the strong force is SU(3). And, finally, the gauge group of the whole standard model is
simply U(1) x SU(2) x SU(3), which results from lumping the electroweak and strong
gauge groups together. This direct sum business also works for the Lie algebras, so the
Lie algebra relevant to the standard model is written u(1) x su(2) x su(3).

There are certain very special Lie algebras called simple Lie algebras which play the
role of “elementary building blocks” in the world of Lie algebras. They cannot be written
as the direct sum of other Lie algebras (and in fact there is an even stronger sense in
which they cannot be decomposed). On the other hand, the Lie algebra of any compact
Lie group is a direct sum of simple Lie algebras and copies of 1(1) — the one-dimensional
Lie algebra with zero Lie bracket which, for technical reasons, people don’t call “simple”.

These simple Lie algebras were classified by the monumental work of Killing, Cartan
and others, and the classification is strikingly simple: there are infinite series of “clas-
sical” Lie algebras of type su(n), so(n), and sp(n), and five “exceptional” Lie algebras
called Go, Fy, Eg, E7, and Eg. Believe it or not, there is a deep connection between the
exceptional Lie algebras and the Platonic solids. But that is another story, one I barely
know....

Now, Witten showed how one could use quantum field theory to constuct an invariant
of knots, or even links, corresponding to any representation of a compact Lie group. (You
won’t even need to know what a representation is to understand what follows.) This had
been done in a different way, in terms of “quantum groups,” by Reshetikhin and Turaev
(following up on work by many other people). These invariants are polynomials in a
variable ¢ (for “quantum”), and if one writes ¢ as ¢ and expands a power series in A,
the coefficient of A" is a “Vassiliev invariant of degree n”. Recall from last week that
given an invariant of oriented knots, one can extend it to knot with arbitrarily many nice
crossings by setting the value of the invariant on a knot with a crossing like

>~

to be the invariant of the knot with the crossing changed to

X

minus the invariant of the knot with the crossing changed to

/\\/

(Again, the knot has to be oriented for this rule to make sense, and the strands shown
in the pictures above should be pointing downwards.) Having made this extension, one

13
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says a knot invariant is a Vassiliev invariant of degree n if it vanishes on all knots with
n + 1 or more double points.

This is where Dror stepped in, roughly. First of all, he showed that the Vassiliev in-
variant of degree n is just what you get when you do Witten’s quantum-field-theoretic
calculations perturbatively using Feynman diagrams and look at the terms of order n in
Planck’s constant, /! Secondly, and more surprisingly, he developed a bunch of relation-
ships between Feynman diagrams and pictures of knots! The third and most amazing
thing he did takes a bit longer to explain. ..

Roughly, he showed that any Vassiliev invariant of degree n is determined by some
combinatorial data called a “weight system.” He showed that any representation of a
Lie algebra determines a weight system and hence a Vassiliev invariant. But the really
interesting thing he showed is that many of the things one can do for Lie algebras can
be done for arbitrary weight systems. This makes it plausible that every weight system,
hence every Vassiliev invariant, comes from a representation of a simple Lie algebra.
In fact, Dror conjectures that every Vassiliev invariant comes from a representation of
a classical simple Lie algebra. Now there is another conjecture floating around these
days, namely that Vassiliev invariants almost form a complete set — that is, that if two
knots cannot be distinguished by any Vassiliev invariants, they must either be the same
or differ simply by reversing the orientation of all the strands. If both these conjectures
are true, one has in some sense practically reduced the theory of knots to the theory of
the classical Lie algebras! This wouldn’t mean that all of sudden we know the answer to
every question about knots, but it would certainly help a lot, and more importantly, in
my opinion, it would show that the connection between topology and the theory of Lie
algebras is far more profound than we really understand. The ramifications for physics,
as I hope all my chatting about knots, gauge theories and quantum gravity makes clear,
might also be profound.

Well, we certainly don’t understand all this stuff yet, since we don’t know how to
prove these conjectures! But Dror’s conjecture — that all weight systems come from
representations of simple Lie algebras — is tantalizingly close to being within grasp,
since he has reduced it to a fairly elementary combinatorial problem, which I will now
state. Note that “elementary” does not mean easy to solve! Just easy to state.

Before I state the combinatorial problem, let me say something about the evidence
for the conjecture that all Vassiliev invariants come from representations of classical Lie
algebras. In addition to all sorts of “technical” evidence, Dror has shown the conjecture
is true for Vassiliev invariants of degree < 9 by means of many hours of computation
using his Sparcstation. In fact, he said in his talk that he felt guilty about having a
Sparcstation unless it was always computing something, and that even as he spoke his
computer was busily verifying the conjecture for higher degrees. (I suggested that it
was the Sparcstation that should feel guilty when it was not working, not him.) He also
advertised that his programs, a mixture of C and Mathematica code, are available by
anonymous ftp from math.harvard. Use user name “ftp”, go to the directory “dror”. You
folks with Crays should feel very guilty if they are just sitting there and not helping Dror
verify this important conjecture. (I suggest that you first read his papers and the file
README in his directory, then check out his programs, and then ask him where he’s at
and what would be worth doing. Please don’t pester him unless you are a good enough
mathematician to discuss this stuff intelligently and have megaflops to burn. If you want
to make a fool of yourself, don’t say I sent you.)
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Okay, with no further ado, here’s the conjecture in its elementary combinatorial form.
Let B be the vector space spanned by finite graphs with univalent and “oriented” trivalent
vertices, modulo some relations. .. first of all, a trivalent vertex is “oriented” if there is a
cyclic ordering of the three incident edges. That is, we “orient” the vertex

Ny

by drawing a little clockwise or counterclockwise-pointing circle at the vertex. (Or, for
those of an algebraic bent, label the edges by 1,2,3 but then mod out by cyclic permuta-
tions.) The relations are:

1) if we reverse the orientation of a trivalent vertex, that’s equivalent to multiplying
the graph by —1. (Remember we’re in a vector space spanned by graphs.)

2)

(That is, we can make this substitution anywhere we want; these pictures might
be part of a bigger graph. Note that the “X” is not a vertex, since there aren’t
quadrivalent vertices; it’s just one edge going over or under another. It doesn’t
matter whether it goes over or under since these are abstract graphs, not graphs
embedded in space.)

Now, let B, be the vector space spanned by “labelled” finite graphs with univalent
and oriented trivalent vertices, modulo some relations... but first [ have to say what
“labelled” means. It means that each edge is labelled with a 1 or —1. The relations are:

1) if we reverse the orientation of a trivalent vertex, it’s the same as multiplying the
labellings of all three incident edges by —1.

2)

if the internal edge is labelled with a 1. (Here the 4 external edges can have any
labellings and we don’t mess with that.)
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Now, define a linear map from B to B,, by mapping any graph to the signed sum of
the 2number of edges yyavg of labelling the edges with 1 or —1. Symbolically,

1 —1
H —
Of course, one must work a bit to show this map is well-defined. (This just takes a
paragraph — see Proposition 6.5 of Dror’s paper.)
Okay, the conjecture is:

THIS MAP IS ONE-TO-ONE.

If you can solve it, you've made great progress in showing that knots and classical Lie
groups are just two aspects of the same branch of mathematics. Don’t work on it, though,

2) Abhay Ashtekar, “Mathematical problems of non-perturbative quantum general rel-
ativity”, lectures delivered at the 1992 Les Houches summer school on Gravitation
and Quantization, December 2, 1992, available as gr-qc/9302024.

This is a good overview of the loop variables approach to quantizing general relativ-
ity as it currently stands. It begins with a review of the basic difficulties with quantiz-
ing gravity, as viewed from three perspectives: the particle physicist, the mathematical
physicist, and the general relativist. Technically, a main problem is that general relativity
consists of both evolution equations and constraint equations on the initial data (which
are roughly the metric of space at a given time and its first time derivative, or really “ex-
trinsic curvature”). So Ashtekar reviews Dirac’s ideas on quantizing constrained systems
before sketching how this program is carried out for general relativity.

Then he considers a “toy model” — quantum gravity in 241 dimensions. This is a
funny theory because classically Einstein’s equations in 2+1 dimensions simply say that
spacetime is flat (in a vacuum)! No gravitational waves exist as in 3+1 dimensions, and
one can say that the information in the gravitational field is “purely global” — locally,
everywhere looks the same as everywhere else (like lowa), but there may be global
“twists” that you notice when going around a noncontractible loop. There has been a lot
of work on 241 gravity recently — in a sense this problem has been solved, by a number
of methods — and this allows one to understand some of the conceptual difficulties of
honest 3+1-dimensional quantum gravity without getting caught in an endless net of
technical complications.

Then Ashtekar jumps back to 3+1 dimensions and gives a more thorough introduc-
tion to the loop variables approach. He ends by going through some of the many open
problems and possible ways to attack them.

I have worn myself out trying to do justice to Bar-Natan’s work, so I will postpone
until next week a review of Kapranov and Voevodsky’s paper on 2-categories.
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Week 4

February 8, 1993

I will begin with a couple of small things and then talk about the work of Kapranov and
Voevodsky.

1) R. Sole, D. Lopez, M. Ginovart and J. Valls, “Self-organized criticality in Monte
Carlo simulated ecosystems”, Phys. Lett. A172 (1992), p. 56.

This is mainly of interest to me thanks to a reference to some earlier work on Con-
way’s game of Life. At MIT, Tom Toffoli, Norm Margolus, and grad students in the Physics
of Computation group build special-purpose computers for simulating cellular automata,
the so-called CAM machines. I have spent many enjoyable hours watching beautiful pat-
terns do their thing on a big-screen color TV while CAM 6 busily simulates them on a
256 x 256 lattice at the rate of many generations a second. (The CAM 8 chip was still
being debugged when I last checked.) More recently, Jim Gilliam, a grad student here
at UCR, found a very nice program for the game of Life on Xwindows, called xlife. On
my Sparcstation it is even bigger and faster than CAM6. One can zoom in and out, and,
zooming all the way out, one sees something vaguely reminiscent of nebulae of distant
stars twinkling in the night sky... My computer science pal, Nate Osgood, muttered
something about the author, Chuck Silvers, using cleverly optimized loops. It apparently
can be found using the program archie. Please don’t ask me for a copy, since it involves
many files.

The game of Life is actually one of the less fun cellular automata to watch, since,
contrary to its name, if one starts with a random configuration it almost always eventu-
ally lapses into an essentially static configuration (perhaps with some blinkers executing
simple periodic motions). I am pleased to find that this seemingly dull final state might
be fairly interesting in the study of self-organized criticality! Recall that this is the phe-
nomenon whereby a physical system naturally works its way into a state such that the
slightest disturbance can have an arbitrarily large effect. The classic example is a sand
dune, which apparently works its way towards slopes close to the critical one at which an
avalanche occurs. Drop one extra grain of sand on it and you can get a surprisingly wide
distribution of possible sizes for the resulting sandslide! Similar but more formidable
effects may be at work in earthquakes. The above paper cites

2) Per Bak, Kan Chen, and Michael Creutz, “Self-organized criticality in the ‘Game of
Life”, Nature 342 (1989), 780-782.

which claims that in the final state of the game of Life, the density of clusters D(s) of
size s scales as about s~ 14, and that the probability that a small perturbation will cause
a flurry of activity lasting a time ¢ scales as about 1. I'm no expert, but I guess that
the fact that the latter is a power law rather than an exponential would be a signal of
self-organized criticality. But the paper also cites

3) Charles Bennett and Marc S. Bourzutschy,“Life’ not critical?”, Nature 350 (1991),
468.
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who claim that the work of Bac, Chen and Creutz is wrong. I haven’t gotten to read these
papers; if anyone wants to report on them I’d be interested.

The paper I read considers fancier variations on this theme, investigating the possi-
bility that ecosystems are also examples of self-organized criticality. It’s hard to know
how to make solid science out of this kind of thing, but I think there would be impor-
tant consequences if it turned out that the “balance of nature,” far from being a stable
equilibrium, was typically teetering on the brink of drastic change.

4) H.D. Zeh, “There are no quantum jumps, nor are there particles!”, Phys. Lett. A173
(1993), 189-192.

Having greatly enjoyed Zeh’s book The Physical Basis for the Direction of Time — perhaps
the clearest account of a famously murky subject — I naturally took a look at this particle
despite its overheated title. (Certainly exclamation marks in titles should add to one’s
crackpot index.) It is a nice little discussion of “quantum jumps” and the “collapse of the
wavefunction” that takes roughly the viewpoint I espouse, namely, that all one needs is
Schrodinger’s equation (and lots of hard work) to understand what’s going on in quan-
tum theory — no extra dynamical mechanisms. It’s not likely to convince anyone who
thinks otherwise, but it has references that might be useful no matter which side of the
debate one is on.

Also, this just in — what you've all been waiting for — another interpretation of
quantum mechanics! It’s a book by David Bohm and Basil Hiley, entitled The Undivided
Universe — An Ontological Interpretation of Quantum Theory. I have only seen an adver-
tisement so far; it’s published by Routledge. The contents include such curious things as
“the ontological interpretation of boson fields.” Read it at your own risk.

5) M. M. Kapranov and V. A. Voevodsky, “2-categories and Zamolodchikov tetrahe-
dra equations” in Algebraic Groups and their Generalization: Quantum and Infinite-
Dimensional Methods, University Park, PA (1991), eds. W. J. Haboush and B. J. Par-
shall, Proc. Sympos. Pure Math. 56, American Mathematical Society, Providence,
Rhode Island, 1994, pp. 177-259.

This serious and rather dry paper is the basis for a lot of physicists are just beginning
to try to do: burst from the confines of 3 dimensions, where knots and topological
quantum field theories like Chern-Simons theory live, to 34+ 1 dimensions, where we live.
The “incomplete version” I have now is 220 pages long, mostly commutative diagrams,
and doesn’t have much to say about physics. But I have a hunch that it will become
required reading for many people fairly soon, so I'd like to describe the main ideas in
fairly simple terms.

I will start from scratch and then gradually accelerate. First, what’s a category? A
category consists of a set of ‘objects’ and a set of ‘morphisms’. Every morphism has a
‘source’ object and a ‘target’ object. (The easiest example is the category in which the
objects are sets and the morphisms are functions. If f: X — Y, we call X the source
and Y the target.) Given objects X and Y, we write Hom(X,Y") for the set of morphisms
‘from’ X ‘to’ Y (i.e., having X as source and Y as target).

The axioms for a category are that it consist of a set of objects and for any 2 objects
X and Y a set Hom(X,Y) of morphisms from X to Y, and
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a) Given a morphism g in Hom(X,Y’) and a morphism f in Hom(Y, Z), there is mor-
phism which we call f o g in Hom(X, Z). (This binary operation o is called ‘com-
position’.)

b) Composition is associative: (f og)oh = fo(goh).
c) For each object X there is a morphism idx from X to X, called the ‘identity’ on X.
d) Given any f in Hom(X,Y), foidx = f and idy o f = f.

Again, the classic example is Set, the category with sets as objects and functions as
morphisms, and the usual composition as composition! But lots of the time in mathe-
matics one is some category or other, e.g.:

* Vect — vector spaces as objects, linear maps as morphisms
* Group — groups as objects, homomorphisms as morphisms
* Top — topological spaces as objects, continuous functions as morphisms
* Diff — smooth manifolds as objects, smooth maps as morphisms
* Ring — rings as objects, ring homomorphisms as morphisms
or in physics:
* Symp — symplectic manifolds as objects, symplectomorphisms as morphisms
* Poiss — Poisson manifolds as objects, Poisson maps as morphisms

* Hilb — Hilbert spaces as objects, unitary operators as morphisms

(The first two are categories in which one can do classical physics. The third is a category
in which one can do quantum physics.)

Now, what’s a 2-category? This has all the structure of a category but now there
are also “2-morphisms,” that is, morphisms between morphisms! This is rather dizzying
at first. Indeed, much of category theory is rather dizzying until one has some good
examples to lean on (at least for down-to-earth people such as myself), so let us get
some examples right away, and leave the definition to Kapranov and Voevodsky! My
favorite example comes from homotopy theory. Take a topological space X and let the
objects of our category be points of X. Given x and y in X, let Hom(x, y) be the set of
all unparametrized paths from x to y. We compose such paths simply by sticking a path
from z to y and a path from y to z to get a path from x to z, and we need unparametrized
paths to make composition associative. Now given two paths from z to y, say f and g, let
Hom( f, g), the set of 2-morphisms from f to g, be the set of unparametrized homotopies
from f to g — that is, ways of deforming the path f continuously to get the path g, while
leaving the endpoints fixed.

This is a very enlightening example since homotopies of paths are really just “paths
of paths,” making the name 2-morphism quite appropriate. (Some of you will already be
pondering 3-morphisms, 4-morphisms, but it’s too late, they’'ve already been invented!
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I won’t discuss them here.) The notation for 2-morphisms is quite cute: given f, g in
Hom(z,y), we write F' in Hom(f, g) as the following diagram:

In other words, while ordinary morphisms are 1-dimensional objects (arrows), 2-morphisms
are 2-dimensional “cells” filling in the space between two ordinary morphisms. We thus
see that going up to “morphisms between morphisms” is closely related to going up to
higher dimensions. And this is really why “braided monoidal 2-categories” may play
as big a role in four-dimensional field theory as “braided monoidal categories” do in
three-dimensional field theory!

Rather than write down the axioms for a 2-category, which are in Kapranov and
Voevodsky, let me note the key new thing about 2-morphisms: there are two ways to
compose them, “horizontally” and “vertically”. First of all, given the following situation:

x/ﬂ;\y/@\z

we can compose F' and F” horizontally to get a 2-morphism from f’ o f to g o g’. (Check
this out in the example of homotopies!) But also, given the following situation:

f

N
G

Nl

h

(f,g,h in Hom(z,y), F in Hom(f,¢), and G in Hom(g, h)), we can compose F' and G
vertically to get a 2-morphism from f to g.

As Kapranov and Voevodsky note: “Thus 2-categories can be seen as belonging to the
realm of a new mathematical discipline which may be called 2-dimensional algebra and
contrasted with usual 1-dimensional algebra dealing with formulas which are written in
lines.” This is actually very important because already in the theory of braided monoidal
categories we began witnessing the rise of mathematics that incorporated aspects of
geometry into the notation itself.

The theory of 2-categories is not new; it was apparently invented by Ehresmann, Ben-
abou and Grothendieck in an effort to formalize the structure possessed by the category
of all categories. (If this notion seems dangerously close to Russell’s paradox, you are
right — but I will not worry about such issues in what follows.) This category has as its
objects categories and as its morphisms “functors” between categories. It is, in fact, a 2-
category, taking as the 2-morphisms “natural transformations” between functors. (For a
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brief intro to functors and natural transformations, try my webpage “categories”.) What
is new to Kapranov and Voevodsky is the notion of a monoidal 2-category — where
one can take tensor products of objects, morphisms, and 2-morphisms — and “braided”
monoidal 2-category — where one has “braidings” that switch around the two factors in
a tensor product.

Let me turn to the possible relevance of all this to mathematical physics. Here there is
a nice 2-category, namely the category of “2-tangles.” First recall the category of tangles:

The objects are simply the natural numbers {0, 1,2,3,...}. We think of the object n
as a horizontal row of n points. The morphisms in Hom(n,m) are tangles connecting a
row of n points above to a row of m points below. Rather than define “tangles” T will
simply draw pictures of some examples. Here is an element of Hom(2, 4):

/

and here is an element of Hom(4,0):

Note that we can “compose” these tangles to get one in Hom(2,0):

/

Now, given tangles f, g in Hom(m, n), a 2-morphism from f to g is a “2-tangle.” I won’t
define these either, but we may think of a 2-tangle from f to g roughly as a “movie”
whose first frame is the tangle f and last frame is the tangle g, and each of whose
intermediate frames is a tangle except at certain times when a catastrophe occurs. For
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example, here’s a 2-tangle shown as a movie. . .

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6
(catastrophe!)

Well, it'll never win an Academy Award, but this movie is pretty important. It’s a picture
of the 3-dimensional slices of a 2-dimensional surface in (3+1)-dimensional spacetime,
and this surface is perfectly smooth but has a saddle point which we are seeing in frame
4. It is one of what Carter and Saito (see “Week 2”) call the “elementary string interac-
tions.” The relevance to string theory is pretty obvious: we are seeing a movie of part of
a string worldsheet, which is a surface in (3+1)-dimensional spacetime. My interest in
2-tangles and 2-categories is precisely because they offer a bridge between string theory
and the loop variables approach to quantum gravity, which may actually be the same
thing in two different disguises. You heard it here first, folks!

The reader may have fun figuring out what the two ways of composing 2-morphisms
amount to in the category of 2-tangles.

There are, in fact, many clues as to the relation between string theory and 2-categories,
one being the Zamolodchikov equation. This is the analog of the Yang—Baxter equation
— an equation important in the theory of braids — one dimension up. It was discovered
by Zamolodchikov in 1980; a 1981 paper that might be a bit easier to get is

6) A. B. Zamolodchikov, “Tetrahedron equations and relativistic S-matrix for straight
strings in 2+1 dimensions,” Commun. Math. Phys. 79 (1981), 489-505.

(It plays a different role in the (3+1)-dimensional context, though.) Just as braided
monoidal categories are a good way to systematically find solutions of the Yang-Baxter
equation, braided monoidal 2-categories, as defined by Kapranov and Voevodsky, seem
to be a good way for finding solutions for the Zamolodchikov equation. (I will post in a
while about a new paper by Soibelman and Kazhdan that does this. Also see the paper
by Crane and Frenkel in “Week 2”.)

There are also lots of tantalizing ties between the loop variables approach to quantum
gravity and 2-categories; one can see some of these if one reads the work of Carter
and Saito in conjunction with my paper “Quantum gravity and the algebra of tangles”
(hep-th/9205007). I hope to make these a lot clearer as time goes by.
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Week 5

February 13, 1993

I think I'll start out this week’s list of finds with an elementary introduction to Lie alge-
bras, so that people who aren’t “experts” can get the drift of what these are about. Then
I'll gradually pick up speed. ..

1) Vyjayanathi Chari and Alexander Premet, “Indecomposable restricted representa-
tions of quantum sly”, Publications of the Research Institute for Mathematical Sci-
ences 30 (1994), 335-352.

Vyjayanathi is our resident expert on quantum groups, and Sasha, who’s visiting, is an
expert on Lie algebras in characteristic p. They have been talking endlessly across the
hall from me and now I see that it has born fruit. This is a pretty technical paper and
I am afraid I'll never really understand it, but I can see why it’s important, so I'll try to
explain that!

Let me start with the prehistory, which is the sort of thing everyone should learn.
Recall what a Lie algebra is... a vector space with a “bracket” operation such that the
bracket [z, y] of any two vectors x and y is again a vector, and such that the following
hold:

a) skew-symmetry: [z, y] = —[y, z].
b) bilinearity: [z, ay] = a[x,y], [z,y + 2] = [z, y] + [z, z]. (a is any number)
) Jacobi identity: [z, [y, 2]] + [y, 5. ]] + [z, [z, y]] = 0.

These conditions, especially the third, may look sort of weird if you are not used
to them, but the examples make it all clear. The easiest example of a Lie algebra is
gl(n,C), which just means all n x n complex matrices with the bracket defined as the
“commutator”:

[z,y] = 2y — ya.
Then straightforward calculations show a)-c) hold... so these conditions are really
encoding the essence of the commutator.

Now recall that the trace of a matrix, the sum of its diagonal entries, satisfies tr(zy)
= tr(yz). So the trace of any commutator is zero, and if we let sl(n,C) denote the
matrices with zero trace, we see that it’s a sub-Lie algebra of gl(n, C) — that is, if x and
y are in sl(n,C) so is [z, y], so we can think of sl(n, C) as a Lie algebra in its own right.
Going from sl(n,C) to gl(n,C) is essentially a trick for booting out the identity matrix,
which commutes with everything else (hence has vanishing commutators). Multiples
of identity matrix are the only ones with this property, so they’re sort of weird, and it
simplifies things to get rid of them here.

The simplest of the sl(n, C)’s is the Lie algebra sl(2, C), affectionately known simply
as sl(2), which is a 3-dimensional Lie algebra with a basis given by matrices people call
E, F, and H for mysterious reasons:

e=(5h) (0 8) u-(4 4)
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You will never be an expert on Lie algebras until you know by heart that
[H,E]|=2E, [H,F|=—2F, [E,F]=H.

Typically that’s the sort of remark I make before screwing up by a factor of two or some-
thing, so you’d better check! This is a cute little multiplication table... but very impor-
tant, since sl(2) is the primordial Lie algebra from which the whole theory of “simple”
Lie algebras unfolds.

Physicists are probably more familiar with a different basis of s[(2), the Pauli matrices:

0 1 0 —i 1 0
(V) () (oY)

For purposes of Lie algebra theory it’s actually better to divide each of these matrices by
1 and call the resulting matrices I, J, and K, respectively. We then have

IJ=-JI=K, JK=-KJ=I, Ki=—-IK=J I?=J>=K?=-1

which is just the multiplication table of the quaternions! From the point of view of Lie
algebras, though, all that matters is

[I,J)=2K, [J,K|=2I, [K,I]=2J

Given the relation of these things and cross products, it should be no surprise that the
Pauli matrices have a lot to with angular momentum around the z, y, and z axes in
quantum mechanics.

If we take all real linear combinations of F,F,H we get a Lie algebra over the real
numbers called sl(2,R), and if we take all real linear combinations of I,J,K we get a Lie
algebra over the reals called su(2). These two Lie algebras are two different “real forms”
of s1(2).

Now, people know just about everything about s((2) that they might want to. Well,
there’s always something more, but 'm certainly personally satisfied! I recall when as
an impressionable student I saw a book by Serge Lang titled simply “SL(2,R)”, big and
fat and scary inside. I knew what SL(2, R) was, but not how one could think of a whole
book’s worth of things to write about it! A whole book on 2 x 2 matrices??

Part of how one gets so much to say about a puny little Lie algebra like sl((2) is
by talking about its representations. What’s a representation? Well, first you have to
temporarily shelve the idea that sl(2) consists of 2 x 2 matrices, and think of it more
abstractly simply as a 3-dimensional vector space with basis F,F,H, equipped with a
Lie algebra structure given by the multiplication table [H,E] = 2F, [H,F] = —2F,
[E,F] = H. If this is how I'd originally defined it, it would then be a little theorem that
this Lie algebra has a “representation” as 2 x 2 matrices. And it would turn out to have
other representations too. For example, there’s a representation as 3 x 3 matrices given
by sending

010 0 0 0 2 0 O
E—| 0 0 2 F—12 00 H—{ 0 0 O
0 0 0 010 0 0 -2
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In other words, these matrices satisfy the same commutation relations as F,F, and H
do.

More generally, and more precisely, we say an n-dimensional representation of a Lie
algebra L (over the complex numbers) is a linear function R from L to n x n matrices
such that

R([z,y]) = [R(z), R(y)]

for all z,y in L. Note that on the left the brackets are the brackets in L, while on the
right they denote the commutator of n x n matrices.

One good way to understand the essence of a Lie algebra is to figure out what repre-
sentations it has. And in quantum physics, Lie algebra representations are where it’s at:
the symmetries of the world are typically Lie groups, each Lie group has a corresponding
Lie algebra, the states of a quantum system are unit vectors in a Hilbert space, and if the
system has a certain Lie group of symmetries there will be a representation of the Lie
algebra on the Hilbert space. As any particle physicist can tell you, you can learn a lot
just by knowing which representation of your symmetry group a given particle has.

So the name of the game is classifying Lie algebra representations. .. and many tomes
have been written on this by now. To keep things from becoming too much of a mess it’s
crucial to make two observations. First, there’s an easy way to get new representations
by taking the “direct sum” of old ones: the sum of an n-dimensional representation and
an m-dimensional one is an (n + m)-dimensional one, for example. Another way, not so
easy, to get new representations from an old one is to look for “subrepresentations” of the
given representation. In particular, a direct sum of two representations has them as sub-
representations. (I won’t define “direct sum” and “subrepresentation” here. .. hopefully
those who don’t know will be tempted to look it up.)

So rather than classifying all representations, it’s good to start by classifying “irre-
ducible” representations — those that have no suprepresentations (other than them-
selves and the trivial O-dimensional representation). This is sort of like finding prime
numbers. .. they are “building blocks” in representation theory. But things are a little
bit messier, alas. We say a representation is “completely reducible” if it is a direct sum
of irreducible representations. Unfortunately, not all representations need be completely
reducible!

Let’s consider the representations of sl(2, C). (The more sophisticated reader should
note that I am implicitly only considering finite- dimensional complex representations!)
Here life is as nice as could be: all representations are completely reducible, and there
is just one irreducible n-dimensional representation for each n, with the 2-dimensional
and 3-dimensional representations as above. (By the way, I really mean that there is
only one irreducible n-dimensional representation up to a certain equivalence relation!)
Physicists — who more often work with the real form su(2) — call these the spin-0, spin-
%, spin-1, etc. representations. The “spin” of a particle is, in mathematical terms, just
the thing that tells you which representation of su(2) it corresponds to!

Now let me jump up several levels of sophistication. In the last few years people have
realized that Lie groups are just a special case of something called “quantum groups”...
nobody talks about “quantum Lie algebras” but that’s essentially a historical accident:
quantum groups are not groups, they’re a generalization of them, and they don’t have
Lie algebras, but they have a generalization of them — so-called quantized enveloping
algebras.
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Quantum groups can be formed from simple Lie algebras, and they depend on a pa-
rameter ¢, a nonzero complex parameter. This parameter — ¢ is for quantum, naturally
— can be thought of as

eh

The exponential of Planck’s constant! When we set i = 0 we get ¢ = 1, and we get back
to the “classical case” of plain old-fashioned Lie algebras and groups. Every representa-
tion of a quantum group gives an invariant of links (actually even tangles), and these
link invariants are functions of ¢q. If we take the nth derivative of one of these invari-
ants with respect to & and evaluate it at i = 0 we get a “Vassiliev invariant of degree
n” (see “Week 3” for the definition). Better than that, when ¢ is a root of unity each
quantum group gives us a 3-dimensional “topological quantum field theory,” or TQFT
known as Chern-Simons theory. In particular, we get an invariant of compact oriented
3-manifolds. So there is a hefty bunch of mathematical payoffs from quantum groups.
And there are good reasons to think of them as the right generalization of groups for
dealing with symmetries in the physics of 2 and 3 dimensions. If string theory or the
loop variables approach to quantum gravity have any truth to them, quantum groups
play a sneaky role in honest 4-dimensional physics too.

In particular, there is a quantum version of s((2) called s[,(2). When ¢ = 1 we
essentially have the good old sl(2). Chari and Premet have just worked out a lot of the
representation theory of sl,(2). First of all, it's been known for some time that as long as
q is not a root of unity — that is, as long as we don’t have

" =1

for some integer n — the story is almost like that for ordinary s(2). Namely, there is
one irreducible representation of each dimension, and all representations are completely
reducible. This fails at roots of unity — which turns out to be the reason why one can
cook up TQFTs in this case. It turns out that if ¢ is an nth root of unity one can still
define representations of dimension 0,1,2,3, etc., more or less just like the classical case,
but only those of dimension < n are irreducible. There are, in fact, exactly n irreducible
representations, and the fact that there are only finitely many is what makes all sorts of
neat things happen. The k-dimensional representations with k£ > n are not completely
reducible. And, besides the representations that are analogous to the classical case, there
are a bunch more. They have not been completely classified — they are, according to
Chari, a mess! But she and Premet have classified a large batch of the “indecomposable”
ones, that is, the ones that aren’t direct sums of other ones. I guess I'll leave it at that.

2) David Kazhdan and Iakov Soibelman, “Representations of the quantized func-
tion algebras, 2-categories and Zamolodchikov tetrahedra equations”, The Gelfand
Mathematical Seminars 1990-1992, Springer, Berlin, 1993, pp. 163-71.

In this terse paper, Kazhdan and Soibelman construct a braided monoidal 2-category
using quantum groups at roots of unity. As I've said a few times, people expect braided
monoidal 2-categories to play a role in generally covariant 4d physics analogous to what
braided monoidal categories do in 3d physics. In particular, one might hope to get
invariants of 4-dimensional manifolds, or of surfaces embedded in 4-manifolds, this way.
(See last week’s post for a little bit about the details.) I don’t feel I understand this
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construction well enough yet to want to say much about it, but it is clearly related to
the construction of a braided monoidal 2-category from the category of quantum group
representations given by Crane and Frenkel (see “Week 27).

3) Adrian Ocneanu, “A note on simplicial dimension shifting”, available as hep-th/
9302028.

Ouch! This paper claims to show that the very charming 4d TQFT constructed by
Crane and Yetter in “A categorical construction of 4d topological quantum field theo-
ries” (hep-th/9301062) is trivial! In particular, he says the resulting invariant of com-
pact oriented 4-manifolds is identically equal to 1. If so, it’s back to the drawing board.
Crane and Yetter took the 3d TQFT coming from sl,(2) at roots of unity and then used a
clever trick to get 3-manifolds from a simplicial decomposition of a 4-manifold to get a
4d TQFT. Ocneanu claims this trick, which he calls “simplicial dimension shifting,” only
gives trivial 4-manifold invariants.

I am not yet in a position to pass judgement on this, since both Crane/Yetter and
Ocneanu are rather sketchy in key places. If indeed Ocneanu is right, I think people
are going to have to get serious about facing up to the need for 2-categorical thinking
in 4-dimensional generally covariant physics. I had asked Crane, a big proponent of
2-categories, why they played no role in his 4d TQFT, and he said that indeed he felt
like the kid who took apart a watch, put it back together, and found it still worked even
though there was a piece left over. So maybe the watch didn’t really work without that
extra piece after all. In late March I will go to the Conference on Quantum Topology
thrown by Crane and Yetter (at Kansas State U. at Manhattan), and I'm sure everyone
will try to thrash this stuff out.

4) Abhay Ashtekar and Jerzy Lewandowski, “Representation theory of analytic holon-
omy C*-algebras”, available as gr-qc/9311010.

This paper is a follow-up of the paper

5) Abhay Ashtekar and Chris Isham, “Representations of the holonomy algebras of
gravity and non-Abelian gauge theories”, Journal of Classical and Quantum Gravity
9 (1992), 1069-1100. Also available as hep-th/9202053.

and sort of complements another,

6) John Baez, “Link invariants, holonomy algebras and functional integration”, avail-
able as hep-th/9301063.

The idea here is to provide a firm mathematical foundation for the loop variables rep-
resentation of gauge theories, particularly quantum gravity. Ashtekar and Lewandowski
consider an algebra of gauge-invariant observables on the space of su(2) connections on
any real-analytic manifold, namely that generated by piecewise analytic Wilson loops.
This is the sort of thing meant by a “holonomy algebra”. They manage to construct an
explicit diffeomorphism-invariant state on this algebra. They also relate this algebra to a
similar algebra for s(2) connections — the latter being what really comes up in quantum
gravity. And they do a number of other interesting things, all quite rigorously. My paper
dealt instead with an algebra generated by “regularized” or “smeared” Wilson loops, and
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showed that there was a 1-1 map from diffeomorphism-invariant states on this algebra
to invariants of framed links — thus showing that the loop variables picture, in which
states are given by link invariants, doesn’t really lose any of the physics present in tradi-
tional approaches to gauge theories. I am busy at work trying to combine Ashtekar and
Lewandowski’s ideas with my own and push this program further — my own personal
goal being to make the Chern-Simons path integral rigorous — it being one of those
mysterious “measures on the space of all connections mod gauge transformations” that
physicists like, which unfortunately aren’t really measures, but some kind of generaliza-
tion thereof. What it should be is a state (or continuous linear functional) on some kind
of holonomy algebra.
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Week 6

February 20, 1993

1) Alexander Vilenkin, “Quantum cosmology”, talk given at Texas/Pascos 1992 at
Berkeley, available as gr-qc/9302016.

This is, as Vilenkin notes, an elementary review of quantum cosmology. It won’t be news
to anyone who has kept up on that subject (except perhaps for a few speculations at the
end), but for those who haven’t been following this stuff, like myself, it might be a good
way to get started.

Let’s get warmed up....

Quantizing gravity is mighty hard. For one thing, there’s the “problem of time” — the
lack of a distinguished time parameter in classical general relativity means that the usual
recipe for quantizing a dynamical system — “represent time evolution by the unitary
operators exp(—iHt) on the Hilbert space of states, where ¢ is the time and H, the
Hamiltonian, is a self-adjoint operator” — breaks down! As Wheeler so picturesquely
put it, in general relativity we have “many-fingered time”; there are lots of ways of
pushing a spacelike surface forwards in time.

But if we simplify the heck out of the problem, we might make a little progress. (This
is a standard method in physics, and whether or not it’s really justified, it’s often the
only thing one can do!) For one thing, note that in the Big Bang cosmology there is
a distinguished “rest frame” (or more precisely, field of timelike vectors) given by the
galaxies, if we discount their small random motions. In reality these are maybe not so
small, and maybe not so random — such things as the “Virgo flow” show this — but we’re
talking strictly theory here, okay? — so don’t bother us with facts! So, if we imagine
that things go the way the simplest Big Bang models predict, the galaxies just sit there
like dots on a balloon that is being inflated, defining a notion of “rest” at each point
in spacetime. This gives a corresponding notion of time, since one can measure time
using clocks that are at rest relative to the galaxies. Then, since we are pretending the
universe is completely homogeneous and isotropic — and let’s say it’s a closed universe
in the shape of a 3-sphere, to be specific — the metric is given by

dt? —r(t)?[(de)? + (sinv)*(d0)* + (sin 0)*(d)?]

What does all this mean? Here r(¢) is the radius of the universe as a function of time,
the following stuff is just the usual metric on the unit 3-sphere with hyperspherical
coordinates v, 6, p generalizing the standard coordinates on the 2-sphere we all learn
in college:

(d))? + (sin)*(d6)? + (sin 0)* (dip)”

and the fact that the metric on spacetime is dt?> minus a bunch of stuff reflects the fact
that spacetime geometry is “Lorentzian,” just as in flat Minkowski space the metric is

dt? — da? — dy? — dz*.
The name of the game in this simple sort of Big Bang cosmology is thus finding the

function r(¢)! To do this, of course, we need to see what Einstein’s equations reduce
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to in this special case, and since Einstein’s equations tell us how spacetime curves in
response to the stress-energy tensor, this will depend on what sort of matter we have
around. We are assuming that it’s homogeneous and isotropic, whatever it is, so it turns
out that all we need to know is its density p and pressure P (which are functions of
time). We get the equations

Here primes denote differentiation with respect to ¢, and I'm using units in which the
gravitational constant and speed of light are equal to 1.

Let’s simplify this even more. Let’s assume our matter is “dust,” which is the technical
term for zero pressure. We get two equations:

4
==

8 (D
() = 5pr® =1

Now let’s take the second one, differentiate with respect to ¢,

",/

8
2r"'y! = g(p’ﬂ + 2pr7")

plug in what the first equation said about r”,

g’ = —(p'r? + 2pr1")
clear out the crud, and lo:
3pr' = —p'r
or, more enlighteningly,
d 3
) _ ¢
dt

This is just “conservation of dust” — the dust density times the volume of the universe is
staying constant. This, by the way, is a special case of the fact that Einstein’s equations
automatically imply local conservation of energy (i.e., that the stress-energy tensor is
divergence-free).

Okay, so let’s say pr® = D, with D being the total amount of dust. Then we can
eliminate p from equations (1) and get:

n _ 4mD
YY)
(2
D
T L
r

What does this mean? Well, the first one looks like it’s saying there’s a force trying to
make the universe collapse, and that the strength of this force is proportional to 1/r2.
Sound vaguely familiar? It’s actually misleadingly simple — if we had put in something
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besides dust it wouldn’t work quite this way — but as long as we don’t take it too
seriously, we can just think of this as gravity trying to get the universe to collapse. And
the second one looks like it’s saying that the “kinetic” energy proportional to (r)2, plus
the “potential” energy proportional to —1/r, is constant! In other words, we have a nice
analogy between the Big Bang cosmology and a very old-fashioned system, a classical
particle in one dimension attracted to the origin by a 1/r? force!

It's easy enough to solve this equation, and easier still to figure it out qualitatively.
The key thing is that since the total “energy” in the second equation of (2) is negative,
there won’t be enough “energy” for r to go to infinity, that is, there’ll be a Big Bang and
then a big crunch. Here’s r as a function of ¢, roughly:

Figure 1

What goes up, must come down! This curve, which I haven’t drawn too well, is just
a cycloid, which is the curve traced out by a point on the rim of rolling wheel. So,
succumbing to romanticism momentarily we could call this picture one turn of the great
wheel of time. ... But there is no reason to expect further turns, because the differential
equation simply becomes singular when = 0. We may either say it doesn’t make sense
to speak of “before the Big Bang” or “after the big crunch” — or we can look for improved
laws that avoid these singularities. (I should repeat that we are dealing with unrealistic
models here, since for example there is no evidence that there is enough matter around
to “close the universe” and make this solution qualitatively valid — it may well be that
there’s a Big Bang but no big crunch. In this case, there’s only one singularity to worry
about, not two.)

People have certainly not been too ashamed to study the quantum theory of this
system (and souped-up variants) in an effort to get a little insight into quantum gravity.
We would expect that quantum effects wouldn’t matter much until the radius of the
universe is very small, but when it is very small they would matter a lot, and maybe
— one might hope — they would save the day, preventing the nasty singularities. I'm
not saying they do — this is hotly debated — but certainly some people hope they do.
Of course, serious quantum gravity should take into account the fact that geometry of
spacetime has all sorts of wiggles in it — it isn’t just a symmetrical sphere. This may
make a vast difference in how things work out. (For example, the big crunch would be
a lot more exciting if there were lots of black holes around by then.) The technical term
for the space of all metrics on space is “superspace” (sigh), and the toy models one gets
by ignoring all but finitely many degrees of freedom are called “minisuperspace” models.

Let’s look at a simple minisuperspace model. The simplest thing to try is to take the
classical equations of motion (2) and try to quantize them just like one would a particle
in a potential. This is a delicate business, by the way, because one can’t just take some
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classical equations of motion and quantize them in any routine way. There are lots of
methods of quantization, but all of them require a certain amount of case-by-case finesse.

The idea of “canonical quantization” of a classical system with one degree of freedom
— like our Big Bang model above, where the one degree of freedom is » — is to turn
the “position” (that’s ) into a multiplication operator and the “momentum” (often that’s
something like 7/, but watch out!) into a differentation operator, say —ihd%, so that we
get the “canonical commutation relations”

—inL

o r] = —ih.

We then take the formula for the energy, or Hamiltonian, in terms of position and mo-
mentum, and plug in these operators, so that the Hamiltonian becomes an operator.
(Here various “operator-ordering” problems can arise, because the position and momen-
tum commuted in the original classical system but not anymore!) To explain what I
mean, why don’t I just do it!

So: I said that the formula 8 D
"y -5 =1 3)

looks a lot like a formula of the form “kinetic energy plus potential energy is constant”.
Of course, we could multiply the whole equation by anything and get a valid equation,
so it’s not obvious that the “right” Hamiltonian is

8t D

-3

or (adding 1 doesn’t hurt)
no SmD
(') 3 r +1

In fact, note that multiplying the Hamiltonian by some function of r just amounts to
reparametrizing time, which is perfectly fine in general relativity. In fact, Vilenkin and
others before him have decided it’s better to multiply the Hamiltonian above by r2.
Why? Well, it has to do with figuring out what the right notion of “momentum” is
corresponding to the “position” r. Let’s do that. We use the old formula

dL

p:@

relating momentum to the Lagrangian, where for us the position, usually called ¢, is
really r.

The Lagrangian of general relativity is the “Ricci scalar” R — a measure of curvature
of the metric — and in the present problem it turns out to be

R=6 (TTN + (r;)z)

r

But we are reducing the full field theory problem down to a problem with one degree of
freedom, so our Lagrangian should be the above integrated over the 3-sphere, which has
volume 16773 /3, giving us

321 (r"r? + (')?r)
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However, the 7 is a nuisance, and we only use the integral of the Lagrangian with
respect to time (that’s the action, which classically is extremized to get the equations of
motion), so let’s do an integration by parts, or in other words add a total divergence, to
get the Lagrangian

L = —32n(r")?r.

Differentiating with respect to 7’ we get the momentum “conjugate to r”,
p = —64n7r'r.

Now I notice that Vilenkin uses as the momentum simply —r'r, somehow sweeping the
monstrous 647 under the rug. I have the feeling that this amounts to pushing this factor
into the definition of # in the canonical commutation relations. Since I was going to set
h to 1 in a minute anyway, this is okay (honest). So let’s keep life simple and use

p=-—-rr.

Okay! Now here’s the point, we want to exploit the analogy with good old quantum
mechanics, which typically has Hamiltonians containing something like p?. So let’s take
our preliminary Hamiltonian

D
(r")? — 8%— +1
T
and multiply it by 72, getting
H :p2 — SWDT + 72

Hey, what’s this? A harmonic oscillator! (Slightly shifted by the term proportional to r.)
So the universe is just a harmonic oscillator. .. I guess that’s why they stressed that so
much in all my classes!

Actually, despite the fact that we are working with a very simple model of quantum
cosmology, it’s not quite that simple. First of all, recall our original classical equation,
(3). This constrained the energy to have a certain value. L.e., we are dealing not with
a Hamiltonian in the ordinary sense, but a “Hamiltonian constraint” — typical of sys-
tems with time reparametrization invariance. So our quantized equation says that the
“wavefunction of the universe,” ¢(r), must satisfy

Hy = 0.

Also, unlike the ordinary harmonic oscillator we have the requirement that » > 0. In
other word, we’re working with a problem that’s like a harmonic oscillator and a “wall”
that keeps r > 0. Think of a particle in a potential like this:
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Figure 2

Here V(r) = —(87D/3)r + r?. The minimum of V is at r = 47D/3 and the zeroes are
at r = 0 and 87 D/3. Classically, a particle with zero energy starting at » = 0 will roll to
the right and make it out to r = 4w D/3 before rolling back to » = 0. This is basically
the picture we had in Figure 1, except that we've reparametrized time so we have simple
harmonic motion instead of cycloid.

Quantum mechanically, however one must pick boundary conditions at » = 0 to make
the problem well-defined!

This is where the fur begins to fly!! Hawking and Vilenkin have very different ideas
about what the right boundary conditions are. And note that this is not a mere technical
issue, since they determine the wavefunction of the universe in this approach! I will
not discuss this since Vilenkin does so quite clearly, and if you understand what I have
written above you’ll be in a decent position to understand him. I will just note that
Vilenkin, rather than working with a universe full of “dust,” considers a universe in which
the dominant contribution to the stress-energy tensor is the cosmological constant, that
is, the negative energy density of a “false vacuum”, which believers in inflation (such as
Vilenkin) think powered the exponential growth of the universe at an early stage. So
his equations are slightly different from those above (and are only meant to apply to the
early history of the universe).

[Let me just interject a question to the experts if I may — since I've written this long
article primarily to educate myself. It would seem to me that the equation Hy) = 0
above would only have a normalizable solution if the boundary conditions were fine-
tuned! Ie., maybe the equation Hvy = 0 itself determines the boundary conditions!
This would be very nice; has anyone thought of this? It seems reasonable because,
with typical boundary conditions, the operator H above will have pure point spectrum
(only eigenvalues) and it would be rather special for one of them to be 0, allowing
a normalizable solution of Hy = 0. Also, corrections and education of any sort are
welcomed. I would love to discuss this with some experts.]

Anyway, suppose we find some boundary conditions and calculate v, the “wavefunc-
tion of the universe.” (I like repeating that phrase because it sounds so momentous,
despite the fact that we are working with a laughably oversimplified toy model.) What
then? What are the implications for the man in the street?

Let me get quite vague at this point. Think of the radius of the universe as analogous
to a particle moving in the potential of Figure 2. In the current state of affairs classical
mechanics is an excellent approximation, so it seems to trace out a classical trajectory.
Of course it is really obeying the laws of quantum mechanics, so the trajectory is really
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a “wave packet” — technically, we use the WKB approximation to see how the wave
packet can seem like a classical trajectory. But near the Big Bang or big crunch, quantum
mechanics matters a lot: there the potential is rapidly varying (in our simple model it
just becomes a “wall”) and the wave packet may smear out noticeably. (Think of how
when you shoot an electron at a nucleus it bounces off in an unpredictable direction —
it’s wavefunction just tells you the probability that it'll go this way or that!) So some
quantum cosmologists have suggested that if there is a big crunch, the universe will pop
back out in a highly unpredictable, random kind of way!

I should note that Vilenkin has a very different picture. Since this stuff makes large
numbers of assumptions with very little supporting evidence, it is science that’s just on
the brink of being mythology. Still, it’s very interesting.

2) Lee Smolin, “Finite, diffeomorphism invariant observables in quantum gravity”,
available as gr-qc/9302011.

The big problem in canonical quantization of gravity, once one gets beyond “mini-”
and “midisuperspace” models, is to find enough diffeomorphism-invariant observables.
There is a certain amount of argument about this stuff, and various approaches, but
one common viewpoint is that the “physical” observables, that is, the really observable
observables, in general relativity are those that are invariant under all diffeomorphisms
of spacetime. ILe., those that are independent of any choice of coordinates. For example,
saying “My position is (242,2361,12, —17)” is not diffeomorphism-invariant, but saying
“I'm having the time of my life” is. It’s hard to find lots of (tractable) diffeomorphism
invariant observables — or even any! Try figuring out how you would precisely describe
the shape of a rock without introducing any coordinates, and you’ll begin to see the
problem. (The quantum mechanical aspects make it harder.)

Rovelli came up a while back with a very clever angle on this problem. It’s rather
artificial but still a big start. Using a “field of clocks” he was able to come up with
interesting diffeomorphism invariant observables. The idea is simply that if you had
clocks all around you could say “when the bells rang 2 a.m. I was having the time of
my life” — and this would be a diffeomorphism-invariant statement, since rather than
referring to an abstract coordinate system it expresses the coincidence of two physical
occurences, just like “the baseball broke through the window”. Then he pushed this
idea to define “evolving constants of motion” — a deliberate oxymoron — to deal with
the famous “problem of time” in general relativity: how to treat time evolution in a
coordinate-free manner on a spacetime that’s not flat and, worse, whose geometry is
“uncertain” a la Heisenberg? This is treated, by the way, in

3) Carlo Rovelli, “Time in quantum gravity: an hypothesis”, Phys. Rev. D43 (1991),
442-456.

Also, an excellent and very thorough review of the problem of time and various proposed
solutions, including Rovelli’s, is given in

4) Chris J. Isham, “Canonical quantum gravity and the problem of time”, 125 pages,
available as gr-qc/9210011.

Anyway, in a paper I very briefly described in “Week 1”:
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5) Lee Smolin, “Time, measurement and information loss in quantum cosmology”,
available as gr-qc/9301016.

Smolin showed, how, using a clever trick sketched in the present paper to get “observ-
ables” invariant under spatial but not temporal observables, together with Rovelli’s idea,
one could define lots of real observables, invariant under spacetime diffeomorphisms
that is, thus making a serious bite into this problem.

I warn the reader that there is a fair amount that is not too realistic about these
methods. First there’s the “clock field” — this can actually be taken as a free massless
scalar field, but in so doing there is the likelihood of serious technical problems. Some
of these are discussed in

6) P. Hajicek, “Comment on ‘Time in quantum gravity — an hypothesis™, Phys. Rev.
D44 (1991), 1337-1338.

(But I haven’t actually read this, just Isham’s description.) Also, the clever trick of the
present paper is to couple gravity to an antisymmetric tensor gauge field so that in addi-
tion to having loops as part of one’s “loop representation,” one has surfaces — a “surface
representation”. But this antisymmetric tensor gauge field is not the sort of thing that
actually seems to arise in physics (unless I'm missing something). Still, it’s a start. I think
I'll finish by quoting Smolin’s abstract:

Two sets of spatially diffeomorphism invariant operators are constructed in the
loop representation formulation of quantum gravity. This is done by coupling
general relativity to an anti- symmetric tensor gauge field and using that field
to pick out sets of surfaces, with boundaries, in the spatial three manifold. The
two sets of observables then measure the areas of these surfaces and the Wilson
loops for the self-dual connection around their boundaries. The operators that
represent these observables are finite and background independent when con-
structed through a proper regularization procedure. Furthermore, the spectra
of the area operators are discrete so that the possible values that one can ob-
tain by a measurement of the area of a physical surface in quantum gravity are
valued in a discrete set that includes integral multiples of half the Planck area.
These results make possible the construction of a correspondence between any
three geometry whose curvature is small in Planck units and a diffeomorphism
invariant state of the gravitational and matter fields. This correspondence relies
on the approximation of the classical geometry by a piecewise flat Regge mani-
fold, which is then put in correspondence with a diffeomorphism invariant state
of the gravity-matter system in which the matter fields specify the faces of the
triangulation and the gravitational field is in an eigenstate of the operators that
measure their areas.

In the Space and Time marriage we have the greatest Boy meets Girl story
of the age. To our great-grandchildren this will be as poetical a union as the
ancient Greek marriage of Cupid and Psyche seems to us.

— Lawrence Durrell
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Week 7
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1) Abhay Ashtekar, “Mathematical problems of non-perturbative quantum general rel-
ativity” (lectures delivered at the 1992 Les Houches summer school on Gravitation
and Quantization), 87 pages, Plain TeX, available as gr-qc/9302024.

I described this paper in “Week 3”, but now it’s available from gr-qc. It’s a good quick
introduction to the loop representation of quantum gravity.

2) Abhay Ashtekar, Lectures on Non-perturbative Canonical Gravity, World Scientific
Press, 1991.

This book, which I finally obtained, is the introduction to the loop representation
of quantum gravity. What’s the loop representation? Well, this is a long story, so you
really should read the book. But just to get you going, let me describe Ashtekar’s “new
variables,” which form the basis for Rovelli and Smolin’s construction of the loop repre-
sentation.

First, recall that general relativity is usually thought of as a theory about a metric
on spacetime — more precisely, a Lorentzian metric. Here spacetime is a 4-dimensional
manifold, and a Lorentzian metric allows you to calculate the “dot product” of any two
tangent vectors at a point. This is in quotes because, while a normal dot product might
look like

(vo, v1,v2,v3) - (W, w1, W2, Ww3) = Vowg + V1w + Vaws + V3W3

relative to some basis, for a Lorentzian metric we can always find a basis of the tangent
space such that

(vo, v1,v2,v3) - (Wo, W1, W, W3) = VoWo — VW1 — VaWa — V3W3

Now the metric in general relativity defines a “connection,” which tells you a tangent
vector might “twist around” as you parallel translate it, that is, move it along while
trying to keep it from rotating unnecessarily. Here “twist around” is in quotes because,
since you are parallel translating the vector, it’s not really “twisting around” in the usual
sense, but it might seem that way relative to some coordinate system. For example, if you
used polar coordinates to describe parallel translation on the plane, it might seem that
the unit vector in the r direction “twisted around” towards the 6 direction as you dragged
it along. But in another coordinate system — say the usual z-y system — it would not
appear to be “twisting around”. This fact is expressed by saying “the connection is not a
tensor”.

But from the connection we can cook up a big fat tensor, the “Riemann tensor” R’ ,,,
which says how much the vector in the /th direction (here the indices range from O to 3)
twists towards the ith direction when you move it around a teeny little square in the j-k
plane. The Lagrangian in ordinary GR is just the integral of the “Ricci scalar curvature,”
R, which is gotten from the Riemann tensor by “contraction”, i.e. summing over the
indices in a certain way:

R =R}/
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where we are raising indices using the metric in a manner beloved by physicists and
feared by many mathematicians. If you integrate the Lagrangian over a region of space-
time you get the “action”, and in classical general relativity (in a vacuum, for simplicity)
one can formulate the laws of motion simply by saying: any teeny change in the met-
ric that vanishes on the boundary of the region should leave the action constant to first
order. In other words, the solutions of the equations of general relativity are the *sta-
tionary points* of the action. If you know how to do variational calculus you can derive
Einstein’s equations from this variational principle, as it’s called. Mathematicians will
be pleased to know that Hilbert beat Einstein to the punch here, so the integral of R is
called the “Einstein—Hilbert” action for general relativity.

But there’s another formulation of general relativity in terms of an action principle.
This is called the “Palatini” action — and actually I'm going to describe a slight variation
on it, that is conceptually simpler, and apparently appears for the first time in Ashtekar’s
book. The Palatini approach turns out to be more elegant and is a nice stepping-stone
to the Ashtekar approach. In the Palatini approach one thinks of general relativity not
as being a theory of a metric, but of a “tetrad” and an “so(3, 1) connection”. To explain
what these are, I will cut corners and assume all the fiber bundles lurking around are
trivial; the experts will easily be able to figure out the general case. So: an (orthonormal)
tetrad, or “vierbein,” is a just a kind of field on spacetime which at each point consists of
an (ordered) orthonormal basis of the tangent space. If we express the metric in terms
of a tetrad, it looks just like the formula for the standard “inner product”

(U07U17U27U3) : (w07w1,w2, w3) = VoWo — V1W1 — VW2 — V3Ws3

This allows us to identify the group of linear transformations of the tangent space that
preserve the metric with the group of linear transfomations preserving the standard
“inner product,” which is called SO(1, 3) since there’s one plus sign and three minuses.
And from the connection mentioned above one gets an SO(1,3) connection, or, what’s
more or less the same thing, an so(1, 3)-valued 1-form, that is, a kind of field that can
eat a tangent vector at any point and spits out element of the Lie algebra so(1, 3).

What's so(1, 3)? Well, elements of so(1, 3) include “infinitesimal” rotations and Lorentz
transformations, since SO(1, 3) is generated by rotations and Lorentz transformations.
More precisely, so(1,3) is a 6-dimensional Lie algebra having as a basis the three in-
finitesimal rotations Ji, Jo, and J3 around the three axes, and the three infinitesimal
Lorentz transformations or “boosts” Ky, Ks, K3. The bracket in this most important Lie
algebra is given by

[Jis 5] = Ji
[Kiij] =—Ji
[Jiij] = K

where (4, j, k) is a cyclic permutation of (1,2, 3). (I hope I haven’t screwed up the signs.)
Note that the J’s by themselves form a Lie subalgebra called so(3), the Lie algebra of the
rotation group SO(3). Note that so(3) is isomorphic to the cute little Lie algebra su(2) I
described in my post “Week 5”; J;, J5, and J3 correspond to the guys I, J, and K divided
by two.

The so(1,3) connection has a curvature, and using the tetrads again we can identify
this with the Riemann curvature tensor. So the Palatini trick is to rewrite the Einstein—
Hilbert action in terms of the curvature of the so(1,3) connection and the tetrad field.
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This is called the Palatini action. Charmingly, even though the tetrad field is utterly
unphysical, we can treat it and the so(1, 3) connection as independent fields and, doing
calculus of variations to find stationary points of the action, we get equations equivalent
to Einstein’s equations.

Ashtekar’s “new variables” — from this point of view — rely on a curious and pro-
found fact about so(1, 3). Note that so(1, 3) is a Lie algebra over the real numbers. But if
we allow ourselves to form complex linear combinations of the J’s and K’s, thus:

M; = (J; +iK;)/2
N; = (J; —iK;)/2

(please don’t mix up the subscript ¢ = 1,2, 3 with the other 4, the square root of minus
one) we get the following brackets:

[Miij] = My,
[Niij] = Ni
[M;,N;]=0

I think the signs all work but I wouldn’t trust me if I were you. The wonderful thing
here is that the M’s and N’s commute with each other, and each set has commutation
relations just like the J’s! The J’s, recall, are infinitesimal rotations, and the Lie algebra
they span is s0(3). So in a sense the Lie algebra of the Lorentz group can be “split” into
“left-handed” and “right-handed” copies of s0(3), also known as “self-dual” and “anti-
self-dual” copies. This is, in fact, what lies behind the handedness of neutrinos, and
many other wonderful things.

But let me phrase this result more precisely. Since we allowed ourselves complex
linear combinations of the J’s and K’s, we are now working in the “complexification”
of the Lie algebra so0(3,1), and we have shown that this Lie algebra over the complex
numbers splits into two copies of so(3, C), the complexification of so(3).

Ashtekar came up with some “new variables” for general relativity in the context of
the Hamiltonian approach. Here we are working in the Lagrangian approach, where
things are simpler because they are “generally covariant,” not requiring a split of space-
time into space and time. The Lagrangian approach to the new variables is due to
Samuel, Jacobson and Smolin, and in this approach all they amount to is this: take the
50(1,3) connection of the Palatini approach, think of so(1,3) as sitting inside the com-
plexification thereof, and consider only the “right-handed” part! Thus, from an so(1, 3)
connection, we get a s0(3,C) connection. The “new variables” are just the tetrad field
and this so0(3, C) connection.

I have tried to keep down the indices but I think I will write down the Palatini La-
grangian and then the “new variables” Lagrangian, without explaining exactly what they
mean, just to show how amazingly similar-looking they are. In the Palatini approach we
have a tetrad field, which now we write in its full glory as e}, and the curvature of the
s0(1,3) connection, which now we write as Q{JJ . The Lagrangian is then

i JOlJ
eleJQij

(which we integrate against the usual volume form to get the action). In the new vari-
ables approach we have a tetrad field again, and we write the curvature of the so(3,C)
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connection as Fi?’ . (This turns out to be just the “right-handed” part of ! JJ .) The

7
Lagrangian is 4
epel L
Miraculously, this also gives Einstein’s equations.
What's utterly unclear from what I've said so far is why this helps so much in trying

to quantize gravity. I may eventually get around to writing about that, but for now, read
the book!

3) David Yetter and Louis Crane, “We are not stuck with gluing”, available as hep-th/
9302118.

Well, in “Week 2” I mentioned Crane and Yetter’s marvelous construction of a 4d topo-
logical quantum field theory using the representations of the quantum group SU,(2) —
and in “Week 5” I mentioned Ocneanu’s “proof” that the resulting 4-manifold invariants
were utterly trivial (equal to 1 for all 4-manifolds). Now Crane and Yetter have replied,
saying that their 4-manifold invariants are not trivial and that Ocneanu interpreted their
paper incorrectly. I look forward to the conference on quantum topology in Kansas at

the end of May, where the full story will doubtless come out.

4) R. Capovilla, J. Dell and T. Jacobson, “The initial value problem in light of Ashtekar’s
variables”, available as gr-qc/9302020.

The advantage of Ashtekar’s new variables is that they simplify the form of the constraint
equations one gets in the initial-value problem for general relativity. This is true both
of the classical and quantum theories. Rovelli and Smolin used this to find, for the first
time, lots of states of quantum gravity defined by link invariants. Here the above authors
are trying to apply the new variables to the classical theory.

5) Sergey Piunikhin, “Combinatorial expression for universal Vassiliev link invariant”,
available as hep-th/9302084.

Somebody ought to teach those Russians how to use the word “the” now that the cold
war is over. Anyway, this paper defines a kind of universal object for Vassiliev invariants,
which is sort of similar to what I was trying to do in

6) John Baez, “Link invariants of finite type and perturbation theory”, Lett. Math.
Phys. 26 (1992) 43-51. Also available as hep-th/9207041.

but more concrete, and (supposedly) simpler than Kontsevich’s approach. My parenthe-
sis simply indicates that I haven’t had time to figure out what’s going on here.
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Week 8

March 5, 1993

I was delighted to find that Louis Kauffman wants to speak at the workshop at UCR on
knots and quantum gravity; he’ll be talking on “Temperley-Lieb recoupling theory and
quantum invariants of links and manifolds”. His books

1) Louis Kauffman, On Knots, Annals of Mathematics Studies 115, Princeton U. Press,
Princeton, 1987.

and more recently
2) Louis Kauffman, Knots and Physics, World Scientific Press, Singapore, 1991.

are a lot of fun to read, and convinced me to turn my energies towards the intersection
of knot theory and mathematical physics. As you can see by the title of the series he’s
editing, he is a true believer the deep significance of knot theory. This was true even
before the Jones polynomial hit the mathematical physics scene, so he was well-placed to
discover the relationship between the Jones polynomial (and other new knot invariants)
and statistical mechanics, which seems to be what won him his fame. He is now the
editor of a journal, Journal of Knot Theory and its Ramifications.

He sent me a packet of articles and preprints which I will briefly discuss. If you read
any of the stuff below, please read the delightful reformulation of the 4-color theorem
in terms of cross products that he discovered! I am strongly tempted to assign it to my
linear algebra class for homework. ...

3) Louis Kauffman, “Map coloring and the vector cross product”, J. Comb. Theory 48
(1990), 145-154.

Louis Kauffman, “Map coloring, ¢-deformed spin networks, and Turaev-Viro in-
variants for 3-manifolds”, Int. Jour. Mod. Phys. 6 (1992), 1765-1794.

Louis Kauffman, “An algebraic approach to the planar colouring problem”, Com-
mun. Math. Phys. 152 (1993), 565-590.

As we all know, the usual cross product of vectors in R? is not associative, so the following
theorem is slightly interesting:

Theorem. Consider any two bracketings of a product of any finite number of
vectors, e.g.:

L=ax({bx((cxd)xe) and R=((axb)xc)x(dxe).
Let i, j, and k be the usual canonical basis for R?:
i=1(1,0,0), j=1(0,1,0), k=1(0,0,1).

Then we may assign a, b, ¢, ... values taken from {4, j, ¥} in such a way that
L = R and both are nonzero.
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But what’s really interesting is:

Meta-Theorem. The above proposition is equivalent to the 4-color theorem.
Recall that this theorem says that any map on the plane may be colored with
4 colors in such a way that no two regions with the same color share a border
(an edge).

What I mean here is that the only way known to prove this Theorem is to deduce
it from the 4-color theorem, and conversely, any proof of this Theorem would easily
give a proof of the 4-color theorem! As you all probably know, the 4-color theorem
was a difficult conjecture that resisted proof for about a century before succumbing to a
computer-based proof that required the consideration of many, many special cases:

4) Kenneth Appel and Wolfgang Haken, Every Planar Map is Four Colorable Contem-
porary Mathematics 98 American Mathematical Society, Providence Rhode Island,
19809.

So the Theorem above may be regarded as a profoundly subtle result about the “as-
sociativity” of the cross product!

Of course, I hope you all rush out now and find out how this Theorem is equivalent
to the 4-color theorem. For starters, let me note that it uses a result of Tait: first, to
prove the 4-color theorem it’s enough to prove it for maps where only 3 countries meet
at each vertex (since one can stick in a little new country at each vertex), and second,
4-coloring such a map is equivalent to coloring the edges with 3 colors in such a way that
each vertex has edges of all 3 colors adjoining it. The 3 colors correspond to i, j, and k!

Kauffman and Saleur (the latter a physicist) come up with another algebraic formula-
tion of the 4-color theorem in terms of the Temperley-Lieb algebra. The Temperley-Lieb
algebra T'L,, is a cute algebra with generators ey, ..., e,_; and relations that depend on
a constant d called the “loop value”:

ef = de;
€i€i4+16; = €4
€;€;-1€; = €
e;e; = €;€; for |Z —j| > 1.

The point of it becomes clear if we draw the e; as tangles on n strands. Let’s take n = 3
to keep life simple. Then e; is

while e, is

N

5
N
~
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In general, e; “folds over” the ith and (¢ + 1)st strands. Note that if we square e; we get
a loop — e.g., e; squared is

) O C

Here we are using the usual product of tangles (see my webpage “tangles”). Now the
rule in Temperley-Lieb land is that we can get rid of a loop if we multiply by the loop
value d; that is, the loop “equals” d. So e; squared is just d times

C

D

which — since we are doing topology — is the same as e;. That's why e? = de;.
The other relations are even more obvious. For example, ejese; is just

)QC

which, since we are doing topology, is just e;! Similarly, ezeies = e, and e; and e;
commute if they are far enough away to keep from running into each other.

As an exercise for combinatorists: figure out the dimension of T'L,,.

Okay, very cute, one might say, but so what? Well, this algebra was actually first dis-
covered in statistical mechanics, when Temperley and Lieb were solving a 2-dimensional
problem:


http://math.ucr.edu/home/baez/tangles.html
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5) H. N. V. Temperley and E. H. Lieb, “Relations between the ‘percolation’ and ‘color-
ing’ problem and other graph-theoretical problems associated with regular planar
lattices: some exact results on the ‘percolation’ problem”, Proc. Roy. Soc. Lond.
322 (1971), 251-280.

It gained a lot more fame when it appeared as the explanation for the Jones polyno-
mial invariant of knots — although Jones had been using it not for knot theory, but in
the study of von Neumann algebras, and the Jones polynomial was just an unexpected
spinoff. Its importance in knot theory comes from the fact that it is a quotient of the
group algebra of the braid group (as explained in Knots and Physics). It has also found a
lot of other applications; for example, I've used it in my paper on quantum gravity and
the algebra of tangles. So it is nice to see that there is also a formulation of the 4-color
theorem in terms of the Temperley-Lieb algebra (which I won’t present here).

6) Louis Kauffman, “Knots and physics”, Proc. Symp. Appl. Math. 45 (1992), 131-
246.

Louis Kauffman, “Spin networks, topology and discrete physics”, University of Illi-
nois at Chicago preprint.

Louis Kauffman,“Vassiliev invariants and the Jones polynomial”, University of Illi-
nois at Chicago preprint.

Louis Kauffman, “Gauss codes and quantum groups”, University of Illinois at Chicago
preprint.

Louis Kauffman and H. Saleur,“Fermions and link invariants”, Yale University preprint
YCTP-P21-91, July 5, 1991.

Louis Kauffman, “State models for link polynomials”, L’Enseignement Mathema-
tique, 36 (1990), 1-37.

F. Jaeger, Louis Kauffman and H. Saleur, “The Conway polynomial in R? and in
thickened surfaces: a new determinant formulation”, preprint.

These are a variety of papers on knots, physics and everything.... The more free-
wheeling among you might enjoy the comments at the end of the first paper on “knot
epistemology.”

I am going to a conference on gravity at U.C. Santa Barbara on Friday and Saturday,
which I why I am posting this early, and why I have no time to describe the above
papers. I'll talk about my usual obsessions, and hear what other people are up to, perhaps
bringing back some words of wisdom for next week’s “This Week’s Finds”.
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Week 9

March 12, 1993

1. Boguslaw Broda,“Surgical invariants of four-manifolds”, preprint available as hep-th/
9302092.

There are a number of attempts underway to get invariants of four-dimensional man-
ifolds (and 4d topological quantum field theories) by techniques analogous to those that
worked in three dimensions. The 3-manifold invariants and 3d topological quantum field
theories got going with the work of Witten on Chern-Simons theory, but since this was
not rigorous a number of ways were devised to make it so. These seem different at first
glance but all give the same answer. Two approaches that use a lot of category theory
are the Heegard splitting approach (due to Crane, Kohno and Kontsevich, in which one
writes a 3-manifold as two solid n-holed tori glued together by a diffeomorphism of their
boundaries), and the surgery on links approach (due to Reshetikhin and Turaev, in which
one builds up 3-manifolds by starting with the 3-sphere, cutting out thickened links and
gluing them back in a different way, allowing one to define invariants of 3-manifolds
from link invariants). In the case of 3 dimensions a nice paper relating the Heegard
splitting and the surgery on links approaches is

2) Sergey Piunikhin, “Reshetikhin-Turaev and Crane-Kohno-Kontsevich 3-manifold in-
variants coincide”, Journal of Knot Theory and its Ramifications 2 (1993), 65-95.

People are now trying to generalize all these ideas to 4-manifolds. There is already
an interesting bunch of 4-manifold invariants out there, the Donaldson invariants, which
are hard to compute, but were shown (heuristically) by Witten to be related to a quantum
field theory. Lately people have been trying to define invariants using category theory;
these may or may not turn out to be the same.

I've already been trying to keep you all updated on the story about Crane and Yetter’s
4d TQFT. This week I'll discuss another approach, with a vast amount of help from Daniel
Ruberman, a topologist at Brandeis. Any errors in what I write on this are likely to be
due to my misunderstandings of what he said — caveat emptor! Broda’s paper is quite
terse — probably due to the race that is going on — and is based on:

3) E. Cesar de Sa, “A link calculus for 4-manifolds”, in Topology of Low-Dimensional
Manifolds, Proc. Second Sussex Conf., Springer Lecture Notes in Mathematics 722,
Springer, Berlin, 1979, pp. 16-30.

so I should start by describing what little I understand of de Sa’s work.

One can describe (compact, smooth) 4-manifolds in terms of handlebody decompo-
sition. This allows one to actually draw pictures representing 4-manifolds. A lot of times
when people first hear about topology they get they impression that it’s all about rub-
ber doughnuts, Mobius strips, and other Dali-esque wiggly objects in hyperspace. Then,
when they take courses in it, they are confronted with nasty separation axioms and coho-
mology theories! This is just to scare away outsiders! Handlebody theory really is about
wiggly objects in hyperspace, and it’s lots of fun — though to be good in it you need to
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know your point set topology and your algebraic topology, I'm afraid — and much better
than I do!
Recall:
D" = unit ball in R”
S™ = unit sphere in R**!

In particular note that S° is just two points. Note that:
* the boundary of D* is S®
* the boundary of D3 x D' is D? x S°U S? x D!
* the boundary of D? x D? is D? x S* U S! x D?
e the boundary of D' x D3 is D! x §2U S° x D3
e the boundary of D* is S3

I have written this rather redundant chart in a way that makes the pattern very clear
and will come in handy below for those who aren’t used to this stuff.

To build up a 4-manifold we can start with a “0-handle,” D*, which has as boundary
S3.

Then we glue on “1-handles,” that is, copies of D3 x D!. Note that part of the
boundary of D' x D? is D3 x S°, which is two D?s; when we glue on a 1-handle we
simply attach these two D?’s to the S by a diffeomorphism. The resulting space is not
really a smooth manifold, but it can be smoothed. It then becomes a smooth 4-manifold
with boundary.

Then we glue on “2-handles” by attaching copies of D? x D? along the part of their
boundary that is D? x S!. Then we smooth things out.

Then we glue on “3-handles” by attaching copies of D' x D? along the part of their
boundary that is D! x S2. Then we smooth things out.

Then we glue on “4-handles” by attaching copies of D* along their boundary, i.e. S°.

We can get any compact oriented 4-manifold this way using attaching maps that are
compatible with the orientations. The reader who is new to this may enjoy constructing
2-manifolds in an analogous way. Compact oriented 2-manifolds with boundary are just
n-holed tori.

What's cool is that with some tricks one can still draw what’s going in the case of
3-manifolds and 4-manifolds. Here I'll just describe how it goes for 4-manifolds, since
that’s what Cesar de Sa and Broda are thinking about. By the way, a good introduction
to this stuff is

4) The Topology of 4-manifolds, by Robion C. Kirby, Springer Lecture Notes in Mathe-
matics 1374, 1989.

So — here is how we draw what’s going on. I apologize for being somewhat sketchy here
(sorry for the pun, too). I am a bit rushed since I'm heading off somewhere else next
weekend. .. and I am not as familiar with this stuff as I should be.

So, when we start with our 0-handle, or D*, we “draw” its boundary, S3. Think of
S3 as R? and a point at infinity. Since we use perspective when drawing pictures of 3-d
objects, this boils down to pretending that our blackboard is a picture of S3!
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As we add handles we continue to “draw” what’s happening at the boundary of the 4-
manifold we have at each stage of the game. 1-handles are attached by gluing a D3 x D!
onto the boundary along two D*’s — or balls — so we can just draw the two balls.

2-handles are attached by gluing a D? x D? onto the boundary of the 4-manifold we
have so far along a D? x S' — or solid torus, so we just need to figure out how to draw
an embedded solid torus. Well, for this we just need to draw a knot (that is, an embed-
ded circle), and write an integer next to it saying how many times the embedded solid
torus “twists” — plus or minus depending on clockwise or counterclockwise — as we go
around the circle. In other words, an embedded solid torus is (up to diffeomorphism)
essentially the same as a framed knot. If we are attaching a bunch of 2-handles we need
to draw a framed link.

Things get a bit hairy in the case when one of the framed links goes through one of
the 1-handles that we've already added. It’s easier to draw this situation if we resort
to another method of drawing the 1-handles. It’s a bit more subtle, and took me quite
a while to be able to visualize (unfortunately I seem to have to visualize this stuff to
believe it). So let’s go back to the situation where we have D*, with S as its boundary,
and we are adding 1-handles. Instead of drawing two balls, we draw an unknotted circle
with a dot on it! The dot is just to distinguish this kind of circle from the framed links we
already have. But what the circle means is this. The circle is the boundary of an obvious
D?, and we can push the interior of this D? (which is sitting in the S3) into the interior
of D*. If we then remove a neighborhood of the D?, what we have left is S* x D3, which
is just the result of adding a 1-handle to D*.

This is probably easier to visualize one dimension down: if we have a good old unit
ball, D?, and slap an interval, or D', onto its boundary, and then push the interior of the
interval into the interior of the ball, and remove a neighborhood of the interval, what
we have left is just an S x D2,

So in short, we can draw all the 1-handles by drawing unlinked, unknotted circles
with dots on them, and then draw all the 2-handles by drawing framed links that don’t
intersect these circles.

At this point, if you have never seen this before, you are probably dreading the 3-
handles and 4-handles. Luckily a theorem comes to our rescue! If we start at the other
end of our handlebody decomposition, as it were, we start with 4-handles and glue on
3-handles. If you ponder the chart and see what the pattern of what we’re doing is, you’ll
see that a single 4-handle with some 3-handles stuck on is just the same as a 0-handle
with some 1-handles stuck on. So when we now glue this thing (or things) onto the stuff
we’ve built out of 0-, 1-, and 2-handles, we are doing so using a diffeomorphism of its
boundary. But a theorem of Laudenbach and Poenaru,

5) F. Laudenbach and V. Poenaru, ‘A note on 4-dimensional handlebodies”, Bull.
Math. Soc. France 100 (1972), 337-344.

says that any such diffeomorphism extends to one of the interior. This means that it
doesn’t make a darn bit of difference which diffeomorphism we use to glue it on. In short,
all the information is contained in the 1- and 2-handles, so we can draw 4-manifolds by
first drawing a batch of unknotted unlinked circles with dots on them and then drawing
a framed link in the complement.

(A question for the experts, since I'm just learning this stuff: in the above we seem
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to be assuming that there’s only one O-handle. Is this an okay assumption or do we need
something fancier if there’s more?)

Now a given 4-manifold may have lots of different handlebody decompositions. So,
as usual, we would like to have a finite set of “moves” that allow us to get between
any pair of handlebody decompositions of the same 4-manifold. Then we can construct
a 4-manifold invariant by cooking up a number from a handlebody decomposition —
presented as a picture as above, if we want — and showing that it doesn’t change under
these “moves”.

So, what de Sa did was precisely to find such a set of moves. (There, that’s what I
understand of his work!)

And what Broda did was precisely to use the Kauffman bracket invariant of framed
links to cook up an invariant of 4-manifolds from the handlebody decomposition —
which, note, involves lots of links. Recall that the Kauffman bracket assigns to each link
a polynomial in one variable, ¢q. Here “¢” is just the same ¢ that appears in the quantum
group SU,(2). As I mentioned in “Week 5”, this acts quite differently when ¢ is a root
of unity, and the 3d topological quantum field theories coming from quantum groups, as
well as Crane and Yetter’s 4d topological quantum field theory, come from considering
this root-of-unity case. So it’s no surprise that Broda requires ¢ to be a root of unity.

Ruberman had some other remarks about Broda’s invariant, but I think I would prefer
to wait until I understand them. ...

6) Abhay Ashtekar, Ranjeet S. Tate and Claes Uggla, “Minisuperspaces: symmetries
and quantization”, available as gr-qc/9302026.

Abhay Ashtekar, Ranjeet S. Tate and Claes Uggla, “Minisuperspaces: observables
and quantization”, available as gr-qc/9302027.

I was just at the Pacific Coast Gravity Meeting last weekend and heard Ranjeet Tate
talk on this work. Recall first of all that minisuperspaces are finite-dimensional approx-
imations to the phase space of general relativity, and are used to get some insight into
quantum gravity. I went through an example in “Week 6”. In these papers, the authors
quantize various “Bianchi type” minisuperspace models. The “Bianchi type” business
comes from a standard classification of homogeneous (but not necessarily isotropic) cos-
mologies and having a lot of symmetry. It is based in part on Bianchi’s classification of
3-dimensional Lie algebras into nine types. The second paper gives a pretty good review
of this stuff before diving into the quantization, and I should learn it!

The most exciting aspect of these papers, at least to the dilettante such as myself,
is that one can quantize these models and show that quantization does NOT typically
remove the singularities (“Big Bang” and/or “big crunch”). Of course, these models have
only finitely many degrees of freedom, and are only a caricature of full-fledged quantum
gravity, so one can still argue that real quantum gravity will get rid of the singularities.
But a number of general relativists are arguing that this is not the case, and we simply
have to learn to live with singularities. So it’s good to look at models, however simple,
where one can work things out in detail, and not just argue about generalities.

7) Alan D. Rendall, “Unique determination of an inner product by adjointness rela-
tions in the algebra of quantum observables”, Max-Planck-Institut fiir Astrophysik
preprint.
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I had known Rendall from his work on the perturbative expansion of the time evo-
lution operators in classical general relativity. He became interested in quantum gravity
a while ago and visited Ashtekar and Smolin at Syracuse University, since (as he said)
the best way to learn is by doing. There he wrote this paper on Ashtekar’s approach to
finding the right inner product for the space of states of quantum gravity. I had heard
about this paper, but hadn’t seen it until I met Rendall at the gravity meeting last week-
end. He gave me a copy and explained it. It is a simple and beautiful paper — such
nice mathematical results that I am afraid someone else may have found them earlier
somewhere.

Ashtekar’s idea is to fix the inner product by requiring that the physical observables,
which are operators on the space of states, be self-adjoint. Rendall shows the following.
Let A be a *-algebra acting on a vector space V. Let us say that an inner product on V
is “strongly admissable” if 1) the representation is a *-representation with respect to this
inner product, 2) for each element of A, the corresponding linear transformation on V is
bounded relative to the norm given by this inner product, and 3) the completion of V' in
the inner product is a topologically irreducible representation of A. Rendall shows the
uniqueness of a strongly admissable inner product on any representation V' of A (up to
a constant multiple). Of course, such an inner product need not exist, but when it does,
it is unique. This is as nice a result along these lines as one could hope for. He also has a
more complicated result that applies to unbounded operators. A good piece of work on
the foundations of quantum theory!

8) Arlen Anderson, “Thawing the frozen formalism: the difference between observ-
ables and what we observe”, preprint available as gr-qc/9211028.

There were a number of youngish folks giving talks at the gravity meeting who have
clearly been keeping up with the recent work on the problem of time and other concep-
tual problems in quantum gravity. In very brief terms, the problem of time is that in
general relativity, we have not a Hamiltonian in the traditional sense, but a “Hamilto-
nian constraint” H = 0, so when we quantize it superficially appears that there are no
dynamics whatsoever (as it seems like we have a zero Hamiltonian!). That’s the reason
for the term “frozen formalism” — and the desire to “thaw” it, or find the dynamics lurk-
ing in it. In fact, the Hamiltonian constraint is just a reflection of the fact that general
relativity has no preferred time coordinate, and we are just learning how to deal with
the quantum theory of such systems. For a good survey of the problem and some new
proposed solutions, I again refer everyone to Isham’s paper:

9) Chris J. Isham, “Canonical quantum gravity and the problem of time”, 125 pages,
available as gr-qc/9210011.

In particular, one interesting approach is due to Rovelli, and is called “evolving con-
stants of motion” (a deliberate and very accurate oxymoron). While there are serious
technical problems with this approach, it’s very natural from a physical point of view —
at least once you get used to it. I have the feeling that the younger physicists are, as
usual, getting used to it a lot more quickly than the older folks who have been pondering
the problem of time for many years. Anderson is one of these younger folks, and his
paper develops Rovelli’s approach in a toy model, namely the case of two free particles
satisfying the Schrodinger equation.
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10) Cayetano Di Bartolo, Rodolfo Gambini and Jorge Griego, “The extended loop group:
an infinite dimensional manifold associated with the loop space”, 42 pages, avail-
able as gr-qc/9303010.

Unfortunately I don’t have the time now to give this paper the discussion it deserves.
Gambini is one of the original inventors of the loop representation of gauge theories, so
his work is especially worth paying attention to. He explained the idea of this paper to
me a while back. Its aim is to provide a workable “calculus” for the loop representation
by enlarging the ordinary loop group to a larger group which is actually an infinite-
dimensional Lie group — the point being that the usual loop group doesn’t have a Lie
algebra, but this one does. As one might expect, the Lie algebra of this group is closely
related to the theory of Vassiliev invariants. The paper considers some applications to
quantum gravity and knot theory.
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Week 10

March 20, 1993

The most substantial part of this issue is some remarks by Daniel Ruberman on the
paper I was talking about last time by Boguslaw Broda. They apparently show that
Broda’s invariant is not as new as it might appear. But they’re rather technical, so I'll put
them near the end, and start off with something on the light side, and then note some
interesting progress on the Vassiliev invariant scene.

1) Marcia Bartusiak, “Beyond Einstein — is space loopy?”, Discover, April 1993.

In the airport in Montreal I ran into this article, which was the cover story, with an
upside-down picture of Einstein worked into a bunch of linked key-rings. I bought it —
how could I resist? — since it is perhaps the most “pop” exposition of the loop repre-
sentation of quantum gravity so far. Those interested in the popularization of modern
physics might want to compare

2) John Horgan, “Gravity quantized? A radical theory of gravity weaves space from
tiny loops”, Scientific American, September 1992.

Given the incredible hype concerning superstring theory, which seems to have faded
out by now, I sort of dread the same thing happening to the loop representation of
quantum gravity. It is intrinsically less hype-able, since it does not purport to be a theory
of everything, and it comes right after superstrings were supposed to have solved all the
mysteries of the universe. Also, its proponents are (so far) a more cautious breed than
the string theorists — note the question marks in both titles! But we will see....

Marcia Bartusiak is a contributing editor of Discover and the author of a book on
current topics in astronomy and astrophysics, Thursday’s Universe, which I haven’t read.
She’ll be coming out with a book in June, Through a Universe Darkly, that’s supposed to
be about how theories of cosmology have changed down through the ages. She does a
decent job of sketching vaguely the outlines of the loop representation to an audience
who must be presumed ignorant of quantum theory and general relativity. Of course,
there is also a certain amount of human-interest stuff, with Ashtekar, Rovelli and Smolin
(quite rightly) coming off as the heroes of the story. There are, as usual, little boxes with
gee-whiz remarks like

WITH REAMS OF PAPER
SPREAD 0OUT
OVER THE KITCHEN TABLE
THEY FOUND
SOLUTION AFTER SOLUTION
FOR EQUATIONS
THOUGHT IMPOSSIBLE TO SOLVE

(which is, after all, true — nobody had previously found solutions to the constraint

equations in canonical quantum gravity, and all of a sudden here were lots of ’em!). And
there are some amusing discussions of personality: ‘Affable, creative, and easy-going,
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Rovelli quickly settled into the role of go-between, helping mesh the analytic powers of
the quiet, contemplative Ashtekar with the creativity of the brash, impetuous Smolin.”
And discussions of how much messier Smolin’s office is than Ashtekar’s.

In any event, it’s a fun read, and I recommend it. Of course, I'm biased, so don’t trust
me.

3) Sergey Piunikhin,“Vassiliev invariants contain more information than all knot poly-
nomials”, preprint.

Sergey Piunikhin, “Turaev-Viro and Kauffman-Lins invariants for 3-manifolds co-
incide”, Journal of Knot Theory and its Ramifications 1 (1992), 105-135.

Sergey Piunikhin, “Different presentations of 3-manifold invariants arising in ra-
tional conformal field theory”, preprint.

Sergey Piunikhin, “Weights of Feynman diagrams, link polynomials and Vassiliev
knot invariants”, preprint.

Sergey Piunikhin “Reshetikhin—Turaev and Crane-Kohno—Kontsevich 3-manifold
invariants coincide”, preprint.

I received a packet of papers by Piunikhin a while ago. The most new and interesting
thing is the first paper listed above. In “Week 3” I noted a conjecture of Bar-Natan that
all Vassiliev invariants come from quantum group knot invariants (or in other words,
from Lie algebra representations.) Piunikhin claims to refute this by showing that there
is a Vassiliev invariant of degree 6 that does not. (However, other people have told me
his claim is misleading!) I have been too busy to read this paper yet.

4) Bernd Briigmann, Bibliography of publications related to classical and quantum
gravity in terms of the Ashtekar variables, available as gr-qc/9303015.

Let me just quote the abstract; this should be a handy thing:

This bibliography attempts to give a comprehensive overview of all the literature
related to the Ashtekar variables. The original version was compiled by Peter
Huebner in 1989, and it has been subsequently updated by Gabriela Gonzalez
and Bernd Briigmann. Information about additional literature, new preprints,
and especially corrections are always welcome.

5) Boguslaw Broda,“Surgical invariants of four-manifolds”, preprint available as hep-th/
9302092. (Revisited — see “Week 97)

Let me briefly recall the setup: we describe a compact 4-manifold by a handlebody
decomposition, and represent this decomposition using a link in S3. The 2-handles
are represented by framed knots, while the 1-handles are represented by copies of the
unknot (which we may think of as having the zero framing). The 1-handles and 2-
handles play quite a different role in constructing the 4-manifold — which is why one
normally draws the former as copies of the unknot with a dot on them — but Broda’s
construction does NOT care about this. Broda simply takes the link, forgetting the dots,
and cooks up a number from it, using cabling and the Kauffman bracket at an root of
unity. Let’s call Broda’s invariant by (M) — actually for each primitive rth root of unity,
we have b,.(M).
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Broda shows that this is a 4-manifold invariant by showing it doesn’t change under
the de Sa moves. One of these consists of adding or deleting a Hopf link

Q)

in which both components have the zero framing and one represents a 1-handle and the
other a 2-handle. This move depends on the fact that we can “cancel” a 1-handle and
2-handle pair, a special case of a general result in Morse theory.

But since Broda’s invariant doesn’t care which circles represent 1-handles and which
represent 2-handles, Broda’s invariant is also invariant under adding two 2-handles that
go this way. This amounts to taking a connected sum with S? x S2. lLe., b(M) =
b(M#5S?% x 5?).

Now, Ruberman told me a while back that we must also have b(M) = b(M#CP*# —
CP?), that is, the invariant doesn’t change under taking a connected sum with a copy
of CP? (complex projective 2-space) and an orientation-reversed copy of CP?. This
amounts to adding or deleting a Hopf link in which one component has the zero framing
and the other has framing 1. I didn’t understand this, so I pestered Ruberman some
more, and this is what he says (modulo minor edits). I have not had time to digest it yet:

The first question you asked was about the different framings on a 2-handle
which goes geometrically once over a 1-handle, i.e. makes a Hopf link in which
one of the circles is special (i.e is really a 1-handle, i.e. in Akbulut-Kirby’s nota-
tion is drawn with a dot.) The answer is that the framing doesn’t matter, since
the handles cancel. This is explained well (in the PL case) in Rourke-Sanderson’s
book. (Milnor’s book on the h-cobordism theorem explains it in terms of Morse
functions, in the smooth case.)

From this, it follows that b(M) = b(M#5S? x 5§2) = b(M#CP?4# — CP?). For
M is unchanged if you add a cancelling 1,2 pair, independent of the framing on
the 2-handle. If you change the special circle to an ordinary one, b(M) doesn’t
change. On the other hand, M has been replaced by its sum with either 5% x S?
or CP?4# — CP?, depending on whether the framing on the 2-handle is even or
odd. (Exercise: why is only the parity relevant?)

Now as I pointed out before, if one replaces all of the 1-handles (special circles) of
a 4-manifold with 2-handles, the invariant doesn’t change. This operation cor-
responds to doing surgery on the 4-manifold, along the cores of the 1-handles.
In particular, the manifold has changed by a cobordism. (This is a basic con-
struction; when you do surgery you produce a cobordism, in this case it’s M x I
with 2-handles attached to it along the circles which you surgered.)

From this, I will now show that Broda’s invariant is determined by the signature.
(This is in the orientable case. Actually it seems that his invariant is really an
invariant of an oriented manifold.) The argument above says that for any M,
there is an M’', with b(M) = b(M'), where M’ has no 1-handles, and where M
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and M’ are cobordant. In particular, M’ is simply connected. So it suffices to
show that b(N) = b(N') if N and N’ are simply connected.

So now you can assume you have two simply connected manifolds N, N' which
are cobordant via a 5-dimensional cobordism W, which you can also assume
simply connnected. By high-dimensional handlebody theory, you can get rid
of the 1-handles and 4-handles of W, and assume that all the 2-handles are
added, then all of the 3-handles. If you add all the 2-handles to N, you get
N # k(S? x S?) # I1(CP*#(—CP?)) for some k and I. (Here is where simple
connectivity is relevant; the attaching circle of a 2-handle is null-homotopic,
and therefore isotopic to an unknotted circle. It’s a simple exercise to see what
happens when you do surgery on a trivial circle, ie you add on S? x S? or
CP?# — CP? On the other hand you get the same manifold as the result of
adding 2-handles to N’'. So

N # k(S? x S?) # [(CP*#(—CP?)) = N’ # k'(S?zS?) # I'(CP*#(—CP?)),

so by previous remarks b(N) = b(N'), i.e b is a cobordism invariant.

Now: b is also multiplicative under connected sum, because connected sum just
takes the union of the link diagrams. The cobordism group is Z, detected by
the signature, so b must be a multiple of the signature, modulo some number.
(Maybe at this point I realize b should be b,. or some such). If you compute (as a
grad student Tian-jin Li did for me) b,.(CP?), you find that b, lives in the group
of rth (or maybe 4rth; 'm at home and don’t have my note) roots of unity.

My conclusion: this invariant is a rather complicated way to compute the sig-
nature of a 4-manifold (modulo r or 4r) from a link diagram of the manifold.

There is an important moral of the story, which is perhaps not obvious to some-
one outside of 4-manifolds. Any invariant which purports to go beyond classical
ones (i.e. invariants of the intersection form) must treat CP*> and —CP? very
differently. It seems to be the case that many manifolds which are different (i.e.
nondiffeomorphic) become diffeomorphic after you add on CP?. Thus any useful
invariant should get rather obliterated by adding CPP?. On the other hand, non-
diffeomorphic manifolds seem to stay non-diffeomorphic, no matter how many
—CP?’s you add on. This phenomenon doesn’t seem to be exhibited by any of the
quantum-group type constructions for 3-manifolds; as it shouldn’t, since (from
the 3-manifold point of view) an unknot with framing +1 or -1 doesn’t change
the 3-manifold. So if you’re looking for a combinatorial invariant, it seems crit-
ical that you try to build in the asymmetry wrt orientation which 4-manifolds
seem to possess.

Exercise: do the nonorientable case. The answer should be that b is determined
by the Euler characteristic, mod 2.
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Week 11

March 23, 1993

I'm hitting the road again tomorrow and will be going to the Quantum Topology con-
ference in Kansas until Sunday, so I thought I'd post this week’s finds early. As a result
they’ll be pretty brief. Let me start with one that I mentioned in “Week 9” but is now
easier to get:

1) Alan D. Rendall, “Unique determination of an inner product by adjointness rela-
tions in the algebra of quantum observables”, available as gr-qc/9303026.

and then mention another thing I've gotten as a spinoff from the gravity conference at
UCSB:

2) Ranjeet S. Tate, An Algebraic Approach to the Quantization of Constrained Systems:
Finite Dimensional Examples, Ph.D. thesis, Physics Department, Syracuse University,
August 1992, SU-GP-92/8-1.

Both the technical problems of “canonical” quantum gravity and one of the main
conceptual problems — the problem of time — stem from the fact that general relativity
is a system in which the initial data have constraints. So improving our understanding of
quantizing constrained classical systems is important in understanding quantum gravity.

Let me say a few words about these constraints and what I mean by “canonical”
quantum gravity.

First consider the wave equation in 2 dimensions. This is an equation for a function
from R? to R, say ¢(t,z), where ¢ is a timelike and x is a spacelike coordinate. The
equation is simply

d’¢  d?e —0

2 da?
Now this equation can be rewritten as an evolutionary equation for initial data as follows.
We consider pairs of functions (@, P) on R — which we think of as the functions ¢ and
dp/dt on “space”, that is, on a surface ¢t = constant. And we rewrite the second-order
equation above as a first-order equation:

d (o dQ
G@r=(re2). ®

This is a standard trick. We call the space of pairs (@, P) the “phase space” of the theory.
In canonical quantization, we treat this a lot like the space R? of pairs (q,p) describing
the initial position and momentum of a particle. Note that for a harmonic oscillator we
have an equation a whole lot like (1):

d

%(q,p) = (p, —q)-

This is why when we quantize the wave equation it’s a whole lot like the harmonic
oscillator.
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Now in general relativity things are similar but more complicated. The analog of
the pairs (¢, dp/dt) are pairs (Q, P) where @ is the metric on spacetime restricted to
a spacelike hypersurface — that is, the “metric on space at a given time” — and P is
concocted from the extrinsic curvature of that hypersurface as it sits in spacetime. Now
the name of the game is to turn Einstein’s equation for the metric into a first-order
equation sort of like (1). The problem is, in general relativity there is no god-given
notion of time. So we need to pick a “lapse function” on our hypersurface, and a “shift
vector field” on our hypersurface, which say how we want to push our hypersurface
forwards in time. The lapse function says at each point how much we push it in the
normal direction, while the shift vector field says at each point how much we push it in
some tangential direction. These are utterly arbitrary and give us complete flexibility in
how we want to push the hypersurface forwards. Even if spacetime was flat, we could
push the hypersurface forwards in a dull way like:

new
old

/\/\ new

old

or in a screwy way like

Of course, in general relativity spacetime is usually not flat, which makes it ultimately
impossible to decide what counts as a “dull way” and what counts as a “screwy way,”
which is why we simply allow all possible ways.

Anyway, having chosen a lapse function and shift vector field, we can rewrite Ein-
stein’s equations as an evolutionary equation. This is a bit of a mess, and it’s called the
ADM (Arnowitt-Deser—Misner) formalism. Schematically, it goes like

%(Q, P) = (stuff, stuffy). 2)

where both “stuff;” and “stuff,” depend on both @ and P in a pretty complex way.

But there is a catch. While the evolutionary equations are equivalent to 6 of Ein-
stein’s equations (Einstein’s equation for general relativity is really 10 scalar equations
packed into one tensor equation), there are 4 more of Einstein’s equations which turn
into constraints on ) and P. 1 of these constraints is called the Hamiltonian constraint
and is closely related to the lapse function; the other 3 are called the momentum or
diffeomorphism constraints and are closely related to the shift vector field.

For those of you who know Hamiltonian mechanics, the reason why the Hamiltonian
constraint is called what it is is that we can write it as

H(Q,P)=0

for some combination of ) and P, and this H(Q, P) acts a lot like a Hamiltonian for
general relativity in that we can rewrite (2) using the Poisson brackets on the “phase
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space” of all (@, P) pairs as
d
7Q={PHQ.P)

d

The funny thing is that H is not zero on the space of all (Q, P) pairs, so the equations
above are nontrivial, but it does vanish on the submanifold of pairs satisfying the con-
straints, so that, in a sense, “the Hamiltonian of general relativity is zero”. But one must
be careful in saying this because it can be confusing! It has confused lots of people wor-
rying about the problem of time in quantum gravity, where they naively think “What —
the Hamiltonian is zero? That means there’s no dynamics at all!”

The problem in quantizing general relativity in the “canonical” approach is largely
figuring out what to do with the constraints. It was Dirac who first seriously tackled
such problems, but the constraints in general relativity always seemed intractible (when
quantizing) until Ashtekar invented his “new variables” for quantum gravity, that all of a
sudden make the constraints look a lot simpler. Ashtekar also has certain generalizations
of Dirac’s general approach to quantizing systems with constraints, and part of what Tate
(who was a student of Ashtekar) is doing is to study a number of toy models to see how
Ashtekar’s ideas work.

I should note that there are lots of other ways to handle problems with constraints,
like BRST quantization, that aren’t mentioned here at all.

Well, I'm off to Kansas and I hope to return with a bunch of goodies and some gossip
about 4-manifold invariants, topological quantum field theories and the like. Lee Smolin
will be talking there too so I will try to extract some information about quantum gravity
from him.
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Week 12

April 10, 1993

I had a lot of fun at the “Quantum Topology” conference at Kansas State University, in
Manhattan (yes, that’s right, Manhattan, Kansas, the so-called “Little Apple”), and then
spent a week recovering. Now I'm back, ready for the next quarter. ..

The most novel idea I ran into at the conference was due to Oleg Viro, who, ironi-
cally, is right here at U. C. Riverside. He spoke on work with Turaev on generalizing the
Alexander module (a classical knot invariant) to get a similar sort of module from any
3-dimensional topological quantum field theory. A “topological quantum field theory,” or
TQFT for short, is (in the language of physics) basically just a generally covariant quan-
tum field theory, one that thinks all coordinate systems are equally good, just as general
relativity is a generally covariant classical field theory. For a more precise definition of
TQFTs (which even mathematicians who know nothing of physics can probably follow),
see my article “symmetries”. In any event, I don’t think Viro’s work exists in printed form
yet; I'll let you all know when something appears.

The most lively talk was one by Louis Crane and David Yetter, the organizers of
the conference. As I noted a while back, they claimed to have constructed a FOUR-
dimensional TQFT based on some ideas of Ooguri, who was working on 4-dimensional
quantum gravity. This would be very exciting as long as it isn’t “trivial” in some sense,
because all the TQFTs developed so far only work in 3-dimensional spacetime. A rigorous
4-dimensional TQFT might bring us within striking distance of a theory of quantum
gravity — this is certainly Crane’s goal. Ocneanu, however, had fired off a note claiming
to prove that the Crane—Yetter TQFT was trivial, in the sense that the partition function of
the field theory for any compact oriented 4-manifold equalled 1! In a TQFT, the partition
function of the field theory on a compact manifold is a invariant of the manifold, and if
it equalled 1 for all manifolds, it would be an extremely dull invariant, hence a rather
trivial TQFT.

So, on popular demand, Crane and Yetter had a special talk at 8 pm in which they
described their TQFT and presented results of calculations that showed the invariant did
NOT equal 1 for all compact oriented 4-manifolds. So far they have only calculated it
in some special cases: S%, S3 x S!, and S? x S2. Amusingly, Yetter ran through the
calculation in the simplest case, S*, in which the invariant does happen to equal 1. But
he persuaded most of us (me at least) that the invariant really is an invariant and that he
can calculate it. I say “persuade” rather than prove because he didn’t present a proof that
it’s an invariant; the current proof is grungy and computational, but Viro and Kauffman
(who were there) pointed out some ways that it could be made more slick, so we should
see a comprehensible proof one of these days. However, it’s still up in the air whether this
invariant might be “trivial” in some more sophisticated sense, e.g., maybe it’s a function
of well-known invariants like the signature and Euler number. Unfortunately, Ocneanu
decided at the last minute not to attend. Nor did Broda (inventor of another 4-manifold
invariant that Ruberman seems to have shown “trivial” in previous This Week’s Finds)
show up, though he had been going to.

On a slightly more technical note, Crane and Yetter’s TQFT depends on chopping up
the 4-manifold into simplices (roughly speaking, 4-dimensional versions of tetrahedra).
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Their calculation involves drawing projections of these beasts into the plane and applying
various rules; it was quite fun to watch Yetter do it on the blackboard. Turaev and Viro
had constructed such a “simplicial” TQFT in 3 dimensions, and Ooguri had been working
on simplicial quantum gravity. As I note below, Lee Smolin has a new scheme for doing 4-
dimensional quantum gravity using simplices. During the conference he was busy trying
to figure out the relation of his ideas to Crane and Yetter’s.

Also while at the conference, I found a terrible error in “Week 10” in my description
of

Sergey Piunikhin,“Vassiliev invariants contain more information than all knot
polynomials”, preprint.

I had said that Piunikhin had discovered a Vassiliev invariant that could distinguish
knots from their orientation-reversed versions. No! The problem was a very hasty read-
ing on my part, together with the following typo in the paper, that tricked my eyes:

Above constructed Vassiliev knot invariant w of order six does knot detect orien-
tation of knots.

Ugh! Also, people at the conference said that Piunikhin’s claim in this paper to have
found a Vassiliev invariant not coming from quantum group knot polynomials is mis-
leading. I don’t understand that yet.

Here are some papers that have recently shown up. ..

1) Karel Kuchar, “Canonical quantum gravity”, available as gr-qc/9304012.

Kuchar (pronounced Koo-kahsh, by the way) is one of the grand old men of quantum
gravity, one of the people who stuck with the subject for the many years when it seemed
absolutely hopeless, who now deserves some of the credit for the field’s current resur-
gence. He has always been very interested in the problem of time, and for anyone who
knows a little general relativity and quantum field theory, this is a very readable intro-
duction to some of the key problems in canonical quantum gravity. I should warn the
naive reader, however, that Kuchar’s views about the problem of time expressed in this
paper go strongly against those of many other experts! It is a controversial problem.

Briefly, many people believe that physical observables in quantum gravity should
commute with the Hamiltonian constraint (cf. “Week 11”); this means that they are time-
independent, or constants of motion, and this makes the dynamics of quantum gravity
hard to ferrett out. Kuchar calls such quantities “perennials.” But Rovelli has made a pro-
posal for how to recover dynamics from perennials, basically by considering 1-parameter
families A; of perennials, ironically called “evolving constants of motion.” Kuchar argues
against this proposal on two grounds: first, he does not think physical observables need
to commute with the Hamiltonian constraint, and second, he argues that there may be
very few if any perennials. The latter point is much more convincing to me than the
former, at least at the classical level, where the presence of enough perennials would be
close to the complete integrability of general relativity, which is most unlikely. But on
the quantum level things are likely to be quite different, and Smolin has recently been
at work attempting to construct perennials in quantum gravity (cf. “Week 1”). As for
Kuchar’s former point, that observables in quantum gravity need not be perennials, his
arguments seem rather weak. In any event, read and enjoy, but realize that the subject
is a tricky one!
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2) John Fischer, “2-categories and 2-knots”, preprint, last revised Feb. 6 1993.

This is the easiest way to learn about the 2-category of 2-knots. Recall (from “Week 1”
and “Week 4”) that a 2-knot is a surface embedded in R*, which may visualized as a
“movie” of knots evolving in time. Fischer shows that the algebraic structure of 2-knots
is captured by a braided monoidal 2-category, and he describes this 2-category.

3) Mark Miller and Lee Smolin,“A new discretization of classical and quantum general
relativity”, available as gr-qc/9304005.

Here Smolin proposes a new simplicial approach to general relativity (there is an older
one known as the Regge calculus) which uses Ashtekar’s “new variables,” and works in
terms of the Capovilla—Dell-Jacobson version of the Lagrangian. Let me just quote the
abstract, I'm getting tired:

We propose a new discrete approximation to the Einstein equations, based on
the Capovilla—Dell-Jacobson form of the action for the Ashtekar variables. This
formulation is analogous to the Regge calculus in that it results from the applica-
tion of the exact equations to a restricted class of geometries. Both a Lagrangian
and Hamiltonian formulation are proposed and we report partial results about
the constraint algebra of the Hamiltonian formulation. We find that in the limit
that the SO(3) gauge symmetry of frame rotations is reduced to the abelian
U(1)3, the discrete versions of the diffeomorphism constraints commute with
each other and with the Hamiltonian constraint.

4) “Higher algebraic structures and quantization”, by Dan Freed, available as hep-th/
9212115.

This is about TQFTs and the high-powered algebra needed to do justice to the “ladder of

field theories” that one can obtain starting with a d-dimensional TQFT — gerbs, torsors,
n-categories and other such scary things. I am too beat to do this justice.
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Week 13

April 20, 1993

Well, folks, this’ll be the last “This Week’s Finds” for a while, since I'm getting rather
busy preparing for my conference on knots and quantum gravity, and I have a paper that
seems to be taking forever to finish.

1) Anthony W. Knapp, Elliptic Curves, Mathematical Notes, Princeton University Press,
1992.

This is a shockingly user-friendly introduction to a subject that can all too easily seem
intimidating. 'm certainly no expert but maybe just for that reason I should sketch a brief
“introduction to the introduction” that may lure some of you into studying this beautiful
subject.

What I will say will perhaps appeal to people who like complex analysis or mathe-
matical physics, but Knapp concentrates on the aspects related to number theory. For
other approaches one might try

2) Serge Lang, Elliptic Functions, 2nd edition, Springer, Berlin 1987.
3) Dale Husemoeller, Elliptic Curves, Springer, Berlin, 1987.

Okay, where to start? Well, how about this: the sine function is an analytic function
on the complex plane with the property that

sin(z + 2m) = sin 2.

It also satisfies a nice differential equation

(sin’ 2)? =1 — (sin 2)?
and for this reason, we could, if we hadn’t noticed the sine function otherwise, have run

into it when we tried to integrate
1

V1—u?
The differential equation above implies that the integral is nice to do by the substitution
u = sin z, and we get the answer arcsin u. If the sine function — or more generally, trig
functions — didn’t exist yet, we would have invented them when we tried to do integrals
involving square roots of quadratic polynomials.

Elliptic functions are a beautiful generalization of all of this stuff. Say we wanted,
just for the heck of it, an analytic function that was periodic not just in one direction on
the complex plane, like the sine function, but in two directions. For example, we might
want some function P(z) with

P(z+27m) = P(2)

and also
P(z 4+ 27i) = P(2).
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This function would look just the same on each 27-by-27 square:

3(2)

|

<—>E
2

so if we wanted, we could think of it as being a function on the torus formed by taking
one of these squares and identifying its top side with its bottom side, and its left side
with its right side.

More generally — while we’re fantasizing about this wonderful doubly-periodic func-
tion — we could ask for one that was periodic in any old two directions. That is, fixing
two numbers w; and wsy that aren’t just real-valued multiples of each other, we could
hope to find an analytic function on the complex plane with w; and ws as periods:

P(z4wi) = P(2)
P(z +ws) = P(2).

Then P(z) would be the same at all points on the “lattice” of points nw; + mws, which
might look like the squares above or might be like

or some such thing.

Let’s think about this nice function P(z) we are fantasizing about. Alas, if it were
analytic on the whole plane (no poles), it would be bounded on each little parallelogram,
and since it’s doubly periodic, it would be a bounded analytic function on the complex
plane, hence constant by Liouville’s theorem. Well, so a constant function has all the
wonderful properties we want — but that’s too boring!
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So let’s allow it to have poles! But let’s keep it as nice as possible, so let’s have the
only poles occur at the lattice points

L = {nwy + mws}.

And let’s make the poles as nice as possible. Can we have each pole be of order one?
That is, can we make P(z) blow up like 1/(z — w) at each lattice point w in L? No,
because if it did, the integral of P around a nicely chosen parallelogram around the pole
would be zero, because the contributions from opposite sides of the parallelogram would
cancel by symmetry. (A fun exercise.) But by the Cauchy residue formula this means that
the residue of the pole vanishes, so it can’t be of order one.

Okay, try again. Let’s try to make the pole at each lattice point be of order two. How
can we cook up such a function? We might try something obvious: just sum up, for all w

in the lattice L, the functions
1

(z—w)?

We get something periodic with poles like 1/(z — w)? at each lattice point w. But there’s
a big problem — the sum doesn’t converge! (Another fun exercise.)

Oh well, try again. Let’s act like physicists and renormalize the sum by subtracting
off an infinite constant! Just subtract the sum over all w in L of 1/w?. Well, all w except
zero, anyway. This turns out to work, but we really should be careful about the order
of summation here: really, we should let P(z) be 1/22 plus the sum for all nonzero w in
the lattice L of 1/(z — w)? — 1/w?. This sum does converge and the limit is a function
P(z) that’s analytic except for poles of order two at the lattice points. This is none other
than the Weierstrass elliptic function, usually written with a fancy Gothic 3 to intimidate
people. Note that it really depends on the two periods w; and ws, not just z.

Now, it turns out that P(z) really is a cool generalization of the sine function. Namely,
it satisfies a differential equation like the one the sine does, but fancier:

P'(2)? = 4P(2)° = g2 P(2) — g3

where g» and g3 are some constants that depend on the periods w; and ws. Just as with
the sine function we can use the inverse of Weierstrass ‘i3 function to do some integrals,
but this time we can do integrals involving square roots of cubic polynomials! If you look
in big nasty books of special functions or tables of integrals, you will see that there’s a big
theory of this kind of thing that was developed in the 1800’s — back when heavy-duty
calculus was hip.

There are, however, some other cool ways of thinking about what’s going on here.
First of all, remember that we can think of P(z) as a function on the torus. We can think
of this torus as being “coordinatized” — I use the word loosely — by P(z) and its first
derivative P’(z). lLe., if we know © = P(z) and y = P’(z) we can figure out where the
point z is on the torus. But of course x and y can’t be any old thing; the differential
equation above says they have to satisfy

y? = 42® — gow — gs.

Here z and y are complex numbers of course. But look what this means: it means that
if we look at the pairs of complex numbers (z,y) satisfying the above cubic equation,
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we get something that looks just like a torus! This is called an elliptic curve, since for
algebraic geometers a “curve” is the set of solutions (z,y) of some polynomial in two
complex variables — not two real variables.

So, an “elliptic curve” is basically just the solutions of a cubic equation in two vari-
ables. Actually, we want to rule out curves that have singularities, that is, places where
there’s no unique tangent line to the curve, as in y? = 23 or y? = 2%(x + 1) — draw these
in the real plane and you’ll see what I mean. Anyway, all elliptic curves can, by change
of variables, be made to look like our favorite one,

y? =42® — gow — g3.

There are lots of more fancy ways of thinking about elliptic curves, and one is to think
of the fact that they look like a torus as the key part. In a book on algebraic geometry
you might see an elliptic curve as a curve with genus one (i.e., with one “handle,” like
a torus has). One nice thing about a torus is that is a group. That is, we know how to
add complex numbers, and we can add modulo elements of the lattice L, so the torus
becomes a group with addition mod L as the group operation. This is simple enough,
but it means that when we look at the solutions of

y? =42® — gox — g3

they must form a group somehow, and viewed this way it’s not at all obvious! Nonethe-
less, there is a beautiful geometric description of the group operation in these terms —
I'll leave this for Knapp to explain.

Let me wrap this up — the story goes on and on, but 'm getting tired — with a bit
about what it has to do with number theory. It has a lot to do with Diophantine equa-
tions, where one wants integer, or rational solutions to a polynomial equation. Suppose
that g, and g3 are rational, and one has some solutions to the equation

y2 =473 — go — g3.

Then it turns out that one can use the group operation on the elliptic curve to get new
solutions! Actually, it seems as if Diophantus knew this way back when in some special
cases. For example, for the problem

y6—y)=2"—=

Diophantus could start with the trivial solution (x,y) = (—1,0), do some mysterious
stuff, and get the solution (17/9,26/27). Knapp explains how this works in the Overview
section, but then more deeply later. Basically, it uses the fact that this curve is an elliptic
curve, and uses the group structure.

In fact, one can solve mighty hard-seeming Diophantine problems using these ideas.
Knapp talks a bit about a problem Fermat gave to Mersenne in 1643 — this increased
my respect for Fermat a bit. He asked, find a Pythagorean triple (X, Y, Z), that is:

X24+v?:=2%

such that Z is a square number and X +Y is too! One can solve this using elliptic curves.

I don’t know if Mersenne got it — the answer is at the end of this post, but heavy-duty

number theorists out there might enjoy trying this one if they don’t know it already.
Some more stuff:
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4) Jim Stasheff, “Closed string field theory, strong homotopy Lie algebras and the
operad actions of moduli spaces”, available as hep—th/9304061.

One conceptually pleasing approach to string theory is closed string field theory, where
one takes as the basic object unparametrized maps from circle into a manifold M repre-
senting “space”, i.e., elements of

Maps(S*, M) /Diff*(S1).

A state of closed string field theory would be roughly a function on the above set. Then
one tries to define all sorts of operations on these states, in order to write down ways
the strings can interact. For example, there is a “convolution product” on these functions
which almost defines a Lie algebra structure. However, the Jacobi identity only holds
“up to homotopy,” so we have an algebraic structure called a homotopy Lie algebra.
Physicists would say that the Jacobi identity holds modulo a BRST exact term. This is
just the beginning of quite a big bunch of mathematics being developed by Stasheff,
Zwiebach, Getzler, Kapranov and many others. My main complaint with the physics is
that all these structures seem to depend on choosing a Riemannian metric on M — a
so-called “background metric.” Since string theory is supposed to include a theory of
quantum gravity it is annoying to have this God-given background metric stuck in at the
very start. Perhaps I just don’t understand this stuff. I am looking around for stuff on
background-independent closed string field theory, since I have lots of reason to believe
that it’s related to the loop representation of quantum gravity. Unfortunately, I scarcely
know the subject — I had hoped Stasheff’s work would help me, but it seems that this
metric always enters.

5) Sergey Matveev and Michael Polyak, “A geometrical presentation of the surface
mapping class group and surgery”, preprint.

This paper shows how to express the mapping class group of a surface in terms of tangles.
This gives a nice relationship between two approaches to 3d TQFTs (topological quantum
field theories): the Heegard decomposition approach, and the surgery on links approach.

6) Michael Polyak, “Invariants of 3-manifolds and conformal field theories”, preprint.

The main good thing about this paper in my opinion is that it simplifies the definition
of a modular tensor category. Recall that Moore and Seiberg showed how any string
theory (more precisely, any rational conformal field theory) gave rise to a modular tensor
category, and then Crane showed that any modular tensor category gave rise to a 3d
TQFT. Unfortunately a modular tensor category seems initially to be a rather baroque
mathematical object. In this paper Polyak shows how to get lots of the structure of a
modular tensor category from just the “fusion” and “braiding” operators, subject to some
mild conditions. I have a conjecture that all nonnegative link invariants (in the sense of
my paper on tangles and quantum gravity) give rise to modular tensor categories, and
this simplifies things to the point where maybe I might eventually be able to prove it.
There are lots of nice pictures here, too, by the way.
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Answer to puzzle:
X =1061652293520

Y = 4565486027761
Z = 4687298610289
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Week 14

May 8, 1993

Things are moving very fast in the quantum gravity/4d topology game, so I feel I should
break my vow not to continue this series until after next weekend’s conference on Knots
and Quantum Gravity.

Maybe I should recall where things were when I left off. The physics problem mo-
tivating a lot of work in theoretical physics today is reconciling general relativity and
quantum theory. The key feature of general relativity is that time and space do not ap-
pear as a “background structure,” but rather are dynamical variables. In mathematical
terms, this just means that there is not a fixed metric; instead gravity is the metric, and
the metric evolves with time like any other physical field, satisfying some field equations
called the Einstein equations.

But it is worth stepping back from the mathematics and trying to put into simple
words why this makes general relativity so special. Of course, it’s very hard to put this
sort of thing into words. But roughly, we can say this: in Newtonian mechanics, there
is a universal notion of time, the “t” coordinate that appears in all the equations of
physics, and we assume that anyone with a decent watch will be able to keep in synch
with everyone else, so there is no confusion about what this “#” is (apart from choosing
when to call ¢ = 0, which is a small sort of arbitrariness one has to live with). In special
relativity this is no longer true; watches moving relative to each other will no longer
stay in synch, so we need to pick an “inertial frame,” a notion of rest, in order to have
a “t” coordinate to play with. Once we pick this inertial frame, we can write the laws
of physics as equations involving “t”. This is not too bad, because there is only a finite-
parameter family of inertial frames, and simple recipes to translate between them, and
also because nothing going on will screw up the functioning of our (idealized) clocks:
that is, the “¢” coordinate doesn’t give a damn about the state of the universe. That’s
what is meant by saying a “background structure” — it’s some aspect of the universe
that is unaffected by everything else that’s going on.

In general relativity, things get much more interesting: there is no such thing as an
inertial frame that defines coordinates on spacetime, because there is no way you can
get a lot of things at different places to remain at rest with each other — this is what is
meant by saying that spacetime is curved. You can measure time with your watch, so-
called “proper time,” but this applies only near you. More interestingly still, to compare
what your watch is doing to what someone else’s is doing, you actually need to know a
lot about the state of the universe, e.g., whether there are any heavy masses around that
are curving spacetime. The “metric,” whereby one measures distances and proper time,
depends on the state of the universe — or more properly, it is part of the state of the
universe.

Trying to do quantum theory in this context has always been too hard for people.
Part of the reason why is that built into the heart of traditional quantum theory is the
“Hamiltonian,” which describes the evolution of the state of the system relative to a God-
given “background” notion of “t”. Anyone who has taken quantum mechanics will know
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that the star of the show is the Schrodinger equation:

dy

Y _ g
Ut ¥

saying how the wavefunction ) changes with time in a way depending on the Hamilto-
nian H. No “t,” no “H” — this is one basic problem with trying to reconcile quantum
theory with general relativity.

Actually, it turns out that the analog to Schrodinger’s equation for quantum gravity
is the Wheeler—-DeWitt equation. The Hamiltonian is replaced by an operator called the
“Hamiltonian constraint” and we have

Hip = 0.

Note how this cleverly avoids mentioning “t”! The problem is, people still aren’t quite
sure what to do with the solutions to this equation — we’re so used to working with
Schrodinger’s equation.

Now in 1988 Witten wrote a paper in which he coined the term “topological quantum
field theory,” or TQFT, for short. This was meant to capture in a rigorous way what field
theories like quantum gravity should be like. Actually, Witten was working on a different
theory called Donaldson theory, which also has the property of having no background
structures. Shortly thereafter the mathematician Atiyah came up with a formal definition
of a TQFT. To get an idea of this definition, try my notes on “symmetries” and (if you
don’t know what categories are) “categories”. For a serious tour of TQFTs and the like,
try his book:

1) Michael Atiyah, The Geometry and Physics of Knots, Cambridge U. Press, Cambridge,
1990.

One can think of a TQFT as a framework in which a Wheeler-DeWitt-like equation gov-
erns the dynamics of a quantum field theory. Experts may snicker here, but it is true, if
not as enlightening as other things one can say.

I won’t bother to define TQFTs here, but I think Smolin put it very well when he said
the idea of TQFTs really helped us break out of our traditional idea of fields as being
something defined at every point of spacetime, wiggling around, and allowed us to see
field theory from many new angles. For example, TQFTs let us wiggle out of the old
conundrum of whether spacetime is continuous or discrete, because many TQFTs can be
equivalently described in either of two ways: via a continuum model of spacetime, or via
a discrete one in which spacetime is given a “simplicial structure,” like a big tetrahedral
tinkertoy lattice kind of thing. The latter idea appears to be due to Turaev and Viro,
although certainly physicists have had similar ideas for years, going back to Ponzano
and Regge, who worked on simplicial quantum gravity.

Now the odd thing is that while interesting 3d TQFTs have been found, the most
notable being Chern-Simons theory, nobody has quite been able to make 4d TQFTs rig-
orous. Witten’s original work on Donaldson theory has led to many interesting things,
but not yet a full-fledged TQFT in the rigorous sense of Atiyah. And quantum gravity
still resists being formulated as a TQFT.

A while back I noted that Crane and Yetter had invented a 4d TQFT using the simpli-
cial approach. There has been a lot of argument over whether this TQFT is interesting
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or “trivial.” Of course, trivial is not a precise concept. For a while Ocneanu claimed
that the partition function of every compact 4-manifold equalled 1 in this TQFT, which
counts as very trivial. But this appears not to be the case. Broda invented another 4d
TQFT and here on “This Week’s Finds” Ruberman showed it was trivial in the sense that
the partition function of any compact 4-manifold was a function of the “signature” of the
4-manifold. This is trivial because the signature is a well-understood invariant and if we
are trying to do something new and interesting that just isn’t good enough.
In the following paper:

2) Justin Roberts, “Skein theory and Turaev-Viro invariants”, Topology, 34, 771-787.
Available as https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.8587.

Roberts almost claims to show that the Crane—Yetter invariant is trivial in the same sense,
namely that the partition function of any compact 4-manifold is an exponential of the
signature. Now if Crane and Yetter’'s own computations are correct, this cannot be the
case, but it could be an exponential of a linear combination of the signature and the Euler
characteristic, as far as I know. The catch is that Roberts does not normalize his version
of the Crane-Yetter invariant in the same way that Crane and Yetter do, so it is hard to
compare results. But Roberts says: “The normalisations here do not agree with those
in Crane and Yetter, and I have not checked the relationship. However, when dealing
with the [3d TQFT] invariants, different normalisations of the initial data change the
invariants by factors depending on standard topological invariants (for example Betti
numbers), so there is every reason to belive that these [4d TQFT] invariants are trivial
(that is, they differ from 1 only by standard invariant factors) in all normalisations.”

This is a bit of a disappointment, because Crane at least had hoped that their TQFT
might actually turn out to be quantum gravity. This was not idle dreaming; it was be-
cause the Crane-Yetter construction was a rigorous analog of some work by Ooguri on
simplicial quantum gravity.

Then, about a week ago, Rovelli put a paper onto the net:

3) Carlo Rovelli, “The basis of the Ponzano-Regge-Turaev-Viro—Ooguri model is the
loop representation basis”, available as hep-th/9304164.

This is a remarkable paper that I have not been able to absorb yet. First it goes over
3d quantum gravity — which has been made into a rigorous TQFT. It works with the
simplicial formulation of the theory. That is, we consider our (3-dimensional) spacetime
as being chopped up into tetrahedra, and assign to each edge a length, which is required
to be 0, %, 1, %, .... This idea of quantized edge-lengths goes back to 4d work of Pon-
zano and Regge, but recently Ooguri showed that in 3d this assumption gives the same
answers as Witten’s continuum approach to 3d quantum gravity. The “half-integers”
0,%,1,3,... should remind physicists of spin, which is quantized in the same way, and
mathematically this is exactly what is going on: we are really labelling edges with repre-
sentations of the group SU(2), that is, spins. What Rovelli shows is that if one starts with
the loop representation of 3d quantum gravity (yet another approach), one can prove
it equivalent to Ooguri’s approach, and what’s more, using the loop representation one
can calculate the lengths of edges of triangles in a given state of space (space here is

a 2-dimensional triangulated surface) and show that lengths are quantized in units of
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the Planck length over 2. (Here the Planck length L is the fundamental length scale in
quantum gravity, about 1.6 x 10733 meters.)

And, most tantalizing of all, he sketches a generalization of the above to 4d. In 4d it
is known that in the loop representation of quantum gravity it is areas of surfaces that
are quantized in units of L?/2, rather than lengths. Rovelli considers an approach where
one chops 4-dimensional spacetime up into simplices and assigns to each 2-dimensional
face a half-integer area. He uses this to write down a formula for the inner product
in the Hilbert space of quantum gravity — thus, at least formally, answering the long-
standing “inner product problem” in quantum gravity. The problem is that, unlike in
3d quantum gravity, here one must sum over ways of dividing spacetime into simplices,
so the formula for the inner product involves a sum that does not obviously converge.
This is however sort of what one might expect, since in 4d quantum gravity, unlike 3d,
there are “local excitations” — local wigglings of the metric, if you will — and this makes
the Hilbert space be infinite-dimensional, whereas the 3d TQFTs have finite-dimensional
Hilbert spaces.

I think I'll quote him here. It’s a bit technical in patches, but worth it. ..

We conclude with a consideration on the formal structure of 4-d quantum grav-
ity, which is important to understand the above construction. Standard quan-
tum field theories, as QED and QCD, as well as their generalizations like quan-
tum field theories on curved spaces and perturbative string theory, are defined
on metric spaces. Witten’s introduction of the topological quantum field theories
has shown that one can construct quantum field theories defined on a manifold
which has only its differential structure, and no fixed metric structure. The
theories introduced by Witten and axiomatized by Atiyah have the following pe-
culiar feature: they have a finite number of degrees of freedom, or, equivalently,
their quantum mechanical Hilbert spaces are finite dimensional; classically this
follows from the fact that the number of fields is equal to the number of gauge
transformations. However, not any diff-invariant field theory on a manifold has
a finite number of degrees of freedom. Witten’s gravity in 3-d is given by the
action

S[A,E]:/F/\E

which has finite number of degrees of freedom. Consider the action
S[A, E] :/F/\e/\e

in 3+1 dimensions, for a (self dual) SO(3,1) connection A and a (real) one
form e with values in the vector representation of SO(3,1). This theory has
a strong resemblance with its 2+1 dimensional analog: it is still defined on a
differential manifold without any fixed metric structure, and is diffeomorphism
invariant. We expect that a consistent quantization of such a theory should be
found along lines which are more similar to the quantization of the [(F A E)
theory than to the quantization of theories on flat space, based on the Wight-
man axioms namely on n-points functions and related objects. Still, the theory
J(F AeAe) has genuine field degrees of freedom: its physical phase space is in-
finite dimensional, and we expect that its Hilbert state space will also be infinite
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dimensional. There is a popular belief that a theory defined on a differential
manifold without metric and diffeomorphism invariant has necessarily a finite
number of degrees of freedom (“because thanks to general covariance we can
gauge away any local excitation”). This belief is of course wrong. A theory as
the one defined by the action [(F Ae Ae) is a theory that shares many features
with the topological theories, in particular, no quantity defined “in a specific
point” is gauge invariant; but at the same time it has genuinely infinite degrees
of freedom. Indeed, this theory is of course nothing but (Ashtekar’s form of)
standard general relativity.

The fact that “local” quantities like the n-point functions are not appropriate
to describe quantum gravity non-perturbatively has been repeatedly noted in
the literature. As a consequence, the issue of what are the quantities in terms
of which a quantum theory of gravity can be constructed is a much debated
issue. The above discussion indicates a way to face the problem: The topological
quantum field theories studied by Witten and Atiyah provide a framework in
terms of which quantum gravity itself may be framed, in spite of the infinite
degrees of freedom. In particular, Atiyah’s axiomatization of the topological field
theories provides us with a clean way of formulating the problem. Of course,
we have to relax the requirement that the theory has a finite number of degrees
of freedom. These considerations leads us to propose that the correct general
axiomatic scheme for a physical quantum theory of gravity is simply Atiyah’s
set of axioms up to finite dimensionality of the Hilbert state space. We denote
a structure that satisfies all Atiyah’s axioms, except the finite dimensionality of
the state space, as a generalized topological theory.

The theory we have sketched is an example of such a generalized topological
theory. We associate to the connected components of the boundary of M the
infinite dimensional state space of the Loop Representation of quantum gravity.
Eq. 5 [the magic formula I alluded to — jb], then, provides a map, in Atiyah’s
sense, between the state spaces constructed on two of these boundary compo-
nents. Equivalently, it provides the definition of the Hilbert product in the state
space.

One could argue that the framework we have described cannot be consistent,
because it cannot allow us to recover the “broken phase of gravity” in which
we have a nondegenerate background metric: in the proposed framework one
has only non-local observables on the boundaries, while in the broken phase
a local field in M has non-vanishing vacuum expectation value. We think
that this argument is weak because it disregards the diffeomorphism invari-
ance of the theory: in classical general relativity no experiment can distinguish
a Minkowskian spacetime metric from a non-Minkowkian flat metric. The two
are physically equivalent, as two gauge-related Maxwell potentials. For the same
reason, no experiment could detect the absolute position of, say, a gravitational
wave, (while of course the position of an e.m. wave is observable in Maxwell
theory). Physical locality in general relativity is only defined as coincidence of
some physical variable with some other physical variable, while in non general
relativistic physics locality is defined with respect to a fixed metric structure. In
classical general relativity, there is no gauge-invariant obervable which is local
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in the coordinates. Thus, any observation can be described by means of the
value of the fields on arbitrary boundaries of spacetime. This is the correct con-
sequence of the fact that “thanks to general covariance we can gauge away any
local excitation”, and this is the reason for which one can have the ADM “frozen
time” formalism. The spacetime manifold of general relativity is, in a sense, a
much weaker physical object than the spacetime metric manifold of ordinary
theories. All the general relativistic physics can be read from the boundaries of
this manifold. At the same time, however, these boundaries still carry an infinite
dimensional number of degrees of freedom.

Next, let me take the liberty of describing some work of my own:

4) John Baez, “Diffeomorphism-invariant generalized measures on the space of con-
nections modulo gauge transformations”, Proceedings of the Conference on Quantum
Topology, ed. David N. Yetter, World Scientific Press, Singapore, 1994, pp. 21-43.
Also available as hep-th/9305045.

This is an extremely interesting paper by a very good mathematician. Whoops! Let’s be
objective here. In the loop representation of quantum gravity, states of quantum gravity
are given naively by certain “measures” on a space A/G of connections modulo gauge
transformations. The Chern-Simons path integral is also such a “measure”. In both cases,
the “measure” in question is invariant under diffeomorphisms of space. And in both
cases, the loop transform allows one to think of these measures as instead being functions
of multiloops (collections of loops in space). This is the origin of the relationship to knot
theory.

The problem, as always in quantum field theory, is that the notion of “measure” must
be taken with a big grain of salt — it’s not the sort of measure they taught you about in
real analysis. Instead, these measures are a kind of “generalized measure” that allows
you to integrate not all continuous functions on A/G but only those lying in an algebra
called the “holonomy algebra,” defined by Ashtekar, Isham and Lewandowski. To be pre-
cise and technical, this is the closure in the L*> norm of the algebra of functions on A/G
generated by “Wilson loops,” or traced holonomies around loops. So what we are really
interested in is not diffeomorphism-invariant measures on A/G, but diffeomorphism
invariant elements of the dual of the holonomy algebra. I begin with a review of gener-
alized measures, introduce the holonomy algebra, and then do a bunch of new work in
which I show how to rigorously construct lots of diffeomorphism-invariant elements of
the dual of the holonomy algebra by doing lattice gauge theory on graphs embedded in
space. Again, as with the work discussed above, we see that the discrete and continuum
approaches to space go hand-in-hand! And we see that there are some interesting con-
nections between singularity theory and group representation theory showing up when
we try to understand “measures” on the space A/G.

The following is a part of a paper discussed in “Week 5”, now available from gr-qc:

5) Abhay Ashtekar and Jerzy Lewandowski,“Completeness of Wilson loop functionals
on the moduli space of SL(2,C) and SU(1, 1)-connections”, available as gr-qc/
9304044.

I didn’t discuss this aspect of the paper, so let me quote the abstract:

72


https://arxiv.org/abs/hep-th/9305045
https://arxiv.org/abs/gr-qc/9304044
https://arxiv.org/abs/gr-qc/9304044

WEEK 14 MAY 8, 1993

The structure of the moduli spaces M := A/G of (all, not just flat) SL(2,C)
and SU(1, 1) connections on a n-manifold is analysed. For any topology on the
corresponding spaces A of all connections which satisfies the weak requirement
of compatibility with the affine structure of A, the moduli space M is shown
to be non-Hausdorff. It is then shown that the Wilson loop functionals — i.e.,
the traces of holonomies of connections around closed loops — are complete in
the sense that they suffice to separate all separable points of M. The methods
are general enough to allow the underlying n-manifold to be topologically non-
trivial and for connections to be defined on non-trivial bundles. The results have
implications for canonical quantum general relativity in 4 and 3 dimensions.

By the way, someone should extend this result to more general noncompact semisim-
ple Lie groups, and also show that for all compact semisimple Lie groups the Wilson
loop functionals in any faithful representation do separate points (this is known for the
fundamental representation of SU(n)). If  had a bunch of grad students I would get one
to do so.

The following was discussed in an earlier edition of this series, “Week 11”, but is now
available from gr-qc:

6) Ranjeet S. Tate, An Algebraic Approach to the Quantization of Constrained Systems:
Finite Dimensional Examples, Ph.D. Thesis, Department of Physics, Syracuse Uni-
versity, 124 pages, available as gr-qc/9304043.

I haven’t read the following one but it seems like an interesting application of loop
variables to more down-to-earth physics; Gambini was one of the originators of the loop
representation, and intended it for use in QCD:

6) Rodolfo Gambini and Leonardo Setaro, “SU(2) QCD in the path representation”,
available as hep-1at/9305001. (“hep-lat” is the computational and lattice physics
preprint list.)

Let me quote the abstract:

We introduce a path-dependent hamiltonian representation (the path represen-
tation) for SU(2) with fermions in 3 + 1 dimensions. The gauge-invariant
operators and hamiltonian are realized in a Hilbert space of open path and loop
functionals. We obtain a new type of relation, analogous to the Mandelstam
identity of second kind, that connects open path operators with loop operators.
Also, we describe the cluster approximation that permits to accomplish explicit
calculations of the vacuum energy density and the mass gap.
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Week 15

May 23, 1993

Last weekend we had a conference on Knots and Quantum Gravity here at Riverside.
I will briefly describe the talks, many of which will eventually appear in a conference
proceedings volume. I think that to be nice I will list these talks in order of how technical
my descriptions will be, rather than chronologically.

Oleg Viro spoke on “simplicial topological quantum field theories”. There has been
a lot of interest recently in constructing topological quantum field theories using trian-
gulations of manifolds. The most famous of these is due to Turaev and Viro. Witten
showed that this one is the same as quantum gravity in 2+1 dimensions. The nice thing
is that this gives an alternate description of the Turaev-Viro theory in terms of more tra-
ditional ideas from field theory, so the same theory has a “discrete” and a “continuum”
formulation — some evidence for my notion that quantum gravity will resolve the old “is
space continuous or discrete” argument by saying “both, and neither,” just as quantum
mechanics resolved the old “is light a wave or a particle” dispute! (Hegel would’ve loved
it.)

When constructing simplicial topological quantum field theories, one has to prove
that the answer you get is independent of the triangulation. Viro reviewed a couple sets
of “moves” whereby one can get between any two triangulations of the same manifold
— the Alexander moves, and the Pachner moves. He also discussed an alternate, and
more convenient, way of describing manifolds by “special spines”. Here the idea is as
follows. Pick a bunch of points in the manifold. From each one, start blowing a little
bubble, which grows bigger and bigger until it bumps into the other bubbles. The result
is something very much like a foam of soap bubbles, which generically have polyhedral
faces, with edges and vertices of a special sort. Look at a mess of foam sometime if you
don’t know what I mean: in 3 dimensions, three bubbles meet at an edge, and four at
a vertex. One can describe this situation purely combinatorially, and it contains all the
information about the manifold. There are a certain set of moves, the Matveev moves,
relating any two such “special spines” for the same manifold. One can figure out what
these moves might be by staring some foam and watching how the bubbles move.

Louis Kaufmann changed his talk from the announced subject and instead talked
about Vassiliev invariants of knots and their relation to perturbative Chern-Simons the-
ory. Let me just recall what all this is about. Chern—-Simons theory is a TQFT (topological
quantum field theory) in 3 dimensions in which the field is a connection. In physical
terms, a connection is just a generalization of the vector potential in electromagnetism.
Recall that in 3 dimensional space, the vector potential is a vector field A whose curl
is the magnetic field. In quantum theory, the significance of the vector potential is as
follows. If we take a particle and carry it around a loop, its wavefunction gets multiplied
by a phase, that is, a complex number of absolute value 1. These “phases” form a group,
since the product of two phases is a phase. This group is called U(1), since we can think
of phases as 1 x 1 unitary matrices. A key idea in modern physics is to generalize the
heck out of electromagnetism by allowing other groups to play the role of phases. The
group we choose is called the “gauge group.” The second simplest choice after U(1) is
SU(2), the 2 x 2 unitary matrices with determinant = 1.
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You can do Chern—Simons theory with any gauge group but it’s especially simple with
gauge group SU(2). An SU(2) connection is just a kind of field that lets one do “parallel
translation” around a loop in space and get an element of SU(2). Mathematicians call
this the holonomy of the connection around the loop. Physicists typically take the trace
of the group element (in this case, just the sum of the diagonal entries of the 2 x 2
matrix), and call that the “Wilson loop observable,” a function of the connection that
depends on the loop.

Now the great thing about Chern—Simons theory is that the theory is independent of
any choice of coordinates or background metric on spacetime. This is part of what we
mean by saying the theory is a TQFT. Another aspect of a TQFT is that there is a “vacuum
state” and we can calculate the expectation value of a Wilson loop in the vacuum state.
The idea one should have is that the connection is undergoing all sorts of “quantum
fluctuations” in the vacuum state, but that we can ask for the average value for the trace
of the connection of the holonomy around a loop in the vacuum state. Given a knot K,
we write this expectation value as (K'). Now the great thing about Chern-Simons theory
is that the vacuum state does not care what coordinates you use to describe it. Thus
(K) does not depend on the geometry of the knot K (which would take coordinates or a
metric to describe), but only on its topology. In other words, (K) is a knot invariant. In
fact we can define (K) not just for knots, but also for links (bunches of knots, possibly
intertangled), by taking the expectation value of the product of the Wilson loops, one
for each knot. So Chern-Simons theory really gives a link invariant. Witten showed that
this link invariant is just the Kauffman bracket, which is an invariant easily calculated
using the rules:

Rule 1: If K is the “empty link,” the link with NO components whatsoever — i.e.,
just the empty set — we have

(K) =1.

This is sort of a normalization rule.
Rule 2: If K’ is obtained from K by adding an unlinked copy of the unknot (an
unknotted circle) to K,
(K') = —(a® + a7 )(K).

Here a is an adjustable parameter that appears in Chern-Simons theory — a function of
the coupling constant.

Rule 3: Suppose K, L, and L’ are 3 knots or links differing at just one crossing (we’re
supposing them to be drawn as pictures in 2 dimensions). And suppose at this crossing
they look as follows:

K L r

Any rotated version of this picture is fine too.
Then
(K) = a(L) +a " (L').
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That’s it! I leave as an exercise for the reader to calculate (K) for the trefoil knot,

=

and get —a® — a~> — a~ 7. Then try the mirror-image trefoil, or “left-handed trefoil,” and
see what you get.

Now in quantum field theory people like doing perturbative calculations, and that’s
interesting here even though we know the exact answer. Namely, there is a coupling con-
stant ¢ in Chern-Simons theory such that a = exp(c), and if one uses Feynman diagrams
and the rest of the usual machinery for quantum field theory and does a perturbative
calculation of the vacuum expectation value of Wilson loops, one gets the same answer,
but as a power series in c¢. The coefficient of the ¢ is a special sort of link invariant
called a “Vassiliev invariant” of degree n. I discussed these a lot in “Week 3” (see below
for how to get that article), so I won’t repeat myself here. In any event, Kauffman gave
a nice discussion of this sort of thing.

Viktor Ginzburg talked about his work with Milgram on Vassiliev invariants. He
had hoped to show that these were an almost complete set of knot invariants, able to
distinguish between any two knots that weren’t just orientation-reversed versions of each
other (here we equip the knots with an orientation, or field of arrows running along the
knot). He came to the conference, as he said, sadder and wiser. He presented a nice
result on Vassiliev invariants that might be a step towards proving completeness.

Dana Fine spoke on “Chern-Simons theory and the Wess—Zumino-Witten model”.
There is a very interesting “ladder of field theories” that contains “topological quantum
gravity” in 4 dimensions, Chern-Simons theory in 3 dimensions, and the Wess—Zumino—
Witten model in 2 dimensions. Dana Fine spoke on the bottom 2 rungs of this ladder.
He described a very explicit, although still formal, reduction of the Chern-Simons path
integral (the integral one does to compute the expectation values I mentioned above) to
the path integral in the Wess—Zumino-Witten model. The relation between CS theory
and the WZW model is what Witten used in his original argument that CS theory gives
interesting link invariants, so this is of interest in knot theory as well as physics.

On Saturday morning we had a nice trio of talks from the Syracuse gang, Syracuse
University being a hotbed of new work on quantum gravity. Ashtekar and Smolin are
there, as are a bunch of good grad students (Bernd Briigmann was there until very
recently) and postdocs, including Jerzy Lewandowski and Renate Loll. The whole gang
is moving down to Penn State this summer, and they will be hiring Jorge Pullin, now at
Utah State. There are not many people working on quantum gravity — and not many
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jobs in the field — so Penn State will become arguably the center, at least in the US (let
us not forget Penrose, Hawking, Isham, et al!), for work on this subject.

Renate Loll spoke on the “Loop representation of gauge theory and gravity.” This was
an introduction to the ideas of Gambini, Trias, Rovelli, Smolin, et al on doing quantum
field theory solely in terms of Wilson loops. It is this approach that makes the connection
between quantum gravity and knot theory.

Abhay Ashtekar spoke on “Loop transforms.” The process of encoding a connection
in terms of all its Wilson loops is called the loop transform, and it can be regarded as
a nonlinear generalization of the Fourier transform. Ashtekar has led an effort to make
this transform thoroughly rigorous and mathematically respectable, and he discussed
this work.

Jorge Pullin spoke on “The quantum Einstein equations and the Jones polynomial”.
He outlined his work with Gambini and Briigmann in which they show perturbatively
that the Kaufmann bracket (or, alternatively, Chern-Simons theory) gives a state of 4-d
quantum gravity. This is perhaps the most exciting aspect of the “ladder of field theories”
mentioned above, since it touches upon the real world — or at least comes darn close.

On Sunday, Gerald Johnson started things off with an introduction to his work on
making the Feynman path integral rigorous. This is relevant because a main problem
with Witten’s otherwise marvelous work is that the path integral in Chern—-Simons theory
has not been made rigorous. Dana Fine’s talk offered one approach, and my own talk
offered another (based on my recent paper).

Perhaps the most novel talk was by Paolo Cotta-Ramusino (“4d quantum gravity and
knot theory”) describing his work with Maurizio Martellini on 4-dimensional TQFTs and
invariants of 2-knots, that is, embedded surfaces in R* (or more general 4-manifolds).
This is an attempt to push the Wilson loop story up one dimension, in an effort to make
it applicable to theories similar to quantum gravity. These theories are the so-called “BF
theories,” whose Lagrangian is of the form tr(B A F'), where B is a Lie algebra valued
2-form and F is the curvature of a connection. Martellini and Cotta-Ramusino’s work on
this is still in a preliminary stage but it seems rather promising.

Perhaps the most controversial talk was by Louis Crane, entitled “Quantum gravity,
spin geometry and categorical physics.” This was about his ideas on using category
theory to construct 4-dimensional TQFTs. He also emphasized the importance of TQFTs
that use triangulations but wind up being independent of the triangulation, thus slipping
through the discrete/continuous distinction. Many of his assertions provoked violent
reactions from the physicists present.

Finally, I spoke on “Strings, tangles and gauge fields,” beginning by pointing out
some relationships between closed string field theory and the loop representation of
quantum gravity, and then retreating to safer ground and describing my work on trying to
make the Chern-Simons path integral and the loop representation more mathematically
rigorous. I will write a paper on this subject this summer and try to further build up
my case for the conjecture that string theory and gauge field theory are in a sense dual
descriptions of certain TQFTs.

A rather technical introduction to currently interesting topics in closed string field
theory has just appeared:

1) Barton Zwiebach,“Closed string field theory — an introduction”, available as hep-th/
9305026.
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Unfortunately for me, he mainly treats theories of strings moving around on a man-
ifold with a background metric, while it seems that the loop representation of quantum
gravity is very like a “background-free” string field theory. A paper that recently came
out and appears to support my notions is the following:

2) S. G. Naculich, H. A. Riggs, and H. J. Schnitzer, “Two-dimensional Yang-Mills the-
ories are string theories”, available as hep-th/9305097.

Apparently this builds on work by Gross, Taylor, and Minahan which treated SU(n) Yang—
Mills theories in 2 dimensions as string theories, and does something similar for the
gauge groups SO(n) and Sp(n).

I have a pack of interesting papers to describe but I am already worn out, so I will put
that off until next week, except for the following paper by Smolin that I seem to have
neglected:

3) Lee Smolin, “What can we learn from the study of non-perturbative quantum gen-
eral relativity?”, available as gr-qc/9211019.

This is a nice introduction to current issues associated to the loop representation of
quantum gravity and nonperturbative quantum gravity in general. As should be evident
from my weekly reviews, the subject seems to be moving faster and faster, and it is best
to read some of the review papers like this one by Smolin if one wants to figure out
where things are now and where they might be heading.
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Week 16

May 30, 1993

A nice crop of papers has built up while I've been taking a break... In “Week 15” I talked
a bit about constructing topological quantum field theories starting with a triangulation
of spacetime, and how this seems to sneak around the old “is spacetime continuous or
discrete” argument. Let me describe a bit about one of the more mathematically elegant
physics papers I've run across in a while, which treats exactly this issue. Then I'll describe
two review articles, one on gravity in 2+1 dimensions (which is closely related to the
lattice business), and one on Lagrangians for quantum gravity.

1) Stephen-wei Chung, Masafumi Fukuma and Alfred Shapere, “Structure of topolog-
ical lattice field theories in three dimensions”, available as hep-th/9305080.

What’s a 2-dimensional “topological lattice field theory”? According to the definition
used in this paper, it goes like this. First take a compact oriented 2-manifold without
boundary M, that is, an n-holed torus. (One could also discuss the case when there
is a boundary, but to keep life simple we won’t here.) We want to calculate a number
Z(M), the partition function of M, since the partition function is a basic ingredient in
Feynman’s approach to quantum field theory. We first triangulate M. .. so a patch might
look like:

Then “disassemble” M into separate triangles, like this:

Now assign to each edge of the disassembled version of M a “color” taken from a fixed
finite set S. Note that there are twice as many edges in the disassembled version of M
as in the original triangulation of M. Any way of assigning a color to each edge of the
disassembled M will be called a “coloring”. We think of a coloring as a “history of the
world” and we will compute Z (M) by summing a certain quantity over all colorings.
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To compute this quantity, we need two pieces of data that determine our theory.
First, for each i,j in S, we fix a complex number ¢g/. We require that the matrix ¢/ be
invertible. We define g;; to be the matrix inverse of g*/. We can raise and lower indices
with g as if it were a metric. The matrix g will be used when we glue two edges of the
disassembled M together in the process of rebuilding M. Second, for each i, 5,k in S,
we fix a number c¢;;. This number comes in because each triangle has three edges.

Here’s how we calculate Z(M). Write down one index next to each edge of the
disassembled M — by “index” I mean something like 4, j, k running over S. Then write
down the obvious factor of g for each pair of edges that get glued together when we
form M, and write down the obvious factor of ¢ for each triangle in M. Finally, sum over
all colorings to get Z(M).

For example, if M were a torus that we triangulated with two triangles like this

— with opposite edges of the parallelogram identified — we would dissasemble M and
label the edges like this, say:

AN
N
Vv

To form M we glue i to j, k to [, and m to n. So we write down

gijgklgmncjmzcmk
and then sum over i, j, k,l,m,n to get Z(M). Notice that for this procedure to be well
defined it had better not matter whether we write g/ or ¢7%, since we have no way of
knowing which to use. So g had better be symmetric. Similarly, we had better have
¢ijk = cjr; — invariance under cyclic permutations. Note that since M is oriented we
can (and will) require that we go around each triangle counterclockwise when writing
down things like ¢;,x, as we have done above.

Okay, this is a pretty scheme, but the real point is that it should be independent of
the triangulation of M we chose, for us to have something that deserves to be called
“topological.” This imposes extra conditions on g and c. Here it is handy to know that
we can get between any two triangulations of M using a sequence of two moves and
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their inverses. The first move is called the “(2,2) move.” It looks like this:

-9

It is called the (2,2) move since it really amounts to taking 2 faces of a tetrahedron and
replacing them with the other 2 faces! There is a similar (3,1) move that takes 3 faces of
a tetrahedron and replaces them with the other 1, as follows:

ANYAN

(This drawing done by my friend Bruce Smith in a fit of insomnia!) These are examples
of the “Pachner moves,” and the same idea works in any dimension. But in 2 dimensions
we can use a move called the “bubble move” instead of the (3,1) move. Here is where
drawing vertices as e’s is crucial:

On the left, we have two hideously deformed triangles (remember, this is topology!)
that are attached along TWO edges, leaving two edges exposed, and in the right we
have collapsed them down to a single edge. We leave it as a fun exercise to show that
you can do anything with the (2,2) move and the bubble move that you can do with the
(2,2) move and the (3,1) move.

Requiring that Z(M) be invariant under the (2,2) moves amounts to the following
equation — if you check it, you will make sure you understand what’s going on:

uow WU
ca:ycuz - cmucyz'
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Here I have raised indices using the “metric” g. This equation looks sort of hairy, but it’s
actually something very nice in disguise. We need to tease out its inner essence! Suppose
we take a vector space A having the colors in S as a basis, and use the tensor ci—“j to define
a bilinear map from A x A to A. Then the equation above says this map is an associative
product! If you ponder the picture of the (2,2) move for a while, this should become
obvious to you. Think of each triangle as being a gadget that you can feed vectors into
from two sides and have the “product” pop out on the third side. Then the equation

really is just associativity! To understand this in a deeper way, read Kapranov and Vo-
evodsky’s paper (reviewed in “Week 4”), especially the section on the “associahedron”.

Requiring that Z (M) be invariant under the bubble move amounts to the following:
C:}cuc;v = Gzy
Here g,,, is the matrix inverse of ¢*¥. Again, I leave it as an exercise to show this is the
right equation. It is a formula expressing the “metric” g on A in terms of the product
on A! In fact, it has a beautiful algebraic interpretation: it says that the algebra A is
“semisimple.” A semisimple algebra is just a direct sum of matrix algebras, and in such
algebras the inner product g(a, b) of any two elements is just equal to tr(a’b), where a”
is the transpose of a.

So we discover a charming fact: there is a one-to-one correspondence between topo-
logical lattice field theories in 2 dimensions and finite-dimensional semisimple algebras
over the complex numbers!

Actually this was apparently already shown by

2) C.Bachas and P. M. S. Petropoulos, “Topological models on the lattice and a remark
on string theory cloning”, Commun. Math. Phys. 152 (1993) 191.

and

3) M. Fukuma, S. Hosono and H. Kawai, “Lattice topological field theory in two-
dimensions”, available as hep-th/921254.

The big result of the present paper is to generalize this to 3 dimensions. The authors
consider a specific definition of 3d topological lattice field theories in which one chops a
3d manifold up into tetrahedra and assigns colors to edges. They claim to get a one-to-
one correspondence between these and finite-dimensional Hopf algebras for which the
antipode squared is the identity! If you don’t know what a Hopf algebra is, let me simply
say it is a very beautiful sort of thing that has both a product and a “coproduct,” and they
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come up all the time in group theory, knot theory, and the study of quantum groups. So
we are seeing that there is a profound correspondence between topology and algebra,
with higher-dimensional topology giving more subtle algebra.

(In fact, I am a little worried that the authors haven’t stated the theorem quite pre-
cisely enough to have it be quite true, but it’s basically right — I am afraid only only gets
a particular class of Hopf algebras, those which are semisimple and cosemisimple. I may
be missing something.)

Let me conclude with a few very exciting open problems.

A. One could instead consider theories in which colors are only assigned to faces. This
turns out not to broaden the class of examples: any Hopf algebra has a dual Hopf algebra,
and one just gets the theory associated to the dual Hopf algebra this way! But if one
considers theories in which colors are assigned BOTH to edges AND faces one apparently
gets a larger class of 3d examples. What algebraic structure do these correspond to? B.
The Turaev-Viro theory of quantum gravity — described below — is a 3d topological
lattice field theory of some sort. Where does it fit into this picture? The authors ask
this question but don’t answer it. Also, a more difficult problem — where does Chern—
Simons gauge theory fit into this picture? C. The 64,000 dollar question: how does all
this generalize to 4 dimensions? What sort of algebraic structure corresponds to a 4d
topological lattice field theory? It is becoming increasingly clear that 4d field theories
will involve some kind of “higher algebra” that we are only beginning to understand.

4) Steven Carlip, “Six ways to quantize (2+1)-dimensional gravity”, available as gr-qc/
9305020.

While we have no real way to quantize gravity in 3+1 dimensions — although lots of
good ideas — we have six, count ’em, six, ways to do it in 2+1 dimensions! Sometimes
this sort of thing makes one yearn to be a physicist in some other, lower-dimensional
universe. However, lest one make such wish prematurely to a genie passing by, one
should note that life in 241 dimensions is boring compared to our 3+1-dimensional
world. The reason can be seen from the following count of the number of independent
components of the Riemann tensor R;;;; which vanishes when spacetime is flat, and the
Einstein tensor, which vanishes when the vacuum Einstein equations hold:

dimension Riemann Einstein

1 0 0
2 1 1
3 6 6
4 20 10

What this means is that, until one gets up to dimension 4, the vacuum Einstein equa-
tions imply that spacetime is flat. That means that there are no gravitational waves in
empty space; there are only global, topological effects. Typically this means that if space
is compact there are only finitely many degrees of freedom. This means that 2+1 quan-
tum gravity is really quantum mechanics, not full-fledged quantum field theory (which
deals with local excitations — wiggles in the metric and such — and infinitely many
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degrees of freedom). The good news is, this means that 241 gravity is somewhat under-
standable — no nasty infinities or ill-defined integrals needed, etc. The bad news is, it
means 2+ 1 gravity is not too much like 3+1 gravity. But still, many of the most puzzling
qualitative features of quantum gravity are present in the 2+1 case. In particular, one
has a testing ground in which to look at the interlocking triad of problems that stump us
in the 3+1 case: the problem of time, the problem of observables, and the inner product
problem. In brief these are: what is time evolution in quantum gravity, what are the
observables in quantum gravity, and what is the inner product on the space of states
of quantum gravity? As you can see, we are overwhelmingly ignorant about quantum
gravity! I think that work on 241 gravity has given us some interesting clues about these
problems.

Carlip describes 6 approaches to 241 gravity. I'll list them and comment on them
briefly below. But one point to make is that these approaches have not all been shown to
be equivalent; on the contrary, they seem to give different answers. Part of the problem in
my opinion is that we do not have enough criteria for a “good” theory of 2+1 quantum
gravity. Certainly one would like to see that in the & — 0 limit the theory reduces to
classical gravity in some sense or other (but this is a bit vague). Perhaps another thing
one could hope for is that the theory be a 2+1-dimensional TQFT. I am not sure which
of the approaches below give a TQFT (although #6 definitely does and probably so does
#2):

#1 Reduced ADM phase space quantization The “ADM” or Arnowitt-Deser—Misner
formalism amounts to what people would typically call canonical quantization: one
writes down a description of the phase space of quantum gravity in terms of initial
data, figures out the Poisson brackets of functions on this phase space, and then tries to
quantize by turning them into commutators. In gravity the roles of “position” and “mo-
mentum” variables are played by the metric on space at a given time, and the extrinsic
curvature (or more precisely, something cooked up from it).

#2 Chern-Simons theory/Connection representation This is essentially the 2+1
analog of Ashtekar’s approach in 3+1 dimensions, in that a connection and triad field
play the main role, rather than the metric. However, in 241 dimensions we can lump
the triad field and the connection together to get an “ISO(2,1) connection” — where
ISO(2,1) is mildly terrifying notation for the Poincaré group in 241 dimensions (or
“inhomogeneous Lorentz group,” hence the “I”). The action for the theory then becomes
the Chern-Simons action, as noted by Witten.

#3 Covariant canonical quantization This might sound oxymoronic to some, but
what it means is that the phase space of solutions is described in a manifestly covariant
way, rather than in terms of initial data, and then one tries to turn Poisson brackets into
commutators.

#4 Loop representation The loop representation of quantum gravity starts with
the connection representation and then takes traces of holonomies around loops — so-
called Wilson loops — as the basic variables to quantize. This suffers irritating technical
problems in 2+1 dimensions, as noted in the following recent paper:
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5) Donald Marolf, An illustration of 241 gravity loop transform troubles, available as
gr-qc/9305015.

I know that Ashtekar and Loll are attacking these problems right now; Loll discussed this
a bit in a lecture she gave in my seminar.

#5 The Wheeler-DeWitt equation Here we proceed as in approach #1 but attempt
to impose the Hamiltonian and diffeomorphism constraints after quantizing. That is, we
start with an overly large phase space of initial data for general relativity — overly large
because a given solution of Einstein’s equations will have many different initial data
on different spacelike slices — quantize by turning Poisson brackets into commutators,
and then try to take care of the mistake we made by defining the “physical” states to be
those annihilated by certain operators, the Hamiltonian and diffeomorphism constraints.
I gave a brief intro to this in “Week 11”. This is the most traditional approach in 3+1

gravity.

#6 Lattice approaches These are closely related to the topological lattice field
theories described above. Here we treat spacetime as discrete, that is, as a kind of lattice.
One approach here is due to Regge and Ponzano, and recently worked out rigorously
by Turaev and Viro. To get going in this theory, you “triangulate” your 3-dimensional
spacetime, that is, chop it into tetrahedra. All we need to work with is this “simplicial
complex” consisting of tetrahedra, their triangular faces, their line-segment edges, and
the vertex points. We assume for simplicity that spacetime is compact, so we can use
finitely many tetrahedra. Thus everything in sight is finite and discrete. A “history of the
world” in this theory amounts to labelling each edge with a length, or “spin”, that must
be0,1,1,2,... or j/2. There are thus finitely many possible histories. To do calculations
in this theory, we follow Feynman’s procedure and “sum over histories” — write down
a formula for the quantity we are interested in, and add up its value for all histories,
weighted by a quantity depending on the history, the exponential of the action of that
history, to obtain the vacuum expectation value of the quantity. The formula for the
action is very familiar to folks knowledgeable about quantum theory. Each tetrahedron
has 6 edges labelled by spins, and we calculate a quantity called the “6j symbol” from
these spins and then add it up for all tetrahedra. In the Turaev-Viro version, we have
replaced the gauge group SU(2) by the corresponding quantum group, with the quantum
parameter ¢ a root of unity, so there are only finitely many irreducible representations,
or spins, to sum over. (See “Week 5” for the vaguest of introductions to quantum groups
and their representations!) The beauty of this theory is that the answer one gets is
independent of the triangulation one has chosen.

While I'm at it, let me list some key references to the subject of lattice 2+1 gravity, a
subject I'm fascinated by these days.

The grandaddy of them all, the Ponzano—Regge paper, is:

6) G. Ponzano and T. Regge, “Semiclassical limits of Racach coefficients”, in F. Bloch
(ed.), Spectroscopic and Group Theoretical Methods in Physics, Amsterdam: North-
Holland 1968.

Then there are:
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7) Edward Witten, “(2+1)-dimensional gravity as an exactly soluble system”, Nucl.
Phys. B311 (1988), 46-78.

8) V. G. Turaev and O. Y. Viro, “State sum invariants of 3-manifolds and quantum
6j-symbols”, Topology 31 (1992), 865-902.

Also Ooguri wrote a paper on 3+1 lattice gravity that has been quite influential:

9) Hirosi Ooguri, “Topological lattice models in four dimensions”, Mod. Phys. Lett. A7
(1992), 2799-2810. Available as hep-th/9205090.

And there is also the recent paper by Rovelli, which I discussed in “Week 14”. This is
very readable (once you know what’s going on!) and conceptual.

10) Peter Peldan, “Actions for gravity, with generalizations: a review”, 61 pages, avail-
able as gr-qc/9305011.

The classic action principle for general relativity is the Einstein—Hilbert action: the
Ricci scalar times the volume form associated to the metric. An important modification,
often called the Palatini action, takes a connection and tetrad (aka vierbein or frame
field) as basic. More recently, Plebanski invented an action using the self-dual part of the
connection and a tetrad field; this turns out to be closely related to an action naturally
associated with the Ashtekar “new variables” (a self-dual connection and tetrad field),
although this was realized only subsequently by Capovilla, Dell, and Jacobson. More
recently still, there is the Capovilla-Dell-Jacobson action. These new action principles
shed a very interesting new light on gravity, particularly when it comes to quantizing it.
Of course it must be remembered that actions that give the same classical dynamics can
(and typically DO) give different quantum theories. So a traditionalist might question
whether these new actions give the “right” quantum theory of gravity. Of course, the
correct response to such a traditionalist is “well, you come up with the ‘right’ quantum
theory of gravity and then we can compare!” The point is that the good old Einstein—
Hilbert action is extremely intractable when it comes to quantization — so perhaps it is
not the “right” one, and any quantization is more enlightening than none at this stage.

Peldan presents a grand tour of the various Lagrangian formulations of gravity, and
on page 3 of this large manuscript there is a large diagram of the main Lagrangian
and Hamiltonian approaches to gravity in 3+1 dimensions, while on page 35 there is a
somewhat smaller chart for 241 gravity. (A very brief preliminary warmup on some of
these formulations appears in my earlier article, “Week 7”.) I plan on going through this
carefully in order to be able to make up for years of neglect on my part of this sort of
thing.

86


https://arxiv.org/abs/hep-th/9205090
https://arxiv.org/abs/gr-qc/9305011

WEEK 17 JUNE 13, 1993

Week 17

June 13, 1993

This’ll be the last “This Week’s Finds” for a few weeks, as I am going up to disappear until
July. I've gotten some requests for introductory material on gauge theory, knot theory,
general relativity, TQFTs and such recently, so I just made a list of some of my favorite
books on this kind of thing — with an emphasis on the readable ones.

Also, just as a little plug here, a graduate student here at UCR (Javier Muniain) and
I are turning my course notes from this year into a book called “Gauge Fields, Knots and
Gravity,” meant to be an elementary introduction to these subjects. This will eventually
be published by World Scientific if all goes well. It will gently remind the reader about
manifolds, differential forms, Lagrangians, etc., develop a little gauge theory, knot the-
ory, and general relativity, and at the very end it'll get to the relationship between knot
theory and quantum gravity — at which point one could read more serious stuff on the
subject.

A while back Lee Rudolph asked my opinion of the following article:

1) Arthur Jaffe and Frank Quinn, “Theoretical mathematics: toward a cultural syn-
thesis of mathematics and theoretical physics”, Bull. Amer. Math. Soc. 29 (1993),
1-13. Available as arXiv:math/9307227.

People who are seriously into mathematical physics will know that with string theory
the interaction between mathematicians and physicists, especially mathematicians who
haven’t traditionally been close to physics (e.g. algebraic geometers), has strengthened
steadily for the last 10 years or so. Physicists are coming up with lots of exciting mathe-
matical “results” — often not rigorously proved! — and mathematicians are getting very
interested. Let me quote the abstract:

Is speculative mathematics dangerous? Recent interactions between physics
and mathematics pose the question with some force: traditional mathemati-
cal norms discourage speculation; but it is the fabric of theoretical physics. In
practice there can be benefits, but there can also be unpleasant and destructive
consequences. Serious caution is required, and the issue should be considered
before, rather than after obvious damage occurs. With the hazards carefully in
mind, we propose a framework that should allow a healthy and a positive role
for speculation.

Replies have been solicited, so there may be a debate on this timely subject in the
AMS Bulletin. This subject has a great potential for flame wars — or, as Greeks and
academics refer to them, “polemics.” Luckily Jaffe and Quinn take a rather careful and
balanced tone. I think anyone interested in the culture of mathematics and physics
should take a look at this.

Now for two books:

2) DeWitt L. Sumner, New Scientific Applications of Geometry and Topology, Proc. Symp.
Appl. Math. 45, AMS.
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This volume has a variety of introductory papers on applications of knot theory; the
titles are roughly “Evolution of DNA topology,” “Geometry and topology of DNA and
DNA-protein interactions,” “Knot theory and DNA,” “Topology of polymers,” “Knots and
Chemistry,” and “Knots and physics.”

3) Louis Kauffman and Sostenes Lins, Temperley—Lieb Recoupling Theory and Invariants
of 3-Manifolds, Princeton: Princeton U. Press, 1994.

This is an elegant exposition of the 3-manifold invariants obtained from the quantum
group SU,(2) — or in other words, from Chern-Simons theory. In part this is a polishing
of existing work, but it also contains some interesting new ideas.

And now for some papers:

4) M. Carfora, M. Martellini and A. Marzuoli, “12j-symbols and four-dimensional
quantum gravity”, Dipartimento di Fisica, Universita di Roma “La Sapienza” preprint.

This is an attempt to do for 4d quantum gravity what Regge, Ponzano and company
so nicely did for 3d quantum gravity (see “Week 16”) — describe it using triangulated
manifolds and angular momentum theory.

5) Y. S. Soibelman, “Selected topics in quantum groups”, Lectures for the European
School of Group Theory, Harvard University preprint.

This is a nice review of Soibelman’s work on quantum groups, quantum spheres, and
other aspects of “quantum geometry.”

6) J. Scott Carter and Masahico Saito , “Braids and movies”, Journal of Knot Theory
and Its Ramifications 5 (1996), 589-608.

Just as every knot or link is given as the closure of a braid — for example, the trefoil
knot

=
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is the closure of

/

/

— every “2-knot” or “2-link” — that is, a surface embedded in R*, is the closure of a “2-
braid”. Just as there are “Markov moves” that say when two links come from the same
braid, there are moves for 2-braids — as discussed here.

7) Danny Birmingham and Mark Rakowski, “Combinatorial invariants from four di-
mensional lattice models: I1”, available as hep-th/9305022.

The previous paper obtains some invariants of 4-manifolds by triangulating them and
doing a kind of “state sum” much like those I described in “Week 16”. This paper shows
those invariants are trivial — at least for compact manifolds, where one just gets the
answer “1”. This seems to be happening a lot lately.

8) Boguslaw Broda, “A note on the four-dimensional Kirby calculus”, available as
hep-th/9305101.

An earlier attempt by Broda to construct 4-manifold invariants along similar lines was
discussed here in “Week 9” and “Week 10” — the upshot being that the invariant was
trivial. This is a new attempt and Broda has told me that the arguments for the earlier
invariant being trivial do not apply. Here’s hoping!

9) H.-J. Matschull, “Solutions to the Wheeler DeWitt constraint of canonical gravity
coupled to scalar matter fields”, available as gr-qc/9305025.

One very important technical issue in the loop representation of quantum gravity is how
to introduce matter fields into the picture. Let me quote:

It is shown that the Wheeler DeWitt constraint of canonical gravity coupled to
Klein Gordon scalar fields and expressed in terms of Ashtekar’s variables admits
formal solutions which are parametrized by loops in the three dimensional hy-
persurface and which are extensions of the well known Wilson loop solutions
found by Jacobson, Rovelli and Smolin.

10) Luis J. Garay, “Hilbert space of wormholes”, available as gr-qc/9306002.
I think I'll just quote the abstract on this one:

Wormbhole boundary conditions for the Wheeler—DeWitt equation can be derived
from the path integral formulation. It is proposed that the wormhole wave
function must be square integrable in the maximal analytic extension of min-
isuperspace. Quantum wormholes can be invested with a Hilbert space struc-
ture, the inner product being naturally induced by the minisuperspace metric,
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in which the Wheeler—DeWitt operator is essentially self-adjoint. This provides
us with a kind of probabilistic interpretation. In particular, giant wormholes
will give extremely small contributions to any wormhole state. We also study
the whole spectrum of the Wheeler—DeWitt operator and its role in the calcula-
tion of Green’s functions and effective low energy interactions.

11) Vipul Periwal, “Chern-Simons theory as topological closed string”, available as
hep-th/9305115.

Lately people have been getting interested in gauge theories that can be interpreted as
closed string field theories. I mentioned one recent paper along these lines in “Week
15”, which considers Yang-Mills in 2 dimensions. (This was not the first paper to do
so, I should emphasize.) A while back Witten wrote a paper on Chern-Simons gauge
theory in 3 dimensions as a background-free open string field theory, but I was unable
to understand it. This paper seems conceptually simpler, although it uses some serious
mathematics. I think I might be able to understand it. It starts:

The perturbative expansion of any quantum field theory (qft) with fields trans-
forming in the adjoint representation of SU(N) is a topological expansion in
surfaces, with N~2 playing the role of a handle-counting parameter. For N
large, one hopes that the dynamics of the gft is approximated by the sum (al-
beit largely intractable) of all planar diagrams. The topological classification of
diagrams has nothing a priori to do with approximating the dynamics with a
theory of strings evolving in spacetime.

Gross (see also refs...) has shown recently that the large N expansion does
actually provide a way of associating a theory of strings in QCD. Maps of two-
dimensional string worldsheets into two-dimensional spacetimes are necessarily
somewhat constricted. What one would like is a gft with fields transforming in
the adjoint representation in d > 2, which is at the same time exactly solvable.
One could then, in principle, attempt to associate a theory of strings with such
a qft by exhibiting a ‘sum over connected surfaces’ interpretation for the free
energy of the gft. There is no guaranty that such an association will exist.

The author argues that Chern-Simons theory is a “rara avis among QFTs” for which
such an association exists. He takes the free energy for SU(/N) Chern—Simons theory on
53, does a large-N expansion on it, and shows that the coefficient of the N2=29 term is
the (virtual) Euler characteristics of the moduli space of surfaces with g handles. I wish
I understood this better at a very pedestrian level! E.g., is there some string-theoretic
reason why one might expect the free energy to be of this form? Anyway, then he
considers T, and gets something related to surfaces with a single puncture in them.
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Week 18

September 11, 1993

I will be resuming this series of articles this fall, though perhaps not at a rate of one
“Week” per week, as I'll be pretty busy. For those of you who haven’t seen this series
before, let me explain. It’s meant to be a guide to some papers, mostly in preprint form,
that I have found interesting. I should emphasize that it’s an utterly personal and biased
selection — if more people did this sort of thing, we might get a fairer sample, but I'll be
unashamed in focussing on my own obsessions, which these days lean towards quantum
gravity, topological quantum field theories, knot theory, and the like.

Quite a pile of papers has built up over the summer, but I will start by describing
what I did over my summer vacation:

1) John Baez, “Strings, loops, knots, and gauge fields”, available as hep-th/9309067.

When I tell layfolk that 'm working on the loop representation of quantum gravity, and
try to describe its relation to knot theory, I usually say that in this approach one thinks
of space, not as a smoothly curved manifold (well, I try not to say “manifold”), but as a
bunch of knots linked up with each other. If they have been exposed to physics popular-
izations they will usually ask me at this point if 'm talking about superstring theory. To
which I used to respond, somewhat annoyed, that no, it was quite different. Superstring
theory, I explained, is a grandiose “theory of everything” that tries to describe all known
forces and particles, and lots more, too, as being vibrating loops of string hurling around
in 349-dimensional space. (Well, maybe just 10, or 26.) It is a complicated mishmash of
all previous failed approaches to unifying gravity with the other forces: Yang-Mills the-
ory, Kaluza-Klein models, strings, and supersymmetry. (The last is a symmetry principle
that postulates for every particle another one, a mysterious “superpartner,” despite the
fact that no such superpartners have been seen.) And it has made no testable predic-
tions as of yet. The loop representation of quantum gravity, on the other hand, is a much
more conservative project. It simply attempts to use some new mathematics to reconcile
two theories which both seem true, but up to now have been as immiscible as oil and
water: quantum field theory, and general relativity. If it works, it will still be only the
first step towards unifying gravity with the other forces. If the questioner has the gall to
ask if it has made any testable predictions, I say that so far it is essentially a mathematics
project. On the one hand, here are Einstein’s equations; on the other hand, here are the
rules of thumb for “quantizing” some equations. Is there a consistent and elegant way of
applying those rules to those equations? People have tried for 40 years or so without real
success, but quite possibly they just weren’t being clever enough, since the rules of thumb
leave a lot of scope for creativity. Then a physicist named Ashtekar came along and re-
formulated Einstein’s equations using some new variables (usually known by experts as
the “new variables”). This made the equations look much more like those that describe
the other forces in physics. This led to renewed hope that Einstein’s equations might
be consistently quantized after all. Then physicists named Rovelli and Smolin , working
with Ashtekar, made yet another change of variables, based on the new variables. Rovelli
and Smolin’s variables were labelled by loops in space, so they are called the loop vari-
ables. These loops are quite unlike strings, since they are merely mathematical artifacts
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for playing with Einstein’s equations, not actual little objects whizzing about. But using
them, Rovelli and Smolin were able to quantize Einstein’s equations and actually find a
lot of solutions! However, they were making up a lot of new mathematics as they went
along, and, as usual in theoretical physics, it wasn’t 100% rigorous (which, as we know,
is like the woman who could trace her descent from William the Conqueror with only
two gaps). So I, as a mathematician, got interested in this and am trying to help out and
see how much of this apparently wonderful development is for real.

The odd thing is that there are a lot of mathematical connections between string
theory and the loop representation. Gradually, as time went on, I became more and
more convinced that maybe the layfolk were right — maybe the loop representation of
quantum gravity really was string theory in disguise, or vice versa. This made me a little
embarrassed by how much I had been making fun of string theory. Still, it could be a very
good thing. On the one hand, the loop representation of quantum gravity is much more
well-motivated from basic physical principles than string theory — it’s not as baroque
— a point I still adhere to. So maybe one could use it to understand string theory a lot
more clearly. On the other hand, string theory really attempts to explain, not just gravity,
but a whole lot more — so maybe it might help people see what the loop representation
of quantum gravity has to do with the other forces and particles (if in fact it actually
works).

I decided to write a paper about this, and as I did some research I was intrigued
to find more and more connections between the two approaches, to the point where
it is clear that while they are presently very distinct, they come from the same root,
historically speaking.

Here’s what I wound up saying:

The notion of a deep relationship between string theories and gauge theories is
far from new. String theory first arose as a model of hadron interactions. Un-
fortunately this theory had a number of undesirable features; in particular, it
predicted massless spin-2 particles. It was soon supplanted by quantum chromo-
dynamics (QCD), which models the strong force by an SU(3) Yang-Mills field.
However; string models continued to be popular as an approximation of the con-
fining phase of QCD. Two quarks in a meson, for example, can be thought of as
connected by a string-like flux tube in which the gauge field is concentrated,
while an excitation of the gauge field alone can be thought of as a looped flux
tube. This is essentially a modern reincarnation of Faraday’s notion of “field
lines,” but it can be formalized using the notion of Wilson loops. If A denotes
a classical gauge field, or connection, a Wilson loop is simply the trace of the
holonomy of A around a loop in space. If instead A denotes a quantized gauge
field, the Wilson loop may be reinterpreted as an operator on the Hilbert space
of states, and applying this operator to the vacuum state one obtains a state in
which the Yang-Mills analog of the electric field flows around the loop.

In the late 1970’s, Makeenko and Migdal, Nambu, Polyakov, and others at-
tempted to derive equations of string dynamics as an approximation to the
Yang-Mills equation, using Wilson loops. More recently, D. Gross and oth-
ers have been able to exactly reformulate Yang—Mills theory in 2-dimensional
spacetime as a string theory by writing an asymptotic series for the vacuum ex-
pectation values of Wilson loops as a sum over maps from surfaces (the string

92



WEEK 18 SEPTEMBER 11, 1993

worldsheet) to spacetime. This development raises the hope that other gauge
theories might also be isomorphic to string theories. For example, recent work
by Witten and Periwal suggests that Chern—Simons theory in 3 dimensions is
also equivalent to a string theory.

String theory eventually became popular as a theory of everything because the
massless spin-2 particles it predicted could be interpreted as the gravitons one
obtains by quantizing the spacetime metric perturbatively about a fixed “back-
ground” metric. Since string theory appears to avoid the renormalization prob-
lems in perturbative quantum gravity, it is a strong candidate for a theory unify-
ing gravity with the other forces. However, while classical general relativity is an
elegant geometrical theory relying on no background structure for its formula-
tion, it has proved difficult to describe string theory along these lines. Typically
one begins with a fixed background structure and writes down a string field
theory in terms of this; only afterwards can one investigate its background inde-
pendence. The clarity of a manifestly background-free approach to string theory
would be highly desirable.

On the other hand, attempts to formulate Yang—Mills theory in terms of Wilson
loops eventually led to a full-fledged “loop representation” of gauge theories,
thanks to the work of Gambini, Trias, and others. After Ashtekar formulated
quantum gravity as a sort of gauge theory using the “new variables,” Rovelli and
Smolin were able to use the loop representation to study quantum gravity non-
perturbatively in a manifestly background-free formalism. While superficially
quite different from modern string theory, this approach to quantum gravity
has many points of similarity, thanks to its common origin. In particular, it
uses the device of Wilson loops to construct a space of states consisting of “multi-
loop invariants,” which assign an amplitude to any collection of loops in space.
The resemblance of these states to wavefunctions of a string field theory is strik-
ing. It is natural, therefore, to ask whether the loop representation of quantum
gravity might be a string theory in disguise — or vice versa.

The present paper does not attempt a definitive answer to this question. Rather,
we begin by describing a general framework relating gauge theories and string
theories, and then consider a variety of examples. Our treatment of examples
is also meant to serve as a review of Yang—Mills theory in 2 dimensions and
quantum gravity in 3 and 4 dimensions.

I should add that the sort of string theory I talk about in this paper is fairly crude

compared to that which afficionados of the subject usually concern themselves with. It
treats strings only as maps from a surface (the string worldsheet) into spacetime, and
only cares about such maps up to diffeomorphism, i.e., smooth change of coordinates.
In most modern string theory the string worldsheet is equipped with more geometrical
structure (a conformal structure) — it looks locally like the complex plane, so one can
talk about holomorphic functions on it and the like. This is why string theorists are al-
ways muttering about conformal field theory. But the sort of string theory that Gross and
others (Taylor, Minahan, and Polychronakos, particularly) have been using to describe
2d Yang-Mills theory does not require a conformal structure on the string worldsheet,
so it’s at least possible that more interesting theories like 4d quantum gravity can be for-

93



WEEK 18 SEPTEMBER 11, 1993

mulated as string theories without reference to conformal structures. (Of course, if one
integrates over all conformal structures, that’s a way of referring to conformal structures
without actually picking one.) I guess I'm rambling on here a bit, but this is really the
most mysterious point as far as I'm concerned.

One hint of what might be going on is as follows. And here, 'm afraid, I will be
quite technical. As noted by Witten and formalized by Moore, Seiberg, and Crane, a
rational conformal field theory gives rise to a particularly beautiful sort of category called
a modular tensor category. This contains, as it were, the barest essence of the theory.
Any modular tensor category gives rise in turn to a 3d topological quantum field theory
— examples of which are Chern-Simons theory and quantum gravity in 3 dimensions.
And Crane and Frenkel have shown (or perhaps it’s fairer to say that if they ever finish
their paper they will have shown) that the nicest modular tensor categories give rise
to braided tensor 2-categories, which should, if there be justice, give 4d topological
quantum field theories. (For more information on all these wonderful things — which
no doubt seem utterly intimidating to the uninitiated — check out previous “This Week’s
Finds.”) Quantum gravity in 4 dimensions is presumably something roughly of this sort,
if it exists. So what I'm hinting at, in brief, is that a bunch of category theory may
provide the links between modern string theory with its conformal fields and the loop
representation of quantum gravity. This is not as outre as it may appear. The categories
being discussed here are really just ways of talking about symmetries (see my stuff on
categories and symmetries for more on this). As usual in physics, the clearest way to
grasp the connection between two seemingly disparate problems is often by recognizing
that they have the same symmetries.
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Week 19

September 27, 1993

I will now start catching up on some of the papers that have accumulated over the
summer. This time I'll say a bit about recent developments in quantum field theory and
4-dimensional topology.

The quantum field theories that describe three of the forces of nature (electromag-
netic, strong and weak) depend for their formulation on a fixed metric on spacetime —
that is, a way of measuring distance and time. Indeed, it seems pretty close to being true
that spacetime is R*, and that the “interval” between any two points in 4-dimensional
space is given by the Minkowski metric

dt? — da® — dy? — dz?

where dt is the change in the time, or ¢, coordinate, dx is the change in the spatial x
coordinate, and so on. However, it’s apparently not quite true. In fact, the presence of
matter or energy distorts this metric a little, and the effect of the resulting “curvature of
spacetime” is perceived as gravity. This is the basic idea of general relativity, which is
nicely illustrated by the way in which the presence of the sun bends starlight that passes
nearby:.

Gravity is thus quite different from the other forces, at least to our limited under-
standing. The other forces we have quantum theories of, and these theories depend on a
fixed (that is, pre-given) metric. We have no quantum theory of gravity yet, only a clas-
sical theory, and this theory is precisely a set of equations describing a variable metric,
that is, one dependent upon the state of the universe. These are, of course, Einstein’s
equations.

In fact it is no coincidence that we have no quantum theory of gravity. For most of
the last 50 years or so physicists have been working very hard at inventing and under-
standing quantum field theories that rely for their formulation on a fixed metric. Indeed,
physicists spent huge amounts of effort trying to make a theory of quantum gravity along
essentially these lines! This is what one calls “perturbative” quantum gravity. Here one
says, “Well, we know the metric isn’t quite the Minkowski metric, but it’s awfully close,
so we’ll write it as the Minkowski metric plus a small perturbation, derive equations for
this perturbation from Einstein’s equations, and make a quantum field theory based on
those equations.” That way we could use the good old Minkowski metric as a “back-
ground metric” and thus use all the methods that work for other quantum field theories.
This was awfully fishy from the standpoint of elegance, but if it had worked it might have
been a very good thing, and indeed we learned a lot from its failure to work. Mainly,
though, we learned that we need to bite the bullet and figure out how to do quantum
field theory without any background metric.

A recent big step was made when people (in particular Witten and Atiyah) formu-
lated the notion of a “topological quantum field theory.” This is a precise list of prop-
erties one would like a quantum field theory independent of any background metric to
satisfy. A wish list, as it were. One of the best-understood examples of such a “TQFT” is
Chern-Simons theory. This is a quantum field theory that makes sense in 3-dimensional
spacetime, not 4d spacetime, so in a sense it has no shot at being “true.” However, it
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connects up to honest 4d physics in some very interesting ways, it serves as warmup for
more serious physics yet to come, AND it has done wonders for the study of topology.

It is also worth noting that one particular case of Chern-Simons theory is equivalent
to quantum gravity in 3d spacetime. Here I am being a bit sloppy; there are various
ways of doing quantum gravity in 3 dimensions and they are not all equivalent, but
the approach that relates to Chern-Simons theory is, in my opinion, the nicest. This
approach to 3d quantum gravity was the advantage that it can also be described using a
“triangulation” of spacetime. In other words, if we prefer the discrete to the continuum,
we can “triangulate” it, or cut it up into tetrahedra, and formulate the theory solely in
terms of this triangulation. Of course, it’s pretty common in numerical simulations to
approximate spacetime by a lattice or grid like this. What’s amazing here is that one gets
exact answers that are independent of the triangulation one picks. The idea for doing this
goes back to Ponzano and Regge, but it was all done quite rigorously for 3d quantum
gravity by Turaev and Viro just a few years ago. In particular, they were able to show the
3d quantum gravity is a TQFT using only triangulations, no “continuum” stuff.

It is tempting to try to do something like this for 4 dimensions. But it is unlikely to be
so simple. A number of people have recently tried to construct 4d TQFTs copying tricks
that worked in 3d. Some papers along these lines that I have mentioned before are:

Louis Crane and David Yetter, “A categorical construction of 4d topological
quantum field theories”, available as hep-th/9301062. (Week 2)

Boguslaw Broda, “Surgical invariants of four-manifolds”, available as hep-th/
9302092. (Week 9 and Week 10)

(T have listed which “Week” I discussed these in case anyone wants to go back and check
out some of the details.)

These papers ran into stiff opposition as soon as they came out! First Ocneanu
claimed that the Crane-Yetter construction was trivial, in the sense that the number
it associated to any compact 4-dimensional spacetime manifold was 1. (This number
is called the partition function of the quantum field theory, and having it be 1 for all
spacetimes means the theory is deadly dull.)

Adrian Ocneanu, “A note on simplicial dimension shifting”, available as hep-th/
9302028. (“Week 5”)

Crane and Yetter wrote a rebuttal noting that Ocneanu was not dealing with quite the
same theory:

David Yetter and Louis Crane, “We are not stuck with gluing”, available as
hep-th/9302118. (Week 7)

They also presented, at their conference this spring, calculations showing that their par-
tition function was not equal to 1 for certain examples.

In my discussions of Broda’s work I extensively quoted some correspondence with
Dan Ruberman, who showed that in Broda’s original construction, the partition function
of a 4-dimensional manifold was just a function of its signature and possibly some Betti
numbers — these being well-known invariants, it’s not especially exciting from the point
of view of topology. This was also shown by Justin Roberts:
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Justin Roberts, “Skein theory and Turaev-Viro invariants”, Topology, 34, 771~
787. Available as https://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.138.8587. (Week 14)

He suggested that the Crane—Yetter partition function was also a function of the signature
and Betti numbers, but did not check their precise normalization conventions, and so did
not quite prove this. However, more recently Crane and Yetter, together with Kauffman,
have shown this themselves:

1) Louis Crane, Louis H. Kauffman and David N. Yetter, “Evaluating the Crane-Yetter
Invariant”, available as hep-th/9309063.

Abstract: We provide an explicit formula for the invariant of 4-manifolds intro-
duced by Crane and Yetter (in hep-th/9301062). A consequence of our result
is the existence of a combinatorial formula for the signature of a 4-manifold
in terms of local data from a triangulation. Potential physical applications of
our result exist in light of the fact that the Crane-Yetter invariant is a rigorous
version of ideas of Ooguri on B A F' theory.

They also have shown that Broda’s original construction, and also a souped-up construc-
tion of his, give a partition function that depends only on the signature:

2) Louis Crane, Louis H. Kauffman and David N. Yetter, “On the Classicality of Broda’s
SU(2) Invariants of 4-Manifolds”, available as hep-th/9309102.

Abstract: Recent work of Roberts has shown that the first surgical 4-manifold in-
variant of Broda and (up to an unspecified normalization factor) the state-sum
invariant arising from the TQFT of Crane-Yetter are equivalent to the signa-
ture of the 4-manifold. Subsequently Broda defined another surgical invariant
in which the 1- and 2- handles are treated differently. We use a refinement of
Roberts’ techniques developed by the authors in hep-th/9309063 to show that
the “improved” surgical invariant of Broda also depends only on the signature
and Euler character.

Now let me say just a little bit about what this episode might mean for physics as
well as mathematics. The key is the “B A F” theory alluded to above. This is a quantum
field theory that makes sense in 4 dimensions. I have found that the nicest place to read
about it is:

3) Gary Horowitz, “Exactly soluble diffeomorphism-invariant theories”, Commun. Math.
Phys. 125 (1989), 417-437.

This theory is a kind of simplified version of 4d quantum gravity that is a lot closer
in character to Chern-Simons theory. Like Chern-Simons theory, there are no “local
degrees of freedom” — every solution looks pretty much like every other one as long
as we don’t take a big tour of space and notice that funny things happen when we go
around a noncontractible loop, which is the sort of thing that can only exist if space has
a nontrivial topology. 4d quantum gravity, on the other hand, should have loads of local
degrees of freedom — the local curving of spacetime!
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What Crane and Yetter were dreaming of doing was constructing 4d quantum gravity
as a TQFT using triangulations of spacetime. What they really did, it turns out, was to
construct B A F theory as a TQFT using triangulations. (Broda constructed it another
way.) On the one hand, the simplicity of B A F' theory compared to honest-to-goodness
4d quantum gravity makes it possible to understand it a lot better, and calculate it out
explicitly. On the other hand, B A F' theory is so simple that it doesn’t tell us much
new about topology, at least not the topology of 4-dimensional manifolds per se. Via
Donaldson theory and the work of Kronheimer and Mrowka it’s probably telling us a lot
about the topology of 2-dimensional surfaces embedded in 4-dimensional manifolds —
but alas, I don’t understand this stuff very well yet!

Getting our hands on 4d quantum gravity as a TQFT along these lines is still, there-
fore, an unfinished business. But we are, at last, able to study some examples of 4d
TQFTs and ponder more deeply what it means to do quantum field theory without any
background metric. The real thing missing is local degrees of freedom. Without them,
any model is really just a “toy model” not much like physics as we know it. The loop
representation of quantum gravity has these local degrees of freedom (to the extent that
we understand the loop representation!), and so the challenge (well, one challenge!) is
to better relate it to what we know about TQFTs.
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Week 20

October 2, 1993

I think I'll depart from my usual concerns this week and talk about a book I'd been
meaning to get my hands on for ages:

1) John H. Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups, second
edition, Grundlehren der mathematischen Wissenschaften 290, Springer, Berlin,
1993.

This is a mind-boggling book. I have always regarded research in combinatorics as
a pleasure I must deny myself, for the study of the discrete presents endless beautiful
tapestries in which one could easily lose oneself for life, and I regard this as a kind of
self-indulgence when there is, after all, the physical universe out there waiting to be
understood. Of course, it’s good that someone does combinatorics, since even the most
obscure corners have a strong tendency to become useful eventually — and if they write
books about it, I can have my cake and eat it too, by reading about it. Conway and Sloane
are two masters of combinatorics, and this book is like a dessert tray piled so high with
delicacies that it’s hard to know where to begin. Rather than attempt to describe it, let
me simply show you a few things I found in it. The book is 679 pages long, so what I'll
say is only the most minute sample!

Let’s begin with sphere packings. Say one is stacking cannonballs on one’s lawn,
which is a quaint custom now that cannons have been replaced by far more horrible
weapons. A nice way to do it is to lay out a triangle of cannonballs thus:

and then set down another triangle of cannonballs on top of the first layer, one in every
other hole, thus:
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and another:

and finally one on top — which I won’t attempt to draw. (Actually all the figures here
were made by Simon Burton.) Very nice stack! There are many mathematical reflections
it could lead one to, one of which is: is this the densest possible way one can pack spheres
of equal radius? The density is 7/4/18 = .7405 .. .; can one do better? Apparently it was
Kepler who first conjectured that the answer is “no.” This is a famous hard problem. In
1991 W.-Y. Hsiang announced that he had a proof, but I am not sure how many experts
have read it and been convinced.

This packing is a very regular sort of packing, what people call a lattice packing. A
lattice is a discrete subset of n-dimensional Euclidean space closed under addition, and
the packing above corresponds to a lattice called the “face-centered cubic” or fcc lattice,
which is the set of all points (z, y, z) where z, y, and z are integers adding up to an even
number. (One might have a bit of fun drawing some of those points and seeing why they
do the job.) Naturally, because of their regularity lattice packings are easier to study
than non-lattice ones. In fact, Gauss showed in 1831 that the fcc lattice is the densest
of all lattice packings of spheres in 3 dimensions. This justifies the practice of stacking
grapefruit this way in the supermarket.

Let’s take a bit closer look at what’s going on here. Imagine an fcc lattice going off
infinitely in all directions... each sphere is touching 12 others: 6 in its own layer, as it
were, 3 in the layer above and 3 in the layer below. If we only pay attention to a given
sphere and those touching it we see something like:

If we remove the central sphere to clean up the picture a bit, the centers of the remaining
are the vertices of a shape called the cuboctahedron:
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It has 12 vertices, 8 triangular faces, and 6 square faces. One can get it either by cutting
off the corners of a cube just right, or by cutting off the corners of an octahedron!

Let’s return to thinking about the 12 spheres touching the central one. This raises
another question: is 12 the largest number of equal-radius spheres able to touch a given
one? This is the “kissing spheres” problem — not quite the same as the packing problem!
In 1694, Newton conjectured that 12 was the largest number one could achieve. His
correspondent, David Gregory, thought 13 might be possible. It turns out that Newton
was right (some proofs appeared in the late 1800’s), but it is important to realize that
Gregory’s guess was not as dumb as it might sound!

Why? Well, there’s another way to get 12 spheres to touch a central one. Namely,
locate them at the vertices of a (regular) icosahedron. If one wants to get to know the
icosahedron a bit better one might read my article Some Thoughts on the Number Six.
But I hope you have an icosahedron available, or at least a good mental image of one. It’s
easy to describe the vertices of the icosahedron mathematically in terms of the golden

ratio,
Vh+1
2
This usually goes by the name of “®”, or sometimes “7”. The magic properties of ® are
too numerous to list here, but what counts is that one gets the 12 vertices of a (regular)
icosahedron by taking the points

= 1.61803398874989484820458683437 . . .

(:I:(p’ il? 0)7
(:l:1’ 0) :*:@)’
(0,+£®, +1).

This is easy to check.

Now the interesting thing is that when one gets 12 spheres to touch a central one
using the icosahedron, the 12 sphere don’t touch each other! There’s room to move ’em
around a bit, and perhaps (thought Gregory) even enough room to stick in another one!
Well, Gregory was wrong, but one can do something pretty cool with this wiggle room.
First, though, let’s check that there really is a little space between those outer spheres.
First, compute the distance between neighboring vertices of the icosahedron by taking
two and working it out:

H(CI), 170) - ((I)a -1, O)H =2

Then, compute the distance from any of the vertices to the origin, which is the center of

the central sphere:
1(®,1,0)] = v®* +1

Using the charming fact that ®2 = ® + 1 this simplifies to /@ + 2, but then I guess we

just need to grind it out:
Ve +2=1902...

The point is that this is less than 2, so two neighboring spheres surrounding the central
one are farther from each other than from the central one, i.e., they don’t touch.

Now here’s an interesting question: say we labelled the 12 spheres touching the
central one with numbers 1-12. Is there enough room to roll these spheres around,
always touching the central one, and permute the spheres 1-12 in an interesting way?
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Notice that it’s trivially easy to roll them around in a way that amounts to rotating the
icosahedron, but are there more interesting permutations one can get?
Recall that the group of permutations of 12 things is called Si2, and it has

12! = 479001600

elements. The rotational symmetry group of the icosahedron is much smaller. One can
count its elements as follows: pick a vertex and say which new vertex it gets rotated
to — there are 12 possibilities — and then note that there are 5 ways that could have
happened, for a total of 60. In fact (as I show in the article “Six”) the rotational symmetry
group of the icosahedron is As, the group of even permutations of 5 things. So we have a
nice embedding of the group A5 into S, but we are hoping that by some clever wiggling
we can get a bigger subgroup of Si5 as the group of permutations we can achieve by
rolling spheres around.

In fact, one can achieve all even permutations of the 12 spheres this way! In other
words, we get the group A;», with

|
% = 239500800

elements. How? Well, I wish I could draw an icosahedron for you, but I can’t really do
so well on this medium. The best way is to draw a top view:

and a bottom view:

Now, if we take the top 6 spheres and bunch them up so they are all touching, and the
bottom 6 spheres and bunch them up so they all touch, we can, in fact, twist the top 6
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counterclockwise around 1/5 of a turn. That is, we can map

to

I haven’t actually done this, or even proved I can, but Conway and Sloane say so. And
then the point is that all of Ay, is generated by “twists” of this form. Conway and Sloane
give a sophisticated and quick proof of this fact, which I can’t resist mentioning. Readers
who don’t know much group theory can skip the next paragraph!

First, let ¢(i) be the element of S;5 corresponding to the clockwise twist about the
ith vertex of the icosahedron (so that what’s drawn above is #(1)). This is a 5-cycle,
and we need to show these 12 5-cycles generate A;5. Consider the subgroup generated
by elements of the form #(i)t(j)~! — a clockwise twist followed by a counterclockwise
twist. This is the Mathieu group M5, a most remarkable group! In particular, its action
on the vertices of the icosahedron is able to map any 5 vertices to any 5 others (we say
it’s quintuply transitive), so by conjugating ¢(i) with elements of the Mathieu group we
can get any 5-cycle in S;5. Then we use the fact that A;, is generated by the 5-cycles.

Anyway, what this indicates is that there is an interesting relation between the icosa-
hedron and a certain finite group, the Mathieu group M;». This group has

121/71 = 95040

elements and it is a “simple” group, in the technical sense. The simple groups are to finite
groups roughly as the prime numbers are to the counting numbers; that is, they are the
elementary building blocks from which other finite groups are made (although one has
to specify how one gloms them together to get other groups). One of the remarkable
achievements of this century is the classification of these simple groups. In addition to
various infinite families of simple groups, like the alternating groups A,, (consisting of
even permutations) there are a finite number of “sporadic” simple groups such as the
Mathieu groups, the Fischer groups, the Suzuki groups, and, biggest of all, the Monster
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group, which has
246-320-59-76-112-133-17-19-23-29-31-41-47-59-71
= 808017424794512875886459904961710757005754368000000000

elements!

Here’s a fun story about this number.

In the 1970s, the mathematicians Fricke, Ogg and Thompson were studying the quo-
tient of the hyperbolic plane by various subgroups of SL(2, R) — the group of 2 x 2 real
matrices with determinant one — which acts as isometries of the hyperbolic plane. Sit-
ting inside SL(2,R) is the group of 2 x 2 integer matrices with determinant one, called
SL(2,Z). Sitting inside that is the group I'o(p) consisting of matrices whose lower left
corner is congruent to zero mod p for the prime p. But Fricke, Ogg and Thompson were
actually considering a somewhat larger group I'y(p)+, which is the normalizer of I'y(p)
inside SL(2, R).

If you don’t know what this stuff means, don’t worry! The point is that they asked
this question: if we take the quotient of the hyperbolic plane by this group T'o(p)+,
when does the resulting Riemann surface have genus zero? And the real point is that
they found the answer was: precisely when pis 2, 3, 5,7, 11, 13,17, 19, 23, 29, 31, 41,
47,59 or 71.

Later, Ogg went to a talk on the Monster and noticed that these primes were precisely
the prime factors of the size of the Monster! He wrote a paper offering a bottle of Jack
Daniels whiskey to anyone who could explain this fact. This was the beginning of a
subject which Conway dubbed “Monstrous Moonshine”: the mysterious relation between
the Monster group, the group SL(2,R), and Riemann surfaces.

It turns out that lying behind Monstrous Moonshine is a certain string theory hav-
ing the Monster as symmetries, and this was the key to understanding many strange
“coincidences”.

So, the sporadic groups are telling us something very deep and mysterious about
the universe, since they are very complicated and yet somehow a basic, intrinsic part of
the weave of mathematics. Conway and Sloane have a lot to say about them and their
relations to lattices and error-correcting codes. For more about Monstrous Moonshine
and string theory, the reader should try this:

2) Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex Operator Algebras and
the Monster, Academic Press, New York, 1988.

Rather than attempt to describe this work, which I am not really qualified to do (not
that that usually stops me!), I think I will finish up by describing a charming connection
between the beloved icosahedron and a lattice in 8 dimensions that goes by the name of
Es. I'll be a bit more technical here.

The group of rotational symmetries of the icosahedron is, as we have said, As. This is
a subgroup of the 3d rotation group SO(3). As all physicists know, whether they know it
or not, the group SO(3) has the group SU(2) of 2 x 2 unitary matrices with determinant
1 as its double cover. So we can find a corresponding double cover of A5 as a subgroup
of SU(2); this has twice as many elements as Aj, for a total of 120.

Now the group SU(2) has a nice description as the group of unit quaternions, that is,
things of the form

a+bl +cJ+dK
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where a, b, ¢, d are real numbers with a? + b? + ¢ +d? = 1, and I,J, and K satisfy
IJ=-JI=K, JK=-KJ=1I, Kli=-IK=J I?=J°=K?=-1

(Physicists in the 20th century usually use the Pauli matrices instead, which are basically
the same thing; for the relationship, read “Week 5”.)

It’s natural to ask what the double cover of A5 looks like explicitly in terms of the
unit quaternions. Conway and Sloane give a nice description. Let’s write (a, b, ¢, d) for
a+ bl + ¢J + dK, write ® for the golden ratio as before, and ¢ for the inverse of the
golden ratio:

¢=0""=d—1=0.61803398874989484820458683437 . . .

Then the elements of the double cover of A5 are of the form

(£1,0,0,0),
1 1 1 1
(ifa if} i77 ii))
27227 2

(0, i%, +¢/2,+8/2).

and everything else that can be gotten by even permutations of the coordinates. (Check
that there are 120 and that they are closed under multiplication!)

Charming, but what does it have to do with Eg? Well, note that if we take all finite
sums of elements of the double cover of A5 we get a subring of the quaternions that
Conway and Sloane calls the “icosians.” Any icosian is of the form

a+bl+cJ+dK

where a,b,c, and d live in the “golden field” Q(®) — this is the field of numbers of the
form
x + \/5y

where x and y are rational. Thus we can think of an icosian as an 8-tuple of rational
numbers. We don’t get all 8-tuples, however, but only those lying in a given lattice.
In fact, we can put a norm on the icosians as follows. First of all, there is usual
quaternionic norm
la+ b +cJ +dK||* = a® + 0> + 2 + d?

But for an icosian this is always of the form z + /5y for some rational = and . It turns
out we can define a new norm on the icosians by setting

la +bl +cJ +dK > =2 +y.

With respect to this norm, the icosians form a lattice that fits isometrically in 8-dimensional
Euclidean space and is the famous one called Eg! Eg is known to yield the densest lat-
tice packing of spheres in 8 dimensions, a fact that is not only useful for 8-dimensional
greengrocers, but also is apparently used in error-correcting codes in a number of com-
mercially available modems! (If anyone knows which modems use Eg, let me know — [
might just buy one!) The density with which one can pack spheres in 8 dimensions using
Es, by the way, is 7 /384, or about .2537.
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Group theorists and some physicists, of course, will know that Eg is also the root
lattice of the largest exceptional Lie group, also known as Eg. This appears as the gauge
group in some string theories. While I find those string theories a bit baroque for my
taste, there is clearly a lot of marvelous mathematics floating around here, and anyone
who wants more might start with Conway and Sloane.

Addendum: I had written:

Now here’s an interesting question: say we labelled the 12 spheres touching
the central one with numbers 1-12. Is there enough room to roll these spheres
around, always touching the central one, and permute the spheres 1-12 in an
interesting way? Notice that it’s trivially easy to roll them around in a way that
amounts to rotating the icosahedron, but are there more interesting permuta-
tions one can get?

In fact, one can achieve all even permutations of the 12 spheres this way!

I got some email from Conway saying that in fact one get all permutations of the 12
spheres. The point is this. One can start with the 12 spheres touching the central one
arranged so their centers are at the vertices of an icosahedron. Then one can roll them
around so their centers lie at the vertices of a cuboctahedron:

At this point they touch each other, but one can indeed get to this position. There is a
nice picture of how to do this in Conway and Sloane’s book, but you might enjoy figuring
it out.

Now if we rotate the cuboctahedron around the axis pointing towards the reader, we
get an odd permutation of the 12 spheres, with cycle structure (123)(456)(789101112).
So one can in fact get all of S5 if one lets the 12 spheres “just touch.” If one thinks about
it a bit, the method described in the previous post gets all of A;5 without the 12 spheres
touching at all. Conway says he doesn’t know if one can get all of S;» without the 12
spheres touching each other at all. So this might be a fun problem to work on. I bet the
answer is “no”.

Conway says the permutation problem came up before a lecture he gave at the Uni-
versity of Pennsylvania a while ago, that he solved it during the lecture, and told Jim
Propp about it afterwards.

Someone with much better intuition about these things than I have might want to
consider similar “rolling spheres permutation problems” in higher dimensions. E.g., what
permutations can one can achieve in 4 dimensions, where it is possible to get 24 spheres
to touch a central one? (In 4d it is not known whether one can get 25 to touch, but
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25 is an upper bound.) Greg Kuperberg informs me that the known method for having
24 spheres touch the central sphere is rigid, so that only the “obvious” permutations are
possible starting from this arrangement.

The only other cases where the rolling spheres permutation problem appears to be
solved is in dimensions 1 and 2 (boring), 8, and 24. I described the Eg lattice in 8
dimensions in “This Week’s Finds.” In the corresponding lattice packing, each sphere
touches 240 others. This is, up to rotation, the only way to get 240 spheres to touch a
central one in 8 dimensions. (Also, one cannot get more than 240 to touch the central
one.) So the subgroup of Sa40 that one can get by rolling 240 spheres around a central
one is precisely the “obvious” subgroup, that is, the subgroup of SO(8) that preserves the
Eg lattice. This turns out to be just the Weyl group of Eg, which has

214 .35.52.7 = 696729600

elements.

Dimension 24 is probably the most interesting for lattice theory, and here the densest
lattice packing is the Leech lattice. I am somewhat sorry not to have even mentioned
the Leech lattice in my article, since this is the real star of Conway and Sloan’s book.
The Leech lattice is probably related to the appearance of 26-dimensional spacetime in
string theory; to get it, start with the unique even unimodular lattice in 26-dimensional
Minkowski space, and then look at M, the set of vectors in the lattice perpendicular to
the vector w = (70,1,2,3,...,24). This is a null vector since

12422 4. 4242 = 702,

i.e., it is perpendicular to itself. Taking the quotient of M by w itself, we get the Leech
lattice. In this lattice each sphere touches 196560 others, which is the most one can
attain, and again this is the only way to get 196560 spheres to touch a central one in
24 dimensions. This should be obvious by visualizing it. :-) So again the answer to the
rolling spheres permutation problem is the subgroup of SO(24) that preserves the Leech
lattice. The isomorphism group of the Leech lattice is an interesting group called Coq or
.0 (pronounced “dotto”). It has

2%22.39.5%.72 .11 - 13 - 23 = 8315553613086720000

elements. The Monster group can also be produced using the Leech lattice.
Please don’t be fooled into thinking I understand this stuff!
Jim Buddenhagen raised another interesting point:

Since 13 unit spheres can’t quite all touch a unit sphere, one may ask how much
bigger the central sphere must be to allow all 13 to touch.

In 1951 K. Schutte and B. L. van der Waerden found an arrangement of the
13 unit spheres that allows all of them to touch a central sphere of radius r =
1.04557 . .. This is thought to be optimal but has not been proved optimal.

This r is an algebraic number and is a root of the polynomial
409626 — 18432212 + 24576210 — 139522° + 40962° — 608z* + 3227 + 1

They computed r but did not publish the polynomial.
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Week 21

October 10, 1993

Louis Kauffman is editing a series of volumes called “Series on Knots and Everything,”
published by World Scientific. The first volume was his own book, Knots and Physics.
Right now I'd like to talk about the second volume, by Carter. I got to know Carter
and Saito when it started seeming that a deeper understanding of string theory and the
loop representation of quantum gravity might require understanding how 2-dimensional
surfaces can be embedded in 4-dimensional spacetime. The study of this subject quickly
leads into some very fascinating algebra, such as the “Zamolodchikov tetrahedron equa-
tions” (which first appeared in string theory). A nice review of this subject and their
work on it will appear in a while:

1) J. Scott Carter and Masahico Saito, “Knotted surfaces, braid movies, and beyond”,
in Knots and Quantum Gravity, ed. John Baez, Oxford U. Press, Oxford, 1994.

but for the non-expert, a great way to get started is:

2) J. Scott Carter, How Surfaces Intersect in Space: An Introduction to Topology, World
Scientific Press, Singapore, 1993.

You can tell this isn’t a run-of-the-mill introductory topology book as soon as you
read the little blurb about the author on the back dustjacket. Occasionally there will
be tantalizing personal details in these blurbs that indicate that the author is not just
a mathematical automaton; for example, on the back of Hartshorne’s famous text on
algebraic topology it says “He has travelled widely, speake several foreign languages,
and is an experienced mountain climber. He is also an accomplished amateur musician;
has played the flute for many years, and during his last visit to Kyoto, he began studying
the shakuhachi.” This somehow fits with the austere and slightly intimidating quality of
the text itself. The tone of the blurb on the back of Scott Carter’s book could not be more
different: “When he is not drawing pictures, cooking, or playing with Legos, he is writing
songs and playing guitar for his band The Anteaters who have recorded an eight-song
cassette published by Lobe Current Music.” This is a book that invites the reader into
topology without taking itself too seriously.

I remember first reading about topology as the study of doughnuts, Mébius strips
and the like, and then being in a way disappointed as an undergrad - although in an-
other way quite excited — when it seemed that what topologists really did was a lot of
“diagram-chasing,” the algebraic technique widely used in homology and homotopy the-
ory. Once, however, as a grad student, I took a course in “geometric topology” by Tim
Cochran, and was immensely pleased to find that some topologists really did draw wild
pictures of many-handled doughnuts and the like in 4 dimensions, and prove things by
sliding handles around. The nice thing about this book is that it is readable by any un-
dergraduate — it doesn’t assume or even mention the definition of a topological space!
— but covers some very nontrivial geometric topology. It is not a substitute for the usual
introductory course; instead, it concentrates on the study of surfaces embedded or im-
mersed in 3 and 4 dimensional space, and shows how much there is to ponder about
them. It is packed with pictures and is lots of fun to read.
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The intrinsic topology of surfaces is very simple. The simplest one is the sphere (by
which, of course, mathematicians mean the surface of a ball, not the ball itself). The next
is the torus, that is, the surface of the doughnut. One can also think of the torus as what
you get by taking a square and gluing together the edges as below:

b
Ll

-
Ll

gluing the two horizontal edges together so the double arrows match up, and gluing the
two vertical edges together so the single arrows match up. There is also a two-handled
torus, and so on. The number of handles is called the “genus.” All these surfaces are
orientable, that is, one can define a consistent notion of “right” and “left” on them, so
that if one writes a little word on them and slides the word around it'll never come back
mirror-imaged. And in fact, all orientable surfaces are just n-handled tori, so they are
classified by their genus.

A nice example of a nonorientable surface is the projective plane. One way to visual-
ize this is to take the surface of the sphere and “identify” opposite points, that is, decree
them “the same” by fiat. Imagine, for example, a globe in which antipodal points have
been identified. If one writes a word on the north pole and then slides it down through
the Americas to Ecuador, since the southern hemisphere has been identified with the
northern one, we can think of it popping out over around India somewhere (sorry, my
geography is a little rusty when it comes to antipodes!), but we will see when we slide
it back to the north pole that it has been reversed, and is now written backwards! We
see from this not only that the projective plane is nonorientable, but that it has another
description: simply take a disc and identify opposite points along the boundary. Since
we’re doing topology, a square is just as good as a disc, so we can think of the projective
plane as the result of identifying the points on the boundary of a square as follows:

d-d
«CC
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Another famous example of a nonorientable surface is the Klein bottle, which is given
by

d-d
T«

Y
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We can take either the Klein bottle or the projective plane and get more nonorientable
surfaces by adding handles. Every nonorientable surface is of one of these forms. I've
included a few more basic facts about the classification of surfaces as puzzles at the end
of this article.

Now, the intrinsic topology of surfaces considers them as abstract spaces in their own
right, but the “extrinsic topology” of them considers the ways they may be mapped into
other spaces — for example, 3- or 4-dimensional Euclidean space. And here things get
much more interesting and subtle. For example, while one can embed any orientable
surface in 3d space, one cannot embed any of the nonorientable ones. Here an embed-
ding is a 1-1 continuous map. However, one can immerse the non-orientable ones. An
immersion is a map that is locally an embedding, but not necessarily globally; e.g., a
figure 8 is an immersion of the circle in the plane. There’s a standard way of immersing
the Klein bottle in 3d space with a circle of “double points,” that is, places where the im-
mersion is 2-1. One can easily turn this immersion into an embedding of the Klein bottle
in 4d space by representing the 4th coordinate by how red the surface is and having the
Klein bottle blush as it passes through itself. In fact, one can embed any surface into 4d
space.

While one can’t embed the nonorientable surfaces in 3d space, it is interesting to see
how close one can come. The simplest way an immersion can fail to be an embedding is
by having double points. Another simple way is to have triple points. Carter discusses a
charming immersion of the projective plane in 3d space that only has curves of double
points and a single triple point. This is known as “Boy’s surface.” A somewhat sneakier
way immersions fail to be embeddings is by having “branch points.” Think, for example,
of the function /2 on the complex plane. This is a two-valued function, so its graph
consists of two “sheets” which glom together in a funny way at z = 0, the branch point.
Carter also talks about another neat immersion of the projective plane in R? that just has
double points and a branch point — the “cross cap.” Another immersion, the “Roman
surface,” has both triple points and a branch point.

The general question, then, is what sort of embeddings and immersions different
surfaces admit in 3 and 4 dimensions, and how to classify these. If we are studying
embeddings into 4 dimensions, a nice technique is that of movies. Calling the 4th coor-
dinate “time,” we can draw slices at different times and get frames of a movie. Most of
the frames of a movie of an embedded surface will show simply a bunch of knots. At a
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few times, however, a “catastrophe” will occur, e.g.:

Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6
(catastrophe!)

However, there are always many different movies of essentially the same embedding.
We can, however, always relate these by a sequence of transformations called “movie
moves.” I wish I could draw these, but it would take too long, so look at Carter’s book!

And while you’re at it, check out the index. You will enjoy finding the excuses he has
for such entries as “hipster jive,” “math jail,” “basket shaped thingy,” and “chocolate.”
Heck, I can’t resist one... on page 81: “Mathematicians use the term “word” to mean
any finite sequence of letters or numbers. This practice can freak out (disturb) people
who are not hip to the lingo (aware of the terminology).”

I should add that the following book also has a lot of interesting pictures of surfaces
in it:

3) George Francis, A Topological Picturebook, Springer, Berlin, 1987.
Problems:

A. Take a projective plane and cut out a little disc. Show that what’s left is a Mobius
strip.

B. Take two projective planes, cut out a little disc from each one and attach them
along the resulting circles. This is called taking the “connected sum” of two projective
planes. Show that the result is a Klein bottle. In symbols, P + P = K, or 2P = K.

C. Now take the connected sum of a projective plane and a Klein bottle. Show that
this is the same as a projective plane with a handle attached. A projective plane with a
handle attached is just the connected sum of a projective plane and a torus, so we have:
3P=P+K=P+T.

D.Show: 4P=K+ K=K +T.

E. Show: (2n +1)P = P +nT.

F. Show: (2n +2)P = K +nT.
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Week 22

October 16, 1993

Lately I've been having fun in this series discussing some things that I don’t really know
much about, like lattice packings of spheres. Next week I'll get back to subjects that I
actually know something about, but today I want to talk about the 4-color theorem, the
golden mean, the silver root, knots and quantum field theory. I know a bit about some
of these subjects, but I've only become interested in the 4-color theorem recently, thanks
to my friend Bruce Smith, who has a hobby of trying to prove it, and Louis Kauffman’s
recent work connecting it to knot theory. The sources for what follows are:

1) Thomas L. Saaty and Paul C. Kainen, The Four-Color Problem: Assault and Conquest,
McGraw-Hill, 1977.

and

2) Louis Kauffman, “Map coloring and the vector cross product”, J. Comb. Theory B
48 (1990), 45.

Louis Kauffman, “Map coloring, 1-deformed spin networks, and Turaev-Viro in-
variants for 3-manifolds”, Int. Jour. of Mod. Phys. B, 6 (1992), 1765-1794.

Louis Kauffman and H. Saleur, “An algebraic approach to the planar colouring prob-
lem”, Yale University preprint YCTP-P27-91, November 8, 1991.

(I discussed this work of Kauffman already in “Week 8”, where I described a way to
reformulate the 4-color theorem as a property of the vector cross product.)

Where to start? Well, probably back in October, 1852. When Francis Guthrie was
coloring a map of England, he wondered whether it was always possible to color maps
with only 4 colors in such a way that no two countries (or counties!) touching with a
common stretch of boundary were given the same color. Guthrie’s brother passed the
question on to De Morgan, who passed it on to students and other mathematicians, and
in 1878 Cayley publicized it in the Proceedings of the London Mathematical Society.

In just one year, Kempe was able to prove it. Whoops! In 1890 Heawood found an
error in Kempe’s proof. And then the real fun starts. ...

But I don’t want to tell the whole story leading up to how Appel and Haken proved
it in 1976 (with the help of a computer calculation involving 10'° operations and taking
1200 hours). I don’t even understand the structure of the Appel-Haken proof — for that,
one should probably try:

3) Kenneth Appel and Wolfgang Haken, Every Planar Map is Four Colorable, Con-
temporary Mathematics 98, American Mathematical Society, Providence, Rhode
Island, 1989.

Instead, I'd like to talk about some tantalizing hints of relationships between the 4-color
theorem and physics!
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First, note that to prove the 4-color theorem, it suffices to consider the case where
only three countries meet at any “corner,” since if more meet, say four:

we can stick in a little country at each corner:

so that now only three meet at each corner. If we can color the resulting map, it’s easy
to check that the same coloring with the little countries deleted gives a coloring of the
original map.

Let us talk in the language of graph theory, calling the map a “graph,” the countries
“faces,” their borders “edges,” and the corners “vertices.” What we’ve basically shown
is it suffices to consider trivalent planar graphs without loops — that is, graphs on the
plane that have three edges meeting at any vertex, and never have both ends of the same
edge incident to the same vertex.

Now, it’s easy to see that 4-coloring the faces of such a graph is equivalent to 3-
coloring the edges in such a way that no two edges incident to the same vertex have the
same color. For suppose we have a 4-coloring of faces with colors 1, i, j, and k. Wait —
you say — those don’t look like colors, they look like the quaternions. True! Now color
each edge either ¢, j, or k according to product of the colors of the two faces it is incident
to, where we define products by:

li=il=i, lj=jl=4j, lk=kl=k
ij=ji=k, jk=kj=i, ki=ik=]j.

These are almost the rules for multiplying quaternions, but with some minus signs miss-
ing. Since today (October 16th, 1993) is the 150th birthday of the quaternions, I suppose
I should remind the reader what the right signs are:

ij=—ji=k, jk=—-kj=1i, ki=—ik=j, ii=j2=k=-1.

Anyway, I leave it to the reader to check that this trick really gives us a 3-coloring of the
edges, and conversely that a 3-coloring of the edges gives a 4-coloring of the faces.
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So, we see that the edge-coloring formulation of the 4-color problem points to some
relation with the quaternions, or, pretty much the same thing, the group SU(2)! (For
what SU(2) has to do with quaternions, see “Week 5”.) Those wrong signs look distress-
ing, but in the following paper Penrose showed they weren’t really so bad:

4) Roger Penrose, ‘Applications of negative dimensional tensors”, in Combinatorial
Mathematics and its Applications, ed. D. J. A. Welsh, Academic Press, 1971.

Namely, he showed one could count the number of ways to 3-color the edges of a
planar graph as follows. Consider all ways of labelling the edges with the quaternions
i, j, and k. For each vertex, take the product of the quaternions at the three incident
edges in counterclockwise order and then multiply by ¢, getting either i or —i. Take the
product of these plus-or-minus-i’s over all vertices of the graph. And THEN sum over all
labellings!

This recipe may sound complicated, but only if you haven’t ever studied statistical
mechanics of lattice systems. It’s exactly the same as how one computes the “partition
function” of such a system — the partition function being the philosopher’s stone of
statistical mechanics, since one can squeeze out so much information from it. (If we
could compute the partition function of water we could derive its melting point.) To
compute a partition one sums over states (labellings of edges) the product of the expo-
nentials of interaction energies (corresponding to vertices). The statistical mechanics of
2-dimensional systems is closely connected to all sorts of nice subjects like knot theory
and quantum groups, so we should suspect already that something interesting is going
on here. It’s especially nice that Penrose’s formula makes sense for arbitrary trivalent
graphs (although it does not count their 3-colorings unless they’re planar), and satisfies
some juicy “skein relations” reminiscent of those satisfied by the quantum group knot in-
variants. Namely, we can recursively calculate Penrose’s number for any trivalent graph
using the following three rules:

1) Wherever you see

you can replace it with

/
/

In other words, replace the problem of computing Penrose’s number for the original
graph by the problem computing the difference of the Penrose numbers for the two
graphs with the above changes made. For knot theory fans I should emphasize that
we are talking about abstract graphs here, not graphs in 3d space, so there’s no real
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difference between an “overcrossing” and an “undercrossing” — i.e., we could have

said \
instead of /

/

2) If you do this you will start getting weird loops that have NO vertices on them. You
are allowed to dispose of such a loop if you correct for that by multiplying by 3.
(This is not magic, this is just because there were 3 ways to color that loop!)

above, and it wouldn’t matter.

3) Finally, when you are down to the empty graph, use the rule that the empty graph
equals 1.

Greg Kuperberg pointed out to me that this is a case of the quantum group knot
invariant called the Yamada polynomal. This is associated to the spin-1 representation
of the quantum group SU(2), and it is a polynomial in a variable ¢ that represents e”,
where 7 is Planck’s constant. But the “Penrose number” is just the value at ¢ = 1 of the
Yamada polynomial — the “classical case” when i = 0. This makes perfect sense if one
knows about quantum group knot invariants: the factor of 3 in rule B above comes from
the fact that the spin-1 representation of SU(2) is 3-dimensional; this representation is
really just another way of talking about the vector space spanned by the quaternions i,
j, and k. Also, quantum group knot invariants fail to distinguish between overcrossings
and undercrossings when 7 = 0.

Now let me turn to a different but related issue. Consider the problem of trying to
color the vertices of a graph with n colors in such a way that no two vertices at opposite
ends of any given edge have the same color. Let P(n) denote the number of such n-
colorings. This turns out to be a polynomial in n — it’s not hard to see using recursion
relations similar to the skein relations above. It also turns out that the 4-color theorem
is equivalent to saying that the vertices of any planar graph can be 4-colored. (To see
this, just use the idea of the “dual graph” of a graph — the vertices of the one being in
1-1 correspondence with the edges of the other.) So another way to state the 4-color
theorem is that for no planar graph does the polynomial P(n) have a root at n = 4.

P(n) is called the “chromatic polynomial” and has been intensively investigated. One
very curious thing is this. Remember the golden mean

Vit
2

Well, ®+1 is never a root of the chromatic polynomial of a graph! (Unless the polynomial
vanishes identically, which happens just when the graph has loops.) The proof is not all

d = 1.61803398874989484820458683437 .. .7
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that hard, and it’s in Saaty and Kainen’s book. However — and here’s where things
get really interesting — in 1965, Hall, Siry and Vanderslice figured out the chromatic
polynomial of a truncated icosahedron. (This looks like a soccer ball or buckyball.) They
found that of the four real roots that weren’t integers, one agreed with ® + 1 up to 8
decimal places! Of course, here one might think the 5-fold symmetry of the situation was
secretly playing a role. But in 1966 Barri tabulated a bunch of chromatic polynomials
in her thesis, and in 1969 Berman and Tutte noticed that most of them had a root that
agreed with ® + 1 up to at least 5 decimal places.

This curious situation was at least partially explained by Tutte in 1970. He showed
that for a triangular planar graph (that is, one all of whose faces are triangles) with n
vertices one has

|P(®+1)] < @™

This is apparently not a complete explanation, though, because the truncated icosahedron
is not triangular.

This is not an isolated freak curiosity, either! In 1974 Beraha suggested checking out
the behavior of chromatic polynomials at what are now called the “Beraha numbers”

B(n) = 4cos?(m/n).

These are

etc. Note by the way that B(n) approaches 4 as n approaches co. (What'’s S, you ask?
Well, folks call B(7) the “silver root,” a term I find most poetic and eagerly want to
spread!

S = 3.246979603717467061050009768008479621265 . . .

If anyone knows charming properties of the silver root, I'd be interested.) Anyway, it
turns out that the roots of chromatic polynomials seem to cluster near Beraha numbers.
For example, the four nonintegral real roots of the chromatic polynomial of the truncated
icosahedron are awfully close to B(5), B(7), B(8) and B(9). Beraha made the following
conjecture: let P; be a sequence of chromatic polynomials of graphs such whose number
of vertices approaches oo as i — oo. Suppose r; is a real root of P; and suppose the r;
approach some number x. Then x is a Beraha number.

In work in the late 60’s and early 70’s, Tutte proved some results showing that there
really was a deep connection between chromatic polynomials and the Beraha numbers.

Well, to make a long story short (I'm getting tired), the Beraha numbers also have a
lot to do with the quantum group SU(2). This actually goes back to some important work
of Jones right before he discovered the first of the quantum group knot polynomials, the
Jones polynomial. He found that — pardon the jargon burst — the Markov trace on the
Temperley-Lieb algebra is only nonnegative when the Markov parameter is the reciprocal
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of a Beraha number or less than 1/4. When the relationship of all this stuff to quantum
groups became clear, people realized that this was due to the special nature of quantum
groups when g is an nth root of unity (this winds up corresponding to the Beraha number
B(n)).

This all leads up to a paper that, unfortunately, I have not yet read, in part because
our library doesn’t get this journal!

5) H. Saleur, “Zeroes of chromatic polynomials: a new approach to the Beraha con-
jecture using quantum groups”, Commun. Math. Phys. 132 (1990) 657.

This apparently gives a “physicist’s proof” of the Beraha conjecture, and makes use of
conformal field theory, that is, quantum field theory in 2 dimensions that is invariant
under conformal transformations.

I should say more: about what quantum groups have to do with conformal field the-
ory and knot polynomials, about the Kauffman/Saleur translation of the 4-color theorem
into a statement about the Temperley-Lieb algebra, etc. But I won’t! It’s time for dinner.
Next week, if all goes according to plan, I'll move on to another puzzle in 2-dimensional
topology — the Andrews—Curtis conjecture — and Frank Quinn’s ideas on tackling that
using quantum field theory.
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Week 23

October 24, 1993

I will soon revert to my older style, in which I list piles of new papers as they accumulate
on my desk. This time, though, I want to describe Frank Quinn’s work on the Andrews—
Curtis conjecture using topological quantum field theories (TQFTs), as promised. Then,
if you’ll pardon me, T’ll list the contents of a book I've just finished editing. It is such a
relief to be done that I cannot resist.

So —

1) Frank Quinn, “Topological quantum invariants and the Andrews—Curtis conjecture
(Progress report)”, preprint, Sept. 1993.

2) Frank Quinn, “Lectures on axiomatic topological quantum field theory”, to appear
in the proceedings of the Park City Geometry Institute.

3) Wolfgang Metzler, “On the Andrews—Curtis conjecture and related problems”, in
Combinatorial Methods in Topology and Algebraic Geometry, Contemporary Mathe-
matics 44, AMS, 1985.

Last week I described — in a pretty sketchy way — how the 4-color theorem and
the Beraha conjecture are related to TQFTs. These can be regarded as two very hard
problems in 2-dimensional topology — one solved by a mixture of cleverness and ex-
treme brute force, the other still open. There is another hard problem in 2-dimensional
topology called the Andrews—Curtis conjecture, which Quinn is working on using TQFT
methods, which I'll talk about this time. I don’t know too much about this stuff, so I hope
any experts out there will correct my inevitable mistakes.

Actually, this conjecture is easiest to describe in a purely algebraic way, so I'll start
there. Hopefully most of you know the concept of a “presentation” of a group in terms
of generators and relations. For example, the group Z,, (integers mod n) has the pre-
sentation (x | ™). This means, roughly, that we form all products of the “generator”
and its inverse, and then mod out by the “relation” z™ = 1. A bit more interesting is the
dihedral group D,, of symmetries of a regular n-gon, counting rotations and reflections,
with presentation (z,y | 2",y?, (ry)?). Here x corresponds to a clockwise rotation by
(1/n)-th of a turn, and y corresponds to a reflection.

A group always has lots of different presentations, so a natural problem is to decide
whether two different presentations give the same group (or, strictly speaking, isomor-
phic groups). It’d be nice to have an algorithm for deciding this question. But it’s a
famous result of mathematical logic that there is no such algorithm!

If two presentations give the same group, one can get from one to the other by a
sequence of the following easy steps, called Tietze moves:

1) Throw in an extra new generator z together with the extra new relation zg~!

where g is a product of the previous generators and their inverses.

2) The inverse of 1) — remove a generator x together with the relation zg~!, if
possible (the relation zg~! needs to be there!).
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3) Throw in a new relation that’s a consequence of existing relations.

4) The inverse of 3) — remove a relation that’s a consequence of other relations.

So if one has two presentations and wants to see if they give same group, you could
always set up a program that blindly tries using these Tietze moves in all possible ways
to transform one presentation into the other. If they are the same it'll eventually catch
on! But if they’re not it'll chug on forever. There’s no algorithmic way to tell when it
should give up and admit the two presentations give different groups! — which is why
we say there is no “decision procedure” for this problem.

In one form, the Andrews-Curtis conjecture goes as follows. Remember that the
trivial group is the group with just the identity element; it has a presentation (z | z).
Suppose we have some other “balanced” presentation of the trivial group, that is a pre-
sentation with just as many generators as relations: (x1,...,x, | 71,...,7,). Then the
conjecture is that it can be reduced to the presentation (z | x) by a sequence of the
following moves that keep the presentation balanced:

1) Throw in an extra new generator x together with the extra new relation .
2) The inverse of 1).

3) Permute the relations

4) Change r; to r;*

5) Change r; to ri79

6) Change r, to gryg~" for any g.

The experts seem to think this conjecture is probably false — but nobody has dis-
proved it. Metzler lists a few presentations of the trivial group that might be counterex-
amples: nobody has ever found a way to use moves 1)-6) to boil them down to the
presentation (x | ). For example,

(a,b| b°a™*, aba(bab) ™).

Try it!

The Andrews—Curtis conjecture is interesting mainly for its implications in topology.
When they first stated their conjecture they noted a number of topological consequences,
and the referee of the paper noted one more. For example, it would shed some light
on the Poincaré conjecture (although not settle it) as follows. Recall that the Poincaré
conjecture says every 3-dimensional manifold homotopic to a 3-sphere is homeomorphic
to a 3-sphere. The Andrews-Curtis conjecture implies that if the Poincaré conjecture is
false, any counterexample can in fact be embedded (topologically) in R*!

It was the referee (does anyone know who that was?) who noted that the Andrews—
Curtis conjecture can be formulated in terms of “CW complexes.” This is how Quinn
thinks about it, so I suppose I should say what those are.

A 0-complex is simply a set of points given the discrete topology. We call the points
“0-cells.” To get a 1-complex, we take a set of “1-cells,” that is, closed unit intervals, and
glue their ends on to the 0-cells in any way we want. In other words, we get a graph,
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possibly with some edges having both ends at the same vertex. To get a 2-complex, we
take a set of “2-cells,” that is, 2-dimensional closed disks, and glue their boundaries onto
our 1-complex by any continuous map. And so on, with the “n-cells” being just copies of
the closed unit ball in R™.

CW complexes were invented by J. H. C. Whitehead in 1949 and are a key tool in
algebraic topology. (The word “CW,” by the way, seems to come from “closure-finite”
and “weak” — as in “weak topology.”) They are a nice class of topological spaces since on
the one hand, being built up by gluing simple pieces together, one can really understand
them, and on the other hand, they are actually quite general. In fact, if one is interested
in the usual invariants studied in algebraic topology (homology and cohomology groups,
homotopy groups and the like), CW complexes are pretty much good enough. More
precisely, Whitehead proved a “CW approximation theorem” saying that any halfway
decent topological space (i.e., any “compactly generated” space) is “weakly homotopy
equivalent” to a CW complex. I won’t burden you with the definitions here; I learned
this stuff once upon a time from

4) George W. Whitehead, Elements of Homotopy Theory, Springer, Berlin, 1978.

Anyway, the Andrews—Curtis conjecture can be thought of as being about 2-complexes.
In fact, a group presentation can be regarded as instructions for building up a 2-complex
— start with a point, glue on 1-cells, one for each generator (obtaining a “bouquet of
circles”) and then glue on 2-cells, one for each relation, attaching their boundaries to the
1-cells in the manner prescribed by the relation. This 2-complex will have fundamen-
tal group equal to the group given by the presentation. The moves 1)-6) above can be
thought of as operations on these 2-complexes. So one can translate the Andrews—Curtis
conjecture into a statement about 2-complexes. And at this point I guess I'm going to
start getting more technical....

One topological statement of the Andrews—Curtis conjecture is that “if two 2-complexes
are simply equivalent then one can be 2-deformed to the other.” I don’t understand this
as well as I want, so I won’t explain it; instead, I'll briefly explain the (weaker?) version
corresponding more closely to the algebraic statement above, namely “if X is a con-
tractible 2-complex, it can be 2-deformed to a point.” Being “contractible” means that
as far as homotopy theory goes X is just like a point. (E.g., the unit disk is contractible,
while the circle is not.) And a “2-deformation” roughly means a sequence of moves con-
sisting of adding or deleting 1-cells or 2-cells in a way that doesn’t affect things as far as
homotopy goes, or doing homotopies of attaching maps of 2-cells. The interesting thing
about these formulations of the Andrews—Curtis conjecture is that their analogs for n > 2
are true and in fact were shown by J. H. C. Whitehead in 1939!

Quinn’s goal is to cook up invariants of 2-complexes that might detect counterexam-
ples to the Andrews—Curtis conjecture, i.e., invariants under 2-deformation. He wants
to do it using 1+ 1-dimensional TQFTs of a sort that assign vector spaces to 1-complexes
and linear maps to 2-complexes. Traditionally, TQFTs assign vector spaces to n-manifolds
and linear maps to (n+1)-manifolds. Quinn calls his TQFTs “modular” because they have
a lot of formal similarities to the kind of TQFTs that come up in string theory (where the
modular group reigns supreme). He gives a thorough axiomatic description of modular
TQFTs in his lecture notes, and this is actually the most fascinating aspect for me, more
so than the Andrews—Curtis conjecture per se, since it bears on physics.
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The problem with coming up with an TQFT invariant that can catch counterexam-
ples to the Andrews—Curtis conjecture is an interesting “stabilization” property that 2-
complexes have. Namely, if two 2-complexes are simply equivalent, one can can wedge
them both with some large number & of 2-spheres and get complexes which are 2-
deformable to each other. It turns out that this means we want to find a TQFT such
that Z(S?)* = 0. And so Quinn considers TQFTs based, not on the complex numbers,
but on integers mod p.

A TQFT of his sort amounts to finding a symmetric tensor category of vector spaces
and an object A in this category with some special properties corresponding to the fact
that it is the vector space corresponding to the unit interval [0, 1], which is the basic
1-complex from which one can build up more fancy ones. The kind of category he uses
has been described by:

5) Sergei Gelfand and David Kazhdan, “Examples of tensor categories”, Invent. Math.
109 (1992), 595-617.

It is formed by starting with the category of representations of an algebraic group in
characteristic p, and then making a semisimple category out of this in a manner strongly
reminiscent of what they do in the theory of quantum groups at roots of unity. (See
“Week 5” for a bit more about this.) The object A is taken to be the sum of one copy
of each irreducible representation. (Again, this is strikingly reminiscent, and no doubt
based on, what occurs in the physics of the Wess—Zumino-Witten model, where quantum
groups at roots of unity play the role a finite group is playing here.)

So, to round off a long story, Quinn and Ivelini Bobtcheva are currently engaged in
some rather massive computer calculations in order to actually explicitly obtain the data
necessary to calculate in the TQFTs of this form. They have been looking at the groups
SL(2), SL(3), Sp(4) and G, over Z,, where p is small (up to 19 for the SL(2) case).
They are finding some interesting stuff just by calculating the TQFT invariants of the
2-complexes corresponding to the presentations (x | ™). (Note that n = 0 gives a space
that’s a wedge of a circle and S?, while n = 1 gives a disk.) Namely, they are finding
periodicity in n.

But they haven’t found any counterexamples to the Andrews—Curtis conjecture yet!

6) Knots and Quantum Gravity, ed. John Baez, Oxford University Press (to appear).

This is the proceedings of a workshop held at U.C. Riverside; a large percentage of
the papers contain new results. Let me simply list them:

* Renate Loll, “The loop formulation of gauge theory and gravity”.

* Abhay Ashtekar and Jerzy Lewandowski, “Representation theory of Analytic Holon-
omy C* Algebras”.

* Rodolfo Gambini and Jorge Pullin , “The Gauss linking number in quantum grav-
ity”, available as gr-qc/9310025.

* Louis Kauffman,“Vassiliev invariants and the loop states in quantum gravity”, avail-
able as gr-qc/9310035.
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Steven Carlip, “Geometric structures and loop variables in (2+1)-dimensional grav-
ity”, available as gr-qc/9309020.

Dana S. Fine, “From Chern-Simons to WZW via path integrals”.

Louis Crane, “Topological field theory as the key to quantum gravity”, available as
hep-th/9308126.

John Baez, “Strings, loops, knots and gauge fields”, available as hep-th/9309067.
Paolo Cotta-Ramusino and Maurizio Martellini, “BF theories and 2-knots”.

J. Scott Carter and Masahico Saito, “Knotted surfaces, braid movies, and beyond”.
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Week 24

October 31, 1993

I will now revert to topics more directly connected to physics and start catching up on
the papers that have been accumulating. First, two very nice review papers:

1) Chris Isham, “Prima facie questions in quantum gravity”, lecture at Bad Honeff,
September 1993, available as gr-qc/9310031.

If one wants to know why people make such a fuss about quantum gravity, one could
not do better than to start here. There are many approaches to the project of reconciling
quantum mechanics with gravity, all of them rather technical, but here Isham focuses on
the “prima facie” questions that present themselves no matter what approach one uses.
He even explains why we should study quantum gravity — a nontrivial question, given
how difficult it has been and how little practical payoff there has been so far! Let me
quote his answers and urge you to read the rest of this paper:

We must say something. The value of the Planck length suggests that quantum
gravity should be quite irrelevant to, for example, atomic physics. However, the
non-renormalisability of the perturbative theory means it is impossible to actu-
ally compute these corrections, even if physical intuition suggests they will be
minute. Furthermore, no consistent theory is known in which the gravitational
field is left completely classical. Hence we are obliged to say something about
quantum gravity, even if the final results will be negligible in all normal physical
domains.

Gravitational singularities. The classical theory of general relativity is noto-
rious for the existence of unavoidable spacetime singularities. It has long been
suggested that a quantum theory of gravity might cure this disease by some sort
of ‘quantum smearing’.

Quantum cosmology. A particularly interesting singularity is that at the be-
ginning of a cosmological model described by, say, a Robertson—Walker metric.
Classical physics breaks down here, but one of the aims of quantum gravity has
always been to describe the ‘origin’ of the universe as some type of quantum
event.

The end state of the Hawking radiation process. One of the most striking re-
sults involving general relativity and quantum theory is undoubtedly Hawking’s
famous discovery of the quantum thermal radiation produced by a black hole.
Very little is known of the final fate of such a system, and this is often taken to
be another task for a quantum theory of gravity.

The unification of fundamental forces. The weak and electromagnetic forces
are neatly unified in the Salam-Weinberg model, and there has also been a
partial unification with the strong force. It is an attractive idea that a consistent
quantum theory of gravity must include a unification of all the fundamental
forces.
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The possibility of a radical change in basic physics. The deep incompati-
bilities between the basic structures of general relativity and of quantum theory
have lead many people to feel that the construction of a consistent theory of
quantum gravity requires a profound revision of the most fundamental ideas of
modern physics. The hope of securing such a paradigm shift has always been a
major reason for studying the subject.

2) Matthias Blau and George Thompson, “Lectures on 2d gauge theories: topological
aspects and path integral techniques”, available as hep-th/9310144.

Most of the basic laws of physics appear to be gauge theories. Gauge theories are
tricky to deal with because they are inherently nonlinear. (At least the “nonabelian” ones
are — the main example of an abelian gauge theory is Maxwell’s equations.) People have
been working hard for quite some time trying to develop tools to study gauge theories
on their own terms, and one reason for the interest in gauge theories in 2-dimensional
spacetime is that life is simple enough in this case to exactly solve the theories and see
precisely what’s going on. Another reason is that in string theory one becomes interested
in gauge fields living on the 2-dimesional “string worldsheet.”

This paper is a thorough review of two kinds of gauge theories in 2 dimensions: topo-
logical Yang-Mills theory (also called BF theory) and the G/G gauged Wess—Zumino—
Witten model. Both of these are of great mathematical interest in addition to their phys-
ical relevance. Studying the BF theory gives a way to do integrals on the moduli space
of flat connections on a bundle over a Riemann surface, while studying the G/G model
amounts to a geometric construction of the categories of representations of quantum
groups at roots of unity. (Take my word for it, mathematicians find these important!)

I have found this review a bit rough going so far because the authors like to use
supersymmetry to study these models. But I will continue digging in, since the authors
consider the following topics (and I quote): solution of Yang-Mills theory on arbitrary
surfaces; calculation of intersection numbers of moduli spaces of flat connections; cou-
pling of Yang-Mills theory to coadjoint orbits and intersection numbers of moduli spaces
of parabolic bundles; derivation of the Verlinde formula from the G /G model; derivation
of the shift k to k + & in the G/G model via the index of the twisted Dolbeault complex.

3) J. W. Barrett and T. J. Foxon, “Semi-classical limits of simplicial quantum gravity”,
available as gr-qc/9310016.

This paper looks at quantum gravity in 3 spacetime dimesions formulated along the
lines of Ponzano and Regge, that is, with the spacetime manifold replaced by a bunch
of tetrahedra (a “simplicial complex”). I describe some work along these lines in “Week
16”. Here the Feynman path integral is replaced by a discrete sum over states, in which
the edges of the tetrahedra are assigned integer or half-integer lengths, which really
correspond to “spins,” and the formula for the action is given in terms of 6;-symbols.
The authors look for stationary points of this action and find that some correspond to
Riemannian metrics and some correspond to Lorentzian metrics. This is strongly remi-
niscent of Hartle and Hawking’s work on quantum cosmology,

4) J. B. Hartle and S. W. Hawking, “Wave function of the universe”, Phys. Rev. D28
(1983), 2960.
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in which there is both a Euclidean and a Lorentzian regime (providing a most fascinating
answer to the old question, “what came before the Big Bang?”). Here, however, the path
integral is oscillatory in the Euclidean regime and exponential in the Lorentzian one —
the opposite of what Hartle and Hawking had. This puzzles me.

5) John Baez, “Generalized measures in gauge theory”, Lett. Math. Phys. 31 (1994),
213-223. Also available as hep-th/9310201.

Path integrals in gauge theory typically invoke the concept of Lebesgue measure on
the space of connections. This is roughly an infinite-dimensional vector space, and there
is no “Lebesgue measure” on an infinite-dimensional vector space. So what is going on?
Physicists are able to do calculations using this concept and get useful answers — mixed
in with infinities that have to be carefully “renormalized.” Some of the infinities here are
supposedly due to the fact that one should really be working on the space of connections,
but on a quotient space, the connections modulo gauge transformations. But not all the
infinities are removed this way, and mathematically the whole situation is enormously
mysterious.

Recently Ashtekar, Isham, Lewandowski and myself have been looking at a way to
generalize the concept of measure, suggested by earlier work on the “loop representa-
tion” of gauge theories. Ashtekar and Lewandowski managed to rigorously construct
a kind of “generalized measure” on the space of connections modulo gauge transfor-
mations that acts formally quite a bit like what one might hope for. In this paper I
show how one can define generalized measures directly on the space of connections.
All of these project down to generalized measures on the space of connections modulo
gauge transformations, but even when one is interested in gauge-invariant quantities, it
is sometimes easier to work “upstairs.” In particular, when the gauge group is compact,
there is a “uniform” generalized measure on the space of connections that projects down
to the measure constructed by Ashtekar and Lewandowski. This generalized measure is
in some respects a rigorous substitute for the ill-defined “Lebesgue measure,” but it is
actually built using Haar measure on G. I also define generalized measures on the group
of gauge transformations (which is an infinite-dimensional group), and when G is com-
pact I construct a natural example that is a rigorous substitute for Haar measure on the
group of gauge transformations. As an application of this “generalized Haar measure” I
show that any generalized measure on the space of connections can be averaged against
generalized Haar measure to give a gauge-invariant generalized measure on the space
of connections.

This doesn’t, by the way, mean the problems I mentioned at the beginning are solved!
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Week 25

November 14, 1993

Lately, many things give me the feeling that we’re on the brink of some deeper under-
standing of the relations between geometry, topology, and category theory. It is very
tantalizing to see the array of clues pointing towards the fact that many seemingly dis-
parate mathematical phenomena are aspects of some underlying patterns that we don’t
really understand yet. Louis Crane expressed it well when he said that it’s as if we are a
bunch of archeologists digging away at different sites, and are all starting to find differ-
ent parts of the skeleton of some gigantic prehistoric creature, the full extent of which is
still unclear.

I want to keep studying the following book until I understand it, because I think it
makes a lot of important connections. .. pardon the pun:

1) Jean-Luc Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization,
Birkhauser, Basel, 1993.

The title of this book, while accurate, really does not convey the novelty of the ideas it
contains. All three subjects listed have been intensively studied by many people for at
least several decades, but Brylinski’s book is not so much a summary of what is under-
stood about these subjects, as a plan to raise the subjects to a whole new level.

I can’t really describe the full contents of the book, since I haven’t had time to really
absorb some of the most interesting parts, but let me start by listing the contents, and
then talk about it a bit.

1. Complexes of Sheaves and Their Hypercohomology
Line Bundles and Geometric Quantization

Kiahler Geometry of the Space of Knots

Degree 3 Cohomology — The Dixmier-Douady Theory

Degree 3 Cohomology — Sheaves of Groupoids

AN A

Line Bundles over Loop Spaces

7. The Dirac Monopole

It should be clear that while this is a very mathematical book, it is informed by ideas
from physics. As usual, the physical universe is serving to goad mathematics to new
heights!

The first two chapters are largely, but not entirely, “standard” material. I put the word
in quotes because while Brylinski’s treatment of it starts with the basics — the definition
of sheaves, sheaf cohomology, Cech cohomology, de Rham theory and the like — even
these “basics” are rather demanding, and the slope of the ascent is rather steep. Really,
the reader should already be fairly familiar with these ideas, since Brylinski is mainly
introducing them in order to describe a remarkable generalization of them in the next
chapters.
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Let me quickly give a thumbnail sketch of the essential ideas behind this “standard”
material. In classical mechanics the main stage is the phase space of a physical system.
Points in this space represent physical states; smooth functions on it represent observ-
ables. Time evolution acts on this space as a one-parameter group of diffeomorphisms.
The remarkable fact is that time evolution is determined by an observable, the Hamil-
tonian, or energy function, by means of a geometric structure on phase space called a
symplectic structure. This is a nondegenerate closed 2-form. The idea is that the dif-
ferential of the Hamiltonian is a 1-form; since the symplectic structure is nondegenerate
it sets up an isomorphism of the tangent and cotangent bundles of phase space, allow-
ing us to turn the differential of the Hamiltonian into a vector field; this vector field
generates the 1-parameter group of diffeomorphisms representing time evolution; and
by the magic of symplectic geometry, these diffeomorphisms automatically preserve the
symplectic structure.

This is the starting-point of the beautiful approach to quantum theory known as
geometric quantization, founded by Kostant in the early 1970’s. His first paper is still a
good place to start:

2) Bertram Kostant, “Quantization and unitary representations”, in Lectures in Modern
Analysis and Applications III, Springer Lecture Notes in Mathematics 170 (1970),
87-208.

Here the idea is to construct a Hilbert space of states of the quantum system corre-
sponding to the classical system, and turn time evolution into a one-parameter group of
unitary operators on this Hilbert space. Extremely roughly, the idea is to first look at the
space of all L? complex functions on phase space, and then use a “polarization” to cut
down this “prequantum” Hilbert space to “half the size,” by which one means something
vaguely like how L?(R™) is “half the size” of L?(R?") — this being the classic example.
But in fact, it turns out one doesn’t really want to use functions on phase space, but in-
stead sections of a certain complex line bundle. The point is that the classification of line
bundles fits in beautifully with symplectic geometry. We can equip any line bundle with
a hermitian connection; the curvature of this connection is a closed 2-form; this deter-
mines an element of the 2nd cohomology of phase space called the first Chern class. An
important theorem says this class is necessarily an integral class, that is, it comes from an
element of the 2nd cohomology with integer coefficients; moreover, isomorphism classes
of line bundles over a manifold are in one-to-one correspondence with elements of its
2nd cohomology with integer coefficients. The trick, then, is to try to cook up a line
bundle over phase space with a connection whose curvature is the symplectic structure!
This will be possible precisely when the symplectic structure defines an integral coho-
mology class. In fact, this integrality condition is nothing but the old Bohr-Sommerfeld
quantization condition dressed up in spiffy new clothes (and made far more precise).

So: the moral I want to convey here is just that if the symplectic structure on phase
space defines an integral class in the 2nd cohomology group, then we get a line bundle
over phase space which helps us get going with quantization. It then turns out that the
one-parameter group of diffeomorphisms defined by any Hamiltonian on phase space
lifts to a one-parameter group of transformations of this line bundle, which allows us to
get a unitary operator on the space of L? sections of the line bundle. This is not the end
of the quantization story; one still needs to chop down this “prequantum” space to half
the size, etc.; but let me leave off here.
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What Brylinski wants to do is to find analogs of all these phenomena involving the
third cohomology groups of manifolds.

At first glance, this might seem to be a very artificial desire. Note that importance
of the second cohomology group in the above story is twofold: 1) symplectic structures
give elements of the second cohomology, 2) the curvature of a connection gives an ele-
ment of the second cohomology, and in fact 2) line bundles are classified by elements
of second cohomology. None of these beautiful things seem to have analogs in third
cohomology! Of course, one can use the curvature of a connection to get, not just the
first Chern class, but higher Chern classes. But the nth Chern class is an element of the
2nth cohomology group, so the odd cohomology groups don’t play a major role here.
Of course, experts will immediately reply that there are also Chern—Simons “secondary
characteristic classes” that live in odd cohomology, at least when one has a flat bundle
around. And the same experts will immediately guess that, because Chern-Simons the-
ory has been near the epicenter of the explosion of new mathematics relating quantum
groups, topological quantum field theories, conformal field theory and all that stuff, I
must be leading up to something along these lines. Well, there must be a relationship
here, but actually it is not emphasized in Brylinski’s book! He takes a different tack, as
follows.

The basic point is that given a manifold M, the space of loops in M, say LM, is
a space of great interest in its own right. It is infinite-dimensional, but that should
not deter us. When G is a Lie group, LG is also a group (with pointwise operations);
these are the famous loop groups, which appear as groups of gauge transformations
in conformal field theory. When M is a 3-dimensional manifold, LM contains within
it the space of all knots in M; also, we may think of LM as the configuration space
for the simplest flavor of string theory in the spacetime R x M. Loops also serve to
define observables called “Wilson loops” in gauge theories, and these are the basis of the
loop representation of quantum gravity. So there is a lot of interesting mathematics and
physics to be found in the loop space.

What does this have to do with the 3rd cohomology group of M? Well, LM is a
bundle over M, so according to algebraic topology there is a natural map from the 3rd
cohomology of M to the 2nd cohomology of LM! The ramifications of this are multiple.

First, every compact simple Lie group G has 3rd cohomology equal to Z. (In fact,
Brylinski notes that the cohomology group is not merely isomorphic to Z, but canoni-
cally so — and this extra nuance turns out to be quite significant!) This gives rise to a
special element in the 2nd cohomology of LG. This then gives a line bundle over LG.
Alternatively, it gives a circle bundle over LG, in fact a central extension of LG, that is,
a bigger group LG and an exact sequence

158" 516G 5 LG =1

This group is called a Kac-Moody group, and these are well-loved by string theorists
since it turns out that when one wants to quantize a gauge theory on the string world-
sheet (a kind of conformal field theory) one gets, not a representation of the gauge group
LG on the Hilbert space of quantum states, but merely a projective representation, or in
other words, a representation of the central extension IG. Brylinski also notes that in
some sense the canonical element in the 3rd cohomology of G is responsible for the ex-
istence of quantum groups; this is probably the deep reason for the association between
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quantum group representations and Kac-Moody group representations, but, alas, this is
still quite murky to me.

Second, we can do better if we restrict ourself to knots (possibly with nice self-
intersections) rather than loops. Namely, given a 3-manifold M equipped with a 3-form,
one gets, not just an element of the 2nd cohomology of LM, but a symplectic structure
on the space of knots in M, say K M. It may seem odd to think of the space of knots
as a physical phase space, but Brylinski shows that this idea is related to the work of
Marsden and Weinstein on “vortex filaments,” an idealization of fluid dynamics in which
all the fluid motion is concentrated along some curves. Brylinski also notes that if M is
equipped with a Riemannian structure then KM inherits a Riemannian structure (this
is easy), and that if M has a conformal structure K M has an almost complex structure.
In fact, in the Riemannian case all these structures on K M fit together to make it a sort
of Kahler manifold (although one must be careful, since the almost complex structure
is only integrable in a certain formal sense). Brylinski hints that all this geometry may
give a nice approach to the study of knot invariants; I will have to look at the following
papers sometime:

3) M. Rasetti and T. Regge,“Vortices in He II, current algebras and quantum knots”,
Physica 80A (1975) 217-233.

4) V. Penna and M. Spera, “A geometric approach to quantum vortices”, Jour. Math.
Phys. 30 (1989), 2778-2784.

However, Brylinski’s real goal is something much more radical! The beauty of 2nd
cohomology is that integer classes in the 2nd cohomology of M correspond to line bun-
dles on M; there is, in other words, a very nice geometrical picture of 2nd cohomology
classes. What is the natural analog for 3rd cohomology? Instead of just working with
LM, it would be nice to have some sort of geometrical objects on M that correspond to
integer classes in 3rd cohomology. What should they be?

Brylinski gives two answers, one in Chapter 4 and another in Chapter 5. The first
one, due mainly to Dixmier and Douady, is very appealing for a quantum field theorist
such as myself. Just as elements of H?(M, Z) correspond to line bundles over M, ele-
ments of H3(M, Z) correspond to projective Hilbert space bundles over M! Recall that
in physics two vectors in a Hilbert space correspond to the same physical state if one is a
scalar multiple of the other; the space of equivalence classes (starting with a countable-
dimensional Hilbert space) is what I'm calling “projective Hilbert space,” and it is bundles
of such rascals that correspond to elements of H3(M, Z). The reason is roughly this: the
structure group G for such bundles is the group Aut(H)/C*, that is, invertible operators
on the Hilbert space H, modulo invertible complex numbers. In other words, we have
an exact sequence

1-C" = Aw(H) -G —1

This gives an exact sequence of sheaves on M, which, combined with the marvelous fact
that Aut(H) is contractible, gives an isomorphism between H' (M, sh(G)) (the cohomol-
ogy of the sheaf of smooth G-valued functions on M) and H?(M, sh(C*)). But the latter
is isomorphic to H3(M, Z).

Brylinski pushes the analogy to the line bundle case further by showing how to realize
the element of H3(M, Z) starting from a connection on a projective Hilbert space bundle.
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But in Chapter 5 he takes a more abstract approach that I want to sketch very vaguely,
since I don’t understand it very well yet. This approach is exciting because it connects to
recent work on 2-categories (and higher n-categories), which I am convinced will play a
role in unifying the wild profusion of mathematics we are seeing in this tail end of the
twentieth century.

Here the best way to see the analogy to the line bundle case is through Cech coho-
mology. Recall that we can patch a line bundle together by covering our manifold M
with charts O(¢) and assigning to each intersection O(i) N O(j) a C*-valued function g;;.
These “transition functions” must satisfy the compatibility condition

9ij9ik9ki = 1

We say then that the functions g;; define a 1-cocycle in Cech cohomology — think of this
as just jargon, if you like. Note that we will get an isomorphic line bundle if we take
some C*-valued functions f;, one on each chart O(¢), and multiply g;; by f; f]._l. This
simply amounts to changing the trivialization of the bundle on each chart. We say that
the new Cech cocycle differs by a coboundary. So line bundles are in 1-1 correspondence
with the 1st Cech cohomology with values in sh(C*). This turns out to be the same thing
as H2(M, Z), as noted above.

Now, there is a marvelous thing called a gerbe, which is like a bundle, but is pieced
together using Cech 2-cocyles! These will be classified by the 2nd Cech cohomology with
values in sh(C*), which is nothing but H3(M, Z).

What are these gerbes? Well, I wish I really understood them. Let me just say what
I know. The basic idea is to boost everything up a notch using category-theoretic think-
ing. When we were getting ready to define bundles, we needed to have the concept
of a group at our disposal (to have a structure group). For gerbes, we need something
called a category of torsors. What is a group? Well, it is a set equipped with various
maps satisfying various properties. What is a category of torsors? Well, it is a category
equipped with various functors satisfying utterly analogous properties. Note how we are
“categorifying” here. We have more structure, since while a set is just a bunch of naked
points, a category is a bunch of points, namely objects, which are connected by arrows,
namely morphisms. Given the group C* we can get a corresponding category of torsors
as follows: the category of all manifolds with a simply transitive C*-action (which are
called torsors). A nice account of why this category looks so much like a group appears
in

5) Dan Freed, “Higher algebraic structures and quantization”, preprint, available as
hep-th/9212115.

which I already mentioned in “Week 12”.

Just as a group can act on a set, a category of torsors can act on a category. If we
“sheafify” this notion, we get the concept of a gerbe. Clear? Well, part of why I am
interested in these ideas is the way they make me a bit dizzy, so don’t feel bad if you are
a bit dizzy too now. I really think that overcoming this dizziness will be necessary for
certain advances in mathematics and physics, though.

Instead of actually coming clean and defining the concept of a gerbe, let me finish
by saying what Brylinski does next. He defines an analog of connections on bundles,
called “connective structures” on gerbes. And he defines an analog of the curvature, the
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“curving” of a connective structure. This turns out to give an element of H3(M,Z) in a
natural way. He concludes in a blaze of glory by showing how the Dirac monopole gives
a gerbe on S whose curving is the volume form. The integrality condition turns out to
be related to Dirac’s original argument for quantization of electric charge. Whew!

To wrap up, let me note that the following paper, mentioned in “Week 23”, has shown
up on gr-qc:

6) Abhay Ashtekar and Jerzy Lewandowski, “Representation theory of analytic holon-
omy C* Algebras”, in Knots and Quantum Gravity, ed. J. Baez, available as gr-qc/
9311010.

Ashtekar and Lewandowski are my friendly competitors in the business of making the
loop representation of quantum gravity more rigorous by formalizing the idea of a gen-
eralized measure on the space of connections modulo gauge transformations.
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Week 26

November 21, 1993

I have been struggling to learn the rudiments of Teichmdiiller theory, and it’s almost time
for me to face up to my ignorance of it by posting a “This Week’s Finds” attempting to
explain the stuff, but I am going to put off the inevitable and instead describe a variety
of papers on different subjects. . .

1) Huw Price, “Cosmology, time’s arrow, and that old double standard”, in S. Savitt,
ed., Time’s Arrows Today, Cambridge University Press, 1994, pp. 66-94. Available
as gr-qc/9310022.

Why is the future different from the past? Because it hasn’t happened yet? Well, sure,
but that’s not especially enlightening, in fact, it's downright circular. Unfortunately, a lot
of work on the “arrow of time” is just as circular, only so erudite that it is hard to spot
it! That’s what this article takes some pains to clarify. I think I will be lazy and quote the
beginning of the paper:

A century or so ago, Ludwig Boltzmann and others attempted to explain the tem-
poral asymmetry of the second law of thermodynamics. The hard-won lesson of
that endeavour — a lesson still commonly misunderstood — was that the real
puzzle of thermodynamics lies not in the question why entropy increases with
time, but in that as to why it was ever so low in the first place. To the extent that
Boltzmann himself appreciated that this was the real issue, the best suggestion
he had to offer was that the world as we know it is simply a product of a chance
fluctuation into a state of very low entropy. (His statistical treatment of ther-
modynamics implied that although such states are extremely improbable, they
are bound to occur occasionally, if the universe lasts a sufficiently long time.)
This is a rather desperate solution to the problem of temporal asymmetry, how-
ever, and one of the great achievements of modern cosmology has been to offer
us an alternative. It now appears that temporal asymmetry is cosmological in
origin, a consequence of the fact that entropy is much lower than its theoretical
maximum in the region of the Big Bang — i.e., in what we regard as the early
stages of the universe.

The task of explaining temporal asymmetry thus becomes the task of explain-
ing this condition of the early universe. In this paper I want to discuss some
philosophical constraints on the search for such an explanation. In particular;
I want to show that cosmologists who discuss these issues often make mistakes
which are strikingly reminiscent of those which plagued the nineteenth century
discussions of the statistical foundations of thermodynamics. The most common
mistake is to fail to recognise that certain crucial arguments are blind to tem-
poral direction, so that any conclusion they yield with respect to one temporal
direction must apply with equal force with respect to the other. Thus writers on
thermodynamics often failed to notice that the statistical arguments concerned
are inherently insensitive to temporal direction, and hence unable to account for
temporal asymmetry. And writers who did notice this mistake commonly fell for
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another: recognising the need to justify the double standard — the application
of the arguments in question ‘towards the future’ but not ‘towards the past’ —
they appealed to additional premises, without noticing that in order to do the
job, these additions must effectively embody the very temporal asymmetry which
was problematic in the first place. To assume the uncorrelated nature of initial
particle motions (or incoming ‘external influences’), for example, is simply to
move the problem from one place to another. (It may look less mysterious as a
result, but this is no real indication of progress. The fundamental lesson of these
endeavours is that much of what needs to be explained about temporal asymme-
try is so commonplace as to go almost unnoticed. In this area more than most,
folk intuition is a very poor guide to explanatory priority.)

One of the main tasks of this paper is to show that mistakes of these kinds are
widespread in modern cosmology, even in the work of some of the contemporary
physicists who have been most concerned with the problem of the cosmological
basis of temporal asymmetry — in the course of the paper we shall encounter
illicit applications of a temporal double standard by Paul Davies, Stephen Hawk-
ing and Roger Penrose, among others. Interdisciplinary point-scoring is not the
primary aim, of course: by drawing attention to these mistakes I hope to clar-
ify the issue as to what would count as adequate cosmological explanation of
temporal asymmetry.

I want to pay particular attention to the question as to whether it is possible to
explain why entropy is low near the Big Bang without thereby demonstrating
that it must be low near a Big Crunch, in the event that the universe recollapses.
The suggestion that entropy might be low at both ends of the universe was made
by Thomas Gold in the early 1960s. With a few notable exceptions, cosmologists
do not appear to have taken Gold’s hypothesis very seriously. Most appear to
believe that it leads to absurdities or inconsistencies of some kind. However, I
want to show that cosmologists interested in time asymmetry continue to fail
to appreciate how little scope there is for an explanation of the low entropy Big
Bang which does not commit us to the Gold universe. I also want criticise some
of the objections that are raised to the Gold view, for these too often depend on
a temporal double standard. And I want to discuss, briefly and rather specula-
tively, some issues that arise if we take the view seriously. (Could we observe a
time-reversing future, for example?)

And now let me jump forward to a very interesting issue, Hawking’s attempt to derive
the arrow of time from his “no-boundary boundary conditions” choice of the wavefunc-
tion of the universe. (See “Week 3”.) I found this rather unsatisfying when I read it, and
had a sneaking suspicion that he was falling into the fallacy Gold describes above. Let’s
hear what Price has to say about it.

Our second example is better known, having been described in Stephen Hawk-
ing’s best seller, A Brief History of Time. It is Hawking’s proposal to account
for temporal asymmetry in terms of what he calls the No Boundary Condition
(NBC) — a proposal concerning the quantum wave function of the universe.
To see what is puzzling about Hawking’s claim, let us keep in mind the basic
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dilemma. It seemed that provided we avoid double standard fallacies, any argu-
ment for the smoothness of the universe would apply at both ends or at neither.
So our choices seemed to be to accept the globally symmetric Gold universe, or to
resign ourselves to the fact that temporal asymmetry is not explicable (without
additional assumptions or boundary conditions) by a time-symmetric physics.
The dilemma is particularly acute for Hawking, because he has a more reason
than most to avoid resorting to additional boundary conditions. They conflict
with the spirit of his NBC, namely that one restrict possible histories for the
universe to those that ‘are finite in extent but have no boundaries, edges, or
singularities.’

Hawking tells us how initially he thought that this proposal favoured the former
horn of the above dilemma: ‘I thought at first that the no boundary condition
did indeed imply that disorder would decrease in the contracting phase.” He
changed his mind, however, in response to objections from two colleagues: ‘1
realized that I had made a mistake: the no boundary condition implied that
disorder would in fact continue to increase during the contraction. The thermo-
dynamic and psychological arrows of time would not reverse when the universe
begins to contract or inside black holes.’

This change of mind enables Hawking to avoid the apparent difficulties associ-
ated with reversing the thermodynamic arrow of time. What is not clear is how
he avoids the alternative difficulties associated with not reversing the thermo-
dynamic arrow of time. That is, Hawking does not explain how his proposal
can imply that entropy is low near the Big Bang, without equally implying that
it is low near the Big Crunch. The problem is to get a temporally asymmetric
consequence from a symmetric physical theory. Hawking suggests that he has
done it, but doesn’t explain how. Readers are entitled to feel a little dissatisfied.
As it stands, Hawking’s account reads a bit like a suicide verdict on a man who
has been stabbed in the back: not an impossible feat, perhaps, but we’d like to
know how it was done!

It seems to me that there are three possible resolutions of this mystery. The first,
obviously, is that Hawking has found a way round the difficulty. The easiest
way to get an idea of what he would have to have established is to think of
three classes of possible universes: those which are smooth and ordered at both
temporal extremities, those which are ordered at one extremity but disordered
at the other, and those which are disordered at both extremities. If Hawking
is right, then he has found a way to exclude the last class, without thereby
excluding the second class. In other words, he has found a way to exclude
disorder at one temporal extremity of the universe, without excluding disorder
at both extremities. Why is this combination the important one? Because if
we can’t exclude universes with disorder at both extremities, then we haven’t
explained why our universe doesn’t have disorder at both extremities — we
know that it has order at least one temporal extremity, namely the extremity
we think of as at the beginning of time. And if we do exclude disorder at both
extremities, we are back to the answer that Hawking gave up, namely that order
will increase when the universe contracts.

Has Hawking shown that the second class of universal histories, the order-
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disorder universes, are overwhelmingly probable? It is important to appreciate
that this would not be incompatible with the underlying temporal symmetry of
the physical theories concerned. A symmetric physical theory might be such that
all or most of its possible realisations were asymmetric. Thus Hawking might
have succeeded in showing that the NBC implies that any (or almost any) pos-
sible history for the universe is of this globally asymmetric kind. If so, however,
then he hasn’t yet explained to his lay readers how he managed it. In a moment
I'll describe my attempts to find a solution in Hawking’s technical papers. What
seems clear is that it can’t be done by reflecting on the consequences of the NBC
for the state of one temporal extremity of the universe, considered in isolation.
For if that worked for the ‘initial’ state it would also work for the final’ state;
unless of course the argument had illicitly assumed an objective distinction be-
tween initial state and final state, and hence applied some constraint to the
former that it didn’t apply to the latter. What Hawking needs is a more general
argument, to the effect that disorder-disorder universes are impossible (or at
least overwhelmingly improbable). It needs to be shown that almost all possible
universes have at least one ordered temporal extremity — or equivalently, at
most one disordered extremity. (As Hawking points out, it will then be quite
legitimate to invoke a weak anthropic argument to explain why we regard the
ordered extremity thus guaranteed as an initial extremity. In virtue of its conse-
quences for temporal asymmetry elsewhere in the universe, conscious observers
are bound to regard this state of order as lying in their past.)

That’s the first possibility: Hawking has such an argument, but hasn’t told us
what it is (probably because he doesn’t see why it is so important). As I see it,
the other possibilities are that Hawking has made one of two mistakes (neither
of them the mistake he claims to have made). Either his NBC does exclude
disorder at both temporal extremities of the universe, in which case his mistake
was to change his mind about contraction leading to decreasing entropy; or the
proposal doesn’t exclude disorder at either temporal extremity of the universe,
in which case his mistake is to think that the NBC accounts for the low entropy
Big Bang.

And, eventually, Price concludes that there is indeed something lacking in Hawking’s
attempts to derive an arrow of time.

I have said this many times here and there, but I'll say it again. For a good introduc-
tion to these issues, read:

2) H. D. Zeh, The Physical Basis of the Direction of Time, Second Edition, Springer,
Berlin, 1992.

Zeh is one of the most clear-headed writers I know on this vexing problem. Interestingly,
Price acknowledges Zeh in his paper.

3) Renate Loll, “Chromodynamics and gravity as theories on loop space”, available as
hep-th/9309056.

This is an especially thorough review of work on the loop representation of gauge
theories, especially the theories of the strong force and gravity. A lot of work has been
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done on this subject but there are still very many basic mathematical problems when
it comes to making any of this work rigorous, and one nice thing about Loll’s work is
that she is just as eager to point out the problems as the accomplishments. It can be
dangerous when people become complacent and simply shrug off various problems just
because they are difficult and can be temporarily ignored.

4) Daniel Armand-Ugon, Rodolfo Gambini and Pablo Mora, “Intersecting braids and
intersecting knot theory”, available as hep-th/9309136.

There are a lot of hints that classical knot theory, which only considers a circle smoothly
embedded in space, is only the tip of a very interesting iceberg. Namely, if one looks at
the space of all loops, this has the knots as an open dense subset, but then it has loops
with a single “transverse double point” like

>~

as a codimension 1 subset (like a hypersurface in the space of all loops), and more
fancy singularities appear as still smaller subsets, or as the jargon has it, strata of higher
codimension. The recent flurry of work on Vassiliev invariants points out the importance
of these other strata — or at least a few — to knot theory. Namely, knot invariants
that extend nicely to knots with arbitrarily many transverse double points include the
famous quantum group knot invariants like the Jones polynomial, and there is a close
relationship between these “Vassiliev invariants” and Lie algebra theory.

Meanwhile, the physicists have been forging ahead into more complicated strata,
motivated mainly by the loop representation of quantum gravity. Gambini is one of the
originators of the loop representation of gauge theory, so it is not surprising that he is
ahead of the game on this business. Together with Pullin and Briigmann he has been
working on extending the Jones polynomial, for example, to loops with various sorts of
self-intersections, calculating these extensions directly from the path-integral formula for
the Jones polynomial as a Wilson loop expectation value in Chern—-Simons theory. The
relationship of this extension to the theory of Vassiliev invariants was recently clarified
by Kauffman (see “Week 23”), but there is much more to do. Here Gambini and collab-
orators look at loops with transverse triple points. I guess I'll just quote the abstract:

An extension of the Artin Braid Group with new operators that generate double
and triple intersections is considered. The extended Alexander theorem, relating
intersecting closed braids and intersecting knots is proved for double and triple
intersections, and a counter example is given for the case of quadruple inter-
sections. Intersecting knot invariants are constructed via Markov traces defined
on intersecting braid algebra representations, and the extended Turaev repre-
sentation is discussed as an example. Possible applications of the formalism to
quantum gravity are discussed.
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Week 27

December 16, 1993

This week I would like to describe some of the essays from the following volume:

1) Conceptual Problems of Quantum Gravity, eds. Abhay Ashtekar and John Stachel,
based on the proceedings of the 1988 Osgood Hill Conference, 15-19 May 1988,
Birkhauser, Basel, 1991.

As the title indicates, this conference concentrated not on technical, mathematical as-
pects of quantum gravity but on issues with a more philosophical flavor. The proceed-
ings make it clear how many problems we still have in understanding how to fit quantum
theory and gravity together. Indeed, the book might be a bit depressing to those who
thought we were close to the “theory of everything” which some optimists once assured
us would be ready by the end of the millenium. But to those like myself who enjoy the
fact that there is so much left to understand about the universe, this volume should be
exciting (if perhaps a bit daunting).
The talks have been divided into a number of groups:

* Quantum mechanics, measurement, and the universe
* The issue of time in quantum gravity

* Strings and gravity

* Approaches to the quantization of gravity

* Role of topology and black holes in quantum gravity

Let me describe a few of the talks, or at least their background, in some detail rather
than remaining general and vague.

2) Wojciech H. Zurek, “Quantum measurements and the environment-induced transi-
tion from quantum to classical”, the volume above.

W. G. Unruh, “Loss of quantum coherence for a damped oscillator”, the volume
above.

These talks by Zurek and Unruh fit into what one might call the “post-Everett school”
of research on the foundations of quantum theory. To understand what Everett did, and
what the post-Everett work is about, you will need to be comfortable with the notions of
pure versus mixed states, and superpositions of states versus mixtures of states (which
are very different things). So, rather than discussing the talks above, it probably makes
more sense for me to talk about these basic notions. A brief mathematical discussion
appears below; one really needs the clarity of mathematics to get anywhere with this
sort of issue. First, though, let me describe them vaguely in English.

In quantum theory, associated to any physical system there are states and observables.
An observable is a real-valued quantity we might conceivably measure about the system.
A state represents what we might conceivably know about the system. The previous
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sentence is quite vague; all it really means is this: given a state and an observable
there is a mathematical recipe that lets us calculate a probability distribution on the
real number line, which represents the probability of measuring the observable to have
a value lying in any subset of the real line. We call this the probability distribution of
the observable in the state. Using this we can, if we want, calculate the mean of this
probability distribution (let us assume it exists!), which we call the expectation value of
the observable in the state.

Given two states ¢) and ¢, and a number ¢ between 0 and 1 there is a recipe for
getting a new state, called ¢y + (1 — ¢)¢. This can be described roughly in words as
follows: “with probability ¢, the system is in state 1; with probability 1 — ¢ it is in state
¢.” This is called a mixture of the states 1) and ¢. If a state is a mixture of two different
states, with ¢ not equal to 0 or 1, we call that state a mixed state. If a state is not mixed
it is pure. Roughly speaking, a pure state is a state with as little randomness as possible.
(More precisely, it has as little entropy as possible.)

All the remarks so far apply to classical mechanics as well as quantum mechanics.
A simple example from classical mechanics is a 6-sided die. If we ignore everything
about the die except which side is up, we can say there are six pure states: the state
in which the side of the die showing one dot is up, the state in which the side showing
two dots is up, etc. Call these states 1,2,3,4,5, and 6. If it’s a fair die, and we roll it
and don’t look at it, the best state we can use to describe what we know about the die
is a mixed state which is a mixture: 1/6 of state 1 plus 1/6 of state 2, etc. Note that
if you peek at the die and see that side 4 is actually up, you will be inclined to use a
different state to describe your knowledge: a pure state, state 4. Your honest friend,
who didn’t peek, will still want to use a mixed state. There is no contradiction here;
the state simply is a way of keeping track of what you know about the system, or more
precisely, a device for calculating expectation values of observables; which state you use
reflects your knowledge, and some people may know more than others.

Things get trickier in quantum mechanics. They also get trickier when the system
being described includes the person doing the describing. They get even trickier when
the system being described is the whole universe — for example, some people rebel at the
thought that the universe has “many different states” — after all, it is how it is, isn’t it?
(Gell-Mann gave a talk at this conference, which unfortunately does not appear in this
volume, entitled “Quantum mechanics of this specific universe.” I have a hunch it deals
with this issue, which falls under the heading of “quantum cosmology.”)

The first way things get trickier in quantum mechanics is that something we are used
to in classical mechanics fails. In classical mechanics, pure states are always dispersion-
free — that is, for every observable, the probability measure assigned by the state to that
observable is a Dirac delta measure, that is, the observable has a 100% chance of being
some specific value and a 0% chance of having any other value. (Consider the example
of the dice, with the observable being the number of dots on the face pointing up.) In
quantum mechanics, pure states need not be dispersion-free. In fact, they usually aren’t.

A second, subtler way things get trickier in quantum mechanics concerns systems
made of parts, or subsystems. Every observable of a subsystem is automatically an ob-
servable for the whole system (but not all observables of the whole system are of that
form; some involve, say, adding observables of two different subsystems). So every state
of the whole system gives rise to, or as we say, “restricts to,” a state of each of its sub-
systems. In classical mechanics, pure states restrict to pure states. For example, if our
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system consisted of 2 dice, a pure state of the whole system would be something like “the
first die is in state 2 and the second one is in state 5;” this restricts to a pure state for the
first die (state 2) and a pure state for the second die (state 5). In quantum mechanics, it
is not true that a pure state of a system must restrict to a pure state of each subsystem.

It is this latter fact that gave rise to a whole bunch of quantum puzzles such as the
Einstein—Podolsky-Rosen puzzle and Bell’s inequality. And it is this last fact that makes
things a bit tricky when one of the two subsystems happens to be you. It is possible, and
indeed very common, for the following thing to happen when two subsystems interact
as time passes. Say the whole system starts out in a pure state which restricts to a pure
state of each subsystem. After a while, this need no longer be the case! Namely, if we
solve Schrodinger’s equation to calculate the state of the system a while later, it will
necessarily still be a pure state (pure states of the whole system evolve to pure states),
but it need no longer restrict to pure states of the two subsystems. If this happens, we
say that the two subsystems have become “entangled.”

In fact, this is the sort of thing that often happens when one of the systems is a
measuring apparatus and the other is something measured. Studying this issue, by the
way, does not require a general definition of what counts as a “measuring apparatus” or
a “measurement” — on the contrary, this is exactly what is not needed, and is probably
impossible to attain. What is needed is a description in quantum theory of a particular
kind of measuring apparatus, possibly quite idealized, but hopefully reasonably realistic,
so that we can study what goes on using quantum mechanics and see what it actually
predicts will occur. For example, taking a very idealized case for simplicity:

Our system consists of two subsystems, the “detector” and an “electron.” The systems
starts out, let’s suppose, in a pure state which restricts to a pure state of each subsystem:
the detector is “ready to measure the electron’s spin in the z direction” and the electron
is in a state with its spin pointing along the x axis. After a bit of time passes, if we restrict
the state of the whole system to the first subsystem, the detector, we get a mixed state
like “with 50% probability it has measured the spin to be up, and with 50% probability
it has measured the spin to be down.” Meanwhile, if we restrict the state to the second
subsystem, the electron is in the mixed state “with 50% change it has spin up, and with
50% chance it has spin down.” In fact these two mixed states are correlated in an obvious
sense. Namely, the observable of the whole system that equals 1 if the reading on the de-
tector agrees with the spin of the electron, and 0 otherwise, will have expectation value
1 (if the detector is accurate). The catchy term “entangled,” which is a little silly, really
just refers to this correlation. I don’t want to delve into the math of correlations, but it is
perhaps not surprising that, in classical or quantum mechanics, interesting correlations
can only occur between subsystems if both of them are in mixed states. What’s sneaky
about quantum mechanics is that the whole system can be in a pure state which when
restricted to each subsystem gives a mixed state, and that these mixed states are then
correlated (necessarily, as it turns out). That’s what “entanglement” is all about.

It was through analyses like this, but more detailed, that Everett realized what was
going on in a quantum system composed of two subsystems, one of which was a measur-
ing apparatus (or person, for that matter), the other of which was something measured.
The post-Everett work amounts to refining Everett’s analysis by looking at more realistic
examples, and more varied examples. In particular, it is interesting to study situations
where nothing very controlled like a scientific “measurement” is going on. For example,
one subsystem might be an atom in outer space, and the other subsystem might be its
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environment (a bunch of other atoms or radiation). If one started out in a state which
restricted to a pure state of each subsystem, how fast would the subsystems become
entangled? And exactly how would they become entangled? - this is very interesting.
When we are doing a scientific measurement, it’s pretty clear what sort of correlation is
involved in the entanglement. In the above example, say, the detector reading is becom-
ing correlated to the electron’s spin about the z axis. If all we have is an atom floating
about in space, it’s not so clear. Can we think of the environment as doing something
analogous “measuring” something about the atom, which establishes correlations of a
particular kind? This is the kind of thing Zurek and Unruh are studying.

In my description above I have tried to be very matter-of-fact, but probably you all
know that this subject is shrouded in mystery, largely because of the misty and dramatic
rhetoric people like to use, which presumably makes it seem more profound. At least
“entangled” has a precise technical meaning. But anyone studying this subject will soon
run into “collapse of the wavefunction,” “branches,” “the many-worlds interpretation,”
the “observer,” and so on. These things mean many things to many people, and nothing
in particular to many more, so one must always be on the alert.

Now for a little math to ground the above discussion. To keep life simple suppose
we have a quantum system described by a n-dimensional Hilbert space H which we
just think of as C", n-dimensional complex space. The main thing to get straight is the
difference between superpositions and mixtures of quantum states. An observable in
quantum theory is described by a self-adjoint operator A, which for us is just an n x n
self-adjoint matrix. A state is something that assigns to each observable a number called
its expectation value, in a manner that is 1) linear, 2) positive, and 3) normalized. To
explain this let us call our state . Linearity means (A + B) = (A) + ¢(B) and
P(cA) = cyp(A) for all observables A,B and real numbers c. Positivity means ¢(A) > 0
when A is a nonzero matrix that has non-negative eigenvalues (a so-called non-negative
matrix). And the normalization condition is that /(1) = 1.

This may seem unfamiliar, and that is because elementary quantum mechanics only
considers states of the form

B(A) = (v, Av)

where v is a unit vector in H. Not all states are of this form, but they are an extremely im-
portant special class of states. It is also important to consider states that are represented
as “density matrices,” which are non-negative matrices D with trace 1:

Such a density matrix defines a state 1) by
P(A) = tr(AD).

It’s worth checking that this really meets the definition of a “state” given above!

The states corresponding to unit vectors in H are in fact a special case of the density
matrices. Namely, if v is a unit vector in H we can let D be the self-adjoint matrix
corresponding to projection onto v. L.e., the matrix D acts on any other vector, say w, by

Dw = (v, w)v.
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It’s not to hard to check that the matrix D really is a density matrix (do it!) and that this
density matrix defines the same state as does the vector v, that is,

tr(AD) = (v, Av)

for any observable A.
The entropy of a state ) corresponding to the density matrix D is defined to be

S(y) = —tr(DInD)

where one calculates D1n D by working in a basis where D is diagonal and replacing
each eigenvalue = of D by the number z In 2, which we decree to be 0 if z = 0. Check
that if D corresponds to a pure state as above then D In D = 0 so the entropy is zero.

Now about superpositions versus mixtures. They teach you how to take superposi-
tions in basic quantum mechanics. They usually don’t tell you about density matrices; all
they teach you about is the states that correspond to unit vectors in Hilbert space. Given
two unit vectors in H, one can take any linear combination of them and, if it’s not zero,
normalize it to be a unit vector again, which we call a superposition.

Mixtures are an utterly different sort of linear combination. Given two states ) and ¢
— which recall are things that assign numbers to observables in a linear way — and given
any number ¢ between 0 and 1, we can form a new state by taking

@+ (1-c)p

This is called a mixture of ) and ¢. Finally, some nontrivial exercises:

Exercise: Recall that a pure state is defined to be a state which is not a mixture of
two different states with 0 < ¢ < 1. Show that the states corresponding to unit vectors
in Hilbert space are pure.

Exercise: Conversely, show (in the finite-dimensional case we are considering) that
all the pure states correspond to unit vectors in Hilbert space.

Exercise: Show that every density matrix is a mixture of states corresponding to unit
vectors in Hilbert space.

Exercise: Show (in the finite-dimensional case we are considering) that all states
correspond to density matrices. Show that such a state is pure if and only if its entropy
is zero.

Well, this took longer than expected, so let me quickly say a bit more about a few
other papers in the conference proceedings. ...

3) Carlo Rovelli, “Is there incompatibility between the ways time is treated in general
relativity and in standard quantum mechanics?”, the volume above.

Karel V. Kuchar, “The problem of time in canonical quantization of relativistic sys-
tems”, the volume above.

James B. Hartle, “Time and prediction in quantum cosmology”, the volume above.
Lee Smolin, “Space and time in the quantum universe”, the volume above.
In the section on the problem of time in quantum gravity, these papers in particular
show a lively contrast between points of view. One nice thing is that discussions after

the papers were presented have been transcribed; these make the disagreements even
more clear. Let me simply give some quotes that highlight the issues:
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Rovelli: A partial observable is an operation on the system that produces
a number. But this number may be totally unpredictable even if the state is
perfectly known. Equivalently, this number by itself may give no information
on the state of the system [in the Heisenberg picture — jb]. For example, the
reading of a clock, or the value of a field, not knowing where and when it has
been measured, are partial observables.

A true observable or simply an observable is an operation on the system that
produces a number than can be predicted (or whose probability distribution may
be predicted) if the (Heisenberg) state is known. Equivalently, it is an observable
that gives information about the state of the system.

Time is an experimental fact of nature, a very basic and general experimental
fact, but just an experimental fact. The formal development of mechanics, and
in particular Heisenberg quantum mechanics and the presymplectic formulation
of classical mechanics, suggests that it is possible to give a coherent description
of the world that is independent of the presence of time.

From the mathematical point of view, time is a structure on the set of observ-
ables (the foliation that I called a time structure).

From the physical point of view, time is the experimental fact that, in the nature
as we see it, meaningful observables are always constructed out of two partial
observables. That is, it is the experimental fact (not a priori required), that
knowing the position of a particle is meaningless unless we also know “at what
time” a particle was at that position.

In the formulation of the theory, this experimental fact is coded in the time
structure of the set of observables. If true observables are composed of corre-
spondences of partial observables, one of which is the reading of a clock, then
the set of true observables can be foliated into one-parameter families that are
given by the same partial observables at different clock readings.

From an operational point of view, mechanics is perfectly well defined in the
absence of this time structure. It will describe a world (maybe one slightly
unfamiliar to us) in which observables are not arranged along one-parameter
lines, in which they have no such time structure (a kind of fixed-time world),
or have more complicated structures. We must not confuse the psychological
difficulties in visualizing such worlds with their logical impossibility.

... Heisenberg states, observables, measurement theory — none of these require
time.

The notion of probability does not require time. . . .

What I am proposing is that there may exist a coherent description of a system

in the framework of standard quantum mechanics even if it does not have a
standard “time evolution.”

Why should we be interested in mechanics with no time structure? Because
general relativity is a system (a classical system) with no time structure. At
least, it has no clearly defined time structure.
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. What we have to do is simple: “forget time.”

Kuchar: For myself, I want to see observables changing along my world line
and therefore associated with individual leaves of a foliation. In that sense,
the problem of time is shifted to the problem of constructing an appropriate
class of quantities one would like to call observables. Now, what I would like
to call observables probably differs from what Carlo Rovelli would like to call
observables. Carlo may like to restrict that term to constants of motion, while I
would like to use variables that depend on a time hypersurface. Of course, both
of us know that there is a technical way of translating my observables into his
observables. However, it is difficult to subject such a translated observable to an
actual observation. In principle, of course, it does not matter at what instant
of time one measures a constant of motion. But the constants of motion that
are translations of my observables are much too complicated when expressed in
terms of the coordinates and the momenta at the time of measurement. You thus
have a hard time to design an apparatus that would measure such a constant of
motion at a time different from the moment for which it was originally designed.

Smolin: Now, as I discussed above, and as Jim Hartle argues at length, there
can be no strict implementation of the principle of conservation of probability for
a time that is the value of a dynamical variable of a quantum system. Therefore,
a sensible measurement theory for quantum cosmology can only be constructed
if there is a time variable that is not a dynamical variable of the quantum system
that describes the universe.

Does this mean that quantum cosmology is impossible, since there is no possi-
bility of a clock outside of the system?

There is, as far as I know, exactly one loophole in this argument, which is the
one exploited by the program of intrinsic time. This is that one coordinate on
the phase space of general relativity might be singled out and called time in such
a way that the states, represented by functions on the configuration space, could
be read as time-dependent functions over a reduced configuration space from
which the privileged time coordinate is excluded.

Jokes:
Kuchar: Because Leibniz didn’t believe in the ontological significance of time, he
dropped the letter “t” from his name.
Smolin: Is that true?
Kuchar: Yes! He spelled his name with a “z”.
DeWitt: It’s a good thing that he did believe in space because the “z” would’ve
gone too.

Of course, time is “Zeit” in German, which complicates things.

4) Abhay Ashtekar, “Old problems in the light of new variables”, the volume above.
Carlo Rovelli, “Loop representation in quantum gravity”, the volume above.

Lee Smolin, “Nonperturbative quantum gravity via the loop representation”, the
volume above.
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These are a bit more technical papers that give nice introductions to various aspects of
the loop representation.
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Week 28

January 4, 1994

I think I'll finally break my New Year’s resolution to stop making a fool of myself on the
net, and attempt an explanation of some things I am just learning a bit about, namely,
Teichmdiller space and moduli space. These are concepts that string theorists often throw
around, and when I first heard of them in that context I immediately dimissed them as
just another example of how physicists were learning far too much mathematics for their
own good. I take it all back! They are, in fact, beautifully simple pieces of mathematics
suited to physics in 2-dimensional spacetime. Two dimensions is low enough that one
can often actually understand exactly what’s going on in problems that become infinitely
more tricky in higher dimensions. So even if one doesn’t “believe” in 2-dimensional
physics the way the string theorists do — for them, physics happens on the worldsheet of
the string, which is 2-dimensional - it’s worth learning as a kind of textbook case.

Everything I know so far is culled from the following sources, which by no means
form an exhaustive or even optimal set of references:

1) Y. Imayoshi and M. Taniguchi, An Introduction to Teichmiiller spaces, Springer,
Berlin, 1991.

2) Joe Harris, “An introduction to the moduli space of curves”, in Mathematical Aspects
of String Theory (proceedings of a conference at UC San Diego in 1986), ed. S. T.
Yau, World Scientific Press, 1987.

3) R. C. Penner, “The moduli space of punctured surfaces”, same volume.

4) John L. Harer, “The cohomology of the moduli space of curves”, in Theory of Moduli
(lectures given at the 3rd 1985 session of C.I. M.E. at Mondecatini Terme, Italy), ed. E.
Sernesi, Springer Lecture Notes in Mathematics 1337, 1988.

There are a number of ways of describing Teichmiiller space and moduli space.
Maybe the easiest is this. Start with the surface of a doughnut with g handles, or as
the experts say, a “surface of genus ¢g”. We can make this into a “Riemann surface” if we
cover it with lots of patches, or “charts,” each of which looks just like part the complex
plane (imagine a little piece of graph paper), and such that the change of coordinates
function relating overlapping patches is analytic, in the usual sense of complex vari-
ables. The simplest Riemann surface is the Riemann sphere, which is of genus zero; one
gets this by taking the complex plane and sticking on one more point, “co0” — think of a
sphere with “co” as the north pole. If we have a Riemann surface, we can tell whether a
complex-valued function on it is analytic, simply by working locally in charts, so we can
do complex analysis as usual on a doughnut with lots of handles as long as we make it
into a Riemann surface! Since the main point of my article will be to provide the reader
with lots of buzzwords, I should add that making a surface of genus ¢ into a Riemann
surface is called “giving it a complex structure.”

Now, how many ways are there to give a surface of genus g a complex structure?
First of all we need a good notion of when two Riemann surfaces are “the same”. They
must, of course, have the same genus, but there must also be a 1-1 and onto function
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from one to the other that is everywhere analytic, with an analytic inverse. (Again, it
makes sense to say such a function is analytic, since we can cover each Riemann surface
with charts that we can think of as bits of the complex plane.) Such a mapping is called
a “biholomorphic mapping” — holomorphic just being another word for analytic — and if
we want to sound fancy, we say that the two Riemann surfaces are “biholomorphically
equivalent.”

Well, there’s a famous old theorem of Riemann that for genus 0, there is only ONE
way to do it; any Riemann surface of genus 0 is biholomorphically equivalent with the
Riemann sphere. But for higher genus there are infinitely many essentially different
ways to give a surface of genus g a complex structure. In fact, we can imagine a big fat
“space” of all ways. This is the moduli space of genus ¢!

The first key problem in the theory is to “get our hands on” moduli space; that is,
to describe it quite concretely. String theory provided a lot of motivation for doing this
very well, since the worldsheet of a string — that is, the string viewed in spacetime — is
just a surface, and Feynman path integrals in string theory involve integrating over all
complex structures for this surface. To do integrals over moduli space we need to bring
it down to earth!

To do so, it’s awfully handy to get involved with Teichmiiller space. Note that moduli
space can be thought of as the space of equivalence classes of complex structures on a
fixed surface of genus g, where two complex structures are deemed “the same” if they
are biholomorphically equivalent. Teichmiiller space is defined using a more fine-grained
notion of “the same”. Note that any biholomorphic mapping is a diffeomorphism, that is,
a smooth mapping with a smooth inverse. In fact, it must also be orientation-preserving,
since an orientation-reversing map like complex conjugation can never be holomorphic!
Henceforth I will always mean “orientation-preserving diffeomorophism” when I speak
of diffeomorphisms of a surface.

Now, some diffeomorphisms are “connected to the identity” and some aren’t. We
say a diffeomorphism f is connected to the identity if there is a smooth 1-parameter
family of diffeomorphisms starting at f and ending at the identity diffeomorphism. In
other words, a diffeomorphism is connected to the identity if you can do it “gradually”
without ever having to cut the surface. To really understand this you need to know some
diffeomorphisms that aren’t connected to the identity. Here’s how to get one: start with
your surface of genus g > 0, cut apart one of the handles along a circle, give one handle
a 360-degree twist, and glue the handles back together! This is called a Dehn twist.

Anyway, Teichmiiller space may be defined as the space of equivalence classes of com-
plex structures on a fixed surface of genus g, where two complex structures are counted
as the same if they are biholomorphically equivalent by a diffeomorphism connected to
the identity.

A good way of understanding the relation between Teichmiiller space and moduli
space is this. Define the mapping class group (of genus g) to be the group of diffeomor-
phisms of a surface of genus g modulo the subgroup of those connected to the identity.
A beautiful fact is that this group is generated by Dehn twists! In other words, given any
diffeomorphism of a surface, you can get it by first doing a bunch of Dehn twists and
then doing a diffeomorphism connected to the identity. Since the mapping class group
is finitely generated one should think of it as a discrete group. In fact, folks know what
the relations between the generators are, too, and these are also very beautiful. I guess
good places to read about this stuff are the first paper that gave an explicit presentation
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of mapping class groups:

5) A.Hatcher and W. Thurston, “A presentation of the mapping class group of a closed,
orientable surface”, Topology 19 (1980), 221-237.

and the simplified treatment in

6) Bronislaw Wajnryb, “A simple presentation for the mapping class group of an ori-
entable surface”, Israel J. Math. 45 (1983), 157-174.

Actually, though, I must admit my only acquaintance with mapping class groups comes
from leafing through

7) Joan S. Birman, Braids, Links, and Mapping Class Groups, Annals of Mathematics
Studies 82, Princeton University Press, 1974.

As one can gather from this title there is a close connection between mapping class
groups and the braid group and knot theory, which is the main reason why string theory
allowed Witten to get new insights into knots. (The more mundane connection, namely
that one ties knots out of string, seems largely unexplored, but see “Week 18”.) Let me
not digress into this fascinating realm, however! The point I want to make here is just
that:

The mapping class group acts on Teichmdiiller space, and the quotient by this
group action is moduli space.

Anyone used to how math goes should find this pretty believable, but let me explain:
given a diffeomorphism of our surface of genus g, we can use it as a kind of “coordinate
transformation” to turn one complex structure into another. So the group of diffeo-
morphisms acts on Teichmiiller space, but, given how Teichmuller space is defined, the
subgroup of diffeomorphisms connected to the identity acts trivially. Thus the mapping
class group acts on Teichmiiller space. By how moduli space is defined, two points in
Teichmdiller space define the same point in moduli space iff one is obtained from another
by an element of the mapping class group.

Now the good thing about Teichmdiller space is that it has very nice coordinates on it,
called Fenchel-Nielsen coordinates, which reveal it to be diffeomorphic to R9—5 when
g > 1. (The case ¢ = 0 is utterly dull, since Teichmdiiller space is a point, and the
case g = 1 is beautifully treated using the fact that any Riemann surface of genus 1 is
biholomorphically equivalent to the quotient of the complex plane by a lattice, relating
this case to the subject of elliptic functions, as touched upon in “Week 13”. I should also
add that “Week 13” indicates, at least in the g = 1 case, why moduli space is often called
the “moduli space of curves.”)

Let me say how these coordinates go, rather sketchily, just so the mysterious number
6g — 6 becomes not so mysterious! Take your surface of genus g — just think of it as a
doughnut with n holes — and cut it up into “pairs of pants,” that is, pieces that look like

/\
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from above. Topologically, a pair of pants is just a sphere with three discs cut out of it!
A more dignified term for a pair of pants is a “trinion,” by the way.

The idea now is to describe the complex structure on each pair of pants separately,
and then describe how the pairs of pants are glued together. Now, it turns out that the
complex structures on each pair of pants are very easily described (up to biholomorphic
equivalences connected to the identity). It takes 3 positive real numbers. There’s a
unique metric on the original surface that is compatible with the complex structure (i.e. is
a “Kahler metric”) and has curvature equal to —1. This is called a hyperbolic metric, as in
hyperbolic geometry. Then, we can cut the surface into pairs of pants along circles that
are geodesics relative to this metric. To describe the complex structure on each pair of
pants we simply need to measure the lengths of the 3 bounding circles; these are called
the “geodesic length functions”. In other words, if your pair of pants was hyperbolic, a
tailor would only need to measure you waistlength and the lengths around the two cuffs,
not the inseams!

Now it’s a fun exercise to show that we can chop up a surface of genus g > 1 into
exactly 2¢g — 2 pairs of pants. Doing so, moreover, requires that we cut the surface along
3g — 3 circles. (Draw some pictures!) Thus, we have a total of 3¢ — 3 geodesic length
functions. However, we also need to describe how the pairs of pants are attached to
each other. We can glue them together with any amount of twisting, and this twisting is
a real-valued parameter. So there are 3¢ — 3 “twisting parameters” required to describe
how the pairs of pants are attached. We thus have a total of 6g — 6 parameters, the
Fenchel-Nielsen coordinates, and Teichmiiller space is diffeomorphic to R®9~6 (since the
positive real numbers are diffeomorphic to R itself).

I think I want to quit here but not before making a few random remarks.

First, there’s another description of Teichmiiller space which gives it a triangulation,
i.e., describes it as a bunch of high-dimensional tetrahedra (simplices) glued together.
Harer’s paper gives a nice quick sketch of this construction; the buzzword to look for is
“quadratic differentials.” The nice thing about this is that the mapping class group action
respects this triangulation so we get a triangulation of moduli space.

Second, quite recent work by Penner:

8) R. C. Penner, “Universal constructions in Teichmiiller theory”, Adv. Math. 98
(1993), 143-215.

shows how to fit the Teichmiiller spaces for different genus ¢ into a single universal
object. This was directly motivated by string theory, but the basic idea is (I think) simply
that there should be some sense in which one can go “continously” from genus g + 1
to genus g by making one handle smaller and smaller (with respect to the hyperbolic
metric) until it goes away.

Third, when studying the triangulation of Teichmiiller space one repeatedly runs
across a certain “Pachner move” which goes from one triangulation of a surface to an-
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other:

which reminds me of lattice field theories in 2 dimensions (see “Week 16” for an expla-
nation) and the “pentagon diagram” showing how to get between the 5 simplest ways
to triangulate a pentagon using this move (see, for example, Figure 3 in Penner’s paper
above, or Figure 3.2 of Harer’s paper). The pentagon diagram appears both in Moore and
Seiberg’s famous paper on string theory and chopping up surfaces into pairs of pants:

9) G.Moore and S. Seiberg, “Classical and quantum conformal field theory”, Commun.
Math. Phys. 123 (1989), 177-254

and in category theory, with the relationship there now pretty well understood in terms
of “modular tensor categories” — see e.g.

10) Louis Crane, “2-d physics and 3-d topology”, Commun. Math. Phys. 135 (1991)
615-640.

Unfortunately, I haven’t been able to get any string guru to sit down and really clarify
how the triangulations of Teichmiiller space fit in. Lest the reader wonder what the heck
I'm going on about, the idea is that category theory provides a marvelous way to unify
the profusion of mathematical structures that are coming up these days, and if we ever
understood everything in those terms, it would all seem much less confusing.

149



WEEK 29 JANUARY 14, 1994

Week 29

January 14, 1994

I'm awfully busy this week, but feel like attempting to keep up with the pile of literature
that is accumulating on my desk, so this will be a rather terse description of papers. All
of these papers are related to my current obsession with “higher-dimensional algebra”
and its applications to physics.

1) Ruth J. Lawrence, “On algebras and triangle relations”, to appear in Proc. Top. &
Geom. Methods in Field Theory (1992), eds. J. Mickelsson and O. Pekonen, World
Scientific, Singapore.

)

Ruth J. Lawrence, “A presentation for Manin and Schechtman’s higher braid groups’
available as MSRI preprint 04129-91.

Ruth J. Lawrence, “Triangulations, categories and extended topological field theo-
ries”, to appear in Quantum Topology, eds. L. Kauffman and R. A. Baadhio, World
Scientific, Singapore, 1993.

Ruth J. Lawrence, “Algebras and triangle relations”, Harvard U. preprint.

Many people are busily trying to extend the remarkable relationship between knot
theory and physics, which is essentially a feature of 3 dimensions, to higher dimen-
sions. Since the 3-dimensional case required the development of new branches of alge-
bra (namely, quantum groups and braided tensor categories), it seems that the higher-
dimensional cases will require still further “higher-dimensional algebra.” One approach,
which is still being born, involves the use of “n-categories,” which are generalizations
of braided tensor categories suited for higher-dimensional physics. (See for example
the papers by Crane in “Week 2”, by Kapranov and Voevodsky in “Week 4”, by Fischer
and Freed (separately) in “Week 12”7, and the one by Gordon, Power, and Street below.)
Lawrence has instead chosen to invent “n-algebras,” which are vector spaces equipped
with operations corresponding to the ways one can subdivide (n — 1)-dimensional sim-
plices into more such simplices. (See the paper by Chung, Fukuma and Shapere in “Week
16” for some of the physics motivation here.)

These alternative approaches should someday be seen as different aspects of the same
thing, but there as yet I know of no theorems to this effect, so there is a lot of work to
be done. Even more importantly, there is a lot of work left to be done about inventing
examples of these higher-dimensional structures. For example, there may eventually be
general results on “boosting” n-algebras to (n + 1)-algebras, or n-categories to (n + 1)-
categories, which will explain how generally covariant physics in n-dimensional space-
time relates to the same thing in one higher dimension. So far, however, all we have is
a few examples, which are not even clearly related to each other. For example, Crane
calls this boosting process “categorification” and has done it starting with the braided
tensor category of representations of a quantum group. Lawrence, on the other hand,
shows how to construct some 3-algebras from quantum groups. And Freed has given a
general procedure for “boosting” using path integral methods that are not yet rigorous
in the most interesting cases.
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2) R. Gordon, A. J. Power, and Ross Street, Coherence for Tricategories, Memoirs of the
American Mathematical Society 558, Providence, Rhode Island, 1995.

” @

An “n-category” is a kind of algebraic structure that has “objects,” “morphisms” be-
tween objects, “2-morphisms” between morphisms, and so on up to “n-morphisms.”
However, the correct definition of an n-category for the purposes of physics is still un-
clear! I gave a rough explanation of the importance of 2-categories in physics in “Week
4”, where I discussed Kapranov and Voevodsky’s nice definition of braided tensor 2-
categories. However, it seems likely that we will need to understand the situation for
larger n as well. This paper makes a big step in this direction, by defining “tricategories”
(what I might call “weak 2-categories”) and proving a “strictification” or “coherence” re-
sult analogous to the result that every braided tensor category is equivalent to a “strict”
one. The result is, however, considerably more subtle, as it involves a special way of
defining the tensor product of 2-categories due to Gray:

3) John W. Gray, Formal Category Theory: Adjointness for 2-Categories, Springer Lec-
ture Notes in Mathematics 391, Springer, Berlin, 1974.

John W. Gray, “Coherence for the tensor product of 2-categories, and braid groups”,
in Algebras, Topology, and Category Theory, eds. A. Heller and M. Tierney, Academic
Press, New York, 1976, pp. 63-76.

Briefly speaking, Gordon—-Power-Street use a category they call “Gray,” the category
of all 2-categories, made into a symmetric monoidal closed category using a modified
version of Gray’s tensor product. Then they show that every tricategory (as defined by
them) is “triequivalent” to a category enriched over Gray.

4) J. M. Maillet, “On pentagon and tetrahedron equations”, available as hep-th/
9312037.

Maillet shows how to obtain solutions of the tetrahedron equations from solutions
of pentagon equations; all these geometrical equations are part of the theory of 2-
categories, and this is yet another example of a “boosting” construction as alluded to
above.

5) David Yetter, “Homologically twisted invariants related to (2+1)- and (3+1)-dimensional
state-sum topological quantum field theories”, available as hep-th/9311082.

Let me simply quote the abstract: “Motivated by suggestions of Paolo Cotta-Ramusino’s
work at the physical level of rigor relating BF' theory to the Donaldson polynomials, we
provide a construction applicable to the Turaev-Viro and Crane-Yetter invariants of a
priori finer invariants dependent on a choice of (co)homology class on the manifold.”
The dream is that this would give a state-sum formula for the Donaldson polynomials,
but Yetter is careful to avoid claiming this! A while back, Crane and Yetter showed how
to get 4-dimensional TQFTs from certain 3d TQFTs by another kind of “boosting” proce-
dure related to those mentioned above, but the resulting TQFT in 4-dimensions did not
by itself yield interesting new invariants of 4-manifolds. The procedure Yetter describes
here generalizes the earlier work by allowing the inclusion of an embedded 2-manifold.
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Week 30

January 14, 1994

For the most part, this is a terse description of some papers dealing with quantum gravity.
Some look to be quite important, but as I have not had time to read them as thoroughly
as I would like, I won’t say much.

First, however, let me note some books:

1) Silvan S. Schweber, QED and the Men Who Made It: Dyson, Feynman, Schwinger
and Tomonaga, Princeton U. Press, Princeton, 1994.

Back in the 1930s there was a crisis in physics: nobody knew how to reconcile
quantum theory with special relativity. This book describes the history of how people
struggled with this problem and achieved a marvelous, but flawed, solution: quantum
electrodynamics (QED). Marvelous, because it made verified predictions of unparalleled
accuracy, involves striking new concepts, and gave birth to beautiful new mathematics.
Flawed, only because nobody yet knows for sure whether the theory is mathematically
well-defined — for reasons profoundly related to physics at ultra-short distance scales.
This story should give some inspiration to those currently attempting to reconcile quan-
tum theory with general relativity! Feynman, Schwinger, and Tomonaga won Nobel
prizes for QED, but Dyson was also instrumental in inventing the theory, and the book is
mainly a story of these 4 men.

2) Bruce Stephenson, The Music of the Heavens: Kepler’s Harmonic Astronomy, Prince-
ton U. Press, Princeton, 1994.

Bruce Stephenson, Kepler’s Physical Astronomy, Princeton U. Press, Princeton, 1994.

Kepler’s work on astronomy was in part based on the notion of the “music of the
spheres,” and in his Harmonice Mundi (1619) he sought to relate planetary velocities
to the notes of a chord. He was also fascinated with geometry, and sought to relate
the radii of the planetary orbits to the Platonic solids. While this may seem a bit silly
nowadays, it’s clear that this faith that mathematical patterns pervade the heavens was
a crucial part of how Kepler found his famous laws of planetary motion. Also important,
of course, was his use of what we would now call “physical” reasoning to understand
the heavens — that is, the use of analogies between the motions of heavenly bodies and
that of ordinary terrestrial matter. But even this is not as straightforward as one might
hope, since (Stephenson argues in the second book) this physical reasoning was what
we would now consider incorrect, even though it led to valid laws. More inspiration for
those now struggling amid error to understand what the universe is really like!

3) Louis Kauffman and Sostenes Lins, Temperley—Lieb Recoupling Theory and Invariants
of 3-Manifolds, Annals of Mathematics Studies 133, Princeton U. Press, Princeton,
1994.

I described this briefly in “Week 17”, before I had spent much time on it. Let me
recall the main point: in the late 80’s Jones invented a new invariant of knots and
links in ordinary 3d space, but then Witten recognized that this invariant came from
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a quantum field theory, and thus could be extended to obtain an invariant of links in
arbitrary 3d manifolds. (In particular, taking the link to be empty, one obtains a 3-
manifold invariant.) In fact, there is a whole family of such invariants, essentially one
for each semisimple Lie algebra, and Jones original example corresponded to the case
s5u(2). In this case the combinatorics of the invariants are so simple that one can write
a nice exposition in which one forgets the underlying, fairly sophisticated, mathematical
physics (quantum groups, conformal field theory and the like) and simply presents the
“how-to” using a kind of diagrammatic calculus known as “skein relations,” or what
Kauffman calls “Temperley-Lieb recoupling theory.” That is the approach the authors
take here. The curious reader will naturally want to know more! For example, anyone
familiar with quantum theory and “6j symbols” will sense that this kind of thing is lurking
in the background, and indeed, it is.
Now for the papers:

4) C. Rovelli and L. Smolin, “The physical hamiltonian in quantum gravity”, available
as gr-qc/9308002.

H. A. Morales-Tecotl and C. Rovelli, “Fermions in quantum gravity”, available as
gr-qc/9401011.

The Rovelli-Smolin loop variables program proceeds apace! In the former paper,
Rovelli and Smolin consider quantum gravity coupled to a scalar matter field which
plays the role of a clock. (Using part of the system described to play the role of a clock is
a standard idea for dealing with the “problem of time,” which arises in quantum theories
on spacetimes having no preferred coordinates, like quantum gravity. However, getting
this idea to actually work is not at all easy. For a bit on this issue see “Week 27”.) Only
after choosing this “clock field” can one work out a Hamiltonian for the theory, write
down the analog of Schrédinger’s equation, and examine the dynamics. Before, there is
only a “Hamiltonian constraint” equation, also known as the Wheeler-DeWitt equation.

In the latter paper, Rovelli and Marales-Tecotl discuss how to include fermions. The
beautiful thing here is that fermions are described in the loop representation by the ends
of arcs, while pure gravity is described by loops. This is completely analogous to the
old string theory of mesons, in which mesons were represented as arcs of “string” — the
gluon field - connecting two fermionic “ends” — the quarks.

5) C. Di Bartolo, R. Gambini, J. Griego and J. Pullin, “Extended loops: a new arena
for nonperturbative quantum gravity”, available as gr-qc/9312029.

For a while now, Gambini and collaborators have been developing a modified version
of the loop representation that appears to be especially handy for doing perturbative
calculations (perturbing in the coupling constant, that is, Newton’s gravitational constant
— not perturbing about a fixed flat “background” spacetime, which is regarded as a “no-
no” in this philosophy). The mathematical basis for this “extended” loop representation
is something quite charming in itself: it amounts to embedding the loop group into
an (infinite-dimensional) Lie group. The “perturbative” calculations described above are
thus analogous to how one uses Lie algebras to study Lie groups. In fact, this analogy is a
deep one, since the extended loop representation also permits perturbative calculations
in Chern-Simons theory, allowing one to calculate “Vassiliev invariants” starting just
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from Lie-algebraic data. In fact this was done by Bar-Natan (cf “Week 3”), who was
using the extended loop representation without particularly knowing about that fact!

This paper puts the extended loop representation to practical use by finding some
new solutions to the quantum version of Einstein’s equations. These solutions are es-
sentially Vassiliev invariants! (See also the paper by Gambini and Pullin listed in “Week
23”.)

6) Domenico Giulini, “Ashtekar variables in classical general relativity”, available as
gr-qc/9312032.

This was a lecture given at the 117th WE-Heraeus Seminar: “The Canonical Formalism
in Classical and Quantum General Relativity”, 13-17 September 1993, Bad Honnef, Ger-
many, the goal of which was to give an introduction to Ashtekar’s “new variables” for
general relativity.

154


https://arxiv.org/abs/gr-qc/9312032

WEEK 31 FEBRUARY 18, 1994

Week 31

February 18, 1994

Well, I'm really busy these days trying to finish up a big project, hence the low number of
“Weeks” per week, but papers are piling up, and there are some pretty interesting ones,
so I thought I'd quickly mention a few. This bunch will mainly concern quantum gravity.

1) Louis Crane, “Possible implications of the quantum theory of gravity”, available as
hep-th/9402104.

This is one paper that everyone can read and enjoy, for although one may find it too close
to science fiction for comfort, it is far more interesting than most science fiction. Louis
Crane has been doing a lot of excellent work on topological quantum field theory for
the last few years, strongly advocating the use of category theory as a unifying principle
in physics (essentially as an extension of the concept of symmetry embodied in group
theory), but this is quite different in flavor.

To begin with, Lee Smolin, one of the originators of the loop representation of quan-
tum gravity, has been spending the last year or so writing a book in a popular style, to
be entitled “Life and Light,” which tours the cosmos and makes some interesting specu-
lations on “evolutionary cosmology.” These speculations are based on 2 hypotheses.

A. The formation of a black hole creates “baby universe,” the final singularity of
the black hole tunnelling right on through to the initial “Big Bang” singularity
of the new universe thanks to quantum effects.

While this must undoubtedly seem outre to anyone unfamiliar with the sort of thing
theoretical physicists amuse themselves with these days, in a recent review article by
John Preskill on the information loss paradox for black holes, he reluctantly concluded
that this was the most conservative solution of that famous problem! Recall the problem:
if a black hole evaporates its mass away via Hawking radiation, and that radiation is
pure blackbody radiation, hence carries none of the information about the matter that
originally formed the black hole, one does not have conservation of information, or more
technically speaking, the time evolution is not unitary, since a pure state is evolving into
a mixed state. Hawking’s original solution to this problem was to bite the bullet and
accept the nonunitarity, even though it goes against the basic principles of quantum
theory. This appears in:

2) S. W. Hawking, “Black holes and thermodynamics”, Phys. Rev. D 13 (1976), 191-
197.

The “baby universe” solution simply says that the matter seeds a baby universe and
the information goes there. Many other solutions have been proposed; two recent review

articles are

3) J. Preskill, “Do black holes destroy information?”, available as hep-th/9209058.
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4) Don Page, “Black hole information”, in Proceedings of the 5th Canadian Conference
on General Relativity and Relativistic Astrophysics, University of Waterloo, 13-15
May, 1993, eds. R. B. Mann and R. G. McLenaghan, World Scientific, Singapore,
1994. Available as hep-th/9305040.

Personally, I am a complete agnostic about this problem, since it rests upon so many
phenomena that are hypothesized but not yet observed, and since any solution would
require a theory of quantum gravity. I am merely reporting the ideas of respected physi-
cists! In any event, the second hypothesis is:

B. Certain parameters of the baby universe are close to but different than those
of the parent universe.

The notion that certain physical facts that appear as “laws” are actually part of the
state of the univese has in fact been rather respectable since the application of sponta-
neous symmetry breaking to the Weinberg—Salaam model of electroweak interactions,
part of the standard model. (Again, being my usual cautious self, I must note that a
crucial piece of evidence for this model, the Higgs boson, has not yet been seen.) The
notion of spontaneous symmetry breaking has become quite popular in particle physics
and is a key component of all current theories, such as GUTs or string theory, that at-
tempt to model the messy heap of observed particles and interactions by some pristinely
symmetrical Lagrangian. The spontaneous symmetry breaking would be expected to
have occured shortly after the Big Bang, when it got cool enough, much as a hot piece
of iron will randomly settle upon some direction of magnetization as its temperature fall
below the Curie temperature. One application of this notion to cosmology is already
widely popular, namely, inflation. In fact, pursuing the analogy with magnetic domains,
i.e. small regions with different directions of magnetization, cosmologists have spend a
fair amount of energy thinking about “domain walls,” “cosmic strings,” monopoles and
other defects that might occur as residues of this cooling-down process.

So again, while the idea must seem wild to anyone who has not encountered it be-
fore, physicists these days are fairly comfortable with the idea that certain “fundamental
constants” could have been other than they were. As for the constants of a baby universe
being close to, but different than, those of the parent universe, there is as far as I know
no suggested mechanism for this. This is perhaps the weakest link in Smolin’s argument
(though I haven’t seen his book yet). But it is at least conceivable.

Now, given these hypotheses a marvellous consequence ensues: Darwinian evolu-
tion! Those universes whose parameters are such that many black holes are formed will
have many progeny, so the constants of physics can be expected to be “tuned” for the
formation of many black holes. As Smolin emphasizes, while the hypotheses A and B
may seem impossible to test directly at present, we do at least have a hope of testing this
consequence. He has studied the marvellously intricate process of star formation in the
galaxy and attempted to see whether altering the constants of physics appear “tuned”
for maximizing black hole production, and he argues in his book that they do appear
so tuned. Of course, this is an extremely delicate business, since our understanding
of galaxy formation, star formation and black hole formation even in this universe is
still rather weak — much less for other conceivable universes in which the fundamental
constants take different values.

Crane enters the fray at this point, and proposes an additional conjecture:

156


https://arxiv.org/abs/hep-th/9305040

WEEK 31 FEBRUARY 18, 1994

SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVENTUALLY CREATE BLACK
HOLES.

(The capital letters are his.) He breaks it up into two parts for us:

SUBCONJECTURE 1: SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVEN-
TUALLY WANT TO MAKE BLACK HOLES

and

SUBCONJECTURE 2: SUCCESSFUL INDUSTRIAL CIVILIZATIONS WILL EVEN-
TUALLY BE ABLE TO PRODUCE BLACK HOLES.

and argues for each. The result, as any good evolutionist will recognize, is a kind of
feedback loop whereby intelligence and baby universe formation both affect each other.
Indeed, Crane calls his hypothesis the “meduso-anthropic hypothesis,” after certain jel-
lyfish with a two-stage life cycle in which medusids produce polyps and vice versa. This
has the charm of completely destroying the usual approach (dare I say “paradigm”?) of
physics in which the parameters of the universe are regarded as indifferent to the exis-
tence of intelligence. Of course, the anthropic hypothesis is a previous attempt to breach
this firewall, but a much less dramatic one, since the only role intelligence plays in that
is noticing the laws of the universe.
At this point let me leave off with a quote from Crane’s paper:

“It is not hard to see that if these ideas are true, they will be the victims of abuse
to dwarf quantum healing and even quantum golf. That is not sufficient reason
to ignore them.”

and let me gradually turn towards slightly less speculative realms, eventually finishing
with some papers containing rigorous mathematics! To begin with, some more on black
hole entropy:

5) Leonard Susskind, “Some speculations about black hole entropy in string theory”,
available as hep-th/9309145.

Leonard Susskind and John Uglum, “Black hole entropy in canonical quantum
gravity and superstring theory”, available as hep-th/9401070.

The fact that the entropy of a black hole is (at least under certain circumstances) propor-
tional to the area of its event horizon is a curious relationship between general relativity,
quantum field theory and statistical mechanics that many people believe to pointing
somewhere, but unfortunately nobody is sure where. Part of the reason is that the stan-
dard derivations are somewhat indirect, and the event horizon is not a physical object,
so the sense in which it is the locus of entropy is difficult to understand. These authors
suggest that in string theory it can be explained in terms of open strings having both
ends attached to the horizon.

6) C. R. Stephens, G. 't Hooft and B. F. Whiting, “Black hole evaporation without
information loss”, available as gr-qc/9310006.
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This is an attempt to make black holes radiate away and disappear in a manner that
preserves unitarity. I've been too busy to read it. And now for some wormholes:

7) Hoi-Kwong Lo, Kai-Ming Lee, and John Preskill, “Complementarity in Wormhole
Chromodynamics”, available as hep-th/9308044.

Let me just quote the abstract and note that there is probably some quite interesting
topology to be obtained by applying this sort of idea to mathematics:

The electric charge of a wormhole mouth and the magnetic flux “linked” by the
wormhole are non-commuting observables, and so cannot be simultaneously
diagonalized. We use this observation to resolve some puzzles in wormhole elec-
trodynamics and chromodynamics. Specifically, we analyze the color electric
field that results when a colored object traverses a wormhole, and we discuss the
measurement of the wormhole charge and flux using Aharonov-Bohm interfer-
ence effects. We suggest that wormhole mouths may obey conventional quantum
statistics, contrary to a recent proposal by Strominger.

Finally, lest the mathematicians think I have abandoned ship, some rigorous results:

8) Piotr T. Chrusciel, ““No hair” theorems — folklore, conjectures, results”, available
as gr-qc/9402032.

The famous “no hair” theorem says that in general relativity static black hole solutions
are determined by very few parameters — typically listed as mass, angular momentum
and charge in “rest frame” of the black hole. There have been many attempts to extend
this result, especially because no actual black hole is likely to be utterly static, since it
presumably formed at some time. I have not read this but Chrusciel is a very careful
person so I expect it will be up to the standards of his nice review of work on the cosmic
censorship hypothesis,

9) Piotr T. Chrusciel, “On uniqueness in the large of solutions of Einstein’s equations
(“Strong cosmic censorship”)”, in Mathematical Aspects of Classical Field Theory,
Contemp. Math. 132, eds. Gotay, Marsden and Moncrief, American Mathematical
Society, Providence, Rhode Island, 1992, pp. 235-274.

Addendum: See “Week 33” for a paper by Smolin on his evolutionary cosmology
theory. His book came out in 1997 under the title The Life of the Cosmos’ — see “Week
101” for details.

The thing that makes things and the thing that makes things fall apart —
they’re the same thing. Entropy maximization!

— Chris Lee
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Week 32

March 10, 1994

Well, I visited Georgia Tech last week to spread the gospel of “knots and quantum grav-
ity,” and came across a most fascinating development. I'm sure readers of sci.math and
sci.math.research have taken note of the New York Journal of Mathematics. This is
one of the first refereed electronic journals of mathematics. Neil Calkin at Georgia Tech
is helping to start up another one — the Electronic Journal of Combinatorics. Though it’s
unlikely, perhaps some among you are still unaware (or unconvinced) of how essential
it is that we develop fully refereed free-of-charge electronic journals of mathematics and
physics. The first and most obvious reason is that computer-based media offer all sorts
of flexibility that print media lack — more on this later. But the other reason is that the
monopoly of print journals must be broken.

For example, U. C. Riverside does not subscribe to Communications in Mathematical
Physics, despite the fact that this is the crucial journal in that subject, because this journal
costs $3,505 a year! The ridiculous price is, of course, in part precisely because this is the
crucial journal in that subject, in part because the journal uses antiquated and expensive
production methods involving paper, and in part because, being a big operation, it is
basically run by a publishing house rather than mathematical physicists. Luckily, with
the advent of the preprint mailing lists hep-th and gr-qc, I don’t need to read Commu-
nications in Mathematical Physics very often! I simply get my list of abstracts each day by
email from Los Alamos, and send email to get the papers I want, in LaTeX or TeX form.
The middleman has been cut out — at least for the moment.

One problem with preprint mailing lists, though, is that the preprints have not gone
through the scrutiny of the referee process. This is, frankly, much less of a problem for
the readers than is commonly imagined, because this scrutiny is less intense than people
who have never refereed papers think! Many refereed papers have errors, and I would
personally feel very uncomfortable using a result unless I either understood the proof or
knew that most experts believed it. The real need for refereed journals, in my slightly
cynical opinion, is that academics need refereed publications to advance in their jobs: the
people who give tenure, promotions etc. cannot be expected to read and understand
one’s papers. This is, of course, also the reason for other strange phenomena, such as
the idea of counting somebody’s publications to see how good they are. We need only
count Alexander Abian’s publications to see the limitations of this approach.

Eventually, a few birds may be killed with one stone by means of “seals of approval”
or SOAPs, which are being widely discussed by people interested in the “information
superhighway,” or — let’s call a spade a spade — the Internet. For more on these, check
out the newsgroup comp.interpedia, or read material about the Xanadu project. The
idea here is that eventually we will have a good system whereby people can append
comments to documents, such as “there is an error in the proof of Lemma 1.5, which can
be fixed as follows...” or simply various seals of approval, functioning similarly to the
seal of approval ones paper obtains by being published in a journal. E.g., one could make
ones paper available by ftp or some other protocol, and “submitting it to a journal” might
amount to asking for a particular SOAP, with various SOAPs carrying various amounts of
prestige, and so on.

159



WEEK 32 MARCH 10, 1994

Of course, journals also function as a kind of information “hub” or central access
point. We all know that to find out what’s the latest trend in particle physics, it suffices
to glance at Nucl. Phys. B and certain other journals, and so on. It is not clear that the
function of “hub” and the function of SOAP need be combined into a single institution,
once the onerous task of transcribing ideas onto dead trees and shipping them all around
the world becomes (at least partially) obsolete.

It is also not at all certain whether, in the long run, the monopolistic power of journals
to charge large fees for accessing information will be broken by the new revolutions in
technology. This is, of course, just one small facet of the political/economic struggle for
control over information flow that is heating up these days, at least in the U.S., among
telephone companies, cable TV stations, computer networks such as Compuserve, etc.
etc. f mathematicians and physicists don’t think about these issues, someone else who
has will wind up defining the future for us.

Anyway, for now it seems to make good sense to start refereed journals of mathe-
matics and physics that are accessible electronically, free of charge, over the Internet.
Not too long ago one would commonly hear the remark “... but of course nobody would
ever want to do that, because. ..” followed by some reason or other, reminiscent of how
clearly nobody would want to switch from horses to automobiles because then one would
have to build gas stations all over the place — obviously too much bother to be worth-
while. Now, however, things are changing and the new electronic journals are getting
quite respectable lists of editors, and they seem to have a good chance of doing well. I
urge everyone to support free-of-charge electronic journals by submitting good papers!

Let me briefly describe the electronic journals I mentioned above. The New York
Journal’s chief editor is Mark Steinberger, at SUNY Albany. The journal covers algebra,
modern analysis, and geometry/topology. Access is through anonymous ftp, gopher and
listserv, the latter being (I believe) a mailing list protocol. One can subscribe by sending
email to listserv@albany.edu or listserv@albany.bitnet; if you want abstracts for
all the papers, the body of your email should read

subscribe NYJMTH-A <your full name>

but you can also subscribe to only certain topics (one of the great things about electronic
journals — one can only begin to imagine the possibilities inherent in this concept!), as
follows:

Algebra:

subscribe NYJM-ALG <your full name>

Analysis:

subscribe NYJM-AN <your full name>

Geometry/Topology:

subscribe NYJM-TOP <your full name>
Papers are accepted in amstex and amslatex, and when you get papers you get a .dvi
file.

The Electronic Journal of Combinatorics is taking a somewhat more ambitious ap-
proach that has me very excited. Namely, they are using Mosaic, a hypertext interface to
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the WWW (World-Wide Web). This means, to technical illiterates such as myself, that if
you can ever get your system manager to get the software running, you can see a “front
page” of the journal, with the names of the articles and other things underlined (or in
color if you're lucky). To go to any underlined item, you simply click your mouse on
it. In fact, you can use this method to navigate throughout the whole WWW, which is
a vast, sprawling network of linked files, including — so I hear — “This Week’s Finds”!
In the Electronic Journal of Combinatorics, when you click on an article you will see it in
postscript form, pretty equations and all. You can also get yourself a copy and print it
out. Neil showed me all this stuff and my mouth watered! The danger of this ambitious
approach is of course that folks who haven’t kept up with things like the WWW may find
it intimidating. .. for a while. It’s actually not too complicated.

This journal will be widely announced pretty soon. The editor in chief is Her-
bert S. Wilf, wilf@central.cis.upenn.edu, and the managing editor is Neil Calkin,
calkin@math.gatech.edu. It boasts an impressive slate of editors (even to me, who
knows little about combinatorics), including Graham, Knuth, Rota and Sloane. To get
browse the journal, which is presently under construction, you just do the following
if you can use Mosaic: “Click on the button marked ‘Open’ and then type in http://
math34.gatech.edu:8080/Journal/journalhome.html”. To get Mosaic, do anonymous
ftp to ftp.ncsa.uiuc.edu and cd to Web/Mosaic_binaries — and then you’re on your
own, I just tried it and there were too many people on! — but Neil says it’s not too hard
to get going. I will try as soon as I have a free day.

“Ahem!” the reader comments. “What does this have to do with mathematical
physics?” Well, seeing how little I'm being paid, I see nothing wrong with interpret-
ing my mandate rather broadly, but I should add the following.

1) There are periodic posts on sci.physics about physics on the WWW; there’s a lot
out there, and to get started one can always try the following. The information below is
taken from Scott Chase’s physics FAQ:

* How to get to the Web

If you have no clue what WWW is, you can go over the Internet with
telnet to info.cern.ch (no login required) which brings you to the WWW
Home Page at CERN. You are now using the simple line mode browser. To move
around the Web, enter the number given after an item.

* Browsing the Web

If you have a WWW browser up and running, you can move around
more easily. The by far nicest way of "browsing" through WWW uses the
X-Terminal based tool "XMosaic". Binaries for many platforms (ready for
use) and sources are available via anonymous FTP from ftp.ncsa.uiuc.edu
in directory Web/xmosaic. The general FTP repository for browser
software is info.cern.ch (including a hypertext browser/editor for
NeXTStep 3.0)

* For Further Information
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For questions related to WWW, try consulting the WWW-FAQ: Its most
recent version is available via anonymous FTP on rtfm.mit.edu in
/pub/usenet/news.answers/www-faq , or on WWW at
http://www.vuw.ac.nz:80/overseas/www-faq.html

The official contact (in fact the midwife of the World Wide Web)
is Tim Berners-Lee, timbl@info.cern.ch. For general matters on WWW, try
www-request@info.cern.ch or Robert Cailliau (responsible for the "physics"
content of the Web, cailliau@cernnext.cern.ch).

And: 2) there are rumors, which I had better not elaborate on yet, about an impend-
ing electronic journal of mathematical physics! I eagerly await it!
Okay, just a bit about actual mathematical physics per se this time.

1) Carlo Rovelli, “On quantum mechanics”, available as hep-th/9403015.

This interesting paper suggests that reason why we are constantly arguing about the
meaning of quantum mechanics, despite the fact that it works perfectly well and is ob-
viously correct, is that we are making a crucial conceptual error. Rovelli very nicely
compares the problem to special relativity before Einstein did his thing: we had Lorentz
transformations, but they seemed very odd and paradoxical, because the key notion that
the space/time split was only defined relative to a frame (or “observer” if we wish to an-
thropomorphize) was lacking. Rovelli proposes that in quantum mechanics the problem
is that we are lacking the notion that the state of a system is only defined relative to an
observer. (The “Wigner’s friend” puzzle is perhaps the most obvious illustration here.)
What, though, is an observer? Any subsystem of a quantum system, says Rovelli; there
is no fundamental “observer-observed distinction.” This fits in nicely with some recent
work by Crane and myself on quantum gravity, so I like it quite a bit, though it is clearly
not the last word on this issue (nor does Rovelli claim it to be).

2) Alan D. Rendall, “Adjointness relations as a criterion for choosing an inner prod-
uct”, available as gr-qc/9403001.

The inner product problem in quantum gravity is an instance of a general, very interest-
ing mathematics problem, namely, of determining an inner product on a representation
of a star-algebra, by demanding that the representation be a star-representation. Rendall
has proved some very nice results on this issue.

3) Maxim Kontsevich and Yuri Manin, “Gromov-Witten classes, quantum cohomology,
and enumerative geometry”, available as hep-th/9402147.

I will probably never understand this paper so I might as well mention it right away.
Kontsevich’s work on knot theory, and Manin’s work on quantum groups and (earlier)
instantons is extremely impressive, so I guess they can be forgiven for their interest in
algebraic geometry. (A joke.) Let me simply quote:

“The paper is devoted to the mathematical aspects of topological quantum field
theory and its applications to enumerative problems of algebraic geometry. In
particular, it contains an axiomatic treatment of Gromov-Witten classes, and a
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discussion of their properties for Fano varieties. Cohomological Field Theories
are defined, and it is proved that tree level theories are determined by their
correlation functions. Applications to counting rational curves on del Pezzo
surfaces and projective spaces are given.”
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Week 33

May 10, 1994

With tremendous relief, I have finished writing a book, and will return to putting out
This Week’s Finds on a roughly weekly basis. Let me briefly describe my book, which
took so much more work than I had expected... and then let me start catching up on
listing some of the stuff that’s cluttering my desk!

1) John Baez and Javier de Muniain, Gauge Fields, Knots and Gravity, World Scientific
Press, Singapore, 1994.

This book is based on a seminar I taught in 1992-93. We start out assuming the
reader is familiar with basic stuff — Maxwell’s equations, special relativity, linear algebra
and calculus of several variables — and try to prepare the reader to understand recent
work on quantum gravity and its relation to knot theory. It proved difficult to do this
well in a mere 460 pages. Lots of tantalizing loose ends are left dangling. However,
there are copious references so that the reader can pursue various subjects further.

Part 1. Electromagnetism

Chapter 1. Maxwell’s Equations

Chapter 2. Manifolds

Chapter 3. Vector Fields

Chapter 4. Differential Forms

Chapter 5. Rewriting Maxwell’s Equations
Chapter 6. DeRham Theory in Electromagnetism
Part 2. Gauge Fields

Chapter 1. Symmetry

Chapter 2. Bundles and Connections

Chapter 3. Curvature and the Yang-Mills Equations
Chapter 4. Chern-Simons Theory

Chapter 5. Link Invariants from Gauge Theory
Part 3. Gravity

Chapter 1. Semi-Riemannian Geometry

Chapter 2. Einstein’s Equations

Chapter 3. Lagrangians for General Relativity
Chapter 4. The ADM Formalism

Chapter 5. The New Variables

2) Asher Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers,
Amsterdam, 1994.
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As Peres notes, there are many books that teach students how to solve quantum me-
chanics problems, but not many that tackle the conceptual puzzles that fascinate those
interested in the foundations of the subject. His book aims to fill this gap. Of course,
it’s impossible not to annoy people when writing about something so controversial; for
example, fans of Everett will be distressed that Peres’ book contains only a brief sec-
tion on “Everett’s interpretation and other bizarre interpretations”. However, the book is
clear-headed and discusses a lot of interesting topics, so everyone should take a look at
it.

Schrodinger’s cat, Bell’s inequality and Wigner’s friend are old chestnuts that every-
one puzzling over quantum theory has seen, but there are plenty of popular new chest-
nuts in this book too, like “quantum cryptography”, “quantum teleportation”, and the
“quantum Zeno effect”, all of which would send shivers up and down Einstein’s spine.
There are also a lot of gems that I hadn’t seen, like the Wigner-Araki—Yanase theorem.
Let me discuss this theorem a bit.

Roughly, the WAY theorem states that it is impossible to measure an operator that
fails to commute with an additive conserved quantity. Let me give an example to clarify
this and then give the proof. Say we have a particle with position ¢ and momentum p,
and a measuring apparatus with position ) and momentum P. Let’s suppose that the
total momentum p+ P is conserved — which will typically be the case if we count as part
of the “apparatus” everything that exerts a force on the particle. Then as a consequence
of the WAY theorem we can see that (in a certain sense) it is impossible to measure the
particle’s position ¢; all we can measure is its position relative to the apparatus, ¢ — Q.

Of course, whenever a “physics theorem” states that something is impossible one
must peer into it and determine the exact assumptions and the exact result! Lots of peo-
ple have gotten in trouble by citing theorems that seem to show something is impossible
without reading the fine print. So let’s see what the WAY theorem really says!

It assumes that the Hilbert space for the system is the tensor product of the Hilbert
space for the thing being observed — for short, let’s call it the “particle” — and the
Hilbert space for the measuring apparatus. Assume also that A and B are two observ-
ables belonging to the observed system, while C' is an observable belonging to the mea-
suring apparatus; suppose that B + C is conserved, and let’s try to show that we can
only measure A if it commutes with B. (Our assumptions automatically imply that A
commutes with C, by the way.)

So, what do we mean when we speak of “measuring A”? Well, there are various
things one might mean. The simplest is that if we start the combined system in some
tensor product state u(i) ® v, where v is the “waiting and ready” state of the apparatus
and u(1) is a state of the observed system that’s an eigenvector of A:

Au(i) = a(i)u(i),
then the unitary operator U corresponding to time evolution does the following:
U(u(i) @ v) = u(i) ® v(4)

where the state v(¢) of the apparatus is one in which it can be said to have measured
the observable A to have value a(i). E.g., the apparatus might have a dial on it, and
in the state v(4) the dial reads “a(:)”. Of course, we are really only justified in saying a
measurement has occurred if the states v(i) are distinct for different values of 4.
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Note: here the WAY theorem seems to be restricting itself to nondestructive measure-
ments, since the observed system is remaining in the state u(¢). If you go through the
proof you can see to what extent this is crucial, and how one might modify the theorem
if this is not the case.

Okay, we have to show that we can only “measure A” in this sense if A commutes
with B. We are assuming that B + C' is conserved, i.e.,

U*(B+C)U = B+C.

First note that
(u(@), [A, Blu(j)) = (a(i) — a(4)){u(i), Bu(j)).

On the other hand, since A and B only act on the Hilbert space for the particle, we also

have
(u(@), [A; Blu(j)) = (u(i) © v, [A, Blu(j))
= (u(z) @ v, [4, B + Clu(4))
= (a(i) = a(4)){u(@)) @ v, (B + C)u(j) @ v)
It follows that if a(i) — a(j) isn’t zero,

(u(i), Bu(j)) = (u(i) @ v, (B + C)u(j) @ v)
= (u(?) @ v, U*(B + C)Uu(j) @ v)
= (u() @ v(i), (B + C)u(j) ©v(5))
(), Bu(3)){v(@), v(5)) + (u(@), u(7)) (v (i), Cv(j))

but the second term vanishes since u(i) are a basis of eigenvectors and (i) and u(j)
correspond to different eigenvalues, so

(u(i), Bu(j)) = (u(@), Bu(j)){v(i),v(5))

which means that either (v(i),v(j)) = 1, hence v(i) = v(j) (since they are unit vectors),
so that no measurement has really been done, OR that (u(), Bu(j)) = 0, which means
(if true for all ¢, j) that A commutes with B.

So, we have proved the result, using one extra assumption that I didn’t mention at
the start, namely that the eigenvalues a(:) are distinct.

I can’t say that I really understand the argument, although it’s easy enough to follow
the math. I will have to ponder it more, but it is rather interesting, because it makes
more precise (and general) the familiar notion that one can’t measure absolute positions,
due to the translation-invariance of the laws of physics; this translation invariance is of
course what makes momentum be conserved. (What I just wrote makes me wonder if
someone has shown a classical analog of the WAY theorem.)

Anyway, here’s the table of contents of the book:

ule

= {ul?

Chapter 1: Introduction to Quantum Physics
1-1. The downfall of classical concepts
1-2. The rise of randomness

1-3. Polarized photons
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1-4.
1-5.
1-6.
1-7.

Introducing the quantum language
What is a measurement?
Historical remarks

Bibliography

Chapter 2: Quantum Tests

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

What is a quantum system?

Repeatable tests

Maximal quantum tests

Consecutive tests

The principle of interference

Transition amplitudes

Appendix: Bayes’s rule of statistical inference

Bibliography

Chapter 3: Complex Vector Space

3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

The superposition principle
Metric properties

Quantum expectation rule
Physical implementation
Determination of a quantum state
Measurements and observables
Further algebraic properties
Quantum mixtures

Appendix: Dirac’s notation

3-10. Bibliography

Chapter 4: Continuous Variables

4-1.
4-2.
4-3.
4-4,
4-5.
4-6.
4-7.
4-8.

Hilbert space

Linear operators

Commutators and uncertainty relations
Truncated Hilbert space

Spectral theory

Classification of spectra

Appendix: Generalized functions

Bibliography

Chapter 5: Composite Systems

5-1.

Quantum correlations
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5-2.
5-3.
5-4.
5-5.
5-6.
5-7.
5-8.

Incomplete tests and partial traces
The Schmidt decomposition
Indistinguishable particles
Parastatistics

Fock space

Second quantization

Bibliography

Chapter 6: Bell’s Theorem

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.

The dilemma of Einstein, Podolsky, and Rosen
Cryptodeterminism

Bell’s inequalities

Some fundamental issues

Other quantum inequalities

Higher spins

Bibliography

Chapter 7: Contextuality

7-1.
7-2.
7-3.
7-4.
7-5.
7-6.

Nonlocality versus contextuality
Gleason’s theorem
The Kochen-Specker theorem

Experimental and logical aspects of inseparability

Appendix: Computer test for Kochen-Specker contradiction

Bibliography

Chapter 8: Spacetime Symmetries

8-1.
8-2.
8-3.
8-4.
8-5.
8-6.
8-7.
8-8.
8-9.

What is a symmetry?
Wigner’s theorem

Continuous transformations
The momentum operator

The Euclidean group
Quantum dynamics
Heisenberg and Dirac pictures
Galilean invariance

Relativistic invariance

8-10. Forms of relativistic dynamics

8-11. Space reflection and time reversal
8-12. Bibliography
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Chapter 9: Information and Thermodynamics
9-1. Entropy

9-2. Thermodynamic equilibrium

9-3. Ideal quantum gas

9-4. Some impossible processes

9-5. Generalized quantum tests

9-6. Neumark’s theorem

9-7. The limits of objectivity

9-8. Quantum cryptography and teleportation
9-9. Bibliography

Chapter 10: Semiclassical Methods

10-1. The correspondence principle

10-2. Motion and distortion of wave packets
10-3. Classical action

10-4. Quantum mechanics in phase space
10-5. Koopman’s theorem

10-6. Compact spaces

10-7. Coherent states

10-8. Bibliography

Chapter 11: Chaos and Irreversibility

11-1. Discrete maps

11-2. Irreversibility in classical physics
11-3. Quantum aspects of classical chaos
11-4. Quantum maps

11-5. Chaotic quantum motion

11-6. Evolution of pure states into mixtures
11-7. Appendix: PostScript code for a map
11-8. Bibliography

Chapter 12: The Measuring Process

12-1. The ambivalent observer

12-2. Classical measurement theory

12-3. Estimation of a static parameter

12-4. Time-dependent signals

12-5. Quantum Zeno effect

12-6. Measurements of finite duration
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12-7. The measurement of time

12-8. Time and energy complementarity
12-9. Incompatible observables

12-10. Approximate reality

12-11. Bibliography

3) Bernd Briigmann, “Loop representations”, available as gr-qc/9312001.

This is a nice review article on loop representations of gauge theories. Anyone wanting
to jump into the loop representation game would be well advised to start here.

4) Lee Smolin, “The fate of black hole singularities and the parameters of the standard
models of particle physics and cosmology”, available as gr-qc/9404011.

This is about Smolin’s “evolutionary cosmology” scenario, which I already discussed in
“Week 31”. Let me just quote the abstract:

A cosmological scenario which explains the values of the parameters of the stan-
dard models of elementary particle physics and cosmology is discussed. In this
scenario these parameters are set by a process analogous to natural selection
which follows naturally from the assumption that the singularities in black
holes are removed by quantum effects leading to the creation of new expand-
ing regions of the universe. The suggestion of J. A. Wheeler that the parameters
change randomly at such events leads naturally to the conjecture that the pa-
rameters have been selected for values that extremize the production of black
holes. This leads directly to a prediction, which is that small changes in any of
the parameters should lead to a decrease in the number of black holes produced
by the universe. On plausible astrophysical assumptions it is found that changes
in many of the parameters do lead to a decrease in the number of black holes
produced by spiral galaxies. These include the masses of the proton, neutron,
electron and neutrino and the weak, strong and electromagnetic coupling con-
stants. Finally, this scenario predicts a natural time scale for cosmology equal to
the time over which spiral galaxies maintain appreciable rates of star formation,
which is compatible with current observations that Q0 = .1 — .2.
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Week 34

May 24, 1994

A bit of a miscellany this week. ...

1) “Algorithms for quantum computation: discrete log and factoring”, extended ab-
stract by Peter Shor.

There has been a bit of a stir about this paper; since I know Peter Shor’s sister I was able
to get a copy and see what it was really all about.

Quantum computers are so far just a theoretical possibility. It’s easiest to see why
machines that take advantage of quantum theory might be efficient at computation if we
think in terms of path integrals. In Feynman’s path-integral approach to quantum theory,
the probability of getting from state A at time zero to state B some later time is obtained
by integrating the exponential of the action

exp(iS/h)

over all paths from A to B, and then taking the absolute value squared. (Here we are
thinking of states A and B that correspond to points in the classical configuration space.)
We can think of the quantum system as proceeding along all paths simultaneously; it is
the constructive or destructive interference between paths due to the phases exp(iS/h)
that makes certain final outcomes B more likely than others. In many situations, there
is massive destructive interference except among paths very close to those which are
critical points of the action S; the latter are the classical paths. So in a sense, a classical
device functions as it does by executing all possible motions; motions far from those
satisfying Newton’s laws simply cancel out by destructive interference! (There are many
other ways of thinking about quantum theory; this one can be difficult to make mathe-
matically rigorous, but it’s often very handy.)

This raises the idea of building a computer that would take advantage of quantum
theory by trying out all sorts of paths, but making sure that paths that give the wrong
answer cancel out! It seems that Feynman was the first to seriously consider quantum
computation:

2) Richard Feynman, “Simulating physics with computers”, International Journal of
Theoretical Physics, 21, (1982), 467-488.

but by now quite a bit of work has been done on the subject, e.g.:
3) P. Benioff, “Quantum mechanical Hamiltonian models of Turing machines”, J. Stat.

Phys. 29 (1982), 515-546.

D. Deutsch, “Quantum theory, the Church-Turing principle and the universal quan-
tum computer”, Proc. R. Soc. Lond. A 400 (1985), 96-117.

D. Deutsch, Quantum computational networks, Proc. R. Soc. Lond. A 425 (1989),
73-90.

D. Deutsch and R. Jozsa, Rapid solution of problems by quantum computation,
Proc. R. Soc. Lond. A 439 (1992), 553-558.
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E. Bernstein and U. Vazirani, Quantum complexity theory, Proc. 25th ACM Symp.
on Theory of Computation (1993), 11-20.

A. Berthiaume and G. Brassard, editors, “The quantum challenge to structural com-
plexity theory”, in Proc. 7th IEEE Conference on Structure in Complexity Theory,
1992.

A. Yao, “Quantum circuit complexity”, in Proc. 34th IEEE Symp. on Foundations of
Computer Science, 1993.

Thanks to this work, there are now mathematical definitions of quantum Turing ma-
chines and the class “BQP” of problems that can be solved in polynomial time with a
bounded probability of error. This allows a mathematical investigation of whether quan-
tum computers can, in principle, do things more efficiently than classical ones. Shor
shows that factoring integers is in BQP. I won’t try to describe how, as it’s a bit technical
and I haven’t really comprehended it. Instead, I'd like say a couple things about the
practicality of building quantum computers, since people seem quite puzzled about this
issue.

There are, as I see it, two basic problems with building quantum computers. First, it
seems that the components must be carefully shielded from unwanted interactions with
the outside world, since such interactions can cause “decoherence”, that is, superposi-
tions of the computer states will evolve into superpositions of the system consisting of
the computer together with what it’s interacting with, which from the point of view of
the computer alone are the same as mixed states. This tends to ruin the interference
effects upon which the advantages of quantum computation are based.

Second, it seems difficult to incorporate error-correction mechanisms in a quantum
computer. Without such mechanisms, slight deviations of the Hamiltonian of the com-
puter from the design specifications will cause the computation to drift away from what
was intended to occur. Luckily, it appears that this drift is only linear rather than exponen-
tial as a function of time. (This impression is based on some simplifications that might
be oversimplifications, so anyone who wants to build a quantum computer had better
ponder this issue carefully.) Linear increase of error with time sets an upper bound on
how complicated a computation one could do before the answer is junk, but if the rate
of error increase was made low enough, this might be acceptable.

Certainly as time goes by and computer technology becomes ever more miniaturized,
hardware designers will have to pay ever more attention to quantum effects, for good or
for ill! (Vaughn Pratt estimates that quantum effects will be a serious concern by 2020.)
The question is just whether they are only a nuisance, or whether they can possibly be
harnessed. Some designs for quantum computers have already been proposed (sorry, I
have no reference for these), and seeing whether they are workable should be a very
interesting engineering problem, even if they are not good enough to outdo ordinary
computers.

4) Lee Smolin and Chopin Soo, “The Chern-Simons invariant as the natural time
variable for classical and quantum cosmology”, available as gr-qc/9405015.

Let me just quote the abstract on this one:

We propose that the Chern—Simons invariant of the Ashtekar—Sen connection (or
its imaginary part in the Lorentgzian case) is the natural internal time coordinate
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for classical and quantum cosmology. The reasons for this are: 1) It is a function
on the gauge and diffeomorphism invariant configuration space, whose gradient
is orthogonal to the two physical degrees of freedom, in the metric defined by
the Ashtekar formulation of general relativity. 2) The imaginary part of the
Chern-Simons form reduces in the limit of small cosmological constant, A, and
solutions close to DeSitter spacetime, to the York extrinsic time coordinate. 3)
Small matter-field excitations of the Chern—Simons state satisfy, by virtue of the
quantum constraints, a functional Schréodinger equation in which the matter
fields evolve on a DeSitter background in the Chern-Simons time. We then
propose this is the natural vacuum state of the theory for nonzero A. 4) This
time coordinate is periodic on the Euclidean configuration space, due to the
large gauge transformations, which means that physical expectation values for
all states in non-perturbative quantum gravity will satisfy the KMS condition,
and may then be interpreted as thermal states. Finally, forms for the physical
hamil- tonian and inner product are suggested and a new action principle for
general relativity, as a geodesic principle on the connection superspace, is found.

5) “Symplectic geometry”, a series of lectures by Mikhail Gromov, compiled by Richard
Brown, edited by Robert Miner.

Symplectic geometry is the geometry of classical phase spaces. That is, it’s the geometry
of spaces on which one can take Poisson brackets of functions in a manner given locally
by the usual formulas. Gromov has really revolutionized the subject, and these lectures
look like a good place to begin learning what is going on. There is also an appendix on
contact geometry (another aspect of classical physics) based on a lecture by Eliashberg.
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Week 35

June 5, 1994

1) Alexander Grothendieck, Pursuing Stacks (A la Poursuite des Champs), 1983, 593
pages. Available as https://thescrivener.github.io/PursuingStacks/ps-online.
pdf.

I owe Ronnie Brown enormous thanks for sending this to me (before it was available
online). Grothendieck is mainly famous for his work on algebraic geometry, in which he
introduced the concept of “schemes” to provide a modern framework for the subject. He
was also interested in reformulating the foundations of topology, which is reflected in
Pursuing Stacks. This is a long letter to Quillen, inspired by Quillen’s 1967 book Homo-
topical Algebra. It’s a fascinating mixture of visionary mathematics, general philosophy
and a bit of personal chat. Let me quote a bit:

I write you under the assumption that you have not entirely lost interest for
those foundational questions you were looking at more than fifteen years ago.
One thing which strikes me, is that (as far as I know) there has not been any
substantial progress since — it looks to me that understanding of the basic
structures underlying homotopy theory, or even homological algebra only, is
still lacking — probably because the few people who have a wide enough back-
ground and perspective enabling them to feel the main questions, are devoting
their energies to things which seem more directly rewarding. Maybe even a
wind of disrepute for any foundational matters whatever is blowing nowadays!
In this respect, what seems to me even more striking than the lack of proper
foundations for homological and homotopical algebra, is the absence I daresay
of proper foundations for topology itself! I am thinking here mainly of the devel-
opment of a context of “tame” topology, which (I am convinced) would have on
the everyday technique of geometric topology (I use this expression in contrast
to the topology of use for analysts) a comparable impact or even a greater one,
than the introduction of the point of view of schemes had on algebraic geome-
try. The psychological drawback here I believe is not anything like messyness,
as for homological and homotopical algebra (or for schemes), but merely the
inrooted inertia which prevents us so stubbornly from looking innocently, with
fresh eyes, upon things, without being dulled and emprisoned by standing habits
of thought, going with a familiar context — too familiar a context!

One reason why I'm interested in this letter is that Grothendieck seems to have un-
derstood the importance of “higher algebraic structures” before most people. Recently,
interest in these has been heating up, largely because of the recent work on “extended
topological quantum field theories.” The basic idea is that, just as a traditional quantum
field theory is (among other things) a representation of the symmetry group of space-
time, a topological quantum field theory is a representation of a more sophisticated
algebraic structure, a “cobordism n-category.” An n-category is a wonderfully recursive
sort of thing in which there are objects, 1-morphisms between objects, 2-morphisms
between morphisms, and so on up to n-morphisms. In a “cobordism n-category” the

174


https://thescrivener.github.io/PursuingStacks/ps-online.pdf
https://thescrivener.github.io/PursuingStacks/ps-online.pdf

WEEK 35 JUNE 5, 1994

objects are 0-manifolds, the 1-morphisms are 1-dimensional manifolds that go between
0-manifolds (as the unit interval goes from one endpoint to another), the 2-morphisms
are 2-dimensional manifolds that go between 1-manifolds (as a cylinder goes from on
circle to another), etc. In practice one must work with manifolds admitting certain types
of “corners”, and equipped with extra structures that topologists and physicists like, such
as orientations, framings, or spin structures. The idea is that all the cutting-and-pasting
constructions in n-dimensional topology can be described algebraically in the cobordism
n-category. To wax rhapsodic for a moment, we can think of an n-category as exemplify-
ing the notion of “ways to go between ways to go between ways to go between... ways
to go between things,” and cobordism n-categories are the particular n-categories that
algebraically encode the possibilities along these lines that are implicit in the notion of
n-dimensional spacetime.

Now, the problem is that the correct definition of an n-category is a highly nontrivial
affair! And it gets more complicated as n increases! A 0-category is nothing but a bunch
of objects. In other words, it’s basically just a set, if we allow ourselves to ignore certain
problems about classes that are too big to qualify as sets. A 1-category is nothing but a
category. Recall the definition of a category:

A category consists of a set of objects and a set of morphisms. Every morphism has
a source object and a target object. (A good example to think of is the category in which
the objects are sets and the morphisms are functions. If f: X — Y, we call X the source
and Y the target.) Given objects X and Y, we write Hom(X, Y') for the set of morphisms
from X to Y (i.e., having X as source and Y as target).

The axioms for a category are that it consist of a set of objects and for any 2 objects
X and Y a set Hom(X,Y") of morphisms from X to Y, and

1. Given a morphism g in Hom(X,Y') and a morphism f in Hom(Y, Z), there is mor-
phism which we call f o g in Hom(X, Z). (This binary operation o is called com-
position.)

2. Composition is associative: (f o g)oh = fo(goh).
3. For each object X there is a morphism idy from X to X, called the identity on X.
4. Given any f in Hom(X,Y), foidx = fand idy o f = f.

Now, a 2-category is more complicated. There are objects, 1-morphisms, and 2-
morphisms, and one can compose morphisms and also compose 2-morphisms. There
is, however, a choice: one can make ones 2-category “strict” and require that the rules
2) and 4) above hold for the 1-morphisms and 2-morphisms, or one can require them
“literally” only for the 2-morphisms, and allow the 1-morphisms some slack. Technically,
one can choose between “strict” 2-categories, usually just called 2-categories, or “weak”
ones, which are usually called “bicategories.”

What do I mean by giving the 1-morphisms some “slack”? This is a very important
aspect of the n-categorical philosophy... I mean that in a 2-category one has the option
of replacing equations between 1-morphisms by isomorphisms — that is, by 2-morphisms
that have inverses! The basic idea here is that in many situations when we like to pretend
things are equal, they are really just isomorphic, and we should openly admit this when
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it occurs. So, for example, in a “weak” 2-category one doesn’t have associativity of 1-
morphisms. Instead, one has “associators”, which are 2-morphisms like this:

afgn:(fog)oh— fo(goh)

In other words, the associator is the process of rebracketing made concrete. Now, when
one replaces equations between 1-morphisms by isomorphisms, one needs these isomor-
phisms to satisfy “coherence relations” if we’re going to expect to be able to manipulate
them more or less as if they were equations. For example, in the case of the associators
above, one can use associators to go from

folgo(hok))

to
((fog)oh)ok

in two different ways: either

fol(go(hok)) = (fog)o(hok)—= ((fog)oh)ok

or
fol(go(hok)) = fol((goh)ok) = (folgeh))ok—=((feg)oh)ok

Actually there are other ways, but in an important sense these are the basic two. In a
“weak” 2-category one requires that these two ways are equal. .. i.e., this is an identity
that the associator must satisfy, known as the pentagon identity. This is one of the first
examples of a coherence relation. It turns out that if this holds, all ways of rebracketing
that get from one expression to another are equal. (Here I'm being rather sloppy, but the
precise result is known as Mac Lane’s theorem.)

To learn about weak 2-categories, which as I said people usually call bicategories, try:

2) J. Benabou, Introduction to Bicategories, Springer Lecture Notes in Mathematics,
47, Springer, Berlin, 1968.

Now, one can continue this game, but it gets increasingly complex if one goes the “weak”
route. In a “weak n-category” the idea is to replace all basic identities that one might
expect between j-morphisms, such as the associative law, by (j+1)-isomorphisms. These,
in turn, satisfy certain “coherence relations” that are really not equations, but (j + 2)-
morphisms, and so on... up to level n. This becomes so complicated that only recently
have “weak 3-categories” been properly defined, by Gordon, Power and Street, who call
them tricategories (see “Week 29”).

A bit earlier, Kapranov and Voevodsky succeeded in defining a certain class of weak
4-categories, which happen to be called “braided monoidal 2-categories” (see “Week 4”).
The interesting thing, you see, which justifies getting involved in this business, is that
a lot of topology automatically pops out of the definition of an n-category. In particular,
n-categories have a lot to do with n-dimensional space. A weak 3-category with only one
object and one 1-morphism is usually known as a “braided monoidal category,” and the
theory of these turns out to be roughly the same as the study of knots, links and tangles!
The “braided monoidal 2-categories” of Kapranov and Voevodsky are really just weak
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4-categories with only one object and one 1-morphism. (The reason for the term “2-
category” here is that since all one has is 2-morphisms, 3-morphisms, and 4-morphisms,
one can pretend one is in a 2-category in which those are the objects, morphisms, and
2-morphisms.)

In any event, these marvelous algebraic structures have been cropping up more and
more in physics (see especially Crane’s stuff listed in “Week 2” and Freed’s paper listed
in “Week 12”), so I got ahold of a copy of Grothendieck’s letter and have begun trying to
understand it.

Actually, it’s worth noting that these n-categorical ideas have been lurking around
homotopy theory for quite some time now. As Grothendieck wrote:

At first sight it had seemed to me that the Bangor group had indeed come to work
out (quite independently) one basic intuition of the program I had envisioned in
those letters to Larry Breen — namely, that the study of n-truncated homotopy
types (of semisimplicial sets, or of topological spaces) was essentially equivalent
to the study of so-called n-groupoids (where n is any natural integer). This is
expected to be achieved by associating to any space (say) X its “fundamental n-
groupoid” I1,,(X), generalizing the familiar Poincaré fundamental groupoid for
n = 1. The obvious idea is that 0-objects of I1,,(X) should be the points of X,
1-objects should be “homotopies” or paths between points, 2-objects should be
homotopies between 1-objects, etc. This 11,,(X) should embody the n-truncated
homotopy type of X, in much the same way as for n = 1 the usual fundamental
groupoid embodies the 1-truncated homotopy type. For two spaces X, Y, the
set of homotopy-classes of maps X — Y (more correctly, for general X, Y, the
maps of X into 'Y in the homotopy category) should correspond to n-equivalence
classes of n-functors from I1,,(X) to IL,(Y') — etc. There are some very strong
suggestions for a nice formalism including a notion of geometric realization of
an n-groupoid, which should imply that any n-groupoid is n-equivalent to a
IT,,(X). Moreover when the notion of an n-groupoid (or more generally of an
n-category) is relativized over an arbitrary topos to the notion of an n-gerbe
(or more generally, an n-stack), these become the natural “coefficients” for a
formalism of non commutative cohomological algebra, in the spirit of Giraud’s
thesis.

The “Bangor group” referred to includes Ronnie Brown, who has done a lot of work on
“w-groupoids”. A while back he sent me a nice long list of references on this subject;
here are some that seemed particularly relevant to me (though I haven’t looked at all of
them).

3) G. Abramson, J.-P. Meyer and J. Smith, “A higher dimensional analogue of the fun-
damental groupoid”, in Recent Developments of Algebraic Topology, RIMS Kokyuroku
781, Kyoto, 1992, pp. 38-45,

F. Al-Agl, “Aspects of multiple categories”, University of Wales Ph.D. Thesis, 1989.
F. Al-Agl and R. J. Steiner, “Nerves of multiple categories”, Proc. London Math. Soc.
66 (1992), 92-128.

N. Ashley, “Simplicial T-complexes”, University of Wales Ph.D. Thesis, 1976, pub-
lished as Simplicial T-complexes and Crossed Complexes: a Non-Abelian Version of
a Theorem of Dold and Kan, Dissertationes Mathematicae 265, 1988.
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H. J. Baues, Algebraic Homotopy, Cambridge University Press, Cambridge, 1989.

H. J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, De Gruytet,
Berlin, 1991.

L. Breen, “Bitorseurs et cohomologie non-Abélienne”, in The Grothendieck Festschrift:
a collection of articles written in honour of the 60th birthday of Alexander Grothendieck,
Vol. 1, ed. P. Cartier et al., Birkhauser, Basel, 1990, pp. 401-476.

R. Brown, “Higher dimensional group theory”, in Low-dimensional topology, ed. R.
Brown and T.L.Thickstun, London Math. Soc. Lect. Notes 46, Cambridge University
Press, 215-238, 1982.

R. Brown, “From groups to groupoids: a brief survey”, Bull. London Math. Soc.,
19, 113-134, 1987.

R. Brown, Elements of Modern Topology, McGraw Hill, Maidenhead, 1968.

R. Brown, Topology: a Geometric Account of General Topology, Homotopy Types and
the Fundamental Groupoid, Ellis Horwood, Chichester, 1988.

R. Brown, “Some problems in non-Abelian homological and homotopical alge-
bra”, in Homotopy Theory and Related Topics: Proceedings Kinosaki, ed. M. Mimura,
Springer Lecture Notes in Mathematics 1418, 1990, Springer, Berlin pp. 105-129.

R. Brown and P. J. Higgins, “The equivalence of w-groupoids and cubical T-complexes”,
Cah. Top. Geom. Diff. 22 (1981), 349-370.

R. Brown and P. J. Higgins, “The equivalence of co-groupoids and crossed com-
plexes”, Cah. Top. Geom. Diff. 22 (1981), 371-386.

R. Brown and P. J. Higgins, “The algebra of cubes”, J. Pure Appl. Algebra 21 (1981),
233-260.

R. Brown and P. J. Higgins, “Tensor products and homotopies for w-groupoids and
crossed complexes”, J. Pure Appl. Algebra, 47 (1987), 1-33.

R. Brown and J. Huebschmann, “Identities among relations”, in Low-dimensional
topology, eds. R. Brown and T. L. Thickstun, London Math. Soc. Lect. Notes 46,
Cambridge University Press, Cambridge, 1982, pp. 153-202.

R. Brown, “Generalised group presentations”, Trans. Amer. Math. Soc., 334 (1992),
519-549.

M. Bullejos, A. M. Cegarra and J. Duskin, “On cat™-groups and homotopy types”,
J. Pure Appl. Algebra 86 (1993), 135-154.

M. Bullejos, P. Carrasco and A. M. Cegarra, “Cohomology with coefficients in sym-
metric cat”-groups. An extension of Eilenberg-Mac Lane’s classification theorem.”
Granada Preprint, 1992.

P. J. Ehlers and T. Porter, “From simplicial groupoids to crossed complexes”, UCNW
Maths Preprint 92.19, 1992.

D. W. Jones, “Polyhedral T-complexes”, University of Wales Ph.D. Thesis, 1984;
published as A General Theory of Polyhedral Sets and Their Corresponding T-complexes,
Dissertationes Mathematicae 266, 1988.
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M. M. Kapranov and V. Voevodsky, “Combinatorial-geometric aspects of polycate-
gory theory: pasting schemes and higher Bruhat orders (list of results)”, Cah. Top.
Geom. Diff. Cat. 32 (1991), 11-27.

M. M. Kapranov and V. Voevodsky, “co-groupoids and homotopy types”, Cah. Top.
Geom. Diff. Cat. 32, 29-46, 1991.

M. M. Kapranov and V. Voevodsky, “2-categories and Zamolodchikov tetrahedra
equations”, preprint, 1992.

J.-L. Loday, “Spaces with finitely many non-trivial homotopy groups”, J. Pure Appl.
Algebra 24 (1982), 179-202.

G. Nan Tie, “Iterated W and T-groupoids”, J. Pure Appl. Algebra 56 (1989), 195—
209.

T. Porter, “A combinatorial definition of co-types”, Topology 22 (1993), 5-24.

S. J. Pride, “Identities among relations of group presentations”, in Proc. Work-
shop on Group Theory from a Geometrical Viewpoint, eds. E. Ghys, A. Haefliger, A.
Verjodsky, World Scientific (1991), 687-716.

R. Steiner, “The algebra of directed complexes”, University of Glasgow Math Preprint,
1992.

A. Tonks, “Cubical groups which are Kan”, J. Pure Appl. Algebra 81 (1992), 83-87.

A. Tonks and R. Brown, “Calculation with simplicial and cubical groups in Axiom”,
UCNW Math Preprint 93. 04.

A. R. Wolf, “Inherited asphericity, links and identities among relations”, J. Pure
Appl. Algebra 71 (1991), 99-107.

Since the month of March last year, so nearly a year ago, the greater part
of my energy has been devoted to a work of reflection on the foundations
of non-commutative (co)homological algebra, or what is the same, after
all, of homotopic algebra. These reflections have taken the concrete form of
a voluminous stack of typed notes, destined to for then first volume (now
being finished) of a work in two volumes to be published by Hermann, under
the overall title Pursuing Stacks. I now foresee (after successive extensions
of the initial project) that the manuscript of the whole of the two volumes,
which I hope to finish definitively in the course of this year, will be about
1500 typed pages in length. These two volumes are moreover for me the first
in a vaster series, under the overall title Mathematical Reflections, in which
I intend to develop some of the themes sketched in the present report

— Alexander Grothendieck, Sketch of a Program (1983)
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Week 36

July 15, 1994

I am attempting to keep my nose to the grindstone these days, in part since I'm getting
ready for the Knots and Quantum Gravity session of the Marcel Grossman meeting on
general relativity, which will take place at Stanford the week after next (I will report any
interesting news I hear out there), and in part to make up for earlier stretches of laziness
on my part.... Nonetheless, I feel I should describe a few new papers on topological
quantum field theories.

The real reason for physicists’ interest in topological quantum field theories (TQFTs)
is that we sorely need a mathematical framework that quantum gravity might fit into. It’s
likely, however, that quantum gravity won’t be much like the TQFTs people have studied
so far. The existing TQFTs tend to be “exactly soluble” and have finite-dimensional state
spaces; quantum gravity is likely to be different. Still, any experience in studying quan-
tum field theories that don’t rely on “fixed background structures” like a fixed spacetime
metric is likely to be worth having. Also, quantum gravity appears to be tied mathemat-
ically to simpler TQFTs in a variety of ways. In particular, the Ashtekar formulation of
quantum gravity is closely related to a 4-dimensional TQFT variously known as “B A F'
theory,” “BF theory,” “topological 2-form gravity” or “topological quantum gravity”. This
in turn is closely related to Chern-Simons theory in 3 dimensions.

Let me just say what the heck BF theories are, and then list a few references on
them. The easiest way to describe them is by giving the Lagrangian. Say spacetime is
an n-dimensional orientable manifold M and we have a principal G-bundle E over M,
where G is a Lie group whose Lie algebra is equipped with an invariant trace on it. The
two fields in BF theory are a connection A on £ — which we can think of locally as a
Lie(G)-valued one-form — and a Lie(G)-valued (n — 2)-form called B. If F' denotes the
curvature of A, which is a Lie(G)-valued 2-form, we can take the wedge product B A F
and get a Lie(G)-valued n-form, which gives the Lagrangian

tr(BAF),

an n-form we can integrate over M to get the action. Since we don’t need any metric
to integrate an n-form over our spacetime M, this action is “generally covariant”. (Note
also that it’s gauge-invariant.) If we vary B and F to get the classical equations of
motion, varying B gives us

F =0,

that is, the connection A is flat, and varying A gives us
daB =0,

that is, the exterior covariant derivative of B vanishes.
In 4 dimensions we can soup up our BF' theory a bit by adding terms proportional to

tr(B A B)
and

tr(F A F)
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to the Lagrangian. If we take as our Lagrangian
tr(BAF)+atr(BAB)+btr(FAF),

the third term, when integrated over M, is proportional to an invariant called the second
Chern class of F, that is, it’s independent of the connection A, so it really doesn’t affect
the equations of motion at all! In a sense it’s utterly useless. The second term does
something, though; our equations of motion become

F=—2aB, diB=0.

Note that if we plug the first equation into the Lagrangian, we get that for solutions of
the equations of motion, the action is a constant times the second Chern class (if a is
NONZero).

Horowitz showed, in this four-dimensional case, that if a is nonzero, there is a single
state of the quantum version of BF theory when spacetime has the form R x .S (S being
some oriented 3-manifold), and that this state, thought of as a wavefunction on the
space of connections on S, is just the exponential of the Chern-Simons action. This is
how Chern-Simons theory gets into the game.

Moreover, Baulieu and Singer showed that if you take the boring-looking “FF theory”
with Lagrangian tr(F A F'), and quantize it using the BRST approach, you get some-
thing that Witten proved was closely related to Donaldson theory — an invariant of
4-manifolds. So there seems to be a relation between this stuff and Donaldson theory. It
is a rather mysterious one as far as 'm concerned, though, because it seems you could
just as well have used zero as a Lagrangian, rather than tr(F' A F'), and done the same
things Baulieu and Singer did. (At least, that’s how it seems to me, and I got Scott Ax-
elrod to agree with me on that yesterday.) In other words, Donaldson theory seems to
have more to do with the geometry of the space of connections on M than it does with
the “FF” Lagrangian per se. But still, there are other relationships between Donaldson
theory and Chern-Simons theory (which I don’t understand well enough to want to dis-
cuss), so perhaps it is not too silly to say that BF theory is related to Donaldson theory
in some poorly understood manner.

Now for some references: the reference that got me started on these was

1) Gary Horowitz, “Exactly soluble diffeomorphism-invariant theories”, Commun. Math.
Phys. 125 (1989), 417-437. (Listed in “Week 19”)

I got more interested in them when I read

2) Paolo Cotta-Ramusino and Maurizio Martellini, “BF Theories and 2-knots” in Knots
and Quantum Gravity, ed. J. Baez, Oxford U. Press, Oxford, 1994. (Listed in “Week
2377)

which indicated that BF theories may give invariants of surfaces embedded in 4-dimensional
manifolds, much as Chern-Simons theory gives invariants of knots in 3-dimensional
manifolds. Actually, BF theories make sense in any dimension, and in dimension 3 they
appear to give knot invariants, including the Alexander-Conway polynomial:

3) A. S. Cattaneo, P. Cotta-Ramusino, and M. Martellini, “Three-dimensional BF theo-
ries and the Alexander—Conway invariant of knots”, available as hep-th/9407070.
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Another nice-looking paper on BF theories is the following:
4) Henri Waelbroeck, “BAF theory and flat spacetimes”, available as gr-qc/9311033.

Waelbrock also has a recent paper with Zapata on a Hamiltonian formulation of the
theory on a lattice:

3) Henri Waelbrock and J. A. Zapata, ‘A Hamiltonian formulation of topological grav-
ity”, available as gr-qc/9311035.

The paper by Baulieu and Singer relating FF theory to Donaldson theory is:

4) L. Baulieu and I. M. Singer, “Topological Yang—Mills symmetry”, Nucl. Phys. (Proc.
Suppl.) B5 (1988), 12-19.

BF theory in 2 dimensions is also called “topological Yang—Mills theory”, and it’s dis-
cussed in various places, including

5) Edward Witten, “On quantum gauge theories in two dimensions”, Commun. Math.
Phys. 141 (1991), 153-209.

and

6) Matthias Blau and George Thompson, “Topological gauge theories of antisymmet-
ric tensor fields”, Ann. Phys. 205 (1991), 130-172.
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Week 37

August 10, 1994

Mainly this week I have various bits of news to report from the 7th Marcel Grossman
Meeting on general relativity. It was big and had lots of talks. Bekenstein gave a nice re-
view talk on entropy/area relations for black holes, and Strominger gave a talk in which
he proposed a solution to the information loss puzzle for black holes. (Recall that if one
believes, as most people seem to believe, that black holes radiate away all their mass in
the form of completely random Hawking radiation, then there’s a question about where
the information has gone that you threw into the black hole in the form of, say, old issues
of Phys. Rev. Lett. Some people think the information goes into a new “baby universe”
formed at the heart of the black hole — see “Week 31” for more. The information would
still, of course, be gone from our point of view in this picture. Strominger proposed
a set up in which one had a quantum theory of gravity with annihilation and creation
operators for baby universes, and proposed that the universe (the “metauniverse”?) was
in a coherent state, that is, an eigenstate of the annihilation operator for baby universes.
This would apparently allow handle the problem, though right now I can’t remember the
details.) There were also lots of talks on the interferometric detection of gravitational
radiation, other general relativity experiments, cosmology, etc. But I'll just try to describe
two talks in some detail here.

1) L.Lindblom, “Superfluid hydrodynamics and the stability of rotating neutron stars”,
talk at MG7 meeting, Monday July 5, 1994, Stanford University.

Being fond of knots, tangles, and such, I have always liked knowing that in superflu-
ids, vorticity (the curl of the velocity vector field) tends to be confined in “flux tubes”,
each containing an angular momentum that’s an integral multiple of Planck’s constant,
and that similarly, in type II superconductors, magnetic fields are confined to magnetic
flux tubes. And I was even more happy to find out that the cores of neutron stars are
expected to be made of neutronium that is both superfluid and superconductive, and
contain lots of flux tubes of both types. In this talk, which was really about a deriva-
tion of detailed equations of state for neutron stars, Lindblom began by saying that the
maximum rotation rate of a rotating neutron star is due to some sort of “gravitational ra-
diation instability due to internal fluid dissipation”. I didn’t quite understand the details
of that, which weren’t explained, but it motivated him to study the viscosity in neu-
tron star cores, which are superfluid if they are cool enough (less than a billion degrees
Kelvin). There are some protons and electrons mixed in with the neutrons in the core,
and both the protons and neutrons go superfluid, but the electrons form a normal fluid.
That means that there are actually two kinds of superfluid vortices — proton and neu-
tron — in addition to the magnetic vortices. These vortices mainly line up along the axis
of rotation, and their density is about 10° per square centimeter. Rather curiously, since
the proton, neutron, and electron fluids are coupled due to 8 decay (and the reverse
process), even the neutron vortices have electric currents associated to them and gener-
ate magnetic fields. This means that the electrons scatter off the neutron vortex cores as
well as the proton vortex cores, which is one of the mechanisms that yields viscosity.
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2) Abhay Ashtekar, “Mathematical developments in quantum general relativity, a sam-
pler”, talk at MG7 meeting, Tuesday July 6, 1994, Stanford University.

This talk, in addition to reviewing what’s been done so far on the “loop representation”
of quantum gravity, presented two new developments that I found quite exciting, so I'd
like to sketch what they are. The details will appear in future papers by Ashtekar and
collaborators.

The two developments Ashtekar presented concerned mathematically rigorous treat-
ments of the “reality conditions” in his approach to quantum gravity, and the “loop states”
used by Rovelli and Smolin. First let me try to describe the issue of “reality conditions”.
As T described in “Week 7”, one trick that’s important in the loop representation is to
use the “new variables” for general relativity introduced by Ashtekar (though Sen and
Plebanski already had worked with similar ideas). In the older Palatini approach to gen-
eral relativity, the idea was to view general relativity as something like a gauge theory
with gauge group given by the Lorentz group, SO(3,1). But to do this one actually uses
two different fields: a “frame field”, also called a “tetrad”, “vierbein” or “soldering form”
depending on who you’re talking to, and the gauge field itself, usually called a “Lorentz
connection” or “SO(3, 1) connection”. Technically, the frame field is an isomorphism be-
tween the tangent bundle of spacetime and some other bundle having a fixed metric of
signature + — — —, usually called the “internal space”, and the Lorentz connection is a
metric-preserving connection on the internal space.

The “new variables” trick is to use the fact that SO(3,1) has as a double cover the
group SL(2,C) of two-by-two complex matrices with determinant one. (For people
who’ve read previous posts of mine, I should add that the Lie algebra of SL(2,C) is
called s!(2,C) and is the same as the complexification of the Lie algebra so(3), which
allows one to introduce the new variables in a different but equivalent way, as I did
in “Week 7”.) Ignoring topological niceties for now, this lets one reformulate complex
general relativity (that is, general relativity where the metric can be complex-valued) in
terms of a complex-valued frame field and an SL(2, C) connection that is just the Lorentz
connection in disguise. The latter is called either the “Sen connection”, the “Ashtekar
connection”, or the “chiral spin connection” depending on who you're talking to. The
advantage of this shows up when one tries to canonically quantize the theory in terms of
initial data. (For a bit on this, try “Week 11”.) Here we assume our 4-dimensional space-
time can be split up into “space” and “time”, so that space is a 3-dimensional manifold,
and we take as our canonically conjugate fields the restriction of the chiral spin connec-
tion to space, call it A, and something like the restriction of the complex frame field to a
complex frame field £ on space. (Restricting the complex frame field to one on space is
a wee bit subtle, especially because one doesn’t really want a frame field or “triad field”,
but really a “densitized cotriad field” — but let’s not worry about this here. I explain this
in terms even a mathematician can understand in my paper “Strings, loops, knots and
gauge fields” (hep-th/9309067). The point is, first, that the A and F fields are mathe-
matically very analogous to the vector potential and electric field in electromagnetism —
or really in SL(2, C) Yang-Mills theory — and secondly, that if you compute their Poisson
brackets, you really do see that they’re canonically conjugate. Third and best of all, the
constraint equations in general relativity can be written down very simply in terms of A
and E. Recall that in general relativity, 6 of Einstein’s 10 equations act as constraints that
the metric and its time derivative must satisfy at ¢ = 0 in order to get a solution at later
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times. In quantum gravity, these constraints are a big technical problem one has to deal
with, and the point of Ashtekar’s new variables is precisely that the constraints simplify
in terms of these variables. (There’s more on these constraints in “Week 11”.)

The price one has paid, however, is that one now seems to be talking about complex-
valued general relativity, which isn’t what one had started out being interested in. One
needs to get back to reality, as it were — and this is the problem of the so-called “reality
conditions”. One approach is to write down extra constraints on the F field that say
that it comes from a real frame field. These are a little messy. Ashtekar, however, has
proposed another approach especially suited to the quantum version of the theory, and
in his talk he filled in some of the crucial details.

Here, to save time, I will allow myself to become a bit more technical. In the quan-
tum version of the theory one expects the space of wavefunctions to be something like
L? functions on the space of connections modulo gauge transformations — actually this
is the “kinematical state space” one gets before writing the constraints as operators and
looking for wavefunctions annihilated by these constraints. The problem had always
been that this space of L? functions is ill-defined, since there is no “Lebesgue measure”
on the space of connections. This problem is addressed (it’s premature to say “solved”)
by developing a theory of generalized measures on the space of connections and prov-
ing the existence of a canonical generalized measure that deserves the name “Lebesgue
measure” if anything does. One can then define L? functions and work with them. For
compact gauge groups, like SU(2), this was done by Ashtekar, Lewandowski and myself;
see e.g. the papers “Spin network states in gauge theory” (gr-qc/9411007) and “Gener-
alized measures in gauge theory” (hep-th/9310201). In the case of SU(2), Wilson loops
act as self-adjoint multiplication operators on the resulting L? space. But in quantum
gravity we really want to use gauge group SL(2, C), which is not compact, and we want
the adjoints of Wilson loop operators to reflect that fact that the SL(2, C) connection A
in quantum gravity is really equal to I" + ¢ K, where I is the Levi-Civita connection on
space, and K is the extrinsic curvature. Both I and K are real in the classical theory, so
the adjoint of the quantum version of A should be " — i K, and this should reflect itself
in the adjoints of Wilson loop operators.

The trick, it turns out, is to use some work of Hall which appeared in the Journal
of Functional Analysis in 1994 (I don’t have a precise reference on me). The point is
that SL(2, C) is the complexification of SU(2), and can also be viewed as the cotangent
bundle of SU(2). This allows one to copy a trick people use for the quantum mechan-
ics of a point particle on R™ — a trick called the Bargmann-Segal-Fock representation.
Recall that in the ordinary Schrodinger representation of a quantum particle on R™, one
takes as the space of states L?(R™). However, the phase space for a particle in R",
which is the cotangent bundle of R”, can be identified with C", and in the Bargmann
representation one takes as the space of states H L?(C"), by which I mean the holomor-
phic functions on C" that are in L? with respect to a Gaussian measure on C". In the
Bargmann representation for a particle on the line, for example, the creation operator is
represented simply as multiplication by the complex coordinate z, while the annihilation
operator is d/dz. Similarly, there is an isomorphism between L?(SU(2)) and a certain
space HL?(SL(2,C)). Using this, one can obtain an isomorphism between the space of
L? functions on the space of SU(2) connections modulo gauge transformations, and the
space of holomorphic L? functions on the space of SL(2,C) connections modulo gauge
transformations. Applying this to the loop representation, Ashtekar has found a very nat-
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ural way to take into account the fact that the chiral spin connection A is really " + i K,
basically analogous to the fact that in the Bargmann representation multiplication by z
is really ¢ + ip (well, up to various factors of \/2, signs and the like).

Well, that was pretty sketchy and probably not especially comprehensible to anyone
who hasn’t already worried about this issue a lot! In any event, let me turn to the other
good news Ashtekar reported: the construction of “loop states”. Briefly put (I'm getting
worn out), he and some collaborators have figured out how to rigorously construct gen-
eralized measures on the space of connections modulo gauge transformations, starting
from invariants of links. This begins to provide an inverse to the “loop transform” (which
is a construction going the other way).
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Week 38

August 19, 1994

I've been busy, and papers have been piling up; there are lots of interesting ones that I
really should describe in detail, but I had better be terse and list them now, rather than
waiting for the mythical day when I will have time to do them justice.

So:

1) B. Durhuus, H. P. Jakobsen and R. Nest, “Topological quantum field theories from
generalized 6j-symbols”, Rev. Math. Physics 5 (1993), 1-67.

In “Week 16” I explained a paper by Fukuma, Hosono and Kawai in which they obtained
topological quantum field theories in 2 dimensions starting with a triangulation of a 2d
surface. The theories were “topological” in the sense that the final answers one computed
didn’t depend on the triangulation. One can get between any two triangulations of a
surface by using a sequence of the following two moves (and their inverses), called the

(2,2) move:
and the (3,1) move:

Note that in either case these moves amount to replacing one part of the surface of a
tetrahedron with the other part! In fact, similar moves work in any dimension, and they
are often called the Pachner moves.

The really wonderful thing is that these moves are also very significant from the point
of view of algebra. .. and especially what I call “higher-dimensional algebra” (following
Ronnie Brown), in which the distinction between algebra and topology is largely erased,
or, one might say, revealed for the sham it always was.

For example, as explained more carefully in “Week 16”, the (2,2) move is really
just the same as the associative law for multiplication. The idea is that we are in a 2-
dimensional spacetime, and a triangle represents multiplication: two “incoming states”
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go in two sides and their product, the “outgoing state”, pops out the third side:

VAR

Then the (2,2) move represents associativity:

/N /N

AB)C A A(BC)

(
AB > — BC
C

N Y4

Of course, the distinction between “incoming” and “outgoing” sides of the triangle is
conventional, and the more detailed explanation in “Week 16” shows how that fits into
the formalism. Roughly speaking, what we have is not just any old algebra, but an
algebra that, thought of as a vector space, is equipped with an isomorphism between it
and its dual. This isomorphism allows us to forget whether we are coming or going, so
to speak.

Hmm, and here I was planning on being terse! Anyway, the still more interesting
point is that when we think about 3-dimensional topology and “3-dimensional algebra,”
we should no longer think of

D-%

as representing equal operations (the 3-fold multiplication of A, B, and C); instead,
we should think of them as merely isomorphic, with the tetrahedron of which they

A

B
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are the front and back being the isomorphism. The basic philosophy is that in higher-
dimensional algebra, as one ascends the ladder of dimensions, certain things which had
been regarded as equal are revealed to be merely isomorphic. This gets tricky, since
certain isomorphisms that were regarded as equal at one level are revealed to be merely
isomorphic at the next level. .. leading us into a subtle world of isomorphisms between
isomorphisms between isomorphisms... which the theory of n-categories attempts to
systematize. (I should note, however, that in the particular case of associativity this busi-
ness was worked out by Jim Stasheff quite a while back: it’s the homotopy theorists who
were the ones with the guts to deal with such issues first.)

Now, it turns out that in 3-dimensional algebra, the isomorphism corresponding to the
(2,2) move is not something marvelously obscure. It is in fact precisely what physicists
call the “6;5 symbol”, a gadget they’ve been using to study angular momentum in quan-
tum mechanics for a long time! In quantum mechanics, the study of angular momentum
is just the study of representations of the group SU(2), and if one has representations A,
B, and C of this group (or any other), the tensor products (A® B) ® C' and A® (B® C)
are not equal, but merely isomorphic. It should come as no surprise that this isomor-
phism is represented by physicists as a big gadget with 6 indices dangling on it, the “6;
symbol”.

Quite a while back, Regge and Ponzano tried to cook up a theory of quantum gravity
in 3 dimensions using the 65 symbols for SU(2). More recently, Turaev and Viro built
a 3-dimensional topological quantum field theory using the 6;-symbols of the quantum
group SU,(2), and this led to lots of work, which the above article explains in a distilled
sort of way.

The original Ponzano-Regge and Turaev-Viro papers, and various other ones clarify-
ing the relation of the Turaev—Viro theory to quantum gravity in spacetimes of dimension
3, are listed in “Week 16”. It’s also worth checking out the paper by Barrett and Foxon
listed in “Week 24”, as well as the following paper, for which I'll just quote the abstract:

2) Timothy J. Foxon, “Spin networks, Turaev—Viro theory and the loop representa-
tion”, available as gr-qc/9408013.

We investigate the Ponzano—-Regge and Turaev-Viro topological field theories us-
ing spin networks and their q-deformed analogues. I propose a new description
of the state space for the Turaev-Viro theory in terms of skein space, to which ¢-
spin networks belong, and give a similar description of the Ponzano—Regge state
space using spin networks. I give a definition of the inner product on the skein
space and show that this corresponds to the topological inner product, defined
as the manifold invariant for the union of two 3-manifolds. Finally, we look
at the relation with the loop representation of quantum general relativity, due
to Rovelli and Smolin, and suggest that the above inner product may define an
inner product on the loop state space.

(Concerning the last point I cannot resist mentioning my own paper on knot theory
and the inner product in quantum gravity, “Quantum gravity and the algebra of tangles”.)

In addition to the papers by Turaev-Viro and Fukuma-Shapere listed in “Week 16”,
there are some other papers on Hopf algebras and 3d topological quantum field theories
that I should list:
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3) Greg Kuperberg, “Involutory Hopf algebras and three-manifold invariants”, Inter-
nat. Jour. Math 2 (1991), 41-66.

“A definition of #(M, H) in the non-involutory case”, by Greg Kuperberg, unpub-
lished.

Greg Kuperberg is one of the few experts on this subject who is often found on the net;
he is frequently known to counteract my rhetorical excesses with a dose of precise infor-
mation. The above papers, one of which is sadly still unpublished, make it beautifully
clear how “algebra knows more about topology than we do”, since various basic struc-
tures on Hopf algebras have a pleasant tendency to interact just as needed to give 3d
topological quantum field theories.

4) John W. Barrett and Bruce W. Westbury, “Spherical categories”, available as hep-th/
9310164.

John W. Barrett and Bruce W. Westbury, “Invariants of piecewise-linear 3-manifolds”,
Trans. Amer. Math. Soc. 348 (1996), 3997-4022. Also available as hep-th/
9311155.

John W. Barrett and Bruce W. Westbury, “The equality of 3-manifold invariants”,
available as hep-th/9406019.

Let me quote the abstract for the first one; the second one gives a construction of 3-
manifold invariants, and the third shows that the authors’ 3-manifold invariants agree
with Kuperberg’s when both are defined.

This paper is a study of monoidal categories with duals where the tensor prod-
uct need not be commutative. The motivating examples are categories of repre-
sentations of Hopf algebras and the motivating application is the definition of
6j-symbols as used in topological field theories.

We introduce the new notion of a spherical category. In the first section we prove
a coherence theorem for a monoidal category with duals following MacLane
(1963). In the second section we give the definition of a spherical category, and
construct a natural quotient which is also spherical.

In the third section we define spherical Hopf algebras so that the category of
representations is spherical. Examples of spherical Hopf algebras are involutory
Hopf algebras and ribbon Hopf algebras. Finally we study the natural quotient
in these cases and show it is semisimple.

5) Louis H. Kauffman and David E. Radford, “Invariants of 3-Manifolds derived from
finite dimensional Hopf algebras”, available as hep-th/9406065.

This paper also relates 3d topology and certain finite-dimensional Hopf algebras, and it
shows they give 3-manifold invariants distinct from the more famous ones due to Witten
(and a horde of mathematicians). I have not had time to think about how they relate to
the above ones, but I have a hunch that they are the same, since all of them make heavy
use of special grouplike elements associated to the antipode.

6) Louis Crane and Igor Frenkel, “Four dimensional topological quantum field theory,
Hopf categories, and the canonical bases”, available as hep-th/9405183.
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Work in 4 dimensions is, as one expects, still more subtle than in 3, since again various
things that were equalities become isomorphisms. In particular, this means that various
things one thought were vector spaces — which are sets that have elements that you can
add and multiply by numbers, and which satisfy equations like

A+B=B+A

are now reinterpreted as “2-vector spaces”, which are categories that have objects that you
can direct sum and tensor with vector spaces, and which have certain natural isomorphisms
like the isomorphism

A B=Bo A.

In particular, using Lusztig’s canonical basis, Crane and Frenkel start with quantum
groups (which are Hopf algebras of a certain sort) and build marvelous “Hopf categories”
out of them. While they do not construct a 4d TQFT in this paper, they indicate the game
plan in terms clear enough that they will probably now have to race other workers in
the field to see who can get the first interesting 4d TQFT... or perhaps something a bit
subtler than a 4d TQFT (e.g. Donaldson theory).

Finally, let me turn to a subject that is closely related (though unfortunately this has
not yet been made sufficiently clear), namely, holonomy algebras and the loop represen-
tation of quantum gravity. Let me simply list the references now; many of these papers
were discussed at my session on knots and quantum gravity at the Marcel Grossman
conference, so I promise to explain at some later time (and in some papers I'm writing)
a bit more about how the loop representation of a gauge theory is interesting from the
viewpoint of higher-dimensional algebra!

7) A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourao and T. Thiemann, ‘A manifestly
gauge-invariant approach to quantum theories of gauge fields”, contribution to the
Cambridge meeting proceedings, available as hep-th/9408108.

Jerzy Lewandowski, “Topological measure and graph-differential geometry on the
quotient space of connections”, Proceedings of ‘Journees Relativistes 1993”, available
as gr-qc/9406025.

Abhay Ashtekar, Donald Marolf and Jose Mourao, “Integration on the space of
connections modulo gauge transformations”, available as gr-qc/9403042.

A. Ashtekar and R. Loll, “New loop representations for 241 gravity”, available as
gr-qc/9405031.

R. Loll, “Independent loop invariants for 241 gravity”, available as gr-qc/9408007.

R. Loll, J.M. Mourao and J.N. Tavares, “Generalized coordinates on the phase space
of Yang-Mills theory”, available as gr-qc/9404060.

C. Di Bartolo, R. Gambini and J. Griego, “The extended loop representation of
quantum gravity”, available as gr-qc/9406039.

Rodolfo Gambini, Alcides Garat and Jorge Pullin, “The constraint algebra of quan-
tum gravity in the loop representation”, available as gr-qc/9404059.
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Week 39

September 24, 1994

I want to say a bit about Alain Connes’ book, newly out in English, and then some about
Yang-Mills theory in 2 dimensions.

1) Alain Connes, Noncommutative Geometry, Academic Press, Cambridge, Massachusetts.

You know something is up when a prominent mathematical physicist (Daniel Kastler)
says “Alain is great. I am just his humble prophet.” (This happened at a conference at
Penn State I just went to.) What is noncommutative geometry and what’s so great about
it?

Basically, the idea of noncommutative geometry is to generalize geometry to “quan-
tum spaces”. For example, the ordinary plane has two functions on it, the coordinate
functions = and y, which commute: zy = yx. We can think of z and y as representing
the position and momentum of a classical particle. But when we consider a quantum-
mechanical particle, we must give up commutativity and instead impose the “canonical
commutation relations” xy — yx = ih, where £ is Planck’s constant. Now x and y are not
really functions on any space at all, but simply elements of a noncommutative algebra.
Still, we can try our best to pretend that they are functions on some mysterious sort of
“quantum space” in which knowing one coordinate of a point precisely precludes us from
knowing the other coordinate exactly, by the Heisenberg uncertainty principle. Mathe-
matically, noncommutative geometry consists of 1) expressing the geometry of spaces
algebraically in terms of the commutative algebra of functions on them, and 2) then
generalizing the results to classes of noncommuative algebras.

The main trick invented by Connes was to come up with a substitute for the “differen-
tial forms” on a space. Differential forms are the bread and butter of modern geometry.
If we start with a commutative algebra A (say the algebra of smooth functions on some
manifold like the plane), we can form the algebra of differential forms over A by in-
troducing, for each element f in A, a formal symbol df, and imposing the following
rules:

s d(f+g)=df +dg

d(cf) = cdf (c a constant)
d(fg) = (df)g + fdg

fdg = (dg)f

e dfdg = —dgdf.

More precisely, the differential forms over A are the algebra generated by A and
these differentials df, modulo the above relations. This gives a purely algebraic way of
understanding what those mysterious things like dzdydz in integral signs are.

Now, the last two of the five rules listed above fit nicely with the commutativity of
A when it is commutative, but they jam up the works horribly otherwise. So: how to
generalize differential forms to the noncommutative case? There are various things one
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can do if A is commutative in some generalized sense, such as “supercommutative” or
“braided commutative” (which I call “R-commutative” in some papers on this subject).
However, if A is utterly noncommutative, it seems that the best approach is Connes’,
which is first to throw out the last two relations, obtaining something folks call the “dif-
ferential envelope” of A or the “universal differential graded algebra” over A — which
is pleasant but quite boring by itself — and then to consider “chains” which are linear
maps F from this gadget to the complex numbers (or whatever field you’re working in)
satisfying the cyclic property
F(uwv) = (—=1)" F(vu)

where v is something that looks like fodfidf .. . df;, and v is something like godg:1dg- . . . dg;.
There are charming things one can do with chains that wind up letting one do most of
what one could do with differential forms. More precisely, just as differential forms al-
low you entry into the wonderful world of de Rham cohomology, chains let you develop
something similar called cyclic homology (and there is a corresponding cyclic cohomol-
ogy that’s even more like the de Rham theory).

Connes, being extremely inventive and ambitious, has applied noncommutative dif-
ferential geometry to many areas: index theory, K-theory, foliations, Penrose tilings, frac-
tals, the quantum Hall effect, and even elementary particle physics. Perhaps the most
intriguing result is that if one develops the Yang-Mills equations using the techniques of
noncommutative geometry, but with a very simple “commutative” model of spacetime,
namely a two-sheeted cover of ordinary spacetime, the Higgs boson falls out rather mag-
ically on its own. This has led Kastler and other physicists to pursue a reformulation of
the whole Standard Model in terms of noncommutative geometry, hoping to simplify it
and even make some new predictions. It is far too early to see if this approach will get
somewhere useful, but it’s certainly interesting.

I haven’t read this book, just part of the French version on which it’s based (with
extensive additions), but my impression is that it’s quite easy to read given the technical
nature of the subject.

2) Gregory Moore, “2d Yang-Mills theory and topological field theory”, available as
hep-th/9409044.

This is a nice review of recent work on 2d Yang-Mills theory. While Yang-Mills theory in
4 dimensions is the basis of our current theories of the strong, weak, and electromagnetic
forces, and mathematically gives rise to a cornucopia of deep results about 4-dimensional
topology, 2d Yang-Mills theory has traditionally been considered “trivial” in that one can
exactly compute pretty much whatever one wants. However, Witten, in “On quantum
gauge theories in two dimensions” (see “Week 36”), showed that precisely because 2d
Yang-Mills theory was exactly soluble, one could use it to study a lot of interesting
mathematics problems relating to “moduli spaces of flat connections.” (More about those
below.) And Gross, Taylor and others have recently shown that 2d Yang-Mills theory, at
least working with gauge groups like SU(N) or SO(XNN) and taking the “large N limit”,
could be formulated as a string theory. So people respect 2d Yang—Mills theory more
these days; its complexities stand as a strong clue that we’ve just begun to tap the depths
of 4d Yang-Mills theory!

I can’t help but add that Taylor and I did some work a while back in which we
formulated SU(N) 2d Yang-Mills theory for finite N as a string theory. This was meant
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as evidence for my proposal that the loop representation of quantum gravity is a kind of
string theory, a proposal described in “Week 18”. For more on this sort of thing, try my
paper in the book Knots and Quantum Gravity (see “Week 23”) — which by the way is
finally out — and also the following:

3) J. Baez and W. Taylor, “Strings and two-dimensional QCD for finite N”, available
as hep-th/9401041.

When it comes to “moduli spaces of flat connections”, it’s hard to say much without
becoming more technical, but I certainly recommend starting with the beautiful work of
Goldman:

4) William Goldman, “The symplectic nature of fundamental groups of surfaces”, Adv.
Math. 54 (1984), 200-225.

William Goldman, “Invariant functions on Lie groups and Hamiltonian flows of
surface group representations”, Invent. Math. 83 (1986), 263-302.

William Goldman, “Topological components of spaces of representations”, Invent.
Math. 93 (1988), 557-607.

The basic idea here is to take a surface S with a particular G-bundle on it, and care-
fully study the space of flat connections modulo gauge transformations, which will be a
finite-dimensional stratified space. If you fix G and S, no matter what bundle you pick,
this space will appear as a subspace of a bigger space called the moduli space of flat con-
nections, which is the same as Hom(m(S), G)/AdG. There is an open dense set of this
space, the “top stratum”, which is a symplectic manifold. Geometric quantization of this
manifold has everything in the world to do with Chern-Simons theory, as summarized
so deftly by Atiyah:

5) Michael Atiyah, The Geometry and Physics of Knots, Cambridge U. Press, Cambridge,
1990.

On the other hand, lately people have been using 2d Yang-Mills theory, BF' theory, and
the like (see “Week 36”) to get a really thorough handle on the cohomology of the moduli
space of flat connections. For a mathematical approach to this problem that doesn’t talk
much about gauge theory, try:

6) Lisa C. Jeffrey, “Group cohomology construction of the cohomology of moduli
spaces of flat connections on 2-manifolds”, available as alg-geom/9404012.
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Week 40

October 19, 1994

When I was an undergraduate I was quite interested in logic and the foundations of
mathematics — I was always looking for the most mind-blowing concepts I could get
ahold of, and Godel’s theorem, the Lowenheim-Skolem theorem, and so on were right
up there with quantum mechanics and general relativity as far as [ was concerned. I did
my undergrad thesis on computability and quantum mechanics, but then I sort of lost
interest in logic and started thinking more and more about quantum gravity. The real
reason was probably that my thesis didn’t turn out as interesting as I'd hoped, but I re-
member feeling at the time that logic had become less revolutionary than in it was in the
early part of the century. It seemed to me that logic had become a branch of mathematics
like any other, studying obscure properties of models of the Zermelo-Fraenkel axioms,
rather than questioning the basic presumptions implicit in those axioms and daring to
pursue new, different approaches. I couldn’t really get excited about the properties of
super-huge cardinals. Of course, I knew a bit about intuitionistic logic and various forms
of finitism, but these seemed to be the opposite of daring; instead, they seemed to appeal
mainly to grumpy people who didn’t trust abstractions and wanted to do everything as
conservatively as possible. I was pretty interested in quantum logic, too, but I tended to
think of this more as a branch of physics than ‘logic’ proper.

Anyway, it’s now quite clear to me that I just hadn’t been reading the right stuff. I
think Rota has said that the really interesting work in logic now goes under the name of
‘computer science’, but for whatever reason, I didn’t dig into the Journal of Philosophical
Logic, other logic journals, or proceedings of conferences on category theory, computer
science and the like and find the stuff that would have excited me. It goes to show that
one really needs to keep digging! Anyway, I just went to a conference called the Lambda
Calculus Jumelage up in Ottawa, thanks to a kind invitation by Prakash Panangaden and
Phil Scott, who thought my ideas on category theory and physics might interest (or at
least amuse) the folks who attend this annual bash. It became clear to me while up there
that logic is alive and well!

Of course, I don’t actually understand most of what these people are up to, so take
what I say with a large grain of salt. My goal here is more to draw attention to some
interesting-sounding ideas than to explain them.

One interesting subject, which I think I'm finally beginning to get an inkling of, is
“linear logic”. This was introduced in the following paper (which I haven’t gotten around
to looking at):

1) Jean-Yves Girard, “Linear Logic”, Theoretical Computer Science 50 (1987), 1-102.

When 1 first heard about linear logic, it made utterly no sense. It seemed to be a
logic suitable for use in some completely different universe than the one I inhabited!
For example, there were the familiar logical connectives “and” and “or”, but they had
weird alternate versions called “tensor” and “par”, the latter written with an upside-
down ampersand. There was also an alternate version of the material implication “—”,
and a strange operation called “!” (pronounced “bang”) that somehow mediated between
the logical connectives I knew and loved and their eerie alter egos.
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I understand a wee bit about these things now; one can get a certain ways just by
getting used to “tensor”, since the rest of the weird connectives are defined in terms of
this one and the familiar ones. (I won’t worry about the “!” here.) One key idea, which
finally penetrated my thick skull, is that there is a good reason why “tensor” does not
satisfy the following deduction rule so characteristic of “and”:

Skp Stq
S F p&q

meaning: if from the set of premises S we can deduce p, and from S we can also deduce
q, then from S we can deduce p&q. The point is that in linear logic one should not think
of S as a set of premises, but rather as a multiset, meaning that the same premise can
appear twice. The idea is that if we use one premise in S to deduce something, we use it
up, and we can only use it again if S has several copies of that premise in it. As they say,
linear logic is “resource-sensitive” (which is apparently why computer scientists like it).
So the idea is that in linear logic,
S+ p&q

means something like “from the premises S one can deduce p if one feels like it, or
alternatively one can deduce ¢ if one feels like it, but not necessarily both at once, since
there may not be enough copies of the premises to do that.” On the other hand,

SkEp®q

is stronger, since it means something like “from the premises S one can deduce both p
and ¢ at once, since there are enough copies of all the premises in S to do it.” Thus “&”
satisfies the above deduction rule in linear logic just as in classical logic, but “tensor”
does not; instead, it satisfies
Skp Tkq
SUTFp®q

where S U T denotes the union of the multisets S and T (so that if both S and T have
one copy of a premis, .S U T has two copies of it).
Well, let me leave it at that. I should add that there is a paper available online,

2) Vaughan Pratt, “Linear logic for generalized quantum mechanics”, available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.649.

which relates linear logic and quantum logic, and which is part of a body of work relating
linear logic and category theory, with the key idea being that “linear logic is a logic of
monoidal closed categories in much the same way that intuitionistic logic is a logic of
Cartesian closed categories” — here I quote

3) Richard Blute, “Hopf algebras and linear logic”, Mathematical Structures in Com-
puter Science, 6 (1996), 189-217. Available as https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.114.8038.

I suppose to most people, explaining linear logic in terms of monoidal closed categories

may seem like using mud to wipe one’s windshield. However, to some of us monoidal
closed categories are rather familiar things, and in fact anyone who knows about vector
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spaces, linear maps, and the vector spaces Hom(V, W) and V ® W knows a really good
example of a monoidal closed category. Thus monoidal closed categories can be viewed
as an abstraction of linear algebra, and indeed this is how “linear logic” got its name.

It seems that I should read the following papers, too, before I really understand the
connection between linear logic and category theory:

4) R. A. G. Seely, “Linear logic, *-autonomous categories and cofree coalgebras”, in
Categories in Computer Science and Logic, Contemp. Math. 92, American Mathe-
matical Society, Providence, Rhode Island, 1989.

5) D. Yetter, “Quantales and (noncommutative) linear logic”, Journal of Symbolic Logic
55 (1990), 41-64.

A terse summary of linear logic in terms a categorist might like can be found in Section
3.5 of Pratt’s paper cited above. I should add that Pratt has lots of other interesting
papers available online.
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Week 41

October 17, 1994

In the beginning of September I went to a conference at the Center for Gravitational
Physics and Geometry at Penn State. This is the center run by Abhay Ashtekar, and it
has Jorge Pullin and Lee Smolin as faculty, and Roger Penrose as a part-time visitor —
so it’s a great place to visit if you're interested in quantum gravity. There are a lot of
good postdocs and such there, too. I've been too busy to say much so far about what
happened at this conference, but I'd like to now.

One talk I enjoyed a lot was Steve Carlip’s, on the entropy of black holes. This has
subsequently come out as a preprint, available electronically:

1) Steve Carlip, “The statistical mechanics of the (2+1)-dimensional black hole”,
available as gr-qc/9409052.

It's well-known by now that in certain situations it makes sense to speak of the “en-
tropy” of a black hole, but the real meaning of this entropy is still mysterious. In partic-
ular, since the entropy of a black hole is (often, but not always) proportional to the area
of its event horizon, it would be very satisfying if the entropy corresponded somehow
to degrees of freedom that “lived at the event horizon”. Steve Carlip has done a pretty
credible calculation along these lines (though not without various subtle difficulties) in
the case of a black hole in 3-dimensional spacetime.

I should say a little bit about gravity in 3 dimensions and why people are interested
in it. 3-dimensional gravity is drastically simpler than 4-dimensional gravity, since in 3
dimensions the vacuum Einstein’s equations say the spacetime metric is flat, at least if
the cosmological constant vanishes. Thus there can be no gravitational radiation (and in
quantum theory no “gravitons”), and the metric produced by a static point mass is not
like the Schwarschild metric, instead, on space it is just like that of a cone. Things are
a bit different if the cosmological constant is nonzero; in particular, there are black-hole
type solutions. But there is still no gravitational radiation.

Basically, people are interested in 3-dimensional quantum gravity because it’s sim-
ple enough that one can compute something and hope it sheds some light on the 4-
dimensional world we live in. For some issues this appears to be the case: primarily,
conceptual issues having to do with theories in which there is no “background metric”.
Unfortunately, there are several different ways to set up 3-dimensional quantum gravity,
corresponding to different approaches people have to 4-dimensional quantum gravity.
For this, check out Carlip’s paper “Six ways to quantize (2+1)-dimensional gravity,”
mentioned in “Week 16”. However, I think the “best” way to quantize gravity in 3 di-
mensions is the way involving Chern-Simons theory, because this way is the most closely
related to Ashtekar’s approach to quantizing gravity in 4 dimensions, hence it sheds the
most light on the things I'm interested in — and I also think it’s the most beautiful. In
this approach, you can compute a lot of things, and basically what Carlip has done is
to show that associated to the event horizon there are degrees of freedom which should
give entropy proportional to its area.

I suppose I can’t say how he does it much more clearly than he says it, so I'll quote
the introduction, taking the liberty of turning some of his LaTeX into English. If you get
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scared by the “Virasoro operator L,” below, never fear — in this context, it just amounts
to the angular momentum operator, which generates rotations about the origin. So:

The basic argument is quite simple. Begin by considering general relativity on
a manifold M with boundary. We ordinarily split the metric into true physical
excitations and “pure gauge” degrees of freedom that can be removed by diffeo-
morphisms of M. But the presence of a boundary alters the gauge invariance
of general relativity: the infinitesimal transformations [...] must now be re-
stricted to those generated by vector fields [...] with no component normal
to the boundary, that is, true diffeomorphisms that preserve the boundary of
M. As a consequence, some degrees of freedom that would naively be viewed as
“pure gauge” become dynamical, introducing new degrees of freedom associated
with the boundary.

Now, the event horizon of a black hole is not a true boundary, although the
black hole complementarity approach of Susskind et al. suggests that it might
be appropriately treated as such. Regardless of one’s view of that program,
however; it is clear that in order to ask quantum mechanical questions about
the behavior of black holes, one must put in “boundary conditions” that ensure
that a black hole is present. This means requiring the existence of a hypersurface
with particular metric properties—say, those of an apparent horizon.

The simplest way to do quantum mechanics in the presence of such a surface is
to quantize fields separately on each side, imposing the appropriate correlations
as boundary conditions. In a path integral approach, for instance, one can inte-
grate over fields on each side, equate the boundary values, and finally integrate
over those boundary values compatible with the existence of a black hole. But
this process again introduces boundary terms that restrict the gauge invariance
of the theory, leading once more to the appearance of new degrees of freedom at
the horizon that would otherwise be treated as unphysical.

My suggestion is that black hole entropy is determined by counting these would-
be gauge degrees of freedom. The resulting picture is similar to Maggiore’s
membrane model of the black hole horizon, but with a particular derivation
and interpretation of the “membrane” degrees of freedom.

The analysis of this phenomenon is fairly simple in 2+1 dimensions. It is well
known that (2+1)-dimensional gravity can be written as a Chern-Simons the-
ory, and it is also a standard result that a Chern—-Simons theory on a manifold
with boundary induces a dynamical Wess—Zumino-Witten (WZW) theory on
the boundary. In the presence of a cosmological constant A = —1/L? appro-
priate for the (2+1)-dimensional black hole, one obtains a slightly modified
SO(2,1) x SO(2,1) WZW model, with coupling constant

k= —L\/i
- 8G
This model is not completely understood, but in the large k — i.e., small A —

limit, it may be approximated by a theory of six independent bosonic oscillators.
I show below that the Virasoro operator Ly for this theory takes the form

o ()"
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where N is a number operator and r is the horizon radius. It is a standard result
of string theory that the number of states of such a system behaves asymptoti-
cally as

n(N) ~ exp(mV4N)

If we demand that Lq vanish — physically, requiring states to be independent of
the choice of origin of the angular coordinate at the horizon — we thus obtain

27r
1 ~ 2
ogn(r) ~ ot
precisely the right expression for the entropy of the (2+1)-dimensional black
hole.

Also, Carlo Rovelli spoke about describing the dynamics of quantum gravity coupled
to a scalar field in terms of “spin network” states. I think this was based on work he did
in collaboration with Lee Smolin, and I don’t think it’s out yet. I'm just about to finish
up a little paper on spin network states myself, since they seem like very useful things in
quantum gravity. The simplest sort of spin network is just a trivalent graph (i.e., 3 edges
adjacent to each vertex) with edges labelled by “spins” 0,1,1,2, ..., and satisfying the
“triangle inequality” at each vertex:

Ji+i2 <73, Je+iz<ij1, Jz+ji <o,

where ji, jo, j3 are the spins labelling the edges adjacent to the given vertex. Really,
the spins should be thought of as irreducible representations of SU(2), and the triangle
inequalities are necessary for the representation j; to appear as a summand in the tensor
product of the representations j; and j,. (If the last sentence was meaningless to you,
reading “Week 5” will help a little, though probably not quite enough.)

Penrose introduced spin networks as part of a purely combinatorial approach to
spacetime in the paper:

2) Roger Penrose, “Angular momentum; an approach to combinatorial space time”,
in Quantum Theory and Beyond, ed. T. Bastin, Cambridge University Press, Cam-
bridge, 1971. Available as https://math.ucr.edu/home/baez/penrose/.

It is somehow satisfying, therefore, to see that spin networks arise naturally as a con-
venient description of states in the loop representation of quantum gravity, which starts
mainly with Einstein’s equations and the principles of quantum mechanics. Certainly
there is a lot more we need to learn about them.... One place worth reading about them
is:

3) Louis Crane, “Conformal field theory, spin geometry, and quantum gravity”, Phys.
Lett. B259 (1991), 243-248.

I will be coming out with a paper on them next week if I get my act together, and I may
say a bit more about them in future “Weeks”.

Rovelli also mentioned an interesting paper he wrote about the problem of time
in quantum gravity with the operator-algebra/noncommutative-geometry guru Alain
Connes:
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4) Alain Connes and Carlo Rovelli, “Von Neumann algebra automorphisms and time-
thermodynamics relation in general covariant quantum theories”, available as gr-qc/
9406019.

The problem of time in quantum gravity is a bit tricky to describe, since it takes different
guises in different approaches to quantum gravity, but I have attempted to give a rough
introduction to it in “Week 11” and “Week 27”. One way to get a feeling for it is to
realize that anything you are used to doing with Hamiltonians in quantum mechanics or
quantum field theory, you can’t do in quantum gravity, at least not in any simple way,
because there is no Hamiltonian in general relativity, but only a “Hamiltonian constraint”
— which in quantum gravity becomes the Wheeler-DeWitt equation

Hy = 0.

Now, people know there is a mystical relationship between time and temperature that

might be written
1

T kT
where ¢ is time, T is temperature, and k is Boltzmann’s constant. This equation is a bit

of an exaggeration! But the point is that in quantum theory, when there is a Hamiltonian
H around one evolves states using the operator

1t

exp(—itH)

while the Gibbs state, that is, the equilibrium state at temperature T, is given by the
density matrix
exp(—H/KT).

It is this fact that relates statistical mechanics and quantum field theory so closely.

Now, in quantum gravity things aren’t so simple, since there isn’t a Hamiltonian (just
a Hamiltonian constraint). However, people do know that there are all sorts of funny
relationships between statistical mechanics and quantum gravity. For example, an accel-
erating observer in Minkowski space will see the vacuum as a heat bath with temperature
proportional to her acceleration, so in curved spacetime, where there are no truly inertial
frames, there really is no well-defined notion of a vacuum; in some vague sense, all there
are is “thermal” states. This fact is also somehow related to Hawking radiation, and to
the notion of black hole entropy... but really, there is a lot that nobody understands
about all these connections!

In any event, Rovelli was prompted to use thermodynamics to define time in quan-
tum gravity as follows. Given a mixed state with density matrix D, find some operator
H such that D is the Gibbs state exp(—H/kT'). In lots of cases this isn’t hard; it basically
amounts to

H=—-kTlnD

Of course, H will depend on T, but this really is just saying that fixing your units of
temperature fixes your units of time!

Operator theorists have pondered this notion very carefully for a long time and gener-
alized it into something called the Tomita—Takesaki theorem, which Connes and Rovelli
explain. This gives a very general way to cook up a Hamiltonian (hence a notion of time
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evolution) from a state of a quantum system! For example, one can use this trick to start
with a Robertson-Walker universe full of blackbody radiation, and recover a notion of
“time”. This is very intriguing, and it may represent some real progress in understanding
the deep relations between time, thermodynamics, and gravity. There are, of course, lots
of problems and puzzles to deal with.

Another intriguing talk at the conference was given by Vigar Husain, on the subject
of the following paper:

5) Vigar Husain, “The affine symmetry of self-dual gravity”, available as hep-th/
9410072.

Let me simply quote the abstract, since I don’t feel I really understand the essence of this
business well enough to say anything useful yet:

Self-dual gravity may be reformulated as the two dimensional chiral model with
the group of area preserving diffeomorphisms as its gauge group. Using this
formulation, it is shown that self-dual gravity contains an infinite dimensional
hidden symmetry algebra, which is the Affine (Kac-Moody) algebra associated
with the Lie algebra of area preserving diffeomorphisms. This result provides an
observable algebra and a solution generating technique for self-dual gravity.

A couple more things before I wrap this up. ... First, in case any mathematicians out
there are wondering what this “knots and quantum gravity” business is all about, here’s
something I wrote to review the subject:

6) John Baez, “Knots and quantum gravity: progress and prospects”, available as
gr-qc/9410018.

My abstract:

Recent work on the loop representation of quantum gravity has revealed pre-
viously unsuspected connections between knot theory and quantum gravity, or
more generally, 3-dimensional topology and 4-dimensional generally covariant
physics. We review how some of these relationships arise from a ladder of field
theories’ including quantum gravity and BF theory in 4 dimensions, Chern—
Simons theory in 3 dimensions, and the G /G gauged WZW model in 2 dimen-
sions. We also describe the relation between link (or multiloop) invariants and
generalized measures on the space of connections. In addition, we pose some re-
search problems and describe some new results, including a proof (due to Sawin)
that the Chern-Simons path integral is not given by a generalized measure.

Finally, let me draw people’s attention to “Matters of Gravity”, the newsletter Jorge
Pullin puts together at considerable effort, to keep people informed about general rela-
tivity and the like, experimental and theoretical:

7) “Matters of Gravity”, a newsletter for the gravity community, Number 4, edited by
Jorge Pullin, 24 pages in Plain TeX, available as gr-qc/9409004.

Here’s the table of contents of this issue:
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Editorial.

Gravity News:
— Report on the APS topical group in gravitation, Beverly Berger.
Research briefs:

- Gravitational microlensing and the search for dark matter, Bohdan Paczynski.
— Laboratory gravity: the G mystery, Riley Newman.
— LIGO project update, Stan Whitcomb.

Conference Reports

PASCOS 94, Peter Saulson.
The Vienna Meeting, P. Aichelburg, R. Beig.

The Pitt binary black hole grand challenge meeting, Jeff Winicour.

International symposium on experimental gravitation at Pakistan, Munawar
Karim.

10th Pacific coast gravity meeting, Jim Isenberg.
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Week 42

November 3, 1994

String theory means different things to different people. The original theory of strings —
at least if I've got my history right — was a theory of hadrons (particles interacting via the
strong force). The strong force wasn’t understood too well then, but in 1968 Veneziano
cleverly noticed when thumbing through a math book that Euler’s beta function had a
lot of the properties one would expect of the formula for how hadrons scattered (the
so-called S-matrix). Later, around 1970, Nambu and Goto noticed that this function
would come out naturally if one thought of hadrons as different vibrational modes of a
relativistic string.

This theory had problems, and eventually it was supplanted by the current theory of
the strong force, involving quarks and gluons. The gluons are another way of talking
about the strong force, which is a gauge field. The biggest puzzle about this approach to
hadrons is, “how come we don’t see quarks?” This is called the puzzle of confinement.
In the late 1970’s, one proposed solution was that as you pulled the quark and the
antiquark in a meson apart, the strong force effectively formed an elastic “string” with
constant tension. This would mean that pulling them apart took energy proportional
to how far you pulled them apart. Past a certain point, the energy would be enough
to create a new quark-antiquark pair and snap — the string would split into two new
strings with quark and antiquark on each end. So here the “string” idea is revived but
as an approximation to a theory of gauge fields. One can even try to derive approximate
string equations from the equations for the strong force: the Yang-Mills equations. In
my paper on strings, loops, knots and gauge fields (see “Week 18”), I gave references to
some early papers on the subject:

1) Y. Nambu, “QCD and the string model”, Phys. Lett. B80 (1979), 372-376.
A. Polyakov, “Gauge fields as rings of glue”, Nucl. Phys. B164 (1979), 171-188.

Y. Nambu, “The quantum dual string wave functional in Yang—Mills theories”, Phys.
Lett. B80 (1979), 255-258.

F. Gliozzi and M. Virasoro, “The interaction among dual strings as a manifestation
of the gauge group”, Nucl. Phys. B164 (1980), 141-151.

A. Jevicki, “Loop-space representation and the large- N behavior of the one-plaquette
Kogut-Susskind Hamiltonian”, Phys. Rev. D22 (1980), 467-471.

Y. Makeenko and A. Migdal, “Quantum chromodynamics as dynamics of loops”,
Nucl. Phys. B188 (1981), 269-316.

Y. Makeenko and A. Migdal, “Loop dynamics: asymptotic freedom and quark con-
finement”, Sov. J. Nucl. Phys. 33 (1981), 882-893.

These papers make very interesting reading even today. Anyone who knows particle
physics will recognize most of these names! Strings were big back then. But then they
went out of fashion, because the string models predicted a massless spin-2 particle —
and there’s no such thing in particle physics. Later, when people were trying to cook up
“theories of everything” including gravity, this flaw was again seen as a plus, since the
hypothesized “graviton” meets that description.
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The modern, more technical subject of string theory is a lot more fancy than these
early papers. In particular, the recognition that conformal invariance was a very good
thing when studying strings propagating on fixed background metric (like that of Minkowski
space) pushed string theorists into a careful study of 2-dimensional conformally invari-
ant quantum field theories. (Here the 2 dimensions refer to the surface the string traces
out as it moves through spacetime.) Conformal field theory then developed a life of its
own! By now it’s pretty intimidating to the outsider. Mathematicians might find the
following summary handy:

2) Krzysztof Gawedzki, “Conformal field theory”, Seminaire Bourbaki, Asterisque 177-
178 (1989), 95-126.

while physicists might try

3) Michio Kaku, Introduction to Superstrings, Springer, Berlin, 1988.

Michio Kaku, String Fields, Conformal Fields, and Topology, New York, Springer,
Berlin, 1991.

Kaku’s books are a decent overview but rather sketchy in spots, since they cover vast
amounts of territory.

Then there is another kind of sophisticated modern string theory, “string field theory”,
which doesn’t assume the strings are moving around on a spacetime with a background
geometry. This is clearly more like what one wants to do if one is using strings to explain
quantum gravity. I don’t understand this nearly as well as I'd like to, but the guru on
this subject is Barton Zwiebach, so if one was really gutsy one would, after a suitable
warmup with Kaku, plunge in and read something like

4) Ashoke Sen and Barton Zwiebach, “Quantum background independence of closed
string field theory”, available as hep-th/9311009.

Ashoke Sen and Barton Zwiebach, “Background independent algebraic structures
in closed string field theory”, available as hep-th/9408053.

Unfortunately 'm not quite up to it yet. ...

Then, in a different direction, a bunch of folks from general relativity pursued some
ideas about string and loops to the point of developing the “loop representation of quan-
tum gravity.” I'm referring to

5) Carlo Rovelli and Lee Smolin, “Loop representation for quantum general relativity”,
Nucl. Phys. B331 (1990), 80-152.

though it’s important to credit some of the people who kept alive the idea that one should
study gauge fields as being “loops of string”, or more technically, “Wilson loops”:

6) R. Gambini and A. Trias, “Gauge dynamics in the C-representation”, Nucl. Phys.
B278 (1986), 436-448.

Now what’s frustrating here is that I understand the loop representation business,
but not the “background-free closed string field theory” business, even though they have
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the same historical roots and are both trying to deal with quantum gravity (among other
forces) in a way that assumes that loops are the basic objects. Alas, the two strands speak
in different languages! Heavy-duty mathematicians like Getzler, Kapranov and Stasheff
know how to think about closed string fields in terms of “operads”, and that stuff seems
like it should be simple enough to understand, but alas, when I read it I get snowed in
detail (so far).

Let me digress to mention what an “operad” is. An “operad” is basically a cool
way to handle sets equipped with lots of n-ary operations. These operations might be
“parametrized” in various ways. The operad elegantly keeps track of these parametriza-
tions. So, for each n, an operad has a set X (n) which we think of as all the n-ary
operations. Think of something in X (n) as a black box that has n “input” tubes and one
“output” tube, or a tree-shaped thing

with n branches and one root (here n = 3). Then suppose we have a bunch of these
black boxes. Say we have something in X (n;), something in X (ns), .... and so on up
to something in X (nx). Thus we’ve got a pile of black boxes with a total of ny + ...+ ny
input tubes and k output tubes. Now if we also have a guy in X (k), which has & input
tubes, we can hook up all the output tubes of all the boxes in our pile to the input tubes
of this guy, to get a monstrous machine with n; + ... + n; input tubes and one output.
In short, there is an operation from X (n;) x ... x X(ng) x X(k) — X(n1 +...+ng). For
example, if we take the tree up there, which represents something in X (3), and another
thing in X (3), we can hook up their outputs to the inputs of something in X (2), to get
something that looks like

which is in X (6). The closed string field theorists like operads because there are lots of
parametrized ways of gluing together Riemann surfaces with punctures together. It’s a
handy language, apparently... I am a bit more familiar with operads (though not much)
in the context of homotopy theory, where they can be used to elegantly summarize the
operations one has floating around in an infinite loop space. Very roughly, an infinite
loop space is a space that looks like the space of loops of loops of loops of loops... of
loops in some topological space, where you get to make the “dot dot dot” part go on as
long as you want! A beautifully unpretentious and utterly readable book on these spaces,
operads, and much much more, is:

7) J. F. Adams, Infinite Loop Spaces, Princeton U. Press, Princeton, 1978.
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Lest “infinite loop spaces” seem abstruse, I should emphasize that the book is really
a nice tour of a lot of modern homotopy theory. As he says, “my object has been a more
elementary exposition, which I hope may convey the basic ideas of the subject in a way
as nearly painless as I can make it. In this the Princeton audience encouraged me; the
more I found means to omit the technical details, the more they seemed to like it.” A
lot of the general mathematical machinery he discusses, especially in the chapter called
“Machinery”, is really too nice to be left for only the homotopy theorists!

Anyway, once you have gotten the hang of operads you can try the work of a reformed
homotopy theorist, Jim Stasheff, on string field theory:

8) Jim Stasheff, “Closed string field theory, strong homotopy Lie algebras and the
operad actions of moduli spaces”, available as hep-th/9304061.

Actually Graeme Segal, another string theory guru, also used to do homotopy theory.
He’s the one who’s famous for:

9) Andrew Pressley and Graeme Segal, Loop groups, Oxford University Press, Oxford,
1986.

So it’s possible that these guys didn’t really quit homotopy theory, but just figured out
how to get physicists interested in it. Notice all those loops! :-)

But where was I... romping through various approaches to string theory, taking a
detour to mention loops, but all the while sneaking up on my goal, which is to list a
few papers that lend evidence to the thesis of my paper Strings, Loops, Knots and Gauge
Fields, namely that a profound “string/gauge field duality” is at work in many physical
models, and that the loop representation of quantum gravity, and string theory, may
eventually not be seen as so different after all.

Let’s see what we’ve got here:

10) “A reformulation of the Ponzano-Regge quantum gravity model in terms of sur-
faces”, Junichi Iwasaki, University of Pittsburgh, 11 pages in LaTeX format avail-
able as gr-qc/9410010.

I've discussed the Ponzano-Regge model quite a bit in “Week 16” and “Week 38”.
It’s an approach to quantum gravity that is especially successful in 3 dimensions, and
involves chopping spacetime up into simplices. The exact partition function, as they
say, can be computed using this combinatorial discrete approximation to the spacetime
manifold. (In quantum field theory, when you know enough about the partition function
you can compute the expectation values of observables to your heart’s content.) Anyway,
here Iwasaki does the kind of thing I was pointing towards in my paper, namely, to
rewrite the theory, which starts out as a gauge theory, as a theory of surfaces (“string
worldsheets”) in spacetime.

Meanwhile, more work has been done on the same kind of idea for good old quantum
chromodynamics, though here there is a background geometry, and one approximates
the spacetime manifold by a discrete lattice not because one expects to get the exact
answers out that way, but just because it’s a decent approximation that makes things a
bit more manageable:
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11) B. Rusakov, “Lattice QCD as a theory of interacting surfaces”, available as hep-th/
9410004.

Ivan K. Kostov, “U(N) gauge theory and lattice strings”, available as hep-th/
9308158.

Also, if there were any gauge theory that deserved to be a string theory, it’s probably
Chern-Simons theory, which has so much to do with knots... and indeed something
like this seems to be the case, though it’s all rather subtle and mysterious so far:

12) Michael R. Douglas, “Chern-Simons-Witten theory as a topological Fermi liquid”,
available as hep-th/94031109.

Frequently, when there is a whole lot of frenetic, sophisticated-sounding activity around

a certain idea, like this relation between strings and gauge fields, there is a simple truth
yearning to be known. Sometimes it takes a while! We'll see.
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Week 43

November 5, 1994

It is very exciting, yet somewhat scary, as work continues on the loop representation
of quantum gravity. On the one hand, researchers are busy making it mathematically
rigorous; on the other hand, they are beginning to understand its physical significance.
The reasons for excitement are obvious, but the scary part is that until the final touches
are put on the mathematical rigor, we don’t know if the theory really exists!

Of course there is the whole separate issue of whether the theory will find experimen-
tal confirmation. If the theory were experimentally confirmed, questions of mathematical
rigor wouldn’t be quite such a big deal. But experimental verification will probably take
a long time! Also, we don’t really expect a theory of “pure gravity” to be experimentally
confirmed. One will need to figure out how all the other particles and fields fit in —
except perhaps for very general, qualitative issues. (See the paper mentioned at the very
end of this article for some of those.) So here the suspense is of a long-term sort. Luckily,
the question of whether the theory makes mathematical sense is already very interesting,
since so many theories of quantum gravity have already been shot down on that basis,
and the loop representation approach seems so pretty. Either it will make sense, or we
will run into some obstacle, which is bound to be enlightening.

Let me briefly review the loop representation, without too many technical details. For
more details try the original paper by Rovelli and Smolin (see “Week 42” for a reference),
the book by Ashtekar (see “Week 77), or, especially if you’re a mathematician, my review
article “Knots and quantum gravity: progress and prospects”.

There are 3 basic steps in the “canonical quantization” of general relativity. At each
step there is a vector space of quantum states, but only in the last do we really need a
Hilbert space of states, since only when we’re done do we want to be able to compute
expectation values of observables, which takes an inner product.

In what follows I'll talk about the simplest situation, where we have the vacuum
Einstein equations

G=0

where G is the “Einstein tensor” cooked up from the curvature of spacetime. Say space-
time is of the form R x S, where R is the real numbers (time) and S is a 3-dimensional
manifold (space). We will think of S as the “¢ = 0 slice” of R x S.

I) The first stage is to get the space of “kinematical states”. In the quantum mechanics
of a point particle on the line, the space of wavefunctions is a space of functions
on the real line. Similarly, in quantum gravity we naively expect kinematical states
to be functions on the space of Riemannian metrics on the 3-dimensional manifold
S we're taking to be “space”. In the loop representation one does something a bit
more clever, but let’s move on and then come back to that.

II) The second stage is getting the space of “diffeomorphism-invariant states”. In fact,
Einstein’s equations in coordinates look like

le =0
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where the indices x, v range from O to 3. It’s customary to work in coordinates x,,
where x is “time” and the other three coordinates are the “space” coordinates on
S. Then classically, the equations G, = 0 serve as constraints on the initial data
for Einstein’s equations, while the remaining equations describe time evolution.
Le., only for certain choices of a metric and its first time derivative at ¢ = 0 can we
get a solution of Einstein’s equations. In fact, Gy, can be calculated knowing only
the metric and its first time derivative at ¢ = 0, and the equations saying they are
zero are the constraints that this data must satisfy to get a solution of Einstein’s
equations.

Following the usual recipes of quantum theory, we want to turn these constraints into
operators on the kinematical Hilbert space of stage I, and then demand that the states
relevant for physics be annihilated by these operators. The “diffeomorphism-invariant
subspace” is the subspace of the kinematical state space that is annihilated by the con-
straints corresponding to G; where i = 1,2,3. Let us put off for a moment why it’s
called what it is!

IITI) The third and final stage is getting the space of “physical states”. Here we look
at the subspace of diffeomorphism-invariant states that are also annihilated by
the constaint corresponding to Gyo. The equation saying that a diffeomorphism-
invariant state is annihilated by this constraint is called the “Wheeler-DeWitt equa-
tion”, and this is generally regarded as the fundamental equation of quantum grav-

ity.

Now, it should make some sense why we call the “physical states” what we do. These
are quantum states satisfying the quantum analogues of the constraints that the classical
initial data must satisfy to be initial data for a solution of Einstein’s equations. But why
do we impose the constraints G, = 0 in two separate stages, and call the states in part
11 “diffeomorphism-invariant states”?

This is a very important question which gives quantum gravity much of its curious
character. In classical general relativity, G; not only gives one of Einstein’s equations,
namely Gy; = 0, it also “generates diffeomorphisms” of the 3-dimensional manifold S
representing space. If you don’t quite know what this means, let me simply say that in
classical mechanics, observables give rise to one-parameter families of symmetries. For
example, momentum gives rise to spatial translations, while energy (aka the Hamilto-
nian) gives rise to time translations. We say that the observable “generates” the one-
parameter family of symmetries. This is (roughly) what I mean by saying that G; gen-
erates diffeomorphisms of S. Similarly, Gy generates diffeomorphisms of the spacetime
R x S corresponding to time evolution.

A similar thing happens in quantum theory. BUT: in quantum theory, if a state is
annihilated by some observable, it implies that the state is invariant under the one-
parameter family of symmetries generated by that observable. This is not true in classical
mechanics. Indeed, it’s rather odd. But what it implies is that in step II we are really
restricting ourselves to kinematical states that are invariant under diffeomorphisms of
the spatial manifold S. This is why we call them “diffeomorphism-invariant” states.
Similarly, in step III we'’re further restricting ourselves to states that are invariant under
time evolution. The final “physical states” are, at least heuristically, invariant under all
diffeomorphisms of spacetime. (So maybe the physical states are the ones that really
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should be called “diffeomorphism-invariant” — but it’s too late now.) While this may
seem odd, all it really means is that in the quantum theory of gravity — at least when
one does it this way — the physical states describe only those aspects of the world
that are independent of any choice of coordinate system. That has a certain charm,
philosophically speaking. It is, however, not something physicists are used to.

Now, the general scheme outlined above has been around ever since the work of
DeWitt:

1) Bryce S. DeWitt, “Quantum theory of gravity, I-III”, Phys. Rev. 160 (1967), 1113-
1148, 162 (1967) 1195-1239, 1239-1256.

However, the problem has always been making the scheme mathematically rigorous, or
else to do some kind of calculations that shed some light on the meaning of it all! There
are lots of problems. Let me not delve into them now, but simply cut directly to the “new
variables” idea for handling these problems. The key idea of Ashtekar was to use as basic
variables, not the metric on S and its first time derivative, but the “chiral spin connection”
on S and a “complex frame field”. To describe these would require a digression into
differential geometry that I'm not in the mood for right now, especially since I already
explained this stuff a bit in “Week 7”. (There I call the chiral spin connection the “right-
handed” connection.)

I do, however, want to emphasize that the new variables rely heavily upon some of
the basic group-theoretic facts about 3 and 4 dimensions. The group of rotations in 3d
space is called SO(3), because mathematically these are 3 x 3 orthogonal matrices with
determinant 1. Now, a key fact in math and physics is that this group has the group
SU(2) of 2 x 2 complex unitary matrices with determinant 1 as a “double cover”. This
means roughly that there are two elements of this other group corresponding to each
element of SO(3). It’s this fact that allows the existence of spin-3 particles!

Now, SU(2) is sitting inside a bigger group, SL(2,C), the group of all 2 x 2 complex
matrices with determinant 1, not necessarily unitary. Just as SU(2) is used to describe
the symmetries of spin- particles in space, SL(2,C) describes the symmetries of spin-
% particles in spacetime. The reason is that SL(2,C) is the double cover of the group
SO(3,1) of Lorentz transformations.

Given a Riemannian metric on the space S, there is always an “SO(3) connection”
describing how objects rotate when you move them around a loop, due to the curvature
of space. This is called the Levi-Civita connection. With a little work we can also think
of this as an SU(2) connection. However, Ashtekar works instead with the chiral spin
connection, which is an SL(2, C) connection cooked up from the Levi-Civita connection
and the first time derivative of the metric (which turns out to be closely related to the
“extrinsic curvature” of S as it sits in the spacetime R x S.)

The great advantage of Ashtekar’s “new variables” is that the Hamiltonian and diffeo-
morphism constraints are simpler in these variables. Unfortunately, they lead to a curious
new issue which at first seemed very nasty — the problem of “reality conditions”. This
has a lot to do with going from SU(2), which is a “real” group in a technical sense, to
SL(2,C), which is a “complex” group that’s roughly twice as big. Essentially, Ashtekar’s
formalism seems at first to be better suited to general relativity with a complex-valued
metric than to good old “real” general relativity. For quite a while people didn’t know
quite what to do about this, so a lot of work on the new variables more or less ignores
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this issue. Luckily, there is now a very elegant approach to handling it, worked out
by Ashtekar and collaborators. They are coming out with a couple of papers on this,
hopefully by mid-November:

2) Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, José Mourido and Thomas
Thiemann, “Coherent state transforms for spaces of connections”, Jour. Functional
Analysis 135 (1996), 519-551. Also available as gr-qc/9412014.

Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, José Mourdo and Thomas
Thiemann, “Quantization of diffeomorphism invariant theories of connections with
local degrees of freedom”, Jour. Math. Phys. 36 (1995), 6456-6493. Also available
as gr-qc/9504018.

The first paper constructs a kind of transform that takes functions on the space of SU(2)
connections on S into functions on the space of SL(2,C) connections on S. The “kine-
matical states” in Ashtekar’s approach are, roughly speaking, functions of the latter kind.
(Really they are more like “measures”.) This is some really pretty mathematics — it’s
a kind of generalization of the Bargmann-Segal transform to the case of functions on
spaces of connections.

Physically, the transform allows us to relate Ashtekar’s approach to the traditional
“metric” approach much more clearly, since, as I described, SU(2) connections are closely
related to metrics on S. The second paper should treat the physics behind this in
more detail, and also describe a rigorous construction of “loop states” — a large class
of diffeomorphism-invariant states which Rovelli and Smolin have claimed are actually
physical states. (For more on these, see below.) This means that to check Rovelli and
Smolin’s claim, the main thing we need is a rigorous treatment of the Hamiltonian con-
straint in quantum gravity.

Unfortunately, this is where it gets scary, since the Hamiltonian constraint is a very
tricky thing. For more on it, try:

3) M. Blencowe, “The Hamiltonian constraint in quantum gravity”, Nucl. Phys. B341
(1990), 213-251.

Bernd Briigmann and Jorge Pullin, “On the constraints of quantum gravity in the
loop representation”, Nucl. Phys. B390 (1993), 399-438.

Bernd Briigmann, On the Constraints of Quantum General Relativity in the Loop
Representation, Ph.D. Thesis, Syracuse University, 1993.

The loop states of Rovelli and Smolin are in one-to-one correspondence with knots
in space, or more precisely, isotopy classes of knots. (Roughly, two knots are isotopic
if you can get one from the other by applying a diffeomorphism of space that can be
continuously deformed to the identity.)

What is the physical meaning of these loop states? Roughly it’s this. Say you take
a spin-1 particle and move it around in a path that traces out a knot. When you do
this using the Levi—Civita connection, it comes back “rotated” by some SU(2) matrix. If
you take the trace of this matrix (sum of diagonal entries) and divide by two, you get a
number between -1 and 1. This number is called a “Wilson loop”.

This should remind you of the Bohm-Aharonov effect where a split electron beam
takes two paths from A to B. Depending on the magnetic flux through the loop, one can
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have constructive or destructive interference in the split beam experiment. Mathemati-
cally, one can imagine moving the electron around a loop that starts at A, goes to B by
one path, and goes back to A by the other path. If this phase corresponding to going
around this loop is 1 we get total constructive interference in the split beam experiment,
while if it’s -1 we get total destructive interference. So, just as the Bohm—Aharonov ef-
fect measures interference effects due to the magnetic field, the above Wilson loop sort
of measures the interference effects due to gravity!

In the Rovelli-Smolin loop state corresponding to a particular knot K, the expectation
value of a Wilson loop around any knot K’ will be 1 if K and K’ are isotopic, and 0
otherwise! That’s the physical meaning of the loop states: they describe quantum states
of geometry in terms of the resulting interference effects on spin-1 particles.

Now, there is a more general kind of diffeomorphism-invariant state than the loop
states. These are the spin network states! Here one fancies up the Wilson loop idea and
imagines a graph embedded in space — i.e. a bunch of edges and vertices — where each
edge is labelled by a spin that can be 0,3,1,2, etc. In the simplest flavor of spin network,
one only allows 3 edges to meet at each vertex, and requires js to be of the form

Jz=ljr = Jol, ljx —jel +1,..., 1 +j2— 1, j1 + jo.

where j1, jo, j3 are the spins labelling the edges adjacent to the given vertex. For ex-
ample, we can have the the three spins be %,3, and %, because it’s possible for a spin—%
particle and a spin-3 particle to interact and form a spin-5 particle. Here by “possible” I
simply mean that it doesn’t violate conservation of angular momentum. Mathematicians
would say the spins should be thought of as irreducible representations of SU(2), and the
condition above is just the condition that the representation j; appears as a summand in
the tensor product of the representations j; and js.

Just as we can compute a kind of “Wilson loop” number from a knot that a spin-1
particle goes around, we can compute a number from a spin network. I've thought about
spin networks for quite a while, since they are very important in topological quantum

field theories. A great introduction to how they show up in TQFTs, by the way, is:

4) Louis Crane, Louis H. Kauffman, and David N. Yetter, “State-sum invariants of
manifolds, I”, available as hep-th/9409167.

This explains how to cook up 3d quantum gravity (or more precisely, the Turaev-Viro
model) and a 4d TQFT field theory called the Crane-Yetter model using spin networks.

However, Rovelli’s talk on spin network states in quantum gravity (see “Week 41”),
followed by some good conversations, got me motivated to write up something on spin
network states:

5) John Baez,“Spin network states in gauge theory”, available as gr-qc/9411007.

Basically, I show that in the loop representation of any gauge theory, states at the kine-
matical level can be described by spin networks, slightly generalized. Heck, I'll quote my
abstract:

Given a real-analytic manifold M, a compact connected Lie group G and a prin-
cipal G-bundle P — M, there is a canonical ‘generalized measure’ on the space

213


https://arxiv.org/abs/hep-th/9409167
https://arxiv.org/abs/gr-qc/9411007

WEEK 43 NOVEMBER 5, 1994

A/G of smooth connections on P modulo gauge transformations. This allows
one to define a Hilbert space L?(A/G). Here we construct a set of vectors span-
ning L2(A/G). These vectors are described in terms of ‘spin networks’: graphs ¢
embedded in M, with oriented edges labelled by irreducible unitary representa-
tions of G, and with vertices labelled by intertwining operators from the tensor
product of representations labelling the incoming edges to the tensor product of
representations labelling the outgoing edges. We also describe an orthonormal
basis of spin networks associated to any fixed graph ¢. We conclude with a
discussion of spin networks in the loop representation of quantum gravity, and
give a category-theoretic interpretation of the spin network states.

I'm now hard at work trying to show that spin networks also give a complete de-
scription of states at the diffeomorphism-invariant level. Well, actually right NOW I'm
goofing off by writing this darn thing, but you know what I mean.

Rovelli and Smolin have come out with one of their papers on spin networks and they
should be coming out with another soon. These are not about the rigorous mathematics
of spin network states, but how to use them to really understand the physics of quantum
gravity. The first one out is:

6) Carlo Rovelli and Lee Smolin, “Discreteness of area and volume in quantum grav-
ity”, available as gr-qc/9411005.

This is perhaps the most careful computation so far that derives discreteness of geomet-
rical quantities directly from Einstein’s equations and the principles of quantum theory!
Let me quote the abstract:

We study the operator that corresponds to the measurement of volume, in non-
perturbative quantum gravity, and we compute its spectrum. The operator is
constructed in the loop representation, via a regularization procedure; it is
finite, background independent, and diffeomorphism-invariant, and therefore
well defined on the space of diffeomorphism invariant states (knot states). We
find that the spectrum of the volume of any physical region is discrete. A family
of eigenstates are in one to one correspondence with the spin networks, which
were introduced by Penrose in a different context. We compute the correspond-
ing component of the spectrum, and exhibit the eigenvalues explicitly. The other
eigenstates are related to a generalization of the spin networks, and their eigen-
values can be computed by diagonalizing finite dimensional matrices. Further-
more, we show that the eigenstates of the volume diagonalize also the area
operator. We argue that the spectra of volume and area determined here can
be considered as predictions of the loop-representation formulation of quantum
gravity on the outcomes of (hypothetical) Planck-scale sensitive measurements
of the geometry of space.
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Week 44

November 6, 1994
SPECIAL EDITION: THE END OF DONALDSON THEORY?

I got some news today from Allen Knutson. Briefly, it appears that Witten has come
up with a new way of doing Donaldson theory that is far easier than any previously
known. According to Taubes, many of the main theorems in Donaldson theory should
now have proofs that are 1/1000th as long!

I suppose to find this exciting one must already have some idea of what Donaldson
theory is. Briefly, Donaldson theory is a theory born in the 1980s that revolutionized
the study of smooth 4-dimensional manifolds by using an idea from physics, namely, the
self-dual Yang-Mills equations. The Yang-Mills equations describe most of the forces we
know and love (not gravity), but only in 4 dimensions can one get solutions of them
of a special form, known as self-dual solutions. (In physics these self-dual solutions are
known as instantons, and they were used by 't Hooft to solve a problem plaguing particle
physics, called the U(1) puzzle.)

Mathematically, 4-dimensional manifolds are very different from manifolds of any
other dimension! For example, one can ask whether R" admits any smooth structure
other than the usual one. (Technically, a smooth structure for a manifold is a maximal
set of coordinate charts covering the manifold which have smooth transition functions.
Loosely, it’s a definition of what counts as a smooth function.) The answer is no —
except if n = 4, where there are uncountably many smooth structures! These “exotic
R*’s” were discovered in the 1980’s, and their existence was shown using the work of
Donaldson using the self-dual solutions of the Yang—Mills equation, together with work
of the topologist Freedman. More recently, a refined set of invariants of smooth 4-
manifolds, the Donaldson invariants, have been developed using closely related ideas.

Some references are:

1) Simon K. Donaldson and Peter B. Kronheimer, The Geometry of Four-Manifolds,
Oxford University Press, Oxford, 1990.

Simon K. Donaldson, “Polynomial invariants for smooth four-manifolds”, Topology
29 (1990), 257-315.

Daniel S. Freed and Karen K. Uhlenbeck, Instantons and Four-Manifolds, Springer,
Berlin, 1984.

Charles Nash, Differential Topology and Quantum Field Theory, Academic Press,
London, 1991.

This is an extremely incomplete list, but it should be enough to get started. Or,
while you wait for the new, simplified treatments to come out, you could make some
microwave popcorn and watch the following video:

2) Simon K. Donaldson, “Geometry of four dimensional manifolds”, videocassette (ca.
60 min.), color, American Mathematical Society, Providence, Rhode Island, 1988.
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Now, what follows is my interpretation of David Dror Ben-Zvi’s comments on a lecture
by Clifford Taubes entitled “Witten’s Magical Equation”, these comments being kindly
passed on to me by Knutson. I have tried to flesh out and make sense of what I received,
and this required some work, and I may have screwed up some things. Please take it all
with a grain of salt. I only hope it gives some of the flavor of what’s going on!

So, we start with a compact oriented 4-manifold X with L a complex line bundle
over X having first Chern class equal to ws, the second Stiefel-Whitney class of T X,
modulo 2. If X is spin (meaning that the wy = 0), take the bundle of spinors over X.
Otherwise, pick a Spin® bundle and take the bundle of complex spinors over X. Note that
a Spin® structure is enough to define complex spinors on X, and it will always exist if wo
is the mod 2 reduction of an integral characteristic class. For more on this sort of stuff,

try:

3) H. Blaine Lawson, Jr. and Marie-Louise Michelson, Spin Geometry, Princeton U.
Press, Princeton, 1989.

In either case, take our bundle of spinors, tensor it with the square root of L, and call
the resulting bundle B. (Perhaps someone can explain to me why L has a square root
here; it’s obvious if X is spin, but I don’t understand the other case so well.) The data
for our construction are now a connection A on L, and a section 1) of the self-dual part
of B. (Note: I'm not sure what the “self-dual part of B” is supposed to mean. I guess it
is something required to make the right-hand side of the formula below be self-dual in
the indices a, b.) Consider now two equations. The first is the Dirac equation for . The
second is that the self-dual part ' of the curvature of A be given in coordinates as

F = =5l )
where the basis 1-forms e?, e’ act on ¢ by Clifford multiplication.

Next form the moduli space M of solutions (A4, 1) modulo the action of the auto-
morphisms of L. The wonderful fact is that this moduli space is always compact, and
for generic metrics it’s a smooth manifold. Still more wonderfully (here I read the lines
between what was written), it is a kind of substitute for the moduli space normally used
in Donaldson theory, namely the moduli space of instantons. It is much nicer in that it
lacks the singularities characteristic of the other space.

What this means is that everything becomes easy! Apparently Taubes, Kronheimer,
Mrowka, Fintushel, Stern and the other bigshots of Donaldson theory are frenziedly
turning out new results even as I type these lines. On the one hand, the drastic simpli-
fications are a bit embarassing, since the technical complications of Donaldson theory
were the stuff of many erudite and difficult papers. On the other hand, Donaldson in-
variants were always notoriously difficult to compute. Taubes predicted that a purely
combinatorial formula for them may be around within a year. (Here it is interesting to
note the work of Crane, Frenkel, and Yetter in that direction; see “Week 2” and “Week
38”.) This is sure to lead to a deeper understanding of 4-dimensional topology, and quite
possibly, 4-dimensional physics as well.
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Week 45

November 12, 1994

DONALDSON THEORY UPDATE

In the previous edition of “This Week’s Finds” I mentioned a burst of recent work on
Donaldson theory. I provocatively titled it “The End of Donaldson Theory?”, since the
rumors I was hearing tended to be phrased in such terms. But I hope I made it clear
at the conclusion of the article that this recent work should lead to a lot of new results
in 4-dimensional topology! An example is Kronheimer and Mrowka’s proof of the Thom
conjecture.

Many thanks to my network of spies for obtaining a preprint of the following paper:

1) Peter B. Kronheimer and Tomasz S. Mrowka, “The genus of embedded surfaces in
the projective plane”.

Let me simply quote the beginning of the paper:

The genus of a smooth algebraic curve of degree d in CP? is given by the formula
g = (d—1)(d — 2)/2. A conjecture sometimes attributed to Thom states that
the genus of the algebraic curve is a lower bound for the genus of any smooth
2-manifold representing the same homology class. The conjecture has previously
been proved for d < 4 and for d = 6, and less sharp lower bounds for the genus
are known for all degrees [references omitted]. In this note we confirm the
conjecture.

Theorem 1. Let S be an oriented 2-manifold smoothly embedded in CP? so as
to represent the same homology class as an algebraic curve of degree d. Then
the genus g of S satisfies g > (d — 1)(d — 2)/2.

Very recently, Seiberg and Witten [references below] introduced new invariants
of 4-manifolds, closely related to Donaldson’s polynomial invariants [reference
omitted], but in many respects much simpler to work with. The new techniques
have led to more elementary proofs of many theorems in the area. Given the
monopole equation and the vanishing theorem which holds when the scalar
curvature is positive (something which was pointed out by Witten), the rest of
the argument presented here is not hard to come by. A slightly different proof of
the Theorem, based on the same techniques, has been found by Morgan, Szabo
and Taubes.

The reference to Donaldson’s polynomial invariants appears in “Week 44”. The refer-
ences to the new Seiberg-Witten invariants are:
2) Edward Witten,“Monopoles and four-manifolds”, available as hep-th/9411102.

Edward Witten and Nathan Seiberg, “Electric-magnetic duality, monopole conden-
sation, and confinement in N = 2 supersymmetric Yang-Mills theory”, available as
hep-th/9407087.

Edward Witten and Nathan Seiberg, “Monopoles, duality and chiral symmetry
breaking in NV = 2 supersymmetric QCD”, available as hep-th/9408099.
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Differential geometers attempting to read the second two papers will find that they
contain no instance of the term “Donaldson theory”, and they may be frustrated to find
that these are very much physics papers. They concern the ground states of supersym-
metric Yang-Mills theory in 4 dimensions with gauge group SU(2). The “ground states”
of a field theory are its least-energy states, which represent candidates for the physical
vacuum. In certain theories there is not a unique ground state, but instead a “moduli
space” of ground states. Seiberg and Witten study these moduli spaces of ground states
in both the classical and quantum versions of SU(2) supersymmetric Yang-Mills theory
in 4 dimensions. They also consider the theory coupled to spinor fields, which they call
“quarks”, using the analogy of the theory to quantum chromodynamics, aka “QCD”.

I haven’t had time to go through their papers, since this isn’t my main focus of in-
terest. Perhaps the most useful thing I can do at this point is to use Kronheimer and
Mrowka’s clear description of their moduli space (which is presumably closely related
to Seiberg and Witten’s moduli spaces) to simplify and fill in the holes of what I wrote
in “Week 44”. I will aim my exposition to mathematicians, but make some elementary
digressions on physics to spice things up.

We start with a compact oriented Riemannian 4-manifold X, and assume we are
given a Spin® structure on X. Recall the meaning of this. First, the orthonormal frame
bundle of X has structure group SO(4), and a spin structure would be a double cover of
this which is a principal bundle with structure group given by the double cover of SO(4),
namely SU(2) x SU(2). Thus we get two principal bundles with structure group SU(2),
the left-handed and right-handed spin bundles. Using the fundamental representation of
SU(2), we obtain two vector bundles called the bundles of left-handed and right-handed
spinors. This “handedness” or “chirality” phenomenon for spinors is of great importance
in physics, since neutrinos are left-handed spinors — meaning, in down-to-earth terms,
that they always spin clockwise relative to their direction of motion. The fact that the
laws of nature lack chiral symmetry came as quite a shock when it was first discovered,
and part of Seiberg and Witten’s motivation in their second paper is to study mechanisms
for “spontaneous breaking” of chiral symmetry. This means simply that while the theory
has chiral symmetry, its ground states need not.

A Spin® structure is a bit more subtle, but it allows us to define bundles of left-handed
and right-handed spinors as U(2) bundles, which Kronheimer and Mrowka denote by
W+ and W—. The determinant bundle L of W+ is a line bundle on X. The first big
ingredient of the theory is a hermitian connection A on L. In physics lingo this is the
vector potential of a U(1) gauge field. This gives a Dirac operator D 4 mapping sections
of W+ to sections of W—. The connection A has curvature F, and the self-dual part
F* of F can be identified with a section of s[(WW+). (This is just a global version of the
isomorphism between the self-dual part of A2C* and sl(2,C).)

The second big ingredient of the theory is a section ¢ of W+, i.e. a left-handed
spinor field. There is a way to pair two sections of W+ to get a section of s[(1/+), which
we write as o(.,.) and which is conjugate-linear in the first argument and linear in the
second. This is a global version of the similar pairing

o(.,.): C* x C? - 51(2,C)
where o(v,w) given by taking the traceless part of the 2 x 2 matrix v* ® w. Here v* is

the element of the dual of C? coming from v via the inner product on C2.
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To get the magical moduli space, we consider solutions (A, ¢) of

Dt =0
F* =io(y,9).

Here we are thinking of F'" as a section of sI(W+). These are pretty reasonable equa-
tions for some sort of massless left-handed spinor field coupled to a U(1) gauge field. Let
M be the space of solutions modulo gauge transformations. Kronheimer and Mrowka
show the “moduli space” M is compact.

One can also perturb the equations above as follows. If we have any self-dual 2-form
0 on X we can consider

Datp =0
FT 46 = io(y, ).

and get a moduli space M (§). This will still be compact if ¢ is nice (here I gloss over
issues of analysis).

Now, if X has an almost complex structure, Kronheimer and Mrowka show that one
can pick a Spin® structure for X such that, for “good” metrics and generic small &, M (9) is
a compact 0-dimensional manifold. Using this fact and some geometrical yoga, it follows
that the number n of points in M(§), counted mod 2, is independent of (such) §. (This
is essentially a glorified version of the fact that, when you look at the multiple images of
an object in a warped mirror and slowly bend the mirror, the images generically appear
or disappear in pairs.) Moreover, if the self-dual Betti number b of X is > 1, the space
of good metrics is path-connected, and n mod 2 is independent of the choice of good
metric. Kronheimer and Mrowka call this a “simple mod 2 version of the invariants of
Seiberg and Witten”. It is one ingredient of their proof of the Thom conjecture.
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Week 46

December 12, 1994

I will be on sabbatical during the first half of 1995. I'll be roaming hither and thither,
and also trying to get some work done on n-categories, quantum gravity and such, so
this will be the last “This Week’s Finds” for a while. I have also taken a break from being
a co-moderator of sci.physics.research.

So, let me sign off with a roundup of diverse and sundry things! I'm afraid I'll be
pretty terse about describing some of them. First for some news of general interest, then
a little update on Seiberg—Witten theory, then some neat stuff on TQFTs, n-categories,
quantum gravity and all that, and then various other goodies. ...

1) Gary Stix, “The speed of write”, Scientific American, Dec. 1994, 106-111.

Jacques Leslie, “Goodbye, Gutenberg: pixilating peer review is revolutionizing
scholarly journals”, Wired 2.10, Oct. 1994. Available as https://www.wired.com/
1994/10/ejournals/.

Among other things, the above articles show that Paul Ginsparg is starting to get the
popular recognition he deserves for starting up hep-th. In case anyone out there doesn’t
know yet, hep-th is the “high-energy physics — theoretical” preprint archive, which rev-
olutionized communications within this field by making preprints easily available world-
wide, thus rendering many (but not all) aspects of traditional journals obsolete. The
idea was so good it quickly spread to other subjects. Within physics it went like this:

* High Energy Physics — Theory (hep-th), started 8/91

* High Energy Physics — Lattice (hep-lat), started 2/92

* High Energy Physics — Phenomenology (hep-ph), started 3/92
* Astrophysics (astro-ph), started 4/92

* Condensed Matter Theory (cond-mat), started 4/92

* General Relativity & Quantum Cosmology (gr-qc), started 7/92
* Nuclear Theory (nucl-th), started 10/92

* Chemical Physics (chem-ph), started 3/94

* High Energy Physics — Experiment (hep-ex), started 4/94

* Accelerator Physics (acc-phys), started 11/94

* Nuclear Experiment (nucl-ex), started 11/94

* Materials Theory (mtrl-th), started 11/94

* Superconductivity (supr-con), started 11/94
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Similar archives are sprouting up in mathematics (see below — but also note the
existence of the American Mathematical Society preprint server, described later in this
week’s finds).

There are many ways to access these preprint archives, since Ginsparg has kept up
very well with the times — indeed, so much better than I that I'm afraid to go into
any details for fear of making a fool of myself. The dernier cri, I suppose, is to access
the archives using the World-Wide Web, which is conveniently done by opening the
document

http://xxx.lanl.gov

If this makes no sense to you, my first and very urgent piece of advice is to learn about
the World-Wide Web (WWW), Mosaic, and the like, since they are wonderful and very
simple to use! In the meantime, however, you can simply send mail to various addresses
with subject header

help
and no message body, in order to get information. Some addresses are:
* acc-phys0@xxx.lanl.gov (accelerator physics)
* astro-ph@xxx.lanl.gov (astrophysics)
* chem-ph@xxx.lanl.gov (chemical physics)
* cond-mat@xxx.lanl.gov (condensed matter)
* funct-an@xxx.lanl.gov (functional analysis)
* gr-qc@xxx.lanl.gov (general relativity / quantum cosmology)
* hep-lat@ftp.scri.fsu.edu (computational and lattice physics)
* hep-ph@xxx.lanl.gov (high energy physics phenomenological)
* hep-th@xxx.lanl.gov (high energy physics formal)
* hep-ex@xxx.lanl.gov (high energy physics experimental)
* nucl-th@xxx.lanl.gov (nuclear theory)
* nucl-ex@xxx.lanl.gov (nuclear experiment)
* mtrl-th@xxx.lanl.gov (materials theory)
* supr-con@xxx.lanl.gov (superconductivity)
* alg-geom@publications.math.duke.edu (algebraic geometry)
* auto-fms@msri.org (automorphic forms)

* cd-hg@msri.org (complex dynamics & hyperbolic geometry)

221



WEEK 46 DECEMBER 12, 1994

* dg-ga@msri.org (differential geometry & global analysis)
* nlin-sys@xyz.lanl.gov (non-linear systems)
* cmp-lg@xxx.lanl.gov (computation and language)

* e-mail@xxx.lanl.gov (e-mail address database)
One might also want to check out the:

Directory of Electronic Journals, Newsletters, and Academic Discussion Lists:
Send e-mail to ann@cni . org at the Association of Research Libraries, +1 (202)
296-2296, fax +1 (202) 872 0884.

Let me say a bit about how the AMS preprint server works. Assuming you are hip to
the WWW, just go to

http://e-math.ams.org

You will then see a menu, and you can click on “Mathematical Preprints”, and then “AMS
Preprint Server”, where preprints are classified by subject. Alternatively, click on “New
Items This Month (all Subjects)”.

On a related note, you can also get some AMS stuff using telnet by doing

telnet e-math.ams.org
and using
e-math

as login and password. This doesn’t seem to get you to the preprints, though. For gopher
fans,

gopher e-math.ams.org
has roughly similar effects.
2) Carlo Rovelli and Lee Smolin, “Spin networks in quantum gravity”.

This paper is closely related to the earlier one in which Rovelli and Smolin argue
that discreteness of area and volume arise naturally in the loop representation of quan-
tum gravity, and also to my own paper on spin networks. (See “Week 43” for more on
these, and a brief intro to spin networks.) Basically, while my paper shows that spin
networks give a kind of basis of states for gauge theories with arbitrary (compact, con-
nected) gauge group, in this paper Rovelli and Smolin concentrate on the gauge groups
SL(2,C) and SU(2), which are relevant to quantum gravity, and work out a lot of aspects
particular to this case, in more of a physicist’s style. This makes spin networks into a
practical computational tool in quantum gravity, used to great effect in the paper on the
discreteness of area and volume.
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3) Abhay Ashtekar, “Recent mathematical developments in quantum general relativ-
ity”, available as gr-qc/9411055 (discussed in “Week 377).

Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Jose Mourao and Thomas
Thiemann, “Coherent state transforms for spaces of connections”, available as
gr-qc/9412014 (discussed in “Week 43”).

These are two papers on the loop representation of quantum gravity which I talked
about in earlier “finds”, and are out now. The former is a nice review of recent mathemat-
ically rigorous work; the latter takes a tremendous step towards handling the infamous
“reality conditions” problem.

4) Abhay Ashtekar and Jerzy Lewandowski, “Differential geometry on the space of
connections via graphs and projective limits”, available as hep-th/9412073.

I've spoken quite a bit about doing rigorous functional integration in gauge theory us-
ing ideas from the loop representation; this paper treats functional derivatives and other
things that are more differential than integral in nature. This is crucial in quantum grav-
ity because the main remaining mystery, the Wheeler-DeWitt equation or Hamiltonian
constraint, involves a differential operator on the space of connections. (For a wee bit
more, try “Week 11” or “Week 43”, where the Hamiltonian constraint is simply written
as G()() = 0)
Let me quote their abstract:

In a quantum mechanical treatment of gauge theories (including general rel-
ativity), one is led to consider a certain completion, A, of the space of gauge
equivalent connections. This space serves as the quantum configuration space,
or, as the space of all Euclidean histories over which one must integrate in the
quantum theory. A is a very large space and serves as a “universal home”
for measures in theories in which the Wilson loop observables are well-defined.
In this paper, A is considered as the projective limit of a projective family of
compact Hausdorff manifolds, labelled by graphs (which can be regarded as
“floating lattices” in the physics terminology). Using this characterization, dif-
ferential geometry is developed through algebraic methods. In particular, we are
able to introduce the following notions on A: differential forms, exterior deriva-
tives, volume forms, vector fields and Lie brackets between them, divergence of
a vector field with respect to a volume form, Laplacians and associated heat
kernels and heat kernel measures. Thus, although A is very large, it is small
enough to be mathematically interesting and physically useful. A key feature of
this approach is that it does not require a background metric. The geometrical
framework is therefore well-suited for diffeomorphism invariant theories such
as quantum general relativity.

6) A. P. Balachandran, L. Chandar, Arshad Momen, “Edge states in gravity and black
hole physics”, available as gr-qc/9412019.

Ever since it started seeming that black holes have an entropy closely related to (and
often proportional to) the area of their event horizons, many physicists have sought
a better understanding of this entropy. In many ways, the nicest sort of explanation
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would say that the entropy was due to degrees of freedom living on the event horizon.
A concrete calculation along these lines was recently made by Steve Carlip (see “Week
41”) in the context of 2+ 1-dimensional gravity. The mechanism is mathematically very
similar to what happens in (a widely popular theory of) the fractional quantum Hall
effect! In both cases, Chern-Simons theory on a 3d manifold with boundary gives rise
to an interesting field theory on the boundary, or “edge”. The above paper clarifies this,
especially for those of us who don’t understand the fractional quantum Hall effect too
well. Let me quote:

Abstract: We show in the context of Einstein gravity that the removal of a spatial
region leads to the appearance of an infinite set of observables and their asso-
ciated edge states localized at its boundary. Such a boundary occurs in certain
approaches to the physics of black holes like the one based on the membrane
paradigm. The edge states can contribute to black hole entropy in these models.
A “complementarity principle” is also shown to emerge whereby certain “edge”
observables are accessible only to certain observers. The physical significance
of edge observables and their states is discussed using their similarities to the
corresponding quantities in the quantum Hall effect. The coupling of the edge
states to the bulk gravitational field is demonstrated in the context of (2+1)
dimensional gravity.

I can’t resist adding that I have a personal stake in the notion that a lot of interesting
things about quantum gravity will only show up when we consider it on manifolds with
boundary, including the area-entropy relations. The loop representation of quantum
gravity has a lot to do with knots and links, but on a manifold with boundary it has a lot
to do with tangles, which can contain arcs that begin and end at the boundary. I wrote a
paper on this a while back:

7) John Baez, “Quantum gravity and the algebra of tangles”, Jour. Class. Quantum
Grav. 10 (1993), 673-694. Available as hep-th/9205007.

I'll be coming out with another in a while, co-authored with Javier Muniain and Dardo
Piriz. The importance of manifolds with boundary for cutting-and-pasting constructions
is also well-known in the theory of “extended” TQFTs (topological quantum field theo-
ries). These cutting and pasting operations should allow one to describe extended TQFTs
in n dimensions purely algebraically using “higher-dimensional algebra”. So part of the
plan here is to understand better the relation between quantum gravity, TQFTs, and
higher-dimensional algebra. Along these lines, a very interesting new paper has come
out:

8) Louis Crane and David Yetter, “On algebraic structures implicit in topological quan-
tum field theories”, available as hep-th/9412025.

This makes more precise some of Louis Crane’s ideas on “categorification”. Nice TQFTs
in 3 dimensions have a lot to do with Hopf algebras (like quantum groups), or alterna-
tively, their categories of representations, which are certain braided monoidal categories.
In this paper it’s shown that nice TQFTs in 4 dimensions have a lot to do with Hopf cat-
egories, or alternatively, their categories of representations, which are certain braided
monoidal 2-categories.
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9) V. M. Kharlamov and V. G. Turaev, “On the definition of 2-category of 2-knots”,
Les Rencontres Physiciens-Mathématiciens de Strasbourg-RCP25 45 (1993), 151-166.
Available as http://www.numdam.org/item/RCP25_1993_45_ 151 0/.

This preprint, which I obtained through my network of spies, seems to be implicitly
claiming that the work of Fischer describing 2d surfaces in R* via braided monoidal 2-
categories (see “Week 12”) is a bit wrong, but they don’t come out and say quite what if
anything is really wrong.

10) Greg Kuperberg, “Non-involutory Hopf algebras and 3-manifold invariants”, avail-
able as g-alg/9712047.

I noted the existence of a draft of this paper, and related work, in “Week 38”. Let me
quote:

Abstract: We present a definition of an invariant #(M, H), defined for every
finite-dimensional Hopf algebra (or Hopf superalgebra or Hopf object) H and
for every closed, framed 3-manifold M. When H is a quantized universal en-
vloping algebra, # (M, H) is closely related to well-known quantum link invari-
ants such as the HOMFLY polynomial, but it is not a topological quantum field
theory.

Okay, now for some miscellaneous interesting things. ..

11) J. Lambek, “If Hamilton had prevailed: quaternions in physics”, in Mathematical
Conversations, Springer, Berlin, pp. 259-274.

Lambek is mainly known for work in category theory, but he has a strong side-interest in
mathematical physics. This paper is, first of all, a “nostalgic account of how certain key
results in modern theoretical physics (prior to World War II) can be expressed concisely
in the labguage of quaternions, thus suggesting how they might have been discovered if
Hamilton’s views had prevailed.” But there is a very interesting new thing, too: a way
in which the group SU(3) x SU(2) x U(1) shows up naturally when considering Dirac’s
equation a la quaternions. This group is the gauge group of the Standard Model! Lambek
modestly says that there does not appear to be any significance to this coincidence. .. but
it would be nice, wouldn’t it?

12) Nina Byers, “The life and times of Emmy Noether; contributions of E. Noether to
particle physics”, available as hep-th/9411110.

Bert Schroer, “Reminiscences about many pitfalls and some successes of QFT within
the last three decades”, available as hep-th/9410085.

Roman Jackiw, “My encounters — as a physicist — with mathematics”, available
as hep-th/9410151.

These are some interesting historical/biographical pieces.

13) Karl Svozil, “Speedup in quantum computation is associated with attenuation of
processing probability”, available as hep-th/9412046.

225


http://www.numdam.org/item/RCP25_1993__45__151_0/
https://arxiv.org/abs/q-alg/9712047
https://arxiv.org/abs/hep-th/9411110
https://arxiv.org/abs/hep-th/9410085
https://arxiv.org/abs/hep-th/9410151
https://arxiv.org/abs/hep-th/9412046

WEEK 46 DECEMBER 12, 1994

The subject of quantum computation has become more lively recently. I haven’t had time
to look at this paper, but quoting the abstract:

Quantum coherence allows the computation of an arbitrary number of distinct
computational paths in parallel. Based on quantum parallelism it has been con-
jectured that exponential or even larger speedups of computations are possible.
Here it is shown that, although in principle correct, any speedup is accompa-
nied by an associated attenuation of detection rates. Thus, on the average, no
effective speedup is obtained relative to classical (nondeterministic) devices.
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Week 47

January 17, 1995

Hi. T know I'm supposed to be taking a break from “This Week’s Finds,” but it’s a habit
that’s hard to quit. I just want to briefly mention a couple of new electronic venues for
mathematics and physics. First, there are a couple new preprint servers along the lines
of hep-th:

* Nuclear Experiment (nucl-ex@xxx.lanl.gov), started 12/94
* Quantum Physics (quant-ph@xxx.lanl.gov), started 12/94

To check these out, send email with subject header “help” and no message body to the
address listed, or use more slick modern method.

There are also a bunch of math preprint servers I have been neglecting to mention.
The newest one is devoted to “quantum algebra” (quantum groups and the like) and
knot theory! Here are some:

* Algebraic Geometry (alg-geom@eprints.math.duke.edu), started 2/92

* Functional Analysis (funct-an@xxx.lanl.gov), started 4/92

* Differential Geometry and Global Analysis (dg-ga@msri.org), started 6/94

* Automorphic Forms (auto-fms@msri.org), started 6/94

* Complex Dynamics and Hyperbolic Geometry (cd-hg@msri.org), started 6/94

* Quantum Algebra (Including Knot Theory) (q-alg@eprints.math.duke.edu), started
12/94

Also, there is a new electronic journal on the theory and applications of category
theory. This is a subject dear to my heart since much of the most interesting work on
topological quantum field theories uses category theory in an interesting way, so I hope
mathematicians and mathematical physicists interested in category theory turn to this
journal:

ANNOUNCEMENT AND CALL FOR PAPERS

This is to announce a new refereed electronic journal

THEORY AND APPLICATIONS OF CATEGORIES

The Editors, who are listed below, invite submission of articles
for publication in the first volume (1995) of the journal.

The Editorial Policy of the journal, basic information about
subscribing and some information for authors follows.

227



WEEK 47 JANUARY 17, 1995

More details are available from the journal’s WWW server at
URL http://www.tac.mta.ca/tac/

or by anonymous ftp from

ftp.tac.mta.ca

in the directory pub/tac.

EDITORIAL POLICY

The journal Theory and Applications of Categories will disseminate articles
that significantly advance the study of categorical algebra or methods, or
that make significant new contributions to mathematical science using
categorical methods. The scope of the journal includes: all areas of

pure category theory, including higher dimensional categories; applications
of category theory to algebra, geometry and topology and other areas of
mathematics; applications of category theory to computer science, physics
and other mathematical sciences; contributions to scientific knowledge

that make use of categorical methods.

Articles appearing in the journal have been carefully and critically
refereed under the responsibility of members of the Editorial Board.
Only papers judged to be both significant and excellent are accepted for
publication.

The method of distribution of the journal is via the Internet tools
WWW/gopher/ftp. The journal is archived electronically and in printed
paper format.

SUBSCRIPTION INFORMATION

Individual subscribers receive (by e-mail) abstracts of articles

as they are published. Full text of published articles is available
in .dvi and Postscript format. Details will be e-mailed to new
subscribers and are available by WWW/gopher/ftp. To subscribe,

send e-mail to tac@mta.ca including a full name and postal address.
For institutional subscription, send enquiries to the Managing Editor,
Robert Rosebrugh, <rrosebrugh@mta.ca>
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INFORMATION FOR AUTHORS

The typesetting language of the journal is TeX, and LaTeX is the
preferred flavour. TeX source of articles for publication should
be submitted by e-mail directly to an appropriate Editor.

Please obtain detailed information on submission format and
style files by WWW or anonymous ftp from the sites listed above.
You may also write to tac@mta.ca to receive details by e-mail.

EDITORIAL BOARD

John Baez, University of California, Riverside
baez@math.ucr.edu

Michael Barr, McGill University
barr@triples.math.mcgill.ca

Lawrence Breen, Universite de Paris 13
breen@math.univ-paris.fr

Ronald Brown, University of North Wales
r.brown@bangor.ac.ik

Jean-Luc Brylinski, Pennsylvania State University
jlbGmath.psu.edu

Aurelio Carboni, University of Genoa
carboni@vmimat.mat.unimi.it

G. Max Kelly, University of Sydney
kelly_m@maths.su.oz.au

Anders Kock, University of Aarhus
kock@mi.aau.dk

F. William Lawvere, State University of New York at Buffalo
mthfwl@ubvms.cc.buffalo.edu

Jean-Louis Loday, Universite de Strasbourg
loday@math.u-strasbg.fr

Ieke Moerdijk, University of Utrecht
moerdijk@math.ruu.nl

Susan Niefield, Union College
niefiels@gar.union.edu
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Robert Pare, Dalhousie University
pare@cs.dal.ca

Andrew Pitts, University of Cambridge
ap@cl.cam.ac.uk

Robert Rosebrugh, Mount Allison University
rrosebrugh@mta.ca

Jiri Rosicky, Masaryk University
rosicky@math.muni.cz

James Stasheff, University of North Carolina
jds@charlie.math.unc.edu

Ross Street, Macquarie University
street@macadam.mpce.mqg.edu.au

Walter Tholen, York University
tholen@vml.yorku.ca

R. W. Thomason, Universite de Paris 7
thomason@mathp7. jussieu.fr

Myles Tierney, Rutgers University
tierney@math.rutgers.edu

Robert F. C. Walters, University of Sydney
walters_b@maths.su.oz.au

R. J. Wood, Dalhousie University
rjwood@cs.da.ca
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Week 48

February 26, 1995

There are a few things I've bumped into that I feel I should let folks know about, so here’s
a special issue from Munich, where the Weissbier is very good. (And not at all white, but
that’s another subject.)

One of the most exciting aspects of mathematics over the last few years — in my
utterly biased opinion — has been how topological quantum field theories have revealed
the existence of deep connections between 3-dimensional topology, complex analysis,
and algebra, particularly the algebra of quantum groups.

The most interesting topological quantum field theory in this game is Chern—Simons
theory. This is a field theory in 3 dimensions, and the reason it’s called “topological”
is that you don’t need any metric or other geometrical structure on your 3d spacetime
manifold for this theory to make sense. Thus it admits all coordinate transformations (or
more precisely, all diffeomorphisms) as symmetries. In particular, this means that the
quantity folks like to compute whenever they see a quantum field theory — the partition
function, which you get by doing a path integral a la Feynman — is an invariant of
3-dimensional manifold you happen to have taken as “spacetime”.

Now computing path integrals is often a very dubious and tricky business. They are
integrals over the space of all possible histories of the classical fields corresponding to
your quantum field theory. This is a big fat infinite-dimensional space, of the sort to
which ordinary integration theory doesn’t really apply. If you aren’t very careful, path
integrals often give infinite answers. So one very nice thing is that, suitably interpreted,
the path integrals in Chern-Simons theory actually make rigorous sense!

A key advance here was Atiyah’s axioms for topological quantum field theories (or
TQFTs). These axioms formalize exactly what properties you’d hope path integrals would
have in the case of a diffeomorphism-invariant theory. If, by no matter what devilish
tricks, one can get a theory that satisfies these axioms, it’s in many ways just as good if
one had figured out how to make sense of the path integrals by honest labor, because all
the manipulations one would normally want to do are then permitted. The marvelous
thing about Chern-Simons theory is that one can show the TQFT axioms hold starting
from some beautiful algebraic structures called quantum groups. Corresponding to every
“semisimple Lie group” — examples being the groups SU(n) of unitary complex n x n
matrices with determinant 1 — there is a quantum group, which is not really a group,
but a so-called “quasitriangular Hopf algebra.” Amusingly these quantum groups really
depend on Planck’s constant #, and reduce to the ordinary groups in the “classical limit”
h— 0!

Now, where these quantum groups come from has always been a bit of a puzzle. They
can be rigorously shown to exist, that’s for sure. There are also many good algebraic
reasons why they “should” exist. But it is still a bit remarkable that they have the exactly
the properties needed to get Chern-Simons theory to be a TQFT. So people have tried
in many ways to turn the tables on them, and get them from the path integrals. Lots of
these approaches have succeeded, but most of them involve a few subtleties here and
there, so mathematicians, who only feel happy when everything is blindingly obvious (to
them, that is, not you), have continued to seek the most beautiful, elegant way of getting
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at them.
1) Daniel Freed, “Quantum groups from path integrals”, available as q-alg/9501025.

This is a nice expository treatment of the work of Free and Quinn on topological
quantum field theories, particularly Chern-Simons theory with finite gauge group. In
this case, the path integral reduces to a finite sum and one really can get the quantum
group from the path integral very beautifully. But there are some differences in this case
of finite gauge group. For example, the resulting “finite quantum group” does not depend
on h; it’s just the “quantum double” of the group algebra of the group. For more on what
this has to do with marvelous algebraic things like n-categories, the reader should check
out the paper by Freed cited in “Week 12”, which has subsequently been published:

2) Daniel Freed, “Higher algebraic structures and quantization”, Commun. Math. Phys.
159 (1994), 343-398.

and also

3) Daniel Freed and Frank Quinn, “Chern-Simons theory with finite gauge group”,
Commun. Math. Phys. 156 (1993), 435-472.

Now in addition to the path-integral approach to quantum field theory there is an-
other, the so-called Hamiltonian approach, which is very much like the approach people
usually learn in a first course on quantum mechanics: if you know the wavefunction of
your system at ¢ = 0, the Hamiltonian tells you how it evolves in time from then on.
Now this has special subtleties in diffeomorphism-invariant theories. When there is no
unique best coordinate system, there’s no unique best notion of “time evolution”. This
leads to the so-called “problem of time”, very important in quantum gravity, but rather
easier to deal with in toy models like Chern—Simons theory.

Now if we take a 3-dimensional spacetime and look at the ¢ = 0 slice, we will with
some luck get a 2-dimensional manifold, such as a sphere, torus, or more general n-
holed doughnut. This is where the complex analysis comes in, because the complex
plane is 2-dimensional, and we can cover these surfaces with coordinate systems that
look locally like the complex plane, making them into “Riemann surfaces” upon which
we can merrily proceed with complex analysis. In particular, the phase space of classical
Chern-Simons theory is something of which complex analysts have long been enamored,
namely the “moduli space of flat bundles” over our Riemann surface. (Let me reassure
physicists that this “flat” business is merely a weird way of saying that in Chern-Simons
theory the analog of the magnetic field vanishes.)

Now starting from the description of the classical phase space for Chern—-Simons
theory one should be able to get ahold of the quantum theory by some “quantization”
business just as one does in elementary quantum mechanics, where the “classical phase
space” is the space of p’s and ¢’s, and to quantize one merely decrees that these no longer
commute:

pq — qp = —th.

So one should be able to get ahold of quantum groups this way too: starting with the
“moduli space of flat bundles” and “quantizing” it. I had long wondered why nobody
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did this in the way which seemed most tempting and plausible to me. To lapse into jar-
gon for a bit here, since the quantum group is obtained from the group by deformation
quantization, where the Poisson structure of the group itself is described by some “classi-
cal r-matrices”, and since Chern-Simons theory is in some sense obtained by quantizing
the moduli space, where the Poisson structure was explicitly described by Goldman, it
seemed natural to me that somehow the classical r-matrices should be derivable from
Goldman’s formulas. But after a few wimpy tries at figuring it out, with not much suc-
cess, I gave up. Luckily it turns out someone else succeeded nicely, as I found out in a
talk b