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WEEK 201 JANUARY 10, 2004

Week 201

January 10, 2004

Lately James Dolan and I have been studying number theory. I used to hate this subject:
it seemed like a massive waste of time. Newspapers, magazines and even lots of math
books seem to celebrate the idea of people slaving away for centuries on puzzles whose
only virtue is that they’re easy to state but hard to solve. For example: are any odd
numbers the sum of all their divisors? Are there infinitely many pairs of primes that
differ by 2? Is every even number bigger than 2 a sum of two primes? Are there any
positive integer solutions to

xn + yn = zn

for n > 2? My response to all these was: who cares?!
Sure, it’s noble to seek knowledge for its own sake. But working on a math problem

just because it’s hard is like trying to drill a hole in a concrete wall with your nose, just
to prove you can! If you succeed, I’ll be impressed — but I’ll still wonder why you didn’t
put all that energy into something more interesting.

Now my attitude has changed, because I’m beginning to see that behind these silly
hard problems there lurks an actual theory, full of deep ideas and interesting links to
other branches of mathematics, including mathematical physics. It just so happens that
now and then this theory happens to crack another hard nut.

I’d known for a while that something like this must be true: after all, when An-
drew Wiles proved Fermat’s Last Theorem, even the newspapers admitted this was just
a spinoff of something more important, namely a special case of the Taniyama-Shimura
Conjecture. They said this had something to do with elliptic curves and modular forms,
which are very nice geometrical things that show up all over in complex analysis and
string theory. Unfortunately, the actual statement of this conjecture seemed impenetra-
ble — it didn’t resonate with things I understood.

In fact, the Taniyama-Shimura Conjecture is part of a big network of problems that
are more interesting but harder to explain than the flashy ones I listed above: problems
like the Extended Riemann Hypothesis, the Weil Conjecture (now solved), the Birch-
Swinnerton-Dyer Conjecture, and bigger projects like the Langlands Program and devel-
oping the theory of “motives”. And these problems rest on top of a solid foundation of
beautiful stuff that’s already known, like Galois theory and class field theory, and stuff
about modular forms and L-functions.

As I’m gradually beginning to understand little bits of these things, I’m getting really
excited about number theory. . . so I’m dying to explain some of it! But where to start?
I have to start with something basic that underlies all the fancy stuff. Hmm, I think I’ll
start with Galois theory.

As you may have heard, Galois invented group theory in the process of showing you
can’t solve the quintic equation

ax5 + bx4 + cx3 + dx2 + ex+ f = 0

by radicals. In other words, he showed you can’t solve this equation by means of
some souped-up version of the quadratic formula that just involves taking the coefficients
a, b, c, d, e, f and adding, subtracting, multiplying, dividing and taking nth roots.

2



WEEK 201 JANUARY 10, 2004

The basic idea is something like this. In general, a quintic equation has 5 solutions
— and there’s no “best one”, so your formula has got to be a formula for all five. And
there’s a puzzle: how do you give one formula for five things?

Well, think about the quadratic formula! It has that “plus or minus” in it, which comes
from taking a square root. So, it’s really a formula for both solutions of the quadratic
equation. If there were a formula for the quintic that worked like this, we’d have to get
all 5 solutions from different choices of nth roots in this formula.

Galois showed this can’t happen. And the way he did it used symmetry! Roughly
speaking, he showed that the general quintic equation is completely symmetrical under
permuting all 5 solutions, and that this symmetry group — the group of permutations
of 5 things — can’t be built up from the symmetry groups that arise when you take nth
roots.

The moral is this: you can’t solve a problem if the answer has some symmetry, and
your method of solution doesn’t let you write down a correct answer that has this sym-
metry!

An old example of this principle is the medieval puzzle called “Buridan’s Ass”. Placed
equidistant between two equally good piles of hay, this donkey starves to death because
it can’t make up its mind which alternative is best. The problem has a symmetry, but the
donkey can’t go to both bales of hay, so the only symmetrical thing he can do is stand
there.

Buridan’s ass would also get stuck if you asked it for the solution to the quadratic
equation. Galois proof of the unsolvability of the quintic by radicals is just a more sophis-
ticated variation on this theme. (Of course, you can solve the quintic if you strengthen
your methods.)

A closely related idea is “Curie’s principle”, named after Marie’s husband Pierre. This
says that if your problem has a symmetry and it is a unique solution, the solution must
be symmetrical.

For example, if some physical system has rotation symmetry and it has a unique
equilibrium state, this state must be rotationally invariant.

Now, in the case of a ferromagnet below its “Curie temperature”, the equilibrium
state is not rotationally invariant: the little magnetized electrons line up in some spe-
cific direction! But this doesn’t contradict Curie’s principle, since there’s not a unique
equilibrium state — there are lots, since the electrons can line up in any direction.

Physicists use the term “spontaneous symmetry breaking” when any one solution of
a symmetric problem is not symmetrical, but the whole set of them is. This is precisely
what happens with the quintic, or even the quadratic equation.

While these general ideas about symmetry apply to problems of all sorts, their ap-
plication to number theory kicks in when we apply them to fields. A “field” is a gadget
where you can add, subtract, multiply and divide by anything nonzero, and a bunch of
familiar laws of arithmetic hold, which I won’t bore you with here. The three most fa-
mous fields are the rational numbers Q, the real numbers R, and the complex numbers
C. However, there are lots of other interesting fields.

Number theorists are especially fond of algebraic number fields. An “algebraic num-
ber” is a solution to a polynomial equation whose coefficients are rational numbers. You
get an “algebraic number field” by taking the field of rational numbers, throwing in
finitely many algebraic numbers, and then adding, subtracting, multiplying and dividing
them to get more numbers until you’ve got a field.
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For example, we could take the rationals, throw in the square root of 2, and get a
field consisting of all numbers of the form

a+ b
√
2

where a and b are rational. Notice: if we add, multiply, subtract or divide two num-
bers like this, we get another number of this form. So this is really a field — and it’s
called Q(

√
2), since we use round parentheses to denote the result of taking a field and

“extending” it by throwing in some extra numbers.
More generally, we could throw in the square root of any integer n, and get an

algebraic number field called Q(
√
n), consisting of all numbers

a+ b
√
n

where a and b are rational. If
√
n is rational then this field is just Q, which is boring.

Otherwise, we call it a “quadratic number field”.
Even more generally, we could take the rationals and throw in a solution of any

quadratic equation with rational coefficients. But it’s easy to see that this doesn’t give
anything beyond fields like Q(

√
n). And that’s the real reason we call these the “quadratic

number fields”.
There are also “cubic number fields”, and “quartic number fields”, and “quintic num-

ber fields”, and so on. And others, too, where we throw in solutions to a whole bunch of
polynomial equations!

Now, it turns out you can answer lots of classic but rather goofy-sounding number
theory puzzles like “which integers are a sum of two squares?” by converting them into
questions about algebraic number fields. And the good part is, the resulting questions
are connected to all sorts of other topics in math — they’re not just glorified mental
gymnastics! So, from a modern viewpoint, a bunch of classic number theory puzzles are
secretly just tricks to get certain kinds of people interested in algebraic number fields.

But right now I don’t want to explain how we can use algebraic number fields to solve
classic but goofy-sounding number theory puzzles. In fact, I want to downplay the whole
puzzle aspect of number theory.

Instead, I hope you’re reeling with horror at thought of this vast complicated wilder-
ness of fields containing Q but contained in C. First there’s a huge infinite thicket of
algebraic number fields. . . and then, there’s an ever scarier jungle of fields that contain
transcendental numbers like π and e! I won’t even talk about that jungle, it’s so dark and
scary. Physicists usually zip straight past this whole wilderness and work with C.

But in fact, if you stop and carefully examine all the algebraic number fields and
how they sit inside each other, you’ll find some incredibly beautiful patterns. And these
patterns are turning out to be related to Feynman diagrams, topological quantum field
theory, and so on. . .

However, before we can talk about all that, we need to understand the basic tool for
analyzing how one field fits inside another: Galois theory!

A function from a field to itself that preserves addition, subtraction, multiplication
and division is called an “automorphism”. It’s just a symmetry of the field. But now,
suppose we have a field K which contains some smaller field k. Then we define the
“Galois group of K over k” to be the group of all automorphisms of K that act as the
identity on k. We call this group

Gal(K/k)
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for short.
The classic example, familiar to all physicists, is the Galois group of the complex

numbers, C, over the real numbers, R. This group has two elements: the identity trans-
formation, which leaves everything alone, and complex conjugation, which switches i
and −i. Since the only group with 2 elements is Z/2, we have

Gal(C/R) = Z/2

Where does complex conjugation come from? It comes from the fact that we get C from
R by throwing in a solution of the quadratic equation

x2 = −1

We say C is a “quadratic extension of R”. But as soon as we throw in one solution of this
equation, we inevitably throw in another, namely its negative — and there’s no way to
tell which is which. And complex conjugation is the symmetry that switches them!

Note: we know that i and −i are different, but we can’t tell which is which! This
sounds a bit odd at first. It’s a bit hard to explain precisely in ordinary language, which
is part of why Galois had to invent group theory. But it’s fun to try to explain it in plain
English. . . so let me try. The complex numbers have two solutions to

x2 = −1

By convention, one of them is called “i”, and the other is called “−i”. Having made
this convention, there’s never any problem telling them apart. But we could reverse our
convention and nothing would go wrong. For example, if the ghost of Galois wafted
into your office one moonless night and wrote “−i” in all your math and physics books
wherever there had been “i”, everything in these books would still be true!

Here’s another way to think about it. Suppose we meet some extraterrestrials and
find that they too have developed the complex numbers by taking the real numbers and
adjoining a square root of −1, only they call it “@”. Then there would be no way for us to
tell if their “@” was our “i” or our “−i”. All we can do is choose an arbitrary convention
as to which is which.

Of course, if they put their “@” in the lower halfplane when drawing the complex
plane, we might feel like calling it “−i”. . . but here we are secretly making use of a
convention for matching their complex plane with ours, and the other convention would
work equally well! If they drew their real line vertically in the complex plane, it would
be more obvious that we need a convention to match their complex plane with ours, and
that there are two conventions for doing this, both perfectly self-consistent.

If you’ve studied enough physics, this extraterrestrial scenario should remind you of
those thought experiments where you’re trying to explain to some alien civilization the
difference between left and right. . . by means of radio, say, where you’re not allowed to
refer to specific objects you both know — so it’s cheating to say “imagine you’re on Earth
looking at the Big Dipper and the handle is pointing down; then Arcturus is to the right.”

If the laws of physics didn’t distinguish between left and right, you couldn’t explain
the difference between left and right without “cheating” like this, so the laws of physics
would have a symmetry group with two elements: the identity and the transformation
that switches left and right. As it turns out, the laws of physics do distinguish between
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left and right — see “Week 73” for more on that. But that’s another story. My point here
is that the Galois group of C over R is a similar sort of thing, but built into the very fabric
of mathematics! And that’s why complex conjugation is so important.

I could tell you a nice long story about how complex conjugation is related to “charge
conjugation” (switching matter and antimatter) and also “time reversal” (switching past
and future). But I won’t!

Here’s another example of a Galois group that physicists should like. Let C(z) be the
field of rational functions in one complex variable z — in other words, functions like

f(z) =
P (z)

Q(z)

where P and Q are polynomials in z with complex coefficients. You can add, subtract,
multiply and divide rational functions and get other rational functions, so they form a
field. And they contain C as a subfield, because we can think of any complex number
as a constant function. So, we can ask about the Galois group of C(z) over C. What’s it
like?

It’s the Lorentz group!
To see this, it’s best to think of rational functions as functions not on the complex

plane but on the “Riemann sphere” — the complex plane together with one extra point,
the “point at infinity”. The only conformal transformations of the Riemann sphere are
“fractional linear transformations”:

T (z) =
az + b

cz + d

So, the only symmetries of the field of rational functions that act as the identity on
constant functions are those coming from fractional transformations, like this:

f 7→ fT where fT (z) = f(T (z))

If you don’t follow my reasoning here, don’t worry — the details aren’t hard to fill in,
but they’d be distracting here.

The last step is to check that the group of fractional linear transformations is the same
as the Lorentz group. You can do this algebraically, but you can also do it geometrically
by thinking of the Riemann sphere as the “heavenly sphere”: that imaginary sphere the
stars look like they’re sitting on. The key step is to check this remarkable fact: if you
shoot past the earth near the speed of light, the constellations will look distorted by
a Lorentz transformation — but if you draw lines connecting the stars, all the angles
between these lines will remain the same; only their lengths will get messed up!

Moreover, it’s obvious that if you rotate your head, both angles and lengths on
the heavenly sphere are preserved. So, any rotation or Lorentz boost gives an angle-
preserving transformation of the heavenly sphere — that is, a conformal transformation!
And this must be a fractional linear transformation.

Summarizing, the Galois group of C(z) over C is the Lorentz group, or more precisely,
its connected component, SO0(3, 1):

Gal(C(z)/C) = SO0(3, 1).
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We’ve talked about the Galois group of C(z) over C and the Galois group of C over R.
What about the Galois group of C(z) over R? Unsurprisingly, this is the group of trans-
formations of the Riemann sphere generated by fractional linear transformations and
complex conjugation. And physically, this corresponds to taking the connected compo-
nent of the Lorentz group and throwing in time reversal! So you see, complex conjugation
is related to time reversal. But I promised not to go into that. . . .

I’ve been talking about Galois groups that physicists should like, but you’re probably
wondering where the number theory went! Well, it’s all part of the same big story. In
number theory we’re especially interested in Galois groups like

Gal(K/k)

where K is some algebraic number field and k is some subfield of K. For starters,
consider this example:

Gal(Q(
√
n)/Q)

where
√
n is irrational. I’ve already hinted at what this group is! Q(

√
n) has

√
n in it, so

it also has −
√
n in it, and there’s an automorphism that switches these two while leaving

all the rational numbers alone, namely

a+ b
√
n 7→ a− b

√
n (a, b in Q)

So, we have:
Gal(Q(

√
n))/Q) = Z/2

just like the Galois group of C over R.
To get some bigger Galois groups, let’s take Q and throw in a “primitive nth root of

unity”. Hmm, I may need to explain what that means. There are n different nth roots of
1 — but unlike the two square roots of −1, these are not all created equal! Only some
are “primitive”.

For example, among the 4th roots of unity we have 1 and −1, which are actually
square roots of unity, and i and −i, which aren’t. A “primitive nth root of unity” is an nth
root of 1 that’s not an kth root for any k < n. If you take all the powers of any primitive
nth root of unity, you get all the nth roots of unity. So, if we take some primitive nth root
of unity, call it

1
1
n

for lack of a better name, and extend the rationals by this number, we get a field

Q(1
1
n )

which contains all the nth roots of unity. Since the nth roots of unity are evenly dis-
tributed around the unit circle, this sort of field is called a “cyclotomic field”, for the
Greek word for “circle cutting”. In fact, one can apply Galois theory to this field to figure
out which regular n-gons one can construct with a ruler and compass!

But what’s the Galois group
Gal(Q(1

1
n )/Q)

like? Any symmetry in this group must map 1
1
n to some root of unity, say 1

m
n — and once

you know which one, you completely know the symmetry. But actually, this symmetry
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must map 1
1
n to some primitive root of unity, so m has to be relatively prime to n. Apart

from that, though, anything goes — so the size of

Gal(Q(1
1
n )/Q)

is just the number of guys m less than n that are relatively prime to n. And if you think
about it, these numbers relatively prime to n are just the same as elements of Z/n that
have multiplicative inverses! So if you think some more, you’ll see that

Gal(Q(1
1
n )/Q) = (Z/n)×

where (Z/n)× is the “multiplicative group” of Z/n — that is, the elements of Z/n
that have multiplicative inverses, made into a group via multiplication!

This group can be big, but it’s still abelian. Can we get some nonabelian Galois groups
from algebraic number fields?

Sure! Let’s say you take some polynomial equation with rational coefficients, take all
its solutions, throw them into the rationals - and keep adding, subtracting, multiplying
and dividing until you get some field K. This K is called the “splitting field” of your
polynomial.

But here’s the interesting thing: if you pick your polynomial equation at random, the
chances are really good that it has n different solutions if the polynomial is of degree n,
and that any permutation of these solutions comes from a unique symmetry of the field
K. In other words: barring some coincidence, all roots are created equal! So in general
we have

Gal(K/Q) = Sn

where Sn is the group of all permutations of n things.
Sometimes of course the Galois group will be smaller, since our polynomial could

have repeated roots or, more subtly, algebraic relations between roots — as in the cyclo-
tomic case we just looked at.

But, we can already start to see how to prove the unsolvability of the general quintic!
Pick some random 5th-degree polynomial, let K be its splitting field, and note

Gal(K/Q) = S5

Then, show that if we build up an algebraic number field by starting with Q and repeat-
edly throwing in nth roots of numbers we’ve already got, we just can’t get S5 as its Galois
group over the rationals! We’ve already seen this in the case where we throw in a square
root of n, or an nth root of 1. The general case is a bit more work. But instead of giving
the details, I’ll just mention a good textbook on Galois theory for beginners:

1) Ian Stewart, Galois Theory, 3rd edition, Chapman and Hall, New York, 2004.

Ian Stewart is famous as a popularizer of mathematics, and it shows here — he has
nice discussions of the history of the famous problems solved by Galois theory, and a nice
demystification of the Galois’ famous duel. But, this is a real math textbook — so you
can really learn Galois theory from it! Make sure to get the 3rd edition, since it has more
examples than the earlier ones.
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Having given Ian Stewart the dirty work of explaining Galois theory in the usual way,
let me say some things that few people admit in a first course on the subject.

So far, we’ve looked at examples of a field k contained in some bigger field K, and
worked out the group Gal(K/k) consisting of all automorphisms of K that fix everything
in k.

But here’s the big secret: this has nothing to do with fields! It works for ANY sort
of mathematical gadget! If you’ve got a little gadget k sitting in a big gadget K, you get
a “Galois group” Gal(K/k) consisting of symmetries of the big gadget that fix everything
in the little one.

But now here’s the cool part, which is also very general. Any subgroup of Gal(K/k)
gives a gadget containing k and contained in K: namely, the gadget consisting of all the
elements of K that are fixed by everything in this subgroup.

And conversely, any gadget containing k and contained in K gives a subgroup of
Gal(K/k): namely, the group consisting of all the symmetries of K that fix every element
of this gadget.

This was Galois’ biggest idea: we call this a galois correspondence. It lets us use
group theory to classify gadgets contained in one and containing another. He applied it
to fields, but it turns out to be useful much more generally.

Now, it would be great if the Galois corresondence were always a perfect 1-1 corre-
spondence between subgroups of Gal(K/k) and gadgets containing k and contained in
K. But, it ain’t true. It ain’t even true when we’re talking about fields!

However, that needn’t stop us. For example, we can restrict ourselves to cases when
it is true. And this is where the Fundamental Theorem of Galois Theory comes in! It’s
easiest to state this theorem when k and K are algebraic number fields, so that’s what
I’ll do. In this case, there’s a 1-1 correspondence between subgroups of Gal(K/k) and
extensions of k contained in K if:

i) K is a “finite” extension of k. In other words, K is a finite-dimensional vector space
over k.

ii) K is a “normal” extension of k. In other words, if a polynomial with coefficients in
k can’t be factored at all in k, but has one root in K, then all its roots are in K.

For general fields we also need another condition, namely that K be a “separable”
extension of k. But this is automatic for algebraic number fields, so let’s not worry about
it.

At this point, if we had time, we could work out a bunch of Galois groups and see a
bunch of patterns. Using these, we could see why you can’t solve the general quintic us-
ing radicals, why you can’t trisect the angle or double the cube using ruler-and-compass
constructions, and why you can draw a regular pentagon using ruler and compass, but
not a regular heptagon. Basically, to prove something is impossible, you just show that
some number can’t possibly lie in some particular algebraic number field, because it’s
the root of a polynomial whose splitting field has a Galois group that’s “fancier” than the
Galois group of that algebraic number field.

For example, ruler-and-compass constructions produce distances that lie in “iterated
quadratic extensions” of the rationals — meaning that you just keep throwing in square
roots of stuff you’ve got. Doubling the cube requires getting your hands on the cube root

9



WEEK 201 JANUARY 10, 2004

of 2. But the Galois group of the splitting field of

x3 = 2

has size divisible by 3, while an iterated quadratic extension has a Galois group whose
size is a power of 2. Using the Galois correspondence, we see there’s no way to stuff the
former field into the latter.

But you can read about this in any good book on Galois theory, so I’d rather dive right
into that thicket I was hinting at earlier: the field of ALL algebraic numbers! The roots
of any polynomial with coefficients in this field again lie in this field, so we say this field
is “algebraically closed”. And since it’s the smallest algebraically closed field containing
Q, it’s called the “algebraic closure of Q”, or Q for short — that is, Q with a bar over it.
(I can’t quite draw it here.)

This field Q is huge. In particular, it’s an infinite-dimensional vector space over Q.
So, condition i) in the Fundamental Theorem of Galois Theory doesn’t hold. But that’s
no disaster: when this happens, we just need to put a topology on the group Gal(K/k)
and set up the Galois correspondence using closed subgroups of Gal(K/k). Using this
trick, every algebraic number field corresponds to some closed subgroup of Gal(Q/Q).

So, for people studying algebraic number fields,

Gal(Q/Q)

is like the holy grail. It’s the symmetry group of the algebraic numbers, and the key
to how all algebraic number fields sit inside each other! But alas, this group is devil-
ishly complicated. In fact, it has literally driven men mad. One of my grad students
knows someone who had a breakdown and went to the mental hospital while trying to
understand this group!

(There may have been other reasons for his breakdown, too, but as readers of E. T.
Bell’s book “Men in Mathematics” know, the facts should never get in the way of a good
anecdote.)

If Gal(Q/Q) were just an infinitely tangled thicket, it wouldn’t be so tantalizing. But
there are things we can understand about it! To describe these, I’ll have to turn up the
math level a notch. . .

First of all, an extension K of a field k is called “abelian” if Gal(K/k) is an abelian
group. Abelian extensions of algebraic number fields can be understood using something
called class field theory. In particular, the Kronecker-Weber theorem says that every finite
abelian extension of Q is contained in a cyclotomic field. So, they all sit inside a field
called Qcyc, which is gotten by taking the rationals and throwing in all nth roots of unity
for all n. Since

Gal(Q(1
1
n )/Q) = (Z/n)×

we know from Galois theory that Gal(Qcyc/Q) must be a big group containing all the
groups (Z/n)× as closed subgroups. It’s easy to see that (Z/n)× is a quotient group of
(Z/m)× ifm is divisible by n; this lets us take the “inverse limit” of all the groups (Z/m)×

— and that’s Gal(Qcyc/Q). This inverse limit is also the multiplicative group of the ring
Ẑ, the inverse limit of all the rings Z/n. Ẑ is also called the “profinite completion of the
integers”, and I urge you to play around with it if you never have! It’s a cute gadget.

In short:
Gal(Qcyc/Q) = Ẑ×
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and if we stay inside Qcyc, we’re in a zone where the pattern of algebraic number fields
can be understood. This stuff was worked out by people like Weber, Kronecker, Hilbert
and Takagi, with the final keystone, the Artin reciprocity theorem, laid in place by Emil
Artin in 1927. In a certain sense Qcyc is to Q as homology theory is to homotopy theory:
it’s all about abelian Galois groups, so it’s manageable.

People now use Qcyc as a kind of base camp for further expeditions into the depths
of Q. In particular, since

Q ⊂ Qcyc ⊂ Q

we get an exact sequence of Galois groups:

1→ Gal(Q/Qcyc)→ Gal(Q/Q)→ Gal(Qcyc/Q)→ 1

So, to understand Gal(Q/Q) we need to understand Gal(Qcyc/Q), Gal(Q/Qcyc) and how
they fit together! The last two steps are not so easy. Shafarevich has conjectured that
Gal(Q/Qcyc) is the profinite completion of a free group, say F̂ . This would give

1→ F̂ → Gal(Q/Q)→ Z× → 1

but I have no idea how much evidence there is for Shafarevich’s conjecture, or how much
people know or guess about this exact sequence.

More recently, Deligne has turned attention to a certain “motivic” version of Gal(Q/Q),
which is a proalgebraic group scheme. This sort of group has a Lie algebra, which makes
it more tractable. And there are a bunch of fascinating conjectures about this Lie algebra
is related to the Riemann zeta function at odd numbers, Connes and Kreimer’s work on
Feynman diagrams, Drinfeld’s work on the Grothendieck-Teichmueller group, and more!

I really want to understand this stuff better — right now, it’s a complete muddle in
my mind. When I do, I will report back to you. For now, though, let me give you some
references.

For two very nice but very different introductions to algebraic number fields, try
these:

2) H. P. F. Swinnerton-Dyer, A Brief Guide to Algebraic Number Theory, Cambridge U.
Press, Cambridge 2001.

3) Juergen Neukirch, Algebraic Number Theory, trans. Norbert Schappacher, Springer,
Berlin, 1986.

Both assume you know some Galois theory or at least can fake it. Neukirch’s book
is good for the all-important analogy between Galois groups and fundamental groups,
which I haven’t even touched upon here! Swinnerton-Dyer’s book has the virtue of
brevity, so you can see the forest for the trees. Both have a friendly, slightly chatty style
that I like.

For Shafarevich’s conjecture, try this:

4) K. Iwasawa, “On solvable extensions of algebraic number fields”, Ann. Math. 58
(1953) 548–572.

For Deligne’s motivic analogue, try this:
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5) Pierre Deligne, “Le groupe fondamental de la droite projective moins trois points”,
in Galois Groups over Q, MSRI Publications 16 (1989), 79–313.

This stuff has a lot of relationships to 3d topological quantum field theory, braided
monoidal categories, and the like. . . and it all goes back to the Grothendieck-Teichmueller
group. To learn about this group try this book, and especially this article in it:

6) Leila Schneps, “The Grothendieck-Teichmuller group: a survey”, in The Grothendieck
Theory of Dessins D’Enfants, London Math. Society Notes 200, Cambridge U. Press,
Cambridge 1994, pp. 183–204.

To hear and watch some online lectures on this material, try:

7) Leila Schneps, “The Grothendieck-Teichmuller group and fundamental groups of
moduli spaces”, MSRI lecture available at http://www.msri.org/publications/
ln/msri/1999/vonneumann/schneps/1/

“Grothendieck-Teichmuller group and Hopf algebras”, MSRI lecture available at
http://www.msri.org/publications/ln/msri/1999/vonneumann/schneps/2/

For a quick romp through many mindblowing ideas which touches on this material
near the end:

8) Pierre Cartier, “A mad day’s work: from Grothendieck to Connes and Kontsevich —
the evolution of concepts of space and symmetry”, Bulletin of the AMS 38 (2001),
389–408. Also available at http://www.ams.org/

For even more mindblowing ideas along these lines:

9) Jack Morava, “The motivic Thom isomorphism”, talk at the Newton Institute, De-
cember 2002, also available at math.AT/0306151.

Addendum: I received the following email from Avinoam Mann, which corrects some
mistakes I made:

Dear John,

It’s very nice that you’ve come to appreciate the beauties of number theory,
and I enjoyed reading your description of Galois theory, but I hope that you
would not mind if I ask you not to help spread some common misunderstandings
about it. First, it was not Galois who proved the impossibility of solving the
quintic by radicals. This was attempted first by Ruffini, I think in 1799, and the
proof by Abel, about ten years befors Galois, was the one that the mathematical
community accepted. While I often teach Galois theory (e.g. next semester), I
never studied Ruffini’s and Abel’s work in detail. What Galois did was to give a
criterion checking for an arbitrary equation whether it is soluble by radicals or
not.

Another point: there is no need for Galois theory to prove that duplication of
the cube and trisection of an angle cannot be done by ruler and compass. Since
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ruler and compass constructions are equivalent to solving a series of quadratics,
they can lead only to fields F of dimension 2n, for some n, over the rationals.
But the two problems that I mentioned lead to extensions of dimension 3. All
this is very elementary. Similar considerations lead to necessary conditions for
the constructibility of regular polygons, but proving these conditions sufficient
does require more theory (unless, I guess, you provide directly the relevant sys-
tem of quadratics; I think that is what Gauss did — his proof also preceded
Galois). Squaring the circle is, of course, a different matter. Here we need the
transcendence of π.

Best wishes from wet Jerusalem,

Avinoam Mann

It’s true that Abel and Ruffini beat Galois when it came to the quintic; the details of
this history are covered pretty well by Ian Stewart’s book, I think. And, it’s quite true
that one doesn’t need of Galois theory to solve a bunch of these problems: for example,
to show one can’t duplicate the cube, we just need to see that Q(21/3) has dimension
3 as a vector space over Q, while quadratic extensions have dimension 2n. My use of
the Galois correspondence to express this in terms of the size of certain Galois groups
was overkill! The real point of Galois theory is that it provides a unified framework for
tackling a wide range of problems.

Paris, 1 June — A deplorable duel yesterday has deprived the exact sciences
of a young man who gave the highest expectations, but whose celebrated pre-
cosity was lately overshadowed by his political activities. The young Evariste
Galois. . . was fighting with one of his old friends, a young man like himself,
like himself a member of the Society of Friends of the People, and who was
known to have figured equally in a political trial. It is said that love was the
cause of the combat. The pistol was the chosen weapon of the adversaries,
but because of their old friendship they could not bear to look at one another
and left their decision to blind fate.

— Le Precursor, June 4, 1832

13



WEEK 202 FEBRUARY 21, 2004

Week 202

February 21, 2004

This week I’ll deviate from my plan of discussing number theory, and instead say a bit
about something else that’s been on my mind lately: structure types. But, you’ll see my
fascination with Galois theory lurking beneath the surface.

Andre Joyal invented structure types in 1981 — he called them “espèces de struc-
ture”, and lots of people call them “species”. Basically, a structure type is just any sort
of structure we can put on finite sets: an ordering, a coloring, a partition, or whatever.
In combinatorics we count such structures using “generating functions”. A generating
function is a power series where the coefficient of xn keeps track of how many struc-
tures of the given kind we can put on an n-element set. By playing around with these
functions, we can often figure out the coefficients and get explicit formulas — or at least
asymptotic formulas — that count the structures in question.

The reason this works is that operations on generating functions come from opera-
tions on structure types. For example, in “Week 190”, I described how addition, multipli-
cation and composition of generating functions correspond to different ways to get new
structure types from old.

Joyal’s great contribution was to give structure types a rigorous definition, and use
this to show that many calculations involving generating functions can be done directly
with structure types. It turns out that just as generating functions form a set equipped
with various operations, structure types form a category with a bunch of completely
analogous operations. This means that instead of merely proving equations between
generating functions, we can construct isomorphisms between their underlying structure
types — which imply such equations, but are worth much more. It’s like the difference
between knowing two things are equal and knowing a specific reason WHY they’re equal!

Of course, this business of replacing equations by isomorphisms is called “categorifi-
cation”. In this lingo, structure types are categorified power series, just as finite sets are
categorified natural numbers.

A while back, James Dolan and I noticed that since you can use power series to
describe states of the quantum harmonic oscillator, you can think of structure types as
states of a categorified version of this physical system! This gives new insights into the
combinatorial underpinnings of quantum physics.

For example, the discrete spectrum of the harmonic oscillator Hamiltonian can be
traced back to the discreteness of finite sets! The commutation relations between anni-
hilation and creation operators boil down to a very simple fact: there’s one more way
to put a ball in a box and then take one out, than to take one out and then put one in.
Even better, the whole theory of Feynman diagrams gets a simple combinatorial inter-
pretation. But for this, one really needs to go beyond structure types and work with a
generalization called “stuff types”.

I’ve been thinking about this business for a while now, so last fall I decided to start
giving a year-long course on categorification and quantization. The idea is to explain
bunches of quantum theory, quantum field theory and combinatorics all from this new
point of view. It’s fun! Derek Wise has been scanning in his notes, and a bunch of people
have been putting their homework online. So, you can follow along if you want:

14



WEEK 202 FEBRUARY 21, 2004

1) John Baez and Derek Wise, “Quantization and Categorification”.
Fall 2003 notes: http://math.ucr.edu/home/baez/qg-fall2003
Winter 2004 notes: http://math.ucr.edu/home/baez/qg-winter2004/
Spring 2004 notes: http://math.ucr.edu/home/baez/qg-spring2004/

I’d like to give you a little taste of this subject now. But, instead of explaining it in de-
tail, I’ll just give some examples of how structure types yield some far-out generalizations
of the concept of “cardinality”. This stuff is a continuation of some themes developed in
“Week 144”, “Week 147”, “Week 185”, “Week 190”, so I’ll start with a review.

Suppose F is a structure type. Let Fn be the set of ways we can put this structure on
a n-element set, and let |Fn| be the number of ways to do it. In combinatorics, people
take all these numbers |Fn| and pack them into a single power series. It’s called the
generating function of F , and it’s defined like this:

|F |(x) =
∑ |Fn|

n!
xn

It may not converge, so in general it’s just a “formal” power series — but for interesting
structure types it often converges to an interesting function.

What’s good about generating functions is that simple operations on them correspond
to simple operations on structure types. We can use this to count structures on finite sets.
Let me remind you how it works for binary trees!

There’s a structure type T where a T -structure on a set is a way of making it into the
leaves of a binary tree drawn in the plane. For example, here’s one T -structure on the
set {a, b, c, d}:

b d c a

Thanks to the choice of different orderings, the number of T -structures on an n-element
set is n! times the number of binary trees with n leaves. Annoyingly, the latter number is
traditionally called the (n− 1)st Catalan number, Cn−1. So, we have:

|T |(x) =
∑
n=1

Cn−1x
n.

There’s a nice recursive definition of T :

“To put a T -structure on a set, either note that it has one element, in which
case there’s just one T -structure on it, or chop it into two subsets and put a
T -structure on each one.”

In other words, any binary tree is either a degenerate tree, with just one leaf:

X

15
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or a pair of binary trees stuck together at the root:

T T

We can write this symbolically as
T ∼= X + T 2

Here’s why: X is a structure type called “being the one-element set”, + means “ex-
clusive or”, and squaring a structure type means you chop your set in two parts and put
that structure on each part. (I explained these rules more carefully in “Week 190”.)

Note that we only have an isomorphism between structure types here, not an equa-
tion. But if we take the generating function of both sides we get an actual equation, and
the notation is set up to make this really easy:

|T | = x+ |T |2

In “Week 144” I showed how you can solve this using the quadratic equation:

|T | = 1−
√
1− 4x

2

and then do a Taylor expansion to get

|T | = x+ x2 + 2x3 + 5x4 + 14x5 + 42x6 + . . .

Lo and behold! The coefficient of xn is the number of binary trees with n leaves!
There’s also another approach where we work directly with the structure types them-

selves, instead of taking generating functions. This is harder because we can’t subtract
structure types, or divide them by 2, or take square roots of them — at least, not without
stretching the rules of this game. All we can do is use the isomorphism

T ∼= X + T 2

and the basic rules of category theory. It’s not as efficient, but it’s illuminating. It’s
also incredibly simple: we just keep sticking in “X + T 2” wherever we see “T ” on the
right-hand side, over and over again. Like this:

T ∼= X + T 2

∼= X + (X + T 2)2

∼= X + (X + (X + T 2)2)2

and so on. You might not think we’re getting anywhere, but if you stop at the nth stage
and expand out what we’ve got, you’ll get the first n terms of the Taylor expansion we
had before! At least, you will if you count “stages” and “terms” correctly.

I won’t actually do this, because it’s better if you do it yourself. When you do, you’ll
see it captures the recursive process of building a binary tree from lots of smaller binary
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trees. Each time you see a “T ” and replace it with an “X + T 2”, you’re really taking a
little binary tree:

T

and replacing it with either a degenerate tree with just a single leaf:

X

or a pair of binary trees:
T T

So, each term in the final result actually corresponds to a specific tree! This is a good
example of categorification: when we calculate the coefficient of xn this way, we’re not
just getting the number of binary planar trees with n leaves — we’re getting an actual
explicit description of the set of such trees.

Now, what happens if we take the generating function |T |(x) and evaluate it at x = 1?
On the one hand, we get a divergent series:

|T |(1) = 1 + 1 + 2 + 5 + 14 + 42 + . . .

This is the sum of all Catalan numbers — or in other words, the number of binary
planar trees. On the other hand, we can use the formula

|T | = 1−
√
1− 4x

2

to get

|T | = 1−
√
−3

2

It may seem insane to conclude

1 + 1 + 2 + 5 + 14 + 42 + . . . =
1−
√
−3

2

but Lawvere noticed that there’s a kind of strange sense to it.
The trick is to work not with generating function |T | but with the structure type T

itself. Since |T |(1) is equal to the number of planar binary trees, T (1) should be naturally
isomorphic to the set of planar binary trees. And it is — it’s obvious, once you think
about what it really means.

The number of binary planar trees is not very interesting, but the set of them is. In
particular, if we take the isomorphism

T ∼= X + T 2

and set X = 1, we get an isomorphism

T (1) ∼= 1 + T (1)2

which says

17
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“a planar binary tree is either the tree with one leaf or a pair of planar binary
trees.”

Starting from this, we can derive lots of other isomorphisms involving the set T (1),
which turn out to be categorified versions of equations satisfied by the number

|T |(1) = 1−
√
−3

2

For example, this number is a sixth root of unity. While there’s no one-to-one corre-
spondence between 6-tuples of trees and the 1 element set, which would categorify the
formula

|T |(1)6 = 1

there is a very nice one-to-correspondence between 7-tuples of trees and trees, which
categorifies the formula

|T |(1)7 = |T |(1)

Of course the set of binary trees is countably infinite, and so is the set of 7-tuples of binary
trees, so they can be placed in one-to-one correspondence — but that’s boring. When I
say “very nice”, I mean something more interesting: starting with the isomorphism

T ∼= X + T 2

we get a one-to-one correspondence

T (1) ∼= 1 + T (1)2

which says that any binary planar tree is either degenerate or a pair of binary planar
trees. . . and using this we can construct a one-to-one correspondence

T (1)7 ∼= T (1)

The construction is remarkably complicated. Even if you do it as efficiently as possi-
ble, I think it takes 18 steps, like this:

T (1)7 ∼=T (1)6 + T (1)8

∼= . . .

...
∼=1 + T (1) + T (1)2 + T (1)4

∼=1 + T (1) + T (1)3

∼=1 + T (1)2

∼=T (1).

I’ll let you fill in the missing steps — it’s actually quite fun if you like puzzles.
If you get stuck, you can find the answer online in a couple of different places:

2) Andreas Blass, “Seven trees in one”, Jour. Pure Appl. Alg. 103 (1995), 1–21. Also
available at http://www.math.lsa.umich.edu/~ablass/cat.html
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3) Marcelo Fiore, “Isomorphisms of generic recursive polynomial types”, to appear in
31st Symposium on Principles of Programming Languages (POPL04). Also available
at http://www.cl.cam.ac.uk/~mpf23/papers/Types/recisos.ps.gz

Or, take a peek at the “Addenda” down below.
Robbie Gates, Marcelo Fiore and Tom Leinster have also proved some very general

theorems about this sort of thing. Gates focused on “distributive categories” (categories
with with products and coproducts, the former distributing over the latter), while the
work of Fiore and Leinster applies to more general “rig categories”:

4) Robbie Gates, “On the generic solution to P (X) = X in distributive categories”,
Jour. Pure Appl. Alg. 125 (1998), 191–212.

5) Marcelo Fiore and Tom Leinster, “Objects of categories as complex numbers”, avail-
able as math.CT/0212377.

A rig category is basically the most general sort of category in which we can “add”
and “multiply” as we do in a ring — but without negatives, hence the missing letter “n”.
It turns out that whenever we have an object Z in a rig category and it’s equipped with
an isomorphism

Z = P (Z)

where P is a polynomial with natural number coefficients, we can associate to it a “car-
dinality” |Z|, namely any complex solution of the equation

|Z| = P (|Z|)

Which solution should we use? Well, for simplicity let’s consider the case where P
has degree at least 2 and the relevant Galois group acts transitively on the solutions of
this equation, so “all roots are created equal”. Then we can pick any solution as the
cardinality |Z|. Any polynomial equation with natural number coefficients satisfied by
one solution will be satisfied by all solutions, so it won’t matter which one we choose.

Now suppose the cardinality |Z| satisfies such an equation:

Q(|Z|) = R(|Z|)

where neither Q nor R is constant. Then the results of Fiore and Leinster say we can
construct an isomorphism

Q(Z) = R(Z) !

In other words, a bunch of equations satisfied by the object’s cardinality automatically
come from isomorphisms involving the object itself.

This explains why the set T (1) of binary trees acts like it has cardinality

|T |(1) = 1−
√
−3

2

or equally well,

|T |(1) = 1 +
√
−3

2
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(Since the relevant Galois group interchanges these two numbers, we can use either
one.) More generally, the set T (n) consisting of binary trees with n-colored leaves acts a
lot like the number |T |(n).

This has gotten me interested in trying to find a nice example of a “Golden Object”:
an object G in some rig category that’s equipped with an isomorphism

G2 = G+ 1

The Golden Object doesn’t fit into Fiore and Leinster’s formalism, since this isomorphism
is not of the form G = P (G) where P has natural number coefficients. But, it still seems
that such an object deserves to have a “cardinality” equal to the golden number:

|G| = 1 +
√
5

2
= 1.618033988749894848204586834365 . . .

James Propp came up with an interesting idea related to the Golden Object: consider
what happens when we evaluate the generating function for binary trees at −1. On the
one hand we get an alternating sum of Catalan numbers:

|T |(−1) = −1 + 1− 2 + 5− 14 + 42 + . . .

On the other hand, we can use the formula

|T | = 1−
√
1− 4x

2

to get

|T |(−1) = 1−
√
5

2

which is −1 divided by the golden number. Of course, it’s possible we should use the
other sign of the square root, and get

|T |(−1) = 1 +
√
52

which is just the golden number! Galois theory says these two roots are created equal.
Either way, we get a bizarre and fascinating formula:

−1 + 1− 2 + 5− 14 + 42 + . . . =
1±
√
5

2

Can we fit this into some clear and rigorous framework, or is it just nuts? We’d like some
generalization of cardinality for which “the set of binary trees with −1-colored leaves”
has cardinality equal to the golden number.

James Propp suggested one avenue. A while back, Steve Schanuel made an incredibly
provocative observation: if we treat “Euler measure” as a generalization of cardinality, it
makes sense to treat the real line as a “space of cardinality −1”:

6) Stephen H. Schanuel, “What is the length of a potato?: an introduction to geomet-
ric measure theory”, in Categories in Continuum Physics, Springer Lecture Notes in
Mathematics 1174, Springer, Berlin, 1986, pp. 118–126.
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7) Stephen H. Schanuel, “Negative sets have Euler characteristic and dimension”, Lec-
ture Notes in Mathematics 1488, Springer Verlag, Berlin, 1991, pp. 379–385.

James Propp has developed this idea in a couple of fascinating papers:

8) James Propp, “Euler measure as generalized cardinality”, available as arXiv:math/
0203289.

9) James Propp, “Exponentiation and Euler measure”, available as arXiv:math/0204009.

Using this idea, it seems reasonable to consider the space of binary trees with leaves
labelled by real numbers as a rigorous version of “the set of binary trees with −1-colored
leaves”. So, we just need to figure out what generalization of Euler characteristic gives
this space an Euler characteristic equal to the golden number. It would be great if we
could make this space into a Golden Object in some rig category, but that may be asking
too much.

Whew! There’s obviously a lot of work left to be done here. Here’s something easier:
a riddle. What’s this sequence?

un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu,. . .

The answer is at the end of this article.
Now I’d like to mention some important papers on n-categories. You may think I’d

lost interest in this topic, because I’ve been talking about other things. But it’s not true!
Most importantly, Tom Leinster has come out with a big book on n-categories and

operads:

10) Tom Leinster, Higher Operads, Higher Categories, Cambridge U. Press, Cambridge,
2003. Also available as math.CT/0305049.

As you’ll note, he managed to talk the press into letting him keep his book freely
available online! We should all do this. Nobody will ever make much cash writing
esoteric scientific tomes — it takes so long, you could earn more per hour digging ditches.
The only financial benefit of writing such a book is that people will read it, think you’re
smart, and want to hire you, promote you, or invite you to give talks in cool places. So,
maximize your chances of having people read your books by keeping them free online!
People will still buy the paper version if it’s any good. . . .

And indeed, Leinster’s book has many virtues besides being free. He gracefully leads
the reader from the very basics of category theory straight to the current battle front of
weak n-categories, emphasizing throughout how operads automatically take care of the
otherwise mind-numbing thicket of “coherence laws” that inevitably infest the subject.
He doesn’t take well-established notions like “monoidal category” and “bicategory” for
granted — instead, he dives in, takes their definitions apart, and compares alternatives
to see what makes these concepts tick. It’s this sort of careful thinking that we des-
perately need if we’re ever going to reach the dream of a clear and powerful theory of
higher-dimensional algebra. He does a similar careful analysis of “operads” and “multi-
categories” before presenting a generalized theory of operads that’s powerful enough to
support various different approaches to weak n-categories. And then he describes and
compares some of these different approaches!
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In short: if you want to learn more about operads and n-categories, this is the book
to read.

Leinster doesn’t say too much about what n-categories are good for, except for a
nice clear introduction entitled “Motivation for Topologists”, where he sketches their
relevance to homology theory, homotopy theory, and cobordism theory. But this is un-
derstandable, since a thorough treatment of their applications would vastly expand an
already hefty 380-page book, and diffuse its focus. It would also steal sales from my
forthcoming book on higher-dimensional algebra — which would be really bad, since I
plan to retire on the fortune I’ll make from this.

Secondly, Michael Batanin has worked out a beautiful extension of his ideas on n-
categories which sheds new light on their applications to homotopy theory:

11) Michael A. Batanin, “The Eckmann-Hilton argument, higher operads andEn spaces”,
available as math.CT/0207281.

Michael A. Batanin, “The combinatorics of iterated loop spaces”, available as math.
CT/0301221.

Getting a manageable combinatorial understanding of the space of loops in the spaces
of loops in the space of loops. . . in some space has always been part of the dream
of higher-dimensional algebra. These “k-fold loop spaces” or have been important in
homotopy theory since the 1970s — see the end of “Week 199” for a little bit about
them. People know that k-fold loop spaces have k different products that commute up to
homotopy in a certain way that can be summarized by saying they are algebras of the Ek

operad, also called the “little k-cubes operad”. However, their wealth of structure is still
a bit mind-boggling. James Dolan and I made some conjectures about their relation to
k-tuply monoidal categories in our paper “Categorification” (see “Week 121”), and now
Batanin is making this more precise using his approach to n-categories — which is one
of the ones described in Leinster’s book.

There’s also been a lot of work applying higher-dimensional algebra to topological
quantum field theory — that’s what got me interested in n-categories in the first place,
but a lot has happened since then. For a highly readable introduction to the subject, with
tons of great pictures, try:

12) Joachim Kock, Frobenius Algebras and 2D Topological Quantum Field Theories, Cam-
bridge U. Press, Cambridge, 2003.

This is mainly about 2d TQFTs, where the concept of “Frobenius algebra” reigns
supreme, and everything is very easy to visualize.

When we go up to 3-dimensional spacetime life gets harder, but also more interest-
ing. This book isn’t so easy, but it’s packed with beautiful math and wonderfully drawn
pictures:

13) Thomas Kerler and Volodymyr L. Lyubashenko, Non-Semisimple Topological Quan-
tum Field Theories for 3-Manifolds with Corners, Lecture Notes in Mathematics
1765, Springer, Berlin, 2001.

The idea is that if we can extend the definition of a quantum field theory to space-
times that have not just boundaries but corners, we can try to build up the theory for
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arbitrary spacetimes from its behavior on simple building blocks — since it’s easier to
chop manifolds up into a few basic shapes if we let those shapes have corners. However,
it takes higher-dimensional algebra to describe all the ways we can stick together man-
ifolds with corners! Here Kerler and Lyubashenko make 3-dimensional manifolds going
between 2-manifolds with boundary into a “double category”. . . and make a bunch of
famous 3d TQFTs into “double functors”.

Closely related is this paper by Kerler:

14) Thomas Kerler, “Towards an algebraic characterization of 3-dimensional cobor-
disms”, Contemp. Math. 318 (2003) 141–173. Also available as arXiv:math/

0106253.

It relates the category whose objects are 2-manifolds with a circle as boundary, and
whose morphisms are 3-manifolds with corners going between these, to a braided monoidal
category “freely generated by a Hopf algebra object”. (I’m leaving out some fine print
here, but probably putting in more than most people want!) It comes close to show-
ing these categories are the same, but suggests that they’re not quite — so the perfect
connection between topology and higher categories remains elusive in this important
example.

Answer to the riddle: these are the Catalan numbers — i.e., the natural numbers as
written in Catalan. This riddle was taken from the second volume of Stanley’s book on
enumerative combinatorics (see “Week 144”).

Addenda: Long after this issue was written, we had a discussion on the n-Category
Café about the “seven trees in one” problem. Let B be the set of binary planar trees —
the set I was calling T (1) above. Starting from the isomorphism

B ∼= B2 + 1

we want to construct an isomorphism

B ∼= B7

Here is the proof in Marcelo Fiore’s paper:

At each step he either replaces Bn by Bn−1 + Bn+1, or the reverse. The underlined
portion shows where this will be done. Over at the n-Café, Stuart Presnell made a
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beautiful picture of this proof:

He also made a picture of another proof, which is on page 29 of Pierre Ageron’s book
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Logiques, Ensembles, Catgories: Le Point de Vue Constructif:

You can watch a movie of a proof here:

15) Dan Piponi,” Arboreal isomorphisms from nuclear pennies”, A Neighborhood of
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Infinity, September 30, 2007. Available at http://blog.sigfpe.com/2007/09/

arboreal-isomorphisms-from-nuclear.html.

It was in the ensuing discussion on this blog that George Bell came up with his more
efficient proof. For a bit more discussion, see:

16) John Baez, ‘Searching for a video proof of “seven trees in one” ’, n-Category Café,
July 16, 2009. Available at http://golem.ph.utexas.edu/category/2009/07/
searching for a video proof of.html.

Now, on to some older addenda!
My pal Squark pointed out that if we try to compute the generating function for

binary trees by making an initial guess for |T |(x), say t, and repeatedly improving this
guess via

t 7→ x+ t2

the guess will converge to the right answer if t is small — but the process will fail
miserably, with t approaching ∞, if and only if the complex number x lies outside the
Mandelbrot set!

After an earlier version of this Week appeared on the category theory mailing list,
Steve Schanuel posted some corrections. I’ve tried to correct the text above as much as
possible without making it too technical — for example, by citing the important work
of Robbie Gates, and distinguishing more clearly between his work on distributive cate-
gories and the paper by Fiore and Leinster, which applies to rig categories. I tend to talk
about 3 different sorts of ring-like categories in This Week’s Finds:

• Rig categories. A rig category is one equipped with a symmetric monoidal struc-
ture called + and a monoidal structure called ⊗, with all the usual rig axioms
holding up to natural isomorphism, and these isomorphisms satisfying a set of co-
herence laws worked out by Laplaza and Kelly:

17) M. Laplaza, “Coherence for distributivity”, Lecture Notes in Mathematics 281,
Springer Verlag, Berlin, 1972, pp. 29–72.

18) G. Kelly, “Coherence theorems for lax algebras and distributive laws”, Lecture
Notes in Mathematics 420, Springer Verlag, Berlin, 1974, pp. 281–375.

(These authors spoke of “ring categories”, but the term “rig category” is more ap-
propriate since, as in a rig, there need be no additive inverses.)

• 2-Rigs. A 2-rig is a symmetric monoidal cocomplete category where the monoidal
structure, which we call ⊗, distributes over the colimits, which we think of as
a generalized form of addition. For more on rigs, 2-rigs and structure types see
week191. In a 2-rig, distributivity is just a property of the monoidal structure,
rather than a structure, as it is in a rig category. However, by choosing a particular
coproduct for each pair of objects, and a particular initial object, we can promote
any 2-rig to a rig category. To get an example of a rig category that’s not a 2-rig,
just take any rig and think of it as a discrete category (a category with only identity
morphisms). Another example would be the category of finite-dimensional vector
spaces, since this only has finite colimits. (Of course, we could make up some sort
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of “finitary 2-rig” that only had finite colimits, but the profusion of terminology is
already annoying.)

• Distributive categories. A distributive category is a category with finite products
and coproducts, the products distributing over the coproducts. Here again, dis-
tributivity is just a property. But, by choosing specified products and coproducts
for every pair of objects, and choosing terminal and initial objects, we can promote
any distributive category into a rig category. A good example of a 2-rig that is not
a distributive category is the category Vect, with direct sum and tensor product as
+ and ⊗. Another example is the discrete category on a rig.

By not distinguishing these, the original version of “Week 202” made it sound as if
Fiore and Leinster had simply redone Gates’ work on distributive categories. I hope this
is a bit clearer now. Schanuel’s remarks are still worth reading for their description of
what Gates actually did:

Dear colleagues,

For those who read the most recent long discursion of John Baez, a few of the
errors in the section on distributive categories merit correction:

(1) J. B. suggests that Blass published what Lawvere had already worked out.
In fact, Lawvere (partly to counteract some incorrect uses of infinite series
in analyses of ‘data types’ in computer science) had worked out the algebra
of the rig presented by one generator $ $and one relation X = 1 + X2,
roughly by the method in (3) below, and conjectured that this rig could
be realized as the isomorphism classes in a distributive (even extensive)
category, which conjecture Blass then proved (and a bit more) in “Seven
Trees. . . ”.

(2) The generalization of Blass’s theorem to one generator ond one polyno-
mial relation of the ‘fixed-point’ form X = p(X), where p is a polynomial
with natural number coefficients and nonzero constant term is not, as J.
B. seems to suggest, due to Fiore and Leinster; it was part of the prize-
winning doctoral thesis of Robbie Gates, who (using a calculus of fractions)
described explicitly the free distributive category on one object X together
with an isomorphism from p(X) to X, proving that this category is exten-
sive and that its rig of isomorphism classes satisfies no further relations,
i.e. is the rig R presented by one generator and the one relation above.

(3) If p is as in (2) and of degree at least 2, the algebra of the rig R is made by
J. B. to seem mysterious. It is more easily understood in the way the X =
2X +1 case was treated in my “Negative Sets. . . ” paper; just show that the
Euler and dimension homomorphisms, tensoring with Z and with 2 (the
rig true/false) respectively, are jointly injective. In this case the dimension
rig has only three elements, which explains why the Euler characteristic
captures almost, but not quite, everything.

Greetings to all,
Steve Schanuel
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A traveller who refuses to pass over a bridge until he personally tests the
soundness of every part of it is not likely to go far; something must be risked,
even in mathematics.

— Horace Lamb
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Week 203

February 28, 2004

Last week I posed this puzzle: to find a “Golden Object”.
A couple days ago I got a wonderful solution from Robin Houston, a computer science

grad student at the University of Manchester. So, I want to say a bit more about the
golden number, then describe his solution, and then describe how he found it.

Supposedly the Greeks thought the most beautiful rectangle was one such that when
you chop a square off one end, you’re left with a rectangle of the same shape. If your
original rectangle was 1 unit across and G units long, after you chop a 1-by-1 square off
the end you’re left with a rectangle that’s G− 1 units across and 1 unit long:

1 G− 1

1

G

So, to make the proportions of the little rectangle the same as those of the big one, you
want

“1 is to G as G-1 is to 1”

or in other words:
1

G
= G− 1

or after a little algebra,
G2 = G+ 1

so that

G =
1 +
√
5

2
= 1.618033988749894848204586834365 . . .

while
1

G
= 1.618033988749894848204586834365 . . .

and
G2 = 2.618033988749894848204586834365 . . .

(At this point I usually tell my undergraduates that the pattern continues like this, with
G3 = 3.618 . . . and so on — just to see if they’ll believe anything I say.)

These days, the number G is called the Golden Number, the Golden Ratio, or the
Golden Section. It’s often denoted by the Greek letter Φ, after the Greek sculptor Phidias.
Phidias helped design the Parthenon - and supposedly packed it full of golden rectangles,
to make it as beautiful as possible.
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The golden number is a great favorite among amateur mathematicians, because it
has a flashy sort of charm. You can find it all over the place if you look hard enough —
and if you look too hard, you’ll find it even in places where it’s not. It’s the ratio of the
diagonal to the side of a regular pentagon! If you like the number 5, you’ll be glad to
know that

G =

√
5 +
√
5

5−
√
5

If you don’t, maybe you’d prefer this:

G = exp

(
arcsinh

(
1

2

))
My favorite formulas for the golden number are

G =

√√√√√
1 +

√√√√
1 +

√
1 +

√
1 +

√
1 +
√
1 + . . .

and the continued fraction:
G = 1 +

1

1 + 1
1+ 1

1+ 1
1+

These follow from the equations G2 = G+ 1 and G = 1 + 1/G, respectively. If you chop
off the continued fraction for G at any point, you’ll see that G is also the limit of the
ratios of successive Fibonacci numbers. See “Week 190” for a very different proof of this
fact.

However, don’t be fooled! The charm of the golden number tends to attract kooks
and the gullible — hence the term “fool’s gold”. You have to be careful about anything
you read about this number. In particular, if you think ancient Greeks ran around in
togas philosophizing about the “golden ratio” and calling it “Φ”, you’re wrong. This
number was named Φ after Phidias only in 1914, in a book called The Curves of Life by
the artist Theodore Cook. And, it was Cook who first started calling 1.618 . . . the golden
ratio. Before him, . . . 0.618 was called the golden ratio! Cook dubbed this number “φ”,
the lower-case baby brother of Φ.

In fact, the whole “golden” terminology can only be traced back to 1826, when it
showed up in a footnote to a book by one Martin Ohm, brother of Georg Ohm, the
guy with the law about resistors. Before then, a lot of people called 1/G the “Divine
Proportion”. And the guy who started that was Luca Pacioli, a pal of Leonardo da Vinci
who translated Euclid’s Elements. In 1509, Pacioli published a 3-volume text entitled
Divina Proportione, advertising the virtues of this number. Some people think da Vinci
used the divine proportion in the composition of his paintings. If so, perhaps he got the
idea from Pacioli.

Maybe Pacioli is to blame for the modern fascination with the golden ratio; it seems
hard to trace it back to Greece. These days you can buy books and magazines about
“Elliot Wave Theory”, a method for making money on the stock market using patterns
related to the golden number. Or, if you’re more spiritually inclined, you can go to
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workshops on “Sacred Geometry” featuring talks about the healing powers of the golden
ratio. But Greek texts seem remarkably quiet about this number.

The first recorded hint of it is Proposition 11 in Book II of Euclid’s Elements. It also
shows up elsewhere in Euclid, especially Proposition 30 of Book VI, where the task is “to
cut a given finite straight line in extreme and mean ratio”, meaning a ratio A : B such
that

A : B :: (A+B) : A

i.e. ”A is to B as A+B is to A”

This is later used in Proposition 17 of Book XIII to construct the pentagonal face of a
regular dodecahedron.

Of course, Euclid wasn’t the first to do all these things; he just wrote them up in a
nice textbook. By now it’s impossible to tell who discovered the golden ratio and just
what the Greeks thought about it. For a sane and detailed look at the history of the
golden ratio, try this:

1) J. J. O’Connor and E. F. Robertson, “The Golden Ratio”, http://www-gap.dcs.
st-and.ac.uk/~history/HistTopics/Golden ratio.html

While I’m at it, I should point out that Theodore Cook’s book introducing the notation
“Φ” is still in print:

2) Theodore A. Cook, The Curves of Life: Being an Account of Spiral Formations and
Their Application to Growth in Nature, to Science, and to Art: with Special Reference
to the Manuscripts of Leonardo da Vinci, Dover Publications, New York, 1979.

If you want to see what Euclid said about the golden ratio, you can also pick up a
cheap copy of the Elements from Dover — but it’s probably quicker to go online. There
are a number of good places to find Euclid’s Elements online these days.

Topologists know David Joyce as the inventor of the “quandle” — an algebraic struc-
ture that captures most of the information in a knot. Now he’s writing a high-tech edition
of Euclid, complete with Java applets:

3) David E. Joyce’s edition of Euclid’s Elements, http://aleph0.clarku.edu/~djoyce/
java/elements/toc.html

Joyce is carrying on a noble tradition: back in 1847, Oliver Byrne did a wonderful
edition of Euclid complete with lots of beautiful color pictures and even some pop-up
models. You can see this online at the Digital Mathematics Archive:

4) Oliver Byrne’s edition of Euclid’s Elements, online at the Digital Mathematics Archive,
http://www.sunsite.ubc.ca/DigitalMathArchive/

The most famous scholarly English translation of Euclid was done by Sir Thomas
Heath in 1908. You can find it together with an edition in Greek and a nearly infinite
supply of other classical texts at the Perseus Digital Library:

5) Thomas L. Heath’s edition of Euclid’s Elements, online at The Perseus Digital Li-
brary, http://www.perseus.tufts.edu/
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But I’m digressing! My main point was that while G = (1 +
√
5)/2 is a neat number,

it’s a lot easier to find nuts raving about it on the net than to find truly interesting math-
ematics associated with it — or even interesting references to it in Greek mathematics!
The cynic might conclude that the charm of this number is purely superficial. However,
that would be premature.

First of all, there’s a certain sense in which G is “the most irrational number”. To get
the best rational approximations to a number you use its continued fraction expansion.
For G, this converges as slowly as possible, since it’s made of all 1’s:

G = 1 +
1

1 + 1
1+ 1

1+ 1
1+

We can make this more precise. For any number x there’s a constant c(x) that says how
hard it is to approximate x by rational numbers, given by

lim inf
q→∞

∣∣∣∣x− p

q

∣∣∣∣ = c(x)

q2

where q ranges over integers, and p is an integer chosen to minimize |x − p/q|. This
constant is as big as possible when x is the golden ratio!

It’d be ironic if the famously “rational” Greeks, who according to legend even drowned
the guy who proved

√
2 was irrational, chose the most irrational number as the propor-

tions of their most beautiful rectangle! But, it wouldn’t be a coincidence. Their obsession
with ratios and proportions led them to ponder the situation where A : B :: (A+B) : A,
and this proportion instantly implies that A and B are incommensurable, since if you
assume A and B are integers and try to find their greatest common divisor using Euclid’s
algorithm, you get stuck in an infinite loop. Euclid even mentions this idea in Proposition
2 of Book X:

If, when the less of two unequal magnitudes is continually subtracted in turn
from the greater that which is left never measures the one before it, then the two
magnitudes are incommensurable.

He doesn’t explicitly come out and apply it to what we now call the golden ratio —
but how could he not have made the connection? For more info on the Greek use of con-
tinued fractions and the Euclidean algorithm, check out the chapter on “antihyphairetic
ratio theory” in this book:

6) D. H. Fowler, The Mathematics of Plato’s Academy: A New Reconstruction, Oxford U.
Press, Oxford, 1987.

Anyway, it’s actually important in physics that the golden number is so poorly ap-
proximated by rationals. This fact shows up in the Kolmogorov- Arnold-Moser theorem,
or “KAM theorem”, which deals with small perturbations of completely integrable Hamil-
tonian systems. Crudely speaking, these are classical mechanics problems that have as
many conserved quantities as possible. These are the ones that tend to show up in text-
books, like the harmonic oscillator and the gravitational 2-body problem. The reason is
that you can solve such problems if you can do a bunch of integrals — hence the term
“completely integrable”.
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The cool thing about a completely integrable system is that time evolution carries
states of the system along paths that wrap around tori. Suppose it takes n numbers
to describe the position of your system. Then it also takes n numbers to describe its
momentum, so the space of states is 2n-dimensional. But if the system has n different
conserved quantities — that’s basically the maximum allowed — the space of states will
be foliated by n-dimensional tori. Any state that starts on one of these tori will stay on
it forever! It will march round and round, tracing out a kind of spiral path that may or
may not ever get back to where it started.

Things are pretty simple when n = 1, since a 1-dimensional torus is a circle, so the
state has to loop around to where it started. For example, when you have a pendulum
swinging back and forth, its position and momentum trace out a loop as time passes.

When n is bigger, things get trickier. For example, when you have n pendulums
swinging back and forth, their motion is periodic if the ratios of their frequencies are
rational numbers.

This is how it works for any completely integrable system. For any torus, there’s an
n-tuple of numbers describing the frequency with which paths on this torus wind around
in each of the n directions. If the ratios of these frequencies are all rational, paths on
this torus trace out periodic orbits. Otherwise, they don’t!

KAM theory says what happens when you perturb such a system a little. It won’t
usually be completely integrable anymore. Interestingly, the tori with rational frequency
ratios tend to fall apart due to resonance effects. Instead of periodic orbits, we get chaotic
motions instead. But the “irrational” tori are more stable. And, the “more irrational” the
frequency ratios for a torus are, the bigger a perturbation it takes to disrupt it! Thus,
the most stable tori tend to have frequency ratios involving the golden number. As we
increase the perturbation, the last torus to die is called a “golden torus”.

You can actually watch tori breaking into chaotic dust if you check out the applet
illustrating the “standard map” on this website:

7) Takashi Kanamaru and J. Michael T. Thompson, “Introduction to Chaos and Non-
linear Dynamics”, standard map applet, http://brain.cc.kogakuin.ac.jp/~kanamaru/
Chaos/e/Standard/

The “standard map” is a certain dynamical system that’s good for illustrating this
effect. You won’t actually see 2d tori, just 1d cross-sections of them — but it’s pretty fun.
For more details, try this:

8) M. Tabor, Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley,
New York, 1989.

In short, the golden number is the best frequency ratio for avoiding resonance!
Some audiophiles even say this means the best shaped room for listening to music is

one with proportions 1 : G : G2. I leave it to you to find the flaw in this claim. For more
dubious claims, check out the ad for expensive speaker cables at the end of this article.

KAM theory is definitely cool, but we shouldn’t rest content with this when skeptics
ask if the golden number is all it’s cracked up to be. I figure it’s part of our job as
mathematicians to keep on discovering mind-blowing facts about the golden number. A
small part, but part: we shouldn’t give up the field to amateurs!
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Penrose has done his share. His “Penrose tiles” take crucial advantage of the self-
similarity embodied by the golden number to create nonperiodic tilings of the plane.
This helped spawn a nice little industry, the study of “quasicrystals” with 5-fold symmetry.
Here’s a good introduction for mathematicians:

9) Andre Katz, “A short introduction to quasicrystallography”, in From Number Theory
to Physics, eds. M. Waldschmit et al, Springer, Berlin, 1992, pp. 496–537.

By the way, this same book has some nice stuff on the role of the golden number in
KAM theory and the theory of iterated maps from the circle to itself:

10) Predrag Cvitanovic, “Circle maps: irrationally winding”, in From Number Theory to
Physics, eds. M. Waldschmit et al, Springer, Berlin, 1992, pp. 631–658.

11) Jean-Christophe Yoccoz, “Introduction to small divisors problems”, in From Number
Theory to Physics, eds. M. Waldschmit et al, Springer, Berlin, 1992, pp. 659–679.

Conway and Sloane are also pulling their weight. Starting from the relation between
the golden ratio, the isosahedron, and the 4-dimensional big brother of the icosahedron
(the “600-cell”), they’ve described how to construct the coolest lattices in 8 and 24 di-
mensions using “icosians” — which are certain quaternions built using the golden ratio.
I discussed this circle of ideas in “Week 20”, “Week 59” and “Week 155”.

But if you want some really scary formulas involving the golden ratio, Ramanujan is
the one to go to. Check these out:

1

1 + exp(−2π)

1+
exp(−4π)

1+
exp(−6π)

1+...

= exp

(
2π

5

)(√
G
√
5− 5

)

and

1 +
exp(−2π

√
5)

1 + exp(−4π
√
5)

1+
exp(−6π

√
5)

1+...

= exp

(
2π

5

)( √
5

1 + (5
3
4 (G− 1)

5
2 − 1)

1
5

−G

)

These are special cases of a monstrosity called the Rogers-Ramanujan continued fraction,
which is a kind of “q-deformation” of the continued fraction for the golden ratio. For
details, start here:

12) Eric W. Weisstein, “Rogers-Ramanujan Continued Fraction”, http://mathworld.
wolfram.com/Rogers-RamanujanContinuedFraction.html

It’s these two formulas, and one other like it, that led Hardy to write the famous
lines:

A single look at them is enough to show that they could only be written down
by a mathematician of the highest class. They must be true because, if they were
not true, no one would have had the imagination to invent them.

For more by Hardy on these continued fractions, see section 1 and section 6.17 of his
book:
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13) G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work,
Chelsea Publishing Co., New York, 1959.

The golden number also shows up in the theory of quantum groups. I talked about
this in “Week 22” so I won’t explain it again here. But, I can’t resist mentioning that
Freedman, Larsen and Wang have subsequently shown that a certain topological quan-
tum field theory called Chern-Simons theory, built using the quantum group SUq(2), can
serve as a universal quantum computer when the parameter q is a fifth root of unity.
And, this is exactly the case where the spin-1/2 representation of SUq(2) has quantum
dimension equal to the golden number!

14) Michael Freedman, Michael Larsen, Zhenghan Wang, “A modular functor which is
universal for quantum computation”, available at quant-ph/0001108.

But don’t get the wrong idea: it’s not that some magic feature of the golden number
is required to build a universal quantum computer! It’s just that the 5 seems to be the
smallest number n such that SUq(2) Chern-Simons theory is computationally universal
when q is an nth root of 1.

That’s pretty much everything I know about the golden number. So now, what about
this “Golden Object” puzzle?

Basically, the problem was to find an object that acts like the golden number. The
golden number has G2 = G + 1, so we want to find a object G equipped with a nice
isomorphism between G2 and G+ 1.

If G is just a set, this means we want a nice one-to-one correspondence between
pairs of elements of G, and elements of G together with one other thing. It doesn’t
matter what that other thing is, so let’s call it “@”.

(You may be wondering about the word “nice”. The point is, the problem is too easy
if we don’t demand that the solution be nice in some way — some way that I don’t feel
like making precise.)

Here’s Robin Houston’s answer:
Define a “bit” to be either 0 or 1. Define a “golden tree” to be a (planar) binary

tree with leaves labelled by 0, 1, or ∗, where every node has at most one bit-child. For
example:

0

1

∗

is a golden tree, but

0

∗

1
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is not. Let G be the set of golden trees. We define an isomorphism

f : G2 → G+ {@}

as follows. First we define f(X,Y ) when both X and Y are golden trees with just one
node, this node being labelled by a bit. We can identify such a tree with a bit, and doing
this we set

f(0, 0) = 0

f(0, 1) = 1

f(1, 0) = ∗
f(1, 1) = @

In the remaining case, where the golden trees X and Y are not just bits, we set

f(X,Y ) =

X Y

There are different ways to show this function f is a one-to-one correspondence, but the
best way is to see how Houston came up with this answer! He didn’t just pull it out of a
hat; he tackled the problem systematically, and that’s why his solution counts as “nice”.

It’s easy to find a set S equipped with an isomorphism

S = P (S)

where P is some polynomial with natural number coefficients. You just use the fixed-
point principle described in “Week 108”. Namely, you start with the empty set, keep
hitting it with P forever, and take a kind of limit. This is how I built the set of binary
trees last week, as a solution of T = T 2 + 1.

The problem is that the isomorphism we seek now:

G2 = G+ 1 (1)

is not of this form. So, what Houston does is to make a substitution:

G = H + 2

Given this, we’d get (1) if we had

H2 + 4H + 4 = H + 3 (2)

and we’d get (2) if we had
H2 + 4H + 1 = H (3)

which is of the desired form.
We can rewrite (3) as

H = 1 +H2 + 2H +H2

and in English this says ”an element of H is either a *, or a pair consisting of two guys
that are either bits or elements of H — but not both bits”. So, a guy in H is a golden
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tree! But, if it has just one node, that node can only be labelled by a ∗, not a 0 or 1. This
means there are precisely 2 golden trees not in H. So, G = H + 2 is the set of all golden
trees, and our calculation above gives an isomorphism G2 = G+ 1.

Voila!
Note that to derive (3) from (1) we need to subtract, which in general is not allowed

in this game. Here we are subtracting constants, and Houston says that’s allowed by
the “Garsia-Milne involution theorem”. I don’t know this theorem, so I’ll make a note to
myself to learn it. But luckily, we don’t really need it here: we only need to derive (1)
from (3), and that involves addition, so it’s fine.

Part of what makes Houston’s solution “nice” is that it suggests a general method for
turning polynomial equations into recursive definitions of the form S = P (S). Another
nice thing is that his trick delivers a structure type G(X) that reduces to G when X = 1.
To get this, first use the fixed-point method to construct a structure type H(X) with an
isomorphism

H(X) = (H(X) +X)2 + 2H(X)

Then, define
G(X) = H(X) +X + 1

and note that this gives
G(X)2 = G(X) +X

which reduces to Gˆ2 = G + 1 when X = 1.
As if this weren’t enough, Houston also gave another solution to the puzzle. He

showed that James Propp’s proposed Golden Object, described last week, really is a
Golden Object! Maybe Propp already knew this, but I sure didn’t.

The idea of the proof is pretty general. Suppose we’re in some category that’s a “2-
rig” in the sense of “Week 191”. And, suppose we’ve got an object X equipped with an
isomorphism

X = 1 + 2X (4)

so that X acts like “−1”. For example, following Schanuel and Propp, we can take the
category of “σ-polytopes” and let X be the open interval: then isomorphism (4) says

(0, 1) = (0, 1/2) + {1/2}+ (1/2, 1)

Or, following Houston, we can take the category of sets and let X be the set of finite bit-
strings. Then (4) says “a finite bit-string is either the empty bit-string, or a bit followed
by a finite bit-string”. The relation between these two examples is puzzling to me — if
anyone understands it, let me know! But anyway, either one works.

Now let G be the object of “binary trees with X-labelled leaves”:

G = X +X2 + 2X3 + 5X4 + 14X5 + 42X6 + . . .

where the coefficients are Catalan numbers. Let’s show that G is a Golden Object. To do
this, we’ll use (4) and this isomorphism:

G = G2 +X (5)

which says “a binary tree with X-labelled leaves is a pair of such trees, or a degenerate
tree with just one X-labelled node”. The formula for G involving Catalan numbers is
really just the fixed-point solution to this!
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Here is Houston’s fiendishly clever argument. Suppose Z is any type equipped with
an isomorphism

Z = Z ′ +X

for some Z ′. Then
Z +X + 1 = Z ′ + 2X + 1

= X ′ +X

= Z

This applies to Z = G2, since

G2 = (X +G2)2 = (2X + 1 +G2)2

has a X term in it when you multiply it out, so it’s of the form Z ′ + X. Therefore we
have an isomorphism

G2 = G2 +X + 1

But we also have an isomorphism G+ 1 = G2 +X + 1 by (5). Composing these, we get
our isomorphism

G2 = G+ 1.

Golden! I’ll stop here.

Addendum: The computer scientist Sebastiano Vigna pointed out this paper:

15) Paolo Boldi, Massimo Santini, and Sebastiano Vigna, “Measuring with jugs, or:
what if mathematicians were asked to defuse bombs?”, Theoret. Comput. Sci. 2
(2002). Also available at http://vigna.dsi.unimi.it/papers.php

which shows that if you want to approximately measure an arbitrary amount of water
using only two jugs, it’s best if they have capacity 1 and G. This paper cites a a charming
result by Swierczkowski which picks up where a famous theorem due to Dedekind leaves
off. Dedekind showed that if x is any irrational number, the numbers nx mod 1 are
uniformly distributed in the interval [0, 1]. But if x = 1/G, these numbers have an
especially nice property: each new point in the sequence (nx mod 1) lands in one of the
longest intervals not containing a previous point! And, it chops this interval in a golden
way.

Stephen Schanuel said some things about “Week 203” on the category theory mailing
list, so I’ll include his post here along with various replies, concluding with my own.

From: Stephen Schanuel Subject: categories: mystification and categorification
Date: Thu, 4 Mar 2004 00:44:46 -0500

I was unable to understand John Baez’ golden object problem, nor his descrip-
tion of the solutions. He refuses to tell us what ‘nice’ means, but let me at
least propose that to be ‘tolerable’ a solution must be an object in a category,
and John doesn’t tell us what category is involved in either of the solutions; at
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least I couldn’t find a specification of the objects, nor the maps, so I found the
descriptions ‘intolerable’, in the technical sense defined above. He is very gener-
ous, allowing one to use a category with both plus and times as extra monoidal
structures. (Does anyone know an example of interest in which the plus is not
coproduct?) This freedom is unnecessary; a little algebra plus Robbie Gates’
theorem provides a solution G to G2 = G + 1 which satisfies no additional
equations, in an extensive category (with coproduct as plus, cartesian product
as times).

Briefly, here it is. A primitive fifth root of unity z is a root of the polynomial
1 + X + X2 + X3 + X4, hence satisfies 1 + z + z2 + z3 + z4 + z = z, which
is of the ‘fixed point’ form p(z) = z with p in N[X] and p(0) not 0. Gates’
theorem then says that the free distributive category containing an object Z
and an isomorphism from p(Z) to Z is extensive, and its Burnside rig B (of
isomorphism classes of objects) is, as one would hope, N[X]/(p(X) = X); that
is, Z satisfies no unexpected equations. Since the degree of p is greater than
1, an easy general theorem tells us (from the joint injectivity of the Euler and
dimension homomorphisms) that two polynomials agree at the object Z if and
only if either they are the same polynomial or both are non-constant and they
agree at the number z. Now the ‘algebra’: the golden number is 1 + z + z4. So
G = 1 + Z + Z4 satisfies G2 = G + 1, as desired. It satisfies no unexpected
equations, because the relation X2 = X +1 reduces any polynomial in N[X] to
a linear polynomial, and these reduced forms have distinct Euler characteristics,
i.e. differ at z. Thus the homomorphism from N[X]/(X2 = X+1) toB (sending
X to G) is injective, and that’s all I wanted.

Since in the category of sets, any nasty old infinite set satisfies the golden equa-
tion and many others, I have taken the liberty of interpreting ‘nice’ to mean
at least ‘satisfying no unexpected equations’. One could ask for more; the con-
struction above has produced a distributive, but not extensive, category whose
Burnside rig is N[X]/(X2 = X+1), the full subcategory with objects polynomi-
als in G. (If it were extensive, it would be closed under taking summands, but
every object in the larger category is a summand of G.) I don’t know whether
there is an extensive category with N[X]/(X2 = X + 1) as its full Burnside rig;
perhaps one or both of the examples John mentioned would do, if I knew what
they were.

While I’m airing my confusions, can anyone tell me what ‘categorification’ means?
I don’t know any such process; the simplest exanple, ‘categorifying’ natural num-
bers to get finite sets, seems to me rather ‘remembering the finite sets and maps
which gave rise to natural numbers by the abstraction of passing to isomorphism
classes’.

Finally, a note to John: While you’re trying to give your audience some feeling
for the virtues of n-categories, couldn’t you give them a little help with n = 1,
by being a little more precise about objects and maps?

Greetings to all, and thanks for your patience while I got this stuff off my chest,

Steve Schanuel
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From: David Yetter Subject: categories: Re: mystification and categorification
Date: Fri, 5 Mar 2004 10:55:26 -0600

Categorification is a bit like quantization: it isn’t a construction so much as
a desideratum for a relationship between one thing and another (in the case
of categorification an (n + 1)-categorical structure and an n-categorical struc-
ture; in the case of quantization a quantum mechanical system and a classical
mechanical system).

Categorification wants to find a higher-dimensional categorical structure cor-
responding to a lower-dimensional one by weakening equations to natural iso-
morphisms and imposing new, sensible, coherence conditions. In general, for the
original purpose for which it was proposed–constructions of TQFT’s and mod-
els of quantum gravity–one wants the highest categorical level to have a linear
structure (hence Baez wanting tensor product and a sum it distributes over,
rather than cartesian product and coproduct). Specific lower-dimensional cate-
gories with structure are ‘categorified’ by finding a higher-dimensional category
with the new structure which ‘lies over’ the lower dimensional one in the way
an additive monoidal category lies over its Grothendieck rig.

For instance any (k-linear) monoidal category with monoid of isomorphism
classes M is a categorification of M , and more generally (k-linear) monoidal
categories are a categorification of monoids.

A simple example shows why it is not a construction: commutative monoids
(as rather special categories with one object) admit two different categorifica-
tions: symmetric monoidal categories and braided monoidal categories (each
regarded as a kind of bicategory with one object). There is a good argument
for regarding braided monoidal categories as the ‘correct’ categorification: the
Eckmann-Hilton theorem (‘a group in GROUPS is an abelian group’ or, really
as the proof shows, ‘a monoid in MONOIDS is a commutative monoid’) ‘cate-
gorifies’ to: A monoidal category in MONCAT is a braided monoidal category.

From: Vaughan Pratt Subject: categories: Re: mystification and categorification
Date: Fri, 05 Mar 2004 22:49:56 -0800

While I’m airing my confusions, can anyone tell me what ‘categori-
fication’ means? I don’t know any such process; the simplest exan-
ple, ‘categorifying’ natural numbers to get finite sets, seems to me
rather ‘remembering the finite sets and maps which gave rise to nat-
ural numbers by the abstraction of passing to isomorphism classes’.

A fair question. I attended John’s Coimbra lectures on this stuff in 1999 but
a lot of it leaked out afterwards. If I had to guess I’d say he was categorifying
the free monoid on one generator to make it a monoidal category, but then how
did the monoid end up as coproduct and the generator as the final object? One
suspects some free association there — John, how do you make that connection?
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With regard to categorification in general, sets seem to play a central role in
at least one development of category theory. The homobjects of “ordinary” cate-
gories are homsets. (In that sense I guess “ordinary” must entail “locally small.”)
2-categories are what you get if instead you let them be homcats, suitably elab-
orated.

Going in the other direction, if you take homsets to be vacuous, not in the sense
that they are empty but rather that they are all the same, then you get sets.
One more step in that direction makes everything look the same, which may
have something to do with the Maharishi Yogi hiring category theorists for the
math dept. of his university in Fairfield, Iowa. (When I spoke last with the
MY’s “Minister of World Health,” an MD who like Ross Street was a classmate
of mine but eight years earlier starting in 1957, the entire conversation seemed
to be largely a skirting of the minefield of the sameness of everything, which
may subconsciously have been behind my obscure reply to Peter Freyd’s posting
a while back about unique existence going back to Descartes, where I tried to
one-up him by claiming it went much further back.)

Categorification isn’t the only way to get to 2-categories, which can be under-
stood instead in terms of the interchange law as a two-dimensional associativity
principle. However John has got a lot of mileage out of the categorification
approach, which one can’t begrudge in an era where mileage and minutes are
as integral to a balanced life as one’s checkbook. (Q: How many minutes in a
month? A: Depends on your plan.)

Since in the category of sets, any nasty old infinite set satisfies the
golden equation and many others, I have taken the liberty of inter-
preting ‘nice’ to mean at least ‘satisfying no unexpected equations’.

Quite right. I would add to this “and satisfying the expected equations.” The
“nasty sets” of which Steve speaks fail to satisy such expected equations as 22

X ∼
X. (The power set of a set is a Boolean algebra, for heaven’s sake. Why on earth
forget that structure prior to taking the second exponentiation? Set theorists
seem to think that they can simply forget structure without paying for it, but in
the real world it costs kT/2 joules per element ofX to forget that structure. If set
theorists aren’t willing to pay real-world prices in their modeling, why should
we taxpayers pay them real-world salaries? Large cardinals are a figment of
their overactive imaginations, and the solution to consistency concerns is not to
go there.)

Vaughan Pratt

From: Tom Leinster Subject: Re: categories: mystification and categorification
Date: 07 Mar 2004 20:50:39 +0000

Steve Schanuel wrote: > a category with both plus and times as extra monoidal
structures. > (Does anyone know an example of interest in which the plus is not
> coproduct?)
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Here are two examples that I’ve come across previously of rig categories in which
the plus is not coproduct:

(i) the category of finite sets and bijections, with + and × inherited from the
category of sets;

(ii) discrete rig categories, which are of course the same thing as rigs.

This freedom is unnecessary; a little algebra plus Robbie Gates’ theo-
rem provides a solution G to G2 = G+1 which satisfies no additional
equations, in an extensive category (with coproduct as plus, cartesian
product as times).

If you do allow yourself the freedom to use any rig category then an even simpler
solution exists, also satisfying no additional equations: just take the rig freely
generated by an element G satisfying G2 = G+1 and regard it as a discrete rig
category.

Since in the category of sets, any nasty old infinite set satisfies the
golden equation and many others, I have taken the liberty of inter-
preting ‘nice’ to mean at least ‘satisfying no unexpected equations’.

I’d interpret “nice” differently. (Apart from anything else, the trivial example
in my previous paragraph would otherwise make the golden object problem
uninteresting.) “Nice” as I understand it is not a precise term — at least, I
don’t know how to make it precise. Maybe I can explain my interpretation by
analogy with the equation T = 1 + T 2. A nice solution T would be the set of
finite, binary, planar trees together with the usual isomorphism T

∼−→ 1 + T 2;
a nasty solution would be a random infinite set T with a random isomorphism
to 1 + T 2. (Both these solutions are in the rig category Set with its standard +
and ×.) I regard the first solution as nice because I can see some combinatorial
content to it (and maybe, at the back of my mind, because it has a constructive
feel), and the second as nasty because I can’t. I’m not certain what I think of the
solution given by the set of not-necessarily-finite binary planar trees (nice?), or
by the set of binary planar trees of cardinality at most ℵ5 (probably nasty).

Maybe the finding of a “nice” solution is similar in spirit to the finding of a
“concrete interpretation” of a combinatorial identity. As an extremely simple
example, consider the identity saying that each entry in Pascal’s triangle is the
sum of the two above it, (

n+ 1

r

)
=

(
n

r − 1

)
+

(
n

r

)
.

This is a doddle to prove, but all the same you’d be missing something if you
didn’t know the standard “concrete interpretation”: choosing r objects out of
n+1 objects amounts to EITHER choosing the first one and then choosing r− 1
of the remaining n OR . . . . Even if the challenge of finding a “nice solution”
or “concrete interpretation” isn’t made precise, I think there is a shared sense
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of what would count as an answer, and finding an answer is in general not
straightforward.

Best wishes, Tom

From: John Baez Subject: golden objects Date: Sun, 7 Mar 2004 12:50:29
-0800 (PST)

Dear Categorists —

Sorry to take a while to respond. People at UCR have been unable to receive
posts on the category theory mailing list, due to problems with our internet
connection.

I’d asked for some nice examples of an object G in a rig category equipped with
an isomorphism from G2 to G+ 1. Steve Schanuel replied:

I was unable to understand John Baez’ golden object problem, nor his
description of the solutions. He refuses to tell us what ‘nice’ means,
[. . . ]

The problem was deliberately open-ended, but you seem to have understood it
perfectly, since you’ve given a nice solution, including a precise specification of
what you consider “nice”.

Let me repeat the two solutions given by Robin Houston:

1) The first solution works in any rig category having an object H equipped
with an isomorphism to H2 + 4H + 1. The solution is to take

G = H + 2.

I described how Houston uses the isomorphism H → H2 + 4H + 1 to
construct an isomorphism G2 → G + 1. What’s nice about this is that it
reduces a problem that’s not obviously of fixed-point form to one that is.

2) Houston’s second solution works in any monoidal cocomplete category, ten-
sor product distributing over colimits, that contains an object X equipped
with an isomorphism to 2X + 1. The solution is to let G be the object of
“binary planar rooted trees with X-labelled leaves”, i.e.

G = X +X2 + 2X3 + 5X4 + 14X5 + 42X6 + . . .

where the coefficients are Catalan numbers. He uses the obvious isomor-
phism G→ G2+X to construct an isomorphism G2 → G+1. What’s nice
about this is that it shows Propp’s originally proposed golden object really
is one: just take the category of σ-polytopes with its cartesian product, and
let X be the open interval! And, it makes precise the sense in which the
alternating sum of Catalan numbers equals the golden ratio.

Steve writes:
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I don’t know whether there is an extensive category with N[X]/(X2 =
X + 1) as its full Burnside rig; perhaps one or both of the examples
John mentioned would do, if I knew what they were.

I think example 1) does the job if we take the free distributive category on an
object H equipped with an isomorphism to H2 + 4H + 1. Right?

Steve also writes:

He is very generous, allowing one to use a category with both plus
and times as extra monoidal structures. (Does anyone know an ex-
ample of interest in which the plus is not coproduct?) This freedom is
unnecessary [. . . ]

It’s unnecessary, but handy: I think there’s also an golden object in the rig
category of reps of quantum SU(2) at a suitable value of q. Here the tensor
product is not cartesian.

In the lingo of quantum group theory, this object has “quantum dimension”
equal to the golden number. It’s interesting how such nonintegral but algebraic
“dimensions” show up naturally in quantum group theory, just as nonintegral
but algebraic “cardinalities” show up in the theory of distributive categories.

I don’t know any golden objects in rig categories where the plus is not coproduct,
and I agree that such rig categories arise less often than those where times is not
product. But, if you use the obvious way of making the groupoid of finite sets
into a rig category, + isn’t coproduct, nor is × product.

While I’m airing my confusions, can anyone tell me what ‘categori-
fication’ means? I don’t know any such process; the simplest exan-
ple, ‘categorifying’ natural numbers to get finite sets, seems to me
rather ‘remembering the finite sets and maps which gave rise to nat-
ural numbers by the abstraction of passing to isomorphism classes’.

You’re right: categorification is not a systematic process! I explained this idea
back in “Week 121”, and also in my paper “Categorification”, at http://www.
arXiv.org/abs/math.QA/9802029. Here’s what I said:

If one studies categorification one soon discovers an amazing fact:
many deep-sounding results in mathematics are just categorifications
of facts we learned in high school! There is a good reason for this.
All along, we have been unwittingly ‘decategorifying’ mathematics by
pretending that categories are just sets. We ‘decategorify’ a category
by forgetting about the morphisms and pretending that isomorphic
objects are equal. We are left with a mere set: the set of isomorphism
classes of objects.
To understand this, the following parable may be useful. Long ago,
when shepherds wanted to see if two herds of sheep were isomorphic,
they would look for an explicit isomorphism. In other words, they
would line up both herds and try to match each sheep in one herd
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with a sheep in the other. But one day, along came a shepherd who
invented decategorification. She realized one could take each herd
and ‘count’ it, setting up an isomorphism between it and some set of
‘numbers’, which were nonsense words like ‘one, two, three, . . . ’ spe-
cially designed for this purpose. By comparing the resulting numbers,
she could show that two herds were isomorphic without explicitly es-
tablishing an isomorphism! In short, by decategorifying the category
of finite sets, the set of natural numbers was invented.
According to this parable, decategorification started out as a stroke
of mathematical genius. Only later did it become a matter of dumb
habit, which we are now struggling to overcome by means of cate-
gorification. While the historical reality is far more complicated, cat-
egorification really has led to tremendous progress in mathematics
during the 20th century. For example, Noether revolutionized alge-
braic topology by emphasizing the importance of homology groups.
Previous work had focused on Betti numbers, which are just the di-
mensions of the rational homology groups. As with taking the car-
dinality of a set, taking the dimension of a vector space is a process
of decategorification, since two vector spaces are isomorphic if and
only if they have the same dimension. Noether noted that if we work
with homology groups rather than Betti numbers, we can solve more
problems, because we obtain invariants not only of spaces, but also of
maps.
In modern language, the nth rational homology is a functor defined
on the category of topological spaces, while the nth Betti number is a
mere function, defined on the set of isomorphism classes of topological
spaces. Of course, this way of stating Noether’s insight is anachronis-
tic, since it came before category theory. Indeed, it was in Eilenberg
and Mac Lane’s subsequent work on homology that category theory
was born!
Decategorification is a straightforward process which typically de-
stroys information about the situation at hand. Categorification, be-
ing an attempt to recover this lost information, is inevitably fraught
with difficulties.

Finally, a note to John: While you’re trying to give your audience
some feeling for the virtues of n-categories, couldn’t you give them a
little help with n = 1, by being a little more precise about objects and
maps?

I hope it’s clearer now.

Best, jb

As a high-end cable manufacturer, Cardas Audio strives to address every de-
tail of cable and conductor construction, no matter how small. An elegant so-
lution deals with quality, not quantity. Cable geometry problems are resolved
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in the cable’s design, not after the fact with filters. George Cardas received
U.S. Patent Number 4,628,151 for creating Golden Section Stranding Audio
Cable. It is truly unique. George introduced the concept of Golden Section
Stranding to high-end audio, but the Golden Ratio, 1.6180339887... : 1, is as
old as nature itself. The Golden Ratio is the mathematical proportion nature
uses to shape leaves and sea shells, insects and people, hurricanes and galax-
ies, and the heart of musical scales and chords. “Discovered” by the Greeks,
but used by the Egyptians in the Great Pyramid centuries before, man has
employed the Golden Ratio to create his most beautiful and naturally pleas-
ing works of art and architecture

— Cardas Audio speaker cable advertisement
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Week 204

March 24, 2004

The star we know as GRB030329 was named after the day the news of its death reached
Earth. About 2,650 million years ago, this star exploded. For thirty seconds it put out
more power in the form of γ rays than everything else in the visible universe combined.
These γ rays reached us on March 3rd, 2003, and they were detected by a satellite called
HETE-II: the High-Energy Transient Explorer.

The detection of GRB03029 set off a frenzy of activity among astronomers all over the
world. As the closest γ-ray burster to be seen by well-prepared earthlings, GRB030329
taught us a lot. We’re not completely sure what it was — but we have a pretty good
guess, and it makes a nice story, so I’ll recount it as if it were a fact.

As far as we can tell, GRB030329 was a Wolf-Rayet star before it exploded. Wolf-
Rayet stars are very rare: only 200 have been seen in our galaxy. They’re huge and very
bright — up to a million times as bright as the Sun. They’re surrounded by enormous
bluish-purple nebulae like the one in this picture:

1) NGC 2359, the nebula around the Wolf-Rayet star HD56925, picture at http://
cfa-www.harvard.edu/cfa/hotimage/n2359.html

But what makes them really special is that their spectral lines show little or no hydro-
gen. Since most of the universe is made of hydrogen, a star without hydrogen is like a
dry fish. How can this be?

Well, the life of a star is largely determined by its mass. Small stars last a long time
and fade away inconspicuously, while big stars live fast and die with a bang. Wolf-Rayet
stars are among the biggest, about 60 times as heavy as the Sun. Like the sun, they begin
life as cloud of gas that collapses and heats up until the hydrogen in its core “catches fire”
and starts fusing into helium, like a gigantic H-bomb held together by its own gravity.
The core is surrounded by a envelope of cooler gas that transmits energy to the surface
by convection and radiation, but doesn’t actually do any fusion itself.

This stage of a star’s life is called the “core burning phase”. But after a while helium
builds up and sinks to the center, forming an inert helium core, with all the fusion going
on in the layer of hydrogen right next to the core. This is called the “shell burning phase”.

What next? Well, for the Sun, as its hydrogen gradually runs out it’ll become a “red
giant”, expanding to engulf the Earth. . . while meanwhile its helium core shrinks to
a ball twice the size of the Earth and about 100 times the density of water, turning
from ordinary plasma into something called a “degenerate electron gas”, where the Pauli
exclusion principle limits further compression. As the core shrinks it’ll heat up, and when
it reaches a temperature of 100 million kelvin the helium will catch fire and start fusing
— mainly into carbon. Models predict that this happens in a runaway reaction called
the “helium flash”, which puts out about 100 billion times the power of the present-day
sun for a few hours — zounds! — but gradually settles down into a more stable phase
of helium burning that lasts for tens of millions of years. During this phase, the Sun will
not be a red giant anymore, but instead a hotter “yellow giant”.

The Sun will never get hot enough to burn elements heavier than helium, so eventu-
ally it’ll develop an inert core of carbon and other junk, surrounded by a helium burning
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shell, surrounded by a hydrogen burning shell. Then the outer layers will peel off and
expand to form a huge nebula, leaving the core as a tiny “white dwarf”. . . which will
cool, after eons, to a “black dwarf”. Here’s a nice chart of the whole story:

2) Sloan Digital Sky Survey, Evolutionary track of a sun-like star, http://skyserver.
sdss.org/dr1/en/astro/stars/images/starevol.jpg

Bigger stars do more exciting things. In particular, stars heavier than about 5 solar
masses undergo a “carbon flash” when the carbon-rich core reaches 600 million kelvin
and starts fusing into heavier elements. Heavier stars then go on to an oxygen-burning
phase. Even heavier ones go on to a silicon-burning phase.

But when silicon fuses, it forms highly stable nuclei like iron that don’t want to fuse
any further. So, silicon burning is the end of the line. And it doesn’t last long! For exam-
ple, a star 25 times the mass of the Sun is expected to spend about 5 to 10 million years
burning hydrogen, 0.5 to 1 million years burning helium, 500 to 1000 years burning
carbon, 6 to 12 months burning oxygen. . . but just a day or so burning silicon!

Then what? Well, the details depend on the star’s mass. But when a star of at least 8
solar masses runs out of fuel, its core is made mainly of iron, and heavier than our Sun.
When it cools, it reaches a point where all of a sudden it collapses — in about a tenth
of a second. When it crashes in on itself, it gets so hot that the iron nuclei disintegrate
and the whole mess explodes in a “type II supernova”. The star’s outer layers get thrown
off at high speeds, while the core itself gets crushed into a neutron star. . . or, for truly
heavy stars, a black hole!

Type II supernovae are among the most violent events in the cosmos. They can easily
reach a temperature of about 50 billion kelvin and emit 1046 joules of energy, which is
what our galaxy puts out in 10 years! 99% of this energy is in the form of neutrinos,
emitted when protons in the iron core absorb electrons and turn into neutrons. But, the
remaining 1% in the form of electromagnetic radiation is still enough to fry anything in
the vicinity. The supernova in the Crab Nebula was about 6,300 light years away, but
when its light reached us in 1054 AD, Chinese astronomers could see it in the daytime
for 23 days!

You may think I’ve forgotten about GRB030329 and Wolf-Rayet stars, but I haven’t.
This big digression was just to set the stage. I’ve sketched what stars of up to 25 solar
masses will do, but remember, Wolf-Rayets are a lot bigger: they begin life at about 60
solar masses. And astronomy resembles opera in this way: the bigger the star, the more
noise they make in their final scene. So, the stuff about supernovae was just to whet
your appetite.

So, let’s sit back and watch the thrilling life story of GRB030329. . . assuming that it
began its days as most Wolf-Rayets do.

As a child, it burnt hydrogen in a huge core of about 50 solar masses. After a while
helium “ashes” built up in this core, so it moved on to burning hydrogen in a shell. But
this process put out so much energy that the envelope started getting blown away in a
powerful stellar wind!

Since the helium wasn’t burning, the core contracted until the temperature hit 40
million kelvin and the helium caught fire. It started burning into carbon-12, but some
hydrogen got into the core and made carbon-13 and nitrogen-14, and later — when the
helium was almost all burnt — oxygen-16.
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All the while the stellar wind was increasing, and eventually almost all the hydrogen
was blown away, leaving only a bluish-white core full of helium, carbon, nitrogen and a
little oxygen. Now you see how a star gets rid of its hydrogen! At this point GRB030329
was a classic Wolf-Rayet star: almost no hydrogen in the star itself, lots of stellar wind,
and surrounded by a big nebula of gas and dust that had been blown off.

When all its helium was burnt, our hero’s days were numbered. In an ever-accelerating
frenzy, it spent its last centuries burning carbon, then oxygen, then silicon. Meanwhile
its stellar wind kept picking up speed, up to 5 or 10 thousand kilometers per second,
blowing away more and more gas and dust. By the time all the silicon had burnt to iron,
the core had shrunk down to about 10 solar masses.

And when the fuel ran out, the core cooled down and collapsed.
The core was so big, and its collapse so drastic, that it didn’t “bounce back” and

explode outwards, as in a supernova. Instead, gravity triumphed! A black hole formed,
sucking down a hefty amount of the core in less than a tenth of a second.

As several solar masses of iron rapidly spiralled down the throat of this growing black
hole, it formed a pancake-like “accretion disk”, which emitted powerful jets of radiation
and matter in both directions along its axis of rotation. In a few seconds, these jets
passed through the outer shell of the star and, together with a blast of newly created
radioactive nickel-56, shattered it completely. Our star became a “hypernova”!

Meanwhile, the jets plowed into the material surrounding the star and created highly
directional beams of γ rays shooting in opposite directions. . . one of which just hap-
pened to be pointed directly at the Earth.

2,650 million years later, the γ rays reached us, and were detected on March 23, 2003
by HETE-II. Hundreds of such bursts are detected each year, but this one was closer than
most, and a whole system had recently been devised for quickly turning the attention of
the world’s telescopes to the spot where a γ-ray burster had been seen — in this case,
within the constellation Leo.

So, within 90 min, a 40-inch telescope at the Siding Spring Observatory in Australia
was looking at this spot. So was a telescope in Japan. They saw the optical afterglow
of the γ-ray burster and watched how its brightness changed with time. And within 24
hours, a spectrograph on a telescope in Chile made detailed readings of the spectrum,
measuring the redshift (z = 0.1685) and thus the distance of the burst, and seeing signs
of radioactive nickel — about 1/3 of a solar mass of the stuff, according to one estimate!
Later, more telescopes probed the event in different ways.

The details of what was seen gave a lot of credence to the “hypernova” or “collapsar”
model of γ-ray bursters, championed by Stan Woosley of U. C. Santa Cruz, among others.
But much remains mysterious about γ-ray bursters. Nobody knows exactly how the
energy from the jet gets turned into γ rays! And, the hypernova model only fits “long”
γ-ray bursters, where the burst lasts about 2 seconds or more. There are also “short”
ones, which may work some other way.

So, the hows and whys of γ ray bursts remain one of the most fascinating mysteries
in physics. And since we can’t actually peek inside a star, a lot of the attempts to study
these things involve complicated mathematical models. . . very technical stuff, when you
actually try to read it. So, I really am talking about mathematical physics. Honest!

Here are some ways to learn more, starting with the fun easy stuff.
The online version of the Messier Catalog — a famous old catalog of galaxies and

nebulae — is a really fun way to learn some astronomy:
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3) The Messier Catalog, http://www.maa.agleia.de/Messier/

It’s packed with interesting stuff. For example, here’s a great page about nebulae like
the one the sun will form after it becomes a yellow giant:

4) The Messier Catalog, “Planetary nebulae”, http://www.maa.agleia.de/Messier/
planetar.html

(They’re misleadingly called “planetary nebulae”, though they don’t have anything to
do with planets.) And here’s a nice page about the Crab Nebula, which is now a pulsar
— a rapidly spinning neutron star left over from a supernova:

5) The Messier Catalog, “The crab nebula (M1)”, http://www.maa.agleia.de/Messier/
E/m001.html

This website is good for Wolf-Rayet stars and other things:

6) Chris Clowes’ Astronomy Page, http://www.peripatus.gen.nz/Astronomy/

I learned a lot about GRB030329 from this page:

7) European Southern Observatory (ESO), “Cosmological γ-ray bursts and hyper-
novae conclusively linked”, June 18, 2003, http://www.eso.org/outreach/press-rel/
pr-2003/pr-16-03.html

For another key moment in the history of γ-ray bursters, try this:

8) Burst and Transient Source Experiment (BATSE), “GOTCHA! — The big one that
didn’t get away”, January 27, 1999, http://www.batse.com/jan27.html

For more on γ-ray bursters, try these:

9) NASA, γ ray bursts, http://imagine.gsfc.nasa.gov/docs/introduction/bursts.
html

10) Edo Berger, Gamma-ray burst FAQ, http://www.astro.caltech.edu/~ejb/faq.
html

If you get more serious, there are lots of conference proceedings to read, like this:

11) M. Livio, N. Panagia and K. Sahu, editors, Supernovae and Gamma-Ray Bursts: The
Greatest Explosions since the Big Bang, Cambridge U. Press, 2001.

There must be a bunch of conference proceedings written after the March 2003
burster, but maybe they haven’t been published yet, since I haven’t been able to find
them!

If you’re looking for a more general background in astrophysics, this hefty tome is
supposed to be a good intro, though I haven’t tried it yet:

12) Bradley W. Carroll and Dale A. Ostlie, Introduction to Modern Astrophysics, Addison
Wesley, 1996.
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Personally I’ve found these helpful in writing the above stuff, though they’re full of
equations, so I find myself yearning for some purple prose here and there:

13) R. J. Tayler, The Stars: Their Structure and Evolution, 2nd edition, Cambridge U.
Press, Cambridge, 1994.

14) R. Kippenhahn and A. Weigert, Stellar Structure and Evolution, Springer Verlag,
Berlin, 1991.

By the way, I don’t know much about astrophysics, so I’d love to hear from any experts
out there who’d like to correct or add detail to my description of Wolf-Rayet stars, the
“hypernova” scenario, or γ-ray bursters in general. I’ve been fond of Wolf-Rayet stars
ever since I wrote a few little articles on weird kinds of stars:

15) John Baez, “Stuff about Stars”, http://math.ucr.edu/home/baez/stars.html

back before anyone suspected they were related to γ-ray bursters! My interest in
them was rekindled while revising the physics FAQ on open questions in physics:

16) John Baez, “Open Questions in Physics”, http://math.ucr.edu/home/baez/open.
questions.html

It hadn’t been rewritten since 1997, and it was interesting to see how outdated it had
become, particularly in the area of cosmology and astrophysics! Here’s the current list
of problems:

Condensed Matter and Nonlinear Dynamics

1) What causes sonoluminescence?

2) What causes high temperature superconductivity?

3) How can turbulence be understood and its effects calculated?

4) The Navier-Stokes equations are the basic equations describing fluid flow.
Does these equations have solutions that last for all time, given arbitrary
sufficiently nice initial data?

Quantum Mechanics

1) How should we think about quantum mechanics?

2) Can we build a working quantum computer big enough to do things ordi-
nary computers can’t easily do?

Cosmology and Astrophysics

1) What happened at or before the Big Bang?

2) Are there really three dimensions of space and one of time? If so, why? Or
is spacetime higher-dimensional, or perhaps not really a manifold at all
when examined on a short enough distance scale?
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3) Why is there an arrow of time; that is, why is the future so much different
from the past?

4) Is the Universe infinite in spatial extent? More generally: what is the
topology of space?

5) Will the future of the Universe go on forever or not?

6) Is the universe really full of “dark energy”? If so, what causes it?

7) Why does it seem like the gravitational mass of galaxies exceeds the mass
of all the stuff we can see, even taking into account our best bets about
invisible stuff like brown dwarfs, “Jupiters”, and so on?

8) The Horizon Problem: why is the Universe almost, but not quite, homoge-
neous on the very largest distance scales?

9) Why are the galaxies distributed in clumps and filaments?

10) When were the first stars formed, and what were they like?

11) What are γ ray bursters?

12) What is the origin and nature of ultra-high-energy cosmic rays?

13) Do gravitational waves really exist? If so, can we detect them? If so, what
will they teach us about the universe? Will they mainly come from expected
sources, or will they surprise us?

14) Do black holes really exist? (It sure seems like it.) Do they really radiate
energy and evaporate the way Hawking predicts? If so, what happens
when, after a finite amount of time, they radiate completely away? What’s
left? Do black holes really violate all conservation laws except conservation
of energy, momentum, angular momentum and electric charge? What
happens to the information contained in an object that falls into a black
hole?

15) Is the Cosmic Censorship Hypothesis true? Roughly, for generic collaps-
ing isolated gravitational systems are the singularities that might develop
guaranteed to be hidden beyond a smooth event horizon?

Particle Physics

1) Why are the laws of physics not symmetrical between left and right, future
and past, and between matter and antimatter?

2) Why is there more matter than antimatter, at least around here?

3) Are there really just three generations of leptons and quarks? If so, why?

4) Why does each generation of particles have precisely this structure: two
leptons and two quarks?

5) Do the quarks or leptons have any substructure, or are they truly elemen-
tary particles?

6) Is there really a Higgs boson, as predicted by the Standard Model of particle
physics? If so, what is its mass?
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7) What is the correct theory of neutrinos? Why are they almost but not quite
massless? Do all three known neutrinos — electron, muon, and τ — all
have a mass?

8) Is quantum chromodynamics (QCD) a precise description of the behavior
of quarks and gluons? Can we prove that quarks are gluons are con-
fined at low temperatures using QCD? Is it possible to calculate masses
of hadrons (such as the proton, neutron, pion, etc.) correctly from the
Standard Model, with the help of QCD? Does QCD predict that quarks and
gluons become deconfined and form plasma at high temperature? If so,
what is the nature of the deconfinement phase transition?

9) Is there a mathematically rigorous formulation of a relativistic quantum
field theory describing interacting (not free) fields in four spacetime di-
mensions? For example, is the Standard Model mathematically consistent?
How about Quantum Electrodynamics?

10) Is the proton really stable, or does it eventually decay?

11) Why do the particles have the precise masses they do?

12) Why are the strengths of the fundamental forces (electromagnetism, weak
and strong forces, and gravity) what they are?

13) Are there important aspects of the Universe that can only be understood
using the Anthropic Principle? Or is this principle unnecessary, or perhaps
inherently unscientific?

14) Do the forces really become unified at sufficiently high energy?

15) Does some version of string theory or M-theory give specific predictions
about the behavior of elementary particles? If so, what are these predic-
tions? Can we test these predictions in the near future? And: are they
correct?

The Big Question

1) How can we merge quantum theory and general relativity to create a quan-
tum theory of gravity? How can we test this theory?

A bunch of these questions could turn out to be a bit silly — a good answer might re-
quire changing the question. But that’s always how it goes for really interesting puzzles.
I should also warn you that the statements above are deliberately a bit naive-sounding:
as the example of γ ray bursters shows, we actually do know a lot about all these ques-
tions — we’re just not sure about the answers! So, see the webpage itself for a bit more
information on these questions, and the links for even more. . .

Hmm. I was going to say something about number theory, but I’m out of time!

Of course: abstraction, irrelevance, purity, formalism make for good math-
ematics. . . . But sadly, they make for bad mathematics education. Each one
of these concepts — abstract, irrelevance, purity, formalism - pushes mathe-
matics further away from a growing human being, a being whose psyche is
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in the phase of it development that no soft-brained psychologist but a great
mathematician, Alfred North Whitehead, calls the Romantic Phase.

— Apostolos Doxiadis
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Week 205

April 11, 2004

This week I’d like to say more about number theory, but first — here’s the most fun book
on astronomy I’ve ever seen:

1) James B. Kaler, The Hundred Greatest Stars, Copernicus Books (Springer Verlag),
New York, 2002.

It’s just what the title says: a compilation of the author’s 100 favorite stars, each
with a picture and a one-page description of what makes that star interesting. They’re
incredibly diverse, from the mammoth Eta Carinae to tiny brown dwarf Gliese 229B.
You’ll see soft gamma repeaters, yellow hypergiants, pulsars, Mira-type variables, barium
stars, symbiotic stars, and more. There’s also an introduction that explains the concepts
needed to enjoy all these different kinds of stars, like the Hertzsprung-Russell diagram
and a bit of nuclear physics. With the help of this, the whole book forms a wonderful
taxonomy of stellar astrophysics. I suggest keeping it by your bed and reading one star
a night — though you may wind up staying up late and devouring the whole book.

On to number theory. . . .
There’s a widespread impression that number theory is about numbers, but I’d like to

correct this, or at least supplement it. A large part of number theory — and by the far
the coolest part, in my opinion — is about a strange sort of geometry. I don’t understand
it very well, but that won’t prevent me from taking a crack at trying to explain it. . . .

The basic idea is to push the analogy between integers and polynomials as far as it
will go. They’re similar because you can add, subtract and multiply them, and these
operations satisfy the usual rules we all learned in high school:

• x+ y = y + x

• (x+ y) + z = x+ (y + z)

• x+ 0 = x

• x+ (−x) = 0

• xy = yx

• (xy)z = x(yz)

• x1 = x

• x(y + z) = xy + xz

Anything satisfying these rules is called a “commutative ring”. There are also a lot
of deeper similarities between integers and polynomials, which I’ll talk about later. But,
there’s a big difference! Polynomials are functions on the line, whereas the integers
aren’t functions on some space — at least, not in any instantly obvious way.

The fact that polynomials are functions on a space is what lets us graph them. This
lets us think about them using geometry — and also think about geometry using them.
This was the idea behind Descartes’ “analytic geometry”, and it was immensely fruitful.
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So, it would be cool if we could also think about the integers using geometry. And it
turns out we can, but only if we stretch our concept of geometry far enough!

If we do this, we’ll see some cool things. First of all, we’ll see that algebra is just like
geometry, only backwards.

What do I mean by this? Well, whenever you have a map T : X → Y going from
the space X to the space Y , you can use it to take functions on Y and turn them into
functions on X. Since this goes backwards, it’s called “pulling back along T ”. Here’s how
it goes: if f is a function on Y , we get a function T ∗(f) on X given by:

T ∗(f)(x) = f(T (x))

Moreover, functions on a space form a commutative ring, since you can add and multiply
them pointwise, and pulling back is a “homomorphism”, meaning that it preserves all the
structure of a commutative ring:

• T ∗(f + g) = T ∗(f) + T ∗(g)

• T ∗(0) = 0

• T ∗(fg) = T ∗(f)T ∗(g)

• T ∗(1) = 1

Conversely, any sufficiently nice homomorphism from functions on Y to functions
on X will come from some map T : X → Y this way! Here I’m summarizing a whole
bunch of different theorems, each of which goes along with its own precise definition of
“space”, “map”, and “nice”.

Some of these theorems are technical, but the basic idea is simple: we can translate
back and forth between the study of commutative rings (algebra) and the study of spaces
(geometry) and by thinking of commutative rings as consisting of functions on spaces.
We get a little dictionary for translating between geometry and algebra, like this:

Geometry Algebra

spaces commutative rings
maps homomorphisms

But be careful: this translation turns maps into homomorphisms going backwards:
it’s “contravariant”. This is really important in two ways. First, suppose we have a point
x in a space X. This gives a map

i : {x} → X

This, in turn, gives a homomorphism i∗ sending functions on X to functions on {x}.
Functions on a one-point space are like numbers, so i∗ acts like “evaluation at x”. More-
over, i∗ will tend to be onto: that’s the backwards analogue of the fact that i is one-to-
one!

Second, suppose we have a map from a space E onto the space X:

p : E → X.
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If you know some topology, think of E as a “covering space” of X. Then we get a
homomorphism p∗ from functions on X to functions on E. Moreover p∗ will tend to be
one-to-one: that’s the backwards version of the fact that p was onto!

We can use these examples to figure out the analogue of a “point” or a “covering
space” in the world of commutative rings! And the resulting ideas turn out to be crucial
to modern number theory.

In “Week 199” I explained the analogue of a “point” for commutative rings: it’s a
“prime ideal”. So, now I want to explain the analogue of a “covering space”. This
will expand our dictionary so that it relates Galois groups to fundamental groups of
topological spaces. . . and so on.

But, we won’t get too far if we don’t remember why a “prime ideal” is like a “point”!
So, I guess I’d better review some of “Week 199” before charging ahead into the beautiful
wilderness.

What’s special about the ring of functions on a space consisting of just one point?
Take real- or complex-valued functions, for example. How do these differ from the
functions on a space with lots of points?

The answer is pretty simple: on a space with just one point, a function that vanishes
anywhere vanishes everywhere! So, the only function that fails to have a multiplicative
inverse is 0. For bigger spaces, this isn’t true.

A commutative ring where only 0 fails to have a multiplicative inverse is called a
“field”. So, the algebraic analogue of a one-point space is a field.

This means that the algebraic analogue of a map from a one-point space into some
other space:

i : {x} → X

should be a homomorphism from a commutative ring R to a field k:

f : R→ k.

Our translation dictionary now looks like this:

Geometry Algebra

spaces commutative rings
maps homomorphisms
one-point spaces fields
maps from one-point spaces homomorphisms to fields

It’s worth noting some subtleties here. In the geometry we learned in high school,
once we see one point, we’ve seen ’em all: all one-point spaces are isomorphic. But not
all fields are isomorphic! So, if we’re trying to think of algebra as geometry, it’s a funny
sort of geometry where points come in different flavors!

Moreover, there are homomorphisms between different fields. These act like “flavor
changing” maps — maps from a point of one flavor to a point of some other flavor.

If we have a homomorphism f : R → k and a homomorphism from k to some other
field k′, we can compose them to get a homomorphism f ′ : R → k′. So, we’re doing
some funny sort of geometry where if we have a point mapped into our space, we can
convert it into a point of some other flavor, using a “flavor changing” map.
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Now let’s take this strange sort of geometry really seriously, and figure out how to
actually turn a commutative ring into a space! First I’ll describe what people usually do.
Eventually I’ll describe what perhaps they really should do — but maybe you can guess
before I even tell you.

People usually cook up a space called the “spectrum” of the commutative ring R, or
Spec(R) for short. What are the points of Spec(R)? They’re not just all possible homo-
morphisms from R to all possible fields. Instead, we count two such homomorphisms
as the same point of Spec(R) if they’re related by a “flavor changing process”. In other
words, f ′ : R → k′ gives the same point as f : R → k if you can get f ′ by composing f
with a homomorphism from k to k′.

This is a bit ungainly, but luckily there’s a quick and easy way to tell when f : R→ k
and f ′ : R → k′ are related by such a flavor changing process, or a sequence of such
processes. You just see if they have the same kernel! The “kernel” of f : R → k is the
subset of R consisting of elements r with

f(r) = 0

The kernel of a homomorphism to a field is a “prime ideal”, and two homomorphisms
are related by a sequence of flavor changing processes iff they have the same kernel.
Furthermore, every prime ideal is the kernel of a homomorphism to some field. So, we
can save time by defining Spec(R) to be the set of prime ideals in R.

For completeness I should remind you what a prime ideal is! An “ideal” in a ring
R is a set closed under addition and closed under multiplication by anything in R. It’s
“prime” if it’s not all of R, and whenever the product of two elements of R lies in the
ideal, at least one of them lies in the ideal.

So, we have something like this:

Geometry Algebra

spaces commutative rings
maps homomorphisms
one-point spaces fields
maps from one-point spaces homomorphisms to fields
points of a space prime ideals of a commutative ring

Now let’s use these ideas to study “branched covering spaces” and their analogues
in algebra. This week I’ll talk about two examples. The first is very geometrical, and it
should be familiar to anyone who has studied a little complex analysis. The second is
more algebraic, and it’s important in number theory. But, the cool part is that they fit
into the same formalism!

If you don’t know what a branched covering space is, don’t worry: we’ll start with
the very simplest example. We’ll look at this map from the complex plane to itself:

p : C→ C
z 7→ z2

Except for zero, every complex number has two square roots, so this map is two-to-one
and onto away from the origin. In fact, away from the origin you can visualize this thing
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locally as two sheets of paper sitting above one. But these two sheets have a global
complication: if you start on the top sheet and hike once around the origin, you wind up
on the bottom sheet — and vice versa! In topology we call this sort of thing a “double
cover”. When we include the point z = 0 things get even more complicated, since the
two sheets meet there. So we have something trickier: a “branched cover”. In general,
a branched cover is like a covering space except that the different “sheets” can merge
together at certain points, called “branch points”.

Now let’s think about this algebraically. To keep from getting confused, let’s write

z2 = w

so that p is a map from the “z-plane” down to the “w-plane”, sending each point z to the
point z2 = w. The ring of polynomial functions on the z-plane is called C[z]; the ring
of polynomial functions on the w-plane is called C[w]. We can pull functions from the
w-plane back up to the z-plane:

p∗ : C[w]→ C[z]

and p∗ works in the obvious way, taking any function f(w) to the function f(z2).
Just as p is onto, p∗ is one-to-one! So, we can think of C[w] as sitting inside C[z],

consisting of those polynomials in z that only depend on z2: the even functions. We say
C[w] is a “subring” of C[z], or equivalently, that C[z] is an “extension” of C[w].

In this example we can get the bigger ring from the smaller one by throwing in
solutions of some polynomial equations, so we call it an “algebraic extension”. We’ve
already seen some algebraic extensions, namely algebraic number fields, where take the
field of rational numbers and throw in some solutions of polynomial equations. Algebraic
extensions can be complicated, but this one is really simple: we just start with C[w] and
throw in the solution of one polynomial equation, namely

z2 = w

It turns out that quite generally, algebraic extensions of commutative rings act a lot like
branched covering spaces. I probably don’t have the technical details perfectly straight,
but let’s add this to our translation dictionary, because it’s an important idea:

Geometry Algebra

spaces commutative rings
maps homomorphisms
one-point spaces fields
maps from one-point spaces homomorphisms to fields
points of a space prime ideals of a commutative ring
branched covering spaces algebraic extensions of commutative rings

Now let’s have some fun: let’s see how our algebraic concept of “point”, namely
“prime ideal”, interacts with our branched double cover of the complex plane. There’s
something straightforward going on, but also something more subtle and interesting.

The straightforward thing is that any point up on the z-plane maps to one down on
the w-plane. We don’t need fancy algebra to see this! But, it’s worth doing algebraically.
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According to the fancy algebraic definition, a “point” in the spectrum of the commutative
ring C[z] is a prime ideal. But as you might hope, these are the same as good old-
fashioned points in the complex plane!

It works like this: given any point x in C, we get a homomorphism from C[z] to C
called “evaluation at x”, which sends any polynomial f to the number f(x). The kernel
of this is the prime ideal consisting of all polynomials that vanish at x. These are just the
polynomials containing a factor of z − x, so we call this ideal

⟨z − x⟩

So, we get some prime ideals in C[z] from points of C this way. But in fact there’s a
theorem that every prime ideal in C[z] is of this form! So, we get a one-to-one correspon-
dence

Spec(C[z]) = C

Similarly,
Spec(C[w]) = C

Now let’s think about our branched cover

p : C→ C

in different ways. It starts out life as a map from the z-plane down to the w-plane. We
can use this to pull back functions on the w-plane up to the z-plane:

p∗ : C[w]→ C[z]

But then, by general abstract baloney, the inverse image under p∗ of any prime ideal in
C[z] is a prime ideal back in C[w]. This gives a map from Spec(C[z]) to Spec(C[w]). But
this is just a map from the z-plane to the w-plane! And it’s the same map p we started
with. If you don’t see why, it’s a good exercise to check this.

So: we translated from geometry to algebra and back to geometry, and we got right
back where we started. Note that each time we translated, our description of the map p
got turned around backwards.

But there’s a subtler and more interesting thing we can do with our branched cover.
We can take a point down on the w-plane and look at the points up on the z-plane that
map down to it!

Usually there will be two, but for the origin there’s just one. This much is clear from
thinking geometrically. But if we think algebraically, we’ll see something funny going on
at the origin. We can already see it geometrically: the origin is where the two sheets
of our branched cover meet, so we call it a “branch point”. But the algebraic viewpoint
sheds an interesting new light on this.

What we’ll do is take a prime ideal in C[w] and push it forwards via

p∗ : C[w]→ C[z]

The resulting subset won’t be an ideal, but it will “generate” an ideal, meaning we can
take the smallest ideal containing it. This ideal won’t be prime, but we can “factor” it
into prime ideals: there’s a fairly obvious way to multiply ideals, and we happen to be
working with rings where there’s a unique way to factor any ideal into prime ideals.
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Let’s try it. First pick a number x that’s not zero. It gives a prime ideal in C[w],
namely

⟨w − x⟩

Next push this ideal forwards via p∗ and let it generate an ideal in C[z], namely

⟨z2 − x⟩

This is not prime, but we can factor it, which in this case simply amounts to factoring
the polynomial that generates it:

⟨z2 − x⟩ = ⟨(z −
√
x)(z +

√
x)⟩ = ⟨z −

√
x⟩⟨z +

√
x⟩

We get a product of two prime ideals, corresponding to two points in the z-plane, namely
+
√
x and −

√
x. These are the two points that map down to x.

In this sort of situation, we say the prime ideal ⟨w − x⟩ “splits” into the prime ideals
⟨z −

√
x⟩ and ⟨z +

√
x⟩ when we go from C[w] to the extension C[z]. This is just an

overeducated way of saying the number x has two different square roots.
But suppose x = 0. This doesn’t have two square roots! Everything works the same

except we get
⟨z2⟩ = ⟨z⟩⟨z⟩

We say the prime ideal ⟨w⟩ “ramifies” when we go from C[w] to the extension C[z]. We
still get a product of prime ideals; they just happen to be the same. This is a way of
making sense of the funny notion that the number 0 has two square roots. . . which
just happen to be the same! Lots of mathematicians and physicists talk about “repeated
roots” when an equation has “two solutions that just happen to be equal”. This is just a
way of making that precise.

But all this algebraic machinery must seem like overkill if this is the first time you’ve
seen it. It pays off when we get to more algebraic examples. So, let me sketch the
simplest one.

Let Z be the ring of integers, and let Z[i] be the ring of Gaussian integers, namely
numbers of the form a + bi where a and b are integers. Z[i] is an algebraic extension of
Z, since we can get it by throwing in a solution z of the polynomial equation

z2 = −1

This equation is quadratic, just like it was in the example we just did! Now we’re throw-
ing in a square root of−1 instead of a square root of some function on the complex plane.
But if we take the analogy between geometry and algebra seriously, this extension should
still give some sort of “branched double cover”

p : Spec(Z[i])→ Spec(Z)

What’s this like?
It’s actually really interesting, but I’ll just sketch how it works.
The points of Spec(Z) are prime ideals in Z. In “Week 199” we saw that except for

the prime ideal ⟨0⟩, these are generated by prime numbers.
Similarly, except for ⟨0⟩, the prime ideals in Z[i] are generated by “Gaussian primes”:

Gaussian numbers that have no factors except themselves and the “units” 1, −1, i and
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−i. (A “unit” in a ring is an element with a multiplicative inverse; we don’t count units
as primes.)

The map p sends each Gaussian prime to a prime, and it’s fun to work out how this
goes. . . but it’s even more fun to work backwards! Let’s take primes in the integers and
see what happens when we let them generate ideals in the Gaussian integers! This is like
taking points in the base space of a branched cover and seeing what’s sitting up above
them.

For example, the prime 5 “splits”. It has two prime factors in the Gaussian integers:

5 = (2 + i)(2− i)

so in Z[i] the ideal it generates is a product of two prime ideals:

⟨5⟩ = ⟨2 + i⟩⟨2− i⟩

This means that two different points in Spec(Z[i]) map down to the point ⟨5⟩ in Spec(Z),
namely ⟨2 + i⟩ and ⟨2− i⟩. So we indeed have something like a double cover!

On the other hand, the prime 2 “ramifies”. It has two prime factors in the Gaussian
integers:

2 = (1 + i)(1− i)

but these two Gaussian primes generate the same prime ideal:

⟨1 + i⟩ = ⟨1− i⟩

since if we multiply 1 + i by the unit −i we get 1 − i. So, in the Gaussian integers we
have

⟨2⟩ = ⟨1 + i⟩⟨1 + i⟩

A repeated factor! This is just what happened to the branch point in our previous exam-
ple: it had “two points sitting over it, which happen to be the same”.

So far, everything seems to be working nicely. But, besides splitting and ramification,
there’s a third thing that happens here, which didn’t happen in our example involving
the complex plane. In fact, this third option never happens when we’re doing algebraic
geometry over the complex numbers!

Here’s how it works. Consider the prime 3. This is still prime in the Gaussian integers!
It doesn’t split, and it doesn’t ramify. If we factorize the ideal generated by 3 in Z[i] we
just get

⟨3⟩ = ⟨3⟩

It doesn’t do anything — it just sits there! So, we say this prime is “inert”.
This may seem boring, but it’s actually mysterious — and downright maddening if

we take the analogy between geometry and algebra seriously. It’s weird enough to have
a “branched” cover where sheets merge at certain points, but at least in that case we
can see they’ve merged: a prime ideal in our subring generates an ideal in the extension
that’s not prime, but is a product of several prime factors, some of which happen to be the
same. But when a prime ideal in our subring generates a prime ideal in the extension, it’s
as if our “cover” has just one sheet over this point in the base space! And if this happens
for a quadratic extension — as it just did — something seems to have gone horribly
wrong with the nice idea that “quadratic extensions are like branched double covers”.
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Luckily, this puzzle has a nice resolution. We shouldn’t have decategorified! When
we started discussing “points” for a commutative ring, we saw they form a category in a
nice way: there are points of different “flavors”, with “flavor-changing operations” going
between them. Then we freaked out and turned this category into a set by decreeing
that two point are the same whenever there’s a morphism between them. If we hadn’t
done this, we’d have seen more clearly how “inert” primes fit into a nice pattern along
with “split” and “ramified” ones.

I’ll probably talk about this more sometime, and also look more carefully at what
happens to all the different primes when we go to the Gaussian integers — to show you
that we are, indeed, doing number theory!

But for now, I just want to make a few comments about this idea of points of different
“flavors”.

In fact Grothendieck proposed an even more general idea of this sort in his second
approach to “schemes”, which is simpler but much less widely discussed than his first
approach. Basically, he said that given a commutative ring R, we should not only con-
sider points that are homomorphisms from R to any field, but also to any commutative
ring. For each commutative ring k we get a set consisting of all “k-points” of R, namely
homomorphisms

f : R→ k

And, for each homomorphism g : k → k′ we get a “flavor changing operation” that sends
k-points to k′-points. So, we get a functor from CommRing to Set! He called such a
functor a “scheme”. We can get schemes from commutative rings as just described —
these are called “affine schemes” — but there are also others, for example those coming
from projective varieties.

Anyway, here are some places to read more about number theory. . . mostly with
an emphasis on the geometric viewpoint and the issue of “splitting, ramification and
inertia”.

For a really quick and friendly no-nonsense introduction, try this:

2) Harold M. Stark, “Galois Theory, Algebraic Number Theory, and Zeta Function”, in
From Number Theory to Physics, eds. M. Waldschmit et al, Springer, Berlin, 1992,
pp. 313–393.

To dig a lot deeper, try this book by Neukirch:

3) Juergen Neukirch, Algebraic Number Theory, trans. Norbert Schappacher, Springer,
Berlin, 1986.

I already mentioned it, but it’s worth mentioning again, because it’s pretty elemen-
tary, and very clear on the analogy between “function fields” (fields of functions on
Riemann surfaces) and “number fields” (algebraic number fields).

This book by Borevich and Shafarevich doesn’t make the analogy to geometry ex-
plicit:

4) Z. I. Borevich and I. R. Shafarevich, Number Theory, trans. Newcomb Greenleaf,
Academic Press, New York, 1966.
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However, it has a nice concept of a “theory of divisors” for a commutative ring — and
if you know a bit about divisors from algebraic geometry, you’ll see that this is secretly
very geometrical! They show how to classify algebraic extensions of commutative rings
using a theory of divisors, and show how to get a theory of divisors using “valuations”.
This manages to accomplish a lot of what other texts do using “adeles”, without actually
mentioning adeles. I find this instructive.

This book goes much further in the geometric direction, but still without introducing
schemes:

5) Dino Lorenzini, An Invitation to Arithmetic Geometry, American Mathematical So-
ciety, Providence, Rhode Island, 1996.

It’s really great — very pedagogical! It develops number fields and function fields in
parallel. You’ll need to be pretty comfy with commutative algebra to work all the way
through it, though.

If you want to learn about schemes — not the kind I just talked about, just the usual
sort, which still includes cool “spaces” like Spec(Z) — try these:

6) V. I. Danilov, V. V. Shokurov, and I. Shafarevich, Algebraic Curves, Algebraic Mani-
folds and Schemes, Springer, Berlin, 1998.

7) David Eisenbud and Joe Harris, The Geometry of Schemes, Springer, Berlin, 2000.

Schemes have a reputation for being scary, but both these books try hard to make
them less so, including lots of actual pictures of things like Spec(Z[i]) sitting over Spec(Z).

To wrap things up, I just want to mention two papers on subjects I’m fond of. . . .
In “Week 172” I discussed Tarski’s “high school algebra problem”. This asks whether

every identity involving 1, +, ×, and exponentials that holds in the positive natural
numbers follows from the eleven we learned in high school:

• x+ y = y + x

• (x+ y) + z = x+ (y + z)

• xy = yx

• (xy)z = x(yz)

• 1x = x

• x1 = x

• 1x = 1

• x(y + z) = xy + xz

• xy+z = xyxz

• (xy)z = xzyz

• xyz = (xy)z
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The rules of this game allow only purely equational reasoning — not stuff like mathe-
matical induction. The reason is that this is secretly a problem about “universal algebra”
or “algebraic theories”, as explained in “Week 200”.

It turns out the answer is no! In fact there are infinitely many more independent
identities! Here is the first one, due to Wilkies:

[(x+ 1)x + (x2 + x+ 1)x]y[(x3 + 1)y + (x4 + x2 + 1)y]x

=[(x+ 1)y + (x2 + x+ 1)y]x[(x3 + 1)x + (x4 + x2 + 1)x]y

I just found a paper, apparently written after “Week 172”, which gives a very detailed
account of this problem:

8) Stanley Burris and Karen Yeats, “The saga of the high school identities”, available at
http://web.archive.org/web/20070212200835/http://www.math.uwaterloo.ca/

~snburris/htdocs/MYWORKS/PREPRINTS/saga.ps

It includes some new results, like the smallest known algebraic gadget satisfying all
the high school identities but not Wilkies’ identity — but also more interesting things
that are a bit harder to describe.

Also, here’s a cool paper relating some of Ramanujan’s work to string theory:

9) Antun Milas, ‘Ramanujan’s “Lost Notebook” and the Virasoro Algebra’, available as
math.QA/0309201.

A lot of Ramanujan’s weird identities turn out to be related to concepts from string
theory, suggesting that he was born about a century too soon to be fully appreciated. . .
but this paper tackles an identity of his that nobody had managed to explain using string
theory before.

Addendum: Here’s something a friend of mine wrote, and an expanded version of
my reply.

By the way, I very much liked your explanation of points and prime ideals. Up
until now I haven’t seen a satisfactory explanation of why points correspond to
prime rather than maximal ideals, and although I haven’t completely digested
what you wrote, it looks like it might do the job. . .

Both here and in my discussion of spectra in “Week 199”, I’ve been avoiding saying
the things people usually say. People usually note that a maximal ideal is the same as
the kernel of a homomorphism ONTO a field, while a prime ideal is the same as the
kernel of a homomorphism ONTO an integral domain. (Recall that an integral domain is
a commutative ring where xy = 0 implies that x or y is zero.) If we define the “points” of
a commutative ring R to be its maximal or prime ideals, we can therefore think of these
as the kernels of homomorphisms from R onto fields or integral domains.

However, defining points in terms of homomorphisms ONTO a given sort of commu-
tative ring is rather irksome, because it doesn’t tell us how points transform under ho-
momorphisms of commutative rings, nor how they transform under the “flavor-changing
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operations” I was describing. The problem is that the composite of a homomorphism
with an onto homomorphism needn’t be onto!

So, what really matters is that a prime ideal is the same as the kernel of a homomor-
phism TO a field. To see how this follows from the usual story, note that any integral
domain is contained in a field called its “field of fractions” — just as Z is contained in Q.
Any homomorphism ONTO the integral domain thus becomes a homomorphism TO this
field, with the same kernel. Conversely, any homorphism TO a field becomes a homo-
morphism ONTO its image, with the same kernel — and this image is always an integral
domain.

Much later, in 2013, someone wrote:

Dear Professor Baez,

In TWF 205 you discuss the puzzle of inert primes and indicate that this puzzle
has a nice resolution in terms of decategorification. You also indicated then that
you may talk further about this at a later date. By any chance did you return
to this topic and if so might you be able to point me to the appropriate TWF (or
other reference)?

My apologies for asking about a nine year old remark.

I replied:
Sorry, I never wrote more about that. I sort of forget what I was talking about,

because it comes from a time long ago when I was discussing number theory with James
Dolan, and he understood this stuff much better than me. But I think I can remember a
bit if I try. . .

[. . . ] you discuss the puzzle of inert primes and indicate that this puzzle has a
nice resolution in terms of decategorification.

I remember that the resolution of the puzzle is to refrain from decategorifying.
In Grothendieck’s approach, the “k-points” of a ring R of algebraic numbers, for

various choices of field k, are homomorphisms

R→ k

These are the objects of a category, in the manner I described, with “flavor-changing
operations” coming from homomorphisms k → k′ as the morphisms.

If we restrict our attention to the case I was talking about, where R = Z[i] is the
Gaussian integers and k is a finite field, the “inert” primes correspond to situations where
a k-point down in Z lifts to two different but isomorphic k-points in Z[i]. When we
decategorify, as we do in the usual approach, it looks like there’s just one point in Z[i]
sitting over this point in Z.

Let me warm up by considering the prime 5, which is not inert. The ideal in Z
generated by 5 splits into two ideals in Z[i], ⟨2 − i⟩ and ⟨2 + i⟩. Correspondingly, there
are two k-points

Z[i]→ F5

one having ⟨2− i⟩ as its kernel (it sends i to 2), and having ⟨2 + i⟩ as its kernel (it sends
i to −2). These k-points are not isomorphic.
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On the other hand, 3 is inert. The ideal in Z generated by 3 does not split in Z[i].
Now we can find a field k = F9 such that Z[i] has two different k-points with the ideal
⟨3⟩ as kernel. One k-point

Z[i]→ F9

sends i to one of the square roots of −1 in F9, the other sends it to the other. (We have
to go up to F9 since there’s no square root of −1 in F3.) However, these two k-points are
isomorphic, since there’s an automorphism of F9 interchanging its two square roots of
−1.

Moral: When we work with prime ideals as points instead of homomorphisms whose
kernels are these prime ideals, it looks like there’s just one point in Spec(Z[i]) sitting over
the prime ideal ⟨3⟩. But when we define points to be homomorphisms, we see Z[i] has
two isomorphic points Z[i] → F9 sitting over the unique point Z → F9 whose kernel is
that prime ideal.

One discovery opens another, and then another. Everything in this country is
nested like Russian dolls. Even a solid artifact in front of me drew back into
other levels. Schemes within schemes.

— Craig Childs, Soul of Nowhere
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Week 206

May 10, 2004

I just got back from Marseille, where Carlo Rovelli, Laurent Freidel and Phillipe Roche
held the first really big conference on loop quantum gravity and spin foams since the
2nd Warsaw workshop run by Jerzy Lewandowski back in 1997:

1) Non Perturbative Quantum Gravity: Loops and Spin Foams, 3–7 May 2004, CIRM,
Luminy, Marseille, France, http://w3.lpm.univ-montp2.fr/~philippe/quantumgravitywebsite/

It was good to see old friends and talk about quantum gravity near the “Calanques” —
the rugged limestone cliffs lining the Mediterranean coastline. It was good to meet lots of
young people who have recently entered this difficult field: about 100 people attended,
considerably more than at any previous meeting. But most of all, it was good to see some
progress on the tough problem of understanding dynamics in nonperturbative quantum
gravity.

Can we get the 4-dimensional spacetime we know and love, whose geometry is de-
scribed by general relativity, to emerge from some theory that takes quantum physics
into account? And can we do it nonperturbatively?

In other words, can we do quantum physics without choosing some fixed spacetime
geometry from the start, a “background” on which small perturbations move like tiny
quantum ripples on a calm pre-established lake? A background geometry is convenient:
it lets us keep track of times and distances. It’s like having a fixed stage on which the
actors — gravitons, strings, branes, or whatever — cavort and dance. But, the main
lesson of general relativity is that spacetime is not a fixed stage: it’s a lively, dynamical
entity! There’s no good way to separate the ripples from the lake. This distinction is no
more than a convenient approximation — and a dangerous one at that.

So, we should learn to make do without a background when studying quantum grav-
ity. But it’s tough! There are knotty conceptual issues like the “problem of time”: how
do we describe time evolution without using a fixed background to measure the passage
of time? There are also practical problems: in most attempts to describe spacetime from
the ground up in a quantum way, all hell breaks loose!

We can easily get spacetimes that crumple up into a tiny blob. . . or spacetimes
that form endlessly branching fractal “polymers” of Hausdorff dimension 2. . . but it
seems hard to get reasonably smooth spacetimes of dimension 4. It’s even hard to get
spacetimes of dimension 10 or 11. . . or anything remotely interesting!

It almost seems as if we need a solid background as a bed frame to keep the mattress
of spacetime from rolling up, getting all lumpy, or otherwise misbehaving. Unfortunately,
even with a background there are serious problems: we can use perturbation theory to
write the answers to physics questions as power series, but these series diverge and
nobody knows how to resum them.

String theorists are pragmatic in a certain sense: they don’t mind using a background,
and they don’t mind doing what physicists always do: approximating a divergent series
by the sum of the first couple of terms. But this attitude doesn’t solve everything, because
right now in string theory there is an enormous “landscape” of different backgrounds,
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with no firm principle for choosing one. Some estimates guess there are over 10100.
Leonard Susskind guesses there are 10500, and argues that we’ll need the anthropic prin-
ciple to choose the one describing our world:

2) Leonard Susskind, “The Landscape”, article and interview on John Brockman’s
“EDGE” website, http://www.edge.org/3rd culture/susskind03/susskind index.

html

This position is highly controversial, but my point here shouldn’t be: developing a
background-free theory of quantum gravity is tough, but working with a background has
its own difficulties. And let’s face it: we haven’t spent nearly as much time thinking about
background-free or nonperturbative physics as we’ve spent on background-dependent or
perturbative physics. So, it’s quite possible that our failures with the former are just a
matter of inexperience.

Given all this, I’m delighted to see some real progress on getting 4d spacetime to
emerge from nonperturbative quantum gravity:

3) Jan Ambjorn, Jerzy Jurkiewicz and Renate Loll, “Emergence of a 4d world from
causal quantum gravity”, available as hep-th/0404156.

This trio of researchers have revitalized an approach called “dynamical triangula-
tions” where we calculate path integrals in quantum gravity by summing over different
ways of building spacetime out of little 4-simplices. They showed that if we restrict this
sum to spacetimes with a well-behaved concept of causality, we get good results. This is
a bit startling, because after decades of work, most researchers had despaired of getting
general relativity to emerge at large distances starting from the dynamical triangulations
approach. But, these people hadn’t noticed a certain flaw in the approach. . . a flaw
which Loll and collaborators noticed and fixed!

If you don’t know what a path integral is, don’t worry: it’s pretty simple. Basically,
in quantum physics we can calculate the expected value of any physical quantity by
doing an average over all possible histories of the system in question, with each history
weighted by a complex number called its “amplitude”. For a particle, a history is just a
path in space; to average over all histories is to integrate over all paths — hence the term
“path integral”. But in quantum gravity, a history is nothing other than a spacetime.

Mathematically, a “spacetime” is something like a 4-dimensional manifold equipped
with a Lorentzian metric. But it’s hard to integrate over all of these — there are just
too darn many. So, sometimes people instead treat spacetime as made of little discrete
building blocks, turning the path integral into a sum. You can either take this seriously
or treat it as a kind of approximation. Luckily, the calculations work the same either
way!

If you’re looking to build spacetime out of some sort of discrete building block, a
handy candidate is the “4-simplex”: the 4-dimensional analogue of a tetrahedron. This
shape is rigid once you fix the lengths of its 10 edges, which correspond to the 10 com-
ponents of the metric tensor in general relativity.

There are lots of approaches to the path integrals in quantum gravity that start by
chopping spacetime into 4-simplices. The weird special thing about dynamical triangu-
lations is that here we usually assume every 4-simplex in spacetime has the same shape.
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The different spacetimes arise solely from different ways of sticking the 4-simplices to-
gether.

Why such a drastic simplifying assumption? To make calculations quick and easy!
The goal is get models where you can simulate quantum geometry on your laptop — or
at least a supercomputer. The hope is that simplifying assumptions about physics at the
Planck scale will wash out and not make much difference on large length scales.

Computations using the so-called “renormalization group flow” suggest that this hope
is true if the path integral is dominated by spacetimes that look, when viewed from afar,
almost like 4d manifolds with smooth metrics. Given this, it seems we’re bound to
get general relativity at large distance scales — perhaps with a nonzero cosmological
constant, and perhaps including various forms of matter.

Unfortunately, in all previous dynamical triangulation models, the path integral was
not dominated by spacetimes that look like nice 4d manifolds from afar! Depending on
the details, one either got a “crumpled phase” dominated by spacetimes where almost
all the 4-simplices touch each other, or a “branched polymer phase” dominated by space-
times where the 4-simplices form treelike structures. There’s a transition between these
two phases, but unfortunately it seems to be a 1st-order phase transition — not the sort
we can get anything useful out of. For a nice review of these calculations, see:

4) Renate Loll, “Discrete approaches to quantum gravity in four dimensions”, avail-
able as gr-qc/9805049 or as a website at Living Reviews in Relativity, http://www.
livingreviews.org/Articles/Volume1/1998-13loll/

Luckily, all these calculations shared a common flaw!
Computer calculations of path integrals become a lot easier if instead of assigning

a complex “amplitude” to each history, we assign it a positive real number: a “relative
probability”. The basic reason is that unlike positive real numbers, complex numbers can
cancel out when you sum them!

When we have relative probabilities, it’s the highly probable histories that contribute
most to the expected value of any physical quantity. We can use something called the
“Metropolis algorithm” to spot these highly probable histories and spend most of our
time focusing on them.

This doesn’t work when we have complex amplitudes, since even a history with a
big amplitude can be canceled out by a nearby history with the opposite big amplitude!
Indeed, this happens all the time. So, instead of histories with big amplitudes, it’s the
bunches of histories that happen not to completely cancel out that really matter. Nobody
knows an efficient general-purpose algorithm to deal with this!

For this reason, physicists often use a trick called “Wick rotation” that converts ampli-
tudes to relative probabilities. To do this trick, we just replace time by imaginary time!
In other words, wherever we see the variable “t” for time in any formula, we replace it
by “it”. Magically, this often does the job: our amplitudes turn into relative probabilities!
We then go ahead and calculate stuff. Then we take this stuff and go back and replace
“it” everywhere by “t” to get our final answers.

While the deep inner meaning of this trick is mysterious, it can be justified in a wide
variety of contexts using the “Osterwalder-Schrader theorem”. Here’s a pretty general
version of this theorem, suitable for quantum gravity:
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5) Abhay Ashtekar, Donald Marolf, Jose Mourao and Thomas Thiemann, “Construct-
ing Hamiltonian quantum theories from path integrals in a diffeomorphism in-
variant context”, Class. Quant. Grav. 17 (2000) 4919–4940. Also available as
quant-ph/9904094.

People use Wick rotation in all work on dynamical triangulations. Unfortunately, this
is not a context where you can justify this trick by appealing to the Osterwalder-Schrader
theorem. The problem is that there’s no good notion of a time coordinate “t” on your
typical spacetime built by sticking together a bunch of 4-simplices!

The new work by Ambjorn, Jurkiewiecz and Loll deals with this by restricting to
spacetimes that do have a time coordinate. More precisely, they fix a 3-dimensional
manifold and consider all possible triangulations of this manifold by regular tetrahedra.
These are the allowed “slices” of spacetime — they represent different possible geome-
tries of space at a given time. They then consider spacetimes having slices of this form
joined together by 4-simplices in a few simple ways.

The slicing gives a preferred time parameter “t”. On the one hand this goes against
our desire in general relativity to avoid a preferred time coordinate — but on the other
hand, it allows Wick rotation. So, they can use the Metropolis algorithm to compute
things to their hearts’ content and then replace “it” by “t” at the end.

When they do this, they get convincing good evidence that the spacetimes which
dominate the path integral look approximately like nice smooth 4-dimensional manifolds
at large distances! Take a look at their graphs and pictures — a picture is worth a
thousand words.

Naturally, what I’d like to do is use their work to develop some spin foam models with
better physical behavior than the ones we have so far. If you look at my talk you can see
some of the problems we’ve encountered:

6) John Baez, “Spin foam models”, talk at Non Perturbative Quantum Gravity: Loops
and Spin Foams, May 4, 2004, transparencies available at http://math.ucr.edu/
home/baez/spin foam models/

Now that Loll and her collaborators have gotten something that works, we can try to
fiddle around and make it more elegant while making sure it still works. In particular, I’m
hoping we can get well-behaved models that don’t introduce a preferred time coordinate
as long as they rule out “topology change” — that is, slicings where the topology of
space changes. After all, the Osterwalder-Schrader theorem doesn’t require a preferred
time coordinate, just any time coordinate together with good behavior under change of
time coordinate. For this we mainly need to rule out topology change. Moreover, Loll
and her collaborators have argued in 2d toy models that topology change is one thing
that makes models go bad: the path integral can get dominated by spacetimes where
“baby universes” keep branching off the main one:

7) Jan Ambjorn, Jerzy Jurkiewicz and Renate Loll, “Non-perturbative Lorentzian quan-
tum gravity, causality and topology change”, Nucl. Phys. B536 (1998) 407–434.
Also available as hep-th/9805108.

Renate Loll and W. Westra, “Space-time foam in 2d and the sum over topolo-
gies”, Acta Phys. Polon. B34 (2003) 4997–5008. Also available as hep-th/

0309012](https://arxiv.org/abs/hep-th/0309012).
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By the way, it’s also reading about their 3d model:

8) Jan Ambjorn, Jerzy Jurkiewicz and Renate Loll, “Non-perturbative 3d Lorentzian
quantum gravity”, Phys. Rev. D64 (2001) 044011. Also available as hep-th/

0011276.

and for a general review, try this:

9) Renate Loll, “A discrete history of the Lorentzian path integral”, Lecture Notes
in Physics 631, Springer, Berlin, 2003, pp. 137–171. Also available as hep-th/

0212340.

All this is great, but don’t get me wrong — there were a lot of other cool talks at the
conference besides Loll’s. I’ll just mention a few.

Laurent Freidel spoke on his work on spin foam models. Especially exciting is how
David Louapre and he have managed to “sum over topologies” in 3d Riemannian quan-
tum gravity with vanishing cosmological constant — otherwise known as the Ponzano-
Regge model He has to subtract out a counterterm that would otherwise lead to a bubble
divergence, but then he gets a beautiful theory where the sum over spin foams is Borel
summable:

10) Laurent Freidel and David Louapre, “Non-perturbative summation over 3D discrete
topologies”, Phys. Rev. D68 (2003) 104004. Also available as hep-th/0211026.

Their work on gauge-fixing and the inclusion of spinning point particles in the Ponzano-
Regge model is also very impressive, especially given how long this model has been
studied. It shows we have lots left to learn!

11) Laurent Freidel and David Louapre, “Ponzano-Regge model revisited I: Gauge fix-
ing, observables and interacting spinning particles”, available as hep-th/0401076.

The title suggests we’re in for more treats to come.
Kirill Krasnov gave a talk entitled simple “ln(3)” — it was all about the appearance

of this constant in the work of Hod, Dreyer, Motl and Neitzke on black hole entropy and
the ringing of black holes. I’ve discussed all this at length in “Week 198”, but Krasnov
has given an elegant new proof of Hod’s conjecture using Riemann surface theory. One
can even think of this as a “stringy” explanation of the quasinormal modes of black holes
— but much remains mysterious here:

12) Kirill Krasnov, “Black hole thermodynamics and Riemann surfaces”, Class. Quant.
Grav. 20 (2003) 2235–2250. Also available as gr-qc/0302073.

Kirill Krasnov and Sergey N. Solodukhin, “Effective stringy description of Schwarzschild
black holes”, available as hep-th/0403046.

While I’m at it, I can’t resist mentioning Krasnov’s work on including point particles
in 3d Lorentzian quantum gravity with negative cosmological constant, since it has close
connections with that of Freidel and Louapre, though the context is a bit different:
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13) Kirill Krasnov, “Λ < 0 quantum gravity in 2+1 dimensions I: quantum states and
stringy S-matrix”, Class. Quant. Grav. 19 (2002) 3977–3998. Also available as
hep-th/0112164.

Kirill Krasnov, “Λ < 0 quantum gravity in 2+1 dimensions II: black hole creation
by point particles”, Class. Quant. Grav. 19 (2002) 3999–4028. Also available as
hep-th/0202117.

If I could duplicate myself, I’d have one copy write a book on 3d quantum gravity
that would synthesize all these wonderful results in a nice big picture. It’s not realistic
physics; it’s just a toy model. But the math is so nice, and so enlightening for real-world
physics in some ways, that it’s hard to resist pondering it! TQFTs, Riemann surfaces,
hyperbolic geometry, spinning point particles colliding and creating black holes — a
wonderful stew! Alas, I don’t have time to savor it.

There were a lot of other interesting talks — but I don’t have time to go through and
describe all of them, either. So, I’ll wrap up with something very different!

Lee Smolin told me some neat stuff about MOND — that’s “Modified Newtonian
Dynamics”, which is Mordehai Milgrom’s way of trying to explain the strange behavior
of galaxies without invoking dark matter. The basic problem with galaxies is that the
outer parts rotate faster than they should given how much mass we actually see.

If you have a planet in a circular orbit about the Sun, Newton’s laws say its accel-
eration is proportional to 1/r2, where r is its distance to the Sun. Similarly, if almost
all the mass in a galaxy were concentrated right at the center, a star orbiting in a circle
at distance r from the center would have acceleration proportional to 1/r2. Of course,
not all the mass is right at the center! So, the acceleration should drop off more slowly
than 1/r2 as you go further out. And it does. But, the observed acceleration drops off a
lot more slowly than the acceleration people calculate from the mass they see. It’s not a
small effect: it’s a huge effect!

One solution is to say there’s a lot of mass we don’t see: “dark matter” of some sort.
If you take this route, which most astronomers do, you’re forced to say that most of the
mass of galaxies is in the form of dark matter.

Milgrom’s solution is to say that Newton’s laws are messed up.
Of course this is a drastic, dangerous step: the last guy who tried this was named

Einstein, and we all know what happened to him. Milgrom’s theory isn’t even based on
deep reasoning and beautiful math like Einstein’s! Instead, it’s just a blatant attempt to
fit the experimental data. And it’s not even elegant. In fact, it’s downright ugly.

Here’s what it says: the usual Newtonian formula for the acceleration due to gravity
is correct as long as the acceleration is bigger than

a = 2× 10−10 m/sec2

But, for accelerations less than this, you take the geometric mean of the acceleration
Newton would predict and this constant a.

In other words, there’s a certain value of acceleration such that above this value,
the Newtonian law of gravity works as usual, while below this value the law suddenly
changes.

Any physicist worth his salt who hears this modification of Newton’s law should be
overcome with a feeling of revulsion! There just aren’t laws of physics that split a situ-
ation in two cases and say “if this is bigger than that, then do X, but if it’s smaller, then
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do Y.” Not in fundamental physics, anyway! Sure, water is solid below 0 centigrade and
fluid above this, but that’s not a fundamental law — it presumably follows from other
stuff. Not that anyone has derived the melting point of ice from first principles, mind
you. But we think we could if we were better at big messy calculations.

Furthermore, you can’t easily invent a Lagrangian for gravity that makes it fall off
more slowly than 1/r2. It’s easy to get it to fall off faster — just give the graviton a mass,
for example! But not more slowly. It turns out you can do it — Bekenstein and Milgrom
have a way — but it’s incredibly ugly.

So, MOND should instantly make any decent physicist cringe. Esthetics alone would
be enough to rule it out, except for one slight problem: it seems to fit the data! In some
cases it matches the observed rotation of galaxies in an appallingly accurate way, fitting
every wiggle in the graph of stellar rotation velocity as a function of distance from the
center.

So, even if MOND is wrong, there may need to be some reason why it acts like it’s
right! Apparently even some proponents of dark matter agree with this.

But: take everything I’m saying here with a grain of salt. I’m no expert on this stuff,
so if you know any astrophysics you should read the literature and make up your own
mind.

Here are two reviews that Smolin especially recommended:

14) Robert H. Sanders and Stacy S. McGaugh, “Modified Newtonian Dynamics as an
Alternative to Dark Matter”, available as astro-ph/0204521.

15) Anthony Aguirre, “Alternatives to dark matter (?)”, available as astro-ph/0310572.

Here’s McGaugh’s website with links to many papers on MOND, including Milgrom’s
original papers:

16) “The MOND pages”, http://www.astro.umd.edu/~ssm/mond/litsub.html

McGaugh is a strong proponent of MOND — though he didn’t start out that way —
so the selection may be biased. Does anyone know an intelligent detailed critique of
MOND? If so, I want to see it! We can’t throw out Newton’s law of gravity (or more pre-
cisely, general relativity, which has Newtonian gravity as a limiting case for low densities
and low velocities) unless we have very good reasons! So we have to think about things
carefully, and weigh the evidence on both sides.

If I could duplicate myself, I’d have one copy try to get to the bottom of this dark
matter / MOND puzzle. But I can’t. . .

. . . so if you’re an expert who knows a lot about this, let me know what you think —
or better yet, post an article about this to sci.physics.research!

By the way, you can see lots of photos of the Marseille conference here:

17) John Baez, Marseille, http://math.ucr.edu/home/baez/marseille/

Almost everyone working on loop quantum gravity and spin foams can be seen here!

Addendum: A few people took me up on my request.
Steve Carlip wrote:
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John Baez wrote:

So, even if MOND is wrong, there may need to be some reason why it
acts like it’s right! Apparently even some proponents of dark matter
agree with this.

Try this:

M. Kaplinghat and M. S. Turner, “How Cold Dark Matter Theory Explains Mil-
grom’s Law,” astro-ph/0107284, Astrophys. J. 569 (2002) L19. Note that
this analysis also explains why the “critical acceleration” in MOND does not ap-
ply at cluster scales. There is some debate over these results, but the paper is
certainly worth reading.

Steve Carlip

Rein Halbersma wrote:

Dear John Baez,

Your writings in Week 206 brought back some vivid memories from the good
old days in graduate school with all-night philosophical discussions! In your
Finds in Week 206 you discuss the MOND-framework of Milgrom and asked
for detailed critique of it. A few years ago the authors Scott, White, Cohn and
Pierpaoli (astro-ph/0104435) published precisely such an account. Hopefully
it is of use to you.

As an aside, my connection with the whole MOND story is this: I have a PhD in
high-energy physics from Groningen University (my advisor was Eric Bergshoeff,
one of the inventors of the supermembrane). While I was working as a grad-
uate student in string theory & conformal supergravity, a roommate of mine,
Roland Eppinga, was an undergraduate student for Robert Sanders, who is an
astronomy professor in Groningen. My friend was assigned a project involving
cosmological simulations within the MOND-framework. Needless to say, we had
many discussions on MOND in which my esthetical views of general relativity
were put to the test by the need to fit a damn rotational curve.

My personal view is that MOND is indeed too ugly to be true. Or as Einstein
would have said, if Nature is not described by relativity, then God designed it
badly!

Best wishes,

Rein Halbersma

Christine Dantas wrote:

Hello all,

Concerning MOND x GR, the recent paper by Bekenstein seems to be a relevant
contribution to this issue (see below).

Regards,
Christine Dantas
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INPE/Brazil

astro-ph/0403694

Relativistic gravitation theory for the MOND paradigm
Jacob D. Bekenstein

The modified newtonian dynamics (MOND) paradigm of Milgrom can boast of
a number of successful predictions regarding galactic dynamics; these are made
without the assumption that dark matter plays a significant role. MOND re-
quires gravitation to depart from Newtonian theory in the extragalactic regime
where dynamical accelerations are small. So far relativistic gravitation theo-
ries proposed to underpin MOND have either clashed with the post-Newtonian
tests of general relativity, or failed to provide significant gravitational lensing,
or violated hallowed principles by exhibiting superluminal scalar waves or an
a priori vector field. We develop a relativistic MOND inspired theory which re-
solves these problems. In it gravitation is mediated by metric, a scalar field and
a 4-vector field, all three dynamical. For a simple choice of its free function, the
theory has a Newtonian limit for nonrelativistic dynamics with significant ac-
celeration, but a MOND limit when accelerations are small. We calculate the β
and γ PPN coefficients showing them to agree with solar system measurements.
The gravitational light deflection by nonrelativistic systems is governed by the
same potential responsible for dynamics of particles. Consequently, the new
theory predicts gravitational lensing by extragalactic structures that cannot be
distinguished from that predicted within the dark matter paradigm by general
relativity. Cosmological models based on the theory are quite similar to those
based on general relativity; they predict slow evolution of the scalar field. For a
range of initial conditions, this last result makes it easy to rule out superluminal
propagation of metric, scalar and vector waves.

Ethan Vishniac wrote:

Hi,

I don’t have a reference for a skeptical review of MOND. As you might expect,
this is considered a fringe hypothesis by most. However, there is an interesting
paper you should see: astro-ph/0312273.

Briefly, they examine a galaxy cluster with a strong sub-cluster, which has just
passed through the main cluster for the first time (probably). Most of the bary-
onic mass is in the hot gas (by a factor of ten) so the initial pass has stripped
the gas out of the sub-cluster. In fact, in the X-rays the subcluster is not evident.
If stars and gas are all there is then there is no significant mass concentration
associated with the sub-cluster. However, the sub-cluster is quite easy to see in
the gravitational lensing map. Evidently, the mass of the sub-cluster has not
been significantly reduced by losing all of the gas. (That is, the mass to light
ratio for the sub-cluster is what one would expect for an isolated system.) This
looks like a simple demonstration that most of the mass in galaxy clusters is
non-luminous and dissipationless. There have also been attempts to disprove
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MOND by comparing time delays in strong lensing systems with MOND based
models. Unfortunately, the real problem here is that there is no clear set of
predictions for MOND.

Ethan Vishniac

He also wrote:

BTW, one way to address MOND on its own terms is to try to follow galactic
rotation curves out to very very great distances. If the dark matter model is
correct, they will eventually turn over and fall as r−1/2. This is hard, perhaps
impossible, using gas. There is some work using the velocity dispersion of satel-
lite galaxies around otherwise isolated bright galaxies (Prada et al., ApJ 598,
260–,2003). (The Sloan Digital Sky Survey makes it possible to get good statis-
tics for very weak signals.) They claim to have detected a drop in the velocity
dispersion by a factor of 2 between 20 and 350 kpc. This is roughly in line
with expectations from cosmological simulations, and stands in contradiction to
what one would expect from MOND.

Finally, one can try to measure the shape of galaxy halos using weak lensing.
The line of reasoning is a bit indirect, but the point is that an elliptical or disk-
like distribution of mass at small radii gives rise to nearly spherical equipotential
surfaces at large radii. On the other hand, dark matter halos are generally
triaxial, and will appear elliptical on the sky. Hoekstra et al. (Astrophysical
Journal, 606, 67–77, 2004) have done this and claim a strong elliptical signal
in the weak lensing data.

Finally, Renate Loll corrected an oversimplification in my account of her model:

[. . . ] I never claimed the geometries we find are nice and smooth, I think
they almost certainly will be fairly wild individually, even at relatively large
scales. Like the particle paths in the quantum mechanical path integral, the
individual histories should not be taken too literally, the physics’ll all be in
suitable expectation values of course.

When I am working on a problem, I never think about beauty. I think only
about how to solve the problem. But when I have finished, if the solution is
not beautiful, I know it is wrong.

— Buckminister Fuller
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Week 207

July 25, 2004

I’m spending the summer in Cambridge, but last week I was in Dublin attending “GR17”,
which is short for the 17th International Conference on General Relativity and Gravita-
tion:

1) GR17 homepage, http://www.dcu.ie/~nolanb/gr17.htm

This is where Stephen Hawking decided to announce his solution of the black hole
information loss problem. Hawking is a media superstar right up there with Einstein and
Michael Jackson, so when reporters heard about this, the ensuing hoopla overshadowed
everything else in the conference.

As soon I arrived, one of the organizers complained to me that they’d had to spend
4000 pounds on a public relations firm to control the reporters and other riff-raff who
would try to attend Hawking’s talk. Indeed, there seemed to be more than the usual
number of crackpots floating about, though I admit I haven’t been to this particular
series of conferences before — perhaps general relativity attracts such people? The
public lecture by Penrose on the last day of the conference may have helped lure them
in. He spoke on “Fashion, Faith and Fantasy in Theoretical Physics”, and people by the
door sold copies of his brand new thousand-page blockbuster:

2) Roger Penrose, The Road To Reality: A Complete Guide to the Physical Universe,
Jonathan Cape, 2004.

(You may enjoy guessing which popular theories he classified under the three cat-
egories of fashion, faith and fantasy.) After his talk, all the questions were actually
harangues from people propounding idiosyncratic theories of their own, and the ques-
tion period was drawn to an abrupt halt in the middle of one woman’s rant about fractal
cosmology. But I bumped into the saddest example when I was having a chat with some
colleagues at a local pub. A fellow with long curly grey locks and round horn-rimmed
glasses sat down beside me. I’d seen him around the conference, so I said hello. He
asked me if I’d like to hear about his theory; at this point my internal alarm bells started
ringing. I told him I was busy, but said I’d take a look at his manuscript later.

It turned out to describe an idea I’d never even dreamt of before: a heliocentric
cosmology in which the planets move along circular orbits with epicycles a la Ptolemy!
And his evidence comes from a neolithic Irish tomb called Newgrange. This tomb may
have been aligned to let in the sun on the winter solstice, but some people doubt this,
because it seems the alignment would have been slightly off back in 3200 BC when
Newgrange was built. However, it’s slightly off only if you work out the precession of
the equinox using standard astronomy. If you use his theory, it lines up perfectly! Pretty
cute. The only problem is that his paper contains no evidence for this claim. Instead,
it’s only a short note sketching the idea, followed by lengthy attachments containing his
correspondence with the Dublin police. In these, he complained that people were trying
to block his patent on a refrigerator that produces no waste heat. They were constantly
flying airplanes over his house, and playing pranks like boiling water in his teakettle
when he was away, trying to drive him insane.
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Anyway, on Wednesday the 21st the whole situation built to a head when Hawking
gave his talk in the grand concert hall of the Royal Dublin Society. As we had been
warned, the PR firm checked our badges at the door. Reporters with press badges were
also allowed in, so the aisles were soon lined with cameras and recording equipment. I
got there half an hour early to get a good seat, and while I was waiting, Jenny Hogan
from the New Scientist asked if she could interview me for my reaction afterwards. In
short, a thoroughly atypical physics talk!

But you shouldn’t imagine the mood as one of breathless anticipation. At least for
the physicists present, a better description would be something like “skeptical curiosity”.
None of them seemed to believe that Hawking could suddenly shed new light on a prob-
lem that has been attacked from many angles for several decades. One reason is that
Hawking’s best work was done almost 30 years ago. A string theorist I know said that
thanks to work relating anti-deSitter space and conformal field theory — the so-called
“AdS-CFT” hypothesis — string theorists had become convinced that no information is
lost by black holes. Thus, Hawking had been feeling strong pressure to fall in line and
renounce his previous position, namely that information is lost. A talk announcing this
would come as no big surprise.

After a while Kip Thorne, John Preskill, Petros Florides and Hawking’s grad stu-
dent Christophe Galfard came on stage. Then, amid a burst of flashbulbs, Hawking’s
wheelchair gradually made its way down the aisle and up a ramp, attended by a nurse
— possibly his wife, I don’t know. He had been recently sick with pneumonia.

Once Hawking was on stage, the conference organizer Petros Florides made an intro-
duction, joking that while physicists believe no information can travel faster than light,
this seems to have been contradicted by the speed with which the announcement of
Hawking’s talk spread around the globe. Then he recalled the famous bet that Preskill
made with Hawking and Thorne. In case you don’t know, John Preskill is a leader in
quantum computation at Caltech. Kip Thorne is an expert on relativity, also at Caltech,
one of the authors of the famous textbook “Gravitation”, and now playing a key role in
the LIGO project to detect gravitational waves.

The bet went like this:

Whereas Stephen Hawking and Kip Thorne firmly believe that information swal-
lowed by a black hole is forever hidden from the outside universe, and can never
be revealed even as the black hole evaporates and completely disappears,

And whereas John Preskill firmly believes that a mechanism for the information
to be released by the evaporating black hole must and will be found in the correct
theory of quantum gravity,

Therefore Preskill offers, and Hawking/Thorne accept, a wager that:

When an initial pure quantum state undergoes gravitational collapse
to form a black hole, the final state at the end of black hole evapora-
tion will always be a pure quantum state.

The loser(s) will reward the winner(s) with an encyclopedia of the winner’s
choice, from which information can be recovered at will.

Stephen W. Hawking, Kip S. Thorne, John P. Preskill
Pasadena, California, 6 February 1997
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It’s signed by Thorne and Preskill, with a thumbprint of Hawking’s.
After a bit of joking around and an explanation of how the question session would

work, Hawking began his talk. Since it’s fairly short and not too easy to summarize, I
think I’ll just quote the whole transcript which I believe Sean Carroll got from the New
York Times science reporter Dennis Overbye. I’ve made a few small corrections.

There were also some slides, but you’re not missing a lot by not seeing them. The
talk was not easy to understand, so unless quantum gravity is your speciality you may
feel like just skimming it to get the flavor, and then reading my attempt at a summary.

The talk began with Hawking’s trademark introduction, uttered as usual in his computer-
generated voice:

Can you hear me?

I want to report that I think I have solved a major problem in theoretical physics,
that has been around since I discovered that black holes radiate thermally, thirty
years ago. The question is, is information lost in black hole evaporation? If it is,
the evolution is not unitary, and pure quantum states, decay into mixed states.

I’m grateful to my graduate student Christophe Galfard for help in preparing
this talk.

The black hole information paradox started in 1967, when Werner Israel showed
that the Schwarzschild metric, was the only static vacuum black hole solution.
This was then generalized to the no hair theorem: the only stationary rotating
black hole solutions of the Einstein-Maxwell equations are the Kerr-Newman
metrics. The no hair theorem implied that all information about the collapsing
body was lost from the outside region apart from three conserved quantities: the
mass, the angular momentum, and the electric charge.

This loss of information wasn’t a problem in the classical theory. A classical
black hole would last for ever, and the information could be thought of as pre-
served inside it, but just not very accessible. However, the situation changed
when I discovered that quantum effects would cause a black hole to radiate at
a steady rate. At least in the approximation I was using, the radiation from
the black hole would be completely thermal, and would carry no information.
So what would happen to all that information locked inside a black hole, that
evaporated away, and disappeared completely? It seemed the only way the in-
formation could come out would be if the radiation was not exactly thermal,
but had subtle correlations. No one has found a mechanism to produce corre-
lations, but most physicists believe one must exist. If information were lost in
black holes, pure quantum states would decay into mixed states, and quantum
gravity wouldn’t be unitary.

I first raised the question of information loss in ’75, and the argument continued
for years, without any resolution either way. Finally, it was claimed that the is-
sue was settled in favour of conservation of information, by AdS/CFT. AdS/CFT
is a conjectured duality between supergravity in anti-deSitter space and a con-
formal field theory on the boundary of anti-deSitter space at infinity. Since the
conformal field theory is manifestly unitary, the argument is that supergravity
must be information preserving. Any information that falls in a black hole in
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anti-deSitter space, must come out again. But it still wasn’t clear how informa-
tion could get out of a black hole. It is this question I will address.

Black hole formation and evaporation can be thought of as a scattering process.
One sends in particles and radiation from infinity, and measures what comes
back out to infinity. All measurements are made at infinity, where fields are
weak, and one never probes the strong field region in the middle. So one can’t
be sure a black hole forms, no matter how certain it might be in classical theory.
I shall show that this possibility allows information to be preserved and to be
returned to infinity.

I adopt the Euclidean approach, the only sane way to do quantum gravity non-
perturbatively. [He grinned at this point.] In this, the time evolution of an
initial state is given by a path integral over all positive definite metrics that go
between two surfaces that are a distance T apart at infinity. One then Wick
rotates the time interval, T , to the Lorentzian.

The path integral is taken over metrics of all possible topologies that fit in be-
tween the surfaces. There is the trivial topology: the initial surface cross the time
interval. Then there are the nontrivial topologies: all the other possible topolo-
gies. The trivial topology can be foliated by a family of surfaces of constant time.
The path integral over all metrics with trivial topology, can be treated canon-
ically by time slicing. In other words, the time evolution (including gravity)
will be generated by a Hamiltonian. This will give a unitary mapping from the
initial surface to the final.

The nontrivial topologies cannot be foliated by a family of surfaces of constant
time. There will be a fixed point in any time evolution vector field on a nontriv-
ial topology. A fixed point in the Euclidean regime corresponds to a horizon in
the Lorentzian. A small change in the state on the initial surface would propa-
gate as a linear wave on the background of each metric in the path integral. If
the background contained a horizon, the wave would fall through it, and would
decay exponentially at late time outside the horizon. For example, correlation
functions decay exponentially in black hole metrics. This means the path in-
tegral over all topologically nontrivial metrics will be independent of the state
on the initial surface. It will not add to the amplitude to go from initial state
to final that comes from the path integral over all topologically trivial metrics.
So the mapping from initial to final states, given by the path integral over all
metrics, will be unitary.

One might question the use in this argument, of the concept of a quantum state
for the gravitational field on an initial or final spacelike surface. This would
be a functional of the geometries of spacelike surfaces, which is not something
that can be measured in weak fields near infinity. One can measure the weak
gravitational fields on a timelike tube around the system, but the caps at top and
bottom, go through the interior of the system, where the fields may be strong.

One way of getting rid of the difficulties of caps would be to join the final surface
back to the initial surface, and integrate over all spatial geometries of the join.
If this was an identification under a Lorentzian time interval, T , at infinity, it
would introduce closed timelike curves. But if the interval at infinity is the Eu-
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clidean distance, beta, the path integral gives the partition function for gravity
at temperature 1/β.

The partition function of a system is the trace over all states, weighted with
e−βH . One can then integrate β along a contour parallel to the imaginary
axis with the factor e−βE . This projects out the states with energy E0. In a
gravitational collapse and evaporation, one is interested in states of definite
energy, rather than states of definite temperature.

There is an infrared problem with this idea for asymptotically flat space. The
Euclidean path integral with period β is the partition function for space at tem-
perature 1/β. The partition function is infinite because the volume of space is
infinite. This infrared problem can be solved by a small negative cosmological
constant. It will not affect the evaporation of a small black hole, but it will
change infinity to anti-deSitter space, and make the thermal partition function
finite.

The boundary at infinity is then a torus, S1 cross S2. The trivial topology, peri-
odically identified anti-deSitter space, fills in the torus, but so also do nontrivial
topologies, the best known of which is Schwarzschild anti-deSitter. Providing
that the temperature is small compared to the Hawking-Page temperature, the
path integral over all topologically trivial metrics represents self-gravitating ra-
diation in asymptotically anti-deSitter space. The path integral over all metrics
of Schwarzschild AdS topology represents a black hole and thermal radiation in
asymptotically anti-deSitter.

The boundary at infinity has topology S1 cross S2. The simplest topology that
fits inside that boundary is the trivial topology, S1 cross D3, the three-disk. The
next simplest topology, and the first nontrivial topology, is S2 cross D2. This is
the topology of the Schwarzschild anti-deSitter metric. There are other possible
topologies that fit inside the boundary, but these two are the important cases:
topologically trivial metrics and the black hole. The black hole is eternal. It
cannot become topologically trivial at late times.

In view of this, one can understand why information is preserved in topologically
trivial metrics, but exponentially decays in topologically non trivial metrics. A
final state of empty space without a black hole would be topologically trivial,
and be foliated by surfaces of constant time. These would form a 3-cycle modulo
the boundary at infinity. Any global symmetry would lead to conserved global
charges on that 3-cycle. These would prevent correlation functions from decay-
ing exponentially in topologically trivial metrics. Indeed, one can regard the
unitary Hamiltonian evolution of a topologically trivial metric as the conserva-
tion of information through a 3-cycle.

On the other hand, a nontrivial topology, like a black hole, will not have a
final 3-cycle. It will not therefore have any conserved quantity that will pre-
vent correlation functions from exponentially decaying. One is thus led to the
remarkable result that late time amplitudes of the path integral over a topologi-
cally non trivial metric, are independent of the initial state. This was noticed by
Maldacena in the case of asymptotically anti-deSitter in 3d, and interpreted as
implying that information is lost in the BTZ black hole metric. Maldacena was
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able to show that topologically trivial metrics have correlation functions that
do not decay, and have amplitudes of the right order to be compatible with a
unitary evolution. Maldacena did not realize, however that it follows from a
canonical treatment that the evolution of a topologically trivial metric, will be
unitary.

So in the end, everyone was right, in a way. Information is lost in topologically
nontrivial metrics, like the eternal black hole. On the other hand, information
is preserved in topologically trivial metrics. The confusion and paradox arose
because people thought classically, in terms of a single topology for spacetime.
It was either R4, or a black hole. But the Feynman sum over histories allows it
to be both at once. One can not tell which topology contributed the observation,
any more than one can tell which slit the electron went through, in the two
slits experiment. All that observation at infinity can determine is that there is a
unitary mapping from initial states to final, and that information is not lost.

My work with Hartle showed the radiation could be thought of as tunnelling out
from inside the black hole. It was therefore not unreasonable to suppose that it
could carry information out of the black hole. This explains how a black hole can
form, and then give out the information about what is inside it, while remaining
topologically trivial. There is no baby universe branching off, as I once thought.
The information remains firmly in our universe. I’m sorry to disappoint science
fiction fans, but if information is preserved, there is no possibility of using black
holes to travel to other universes. If you jump into a black hole, your mass-
energy will be returned to our universe, but in a mangled form, which contains
the information about what you were like, but in an unrecognisable state.

There is a problem describing what happens, because strictly speaking the only
observables in quantum gravity are the values of the field at infinity. One can-
not define the field at some point in the middle, because there is quantum uncer-
tainty in where the measurement is done. However, in cases in which there are
a large number, N, of light matter fields, coupled to gravity, one can neglect the
gravitational fluctuations, because they are only one among N quantum loops.
One can then do the path integral over all matter fields, in a given metric, to
obtain the effective action, which will be a functional of the metric.

One can add the classical Einstein-Hilbert action of the metric to this quantum
effective action of the matter fields. If one integrated this combined action over
all metrics, one would obtain the full quantum theory. However, the semiclas-
sical approximation is to represent the integral over metrics by its saddle point.
This will obey the Einstein equations, where the source is the expectation value
of the energy momentum tensor, of the matter fields in their vacuum state.

The only way to calculate the effective action of the matter fields, used to be per-
turbation theory. This is not likely to work in the case of gravitational collapse.
However, fortunately we now have a non-perturbative method in AdS/CFT. The
Maldacena conjecture says that the effective action of a CFT on a background
metric is equal to the supergravity effective action of anti-deSitter space with
that background metric at infinity. In the large N limit, the supergravity ef-
fective action is just the classical action. Thus the calculation of the quantum
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effective action of the matter fields, is equivalent to solving the classical Einstein
equations.

The action of an anti-deSitter-like space with a boundary at infinity would be in-
finite, so one has to regularize. One introduces subtractions that depend only on
the metric of the boundary. The first counter-term is proportional to the volume
of the boundary. The second counter-term is proportional to the Einstein-Hilbert
action of the boundary. There is a third counter-term, but it is not covariantly
defined. One now adds the Einstein-Hilbert action of the boundary and looks
for a saddle point of the total action. This will involve solving the coupled four-
and five-dimensional Einstein equations. It will probably have to be done nu-
merically.

In this talk, I have argued that quantum gravity is unitary, and information is
preserved in black hole formation and evaporation. I assume the evolution is
given by a Euclidean path integral over metrics of all topologies. The integral
over topologically trivial metrics can be done by dividing the time interval into
thin slices and using a linear interpolation to the metric in each slice. The
integral over each slice will be unitary, and so the whole path integral will be
unitary.

On the other hand, the path integral over topologically nontrivial metrics, will
lose information, and will be asymptotically independent of its initial conditions.
Thus the total path integral will be unitary, and quantum mechanics is safe.

It is great to solve a problem that has been troubling me for nearly thirty years,
even though the answer is less exciting than the alternative I suggested. This
result is not all negative however, because it indicates that a black hole evap-
orates, while remaining topologically trivial. However, the large N solution is
likely to be a black hole that shrinks to zero. This is what I suggested in 1975.

In 1997, Kip Thorne and I bet John Preskill that information was lost in black
holes. The loser or losers of the bet are to provide the winner or winners with
an encyclopaedia of their own choice, from which information can be recovered
with ease. I’m now ready to concede the bet, but Kip Thorne isn’t convinced
just yet. I will give John Preskill the encyclopaedia he has requested. John is
all-American, so naturally he wants an encyclopaedia of baseball. I had great
difficulty in finding one over here, so I offered him an encyclopaedia of cricket,
as an alternative, but John wouldn’t be persuaded of the superiority of cricket.
Fortunately, my assistant, Andrew Dunn, persuaded the publishers Sportclassic
Books to fly a copy of “Total Baseball: The Ultimate Baseball Encyclopedia” to
Dublin. I will give John the encyclopaedia now. If Kip agrees to concede the bet
later, he can pay me back.

At this point the encyclopedia was brought on stage and given to John Preskill, who
waved it over his head in a parody of athletic triumph. The order of events is a bit fuzzy
in my mind, but sometime around then he said “I always hoped that when Stephen
conceded, there would be a witness — this really exceeds my expectations.”

After this, Kip Thorne ran a question and answer period, saying that he would al-
ternate between questions from conference participants, which Hawking’s grad student
would answer, and questions from the press, which Hawking would answer — after
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Thorne checked Hawking’s facial expressions to see whether he felt they were worth
answering.

First, a correspondent from the BBC asked Stephen Hawking what the significance
of this result was for “life, the universe and everything”. (Here I’m using John Preskill’s
humorous paraphrase.) Hawking agreed to answer this, and while he began labori-
ously composing a reply using the computer system on his wheelchair, his grad student
Christophe Galfard fielded three questions from experts: Bill Unruh, Gary Horowitz and
Robb Mann. I didn’t find the replies terribly illuminating, except that when asked if infor-
mation would be lost if we kept feeding the black hole matter to keep it from evaporating
away, Galfard said “yes”. Everyone afterwards commented on what a tough job it would
be for a student to field questions in front of about 800 physicists and the international
press.

At this point Kip Thorne checked to see if Hawking was done composing his reply.
He was not. To fill time, Thorne explained why he hadn’t yet conceded the bet, saying
“This looks to me, on the face of it, to be a lovely argument. But I haven’t seen all the
details.” He took this opportunity to tell the reporters a bit about how science was done:
we don’t just listen to Hawking and take his word for everything, we have to go off and
check things ourselves. He told a nice story about how when Hawking first showed that
black holes radiate, everyone with their own approach to quantum field theory on curved
spacetime needed to redo this calculation their own way to be convinced — with Yakov
Zeldovich, who’d gotten the game started by showing that energy could be extracted
from rotating black holes in the form of radiation, being one of the very last to agree!
Preskill chimed in, saying “I’ll be honest — I didn’t understand the talk”, and that he too
would need to see more details.

After a bit more of this sort of thing, Hawking was ready to answer the BBC reporter’s
question. His answer was surprisingly short, and it went something like this (I can’t find
an exact quote): “This result shows that everything in the universe is governed by the
laws of physics.” A suitably grandiose answer for a grandiose question! One can imagine
better explanations of unitarity, but not quicker ones.

At this point Kip Thorne solicited more questions from the press but said they should
confine themselves to yes-or-no questions, so Hawking could answer them more effi-
ciently. Jenny Hogan got the first question, asking what Hawking would do now that
he’d solved this problem. Kip Thorne pointed out that this was not a yes-or-no question.
Hogan replied that it shouldn’t take long to reply; Thorne was doubtful, but in the midst
of the ensuing conversation Hawking shot off an unexpectedly rapid response: “I don’t
know.” Everyone laughed, and at this point the public question period was called to a
close, though reporters were allowed to stay and pester Hawking some more.

At the time Hawking’s talk seemed very cryptic to me, but in the process of editing
the above transcript it’s become a lot clearer, so I’ll try to give a quick explanation.

I should start by saying that the jargon used in this talk, while doubtless obscure to
most people, is actually quite standard and not very difficult to anyone who has spent
some time studying the Euclidean path integral approach to quantum gravity. The prob-
lem is not the jargon so much as the lack of detail, which requires some imagination to
fill in. When I first heard the talk, this lack of detail had me completely stumped. But
now it makes a little more sense. . . .

He’s studying the process of creating a black hole and letting it evaporate away. He’s
imagining studying this in the usual style of particle physics, as a “scattering experiment”,
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where we throw in a bunch of particles and see what comes out. Here we throw in a
bunch of particles, let them form a black hole, let the black hole evaporate away, and
examine the particles (typically photons for the most part) that shoot out.

The rules of the game in a “scattering experiment” are that we can only talk about
what’s going on “at infinity”, meaning very far from where the black hole forms — or
more precisely, where it may or may not form!

The advantage of this is that physics at infinity can be described without the full
machinery of quantum gravity: we don’t have to worry about quantum fluctuations of the
geometry of spacetime messing up our ability to say where things are. The disadvantage
is that we can’t actually say for sure whether or not a black hole formed. At least this
seems like a “disadvantage” at first — but a better term for it might be a “subtlety”, since
it’s crucial for resolving the puzzle:

Black hole formation and evaporation can be thought of as a scattering process.
One sends in particles and radiation from infinity, and measures what comes
back out to infinity. All measurements are made at infinity, where fields are
weak, and one never probes the strong field region in the middle. So one can’t
be sure a black hole forms, no matter how certain it might be in classical theory.
I shall show that this possibility allows information to be preserved and to be
returned to infinity.

Now, the way Hawking likes to calculate things in this sort of problem is using a
“Euclidean path integral”. This is a rather controversial approach — hence his grin when
he said it’s the “only sane way” to do these calculations — but let’s not worry about
that. Suffice it to say that we replace the time variable “t” in all our calculations by “it”,
do a bunch of calculations, and then replace “it” by “t” again at the end. This trick is
called “Wick rotation”. In the middle of this process, we hope all our formulas involving
the geometry of 4d spacetime have magically become formulas involving the geometry
of 4d space. The answers to physical questions are then expressed as integrals over all
geometries of 4d space that satisfy some conditions depending on the problem we’re
studying. This integral over geometries also includes a sum over topologies.

That’s what Hawking means by this:

I adopt the Euclidean approach, the only sane way to do quantum gravity non-
perturbatively. In this, the time evolution of an initial state is given by a path
integral over all positive definite metrics that go between two surfaces that are
a distance T apart at infinity. One then Wick rotates the time interval, T, to
the Lorentzian. The path integral is taken over metrics of all possible topologies
that fit in between the surfaces.

Unfortunately, nobody knows how to define these integrals. However, physicists like
Hawking are usually content to compute them in a “semiclassical approximation”. This
means integrating not over all geometries, but only those that are close to some solution
of the classical equations of general relativity. We can then do a clever approximation to
get a closed-form answer.

(Nota bene: here I’m talking about the equations of general relativity on 4d space,
not 4d spacetime. That’s because we’re in the middle of this Wick rotation trick.)

86



WEEK 207 JULY 25, 2004

Actually, I’m oversimplifying a bit. We don’t get “the answer” to our physics question
this way: we get one answer for each solution of the equations of general relativity that
we deem relevant to the problem at hand. To finish the job, we should add up all these
partial answers to get the total answer. But in practice this last step is always too hard:
there are too many topologies, and too many classical solutions, to keep track of them
all.

So what do we do? We just add up a few of the answers, cross our fingers, and hope
for the best! If this procedure offends you, go do something easy like math.

In the problem at hand here, Hawking focuses on two classical solutions, or more
precisely two classes of them. One describes a spacetime with no black hole, the other
describes a spacetime with a black hole which lasts forever. Each one gives a contribution
to the semiclassical approximation of the integral over all geometries. To get answers
to physical questions, he needs to sum over both. In principle he should sum over in-
finitely many others, too, but nobody knows how, so he’s probably hoping the crux of
the problem can be understood by considering just these two.

He says that if you just do the integral over geometries near the classical solution
where there’s no black hole, you’ll find - unsurprisingly — that no information is lost as
time passes.

He also says that if you do the integral over geometries near the classical solution
where there is a black hole, you’ll find - surprisingly — that the answer is zero for a lot
of questions you can measure the answers to far from the black hole. In physics jargon,
this is because a bunch of “correlation functions decay exponentially”.

So, when you add up both answers to see if information is lost in the real problem,
where you can’t be sure if there’s a black hole or not, you get the same answer as if there
were no black hole!

So in the end, everyone was right, in a way. Information is lost in topologically
nontrivial metrics, like the eternal black hole. On the other hand, information
is preserved in topologically trivial metrics. The confusion and paradox arose
because people thought classically, in terms of a single topology for spacetime.
It was either R4, or a black hole. But the Feynman sum over histories allows it
to be both at once. One can not tell which topology contributed the observation,
any more than one can tell which slit the electron went through, in the two
slits experiment. All that observation at infinity can determine is that there is a
unitary mapping from initial states to final, and that information is not lost.

The mysterious part is why the geometries near the classical solution where there’s a
black hole don’t contribute at all to information loss, even though they do contribute to
other important things, like the Hawking radiation. Here I’d need to see an actual calcu-
lation. Hawking gives a nice hand-wavy topological argument, but that’s not enough for
me.

Since this issue is long enough already and I want to get it out soon, I won’t talk about
other things that happened at this conference — nor will I talk about the conference on
n-categories earlier this summer! I just want to say a few elementary things about the
topology lurking in Hawking’s talk. . . since some mathematicians may enjoy it.

As he points out, the answers to a bunch of questions diverge unless we put our black
hole in a box of finite size. A convenient way to do this is to introduce a small negative
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cosmological constant, which changes our default picture of spacetime from Minkowski
spacetime, which is topologically R4, to anti-deSitter spacetime, which is topologically
R × D3 after we add the “boundary at infinity”. Here R is time and the 3-disk D3 is
space. This is a Lorentzian manifold with boundary, but when we do Wick rotation we
get a Riemannian manifold with boundary having the same topology.

However, when we are doing Euclidean path integrals at nonzero temperature, we
should replace the time line R here by a circle whose radius is the reciprocal of that
temperature. (Take my word for it!) So now our Riemannian manifold with boundary
is S1 × D3. This is what Hawking uses to handle the geometries without a black hole.
The boundary of this manifold is S1 × S2. But there’s another obvious manifold with
this boundary, namely D2 × S2. And this corresponds to the geometries with a black
hole! This is cute because we see it all the time in surgery theory. In fact I commented
on Hawking’s use of this idea a long time ago, in “Week 67”.

In his talk, Hawking points out that S1 × D3 has a nontrivial 3-cycle in it if we use
relative cohomology and work relative to the boundary S1 × S2. But, D2 × S2 does
not. When spacetime is n-dimensional, conservation laws usually come from integrating
closed (n − 1)-forms over cycles that correspond to “space”, so we get interesting con-
servation laws when there are nontrivial (n − 1)-cycles. Here Hawking is using this to
argue for conservation of information when there’s no black hole — namely for S1 ×D3

— but not when there is, namely for D2 × S2.
All this is fine and dandy; the hard part is to see why the case when there is a black

hole doesn’t screw things up! This is where his allusions to “exponentially decaying
correlation functions come in” — and this is where I’d like to see more details. I guess
a good place to start is Maldacena’s papers on the black hole in 3d spacetime — the
so-called Banados-Teitelboim-Zanelli or “BTZ” black hole. This is a baby version of the
problem, one dimension down from the real thing, where everything should get much
simpler. For a bunch about the BTZ black hole, try:

3) Maximo Banados, Marc Henneaux, Claudio Teitelboim, and Jorge Zanelli, “Geom-
etry of the 2+1 black hole”, Phys. Rev. D48 (1993) 1506–1525, also available as
gr-qc/9302012.

The relevant paper by Maldacena seems to be:

4) Juan Maldacena, “Eternal Black Holes in AdS”, JHEP 0304 (2003) 021, also avail-
able as hep-th/0106122.

You can also see a talk he gave on this at the Institute for Theoretical Physics at U. C.
Santa Barbara:

5) Juan Maldacena, “Eternal Black Holes in AdS”, http://online.itp.ucsb.edu/
online/mtheory c01/maldacena/.

By the way, here are some photos of the conference. . .

6) John Baez, Dublin, http://math.ucr.edu/home/baez/dublin/

. . . and also photos of the plaque on the bridge where Hamilton carved his defining
relations for the quaternions!
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Addendum: My friend Ted Bunn filled a gap in my understanding of the history of
astronomy. I had written:

It turned out to describe an idea I’d never even dreamt of before: a heliocentric
cosmology in which the planets move along circular orbits with epicycles a la
Ptolemy!

to which he replied:

There is nothing new under (or orbiting) the Sun. This idea is originally due
to Copernicus. Thomas Kuhn’s book “The Copernican Revolution” has a nice
discussion.

In retrospect it’s obvious that someone had to try this idea before Kepler came up with
elliptical heliocentric orbits. In fact, Kepler tried ellipses only because the epicycle theory
didn’t work well for Mars.

I’m not that good at math, but I do know that the universe is formed with
mathematical principles whether I understand them or not, and I was going
to let that guide me.

— Bob Dylan, Chronicles (vol. 1)
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Week 208

November 6, 2004

Last weekend I went to a conference at the Perimeter Institute:

1) Workshop on Quantum Gravity in the Americas, http://www.perimeterinstitute.
ca/activities/scientific/PI-WORK-2/

It was great to see the new building. I’d visited this institute before in its temporary
location, which was a funky old hotel building complete with pool tables and a bar. The
new building is very different: four stories of intensely modern architecture overlooking
a lake, consisting mainly of an enormous atrium lined with walkways and glass-walled
offices. There’s also a big lecture theater, a couple of smaller seminar rooms, a library, a
restaurant whose walls are all blackboards, a reflecting pool, and lots of little places to
sit and talk, complete with espresso machines.

In short, a theoretical physicist’s idea of heaven!
But perhaps the design of heaven shouldn’t be left to theoretical physicists. Some

aspects of the setup don’t seem very comfortable. Like most modern architecture, the
place is short on coziness — there’s too much glass, metal and concrete for my taste. You
also find yourself spending a lot of time climbing up and down uncomfortably narrow
staircases.

The last, at least, is no accident: they made the stairs skinny on purpose, so you have
to say hello to anyone you meet going the other way. It’ll be interesting to see how many
collaborative papers come out of this.

Abhay Ashtekar was supposed to give the first talk, but he got lost walking to the new
building, so suddenly I had to give the first talk. Yikes! Jet-lagged and not fully awake, I
sketched the problem of dynamics in quantum gravity: the problem of describing motion
in a world where the geometry of spacetime is quantum-mechanical and interacts with
matter. I gave a generally downbeat assessment of the progress so far in all known
approaches:

2) John Baez, “The problem of dynamics in quantum gravity”, http://math.ucr.

edu/home/baez/dynamics/

Even though the last few Weeks have been on quantum gravity conferences, I’ve been
mainly working on n-categories lately, because I’ve been sort of fed up with quantum
gravity. I did, however, sketch some avenues for progress — and later in this workshop I
saw some work that really cheered me up!

For example, I’ve always been fascinated by John Wheeler’s old dream of “matter
without matter”. In its original version, the idea was to describe elementary particles as
the ends of wormholes: if there’s an electric field going in one end and out the other,
the ends will look like particles of equal and opposite charge! So, the formation of a
wormhole could mimic the creation of a particle-antiparticle pair. But there were big
problems with this idea: for example, getting the wormhole ends to act like spin-1/2
particles.

More recently this idea was reincarnated in the spin network formalism by Lee
Smolin, with spin network edges replacing wormholes:
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3) Lee Smolin, “Fermions and topology”, available as gr-qc/9404010.

A spin network is a gadget with vertices and edges, where the edges represent “field
lines” — lines of the electric field or the analogous thing for other forces, including
gravity. If a spin network edge goes between vertices that would otherwise be far apart,
it acts a bit like a wormhole. It will be hidden from observers in the rest of spacetime,
and its ends will look like particles of equal and opposite charge. Even better, it seems
easy to get spin-1/2 particles this way: they don’t call them “spin networks” for nothing!

A variant on this idea is to have spin networks with “loose ends”: edges that just
fizzle out. This is more ad hoc, but easier to study in some ways. A decade ago, Kirill
Krasnov and I showed how to describe the kinematics of charged spin-1/2 particles this
way:

4) John Baez and Kirill Krasnov, “Quantization of diffeomorphism-invariant theories
with fermions”, hep-th/9703112.

However, the hard problem in quantum gravity is always dynamics.
Does the dynamics of spin networks with loose ends actually mimic that of particles?

Recently Krasnov and other people have begun tackling this question in a toy model,
3-dimensional Lorentzian gravity:

5) Kirill Krasnov, “Λ < 0 Quantum Gravity in 2+1 Dimensions I: Quantum States and
Stringy S-Matrix”, Class. Quant. Grav. 19 (2002) 3977–3998, also available as
hep-th/0112164.

Kirill Krasnov, “Λ < 0 Quantum Gravity in 2+1 Dimensions II: Black Hole Creation
by Point Particles”, Class. Quant. Grav. 19 (2002) 3999–4028, also available as
hep-th/0202117.

He saw that in this theory you can indeed think of particles as spin network ends —
though you don’t need to emphasize that viewpoint, since there are also other nice ways
to think about what’s going on, using hyperbolic geometry and complex analysis. It all
fits together in a beautiful picture. In principle you can even calculate the amplitude for
particles to form black holes when they collide!

In this conference, Laurent Freidel explained how this idea works in 3-dimensional
Riemannian gravity — a less physical but mathematically more tractable spin foam
model. Some but not all of his work can be found here:

6) Laurent Freidel and David Louapre, “Ponzano-Regge model revisited I: Gauge fix-
ing, observables and interacting spinning particles”, available as hep-th/0401076.

Laurent Freidel and David Louapre, “Ponzano-Regge model revisited II: Equiva-
lence with Chern-Simons”, available as gr-qc/0410141.

Freidel showed that if you take this theory and allow spin networks with loose ends,
they’ll act like particles. The spin of these particles is automatically quantized. More
surprisingly, so is their mass — and there’s an upper bound on the mass! That’s because
when we quantize this theory, its gauge group automatically gets replaced by a “quantum
group”. Physically, this means that spacetime becomes quantum-mechanical in such a
way that it no longer makes sense to talk about times shorter than about the Planck
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time. Since the energy of a particle is proportional to the rate at which its wavefunction
oscillates, this puts an upper bound on the energy of a particle. And since E = mc2, this
means there’s an upper bound on the mass a particle can have.

Mathematically, part of the point is that we can describe 3d Riemannian gravity as a
gauge theory where the gauge group is the double cover of the 3d Euclidean group —
the analogue of the Poincare group in this context. But when we quantize the theory,
this gets replaced by a quantum group: the “quantum double” of SU(2). As with the 3d
Euclidean group, unitary representations of this quantum group are classified by mass
and spin. . . but now both mass and spin are discrete, and both are bounded above.

Anyway, what’s great about Freidel and Louapre’s work is that it gives a simplified but
mathematically rigorous testbed in which loose ends of spin networks act like particles.
We can also think about spin networks with “hidden edges” in this setup. So, we should
be able to do calculations and see if a spin network with a hidden edge acts like a spin
network with a pair of loose ends — and thus, a particle-antiparticle pair.

Unfortunately, all this work on gravity in 3d spacetime doesn’t easily generalize to 4d
spacetime. The reason is that gravitational waves are only possible when spacetime has
dimension 4 or more. . . so 3d gravity theories have no local degrees of freedom until
we include particles: all the fun comes from global topology, like wormholes. That’s why
3d theories are easy to calculate with — we can use ideas from topological quantum
field theory. The danger, though, is that these calculations are misleading it comes to
real-world physics. Indeed, that’s precisely the sort of thing I was worrying about in my
talk.

So, it really cheered me up when a young guy named Artem Starodubtsev spoke
about a promising new spin foam model of quantum gravity in 4 dimensions! He’s
working on it now with Laurent Freidel. He has a couple of papers out that hint at the
main ideas, but you’ll have to wait to see what they’re up to now:

7) Artem Starodubtsev, “Topological excitations around the vacuum of quantum grav-
ity I: The symmetries of the vacuum”, available as hep-th/0306135.

Artem Starodubtsev and Lee Smolin, “General relativity with a topological phase:
an action principle”, available as hep-th/0311163.

The basic idea is to treat 4d general relativity with positive cosmological constant as
a perturbation of a topological quantum field theory. The topological theory has a single
state, which corresponds to a quantum version of “deSitter space”: an exponentially
expanding universe similar to the one we see today, but with no matter. To calculate in
full-fledged gravity, we then use perturbation theory, getting answers as power series in a
coupling constant. But the cool part is that unlike ordinary perturbative quantum gravity
this perturbation theory is manifestly diffeomorphism invariant term by term. And each
term is a sum over spin foams!

Even better, the coupling constant in this theory is the cosmological constant in
Planck units! That’s an incredibly small dimensionless number: about 10−123. Physi-
cists like perturbation theory when the coupling constant is small, since then the first
few terms tend to give reasonably accurate answers — even if the whole series diverges.
For example, quantum electrodynamics gives high-precision answers because the fine
structure constant is about 1/137, which is pretty small. But 10−123 is really small.
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I’d seen Starodubtsev talk about this in Marseille (see “Week 206”) but now he and
Freidel have done calculations recovering Newton’s law of gravity in an appropriate
approximation from this theory. That may not seem like a big deal, but it’s actually very
cool to see Newton’s law reemerge from a manifestly diffeomorphism-invariant theory
of quantum gravity: no model had ever managed this feat before.

For those of you hungering for technical details, I’ll just say that the topological the-
ory in question is BF theory with the symmetry group of deSitter spacetime, namely
SO(4, 1), as the gauge group. General relativity can be regarded as a perturbation of
this BF theory by borrowing some ideas from the “MacDowell-Mansouri” formulation
of general relativity. If you haven’t heard of that, well, neither had I. It’s a sort of old
idea:

8) S. W. MacDowell and F. Mansouri, “Unified geometric theory of gravity and super-
gravity”, Phys. Rev. Lett. 38 (1977), 739–742.

. . . but here we aren’t using anything anything about supergravity, just the fact that
ordinary general relativity can be treated as a theory with gauge group SO(4, 1) and a
Lagrangian that breaks this symmetry down to the Lorentz group SO(3, 1). The paper by
Smolin and Starodubtsev listed above describes the details, but in the case of going from
SO(5) down to SO(4).

When we quantize BF theory in 4 dimensions we get a spin foam model called the
Crane-Yetter model, where the spin foams are defined using the representation theory
of a quantum group: a “q-deformed version” of the original gauge group. So, the real
engine behind Freidel and Starodubtsev’s calculations are spin foams involving the q-
deformed version of SO(4, 1), called SOq(4, 1). This is technically tricky because SO(4, 1)
is noncompact, and noncompact quantum groups are just beginning to be understood.
So, there’s probably still tons of mathematical work left to be done. But, the upshot is
that Freidel and Starodubtsev calculate stuff as power series in the cosmological constant
where each term is computed using SOq(4, 1) spin foams. It’s sort of like a souped-up
Feynman diagram expansion, but with spin foams replacing Feynman diagrams.

Now that I’ve thrown around enough buzzwords to scare off the kids, I can tell you
about Lee Smolin’s talk, which was definitely X-rated: for adults only, people who can
listen to speculations with just the right mixture of disbelief and open-mindedness. It
was the last talk in the conference. And it was about the possible physical effects of spin
networks with “hidden edges”!

First of all, he reminded us how these can mimic particles, and even some of the
usual particle interactions. But then he went ahead and suggested that hidden edges
can cause nonlocal effects in physics, like the force of gravity decaying more slowly than
1/r2 — just as it does in MOND, the wacky but strangely accurate explanation of galactic
rotation curves that uses a modification of Newtonian gravity instead of positing dark
matter! (See “Week 206” for more on MOND.) It’s hard to make up sensible theories of
forces that decay more slowly than 1/r2, but nonlocal interactions would be one way to
do it. . . and hidden spin network edges might cause those.

There are a million things that could go wrong with this idea, but I like it, because it
suggests a way quantum gravity might try to explain one of the big mysteries of physics
— dark matter. And until we get our theories to make contact with experiment, it’ll be
very hard for us to tell if they’re on the right track.
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Anyway, Smolin hasn’t come out with a paper on this stuff yet, so we’ll have to wait
for more details.

By the way:
In what I’ve written this week, I’ve had to seriously downplay the cool math involved,

to give (I hope) some inkling of the cool physics. Krasnov work on 2 + 1-dimensional
Lorentzian gravity with positive cosmological constant uses the fact that the phase space
of this theory is closely related to “Teichmueller space” — the space of complex struc-
tures mod diffeomorphisms that are connected to the identity. I talked about this space
in “Week 28”, but I forgot to say that we can think of it as a space of flat SO(2, 1)
connections mod gauge transformations. Here SO(2, 1) is just the Lorentz group in 3
dimensions. So, if we quantize 2+1 Lorentzian gravity with positive cosmological con-
stant, we get a theory where states are described by SOq(2, 1) spin networks. . . but this
is also a theory of “quantum Teichmueller space”. Again this is tricky because SO(2, 1)
is noncompact, but people have made a lot of progress lately, thanks in part to a line of
work started by Kashaev:

9) R. M. Kashaev, “Quantization of Teichmueller spaces and the quantum diloga-
rithm”, available as q-alg/9705021.

10) L. Chekhov and V. V. Fock, “Quantum Teichmueller space”, Theor. Math. Phys. 120
(1999) 1245–1259, also available as math.QA/9908165.

You can get a sense of who’s working on this stuff and what they’re doing by looking
at the references for this recent conference on 3d quantum gravity in Edinburgh, which
unfortunately took place when I was in Hong Kong:

11) Workshop on physics and geometry of 3-dimensional quantum gravity, http://
www.ma.hw.ac.uk/~bernd/references.html

I should also add that people don’t usually don’t talk about the 3d Lorentz group
SO(2, 1) here; they talk about its double cover SL(2,R).

Anyway, I’ll quit here. The next conference on loops and spin foams will probably
happen in Berlin at the Albert Einstein Institute in 2005, which happens to be the hun-
dredth birthday of special relativity. I hope we can make a lot of progress before then
and make Al proud.

The best way to have a good idea is to have a lot of ideas.

— Linus Pauling

(Not necessarily true, but worth keeping in mind.)
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Week 209

November 21, 2004

Time flies! This June, Peter May and I organized a workshop on n-categories at the
Institute for Mathematics and its Applications:

1) n-Categories: Foundations and Applications, http://www.ima.umn.edu/categories/

I’ve been meaning to write about it ever since, but I keep putting it off because it
would be so much work. The meeting lasted almost two weeks. It was an intense,
exhausting affair packed with talks, conversations, and “Russian-style seminars” where
the audience interrupted the speakers with lots of questions. I took about 50 pages of
notes. How am I supposed to describe all that?!

Oh well. . . I’ll just dive in. I’ll quickly list all the official talks in this conference. I
won’t describe the many interesting “impromptu talks”, some of which you can see on
the above webpage. Nor will I explain what n-categories are, or what they’re good for!
If you want to learn what they’re good for, you should go back to “Week 73” and read
“The Tale of n-Categories”. And if you want to know what they are, try this brand-new
book:

2) Eugenia Cheng and Aaron Lauda, Higher-Dimensional Categories: an Illustrated
Guide Book, available free online at: http://www.dpmms.cam.ac.uk/~elgc2/guidebook/

Eugenia and Aaron wrote it specially for the workshop! It’s packed with pictures and
it’s lots of fun.

I’m just going to list the talks. . . .
Throwing etiquette to the winds, I kicked off the conference myself with two talks

explaining some reasons why n-categories are interesting and what they should be like:

3) John Baez, “Why n-Categories?” and “What n-categories should be like”. Notes
available at http://www.ima.umn.edu/categories/#mon

If you’re a long-time reader of This Week’s Finds you’ll know what I said: n-categories
give a new world of math in which equations are always replaced by isomorphisms, and
this world is incredibly rich in structure. The n-categories called “n-groupoids” magi-
cally know everything there is to know about homotopy theory, while those called “n-
categories with duals” know everything there is to know about the topology of manifolds.
There are, unfortunately, some details that still need to be worked out!

After my talks there was a reception. Later, over dinner, Tom Leinster gave a “Russian
style seminar” outlining the different approaches to n-categories:

4) Tom Leinster, “Survey and Taxonomy”. Talk based on chapter 10 of his book Higher
Operads, Higher Categories, Cambridge U. Press, Cambridge, 2004, also available
free online at math.CT/0305049.
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You’ll notice these young n-category people are smart: they force their publishers to
keep their books available for free online! All scientists should do this, since the only
people who make serious money from scientific monographs are the publishers. What
scientists get from writing technical books is not money but attention. As George Franck
said, “Attention is a mode of payment. . . reputation is the asset into which the attention
received from colleagues crystallizes.”

The next morning began with a triple-header talk on “weak categories”:

5) Andre Joyal, Peter May and Timothy Porter, “Weak categories”. Notes available at
http://www.ima.umn.edu/categories/#tues

Here a “weak category” means a category where the usual laws hold only up to
homotopy, where the homotopies satisfy laws of their own up to homotopy, ad infinitum.
If you know what weak ∞-categories are, you can define a weak category to be one of
these where all the j-morphisms are equivalences for j > 1. But, the nice thing is that
there are ways to define weak categories without the full machinery of ∞-categories!
People have come up with different approaches: “categories enriched over simplicial
sets”, “Segal categories”, “A∞ categories” and also Joyal’s “quasicategories”. The talk
was a nice introduction to all these approaches.

Then Michael Batanin explained his definition of ∞-categories. This was a black-
board talk, so there are no notes on the web, but you can try his original paper:

6) Michael Batanin, “Monoidal globular categories as natural environment for the
theory of weak n-categories”, Adv. Math. 136 (1998), 39–103, also available at
http://www.ics.mq.edu.au/~mbatanin/papers.html

and when you get stuck, try the books by Cheng-Lauda and Leinster.
Over dinner, Eugenia Cheng and Tom Leinster explained the concepts of “operad”

and “multicategory” which play such an important role in so much work on n-categories.
Again there are no notes, so try their books.

I forget when it happened, but sometime around the second or third day of the
conference people decided it was too much of a nuisance listening to math lectures
while eating dinner — mainly because there wasn’t enough room in the dining hall to
take notes, and the blackboards weren’t big enough. So at that point, we switched to
having lectures after dinner. As I said, this workshop was not for wimps!

The morning of the third day began with a no-holds-barred minicourse on model
categories by Peter May:

7) Peter May, “Model categories”. Notes available at http://www.ima.umn.edu/categories/
#wed

Model categories are a wonderful framework for relating different approaches to
homotopy theory, and a bunch of people hope they can also be used to relate different
approaches to n-categories.

Then Clemens Berger explained Andre Joyal’s approach to weak n-categories:

8) Clemens Berger, “Cellular definitions”. Notes available at http://www.ima.umn.
edu/categories/#wed
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Then, either during or after dinner, Eugenia Cheng explained various “opetopic” ap-
proaches to weak n-categories. Again, the best way to learn about these is to read the
book she wrote with Lauda, or else the book by Leinster.

On the morning of the fourth day, Andre Joyal explained his work on quasicategories
— an approach to weak categories in which they are simplicial sets satisfying a restricted
version of the Kan condition. They’ve been around a long time, but Joyal is redoing all of
category theory in this context! He’s been writing a book about this, which deserves to be
called “Quasicategories for the Working Mathematician”. Since Joyal is a perfectionist,
this will take forever to finish. However, we’re hoping to extract a preliminary version
from him for the proceedings of this conference. For now, you can read a bit about
quasicategories in Tim Porter’s notes mentioned in item 5) above.

Then Tom Leinster and Nick Gurski spoke about Ross Street’s definition to weak
∞-categories, where they are simplicial sets satisfying an even more subtly restricted
version of the Kan condition.

9) Nick Gurski and Tom Leinster, “Simplicial definition”. Notes available at http://
www.ima.umn.edu/categories/#thur

Street’s definition is tough to understand at first, but it should eventually include
Joyal’s quasicategories as a special case, which is nice. For Street’s own discussion, see:

10) Ross Street, “Weak ω-categories”, in Diagrammatic Morphisms and Applications,
eds. David Radford, Fernando Souza, and David Yetter, Contemp. Math. 318,
AMS, Providence, Rhode Island, 2003, pp. 207–213. Also available as www.maths.
mq.edu.au/\~street/Womcats.pdf

It relies on some work by Dominic Verity which has finally been written up after many
years of unpublished limbo:

11) Dominic Verity, “Complicial sets”, available as math.CT/0410412

After dinner we took a turn towards applications, and Larry Breen explained his
work on n-stacks and n-gerbes. An n-stack is like a sheaf that has an (n− 1)-category of
sections, while an n-gerbe has an (n − 1)-groupoid of sections. Such things show up a
lot in algebraic geometry, and more recently in mathematical physics inspired by string
theory. Alas, the audience was rather tired this evening, so Larry only got to 1-stacks and
1-gerbes! But he gave an impromptu talk later where he reached n = 2, and the notes
for both talks are available in combined form here:

12) Larry Breen, “n-Stacks and n-gerbes: homotopy theory”. Notes available at http:/
/www.ima.umn.edu/categories/#thur

You’ve heard about David Corfield’s quest for a philosophy of real mathematics in
“Week 198”. He’s one of the few philosophers who understands enough math to realize
how cool n-categories are — which may explain why he’s having trouble getting a job.
On the morning of the fourth day, he gave a talk on the impact n-categories could have
in philosophy:

13) David Corfield, “n-Category theory as a catalyst for change in philosophy”. Notes
available at http://www.ima.umn.edu/categories/#fri
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Later that day, Bertrand Toen explained Segal categories, which are another popular
approach to weak categories:

14) Bertrand Toen, “Segal categories”. Notes by Joachim Kock available at http://
www.ima.umn.edu/categories/#fri

After dinner, he spoke about n-stacks and n-gerbes:

15) Bertrand Toen, “n-Stacks and n-gerbes: algebraic geometry”. Notes by Joachim
Kock available at http://www.ima.umn.edu/categories/#fri

Everyone slept all weekend long. Then on Monday of the second week, the homo-
topy theorist Zbigniew Fiedorowicz spoke about his work on a kind of n-fold monoidal
category that has an n-fold loop space as its nerve. He has some good papers on the web
about this, too:

16) Zbigniew Fiedorowicz, “n-Fold categories”. Notes available at http://www.ima.
umn.edu/categories/#mon2

C. Balteanu, Z. Fiedorowicz, R. Schwaenzl and R. Vogt, “Iterated monoidal cate-
gories”, available at math.AT/9808082

Z. Fiedorowicz, “Constructions of En operads”, available at math.AT/9808089.

Stefan Forcey continued this theme by discussing enrichment over n-fold monoidal
categories. He also has a number of papers about this on the arXiv, of which I’ll just
mention one:

17) Stefan Forcey, “Higher enrichment: n-fold operads and enriched n-categories, de-
looping and weakening”. Notes available at http://www.ima.umn.edu/categories/
\#mon2
Stefan Forcey, “Enrichment over iterated monoidal categories”, Algebraic and Geo-
metric Topology 4 (2004), 95–119, available online at http://www.maths.warwick.
ac.uk/agt/AGTVol4/agt-4-7.abs.html. Also available as math.CT/0403152.

After dinner we discussed how to relate different definitions of weak n-category.
On Tuesday of the second week, the logician Michael Makkai presented his astound-

ing project of redoing logic in a way that completely eliminates the concept of “equality”.
This forces you to do all of mathematics using weak ∞-categories. I thought this stuff
was great, in part because I finally understood it, and in part because it leads naturally
to the “opetopic” definition of n-categories that James Dolan and I introduced. The idea
of eliminating equality was very much on our mind in inventing this definition, but we
didn’t create a system of logic that systematizes this idea.

There are no notes for Makkai’s talk online, but you can get a lot of good stuff from
his website, including:

18) Michael Makkai, “On comparing definitions of weak n-category”, available at http:/
/www.math.mcgill.ca/makkai/

and this more technical paper which works out the details of his vision:
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19) Michael Makkai, “The multitopic ω-category of all multitopic ω-categories”, avail-
able at http://www.math.mcgill.ca/makkai/

After Makkai’s talk, Mark Weber spoke on n-categorical generalizations of the concept
of “monad”, which is a nice way of describing mathematical gadgets. There are no notes
for this talk, but his work on higher operads is at least morally related:

20) Mark Weber, “Operads within monoidal pseudo algebras”, available as math.CT/

0410230.

Again, after dinner we talked about how to relate different definitions of weak n-
category.

On Wednesday of the second week, Michael Batanin spoke about his recent work
relating n-categories to n-fold loop spaces. Again no notes, but you can read these
papers:

21) Michael Batanin, “The Eckmann-Hilton argument, higher operads and En-spaces”,
available at http://www.ics.mq.edu.au/~mbatanin/papers.html

Michael Batanin, “The combinatorics of iterated loop spaces”, available at http:/
/www.ics.mq.edu.au/~mbatanin/papers.html

Then Joachim Kock laid the ground for a discussion of n-categories and topologi-
cal quantum field theories, or “TQFTs”, by explaining the definition of a TQFT and the
classification of 2d TQFTs:

22) Joachim Kock, “Topological quantum field theory primer”. Notes available at http:/
/www.ima.umn.edu/categories/#wed2

In the evening, Marco Mackaay and I said more about the relation between TQFTs
and n-categories:

23) Marco Mackaay, “Topological quantum field theories”. Notes available at http://
www.ima.umn.edu/categories/#wed2

24) John Baez, “Space and state, spacetime and process”. Notes available at http://
www.ima.umn.edu/categories/#wed2

On Thursday, Ross Street started the day in a pleasantly different way — he gave a
historical account of work on categories and n-categories in Australia! Australia is home
to much of the best work on these subjects, so if you can understand his history you’ll
wind up understanding these subjects pretty well:

25) Ross Street, “An Australian conspectus of higher category theory”. Notes available
at http://www.ima.umn.edu/categories/#thur2

As a younger exponent of the Australian tradition, it was then nicely appropriate for
Steve Lack to speak about ways of building a model category of 2-categories:

26) Steve Lack, “Higher model categories”. Notes available at http://www.ima.umn.
edu/categories/#thur2
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In the afternoon we had a blast of computer science. First John Power gave a hilar-
ious talk phrased in terms of how one should convince computer theorists to embrace
categories, then 2-categories, and then maybe higher categories:

27) John Power, “Why tricategories?”. Notes available at http://www.ima.umn.edu/
categories/#thur2

I spoke about Power’s paper with this title back in “Week 53”; now you can get it
online!

Then Philippe Gaucher, Lisbeth Fajstrup and Eric Goubault spoke about higher-dimensional
automata and directed homotopy theory:

28) Philippe Gaucher, “Towards a homotopy theory of higher dimensional automata”.
Notes available at http://www.ima.umn.edu/categories/#thur2

Lisbeth Fajstrup, “More on directed topology and concurrency”, Notes available at
http://www.ima.umn.edu/categories/#thur2

Eric Goubault, “Directed homotopy theory and higher-dimensional automata”. Notes
available at http://www.ima.umn.edu/categories/#thur2

On Friday, Martin Hyland and Tony Elmendorf gave a double-header talk on higher-
dimensional linear algebra and how some concepts in this subject can be simplified using
symmetric multicategories. There are, alas, no notes for this talk. You just had to be
there.

Finally, my student Alissa Crans gave a talk on higher-dimensional linear algebra,
with an emphasis on categorified Lie algebras:

29) Alissa Crans, “Higher linear algebra”. Notes available at http://www.ima.umn.

edu/categories/#fri2

Hers was the last talk in the workshop! I would like to say more about it, but I’m
exhausted. . . and her talk fits naturally into a discussion of “higher gauge theory”, which
deserves a Week of its own.

By the way, you can see pictures of this workshop here:

30) John Baez, IMA, http://math.ucr.edu/home/baez/IMA/

If you want to see what these crazy n-category people look like, you can see most of
them here.

Hmm. If you wanted me to actually explain something this week, I’m afraid you’ll be
rather disappointed — so far everything has just been pointers to other material.

Luckily, while I was at this workshop I wrote a little explanation of some material
on Picard groups and Brauer groups. There’s a Spanish school of higher-dimensional
algebra, centered in Granada, and this spring Aurora del Rio Cabeza came from Granada
to visit UCR. She and James Dolan spent a lot of time talking about categorical groups
(also known as “2-groups”) and cohomology theory. I was, alas, too busy to keep up with
their conversations, but I learned a little from listening in. . . and here’s my writeup!

Higher categories show up quite naturally in the study of commutative rings and
associative algebras over commutative rings. I’d heard of things called “Brauer groups”
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and “Picard groups” of rings, and something called “Morita equivalence”, but I only
understood how these fit together when I learned they were part of a marvelous thing:
a weak 3-groupoid!

Here’s how it goes. You don’t need to know much about higher categories for this to
make some sense. . . at least, I hope not.

Starting with a commutative ring R, we can form a weak 2-category Alg(R) where:

• an object A is an associative algebra over R,

• a 1-morphism M : A→ B is an (A,B)-bimodule,

• a 2-morphism f : M → N is a homomorphism between (A,B)-bimodules.

This has all the structure you need to get a 2-category. In particular, we can “compose”
an (A,B)-bimodule and a (B,C)-bimodule by tensoring them over B, getting an (A,C)-
bimodule. But since tensor products are only associative up to isomorphism, we only get
a weak 2-category, not a strict one.

This weak 2-category has a tensor product, since we can tensor two associative alge-
bras over R and get another one. All the stuff listed above gets along with this process!
When an n-category has a well-behaved tensor product we call it “monoidal”, so Alg(R)
is a weak monoidal 2-category. But using a standard trick we can reinterpret this as a
weak 3-category with one object, as follows:

• there’s only one object, R

• a 1-morphism A : R→ R is an associative algebra over R

• a 2-morphism M : A→ B is an (A,B)-bimodule

• a 3-morphism f : M → N is a homomorphism between (A,B)-bimodules.

Note how all the morphisms have shifted up a notch. What used to be called objects,
the associative algebras over R, are now called 1-morphisms. We “compose” them by
tensoring them over R.

Next, recall a bit of n-category theory from “Week 35”. In an n-category we define a
j-morphism to be an “equivalence” iff it’s invertible. . . up to equivalence! This definition
may sound circular, but really just recursive. To start it off we just need to add that an
n-morphism is an equivalence iff it’s invertible.

What does equivalence amount to in the 3-category Alg(R)? It’s easiest to figure this
out from the top down:

• A 3-morphism f : M → N is an equivalence iff it’s invertible, so it’s an isomorphism
between (A,B)-bimodules.

• A 2-morphism M : A → B is an equivalence iff it’s invertible up to isomorphism,
meaning there exists N : B → A such that:

— M ⊗B N is isomorphic to A as an (A,A)-bimodule, — N ⊗AM is isomorphic to
B as a (B,B)-bimodule.

In this situation people say M is a “Morita equivalence” from A to B.
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• A 1-morphism A : R → R is an equivalence iff it’s invertible up to Morita equiva-
lence, meaning there exists a 1-morphism B : x→ x such that:

— A⊗RB is Morita equivalent to R as an associative algebra over R, — B⊗R A is
Morita equivalent to R as an associative algebra over R.

In this situation people say A is an “Azumaya algebra”.

Here’s a nice example of how Morita equivalence works. Over any commutative ring
R there’s an algebra R[n] consisting of n×n matrices with entries in R. R[n] isn’t usually
isomorphic to R[m], but they’re always Morita equivalent! To see this, suppose

• M : R[n]→ R[m] is the space of n×m matrices with entries in R,

• N : R[m]→ R[n] is the space of m× n matrices with entries in R.

These become bimodules in an obvious way via matrix multiplication, and a little
calculation shows that they’re inverses up to isomorphism!

So, all the algebras R[n] are Morita equivalent. In particular this means that they’re
all Morita equivalent to R, so they are Azumaya algebras of a rather trivial sort.

If we take R to be the real numbers there is also a more interesting Azumaya algebra
over R, namely the quaternions H. This follows from the fact that

H⊗R H = R[4]

This says H⊗RH is Morita equivalent to R as an associative algebra over R, which implies
(by the definition above) that H is an Azumaya algebra.

Morita equivalence is really important in the theory of C∗-algebras, Clifford algebras,
and things like that. Someday I want to explain how it’s connected to Bott periodicity!
Oh, there’s so much I want to explain. . . .

But right now I want to take our 3-category Alg(R), massage it a bit, and turn it into
a topological space! Then I’ll look at the homotopy groups of this space and see what
they have to say about our ring R.

To do this, we need a bit more n-category theory. A weak n-category where all the
1-morphisms, 2-morphisms and so on are equivalences is called a “n-groupoid”. For
example, given any weak n-category, we can form a weak n-groupoid called its “core” by
throwing out all the morphisms that aren’t equivalences.

So, let’s take the core of Alg(R) and get a weak 3-groupoid. Here’s what it’s like:

• There’s one object, R.

• The 1-morphisms A : x→ x are Azumaya algebras over R.

• The 2-morphisms M : A→ B are Morita equivalences.

• The 3-morphisms f : M → N are bimodule isomorphisms.

Since as a groupoid with one object is a group, this weak 3-groupoid with one object
deserves to be called a “3-group”.

Next, given a weak n-groupoid with one object, it’s very nice to compute its “homo-
topy groups”. These are easy to define in general, but I’ll just do it for the core of Alg(R)
and let you guess the general pattern. First, notice that:
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• The identity 1-morphism 1R : R → R is just R, regarded as an associative algebra
over itself in the obvious way.

• The identity 2-morphism 11R : 1R → 1R is just R, regarded as an (R,R)-bimodule
in the obvious way.

• The identity 3-morphism 111R : 11R → 11R is just the identity function on R, re-
garded as an isomorphism of (R,R)-bimodules.

At this point we let out a cackle of n-categorical glee. Then, we define the homotopy
groups of the core of Alg(R) as follows:

• The 1st homotopy group consists of equivalence classes of 1-morphisms from R to
itself.

• The 2nd homotopy group consists of equivalence classes of 2-morphisms from 1R
to itself

• The 3rd homotopy group consists of equivalence classes of 3-morphisms from 11R
to itself.

Here we say two morphisms in an n-category are “equivalent” if there is an equiva-
lence from one to the other (or if they’re equal, in the case of n-morphisms).

I hope the pattern in this definition of homotopy groups is obvious. In fact, n-
groupoids are secretly “the same” — in a subtle sense I’d rather not explain — as spaces
whose homotopy groups vanish above dimension n. Using this, the homotopy groups as
defined above turn out to be same as the homotopy groups of a certain space associated
with the ring R! So, we’re doing something very funny: we’re using algebraic topology
to study algebra.

But, we don’t need to know this to figure out what these homotopy groups are like.
Unraveling the definitions a bit, one sees they amount to this:

• The 1st homotopy group consists of Morita equivalence classes of Azumaya alge-
bras over R. This is also called the Brauer group of R.

• The 2nd homotopy group consists of isomorphism classes of Morita equivalences
from R to R. This is also called the Picard group of R.

• The 3rd homotopy group consists of invertible elements of R. This is also called
the unit group of R.

People had been quite happily studying these groups for a long time without know-
ing they were the homotopy groups of the core of a weak 3-category associated to the
commutative ring R! But, the relationships between these groups are easier to explain if
you use the n-categorical picture. It’s a great example of how n-categories unify mathe-
matics.

For example, everything we’ve done is functorial. So, if you have a homomorphism
between commutative rings, say

f : R→ S
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then you get a weak 3-functor

Alg(f) : Alg(R)→ Alg(S)

This gives a weak 3-functor from the core of Alg(R) to the core of Alg(S), and thus a
map between spaces. . . which in turn gives a long exact sequence of homotopy groups!
So, we get interesting maps going from the unit, Picard and groups of R to those of S —
and these fit into an interesting long exact sequence.

For more, try the following papers. The first paper is actually about a generalization
of Azumaya algebras called “Azumaya categories”, but it starts with a nice quick review
of Azumaya algebras and Brauer groups:

31) Francis Borceux and Enrico Vitale, “Azumaya categories”, available at http://www.
math.ucl.ac.be/AGEL/Azumaya categories.pdf

Category theorists will enjoy the generalization: since algebras are just one-object
categories enriched over Vect, the concept of Azumaya algebra really wants to gener-
alize to that of an Azumaya category. I’m sure most of the Brauer-Picard-Morita stuff
generalizes too, but I haven’t checked that out yet.

This second paper makes the connection between Picard and Brauer groups explicit
using categorical groups:

32) Enrico Vitale, “A Picard-Brauer exact sequence of categorical groups”, Journal of
Pure and Applied Algebra 175 (2002) 383–408. Also available as http://www.

math.ucl.ac.be/membres/vitale/cat-gruppi2.pdf

Addendum: It turns out that the Picard-Brauer 3-group has a long and illustrious his-
tory. Ross Street explained this to me; I’ve taken the liberty of numbering the references
in his email.

Dear John

It is great that you jumped in and started writing that report on the Minneapolis
meeting. “A journey of a thousand miles . . .”.

[Carrying on the IMA Russian spirit, I just got back from Christchurch NZ where
I gave 11 hours (in 2 days) of lectures on topos theory to a very patient group
of physicists, philosophers, mathematicians, and even one economist.]

It is also great that you promoted the work of the Granada School. That sub-
ject is particularly close to my heart. So here goes another personal history.
Probably back at Tulane U in 1969-70, Jack Duskin (who was a great source of
inspiration to me and, I believe, to the Granada School) would have pointed me
to the papers

33) Grothendieck, Alexander. “Le groupe de Brauer. III. Exemples et comple-
ments.” (French) 1968. Dix Exposes sur la Cohomologie des Schemas
pp. 88–188 North-Holland, Amsterdam; Masson, Paris
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34) Grothendieck, Alexander. “Le groupe de Brauer. II. Theorie cohomologique.”
(French) 1968. Dix Exposes sur la Cohomologie des Schemas pp. 67–87
North-Holland, Amsterdam; Masson, Paris

35) Grothendieck, Alexander. “Le groupe de Brauer. I. Algbres d’Azumaya et in-
terpretations diverses.” (French) 1968. Dix Exposes sur la Cohomologie
des Schemas pp. 46–66 North-Holland, Amsterdam; Masson, Paris

pushing the Brauer group concept of ring theorists (e.g. Azumaya) into the
scheme view of algebraic geometry. I later read papers by category theorists,
like

36) Lindner, Harald, “Morita equivalences of enriched categories”. Confer-
ences du Colloque sur l’Algebre des Categories (Amiens, 1973), III. Cahiers
Topologie Geom. Differentielle 15 (1974), no. 4, 377–397, 449–450.

37) Fisher-Palmquist, J.; Palmquist, P. H. “Morita contexts of enriched cate-
gories”. Proc. Amer. Math. Soc. 50 (1975), 55–60.

which seemed to be the beginning of a simpler understanding. Somehow (?) I
obtained an original bound reprint of

38) Froehlich, A.; Wall, C. T. C. “Graded monoidal categories”. Compositio
Math. 28 (1974), 229–285.

which I have just looked at and realised I should read again (since Turaev and
Mueger have been using G-graded categories to understand the G-equivariant
version of Turaev’s 3-manifold invariant work). It was forerunner to

39) Froehlich, A.; Wall, C. T. C. “Equivariant Brauer groups”. Quadratic forms
and their applications (Dublin, 1999), 57–71, Contemp. Math. 272,
Amer. Math. Soc., Providence, RI, 2000.

On my sabbatical at Wesleyan University (Middletown CT) in 1976-77, I joined
in the algebraists’ workshop on SLNM 181 on separable algebras over commu-
tative rings which was trying to do some of Grothendieck’s stuff without the
cohomology and alg geom. Joyal taught me a bit about Brauer too, motivating
to some extent the work I did on stacks.

Anyway, out of all this, other stuff I’ve forgotten, and the experience in module
theory for enriched categories, it became clear that Morita contexts were a bit
silly and adjunctions of (bi)modules were probably better and less ad hoc. The
beginning point should be a particular monoidal bicategory Alg(R-Mod) based
on a commutative ring R: objects are R-algebras, morphisms are bimodules,
2-cells are module morphisms. The group of units, Picard group and Brauer
group all sat happily in there as homotopy groups of the monoidal bicategory.

I’d heard of things called “Brauer groups” and “Picard groups” of
rings, and something called “Morita equivalence”, but I only under-
stood how these fit together when I learned they were part of a mar-
velous thing: a weak 3-groupoid!
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After beginning the work with Joyal on braided monoidal categories and learn-
ing of his work with Tierney on homotopy 3-types, I spoke at the homotopy
meeting in Bangor in 1986(?) on this monoidal bicategory Alg(R-Mod) as a
fundamental example. (It is discussed much later in the last part of

40) R. Gordon, A.J. Power and R. Street, “Coherence for tricategories”, Mem-
oirs of the American Math. Society 117 (1995) Number 558.)

At the 1987 Meeting in Louvain-La-Neuve, Duskin (who loves simplicial sets)
found a simplicial set whose only non-trivial homotopy groups were the three in
question:

41) Duskin, John W. “The Azumaya complex of a commutative ring”. Categor-
ical algebra and its applications (Louvain-La-Neuve, 1987), 107–117,
Lecture Notes in Math. 1348, Springer, Berlin, 1988.

I pointed out to Jack that this was the nerve of Alg(R-Mod) and he included a
remark about that in the published version. Also see

42) Duskin, J. “An outline of a theory of higher-dimensional descent”. Actes du
Colloque en l’Honneur du Soixantieme Anniversaire de Rene Lavendhomme
(Louvain-la-Neuve, 1989). Bull. Soc. Math. Belg. Ser. A 41 (1989), no.
2, 249–277.

The Brauer group section of

43) “Categorical and combinatorial aspects of descent theory”, Applied Cate-
gorical Structures (to appear; March 2003 preprint available at math.
CT/0303175).

gives some more on this.

The article

44) K.K. Ulbrich, “Group cohomology for Picard categories”, J. Algebra 91
(1984) 464–498.

should also be mentioned. It is a great, to use your term, “categorification” of
usual cohomology with abelian group coefficients: one step towards the grander
goal of coefficients in a general weak n-category.

The Spanish School (and the Belgian School) is continuing with nice work in
this area. For example there is the recent paper by Carrasco/Martinez-Moreno.
Here is the review I wrote yesterday.

Carrasco/Martinez-Moreno: Simplicial cohomology with coefficients
in symmetric categorical groups
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The full cohomology theory of simplicial sets with coefficients in a gen-
eral weak n-category is a long-term goal. The classical cohomology
revolves around the fact that an abelian group A can be regarded as
an n-category whose simplicial nerve is the combinatorial Eilenberg-
Mac Lane space K(A,n). Following Takeuchi and Ulbrich [J. Pure
Appl. Algebra 27 (1983) 61–73; MR84g:18025] and Ulbrich [J.
Algebra 91 (1984) 464–498; MR86h:18003], the present authors
develop cohomology where the coefficient object is a symmetric cate-
gorical group A. In this important case too, A can be regarded as a
weak n-category whose simplicial nerve is here denoted byK(A,n); it
has non-vanishing homotopy groups only in dimensions n and n+1,
and represents the cohomology of simplicial sets in the homotopy cat-
egory. This functor K(−, n) essentially has a left-adjoint left-inverse
Pn so that homotopy classes of simplicial maps from X to Y are clas-
sified by the cohomology of X with coefficients in Pn(Y ).

Back to marking papers.

Best wishes,
Ross

This last paper is:

44) P. Carrasco and J. Martinez-Moreno, “Simplicial cohomology with coefficients in
symmetric categorical groups”, Applied Categorical Structures 12 (2004), 257–286.
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Week 210

January 25, 2005

As you’ve probably heard, the Huygens probe has successfully landed on Saturn’s moon
Titan and is sending back pictures:

1) Huygens Probe Descent, http://saturn.jpl.nasa.gov/news/events/huygensDescent/
index.cfm

Titan averages a chilly −180 degrees Celsius, and its smoggy orange atmosphere is
thicker than the Earth’s, mostly nitrogen but 6 percent methane, together with substan-
tial traces of all sorts of other hydrocarbons. The orange color may come from “tholins”:
polymers made by irradiating a mix of nitrogen and methane. Some other icy moons in
the outer solar system are covered with this goop, but Titan is the only moon in the Solar
System to have a substantial atmosphere. It even has clouds.

As the Huygens probe parachuted to the surface, it photographed what look like
twisty riverbeds flowing into a large lake:

People have long suspected that Titan has lakes of made of methane and/or ethane, but
now we may be seeing them. And when Huygens landed, its sensors reported that it
broke through a crusty surface and sunk about 20 centimeters into something mushy:
probably methane mud!
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The first color photo of the surface looks disappointingly like Mars at first sight:

But, the surface is pumpkin-colored due to tholins or something, not rust red. The sky is
orange too! The “rocks” could be water ice. And they’ve detected hints of volcanos that
spew molten water and ammonia! So, it’s a strange new world.

Back here on Earth, there was a conference in December in honor of Larry Breen’s
60th birthday:

2) Arithmetic, Geometry and Topology: Conference on occasion of Larry Breen’s six-
tieth birthday, http://www-math.univ-paris13.fr/~lb2004/

It was in Paris. This was my first visit to that city, but luckily I got to stay there an
extra week after the conference, so I could focus on the math while it was going on.

But I can’t resist a digression! Paris won my heart, despite my suspicions that it
had somehow been hyped all along. First of all, it’s beautiful. Second, it’s nice to be
someplace where people take simple foods like bread, cheese, fruits and vegetables really
seriously, and don’t settle for the tasteless crud we so often eat in the US.

None of this came as a surprise, of course. What surprised is that I’ve never seen a
city with so many bookstores — and good ones, too! They’re clustered thick near the
Sorbonne, but the Latin Quarter is dotted with them, and there are even lots along the
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Boulevard St-Germain, which is the biggest most fashionable shopping street. I don’t
think there’s any place in the English speaking world with so many bookstores. Not
London, not New York. . . Cambridge Massachusetts used to have lots near Harvard
Square, back when I was a grad student, but the high rents have long since squeezed
them out, replacing bohemian diversity with clothing shops for boring rich people, like
Abercrombie and Fitch. Somehow in Paris fancy clothing and books coexist.

Umm, but what about the conference?
Well, Breen’s work is mainly on algebraic geometry a la Grothendieck, with a strong

emphasis on category theory. Beautiful stuff, and lately it’s it’s begun to find applications
to string theory — especially his work on gerbes. People at his conference spoke on all
sorts of topics, most of which I didn’t understand very well — some heavy-duty number
theory, for example. I understood a few well enough to really enjoy them, like Mike
Hopkins’ talk on derived algebraic geometry, Clemens Berger’s talk on geometric Reedy
categories, and Ieke Moerdijk’s talk on the homotopy theory of operads. But I won’t try
to explain these — I want to explain what a “gerbe” is, so I have my work cut out for me.

One way to get going on the idea of gauge theory is to start with electromagnetism,
where the concept of “phase” turns out to play a crucial role. If you move a charged
particle through an electromagnetic field, its wavefunction gets multiplied by a unit
complex number, or “phase” — and it turns out, rather wonderfully, that all effects of
electricity and magnetism on charged particles is due to this!

However, phases are funny. You can’t actually measure the phase of a charged particle
— at least, there’s no such thing as a “phasometer” where you stick in a particle and the
dial on the meter points to a unit complex number. Of course a unit complex number
is just a fancy name for a point on the circle, and a dial is precisely the right shape for
that. . . but you just can’t build this machine.

Instead, you can only measure the change in phase of a particle as it goes around a
loop. Or, equivalently, the difference in phases when a particle takes two different paths
from here to there. See, in quantum mechanics you can play tricks like the “double slit
experiment”, where you coax a particle’s wavefunction to smear out and take two routes
from here to there. . . and then when it arrives, it interferes with itself, and if you’re
smart you can see by these interference effects what the relative phase of the two paths
is.

Pretty weird, eh? I’m so used to this that it seems completely normal to me, but I
should admit that this way of understanding the electromagnetic field came fairly late.
Weyl had a hint of it in 1918 when he invented the term “gauge theory” in his quest to
unify electromagnetism and gravity, but he was mixed up in some crucial ways that only
got sorted out quite a bit later. For more details, try O’Raiferteagh’s book “The Dawning
of Gauge Theory”, which I discussed in “Week 116”.

Anyway, the concept of relative phase, or difference in phase, is nicely captured by
the concept of a “torsor”. A unit complex number is a point on the unit circle in the
complex plane. This circle is a group since we can multiply unit complex numbers and
get unit complex numbers back. This group is called U(1). Like a dial, U(1) has standard
names for all the points on it — and it has one god-given special point, the identity
element, namely the number 1.

A “U(1)-torsor” is a lot like U(1), but subtly different. It’s a circle where the points
aren’t given these standard names. . . but where you can still tell measure angles, and
tell the difference between clockwise and counterclockwise.
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You can’t get an element of U(1) from one point on a U(1)-torsor. But, if you have two
points on a U(1)-torsor, you can say how much rotation it takes to get from one to the
other, and this give an element of U(1). In other words, you can describe the “difference
in phase” between these two points.

For more on torsors, try this:

3) John Baez, “Torsors made easy”, http://math.ucr.edu/home/baez/torsors.html

Anyway, the real idea behind electromagnetism is that sitting over each point in
spacetime is a U(1)-torsor. If a particle is sitting at some point in spacetime, its phase is
not really a number: it’s an element of the U(1)-torsor sitting over that point! To get a
number, we have to carry the particle around a loop! Its phase will change when we do
this, so we get two points in a U(1)-torsor, and their difference is an element of U(1).

So while it sounds far-out, the key mathematical structure in electromagnetism is
a bunch of U(1)-torsors, one over each point in spacetime. This is called a “principal
U(1)-bundle” or sometimes just a “U(1)-bundle” for short.

If we wanted to describe some force other than electromagnetism, we could take this
whole setup and replace U(1) with some other group. In fact, this idea works great:
it’s the main idea behind gauge theories, which do an excellent job of describing all the
forces in nature.

To set up a gauge theory, the first thing you need to do is pick a group G and pick a
“principal G-bundle” over spacetime. Spacetime will be some manifold X. A principal
G-bundle over X is gadget that assigns a G-torsor to each point of X. A G-torsor is a
space where if you pick two points in it, you get an element of G which describes their
“difference”.

I’m being fairly sloppy here, so don’t take these as precise definitions! I give a precise
definition of a G-torsor in the above webpage, and any decent book on differential ge-
ometry will give you a definition of a principalG-bundle. However, only rather highbrow
books define principal G-bundles with the help of G-torsors. . . which is sad, because it’s
not that hard, and rather enlightening.

Anyway, in gauge theory the forces of nature are described by “connections” on prin-
cipal G-bundles. Let’s say we have a principal G-bundle P which assigns to each point
x of our manifold a G-torsor P (x). Then a “connection” on P is a gadget that says how
any path from x to y gives a map from P (x) to P (y). If G is U(1), for example, this
gadget says how the phase of a charged particle changes as we move it along any path
from x to y.

Now suppose we have a loop that starts and ends at x. Then our connection gives
a map from P (x) to itself. If we start with a point in P (x), and apply this map, we get
another point in P (x). Since P (x) is a G-torsor, these two points determine an element
of G. This is how we get group elements from loops in gauge theory!

Now let me sketch how gerbes enter the game. First I’ll do the case where the group
G is abelian, for example U(1). It’s the nonabelian gerbes that really interest me. . . but
the abelian case is a lot easier. The reason is that when G is abelian, the group element
we get in the previous paragraph doesn’t depend on the choice of a point of P (x).

Gerbes show up when we try to invent a kind of “higher gauge theory” that describes
how not just point particles but 1-dimensional objects transform when you move them
around. For example, the strings in string theory, or the loops in loop quantum gravity.
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This leads to a mind-boggling self-referential twist, which is just the kind of thing I
love:

As we’ve seen, a connection describes how a point particle transforms when you carry
it along a path:

x
f−→ y

a path f from the point x to the point y;

we write this as f : x→ y.

Now we need a gadget that’ll describe how a path transforms when you carry it along a
path of paths:

x y

f

g

F

a path f from the point x to the point y;

we write this as f : x→ y.

To do this, we need to boost our level of thinking a notch, working not with “G-torsors”
and “principal G-bundles” but instead with “G-2-torsors” and “G-gerbes”.

Here’s how it goes:
We start by picking an abelian group G and a manifold X.
Then we pick a “G-gerbe” over X, say P .
What’s that? It’s a thing that assigns to each point x of X a “G-2-torsor”, say P (x).
What’s that? Well, it’s a thing where if you pick two points in it, you get a G-torsor

describing their difference!
Get it? This is the beginning of a story that goes on forever:

• Two points in a G-torsor determine an element of G;

• two points in a G-2-torsor determine a G-torsor;

• two points in a G-3-torsor determine a G-2-torsor;

• . . .

But, you’ll probably be relieved to know we won’t go beyond G-2-torsors today.
Next, we pick a “connection” on P .
What’s that? Well, it’s a gadget that for each path from x to y gives us a map from

the G-2-torsor P (x) to the G-2-torsor P (y). If we call the path

f : x→ y

then we call this map
P (f) : P (x)→ P (y)
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Moroever, this sort of connection also gives a “map between maps” for each path-of-
paths! So, from

F : f ⇒ g

it gives
P (F ) : P (f)⇒ P (g)

I haven’t explained enough stuff to say yet what these “maps between maps” are, so
let’s just see what happens if we have a loop

f : x→ x

and then a loop-of-loops
F : f ⇒ f

From the loop f : x→ x, our connection gives us a map:

P (f) : P (x)→ P (x)

If we start with a point in P (x), and apply this map, we get another point in P (x). Since
P (x) is aG-2-torsor, these two points determine aG-torsor. ThisG-torsor doesn’t depend
on our initial choice of point, and it completely determines the map P (f). So, we can
think of P (f) as being this G-torsor, if we like.

From the loop-of-loops F : f ⇒ f , our connection gives us a map:

P (F ) : P (f)⇒ P (f)

If we start with a point in P (f), and apply this map, we get another point. Since P (f)
is a G-torsor, these two points determine an element of G. This element of G doesn’t
depend on our initial choice of point, and it completely determines the map P (F ). So,
we can think of P (F ) as being this element of G, if we like.

In short, the machinery functions just as you’d hope, giving a group element that
describes how a loop of string “changes phase” as you carry it around a loop-of-loops!

So far I’ve been strenously avoiding the language of categories and 2-categories, but
if you’re at all familiar with that language, you’ll have guessed that it’s precisely what
we need to make everything I’m saying precise.

It’s actually incredibly beautiful. . . but I’m getting lazy, so I’ll explain it very tersely
now, in a way that only true lovers of abstraction will enjoy:

If G is a group, it acts on itself by left translation. So, it becomes a left G-set. Any
left G-set isomorphic to this one is called a “G-torsor”. There’s a category G-Tor whose
objects are G-torsors and whose morphisms are maps compatible with the action of G.
Since all G-torsors are isomorphic, and the automorphism group of any one is just G,
this category G-Tor is equivalent to G (regarded as a 1-object category).

If G is abelian, every left G-set becomes a right G-set too. This allows us to define
a “tensor product” of G-sets. The tensor product of G-torsors is a G-torsor, so G-Tor
becomes a monoidal category. In fact, it’s a “2-group”: a monoidal category where all
the objects and morphisms are invertible.

This allows us to iterate what we’ve just done:
Since G-Tor is a 2-group, it acts on itself by left translation. So, it becomes a “left

G-category”. Any left G-category isomorphic to this one is called a “G-2-torsor”. There’s
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a 2-category G-2-Tor whose objects are G-2-torsors, whose morphisms are functors com-
patible the action of G, and whose morphisms are natural transformations compatible
with the action of G. Since all G-2-torsors are isomorphic, any the automorphism 2-
group of any one is just G-Tor, this 2-category is equivalent to G-Tor (regarded as a
1-object 2-category).

And so on! This infinite hierarchy only works when G is abelian; when G is non-
abelian we need a different hierarchy, which uses “bitorsors”, where G acts on both left
and right, instead of “torsors”.

To learn more about this stuff, here are some references. I’ll stick to ones I didn’t
already list in “Week 71” and “Week 151”.

First, for physicists, some work on the role of gerbes and 2-gerbes in string theory
and M-theory:

4) Paolo Aschieri, Luigi Cantini and Branislav Jurco, “Nonabelian bundle gerbes, their
differential geometry and gauge theory”, available as hep-th/0312154.

5) Paolo Aschieri and Branislav Jurco, “Gerbes, M5-brane anomalies and E8 gauge
theory”, available as hep-th/0409200.

Second, for mathematicians, some classic works by Breen:

6) Lawrence Breen, “Bitorseurs et cohomologie non-abelienne”, in The Grothendieck
Festschrift, eds. P. Cartier et al, Progress in Mathematics vol. 86, Birkhauser, Boston,
1990, pp. 401–476.

7) Lawrence Breen, “Theorie de Schreier superieure”, Ann. Sci. Ecole Norm. Sup. 25
(1992), 465–514.

8) Lawrence Breen, “Classification of 2-stacks and 2-gerbes”, Asterisque 225, Societe
Mathematique de France, 1994.

2-gerbes are what you get if you climb the hierarchy one more step. They should be
good for describing the parallel transport of 2-dimensional surfaces, or “2-branes” — and
indeed they make an appearance in Aschieri and Jurco’s paper for precisely that reason.

Another key reference is Breen’s paper with Messing about connections on nonabelian
gerbes:

9) Lawrence Breen and William Messing, “The differential geometry of gerbes”, avail-
able as math.AG/0106083.

and Breen’s lecture notes from the IMA workshop on higher categories:

10) Larry Breen, “n-Stacks and n-gerbes: homotopy theory”. Notes available at http:/
/www.ima.umn.edu/categories/#thur

I’ve been working on this stuff myself lately, from a somewhat different viewpoint.
So far I’ve written papers with Aaron Lauda and Alissa Crans about 2-groups and Lie
2-algebras:
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11) John Baez and Aaron Lauda, “Higher-dimensional algebra V: 2-groups”, Theory
and Applications of Categories 12 (2004), 423–491. Available online at http://
www.tac.mta.ca/tac/volumes/12/14/12-14abs.html or as math.QA/0307200.

12) John Baez and Alissa Crans, “Higher-dimensional algebra VI: Lie 2-algebras”, The-
ory and Applications of Categories 12 (2004), 492–528. Available online at http:/
/www.tac.mta.ca/tac/volumes/12/15/12-15abs.html or as math.QA/0307263.

Aaron Lauda was getting a masters degree in physics at UCR when we started our
paper on 2-groups. Now he’s a grad student in math at the University of Cambridge,
working on things related to topological quantum field theory with the category theorist
Martin Hyland. Alissa Crans did her PhD in math at UCR, and our paper on Lie 2-algebras
contains a lot of stuff from her thesis. Now she has a job at Loyola Marymount University,
in Los Angeles.

I’ve had a huge amount of fun working with both of them! Luckily Alissa lives nearby,
and I visit Cambridge most summers. So, we can all keep working on other projects
together — and we are.

I also have some gerbe-related projects going on with my grad student Toby Bartels,
Danny Stevenson (who is teaching at UCR now) and Urs Schreiber, a fellow modera-
tor of sci.physics.research who will soon be a postdoc at Hamburg with Christoph
Schweigert. Urs will be visiting UCR for two weeks in February, and we plan to figure a
lot of stuff out. So, I’ve got gerbes on the brain, and I’ll probably be saying more about
them in the future, unless I burn up all my expository energy writing papers.

In fact, one of the best places to learn about the differential geometry of abelian
gerbes and 2-gerbes is Danny’s thesis:

13) Danny Stevenson, The geometry of bundle gerbes, Ph.D. thesis, University of Ade-
laide, 2000. Available as math.DG/0004117.

He’s also written lots of other papers on gerbes, which you can find on the arXiv.
Physicists may find these the most interesting:

14) Michael K. Murray and Danny Stevenson, “Higgs fields, bundle gerbes and string
structures”, Comm. Math. Phys. 236 (2003), 541–555. Also available as math.DG/
0106179.

15) Alan L. Carey, Stuart Johnson, Michael K. Murray, Danny Stevenson and Bai-Ling
Wang, “Bundle gerbes for Chern-Simons and Wess-Zumino-Witten models”, avail-
able as math.DG/0410013.

Toby is doing his thesis on categorified bundles, or “2-bundles”, and you can already
get a preview here:

16) Toby Bartels, “Categorified gauge theory: 2-bundles”, available as math.CT/0410328.

2-bundles are meant to be an alternative to gerbes: although I’ve done my best to
hide it above, a gerbe is really more like a categorified sheaf than a bundle. And, just
as a bundle has a sheaf of sections, we’re hoping that a 2-bundle has a stack of sections,
which in certain cases will be a gerbe. That’s one of the things we need to figure out,
though.
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And, while I’m listing the papers of the gerbe gang, I should admit that Urs and I
have written a paper about connections on 2-bundles. But, I want to polish this paper a
bit before talking about it here.

As for 2-groups, various people have been studying their representations lately, and
this should become an important part of higher gauge theory, just as group representa-
tions are crucial in gauge theory:

17) Magnus Forrester-Barker, Representations of crossed modules and cat1-groups, Ph.D. the-
sis, Department of Mathematics, University of Wales, Bangor, 2004. Available at
http://www.maths.bangor.ac.uk/research/ftp/theses/forrester-barker.pdf

18) John Barrett and Marco Mackaay, “Categorical representations of categorical groups”,
available as math.CT/0407463.

19) Josep Elgueta, “Representation theory of 2-groups on finite dimensional 2-vector
spaces”, available as math.CT/0408120.

20) Louis Crane and David Yetter, “Measurable categories and 2-groups”, available as
math.QA/0305176.

21) David Yetter, “Measurable categories”, available as math.CT/0309185.

22) Louis Crane and Marnie D. Sheppeard, “2-categorical Poincare representations and
state sum applications”, available as math.QA/0306440.

Hendryk Pfeiffer’s papers on higher gauge theory are also very interesting. Since he
works on lattice gauge theory and spin foam models, the first two papers here develop
higher gauge theory on a discrete spacetime, and then compare it to higher gauge theory
on a manifold:

23) Hendryk Pfeiffer, “Higher gauge theory and a non-Abelian generalization of 2-form
electrodynamics”, Annals Phys. 308 (2003), 447–477. Also available as hep-th/

0304074.

24) Florian Girelli and Hendryk Pfeiffer, “Higher gauge theory — differential versus
integral formulation”, Jour. Math. Phys. 45 (2004), 3949–3971. Also available as
hep-th/0309173.

25) Hendryk Pfeiffer, “2-groups, trialgebras and their Hopf categories of representa-
tions”, available as math.QA/0411468.

The third one partially fulfills an old dream of Crane and Frenkel — a dream I vaguely
hinted at way back in “Week 50”. Their dream was to find a concept of “trialgebra”
such that a trialgebra has a Hopf category of representations, which in turn can have a
monoidal 2-category of representations of its own. This is a kind of aggravated version of
a pattern already familiar in algebra, where a Hopf algebra (or bialgebra) has a monoidal
category of representations.

Pfeiffer doesn’t define general trialgebras, but only “cocommutative trialgebras” and
“commutative cotrialgebras”. A cocommutative trialgebra is a category in the category
of cocommutative Hopf algebras, while a commutative cotrialgebra is a category in the
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opposite of the category of commutative Hopf algebras. Zounds — say that three times
fast!

He shows you can get these two gadgets from 2-groups in analogy to how you get
cocommutative or commutative Hopf algebras from groups, by taking the group algebra
or the algebra of functions on a group. He also proves a Tannaka- Krein theorem that lets
you reconstruct commutative cotrialgebras from their Hopf categories of representations.

Really cool stuff!
By the way, here are some photos of Larry Breen’s conference, and of Paris:

26) John Baez, Paris, http://math.ucr.edu/home/baez/paris/
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Week 211

March 6, 2005

The last time I wrote an issue of this column, the Huyghens probe was bringing back cool
photos of Titan. Now the European “Mars Express” probe is bringing back cool photos of
Mars!

1) Mars Express website, http://www.esa.int/SPECIALS/Mars Express/index.html

There are some tantalizing pictures of what might be a “frozen sea” — water ice
covered with dust — near the equator in the Elysium Planitia region:

2) Mars Express sees signs of a “frozen sea”, http://www.esa.int/SPECIALS/Mars Express/

SEMCHPYEM4E 0.html

Ice has already been found at the Martian poles — it’s easily visible there, and Mars
Express is getting some amazing closeups of it now - here’s a here’s a view of some ice
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on sand at the north pole:

3) Glacial, volcanic and fluvial activity on Mars: latest images, http://www.esa.int/
SPECIALS/Mars Express/SEMLF6D3M5E 1.html

What’s new is the possibility of large amounts of water in warmer parts of the planet.
Now for some math. It’s always great when two subjects you’re interested in turn out

to be bits of the same big picture. That’s why I’ve been really excited lately about Bott
periodicity and the “super-Brauer group”.

I wrote about Bott periodicity in “Week 105”, and about the Brauer group in “Week
209”, but I should remind you about them before putting them together.

Bott periodicity is all about how math and physics in n+8-dimensional space resem-
ble math and physics in n-dimensional space. It’s a weird and wonderful pattern that
you’d never guess without doing some calculations. It shows up in many guises, which
turn out to all be related. The simplest one to verify is the pattern of Clifford algebras.

You’re probably used to the complex numbers, where you throw in just one square
root of −1, called i. And maybe you’ve heard of the quaternions, where you throw in
two square roots of −1, called i and j, and demand that they anticommute:

ij = −ji

This implies that k = ij is another square root of −1. Try it and see!
In the late 1800s, Clifford realized there’s no need to stop here. He invented what

we now call the “Clifford algebras” by starting with the real numbers and throwing in
n square roots of −1, all of which anticommute with each other. The result is closely
related to rotations in n+ 1 dimensions, as I explained in “Week 82”.

I’m not sure who first worked out all the Clifford algebras — perhaps it was Cartan
— but the interesting fact is that they follow a periodic pattern. If we use Cn to stand
for the Clifford algebra generated by n anticommuting square roots of −1, they go like
this:
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n Cn

0 R
1 C
2 H
3 H⊕H
4 H(2)
5 C(4)
6 R(8)
7 R(8)⊕ R(8)

where:

• R(n) means n× n real matrices,

• C(n) means n× n complex matrices, and

• H(n) means n× n quaternionic matrices.

All these become algebras with the usual addition and multiplication of matrices.
Finally, if A is an algebra, A ⊕ A consists of pairs of guys in A, with pairwise addition
and multiplication.

What happens next? Well, from then on things sort of “repeat” with period 8: Cn+8

consists of 16× 16 matrices whose entries lie in Cn!
So, you can remember all the Clifford algebras with the help of this eight-hour clock:

0
R 1

C

2H

3
H⊕H

4
H5

C

6 R

7
R⊕ R

To use this clock, you have to remember to use matrices of the right size to get Cn to
have dimension 2n. So, when I write “R⊕ R” next to the “7” on the clock, I don’t mean
C7 is really R ⊕ R. To get C7, you have to take R ⊕ R and beef it up until it becomes
an algebra of dimension 27 = 128. You do this by taking R(8) ⊕ R(8), since this has
dimension 8× 8 + 8× 8 = 128.

Similarly, to get C10, you note that 10 is 2 modulo 8, so you look at “2” on the clock
and see “H” next to it, meaning the quaternions. But to get C10, you have to take H and
beef it up until it becomes an algebra of dimension 210 = 1024. You do this by taking
H(16), since this has dimension 4× 16× 16 = 1024.
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This “beefing up” process is actually quite interesting. For any associative algebra A,
the algebra A(n) consisting of n× n matrices with entries in A is a lot like A itself. The
reason is that they have equivalent categories of representations!

To see what I mean by this, remember that a “representation” of an algebra is a way
for its elements to act as linear transformations of some vector space. For example,
R(n) acts as linear transformations of Rn by matrix multiplication, so we say R(n) has
a representation on Rn. More generally, for any algebra A, the algebra A(n) has a
representation on An.

More generally still, if we have any representation of A on a vector space V , we get
a representation of A(n) on V n. It’s less obvious, but true, that every representation of
A(n) comes from a representation of A this way.

In short, just as n×n matrices with entries in A form an algebra A(n) that’s a beefed-
up version of A itself, every representation of A(n) is a beefed-up version of some repre-
sentation of A.

Even better, the same sort of thing is true for maps between representations of A(n).
This is what we mean by saying that A(n) and A have equivalent categories of repre-
sentations. If you just look at the categories of representations of these two algebras as
abstract categories, there’s no way to tell them apart! We say two algebras are “Morita
equivalent” when this happens.

It’s fun to study Morita equivalence classes of algebras — say algebras over the real
numbers, for example. The tensor product of algebras gives us a way to multiply these
classes. If we just consider the invertible classes, we get a group. This is called the
“Brauer group” of the real numbers.

The Brauer group of the real numbers is just Z/2, consisting of the classes [R] and
[H]. These correspond to the top and bottom of the Clifford clock! Part of the reason is
that

H⊗H = R(4)

so when we take Morita equivalence classes we get

[H]× [H] = [R]

But, you may wonder where the complex numbers went! Alas, the Morita equivalence
class [C] isn’t invertible, so it doesn’t live in the Brauer group. In fact, we have this little
multiplication table for tensor product of algebras:

⊗ R C H

R R C H
C C C⊕ C C(2)
H H C(2) R(4)

Anyone with an algebraic bone in their body should spend an afternoon figuring out
how this works! But I won’t explain it now.

Instead, I’ll just note that the complex numbers are very aggressive and infectious —
tensor anything with a C in it and you get more C’s. That’s because they’re a field in their
own right — and that’s why they don’t live in the Brauer group of the real numbers.
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They do, however, live in the super-Brauer group of the real numbers, which is Z/8
— the Clifford clock itself!

But before I explain that, I want to show you what the categories of representations
of the Clifford algebras look like:

0
real

1
complex

2quaternionic

3

split
quaternionic

4

quaternionic5
complex

6 real

7
split real

Here, the labels at each hour describe the type of vector space, e.g. at 3-o’clock we have
split quaternionic vector spaces.

You can read this information off the 8-hour Clifford clock I showed you before, at
least if you know some stuff:

• A real vector space is just something like Rn

• A complex vector space is just something like Cn

• A quaternionic vector space is just something like Hn

and a “split” vector space is a vector space that’s been written as the direct sum of
two subspaces.

Take C4, for example — the Clifford algebra generated by 4 anticommuting square
roots of −1. The Clifford clock tells us this is H ⊕ H. And if you think about it, a
representation of this is just a pair of representations of H. So, it’s two quaternionic
vector spaces — or if you prefer, a “split” quaternionic vector space.

Or take C7. The Clifford clock says this is R ⊕ R. . . or at least Morita equivalent
to R ⊕ R: it’s actually R(8) ⊕ R(8), but that’s just a beefed-up version of R ⊕ R, with
an equivalent category of representations. So, the category of representations of C7 is
equivalent to the category of split real vector spaces.

And so on. Note that when we loop all the way around the clock, our Clifford algebra
becomes 16 × 16 matrices of what it was before, but this is Morita equivalent to what it
was. So, we have a truly period-8 clock of categories!

But here’s the really cool part: there are also arrows going clockwise and counter-
clockwise around this clock! Arrows between categories are called “functors”.

Each Clifford algebra is contained in the next one, since they’re built by throwing in
more and more square roots of −1. So, if we have a representation of Cn, it gives us a
representation of Cn−1. Ditto for maps between representations. So, we get a functor
from the category of representations of Cn to the category of representations of Cn−1.
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This is called a “forgetful functor”, since it “forgets” that we have representations of Cn

and just thinks of them as representations of Cn−1.
So, we have forgetful functors cycling around counterclockwise!
Even better, all these forgetful functors have “left adjoints” going back the other way.

I talked about left adjoints in “Week 77”, so I won’t say much about them now. I’ll just
give an example.

Here’s a forgetful functor:

complex vector spaces
forget complex structure−−−−−−−−−−−−−→ real vector spaces

which is one of the counterclockwise arrows on the Clifford clock. This functor takes a
complex vector space and forgets your ability to multiply vectors by i, thus getting a real
vector space. When you do this to Cn, you get R2n.

This functor has a left adjoint:

complex vector spaces
complexify←−−−−−− real vector spaces

where you take a real vector space and “complexify” it by tensoring it with the complex
numbers. When you do this to Rn, you get Cn.

So, we get a beautiful version of the Clifford clock with forgetful functors cycling
around counterclockwise and their left adjoints cycling around clockwise! When I re-
alized this, I drew a big picture of it in my math notebook — I always carry around a
notebook for precisely this sort of thing. Unfortunately, it’s a bit hard to draw this chart
in ASCII, so I won’t include it here.

Instead, I’ll draw something easier. For this, note the following mystical fact: the
Clifford clock is symmetrical under reflection around the 3-o’clock/7-o’clock axis. It
seems bizarre at first that it’s symmetrical along this axis instead of the more obvious 0-
o’clock/4-o’clock axis. But there’s a good reason, which I already mentioned: the Clifford
algebra Cn is related to rotations in n+ 1 dimensions.

I would be very happy if you had enough patience to listen to a full explanation of
this fact, along with everything else I want to say. But I bet you don’t. . . so I’ll hasten on
to the really cool stuff.

First of all, using this symmetry we can fold the Clifford clock in half. . . and the
forgetful functors on one side perfectly match their left adjoints on the other side!
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So, we can save space by drawing this “folded” Clifford clock:

split real vector spaces

forget splitting double

real vector spaces

complexify forget complex structure

complex vector spaces

quaternionify forget quaternionic structure

quaternionic vector spaces

double forget splitting

split quaternionic vector spaces

The forgetful functors march downwards on the right, and their left adjoints march back
up on the left!

The arrows going between 7 o’clock and 0 o’clock look a bit weird:

split real vector spaces

forget splitting double

real vector spaces

Why is “forget splitting” on the left, where the left adjoints belong, when it’s obviously
an example of a forgetful functor?

One answer is that this is just how it works. Another answer is that it happens when
we wrap all the way around the clock — it’s like how going from midnight to 1 am
counts as going forwards in time even though the number is getting smaller. A third
answer is that the whole situation is so symmetrical that the functors I’ve been calling
“left adjoints” are also “right adjoints” of their partners! So, we can change our mind
about which one is “forgetful”, without getting in trouble.

But enough of that: I really want to explain how this stuff is related to the super-
Brauer group, and then tie it all in to the topology of Bott periodicity. We’ll see how far I
get before giving up in exhaustion. . . .

What’s a super-Brauer group? It’s just like a Brauer group, but where we use super-
algebras instead of algebras! A “superalgebra” is just physics jargon for a Z/2-graded
algebra — that is, an algebra A that’s a direct sum of an “even” or “bosonic” part A0 and
an “odd” or “fermionic” part A1:

A = A0 ⊕A1

such that multiplying a guy in Ai and a guy in Aj gives a guy in Ai+j , where we add the
subscripts mod 2.
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The tensor product of superalgebras is defined differently than for algebras. If A and
B are ordinary algebras, when we form their tensor product, we decree that everybody
in A commutes with everyone in B. For superalgebras we decree that everybody in A
“supercommutes” with everyone in B — meaning that

ab = ba

if either a or b are even (bosonic) while

ab = −ba

if a and b are both odd (fermionic).
Apart from these modifications, the super-Brauer group works almost like the Brauer

group. We start with superalgebras over our favorite field — here let’s use the real
numbers. We say two superalgebras are “Morita equivalent” if they have equivalent
categories of representations. We can multiply these Morita equivalence classes by taking
tensor products, and if we just keep the invertible classes we get a group: the super-
Brauer group.

As I’ve hinted already, the super-Brauer group of the real numbers is Z/8 — just the
Clifford algebra clock in disguise!

Here’s why:
The Clifford algebras all become superalgebras if we decree that all the square roots

of −1 that we throw in are “odd” elements. And if we do this, we get something great:

Cn ⊗ Cm = Cn+m

The point is that all the square roots of −1 we threw in to get Cn anticommute with those
we threw in to get Cm.

Taking Morita equivalence classes, this mean

[Cn][Cm] = [Cn+m]

but we already know that
[Cn+8] = [Cn]

so we get the group Z/8. It’s not obvious that this is all the super-Brauer group, but it
actually is — that’s the hard part.

Now let’s think about what we’ve got. We’ve got the super-Brauer group, Z/8, which
looks like an 8-hour clock. But before that, we had the categories of representations of
Clifford algebras, which formed an 8-hour clock with functors cycling around in both
directions.

In fact these are two sides of the same coin — or clock, actually. The super-Brauer
group consists of Morita equivalence classes of Clifford algebras, where Morita equiva-
lence means “having equivalent categories of representations”. But, our previous clock
just shows their categories of representations!

This suggests that the functors cycling around in both directions are secretly an aspect
of the super-Brauer group. And indeed they are! The functors going clockwise are just
“tensoring with C1”, since you can tensor a representation of Cn with C1 and get a
representation of Cn+1. And the functors going counterclockwise are “tensoring with
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C−1”. . . or C7 if you insist, since C−1 doesn’t strictly make sense, but 7 equals −1
mod 8, so it does the same job.

Hmm, I think I’m tired out. I didn’t even get to the topology yet! Maybe that’ll be
good as a separate little story someday. If you can’t wait, just read this:

4) John Milnor, Morse Theory, Princeton U. Press, Princeton, New Jersey, 1963.

You’ll see here that a representation of Cn is just the same as a vector space with n
different anticommuting ways to “rotate vector by 90 degrees”, and that this is the same
as a real inner product space equipped with a map from the n-sphere into its rotation
group, with the property that the north pole of the n-sphere gets mapped to the identity,
and each great circle through the north pole gives some action of the circle as rotations.
Using this, and stuff about Clifford algebras, and some Morse theory, Milnor gives a
beautiful proof that

Ω8(SO(∞)) ∼ SO(∞)

or in English: the 8-fold loop space of the infinite-dimensional rotation group is homo-
topy equivalent to the infinite-dimensional rotation group!

The thing I really like, though, is that Milnor relates the forgetful functors I was
talking about to the process of “looping” the rotation group. That’s what these maps
from spheres into the rotation group are all about. . . but I want to really explain it all
someday!

I learned about the super-Brauer group here:

5) V. S. Varadarajan, Supersymmetry for Mathematicians: An Introduction, American
Mathematical Society, Providence, Rhode Island, 2004.

though the material here on this topic is actually a summary of some lectures by
Deligne in another book I own:

6) P. Deligne, P. Etingof, D.S. Freed, L. Jeffrey, D. Kazhdan, J. Morgan, D.R. Morrison
and E. Witten, Quantum Fields and Strings: A Course For Mathematicians 2 vols.,
American Mathematical Society, Providence, 1999. Notes also available at http:/
/www.math.ias.edu/QFT/

Varadarajan’s book doesn’t go as far, but it’s much easier to read, so I recommend it
as a way to get started on “super” stuff.
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Week 212

March 26, 2005

As you may know, theoretical particle physics is highly enamored of “supersymmetry”
these days. This is not because there’s a shred of experimental evidence for it — there’s
not — but just because it’s such a cool idea from a mathematical point of view. Math-
ematicians should have gotten this idea and run with it first, but physicists did — and
maybe it’s turned them into mathematicians.

The unarguable central core of this idea is that everything is made of bosons and
fermions. In the Standard Model, most bosons are “force carriers”, like photons, which
carry the electromagnetic force. Fermions are more like what we’d normally call “mat-
ter”: leptons and quarks, for example. The one big exception is the Higgs boson, which
gives elementary particles their mass and. . . umm. . . hasn’t been seen yet!

But, at a more fundamental level, the really important thing is that bosons commute:

xy = yx

while fermions anticommute:
xy = −yx

Also, in case you’re wondering, bosons commute with fermions.
But already, most mathematicians reading this will be confused and unhappy. What

does it mean for two particles to commute, much less anticommute? Does an apple
commute with a grape? Here in the suburbs of Los Angeles almost everyone commutes,
but that’s not what we’re talking about.

The whole idea of particles commuting or anticommuting only occurred to people
after they invented quantum theory, where the state of any system is described by a unit
vector in some Hilbert space. In quantum theory, if you have a system in some state x,
and you check to see if it’s in the state y, your experiment gives you the answer “yes”
with probability

|⟨x, y⟩|2

the square of the absolute value of the inner product of x and y.
There! Now you know quantum theory.
Given this setup, when you have a system consisting of two particles, the first in some

state x and the second in some state y, it’s natural to write the state of the whole system
as a kind of product xy. But then you have to figure out what rules you want this product
to satisfy!

If you require it to be commutative:

xy = yx

you’re saying that there’s no difference between the first particle being in state x and the
second particle being in state y, and the other way around. In other words, the particles
don’t have little name tags on them saying who they are.

This seems reasonable, and particles satisfying this rule are called “bosons”. But,
there’s another popular option, called “fermions”:

xy = −yx
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Here again, the particles don’t have name tags, since if we put the whole system in the
state xy and check to see if it’s in the state yx, we get the same answer as when we check
to see if it’s in the state xy! See:

|⟨xy, yx⟩|2 = |⟨xy,−xy⟩|2 = |⟨xy, xy⟩|2

thanks to the absolute value. This means that the states xy and yx are indistinguishable.
Reading what I just said, you’d be forgiven for wondering what’s the big difference

between fermions and bosons! After all, that absolute value in the formula for probabil-
ities just ignores minus signs.

One difference is the “Pauli exclusion principle”. Take a pair of fermions and check
to see if they’re both in the state x. The probability is always zero, since

xx = −xx

so xx = 0. So, fermions are antisocial: that’s why the electrons in an atom form “shells”
with different electrons in different states, instead of all hanging out at the lowest energy
state.

Bosons, by contrast, are gregarious: when a store clerk uses a laser scanner to ring
up your purchases, that beam of red light is a bunch of photons all in the same state!
A laser is a quintessentially quantum-theoretic gadget — we live in a marvelous world,
where such things are taken for granted.

After getting used to these ideas for a while — Bose and Einstein worked out the
idea of bosons in 1924, Pauli came up with his exclusion principle in 1925, and Dirac
systematized the whole business in 1926 - physicists eventually started looking for sym-
metries that relate bosons and fermions. Supersymmetries! They’re not seen in nature,
but physicists were looking to see if they’re mathematically possible. They turn out not
only to be possible, but fascinating.

Formulating supersymmetries in a slick way requires that we take everything we
knew about linear algebra and generalize it by letting all our vector spaces have both
an “even” or “bosonic” part and an “odd” or “fermionic” part. Mathematically this just
amounts to writing our vector space as a direct sum

V = V0 ⊕ V1

where V0 is the “even part” and V1 is the “odd part”. Such a thing is called a “Z/2-graded
vector space”, or “super vector space”.

So far this is pathetically simple. But then — and this is the really crucial part! —
whenever we multiply things, we have to follow this rule:

× even odd

even even odd
odd odd even

It’s a little confusing, since this isn’t what happens when you multiply even and odd
numbers — it’s what happens when you ADD them. But, one quickly adapts.

Also, when we generalize equations involving multiplication, we must remember to
stick in an extra minus sign whenever we switch two odd vectors.
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So, for example, the usual concept of an algebra gets replaced by that of a “super-
algebra”. This is a super vector space A equipped with an associative product and unit
such that when we multiply even and/or odd vectors, the rules in the above table hold.
We say a superalgebra is “supercommutative” if

xy = yx

when at least one of x, y lives in the even part A0, while

xy = −yx

when both x and y live in A1.
Similarly we can define super Lie algebras, super Lie groups, supermanifolds, and so

on. . . .
People have done a lot of work on this stuff: it would take me days to explain it all

— even longer if I actually knew something about it.
But right now, I just want to zoom in the direction of super division algebras. These

are not the most important aspect of “superalgebra” — but they’re pretty cool, and Todd
Trimble has been explaining them to me lately. Everything interesting I’m about to say is
due to him.

As you know, I’m inordinately fond of the normed division algebras: the real num-
bers, complex numbers, quaternions and octonions. They’re so beautiful, it’s a little sad
at times that there are only four! Could superalgebra allow for more?

YES! And, they turn out to be related to Bott periodicity.
Nobody seems to have pondered nonassociative super division algebras yet, but Deligne

has a nice article about the associative ones, which I mentioned in “Week 211”. I’ll give
more references later.

So, what’s the idea?
I’ve already told you what a superalgebra is. We say it’s a “super division algebra” if

every nonzero element that’s purely even or purely odd is invertible.
That’s pretty easy. What are they like?
Well, I don’t completely understand all the options yet, so I’ll just list the “central”

super division algebras over the real numbers, namely those where the elements that
supercommute with everything form a copy of the real numbers. There turn out to be 8,
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and their beautiful patterns are best displayed in a circular layout:

0
R

1
R[e]

(e2+1)

2C[e]
(e2+1,ei+ie)

3

H[e]
(e2−1)

4
H

5

H[e]
(e2+1)

6 C[e]
(e2−1,ei+ie)

7
R[e]

(e2−1)

What does this notation mean? Well, as usual R, C, and H stand for the reals, complex
numbers, and quaternions. In all but two cases, we start with one of those algebras and
throw in an odd element “e” satisfying the relations listed: e is either a square root of +1
or of −1, and in the complex cases it anticommutes with i.

So, for example, super division algebra number 1:

R[e]/(e2 + 1)

is just the real numbers with an odd element thrown in that satisfies e2 +1 = 0. In other
words, it’s just the complex numbers made into a superalgebra in such a way that i is
odd.

The real reason I’ve arranged these guys in a circle numbered from 0 to 7 is to remind
you of the Clifford algebra clock in “Week 210”, where I discussed the super Brauer group
of the real numbers, and said it was Z/8.

Indeed, the central super division algebras are a complete set of representatives for
this super Brauer group! In particular, the Clifford algebra Cn is super Morita equivalent
to the nth algebra on this circle:

n Cn super-Morita-equivalent algebra

0 R R
1 C R[e]/(e2 + 1)
2 H C[e]/(e2 + 1, ei+ ie)
3 H⊕H H[e]/(e2 − 1)
4 H(2) H
5 C(4) H[e]/(e2 + 1)
6 R(8) C[e]/(e2 − 1, ei+ ie)
7 R(8)⊕ R(8) R[e]/(e2 − 1)

where the notation for Clifford algebras was explained last week.
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I think this is cool. I’m not quite sure what to do with it yet, though. How much
of what people ordinarily do with division algebras can be done with super division
algebras? For example, can we define projective spaces over super division algebras?
(See “Week 106” and “Week 145” for why that would be interesting.)

To read more about this, try:

1) Pierre Deligne, “Notes on spinors”, in Quantum Fields and Strings: A Course For
Mathematicians, volume 1, American Mathematical Society, Providence, 1999. Also
available at http://www.math.ias.edu/QFT/fall/spinors.ps

A lot of the ideas go back to here:

2) C. T. C. Wall, “Graded Brauer groups”, J. Reine Angew. Math. 213 (1963/1964),
187–199.

and here’s another good reference:

3) Peter Donovan and Max Karoubi, “Graded Brauer groups and K-theory with local
coefficients”, Publications Math. IHES 38 (1970), 5–25. Also available at http://
www.math.jussieu.fr/~karoubi/Donavan.K.pdf

I should admit that I have a yearning to classify nonassociative super division algebras.
Has anyone ever tried this? It’s already plain to see that we have two 16-dimensional
nonassociative super division algebras:

O[e]/(e2 + 1)

and
O[e]/(e2 − 1)

where e is an odd element that commutes with all the octonions. (I should have men-
tioned this before, when talking about H[e]: even though the quaternions are noncom-
mutative, we assume that e commutes with all of them.) Maybe one of these algebras
deserves to be called the superoctonions. I bet these or something awfully similar are
lurking around in string theory.

Hmm. . . next I wanted to write something about the topology of Bott periodicity and
how that fits into what I’ve been discussing, but I’m running out of energy. Let me say it
briefly, without much detail, just in case I never get around to a decent explanation.

Two super algebras are super Morita equivalent precisely when they have equivalent
categories of super representations. So, the super Brauer group really consists of 8
different categories: the categories SuperRep(Cn), where Bott periodicity says

SuperRep(Cn+8) ∼ SuperRep(Cn)

Moreover these are symmetric monoidal categories, since direct summing lets us “add”
objects in these categories in a nice way.

A long time ago, Graeme Segal figured out how to take a symmetric monoidal cate-
gory and get an infinite loop space from it. I explained this construction in “Week 199”,
but for a much more detailed and intense treatment with lots of references to earlier
work, try:
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4) R. W. Thomason, “Symmetric categories model all connective spectra”, Theory and
Applications of Categories 1 (1995), 78–118. Available at http://www.tac.mta.
ca/tac/volumes/1995/n5/1-05abs.html

If we do this to SuperRep(Cn), I think we get something like

Ωn(kO)

that is, the n-fold loop space of something called kO, the “connective K-theory spectrum”,
which I explained in “Week 105”. The fact that this repeats with period 8:

Ωn+8(kO) ∼ Ωn(kO)

is the topological version of Bott periodicity — see “Week 105” for more. So, we get the
topological version of Bott periodicity from the algebraic version by turning symmetric
monoidal categories into infinite loop spaces!

But, the interesting puzzle here is: what process can we do to SuperRep(Cn) to get
SuperRep(Cn+1), which is the algebraic version of looping? And I think the answer is:
“taking super representations of C1 in it”. You see,

C1 ⊗ Cn = Cn+1

where I’m using the super tensor product of superalgebras, and this means that the
category of representations of C1 in SuperRep(Cn) is SuperRep(Cn+1).

And, if I were trying to really explain this instead of merely scribbling notes about it,
I would try to explain why this is because C1 is the complex numbers, and the unit circle
in the complex numbers is related to loops.

But, sigh, that will have to wait.
One more thing before I quit for today. . .
I just saw a cool paper by Dror Bar-Natan, Thang Le and Dylan Thurston about the

“Duflo isomorphism”. This is a cousin of the Poincare-Birkhoff-Witt theorem, which in its
best form says that the universal enveloping algebra UL of a Lie algebra L is isomorphic
as a coalgebra to the symmetric algebra SL. You’ll often see worse versions of the PBW
theorem in textbooks, and ugly proofs, but James Dolan showed me the nice version and
proof a while back.

The kernel of the idea is this: if L is the Lie algebra of a group G, UL consists of
left-invariant differential operators on G, and there’s a map UL → SL sending any
differential operator to its “symbol”. This is an isomorphism of vector spaces and even
of coalgebras, but not of algebras.

Anyway, there’s something vaguely similar relating the invariant subalgebras of UL
and SL. By “invariant” here, I mean that since L acts as derivations of UL and SL,
we can look at the subalgebra of either one consisting of guys who are killed by these
derivations; such guys are called “invariant”. Physicists call invariant elements of UL
“Casimirs”, after the first physicist to think about this stuff. They commute with every-
thing else in UL. Invariant elements of SL are like classical Casimirs: there’s a Poisson
bracket on SL, and these are the guys whose Poisson bracket with everyone vanishes.

The Duflo map is an algebra isomorphism from the invariant subalgebra of SL to the
invariant subalgebra of UL. So, it’s like a very nice way to quantize Casimirs, one that
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gets along with multiplication. It’s called the “Duflo map” because it was invented by
Harish-Chandra for semisimple Lie algebras and for Kirillov in general. Kirillov conjec-
tured that it was always an isomorphism; what Duflo did is prove it:

5) Michel Duflo, “Operateurs differentiels bi-invariants sur un groupe de Lie”, Ann.
Sci. Ecole Norm. Sup. 10 (1977), 265–288.

Apparently all known proofs are sort of hard! According to Bar-Natan, Le and
Thurston:

In the book of Dixmier, the proof is given only in the last chapter and it utilizes
most of the results developed in the whole book, including many classification
results (a situation Godement called “scandalous”). As discussed below, there
have been several recent proofs that do not use classification results, but they all
use tools from well outside the natural domain of the problem.

The proof by Bar-Natan, Le and Thurston uses the connection between knot theory
and Lie algebras — namely, the theory of Vassiliev invariants. I think there’s still some-
thing slightly scandalous about this, but it’s awfully interesting. Anyway, take a look:

6) Dror Bar-Natan, Thang T. Q. Le and Dylan P. Thurston, “Two applications of ele-
mentary knot theory to Lie algebras and Vassiliev invariants”, Geometry and Topol-
ogy 7 (2003), 1–31. Available at http://www.maths.warwick.ac.uk/gt/GTVol7/
paper1.abs.html and also as math.QG/0204311.

For more, try Thurston’s thesis:

7) Dylan P. Thurston, “Wheeling: a diagrammatic analogue of the Duflo isomor-
phism”, math.QG/0006083.

and, just for fun, Deligne’s handwritten letter to Bar-Natan:

8) Pierre Deligne, letter to Dror Bar-Natan about the Duflo map, available at http:/
/www.math.toronto.edu/~drorbn/Deligne/

Addendum: Todd Trimble has kindly allowed me to append some rough notes in
which he outlines proofs of some results above.

From: Todd Trimble Subject: notes on super Brauer To: John Baez Cc: James
Dolan Date: Sun, 27 Mar 2005 19:30:00 -0500

John,

These are some notes on some of the super Brauer discussion.

1. Let V be the category of finite-dimensional super vector spaces over R. By
super algebra I mean a monoid in this category. There’s a bicategory whose
objects are super algebras A, whose 1-cells M : A → B are left A- right
B-modules in V , and whose 2-cells are homomorphisms between modules.
This is a symmetric monoidal bicategory under the usual tensor product
on V .
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A and B are super Morita equivalent if they are equivalent objects in this bicat-
egory. Equivalence classes [A] form an abelian monoid whose multiplication is
given by the monoidal product. The super Brauer group of R is the subgroup of
invertible elements of this monoid.

If [B] is inverse to [A] in this monoid, then in particular A⊗ (−) can be consid-
ered left biadjoint to B ⊗ (−). On the other hand, in the bicategory above we
always have a biadjunction

A⊗ C → D

C → A∗ ⊗D
(essentially because left A-modules are the same as right A∗-modules, where A∗

denotes the super algebra opposite to A). Since right biadjoints are unique up
to equivalence, we see that if an inverse to [A] exists, it must be [A∗].

This can be sharpened: an inverse to [A] exists iff the unit and counit

1→ A∗ ⊗A A⊗A∗ → 1

are equivalences in the bicategory. Actually, one is an equivalence iff the other
is, because both of these canonical 1-cells are given by the same A-bimodule,
namely the one given by A acting on both sides of the underlying superspace of
A (call it S) by multiplication.
Either is an equivalence if the bimodule structure map

A∗ ⊗A→ Hom(S, S),

which is a map of super algebras, is an isomorphism.

2. As an example, let A = C1 be the Clifford algebra generated by the 1-
dimensional space R with the usual quadratic form Q(x) = |x|2, and
Z/2-graded in the usual way. Thus, the homogeneous parts of A are 1-
dimensional and there is an odd generator i satisfying i2 = −1. The
opposite A∗ is similar except that there is an odd generator e satisfying
e2 = 1. Under the map

A∗ ⊗A→ Hom(S, S),

where we write S as a sum of even and odd parts R + Ri, this map has a
matrix representation

e⊗ i 7→
(
−1 0
0 1

)
1⊗ i 7→

(
0 −1
1 0

)
e⊗ 1 7→

(
0 1
1 0

)
which makes it clear that this map is surjective and thus an isomorphism.
Hence [C1] is invertible.
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One manifestation of Bott periodicity is that [C1] has order 8. We will soon
see a very easy proof of this fact. A theorem of C.T.C. Wall is that [C1] in fact
generates the super Brauer group; I believe this can be shown by classifying
super division algebras, as discussed below.

3. That [C1] has order 8 is an easy calculation. Let Cr denote the r-fold
tensor of C1. C2 for instance has two super-commuting odd elements i, j
satisfying i2 = j2 = −1; it follows that k := ij satisfies
k2 = −1, and we get the usual quaternions, graded so that the even part
is the span ⟨1, k⟩ and the odd part is ⟨i, j⟩.

C3 has three super-commuting odd elements i, j, l, all of which are square roots
of −1. It follows that e = ijl is an odd central involution (here “central” is
taken in the ungraded sense), and also that i′ = jl, j′ = li, k′ = ij satisfy the
Hamiltonian equations

(i′)2 = (j′)2 = (k′)2 = i′j′k′ = −1,

so we have C3 = H[e]/(e2− 1). Note this is the same as

H⊗ (C1)
∗

where the H here is the quaternions viewed as a super algebra concentrated in
degree 0 (i.e. is purely bosonic).

Then we see immediately that C4 = C3 ⊗ C1 is equivalent to purely bosonic H
(since the C1 cancels (C1)

∗ in the super Brauer group).

At this point we are done: we know that conjugation on (purely bosonic) H
gives an isomorphism

H∗ → H

hence [H]− 1 = [H∗] = [H], i.e. [H] = [C4] has order 2!
Hence [C1] has order 8.

4. All this generalizes to Clifford algebras: if a real quadratic vector space
(V,Q) has signature (r, s), then the super algebra Cliff(V,Q) is isomorphic
to Ar ⊗ (A∗)s, where Ar denotes r-fold tensor product of A = C1. By the
above calculation we see that Cliff(V,Q) is equivalent to Cr−s where r− s
is taken modulo 8.

For the record, then, here are the hours of the super Clifford clock, where e
denotes an odd element, and ∼ denotes equivalence:

• C0 ∼ R
• C1 ∼ R⊕ R[e], e2 = −1
• C2 ∼ C⊕ C[e], e2 = −1, ei = −ie
• C3 ∼ H⊕H[e], e2 = 1, ei = ie, ej = je, ek = ke

• C4 ∼ H
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• C5 ∼ H⊕H[e], e2 = −1, ei = ie, ej = je, ek = ke

• C6 ∼ C⊕ C[e], e2 = 1, ei = −ie
• C7 ∼ R⊕ R[e], e2 = 1

All the super algebras on the right are in fact super division algebras, i.e. super
algebras in which every nonzero homogeneous element is invertible.

To prove Wall’s result that [C1] generates the super Brauer group, we need a
lemma: any element in the super Brauer group is the class of a super division
algebra.

[To be continued. I had wanted to show that every element in the super Brauer
group must be of the form [A] where A is a super division algebra, and then
classify super (associative) division algebras, showing on a case by case basis
that those not in the super Clifford clock above are seen not to belong to the
super Brauer group.]

Todd

Todd finished off the job later. . . though by this point we had formulated the grander
goal of classifying not-necessarily-associative super division algebras!

From: Todd Trimble Subject: super division algebras To: John Baez Date: Wed,
27 Apr 2005 22:17:12 EDT

John,

This is a warm-up to classifying super division algebras over R, where I’ll con-
sider just the associative case.
Nothing I say will be deep, but I found it somewhat fun and diverting, and there
may be echoes of things to come.

I’ll take as known that the only associative division algebras over R are R, C, H
– the even part A of an associative super division algebra must be one of these
cases. We can express the associativity of a super algebra (with even part A) by
saying that the odd part M is an A-bimodule equipped with a A-bimodule map
pairing

⟨−,−⟩ : M ⊗A M → A

such that:
a⟨b, c⟩ = ⟨a, b⟩c for all a, b, c in M . (⋆⋆)

If the super algebra is a super division algebra which is not wholly concentrated
in even degree, then multiplication by a nonzero odd element induces an iso-
morphism

A→M

and so M is 1-dimensional over A; choose a basis element e for M .

The key observation is that for any a in A, there exists a unique a′ in A such
that

ae = ea′
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and that the A-bimodule structure forces (ab)′ = a′b′. Hence we have an auto-
morphism (fixing the real field)

(−−)′ : A→ A

and we can easily enumerate (up to isomorphism) the possibilities for associative
super division algebras over R:

1. A = R. Here we can adjust e so that either e2 := ⟨e, e⟩ is −1 or 1. The
corresponding super division algebras occur at 1 o’clock and 7 o’clock on
the super Brauer clock.

2. A = C. There are two R-automorphisms C → C. In the case where the
automorphism is conjugation, condition (⋆⋆) for super associativity gives
⟨e, e⟩e = e⟨e, e⟩ so that ⟨e, e⟩ must be real. Again e can be adjusted so that
⟨e, e⟩ is −1 or 1. These possibilities occur at 2 o’clock and 6 o’clock on the
super Brauer clock.

For the identity automorphism, we can adjust e so that ⟨e, e⟩ is 1. This gives the
super algebra C[e]/(e2 − 1) (where e commutes with elements in C). This does
not occur on the super Brauer clock over R. However, it does generate the super
Brauer group over C (which is of order two).

3. A = H. Here R-automorphisms H → H are given by h 7→ xhx−1 for x in
H. In other words

he = exhx−1

whence ex commutes with all elements of H (i.e. we can assume wlog that
the automorphism is the identity). The properties of the pairing guarantee
that h⟨e, e⟩ = ⟨e, e⟩h for all h in H, so ⟨e, e⟩ is real and again we can
adjust e so that ⟨e, e⟩ is 1 or −1. These cases occur at 3 o’clock and 5
o’clock on the super Brauer clock.

This appears to be a complete (even if a bit pedestrian) analysis.

Best,

Todd
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Week 213

April 3, 2005

Here’s a book I’ve been reading lately:

1) Kenneth S. Brown, Cohomology of Groups, Graduate Texts in Mathematics 182,
Springer, 1982.

I should have read this book a long time ago — but I probably wouldn’t have enjoyed
it as much as I do now. All sorts of things I struggled to learn for years are neatly laid
out here. Best of all, he comes right out and admits from the start that the cohomology
of groups is really a branch of topology, instead of hiding this fact like some people do.

This is something every mathematician should know: you can take any group and
turn it into a space, thus “reducing” group theory to topology. In particular, if you have
any trick for telling spaces apart, like “cohomology theory”, you can apply it to groups
as well.

Of course topology is harder than group theory in many ways — hence my quotes
around “reducing”. Indeed, algebraic topology was invented as a trick for reducing
topology to group theory! But, the bridge turns out to go both ways, and there’s a lot of
profitable traffic in both directions.

Ultimately, as James Dolan likes to point out, it’s all about the unity of mathemat-
ics. Topology is about our concept of space, while group theory is about our concept of
symmetry. . . but the amazing fact is that they turn out to be two aspects of the same
big thing! Mathematics is a source of endless surprises, but this is one of the biggest
jaw-droppers of all.

The idea goes back at least to Evariste Galois, who noticed that you can classify the
ways a little thing can sit in a bigger thing by keeping track of what we now call its
“Galois group”: the group of all symmetries of the big thing that map the little thing to
itself. For example, you can pick out a point or line in the plane by keeping track of
which symmetries of the plane map this point or line to itself.

However, the idea of using groups to classify how a little thing sits in a big one was
really made explicit in Felix Klein’s “Erlangen program”, a plan for reducing geometry to
group theory.

You may know Klein for his famous one-sided bottle:

A mathematician named Klein
Thought the Möbius strip was divine.
Said he: “If you glue
The edges of two
You’ll get a weird bottle like mine!”

Or maybe you know that the symmetry group of a rectangle, including reflections, is
called the “Klein 4-group”:
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· 1 a b c

1 1 a b c
a a 1 c b
b b c 1 a
c c b a 1

He is also known for some other groups called “Kleinian groups”, which act as sym-
metries of fractal patterns like this:

2) Jos Leys, “Kleinian Pages”, http://www.josleys.com/creatures42.htm

If you like cool pictures, check out this website! I’ve linked you to the page that most
closely connects to Kleinian groups, but there are lots of other more fanciful pictures.
And if you get interested in the math lurking behind these fractals, you’ve got to try this
book:

3) David Mumford, Caroline Series, and David Wright, Indra’s Pearls: The Vision of
Felix Klein, Cambridge U. Press, Cambridge, 2002.

Mumford is a world-class mathematician, so this book is completely different from
the superficial descriptions of fractals one often sees in math popularizations — but it’s
still readable, and it’s packed with beautiful pictures. You can learn a lot about Kleinian
groups from this!

The Kleinian groups arose from Klein’s studies of complex functions, which he con-
sidered his best work. But, he was also a mathematical physicist. Among other things,
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he wrote a four-volume book on tops with one of the fathers of quantum mechanics,
Arnold Sommerfeld:

4) Felix Klein and Arnold Sommerfeld, Über die Theorie des Kreisels, 4 vols, 1897–
1910. Reprinted by Johnson, New York, 1965. Also available at http://www.hti.
umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV7354.0001.001

This came after a book he wrote on his own:

5) Felix Klein, The Mathematical Theory of the Top, Scribner’s, New York, 1887.

This may seem like a lot of books about a kid’s toy! But, tops are profoundly re-
lated to the rotation group, and the “exactly solvable” tops discovered by Euler, La-
grange/Poisson, and Sofia Kowalevskaya are solvable because of their symmetries —
deeply hidden symmetries, in the case of the Kowalevskaya top. So, one can imagine
why Klein liked this subject.

Klein also wrote a book on the icosahedron and the quintic equation:

6) Felix Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth
Degree, 1888. Reprinted by Dover, New York, 2003. Also available at http://

historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=03070001&seq=7

Galois had already noticed that the number field you get by taking the rationals and
throwing in the roots of a typical quintic:

ax5 + bx4 + cx3 + dx2 + ex+ f = 0

has as its symmetry group all the permutations of the 5 roots. Indeed, he saw that the
“unsolvability” of this group, in a technical sense, is what makes it impossible to solve
the quintic by radicals. It must have been common knowledge that the symmetry group
of the icosahedron is the group of all even permutations of 5 things. But, Klein took this
much further! Alas, I’ve never really understood what he did. Perhaps if I read these and
think hard, I’ll understand:

7) Jerry Shurman, Geometry of the Quintic, John Wiley and Sons, New York, 1997.

Peter Doyle and Curt McMullen, “Solving the quintic by iteration”, Acta Math.
163 (1989), 151–180. Available at http://math.dartmouth.edu/~doyle/docs/
icos/icos/icos.html

Anyway, it should be clear by now that Klein was a lover of symmetry. He was also a
bit of a visionary, and his obituary by Grace Chisholm Young shows that this got him in
some trouble:

One of Weierstrass’ pupils, still alive, told me that at Berlin Klein was anathema:
it was said that his work was not mathematics at all, but mere talk. This
criticism shows a want of appreciation of his rare type of mind. It teemed with
ideas and brilliant reflections, but it is true that his work lacks the stern aspects
required by mathematical exactitude. It was in personal contact that this was
corrected, at least in so far as his students were concerned. His favourite maxim
was, “Never be dull”.
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In a talk he wrote in 1872 when he was made professor at Erlangen University —
a talk he didn’t actually give! — Klein outlined what is now called his “Erlangen pro-
gram”. The idea here is that different kinds of geometry correspond to different symme-
try groups. Taken to the extreme, this philosophy says that a geometry is just a group!
In a given geometry, a “figure” of any kind — like a point or line — can be detected by
the subgroup of symmetries that map that figure to itself. So, a figure is just a subgroup!

This program eventually led to a grand theory of groups and geometry based on “flag
manifolds”, which I tried to sketch in “Week 178”, “Week 180”, and “Week 181”.

It’s important to realize how similar the Erlangen program is to Galois theory. Galois
had also used group theory to classify how a little thing can sit in a bigger thing, but in
situations where the “things” in question are commutative algebras — for example, the
rational numbers with some roots of polynomials thrown in.

Now, commutative algebra is like topology, only backwards. Any space has a commu-
tative algebra consisting of functions on it, and if we’re very clever we can think of any
commutative algebra as functions on some space — though this was only achieved long
after Galois, by Alexander Grothendieck.

What do I mean by “backwards”? Well, suppose you have a “covering space” — a big
space sitting over a little one, like a spiral sitting over the circle. In this situation, any
function on the little space downstairs defines a function on the big one upstairs. So,
the algebra of functions on the little space sits inside the algebra of functions on the big
space.

Notice how it’s backwards. Classifying how a little commutative algebra can sit in a
big one amounts to classifying how a big space can cover a little one! For more details
on this analogy, try “Week 198”, “Week 201” and especially “Week 205”.

I should warn you: the Galois group has a different name when we apply it to the
classification of covering spaces — we call it the group of “deck transformations”. The
idea is pretty simple. Suppose Y is a covering space of X, like this:

p

X

Y

We’ve got a function p : Y → X, and sitting over each point of X are the same number of
points of Y , living on different “sheets” that look locally just like X. You should imagine
the sheets being able to twist around from place to place, like the edges of a Moebius
strip.

Anyway, a “deck transformation” is just a way of mapping Y to itself that permutes
the different points sitting over each point of X.

The theory of this was worked out by Riemann, Poincare, and others. Poincare
showed you could use this idea to turn any connected space X into a group — its “fun-
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damental group”. There are different ways to define this, but one is to form the most
complicated possible covering space of X that’s still connected — its “universal cover”.
Then, take the group of deck transformations of this! Following Galois’ philosophy, all
the other connected covering spaces of X correspond to subgroups of this group.

The theory of the fundamental group was just the beginning when it came to groups
and topology. One of many later big steps, back in the late 1940s, was due to Sammy
Eilenberg and Saunders Mac Lane. They saw how to reverse the “fundamental group”
idea and turn any group back into a space!

More precisely: for any group G, there’s a space whose fundamental group is G
and whose higher homotopy groups vanish. It’s sometimes called the “Eilenberg–Mac
Lane space” and denoted K(G, 1), but sometimes it’s called the “classifying space” and
denoted BG. It’s pretty easy to build; I described how back in “Week 70”.

You start with a point:
•

Then you stick on an edge looping from this point to itself for each element a in G.
Unrolled, it looks like this:

• a

where a is an element of our group. Then, whenever we have ab = c in our group, we
stick on a triangle like this:

• c •

b

•

a

Then, whenever we have abc = d in our group, we stick on a tetrahedron like this:

• d •

bc

•

a

ab

•

b

c

And so on, forever! For each list of n group elements, we get an n-dimensional simplex
in our Eilenberg-Mac Lane space. The resulting space knows everything about the group
we started with. In particular, the fundamental group of this space will be the group we
started with!

Using this idea, we can do some fiendish things. For example, for each n we can
form a set Cn(G,A) consisting of all functions that eat n-dimensional simplices in the
Eilenberg-Mac Lane space of G and spit out elements of some abelian group A. There
are maps

d : Cn(G,A)→ Cn+1(G,A)

reflecting the fact that each (n+1)-simplex has a bunch of n-simplices as its faces. Since
the boundary of a boundary is zero,

d2 = 0
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Guys who live in the kernel of

d : Cn(G,A)→ Cn+1(G,A)

are called “n-cocycles”, and guys who live in the image of

d : Cn−1(G,A)→ Cn(G,A)

are called “n-coboundaries”. Since d2 = 0, every coboundary is a cocycle, but not always
vice versa. So, we can form the group of cocycles mod coboundaries. This is called the
“nth cohomology group” of G with coefficients in A, and it’s denoted

Hn(G,A)

This sounds unmotivated at first, but the nth cohomology group of a space is really just
a clever way of keeping track of n-dimensional holes in that space. So, what we’re doing
here is cleverly defining a way to study “holes” in a group! There are deeper, more
conceptual ways of understanding group cohomology, but this is not bad for starters.

For example, let’s take the simplest group that’s not utterly dull — the integers
mod 2, or Z/2. Here we get

K(Z/2, 1) = RP∞

where RP∞ is the space formed by taking an infinite-dimensional sphere and identifying
opposite points. This space has holes of arbitrarily high dimension, so the cohomology
groups of Z/2 go on being nontrivial for arbitrarily high n. I sketched a “picture proof”
here:

8) John Baez, Fall 2004 Quantum Gravity Seminar, week 10, notes by Derek Wise,
http://math.ucr.edu/home/baez/qg-fall2004/

and I showed that, for example

Hn(Z/2,Z) =


Z if n = 0;
0 if n is odd;
Z/2 if n is even and non-zero.

I also explained how this stuff is related to topological quantum field theory.
Anyway, all this is just the very superficial beginnings of the subject of group coho-

mology. Read Brown’s book to dig deeper!
Personally, what I find most exciting about this book now are the remarks on the

“Euler characteristic” of a group. Let me explain this. . . though now I’ll have to pull out
the stops and assume you know some group cohomology.

We can try to define the “Euler characteristic” of a group G to be the Euler character-
istic of K(G, 1). This is the alternating sum of the dimensions of the rational cohomology
groups

Hn(G,Q)

Of course, this alternating sum only converges if the cohomology groups vanish for big
enough n. Also, they all need to be finite-dimensional.
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Unfortunately, not many groups have well-defined Euler characteristic with this naive
definition!

For example, people have studied groups G whose nth cohomology vanishes for n >
d, regardless of the coefficients. If we take the smallest d for which this holds, such a
group G is said to have “cohomological dimension” d. Eilenberg and Ganea showed that
for d ⩾ 3, a group has cohomological dimension d whenever we can build K(G, 1) as a
simplicial complex (or CW complex) with no cells of dimension more than d.

This is a nice geometrical interpretation of the cohomological dimension. But, one
can show that groups with torsion never have finite cohomological dimension! We’ve
seen an example already: Z/2, whose Eilenberg-Mac Lane space is infinite-dimensional.

However, it turns out that there’s a generalization of the Euler characteristic that
makes sense for any group G that has a torsion-free subgroup H whose Euler character-
istic is well-defined in the naive way, as long as H has finite index in G. We just define
the Euler characteristic of G to be the Euler characteristic of H divided by the index of
H in G. The answer doesn’t depend on the choice of H!

Take my favorite example, SL(2,Z). This has torsion, so its cohomological dimension
is infinite and its naive Euler characteristic is undefined! Indeed, I wrote a whole issue of
This Week’s Finds about some elements of orders 4 and 6 sitting inside SL(2,Z), related
to the symmetries of square and hexagonal lattices — see “Week 125”.

But, SL(2,Z) has a torsion-free subgroup of index 12, namely its commutator sub-
group — the group you need to quotient by to make SL(2,Z) be abelian. This subgroup
has finite cohomological dimension and its Euler characteristic is −1. I’m not sure why
this is true, but Brown says so! This means the Euler characteristic of SL(2,Z) works out
to be −1/12.

If you’ve read my stuff about Euler characteristics in “Week 147”, you’ll see why this
gets me so excited — I can add this stuff to my list of weird ways of calculating the Euler
characteristic. Plus, it’s related to the magical role of the number “24” in string theory,
and also the Riemann zeta function!

Indeed, the Riemann zeta function gives a way to make rigorous Euler’s zany obser-
vation that

1 + 2 + 3 + . . . = − 1

12
,

as I explained here:

9) John Baez, “Euler’s Proof that 1 + 2+ 3+ . . . = −1/12, Bernoulli Numbers and the
Riemann Zeta Function”, Winter 2004 Quantum Gravity Seminar, homework for
weeks 5,6,7, available at http://math.ucr.edu/home/baez/qg-winter2004/

This suggests that there should be a version of the Eilenberg-Mac Lane space for
SL(2,Z) which has 1 cell of dimension 0, 2 cells of dimension 2, 3 cells of dimension 4,
and so on. Does anyone know if this is true?

More generally, G. Harder computed the (generalized) Euler characteristic for a large
class of arithmetic groups:

10) G. Harder, “A Gauss-Bonnet formula for discrete arithmetically defined groups”,
Ann. Sci. Ecole Norm. Sup. 4 (1971), 409–455.
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For example, he looked at the symplectic group defined over the integers, Sp(n,Z),
and showed that its Euler characteristic is this product of values of the Riemann zeta
function:

ζ(−1)ζ(−3) · · · ζ(1− 2n)

In the case n = 1 we get back SL(2,Z) and ζ(−1) = −1/12.
In fact, every Chevalley group over the integers has a well-defined Euler characteris-

tic, and Harder was able to compute it in terms of Bernoulli numbers. A Chevalley group
is sort of like a simple Lie group, but defined algebraically. Sp(n,Z) is one example.
SL(n,Z) is another, but it’s Euler characteristic turns out to vanish for n > 2, so it’s not
too interesting.

Harder worked them all out. For example, he showed the Euler characteristic of the
integral form of the exceptional group E7 is some wacky number like

− 691× 43867

221 × 39 × 52 × 73 × 11× 13× 19

Serre went even further, computing Euler characteristics of Chevalley groups defined
over algebraic number fields. He also noticed that when you write the Euler character-
istic of a group as a fraction, the primes in the denominator are precisely the primes p
for which the group has p-torsion. He was thus able to conclude, for example, that E7

defined over the integers has p-torsion for p = 2, 3, 5, 7, 11, 13, 19.
For more, see:

11) Jean-Pierre Serre, “Cohomologie des groups discretes”, Ann. Math. Studies 70
(1971), 77–169.

This only takes us up to 1971. I shudder to think what bizarre results along these lines
are known by now! Probably they’d seem not bizarre but beautiful if I understood this
stuff better: I don’t really have a clue how the Riemann zeta function gets into this game,
so everything after that seems like black magic to me — bewitching but bewildering.

But, it’s clear that the study of groups and symmetry has not lost its ability to turn up
surprises.

Addenda: I had often wondered how Klein’s name got attached to the pathetic little
“4-group” mentioned above, which is just Z/2× Z/2. John McKay proffered an explana-
tion:

There is a group called the Klein group. It is denoted V4 = The Vierer-Gruppe
(The fours group).

Klein worked with the simple group of order 168 and found the “Klein quadric”
which has it for symmetry group.

The suggestion is that friends decided to call the non-cyclic abelian group of
order 4 the “Klein group” = the “little group” as a joke.

I have a question you may like to posit to your readers:

Is V4 the abstract group or a permutation group?
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There are other points . . . I presume you know that your −1/12 is ζ(−1).
There is a paper by Lepowsky on the occurrence of such ζ(−n) involving vertex
algebras.

I dearly wish I understood cohomology!

I am busy tethering moonshine!

Best, John

This group of order 168 has made an appearance here before, in “Week 194”: it’s
PSL(3,Z/2) — the group of symmetries of the projective plane over Z/2, or “Fano plane”,
whose points can also be thought of as imaginary unit octonions. It’s also PSL(2,Z/7).
I’ve long been mystified by its relation to Klein’s quartic, mainly because I’ve never spent
time trying to understand it! — it’s just one of those things that’s been gnawing at the
edges of my consciousness, especially ever since I saw this book come out:

12) Silvio Levy, The Eightfold Way: the Beauty of Klein’s Quartic Curve, MSRI Research
Publications 35, Cambridge U. Press, Cambridge 1999. Available at http://www.
msri.org/publications/books/Book35/

It has a translation of Klein’s original paper on this subject. Someday I’ll break down
and study this.

Anyway. . . .
James Dolan mentioned some other folklore saying that the “Kleinian groups” were

also named after Klein as a joke:

by the way, i enjoyed the latest twf a lot (although i don’t know why we seem
to never get a chance to talk about all this stuff ourselves that much), but i
noticed that you (apparently non-ironically) mentioned kleinian groups as a fa-
mous thing named after klein, without telling the story that i always hear about
how poincare gave kleinian groups the name “kleinian groups” after klein com-
plained to poincare about poincare’s use of the terminology “fuchsian groups”
for something that fuchs apparently didn’t event.

i guess that the versions of the story that i’d heard seemed to suggest that klein
was complaining because he thought that fuchs hadn’t significantly contributed
to the study of fuchsian groups, and that poincare may have been naively trying
to placate klein and/or not-so-naively twitting him by then giving the name
“kleinian groups” to something that klein hadn’t significantly contributed to the
study of.

however i did just look for the story on the web, and the tellings that i found
there i guess don’t really suggest that klein didn’t “significantly contribute to the
study of” kleinian groups (or at least not by my standards). it’s still not clear
though what sort of reaction poincare may have been trying to provoke in klein,
and whether he succeeded in provoking it. it’s claimed that poincare did come up
with the name “kleinian function” later in the same day after klein complained
about the name “fuchsian function”, and also that klein was subsequently just
as vociferous in complaining to poincare about the name “kleinian function”
as he was in complaining about the name “fuchsian function”. but apparently
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klein’s complaints were based on very exacting concerns about absolute priority,
so that the names “fuchsian function” and “kleinian function” can be seen as in-
appropriate only by the standards of someone with similarly ridiculous concerns
about absolute priority, rather than by a reasonable person such as myself.

i’d also heard that klein’s nervous breakdown was provoked by the stress of
trying to keep up with a genius like poincare, but maybe it was actually pro-
voked by poincare’s apparently casual attitude towards priority disputes and/or
concept-naming.

i’d thought of asking you about this issue of whether klein really did have much
to do with kleinian groups right after i read the advance copy of twf that you
sent me, but i guess that i didn’t notice that it was an advance copy. i guess that
it doesn’t matter though, since apparently there is a case to be made that klein
had lots to do with developing the theory of kleinian groups; just not by his own
apparently ridiculous standards.

Noam Elkies suggested that the commutator subgroup of SL(2,Z) has Euler charac-
teristic −1 because it’s a a free group on 2 generators, so its classifying space is a figure
8, with Euler characteristic 1− 2 = −1 since it has one vertex and two edges.

This sounds right. In particular, I already mentioned how Brown claims the com-
mutator subgroup of SL(2,Z) is torsion-free. Further, Kevin Buzzard shows below that
any torsion-free subgroup of SL(2,Z) is a free group. So, we just need to check that the
commutator subgroup of SL(2,Z) can be generated by two elements but not by just one.

Laurent Bartholdi just made this job easier; he sent me an email saying these are free
generators for the commutator subgroup of SL(2,Z):(

2 −1
−1 1

)
and

(
1 −1
−1 2

)
In fact, Kevin Buzzard’s email was packed with wisdom. He wrote:

I know one elementary argument which you don’t appear to, so I thought I’d fill
you in. The argument below is waffly but rather easy really.

John Baez wrote:

But, SL(2,Z) has a torsion-free subgroup of index 12, namely its
commutator subgroup — the group you need to quotient by to make
SL(2,Z) be abelian. This subgroup has finite cohomological dimen-
sion and its Euler characteristic is −1. I’m not sure why this is true,
but Brown says so! This means the Euler characteristic of SL(2,Z)
works out to be −1/12.

One doesn’t have to use such a “strange” subgroup as the commutator subgroup
of SL(2,Z). People who do modular forms, like me, far prefer “congruence
subgroups”, as these are the ones that show up when you study automorphic
forms for SL(2,Z). So here’s an easy way to compute the Euler characteristic of
SL(2,Z): take your favourite congruence subgroup which has no torsion, work
out its Euler characteristic (this is easy, I’ll show you how to do it in a second)
and then deduce what the Euler characteristic of SL(2,Z) is.
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Here are some examples of congruence subgroups: for any integer N ⩾ 1, con-
sider the subgroup Γ1(N) of SL(2,Z), defined as the matrices(

a b
c d

)
in SL(2,Z) such that c = 0 mod N and a = d = 1 mod N . It’s just the pre-
image in SL(2,Z) of the upper triangular unipotent matrices in SL(2,Z/NZ)
so it’s a subgroup of SL(2,Z). Here’s a neat fact that makes life easy:

Lemma: if N ⩾ 5 then Γ1(N) has no torsion.

Proof: say g in SL(2,Z) has finite order d ⩾ 1. Then its min poly divides Xd−1
so over the complexes it has distinct linear factors so it’s diagonalisable with
roots of unity z and w on the diagonal. Now |z| = |w| = 1 so | trace(g)| ⩽ 2.
But it’s an integer, so it’s −2,−1, 0, 1, 2. And for N ⩾ 5 the only one of these
congruent to 2 mod N is 2. So z = w = 1 and so g is the identity.

Deeper, but also completely standard (and not logically necessary for what
follows)—any torsion-free subgroup of SL(2,Z) is free! This is because SL(2,Z)
acts very naturally on a certain tree in the upper half plane. This is a neat piece
of mathematics. SL(2,Z) acts on the upper half plane {z = x+ iy : y > 0} via
the rule: (

a b
c d

)
sends z to (az + b)/(cz + d). Now draw dots at the points i =

√
−1 and

ρ = exp(2πi/6), the primitive 6th root of unity in the upper half plane, and
draw the obvious arc between them (the one that lies on the circle |z| = 1), this
is our first edge, and now look at the image of what you have under the SL(2,Z)
action. It’s a rather pretty tree, with two kinds of vertices—those in the i orbit
have valency 2 and stabiliser of order 4, and those in the ρ orbit have valency
3 and stabiliser of order 6. Now a group is free iff it acts freely on a tree, and
anything torsion-free in SL(2,Z) must be acting freely on this tree because the
stabiliser of each vertex and edge under the SL(2,Z) action is finite.

So Γ1(5) is, by this general theorem, free. In fact I don’t really need this general
nonsense, one can give a hands-on proof of this fact, which I’ll do now. We’ve
seen that SL(2,Z), and hence Γ1(5), acts on the upper half plane. There is no
torsion in Γ1(5) so the action is very nice, one checks easily that the action is free
in fact by a similar sort of argument to the lemma above, it’s the sort of thing
you can find in the first few pages of any book on modular forms. So we can
quotient out the upper half plane by Γ1(5) and get a quotient Riemann surface.
The point is that this computation is very manageable and can be done “in
practice”. There is a standard argument which shows how to quotient out the
upper half plane by SL(2,Z) — the answer is a Riemann surface isomorphic to
the complex plane (although you have to take care at the points where the action
isn’t free—this is exactly the vertices of the tree above), and the isomorphism can
even be given “explicitly” via the j-function coming from the theory of elliptic
curves—there is a standard fundamental domain even, the one with corners ρ,
ρˆ2 and +i∞. I’m sure you’ll have come across this sort of thing many times
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before. Now SL(2,Z) surjects onto SL(2,Z/5Z) so the index of Γ1(5) in SL(2,Z)
is just the index of (

1 ∗
0 1

)
in SL(2,Z/5Z) and by counting orders this comes out to be 24. Now it’s not
hard to find explicitly 24 translates of the standard fundamental domain and
then glue them together to work out the quotient of the upper half plane by Γ1(5)
— it turns out that it is isomorphic to the Riemann Sphere minus 4 points.

In fact there is no need to do this sort of computation — the modular forms peo-
ple have automated it long ago. The quotient of the upper half plane by Γ1(N)
is a Riemann surface called Y1(N) and I can just ask my computer to compute
the genus of its natural compactification (this exists and is called X1(N)) and
also to compute how many cusps were added to compactify it. So in practice
you just have to find a friendly modular forms person and then say “hey, what’s
the genus of X1(5) and how many cusps does it have?” and then you have a
complete description of Γ1(5) because it’s π1 of the answer.

OK, the upper half plane modulo Γ1(5) is the sphere minus 4 points, so Γ1(5) is
π1 of this, i.e. it’s free on three generators. That makes the Euler characteristic of
Γ1(5) equal to 1−3 = −2. And we already checked that the index was 24, so the
Euler Characteristic of SL(2,Z) works out to be −1/12. Grothendieck wouldn’t
have chosen Γ1(5); he would have chosen something called Γ(2), the subgroup
of SL(2,Z) consisting of the matrices which are the identity mod 2. There
is another classical modular function λ inducing an isomorphism of Y (2), the
quotient of the upper half plane by Γ(2), with the sphere minus three points—
this is what gives the one-line proof of the fact that any analytic function C→ C
that misses two points must be constant, because it then lifts to a function from
C to the upper half plane which is the same as the unit disc, so we’re done by
Liouville. There is a subtlety here though:(

−1 0
0 −1

)
is in Γ(2). So you have to work with PSL(2,Z) = SL(2,Z)/{±1} instead. Let
PΓ(2) denote the image of Γ(2) in PSL(2,Z). Note that −1 is kind of a pain
in the theory of modular forms sometimes because it acts trivially on everything
but isn’t the identity. Grothendieck was very interested in the sphere minus
three points but it’s much older than this that PΓ(2) is its fundamental group,
so PΓ(2) has Euler characteristic 2 − 3 = −1 and index 6 in PSL(2,Z), so
PSL(2,Z) has Euler characteristic −1/6, so SL(2,Z) has Euler characteristic
−1/12 because that’s how they work. :-)

John Baez wrote:

This only takes us up to 1971. I shudder to think what bizarre results
along these lines are known by now! Probably they’d seem not bizarre
but beautiful if I understood this stuff better: I don’t really have a
clue how the Riemann zeta function gets into this game, so everything
after that seems like black magic to me — bewitching but bewildering.
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Nowadays almost any analytic function that is involved in number theory, when
evaluated at certain “natural” points, gives an answer which has a conjectural
interpretation in terms of relations between cohomology theories — this is the
subject of many conjectures (Deligne, Beilinson, Bloch-Kato,. . . ). It is still ab-
solutely black magic! Actually I’m being unfair, the relation between special
values of ζ and Euler characteristics is somehow less profound than this stuff. I
wish I knew more about it! It can actually be used to compute certain values
of L-functions (things more general than the zeta function but along the same
lines). . .

Kevin

I replied:

Hi -

Thanks VERY much for this email. I was actually wondering why Brown used
the commutator subgroup of SL(2,Z) as a kind of “warmup” for computing the
Euler characteristic of SL(2,Z) instead of one of the congruence subgroups. It
seems this subgroup is not any of the beloved congruence subgroups. . . .

In fact, I’ve finally managed to turn up the thing I was looking for. How does
this relate to the stuff you’re saying? It involves Γ(3) rather than the Γ1(N)
groups:

In “Week 97”, I wrote:

Where does the extra 24 come from? I don’t know, but Stephan Stolz
said it has something to do with the fact that while PSL(2,Z) doesn’t
act freely on the upper half-plane — hence these elliptic curves with
extra symmetries — the subgroup “Γ(3)” does. This subgroup consists
of integer matrices (

a b
c d

)
with determinant 1 such that each entry is congruent to the corre-
sponding entry of (

1 0
0 1

)
modulo 3.
So, if we form

H/Γ(3)

we get a nice space without any “points of greater symmetry”. To get
the moduli space of elliptic curves from this, we just need to mod out
by the group

SL(2,Z)/Γ(3) = SL(2,Z/3)

But this group has 24 elements!
In fact, I think this is just another way of explaining the period-24
pattern in the theory of modular forms, but I like it.
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Kevin wrote:

It’s a rather pretty tree,

Yes, there’s a picture of it in Brown’s book, drawn on top of an old picture by
Klein of a triangulation of the hyperbolic plane.

What Brown seems to be doing there is showing that this tree is a deformation
retract of that triangulation (with its simplicial topology, where the points on
the boundary of the hyperbolic plane form a discrete set), and thus proving that
the cohomological dimension of SL(2,Z) is just 1.

Anyway, this is all great stuff. Do you mind if I attach a copy of your email
to the copy of “Week 213” on my website? I think people will find it helpful,
especially because of its friendly straight-to-the-point style, which books rarely
seem to manage. . . .

Best,

jb

Kevin replied:

John Baez wrote:

I was actually wondering why Brown used the commutator subgroup
of SL(2,Z) as a kind of “warmup” for computing the Euler character-
istic of SL(2,Z) instead of one of the congruence subgroups. It seems
this subgroup is not any of the beloved congruence subgroups. . . .

You’re right, I don’t think it is. For N ⩾ 1 define Γ(N) to be the kernel of the ob-
vious map SL(2,Z)→ SL(2,Z/NZ); a congruence subgroup is any subgroup of
SL(2,Z) that contains one of these Γ(N)’s. Clearly such things have finite index
in SL(2,Z). But unfortunately there exist subgroups of finite index in SL(2,Z)
that are not congruence subgroups. This is a “low-dimensional” phenomenon—
the moment you have a bit more freedom, e.g. you’re working with SL(3,Z) or
indeed SL(n,Z) for any n ⩾ 3, or even SL(2,Z[1/p]) for some prime p, then
any subgroup of finite index is a congruence subgroup—these groups satisfy the
“congruence subgroup property”. But I’ve never understood the commutator of
SL(2,Z) precisely for the reason that it’s not a congruence subgroup (this is es-
sentially because the commutator subgroup of SL(2,Z/NZ) never has index 12
in SL(2,Z/NZ)! The index is always smaller than 12 because SL(2,Z/pZ) is
essentially a simple group.)

John Baez wrote:

In fact, I’ve finally managed to turn up the thing I was looking for.
How does this relate to the stuff you’re saying? It involves Γ(3) rather
than the Γ1(N) groups.
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Anything will do. If you know about Γ(3) then great. The same key observation
is true — Γ(3) contains no elements of finite order, because any finite order
element (

a b
c d

)
of Γ(3) which isn’t the identity must have trace in {−2,−1, 0, 1} congruent to
2 mod 3, so the trace must be −1, so d = −1 − a, so the det is a(−1 − a)
mod 9, which is never 1 mod 9. Now the index of Γ(3) in SL(2,Z) is 24, and
the modular curve X(3) has genus 0 (everyone knows this because Wiles needed
it to prove Fermat’s Last Theorem!) and four cusps (0, 1, 1/2 and∞) and hence
the Euler Characteristic of Γ(3) is 2− 4 = −2, so we recover the result that the
Euler Characteristic of SL(2,Z) is −1/12 again.

John Baez wrote:

Where does the extra 24 come from? I don’t know, but Stephan Stolz
said it has something to do with the fact that while PSL(2,Z) doesn’t
act freely on the upper half-plane — hence these elliptic curves with
extra symmetries — the subgroup “Γ(3)” does.

One can see that any subgroup of SL(2,Z) which has finite index and is free,
must have index a multiple of 12 (and hence at least 12). Because if it has
index d and is free on g generators, when we know (1 − g)/d = −1/12, so
12 divides the denominator of (1 − g)/d in lowest terms. Geometrically what
is going on is that perhaps the “correct” quotient of the upper half plane by
SL(2,Z) is not just the complex numbers, it’s something that looks a bit like the
complex numbers except there is a little bit of extra magic going on at i and ρ,
corresponding to the fact that one shouldn’t really have attempted to quotient
out there, one should just remember that really the quotient is kind of “crumpled
up” near there. So for example the fundamental group of the quotient shouldn’t
be the trivial group — if you take a small loop around i then this should not be
regarded as contractible — you have to go around i twice before you can hope
to contract the loop. Similarly you have to go around ρ three times. Even worse
— if you do this carefully enough then even going around i twice or ρ three
times isn’t enough to contract the loop — because the resulting loop somehow
corresponds to the element −1 in SL(2,Z), which acts trivially but which isn’t
the identity! So you have to do everything again before you get to the element 1.
Mumford thought hard about how to make all this sort of thing rigorous, and
managed in the late 60s to prove that the Picard group of the quotient of the
upper half plane by SL(2,Z) was in fact Z/12Z.

John Baez wrote:

Anyway, this is all great stuff. Do you mind if I attach a copy of your
email to the copy of “Week 213” on my website?

Go ahead!

Kevin
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Regarding the fundamental investigations of mathematics, there is no final
ending . . . no first beginning.

— Felix Klein

In point of fact, it has traditionally been the “continuous” aspect of things
which has been the central focus of Geometry, while those properties asso-
ciated with “discreteness”, notably computational and combinatorial proper-
ties, have been passed over in silence or treated as an afterthought. It was
therefore all the more astonishing to me when I made the discovery, about a
dozen years ago, of the combinatorial theory of the icosahedron, even though
this theory is barely scratched (and probably not even understood) in the
classic treatise of Felix Klein on the icosahedron. I see in this another signifi-
cant indicator of this indifference (of over 2000 years) of geometers vis-a-vis
those discrete structures which present themselves naturally in Geometry:
observe that the concept of the group (notably of symmetries) appeared only
in the last century (introduced by Evariste Galois), in a context that was con-
sidered to have nothing to do with Geometry. Even in our own time it is
true that there are lots of algebraists who still haven’t understood that Galois
theory is primarily, in essence, a geometrical vision, which was able to renew
our understanding of so-called “arithmetical” phenomena.

— Alexander Grothendieck
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Week 214

April 20, 2005

What common English slang phrase alludes to the number 168?
I won’t tell you — not right away. But, I’ll tell you a bunch of other cool stuff about

this number, and eventually the answer should jump out at you.
Okay:
Start with a bunch of equilateral triangles. Glue them together so that 3 meet at each

corner. You get a regular tetrahedron.
Next, take a bunch of squares. Glue them together so that 3 meet at each corner. You

get a cube.
Next, take a bunch of regular pentagons. Glue them together so that three meet at

each corner. You get a regular dodecahedron.
This is fun! We’re getting a series of Platonic solids.
Next, take a bunch of regular hexagons and glue them together so that three meet

at each corner. Now the angles of the hexagons add up to 360 degrees, so we don’t get
a Platonic solid. Instead, we get a tiling of the plane. It looks like a honeycomb that
stretches out forever in all directions.

But, if you want something finite in size, you can cut out a portion of this honeycomb
and curl it up to get a doughnut, or torus. There are actually lots of ways to do this. You
might have fun figuring out what they all are. Can you take just one regular hexagon
and curl it up to form a torus?

Anyway, these tori deserve to be called “Platonic surfaces”, since they are surfaces
tiled with regular polygons, with the same number meeting at each vertex.

Next, let’s take a bunch of regular heptagons and glue them together so that three
meet each corner. Now the angles add up to more than 360 degrees, so we get a tiling
of the “hyperbolic plane”. The hyperbolic plane is like the opposite of a sphere, since
it’s saddle-shaped at every point instead of bulging out at every point. In fact the sphere
and the hyperbolic plane are the two most symmetrical forms of non-Euclidean geometry.
The sphere is “positively curved”, while the hyperbolic plane is “negatively curved”.

You may have trouble visualizing the hyperbolic plane tiled with regular heptagons,
but if we distort it, it fits into a disk and looks really pretty! Here it is:

1) Don Hatch, Hyperbolic planar tesselations, http://www.hadron.org/\~hatch/HyperbolicTesselations/
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It’s called “{7, 3}”, since it’s made of 7-sided figures with 3 meeting at each corner.
In this picture there’s one heptagon at the center, surrounded by rings of heptagons

that appear smaller (but aren’t really — that’s just an effect of the distortion).
Can we cut out a portion of this tiling and curl it up to get a torus? No! But, we

can curl up a portion to get a 3-holed torus — like the surface of a doughnut with three
holes. But, we can only do this if we use precisely 24 heptagons!

Here’s how we do it. Here’s a picture of 24 heptagons, taken from an old paper by
Klein and Fricke but prettied up a bit:

2) Tony Smith, Klein’s quartic surface, http://www.valdostamuseum.org/hamsmith/
cdomain.html#tesselations
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You’ll notice they’re drawn in a fancy style: each heptagon has been “barycentrically
subdivided” into 14 right triangles. But don’t worry about that yet; concentrate on the
heptagons.

There’s a blue heptagon in the middle, 7 red ones touching that, 7 yellow ones touch-
ing those, then 7 green ones falling off the edge of the picture, and 2 blue ones broken
into bits all around the corners of the picture. That’s a total of 24 heptagons.

We wrap this thing up into a 3-holed torus using the numbers on the edges of the
picture:

• connect edges 1 and 6

• connect edges 3 and 8

• connect edges 5 and 10

• connect edges 7 and 12

• connect edges 9 and 14

• connect edges 11 and 2

• connect edges 13 and 4

In other words, connect edges 2n+1 and 2n+6 mod 14. To connect them the right
way, make sure that triangles of the same color never touch each other.

Here’s how to see if you get the idea. Ignore the little triangles; just pay attention to
the heptagons! Then:
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Start on any edge of any heptagon and march along in either direction.
Then, when you get to the end, turn left.
Then, when you get to the end, turn right.
Then, when you get to the end, turn left.
Then, when you get to the end, turn right.
Then, when you get to the end, turn left.
Then, when you get to the end, turn right.
Then, when you get to the end, turn left.
Then, when you get to the end, turn right.
You should now be back where you started!!!
These are like the driving directions the devil gives people who ask the way out of

hell. LRLRLRLR and you’re right back where you started.
But the resulting Platonic surface is heavenly. It has lots of symmetries. Each of

the 24 heptagons has 7-fold rotational symmetry — and amazingly, all these rotations
extend to a symmetry of the Platonic surface!

Now let’s talk about those little triangles. Since our surface is made of 24 heptagons,
each chopped into 14 right triangles, there are a total of

24× 14 = 336

triangles. And this number is also the number of symmetries of the Klein quartic, includ-
ing reflections!

This is no coincidence. We can specify a symmetry by saying where it sends our
favorite right triangle. Since it can go to any other triangle, there are 336 possibilities.
If we exclude reflections, we get half as many symmetries: 24× 7 = 168.

By the way, this trick works for ordinary Platonic solids as well. For example, if we
take a dodecahedron and barycentrically subdivide all 12 pentagons, we get 10 × 12 =
120 right triangles. If we pick one of these as the “identity element”, we can specify
any symmetry by saying which triangle this triangle gets sent to. So, the set of triangles
becomes a vivid picture of the 120-element symmetry group of the dodecahedron. It’s
called the “Coxeter complex”. This idea generalizes in many directions, and is incredibly
useful.

Anyway. . . there is much more to say about this stuff. For example, if we take our
hyperbolic plane tiled with heptagons and count them grouped according to how far
they are from the central one, we get the sequence

7, 7, 14, 21, 35, 56, 91, . . .

These are 7 times the Fibonacci numbers!
To dig a bit deeper, though, it helps to think about complex analysis.
If we think of the hyperbolic plane as the unit disc in the complex plane, this surface

becomes a “Riemann surface”, meaning that it gets equipped with a complex structure.
This was Felix Klein’s viewpoint when he discovered all this stuff in about 1878. He
showed this surface could be described by an incredibly symmetrical quartic equation in
3 complex variables:

u3v + v3w + w3u = 0

where we count two solutions as the same if they differ by an overall factor. So, it’s
called “Klein’s quartic curve”.
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(Why a “curve” and not a surface? Because it takes one complex number to say where
you are on it. We have 3 unknowns and one equation, but we mod out by an overall
factor, so we get something locally parametrized by one complex number. . . so algebraic
geometers call it a curve.)

You can read Klein’s original article translated into English. It’s available online as
part of a whole book about his incredible quartic:

3) Silvio Levy, The Eightfold Way: the Beauty of Klein’s Quartic Curve, MSRI Research
Publications 35, Cambridge U. Press, Cambridge 1999. Also available as http://
www.msri.org/publications/books/Book35/

This book was put out by the Mathematical Sciences Research Institute in Berkeley,
to celebrate the completion of sculpture of Klein’s quartic curve made by Helaman Fer-
guson. I must admit that the sculpture leaves me unmoved. But the curve itself — ah,
that’s another story!

For example, Klein’s quartic curve turns out to have the maximum number of sym-
metries of any 3-holed Riemann surface.

Let’s back up a minute and think about a Riemann surface with no holes: a sphere.
There’s only one way to make a sphere into a Riemann surface — it’s called the Riemann
sphere. You can think of it as the complex numbers plus a point at infinity. This has
infinitely many symmetries. They’re called conformal transformations, and they all look
like this:

z 7→ az + b

cz + d

They form a group called PSL(2,C), since it’s the same as the group of 2 × 2 complex
matrices with determinant 1, mod scalars. It’s also the same as the Lorentz group!

There are different ways to make a torus into a Riemann surface, some with more
symmetries than others (see “Week 124”). But, there are always translation symmetries
in both directions, so the symmetry group is always infinite.

On the other hand, a Riemann surface with 2 or more holes can only have a finite
group of conformal transformations. In fact, in 1893 Hurwitz proved that a Riemann
surface with g holes has at most

84(g − 1)

For g = 3, this is 168. So, Klein’s quartic surface is as symmetrical as possible! (We
don’t count reflections here, since they don’t preserve the complex structure — they’re
like complex conjugation.)

Now I should break down and give the best description of Klein’s quartic curve as
a Riemann surface. Sitting inside PSL(2,C) is PSL(2,Z), where we only use integers
a, b, c, d in our fractional linear transformation

z 7→ az + b

cz + d

This subgroup acts on the upper half-plane H, which is just another way of thinking
about the hyperbolic plane.

Sitting inside PSL(2,Z) is a group Γ(7) consisting of guys where the matrix(
a b
c d

)
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is congruent to the identity: (
1 0
0 1

)
modulo 7. This is an example of a “congruence subgroup”; these serve to relate complex
analysis to number theory in lots of cool ways. In particular, Klein’s quartic curve is just

H/Γ(7)

Since Γ(7) is a normal subgroup of PSL(2,Z), the quotient group

PSL(2,Z)/Γ(7) = PSL(2,Z/7)

acts as symmetries of Klein’s quartic curve. And, this group has 168 elements!
In fact, this group is the second smallest nonabelian simple group. The smallest one

is the rotational symmetry group of the icosahedron, which has 60 elements. This group
is actually PSL(2,Z/5), and Klein had run into it in his work on the icosahedron and
quintic equations (see “Week 213”). So, it’s actually far from sheer luck that he then
moved on to PSL(2,Z/7) and ran into his wonderful quartic curve.

By the way, this 168-element group is also known as PSL(3,Z/2) — the symmetry
group of the “Fano plane”. This is a name for the projective plane over Z/2. The Fano
plane is closely related to the octonions:

3) John Baez, “The Fano plane”, http://math.ucr.edu/home/baez/octonions/node4.
html

So in fact, our 168-element group acts on the set of octonion multiplication tables:

4) Tony Smith, “Octonion products”, http://www.valdostamuseum.org/hamsmith/
480op.html
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5) Geoffrey Dixon, “Octonion multiplication tables”, http://www.7stones.com/Homepage/
octotut0.html

And, as James Dolan just noted today, and Tony Smith seems to have known all
along, there’s a way to draw the Fano plane that even looks like the diagram Klein and
Fricke used to build the Klein quartic. Here’s a picture drawn by Burkard Polster, author
of “The Mathematics of Juggling” and “Geometries on Surfaces”:

So, something interesting is going on, and I want to know what it is!
By the way, fans of the quaternions and octonions may like this review of Conway

and Smith’s book:

6) John Baez, “review of On Quaternions and Octonions: Their Geometry, Arithmetic
and Symmetry, by John H. Conway and Derek A. Smith”, Bull. Amer. Math. Soc.
42 (2005), 229–243. Available at http://www.ams.org/bull/2005-42-02/ and
http://math.ucr.edu/home/baez/octonions/node24.html

It’s packed with cool pictures and weird facts — a more refined version of the material
in “Week 193” and “Week 194”.

It builds up to a kind of crazy climax in which I describe how when you pack spheres
as densely as possible in 8 dimensions, each sphere touches 240 others. . . and if you
look at the 240 neighbors of a given sphere, each one of those neighbors touches 56
other neighbors. Then I explain how this gives rise to a 56-dimensional representation
of the exceptional group E7 — its smallest nontrivial representation! And, how it gives
rise to a 57-dimensional manifold on which the exceptional group E8 acts — the smallest
space on which it acts nontrivially!

Bertram Kostant is one of the real gurus of Lie theory. He teaches at MIT, and he
has a strong fondness for exceptional Lie groups. When he saw this review of mine, he
mentioned a couple of other papers that construct the 57-dimensional space on which
E8 acts:
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7) Ranee Brylinski and Bertram Kostant, “Lagrangian models of minimal representa-
tions of E6, E7, and E8”, in Functional Analysis on the Eve of the 21st Century, vol. 1,
Progress in Math. 131, Birkhauser, Boston, 1995, pp. 13–53.

Bertram Kostant, “Minimal coadjoint orbits and symplectic induction”, in The Breadth
of Symplectic and Poisson geometry, 391–422, Progress in Math. 232, Birkhauser,
Boston, 2005. Also available as http://www.arXiv.org/abs/math.SG/0312252

I’ve got to read these sometime.
Having the number 56 on my brain, I can’t resist nothing that if you take Klein’s

quartic curve tiled by heptagons, and you count the vertices, you get

24× 7/3 = 56

since each vertex is shared by 3 heptagons. I’m hoping this is not a coincidence!
Okay, that’s all for this week, except for some silly stuff. . . .
First of all, speaking of octonions, Geoff Corbishley just told me that their inventor,

John Thomas Graves, is a relative of Robert Graves — the author of “I Claudius”.
Second of all, I hope you’ve figured out the puzzle I gave at the beginning of this

Week. The phrase is “24-7”, as in “we’re working on it 24-7”. 24 hours a day, 7 days a
week, makes 168 hours per week!

Finally, speaking of numerology, this number 168 is related to why the days of the
week have the names they do! I explained why in “Week 175”, but I’ll remind you:

Astrologers liked to list the planets in order of decreasing orbital period, counting the
sun as having a period of one year, and the moon as period of one month:

Planet Orbital period

Saturn 29 years
Jupiter 12 years
Mars 687 days
Sun 365 days
Venus 224 days
Mercury 88 days
Moon 29.5 days

For the purposes of astrology they wanted to assign a planet to each hour of each day
of the week. To do this, they assigned Saturn to the first hour of the first day, Jupiter to
the second hour of the first day, and so on, cycling through the list of planets over and
over, until each of the 24 × 7 = 168 hours was assigned a planet. Each day was then
named after the first hour in that day. Since 24 mod 7 equals 3, this amounts to taking
the above list and cycling around it, reading off every third planet:

Saturn Saturday
Sun Sunday
Moon Monday
Mars Tuesday
Mercury Wednesday
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Jupiter Thursday
Venus Friday

And that’s how they got listed in this order! At least, this is what the Roman historian
Dion Cassius (AD 150–235) claims. Nobody knows for sure.

Addendum: Mike Stay took Don Hatch’s picture and drew numbers from 1 to 24
showing how to identify heptagons in order to get the Klein quartic curve:

Gerard Westendorp had some interesting comments on what I wrote:

If you take Euler’s formula

V + F − E = 2− 2× holes

then you can figure out that for a (7, 3) tiling with N heptagons, you have

V =
7N

3
F = N

E =
7N

2

so that
N = 12× (holes− 1)
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Here’s the table of solutions:

holes N

0 -12
1 0
2 12
3 24
4 36
...

...

So indeed, there are no solutions for 0 holes (sphere) or 1 hole (torus). But a
2-holed torus should be possible, as well as the 24-faced 3-holed one.

Anyway, see if I can visualise the 3-holed one.

If you start with a sphere, i.e. genus 0, and drill a tunnel through it, you will get
a genus 1 object. On the outer surface, you see 2 holes, one for each side of the
“tunnel”. (I use the word “tunnel” for something into a 3D object, and “hole”
for something in a 2D surface.)

Next, you can drill a second tunnel, and get a genus 2 object, and you would see
4 holes on the outer surface. But a nice trick is to drill not to the outer surface,
but to a secret “cave” in the middle where you meet the first tunnel. Here you
stop drilling. To complete the genus-3 object, you drill the third tunnel again
not to the outer surface, but to the central cave. Thus, you get and object with
genus 3, which has 4 holes on its outer surface, each leading to a central cave.

Confusingly, 4 tunnels to a central cave is topologically the same as 3 separate
tunnels! The trick is that tunnels do not have to end on the outer surface, the
inner surface is topologically the same.

OK, so we have an object with 4 holes on its outer surface. 4 holes → tetrahe-
dron. . .

I built a cardboard model of a tetrahedron with a central cave. Truncated tetra-
hedrons together with tetrahedrons can fill space. So you can stack 4 truncated
tetrahedra on top of each other, leaving a hole in the shape of an imaginary 5th
one. Then use tetrahedra to fill up some gaps. This was basically the shape I
built out of cardboard. Then, I spent rather a long time trying to tile this with
heptagons. A clue to a solution was that a triangulation of the surface I made
had 120 triangle, and 120 = 24 × 5. What is so good about 5? Well, 5 trian-
gles stuck together have 7 outer sides, sop they are a kind of pseudo heptagons.
Anyway, I got a bit frustrated, and did not find a nice tiling.

As I was trying to figure it out, I found this site:

http://www.math.uni-siegen.de/wills/klein/

It has some nice pictures.
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These are like the driving directions the devil gives people who ask the
way out of hell. LRLRLRLR and you’re right back where you started.

Btw, this works the same on other polyhedra, e.g. the cube.

• Saturn (Saturday)
• Sun (Sunday)
• Moon (Monday)
• Mars (Tuesday)
• Mercury (Wednesday)
• Jupiter (Thursday)
• Venus (Friday)

My French is not so good, but in French some names look more convincing:

• tuesday = mardi (Mars?)

• wednesday = mercredi (Mercury?)

• thursday = jeudi (Jove?)

• friday = vendredi (Venus?)

Gerard

I replied:

Gerard Westendorp wrote:

John Baez wrote:

It’s called “{7, 3}”, since it’s made of 7-sided figures with 3
meeting at each corner.

Can we cut out a portion of this tiling and curl it up to get
a torus? No! But, we can curl up a portion to get a 3-holed
torus — like the surface of a doughnut with three holes. But,
we can only do this if we use precisely 24 heptagons!

If you take Euler’s formula [. . . .]

So indeed, there are no solutions for 0 holes (sphere), 1 hole( torus).
But a 2-holed torus should be possible, as well as the 24-faced 3-holed
one.

I was going to talk about this, but I figured my article was getting too long.

Indeed, Euler’s formula also allows the possibility of a 2-holed torus tiled with
12 heptagons meeting 3 at each corner.

But this does not prove such a tiling is possible. I don’t know if it is! Someone
should try it.

164



WEEK 214 APRIL 20, 2005

However: even if such a tiling exists, it’s not possible for each rotational symme-
try of each heptagon to extend to a symmetry of the whole tiled surface. What’s
marvelous about the 3-holed case is that they all do — at least if you do things
correctly. This is what makes the Klein quartic a full-fledged “Platonic surface”.

If you look here:

• Hermann Karcher and Mattias Weber, “The Geometry of Klein’s Riemann
Surface”, in The Eightfold Way: the Beauty of Klein’s Quartic Curve,
ed. Silvio Levy, MSRI Research Publications 35, Cambridge U. Press, Cam-
bridge 1999. Also available as PDF and gzipped Postscript.

you’ll see that Karcher and Weber study Platonic surfaces using Euler’s formula.

On pages 13–19 they consider Platonic surfaces with 2 holes. On page 19 they
give a clever proof that no tiling of the 2-holed torus by heptagons meeting 3
at each corner can be a Platonic surface. The proof is so clever that I don’t
understand it.

(Warning: their article starts on page 9.)

Anyway, see if I can visualise the 3-holed one.

I wish I could visualize it myself.

As I was trying to figure it out, I found this site:

http://www.math.uni-siegen.de/wills/klein/

It has some nice pictures.

These pictures are interesting, but what I’d really like is a nice picture of a 3-
holed torus, not weird or crumpled up, which is tiled by 24 heptagons just like
the Klein quartic.

The heptagons can’t all be regular if the torus is embedded in R3, since there’s
no way to embed a compact surface of constant negative curvature in R3. But,
you can get the topology correct and still have the torus embedded in R3.

If anyone draws such a picture, and I think it looks nice, I’d love to put it on
This Week’s Finds!

If anyone wants instructions on how such a surface should be made, look above,
where Mike Stay has kindly drawn numbers from 1–24 on a portion of the
hyperbolic plane tiled with heptagons. These numbers indicate how to identify
heptagons to get the Klein quartic. For example, all the heptagons labelled “21”
are really the same heptagon in the Klein quartic.

• Saturn (Saturday)
• Sun (Sunday)
• Moon (Monday)
• Mars (Tuesday)
• Mercury (Wednesday)
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• Jupiter (Thursday)
• Venus (Friday)

My French is not so good, but in French some names look more con-
vincing:

• tuesday = mardi (Mars?)
• wednesday = mercredi (Mercury?)
• thursday = jeudi (Jove?)
• friday = vendredi (Venus?)

Yes, this because most of the English names for planets come from Latin, and
French is more like Latin.

English is more complicated, but I’m so used to it that I forgot people might find
the connection to Latin mysterious:

• “Tuesday” comes from “Tiu” or “Tyr”, an ancient Germanic god of war
whom the Romans identified with Mars. We see traces of this in the German
“Dienstag” as well.

• “Wednesday” comes from “Woden” or “Odin”, a Germanic god whom the
Romans identified with Mercury. Modern German uses “Mittwoch” instead,
which means “mid-week”.

• “Thursday” comes from “Thor”, a Germanic thunder god whom the Ro-
mans identified with Jupiter. Modern German uses “Donnerstag” instead,
with “Donner” meaning “thunder”.

• “Friday” comes from “Freya” or “Frigga”, a Germanic goddess of married
love whom the Romans identified with Venus. The German “Freitag” is very
similar.
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Week 215

May 9, 2005

This week I’d like to report on some cool things people have been explaining to me. The
science fiction writer Greg Egan has been helping me understand Klein’s quartic curve,
and the mathematician Darin Brown has been explaining the analogy between geodesics
and prime numbers. The two subjects even overlap slightly!

Last week I talked about Klein’s quartic curve. This led Gerard Westendorp and Mike
Stay to draw some pictures of it, and their ideas helped Greg Egan create this really nice
picture:

1) Greg Egan, “Klein’s quartic curve”, http://math.ucr.edu/home/baez/mathematical/
KleinDual.png

It looks sort of tetrahedral at first glance, but if you look carefully you’ll see that topolog-
ically speaking, it’s a 3-holed torus. It’s tiled by triangles, with 7 meeting at each vertex.
So, it’s the Klein quartic curve!

Perhaps I should explain. Last week I talked about a tiling of the hyperbolic plane by
regular heptagons with 3 heptagons meeting at each vertex. Dual to this is a tiling of the
hyperbolic plane by equilateral triangles with 7 triangles meeting at each vertex. We can
take a quotient space of this by a certain symmetry group and get a 3-holed torus tiled
by 56 triangles with 7 meeting at each vertex. This is what Egan drew!

With this picture you can almost see the 168 symmetries of Klein’s quartic curve.
First, you can take any vertex and twist it, causing the 7 triangles that meet at this

vertex to cycle around. It’s not obvious that this is a symmetry of the whole tiled surface,
but it is. This gives a 7-element symmetry group.
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Second, the whole thing looks like a tetrahedron, so it inherits the rotational symme-
tries of a tetrahedron. This gives a more obvious 12-element symmetry group.

7× 12 = 84, so how do we get a total of 168 symmetries?
Well, there’s also a 2-fold symmetry that corresponds to turning the tetrahedron in-

side out! And Egan made a wonderful movie of this. If a picture is worth a thousand
words, this is worth about a million:

2) Greg Egan, “Turning Klein’s quartic curve inside out”, http://math.ucr.edu/

home/baez/mathematical/KleinDualInsideOut.gif

So, we get a total of 7× 24 = 168 symmetries.
Even better, if you watch carefully, you’ll see that the tetrahedron in Egan’s movie

gets reflected as it turns inside out. More precisely, if you follow the four corners of the
tetrahedron, you’ll see that two come back to where they were, while the other two get
switched. So, this symmetry acts as a reflection, or odd permutation, of the 4 corners.
The rotations act as even permutations of the corners.

This means that the Klein quartic has 24 symmetries forming a group isomorphic to
the rotation/reflection symmetry group of a tetrahedron. Algebraically speaking, this
group is S4: the permutations of 4 things.

This group is also the rotational symmetry group of a cube. In fact, Egan was able to
spot a hidden cube lurking in his picture! Can you?

If you look carefully, you’ll see each corner of his tetrahedral gadget is made of a little
triangular prism with one triangle facing out and one facing in: for example, the pink
triangle staring you right in the face, or the light blue one on top. Since 4× 2 = 8, there
are 8 of these triangles. Abstractly, we can think of these as the 8 corners of a cube! They
aren’t really, but we can pretend. The way these 8 triangles come in pairs corresponds
to how the vertices of a cube come in diagonally opposite pairs.

168



WEEK 215 MAY 9, 2005

Using this, you can see that the group S4 acts on these 8 triangles in precisely the
same way it acts via rotations on the vertices of a cube.

In fact, you can even draw a picture of a cube on the Klein quartic by drawing suitable
curves that connect the centers of these 8 triangles! It’s horribly distorted, but topologi-
cally correct. Part of the distortion is caused by embedding the Klein quartic in ordinary
3d Euclidean space. If we gave the Klein quartic the metric it inherits from the hyperbolic
plane, the edges of the cube would be geodesics.

This remark also helps us see something else. The Klein quartic is tiled by 56 trian-
gles. 8 of them give the cube we’ve just been discussing. In Egan’s picture these triangles
look special, since they lie at the corners of his tetrahedral gadget. But this is just an
illusion caused by embedding the Klein quartic in 3d space. In reality, the Klein quartic
is perfectly symmetrical: every triangle is just like every other. So in fact there are lots
of these cubes, and every triangle lies in some cube.

But this is where it gets really cool. In fact, each triangle lies in just one cube. So,
there’s precisely one way to take the 56 triangles and divide them into 7 bunches of 8 so
that each bunch forms a cube.

So: the symmetry group of the Klein quartic acts on the set of cubes, which has 7
elements.

But as I explained last week, this symmetry group also acts on the Fano plane, which
has 7 points.

This suggests that cubes in the Klein quartic naturally correspond to points of the
Fano plane. And Egan showed this is true!

He showed this by showing more. The Fano plane also has 7 lines. What 7 things in
the Klein quartic do these lines correspond to?

Anticubes!
You see, the cubes in the Klein quartic have an inherent handedness to them. You can

go between the 8 triangles of a given cube by following certain driving directions, but
these driving directions involve some left and right turns. If you follow the mirror-image
driving directions with “left” and “right” switched, you’ll get an anticube.

Apart from having the opposite handedness, anticubes are just like cubes. In particu-
lar, there’s precisely one way to take the 56 triangles and divide them into 7 bunches of
8 so that each bunch forms an anticube.

Here’s a picture:

3) Greg Egan, Cubes and anticubes in the Klein quartic curve, http://math.ucr.

edu/home/baez/KleinFigures.gif
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Each triangle has a colored circle and a colored square on it. There are 7 colors. The
colored circle says which of the 7 cubes the triangle belongs to. The colored square says
which of the 7 anticubes it belongs to.

If you stare at this picture for a few hours, you’ll see that each cube is completely
disjoint from precisely 3 anticubes. Similarly, each anticube is completely disjoint from
precisely 3 cubes.

This is just like the Fano plane, where each point lies on 3 lines, and each line contains
3 points!

So, we get a vivid way of seeing how every figure in the Fano plane corresponds to
some figure in the Klein quartic curve. This is why they have the same symmetry group.

This is an excellent example of Klein’s Erlangen program for reducing geometry to
group theory, which I discussed in “Week 213”. Here we are beginning to see how two
superficially different geometries are secretly the same:

Fano plane Klein’s quartic curve

7 points 7 cubes
7 lines 7 anticubes
incidence of points and lines disjointness of cubes and anticubes

However, we’re only half done! We’ve seen how to translate simple figures and indi-
cence relations in the Fano plane to complicated ones in Klein’s quartic curve. But, we
haven’t figured out translate back!
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Klein’s quartic curve Fano plane

24 vertices ???
84 edges ???
56 triangular faces ???
incidence of vertices and edges ???
incidence of edges and faces ???

Here I’m talking about the tiling of Klein’s quartic curve by 56 equilateral triangles.
We could equally well talk about its tiling by 24 regular heptagons, which is the Poincare
dual. Either way, the puzzle is to fill in the question marks. I don’t know the answer!

To conclude — at least for now — I want to give the driving directions that define
a “cube” or an “anticube” in Klein’s quartic curve. Say you’re on some triangle and you
want to get to a nearby triangle that belongs to the same cube. Here’s what you do:

hop across any edge,
turn right,
hop across the edge in front of you,
turn left,
then hop across the edge in front of you.

Or, suppose you’re on some triangle and you want to get to another that’s in the same
anticube. Here’s what you do:

hop across any edge,
turn left,
hop across the edge in front of you,
turn right,
then hop across the edge in front of you.

(If you don’t understand this stuff, look at the picture above and see how to get from
any circle or square to any other circle or square of the same color.)

You’ll notice that these instructions are mirror-image versions of each other. They’re
also both 1/4 of the “driving directions from hell” that I described last time. In other
words, if you go LRLRLRLR or RLRLRLRL, you wind up at the same triangle you started
from. You’ll have circled around one face of a cube or anticube!

In fact, your path will be a closed geodesic on the Klein quartic curve. . . like the long
dashed line in Klein and Fricke’s original picture:

4) Klein and Fricke, Klein’s quartic curve with geodesic, http://math.ucr.edu/home/
baez/Klein168.gif
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Next, a little about geodesics and prime numbers. I’ve just been talking a little about
geodesics in the Klein quartic, which is the quotient

H/G

of the hyperbolic plane H by a certain group G which I explained last week. This
group, usually called Γ(7), is a nice example of a “Fuchsian group” — that is, a discrete
subgroup of the isometries of the hyperbolic plane.

Darin Brown and his thesis advisor Jeff Stopple at U. C. Santa Barbara have been
thinking about geodesics in H/G for other Fuchsian groups G, and their relation to
number theory:

5) Jeff Stopple, “A reciprocity law for prime geodesics”, J. Number Theory 29 (1988),
224–230.

6) Darin Brown, Lifting properties of prime geodesics on hyperbolic surfaces, Ph.D. the-
sis, U. C. Santa Barbara, 2004.

I’d really like to learn about this, because it connects all sorts of stuff I dream of un-
derstanding someday, especially quantum chaos (“Week 190”), zeta functions in physics
and number theory (“Week 199”), and Galois theory as a theory of covering spaces
(“Week 205”). Also, it involves a big mysterious analogy, and I always like those!

I don’t understand this stuff well enough to try a full-fledged explanation yet, so I’ll
just give a vague sketch. A “prime geodesic” in a Riemannian manifold X is a closed
geodesic

f : S1 → X
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that cycles around just once. In other words, f should be one-to-one.
We say a closed geodesic is the “nth power” of a prime one if it’s just like the prime

one but it cycles around n times. Every closed geodesic is the nth power of a prime one
in a unique way.

If we have a Fuchsian group G, H/G is a surface with a Riemannian metric. It looks
locally like the hyperbolic plane, so it’s called a “hyperbolic surface”. And, we can look
at prime geodesics in it.

If G′ is a subgroup of G, we get a covering map

H/G′ → H/G

so we can ask about lifting prime geodesics in H/G to closed geodesics in H/G′. There
can be a bunch of ways to do this, so we say a prime geodesic inH/G “splits” into powers
of prime geodesics up in H/G′.

If you know any number theory — reading “Week 205” should be enough — this
should remind you of how a prime ideal in some algebraic number field can “split” into
prime ideals in an extension of this field, and/or “ramify” into powers of prime ideals.

And indeed, Darin Brown has found a big mysterious analogy that goes like this:

Number field K Hyperbolic surface H/G
Field extension K ′ of K Covering p : H/G′ → H/G
Galois group Gal(K ′/K) Deck transformation group Aut(p)
Prime ideal Q of K Prime geodesic f in H/G
Prime ideal Q′ lying over Q Prime geodesic f ′ lying over f
Splitting of prime ideal Q of K ′ Lifting of prime geodesic f to H/G′

Norm N(Q) of ideal Q Norm N(f) of closed geodesic f
Frobenius conjugacy class of Q Frobenius conjugacy class of f
Artin L-function Selberg zeta function

(Here by “prime ideal of K” we mean a prime ideal in the ring of algebraic integers
of K.)

But this is more than an analogy: there’s even a way to associate number fields to
certain hyperbolic surfaces! The reason is that often Fuchsian groups will consist of
matrices whose entries lie in some number field.

I would like to understand the Selberg zeta function and its relation to quantum
mechanics. The Selberg zeta function is related to closed geodesics, which are periodic
classical trajectories, while the zeta function of a Laplacian is related to periodic quantum
trajectories (namely eigenfunctions of the Laplacian). So, the two are related. I know
there’s a lot of cool stuff going on here — especially since the motion of a particle on
a hyperbolic surface tends to be chaotic, so “quantum chaos” rears its ugly head. But, I
don’t understand any of the details.

In some notes on quantum chaos, Gutzwiller wrote:

The classical periodic orbits are a crucial stepping stone in the understanding of
quantum mechanics, in particular when then classical system is chaotic. This
situation is very satisfying when one thinks of Poincaré who emphasized the
importance of periodic orbits in classical mechanics, but could not have had
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any idea of what they could mean for quantum mechanics. The set of energy
levels and the set of periodic orbits are complementary to each other since they
are essentially related through a Fourier transform. Such a relation had been
found earlier by the mathematicians in the study of the Laplacian operator on
Riemannian surfaces with constant negative curvature. This led to Selberg’s
trace formula in 1956 which has exactly the same form, but happens to be
exact. The mathematical proof, however, is based on the high degree of symmetry
of these surfaces which can be compared to the sphere, although the negative
curvature allows for many more different shapes.

When I get serious, I’ll read these:

7) M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer, Berlin, 1990.

8) Predrag Cvitanovic, Roberto Artuso, Per Dahlqvist, Ronnie Mainieri, Gregor Tanner,
Gabor Vattay, Niall Whelan and Andreas Wirzba, Chaos: Classical and Quantum,
available at http://www.nbi.dk/ChaosBook/

9) Svetlana Katok, Fuchsian Groups, U. Chicago Press, Chicago, 1992.

10) J. Elstrodt, F. Grunewald, and J. Mennicke, Groups Acting on Hyperbolic Space,
Springer, Berlin, 1998.

11) Peter Sarnak, “Quantum chaos, symmetry and zeta functions”, in Current Develop-
ments in Mathematics, 1997, eds R. Bott et al., International Press, Boston, 1999,
pp. 127–159.

12) C. Schmit, “Quantum and classical properties of some billiards on the hyperbolic
plane”, in Chaos and Quantum Physics, eds. M.-J. Giannoni et al., Elsevier, New
York, 1991, pp. 333–369.

For a nice pop treatment of quantum chaos and the Riemann hypothesis, try this:

13) Martin Gutzwiller, “Quantum chaos”, Scientific American, January 1992. Also avail-
able at http://www.maths.ex.ac.uk/~mwatkins/zeta/quantumchaos.html

Addendum: Here is some email I got from Greg Egan and Toby Bartels, and a post
from Darin Brown which corrects some mistakes and answers some questions raised by
my pal Squark.

Greg Egan wrote me the following after I suggested a relation between the Klein
quartic curve and 3d Minkowski spacetime over the field Z/7 — a relation that he later
exploited in some fascinating ways.

Hi

Thanks for all the Lorentz group stuff! This will take me a while to digest.

In the meantime, here are some more translations between the geometries.

Every cube intersects 4 anticubes, and any pair of cubes, between them, intersect
6 anticubes (two of the 4 for each will always be shared). So together the pair
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of cubes single out one anticube: the 7th one that neither of them intersect. This
is analogous to the fact that any two Fano points single out a Fano line.

I’ll write anti({c1, c2}) for the anticube singled out by a pair of cubes, and sim-
ilarly cube({a1, a2}) for the cube singled out by a pair of anticubes. In the
scheme used in this diagram:

both functions have identical outputs for the same input colours:

Table 16: anti({c1, c2}) and cube({a1, a2})

R O Y G LB P DB

R — DB R DB Y Y R
O DB — P DB P O O
Y R P — LB P LB R
G DB DB LB — G LB G
LB Y P P G — Y G
P Y O LB LB Y — O
DB R O R G G O —

Now for some actual translations.
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Klein’s Quartic Curve Fano plane

28 pairs of opposite triangular faces 28 choices of a point and a non-incident
line, {p, l}.

l1
•
p1

7× 4 = 28

In Klein’s quartic curve, we specify a pair of opposite triangular faces by picking
one of seven cubes, then one of four anticubes that intersect it. The intersection
is a pair of triangular faces which are diagonally opposite each other both on
the cube and on the anticube. The 56 order-3 elements of G preserve these pairs
of triangular faces, and consist of rotations by 1/3 and 2/3 turns for each such
pair.

Triangular faces sharing an edge Pairings of points and non-incident lines
{p1, l1} and {p1, l1} having p1 incident on
l2 and p2 incident on l1.

l1

l2•
p1

•
p2

In Klein’s quartic curve, whenever two triangular faces share an edge, the cube
each face belongs to will be disjoint from the anticube that the other face belongs
to. This can be checked by noting that the colour of the anticube appears in the
row for anti(c, ·).
If you inspect a triangle and the three neighbours that share edges with it, the
neighbours will always belong to the three anticubes disjoint from the cube the
central triangle belongs to, i.e. they will have exactly the three colours appearing
in the row for anti(c,−)
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84 edges 84 choices of {p1, l1} and {p2, l2}
non-incident, but {p1, l2} and {p2, l1}
incident.

l1

l2•
p1

•
p2

or equivalently: 84 choices of 3
non-colinear points with one point singled
out. In this definition, the special 3rd
point is the one point shared by l1 and l2
of the previous definition.

l2

l1

•
p1

• p3

•
p2

We can count this as
(
7
3

)
triples, minus 7

triples that are colinear, times three for
three choices of distinguished point:

(

(
7

3

)
− 7)× 3 = 28× 3 = 84

In Klein’s quartic curve, we specify an edge by picking a pair of cubes {c1, c2}
and then a distinguished third one, c3, so that the three aren’t all disjoint from
any one anticube. This means that, between them, they must intersect all seven
anticubes. So the third cube must be one that intersects anti({c1, c2}). There
are exactly 4 of these (and c1 and c2 aren’t among them, by definition). So
another way of counting the total is (

(
7
2

)
)× 4 = 21× 4 = 84 choices.

To identify the particular edge, suppose we’ve chosen {{c1, c2}, c3} as our cubes.
Then {c1, anti({c2, c3})} is a cube and an anticube that intersects it, which
specifies a pair of diagonally opposite triangular faces, and the same is true of
{c2, anti({c1, c3})}. There is a unique edge where two of these triangles meet.

For example, if we pick {{red, orange}, yellow} then we have {red, anti-purple}
and {orange, anti-red}. Both cube/anticube choices specify two triangles each,
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but there is only one edge that belongs to both a {red, anti-purple} and an
{orange, anti-red} triangle.

To reverse the process, if we look at the cube/anticube markings on the triangles
either side of some edge, and they are {c1, a1} and {c2, a2}, then we can describe
this edge by {{c1, c2}, cube({a1, a2})}.

Triangular faces each sharing an edge with
a common neighbour, but not each other.
(This is sufficient, but not necessary, for
them to share a vertex.)

Pairings of points and non-incident lines
{p1, l1} and {p2, l2} having either p1
incident on l2 or p2 incident on l1, but not
both.

l1 (or l2)
l2 (or l1)•

p1 (or p2)

•
p2 (or p1)

In Klein’s quartic curve, as you go around a triangle anticlockwise and look at its
three (edge-sharing) neighbours, the cube a triangle belongs to will be disjoint
from the anticube of the triangle that follows, but the anticube it belongs to
will intersect the cube of the triangle that follows. (But what the sense of the
rotation means in the Fano plane depends on whether we map cubes to points
and anticubes to lines or vice versa!)
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24 vertices 168 pairings of points and non-incident
lines {p1, l1} and {p2, l2} having either p1
incident on l2 or p2 incident on l1, but not
both.

l1 (or l2)
l2 (or l1)•

p1 (or p2)

•
p2 (or p1)

There are: (28 choices for {p1, l1}) × (3
choices for l2 passing through p1) ×
(7− 5 = 2 choices for p2 not in l1 or l2).
This count identifies each vertex as shared
by common neighbours of a particular
triangle, so we expect to count each vertex
7 times for the seven triangles. We could
double this to count for swapping the role
of p1 and p2, and the we’d be counting
each vertex twice as often: once going
anticlockwise between each pair of
neighbours, and once going clockwise

This is all a bit strange and inconvenient! I can pin down an edge, but I haven’t
really pinned down a single face, or a way to count a vertex just once. I guess
the answer for a vertex is to talk about an equivalence class of the structures:

l1 (or l2)
l2 (or l1)•

p1 (or p2)

•
p2 (or p1)

where we mod out by Z/7 and “gauge fix” l1. Every vertex is surrounded by 7
triangular faces encompassing all seven cubes and all seven anticubes, so these
equivalence classes do fix a single vertex.

Best wishes

Greg

Toby Bartels wrote:

In Week 215, you wrote:

We say a closed geodesic is the “nth power” of a prime one if it’s just
like the prime one but it cycles around n times. Every closed geodesic
is the nth power of a prime one in a unique way.
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The latter sentence is not quite true; you’ve forgotten n = 0 again!

Some manifolds, like the real line, have no prime geodesics, but every (pointed)
manifold has a unique unit closed geodesic, which is the geodesic that just sits
at the basepoint the whole time. Given any prime geodesic f , this unit geodesic
is f0.

Thinking about this, I noticed that multiplication of closed geodesics, which
involves (the often technically tricky) concatenation of paths, has a unique def-
inition that’s associative on the nose. (Parametrise by arclength, concatenate,
then parametrise to unit length; since the paths are geodesics, the last step is
also unique.)

Unfortunately, this gives no way to define multiplication of closed geodesics
that are (positive) powers of different primes. We could generalise to piece-
wise geodesics that may turn corners at the basepoint, but this seems somewhat
artificial, and it doesn’t have very nice properties.

– Toby

Darin Brown wrote, in response to some questions by Squark on sci.physics.

research:

Squark wrote:
John Baez wrote:
If G′ is a subgroup of G, we get a covering map

H/G′ → H/G

so we can ask about lifting prime geodesics in H/G to closed
geodesics in H/G′. There can be a bunch of ways to do this,
so we say a prime geodesic in H/G “splits” into powers of
prime geodesics up in H/G′.

I don’t quite understand how can the lift be a power, rather than just
a prime.

Quite true. When you lift a geodesic, once you get back to the starting basepoint,
you’ve gone around once up above, corr. to a prime above, so it doesn’t make
sense to go around more than once! (I think this is what the author of this
comment meant.) In fact, I think it’s true (I can ask Jeff) that in a sense, there
are no “ramified primes” in the geodesic context. (There are only finitely many
in the number theory context. Actually, ramified primes are bad behaviour in
a sense.) It is true, when you lift a prime, the geodesic above has length a
multiple of the prime below, this is the analogue of the inertial degree, not the
ramification degree. It seems all the ramification degrees are 1, and the magic
equation reduces to degree of extension = sum(inertia degrees).

Norm N(Q) of ideal Q Norm N(f) of closed geodesic f

What is a norm of a geodesic? The length or the energy or. . . ?
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Explicitly, the length of a geodesic is the (natural) log of the norm, or equiva-
lently, the norm is exp(length). For closed geodesics on Γ\H, you find the norm
explicitly as follows: consider the associated hyp. conj. class {γ}, take an eigen-
value ε of an element of this conj. class, then the norm is ε2. The length of the
geodesic is then 2 log(ε). This is independent of the choice of γ in the conj. class.

This is why I now like to think of the norm of an ideal as a kind of “length
function on ideals”.

Frobenius conjugacy class of Q Frobenius conjugacy class of f

Again, what is the Frobenius on the right side here?

I can give 2 answers. The first answer is a cop-out, because it would just give the
concrete definition given in Jeff ’s paper or my thesis, e.g. Namely, you take the
associated matrix γ, and reduce entries mod the prime Q, where Q determines
the covering surface Γ(Q)\H. This is a very concrete definition that doesn’t
hint at the connection to number theory. Remember, secretly, PSL(2, q), q =
norm(Q) is really (isomorphic to) the deck transformation group of Γ(Q)\H
over Γ(H), and the Frob conj. class of a geodesic f should be a conj. class
in this deck transformation group. Conceptually, it should be an element of
the decomposition group, those deck transformations that fix the prime geodesic
above. Choosing different primes above the prime below should give elements of
the deck transformation group which are conjugate to each other. At least, that
should be the idea.

darin

Darin’s description of the Frobenius associated to a prime geodesic in H/G is a bit
technical. Here’s my guess as to a simpler description:

We have a covering space of a Riemannian manifold. A geodesic down below gives
an element of the fundamental group of the base. This acts as deck transformations of
the cover. So, it acts on the set of prime geodesics in the cover! Indeed, it acts on the
set of prime geodesics which are lifts of the geodesic down below. This is the “Frobenius
automorphism” associated to the geodesic.

It’s just a guess, but I feel sure it’s right, or at least close. It’s just like the Frobenius
automorphisms in number theory — at least if we realize that a Galois group is secretly
a fundamental group, as explained in “Week 213”.

Wherever there is number, there is beauty.

— Proclus
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Week 216

May 23, 2005

There are lots of different things called “zeta functions” in mathematics and physics. The
grand-daddy of them all is the Riemann zeta function:

ζ(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+ . . .

This is deeply related to prime numbers, thanks to Euler’s product formula

ζ(s) =
∏ 1

1− p−s

where we take a product over all primes. This formula is fun to prove: just use the
geometric series to expand each factor, multiply them out and see what happens!

Using this, Riemann and von Mangoldt derived an explicit formula for how many
primes are less than a given number as a sum over the zeros of the Riemann zeta function.
Instead of showing you this formula, I’ll just urge you to watch a movie of how it works:

1) Matthew Watkins, Animation: the prime counting function π(x), http://www.

maths.ex.ac.uk/~mwatkins/zeta/pianim.htm

Thanks to this formula, information about the Riemann zeta function is secretly in-
formation about the distribution of primes!

For example, the Riemann Hypothesis says that when we analytically continue the
zeta function to the complex plane, the only zeros occur at negative even integers and
numbers with real part equal to 1/2. And, knowing this would be equivalent to knowing
that the number of primes less than x differs from

Li(x) =

∫ x

2

dt

ln t

by less than some constant times ln(x)
√
x. Everyone feels sure these facts are true.

But, despite over a century of hard work and a million-dollar prize offered by the Clay
Mathematics Institute, nobody has come close to proving them!

It’s known that apart from the negative even integers, the only place the Riemann ζ
function can vanish is in the strip where

0 < ℜ(s) < 1

But, nobody has been able to show that all the zeros in this “critical strip” lie on the line

ℜ(s) = 1

2

Of course, this can be checked in special cases. The current record may belong to Xavier
Gourdon, who on October 12th of 2004 claimed to have shown — with the help of a
computer — that the first ten trillion zeros in the critical strip lie on the line Re(s) = 1/2.
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2) Xavier Gourdon, Computation of zeros of the Riemann zeta function, http://

numbers.computation.free.fr/Constants/Miscellaneous/zetazeroscompute.

html

Alas, such monster calculations don’t seem helpful for proving the Riemann hypothe-
sis. They’re more useful when it comes to formulating and testing conjectures about the
statistical properties of the zeros.

The most famous of these traces its way back to a teatime conversation between
Hugh Montgomery and Freeman Dyson. . . you can read the story here:

3) K. Sabbagh, Dr. Riemann’s Zeros, Atlantic Books, 2002, pp. 134=-136. Story about
Hugh Montgomery and Freeman Dyson also available at http://www.maths.ex.
ac.uk/~mwatkins/zeta/dyson.htm

The upshot is that the distribution of spacings between Riemann zeros closely mimics
the spacings between eigenvalues of a large randomly chosen self-adjoint matrix.

This suggests fascinating relations between the Riemann zeta function and quantum
physics. In fact, one popular dream for proving the Riemann zeta function is to find a
chaotic classical system whose quantized version has energy levels related to the Rie-
mann zeta zeros!

I would like to understand this stuff, but it all seems a bit intimidating — especially
since the coolest aspects are the ones nobody understands.

Luckily, the Riemann zeta function has spawned a lot of other functions called zeta
functions and L-functions, and many of these are simpler than the original one — or at
least raise fascinating questions that are easier to solve. Many of these are listed here:

4) Matthew R. Watkins, A directory of all known zeta functions, http://www.maths.
ex.ac.uk/~mwatkins/zeta/directoryofzetafunctions.htm

Matthew R. Watkins, A directory of all known L-functions, http://www.maths.
ex.ac.uk/~mwatkins/zeta/directoryof$L$-functions.htm

Lately I’ve been talking about zeta functions with James Dolan and also Darin Brown,
whose work I mentioned last week. I feel some things are starting to make sense, so I’d
like to explain them before it turns out they don’t.

I’ll just list some zeta functions, so you can see what we’re dealing with:
A) The zeta function of a number field. A “number field” is something you get by

taking the rational numbers and throwing in some algebraic numbers. One can define
“algebraic integers” for any number field, and they act a lot like the ordinary integers.
So, one can define a zeta function for any number field.

Technically, we do this by summing over all nonzero ideals I in the ring A of algebraic
integers in our number field:

ζ(s) =
∑
|I|−s

where |I| is a number called the “norm” of I, which is just the cardinality of A/I. We
also have an Euler product formula:

ζ(s) =
∏ 1

1− |P |−s
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where we take the product over prime ideals P .
For example, if our number field is the rational numbers, its algebraic integers are the

ordinary integers. So, each ideal consists of multiples of some number n = 1, 2, 3, . . .,
and its norm is just n, so we get:

ζ(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+ . . .

A more fun example is the number field Q[i], where we take the rational numbers
and throw in a square root of −1. Here the algebraic integers are the so-called “Gaussian
integers” Z[i], namely guys like

a+ bi

where a and b are ordinary integers.
In this example it’s easiest to work out the zeta function using the Euler product

formula. If you ask one of your number theory pals about prime ideals in the Gaussian
integers, they’ll say:

”Well, the Gaussian integers are a principal ideal domain, so every ideal is gen-
erated by a single element. So, we can actually talk about prime numbers in
the Gaussian integers. And there are 3 cases:

• INERT: An ordinary prime number of the form 4n+ 3 is also prime in the
Gaussian integers: for example, 3.

• SPLIT: An ordinary prime numbers of the form 4n + 1 is the product of
two complex conjugate primes in the Gaussian integers: for example, 5 =
(2 + i)(2− i).

• RAMIFIED: The ordinary prime 2 equals (1 + i)(1 − i), but here the two
factors give the same prime ideal, since (1− i) = i(1+ i), and i is invertible
in the Gaussian integers.

We get all primes in the Gaussian integers this way.”

So, the zeta function of the Gaussian integers goes like this:

ζ(s) =
1

1− 2−s

1

1− 3−2s

1

1− 5−s

1

1− 5−s
. . .

I went just far enough to show you what happens for each kind of prime. As you might
expect, we get two factors for each prime that splits in two.

I should explain the other details, but number theory is best absorbed in small doses,
especially if you’re a physicist. The main lesson to take home is this:

A number field is like a funny sort of “branched covering space” of the set of ordinary
primes. Sitting over each ordinary prime there are one or more prime ideals in our
number field:

(1 + i) (3)
(2 + i)

(2 − i)
(7) (11)

(2 + i)

(2 − i)

2 3 5 7 11 13
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And, the ζ function records the details of how this works!
For more on this covering space philosophy see “Week 205” and “Week 213”. This

geometrical metaphor lies behind a lot of the really cool work on number theory.
B) The zeta function of a discrete dynamical system. A “discrete dynamical sys-

tem” consists of a set X together with a one-to-one and onto function

f : X → X

Here X is the set of “states” of some physical system, and f describes one step of time
evolution. For each integer n we get a function

fn : X → X

Since the integers are called Z, mathematicians would call our discrete dynamical system
a “Z-set”.

Whatever you call it, its zeta function is defined to be:

ζ(s) =
∏ 1

1− |P |−s

where P ranges over all periodic orbits and |P | is the exponential of the size of this
periodic orbit.

This is like an Euler product formula with the periodic orbits being the “primes”. Just
as every natural number can be uniquely factored into primes, every discrete dynamical
system can be uniquely written as a disjoint union of periodic orbits. This explains the
exponential in the definition of |P | above: primes like to multiply, while sizes of orbits
like to add.

One nice thing about this zeta function is that when we take the disjoint union of two
discrete dynamical systems, their zeta functions multiply. Another nice thing is that the
zeta function of a dynamical system completely describes it up to isomorphism, at least
when the set X is finite. Decategorification at work!

We can also rewrite this zeta function as a sum:

ζ(s) =
∑
|I|−s

where I ranges over all formal products of periodic orbits, and we define |P1 . . . Pn| =
|P1| . . . |Pn|.

Even better, examples A) and B) overlap. I’ll explain how later, but the key is to
associate to any number field and any prime p a discrete dynamical system

f : X → X

called the “Frobenius automorphism”. This gives a zeta function. It works best if we
take the exponential of the size of each periodic orbit using the base p instead of base e.
Then, if we multiply all these zeta functions, one for each ordinary prime p, we get the
zeta function of our number field!

C) The zeta function of a continuous dynamical system. Now suppose X is some
topological space and we have a time evolution map

ft : X → X
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for each real number t. We can define a zeta function

ζ(s) =
∏ 1

1− |P |−s

where P ranges over all periodic orbits and |P | is the exponential of the “period” of P
— meaning the time it takes for points on this orbit to loop around back to where they
started.

A famous example is when we have a Riemannian manifold. A free particle moving
around on such a space will trace out geodesics, giving us a dynamical system. The
analogue of primes are now “prime geodesics”: periodic geodesics that loop around just
once.

The “covering space” philosophy described in example A) can now be taken literally!
If the Riemannian manifold M ′ is a covering space of M , any prime geodesic P in M
defines a deck transformation of M ′. This transformation acts on the set X of prime
geodesics sitting over P , so we get a one-to-one and onto map

f : X → X

This is exactly like the “Frobenius automorphism” in number theory!
All this is particularly interesting when our manifold is a quotient of the upper half-

plane by a discrete group — see “Week 215” for more on this. The reason is that some
of these quotients are related to number theory. So, we get some direct interactions with
example A).

D) The zeta function of a graph. We can take the idea of “periodic geodesic on a
Riemannian manifold” and vastly simplify it by looking at closed loops in a graph with
finitely many edges and vertices. We get a ζ function

ζ(s) =
∏ 1

1− |P |−s

where P ranges over all “prime loops” in our graph: loops that don’t backtrack or loop
around more than once. Now |P | is the exponential of the length of the loop.

The “covering space” philosophy still applies, since we can define what it means for
a graph G′ to be a covering space of a graph G. Any prime loop P in G defines a deck
transformation of G′. This acts on the set X of prime loops sitting over P , so we get a
one-to-one and onto map

f : X → X

which again deserves to be called the “Frobenius automorphism”.
E) The zeta function of an affine scheme. Given a commutative ring, we can think

of it as the ring of functions on some space. The ζ function of the commutative ring then
counts the points of this space.

To make this precise, we cleverly invent a kind of space called an “affine scheme”,
which is secretly just another name for a commutative ring! So, any commutative ring R
gives an affine scheme called Spec(R), purely by our fiendish definition.

If we take a function and evaluate it at a point, we should get a number. This should
give a homomorphism from functions to numbers. But in algebraic geometry, “numbers”
can be elements of any field k. So, let’s say the “k-points” of Spec(R) are the homomor-
phisms from R to k.
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(This is a bit nontraditional, but I really need this here. For a more traditional alter-
native, see “Week 205”.)

In particular, for any prime p we can take k to be the algebraic closure of the field
with p elements. Let X be the set of k-points of some affine scheme Spec(R). Then
comes something wonderful: if x is a k-point, so is xp, since “raising to the pth power”
is an automorphism of k. So, we get a map

f : X → X

sending x to xp. This is called the “Frobenius automorphism”!
Since f is a discrete dynamical system, we can define its zeta function as in example

B):

ζ(s) =
∏ 1

1− |P |−s

where P ranges over all periodic orbits, and |P | is the exponential of the size of the
periodic orbit, defined using the base p.

So far, this is the zeta function of our affine scheme “localized at p”. If we multiply a
bunch of factors like this, one for each ordinary prime p, we get the zeta function of our
affine scheme. For example, the affine scheme Spec(Z) gives the Riemann zeta function.

In fact, all of example A) fits neatly into this one as a sub-example. And if you know
about schemes that aren’t affine — like projective varieties, such as elliptic curves and
other curves — you’ll see this definition works for them too.

If you know someone else’s definition of the zeta function of a scheme, it may not
look like what I wrote here! But don’t panic. The reason is that people like to express the
zeta function of a discrete dynamical system f : X → X in terms of the number of fixed
points of fn. When f is the Frobenius automorphism, these are usually called “points
defined over the field with pn elements”. So, you’ll see lots of formulas for zeta functions
phrased in terms of these. . . .

Okay. Enough examples.
There are a lot more, but I think these are the simplest. I hope you see how all these

examples are just different expressions of the same idea. To go further, I would tell you
how there are versions of the Riemann Hypothesis in all these examples, and also things
called “L-functions”, and lots of theorems and conjectures concerning them, too!

It’s a wonderful example of the unity of mathematics. But, it’s also a wonderful ex-
ample of how this unity is obscured by people who zoom in on their own favorite special
case and its particular technical complexities while never discussing the big picture. You
wouldn’t believe how hard it’s been for me to figure out what I just told you! It’s like
trying to learn English by reading the US legal code, or learning basic chord progressions
by listening to Schoenberg.

If you’re just trying to get started, here’s one of the more readable introductions:

5) Anton Deitman, “Panorama of zeta functions”, available as math.NT/0210060.

Audrey Terras has a lot of nice slide presentations about the ζ functions and L-
functions of graphs:

6) Audrey Terras, Artin L-functions of graph coverings, available at http://math.

ucsd.edu/~aterras/artin1.pdf

187

http://www.arxiv.org/abs/math.NT/0210060


WEEK 216 MAY 23, 2005

“More on L-functions”, available at http://math.ucsd.edu/~aterras/artin2.

pdf

Here’s a paper written in broken English but making a very serious attempt to explain
things to the nonexpert:

7) David Zywina, “The zeta function of a graph”, available at http://math.berkeley.
edu/~zywina/zeta.pdf

He gives a characterization of graphs whose zeta functions satisfy an analogue of
the Riemann Hypothesis. Strangely, this analogue involves poles of the ζ function in the
critical strip

0 < ℜ(s) < 1

Is this a real difference or the result of some difference in conventions?
Finally, I should explain some more technical stuff about ζ functions and fixed points,

just so I don’t forget it. Suppose we have a discrete dynamical system

f : X → X

and let
|fix(fn)|

be the number of fixed points of the nth iterate of f .
We can define a weird function like this:

Z(u) = exp

(∑
n>0

|fix(fn)|un

n

)

You’ll often see formulas like this running around, especially when f is some sort of
“Frobenius automorphism”. Sometimes people even call these guys zeta functions. But
what in the world do they have to do with zeta functions???

Let’s see. Suppose first that X consists of a single cycle of length k. Then fn has k
fixed points when n is a multiple of k, but none otherwise, so:

Z(u) = exp

(
kuk

k
+
ku2k

2k
+
ku3k

3k
+ . . .

)
= exp

(
uk +

u2k

2
+
u3k

3
+ . . .

)
= exp

(
ln

1

1− uk

)
=

1

1− uk

This is starting to look more like the zeta functions we know and love. It looks even
better if we pick some prime number p and define

ζ(s) = Z(p−s)
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Then we get

ζ(s) =
1

1− p−ks

which is precisely what we’d get using the definition in example B).
Furthermore, for both that old definition and our new one, the zeta function of a

disjoint union of discrete dynamical systems is the product of the zeta functions of the
parts. Since every discrete dynamical system is a disjoint union of cycles, we conclude
that the definitions always agree. In other words,

ζ(s) = Z(p−s)

with

Z(u) = exp

(∑
n>0

|fix(fn)|un

n

)
is always equal to the zeta function defined in example B).

So, don’t let anyone fool you — there aren’t lots of completely different kinds of zeta
functions! There’s just a few kinds, and we could probably boil them down to just ONE
kind with some work.

Some decades ago I made — somewhat in jest — the suggestion that one
should get accepted a non-proliferation treaty of zeta functions. There was
becoming such an overwhelming variety of these objects.

— Atle Selberg
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Week 217

May 30, 2005

Last week I described lots of different zeta functions, but didn’t say much about what
they’re good for. This week I’d like to get started on fixing that problem.

People have made lots of big conjectures related to zeta functions. So far they’ve just
proved just a few. . . but it’s still a big deal.

For example, Andrew Wiles’ proof of Fermat’s Last Theorem was just a tiny spin-off
of his work on something much bigger called the Taniyama-Shimura conjecture. Now,
personally, I think Fermat’s Last Theorem is a ridiculous thing. The last thing I’d ever
want to know is whether this equation:

xn + yn = zn

has nontrivial integer solutions for n > 2. But the Taniyama-Shimura Conjecture is
really interesting! It’s all about the connection between geometry, complex analysis and
arithmetic, and it ties together some big ideas in an unexpected way. This is how it
usually works in number theory: cute but goofy puzzles get solved as a side-effect of
deep and interesting results related to zeta functions and L-functions — sort of like how
the powdered drink “Tang” was invented as a spinoff of going to the moon.

For a good popular book on Fermat’s Last Theorem and the Taniyama-Shimura Con-
jecture, try:

1) Simon Singh, Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathe-
matical Problem, Walker, New York, 1997.

Despite the “world’s greatest mathematical problem” baloney, this book does a great
job of telling the story without drowning the reader in math.

But you read This Week’s Finds because you want to be drowned in math, and I
wouldn’t want to disappoint you. So, let me list a few of the big conjectures and theorems
related to zeta functions.

Here goes:

A) The Riemann Hypothesis — the zeros of the Riemann zeta function in
the critical strip 0 ⩽ ℜ(s) ⩽ 1 actually lie on the line ℜ(s) = 1/2.

First stated in 1859 by Bernhard Riemann; still open.
This implies a good estimate on the number of primes less than a given number, as

described in “Week 216”.

B) The Generalized Riemann Hypothesis — the zeros of any Dirichlet L-
function that lie in the critical strip actually lie on the line ℜ(s) = 1/2.

Still open, since the Riemann Hypothesis is a special case.
A “Dirichlet L-function” is a function like this:

L(χ, s) =
∑
n>0

χ(n)

ns
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where χ is any “Dirichlet character”, meaning a periodic complex function on the positive
integers such that

χ(nm) = χ(n)χ(m)

If we take χ = 1 we get back the Riemann zeta function.
Dirichlet used these L-functions to prove that there are infinitely many primes equal

to k mod n as long as k is relatively prime to n. The Generalized Riemann Hypothesis
would give a good estimate on the number of such primes less than a given number, just
as the Riemann Hypothesis does for plain old primes.

Erich Hecke established the basic properties of Dirichlet L-functions in 1936, includ-
ing a special symmetry called the “functional equation” which Riemann had already
shown for his zeta function. So I bet Hecke must have dreamt of the Generalized Rie-
mann Hypothesis, even if he didn’t dare state it.

C) The Extended Riemann Hypothesis — for any number field, the zeros
of its zeta function in the critical strip actually lie on the line ℜ(s) = 1/2.

Still open, since the Riemann Hypothesis is a special case.
I described the zeta functions of number fields in “Week 216”. These are usually

called “Dedekind zeta functions”. Hecke also proved a functional equation for these
back in 1936.

D) The Grand Riemann Hypothesis — for any automorphic L-function,
the zeros in the critical strip actually lie on the line ℜ(s) = 1/2.

This is still open too, since it includes A)–C) as special cases!
I don’t want to tell you what “automorphic L-functions” are yet. For now, you can just

think of them as grand generalizations of both Dirichlet L-functions and zeta functions
of number fields.

E) The Weil Conjectures — The zeros and poles of the zeta function of
any smooth algebraic variety over a finite field lie on the lines ℜ(s) =
1/2, 1, 3/2, . . . , d/2 where d is the dimension of the variety. The zeros lie
on the lines 1/2, 3/2, . . . while the poles lie on the lines 1, 2, . . .. Also: such
zeta functions are quotients of polynomials, they satisfy a functional equation,
and a lot of information about their zeroes and poles can be recovered from the
topology of the corresponding complex algebraic varieties.

First stated in 1949 by Andre Weil; proof completed by Pierre Deligne in 1974 based
on much work by Michael Artin, J.-L. Verdier, and especially Alexander Grothendieck.
Grothendieck invented topos theory as part of the attack on this problem!

F) The Taniyama-Shimura Conjecture — every elliptic curve over the ra-
tional numbers is a modular curve. Or, equivalently: every L-function of an
elliptic curve is the L-function of a modular curve.

This was first conjectured in 1955 by Yukata Taniyama, who worked on it with Goro
Shimura until committing suicide in 1958. Around 1982 Gerhard Frey suggested that
this conjecture would imply Fermat’s Last Theorem; this was proved in 1986 by Ken
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Ribet. In 1995 Andrew Wiles and Richard Taylor proved a big enough special case of
the Taniyama-Shimura Conjecture to get Fermat’s Last Theorem. The full conjecture was
shown in 1999 by Breuil, Conrad, Diamond, and Taylor.

I don’t want to say what L-functions of curves are yet. . . but they are a lot like
Dirichlet L-functions.

G) The Langlands Conjectures — any automorphic representation π of a
connected reductive group G, together with a finite-dimensional repre-
sentation of its L-group, gives an automorphic L-function L(s, π). Also:
these L-functions all satisfy functional equations. Furthermore, they depend
functorially on the group G, its L-group, and their representations.

Zounds! Don’t worry if this sounds like complete gobbledygook! I only mention it to
show how scary math can get. As Stephen Gelbart once wrote:

The conjectures of Langlands just alluded to amount (roughly) to the assertion
that the other zeta-functions arising in number theory are but special realiza-
tions of these L(s, π).

Herein lies the agony as well as the ecstacy of Langlands’ program. To merely
state the conjectures correctly requires much of the machinery of class field the-
ory, the structure theory of algebraic groups, the representation theory of real
and p-adic groups, and (at least) the language of algebraic geometry. In other
words, though the promised rewards are great, the initiation process is forbid-
ding.

I hope someday I’ll understand this stuff well enough to say something more helpful!
Lately I’ve been catching little glimpses of what it’s about. . . .

But, right now I think it’s best if I talk about the “functional equation” satisfied by
the Riemann zeta function, since this gives the quickest way to see some of the strange
things that are going on.

The Riemann zeta function starts out life as a sum:

ζ(s) = 1−s + 2−s + 3−s + 4−s + . . .

This only converges for ℜ(s) > 1. It blows up as we approach s = 1, since then we get
the series

1

1
+

1

2
+

1

3
+

1

4
+ . . .

which diverges. However, in 1859 Riemann showed that we can analytically continue
the zeta function to the whole complex plane except for this pole at s = 1.

He also showed that the zeta function has an unexpected symmetry: its value at any
complex number s is closely related to its value at 1−s. It’s not true that ζ(s) = ζ(1−s),
but something similar is true, where we multiply the zeta function by an extra fudge
factor.

To be precise: if we form the function

π− s
2Γ
(s
2

)
ζ(s)
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then this function is unchanged by the transformation

s 7→ 1− s

This symmetry maps the line

ℜ(s) = 1

2

to itself, and the Riemann Hypothesis says all the ζ zeros in the critical strip actually lie
on this magic line.

This symmetry is called the “functional equation”. It’s the tiny tip of a peninsula
of a vast and mysterious continent which mathematicians are still struggling to explore.
Riemann gave two proofs of this equation. You can find a precise statement and a version
of Riemann’s second proof here:

2) Daniel Bump, Zeta Function, lecture notes on “the functional equation” avail-
able at http://math.stanford.edu/~bump/zeta.html and http://www.maths.

ex.ac.uk/~mwatkins/zeta/fnleqn.htm

This proof is a beautiful application of Fourier analysis. Everyone should learn it, but
let me try to sketch the essential idea here.

I will deliberately be VERY rough, and use some simplified nonstandard definitions,
since the precise details have a way of distracting your eye just as the magician pulls the
rabbit out of the hat.

We start with the function ζ(2s):

1−s + 4−s + 9−s + 25−s + . . . .

Then we apply a curious thing called the “inverse Mellin transform”, which turns this
function into

z1 + z4 + z9 + z25 + . . .

Weird, huh? This is almost the “theta function”

θ(t) =
∑
n∈Z

eπin
2t

Indeed, it’s easy to see that

θ(t)− 1

2
= z1 + z4 + z9 + z25+ . . .

when
z = eπit

The theta function transforms in a very simple way when we replace t by −1/t, as one
can show using Fourier analysis.

Unravelling the consequences, this implies that the zeta function transforms in a
simple way when we replace s by 1 − s. You have to go through the calculation to see
precisely how this works. . . but the basic idea is: a symmetry in the theta function yields
a symmetry in the zeta function.
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Hmm, I’m not sure that explained anything! But I hope at least the mystery is more
evident now. A bunch of weird tricks, and then presto — the functional equation! To
make progress on understanding the Riemann Hypothesis and its descendants, we need
to get what’s going on here.

I feel I do get the inverse Mellin transform; I’ll say more about that later. But for now,
note that the theta function transforms in a simple way, not just when we do this:

t 7→ −1

t

but also when we do this:
t 7→ t+ 2

Indeed, it doesn’t change at all when we add 2 to t, since e2πi = 1.
Now, the maps

t 7→ −1

t

and
t 7→ t+ 1

generate the group of all maps

t 7→ at+ b

ct+ d

where a, b, c, d form a 2 × 2 matrix of integers with determinant 1. These maps form a
group called PSL(2,Z), or the “modular group”.

A function that transforms simply under this group and doesn’t blow up in nasty ways
is called a “modular form”. In “Week 197” I gave the precise definition of what counts
as transforming simply and not blowing up in nasty ways. I also explained how modular
forms are related to elliptic curves and string theory. So, please either reread “Week 197”
or take my word for it: modular forms are cool!

The theta function is almost a modular form, but not quite. It doesn’t blow up in
nasty ways. However, it only transforms simply under a subgroup of PSL(2,Z), namely
that generated by

t 7→ −1

t

and
t 7→ t+ 2

So, the theta function isn’t a full-fledged modular form. But since it comes close, we call
it an “automorphic form”.

Indeed, for any discrete subgroup G of PSL(2,Z), functions that transform nicely
under G and don’t blow up in nasty ways are called “automorphic forms” for G. They
act a lot like modular forms, and people know vast amounts about them. It’s the power
of automorphic forms that makes number theory what it is today!

We can summarize everything so far in this slogan:

the functional equation for the riemann zeta function says:
“the theta function is an automorphic form”
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But before you start printing out bumper stickers, I should explain. . . .
The point of this slogan is this. We thought we were interested in the Riemann zeta

function for its own sake, or what it could tell us about prime numbers. But with the
wisdom of hindsight, the first thing we should do is hit this function with the inverse
Mellin transform and repackage all its information into an automorphic form — the
theta function.

ζ is dead, long live θ!
The Riemann zeta function is just like all the fancier zeta functions and L-functions in

this respect. The fact that they satisfy a “functional equation” is just another way of say-
ing their inverse Mellin transforms are automorphic forms. . . and it’s these automorphic
forms that exhibit the deeper aspects of what’s going on.

Now let me say a little bit about the inverse Mellin transform.
Ignoring various fudge factors, the inverse Mellin transform is basically just the linear

map that sends any function of s like this:

n−s

to this function of z:
zn

In other words, it basically just turns things upside down, replacing the base by the
exponent and vice versa. The minus sign is just a matter of convention; don’t worry
about that too much.

So, the inverse Mellin transform basically sends any function like this, called a “Dirich-
let series”:

a11
−s + a22

−s + a33
−s + a44

−s + . . .

to this function, called a “Taylor series”:

a1z
1 + a2z

2 + a3z
3 + a4z

4 + . . .

Now, why would we want to do this?
The reason is that multiplying Taylor series is closely related to addition of natural

numbers:
znzm = zn+m

while multiplying Dirichlet series is closely related to multiplication of natural numbers:

n−sm−s = (nm)−s

The Mellin transform (and its inverse) are how we switch between these two pleasant
setups!

Indeed, it’s all about algebra — at least at first. We can add natural numbers and
multiply them, so N becomes a monoid in two ways. A “monoid”, recall, is a set with a
binary associative product and unit. So, we have two closely related monoids:

(N,+, 0)

and
(N,×, 1)
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Given a monoid, we can form something called its “monoid algebra” by taking formal
complex linear combinations of monoid elements. We multiply these in the obvious way,
using the product in our monoid.

If we take the monoid algebra of (N,+, 0), we get the algebra of Taylor series! If we
take the monoid algebra of (N,×, 1), we get the algebra of Dirichlet series!

(Actually, this is only true if we allow ourselves to use infinite linear combinations
of monoid elements in our monoid algebra. So, let’s do that. If we used finite linear
combinations, as people often do, (N,+, 0) would give us the algebra of polynomials,
while (N,×, 0) would give us the algebra of “Dirichlet polynomials”.)

Of course, algebraically we can combine these structures. (N,+,×, 0, 1) is a rig, and
by taking formal complex linear combinations of natural numbers we get a “rig algebra”
with two products: the usual product of Taylor series, and the usual product of Dirichlet
series. They’re compatible, too, since one distributes over the other. They both distribute
over addition.

However, if we’re trying to get an algebra of functions on the complex plane, with
pointwise multiplication as the product, we need to make up our mind: either Taylor
series or Dirichlet series! We then need the Mellin transform to translate between the
two.

So, what seems to be going on is that people take a puzzle, like

“what is the sum of the squares of the divisors of n?”

or

“how many ideals of order n are there in this number field?”

and they call the answer an.
Then they encode this sequence as either a Dirichlet series:

a11
−s + a22

−s + a33
−s + a44

−s + . . .

or a Taylor series:
a1z

1 + a2z
2 + a3z

3 + a4z
4 + . . .

The first format is nice because it gets along well with multiplication of natural numbers.
For example, in the puzzle about ideals, every ideal is a product of prime ideals, and its
norm is the product of the norms of those prime ideals. . . so our Dirichlet series will
have an Euler product formula.

The second format is nice if our Taylor series is an automorphic form. This will
happen precisely when our Dirichlet series satisfies a functional equation.

(For experts: I’m ignoring some fudge factors involving the gamma function.)
I still need to say more about which puzzles give automorphic forms, what it really

means when they do. But, not this week! I’m tired, and I bet you are too.
For now, let me just give some references. There’s a vast amount of material on

all these subjects, and I’ve already referred to lots of it. But right now I want to focus
on stuff that’s free online, especially stuff that’s readable by anyone with a solid math
background — not journal articles for experts, but not fluff, either.

Here’s some information on the Riemann Hypothesis provided by the Clay Mathe-
matics Institute, which is offering a million dollars for its solution:
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3) Clay Mathematics Institute, “Problems of the Millennium: the Riemann Hypothe-
sis”, http://www.claymath.org/millennium/

The official problem description by Enrico Bombieri talks about evidence for the Rie-
mann Hypothesis, including the Weil Conjectures. The article by Peter Sarnak describes
generalizations leading up to the Grand Riemann Hypothesis. In particular, he gives a
super-rapid introduction to automorphic L-functions.

Here’s a nice webpage that sketches Wiles and Taylor’s proof of Fermat’s last theorem:

4) Charles Daney, “The Mathematics of Fermat’s Last Theorem”, http://www.mbay.
net/~cgd/flt/fltmain.htm

I like the quick introductions to “Elliptic curves and elliptic functions”, “Elliptic curves
and modular functions”, “Zeta and L-functions”, and “Galois Representations” — they’re
neither too detailed nor too vague, at least for me.

Here’s a nice little intro to the Weil Conjectures:

5) Runar Ile, “Introduction to the Weil Conjectures”, http://folk.uio.no/~ile/

WeilA4.pdf

James Milne goes a lot deeper — his course notes on etale cohomology include a
proof of the Weil Conjectures:

6) James Milne, “Lectures on Etale Cohomology”, http://www.jmilne.org/math/

CourseNotes/math732.html

while his course notes on elliptic curves sketch the proof of Fermat’s Last Theorem:

7) James Milne, “Elliptic Curves”, http://www.jmilne.org/math/CourseNotes/math679.
html

Here’s a nice history of what I’ve been calling the Taniyama-Shimura Conjecture,
which explains why some people call it the Taniyama-Shimura-Weil conjecture, or other
things:

8) Serge Lang, “Some history of the Shimura-Taniyama Conjecture”, AMS Notices
42 (November 1995), 1301–1307. Available at http://www.ams.org/notices/
199511/forum.pdf

Here’s a quick introduction to the proof of this conjecture, whatever it’s called:

9) Henri Darmon, “A proof of the full Shimura-Taniyama-Weil Conjecture is announced”,
AMS Notices 46 (December 1999), 1397–1401. Available at http://www.ams.org/
notices/199911/comm-darmon.pdf

I won’t give any references to the Langlands Conjectures, since I hope to talk a lot
more about those some other time.

And, I hope to keep on understanding this stuff better and better!
I thank James Borger and Kevin Buzzard for help with this issue of This Week’s Finds.
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Addendum: Here’s part of an email exchange I had with Kevin Buzzard of Imperial
College after he read this Week’s Finds:

I wrote:

What I REALLY want to know is: what combinatorial properties of an integer
sequence an are we being told when we’re told that the Dirichlet series∑

n

ann−s

comes from an automorphic form?

He replied:

Yeah, that’s a really key question. I’m not sure that there is an elementary an-
swer. Here is another question: given a sequence of complex numbers a1, a2, . . . , an, . . .,
with

an = O(nr),
what is a neat easy-to-understand property of this sequence which implies (or is
implied by, or is equivalent to) the statement that∑ an

ns

has analytic (or meromorphic) continuation beyond ℜ(s) > r? Maybe even this
is hard—or maybe there is no such elementary criterion.

I’ll be happy to assume for starters that an is multiplicative.

This might not “logically speaking” be necessary, but on the other hand prob-
ably the most interesting cases have this property. Here is an example. Take
a sequence of complex numbers a1, a2, . . . which is periodic with prime period
p (primality probably isn’t necessary but it simplifies the combinatorics). Then
the associated L-function ∑ an

ns

has meromorphic continuation with at worst a simple pole at s = 1 and no
other poles, and one could even argue that the ai “came from an automorphic
form”.

On the other hand, this is not the kind of automorphic form that people usually
think about because it’s not an eigenform. What is happening is that “there
are enough Dirichlet characters”: consider the trivial character χ(n) = 1 for
all n, and then the p − 1 Dirichlet characters of level p, those defined by group
homomorphisms

χ : (Z/pZ)∗ → C∗

and extended to functions on Z by χ(n) = 0 for n a multiple of p. These p
functions on Z form a basis of the vector space of periodic functions on Z with
period p.
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The Dirichlet characters give automorphic forms, but automorphic forms are a
vector space so you can add them together and get an automorphic form for
any periodic function. However the Dirichlet characters are the most interesting
such forms because these are the ones which are eigenforms. The eigenforms give
multiplicative an, but it’s certainly not true in general that a periodic function
is multiplicative.

But I can’t really enlighten you much further. I know that the L-function of an
automorphic form has meromorphic continuation and that we understand the
poles (but we only conjecturally understand the zeroes). However if someone
put some an in front of me I would demand that they told me where the an had
come from before I put my money on whether there was an automorphic form.

The example where I actually proved something was in the case where the
an came from a finite-dimensional complex representation of Gal(K/Q) with
K a number field, Galois over Q. (In fact my only contribution was in the
2-dimensional case, the 1-dimensional case having been understood for some
time.) The an are then related to traces of the representation. Artin conjectured
in the 1930s that ∑

an/n
s

should have analytic continuation to all of the complex plane if the representa-
tion was irreducible and not the trivial 1-dimensional representation. Langlands
conjectured much later that the an should come from an automorphic form, and
we knew by then that Langlands’ conjecture implied Artin’s. But none of the an-
alytic guys know how to prove Artin’s conjecture without essentially deducing
it from Langlands’! I did something with some other Brits in the 2-dimensional
case. Ironically, to deduce our analytic continuation results, we proved some p-
adic analytic continuation results first :-) We constructed a modular form using
p-adic techniques (and all of Wiles’ machinery).

I get the feeling that nobody knows the answer, except perhaps for
specific cases like modular forms, where we know they’re all linear
combinations of products of Eisenstein series, so that an is built out
of sequences like σk(n) — sums of kth powers of divisors.

But unfortunately this is only true for “level 1” modular forms: you can build
all modular forms of level 1 from the Eisenstein series E4 and E6. There is no
neat analogous result for modular forms for the group Γ0(N) for general N . In
particular you will never see the an for an elliptic curve built up from Eisenstein
series in this way :-(

What I’d like is a really “conceptual” answer. . . or else for someone
to admit that nobody knows such an answer yet.

I think I will freely admit that, although that’s just a personal opinion.
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Here is why Dirichlet characters are the same as 1-dimensional complex repre-
sentations of Gal(Q/Q). It’s called the Kronecker-Weber theorem, it pre-dates
class field theory (although it is now a special case), and you can just about
prove it at the end of an introductory undergraduate course on number fields,
as the last starred question on the example sheet, and only for people that have
done the Galois theory course too. Let K be a number field and assume K is Ga-
lois over Q (equivalently, that there is a polynomial f with rational coefficients
such that K is the smallest subfield of the complex numbers containing all the
roots of f ; K is called the “splitting field” of f).

Then K has a Galois group Gal(K/Q), which is the field automorphisms of K
that fix Q. Say f has degree n and n roots z1, z2, . . . , zn. Then any automor-
phism of K fixes f , so it permutes the roots of f . So we get an embedding

Gal(K/Q)→ Sn

where Sn is the symmetric group on the set z1, z2, . . . , zn. Then any automor-
phism of K fixes f , so it permutes the roots of f . So we get an embedding

“Generically” this map is an isomorphism. But certainly not always — if there
are subtle relations amongst the zi with rational coefficients then these subtle
relations must also be preserved by the Galois group. One of my favourite ex-
amples is the equation x4 − 2. This is an irreducible polynomial of degree 4,
the four roots are z, iz, −z and −iz where z is the real 4th root of 2 and i is√
−1. But z+(−z) = 0, so if K is the field generated by these roots and σ is an

automorphism of K then σ(z) + σ(−z) will also be zero, and the Galois group
cannot possibly be all of S4. In fact one can check that the Galois group is D8,
the dihedral group with 8 elements (the four roots form a square in the complex
plane and it’s the symmetries of this square).

So there’s Galois theory. Now here’s a question: can we classify all the number
fields K, Galois over Q, with Gal(K/Q) an abelian group?

Here are some examples: K = Q(
√
d), the splitting field of x2 − d. If d is the

square of a rational then K = Q and if not then it’s an extension of degree 2,
with Galois group S2 which is abelian.

The splitting field of xn − 1, called the nth cyclotomic field, also turns out to
have abelian Galois group; if z = exp(2πin) then any automorphism of K must
send z to another nth root of unity and furthermore the nth root of unity must
have “exact order n”, i.e. its nth power must be 1 but none of its mth powers
can be 1 for 0 < m < n. So z must get sent to za with 0 < a < n coprime to n.
This gives us an injection

Gal(K/Q)→ (Z/nZ)∗,

where (Z/nZ)∗ is the units in the ring Z/nZ (send σ to a), and it’s tricky but
true that this is in fact an isomorphism (use the fundamental theorem of Galois
theory, and cyclotomic polynomials, or try and get a “trick” proof that uses as
little of this as possible, but it’s still some work). In any case Gal(K/Q) is
certainly abelian.
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Next example: any subfield of any previous example, because this is how Galois
theory works: if K contains L contains Q, and both K and L are Galois over
Q, then the obvious restriction map Gal(K/Q)→ Gal(L/Q) is a surjection.

So we now have quite a general example of a number field K with Gal(K/Q)
abelian: any subfield of a cyclotomic field. The hard theorem (not really too
hard, but quite messy) is that the converse is true: Gal(K/Q) abelian implies
that K is contained within a cyclotomic field. For example Q(

√
5) is in the 5th

cyclotomic field because cos(72◦) = (
√
5− 1)/4.

Any Dirichlet character gives a group homomorphism

(Z/nZ)∗ → C∗,

so a map
Gal(Kn/Q)→ C∗,

with Kn the nth cyclotomic field, so a continuous group homomorphism

Gal(Q/Q)→ C∗.

Conversely any continuous group homomorphism

Gal(Q/Q)→ C∗

factors through a compact discrete quotient of Gal(Q/Q), which is just Gal(K/Q)
for some number field K, and we get an injection

Gal(K/Q)→ C∗,

so Gal(K/Q) is abelian, so K is contained in a Kn for some n, so we get a map

Gal(Kn/Q)→ C∗

so it’s a Dirichlet character.

Amazingly it might have been Langlands who really sold this “duality” point,
100 years after it was understood: people always used to state Kronecker–Weber
as “any abelian number field is contained in a cyclo field” rather than the dual
“any 1-dimensional rep of Gal(Q/Q) comes from a Dirichlet character”. It was
perhaps Langlands who realised that the correct generalisation of this statement
was “any n-dimensional rep of Gal(Q/Q) comes from an automorphic form”,
rather than a statement about non-abelian extensions of Gal(Q/Q). Perhaps
you will like the reason that people find the representation-theoretic approach
appealing: I have been talking about number fields as subfields of the complexes,
but really a number field is an abstract object which is a field and happens to
have finite dimension over Q, but it does not have a preferred embedding into the
complexes. As a result of this sort of thinking, one realises that Q is unique, but
only up to highly non-unique isomorphism, and hence Gal(Q/Q) is a “group
only defined up to inner automorphism”! Hence it almost makes no sense to
study this group—we cannot make any serious sense of an element of this group,
because it’s only the conjugacy classes that are well-defined. Hence we should
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study the representations of the group on abstract vector spaces (i.e. ones with-
out preferred bases), because these are well-defined up to isomorphism. The
reason there was so much mileage in the abelian case was that this subtlety goes
away: an abelian group up to inner automorphism is an abelian group.

I know some facts about the sequence an coming from, say, an elliptic curve
over the rationals, but the killer, and one that is really hard to “read off” from
the an, is that the an are related to the traces of Frobenius elements on a 2-
dimensional p-adic Galois representation (the Tate module of the curve). The
moment I see a Galois representation I think that this must be something to do
with automorphic forms, so that’s why I believe that the L-function of an elliptic
curve should come from a modular form. And it does! On the other hand, if you
give me any finite set of primes p, and any integers ap with p running through
the set, such that |ap|2 ⩽ 4p, then I can concoct an elliptic curve with these ap,
so at the very least one has to look at infinitely many of the an before one can
begin to guess whether the an come from an automorphic form.

Kevin

If I were to awaken after having slept for a thousand years, my first question
would be: “Has the Riemann hypothesis been proven?”

— David Hilbert
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Week 218

June 5, 2005

Classes are over! Summer is here! Now I can finally get some work done! I’ll be travelling
to Sydney, Canberra, Beijing, Chengdu and Calgary, but mainly I want to finish writing
some papers.

First, though, I need to recover from a hard quarter. I need to goof off a bit! I spent
most of yesterday lying in bed reading. Now I want to talk some more about number
theory.

Let’s see, where were we? I had just begun to introduce the theme of L-functions and
their corresponding automorphic forms. My ultimate goal is to understand the Langlands
Conjectures well enough to give a decent explanation of what they say. Instead of simply
stating them, I’d like to really make them plausible, and this will take quite an elaborate
warmup. So, this Week I want to talk about some background.

Actually, this reminds me of something Feynman wrote: whenever he worked on a
problem, he needed the feeling he had some “inside track” — some insight or trick up his
sleeve that nobody else had. Most of us will never be as good as Feynman at choosing
an “inside track”. But I think we all need one to convert what would otherwise be a
dutiful and doomed struggle to catch up with the experts into something more hopeful
and exciting: a personal quest!

For anyone with a physics background, a good “inside track” on almost any math
problem is to convert it into some kind of crazy physics problem. It doesn’t need to be
realistic physics, just anything you can apply physics intuition to! This is part of why
string theorists have been so successful in cracking math problems. It also underlies
Alain Connes’ attempt to prove the Riemann Hypothesis:

1) Alain Connes, “Noncommutative Geometry, Trace Formulas, and the Zeros of the
Riemann Zeta Function”. Ohio State course notes and videos at http://www.math.
ohio-state.edu/lectures/connes/Connes.html

Alain Connes, “Trace formula in noncommutative geometry and the zeros of the
Riemann zeta function”, available as math.NT/9811068.

2) Mathilde Marcolli, “Noncommutative geometry and number theory”, available at
http://www.math.fsu.edu/~marcolli/ncgntE.pdf

Of course, Connes also has another “inside track”, namely his theory of noncommu-
tative geometry.

By the way: a number theorist I know says he thinks Connes has essentially proved
the Riemann Hypothesis, in the same way that Riemann “essentially” proved the Prime
Number Theorem. Namely, he has reduced it to some facts that seem obviously true! Of
course, it took about 40 years, from 1859 to 1896, for Riemann’s plan to be fulfilled by
Hadamard and De La Vallee Poussin. So, even if Connes’ insights are correct, it may be
a while before the Riemann Hypothesis is actually proved.

For anyone with a background in geometry, a good “inside track” on almost any math
problem is to convert it into a geometry problem. In the case of number theory this trick
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is old news, but still very much worth knowing. It’s based on an analogy which I began
discussing in “Week 198”.

The analogy starts out like this:

Number theory Complex geometry

Integers, Z Polynomial functions on the complex plane,
C[z]

Rational numbers, Q Rational functions on the complex plane,
C(z)

Prime numbers, P Points in the complex plane, C

Why is this analogy good? Well, for starters:

Every rational number is a ratio of integers.

Every rational function is a ratio of polynomials.

Better yet:

Every integer can be uniquely factored into primes
(modulo invertible integers, namely +1 and −1).

Every complex polynomial can be uniquely factored into linear polynomials
(modulo invertible polynomials, namely nonzero constants).

There’s one linear polynomial z − a for each point a in the complex plane, so primes
are like points in the complex plane.

We can make this precise using the concept of “spectrum”, which I defined in “Week
199”. Ignoring a certain little sublety which is discussed there:

The spectrum of Z is the set of prime numbers.

The spectrum of C[z] is the complex plane.

This way of thinking lets us treat the spectrum of any algebraic extension of the
integers, like the Gaussian integers, as a “covering space” of the set of prime numbers.
I’ve already drawn this picture:

(1 + i) (3)
(2 + i)

(2 − i)
(7) (11)

(2 + i)

(2 − i)

2 3 5 7 11 13

But, now I’m saying that the “line” down below really acts like the complex plane. Taking
this strange idea seriously leads to all sorts of amazing insights.
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For example, if you poke a hole in this “plane” at some prime, there’s something
like a little loop that goes around this hole! In other words, there’s a sense in which
the spectrum of Z has a nontrivial “fundamental group”, which contains an element for
each prime. Technically this group is called the Galois group Gal(Q/Q), and we get an
element in it for each prime, called the “Frobenius automorphism” for that prime.

Another cool thing is that we can study integers “locally”, one prime at a time, just
like we study complex functions locally. We can analyze functions at a point using Taylor
series and Laurent series. And, we can stretch our analogy to include these concepts:

Number theory Complex geometry

Integers, Z Polynomial functions on the complex plane,
C[z]

Rational numbers, Q Rational functions on the complex plane,
C(z)

Prime numbers, P Points in the complex plane, C
Integers mod pn, Z/pn (n− 1)st-order Taylor series, C[z]/(z − a)n
p-adic integers, Zp Taylor series, C[[z − a]]
p-adic numbers, Qp Laurent series, C((z − a))

All the weird symbols are just the standard notations for these gadgets. The analogy
goes as follows:

To study a polynomial “at a point” a in the complex plane,
we can look at its value modulo (z − a), or more generally mod (z − a)n.

To study an integer “at a prime” p,
we can look at its value modulo p, or more generally mod pn.

This is nice because the value of a polynomial modulo (z−a)n is just its Taylor series
at the point a, where we keep terms up to order n− 1.

We can also also take the limit as n → ∞. If we do this to the integers mod pn we
get a ring called the “p-adic integers”. For example, a typical 3-adic integer, written in
base 3, looks like this:

. . . 21001102020110102012102201

They’re just like natural numbers in base 3, except they go on forever to the left! We add
and multiply them in the obvious way, for example:

. . . 21001102020110102012102201

+ . . . 10201101012201201122010012

= . . . 01202210110012010211112220

If we take the same sort of limit for Taylor series, we get Taylor series that go on forever
— in other words, formal power series.

We can also ratios of p-adic integers, which are called p-adic numbers, and ratios of
Taylor series, which are called Laurent series. A typical 3-adic number, written in base 3,
looks like this:

. . . 121010010012121201201201011.21021
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They have to stop at some finite stage at the right, just as Laurent series have to stop
at some finite stage: they can’t have arbitrarily large negative powers of z − a.

Laurent series can be used to describe functions that have a pole at some point, like
rational functions. Similarly, p-adic numbers can be used to describe rational numbers.
Using more math jargon:

For any point a in C, there’s a homomorphism
from the field of rational functions
to the field of Laurent series,
which sends polynomials to Taylor series.

For any prime p, there’s a homomorphism
from the field of rational numbers
to the field of p-adic numbers,
which sends integers to p-adic integers.

This lets us study rational numbers “locally” at the prime p using p-adic numbers,
just as we can study a rational function locally at a point using its Laurent series. This
technique can be quite useful. For example, a polynomial equation can have rational
solutions only if it has p-adic solution for all primes p.

We might hope for the converse, but then we would be ignoring a funny extra “prime”
besides the usual ones. . . something called the “real prime”!

The point is, besides being able to embed the rational numbers in the p-adics for any
prime p, we can also embed them in the real numbers! This embedding is a bit different
than the rest: it’s based on a weird thing called an “Archimedean valuation”, while the
usual primes correspond to non-Archimedean valuations.

I’m sort of joking here, since if you’re more used to real numbers than p-adics, you’ll
probably find Archimedean valuations to be less weird than non-Archimedean ones. The
Archimedean valuation on the rational numbers is just the usual absolute value, while
the non-Archimedean ones are other concepts of “absolute value”, one for each prime
p. If we take limits of rational numbers that converge using the usual distance function
|x − y|, we get real numbers; if we take limits that converge using one of the non-
Archimedean versions of this distance function, we get p-adic numbers. But from the
viewpoint of number theory, it’s the Archimedean valuation that’s the odd man out! It
indeed does act very weird and different than all the rest. That’s why someone wrote
this book:

3) M. J. Shai Haran, The Mysteries of the Real Prime, Oxford U. Press, Oxford, 2001.

. . . which you will see is deeply connected to mathematical physics.
If we take this weird “real prime” into account, things work better. We sometimes

get results saying that some kind of polynomial equations have a rational solution if they
have p-adic solutions for all primes p and also a real solution. For example, Hasse proved
this was true for systems of quadratic equations in many variables.

Results like this are called “local-to-global” results, since they’re analogous to con-
structing a function from local information, like its Laurent series at all different points.
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In 1950, in his famous PhD thesis, John Tate came up with a clever way to formalize
this “Laurent series at all different points” idea in the context of number theory. To do
this, he formed a ring called the “adeles”.

Indeed, this is what my whole discussion so far has been leading up to! Adeles are
a really nice formalism, and you pretty much need to understand them to follow what
people are doing in work on the Langlands Conjectures, or even simpler things, like
class field theory. But, adeles seem like an arbitrary construction until you see them as
an inevitable outgrowth of our desire to study integers “locally” at all different primes,
including the real prime.

The definition is simple. An adele consists of a p-adic number for each prime p,
together with a real number. . . but where all but finitely many of the p-adic numbers
are p-adic integers!

This is the number-theoretic analogue of a Laurent series for each point in the com-
plex plane, including the point at infinity. . . but with poles at only finitely many points!
We could call such a thing an “adele for the rational functions”.

Any rational function gives such a thing, just as any rational number gives an adele.
And, we don’t lose any information this way:

There’s a one-to-one (but not onto) homomorphism
from the rational functions to the adeles for the rational functions.

There’s a one-to-one (but not onto) homomorphism
from the rational numbers to the adeles for the rational numbers.

So, our table now looks like this. For good measure, I’ll combine it with the related
table in “Week 205”:

Number theory Complex geometry

Integers Polynomial functions on the complex plane
Rational numbers Rational functions on the complex plane
Prime numbers Points in the complex plane
Integers mod pn (n− 1)st-order Taylor series
p-adic integers Taylor series
p-adic numbers Laurent series
Adeles for the rationals Adeles for the rational functions
Fields One-point spaces
Homomorphisms to fields Maps from one-point spaces
Algebraic number fields Branched covering spaces of the complex plane

There’s a lot more to say about this analogy, but I think this is enough for now. Again,
one of my secret goals was to start getting you comfy with adeles and the idea of studying
number theory “locally”.

For more on the geometrical side of number theory, I again recommend these:

4) Juergen Neukirch, Algebraic Number Theory, trans. Norbert Schappacher, Springer,
Berlin, 1986.
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5) Dino Lorenzini, An Invitation to Arithmetic Geometry, American Mathematical So-
ciety, Providence, Rhode Island, 1996.

But now, back to the subject of “inside tracks” — sneaky ways to get the beneficial
feeling that you have secret insights into some problem.

For anyone with a background in categories, a good “inside track” on almost any
math problem is to categorify it: to see that people are using sets where they could, and
therefore should, be using categories or n-categories.

I’ve already hinted that zeta functions are an example of “decategorification”. Now
I’d like to make this more precise.

Let’s think about the zeta function of a set X equipped with a one-to-one and onto
function

f : X → X

If you’re a physicist, you might call this a “discrete dynamical system”, with f describing
one step of “time evolution”. If you’re a mathematician, you might call this a “Z-set”.
After all, for any group G, a “G-set” is a set equipped with an action of G. If G = Z (the
additive group of integers), this amounts to a one-to-one and onto function from some
set to itself.

No matter what you call them, these are fundamental things. So, let’s look at the
category of Z-sets! Here the objects are Z-sets and the morphisms are functions that
commute with time evolution.

As explained near the end of “Week 216”, we can define a kind of zeta function for a
Z-set as follows:

Z(x) = exp

(∑
n>0

|fix(fn)|xn

n

)
where |fix(fn)| is the number of fixed points of fn. Of course, this only makes sense if
all these numbers are finite; henceforth I’ll assume my Z-sets are “finite” in this special
sense.

It turns out that you know a finite Z-set up to isomorphism if you know its zeta
function. So, a zeta function is just a sneaky way of talking about an isomorphism class
of finite Z-sets.

This is a fancy example of something we all learn as kids: counting! When we “count”
a finite set, assigning a natural number to it, we are really determining its isomorphism
class. Two finite sets are isomorphic if and only if they have the same number of ele-
ments. Operations on finite sets, like disjoint union and Cartesian product, are what give
rise to operations on natural numbers, like addition and multiplication.

Summarizing this, we have the following motto, suitable for making into a bumper
sticker:

the set of natural numbers is the decategorification of
the category of finite sets

Similarly, this is what we’re seeing now:

the set of zeta functions is the decategorification of
the category of finite 𭟋-sets
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Beware: here I’m only talking about zeta functions of the above form. There are lots
of other things people call zeta functions. So, don’t read too much into this statement.
But don’t read too little into it, either! With an extra twist we can get most of the zeta
functions showing up in number theory. In number theory, we typically get a Z-set for
each prime p, coming from the “Frobenius” for that prime. We thus get a bunch of
“local” zeta functions Zp(x), one for each prime. We then multiply these to get one big
fat “global” zeta function:

ζ(s) =
∏
p

Z(p−s)

Each local zeta function is a formal power series, while this global zeta function is a
Dirichlet series. As I mentioned in “Week 217”, formal power series live in the monoid al-
gebra of (N,+, 0), while Dirichlet series live in the monoid algebra of (N,×, 1). (N,+, 0)
is the free commutative monoid on one generator, while (N,×, 1) is the free commutative
monoid on countably many generators — the primes! Everything fits together sweetly.

So, it’s a good first step to think about the zeta function of a single Z-set.
Now, there’s another motto along the lines of the above two, which I’ve talked about

before:

the set of generating functions is a decategorification of
the category of finite structure types

I explained this in “Week 185”, “Week 190”, and “Week 202”. I’ve even taught a whole
course on structure types (also known as “species”) and the combinatorics of Feynman
diagrams. The course notes by Derek Wise are available online:

6) John Baez and Derek Wise, “Quantization and Categorification”, available at:
http://math.ucr.edu/home/baez/qg-fall2003/

http://math.ucr.edu/home/baez/qg-winter2004/

http://math.ucr.edu/home/baez/qg-spring2004/

So, I think this third example of decategorification is great. But, I’m not going to
explain it in much detail here — just enough to say how it’s related to zeta functions!

A stucture type F is a gadget that gives a set Fn for each n = 0, 1, 2, . . .. We think
of the elements of Fn as “structures of type F ” on an n-element set — for example,
orderings, or cyclic orderings, or n-colorings, or whatever type of structure you like. We
only require that permutations of the n-element set act on this set of structures.

Let’s say a structure type is “finite” if all the sets Fn are finite. Any finite structure
type has a “generating function”, which is a formal power series |F | given by

|F |(x) =
∑ |Fn|

n!
xn

Isomorphic structure types have the same generating function. However, structure types
with the same generating function can fail to be isomorphic. This is why I said generating
functions are “a” decategorification of finite structure types, instead of “the” decategori-
fication.
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Despite this defect, generating functions are still very useful in combinatorics. So,
when we see a zeta function like

Z(x) = exp

(∑
n>0

|fix(fn)|xn

n

)

as a trick for decategorifying Z-sets, we should instantly wonder if it’s a generating
function in disguise. And of course, it is!

Actually it’s easiest to leave out the exponential at first. This power series:∑
n>0

|fix(fn)|xn

n

is the generating function for the structure type “being cyclically ordered and equipped
with a morphism to the Z-set X”.

Huh?
We “cyclically order” a finite set by drawing it as a little circle of dots with arrows

pointing clockwise from each dot to the next. A cyclically ordered set is automatically
a Z-set in an obvious way. So, here’s a type of structure you can put on a finite set:
cyclically ordering it and equipping the resulting Z-set with a morphism to the Z-set X.

And, if you work out the generating function of this structure type, you get∑
n>0

|fix(fn)|xn

n

Check it and see!
What about the exponential? Luckily, there’s a standard way to take the exponential

of a structure type: to put an exp(F )-structure on a finite set S, we chop S into disjoint
parts and put an F -structure on each part. So, the zeta function

Z(x) = exp

(∑
n>0

|fix(fn)|xn

n

)

is the generating function for “being chopped up into cyclically ordered parts, each
equipped with a morphism to the Z-set X”.

But this is just a long way of saying: “being made into a Z-set and equipped with a
morphism to the Z-set X”.

Or, in category theory jargon, “being a Z-set over X”.
So:

the zeta function of the 𭟋− set x is the generating function of
“being a 𭟋− set over x”

By the way, this is the kind of thing you could do with any structure type F . Given an
F -structured set X, we get a new structure type “being an F -structured set equipped
with a morphism to X”. Or, in category theory jargon, “being an F -structured set
over X”. The generating function of this could be called the “zeta function” of our
F -structured set X. I have no idea how important this is. . .
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. . . but I want to keep gnawing away on the connection between zeta functions and
the generating functions of combinatorics, because to understand number theory, I need
all the “inside tracks” I can get!

Addendum: After reading this Week’s Finds, Kevin Buzzard emailed me the following
remarks. He begins by talking about adeles for any algebraic number field K — a fairly
straightforward generalization of the case I discussed above, where K is the rational
numbers:

The adeles were used in a really powerful way in the theorems and proofs of
global class field theory (you don’t want to read the proofs. I did this precisely
once in my life and they are very unilluminating). But the theorem — if K is a
number field then the abelianisation of Gal(K/K) is canonically isomorphic to

K∗ \AdelesK∗/(K∗
∞)0

(the last term being the connected component of the product of the infinite com-
pletions of K) — is incredibly important.

Much easier going is Tate’s thesis (in the book by Cassels and Froehlich). Tate ob-
serves that Fourier analysis works on any locally compact abelian group (Haar
measure is the replacement for “usual” measure), and then gives a very short
proof of the analytic continuation and functional equation of all Hecke’s L-
functions by simply pushing through an analogue of the proof you know of the
functional equation of the zeta function in this much more general context. I
think this is an amazingly powerful use of the adeles. Tate’s approach explains
the fudge factors, the factors at infinity, everything.

A word on analogies. If you want to say that the p-adic integers are analogous
to the formal power series ring C[[z − a]] (call it C[[z]] for simplicity) then
in fact some people would say that this was not an analogy—this was simply
two instances of the same thing, namely a complete discrete valuation ring.
Similarly, you might say that Z is analogous to C[z], but again some people
would just tell you to go and get a book on commutative algebra and look up
the word “Dedekind domain” — both of these are examples. A geometer might
even go and tell you to go and find out what a regular 1-dimensional scheme
was!

One thing I didn’t realise when I was learning all this stuff however, was that
there is some stuff that just goes through for all Dedekind domains (e.g. con-
struction of adeles, existence of class group etc), and there is some stuff that
actually requires more. Tate’s thesis for example requires more — it doesn’t just
work for all Dedekind domains because Tate needs a Haar measure and so he
needs completions to be locally compact, which is basically the same as demand-
ing that all residue fields are finite. Here’s something you can do for Zp which
you can’t do for C[[z]]: let’s define the measure of a+ pnZp to be p−n. Then this
is finitely additive, because Zp is the disjoint union pZ∪1+pZ∪. . .∪(p−1)+pZ,
and 1/p+1/p+ . . .+1/p (p times) is 1. But you can’t do this for C[[z]] because
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the cardinality of C is infinite. This naive measure on Zp is exactly what you
need to define p-adic L-functions, by the way! But they are another (related)
story.

When you move from Discrete Valuation Rings to Dedekind Domains the same
care needs to be applied: it’s a famous theorem that the ideal class group of
(the integers of) a number field is finite. But it’s not true that the class group
of a Dedekind domain is finite: the class group of C[z] is finite as C[z] is a
principal ideal domain, but the class group of C[x, y]/(y2 − x3 − 1) is infinite
(the class group is essentially the underlying elliptic curve, which is an infinite
group). Again you have to demand that residue fields are finite. So this stops
you thinking about C[z] and its finite extensions, it forces you to start thinking
about k[z] where k is a finite field. Of course algebraic geometers aren’t scared
of finite fields (well, at least, the ones I talk to the most aren’t), so after a while
your analogy is going to break because C is infinite. Langlands’ philosophy is (or
at least, was—it has been generalised in various directions now) about global
fields, which means either number fields or finite extensions of k(z) where k is a
finite field. Of course Lafforgue recently proved everything in the function field
case, hence the Fields Medal.

Kevin

I replied:

The adeles were used in a really powerful way in the theorems and
proofs of global class field theory (you don’t want to read the proofs.
I did this precisely once in my life and they are very unilluminating).

Then I think there must exist nicer proofs! There can’t possibly be such impor-
tant and beautiful results where the best possible proof is unilluminating. So,
someone needs to work on this more. . . perhaps me, if everyone else is too busy.
:-)

But the theorem — if K is a number field then the abelianisation of
Gal(K/K) is canonically isomorphic to K∗ \ AdelesK∗/(K∗

∞)0 (the
last term being the connected component of the product of the infinite
completions of K) — is incredibly important.

It’s beautiful, too!

Much easier going is Tate’s thesis (in the book by Cassels and Froehlich).
Tate observes that Fourier analysis works on any locally compact
group (Haar measure is the replacement for “usual” measure), and
then gives a very short proof of the analytic continuation and func-
tional equation of all Hecke’s L-functions by simply pushing through
an analogue of the proof you know of the functional equation of the
zeta function in this much more general context. I think this is an
amazingly powerful use of the adeles. Tate’s approach explains the
fudge factors, the factors at infinity, everything.
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This sounds great. I’ve always heard people rave about Tate’s thesis, and now
it’s time for me to read it. . . or at least the book you mention — but I get the
feeling the actual thesis is good.

A word on analogies.If you want to say that the p-adic integers are
analogous to the formal power series ring C[[z − a]] (call it C[[z]] for
simplicity) then in fact some people would say that this was not an
analogy — this was simply two instances of the same thing, namely
a complete discrete valuation ring.

Yes, but I don’t want to intimidate my readers with concepts like “complete
discrete valuation ring” — I’d rather lure them in with the charm of a mysterious
analogy! I think think this is how things went historically, too. . . judging from
Weil’s remarks:

7) Martin H. Krieger, “A 1940 letter of Andre Weil on analogy in mathemat-
ics”, AMS Notices 52 (March 2005), 334–341. Available at http://www.
ams.org/notices/200503/200503-toc.html

He even talks about how the charm of an analogy evaporates when you find a
generalization that encompasses both terms:

“The day dawns when the illusion vanishes; intuition turns to certi-
tude; the twin theories reveal their common source before disappear-
ing; as the Gita teaches us, knowledge and indifference are attained
at the same moment. Metaphysics has become mathematics, ready to
form the material for a treatise whose icy beauty no longer has the
power to move us.”

Wouldn’t want that!

Similarly, you might say that Z is analogous to C[z], but again some
people would just tell you to go and get a book on commutative al-
gebra and look up the word “Dedekind domain” — both of these are
examples. A geometer might even go and tell you to go and find out
what a regular 1-dimensional scheme was!

I’ve read lots of theorems about Dedekind domains, and on good days I can even
remember the definition. . .

But, I really want to keep things a bit vague and misty for my readers — most
importantly because This Week’s Finds is supposed to be fun, but also because
a lot of the coolest stuff happens when you extend vague analogies in shocking
ways.

For example, thinking of Spec(Z) as a plane that gets a fundamental group
when you poke a hole in it and remove a prime is nice for visualizing an indi-
vidual Frobenius generator, but deeper results suggest that it’s good to think of
Spec(Z) as 3-dimensional! This leads to the extensive analogy between Spec(Z)
and knot theory discussed here. . .
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8) Adam Sikora, “Analogies between group actions on 3-manifolds and num-
ber fields”, available as math.GT/0107210.

9) Christopher Deninger, “A note on arithmetic topology and dynamical sys-
tems”, available as math.NT/0204274.

(Actually I think there is even a kind of Langlands philosophy for C(z)
and its finite extensions nowadays worked out recently by Beilinson
and Drinfeld. I saw Beilinson give several lectures on it, more than
once, and still didn’t really get it, I am too number-theoretic.)

Is this the “geometric Langlands program” stuff? Physicists are getting interested
in that. . .

Best,
jb

To understand Kevin’s reply, recall that any algebraic number field K has a “maximal
abelian extension” Kab. This is the biggest algebraic extension of K whose Galois group
is abelian. When K = Q, the Kronecker-Weber theorem says this is obtained by throwing
in all the roots of unity. Since a field obtained from Q by throwing in a root of unity is
called a “cyclotomic field”, people sometimes call this Qcyc.

In “Week 201” I described the Galois group Gal(Qcyc/Q). Unsurprisingly, this is the
abelianization of the big bad Galois group Gal(Q/Q): the Galois group of the algebraic
closure of Q. In what follows, Kevin more generally discusses Gal(Kab/K), which is the
abelianization of Gal(K/K).

Understanding groups like Gal(K/K) is one of the great unfulfilled dreams of num-
ber theory. Understanding its abelianization is one of the great triumphs of late nine-
teenth to mid twentieth century mathematics. This is called class field theory.

The adeles were used in a really powerful way in the theo-
rems and proofs of global class field theory (you don’t want
to read the proofs. I did this precisely once in my life and
they are very unilluminating).

Then I think there must exist nicer proofs!

This is related to one of Hilbert’s problems! (the 12th one). So you must be
thinking along the right lines :-)

Abstract theorem: if K is a number field then the abelianisation of Gal(K/K)
is isomorphic to K∗ \AdelesK∗/(K∗

∞)0.

Remark: the right hand group is very “concrete”, in the sense that one can
write down explicit finite quotients of it. (Why quotients? Because quotients of
Galois groups are again Galois groups.) For example, I can just write down a
big subgroup e.g. K∗

∞ times the product of O∗
Kv

, where v runs through all the
finite places of K, and the quotient of the big group by the big subgroup can
be checked to be compact and discrete, so it’s finite. We have hence “explicitly”
written down a finite quotient of Gal(K/K), corresponding to a finite extension
H of K. The objects on the right hand side are rather abstract, but this is as
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explicit a quotient group of the right hand side as you could possibly ask for
— we understand exactly what’s going on at every place, for example. Hence
this is as explicit a finite extension of K as you could possibly ask for, if you
admit the isomorphism of class field theory. Indeed, if you know a bit more
about the isomorphism, you will know that this quotient H is unramified at
all the primes of K, and is indeed the largest abelian extension of K with this
property. H is (by definition) the Hilbert Class Field of K. In your analogy,
given a curve, a natural thing to think of would be the universal covering space
of the curve. Unfortunately number theorists aren’t good enough to understand
all of Gal(K/K), they have to abelianise first, so H corresponds to the maximal
unramified cover of the curve with abelian covering group.

Great! So we have all this machinery, this beautiful isomorphism, this com-
pletely canonical description of the Galois group, and we make a very explicit
and natural construction on the right hand side, so now let me give you a num-
ber field like Q(

√
10) and ask you what H is!

Now suddenly you see a big disadvantage of the glorious proof of the isomor-
phism which goes via all this cohomological chasing around — it shows the ex-
istence of H but doesn’t tell us what it is. At all. And at the end of the day, there
are a lot of number theorists out there that are actually interested in numbers,
rather than in abstract results which hold for all number fields or whatever.

Hilbert’s question was: “well, this is all well and good, but can anyone actually
write down the isomorphism, rather than actually prove its existence? Can
anyone write it down sufficiently concretely so that people can just read off
the Hilbert Class Group of a number field, given the field?” And, to be honest,
although a lot is known, Hilbert would probably say that the answer is still “no”.
If you were to find a “better” proof of global class field theory then perhaps
the answer would change. In fact the Hilbert Class Field is just the tip of the
iceberg — global class field theory gives us a description of the abelianisation of
Gal(K/K), and this abelianisation corresponds to a fieldKab, of infinite degree
over K, but Galois, with infinite abelian Galois group. If I give you K, can you
tell me Kab? Hilbert even wanted to know this (his questions are maximally
greedy, I guess).

Hilbert’s question was not totally out of the blue. It can be done for K = Q,
indeed it had been done 50 years before Hilbert’s question. Kronecker and Weber
knew not just the Hilbert class field of Q, they even knew Qab, it’s just the union
of Q(1

1
n ), where 1

1
n is exp(2πi/n). Let me labour a point which experts in the

theory feel is highly important: the exponential function is transcendental — it
doesn’t belong in algebraic geometry because it’s not in C(z). On the other hand,
this transcendental function, when evaluated at certain places, gives algebraic
numbers out, and it is these algebraic numbers which explain all the class field
theory of the rationals.

Now a TOTALLY AMAZING GENERALISATION: letK be an imaginary quadratic
field, so Q(

√
d) for some integer d < 0. Let L be the lattice in the complex num-

bers with basis 1 and
√
d (this is a lattice as d < 0). Quotient out the complex

numbers by this lattice. You get a 1-dimensional complex torus, so an elliptic
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curve. The curve has a j-invariant, which is going to be a “random” complex
number. One can compute this number to as many decimal places as one likes
nowadays (in practice). For example, if d = −5 then my computer instantly
tells me that the j-invariant of the corresponding elliptic curve is

1264538.90947514050932022704741070342148144212156690839688175141278172815944442224994634954784218993 . . .

Equally quickly, my computer spots that this (to 100 decimal places, at least)
looks awfully like one of the roots of

x2 − 1264000x− 681472000

(it agrees with it to 100 decimal places, despite the fact that the j-function is
again “transcendental” — we have put an algebraic number in and appear to
have got an algebraic number out).

The awesome fact is that the splitting field of this polynomial over Q(
√
−5)

(i.e. the field you get by adjoining all of the roots of this polynomial to Q(
√
−5))

is the Hilbert Class Field of Q(
√
5)! Even better: I can even tell you Kab, if K is

Q(
√
−5): write down a model for the elliptic curve in the form y2 = f(x) with f

a cubic with coefficients in K (use the Weierstrass ℘-function and its derivative),
and now look at all the points of finite order on this elliptic curve. The x and y
coordinates of all these points are algebraic numbers, and they generate Kab.

I am proud now to give you a genuine analogy :-)

Rational field Imaginary quadratic field

Group C/Z Elliptic curve C/(integers of the field)
Element of finite order in the
group

Element of finite order in the group

function z 7→ exp(2πiz) Weierstrass ℘-function (and its derivative)

In both cases, the function maps the group to an algebraic variety (C∗ in the
first case, y2 = cubic in the second), and evaluating the function at complex
numbers which give torsion points of the group (rational numbers in the first
case, elements of the imaginary quadratic field in the second) gives numbers
which by all rights should be random complex numbers, but turn out to be not
only algebraic, but to generate the maximal abelian extension of the number
field.

This really is an analogy because no-one has (as far as I know) a clue how to
do this more generally. Note that the rationals and the imaginary quadratic
fields are the only fields with exactly one infinite place. Is this why they are
the only fields we can “do”? This technique, of “explicitly” generating abelian
extensions of a number field, is called “explicit class field theory” and, other
than the (non-trivial) contribution by Shimura and Taniyama where they used
higher-dimensional abelian varieties to push the analogy slightly further, it’s still
a big mystery.
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There can’t possibly be such important and beautiful results where
the best possible proof is unilluminating.

In the case of local class field theory, there are now some really neat proofs,
where you in some sense really do write down the maximal abelian extension
of an arbitrary finite extension of Q p, again using torsion points in groups
(formal groups). But people have spent a century looking for more illuminating
proofs, motivated by Hilbert’s question. Until then, we just have to rely on
known algorithms for computing Hilbert Class Fields (there are algorithms that
work in lots of cases, and they rely on known abstract theorems, but one might
argue that none of them are really “explicit”, they just go, I think, by essentially
looking at lots of fields until one finds the one that works, rather than working
out which one is the right one by pure thought).

You should talk about special values of L-functions! Do you know the analytic
class number formula? The degree of H over K is called the class number of
K and, totally amazingly, it is related to the special value of an L-function.
The Birch-Swinnerton-Dyer conjecture is just a natural generalisation of this
formula to elliptic curves over the rationals, but again, what used to be an
analogy has turned into two instances of a more general piece of mathematics
(ranks of K-groups, Beilinson’s conjectures etc.).

Sorry to go on! I just get quite enthusiastic about this stuff.

This sounds great. I’ve always heard people rave about Tate’s thesis,
and now it’s time for me to read it. . . or at least the book you mention
— but I get the feeling the actual thesis is good.

The thesis was never published, Tate I guess wasn’t happy that he just reproved
a known theorem or something? Cassels–Froehlich is the canonical reference.
Serre’s article in there talks about the links to elliptic curves in the im quad case
too. A nice book!

Thanks for the link to the letter of Weil — interesting stuff! I have pity on his
sister. I have heard that (Andre) Weil’s house in Paris had a plaque on it saying
“Simone Weil used to live here” (because she did). Funny that a genius had to
live in the shadows of his sister (who by all accounts might also have been a
genius).

Another funny piece of gossip. I think it was Chevalley who originally started
thinking about ideles (the ideles are the group of units of the adeles). I am no
historian so might have this wrong. Chevalley(?) wrote a book on algebraic
number theory where he talked about ideals and also about these ideles, which
he referred to as “ideal elements” and which he abbreviated as “id.eles”. Later
on the period was dropped, so they became ideles. I think it was Serre who saw
that the ideles were the units of a ring, and christened the ring with the name of
“adeles”. If you get Serre’s collected works and look at his CV at the beginning,
you will see that his mother was called Adele. Coincidence? :-)

(Actually I think there is even a kind of Langlands philoso-
phy for C(z) and its finite extensions nowadays worked out
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recently by Beilinson and Drinfeld. I saw Beilinson give sev-
eral lectures on it, more than once, and still didn’t really get
it, I am too number-theoretic.)

Is this the “geometric Langlands program” stuff? Physicists are getting
interested in that. . .

Yes.

Kevin

The scientific life of mathematicians can be pictured as a trip inside the geog-
raphy of the “mathematical reality” which they unveil gradually in their own
private mental frame.

It often begins by an act of rebellion with respect to the existing dogmatic
description of that reality that one will find in existing books. The young
“to be mathematician” realize in their own mind that their perception of the
mathematical world captures some features which do not fit with the existing
dogma. This first act is often due in most cases to ignorance but it allows one
to free oneself from the reverence to authority by relying on one’s intuition
provided it is backed by actual proofs. Once mathematicians get to really
know, in an original and “personal” manner, a small part of the mathematical
world, as esoteric as it can look at first, their trip can really start. It is of
course vital not to break the “fil d’arianne” which allows one to constantly
keep a fresh eye on whatever one will encounter along the way, and also to
go back to the source if one feels lost at times. . .

It is also vital to always keep moving. The risk otherwise is to confine oneself
in a relatively small area of extreme technical specialization, thus shrinking
one’s perception of the mathematical world and its bewildering diversity.

The really fundamental point in that respect is that while so many math-
ematicians have been spending their entire life exploring that world they
all agree on its contours and on its connexity: whatever the origin of one’s
itinerary, one day or another if one walks long enough, one is bound to reach
a well known town i.e. for instance to meet elliptic functions, modular forms,
zeta functions. “All roads lead to Rome” and the mathematical world is “con-
nected”.

In other words there is just “one” mathematical world, whose exploration is
the task of all mathematicians, and they are all in the same boat somehow.

— Alain Connes

218



WEEK 219 JULY 4, 2005

Week 219

July 4, 2005

I’m about to head to Sydney and Canberra to help celebrate the 60th birthday of Ross
Street . . . the world’s best n-category theorist!

1) Categories in Algebra, Geometry and Mathematical Physics, conference in honor
of the 60th birthday of Ross Street, http://streetfest.maths.mq.edu.au/

Lots of people will be talking about the interface of higher-dimensional algebra and
physics. Some will be talking about higher gauge theory, which generalizes ordinary
gauge theory from point particles to strings, loops, or higher-dimensional “branes” by
replacing groups with n-groups.

Ezra Getzler will be speaking on how to get an n-group from a Lie n-algebra, and
Mikhail Kapranov will be speaking on higher-dimensional holonomies. Alissa Crans,
Danny Stevenson and I will also be talking about this stuff.

There will eventually be a conference proceedings, but for now you can see the ab-
stracts of people’s talks on the website. You can see my talks here:

2) John Baez, “Higher gauge theory”, http://math.ucr.edu/home/baez/street/

Anyway, before I take off, here’s a roundup of stuff I’ve been meaning to mention:
the centennial of Einstein’s “annus mirabilis”, the Pioneer anomaly, silicon photonics, a
company that plans to sell quantum computers, and some relationships between Klein’s
quartic curve, the Fano plane, and special relativity over the integers mod 7. I want to
leave you lots of stuff to think about. :-)

Okay. . . let’s start with Einstein’s “annus mirabilis”.
1905 was indeed a miraculous year for Albert Einstein. He published four earth-

shaking papers, all in the same journal:

3) Albert Einstein, “On a heuristic viewpoint concerning the production and transfor-
mation of light”, Annalen der Physik 17 (1905), 132–148. Available at http://
dbserv.ihep.su/~elan/src/einstein05/eng.pdf

“On the movement of small particles suspended in stationary liquids required by
the molecular-kinetic theory of heat”, Annalen der Physik 17 (1905), 549–560.
Available at http://lorentz.phl.jhu.edu/AnnusMirabilis/AeReserveArticles/
eins brownian.pdf

“On the electrodynamics of moving bodies”, Annalen der Physik 17 (1905), 891–
921. Available at http://dbserv.ihep.su/~elan/src/einstein05b/eng.pdf

“Does the inertia of a body depend upon its energy content?”, Annalen der Physik 18
(1905), 639–641. Available at http://dbserv.ihep.su/~elan/src/einstein05c/
eng.pdf

In the first of these papers, Einstein explained the photoelectric effect by assuming
that light consisted of particles each carrying an energy equal to Planck’s constant times
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its frequency. This was an important step towards quantum mechanics — a theory he
would later fight against.

In the second, he showed that Brownian motion was explained by the existence of
atoms. His calculations were later used to measure Boltzmann’s constant.

In the third, Einstein derived the formula for Lorentz transformations from two sim-
ple assumptions: only relative motion can be detected, and every unaccelerated observer
measures light to have the same speed.

In the fourth, he derived a relation between mass, momentum, and energy, including
as a special case the famous formula E = mc2 relating the mass of a body to its energy
at rest.

The most impressive thing about these papers is how simple and readable they are:
they go from clearly stated assumptions to world-shaking conclusions with clear logic
and only a little math.

Which makes one wonder: will there ever be another Einstein? Can one person ever
again make such revolutions in physics? Or are all the remaining discoveries yet to be
made in physics too complicated? Why has fundamental physics been stuck ever since
the completion of the Standard Model? There are lots of glorious theories, but none
of them have gotten any experimental confirmation. There have also been some big
empirical discoveries — dark matter, dark energy, neutrino oscillations, and more — but
these weren’t predicted, and our theories still don’t shed much light on them.

So, are the times ripe for a good new idea. . . a really smart person who will fit the
jigsaw puzzle together? Or are there still too many missing pieces?

Lee Smolin has some interesting thoughts about this:

4) Lee Smolin, ‘Why no “new Einsteins”?’, Physics Today, June 2005, 56–57.

I think the mention of Einstein is mainly just a trick to get people to read the article.
He focuses on institutional pressures that push physicists to conform: to follow “research
programs” in big teams rather than strike out on their own.

This is certainly a big problem. But I’m not sure it’s the only problem.
Fundamental physics is in a tough situation, partly a victim of its own success. Pure

thought may not be enough. To make real progress, it helps to have lots of experimental
results that don’t fit the current theories. Not just a few numbers here or there, like
neutrino masses. We want piles of unexplained data! — enough to draw lots of graphs.
Then we could cook up theories that fit the data.

Barring this, we need to assemble all the mysteries we can get our hands on, and see
if they fit together somehow.

Luckily, right now several spacecraft are leaving the the Solar System. . . and they’re
leaving us with the best of gifts: a mystery!

Pioneer 10 was launched in 1972. It was the first spacecraft to travel through the
asteroid belt, and the first to take closeups photos of Jupiter, and study the intense
magnetic field of this planet. I remember getting excited about this when I was a kid.

Pioneer 10 was also the first spacecraft to explore the outer solar system. In 1983
it passed the orbit of Neptune. On February 7th, 2003, Pioneer 10’s radioactive power
source weakened to the point where its radio signals became too feeble to detect. When
this happened, it was 80 astronomical units from the Sun: in other words, 80 times as
far from the Sun as we are, or about twice as far out as Pluto.
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But this was just the beginning of its cold dark journey. It will continue to coast
through deep space in the general direction of the red giant Aldebaran, 68 light years
from us. A light year is about 63,000 astronomical units, so this journey will take a
while: over 2 million years! We’ll probably be long gone by then, for better or worse.

Pioneer 11 was launched in 1973. It followed its sister ship to Jupiter, then swung
past Saturn, and then sailed out into the night, studying the solar wind as it went. On
September 30, 1995 its power source became too weak to run any more experiments,
and NASA stopped monitoring it. It was 45 astronomical units from the Sun, moving out
at 2 AU per year.

We are no longer in the beam of its radio signal. Its antenna cannot be rotated.
It is heading towards Aquila — the Eagle — and it will pass one of the stars in this
constellation in 4 million years.

Here’s a picture of what these spacecraft are doing:

5) NASA, Pioneer path, http://spaceprojects.arc.nasa.gov/Space Projects/pioneer/

path.html

See how they’ll eventually pass through a bubble called the “termination shock”?
That’s where the solar wind drops below supersonic speed as it crashes into the gas of
the Milky Way. You can see a pattern vaguely reminscient of the wave formed by a boat
sailing through the sea — that’s because we’re moving through the Milky Way.

There are also two other spacecraft in this picture: Voyager 1 and 2! These craft
are still transmitting, and Voyager 1 is now farther than Pioneer 10. It crossed the
termination shock in December 2004, zipping along at 3.6 AU per year. It’s sending back
information about this region of space — called the “heliosheath” — and its batteries
should be good until 2020.

But what’s the mystery?
Well, the Pioneer missions yielded the most precise information we have about nav-

igation in deep space. However, analysis of their radio tracking data indicates a small
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unexplained acceleration towards the Sun! The magnitude of this acceleration is roughly
10-9 meters per second per second. It’s called the “Pioneer anomaly”.

This anomaly has also been seen in the Ulysses spacecraft, and possibly also in the
Galileo spacecraft, though the data is much more noisy, since these were Jupiter probes,
hence much closer to the Sun, where there is a lot more pressure from solar radiation.
The Voyagers are not set up to provide good data on this issue, since they are able to
rotate themselves and this messes things up. The Viking mission to Mars did not detect
the Pioneer anomaly — and it would have, had an acceleration of this magnitude been
present, because its radio tracking was incredibly accurate — good to about 12 meters.

Many physicists and astronomers have tried to explain the Pioneer anomaly using
conventional physics, but so far nobody seems to have succeeded. Radiation pressure
from the Sun, the solar wind, the back-reaction from the radio emissions: all these point
the wrong way! Other explanations also seem to fail, like gravity from the Kuiper belt,
small amounts of gas venting from the spacecraft, and thermal radiation from the craft,

As conventional explanations seemed to fail, people started trying to explain the
anomaly using new physics — for example, modified theories of gravity, or dark matter.
But it’s hard to get these explanations to work, either. For example, explaining the
Pioneer anomaly by the gravitational attraction of dark matter would require more than
.0003 solar masses of dark matter within 50 AU units of the Sun. But this is in conflict
with our highly successful calculations of planetary orbits — even a millionth of a solar
mass of dark matter in this region would be enough to throw those off!

So, we may have an interesting clue on our hands.
For more information on the Pioneer anomaly, see these sources and the many refer-

ences therein:

6) Wikipedia, “Pioneer anomaly”, http://en.wikipedia.org/wiki/Pioneer anomaly

7) Chris P. Duif, “Pioneer anomaly — literature and links”, http://www.space-time.
info/pioneer/pioanomlit.html

I got interested in the Pioneer anomaly when I read this recent proposal for a mission
to study it:

8) The Pioneer Collaboration, “A mission to explore the Pioneer anomaly”, available
as gr-qc/0506139.

Finally, here’s a fun book on the Pioneer missions:

9) Mark Wolverton, The Depths of Space: The Story of the Pioneer Planetary Probes,
Joseph Henry Press, 2004. Available at http://www.nap.edu/books/0309090504/
html/

Next: silicon lasers. I don’t want to say much about these, just that Intel thinks
they could be the next big thing. You’ve probably heard about “Moore’s Law”, how the
number of components in an integrated circuit doubles every 2 years. Or more vaguely:
how computers keeping getting more powerful, really fast! And you’ve probably heard
that this exponential growth is in danger of running into a brick wall someday. One of
the problems is that copper wire carries too little data, too slowly.
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For a long time some people have touted “photonics” as the way around this: trans-
mitting information as pulses of light, rather than clumps of electrons. One problem is
that substances that emit such pulses tend to be expensive, like gallium arsenide and
indium phosphide. But now they’ve figured out to make silicon function as a laser!
Researchers at Intel have created a silicon laser that emits a continuous beam of light.
They’ve also developed a modulator that chops the beam into 10 billion pulses per sec-
ond — a 10 gigahertz signal.

For details, try this:

10) Intel, “Silicon photonics”, http://www.intel.com/technology/silicon/sp/

11) Robert Service, “Intel’s breakthrough”, Technology Review, July 2005, 62–65. Also
available at http://www.technologyreview.com/articles/05/07/issue/feature intel.

asp

While we’re talking about high tech, how about quantum computers? Most of them
don’t work very well — yet, say the optimists. Interaction with the environment ruins
the coherence of the quantum state. But there’s a company called D-Wave Systems that
aims to build a different breed of quantum computer — one that doesn’t mind a fair
amount of noise. It’s an analog chip made of lots of superconductors, which is supposed
to quantum tunnel to a lowest-energy state, The idea is that you can get it to solve lots
of minimization problems this way, like the travelling salesman problem.

I don’t see why it’ll work better than other analogue computers, or methods like
simulated annealing. It could get stuck when there are lots of “almost-minima” to sift
through. . . just like glass gets stuck when it tries to find its lowest energy state. Physicists
call this “frustration”: the poor glass in your window is “frustrated”, trying to crystallize
but unable to decide how to do it. In principle it could do it by quantum tunnelling, but
in practice that takes forever. Why will D-Wave Systems’ computer be better?

By the way, they admit their computer can’t do cool stuff like rapidly factor large
numbers via Shor’s algorithm, the way full-fledged quantum computers should. True
devotees of quantum computation probably wouldn’t even call it a quantum computer!
But I’ll be happy if it works.

They’ve certain managed to convince some investors. Here’s some more info:

12) Erika Jonietz, “Quantum calculation”, Technology Review, July 2005, 24–25. Also
available at http://www.technologyreview.com/articles/05/07/issue/forward quantum.

asp

But enough practical stuff! Now let me say a bit more about the Klein quartic.
I wrote about this gadget in “Week 214” and “Week 215”. Simply put, this is a

“Platonic surface”: a 3-holed torus tiled by regular heptagons, with 3 heptagons meeting
at each vertex.

It’s perfectly symmetrical, but you can’t stuff it into 3-dimensional Euclidean space
without warping it. So, its charms are a bit more esoteric than those of, say, a dodecahe-
dron.

Of course, this is the kind of challenge that some people just can’t resist. Mike Stay
and Gerard Westendorp bravely tried making paper models of it:

13) Mike Stay, “Klein quartic”, http://math.ucr.edu/~mike/klein/
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14) Gerard Westendorp, “Geometry”, http://www.xs4all.nl/~westy31/Geometry/

Geometry.html

Mike wisely stopped just short of the final step, which would create a nasty crumpled
mess. Gerard succeeded in completing the task by switching to pastry instead of paper.
Check it out!

There might be a small niche market for Klein quartic birthday cakes. . . but computer
graphics are probably better if you just want to visualize this surface instead of actually
eat it. About 10 or 12 years ago, Joe Christy made the following pictures using a program
called Geomview, which makes virtual 3d objects:

15) Joe Christy, Klein quartic pictures:
http://math.ucr.edu/home/baez/pentacontihexahedron.jpg

http://math.ucr.edu/home/baez/pentacontihexahedron2.jpg

http://math.ucr.edu/home/baez/pentacontihexahedron3.jpg

It took about a day on the fastest Linux machine they had at the time. The advantage
of Geomview is that once the virtual object is done, you can quickly create different
views. These pictures show the dual version of Klein’s quartic, which has 7 regular
triangles meeting at each quarter. The funky name “pentacontihexahedron” refers to the
fact that there are 56 of these triangles.

While I’m at it, I can’t resist showing you another beautiful picture:

16) Joe Christy, “Fano plane on Roman surface”, http://math.ucr.edu/home/baez/
roman.jpg
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The blue thing is called the “Roman surface” because it was discovered by the math-
ematician Jakob Steiner while he was visiting Rome. It’s a self-intersecting immersion of
the projective plane in 3d space. On it, the 7 lines of the Fano plane are visible in red,
with four of them drawn as circles.

Mathematically, one nice thing about this picture is that it exhibits the tetrahedral
symmetry of the Fano plane!

You can see all these pictures and much more on my Klein quartic website:

17) John Baez, “Klein’s quartic curve”, http://math.ucr.edu/home/baez/klein.html

You may think I’m digressing, but the relation between Klein’s quartic curve and the
Fano plane underlies what I want to talk about today. Greg Egan and I realized that
this relation is just part of a bigger picture involving special relativity in 3-dimensional
spacetime. . . over the integers mod 7.

Huh?
Well, these days so-called physicists have no shame studying physics in all sorts of

dimensions, but they usually confine themselves to building their spacetimes out of the
real numbers.

That makes sense if they’re trying to claim some relevance to real-world physics,
however slight. But mathematically, there’s no reason not to try other number systems,
like finite fields, just for the fun of it.

And this sheds new light on the Klein quartic. Why? Because the symmetries of the
Klein quartic and the Fano plane also act as Lorentz transformations in 3 dimensional
spacetime if you work using the integers mod 7. This lets us see the Klein quartic and
Fano plane as being closely related to special relativity in this funny context.
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Let’s see how this goes.
First, recall that a “field” is a number system where you can add, subtract, multiply

and divide to your hearts content, with all the basic laws holding that hold for real
numbers. A “finite field” is one with finitely many elements, like the integers mod any
prime number p. This example is called Z/p, or Fp if you really want to emphasize that
you’re thinking of it as a field.

So, let’s do some 3d special relativity with Z/7, and see what it has to say about the
Klein quartic.

First, some basic stuff about finite fields.
The concepts of “positive” and “negative” make sense in any finite field! Say a

nonzero element of the field is “positive” if it’s of the form x2 and “negative” otherwise.
(Number theorists call the positive elements “quadratic residues”, just to intimidate out-
siders.)

Then multiplication works nicely:

• if you multiply two positive elements you get a positive one;

• if you multiply two negative elements you get a positive one;

• if you multiply a positive and a negative element you get a negative one.

There are finite fields whose cardinality is any prime power, but if we focus on those
whose cardinality is a prime, namely the fields Z/p, there are three possibilities: the
good, the bad, and the ugly.

• GOOD: If the field is Z/p for p = 4n+ 3 then −1 is negative,
so we can switch the “sign” of a number by multiplying it by −1.

• BAD: If the field is Z/p for p = 4n+ 1 then −1 is positive,
so we can’t do this.

In both these cases there are as many positive as negative elements. Then there’s

• UGLY: If the field is Z/2 then every element is positive.

Luckily, p = 7 is good. But beware: addition doesn’t get along with positivity very
well. In fields like Z/p, every element is a sum of positive elements.

Next, let’s ponder the peculiarities of special relativity over a finite field.
We can define Minkowski spacetime of any dimension over any field F: it’s just Fn+1

with the quadratic form
x2 = x20 − x21 − . . .− x2n

We define O(n, 1) to be the group of transformations of Fn+1 that preserve the above
quadratic form, and define the “Lorentz group” SO(n, 1) to be the subgroup consisting
of transformations that also have determinant 1.

As usual, we say that a vector x in Minkowski spacetime is:

• timelike if x2 > 0

• lightlike if x2 = 0
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• spacelike if x2 < 0

We define a “ray” to be a line through the origin. We say a ray is timelike, spacelike
or lightlike if any vector on it — hence all! — is of that type.

The lightlike rays are usually called “light rays”, both because it sounds cool (we went
into physics because we liked things like X-rays and rayguns) and because it’s accurate.
The light rays going through a given point — the origin — are precisely like this.

Next, let’s ponder the peculiarities of 3-dimensional spacetime.
For any field F, 2 × 2 matrices with determinant 1 act as Lorentz transformations

of 3d Minkowski spacetime. I touched upon this idea when discussing Trautman’s
“Pythagorean spinors” in “Week 196”. Here’s how it works:

We can think of 3d Minkowski spacetime as consisting of all 2 × 2 matrices that are
equal to their own transpose:

x =

(
x0 + x1 x2
x2 x0 − x1

)
since the determinant of such a matrix is just

x2 = x20 − x21 − x22

In this picture, the group SL(2,F) consisting of 2×2 matrices with determinant 1 acts
as Lorentz transformations:

g : x 7→ gxg∗

where g∗ is the transpose of g. So, we get a homomorphism from SL(2,F) to the 3d
Lorentz group:

SL(2,F)→ SO(2, 1)

This is two-to-one, since it sends both 1 and −1 to the identity Lorentz transformation.
People typically cure this by defining

PSL(2,F) = SL(2,F)/{±1}

We then get a one-to-one homomorphism

PSL(2,F)→ SO(2, 1)

Alas, this homomorphism is not onto: it’s only “half-onto”. In the traditional case where
F is the real numbers, its range is just one of the two connected components of SO(2, 1).
In the case we’re interested in here, where F = Z/7, the group PSL(2,Z/7) has 168
elements but SO(2, 1) has twice as many.

Next, let’s bring the hyperbolic plane into the game!
Special relativity in 3 dimensions is closely related to the hyperbolic plane. The

reason is that the set of timelike rays in (n+1)-dimensional Minkowski spacetime forms
a copy of hyperbolic n-space: physicists call this the “mass hyperboloid”. So, for n = 2,
we get the hyperbolic plane. This is most familiar for special relativity based on the real
numbers, but the same idea applies to other fields.

So, let’s make some definitions:

• the hyperbolic plane H+ is the set of timelike rays in 3d Minkowski spacetime
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• the heavenly circle L is the set of light rays in 3d Minkowski spacetime

• the hyperbolic cylinder H− is the set of spacelike rays in 3d Minkowski spacetime

You may think I’m being silly to call the set of light rays “the heavenly circle”, but in
4-dimensional spacetime the analogous thing is often called “the heavenly sphere”, and
we’re studying things one dimension down.

Why “heavenly sphere”? Well, when you look at the stars at night, they seem to be
lying on a sphere. That’s the heavenly sphere: the set of light rays entering your eye —
the set of directions you can look!

One dimension down, flatlanders get to enjoy the “heavenly circle”. Mathematicians
call this the projective line, since it’s a line with one extra point added on.

Now for something fun: points on the hyperbolic plane give lines on the hyperbolic
cylinder and vice versa!

This is basically by definition of “line”. We define a “line” in H+ to consist of all
points that are orthogonal to a given point in H−, and vice versa. Note a point in either
of these spaces is really a ray in Minkowski spacetime, but it makes sense to say that two
rays are orthogonal.

This definition isn’t arbitrary: it reduces to a standard notion of “line” in the hyper-
bolic plane — namely a geodesic — when our field is the real numbers.

Finally, let’s dive into the case we’re really interested in: 3-dimensional Minkowski
spacetime over F = Z/7.

In this case the positive numbers are 1, 2, 4, and the negative numbers are 3, 5, 6.
It turns out that:

• The hyperbolic plane over Z/7, namely H+, has size 21.

• The heavenly circle over Z/7, namely L, has size 8.

• The hyperbolic cylinder over Z/7, namely H−, has size 28.

So, H+ is a nice finite version of the hyperbolic plane with 21 points and 28 lines! A
little calculation shows there are 3 points on each line and 4 lines through each point.

We know that PSL(2,Z/7) acts on everything in sight here: H+, H−, and L. It also
acts on the Fano plane and Klein’s quartic curve. So, we can try to match up various
features of 3d special relativity with features in the Fano plane or Klein’s quartic curve!

Greg Egan found the following correspondence:

Hyperbolic plane over Z/7 Fano plane

7 triads 7 points
7 antitriads 7 lines
21 points 21 flags
28 lines 28 apartments

As usual with these correspondences, simple things in the Fano plane correspond to
subtle things in the hyperbolic plane, and simple things in the hyperbolic plane corre-
spond to subtle things in the Fano plane.
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First of all, points and lines in the Fano plane correspond to “triads” and “antitriads”
in H+.

Huh?
Well, for starters, a “triad” or “antitriad” is an unordered triple of orthogonal points

in H+.
Huh?
Well, remember that a point in H+ is a timelike ray in 3d Minkowski spacetime. You

can’t have three timelike rays that are orthogonal in ordinary special relativity, but you
can over Z/7, because the sum of postive numbers can be zero, or even negative. For
example, these three vectors are timelike and orthogonal:

(1, 0, 0), (0, 4, 2), (0,−2, 4)

We call the corresponding triple of rays a “triad”, and we get a total of 7 triads by
applying elements of PSL(2,Z/7) to it. But, there are triples of orthogonal timelike rays
that aren’t among these 7. For example, we get one from these three vectors:

(1, 0, 0), (0, 2, 4), (0,−4, 2)

We call the corresponding triple of rays an “antitriad”, and we get 7 antitriads by applying
elements of PSL(2,Z/7).

Each line in the Fano plane contains 3 points, and each point lies on 3 lines. This
incidence relation can also be seen in terms of triads and antitriads: each triad has
nonempty intersection with 3 antitriads, and each antitriad has nonempty intersection
with 3 triads!

We can also go backwards: points and lines in the hyperbolic plane correspond to
“flags” and “apartments” in the Fano plane.

Huh?
Flags and apartments are standard concepts in the theory of “buildings” which I be-

gan to explain in “Week 186”. But, I don’t want or need to explain this general theory
here. In the Fano plane, a “flag” consists of a point lying on a line:

•

An “apartment” consists of 3 distinct points lying on 3 distinct lines like this:

• •

•

Each apartment in the Fano plane contains 3 flags, and each flag is contained in 4 apart-
ments. This incidence can also been seen in terms of points and lines in the hyperbolic
plane: each line contains 3 points, and each point lies on 4 lines!

So, there’s an interesting but complicated relation between hyperbolic geometry over
Z/7 and the Fano plane. How does the Klein quartic curve fit in? There’s more to this
side of the story than I’ve managed to absorb, so I’ll just say a few words — probably
more than you want to hear. For more detail, try my Klein quartic curve webpage.
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There are 48 nonzero lightlike vectors in 3d Minkowksi spacetime, but if you take
one of them and apply elements of PSL(2,Z/7) to it, you get an orbit consisting of only
24. These 24 guys correspond to the 24 heptagons in the heptagonal tiling of the Klein
quartic curve! In other words, PSL(2,Z/7) acts in precisely the same way.

You may ask what the point of all this stuff is, and the answer is — I’m not sure yet,
except that it’s fun! Apparently the coincidence

PSL(2,Z/7) = PSL(3,Z/2)

is the only coincidence among classical groups over finite fields, not counting the ones
we already know over the real numbers. So, it’s got to be good for something! And, I
haven’t even begun to exploit the fact that the Klein quartic curve is a quotient space of
the real hyperbolic plane: this has got to be related to the hyperbolic plane over Z/7. So,
I think something interesting should emerge, though I’m not sure what.

Addendum: Regarding the Pioneer anomaly, the cosmologist Ned Wright writes:

John,

I don’t think the obvious possibilities have been ruled out. In this I disagree with
Anderson but that’s science at the fringes.

I have a Web page on this at:
http://www.astro.ucla.edu/~wright/PioneerAA.html

Just for the record, that’s:

17) Ned Wright, “Pioneer anomalous acceleration”, http://www.astro.ucla.edu/~wright/
PioneerAA.html

For a contrasting viewpoint see:

18) Slava G. Turyshev, Michael Martin Nieto, and John D. Anderson, “The Pioneer
anomaly and its implications”, available as gr-qc/0510081.

Space isn’t remote at all. It’s only an hour’s drive away if your car could go
straight upwards.

— Sir Fred Hoyle
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Week 220

August 31, 2005

Work on quantum gravity has seemed stagnant and stuck for the last couple of years,
which is why I’ve been turning more towards pure math.

Over in string theory they’re contemplating a vast “landscape” of possible universes,
each with their own laws of physics — one or more of which might be ours. Each one
is supposed to correspond to a different “vacuum” or “background” for the marvelous
unifying M-theory that we don’t completely understand yet. They can’t choose the right
vacuum except by the good old method of fitting the experimental data. But these days,
this time-honored method gets a lot less airplay than the “anthropic principle”:

1) Leonard Susskind, “The anthropic landscape of string theory”, available as hep-th/
0302219.

Perhaps this is because it’s more grandiose to imagine choosing one theory out of a
multitude by discovering that it’s among the few that supports intelligent life, than by
noticing that it correctly predicts experimental results. Or, perhaps it’s because nobody
really knows how to get string theory to predict experimental results! Even after you
chose a vacuum, you’d need to see how supersymmetry gets broken, and this remain
quite obscure.

There’s still tons of beautiful math coming out of string theory, mind you: right now
I’m just talking about physics.

What about loop quantum gravity? This line of research has always been less am-
bitious than string theory. Instead of finding the correct theory of everything, its goal
has merely been to find any theory that combines gravity and quantum mechanics in
a background-free way. But, it has major problems of its own: nobody knows how it
can successfully mimic general relativity at large length scales, as it must to be realistic!
Old-fashioned perturbative quantum gravity failed on this score because it wasn’t renor-
malizable. Loop quantum gravity may get around this somehow. . . but it’s about time to
see exactly how.

Loop quantum gravity follows two main approaches: the so-called “Hamiltonian” or
“spin network” approach, which focuses on the geometry of space at a given time, and
the so-called “Lagrangian” or “spin foam” approach, which focuses on the geometry of
spacetime.

In the last couple of years, the most interesting new work in the Hamiltonian ap-
proach has focussed on problems with extra symmetry, like black holes and the big bang.
Here’s a nontechnical introduction:

2) Abhay Ashtekar, “Gravity and the quantum”, available as gr-qc/0410054.

and here’s some new work that treats the information loss puzzle:

3) Abhay Ashtekar and Martin Bojowald, “Black hole evaporation: a paradigm”, Class.
Quant. Grav. 22 (2005) 3349–3362. Also available as gr-qc/0504029.
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However, by focusing on solutions with extra symmetry, one puts off facing the hard-
est aspects of renormalization, or whatever its equivalent might be in loop quantum
gravity.

The other approach — the spin foam approach — got stalled when the most pop-
ular model seemed to give spacetimes made mostly of squashed-flat “degenerate 4-
simplexes”. Various papers have found an effect like this: see “Week 198” for more
details. So, there’s definitely a real phenomenon going on here. However, its physical
significance remains a bit obscure. The devil is in the details.

In particular, even though the amplitude for a single large 4-simplex in the Barrett-
Crane model is dominated by degenerate geometries, certain second derivatives of the
amplitude might not — and this may be what really matters. Carlo Rovelli has recently
come out with a paper on this:

4) Carlo Rovelli, “Graviton propagator from background-independent quantum grav-
ity”, available as gr-qc/0508124.

If the idea holds up, I’ll be pretty excited. If not, I’ll be bummed. But luckily, I’ve
already gone through the withdrawal pains of switching my focus away from quantum
gravity. When you do theoretical physics, sometimes you feel the high of discovering
hidden truths about the physical universe. Sometimes you feel the agony of suspecting
that those “hidden truths” were probably just a bunch of baloney. . . or, realizing that
you may never know. Ultimately nature has the last word.

Math is, at least for me, a less nerve-racking pursuit, since the truths we find can be
confirmed simply by discussing them: we don’t need to wait for experiment. Math is just
as grand as physics, or more so. But it’s more wispy and ethereal, since it’s about pure
pattern in general — not the particular magic patterns that became the world we see.
So, the stakes are lower, but the odds are higher.

Speaking of math, I really want to talk about the Streetfest — the conference in honor
of Ross Street’s 60th birthday. It was a real blast: over sixty talks in two weeks in two
cities, Sydney and Canberra. However, I accidentally left my notes from those talks at
home before zipping off to Calgary for a summer school on homotopy theory:

5) Topics in Homotopy Theory, graduate summer school at the Pacific Institute of Math-
ematics run by Kristine Bauer and Laura Scull. Recommended reading material
available at http://www.pims.math.ca/science/2005/05homotopy/reading.html

So, I’ll say a bit about what I learned at this school.
Dan Dugger spoke about motivic homotopy theory, which was great, because I’ve

been trying to understand stuff from number theory and algebraic geometry like the
Weil conjectures, etale cohomology, motives, and Voevodsky’s proof of the Milnor con-
jecture. . . and thanks to his wonderfully pedagogical lectures, it’s all starting to make
some sense!

I hope to talk about this someday, but not now.
Alejandro Adem spoke about orbifolds and group cohomology. Purely personally, the

most exciting thing here was seeing that orbifolds can also be seen as certain kinds of
topological groupoids, or stacks, or topoi. . . so that various versions of “categorified
topology” are actually different faces of the same thing!

I may talk about this someday, too, but not now.
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I spoke about higher gauge theory and its relation to Eilenberg-Mac Lane spaces. I
may talk about that too someday, but not now.

Dev Sinha spoke about operads, and besides explaining the basics, he said a couple
of things that really blew me away. So, I want to talk about this now.

For one, the homology of the little k-cubes operad is a graded version of the Poisson
operad! For two, the little 2-cubes operad acts on the space of thickened long knots!

But for this to thrill you like it thrills me, I’d better say a word about operads — and
especially little k-cubes operads.

Operads, and especially the little k-cubes operads, were invented by Peter May in
the early 1970s to formalize the algebraic structures lurking in “infinite loop spaces”.
In “Week 149” I explained what infinite loop spaces are, and how they give generalized
cohomology theories, but let’s not get bogged down in this motivation now, since operads
are actually quite simple.

In its simplest form, an operad is a gizmo that has for each n = 0, 1, 2, . . . a set O(n)
whose elements are thought of as n-ary operations — operations with n inputs. It’s good
to draw such operations as black boxes with n input wires and one output:

f

For starters these operations are purely abstract things that don’t actually operate on
anything. Only when we consider a “representation” or “action” of an operad do they
get incarnated as actual n-ary operations on some set. The point of operads is to study
their actions.

But, for completeness, let me sketch the definition of an operad. An operad tells us
how to compose its operations, like this:

g1 g2 g3

f

Here we are composing f with g1, g2, and g3 to get an operation with 6 inputs called
f ◦ (g1, g2, g3).

An operad needs to have a unary operation serving as the identity for composition. It
also needs to satisfy an “associative law” that makes a composite of composites like this
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well-defined:

(This picture has a 0-ary operation in it, just to emphasize that this is allowed.)
That’s the complete definition of a “planar operad”. In a full-fledged operad we can

do more: we can permute the inputs of any operation and get a new operation:

f

This gives actions of the permutation groups on the sets O(n). We also demand that
these actions be compatible with composition, in a way that’s supposed to be obvious
from the pictures. For example:

d

a b c

=

d

a b c

and similarly for permuting the inputs of the black boxes on top.
Voilà!
Now, operads make sense in various contexts. So far we’ve been talking about op-

erads that have a set O(n) of n-ary operations for each n. These have actions on sets,
where each guy in O(n) gets incarnated as a function that eats n elements of some set
and spits out an element of that set.

But historically, Peter May started by inventing operads that have a topological space
of n-ary operations for each n. These like to act on topological spaces, with the operations
getting incarnated as continuous maps.
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Most importantly, he invented an operad called the “little k-cubes operad”. Here
O(n) is the space of ways of putting n nonoverlapping little k-dimensional cubes in a big
one. We don’t demand that the little cubes are actually cubes: they can be rectangular
boxes. We do demand that their walls are nicely lined up with the walls of the big cube:

typical 3-ary operation
in the little 2-cubes operad

This is an operation in O(3), where O is the little 2-cubes operad. Or, at least it would
be if I labelled each of the 3 little 2-cubes — we need that extra information.

We compose operations by sticking pictures like this into each of the little k-cubes in
another picture like this! I should draw you an example, but I’m too lazy. So, figure it
out yourself and check the associative law.

The reason this example is so important is that we get an action of the little k-cubes
operad whenever we have a “k-fold loop space”.

Starting from a space S equipped with a chosen point ∗, the k-fold loop space Ωk(S)
is the space of all maps from a k-sphere into S that send the north pole to the point ∗.
But this is also the space of all maps from a k-cube into S sending the boundary of the
k-cube to the point ∗.

So, given n such such maps, we can glom them together using an n-ary operation in
the little k-cubes operad:

where we map all the shaded stuff to the point ∗. We get another map from the k-cube
to S sending the boundary to ∗. So:

any k-fold loop space has an action of
the little k-cubes operad

But the really cool part is the converse:

any connected pointed space with an action of
the little k-cubes operad is
homotopy equivalent to a k-fold loop space

235



WEEK 220 AUGUST 31, 2005

This is too technical to make a good bumper sticker, so if you want people in your
neighborhood to get interested in operads, I suggest combining both the above slogans
into one:

a k-fold loop space is the same as
an action of the little k-cubes operad

Like any good slogan, this leaves out some important fine print, but it gets the basic
idea across. Modulo some details, being a k-fold loop space amounts to having a bunch
of operations: one for each way of stuffing little k-cubes in a big one!

By the way:
Speaking of bumper stickers, I’m in Montreal now, and there’s a funky hangout on

the Boulevard Saint-Laurent called Cafe π where people play chess — and they sell T-
shirts, key rings, baseball caps and coffee mugs decorated with the Greek letter π! The
T-shirts are great if you’re going for a kind of math-nerd/punk look; I got one to wow
the students in my undergraduate courses. I don’t usually provide links to commercial
websites, but I made an exception for Acme Klein Bottles, and I’ll make an exception for
Cafe π:

6) Cafeπ, http://www.cafepi.ca/

Unfortunately they don’t sell bumper stickers.
But where were we? Ah yes — the little k-cubes operad.
The little k-cubes operad sits in the little (k + 1)-cubes operad in an obvious way.

Indeed, it’s a “sub-operad”. So, we can take the limit as k goes to∞ and form the “little
∞-cubes operad”. Any infinite loop space gets an action of this. . . and that’s why Peter
May invented operads!

You can read more about these ideas in May’s book:

7) J. Peter May, The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics
271, Springer, Berlin, 1972.

or for a more gentle treatment, try this expository article:

8) J. Peter May, “Infinite loop space theory”, Bull. Amer. Math. Soc. 83 (1977),
456–494.

But Dev Sinha told us about some subsequent work by Fred Cohen, who computed
the homology and cohomology of the little k-cubes operad.

For this, we need to think about operads in the world of linear algebra. Here we
consider operads that have a vector space of n-ary operations for each n, which get in-
carnated as multilinear maps when they act on some vector space. These are sometimes
called “linear operads”.

An example is the operad for Lie algebras. This one is called “Lie”. Lie(n) is the
vector space of n-ary operations that one can do whenever one has a Lie algebra. In this
example:

• Lie(0) is zero-dimensional, since there are no nullary operations (constants) built
into the definition of Lie algebra, except zero.
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• Lie(1) is one-dimensional, since the only unary operations are multiples of the
identity operation:

a→ a

• Lie(2) is one-dimensional, since the only binary operations are multiples of the Lie
bracket:

(a, b)→ [a, b]

You might think we need a second guy in Lie(2), namely

(a, b)→ [b, a]

but the antisymmetry of the Lie bracket says this is linearly dependent on the first
one:

[b, a] = −[a, b]

• Lie(3) is two-dimensional, since the only ternary operations are linear combina-
tions of these two:

(a, b, c)→ [a, b], c]

(a, b, c)→ [b, [a, c]

You might think we need a third guy in Lie(3), for example

(a, b, c)→ [a, [b, c]

but the Jacobi identity says this is linearly dependent on the first two:

[a, [b, c] = [a, b], c] + [b, [a, c]

You may enjoy trying to show that the dimension of Lie(n) is (n − 1)!, at least for
n > 0. There’s an incredibly beautiful conceptual proof, and probably lots of obnoxious
brute-force proofs.

There’s a lot more to say about the Lie operad, but right now I want to talk about
the Poisson operad. A “Poisson algebra” is a commutative associative algebra that has a
bracket operation {a, b} making it into a Lie algebra, with the property that

{a, bc} = {a, b}c+ b{a, c}

So, bracketing with any element is like taking a derivative: it satisfies the product rule.
For this reason, Poisson algebras arise naturally as algebras of observables in classical

mechanics — the Poisson bracket of any observable A with an observable H called the
“Hamiltonian” tells you the time derivative of A:

dA

dt
= {H,A}

This is the beginning of a nice big story.
But, what’s got me excited now is how Poisson algebras show up in topology!
To understand this, we need to note that there’s a linear operad whose algebras are

Poisson algebras. That’s not surprising. But, we can get a very similar operad in a rather
shocking way, as follows.
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Take the little k-cubes operad. This has a space O(n) of n-ary operations for each n.
Now take the homology of these spaces O(n), using coefficients in your favorite field,
and get vector spaces H(O(n)). By functorial abstract nonsense these form a linear
operad. And this is the operad for Poisson algebras!

Alas, we actually have to be a bit more careful. The homology of each space O(n)
with coefficients in some field is really a graded vector space over that field. So, taking
the homology of the little k-cubes operad gives an operad in the category of graded
vector spaces. And, it’s the operad whose algebras are graded Poisson algebras with a
bracket of degree k − 1.

What are those? Well, they’re like Poisson algebras, but if a is an element of degree
|a| and b is an element of degree |b|, then:

• ab has degree |a|+ |b| (we’ve got a graded algebra)

• {a, b} has degree |a|+ |b|+ k − 1 (with a bracket of degree k − 1)

and the usual axioms for a Poisson algebra hold, but sprinkled with minus signs
according to the usual yoga of graded vector spaces.

So: whenever we have a k-fold loop space, its homology is a graded Poisson algebra
with a bracket of degree k − 1.

To get an idea of this works, let me sketch how the product and the bracket work.
Suppose we have an space X with an action of the little k-cubes operad:

• The product on homology corresponds to sticking two little cubes side by side.
Given two points in X, this gives another point in X. More generally, given two
homology classes a and b in X, we get a homology class of degree |a|+ |b| in X.

• The bracket comes from taking one little cube and moving it around to trace out a
sphere surrounding the other little cube. Given two points inX, this gives a (k−1)-
sphere in X. More generally, given a homology class a in X, and a homology class
b in X, we get a homology class {a, b} of degree |a|+ |b|+ k − 1.

The equation
{a, bc} = {a, b}c+ b{a, c}

then says “moving a around b and c is like moving a around b while c stands by, plus
moving a around c while b stands by”.

I guess this result can be found here:

9) Frederick Cohen, “Homology of Ωn+1Σn+1X and Cn+1X, n > 0”, Bull. Amer.
Math. Soc. 79 (1973), 1236–1241.

10) Frederick Cohen, Tom Lada and J. Peter May, The homology of iterated loop spaces,
Lecture Notes in Mathematics 533, Springer, Berlin, 1976.

But, I don’t think these old papers talk about graded Poisson operads! Dev Sinha has
a paper where he takes these ideas and distills them all into the combinatorics of graphs
and trees:

11) Dev Sinha, “A pairing between graphs and trees”, available as math.QA/0502547.
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However, what I really like is how he gets these graphs and trees starting from the
homology and cohomology (respectively) of the little k-cubes operad! He first wrote
about it here:

12) Dev Sinha, “Manifold theoretic compactifications of configuration spaces”, avail-
able as math.GT/0306385.

Dev Sinha, “The homology of the little disks operad”, available as math/0610236.

I have a vague feeling that this relation between the little k-cubes operad and the
Poisson operad is part of a big picture involving braids and quantization. Another hint
in this direction is Deligne’s Conjecture, now proved in many ways, which says that the
operad of singular chains coming from the little 2-disks operad acts on the Hochschild
cochain complex of any associative algebra. Since Hochschild cohomology classifies the
ways you can deform an associative algebra, this result is related to quantization and
Poisson algebras. But, I don’t get the big picture! This might help:

13) Maxim Kontsevich, “Operads and motives in deformation quantization”, Lett. Math.
Phys. 48 (1999) 35–72. Also available as math.QA/9904055.

I’d like to ponder this now! But I’m getting tired, and I still need to say how the little
2-cubes operad acts on the space of thickened long knots.

What’s a thickened long knot? In k dimensions, it’s an embedding of a little k-cube
in a big one:

f : [0, 1]k → [0, 1]k

subject to the condition that the top and bottom of the little cube get mapped to the top
and bottom of the big one via the identity map. So, you should imagine a thickened long
knot as a fat square rope going from the ceiling to the floor, all tied up in knots.

There are two ways to “compose” thickened long knots.
If you’re a knot theorist, the obvious way is to stick one on top of the other — just

like the usual composition of tangles. But if you just think of thickened long knots as
functions, you can also compose them just by composing functions! This amounts to
stuffing one knot inside another. . . a little hard to visualize, but fun.

Anyway, it turns out that the whole little 2-cubes operad acts on the space of thick-
ened long knots, with the two operations I just mentioned corresponding to this:

sticking one thickened long
knot on top of another
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and this:

sticking one thickened long
knot inside another

This isn’t supposed to make obvious sense, but the point is, there are lots of binary
operations interpolating between these two — one for each binary operation in the little
2-cubes operad!

This gives a new proof that the operation of “sticking one thickened long knot on top
of another” is commutative up to homotopy.

And, using these ideas, Ryan Budney has managed to figure out a lot of information
about the homotopy type of the space of long knots. Check out these papers:

14) Ryan Budney, “Little cubes and long knots”, available as math.GT/0309427.

15) Ryan Budney and Frederick Cohen, “On the homology of the space of long knots”,
available as math.GT/0504206.

16) Ryan Budney, “Topology of spaces of knots in dimension 3”, available as math.GT/
0506524.

The paper by Budney and Cohen combines the two ideas I just described — the action
of the little 2-cubes operad on thickened long knots and its relation to the Poisson operad.
Using these, they show that the rational homology of the space of thickened long knots
in 3 dimensions is a free Poisson algebra! They also show that the mod-p homology of
this space is a free “restricted Poisson” algebra.

Addendum: Jesse McKeown had a question about the two operations on long thick-
ened knots. Here’s what he asked:

Perhaps I’m being too imaginative, but I don’t feel very convinced the two oper-
ations described towards the end of “Week 220” are fundamentally different.

VagueSpecifically, in map-composition, can’t one stretch all the knottednes of
the first composand into an “upper”, essentially unknotty portion of the second
composand, and similarly squish the knottedness of the second composand into
a “lower” section of the big all-encompassing box?

Here’s my reply:
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Right! That’s exactly what having an action of the little 2-cubes operad says!
There’s nothing “fundamentally different” between this:

A: sticking one thickened long
knot on top of another

and this:

B: sticking one thickened long
knot inside another

because there is a continuous family of operations interpolating between these
— one for each way of sticking two little squares in a big one.

But, the process of moving from operation A to operation B is itself nontrivial.
If you loop all the way around from A to B to A — moving the two little squares
around each other in the big one — you can get a noncontractible loop in the
space of long thickened knots!

And, this is what gives the bracket operation on the homology of the space of
thickened long knots.

Operads were born to deal with issues like this.

On another note — in the summer of 2007, Urs Schreiber posted a 3-part article on
Batalin–Vilkovisky quantization over at the n-Category Cafe. The third part has links to
the other two:

18) Urs Schreiber, “Lyakhovich and Sharapov on QFT (On BV-Quantization, Part III)”,
http://golem.ph.utexas.edu/category/2007/08/lyakhonov and sharapov on qft.

html.
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and in addition to providing lots of references, it led me back to puzzling about
Poisson algebras and the little disks operad. Here’s what I wrote, roughly:

Try these:

19) Ezra Getzler, “Batalin-Vilkovisky algebras and two-dimensional topological
field theories”, Comm. Math. Phys. 159 (1994), 265–285. Available at
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.

cmp/1104254599

20) Takashi Kimura, Jim Stasheff and Alexander A. Voronov, “On operad struc-
tures of moduli spaces and string theory”, Comm. Math. Phys. 171
(1995), 1–25. “Section 3.7: the Batalin-Vilkovisky (BV) algebra”. Avail-
able at http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.
cmp/1104273401

I don’t understand this stuff very well!

More precisely:

If you take the space of multivector fields V on a manifold M , and think of
V equipped with its wedge product and Schouten bracket, you get the easiest
example of a Gerstenhaber algebra.

A Gerstenhaber algebra is an associative supercommutative graded algebra A
together with a bracket of degree −1 which makes A into a kind of “graded
Poisson algebra with bracket of degree−1”. All the usual Poisson algebra axioms
hold, but sprinkled with minus signs according to the usual conventions.

If your manifold M is a Poisson manifold, then the space V of multivector fields
comes equipped with a differential given by taking the Schouten bracket with
the Poisson bivector field Π in V .

Axiomatizing this mess, we get the definition of a Batalin–Vilkovisky algebra: a
Gerstenhaber algebra with differential that’s compatible with the other structure
in a certain way.

There are also lots of Batalin–Vilkovisky algebras that don’t come from Poisson
manifolds. But just like Poisson manifolds, we can still think of these as describ-
ing phase spaces in classical mechanics — in a clever algebraic way. And, that’s
what BV quantization is all about: figuring out how to treat these Batalin-
Vilkovisky algebras as classical phase spaces and quantize them!

All this makes some sense to me. But then it gets weird and mystical. . .

First, thanks to an old result of Fred Cohen, a Gerstenhaber algebra is the same
as an algebra of the operad H(D) — the homology of the little disks operad!

Did I just hear some of you say “Huh?”

Well, let me sketch what that means. The little disks operad is a gadget with a
bunch of n-ary operations corresponding to ways of sticking n little disks in a
big one. For each n there’s a topological space of these n-ary operations. Taking
the homology of this topological space, we get a graded vector space. These are
the n-ary operations of the operad I’m calling H(D).
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While I roughly follow how this works, I don’t understand the deep inner mean-
ing. It seems amazing: there’s a mystical relation between ways of sticking little
2d disks in bigger ones, and operations you can do on the space of multivector
fields on a manifold!

I don’t know if the connections to 2d topological and conformal field theory
(described in the articles I cite) actually explain this mystical relation, or merely
exploit it.

Now, as I said, a Batalin–Vilovisky algebra is a Gerstenhaber algebra with an
extra operation. And, Getzler showed that this extra operation corresponds to
our ability to twist a little disk 360◦. (Until we started twisting like this, we
could equally have used little 2-cubes.)

More precisely, Getzler showed that a Batalin–Vilkovisky algebra is the same as
an algebra of the homology of the framed little discs operad.

This extra twist of the knife only makes me more curious to know what’s really
going on here.

Here’s a clue that could help. As I explained to Urs a couple days ago, this
business of “taking homology” is really some sort of procedure for turning weak
∞-groupoids (i.e. spaces) into stable strict ∞-groupoids (i.e. chain complexes)
— followed by taking the homology of the chain complex, which in principle
loses even more information, but doesn’t in this particular example. That sug-
gests that these Gerstenhaber (and Batalin–Vilkovisky) algebras are really just
watered-down chain complex versions of spaces equipped with n-ary operations
corresponding to ways of sticking n (framed) little disks into a big disk.

But still: what’s really going on? What do classical phase spaces have to do
with little 2-dimensional disks???

As far as I’m concerned, the Rosetta Stone on the third page of Getzler’s paper
only serves to heighten the mystery further!

One gets the impression that some physicists have gone for so long without
any experimental data that might resolve the quantum-gravity debates that
they are going a little crazy.

— Jaron Lanier
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Week 221

September 18, 2005

After going to the Streetfest this summer, I wandered around China. I began by going to
a big conference in Beijing, the 22nd International Congress on the History of Science. I
learned some interesting stuff. For example:

You may have heard of Andalusia, that fascinating melting-pot of cultures that formed
when southern Spain was invaded by Muslims. The eleventh century was the golden
age of Andalusian astronomy and mathematics, with a lot of innovation in astrolabes.
During the Caliphate (929–1031), three quarters of all mathematical manuscripts were
produced in Cordoba, most of the rest in Sevilla, and only a few in Granada and Toledo.

I didn’t understand the mathematical predominance of Cordoba when I first heard
about it, but the underlying reason is simple. The first great Muslim dynasty were the
Ummayyads, who ruled from Damascus. They were massacred by the Abbasids in 750,
who then moved the capital to Baghdad. When Abd ar-Rahman fled Damascus in 750
as the only Ummayyad survivor of this massacre, he went to Spain, which had already
been invaded by Muslim Berbers in 711.

Abd ar-Rahman made Cordoba his capital. And, by enforcing a certain level of reli-
gious tolerance, he made this city into the place to be for Muslims, Jews and Christians —
the “ornament of the world”, and a beacon of learning — until it was sacked by Berber
troops in 1009.

Other cities in Andalusia became important later. The great philosopher Ibn Rushd
— known to Westerners by the Latin name “Averroes” — was born in Cordoba in 1128.
He later became a judge there. He studied mathematics, medicine, and astronomy, and
wrote detailed line-by-line commentaries on the works of Aristotle. It was through these
commentaries that most of Aristotle’s works, including his Physics, found their way into
Western Europe! By 1177, the bishop of Paris had banned the teaching of many of these
new ideas — but to little effect.

Toledo seems to have only gained real prominence after Alfonso VI made it his capital
upon capturing it in 1085 as part of the Christian “reconquista”. By the 1200s, it became
a lively center for translating Arabic and Hebrew texts into Latin.

Mathematics also passed from the Arabs to Western Europe in other ways. Fibonacci
(1170-1250) studied Arabic accounting methods in North Africa where his father was
a diplomat. His book Liber Abaci was important in transmitting the Indian system of
numerals (including zero) from the Arabs to Europe. However, he wasn’t the first to
bring these numbers to Europe. They’d been around for over 200 years!

For example: Gerbert d’Aurillac (940–1003) spent years studying mathematics in
various Andalusian cities including Cordoba. On his return to France, he wrote a book
about a cumbersome sort of “abacus” labelled by a Western form of the Indian numerals
— close to what we now call “Arabic numerals”. This remained popular in intellectual
circles until the mid-12th century.

Amusingly, Arabic numerals were also called “dust numerals” since they were used
in calculations on an easily erasable “dust board”. Their use was described in the Liber
Pulveris, or “book of dust”.

I want to learn more about Andalusian science! I found this book a great place to
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start — it’s really fascinating:

1) Maria Rose Menocal, The Ornament of the World: How Muslims, Jews and Christians
Created a Culture of Tolerance in Medieval Spain, Little, Brown and Co., 2002.

For something quick and pretty, try this:

2) Steve Edwards, “Tilings from the Alhambra”, http://www2.spsu.edu/math/tile/
grammar/moor.htm

Apparently 13 of the 17 planar symmetry groups can be found in tile patterns in the
Alhambra, a Moorish palace built in Granada in the 1300s.

To dig deeper into the splendors of Arabic mathematics, try these:

3) John J. O’Connor and Edmund F. Robertson, “Arabic mathematics: forgotten bril-
liance?”, http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Arabic mathematics.

html

John J. O’Connor and Edmund F. Robertson, “Biographies of Arab/Islamic mathe-
maticians”, http://www-groups.dcs.st-and.ac.uk/~history/Indexes/Arabs.

html

For more on Fibonacci and Arabic mathematics, try this paper by Charles Burnett,
who spoke about the history of “Arabic numerals” in Beijing:

4) Charles Burnett, “Leonard of Pisa and Arabic Arithmetic”, http://muslimheritage.
com/topics/default.cfm?ArticleID=472

Another interesting talk in Beijing was about the role of the Syriac language in the
transmission of Greek science to Europe. Many important texts didn’t get translated
directly from Greek to Arabic! Instead, they were first translated into Syriac.

I don’t understand the details yet, but luckily there’s a great book on the subject,
available free online:

5) De Lacy O’Leary, How Greek Science Passed to the Arabs, Routledge & Kegan Paul
Ltd, 1949. Also available at http://www.aina.org/books/hgsptta.htm

So, medieval Europe learned a lot of Greek science by reading Latin translations of
Arab translations of Syriac translations of second-hand copies of the original Greek texts!

George Baloglu recommends this book:

6) Dimitri Gutas, Greek Thought, Arabic Culture: The Graeco–Arabic Translation Move-
ment in Baghdad and Early ’Abbasid Society (2nd–4th/8th–10th Centuries), Rout-
ledge, 1998.

I want to read this book, too:

7) Scott L. Montgomery, Science in Translation: Movements of Knowledge through Cul-
tures and Time, U. of Chicago Press, 2000. Review by William R. Everdell available
at MAA Online, http://www.maa.org/publications/maa-reviews/science-in-translation-movements-of-knowledge-through-cultures-and-time
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The historian of science John Stachel, famous for his studies of Einstein, says this
book “strikes a blow at one of the founding myths of ‘Western Civilization’ ” — namely,
that Renaissance Europeans single-handedly picked up doing science where the Greeks
left off. As Everdell writes in his review:

Perhaps the best of the book’s many delightful challenges to conventional wis-
dom comes in the first section on the translations of Greek science. Here we
learn why it is ridiculous to use a phrase like “the Renaissance recovery of the
Greek classics”; that in fact the Renaissance recovered very little from the origi-
nal Greek and that it was long before the Renaissance that Aristotle and Ptolemy,
to name the two most important examples, were finally translated into Latin.
What the Renaissance did was to create a myth by eliminating all the inter-
mediate steps in the transmission. To assume that Greek was translated into
Arabic “still essentially erases centuries of history” (p. 93). What was trans-
lated into Arabic was usually Syriac, and the translators were neither Arabs (as
the great Muslim historian Ibn Khaldun admitted) nor Muslims. The real story
involves Sanskrit compilers of ancient Babylonian astronomy, Nestorian Chris-
tian Syriac-speaking scholars of Greek in the Persian city of Jundishapur, and
Arabic- and Pahlavi-speaking Muslim scholars of Syriac, including the Nesto-
rian Hunayn Ibn Ishak (809–873) of Baghdad, “the greatest of all translators
during this era” (p. 98).

And now for something completely different: the Langlands program! I want to keep
going on my gradual quest to understand and explain this profoundly difficult hunk of
mathematics, which connects number theory to representations of algebraic groups. I’ve
found this introduction to be really helpful:

8) Stephen Gelbart: “An elementary introduction to the Langlands program”, Bulletin
of the AMS 10 (1984), 177–219.

There are a lot of more detailed sources of information on the Langlands program,
but the problem for the beginner (me) is that the overall goal gets swamped in a mass
of technicalities. Gelbart’s introduction does the best at avoiding this problem.

I’ve also found parts of this article to be helpful:

9) Edward Frenkel, “Recent advances in the Langlands program”, available at math.
AG/0303074.

It focuses on the “geometric Langlands program”, which I’d rather not talk about
now. But, it starts with a pretty clear introduction to the basic Langlands stuff. . . at
least, clear to me after I’ve battered my head on this for about a year!

If you know some number theory or you followed recent issues This Week’s Finds
(especially “Week 217” and “Week 218”) it should make sense, so I’ll quote it:

The Langlands Program has emerged in the late 60’s in the form of a series of
far-reaching conjectures tying together seemingly unrelated objects in number
theory, algebraic geometry, and the theory of automorphic forms. To motivate
it, recall the classical Kronecker-Weber theorem which describes the maximal
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abelian extension Qab of the field Q of rational numbers (i.e., the maximal
extension of Q whose Galois group is abelian). This theorem states that Qab is
obtained by adjoining to Q all roots of unity; in other words, Qab is the union
of all cyclotomic fields Q(1

1
N ) obtained by adjoining to Q a primitive N th root

of unity
1

1
N

The Galois group Gal(Q(1
1
N )/Q) of automorphisms of Q(1

1
N ) preserving Q

is isomorphic to the group (Z/N)∗ of units of the ring Z/N . Indeed, each
element m in (Z/N)∗, viewed as an integer relatively prime to N , gives rise to
an automorphism of Q(1

1
N ) which sends

1
1
N

to
1

m
N .

Therefore we obtain that the Galois group Gal(Qab/Q), or, equivalently, the
maximal abelian quotient of Gal(Q/Q), where Q is an algebraic closure of Q,
is isomorphic to the projective limit of the groups (Z/N)∗ with respect to the
system of surjections

(Z/N)∗ → (Z/M)∗

for M dividing N . This projective limit is nothing but the direct product of the
multiplicative groups of the rings of p-adic integers, Z∗

p, where p runs over the
set of all primes. Thus, we obtain that

Gal(Qab/Q) =
∏

Z∗
p.

The abelian class field theory gives a similar description for the maximal abelian
quotient Gal(Fab/F) of the Galois group Gal(F/F), where F is an arbitrary
global field, i.e., a finite extension of Q (number field), or the field of ratio-
nal functions on a smooth projective curve defined over a finite field (function
field). Namely, Gal(Fab/F) is almost isomorphic to the quotient A(F)∗/F∗,
where A(F) is the ring of adeles of F, a subring in the direct product of all com-
pletions of F. Here we use the word “almost” because we need to take the group
of components of this quotient if F is a number field, or its profinite completion
if F is a function field.

When F = Q the ring A(Q) is a subring of the direct product of the fields Qp of
p-adic numbers and the field R of real numbers, and the quotient A(F)∗/F∗ is
isomorphic to

R+ ×
∏
p

Z∗
p.

where R+ is the multiplicative group of positive real numbers. Hence the group
of its components is ∏

p

Z∗
p

in agreement with the Kronecker-Weber theorem.
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One can obtain complete information about the maximal abelian quotient of a
group by considering its one-dimensional representations. The above statement
of the abelian class field theory may then be reformulated as saying that one-
dimensional representations of Gal(F/F) are essentially in bijection with one-
dimensional representations of the abelian group

A(F)∗ = GL(1, A(F))

which occur in the space of functions on

A(F)∗/F∗ = GL(1, A(F))/GL(1,F)

A marvelous insight of Robert Langlands was to conjecture that there exists a
similar description of n-dimensional representations of Gal(F/F). Namely, he
proposed that those may be related to irreducible representations of the group
GL(n,A(F)) which are automorphic, that is those occurring in the space of
functions on the quotient

GL(n,A(F))/GL(n,F)

This relation is now called the Langlands correspondence.

At this point one might ask a legitimate question: why is it important to know
what the n-dimensional representations of the Galois group look like, and why
is it useful to relate them to things like automorphic representations? There
are indeed many reasons for that. First of all, it should be remarked that ac-
cording to the Tannakian philosophy, one can reconstruct a group from the
category of its finite-dimensional representations, equipped with the structure
of the tensor product. Therefore looking at n-dimensional representations of the
Galois group is a natural step towards understanding its structure. But even
more importantly, one finds many interesting representations of Galois groups
in “nature”.

For example, the group Gal(Q/Q) will act on the geometric invariants (such
as the etale cohomologies) of an algebraic variety defined over Q. Thus, if we
take an elliptic curve E over Q, then we will obtain a two-dimensional Galois
representation on its first etale cohomology. This representation contains a lot
of important information about the curve E, such as the number of points of E
over Z/p for various primes p.

The point is that the Langlands correspondence is supposed to relate n-dimensional
Galois representations to automorphic representations of GL(n,A(F)) in such a
way that the data on the Galois side, such as the number of points ofE over Z/p,
are translated into something more tractable on the automorphic side, such as
the coefficients in the q-expansion of the modular forms that encapsulate auto-
morphic representations of GL(2, A(Q)).

More precisely, one asks that under the Langlands correspondence certain natu-
ral invariants attached to the Galois representations and to the automorphic
representations be matched. These invariants are the Frobenius conjugacy
classes on the Galois side and the Hecke eigenvalues on the automorphic side.
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Since I haven’t talked about Hecke operators yet, I’ll stop here!
But, someday I should really explain the ideas behind the baby “abelian” case of the

Langlands philosophy in simpler terms than Frenkel does here. The abelian case goes
back way before Langlands: it’s called “class field theory”. And, it’s all about exploiting
this analogy, which I last mentioned in “Week 218”:

Number theory Complex geometry

Integers Polynomial functions on the complex plane
Rational numbers Rational functions on the complex plane
Prime numbers Points in the complex plane
Integers mod pn (n− 1)st-order Taylor series
p-adic integers Taylor series
p-adic numbers Laurent series
Adeles for the rationals Adeles for the rational functions
Fields One-point spaces
Homomorphisms to fields Maps from one-point spaces
Algebraic number fields Branched covering spaces of the complex plane

Addendum: I thank Fabien Besnard for some suggestions on how to improve this
Week’s Finds. Bruce Smith, Noam Elkies, and Miguel Carrión-Álvarez had some things
to say about the history of science. In response to this comment of mine:

So, medieval Europe learned a lot of Greek science by reading Latin translations
of Arab translations of Syriac translations of second-hand copies of the original
Greek texts!

my friend Bruce wrote:

This all seems so precarious a process that it makes me wonder whether there
was ten times as much valuable ancient math and philosophy as we know about,
most of which got completely lost.

Something like this almost certainly true.
Like Plato, Aristotle is believed to have written dialogs which presented his ideas in

a polished form. They were all lost. His extant writings are just ”lecture notesquot; for
courses he taught!

Euripides wrote at least 75 plays, of which only 19 survive in their full form. We
have fragments or excerpts of some more. This isn’t philosophy or math, but it’s still
incredibly tragic (pardon the pun).

The mathematician Apollonius wrote a book on Tangencies which is lost. Only four of
his eight books on Conics survive in Greek. Luckily, the first seven survive in Arabic.

The burning of the library of Alexandria is partially to blame for these losses.
There’s some good news, though:
Archimedes did more work on calculus than previously believed! We know this now

because a manuscript of his on mechanics that had been erased and written over has
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recently been read with the help of a synchrotron X-ray beam! This is a great example
of modern science helping the history of science.

This manuscript, called the Archimedes Palimpsest, also reveals for the first time that
he did work on combinatorics:

10) Nova, “The Archimedes Palimpsest”, http://www.pbs.org/wgbh/nova/archimedes/
palimpsest.html

11) Heather Rock Woods, “Placed under X-ray gaze, Archimedes manuscript yields se-
crets lost to time”, Stanford Report, May 19, 2005, http://news-service.stanford.
edu/news/2005/may25/archimedes-052505.html

12) Erica Klarreich, “Glimpses of genius: mathematicians and historians piece together
a puzzle that Archimedes pondered”, Science News 165 (2004), 314. Also available
at http://www.sciencenews.org/articles/20040515/bob9.asp

Also: a team using “multispectral imaging” has recently been able to read parts of a
Roman library in the town of Herculaneum. The books in this library were “roasted in
place” — heavily carbonized — during the eruption of Vesuvius that destroyed Pompeii.
By distinguishing between different shades of black, researchers were able to reconstruct
the entire book On Piety by one Philodemus:

13) Julie Walker, “A library of mud and ashes”, BYU Magazine, Spring 2001, http://
magazine.byu.edu/?act=view&a=43

I can’t resist quoting a bit:

A sister city to Pompeii that was also buried in the volcanic eruption of A.D. 79,
Herculaneum was a seaside town that sat between Vesuvius’ fertile foot and the
gleaming Bay of Naples. The collection of 2,000 carbonized Greek and Latin
scrolls, primarily Epicurean philosophical writings, was found in a luxurious
Herculaneum house known as the Villa of the Papyri, which was discovered in
1752.

The scrolls have endured a destructive path through history: first, rain soaked
the papyri, then a 570-degree swell of molasses-thick mud engulfed the villa
and charred the scrolls. They would remain buried under 65 feet of mud for
hundreds of years.

As a result, many of the fragile scroll cylinders are pressed into trapezoidal
columns; some are bowed and snaked into half-moons, others folded into v-
shapes.

After their discovery the mortality rate for the scrolls continued to climb as
would-be conservators struggled to find a way to unroll the fragile manuscripts.
Some scrolls were turned to mush when they were painted with mercury; many
were sliced down the middle and cut into fragments. Early transcribers would
copy the visible outer layer of a scroll, then scrape it off and discard it to read
the next layer.

Even today, scholars use metaphors of near impossibility to describe the scroll
unrolling process. It is like “flattening out a potato chip” without destroying it,
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or like “separating (burned) layers of two-ply tissue,” says Jeffrey Fish of Baylor
University.

The current unrolling methoddeveloped by a team of Norwegian conservators
involves applying a gelatin-based adhesive to the scroll’s outer surface. As the
adhesive dries, the outer shell — which bears the text on its interior — can
be slowly peeled off. It can take days to remove a single fragment, months or
years to process a complete scroll. Some 300 of the library’s scrolls have yet to
be unrolled, and many more scrolls are in various stages of conservation and
repair.

On the Herculaneum project, CPART researchers Steve and Susan Booras con-
ducted multispectral imaging (MSI) on 3,100 trays of papyrus fragments and
photographed them with a high-quality digital camera. The images will be used
to create a digital library that can be accessed by scholars worldwide. Developed
for NASA scientists, the imaging technique has only recently been applied to the
study of ancient texts. Rather than focusing on light that is seen at wave lengths
visible to the eye, MSI uses filters to focus on nonvisible portions of the light
spectrum. In the nonvisible infrared spectrum, the black ink on a blackened
scroll can be clearly differentiated. In some cases clear, legible writings have
been found on fragments that researchers believed were completely blank.

The same team is now studying over 400,000 fragments of papyrus found in an
ancient garbage dump in the old Egyptian town of Oxyrhynchus. They’ve pieced together
new fragments of plays by Euripides, Sophocles and Menander, lost lines from the poets
Sappho, Hesiod, and Archilocus, and most of a book by Hesiod:

14) Oxyrhynchus Online, “multispectral imaging”, http://www.papyrology.ox.ac.

uk/multi/procedure.html

If you just want to look at a nice “before and after” movie of what multispectral
imaging can do, try this link.

Finally, in response to this remark of mine:

Amusingly, Arabic numerals were also called “dust numerals” since they were
used in calculations on an easily erasable “dust board”. Their use was described
in the Liber Pulveris, or “book of dust”.

Noam Elkies wrote:

This is even more amusing than you may realize: the word “abacus” comes from
a Greek word “abax, abak-” for “counting board”, which conjecturally might
come from the Hebrew word (or a cognate word in another semitic language)
for “dust”! See for instance:

http://education.yahoo.com/reference/dictionary/entry/abacus

So these “dust numerals” replaced a reckoning device whose name may also
originate with calculation a dust board. . .

Interesting! While “calculus” refers back to pebbles.
My erstwhile student Miguel Carrión-Álvarez clarified the issue somewhat:
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The first abaci were drawn in the sand with sticks. The next step was to carve
grooves in a board (wooden, or clay: think cuneiform tablets) and place beads
in them. Pierced beads moving on beams (wood, later metal) must have been a
pretty recent development, relatively speaking.

Remember that Archimedes was studying geometry by drawing figures in the
sand when he was slain. If a sand abacus is the precursor of the modern calcu-
lator, Archimedes’ sandbox is the precursor of GUI geometry software.

One of Archimedes’ most fanciful works is “The Sand Reckoner”. Here the reck-
oner can be understood to be himself, as he is counting the grains of sand which
fit inside the sphere of fixed stars, but it can also refer to a sand abacus (reckoner
= calculator). In fact, romance translations of this title that I’ve seen (French:
L’arenaire, Spanish: El arenario, etc.) unambiguously refer to an object, not a
person. It is easy to imagine Archimedes inventing his positional number system
on a sand abacus, and using the counting of grains of sand as an excuse to write
about it.

We avail ourselves of what our predecessors may have said. That they were
or were not our coreligionists is of no account. . . . Whatever accords with
the truth, we shall happily and gratefully accept, and whatever conflicts, we
shall scrupulously but generously point out.

— Averroes
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Week 222

October 17, 2005

Last week there was a big conference on quantum gravity at the Albert Einstein Institute
near Berlin:

1) Loops ’05, http://loops05.aei.mpg.de

The focus was loop quantum gravity and spin foams, but there were also talks about
other approaches, so it was much bigger than last year’s get-together in Marseille. Last
year about 100 people attended; this time about 160 did! It was strange seeing old pals
like Ashtekar, Lewandowski, Loll, Rovelli and Smolin almost lost in a sea of new faces.
But, it was great to talk to everyone, both old and new.

I’ll say more about this conference, but first let’s talk about γ ray bursters, a black
hole without a host galaxy, the newly discovered moon of planet Xena, and lots of other
transneptunian objects.

Actually, just for fun, let’s start with this science fiction novel I picked up in Heathrow
en route to Berlin:

2) Charles Stross, Accelerando, Ace Books, New York. Also available at http://www.
accelerando.org/book/

This is one of the few tales I’ve read that does a good job of fleshing out Verner
Vinge’s “Singularity” scenario, where the accelerating development of technology soars
past human comprehension and undergoes a phase transition to a thoroughly different
world. This is a real possibility, and it’s been discussed a lot:

3) Wikipedia, “Technological singularity”, http://en.wikipedia.org/wiki/Technological singularity

Ray Kurzweil, “The Singularity”, http://www.kurzweilai.net/meme/frame.html?m=1

Anders Sandberg, “The Singularity”, http://www.aleph.se/Trans/Global/Singularity/

However, it’s not an easy subject for fiction — at least not for mere human readers!
Stross makes it gripping: sometimes goofy, sometimes thrilling, and sometimes rather
sad. Characters include a robot cat with ever-growing powers and some space-faring
uploaded lobsters.

The hero, Manfred Macx, starts out as a freeware developer, futurist and all-purpose
wheeler-dealer. Here’s a scene from the beginning of the book, before all hell breaks
loose:

Manfred’s mood of dynamic optimism is gone, broken by the knowledge that his
vivisectionist stalker has followed him to Amsterdam to say nothing of Pamela,
his dominatrix, source of so much yearning and so many morning-after weals.
He slips his glasses on, takes the universe off hold, and tells it to take him for
a long walk while he catches up on the latest on the tensor-mode gravitational
waves in the cosmic background radiation (which, it is theorized, may be waste
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heat generated by irreversible computational processes back during the infla-
tionary epoch; the present-day universe being merely the data left behind by a
really huge calculation). And then there’s the weirdness beyond M31: according
to the more conservative cosmologists, an alien superpower — maybe a collective
of Kardashev Type Three galaxy-spanning civilizations — is running a timing
channel attack on the computational ultrastructure of space-time itself, trying
to break through to whatever’s underneath. The tofu-Alzheimer’s link can wait.

An idea a minute — and the book is free online: what more could you want?
But right now, the big news in astronomy is not about a type III civilization lurking

beyond M31 (otherwise known as the Andromeda Galaxy). It’s some evidence that short
γ ray bursts are caused by collisions involving neutron stars and black holes!

γ ray bursts are among the most energetic events known in the heavens. They hap-
pen in galaxies throughout the universe; we see about one a day, and each releases
somewhere between 1045 and 1047 joules of energy. The larger figure is what you’d get
by turning the entire mass of the Sun into energy.

There could be several kinds of γ ray bursts, but there seem to be at least two: short
and long. Short bursts last between 40 milliseconds and 10 seconds — imagine the
whole Sun turning into energy that fast! Long ones last between 10 and 100 seconds.
The two kinds seem to be qualitatively different: for example, the short ones consist of
higher-frequency γ rays. The big news is that they happen in different kinds of galaxies!

In “Week 204”, I described how people caught a long γ ray burst in the act in March
2003. A γ ray detector aboard a satellite relayed information to telescopes in Australia
and Japan, allowing them to spot a visible afterglow right after the burst. The details of
this glow fit the “hypernova” theory of long γ ray bursts.

The hypernova theory says that when a star more than 25 times heavier than the
Sun runs out of fuel and collapses, it forms a black hole that sucks down the star’s iron
core before a normal supernova explosion can occur. In just a few seconds, about a
solar mass of iron spirals into the black hole, forming a pancake-shaped disk as it goes
down. In the process, this disk becomes incredibly hot and shoots out jets of radiation in
the transverse directions. As they plow through the star’s outer layers, these jets create
beams of γ rays.

The short bursts have been harder to catch. By the time a telescope on Earth could
be aimed at the spot where the γ rays were seen, no afterglow could be seen!

So, in October 2004 NASA launched Swift: a γ-ray detecting satellite equipped with
an X-ray telescope and an ultraviolet/optical telescope that can respond quickly when-
ever a burst is seen:

4) Official NASA Swift homepage, http://swift.gsfc.nasa.gov/docs/swift/swiftsc.
html

5) Gamma-ray burst real-time sky map, http://grb.sonoma.edu/

On May 9th, 2005, Swift detected a short burst and caught 11 photons of the burst’s
X-ray afterglow. Another short burst detected by HETE-II had its X-ray afterglow caught
by the Chandra X-ray satellite. Analysis of these and two more short bursts has convinced
some scientists that they’re caused by collisions between neutron stars and/or black
holes:

254



WEEK 222 OCTOBER 17, 2005

6) D. B. Fox et al, “The afterglow of GRB050709 and the nature of the short-hard
γ-ray bursts”, Nature 437 (October 2005), 849–850. Also available at http://

www.nasa.gov/pdf/135397main nature fox final.pdf

Despite what the news media are saying, I don’t see that this paper “proves” the short
γ-ray bursts are caused by such collisions. Instead, I see some good pieces of evidence.

The faintness of the afterglows suggests some mechanism other than a hypernova.
But as far as I can tell, the best evidence is that short γ ray bursts tend to happen near
the edges of old galaxies, while the long ones happen near the centers of young galaxies.

The center of a young galaxy is where you’d expect to find a really huge Wolf-Rayet
star, the sort that dies in a hypernova. The edge of an old galaxy is where you’d expect
to see black holes and neutron stars collide. Why? Because such collisions can only
happen long after stars are first formed. First you need an orbiting pair of giant stars to
go supernova and collapse into neutron stars and/or black holes. Then you need plenty
more time for this pair to spiral down thanks to gravitational radiation, and eventually
collide. By then the pair may sail off to the edge of the galaxy, thanks to the “kick”
delivered by the supernova explosions.

I hope astronomers can clinch the case for the collision theory of short γ ray bursts.
After all, these collisions involving neutron stars and black holes are precisely what grav-
itational wave detectors like LIGO and VIRGO are hoping to see! If we know to look
for gravitational waves precisely when we see short γ ray bursts, and we know where
they’re coming from, we’ll have a better chance of finding them.

(Of course, we’ll also have a better chance of fooling ourselves into thinking we found
them, until we do some double-blind tests.)

By the way, LIGO is already analysing data to look for gravitational waves. I talked
about this in “Week 189”, but here’s something new: now you can help them by running
a cool screensaver called Einstein@Home on your computer! Check it out:

7) Einstein@Home, http://einstein.phys.uwm.edu/

Speaking of black holes, last month the Hubble Space Telescope and the Very Large
Telescope in Chile detected a quasar that seems to have no host galaxy:

8) European Southern Observatory, “Black hole in search of a home”, http://www.
eso.org/outreach/press-rel/pr-2005/pr-23-05.html

HubbleSite, “Quasar without host galaxy compared with normal quasar”, http://
hubblesite.org/newscenter/newsdesk/archive/releases/2005/13/image/a

Quasars are thought to be super massive black holes; they’re usually found in the
centers of galaxies, where they devour stars and shoot out enormously powerful jets of
radiation. However, the quasar HE0450-2958 is surrounded only by a blob of ionized
gas. Nearby, a wildly disturbed spiral galaxy can be seen.
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Compare HE0450-2958 (at left) with a normal quasar (at right):

The quasar HE0450-2958 is in the middle of the left-hand picture; the disturbed galaxy
is above and a completely irrelevant foreground star is below. For more details on what
this image means, click on it.

Did this quasar begin life in the middle of a galaxy and then get kicked out when that
galaxy collided with something containing a super-massive black hole? What could that
something be?

Puzzles, puzzles, in the sky. . . .
Closer to home, astronomers at the Keck Observatory in Hawaii have discovered that
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planet Xena has a moon!

They nicknamed it Gabrielle, after this famous TV character’s sidekick:

9) Michael E. Brown, “The moon of the 10th planet”, http://www.gps.caltech.edu/
~mbrown/planetlila/moon/index.html

If you hadn’t heard about planet Xena, or you don’t like the idea of naming a planet
after a TV character — even a “warrior princess” - don’t get worked up just yet. Xena’s of-
ficial name is currently 2003 UB313, and though she’s larger than Pluto, the International
Astronomical Union has not decided whether she’ll officially be considered a planet.

If Xena becomes a planet, she’ll probably be renamed Persephone, after the reluctant
queen of the underworld in Greek mythology. But, she may have to settle for the status
of a mere “transneptunian object”, like Quaoar and Sedna. Indeed, if Pluto had been
discovered more recently, folks probably wouldn’t have called him a planet either.

If you haven’t even heard of Quaoar and Sedna. . . well, you must be too absorbed
by mundane concerns to keep track of the burgeoning population of our Solar System.
But it’s not too late to mend your ways! Impress your friends by casually dropping some
of this jargon:

• Transneptunian object — any object that orbits the Sun at an average distance
greater than that of Neptune. Neptune is about 30 AU from the Sun, meaning it’s
30 times farther from the Sun than we are. Transneptunian objects can be roughly
divided into three kinds: Kuiper belt objects, scattered disc objects, and Oort cloud
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objects.

– Kuiper belt object — any object whose orbit lies in the Kuiper belt. This is
the region in the ecliptic (the plane of the planets’ orbits) between 30 and 50
AU from the Sun. There are a bunch of planetoids in this belt. Beyond 50 AU
there seems to be a sharp dropoff in their density. Three main kinds of Kuiper
belt objects have been found so far: cubewanos, plutinos and twotinos.

* Cubewano — A cubewano is a Kuiper belt object whose orbit is not in
resonance with any of the outer planets. The curious name comes from
“QB1”, since the first example was named 1992 QB 1.
One of the biggest cubewanos is Quaoar, with a diameter of about 1200
kilometers. This is about half the diameter of Pluto, or a third the size of
the Moon: much bigger than anything in the asteroid belt!

Folks believe Quaoar is a mixture of ice and rock. It’s very dark in color,
but last year crystalline water ice was detected on its surface, using in-
frared spectroscopy. This came as a surprise, because cosmic rays and
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solar wind should convert exposed ice crystals to the amorphous form of
ice within about 10 million years. Could there have been liquid water
volcanos active on Quaoar this recently?? Or maybe meteor impacts melt
amorphous ice and then it crystallizes?
Other big cubewanos include Chaos, Varuna, and Deucalion. 2003 EL61
and 2005 FY9 are even bigger, but they haven’t got nice names yet.

* Plutino — A plutino is a Kuiper belt object whose orbit is in 3:2 resonance
with Neptune: they go around the Sun twice while Neptune goes around
three times. About a quarter of Kuiper belt objects are plutinos.
The most famous plutino is Pluto itself, though some pedants argue that
Pluto can’t be a “little Pluto”. Pluto is quite different than anything else
we call a planet: it has an eccentric orbit that ranges between 30 and
50 AU, and its orbit is tilted 17 degrees to the ecliptic. Its surface is light
brown, consisting mainly of frozen nitrogen and carbon monoxide. When
it comes near the sun, as it recently did, it also gets a thin atmosphere
made of these gases.
Other plutinos include Ixion, Orcus, Rhadamanthus, and Pluto’s moon
Charon. If you know Greek mythology, you’ll know these guys are all
named after deities of the underworld.

* Twotino — A twotino is a Kuiper belt object whose orbit is in 2 : 1 res-
onance with Neptune. These are rare compared to plutinos, and they’re
smaller, so they’re stuck with boring names like 1996 TR66. There are
also a couple of Kuiper belt objects in 4 : 3 and 5 : 3 resonances with
Neptune.

– Scattered disc object — A scattered disc object is a Kuiper belt object that
has been perturbed by interactions with Neptune into an orbit that is more
eccentric or more tilted from the ecliptic.
Xena (or more properly 2003 UB313) is a highly eccentric scattered disc object
whose orbit carries it between 40 to 100 AU from the sun. Its orbit is inclined
a whopping 44 degrees, and it’s locked in a complicated 17 : 5 resonance
with Neptune. It’s probably larger than Pluto — a reasonable rough guess is
2900 kilometers in diameter, as compared with 2400 for Pluto. Its surface has
methane ice, and we now know it has a moon.
It’s quite possible that scattered disc objects are related to centaurs, which
are planetoids orbiting the Sun between Jupiter and Neptune. The centaurs
may be Kuiper belt objects that got knocked towards the Sun instead of away
from it! Centaurs have chaotic orbits and will probably either collide with
something or be ejected from the Solar System.

– Oort cloud object — the Oort cloud is a hypothesized spherical cloud of
comets, perhaps between 50,000 and 100,000 AU from the Sun. The idea is
this cloud consists of leftovers from the original nebula that collapsed to form
our Solar system, and comets come from this region when they are perturbed
from their orbits by the gravity of other stars.
Nobody has seen a certified Oort cloud object. The best candidate so far is
Sedna, an object roughly 1500 kilometers in diameter with a wildly eccentric
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orbit taking it between 80 to 930 AU from the Sun.

Sedna was discovered in 2004 when it was 90 AU from the Sun. It’s redder
than Mars, its temperature never rises above 23 Kelvin, and its year lasts
11,250 years. It’s the farthest known object in our Solar System, but still
much closer than the Oort cloud was supposed to be. Maybe it’s a drastic
example of a scattered disc object, maybe it’s part of an “inner Oort cloud”. . .
or maybe the Oort cloud isn’t as far out as people thought.
The closest people have come to seeing the Oort cloud is seeing a “Bok glob-
ule”:

A Bok globule is a cloud of dust and gas that’s collapsing to form a star. This
one is about 12,500 AU across. The scientists who observed it say it’s about
the size of the Oort cloud. This just goes to show how little we know about
the Oort cloud!

For a great introduction to the Kuiper belt and related topics, try this:

10) David C. Jewitt, “Kuiper belt”, http://www.ifa.hawaii.edu/faculty/jewitt/

kb.html
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For transneptunian objects in general, try:

11) William Robert Johnston, “Transneptunian objects”, http://www.johnstonsarchive.
net/astro/tnos.html

Also check out this newsletter:

12) Distant EKOs: the Kuiper Belt Electronic Newsletter, http://www.boulder.swri.

edu/ekonews/

Quaoar was discovered in 2002 by Chad Trujillo and Mike Brown of Caltech:

13) Chad Trujillo, “Quaoar”, http://www.gps.caltech.edu/~chad/quaoar/

For evidence of crystalline water ice on Quaoar, see:

14) David C. Jewitt and Jane Luu, “Crystalline water ice on the Kuiper belt object
(50000) Quaoar”, Nature 432 (2004), 731–733. Also available at http://www.
ifa.hawaii.edu/faculty/jewitt/quaoar.html

Xena was discovered in 2003 by Trujillo, Brown and a colleague of theirs at Yale
University:

15) Michael E. Brown, Chad A. Trujillo and David L. Rabinowitz, “Discovery of a
planetary-sized object in the scattered Kuiper belt”, submitted to ApJ Letters, avail-
able at http://www.gps.caltech.edu/%7Embrown/papers/ps/xena.pdf

Brown has a nice webpage about Xena and Gabrielle:

16) Michael E. Brown, “The discovery of UB313, the 10th planet”, http://www.gps.
caltech.edu/~mbrown/planetlila/

The same gang of three also discovered Sedna in 2003:

17) Michael E. Brown, Chad A. Trujillo and David L. Rabinowitz, “Discovery of a can-
didate inner Oort cloud planetoid”, to appear in ApJ Letters, available at http://
www.gps.caltech.edu/%7Embrown/papers/ps/sedna.pdf

. . . and Brown has a fun Sedna webpage too:

18) Michael E. Brown, “Sedna (2003 VB12)”, http://www.gps.caltech.edu/~mbrown/
sedna/

How all these transneptunian objects got where they are is a wonderful puzzle in
celestial mechanics, but you can read more about that in the references above, especially
Jewitt’s Kuiper belt webpage.

Now I want to talk about Loops ’05!
Instead of trying to review all the talks — a hopeless task, since there were 86 — I’ll

just mention the two strands of work I find most exciting.
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First, there’s new evidence that a quantum theory of pure gravity (meaning gravity
without matter) makes sense in 4-dimensional spacetime.

To understand why this is exciting, you have to realize that in some quarters, the
conventional wisdom says a quantum theory of pure gravity can’t possibly make sense,
except as a crude approximation at large distance scales, because this theory is “pertur-
batively nonrenormalizable”.

Very roughly, this means that as we zoom in and look at the theory at shorter and
shorter distance scales, it looks less and less like a “free field theory” where gravitons zip
about without interacting. Instead, the interactions get stronger and more complicated!

So, in the jargon of the trade, we don’t get a “Gaussian ultraviolet fixed point”.
Huh?
Well, roughly, an “ultraviolet fixed point” is a quantum field theory that keeps looking

the same as you keep viewing it on shorter and shorter distance scales. A “Gaussian”
ultraviolet fixed point is one that’s also a free quantum field theory: one where particles
don’t interact.

If quantum gravity approached a Gaussian ultraviolet fixed point as we zoomed in, we
could calculate what gravitons do at arbitrarily high energies (at least perturbatively, as
power series in Newton’s constant — no guarantee that these series converge). Particle
physicists would then be happy and say the theory was “perturbatively renormalizable”.

But, it’s not.
The conventional wisdom concludes that to save quantum gravity, we must include

matter of precisely the right sort to make it perturbatively renormalizable. This is the
quest that led people first to supergravity and ultimately to superstring theory — see
“Week 195” for more of this story.

But, as far back as 1979, the particle physicist Weinberg raised the possibility that
pure quantum gravity is “nonperturbatively renormalizable”, or “asymptotically safe”.
This means that as we zoom in and look at the theory at shorter and shorter distance
scales, it approaches some theory other than that of noninteracting gravitons.

In other words, Weinberg was suggesting that pure quantum gravity approaches a
non-obvious ultraviolet fixed point — possibly a “non-Gaussian” one.

The big news is that this seems to be true!
Even cooler, in this theory spacetime seems to act 2-dimensional at very short distance

scales.
This idea has been brewing for a long time — I talked about it extensively back in

“Week 139”. But now there’s more solid evidence for it, coming from two quite different
approaches.

First, people doing numerical quantum gravity in the “causal dynamical triangula-
tions” approach are seeing this effect in their computer calculations. This is what Renate
Loll explained at Loops ’05. The best place to read the details is here:

19) Jan Ambjørn, J. Jurkiewicz and Renate Loll, “Reconstructing the universe”, Phys.
Rev. D72 (2005) 064014. Also available as hep-th/0505154.

but if you need something less technical, try this:

20) Jan Ambjørn, J. Jurkiewicz and Renate Loll, “The universe from scratch”, available
as hep-th/0509010.
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The titles of their papers are a bit grandiose, but their calculations are solid stuff —
truly magnificent. I described their basic strategy in my report on the Marseille confer-
ence in week206. So, I won’t explain that again. I’ll just mention their big new result: in
pure quantum gravity, spacetime has a spectral dimension of 4.02± 0.1 on large distance
scales, but 1.80± 0.25 in the limit of very short distance scales!

Zounds! What does that mean?
The “spectral dimension” of a spacetime is the dimension as measured by watching

heat spread out on this spacetime: the short-time behavior of the heat equation probes
the spacetime at short distance scales, while its large-time behavior probes large distance
scales. Spectral dimensions don’t need to be integers — for fractals they’re typically not.
But, Loll and company believe they’re seeing spacetimes that are exactly 2-dimensional
in the limit of very small distance scales, exactly 4-dimensional in the limit of very large
scales, with a continuous change in dimension in between. The error bars in the above
figures come from doing Monte Carlo simulations. They’re just using ordinary comput-
ers, not supercomputers. So, with more work one could shrink their error bars and test
their result.

My main worry about their work is that it uses a fixed slicing of spactime by timelike
slices. So, there’s a danger that their procedure breaks Lorentz-invariance, even in the
continuum limit which they are attempting to compute. I would like to find a way around
this problem!

Luckily, some other people are getting similar results from a second procedure that
definitely does not break Lorentz invariance:

21) Oliver Lauscher and Martin Reuter, “Fractal spacetime structure in asymptotically
safe gravity”, available as hep-th/0508202.

Reuter spoke about all this work at Loops ’05. The idea is to investigate Weinberg’s
original idea in excruciatingly precise detail using “renormalization group flow” ideas.
The above paper is a review of lots of others, and you need to read a bunch to get what’s
really going on. The upshot, however, is that they find evidence for a non-Gaussian
ultraviolet fixed point in pure quantum gravity. Moreover, the spectral dimension of
spacetime approaches 2 in the limit of very short distance scales.

Suppose this is all true. What does it mean?
Nobody knows yet; there are lots of attitudes one could take.
Ambjørn, Jurkiewicz and Loll could probably just plunge ahead and use computers to

calculate lots of things about quantum gravity. (Right now they want to test their results
in lots of ways.) One good thing would be to include matter of various sorts and see how
it affects the conclusions.

Similarly, Lauscher and Reuter could just plunge ahead and compute, if they wanted.
This is excellent. But personally, I’d like to find a beautiful theory in which spacetime

is 2-dimensional at short distance scales, which reduces to general relativity at large
scales. In other words, to redo all these calculations “from the bottom up”.

Unsurprisingly, I hope this beautiful theory is a spin foam model, since spin foams
are 2-dimensional and I like them a lot. I presented some rough ideas on how one might
invent such a model:

22) John Baez, “Towards a spin foam model of quantum gravity”, talk at Loops ’05,
available at http://math.ucr.edu/home/baez/loops05/

263

week206.html
https://arxiv.org/abs/hep-th/0508202


WEEK 222 OCTOBER 17, 2005

But, these ideas are very tentative and only time will tell if they amount to anything.
What’s more important is that pure quantum gravity seems to exist — as a theory, that is
— and people seem to be learning actual facts about it, instead of just arguing endlessly
about it. That’s progress!

The second most exciting thing at Loops ’05, in my biased opinion, was the work of
John Barrett, Laurent Freidel, Karim Noui and others on “matter without matter” in 3d
quantum gravity. Simply by carving a Feynman-diagram-shaped hole in 3d spacetime
and doing quantum gravity on the spacetime that’s left over, you get a good theory of
quantum gravity coupled to matter! You can even take the limit as Newton’s gravitational
constant goes to zero and get ordinary quantum field theory on flat spacetime!

Check these out:

23) John Barrett, “Feynman diagams coupled to three-dimensional quantum gravity”,
available as gr-qc/0502048.

John Barrett, “Feynman loops and three-dimensional quantum gravity”, Mod. Phys.
Lett. A20 (2005) 1271. Also available as gr-qc/0412107.

24) Laurent Freidel and David Louapre, “Ponzano-Regge model revisited I: gauge fix-
ing, observables and interacting spinning particles”, Class. Quant. Grav. 21 (2004)
5685–5726. Also available as hep-th/0401076.

Laurent Freidel and David Louapre, “Ponzano-Regge model revisited II: equiva-
lence with Chern-Simons”, available as gr-qc/0410141

Laurent Freidel and Etera R. Livine, “Ponzano-Regge model revisited III: Feynman
diagrams and effective field theory”, available as hep-th/0502106.

25) Laurent Freidel, Daniele Oriti, and James Ryan, “A group field theory for 3d quan-
tum gravity coupled to a scalar field”, available as gr-qc/0506067.

26) Karin Noui and Alejandro Perez, “Three dimensional loop quantum gravity: cou-
pling to point particles”, available as gr-qc/0402111.

This is mindblowingly beautiful, especially because lots of it is already mathemati-
cally rigorous, and we can easily make more so. It’s even related to n-categories: my
student Jeffrey Morton presented a poster on this aspect.

Together with my student Derek Wise, Jeffrey Morton and I plan to have a lot of fun
studying this stuff. So, I won’t talk about it more now — I’ll probably get around to
saying more someday, especially about how the whole story generalizes to 4 dimensions.

There’s a lot more to say about Loops ’05, but this will have to do. In a while, a
bunch of the talks should be visible on the conference homepage. . . . that should give
you a better idea of what happened.

Addendum: Here are some comments on this Week’s Finds by Gene Partlow, Phillip
Helbig and Robert Helling, and my replies — as well as a replies by Jonathan Thornburg
and Arnold Neumaier.

Gene Partlow writes:
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In a recent John Baez post he mentions discovery of probably the first known
quasar found without a host galaxy. He says:

Did this quasar begin life in this galaxy and then get kicked out when
the galaxy collided with something containing a super-massive black
hole?

I suggest that a fairly ordinary explanation may be that the nearby “wildly
disturbed” galaxy may have contained several supermassive black holes which
interacted via a gravitational slingshot scenario. This would be like a larger
version of the effect where smaller mass stars can be flung out of globular clusters
when encountering larger mass stars near the cluster center.

Sounds like a possibility worth exploring. I’m no expert, so I can’t tell how likely
this is. I agree that a collision with some other object containing a super-massive black
hole sounds a little odd, given that this object — most plausibly another galaxy — has
not been seen. I wouldn’t have ventured such a guess myself. But, it’s mentioned on the
European Southern Observatory webpage I cite above. To quote:

The absence of a massive host galaxy, combined with the existence of the blob
and the star-forming galaxy, lead us to believe that we have uncovered a really
exotic quasar, says team member Frederic Courbin (Ecole Polytechnique Federale
de Lausanne, Switzerland). “There is little doubt that a burst in the formation
of stars in the companion galaxy and the quasar itself have been ignited by
a collision that must haven taken place about 100 million years ago. What
happened to the putative quasar host remains unknown.”

HE0450-2958 constitutes a challenging case of interpretation. The astronomers
propose several possible explanations, that will need to be further investigated
and confronted. Has the host galaxy been completely disrupted as a result of the
collision? It is hard to imagine how that could happen. Has an isolated black
hole captured gas while crossing the disc of a spiral galaxy? This would require
very special conditions and would probably not have caused such a tremendous
perturbation as is observed in the neighbouring galaxy.

Another intriguing hypothesis is that the galaxy harbouring the black hole was
almost exclusively made of dark matter. “Whatever the solution of this riddle,
the strong observable fact is that the quasar host galaxy, if any, is much too
faint”, says team member Knud Jahnke (Astrophysikalisches Institut Potsdam,
Germany).

Phillip Helbig writes:

John Baez writes:

Pluto is quite different than anything else we call a planet: it has an
eccentric orbit that ranges between 30 and 50 AU, and its orbit is
tilted 17 degrees to the ecliptic.
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Also, for a period of several years during each orbit, it is closer to the Sun
than Neptune ever is. Until relatively recently, in fact, it was in this phase and
Neptune was farther from the Sun than Pluto.

Yeah! The US may still send a mission to Pluto before its atmosphere freezes, despite
delays and indecision. The “Pluto Express” satellite was scheduled for launch in Decem-
ber 2004, but in 2000 NASA ordered a stop-work order on the project, due to lack of
money and rising cost estimates. In 2003, Congress gave NASA money to proceed with
the project:

27) The Planetary Society, “Pluto and Europa Campaign Page”, http://www.planetary.
org/html/UPDATES/Pluto/pluto europa action.html

and I guess it’s now called “New Horizons”:

28) “New Horizons: NASA’s Pluto-Kuiper Belt Mission”, http://pluto.jhuapl.edu/

This webpage gives a timetable of:

• launch in January 2005

• slingshot off Jupiter in February 2007

• arrival at Pluto and Charon in July 2015

• exploration of Kuiper belt during 2016-2020

I wonder if they have any plans to study the Pioneer anomaly?
Robert Helling writes:

John Baez wrote:

• Twotino — A twotino is a Kuiper belt object whose orbit is in 2 :
1 resonance with Neptune. These are rare compared to plutinos,
and they’re smaller, so they’re stuck with boring names like 1996
TR66. There are also a couple of Kuiper belt objects in 4 : 3 and
5 : 3 resonances with Neptune.

Is there an easy way to see why these resonance orbits come about? Why do
three body systems with a large central object, an intermediate planet and a
small probe happen to get the probe in resonance with the planet? Is this just
“frequency locking happens in chaotic systems” or is there an easy but more
quantitative way to understand this?

I’m shamefully ignorant of this, so ten minutes’ research on the web was able to
double my knowledge. I got ahold of this paper online:

29) B. Garfinkel, “On resonance in celestial mechanics: a survey”, Celestial Mech. 28
(1982), 275–290, also available at http://adsabs.harvard.edu/cgi-bin/nph-bib query?bibcode=1982CeMec.

.28..275G
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and while not easy to understand — I guess there’s a huge body of work on this
subject — it uses Hamiltonian perturbation theory and continued fractions to study res-
onance, and talks about a difference between “shallow” and “deep” resonances.

The orbits of Jupiter and Saturn are almost in 5 : 2 resonance, but this is a “shallow”
resonance, and Saturn wiggles back and forth around this resonance with a period of
about 880 years — an effect called the “Great Inequality”. The first person to study this
was Laplace. I read elsewhere that:

The dynamics of the Sun-Jupiter-Saturn system was recognized as problematic
from the beginnings of perturbation theory. The problems are due to the so-
called Great Inequality (GI), which is the Jupiter-Saturn 2 : 5 mean-motion
near-commensurability.

This is from:

30) F. Varadi, M. Ghil, and W. M. Kaula, “The great inequality in a planetary Hamilto-
nian theory”, available as chao-dyn/9311011.

This shallow 5 : 2 resonance is related to the continued fraction

1

2 + 1
2+ 1

14+ 1
2+...

which is close to 2/5.
The Pluto-Neptune 3 : 2 resonance, on the other hand, is a “deep resonance” and

related to the continued fraction
1

2− 1
2+ 1

10+...

which starts out close to 2/3.
I wish I understood the connection between continued fractions and dynamical sys-

tems better! I know it gives rise to the role of the Golden Ratio in chaos theory, which I
tried to explain in “Week 203”. But, I don’t understand it very deeply.

Robert Helling also asked:

There are people doing numerical long term stability analysis of the solar system.
From what I know, they are not just taking F = ma and Newton’s law of gravity,
replacing dt by ∆t and then integrating but use much fancier spectral methods.
Could somebody please point me to an introduction into these methods?

I referred him to the work of Gerald Sussman, Jack Wisdom and others in “Week
107”, but Jonathan Thornburg posted this reply:

I don’t do this sort of work myself, but the buzzwords you want are “sym-
plectic ODE integrator”. The basic idea is to use an ODE integration scheme
which conserves energy, angular momentum, and maybe other nice things, up
to floating-point roundoff error, rather than just up to finite differencing error
like a standard ODE integrator would do.
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prompting Arnold Neumaier to give a nice list of references, which I will take the
liberty of numbering:

31) Tetsuharu Fuse, “Planetary perturbations on the 2 : 3 mean motion res-
onance with Neptune”, Publ. Astron. Soc. Japan 54 (2002), 494–499.
Also available at http://astronomy.nju.edu.cn/~xswan/reference/
Fuse PASJ54 493.pdf

uses symplectic integration to study 2 : 3 resonances numerically.

The thesis:

32) Luz Vianey Vela-Arevalo, Time-frequency analysis based on wavelets for
Hamiltonian systems, Caltech, 2002. Also available at http://www.cds.
caltech.edu/~luzvela/th2s.pdf

contains in Chapter 4 interesting numerical information about chaos, reso-
nances, and stability in the restricted 3-body problem. Other interesting papers
include:

33) George Voyatzis and John D. Hadjidemetriou, “Symmetric and asymmetric
librations in planetary and satellite systems at the 2/1 resonance”, avail-
able at http://users.auth.gr/~hadjidem/Asymmetric1.pdf
Mihailo Cubrovic, “Regimes of stability and scaling relations for the re-
moval time in the asteroid belt”, available as astro-ph/0501004.
Ryszard Gabryszewski and Ireneusz Wlodarczyk, “The resonant dynam-
ical evolution of small body orbits among giant planets”, available as
astro-ph/0203182.
Luz V. Vela-Arevalo and Jerrold E. Marsden, “Time-frequency analysis of
the restricted three-body problem: transport and resonance transitions”,
Class. Quant. Grav. 21 (2004), S351–S375. Also available at http://
cns.physics.gatech.edu/~luzvela/VelaArevaloMarsdenCQG 2004.pdf

Harry Varvogli, Kleomenis Tsiganis, and John D. Hadjidemetriou, “The
‘third’ integral in the restricted three-body problem revisited”, available at
http://www.astro.auth.gr/~varvogli/varv5.ps

So many worlds, so much to do,
So little done, such things to be.

— Tennyson, In Memoriam
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Week 223

November 14, 2005

This week I’d like to talk about two aspects of higher gauge theory: p-form electromag-
netism and nonabelian cohomology. Lurking behind both of these is the mathematics of
n-categories, but I’ll do my best to hide that until the end, to build up the suspense.

But first, some cool pictures. Astronomy is booming these days, and it’s a great way to
see beautiful complexity emerging from simple laws in this wonderful universe of ours.
So, I’d like the freedom to occasionally start This Week’s Finds with some pictures from
the skies. Think of it as an appetizer before the main course. Sometimes I’ll explicitly
relate these pictures to math and physics; other times not.

Here’s Saturn’s moon Hyperion, photographed up close by the Cassini probe:

1) Cassini-Huyghens Mission, “Hyperion: Odd World”, http://saturn.jpl.nasa.

gov/multimedia/images/image-details.cfm?imageID=1762

It seems to be a huge pile of rubble loosely held together by gravity and heavily
cratered by meteor bombardments.

Hyperion is interesting because it’s the only known moon that tumbles chaotically
on a short time scale, thanks to its eccentric shape and gravitational interactions with
Saturn and Titan.

This leads to some interesting math. We can think of Hyperion’s angular momentum
vector as a point on a sphere. If we started out knowing this point lay inside some
small disk, time evolution would warp this disk into an ever more complicated region
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as time passed. This region would always have the same area, thanks to the wonders
of symplectic geometry. But it would sprout ever more complicated tendrils, with its
perimeter growing by a factor of e about every 100 days or so!

That’s chaos for you.
Indeed, only quantum mechanics would stop the intricacy from growing forever, by

blurring it out. After about 37 years, the area of a typical tendril would equal Planck’s
constant. At this point, classical mechanics would no longer be accurate. You’d really
need to describe Hyperion’s spin state using quantum theory: for example, a holomor-
phic section of some line bundle on the sphere.

Well. . . at least you would if it weren’t for decoherence caused by the interaction of
Hyperion with its environment, for example solar radiation! For an explanation of how
this changes the story, try:

2) Michael Berry, “Chaos and the semiclassical limit of quantum mechanics (is the
moon there when somebody looks?)”, in Quantum Mechanics: Scientific Perspectives
on Divine Action, CTNS Publications, Vatican Observatory, 2001. Also available at
http://www.phy.bris.ac.uk/people/berry mv/the papers/berry337.pdf

Here’s another great picture:

3) The Hubble Heritage Project, “Cat’s Eye Nebula — NGC 6543”, http://heritage.
stsci.edu/2004/27/index.html

This is a star about the size of the Sun, nearing the end of its life, emitting pulses of
gas and dust. Astronomers call such a thing a “planetary nebula”, though it has nothing
to do with planets. It’s in our galaxy, about 3000 light years from us. When it’s done
shedding its outer layers, all that’s left of this star will be a white dwarf.
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Our own Sun will become a planetary nebula in about 6.9 billion years, after two
separate stages of being a red giant — one as it runs out hydrogen, and one as it runs out
of helium. When the helium is all gone, the Sun will start to pulsate every 100,000 years,
ejecting more and more mass in each pulse, eventually throwing off all but a hot inner
core made of heavier elements. The astronomer Bruce Balick has written eloquently on
what this will mean for the Earth:

Here on Earth, we’ll feel the wind of the ejected gases sweeping past, slowly at
first (a mere 5 miles per second!), and then picking up speed as the spasms
continue — eventually to reach 1000 miles per second!! The remnant Sun will
rise as a dot of intense light, no larger than Venus, more brilliant than 100
present Suns, and an intensely hot blue-white color hotter than any welder’s
torch. Light from the fiendish blue “pinprick” will braise the Earth and tear
apart its surface molecules and atoms. A new but very thin “atmosphere” of free
electrons will form as the Earth’s surface turns to dust.

So, don’t keep procrastinating — enjoy life now!
For other pictures of planetary nebulae, try Balick’s webpage:

4) Bruce Balick, “Hubble Space Telescope images of planetary nebulae”, http://www.
astro.washington.edu/balick/WFPC2/index.html

For a timeline of the universe, including the future life of our Sun, try:

5) John Baez, “A brief history of the universe”, http://math.ucr.edu/home/baez/
timeline.html

Now. . . on to p-form electromagnetism!
In ordinary electromagnetism, the secret star of the show turns out to be not the

electromagnetic field but the “vector potential”, A. At least locally, we can think of this
as a 1-form. A 1-form is just a gadget that you can integrate along a path and get a
number. In the case of the vector potential, this number describes the change in phase
that a charged particle acquires as it moves along this path.

The 1-form A gives rise to a 2-form F called the “electromagnetic field”. A 2-form is a
gadget you can integrate over a surface and get a number. Here’s how we get F from A.
Suppose we move a charged particle around a loop that’s the boundary of some surface.
Then the integral of F over this surface is defined to be the integral of A around the
loop! We summarize this by saying that F is the “exterior derivative” of A, and writing

F = dA.

F is called the electromagnetic field because. . . that’s what it is! It contains both the
electric and magnetic fields in a single neat package. In 4d spacetime, the magnetic field
describes the change in a phase of a charged particle that loops around a surface in the
xy, yz or zx planes. The electric field describes the change in phase of a charged particle
that loops around a surface in the xt, yt or zt planes.

If you don’t know this stuff, you’re missing some of the best fun life has to offer. For
an easy introduction with lots of gorgeous pictures, see:
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6) Derek Wise, “Electricity, magnetism and hypercubes”, available at http://math.
ucr.edu/~derek/talks/050916bw.pdf

The idea of p-form electromagnetism is to replace point particles by strings or higher-
dimensional membranes. To see how this goes, it’s enough to look at 2-form electromag-
netism.

In 2-form electromagnetism, the star of the show is a 2-form, A. As already men-
tioned, a 2-form is a gadget you can integrate over a surface and get a number. In 2-form
electromagnetism, this number describes the change in phase that a charged string ac-
quires as it moves along, tracing out a surface in spacetime.

The 2-form A gives rise to a 3-form, F . A 3-form is a gadget you can integrate over
a 3-dimensional region and get a number. Suppose we move a charged string and let it
trace out a surface that’s the boundary of some 3-dimensional region. Then the integral
of F over this region is defined to be the integral of A over the surface! Again we write
this as:

F = dA.

So, we’re just adding one to the dimensions of things. This makes it easy to keep on
going. In fact, for any integer p, we can write down a generalization of Maxwell’s equa-
tions.

It goes like this. We start with a p-form A. We define a (p+ 1)-form

F = dA

This automatically implies some of Maxwell’s equations:

dF = 0

but the nontrivial Maxwell equations say that

∗d ∗ F = J

where ∗ is the Hodge star operator and J is a p-form called the “current”, which is
produced by charged matter.

What does this mean, physically? The idea is that we have charged matter consisting
of (p− 1)-dimensional membranes. These trace out p-dimensional surfaces in spacetime
as time passes. The current J is a p-form that’s concentrated on these surfaces. The
current affects the A field in a manner governed by Maxwell’s equations. Conversely,
the A field affects the motion of the membranes. Classically, we just integrate the A
field over the surface traced out by a membrane and add the result to the action for the
membrane. In the path integral approach to quantum mechanics, this number gives a
change in phase, as already mentioned.

Maxwell’s equations and their p-form generalization make sense when spacetime is
any Lorentzian manifold. However, to get a theory where initial data determine a unique
global solution, we want our spacetime to be “globally hyperbolic”, which means that it
has a “Cauchy surface”: roughly, a spacelike surface that any sufficiently long timelike
curve hits precisely once. To get a good quantum theory of p-form electromagnetism
with a Hilbert space of states on which time evolution acts as unitary operators, we
need more: our spacetime should be “stationary”, meaning that it has time translation
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symmetry. Otherwise there’s no way to define energy and the vacuum state — which is
defined to be the least-energy state.

My student Miguel Carrion-Alvarez tackled an important special case in his thesis,
namely “static” globally hyperbolic spacetimes:

7) Miguel Carrion-Alvarez, “Loop quantization versus Fock quantization of p-form
electromagnetism on static spacetimes”, available as math-ph/0412032.

There’s a lot of interesting analysis involved, especially when space (the Cauchy sur-
face) is noncompact. When it’s compact, we can use “Hodge’s theorem” to relate its
deRham cohomology to its topology, and this turns out to be crucial for understand-
ing p-form electromagnetism — especially issues like the p-form Bohm-Aharonov effect.
When it’s noncompact we need something called “twisted Lˆ2 cohomology” instead, and
Miguel proved a generalization of Hodge’s theorem for this.

With the analysis under control, Miguel was able to set up a very beautiful approach
to “loop quantum electromagnetism” and its p-form generalization. Here the idea is to
write Maxwell’s equations in terms of the integrals ofA around all possible loops in space
— or more generally, over all p-dimensional surfaces. People interested in loop quantum
gravity should like this.

As you can guess, either from seeing all the “d” operators or seeing all the buzzwords
I’m throwing around, p-form electromagnetism is really just cohomology incarnated as
physics! My student Derek Wise made this very precise for a version of the theory where
spacetime is discrete — so-called “lattice p-form electromagnetism”:

8) Derek Wise, “Lattice p-form electromagnetism and chain field theory”, available
as gr-qc/0510033. Version with better graphics and related material at http://
math.ucr.edu/~derek/pform/index.html

In this paper, he shows lattice p-form electromagnetism is a “chain field theory”:
something like a topological quantum field theory, but where what matters is not space-
time itself so much as the cochain complex of differential forms on spacetime, equipped
with just enough extra geometrical structure to write down the p-form version of Maxwell’s
equations.

Both Miguel’s thesis and Derek’s papers are great if you want to learn lots of math
and physics. I seem to attract students who enjoy explaining things.

Speaking of which. . . .
Next I want to explain some stuff Danny Stevenson told me at a mall in the little town

of Cabazon while we were recovering from a hike in the desert followed by pancakes at
the Wheel Inn — a roadside restaurant famous for its enormous statues of dinosaurs.

Danny works on gerbes, stacks, and higher gauge theory. Last year we wrote a paper
with Alissa Crans and Urs Schreiber constructing 2-groups (categorified groups) from the
math of string theory — more precisely, from central extensions of loop groups. Since
then I’ve been spending a lot of time writing a paper with Urs on higher gauge theory,
where we set up a theory of parallel transport along surfaces. 2-form electromagnetism is
the simplest case of this theory. Meanwhile, Danny has been thinking about connections
on 2-vector bundles and their relation to the cohomology of Lie 2-algebras.

This has led him to generalize Schreier theory in some interesting ways. So, let me
tell you about Schreier theory!
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Schreier theory is a way to classify short exact sequences of groups. I’ll say what I
mean by that in a minute. . . but what makes Schreier theory special is that avoids some
simplifying assumptions you might have seen if you’ve studied short exact sequences
before.

Normally people water down their short exact sequences by assuming some of the
groups in question are abelian. This lets them use “cohomology theory” to do the classi-
fication. See “Week 210” for a nice book that takes this approach.

This standard approach is great — I’m not knocking it — but Schreier theory is more
general: it’s really a branch of “nonabelian cohomology theory”. It’s not all that hard
to explain, either. So, I’ll explain it and then talk about various simplifying assumptions
people make.

The goal of Schreier theory is to classify short exact sequences of groups:

1→ F → E → B → 1

for a given choice of F and B. “Exact” means that the arrows stand for homomorphisms
and the image of each arrow is the kernel of the next. Here this just means that F is a
normal subgroup of E and B is the quotient group E/F . Such a short exact sequence
is also called an “extension of B by F ”, since E is bigger than B and contains F . The
simplest choice is to let E be the direct sum of F and B. Usually there are other more
interesting extensions as well.

To classify these, the trick is to use the analogy between group theory and topology.
As I explained in “Week 213”, you can think of a group as a watered-down version of

a connected space with a chosen point. The reason is that given such a space, we get a
group consisting of homotopy classes of loops based at the chosen point. This is called
the “fundamental group” of our space. There’s a lot more information in our space than
this group. But pretty much anything you can do for groups, you can do for such spaces.
It’s usually harder, but it’s completely analogous!

In particular, classifying short exact sequences is a lot like classifying “fibrations”:

1→ F → E → B → 1

where now the letters stand for connected spaces with a chosen point, and the arrows
stand for continuous maps. If you’re a physicist or geometer you may prefer fiber bundles
to “fibrations” — but luckily, they’re so similar we can ignore the difference in a vague
discussion like this. The idea is basically just that E maps onto B, and sitting over each
point of B we have a copy of F . We call B the “base space”, E the “total space” and F
the “fiber”.

If we want to classify such fibrations we can consider carrying the fiber F around
a loop in B and see how it twists around. For example, if all our spaces are smooth
manifolds, we can pick a connection on the total space E and see what parallel transport
around a loop in the base space B does to points in the fiber F . This gives a kind of
homomorphism

ΩB → Aut(F )

sending loops in B to invertible maps from F to itself. And, the cool thing is: this
homomorphism lets us classify the fibration!

Here I say “kind of homomorphism” since ΩB, the space of loops in B based at the
chosen point, is only “kind of” a topological group: the group laws only hold up to
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homotopy. But let’s not worry about this technicality — especially since I’m being vague
about all sorts of other equally important issues!

The reason I can get away with not worrying about these issues is that I’m trying
to explain a very robust powerful principle — one that can easily survive a dose of
vagueness that would kill a lesser idea. Namely, if B is a connected space with a chosen
basepoint,

fibrations over the base space B with fiber F
are “the same” as
homomorphisms sending loops in B to automorphisms of F .

This could be called “the basic principle of Galois theory”, for reasons explained in
“Week 213”. There I explained the special case where the fiber is discrete. Then our
fibration called a “covering space”, and the basic principle of Galois theory boils down to
this:

covering spaces over B with fiber F
are “the same” as
homomorphisms from the fundamental group of B to automorphisms of
F .

Okay. Now let’s use the same principle to classify extensions of a group B by a group
F :

1→ F → E → B → 1

The group B here acts like “loops in the base”. But what acts like “automorphisms of the
fiber”?

You might guess it’s the group of automorphisms of F . But, it’s actually the 2-group
of automorphisms of F !

A 2-group is a categorified version of a group where all the usual group laws hold
up to natural isomorphism. They play a role in higher gauge theory like that of groups
in ordinary gauge theory. In higher gauge theory, parallel transport along a path is
described by an object in a 2-group, while parallel transport along a path-of-paths is
described by a morphism. In 2-form electromagnetism we use a very simple “abelian”
2-group, which has one object and either the real line or the circle as morphism. But
there are other more interesting “nonabelian” examples.

If you want to learn more about 2-form electromagnetism from this perspective, try
“Week 210”. For 2-groups in general, try this paper:

9) John Baez and Aaron Lauda, “Higher-dimensional algebra V: 2-groups”, Theory
and Applications of Categories 12 (2004), 423–491. Available online at http://
www.tac.mta.ca/tac/volumes/12/14/12-14abs.html or as math.QA/0307200.

Anyway: it turns out that any group F gives a 2-group AUT(F ) where the objects
are automorphisms of F and the morphisms are “conjugations” — elements of F acting
to conjugate one automorphism and yield another. And, extensions

1→ F → E → B → 1
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are classified by homomorphisms

B → AUT(F )

where we think of B as a 2-group with only identity morphisms. More precisely:

extensions of the group B by the group F
are “the same” as
homomorphisms from B to the 2-group AUT(F )

It’s fun to work out the details, but it’s probably not a good use of our time together
grinding through them here. So, I’ll just sketch how it works.

Starting with our extension

1→ F
i−→ E

p−→ B → 1

we pick a “section”
E

s←− B

meaning a function with
p(s(b)) = b

for all b in B. We can find a section because p is onto. However, the section usually isn’t
a homomorphism.

Given the section s, we get a function

α : B → Aut(F )

where Aut(F ) is the group of automorphisms of F . Here’s how:

α(b)f = s(b)fs(b)−1

However, usually α isn’t a homomorphism.
So far this seems a bit sad: functions between groups want to be homomorphisms.

But, we can measure how much s fails to be a homomorphism using the function

g : B2 → F

defined by
g(b, b′) = s(bb′)s(b′)−1s(b)−1

Note that g = 1 iff s is a homomorphism.
We can then use this function g to save α. The sad thing about α is that it’s not a

homomorphism. . . but the good thing is, it’s a homomorphism up to conjugation by g!
In other words:

α(bb′)f = g(b, b′)[α(b)α(b′)f ]g(b, b′)−1

Taken together, α and g satisfy some equations (“cocycle conditions”) which say precisely
that they form a homomorphism from B to the 2-group AUT(F ). Conversely, any such
homomorphism gives an extension of B by F .
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In fact, isomorphism classes of extensions of B by F correspond in a 1-1 way with
isomorphism classes of homomorphisms from B to AUT(F ). So, we’ve classified these
extensions!

In fact, something even better is true! It’s evil to “decategorify” by taking isomor-
phism classes as we did in the previous paragraph. To avoid this, we can form a groupoid
whose objects are extensions of B by F , and a groupoid whose objects are homomor-
phisms B → AUT(F ). I’m pretty sure that if you form these groupoids in the obvious
way, they’re equivalent. And that’s what this slogan really means:

extensions of the group B by the group F
are “the same” as
homomorphisms from B to the 2-group AUT(F )

Next, let me say how Schreier theory reduces to more familiar ideas in two special
cases.

People have thought a lot about the special case where F is abelian and lies in the
center of E. These are called “central extensions”. This is just the case where α = 1.
The set of isomorphism classes of central extensions is called H2(B,F ) — the “second
cohomology” of B with coefficients in F .

People have also thought about “abelian extensions”. That’s an even more special
case where all three groups are abelian. The set of isomorphism classes of such exten-
sions is called Ext(B,F ).

Since we don’t make any simplifying assumptions like this in Schreier theory, it’s part
of a subject called “nonabelian cohomology”. It was actually worked out by Dedecker in
the 1960’s, based on much earlier work by Schreier:

10) O. Schreier, “Ueber die Erweiterung von Gruppen I”, Monatschefte fur Mathematik
and Physick 34 (1926), 165–180. “Ueber die Erweiterung von Gruppen II”, Abh.
Math. Sem. Hamburg 4 (1926), 321–346.

11) P. Dedecker, “Les foncteuers ExtΠ, H2
Π and H2

Π non abeliens”, C. R. Acad. Sci. Paris
258 (1964), 4891–4895.

More recently, Schreier theory was pushed one step up the categorical ladder by Larry
Breen. As far as I can tell, he essentially classified the extensions of a 2-group B by a 2-
group F in terms of homomorphisms B → AUT(F ), where AUT(F ) is the 3-group of
automorphisms of F :

12) Lawrence Breen, “Theorie de Schreier superieure”, Ann. Sci. Ecole Norm. Sup.
25 (1992), 465–514. Also available at http://www.numdam.org/numdam-bin/

feuilleter?id=ASENS 1992 4 25 5

We can keep pushing Schreier theory upwards like this, but we can also expand it
“sideways” by replacing groups with groupoids. You should have been annoyed by how
I kept assuming my topological spaces were connected and equipped with a specified
point. I did this to make them analogous to groups. For example, it’s for only spaces like
this that the fundamental group is powerful enough to classify covering spaces. For more
general spaces, we must use the fundamental groupoid. And, we can set up a Schreier
theory for extensions of groupoids:
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13) V. Blanco, M. Bullejos and E. Faro, “Categorical non abelian cohomology, and the
Schreier theory of groupoids”, available as math.CT/0410202.

In fact, these authors note that Grothendieck did something similar back in 1971: he
classified all groupoids fibered over a groupoid B in terms of weak 2-functors from B to
Gpd, which is the 2-groupoid of groupoids! The point here is that Gpd contains AUT(F )
for any fixed groupoid F :

14) Alexander Grothendieck, Revêtements Étales et Groupe Fondamental (SGA1), chap-
ter VI: “Catégories fibrées et descente”, Lecture Notes in Mathematics 224, Springer,
Berlin, 1971. Also available as math.AG/0206203.

Having extended the idea “sideways” like this, one can then continue marching “up-
wards”. I don’t know how much work has been done on this, but the slogan should be
something like this:

n-groupoids fibered over an n-groupoid B
are “the same” as
weak (n+ 1)-functors from B to the (n+ 1)-groupoid nGpd

Grothendieck also studied this kind of thing with categories replacing groupoids,
so there should also be an n-category version, I think. . . but it’s more delicate to define
“fibrations” for categories than for groupoids, so I’m a bit scared to state a slogan suitable
for n-categories.

However, I’m not scared to go from n-groupoids to ω-groupoids, which are basically
the same as spaces. In terms of spaces, the slogan goes like this:

spaces fibered over the space B
are “the same” as
maps from B to the space of all spaces

This is how James Dolan taught it to me. Most mortals are scared of “the space of
all spaces” — both for fear of Russell’s paradox, and because we really need a space of
all spaces, not just a mere set of them. To avoid these terrors, you can water down Jim’s
slogan by choosing a specific space F to be the fiber:

fibrations with fiber F over the space B
are “the same” as
maps from B to the classifying space of AUT(F )

where AUT(F ) is the topological group of homotopy self-equivalences of F . The
fearsome “space of all spaces” is then the disjoint union of the classifying spaces of all
these topological groups AUT(F ). It’s too large to be a space unless you pass to a larger
universe of sets, but otherwise it’s perfectly fine. Grothendieck invented the notion of a
“Grothendieck universe” for precisely this purpose:

15) Wikipedia, “Grothendieck universe”, http://en.wikipedia.org/wiki/Grothendieck universe
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Addendum: I’d like to thank Leo Alonso for pointing out that Grothendieck’s famous
“SGA1” is now available on the arXiv in TeX form, courtesy of the Société Mathématique
de France. SGA2 is also available on the arXiv, and more are coming.

Here are further addenda thanks to Kevin Buzzard, Toby Bartels, David Corfield, Peter
May, Jim Stasheff, and Ronnie Brown.

First, an email I sent in reply to Kevin Buzzard, who was curious about how we
classify extensions of the group B by the group F using homomorphisms from B to
the 2-group AUT(F ). In particular, he wanted to know the definition of “2-group” and
“homomorphism between 2-groups”, and how AUT(F ) is defined:

Dear Kevin -

You write:

I’m just checking some of the details (extensions of groups are mor-
phisms of 2-groups) and I find that you’ve not given me quite enough
information to do it (in the sense that I’m not knowledgeable enough
about standard facts about 2-groups to fill in some of the details that
you allude to).

Sorry. I’m glad you care enough to want to know this stuff: 2-groups and
homomorphisms between them are defined in loving detail in my paper with
Aaron Lauda, but I’ll answer your questions here and append this to “Week
223” to help out anyone else who cares.

Say we’re in the “classical” case where F is an abelian group, B is
a group, and we’re classifying extensions 1 → F → E → B → 1
where F lies in the centre of E. We know the answer here: such
E’s are classified by H2(B,F ) which, for me, means 2-cocycles over
2-coboundaries. Recall that a 2-cocycle is g : B2 → F satisfying
g(a, bc) + g(b, c) = g(a, b) + g(ab, c).

Right.

You want the answer to be homomorphisms B → AUT(F ). You don’t
quite give the definitions of these things.

True. Let me start by saying what a 2-group is, and then how the group B
becomes a 2-group, and then how AUT(F ) is defined.

A group is just a category with one object and with all morphisms invertible.
Slick! But, we usually prefer to think of a group as a set: the morphisms of
our category get called “elements” of this set. This set then has a multiplication
function

m : G×G→ G

and an identity element
1 ∈ G

satisfying the associative and unit laws, and such that every element has an
inverse.
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All this categorifies painlessly:

A 2-group is just a 2-category with one object and with all morphisms and 2-
morphisms invertible. Slick! But, we sometimes prefer to think of a 2-group
as a category: the morphisms of our 2-category get called “objects” of this cat-
egory, and the 2-morphisms get called “morphisms”. This category then has a
multiplication functor

m : G×G→ G

and an identity object
1 ∈ G

satisfying the associative and unit laws, and such that every object and mor-
phism has an inverse.

In short: a 2-group is just like a group, but with the word “category” replacing
the word “set”, the word “object” replacing the word “element”, and so on!

Now, how does a group become a 2-group? Simple: we take the elements of
our group and make them the objects of our 2-group; then we say the only
morphisms of our 2-group are identity morphisms. The 2-group multiplication
m : G×G→ G comes from the multiplication in our group, and so on.

Let’s stick to F abelian. You think of AUT(F ) as being the 2-category
with objects Aut(F ), 1-morphisms Hom(φ,ψ) = F if φ = ψ and
empty otherwise (because F is abelian). What are the 2-morphisms?
Is Hom(φ,ψ) supposed to be a category with objects F?

Alas, you’re one dimension down: thought of as a 2-category, we want our 2-
group AUT(F ) to have one object, the usual group Aut(F ) as morphisms, and
conjugations between these as 2-morphisms.

Here’s how we get this. Think of our group F as a category. Then let AUT(F )
have F as its only object, invertible functors

a : F → F

as its morphisms, and natural isomorphisms between these as its 2-morphisms.

That’s very slick. But let me say this in a different way using the other viewpoint,
where we think of a 2-group as a “category with multiplication and inverses”.
Given a group F , our 2-group AUT(F ) will be the category where the objects
are automorphisms

a : F → F

and where a morphism f : a→ a′ is an element f of F that conjugates a to give
a′:

fa(g)f−1 = a′(g) for all g ∈ F

This viewpoint requires some extra work to check that AUT(F ) is a 2-group.
The 2-category viewpoint is actually much more efficient.

Now what is a homomorphism B → AUT(F )?
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Here’s where the subtlety comes in: weakening! So far we haven’t weakened
anything: all the equations in the definition of a group became equations in the
definition of a 2-group. We’re really just dealing with “strict” 2-groups here. But
we need to weaken the definition of homomorphism, replacing some equations
by isomorphisms, to get things to work out well now.

If we think of B and AUT(F ) as 2-categories, a homomorphism B → AUT(F )
is just a weak 2-functor. Slick! But, you may not enjoy this definition as much
as I do.

So, let’s think of B and AUT(F ) as “categories with multiplication and in-
verses”. Then a homomorphism

α : B → AUT(F )

is a functor that preserves multiplication of objects up to a specified isomor-
phism, which must satisfy some laws of its own.

Quite roughly, this means that given two objects b and b′ of B, we don’t have an
equation

α(bb′) = α(b)α(b′)

Instead, we have an isomorphism

g(b, b′) : α(bb′)→ α(b)α(b′)

This needs to satisfy some equations. I can tell you these if you want, but for
starters you can check that in our application, this g(b, b′) thing will be the
2-cocycle familiar from group cohomology!

And, the laws g must satisfy say precisely that g is a 2-cocycle.

(Indeed, for a central extension α = 1, so all we really need to think about is
this 2-cocycle g. Schreier theory goes on to consider more general extensions,
where α ̸= 1.)

I’m sure I could just go and read Breen’s book, but these questions are
so trivial that I’m sure you can instantly answer them, and you also
get the confirmation that there are still people out there reading TWF.

That’s worth a lot! If you ever want to learn more about 2-groups and homo-
morphisms between them, I think my paper with Aaron Lauda could be easier
than Breen’s opus. Breen’s opus concerns “higher Schreier” theory — classifying
extensions of 2-groups with the help of 3-groups!

Best,
jb

It’s important to note that it’s isomorphism classes of extensions that correspond to
isomorphism classes of homomorphisms B → Aut(F ). For this, one needs to know what
a “2-isomorphism” between homomorphisms of 2-groups is. Again, this is explained
in my paper with Lauda. It’s a special case of a weak natural isomorphism between
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weak 2-functors between 2-categories, but we say what this means in terms that working
mathematicians can understand.

Also, Toby Bartels had some comments on the dinosaurs of Cabazon and size issues
in category theory:

John wrote in part:

Next I want to explain some stuff Danny Stevenson told me at a mall
in the little town of Cabazon while we were recovering from a hike
in the desert followed by pancakes at the Wheel Inn — a roadside
restaurant famous for its enormous statues of dinosaurs.

Did you see the creationist sign by the dinosaurs?

spaces fibered over the space B
are “the same” as
maps from B to the space of all spaces

The fearsome “space of all spaces” is then the disjoint union of the
classifying spaces of all these topological groups AUT(F ). It’s too
large to be a space unless you pass to a larger universe of sets, but
otherwise it’s perfectly fine.

So if you want your slogan to treat size issues carefully:

spaces fibered over the space B
are “the same” as
maps from B to the space of all small spaces

But you were secretly doing this all along! After all, when you wrote:

n-groupoids fibered over an n-groupoid B
are “the same” as
weak (n+ 1)-functors from B to the (n+ 1)-groupoid nGpd

you simply used “nGpd” to abbreviate “of all small n-groupoids”. So there are
really no new size issues at the ω level.

(Exercise for those that like this sort of thing: Do we need to state that B and F
are small?)

– Toby

Thanks for clearing this up. I prefer not to distract people with size issues, so I didn’t
mention them until “the space of all spaces” walked in the door, at which point I figured
alarm bells would start ringing for lots of people. But, it was already hiding in the “the
(n + 1)-groupoid of all n-groupoids”. I prefer to use a new Grothendieck universe for
each level of the n-categorical hierarchy, to justify such expressions. I guess ω-categories
then require an ω-th universe.

Yes, I saw that silly sign in front of the dinosaurs, though I didn’t understand its full
meaning until now. It wasn’t there the last time I visited. Apparently the new owners
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have decided to enlist this nice roadside attraction as part of the propaganda campaign
for creationism. They actually believe Adam and Eve walked with dinosaurs in Eden —
as one biologist put it, “they think The Flintstones is a documentary”.

It’s sad how just as the magnificent history of the universe is becoming vividly clear,
some want to truncate it to a pitifully human scale — and then claim that was God’s
work.

Next, David Corfield had some questions about the “space of all spaces”, which I
answered in this email:

Dear David -

You wrote:

Hi,

spaces fibered over the space B
are “the same” as
maps from B to the space of all small spaces

Is there another handle on this, other than

omega-groupoids fibered over the omega-groupoid B
are “the same” as
weak omega-functors from B to the omega-groupoid of
all
small omega-groupoids ?

Presumably B must be small, and the spaces fibered over it.

It suffices for the fibers to be small, so if you want a really nitpicky motto:

small ω-groupoids fibered over the ω-groupoid B
are “the same” as
weak ω-functors from B to the ω-groupoid of all
small ω-groupoids

Do you and Jim have other intuitions about the space of all small
spaces?

One can describe it in a completely precise and rigorous way. It’s the dis-
joint union over all homotopy types of small spaces F of the classifying spaces
B(Aut(F )). Here Aut(F ) is the topological group of homotopy self-equivalences
of F .

Note: the “largeness” of this space is solely due to it being a disjoint union of a
proper class of connected components. When we map any small space to it, the
map can only hit a set’s worth of components. So, it’s not really scary.

And, if we map a connected small space X to it, we get a map

X → B(Aut(F ))

for some F , which is just what you need to get an F -bundle over X.
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Like, is it one of your free such-and-suches?

I don’t know a description like that offhand, since “free” suggests a left univer-
sal property, and the space of all (small) spaces mainly has a right universal
property, which describes maps into it.

Namely: maps from X into the space of all spaces are “the same as” fibrations
over X.

I could make this completely precise, but it’s probably not worth bothering here;
one just needs suitable equivalence relations.

Next, Peter May wrote:

In his posting today, John Baez advertised the slogan:

fibrations over the base space B with fiber F
are “the same” as
homomorphisms sending loops in B to automorphisms of F .

He hedged it with a “dose of vagueness”, but in fact I proved a completely precise
and general version of exactly this result in:

16) Peter May, “Classifying spaces and fibrations”, Memoirs AMS 155, Jan. 1975.

Using Moore loops on B, LB, one has a topological monoid, and one also has
the topological monoid Aut(F ) of homotopy equivalences of F . A “transport”
is a homomorphism of topological monoids from LB to Aut(F ). Allowing F
to vary by a homotopy equivalence, one can define an equivalence relation on
transports such that the equivalence classes are in natural bijective correspon-
dence with the equivalence classes of “fibrations over the base space B with fiber
F ”. One can generalize the context by allowing fibers in some nice category and
prove the same result. See opus cit, Theorem 14.2, page 83. That was over
30 years ago, so naturally I wasn’t thinking about categorification, but I would
imagine that the methods categorify.

Here and below I’ve taken the liberty of numbering the references to papers, so it’s
easier to find them in my table of contents for This Week’s Finds.

Jim Stasheff wrote:

Even more ancient:

17) James Stasheff, “Parallel transport in fibre spaces”, Bol. Soc. Mat. Mexi-
cana (1968), 68–86.

Unfortunately that’s a hard paper to get a hold of.

Somewhat related is:

18) James Stasheff, “Associated fibre spaces”, Michigan Math. Journal 15
(1968), 457–470.
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and at the survey level:

19) James Stasheff, “H-spaces and classifying spaces, I-IV”, AMS Proc. Symp.
Pure Math. 22 (1971), 247–272.

Of course, as you might expect, I describe things in terms of A∞-morphisms
from the space of loops into Aut(F ) of homotopy equivalences of F .

Now that some of us are comfortable with A∞-cats, categorification should pro-
ceed, perhaps with some technical details.

jim

Ronnie Brown wrote:

John Baez gave an interesting account of nonabelian cohomology and extension
theory. Here are a few more references with which I have been involved, all
using crossed complexes and free crossed resolutions:

20) Ronald Brown and P. J. Higgins, “Crossed complexes and non-abelian ex-
tensions”, Category theory proceedings, Gummersbach, 1981, (ed. K.H.
Kamps et al) Lecture Notes in Math. 962 Springer, Berlin, 1982, pp. 39–
50.

This generalises classical Schreier theory to extensions of groupoids.

21) Ronald Brown and O. Mucuk, “Covering groups of non-connected topolog-
ical groups revisited”, Math. Proc. Camb. Phil. Soc. 115 (1994) 97–110.
Also available as math.AT/0009021.

This relates the theory of covering topological groups of non connected topolog-
ical groups to the classical theory of extensions and obstructions to a Q-kernel
with an invariant in H3. It uses the properties of the internal hom in crossed
complexes CRS(F,C), and exact sequences derived from a fibration C → D
and the induced fibration on CRS(F,−).

22) Ronald Brown and Timothy Porter, “On the Schreier theory of non-abelian
extensions: generalisations and computations”, Proceedings Royal Irish
Academy 96A (1996), 213–227. Also available at http://www.informatics.
bangor.ac.uk/public/math/research/ftp/algtop/rb/nonabex4.ps.

gz

This establishes a generalisation of the Schreier theory in two ways (but only for
groups). One is using coefficients in a crossed module, following Dedecker’s key
ideas, as in the references in John’s account. Second it shows how to compute
with such extensions

A→ E → G

in terms of presentations of the groupG. This involves identities among relations
for the presentation, as shown originally by Turing in
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23) Alan Turing, “The extensions of a group”, Compositio Mathematica 5
(1938), 357–367.

The advantage of this method is that one can actually do sums, even when the
group G may be infinite. The example given by us is G = trefoil group with two
generators x, y and relation x3 = y2. This presentation has no identities among
relations, and so the calculation is especially simple. Equivalence of extensions
is described in terms of homotopies of morphisms of crossed complexes, and this
relates the ideas to other forms of homological or homotopical algebra.

An advantage of this approach is the ability to calculate some small free crossed
resolutions of some groups: this is one reason for using crossed complexes. Note
that a convenient monoidal closed structure on the category of crossed complexes
has been explicitly written down, and this allows convenient calculation and
representations of homotopies, using the ‘unit interval’ groupid, as a crossed
complex.

One of the problems I have with the globular approach is the difficulty of writing
down homotopies, and higher homotopies. For example, Ilhan Icen and I found
it difficult to rewrite in terms of group-groupoids the well known Whitehead
theory of automorphisms of crossed modules, explained for the crossed modules
of groupoids case in:

24) Ronald Brown and Ilhan Icen, “Homotopies and automorphisms of crossed
modules of groupoids”, Applied Categorical Structures 11 (2003) 185–
206. Also available as math.CT/0008117.

It looks as if it would be better expressed in terms of automorphisms of 2-
groupoids: good marks to anyone who writes it down in that way!

One knows such homotopies of globular∞-groupoids exist because globular∞-
groupoids are equivalent to crossed complexes:

25) Ronald Brown and P. J. Higgins, “The equivalence of ∞-groupoids and
crossed complexes”, Cah. Top. Geom. Diff. 22 (1981) 371–386.

(This paper contains an early definition of a (strict, globular)∞ category.)

This raises a question: what is the crossed complex associated to the free globular
groupoid on one generator of dimension n? I have a round-about sketch proof,
using also cubical theory, and a van Kampen theorem, that it is the fundamental
crossed complex of the n-globe. Does anyone have a purely algebraic proof?

The idea of singular nonabelian cohomology of a space X with coefficients in a
crossed complex C is given in:

26) Ronald Brown and P. J. Higgins, “The classifying space of a crossed com-
plex”, Math. Proc. Camb. Phil. Soc. 110 (1991) 95–120.

This cohomology is given by [ΠSX,C], homotopy classes of maps from the fun-
damental crossed complex of the singular complex of X, to C. There is also a
Cech version (current work with Jim Glazebrook and Tim Porter).
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An interesting problem is to classify extensions of crossed complexes!

There is an interesting account of extensions of principal bundles and transitive
Lie groupoids by Androulidakis, developing work of Mackenzie, at:

27) Iakovos Androulidakis, “Classification of extensions of principal bundles
and transitive Lie groupoids with prescribed kernel and cokernel”, J. Math.
Phys. 45 (2004), 3095–4012. Also available as math.DG/0402007.

(not using crossed complexes).

Ronnie Brown
http:www.bangor.ac.uk/r.brown

Finally, here’s my reply to a bemused comment by Jim Stasheff:

Jim Stasheff wrote:

John and anyone else who cares to weigh in, here are some comments
from the purely topological or rather homotopy theory side:

For both bundles and fibrations (e.g. over a paracompact base), your
last slogan is the oldest:

fibrations with fiber F over the space B
are “the same” as maps fromB to the classifying space of AUT(F )

“the same as” referring to homotopy classes.

It’s certainly old, but I mentioned another that may be older:

covering spaces of B with fiber F
ARE “THE SAME” AS
homomorphisms from the fundamental group of B to automor-
phisms of F

although one usually sees this special case (which I didn’t bother to mention):

connected covering spaces of B with fiber F
are “the same” as
transitive actions of the fundamental group of B on F

which is usually disguised as follows:

connected covering spaces of B
are “the same” as
subgroups of the fundamental group of B
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Anyway, I wasn’t trying to present things in historical order. I was trying present
them roughly in order of increasing “dimension”, starting with extensions of
groups, then going up to 2-groups, then expanding out to groupoids, then going
up to n-groupoids, and finally ω-groupoids. . . which are the same as homotopy
types!

And here, as usual, the n-category theorists meet up with the topologists —
and find that the topologists have already done everything there is to do with
ω-groupoids . . . but usually by thinking of them of them as spaces, rather than
ω-groupoids!

It’s sort of like climbing a mountain, surmounting steep cliffs with the help of
ropes and other equipment, and then finding a Holiday Inn on top and realizing
there was a 4-lane highway going up the other side.

So, as usual, the main point of calling homotopy types “ω-groupoids” instead
of “spaces” is not to reinvent topology, but to see how ideas from topology gen-
eralize to n-category theory. Think of spaces as ω-groupoids, but use those as
a springboard for ω-categories — or at least n-categories, perhaps just for low
values of n if one is feeling tired.

In the case at hand, the ω-groupoidal slogan:

fibrations of ω-groupoids with fiber F and base B
are “the same” as
weak ω-functors from B to AUT(F )

is just a reformulation of:

fibrations with fiber F over the space B
are “the same” as
maps from B to the classifying space of AUT(F )

but it suggests a grandiose generalization:

fibrations of ω-categories with base B
are “the same” as
weak ω-functors from Bop to the ω-category of ω-categories!

I guess we can thank Grothendieck for making precise and proving a version of
this with ω replaced by n = 1:

fibrations of categories with base B
are “the same” as
weak 2-functors from Bop to the 2-category of categories.

More recently people have been thinking about the n = 2 case, especially Claudio
Hermida:

28) Claudio Hermida, “Descent on 2-fibrations and strongly 2-regular 2-categories”,
Applied Categorical Structures 12 (2004), 427–459. Also available at
http://maggie.cs.queensu.ca/chermida/papers/2-descent.pdf
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He states something that hints at this:

fibrations of 2-categories with base B
are “the same” as
weak 3-functors from Bop to the weak 3-category of 2-categories.

Here I’m using Bop to mean B with the directions of both 1-morphisms and
2-morphisms reversed. Hermida follows tradition and calls this Bcoop — “op”
for reversing 1-morphisms and “co” for reversing 2-morphisms. But, it looks like
we’ll be needing to reverse all kinds of morphisms in n-category case, so we’ll
need a short name for that.

Best,
jb

“Hah, what a fantastic night,” Gunn said. “Arcturus is absolutely steady.” He
leaned back, put his elbows on the rail of the lift, and looked up at the sky. His
glasses glinted faintly in the starlight. “Astronomy is not terribly important,”
he said. He fell silent for a moment. “Although it is one of the more important
things we do as a species,” he said. He did not see any contradiction there.

— Richard Preston, First Light
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Week 224

December 14, 2005

This week I want to mention a couple of papers lying on the interface of physics, topol-
ogy, and higher-dimensional algebra. But first, some astronomy pictures. . . and a bit
about the mathematical physicist Hamilton!

I like this photo of a jet emanating from the black hole in the center of galaxy M87:

1) NASA and John Biretta, “M87”, http://hubblesite.org/newscenter/newsdesk/
archive/releases/2005/12/image/o

M87 is a giant elliptical galaxy. It’s long been known as a powerful radio source, and
now we know why: there’s a supermassive black hole in the center, about 3 billion times
the mass of our Sun. As matter spirals into this huge black hole, it forms an “accretion
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disk”, and some gets so hot that it shoots out in a jet, as envisioned here:

2) NASA, MAXIM: “Micro-Arcsecond X-ray Imaging Mission”, http://maxim.gsfc.
nasa.gov/docs/science/science.html

Accretion disks and jets are common at many different scales in our universe. They’re
just nature’s way of letting a bunch of matter fall in under its own gravitation while losing
angular momentum and energy. We see them when dust clouds collapse to form stars,
we see them when black holes sucks in mass from companion stars, and they’re probably
also responsible for slow γ ray bursts as huge stars collapse when they run out of fuel —
see “Week 204” for that story.

But, among the biggest accretion disks and jets are those surrounding supermassive
black holes in the middle of galaxies. These are probably responsible for all the “active
galactic nuclei” or “quasars” that we see. In the case of M87 the jet is enormous: 5000
light years long! To get a sense of the scale, look at the small white specks away from
the jet in the next picture. These are globular clusters: clusters containing between ten
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thousand and a million stars.

3) A jet from galaxy M87, “Astronomy Picture of the Day, July 6, 2000”, http://

antwrp.gsfc.nasa.gov/apod/ap000706.html

The jet in M87 is so hot that it emits not just radio waves and visible light, but even
X-rays, as seen by the Chandra X-ray telescope:

4) “M87: Chandra sheds light on the knotty problem of the M87 jet”, http://chandra.
harvard.edu/photo/2001/0134/

It seems the jet consists mainly of electrons moving at relativistic speeds, focused by
the magnetic field of the accretion disk. They come in blobs called “knots”. People can
actually see these blobs moving out, getting brighter and dimmer.

In fact, many galaxies have super-massive black holes at their centers with jets like
this one. The special thing about M87 is that it’s fairly nearby, hence easy to see. M87
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is the biggest galaxy in the Virgo Cluster. This is the closest galaxy cluster to us, about
50 million light years away. That sounds pretty far, but it’s only 1000 times the radius
of the Milky Way. If the Milky Way were a pebble, M87 would be only a stone’s throw
away. So, even amateur astronomers — really good ones, at least — can take photos
of M87 that show the jet. But here’s a high-quality picture produced by Robert Lupton
using data from the Sloan Digital Sky Survey — you can see the jet in light blue:

5) Robert Lupton and the Sloan Digital Sky Survey Consortium, “The central regions
of M87”, http://www.astro.princeton.edu/~rhl/PrettyPictures/

Backing off a bit further, let’s take a look at the Virgo Cluster. It contains over a
thousand galaxies, but we can tell it’s fairly new as clusters go, since it consists of a
bunch of “subclusters” that haven’t merged yet. Our galaxy, and indeed the whole Local
Group to which it belongs, is being pulled towards the Virgo Cluster and will eventually
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join it. Here’s a nice closeup of part of the Virgo Cluster:

6) Chris Mihos, Paul Harding, John Feldmeier and Heather Morrison, “Deep imaging
of the Virgo Cluster”, http://burro.astr.cwru.edu/Schmidt/Virgo/

Finally, just for fun, something unrelated — and more mysterious. It’s called “Hoag’s
object”:

7) The Hubble Heritage Project, “Hoag’s Object”, http://heritage.stsci.edu/2002/
21/

It’s a ring-shaped galaxy full of hot young blue stars surrounding a ball of yellower
stars. Nobody knows how it formed: perhaps by a collision of two galaxies? Such
collisions are fairly common, but they don’t typically create this sort of structure.
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The weirdest part is that inside the ring, in the upper right, you can see another ring
galaxy in the distance! Maybe an advanced civilization over there enjoys this form of
art? Probably not, but if it turns out to be true, you heard it here first.

Anyway. . . back here on Earth, in the summer of 2004, I visited Dublin for a con-
ference on general relativity called GR17. As recounted in “Week 207”, this was where
Hawking admitted defeat in his famous bet with John Preskill about information loss
due to black hole evaporation. In August of this year, Hawking finally came out with a
short paper on the subject:

8) Stephen W. Hawking, “Information loss in black holes”, available as hep-th/0507171.

I spent a lot of time talking to physicists, but I also wandered around Dublin a bit.
Besides listening to some great music at a pub called Cobblestones — Kevin Rowsome
plays a mean uilleann pipe! — and tracking down some sites mentioned in James Joyce’s
novel “Ulysses”, I went with Tevian Dray on a pilgrimage to Brougham Bridge.

Tevian Dray is an expert on the octonions, and Brougham Bridge is where Hamilton
carved his famous formula defining the quaternions! Now there is a plaque commemo-
rating this event, which reads:

Here as he walked by
on the 16th of October 1843
Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for
quaternion multiplication
i2 = j2 = k2 = ijk = −1
& cut it on a stone of this bridge

It does’t mention that Hamilton had been racking his brain for the entire month of
October trying to solve this problem: “flashes of genius” favor the prepared mind. But
it’s a nice story and a nice place. My friend Tevian Dray took some photos, which you
can see here:

9) John Baez, “Dublin”, http://math.ucr.edu/home/baez/dublin/

It was a bit of a challenge finding Brougham Bridge, since nobody at the main bus
station gave us correct information about which bus went there — except the bus driver
who finally took us there. So, to ease your way in case you want to make your own
pilgrimage, the above page includes directions. And now, thanks to Dirk Schlimm, it also
includes a link to a map showing the bridge!

Speaking of Hamilton, Theron Stanford recently sent me an answer to one of life’s
persistent questions: why is momentum denoted by the letter p?

Since momentum and position play fundamental roles in Hamiltonian mechanics,
and they’re denoted by p and q, one wonders: could this notation be related to Hamilton’s
alcoholism in later life? After all, some claim the saying mind your p’s and q’s began as a
friendly Irish warning not to imbibe too many pints and quarts! So, maybe he used these
letters in his work on physics as a secret plea for help.

Umm. . . probably not. Just kidding. But in the absence of hard facts, speculation
runs rampant. So, I’m glad Stanford provided some of the former, to squelch the latter.

He sent me this email:
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While Googling various subjects, I came across the following from your Quantum
Gravity Seminar notes from 2001:

Again Oz was overcome with curiosity, so mimicking Toby’s voice, he
asked, “Why do we call the momentum p?”
The Wiz glared at Toby. “Because m is already taken – it stands
for mass! Seriously, I don’t know why people call position q and
momentum p. All I know is that if you use any other letters, people
can tell you’re not a physicist. So I urge you to follow tradition on
this point.”

Well, I have an answer. Hamilton, the first physicist to actually understand the
importance of the concept of momentum, chose ϖ to stand for momentum (it’s
not the usual π, but what TeX calls varpi, a lower-case ω with a top, kinda
like the top of a lower-case τ). Jacobi changed this to p in one of his seminal
papers on the subject; he also used q in the same paper to stand for position.
In the 1800s (I want to say 1850s, though it might have been a decade or two
later) Cayley presented a paper to the Royal Academy in which he says (and
I paraphrase), “Well, it seems that p and q are pretty well established now, so
that’s what I’m going to use.”

So, now the question is why Hamilton chose the letter ϖ for momentum. This variant
of π was fairly common in the mathematical literature of the day, so there may be no
special explanation. For some further detective work, see:

10) “Hamilton: two mysteries solved”, http://groups.google.com/group/sci.physics/
browse thread/thread/d1b7b4a998682bbb/3a868ae8218a4bca#3a868ae8218a4bca

Also see equation 12 in this paper for one of the first uses of “ϖ” to mean momentum:

11) William Rowan Hamilton, “Second essay on a general method in dynamics”, ed. David
R. Wilkins, available at http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/
Dynamics/SecEssay.pdf

He doesn’t say why he chose this letter — it may have been completely random!
Before I turn to higher-dimensional algebra, maybe this is a good time to mention a

paper related to the octonions:

12) Jakob Palmkvist, “A realization of the Lie algebra associated to a Kantor triple sys-
tem”, available as math.RA/0504544.

In “Week 193” I mentioned how 3-graded Lie algebras come from “Jordan triple sys-
tems”, and vaguely hinted that 5-graded Lie algebras come from “Kantor triple systems”.
I explained how the exceptional Lie algebra E8 gets to be 5-graded, but I didn’t really say
anything about Kantor triple systems because my understanding of them was so poor.
This paper by Palmkvist explains them very clearly! And even better, he shows how the
“magic square” Lie algebras F4, E6, E7, and E8 can be systematically obtained from the
octonions, bioctonions, quateroctonions and octooctonions by means of Kantor triple
systems.
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Now for some mathematical physics that touches on higher-dimensional algebra. If
you still don’t get why topological field theory and n-categories are so cool, read this
thesis:

13) Bruce H. Bartlett, Categorical aspects of topological quantum field theories, M.Sc.
Thesis, Utrecht University, 2005. Available as math.QA/0512103.

It’s a great explanation of the big picture! I can’t wait to see what Bartlett does for
his Ph.D..

If you’re a bit deeper into this stuff, you’ll enjoy this:

14) Aaron Lauda and Hendryk Pfeiffer, “Open-closed strings: two-dimensional ex-
tended TQFTs and Frobenius algebras”, available as math.AT/0510664.

This paper gives a purely algebraic description of the topology of open and closed
strings, making precise and proving some famous results stated without proof by Moore
and Segal, which can be seen here:

15) Greg Moore, “Lectures on branes, K-theory and RR charges”, Clay Math Institute
Lecture Notes (2002), available at http://www.physics.rutgers.edu/~gmoore/
clay1/clay1.html

Lauda and Pfeiffer’s paper makes heavy use of Frobenius algebras, developing more
deeply some of the themes I mentioned in “Week 174”. In a related piece of work, Lauda
has figured out how to categorify the concept of a Frobenius algebra, and has applied
this to 3d topology:

16) Aaron Lauda, “Frobenius algebras and ambidextrous adjunctions”, Theory and Ap-
plications of Categories 16 (2006) 84–122. Also available as math.CT/0502550.

Aaron Lauda, “Frobenius algebras and planar open string topological field theo-
ries”, available as math.QA/0508349.

The basic idea behind all this work is a “periodic table” of categorified Frobenius
algebras, which are related to topology in different dimensions. For example, in “Week
174” I explained how Frobenius algebras formalize the idea of paint drips on a sheet of
rubber. As you move your gaze down a sheet of rubber covered with drips of paint, you’ll
notice that drips can merge:

but also split:
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In addition, drips can start:

but also end:

In a Frobenius algebra, these four pictures correspond to four operations called “multi-
plication” (merging), “comultiplication” (splitting), the “unit” (starting) and the “counit”
(ending). Moreover, these operations satisfy precisely the relations that you can prove
by warping the piece of rubber and seeing how the pictures change. For example, there’s
the associative law:

=

The idea here is that if you draw the picture on the left-hand side on a sheet of rubber,
you can warp the rubber until it looks like the right-hand side! There’s also the “coas-
sociative law”, which is just an upside-down version of the above picture. But the most
interesting laws are the “I = N” equation:

=

and its mirror-image version.
So, the concept of Frobenius algebra captures the topology of regions in the plane!

Aaron Lauda makes this fact into a precise theorem in his paper on planar open string
field theories, and then generalizes it to consider “categorified” Frobenius algebras where
the above equations are replaced by isomorphisms, which describe the process of warping
the sheet of rubber until the left side looks like the right. You should look at his paper
even if you don’t understand the math, because it’s full of cool pictures.

Lauda and Pfeiffer’s paper goes still further, by considering these paint stripes as
“open strings”, not living in the plane anymore, but zipping around in some spacetime
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of high dimension, where they might as well be abstract 2-manifolds with corners. Fol-
lowing Moore and Segal, they also bring “closed strings” into the game, which form a
Frobenius algebra of their own, where the multiplication looks like an upside-down pair
of pants:

These topological closed strings are the subject of Joachim Kock’s book mentioned in
“Week 202”; they correspond to commutative Frobenius algebras. The fun new stuff
comes from letting the open strings and closed strings interact.

You can read more about Lauda and Pfeiffer’s work at Urs Schreiber’s blog:

17) Urs Schreiber, “Lauda and Pfeiffer on open-closed topological strings”, http://
golem.ph.utexas.edu/string/archives/000680.html

In fact, I recommend Schreiber’s blog quite generally to anyone interested in higher
categories and/or the math of string theory!

Addendum: Bruce Smith, David Rusin and Robert Lupton had some comments about
the astronomy section; Urs Schreiber had more to say about the role of Frobenius alge-
bras in string theory.

Bruce Smith picked up on my comment about accretion disks being common at many
different scales, and wondered what the smallest accretion disks are. We talked about it
and agreed that hurricanes, tornados, dust devils and whirlpools are related phenomena,
but not true accretion disks.

Given this, the smallest accretion disks I know are those that led to the formation of
planets in our Solar System, and perhaps even some moons. These probably began as
eddies in the bigger accretion disk that became our Sun. The Sun is about 300,00 times
heavier than the Earth, and the super-massive black hole in M87 is about 3 billion times
heavier than the Sun, so we’re seeing accretion disks that differ in mass by a factor of a
trillion!

David Rusin’s reaction to Hoag’s object was:

Cool. But what are the chances that there would be not just one but TWO fasci-
nating objects which have a significant plane of symmetry, which “just happens”
to be perpendicular to our line of sight?

He asked how many ring galaxies are known!
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I checked and read there are 100 known “polar-ring galaxies”. Here’s a nice one
called NGC 4650:

18) “Ring around a galaxy”, HubbleSite News Archive, May 6, 1999, http://hubblesite.
org/newscenter/newsdesk/archive/releases/1999/16/image/a

I can imagine this thing looking like Hoag’s object if we viewed it head-on.
Here’s another ring galaxy, called AM 0644-741:
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19) “The lure of the rings”, Hubblesite News Archive, April 22, 2004, http://hubblesite.
org/newscenter/newsdesk/archive/releases/2004/15/image/a

It’s the result of a collision involving a galaxy that’s not in this picture. So, maybe
Hoag’s object is just a specially pretty case of a galaxy collision!

Robert Lupton referred me to a picture that covers more of the Virgo Cluster — but
the file is huge, so I won’t include it here:

20) Doug Finkbeiner and the Sloan Digital Sky Survey Consortium, “Some pretty ob-
jects as observed by the SDSS: Virgo Cluster”, http://www.astro.princeton.

edu/~rhl/dfink

See the lower right corner for the picture called “virgobig”.
Here’s what Urs Schreiber had to say about Frobenius algebras and string theory:

John Baez wrote:

[. . . ] Following Moore and Segal, they also bring “closed strings”
into the game, which form a Frobenius algebra of their own, where
the multiplication looks like an upside-down pair of pants: [. . . ]

I would like to make the following general comment on the meaning of Frobenius
algebras in 2-dimensional quantum field theory.

Interestingly, non-commutative Frobenius algebras play a role even for closed
strings, and even if the worldhseet theory is not purely topological.

The archetypical example for this is the class of 2D TFTs invented by Fukuma,
Hosono and Kawai. There one has a non-commutative Frobenius algebra which
describes not the splitting/joining of the entire worldsheet, but rather the split-
ting/joining of edges in any one of its dual triangulations. It is the center of (the
Morita class of) the noncommutative Frobenius algebra decorating dual trian-
gulations which is the commutative Frobenius algebra describing the closed 2D
TFT.

One might wonder if it has any value to remember a non-commutative Frobenius
algebra when only its center matters (in the closed case). The point is that the
details of the non-commutative Frobenius algebra acting in the “interior” of the
world sheet affects the nature of “bulk field insertions” that one can consider
and hence affects the (available notions of) n-point correlators of the theory, for
n > 0.

This aspect, however, is pronounced only when one switches from 2D topological
field theories to conformal ones.

The fascinating thing is that even 2D conformal field theories are governed by
Frobenius algebras. The difference lies in different categorical internalization.
The Frobenius algebras relevant for CFT don’t live in Vect, but in some other
(modular) tensor category, usually that of representations of some chiral vertex
operator algebra. It is that ambient tensor category which “knows” if the Frobe-
nius algebra describes a topological or a conformal field theory (in 2D) — and
which one.
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Of course what I am referring to here is the work by Fjelstad, Froehlich, Fuchs,
Runkel, Schweigert and others. I can recommend their most recent review which
will appear in the Streetfest proceedings. It is available as math.CT/0512076.

The main result is, roughly, that given any modular tensor category with cer-
tain properties, and given any (symmetric and special) Frobenius algebra object
internal to that category, one can construct functions on surfaces that satisfy all
the properties that one would demand of an n-point function of a 2D (confor-
mal) field theory.

If we define a field theory to be something not given by an ill-defined path inte-
gral, but something given by its set of correlation functions, then this amounts
to constructing a (conformal) field theory.

This result is achieved by first defining a somewhat involved procedure for gen-
erating certain classes of functions on marked surfaces, and then proving that
the functions generated by this procedure do indeed satisfy all the required prop-
erties.

In broad terms, the prescription is to choose a dual triangulation of the marked
worldsheet whose correlation function is to be computed, to decorate its edges
with symmetric special Frobenius algebra objects in some modular tensor cat-
egory, to decorate its vertices by product and coproduct morphisms of this al-
gebra, to embed the whole thing in a certain 3-manifold in a certain way and
for every boundary or bulk field insertion to add one or two threads labeled by
simple objects of the tensor category which connect edges of the chosen triangu-
lation with the boundary of that 3-manifold. Then you are to hit the resulting
extended 3-manifold with the functor of a 3D TFT and hence obtain a vector in
a certain vector space. This vector, finally, is claimed to encode the correlation
function.

This procedure is deeply rooted in well-known relations between 3-(!)-dimensional
topological field theory, modular functors and modular tensor categories and
may seem very natural to people who have thought long enough about it. It
is already indicated in Witten’s paper on the Jone’s polynomial, that 3D TFT
(Chern-Simons field theory in that case) computes conformal blocks of confor-
mal field theories on the boundaries of these 3-manifolds. To others, like me
in the beginning, it may seem like a miracle that an involved and superficially
ad hoc procedure like this has anything to do with correlations functions of
conformal field theory in the end.

In trying to understand the deeper “meaning” of it all I played around with the
idea that this prescription is really, to some extent at least, the “dual” incar-
nation of the application of a certain 2-functor to the worldsheet. Namely a
good part of the rough structure appearing here automatically drops out when
a 2-functor applied to some 2-category of surfaces is “locally trivialized”. I claim
that any local trivialization of a 2-functor on some sort of 2-category of surface
elements gives rise to a dual triangulation of the surface whose edges are labeled
by (possibly a generalization of) a Frobenius algebra object and whose vertices
are labeled by (possibly a generalization of) product and coproduct operations.
There is more data in a locally trivialized 2-functor, and it seems to correctly
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reproduce the main structure of bulk field insertions as appearing above. But of
course there is a limit to what a 2-functor can know about a structure that is
inherently 3-dimensional.

I have begun outlining some of the details that I have in mind here:

http://golem.ph.utexas.edu/string/archives/000697.html

This has grown out of a description of gerbes with connective structure in terms
of transport 2-functors. Note that in what is called a bundle gerbe we also do
have a certain product operation playing a decisive role. Bundle gerbes can be
understood as “pre-trivializations” of 2-functors to Vect:

http://golem.ph.utexas.edu/string/archives/000686.html

and the product appearing is one of the Frobenius products mentioned above.
For a bundle gerbe the coproduct is simply the inverse of the product, since
this happens to be an isomorphism. The claim is that 2-functors to Vect more
generally give rise to non-trivial Frobenius algebras when locally trivialized.

This is work in progress and will need to be refined. I thought I’d mention it
here as a comment to John’s general statements about how Frobenius algebras
know about 2-dimensional physics. I am grateful for all kinds of comments.

Here’s the paper Urs refers to:

21) Ingo Runkel, Jens Fjelstad, Jurgen Fuchs and Christoph Schweigert, “Topological
and conformal field theory as Frobenius algebras”, available as math.CT/0512076.

Here’s how you do it:
First you’re obtuse,
Then you intuit,
Then you deduce!

— Garrison Keillor
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Week 225

December 24, 2005

Happy holidays! I’ll start with some gift suggestions for people who put off their Christ-
mas shopping a bit too long, before moving on to this week’s astronomy pictures and
then some mathematical physics: minimal surfaces.

Back in 2000 I listed some gift ideas in “Week 162”. I decided to do it again this
year. After all, where else can you read about quantum gravity, nonabelian cohomology,
higher categories. . . and also get helpful shopping tips? But, I put off writing this Week’s
Finds a bit too late. Oh well.

I just saw this book in a local store, and it’s great:

1) Robert Dinwiddie, Philip Eales, David Hughes, Ian Nicholson, Ian Ridpath, Giles
Sparrow, Pam Spence, Carole Stott, Kevin Tildsley, and Martin Rees, Universe, DK
Publishing, New York, 2005.

If you like the astronomy pictures you’ve seen here lately, you’ll love this book, be-
cause it’s full of them — all as part of a well-organized, clearly written, information-
packed but nontechnical introduction to astronomy. It starts with the Solar System and
sails out through the Oort Cloud to the Milky Way to the Local Group to the Virgo Su-
percluster . . . and all the way out and back to the Big Bang!

The only thing this book seems to lack — though I could have missed it — is a 3d
map showing the relative scales of our Solar System, Galaxy, and so on. I recommended
a wall chart like this back in “Week 162”, and my friend Danny Stevenson just bought
me one. I’ll probably put it up near my office in the math department. . . gotta keep the
kids thinking big!

You don’t really need to buy a chart like this. You can just look at this website:

2) Richard Powell, “An Atlas of the Universe”, http://www.anzwers.org/free/universe/

It has nine maps, starting with the stars within 12.5 light years and zooming out
repeatedly by factors of 10 until it reaches the limits of the observable universe, roughly
14 billion light years away. Or more precisely, 14 billion years ago!

(The farther we look, the older things we see, since light takes time to travel. The
most distant thing we see is light released when hot gas from the Big Bang cooled down
just enough to let light through! If we calculate how far this gas would be now, thanks
to the expansion of the universe, we get a figure of roughly 78 billion light years. But
of course we can’t see what that gas looks like now unless we wait a lot longer. It’s a bit
confusing until you think about it for a while.)
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For example, here are the clusters of galaxies within 100 million lightyears of us:

The biggest of these is the Virgo cluster, which I discussed in “Week 224”. This
contains about 2000 galaxies. The second biggest is the Fornax cluster. The whole
agglomeration shown here is called the Virgo Supercluster. Superclusters are among the
biggest structures in the universe.

This atlas is fun to browse when you’re at your computer. But, if someone you know
wants to contemplate the universe in a more relaxing way, try getting them one of these:

3) Bathsheba Grossman, “Crystal model of a typical 100-megaparsec cube of the uni-
verse”, http://www.bathsheba.com/crystal/largescale/

“Crystal model of the Milky Way”, http://www.bathsheba.com/crystal/galaxy/

I found out about these from David Scharffenberg, who owns the Riverside Computer
Center nearby — a cool little shop that’s decorated with archaic technology ranging from
a mammoth slide rule to a gizmo that computes square roots using air pressure. He gave
me the 100-megaparsec cube as a present, and it’s great! It’s lit up from below, and
it shows the filaments, sheets and superclusters of galaxies that reign supreme at this
distance scale. 100 megaparsecs is about 300 million light years, so this view is a bit
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bigger than the previous picture:

David says Grossman’s model of the Milky Way is also nice: it takes into account the
latest research, which shows our galaxy is a “barred” spiral! You can see the bar in the
middle here:

4) R. Hurt, NASA/JPL-Caltech, “Milky Way Bar”, http://www.spitzer.caltech.edu/
Media/mediaimages/sig/sig05-010.shtml

If you really have money to burn, Grossman has also made nice sculptures of math-
ematical objects like the 24-cell, the 600-cell and Schoen’s gyroid — a triply periodic
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minimal surface that chops 3-space into two parts:

5) Bathsheba Grossman, Mathematical models, http://www.bathsheba.com/math/

However, the great thing about the web is that lots of beautiful stuff is free — like
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these pictures of the gyroid:

I explained the 24-cell and 600-cell in “Week 155”. So, let me explain the gyroid —
then I need to start cooking up a Christmas eve dinner!

A “minimal surface” is a surface in ordinary 3d space that can’t reduce its area by
changing shape slightly. You can create a minimal surface by building a wire frame and
then creating a soap film on it. As long as the soap film doesn’t actually enclose any air,
it will try to minimize its area — so it will end up being a minimal surface.

If you make a minimal surface this way, it will have edges along the wire frame. A
minimal surface without edges is called “complete”. For a long time, the only known
complete minimal surfaces that didn’t intersect themselves were the plane, the catenoid,
and the helicoid. You get a “catenoid” by taking an infinitely long chain and letting it
hang to form a curve called a “catenary”; then you use this curve to form a surface of
revolution, which is the catenoid:

6) Eric Weisstein, “Catenoid”, from Mathworld, http://mathworld.wolfram.com/

Catenoid.html

In cylindrical coordinates the catenoid is given by the equation

r = c cosh
(z
c

)
for your favorite constant c.

A “helicoid” is like a spiral staircase; in cylindrical coordinates it’s given by the equa-
tion

z = cθ

308

http://www.bathsheba.com/math/gyroid/gyroid3q.jpg


WEEK 225 DECEMBER 24, 2005

for some constant c. You can see a helicoid here — and see how it can continuously
deform into a catenoid:

7) Eric Weisstein, “Helicoid”, from Mathworld, http://mathworld.wolfram.com/Helicoid.
html

In 1987 a fellow named Hoffman discovered a bunch more complete non-self-intersecting
minimal surfaces with the help of a computer:

8) D. Hoffman, “The computer-aided discovery of new embedded minimal surfaces”,
Mathematical Intelligencer 9 (1987), 8–21.

Since then people have gotten good at inventing minimal surfaces. You can see a
bunch here:

9) GRAPE (Graphics Programming Environment), “Surface overview”, http://www-sfb256.
iam.uni-bonn.de/grape/EXAMPLES/AMANDUS/bmandus.html

10) GANG (Geometry Analysis Numerics Graphics), “Gallery of minimal surfaces”, http:/
/www.gang.umass.edu/gallery/min/

As you can see, people who work on mininal surfaces like goofy acronyms. If you
look at the pictures, you can also see that a minimal surface needs to be locally saddle-
shaped. More precisely, it has “zero mean curvature”: at any point, if it curves one way
along one principal axis of curvature, it has to curve an equal and opposite amount along
the perpendicular axis. Supposedly this was proved by Euler.

If we write this requirement as an equation, we get a second-order nonlinear dif-
ferential equation called “Lagrange’s equation” — a special case of the Euler-Lagrange
equation we get from any problem in the variational calculus. So, finding new minimal
surfaces amounts to finding new solutions of this equation. Soap films solve this equa-
tion automatically, but only with the help of a wire frame; it’s a lot more work to find
minimal surfaces that are complete.

For the theoretical physicist, minimal surfaces also go by another name: strings!
The “worldsheet” of a bosonic string is just a 2-dimensional surface in spacetime. The
equation governing the string’s motion just says that the area of this surface can’t be
reduced by wiggling it slightly. In other words, it’s just Lagrange’s equation. There’s
a big difference between string theory and the theory of minimal surfaces, though: in
string theory we need to take quantum mechanics into account! (Another big difference
is that spacetime is a Lorentzian rather than Riemannian manifold, unless we do a trick
called “Wick rotation”.)

So, bosonic string theory is about the quantum version of soap films - and “D-branes”
serve as the wire frames. But if this reminds you of “spin foams”, I should warn you:
there are a few big differences. The main thing is that spin foams are background-free:
they don’t live in spacetime, they are spacetime. So, it doesn’t make any obvious sense
for them to minimize area, though Smolin has suggested it might make an unobvious
kind of sense. All the fun must happen when the “bubbles” of a spin foam meet along
their edges. . . but we don’t really know how this should work, to create a foam with the
right consistency at large scales.

Anyway. . . .
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There are a lot of minimal surfaces that have periodic symmetry in 3 directions, like
a crystal lattice. You can learn about them here:

11) Elke Koch, “3-periodic minimal surfaces”, http://staff-www.uni-marburg.de/
~kochelke/minsurfs.htm

In fact, they have interesting relations to crystallography:

12) Elke Koch and Werner Fischer, “Mathematical crystallography”, http://www.staff.
uni-marburg.de/~kochelke/mathcryst.htm#minsurf

I guess people can figure out which of the 230 crystal symmetry groups (or “space
groups”) can arise as symmetries of triply periodic minimal surfaces, and use this to help
classify these rascals. A cool mixture of group theory and differential geometry! I don’t
get the impression that they have completed the classification, though.

Anyway, Schoen’s “gyroid” is one of these triply periodic minimal surfaces. Schoen
discovered it before the computer revolution kicked in. He was working for NASA, and
his idea was to use it for building ultra-light, super-strong structures:

13) A. H. Schoen, “Infinite periodic minimal surfaces without selfintersections”, NASA
Tech. Note No. D-5541, Washington, DC, 1970.

You can learn more about the gyroid here:

14) Eric Weisstein, “Gyroid”, from Mathworld, http://mathworld.wolfram.com/Gyroid.
html

Apparently it’s the only triply periodic non-self-intersecting minimal surface with
“triple junctions”. I’m not quite sure what that means mathematically, but I can see
them in the picture!

I said that soap films weren’t good at creating complete minimal surfaces. But actually,
people have seen at least approximate gyroids in nature, made from soap-like films:

15) P. Garstecki and R. Holyst, “Scattering patterns of self-assembled gyroid cubic
phases in amphiphilic systems”, J. Chem. Phys. 115 (2001), 1095–1099.

An “amphiphilic” molecule is one that’s attracted by water at one end and repelled
by water at the other. For example, the stuff in soap. Mixed with water and oil, such
molecules form membranes, and really complicated patterns can emerge, verging on
the biological. Sometimes the membranes make a gyroid pattern, with oil on one side
and water on other! It’s a great example of how any sufficiently beautiful mathemati-
cal pattern tends to show up in nature somewhere. . . as Plato hinted in his theory of
“forms”.

People have fun simulating these “ternary amphiphilic fluids” on computers:

16) Nelido Gonzalez-Segredo and Peter V. Coveney, “Coarsening dynamics of ternary
amphiphilic fluids and the self-assembly of the gyroid and sponge mesophases:
lattice-Boltzmann simulations”, available as cond-mat/0311002.
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17) Pittsburgh Supercomputing Center, “Ketchup on the grid with joysticks”, http://
www.psc.edu/science/2004/teragyroid/

The second site above describes the “TeraGyroid Project”, in which people used 17
teraflops of computing power at 6 different facilities to simulate the gyroidal phase of
oil/water/amphiphile mixtures and study how “defects” move around in what’s other-
wise a regular pattern. The reference to ketchup comes from some supposed relationship
between these ternary amphiphilic fluids and how ketchup gets stuck in the bottle. I’m
not sure ketchup actually is a ternary amphiphilic fluid, though!

Hmm. I just noticed a pattern to the websites I’ve been referring to: first one about
a “Milky Way bar”, then one about a “GRAPE”, and now one about ketchup! I think it’s
time to cook that dinner.

Daydreaming admiring being
Quietly, open the world
I hear the time of the starry sky
Turning over at midnight

— Massive Attack
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Week 226

February 10, 2006

This month I’m hanging out at CIRM, the “Centre International de Recontres Mathema-
tiques” near Marseille. It’s like a little hotel with a classroom, library and computers,
set at the edge of a forest that borders the region of limestone hills and cliffs called
the Calanques on the coast of the Mediterranean. All they do here is hold conferences:
guests come in, listen to math talks, and eat nice French meals prepared by the over-
worked staff.

This February they’re having a conference on logic and computation, with a strong
slant towards the use of diagrams:

1) Geometry of Computation 2006 (Geocal06), http://iml.univ-mrs.fr/geocal06/

The first week they had lots of talks on “higher-dimensional rewriting”, where you
use diagrams to draw ways of rewriting ways of rewriting ways of. . . rewriting strings
of symbols. This is inherently connected to n-categories, since n-categories show up
whenever you consider “processes that take a process and turn it into another process”
— and iterate this notion until your eyes start bugging out.

The first week was pretty cool, and I hope to talk about it someday. The second
week I’ve been recovering from the first week. But today I’ll start with some astronomy
pictures and some gossip I heard about cryptography, random sequences, and logic.

Let’s zoom in on NGC 1097. Here’s a photograph of this galaxy taken in ultraviolet
light. It’s a barred spiral galaxy that’s colliding with a smaller elliptical galaxy called
NGC 1097A:
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2) “NGC 1097”, photograph taken by the Galaxy Evolution Explorer, NASA/JPL-Caltech/SSC,
http://www.galex.caltech.edu/MEDIA/2005-02/images.html

NGC 1097 is called a “Seyfert galaxy” because its center emits lots of radio waves,
but not enough to be considered a full-fledged “quasar”. As you can see, the center also
emits visible light — and stuff is swirling into it!

3) “Spiral galaxy NGC 1097”, European Southern Observatory, http://www.eso.org/
outreach/press-rel/pr-2004/pr-28-04.html#phot-35d-04

Recently the VLT has gotten a really close look at the center of NGC 1097. VLT
stands for “Very Large Telescope”. It’s actually four 8-meter telescopes and three smaller
auxiliary ones, all of which can function as a single unit, making it the biggest telescope
in the world. It’s run by Europeans as part of the “European Southern Observatory” —
but it’s based on a mountain called Cerro Paranal in the driest part of the Atacama Desert
in northern Chile, which makes for wonderful viewing conditions. They had to carry the
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enormous mirrors across rugged desert roads to build this observatory:

4) “Mirror transport”, European Southern Observatory, http://www.eso.org/outreach/
press-rel/pr-1997/phot-35-97.html

but the view of the night sky up there makes it all worthwhile:

5) “The southern sky above Paranal”, European Southern Observatory, http://www.
eso.org/outreach/press-rel/pr-2005/images/phot-40b-05-normal.jpg
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and now they have everything they need to take advantage of that location:

6) “The VLT array on Paranal Mountain”, European Southern Observatory, http://
www.eso.org/outreach/press-rel/pr-2000/phot-14a-00-normal.jpg

So, what did they see when they looked at NGC 1097?
In the middle there seems to be a black hole, emitting radiation as filaments of gas

and dust spiral in. This has caused a ring of new stars to form, which are ionizing the
hydrogen in their vicinity:

7) “Feeding the monster”, European Southern Observatory http://www.eso.org/

outreach/press-rel/pr-2005/phot-33-05.html

This ring is about 5,500 light-years across! That sounds big, but the galaxy is 45
million light-years away, so this is a stunningly detailed photo. So, we can examine in
great detail the process by which black holes eat galaxies.

Anyway. . . .
Talking to the logicians and computer scientists here, I’m hearing lots of gossip that I

don’t usually get. For example, I just learned that in 2004 there was a successful collision
attack on MD5.
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Huh? Well, it sounds very technical, but it boils down to this: it means somebody
took a function f that is known not to be one-to-one, and found x and y such that
f(x) = f(y).

You wouldn’t think this would make news! But such functions, called “cryptographic
hash functions”, are used throughout the computer security business. The idea is that
you can take any file and apply the hash function to compute a string of, say, 128 bits.
It’s supposed to be hard to find two files that give the same bit string. This lets you use
the bit string as a kind of summary or “digest” of the file. It’s also supposed to be hard
to guess the contents of a file from its digest. This lets you show someone the digest of a
file without giving away any secrets.

MD5 is a popular hash function invented by Ron Rivest in 1991. People use it for
checking the integrity of files: first you compute the digest of a file, and then, when
you send the file to someone, you send the digest via some separate channel. If they’re
worried that the file has been corrupted or tampered with, they compute its digest and
compare it to what you sent them.

People also use MD5 and other hash functions for things like keeping passwords safe,
digital fingerprinting and copy protection. To illustrate this I’ll give a silly example that’s
easy to understand.

Suppose that this February, Alice proves that P = NP. She wants to take her time
writing a nice paper about it. . . but she wants to be able to show she was the first to
solve this problem, in case anyone else solves it while she’s writing her paper.

To do this, she types up a quick note explaining her solution, feeds this file into a
cryptographic hash function, and posts the resulting 128-bit string to the newsgroup
sci.math in an article entitled “I PROVED P = NP!” A dated copy appears on Google
for everyone to see.

Now, if Bob solves the problem in July while Alice is still writing up her solution,
Alice can reveal her note. If anyone doubts she wrote her note back in February, they
can apply the cryptographic hash function and check that yes, the result matches the bit
string she posted on Google!

For this to work, it had better be hard for a nasty version of Alice to take Bob’s
solution and cook up some note summarizing it whose hash function equals some bit
string she already posted.

So, it’s very good if the hash function is resistant to a “preimage attack”. A preimage
attack is where for a given x you have a trick for finding y such that f(y) = f(x).

Nobody has carried out a successful preimage attack on MD5. But, people have
carried out a successful “collision attack”. This is where you can cook up pairs x, y such
that f(x) = f(y). This isn’t as useful, since you don’t have control over either x or y. But,
there do exist fiendish schemes for conning people using collision attacks:

8) Magnus Daum and Stefan Lucks, ‘Attacking hash functions by poisoned messages:
“The Story of Alice and Her Boss” ’, http://www.cits.rub.de/MD5Collisions/

On this webpage you can see a letter of recommendation for Alice and a letter grant-
ing her a security clearance which both have the same MD5 digest! It also explains how
Alice could use these to do evil deeds.

For more on cryptographic hash functions and their woes, try these:

9) “Cryptographic hash function”, Wikipedia, http://en.wikipedia.org/wiki/Cryptographic hash
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Steve Friedl, “An illustrated guide to cryptographic hashes”, http://www.unixwiz.
net/techtips/iguide-crypto-hashes.html

Now, if you’re a mathematician, the whole idea of a cryptographic hash function may
seem counterintuitive. Just for a change of pace, take another important cryptographic
hash function, called SHA-1. This is a function that takes any string of up to 264 bits and
gives a digest that’s 160 bits long. So, it’s just some function

f : S → T

from a set S of size 22
64+1 to a set T of size 2160.

The first set is vastly bigger. So, the function f must be far from one-to-one! So
why in the world is anyone surprised, much less dismayed, when people find a way to
generate two elements in the first set that map to the same element in the second?

One reason is that while the first set is much bigger than the second, the second is
mighty big too!

Suppose you’re trying to do a preimage attack. Someone hands you an element of T
and asks you to find an element of S that maps to it. The brute-force approach, where
you keep choosing elements of S, applying the function, and seeing if you get the desired
element, will on average take about 2160 tries. That’s infeasible.

Note that the huge size of S is irrelevant here; what matters most is the size of T .
Or, suppose you’re trying a brute-force collision attack. You start looking through

elements of S, trying to find two that map to the same thing. On average it will take 280

tries — the square root of the size of T . That’s a lot less, but still infeasible.
(Why so much less? This is called the “birthday paradox”: it’s a lot easier to find two

people at a big party who share the same birthday than to find someone with the same
birthday as the host.)

Of course, a smarter approach is to use your knowledge about the function f to help
you find pairs of elements that map to the same thing. This is what Xiaoyun Wang, Yiqun
Lisa Yin, and Hongbo Yu actually did in February 2005. Based on trials with watered-
down versions of SHA-1, they argued that they could do a collision attack that would
take only 269 tries instead of the expected 280.

They didn’t actually carry out this attack — with the computer power they had, it
would have taken them 5 million years. But their theoretical argument was already
enough to make people nervous!

And indeed, in August 2005, an improved version of their strategy reduced the nec-
essary number of tries to 263 — in other words, reducing the time to just 78 thousand
years, after only a few months of work.

So, people are getting wary of SHA-1. This is serious, because it’s a widely used
government standard. You can see the algorithm for this function here:

10) “SHA hash functions”, Wikipedia, http://en.wikipedia.org/wiki/SHA hash functions

People still hope that good hash functions exist. They hope that if a function f is
cleverly chosen, f(x) will depend in a “seemingly random” way on x, so that given f(x),
it’s hard to compute some y with f(y) = f(x). People call this a “one-way function”.

Now we’re finally getting to the really interesting math. It takes work to make the
concept of “one-way function” precise, but it can be done. For example, Chapter 2 of this
book starts out by defining “strong” and “weak” one-way functions:
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11) Oded Goldreich, Foundations of Cryptography, Cambridge U. Press, Cambridge,
2004. Older edition available at http://www.wisdom.weizmann.ac.il/~oded/

frag.html

Since you can look them up and they’re a bit gnarly, I won’t give these definitions
here. But roughly, a “strong one-way function” is a function f that satisfies two condi-
tions:

1. You can compute f in “polynomial time”: in other words, there’s an algorithm that
computes it in a number of steps bounded by some polynomial in the length of the
input.

2. Given some input x, any polynomial-time probabilistic algorithm has a very low
chance of finding y with f(y) = f(x). Here a “probabilistic algorithm” is just an
algorithm equipped with access to a random number generator.

Condition 2 is related to the idea of a “preimage attack”. We allow the attacker to
use a probabilistic algorithm because it seems this can help them, and a strong one-way
function should be able to resist even really nasty attacks.

Unfortunately, nobody has proved that a one-way function exists!
In fact, the existence of a one-way function would imply that “P does not equal

NP”. But, proving or disproving this claim is one of the most profound unsolved math
problems around. If you settle it, you’ll get a million dollars from the Clay Mathematics
Institute:

11) Clay Mathematics Institute, “P vs NP problem”, http://www.claymath.org/millennium/
P vs NP/

But if you prove that P does equal NP, you might make more money by breaking
cryptographic hash codes and setting yourself up as the Napoleon of crime.

The existence of one-way-functions is also closely related to the existence of “pseu-
dorandom” sequences. These are sequences of numbers that “seem” random, but can be
computed using deterministic algorithms — so they’re not really random.

To see the relation, recall that a good cryptographic hash code shouldn’t let you
guess a message from its digest. So, for example, if my message is the empty string —
no message at all! — its digest should be a pseudorandom sequence.

For example, if we apply SHA-1 to the empty string we get the following 160 bits,
written as 40 hexadecimal digits: > SHA1("") = "da39a3ee5e6b4b0d3255bfef95601890afd80709"

Seems mighty random to me! But of course it comes out the same every time.
Indeed, if you’ve ever seen a “random number generator” while messing with com-

puters, it probably was a pseudorandom number generator. There are a few people who
generate random numbers from physical phenomena like atmospheric noise. In fact,
there’s a website called random.org where you can get such numbers for free:

12) “Random.org: random integer generator”, http://random.org/

There’s also a website that offers nonrandom numbers:

13) “NoEntropy.net: your online source for truly deterministic numbers”, http://www.
noentropy.net/

318



WEEK 226 FEBRUARY 10, 2006

But joking aside, it’s a really tantalizing and famous problem to figure out what
“random” means, and what it means for something to “seem” random even if it’s the
result of a deterministic process. These are huge and wonderful philosophico-physico-
mathematical questions with serious practical implications. Much ink has been spilt
regarding these, and I don’t have the energy to discuss them carefully, so I’ll just say
some stuff to pique your curiosity, and then give you some references.

We can define a “random sequence” to be one that no algorithm can generate with a
success rate better than chance would dictate. By virtue of this definition, no algorithm
can generate truly random sequences. It’s easy to prove that most sequences are random
— but it’s also easy to prove that you can never exhibit any one particular sequence
and prove it’s random! Chaitin has given a wonderful definition of a particular random
sequence of bits called Ω using the fact that no algorithm can decide which Turing ma-
chines halt. . . but this random sequence is uncomputable, so you can’t really “exhibit”
it:

14) Gregory Chaitin, “Paradoxes of randomness”, Complexity 7 (2002), 14–21. Also
available as http://www.umcs.maine.edu/~chaitin/summer.html

So, true randomness is somewhat elusive. It seems hard to come by except in quan-
tum mechanics. For example, the time at which a radioactive atom decays is believed to
be really random. I’ll be pissed off if it turns out that God (or his henchman Satan) is
fooling us by simulating quantum mechanics with some cheap pseudorandom number
generator!

Similarly, we could define a “pseudorandom sequence” to be one that no efficient
algorithm can generate with a success rate higher than chance would dictate.

Efficiency is a somewhat vague concept. It’s popular to define it by saying an algo-
rithm is “efficient” if it runs in “polynomial time”: the time it takes to run is bounded by
some polynomial function of the size of the input data. If the polynomial is

p(n) = 1000000000000000n1000000000000000 + 1000000000000000

most people wouldn’t consider the algorithm efficient, but this definition is good for
proving theorems, and usually in practice the polynomial turns out to be more reason-
able.

A “pseudorandom number generator” needs to be defined carefully if we want to
find efficient algorithms that do this job. After all, no efficient algorithm can produce a
sequence that no efficient algorithm can guess: it can always guess what it’s going to do!

So, the basic idea is that a pseudorandom number generator should be an efficient
algorithm that maps short truly random strings to long pseudorandom strings: we give
it a short random “seed” and it cranks out a lot of digits that no efficient algorithm can
guess with a success rate higher than chance would dictate.

If you want a more precise definition and a bunch of theorems, try these:

15) Oded Goldreich, papers and lecture notes on pseudorandomness, available at http:/
/www.wisdom.weizmann.ac.il/~oded/pp pseudo.html

Luby, M. Pseudorandomness and Cryptographic Applications. Princeton, NJ: Prince-
ton University Press, 1996.
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Unfortunately, nobody has proved that pseudorandom number generators exist! So,
this whole subject is a bit like axiomatic quantum field theory, or the legendary Ph.D
thesis where the student couldn’t produce any examples of the mathematical gadgets he
was studying. It’s a risky business proving results about things that might not exist. But
in the case of pseudorandom number generators, the subject is too important not to take
the chance.

One of the most interesting things about pseudorandom number generators is that
they let us mimic probabilistic algorithms with deterministic ones. In fact there are some
nice theorems about this. Let me sketch one of them for you.

As I already mentioned, a “probabilistic algorithm” is just a deterministic algorithm
that’s been equipped with access to a (true) random number generator. Just imagine a
computer with the ability to reach out and flip a coin when it wants to. A problem is
said to be in “BPP” — “bounded-error probabilistic polynomial time” — if you can find
polynomial-time probabilistic algorithms that solve this problem with arbitrarily high
chance of success.

It’s a fascinating question whether randomness actually helps you compute stuff. I
guess most computer scientists think it does. But, it’s tricky. For example, consider
the problem of deciding whether an integer is prime. Nobody knew how to do this in
polynomial time. . . but then in 1977, Solovay and Strassen showed this problem was
in BPP. This is one of the results that got people really excited about probabilistic
algorithms.

However, in 2002, Maninda Agrawal, Neeraj Kayal and Nitin Saxena showed that de-
ciding whether numbers are prime is in P! In other words, it can be solved in polynomial
time by a plain old deterministic algorithm:

16) Anton Stiglic, “Primes is in P little FAQ”, http://crypto.cs.mcgill.ca/~stiglic/
PRIMES P FAQ.html

Is BPP = P? Nobody knows! But if good enough pseudorandom number generators
could be shown to exist, we would have BPP = P, since then we could use these pseu-
dorandom numbers as a substitute for truly random ones. This is not obvious, but it was
proved by Nisan and Wigderson in 1994.

Here’s a great review article that discusses their result:

17) Luca Trevisian, “Pseudorandomness and combinatorial constructions”, available as
cs.CC/0601100.

I recommend reading it along with this:

18) Scott Aaronson, “Is P versus NP formally independent?”, available at http://www.
scottaaronson.com/papers/pnp.pdf and http://www.scottaaronson.com/papers/

pnp.ps

This is a delightfully funny and mindblowing crash course on logic. It starts with a
review of first-order logic and Gödel’s theorems, featuring a dialog between a mathemati-
cian and the axiom system ZF+not(Con(ZF)). Here ZF is the popular Zermelo-Fraenkel
axioms for set theory and not(Con(ZF)) is a statement asserting that ZF is not consistent.
Thanks to Gödel’s second incompleteness theorem, ZF + not(Con(ZF)) is consistent if
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ZF is! The mathematician is naturally puzzled by this state of affairs, but in this dialog,
the axiom system explains how it works.

Then Aaronson zips on through Loeb’s theorem, which is even weirder than Gödel’s
first incompleteness theorem. Gödel’s first incompleteness theorem says that the state-
ment

This statement is unprovable in ZF.

is not provable in ZF, as long as ZF is consistent. Loeb’s theorem says that the
statement

This statement is provable in ZF.

is provable in ZF.
Then Aaronson gets to the heart of the subject: a history of the P vs. NP question.

This leads up to an amazing paper of Razborov and Rudich, which I’ll now summarize:

19) Alexander A. Razborov and Steven Rudich, “Natural proofs”, in Journal of Com-
puter and System Sciences, Vol. 55, No 1, 1997, pages 24–35. Also available at
http://www-2.cs.cmu.edu/~rudich/papers/natural.ps and http://genesis.

mi.ras.ru/~razborov/int.ps

The basic point of this paper is that if P is not equal to NP, as most mathematicians
expect, then this fact is hard to prove! Or, as Aaron more dramatically puts it, this
conjecture “all but asserts the titanic difficulty of finding its own proof”.

Zounds! But let’s be a bit more precise. A Boolean circuit is a gizmo built of “and”,
“or” and “not” gates, without any loops. We can think of this as computing a Boolean
function, meaning a function of the form:

f : {0, 1}n → {0, 1}

Razborov and Rudich start by studying a common technique for proving lower bounds
on the size of a Boolean circuit that computes a given function. The technique goes like
this:

1. Invent some way of measuring the complexity of a Boolean function.

2. Show that any Boolean circuit of a certain size can compute only functions of
complexity less than some amount.

3. Show that the function f has high complexity.

They call this style of proof a “natural” proof.
The P versus NP question can be formulated as a question about the size of Boolean

circuits — but Razborov and Rudich show that, under certain assumptions, there is no
“natural” proof that P is not equal to NP. What are these assumptions? They concern the
existence of good pseudorandom number generators. However, the existence of these
pseudorandom number generators would follow from the fact that P is not equal to NP.
So, if “P is not equal to NP” is true, it has no natural proof.

Aaronson says this is the deepest insight into the P versus NP question so far. I
would like to understand it better — I explained it very sketchily because I don’t really
understand it yet. Aaronson recommends us to these papers for more details:
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20) Alexander A. Razborov, “Lower bounds for propositional proofs and independence
results in bounded arithmetic”, in Proceedings of ICALP 1996, 1996, pp. 48–62.
Also available at http://genesis.mi.ras.ru/~razborov/icalp.ps

R. Raz, “P ̸= NP, propositional proof complexity, and resolution lower bounds
for the weak pigeonhole principle”, in Proceedings of ICM 2002, Vol. III, 2002,
pp. 685–693. Also available at http://www.wisdom/weizmann.ac.il/~ranraz/
publication/Pchina.ps

S. Buss, “Bounded arithmetic and propositional proof complexity”, in Logic of Com-
putation, ed. H. Schwictenberg, Springer-Verlag, 1997, pp. 67–122. Also available
at http://www.wisdom/weizmann.ac.il/\~ranraz/publication/Pchina.ps

(Why don’t these guys use the arXiv??)
Also, here are some lecture notes on Boolean circuits that might help:

21) Uri Zwick, “Boolean circuit complexity”, http://www.math.tau.ac.il/~zwick/
scribe-boolean.html

Aaronson wraps up by musing on the possibility that the P versus NP question is
independent from strong axiom systems like Zermelo-Fraenkel set theory. It’s possible. . .
and it’s possible that this is true and unprovable!

So, there is a fascinating relationship between one-way functions, pseudorandom
numbers, and incompleteness — but it’s a relationship shrouded in mystery. . . and
perhaps inevitably so. Perhaps it will always remain unknown whether this mystery is
inevitable. . . and perhaps this is inevitable too! And so on.

Here’s a question for you experts out there: have people studied Gödel-like self-
referential sentences of this form?

The shortest proof of this statement has n lines.

I hear that people have studied ones like

The shortest proof that 0 = 1 has n lines.

and they’ve proved that the shortest proof of this has to keep getting longer with
larger n, as long as one is working in a sufficiently powerful and consistent axiom sys-
tem. This is fairly obvious if you know how Gödel’s second incompleteness theorem is
proved. . . but it’s possible that some interesting, nonobvious lower bounds have been
proved. If so, I’d like to know!

Addenda: Here is some discussion with Wolfgang Brand, Allan Erskine, Scott Aaron-
son, Aaron Bergman and an entity named tessel. I had written:

Chaitin has given a marvelous definition of a particular random sequence of
bits called Ω using the fact that no algorithm can decide which Turing machines
halt. . . but this random sequence is uncomputable, so you can’t really “exhibit”
it.
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However, Wolfgang Brand points out this paper:

22) Cristian Calude, Michael J. Dinneen, and Chi-Kou Shu, “Computing a glimpse of
randomness”, Experimental Mathematics 11 (2002), 361–370. Also available at
http://www.cs.auckland.ac.nz/~cristian/Calude361 370.pdf

where the first 64 bits of Ω have been computed. There’s no contradiction, as the
paper explains — but it’s fairly surprising!

Next, here is an email from Allan Erskine. As usual I will take the liberty of numbering
references and putting them into my own favorite format.

Allan Erskine wrote:

I enjoyed week 226! Algorithmic complexity was the area I studied in. . . Your
readers might find this an enjoyable read:

24) Leonid Levin, “The tale of one-way functions”, Problems of Information
Transmission (= Problemy Peredachi Informatsii) 39 (2003), 92–103.
Also available as cs.CR/0012023.

As for your “shortest proof of this statement has n lines” question, you may have
noticed that Chaitin asks a very similar question about the shortest proofs that
a LISP program is “elegant” (most short) and proves a strong incompleteness
result with an actual 410 + n character LISP program! Crazy. . .

25) Gregory Chaitin, “Elegant LISP programs”, in People and Ideas in The-
oretical Computer Science, ed. C. Calude, Springer, Singapore, 1999,
pp. 32–52. Also available at http://www.cs.auckland.ac.nz/CDMTCS/
chaitin/lisp.html

I replied by pointing Allan to the following old article, which is related to the idea of
Chaitin’s paper:

From: John Baez
Subject: Re: compression, complexity, and the universe
Date: 1997/11/20
Newsgroups: sci.physics.research, comp.compression.research

Aaron Bergman wrote:

The smallest number not expressible in under ten words

Hah! This, by the way, is the key to that puzzle I laid out: prove that there’s
a constant K such that no bitstring can be proved to have algorithmic entropy
greater than K.

Let me take this as an excuse to say a bit more about this. I won’t give away
the answer to the puzzle; anyone who gets stuck can find the answer in this nice
survey:
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26) Peter Gacs, Lecture notes on descriptional complexity and randomness,
available at http://www.cs.bu.edu/faculty/gacs/

In my more rhapsodic moments, I like to think of K as the “complexity bar-
rier”. The world seems to be full of incredibly complicated structures — but the
constant K sets a limit on our ability to prove this. Given any string of bits,
we can’t rule out the possibility that there’s some clever way of printing it out
using a computer program less than K bits long. The Encyclopedia Brittanica,
the human genome, the detailed atom-by-atom recipe for constructing a blue
whale, or for that matter the entire solar system — we are unable to prove that
a computer program less than K bits long couldn’t print these out. So we can’t
firmly rule out the reductionistic dream that the whole universe evolved mecha-
nistically starting from a small “seed”, a bitstring less than K bits long. (Maybe
it did!)

So this raises the question, how big is K?

It depends on ones axioms for mathematics.

Recall that the algorithmic entropy of a bitstring is defined as the length of the
shortest program that prints it out. For any finite consistent first-order axiom
systemA exending the usual axioms of arithmetic, letK(A) be the constant such
that no bitstring can be proved, using A, to have algorithmic entropy greater
than K(A). We can’t compute K(A) exactly, but there’s a simple upper bound
for it. As Gacs explains, for some constant c we have:

K(A) < L(A) + 2 log2 L(A) + c

where L(A) denotes the length of the axiom system A, encoded as bits as ef-
ficiently as possible. I believe the constant c is computable, though of course
it depends on details like what universal Turing machine you’re using as your
computer.

What I want to know is, how big in practice is this upper bound on K(A)? I
think it’s not very big! The main problem is to work out a bound on c.

Next, some email from the man himself: Scott Aaronson!

Hi John,

I just read the latest issue of TWF. I’d been waiting a long time for you to tackle
computational complexity — thanks! :) Here are some comments and responses
that you might find helpful.

It’s not known whether P ̸= NP implies the existence of one-way functions
(OWF’s) — indeed, there’s evidence that proving such an implication will be
hard:

27) Adi Akavia, Oded Goldreich, Shafi Goldwasser and Dana Moshkovitz, “On
basing one-way functions on NP-hardness”, November 22, 2005, available
at http://theory.csail.mit.edu/~akavia/AGGM.pdf
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What’s known is that one-way functions exist iff pseudorandom generators (PRG’s)
do — that’s a long, gnarly result of Hastad et al.:

28) John Hastad, Russell Impagliazzo, Leonid A. Levin and Michael Luby, “A
pseudorandom generator from any one-way function”, available at http:/
/citeseer.ifi.unizh.ch/hastad99pseudorandom.html

So when I wrote that Razborov-Rudich illustrates the “self-referentiality” of
proving P ̸= NP, really I meant that it illustrates the self-referentiality of prov-
ing that OWF’s and PRG’s exist! But most of us believe not only that P ̸= NP,
but also that OWF’s exist, and that all of these questions are “morally similar”
anyway. . . :)

You write: “It’s a fascinating question whether randomness actually helps you
compute stuff. I guess most computer scientists think it does.”

Well, today most of us think that good pseudorandom generators exist, which
(as you pointed out) implies that P = BPP. That’s not to say that randomness
never helps; it just doesn’t provide more than a polynomial advantage.

Incidentally, it followed already from Andy Yao’s work in 1982 that if REALLY
good pseudorandom generators exist, then P = BPP. What Nisan and Wigder-
son showed in 1994 was that even if only kinda sorta good PRG’s exist, then still
P = BPP!

Since you wrote at length about hash functions like MD5, you might be inter-
ested in the following abstraction of the collision-finding problem. Suppose we
have a two-to-one function

f : {0, 1}n → {0, 1}n−1,

which we can only access in a “black-box” fashion — i.e., we can feed it an input
and get an output. The goal is to find distinct x and y such that f(x) = f(y).
Classically, it’s easy to see that ∼ 2

n
2 accesses to f are necessary and sufficient

— that’s just the birthday paradox you described. But what if we can access f
in quantum superposition, to create states like∑

x

|x⟩|f(x)⟩ ?

In that case, it turns out that one can combine the birthday paradox with
Grover’s quantum search algorithm, to find a collision using ∼ 2

n
3 accesses

to f instead of ∼ 2
n
2 . But could we do it with nO(1) accesses, or even a constant

number independent of n? You might be surprised that this was open for years!

Probably my best-known result was to show that ∼ 2
n
5 accesses are needed:

29) Scott Aaronson, “Quantum lower bound for the collision problem”, avail-
able as quant-ph/0111102.

Subsequently Yaoyun Shi improved that to show that ∼ 2
n
3 is indeed the right

answer:
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30) Yauyon Shi, “Quantum lower bounds for the collision and the element dis-
tinctness problems”, available as quant-ph/0112086.

You ask why theoretical computer scientists don’t use the arXiv. The answer
is historical and cultural. Quantum computer scientists like me do post to
quant-ph, as a result of hanging around physicists for so long. But in clas-
sical complexity, if you want your paper to be read, then you (1) put in on your
homepage, (2) submit it to STOC or FOCS, which are the top conferences in the
field (and are MUCH more important than journals), and (3) post it here:

31) Electronic Colloquium on Computational Complexity, http://www.eccc.
uni-trier.de/eccc/

which is our own homegrown arXiv.

I like your finite Gödel statement! Let me restate it as follows:

G(n) = ”This statement has no ZF proof of at most n symbols.”

What can we say? Obviously, if ZF is consistent, then G(n) has no proof of at
most n symbols. Hence G(n) is true. Furthermore, G(n) has a proof of ∼ 2n

symbols. This proof simply enumerates all proofs of ⩽ n symbols, and shows
that none of them work.

You might wonder: does G(n) have a proof of n+ 1 symbols, or for that matter
nO(1) symbols? This turns out to be related to the main open questions of
complexity theory! In particular, if NP = coNP, then G(n) has a proof of nO(1)

symbols. NP = coNP just means that, whenever a Boolean formula of size n
is unsatisfiable, there’s a proof of that fact of length polynomial in n. Clearly if
P = NP then NP = coNP, but the converse isn’t known. The prevailing belief
is not only that P ̸= NP, but also that NP ̸= coNP.

Actually I can say more than that: if NE = coNE, then G(n) has a proof of
nO(1) symbols. Here NE is Nondeterministic Exponential-Time, or the exponential-
time analogue of NP. (See my Complexity Zoo:

32) Scott Aaronson and Greg Kuperberg, “Complexity Zoo”, http://qwiki.
caltech.edu/wiki/Complexity Zoo

for lots more about this and other classes.) coNE is just the complement of NE.
If NP = coNP then NE = coNE, but again the converse isn’t known.

What do these weird exponential classes have to do with G(n)? The point is
that to describe an integer n takes only log(n) symbols, not n symbols. So when
we ask for a proof of G(n) with at most n symbols, from “log(n)’s standpoint”
we’re actually asking for an exponentially long proof.

At this point I’ll conjecture that I have an “if and only if” characterization: if
G(n) has a proof of nO(1) symbols, then NE = coNE.

Incidentally, your “finite Gödel statement” is closely related to the Hartmanis-
Stearns time hierarchy theorem, which launched computational complexity in
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the mid-1960’s. The time hierarchy theorem is a finite version of Turing’s un-
decidability theorem, where instead of asking whether a given Turing machine
ever halts, you ask whether it halts after at most T steps. Solving this problem
turns out to take slightly more than T steps. So in particular, you can solve
more problems in n2 time than in n time, more in n3 time than in n2 time, and
so on.

Let me know if you have other questions.

Best,
Scott

Next, here is my reply to a post on sci.physics.research from a mysterious entity
named tessel. . . again, I’ll edit it a bit:

tessel@um.bot wrote:

On Sat, 11 Feb 2006, John Baez mentioned that md5sum was “bro-
ken” about a year ago. I just wanted to add:
1. If I am not mistaken, sha-1 and md5sum are different algorithms

(IIRC, both are known to be insecure).

Yeah, I said SHA-1 and MD5 are different, and I said they were both vulnerable
to collision attacks. MD5 is very vulnerable in practice, while the vulnerability
of SHA-1 is still theoretical: you’d have to have big computers or lots of time or
another clever idea to exploit it. (Guess who’s likely to have all three!)

For more on this subject, try this:

33) Arjen K. Lenstra, “Further progress in hashing cryptanalysis”, February 26,
2005, available at http://cm.bell-labs.com/who/akl/hash.pdf

2. The latest versions of the open source utility gpg supports a more
secure algorithm, SHA-512, which AFAIK has not been broken;
see

34) Tony Stieber, “GnuPG Hacks”, Linux Journal, March 2006.
3. Even insecure checksum utilities are probably better than none at

all. Indeed, checking the given example:
gpg --print-md md5 letter_of_rec.ps order.ps

A2 5F 7F 0B 29 EE 0B 39 68 C8 60 73 85 33 A4 B9

A2 5F 7F 0B 29 EE 0B 39 68 C8 60 73 85 33 A4 B9

Oh NOOOOOO!!! But wait, there’s more:

gpg --print-md sha1 letter_of_rec.ps order.ps

0783 5FDD 04C9 AFD2 8304 6BD3 0A36 2A65 16B7 E216

3548 DB4D 0AF8 FD2F 1DBE 0228 8575 E8F9 F539 BFA6

gpg --print-md RIPEMD160 letter_of_rec.ps order.ps

9069 8ACC 6D67 6608 657B 9C26 F047 59A1 DC0E 6CA1

C1BB DE12 B312 EAAD DD3D D3B8 4CA1 CB1B BA47 DD13
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Ah HAAAAAA!!! Gotcha, Alice!
JB wrote:

These are huge and wonderful philosophico-physico-mathematical
questions with serious practical implications.

You mean the Weyl curvature hypothesis? :-/

Heh, no — I mean stuff like whether there’s such a thing as a provably good
cryptographic hash code function, or cipher.

But while we should never neglect incompleteness entirely, I was fas-
cinated to discover from my readings a few years back that even first
order logic has its fascinations!

35) Joel Spencer, The Strange Logic of Random Graphs, Springer,
Berlin, 2001.

Here’s a thought: “Everyone knows” that if on day D, mathematician
M is studying an example of size S in class C, he is more likely
to be studying a “secretly special” representative R than a generic
representative G of size S. Why? Because the secretly special reps
show up in disguise in other areas, and M was probably hacking
through the jungle from one of those places when he got lost and ate
a poisoned cache.

Interesting.

Finally, here’s my reply to an article on sci.math.research by Aaron Bergman:

Aaron Bergman wrote:

John Baez wrote:

In fact, the existence of a one-way function would imply that
“P does not equal NP”. But, proving or disproving this claim
is one of the most profound unsolved math problems around.

This brings to mind a question I was wondering about. Given an
NP (-complete?) problem, is it ever possible to engineer a (partial)
differential equation, the solution of which, if known, would solve the
NP problem?
I realize this is vague. The general thought was whether a continuous
dynamical system can somehow be more computationally powerful
than something discrete.

I was very interested in this question back in college, and I wrote a paper about
it:

36) John Baez, “Recursivity in quantum mechanics”, Trans. Amer. Math. Soc.
280 (1983), 339–350.
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where I showed that the time evolution for bunch of PDE’s — including the wave
equation, the Klein-Gordon equation, and Schroedinger’s equation for finitely
many electrically charged point particles — is “computable” in a precise sense.

This seemed interesting at the time because Pour-El and Richards had claimed
that the behavior of the wave equation in 3+1 dimensions was uncomputable.
Their result is correct, but it’s an artifact of using a funny space of solutions! If
you use a sensible Hilbert space of solutions for which time evolution is unitary,
then time evolution is also computable.

Hmm, I see that someone has rediscovered this a few years ago:

37) Klaus Weihrauch and Ning Zhong, “Is wave propagation computable or
can wave computers beat the Turing machine?”, Proc. Lond. Math.
Soc. 85 (2002) 312–332. Abstract available at http://www.lms.ac.

uk/publications/proceedings/abstracts/p1364a.html

I wonder if they cite my paper.

Anyway, I came away feeling that time evolution for any PDE people actually
care about is computable once you define your concepts correctly. This is simply
a way of saying that you can numerically compute the solutions to any desired
accuracy: it’s sort of obvious, modulo the crucial technical details.

But a more interesting question would be the one you ask, where mere “com-
putability” is replaced by something more refined, like “computable up to a
specified accuracy in polynomial time”.

Another addendum: here’s a new article on the problems with finding a crypto-
graphic hash function that’s hard to crack:

38) Susan Landau, “Find me a hash”, AMS Notices 53 (March 2006), 330–332. Also
available at http://www.ams.org/notices/200603/fea-landau.pdf and http:/

/www.ams.org/notices/200603/fea-landau.ps

Landau points out that there’s no good mathematical theory backing up the most
popular hash functions. “There are hash functions based on hard mathematical prob-
lems, making them likely to be secure, but these hash function are inefficient and not
used in practice.”

Next, here’s yet another email from Scott Aaronson, dated July 22, 2006:

Hi John,

A while ago you asked whether anyone had studied sentences of the form

P (n) = ”This statement has no proof at most n symbols long.”

Clearly P (n) has a proof with ∼ 2n symbols. I emailed you conjecturing that
P (n) has no proof much shorter than that.

Well, I just came back from a complexity meeting in Prague, where Pavel Pudlak
gave a talk about exactly this sort of question. It turns out that Harvey Friedman
made the same conjecture I did in the 1970’s, but his conjecture was soon shown
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to be FALSE! Indeed, the number of symbols needed to prove P (n) grows only a
little bit faster than n itself.

Let me sketch why, since I’m guessing this will be as surprising to you as it was
to me.

To prove P (n), it clearly suffices to show that, if our proof system is inconsistent,
then any proof of 0 = 1 must contain statements with more than n symbols. We
can do that using a technique invented by Tarski in the 1930’s for “defining
truth” — i.e., for recursively building up a one-to-one correspondence between
syntax and semantics. More concretely, let Tk(A) be a function that takes as
input a string A with £k symbols. We want Tk to return 1 if A encodes a true
statement and 0 otherwise. So, for all k, Tk+1(”not” +A) := 1 if Tk(A) = 0, or
0 otherwise.

Tk+1(A+ ”and” +B) := 1 if Tk(A) = 1 and Tk(B) = 1, or 0 otherwise.

$T {k+1}( ”There exists an x such that” + A ) := 1$ if there exists an x∗ such
that Tk(A[x = x∗]) = 1, or 0 otherwise.

and so on. Of course I’m skipping lots of technicalities, like what I mean by
A[x = x∗].

Anyway, one can prove that, if Tn(A) = Tn(B) = 1, and if C is derivable from
A and B via a first-order inference rule, then Tn(C) = 1 as well. Also, if A is an
axiom of our proof system, then (reasoning within the system) A is true, and
hence Tn(A) = 1.

It follows that, as long as we restrict ourselves to statements of length £n, no
contradiction can be proved. Furthermore, we can formalize the whole argu-
ment using only O(n) symbols (or maybe O(n log(n)), depending on the proof
system).

So what’s the catch? Why can’t we generalize this argument to statements of all
lengths, thereby contradicting the Incompleteness Theorem? Because, when we
examine the proof that the syntax correctly models the semantics, we’ll always
find that it involves statements with more than n quantifiers. I.e. to prove
consistency for statements with n quantifiers, we need at least n+1 quantifiers.

So, is there any way to salvage a finitary Gödel’s Theorem? There probably is!
In particular, consider the following statement:

P (n, k) =“This statement has no proof at most n symbols long,
involving statements with at most k quantifiers.”

The new conjecture would be that, for every fixed k, P (n, k) has no proof with
less than 2O(n) symbols involving statements with at most k quantifiers. Accord-
ing to Pavel, this conjecture is still open. Indeed, it’s not even known whether
P (n) itself has a proof with less than 2O(n) symbols, involving statements with
at most k quantifiers for some fixed k.

Best,
Scott
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Anyone who considers arithmetical methods of producing random digits is,
of course, in a state of sin.

— John von Neumann

He is the Napoleon of crime, Watson. He is the organizer of half that is
evil and of nearly all that is undetected in this great city. He is a genius, a
philosopher, an abstract thinker. . . .

— Sherlock Holmes
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Week 227

March 12, 2006

Today I want to say a bit about physics, and then a bit about about logic, since that’s
what I was studying for the last month in Marseille. But first, the astronomy pictures of
the week:

1) “Endurance crater’s dazzling dunes”, NASA/JPL, available at http://marsrovers.
jpl.nasa.gov/gallery/press/opportunity/20040806a.html

On August 4, 2004, the Mars rover called Opportunity took these pictures of dunes
as it entered Endurance Crater. The red one is what we’d actually see; the blue one is a
false-color image designed to bring out certain details.

Both images show show tendrils of sand less than 1 meter high stretching from the
big dunes toward the rover, and some rocks in the foreground. The false-color image
emphasizes accumulations of millimeter-sized spheres called “blueberries” on the flat
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parts of the dunes. Here’s what they look like close up:

2) ‘Mineral in Mars “berries” adds to water story’, NASA/JPL, available at http://
marsrover.nasa.gov/newsroom/pressreleases/20040318a.html

Thanks to a Mössbauer spectroscope aboard the rover, which studies rocks by firing
γ rays at them, we know these blueberries contain a lot of hematite.

Hematite is made of ferric oxide, Fe2O3, otherwise known as “rust”. It’s usually
formed in the presence of water. For this and other reasons, it’s believed that the blueber-
ries in Endurance Crater were formed when Mars was wetter than today. An interesting
puzzle is whether they were formed by groundwater leaching ferric oxide from rocks, or
deposited in standing water — for example, a lake.

It’s amazing how much we can learn from unmanned space probes. And it’s amazing
to me how some people want to spend billions on manned missions. To read more about
what SF writers Larry Niven, Joe Haldeman, Greg Bear and other folks including me
think about the merits of manned versus unmanned space missions, try this:

3) “Meme Therapy: Life from a science fiction point of view”, http://memetherapy.
blogspot.com/2006/03/brain-parade-feature-where-we-pester.html

But enough space stuff. . . now for some physics!
A strange thing happened around the 1980s. Before that, theorists had been making

rapid and revolutionary progress in understanding the fundamental laws of physics for
almost a century. They kept predicting shocking new effects that were soon found in
actual experiments: radio waves, nuclear chain reactions, black holes, lasers, antimatter,
neutrinos, quarks,. . . up to and including the W and Z bosons. The power of human
thought never seemed greater.

Since the 1980s, most of the new discoveries in fundamental physics have come from
unexpected observations in astronomy. These observations were mostly not predicted by
theorists. The key examples are: dark matter, dark energy, and neutrino oscillations. The
only serious counterexamples that come to mind are the top quark, discovered in 1995,
and Alan Guth’s inflationary cosmology, dreamt up around 1979 and partially confirmed
by recent data — though the jury is still out.
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Theorists are publishing more than ever, but most of their theories are either not
yet testable (string theory, loop quantum gravity) or seem to have been disproved by
experiment (grand unified theory predictions of proton decay).

It’s interesting to meditate on why this change has happened, what it means, and
what will happen next. I spoke about this in Marseille shortly before coming home to
Riverside. You can see my slides here:

4) John Baez, “Fundamental physics: where we stand today”, lecture at at the Faculty
of Sciences, Luminy, February 27th, 2006, available at http://math.ucr.edu/

home/baez/where we stand/

This talk was for nonphysicists, so it’s not very technical. The first part is a gentle
introduction to the laws of physics as we know them.

For more info on dark matter and dark energy, try this:

5) Varun Sahri, “Dark matter and dark energy”, available as astro-ph/0403324.

If you read this, you’ll learn about the “cuspy core problem” — existing cold dark
matter models produce galaxies with a sharp spikes of high density near their cores,
sharper than observed. You’ll learn about “quintessence”, a kind of hypothetical field
that some people use to model dark energy, thus “explaining” the accelerating expansion
of the universe. You’ll learn about the “Chaplygin gas”, a hypothetical substance whose
properties interpolate between those of cold dark matter and dark energy. And, you’ll
learn about “phantom energy” models of dark energy, which fit the accelerating expan-
sion of the universe quite nicely now but predict a “Big Rip”, in which the expansion rate
eventually becomes infinite.

In short, you’ll see how people are flailing around trying to understand dark matter
and dark energy.

For more on neutrino oscillations, try this:

6) K. M. Heeger, “Evidence for neutrino mass: a decade of discovery”, available as
hep-ex/0412032.

I had a great time in Marseille. The area around there is great for mathematicians.
Algebraists can visit the beautiful nearby city of Aix — pronounced “x”. Logicians will
enjoy the dry, dusty island of If — pronounced “eef”, just like a French logician would
say it. And everyone will enjoy the medieval hill town of Les Baux, which looks like
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something out of Escher. Here’s a picture of it:

Actually the Chateau D’If, on the island of the same name, is where Edmond Dantes
was imprisoned in Alexander Dumas’ novel “The Count of Monte Cristo”. It’s in this
formidable fortress that the wise old Abbe Faria tells Dantes the location of the treasure
that later made him rich.

I guess everyone except me read this story as a kid — I’m just reading it now. But
how many of you remember that Faria spent his time in prison studying the works of
Aristotle? There’s a great scene where Dantes asks Faria where he learned so much
about logic, and Faria replies: “If — and only If!”

That Dumas guy sure was a joker.
Luckily I didn’t need to be locked up on a deserted island to learn some logic in

Marseille. There were lots of great talks on this topic at the conference I attended:

7) Geometry of Computation 2006 (Geocal06), http://iml.univ-mrs.fr/geocal06/

For example, Yves Lafont gave a category-theoretic approach to Boolean logic gates
which explains their relation to Feynman diagrams:

8) Yves Lafont, “Towards an algebraic theory of Boolean circuits”, Journal of Pure and
Applied Algebra 184 (2003), 257–310. Also available at http://iml.univ-mrs.
fr/~lafont/publications.html

and together with Yves Guiraud, Francois Metayer and Albert Burroni, he gave a
detailed introduction to the homology of n-categories and its application to rewrite rules.
The idea is to study any sort of algebraic gadget (like a group) by creating an n-category
where the objects are “expressions” for elements in the gadget, the morphisms are “ways
of rewriting expressions” by applying the rules at hand, the 2-morphisms are “ways of
passing from one way of rewriting expressions to another” by applying certain “meta-
rules”, and so on. Then one can use ideas from algebraic topology to study this n-
category and prove stuff about the original gadget!
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To understand how this actually works, it’s best to start with Craig Squier’s work on
the word problem for monoids. I explained this pretty carefully back in “Week 70” when
I first heard Lafont lecture on this topic — it made a big impression on me! You can read
more here:

9) Yves Lafont and A. Proute, “Church-Rosser property and homology of monoids”, in
Mathematical Structures in Computer Science, Cambridge U. Press, 1991, pp. 297–
326. Also available at http://iml.univ-mrs.fr/~lafont/publications.html

10) Yves Lafont, “A new finiteness condition for monoids presented by complete rewrit-
ing systems (after Craig C. Squier)”, Journal of Pure and Applied Algebra 98 (1995),
229–244. Also available at http://iml.univ-mrs.fr/~lafont/publications.

html

Then you can go on to the higher-dimensional stuff:

11) Albert Burroni, “Higher dimensional word problem with application to equational
logic”, Theor. Comput. Sci. 115 (1993), 43–62. Also available at http://www.
math.jussieu.fr/~burroni/

12) Yves Guiraud, “The three dimensions of proofs”, Annals of Pure and Applied Logic
(in press). Also available at http://iml.univ-mrs.fr/%7Eguiraud/recherche/
cos1.pdf

13) Francois Metayer, “Resolutions by polygraphs”, Theory and Applications of Cate-
gories 11 (2003), 148–184. Available online at http://www.tac.mta.ca/tac/

volumes/11/7/11-07abs.html

I was also lucky to get some personal tutoring from folks including Laurent Regnier,
Peter Selinger and especially Phil Scott. Ever since “Week 40”, I’ve been trying to un-
derstand something called “linear logic”, which was invented by Jean-Yves Girard, who
teaches in Marseille. Thanks to all this tutoring, I think I finally get it!

To get a taste of what Phil Scott told me, you should read this:

14) Philip J. Scott, “Some aspects of categories in computer science”, Handbook of
Algebra, Vol. 2, ed. M. Hazewinkel, Elsevier, New York, 2000. Available as http:/
/www.site.uottawa.ca/~phil/papers/

Right now, I’m only up to explaining a microscopic portion of this stuff. But since
the typical reader of This Week’s Finds may know more about physics than logic, maybe
that’s good. In fact, I’ll use this as an excuse to simplify everything tremendously, leaving
out all sorts of details that a real logician would want.

Logic can be divided into two parts: syntax and semantics. Roughly speaking, syntax
concerns the symbols you scribble on the page, while semantics concerns what these
symbols mean.

A bit more precisely, imagine some kind of logical system where you write down some
theory — like the axioms for a group, say — and use it to prove theorems.

In the realm of syntax, we focus on the form our theory is allowed to have, and how
we can deduce new sentences from old ones. So, one of the key concepts is that of a
proof. The details will vary depending on the kind of logical system we’re studying.
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In the realm of semantics, we are interested in gadgets that actually satisfy the axioms
in our theory — for example, actual groups, if we’re thinking about the theory of groups.
Such a gadget is called a model of the theory. Again, the details vary immensely.

In the realm of syntax, we say a list of axioms X “implies” a sentence P if we can
prove P from X using some deduction rules, and we write this as

X ⊢ P

In the realm of semantics, we say a list of axioms X “entails” a sentence P if every model
of X is also a model of P , and we write this as

X |= P

Syntax and semantics are “dual” in a certain sense — a sense that can be made very
precise if one fixes a specific class of logical systems. This duality is akin to the usual
relation between vector spaces and their duals, or more generally groups and their cate-
gories of representations. The idea is that given a theory T you can figure out its models,
which form a category Mod(T ) — and conversely, given the category of models Mod(T ),
perhaps with a little extra information, you can reconstruct T .

A little extra information? Well, in some cases a model of T will be a set with some
extra structure — for example, if T is the theory of groups, a model of T will be a group,
which is a set equipped with some operations. So, in these cases there’s a functor

U : Mod(T )→ Set

assigning each model its underlying set. And, you can easily reconstruct T from Mod(T )
together with this functor.

This idea was worked out by Lawvere for a class of logical systems called algebraic
theories, which I discussed in “Week 200”. But, the same idea goes by the name of
“Tannaka-Krein duality” in a different context: a Hopf algebra H has a category of co-
modules Rep(H), which comes equipped with a functor

U : Rep(H)→ Vect

assigning each comodule its underlying vector space. And, you can reconstruct H from
Rep(H) together with this functor. The proof is even very similar to Lawvere’s proof for
algebraic theories!

I gave a bunch of talks in Marseille about algebraic theories, some related logical sys-
tems called PROPs and PROs, and their relation to quantum theory, especially Feynman
diagrams:

14) John Baez, “Universal algebra and diagrammatic reasoning”, available as http://
math.ucr.edu/home/baez/universal/

I came mighty close to explaining how to compute the cohomology of an algebraic
theory. . . and you can read more about that here:

15) Mauka Jibladze and Teimuraz Pirashvili, “Cohomology of algebraic theories”, J.
Algebra 137 (1991) 253–296.

Mauka Jibladze and Teimuraz Pirashvili, “Quillen cohomology and Baues-Wirsching
cohomology of algebraic theories”, Max-Planck-Institut für Mathematik, preprint
series 86 (2005).
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But alas, I didn’t get around to talking about the duality between syntax and seman-
tics. For that Lawvere’s original thesis is a good place to go:

16) F. William Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. thesis, Columbia
University, 1963. Also available at http://www.tac.mta.ca/tac/reprints/articles/
5/tr5abs.html

Anyway, the stuff Phil Scott told me about was mainly over on the syntax side. Here
categories show up in another way. Oversimplifying as usual, the idea is to create a cat-
egory where an object P is a sentence — or maybe a list of sentences — and a morphism

f : P → Q

is a proof of Q from P — or maybe an equivalence class of proofs.
We can compose proofs in a more or less obvious way, so with any luck this gives a

category! And, different kinds of logical system give us different kinds of categories.
Quite famously, the multiplicative fragment of intuitionistic logic gives cartesian

closed categories. (The “multiplicative fragment” is the portion that deals with “and”
and “implies” but leaves out “or” and “not”. I’m calling it this because “and” acts like
multiplication, while “or” acts like addition.) Similarly, the multiplicative fragment of
linear logic gives ∗-autonomous categories. Full-fledged intuitionistic logic gives carte-
sian closed categories with finite coproducts, and full-fledged linear logic gives us even
fancier kinds of categories! If you want to learn about these examples, read the hand-
book article by Phil Scott mentioned above.

One thing that intrigues me is the equivalence relation we need to get a category
whose morphisms are equivalence classes of proofs. In Gentzen’s “natural deduction”
approach to logic, there are various deduction rules. Here’s one:

P ⊢ Q P ⊢ Q′

P ⊢ Q&Q′

This says that if P implies Q and it also implies Q′, then it implies Q&Q′.
Here’s another:

P ⊢ Q =⇒ R

P andQ ⊢ R
And here’s a very important one, called the “cut rule”:

P ⊢ Q Q ⊢ R
P ⊢ R

If P implies Q and Q implies R, then P implies R!
There are a bunch more. . . and to get the game rolling we need to start with this:

P ⊢ P

In this setup, a proof f : P → Q looks vaguely like this:

f -crud
f -crud
f -crud
f -crud
P ⊢ Q
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The stuff I’m calling “f -crud” is a bunch of steps which use the deduction rules to get to
P ⊢ Q.

Suppose we also we also have a proof

g : Q→ R

There’s a way to stick f and g together to get a proof

fg : P → R

This proof consists of setting the proofs f and g side by side and then using the cut rule
to finish the job. So, fg looks like this:

f -crud
f -crud
f -crud
f -crud
P ⊢ Q

g-crud
g-crud
g-crud
g-crud
Q ⊢ R

P ⊢ R

Now let’s see if composition is associative. Suppose we also have a proof

h : R→ S

We can form proofs
(fg)h : P → S

and
f(gh) : P → S

Are they equal? No! The first one looks like this:

f -crud
f -crud
f -crud
f -crud
P ⊢ Q

g-crud
g-crud
g-crud
g-crud
Q ⊢ R

P ⊢ R

h-crud
h-crud
h-crud
h-crud
R ⊢ S

P ⊢ S

while the second one looks like this:

f -crud
f -crud
f -crud
f -crud
P ⊢ Q

g-crud
g-crud
g-crud
g-crud
Q ⊢ R

h-crud
h-crud
h-crud
h-crud
R ⊢ S

Q ⊢ S
P ⊢ S
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So, they’re not quite equal! This is one reason we need an equivalence relation on proofs
to get a category. Both proofs resemble trees, but the first looks more like this:

while the second looks more like this:

So, we need an equivalence relation that identifies these proofs if we want composition
to be associative!

This sort of idea, including this “tree” business, is very familiar from homotopy theory,
where we need a similar equivalence relation if we want composition of paths to be
associative. But in homotopy theory, people have learned that it’s often better NOT to
impose an equivalence relation on paths! Instead, it’s better to form a weak 2-category of
paths, where there’s a 2-morphism going from this sort of composite:

to this one:

This is called the “associator”. In our logic context, we can think of the associator as a
way to transform one proof into another.

The associator should satisfy an equation called the “pentagon identity”, which I
explained back in “Week 144”. However, it will only do this if we let 2-morphisms be
equivalence classes of proof transformations.

So, there’s a kind of infinite regress here. To deal with this, it would be best to work
with a “weak ω-category” with

• sentences (or sequences of sentences) as objects,

• proofs as morphisms,
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• proof transformations as 2-morphisms,

• transformations of proof transformations as 3-morphisms, . . .

and so on. With this, we would never need any equivalence relations: we keep track
of all transformations explicitly. This is almost beyond what mathematicians are capable
of at present, but it’s clearly a good thing to strive toward.

So far, it seems Seely has gone the furthest in this direction. In his thesis, way back in
1977, he studied what one might call “weak cartesian closed 2-categories” arising from
proof theory. You can read an account of this work here:

17) R.A.G. Seely, “Weak adjointness in proof theory”, in Proc. Durham Conf. on Appli-
cations of Sheaves, Springer Lecture Notes in Mathematics 753, Springer, Berlin,
1979, pp. 697–701. Also available at http://www.math.mcgill.ca/rags/WkAdj/
adj.pdf

R.A.G. Seely, “Modeling computations: a 2-categorical framework”, in Proc. Sympo-
sium on Logic in Computer Science 1987, Computer Society of the IEEE, pp. 65–71.
Also available at http://www.math.mcgill.ca/rags/WkAdj/LICS.pdf

Can we go all the way and cook up some sort of ω-category of proofs? Interestingly,
while the logicians at Geocal06 were talking about n-categories and the geometry of
proofs, the mathematician Vladimir Voevodsky was giving some talks at Stanford about
something that sounds pretty similar:

17) Vladimir Voevodsky, lectures on homotopy λ calculus, notice at http://math.

stanford.edu/distinguished voevodsky.htm

Voevodsky has thought hard about n-categories, and he won the Fields medal for his
applications of homotopy theory to algebraic geometry.

The typed λ calculus is another way of thinking about intuitionistic logic — or in
other words, cartesian closed categories of proofs. The “homotopy λ calculus” should
thus be something similar, but where we keep track of transformations between proofs,
transformations between transformations between proofs. . . and so on ad infinitum.

But that’s just my guess! Is this what Voevodsky is talking about??? I haven’t man-
aged to get anyone to tell me. Maybe I’ll email him and ask.

There were a lot of other cool talks at Geocal06, like Girard’s talk on applications of
von Neumann algebras (especially the hyperfinite type II1 factor!) in logic, and Peter
Selinger’s talk on the category of completely positive maps, diagrammatic methods for
dealing with these maps, and their applications to quantum logic:

18) Peter Selinger, “Dagger compact closed categories and completely positive maps”,
available at http://www.mscs.dal.ca/~selinger/papers.html

But, I want to finish writing this and go out and have some waffles for my Sunday
brunch. So, I’ll stop here!
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Addendum: I thank Aaron Lauda, Paul Levy and Peter McBurney for corrections.
Jeffrey Winkler points out that “hematite” got its name from the Greek word for “blood”
because the ancient Greeks thought these rocks marked the locations of battles where
the blood of warriors had soaked into the rocks. This is appropriate, since Mars is the
god of war!

An anonymous correspondent had this to say about the “homotopy λ calculus”:

Several years ago, Kontsevich explained to me an idea he had about “homotopy
proof theory” (or model theory, or logic, . . . ). As soon as I saw Voevodsky’s
abstract it reminded me of what Kontsevich said; perhaps it’s a well-known
idea in the Russian-Fields-medallist club. Somewhere I have notes from what
Kontsevich said, but as far as I remember it went roughly like this.

In certain set-ups (such as Martin-Löf type theory) every statement carries a
proof of itself. Of course, a statement may have many proofs. If we imagine
that all the statements are of the form “A = B”, then what we’re saying is that
every equals sign carries with it a reason for equality, or proof of equality. If
I remember rightly, Kontsevich’s idea was to do a topological analogue, so that
every term (like A and B) is assigned a point in some fixed space, and equalities
of terms induce paths between points. There was more, pushing the idea further,
but I forget what.
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Week 228

March 18, 2006

Last week I showed you some pretty pictures of dunes on Mars. This week I’ll talk about
dunes called “barchans” and their relation to self-organized criticality. Then I’ll say a bit
about Lauscher and Reuter’s work on quantum gravity. . . and then I’ll beg for help on a
problem involving so-called “rational tangles”.

But first, a demonstration of my psychic powers.
Take any book off the shelf and look at its 10-digit ISBN number. Multiply the first

digit by 1, the second digit by 2, the third digit by 3 and so on. . . up to the next to last
digit. Add them up.

Then take this sum and see what it equals mod 11. At the end of this article, I’ll say
what you got.

Okay. Here’s a photo of the icy dunes of northern Mars. I love it because it shows
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that Mars is a lively place with wind and water:

1) “North polar sand sea”, Mars Odyssey Mission, THEMIS (Thermal emission imag-
ing system), http://themis.mars.asu.edu/features/polardunes

These dunes, occupying a region the size of Texas, have been sculpted by wind into
long lines with crests 500 meters apart. Their hollows are covered with frost, which
appears bluish-white in this infrared photograph. The big white spot near the bottom is
a hill 100 meters high.

Where the dunes become sparser — for example, near that icy hill — they break apart
into “barchans”. These are crescent-shaped formations whose horns point downwind.
Barchans are also found on the deserts of Earth, and surely on many other planets across
the Universe. They are one of several basic dune patterns, an inevitable consequence of
the laws of nature under fairly common conditions.

The upwind slope of a barchan is gentle, while the downwind slope is between 32
and 34 degrees. This is the “angle of repose” for sand - the maximum angle it can tolerate
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before it starts slipping down:

2) Wikipedia, “Barchan”, http://en.wikipedia.org/wiki/Barchan

Wind-blown sand accumulates on the front of the barchan, and then slides down the
“slip face” on the back.

Barchans gradually migrate in the direction of the wind at speeds of about 1-20
meters per year, with small barchans moving faster than big ones. In fact, when they
collide, the smaller barchans pass right through the big ones! So, they act like solitons
in some ways.

It would be great to see one of these frosty Martian barchans close up. We almost can
do it now! The European Space Agency’s orbiter called Mars Express took this wonderful
closeup, already shown in “Week 211”:

3) ESA/DLR/FU Berlin (G. Neukum), “Glacial, volcanic and fluvial activity on Mars:
latest images”, http://www.esa.int/SPECIALS/Mars Express/SEMLF6D3M5E 1.html

However, this is not a barchan — it’s a lot bigger. On top of the picture we see
dunes, but then there’s a cliff almost 2 kilometers high leading down into what may be
a volcanic caldera. The white stuff is ice, while the dark stuff could be volcanic ash.
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It’s actually a bit surprising that there’s enough wind on Mars to create dunes. After
all, the air pressure there is about 1% what it is here on Earth! But in fact the wind
speed on Mars often exceeds 200 kilometers per hour, with gusts up to 600 kilometers
per hour. There are dust storms on Mars so big they were first seen from telescopes on
Earth long ago. So, wind is a big factor in Martian geology:

4) NASA, “Mars exploration program: dust storms”, http://mars.jpl.nasa.gov/

gallery/duststorms/

The Mars rover Spirit even got its solar panels cleaned by some dust devils, and it
took some movies of them:

5) NASA, “Exploration rover mission: dust devils at Gusev, Sol 525”, http://marsrovers.
nasa.gov/gallery/press/spirit/20050819a.html

Turning to mathematical physics per se, I can’t resist pointing out that sand piles
became very fashionable in this subject a while back.

Why? Well, for this I need to explain “self-organized criticality”.
First, note that when a pile of sand is exactly at its angle of repose, it will suffer lots

of little landslides — and a few of these will become big.
The theory of “critical phenomena” suggests that in this situation, the probability that

a landslide grows to size L should satisfy a power law. In other, it should be proportional
to

1

Lc

for some number c called the “critical exponent”. At least, this type of behavior is seen
in many other situations where a physical system is on the brink of some drastic change
— or more precisely, a “critical point”.

When a system is not at a critical ponit, we typically see exponential laws, where the
probability of a disturbance of size L is proportional to

exp

(
− L

L0

)
where L0 is a fixed length scale. This means that our system will look qualitatively
different depending how much we zoom in with our microscope. At length scales shorter
than Lc, disturbances are really common, while at larger length scales they’re incredibly
rare.

When a system is at a critical point, it’s self-similar: you can zoom in or zoom out,
and it looks qualitatively the same! It has no specific length scale. This is what the power
law says.

Here’s a good place to learn the basics of power laws and self-similarity:
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6) Manfred R. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, New York,
1992.

What makes sand dunes interesting is that as they seem to enjoy living on the brink
of danger. As the wind blows, they heap up until their slip face is right at the angle of
repose. . . ready for landslides!

This is the idea of “self-organized criticality”: some physical systems seem to sponta-
neously bring themselves towards critical points, without any need for us to tune their
parameters to special values.

The paper that introduced this idea came out in 1987:

7) Per Bak, Chao Tang and Kurt Wiesenfeld, “Self-organized criticality: an explanation
of 1/f noise”, Phys. Rev. Lett. 59 (1987) 381–384.

They came up with a simple model of a sand pile that exhibits self-organized critical-
ity. In the words of Jos Thijssen:

Bak and co-workers modelled the sand pile as a regular array of columns consist-
ing of cubic sand grains. Addition of new grains is simply performed by selecting
a column at random and increasing its height by one. If the column then ex-
ceeds its neighbours in height more than some threshold, it will “collapse”: it
will lose some grains which are distributed evenly over its nearest neighbours.
As this collapse alters the height differences involving those neighbours, there
is the possibility that they collapse in turn. A cascade process sets in until all
height differences are below the threshold. The size of such an avalanche is de-
fined as the number of sand grains sliding as a result of a single grain of sand
being added to the pile.

What is so interesting about the sand pile model? It turns out that the sides
of the sand pile acquire a specific slope, which is such that the distribution
of avalanches as function of size scales as a power law. Power laws indicate
the absence of scale and indeed avalanches on all scales are sustained for the
equilibrium slope. If the slope is changed artificially from its equilibrium value,
the distribution is no longer a power law, but it will have an intrinsic scale
(e.g. exponential). Power laws and absence of scale are the signature of a system
being critical. Because the sand pile tends to adjust the slope of its sides until
the power law scaling sets in, the criticality is called “self-organised”.

If your computer runs Java applets, you can play with Thijssen’s simulation sand pile
and see the avalanches yourself:

8) Jos Thijssen, “The sand pile model and self organised criticality”, http://www.tn.
tudelft.nl/tn/People/Staff/Thijssen/sandexpl.html

And here’s a cellular automaton sand pile you can play with:

9) Albert Schueller, “Cellular automaton sand pile model”, http://schuelaw.whitman.
edu/JavaApplets/SandPileApplet/
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This one is only 2-dimensional, so the avalanches are less dramatic, but you can have
some fun using the mouse to build structures that impede the motion of sand.

Like a speck of sand landing at the right place at the right time, the original paper of
Bak et al started a huge landslide of work on self-organized criticality, some of which has
been popularized here:

10) Per Bak, How Nature Works: The Science of Self-Organized Criticality, Copernicus,
New York, 1996.

As you can guess from the title “How Nature Works”, some people got a little car-
ried away with the importance of self-organized criticality. Then there was a kind of
backlash, just as happened with fractals, chaos, and catastrophe theory. These are all
perfectly respectable and interesting topics in mathematical physics that suffered from
being oversold. People are always eager to find the secret key that will unlock all the
mysteries of the universe. So, if some new idea seems very general, people will run
around trying to unlock all the mysteries of the universe with it — and become sorely
disappointed when it only unlocks some.

I’d be interested to see how well mathematical physicists can model actual sand
dunes. These display an interesting complexity of behavior, as the pictures here show:

11) US Army Corps of Engineers, “Dunes”, http://www.tec.army.mil/research/products/
desert guide/lsmsheet/lsdune.htm

I’ve only looked at a few papers on the subject, all dealing with barchans:

12) V. Schwaemmle and H. J. Herrmann, “Solitary wave behaviour of sand dunes”,
Nature 426 (Dec. 11, 2003), 619–620.

13) Klaus Kroy, Gerd Sauermann, and Hans J. Hermann, “Minimal model for sand
dunes”, Phys. Rev. Lett. 88 (2002), 054301. Also available at cond-mat/0101380.

14) H. Elbelrhiti, P. Claudin, and B. Andreotti, “Field evidence for surface-wave-induced
instability of sand dunes”, Nature 437 (Sep. 29, 2005), 720–723.

The first paper describes how barchans pass through each other like solitons, simu-
lating them by an equation that’s described in the second one. (By the way, the term
“minimal model” in the title of the second paper is not being used in the sense familiar
in conformal field theory!)

The third paper reports the results of a 3-year field study: in reality, barchans are not
stable, and big ones (called “megabarchans”) can break apart into smaller “elementary
barchans”.

If you’re more interested in Mars than the mathematical physics of sand dunes, you’ll
be happy to hear that Google has just moved to drastically expand its customer base by
introducing “Google Mars”:

15) “Google Mars”, http://www.google.com/mars/

Using this you can explore many features of Mars, including its dunes.
I’m getting a little tired out, but there’s one thing I’ve been meaning to mention for

a while. It’s actually related to renormalization, which is secretly the same subject as
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this “critical point” business I just mentioned. But, it’s not about sand piles — it’s about
quantum gravity!

In “Week 222” I spoke about the work of Lauscher and Reuter, who claim to have
found evidence for an ultraviolet fixed point in quantum gravity without matter. In other
words, as you zoom in closer and closer, they claim quantum gravity without matter acts
more and more like some fixed theory. This would be big news: it would suggest that
gravity without matter is a sensible theory, contrary to what everyone in string theory
says!

Not surprisingly, the string theorist Jacques Distler examined Lauscher and Reuter’s
work with a critical eye. And, he wrote up a nice explanation of the problems with their
work:

16) Jacques Distler, “Unpleasantness”, http://golem.ph.utexas.edu/~distler/blog/
archives/000648.html

Briefly, the problem is that Lauscher and Reuter make a drastic approximation. They
start with the “exact renormalization group equation”, which is a beautiful thing: it
says how a Lagrangian for a field theory at one length scale gives rise to an effective
Lagrangian for the same theory at a larger length scale. However, then they truncate the
incredibly complicated formula for a fully general Lagrangian, restricting to Lagrangians
with only an Einstein-Hilbert term and a cosmological constant. Like Distler, I see no
reason to think this approximation is valid. So, their claimed ultraviolet fixed point
could be an artifact of their method.

Whether it’s worth going further and checking this by considering a slightly less brutal
approximation, using Lagrangians with a few more terms, is a matter of taste. Distler
doesn’t think so. I hope Lauscher and Reuter do. If they don’t, we may never know for
sure what happens. I think it’s actually rather amazing that they get an fixed point with
their brutal approximation, instead of coupling constants that run to infinity or zero,
which is what I would have naively expected. But who knows? Maybe this is easily
understood if you think hard enough.

Today I was also going to talk about the 3-strand braid group, the group PSL(2,Z),
and rational tangles, but now I don’t have the energy. So instead, I’ll just put out a
request for help!

There’s a wonderful game invented by John Conway called “rational tangles”. Here’s
how it works. It involves two players and a referee.

The players, call them A and B, start by facing each other and holding ropes in each
hand connecting them together like this:

A

B

A

B

This is called “position 0”. The referee then cries out either add one! or take the negative
reciprocal!. If the referee yells add one!, player B has to switch which hand he’s using to
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hold which rope, making sure to pass the right one over the left, like this:

A

B

A

B

This is called “position 1”, since we started with “position 0” and then did add one! But if
the referee says take the inverse reciprocal!, both players must cooperate to move all four
ends of the ropes a quarter-turn clockwise, like this:

A

B

A

B

This is called “position −1/0”, since we started with 0 and then did take the negative
reciprocal!

The referee keeps crying add one! or take the negative reciprocal! in whatever order
she feels like, and players A and B keep doing the same sort of thing: either player B
switches the ropes right over left, or both players rotate the whole tangle a quarter-turn
clockwise. It’s actually best if the referee doesn’t start with take the negative reciprocal!,
since some people refuse to divide by zero, for religious reasons. But, it’s perfectly legal
in this game.

Anyway, after a while the ropes will be in “position p/q” for some complicated rational
number p/q. The’ll be all tangled up — but in a special way, called a “rational tangle”.

Then the players have to undo the tangling and get back to “position 0”. They may
not remember the exact sequence of moves that got them into the mess they are in. In
fact the game is much more fun if they don’t remember. It’s best to do it at a party,
possibly after a few drinks.

Luckily, any sequence of add one! and take the negative reciprocal! moves the players
make that carry their number back to 0, will carry their tangle back to “position 0”.
So they just need to figure out how to get their number back to 0, and the tangle will
automatically untangle itself. That’s the cool part! It’s a highly nonobvious theorem due
to Conway.

I’m vaguely aware of a few proofs of this fact. As far as I know, Conway’s original
proof uses the Alexander-Conway polynomial:

16) John Horton Conway, “An enumeration of knots and links and some of their alge-
braic properties”, in Computational Problems of Abstract Algebra, ed. John Leech,
Pergamon Press, Oxford, 1970, 329–358.
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There’s also a proof by Goldman and Kauffman using the Jones polynomial:

17) Jay R. Goldman and Louis H. Kauffman, “Rational tangles”, Advances in Applied
Mathematics 18 (1997), 300–332. Also available at http://www.math.uic.edu/
~kauffman/RTang.pdf

There are also two proofs in here:

18) Louis H. Kauffman and Sofia Lambropoulou, “On the classification of rational tan-
gles”, available as math.GT/0311499.

But here’s what I want to know: is there a proof that makes extensive use of the
group PSL(2,Z) and its relation to topology?

After all, the basic operations on rational tangles are “adding one” and “negative
reciprocal”, and these generate all the fractional linear transformations

z 7→ az + b

cz + d

with a, b, c, d integer and ad − bc = 1. The group of these transformations is PSL(2,Z).
It acts on rational tangles, and Conway’s theorem says this action is isomorphic to the
obvious action of PSL(2,Z) as fractional linear transformations of the “rational projective
line”, meaning the rational numbers together with a point at infinity. Since PSL(2,Z)
has lots of relations to topology, there should be some proof of Conway’s theorem that
uses these relations to get the job done.

Does anybody know one?
Finally, the answer to the psychic powers puzzle: if you did the calculation right, you

got the last digit of the book’s ISBN number — unless your answer was 10, in which case
the ISBN number should end in the letter X.

This trick is called a “check sum” or “check digit”: it’s a way to spot errors. The
Universal Product Code, used in those bar codes you see everywhere, also has a check
digit. So do credit cards.

Addendum: Aaron Lauda and James Given had comments. Lauda wrote:

Usually people describe the scheme in a different way, which is actually equiva-
lent to what you said. Denote the 10 digit ISBN number as Ni, for 1 ⩽ i ⩽ 10.
Compute

10∑
i=1

(11− i)Ni mod 11 (⋆)

which should give you zero. That is take the first digit, multiply it by 10, the
second by 9, etc. Add them up and compute the sum mod 11. You will always
get zero.

Some fun things you might like to add:

1. If you make a mistake writing down a single digit in the ISBN then the
equation (*) will not equal zero.
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2. The equation (*) may fail to give you zero mod 11 if you make a mistake
with two of the digits, but it will never fail if you interchange two adjacent
digits.

Regards,
Aaron

Given wrote:

Self-organized criticality (SOC) does in fact involve special settings of the pa-
rameters in a model.

SOC occurs in sandpile models because one adds the sand extremely slowly, i.e.,
one grain at a time. Otherwise a critical state is not obtained. This makes SOC
be a special example of dynamical critical phenomena in the case that the flux
variable (here the rate of sand addition) is set to ε+, i.e., an infinitesimal value
greater than zero. This formulation allows SOC to be studied using quantum
field theory.

Of course the model is built around an underlying instability, namely the fact
that sand piles which are too steep will fall down. Also, one must remove by
idealization most sorts of friction between sand grains which will otherwise blur
out the transition. So SOC is no magic prescription for generating scale invari-
ant phenomena. SOC systems are “special” in the way that equilibrium critical
points are “special”. As you note, theories of this kind are easily oversold among
those eager to believe in magic formulas.

Also, you may have been confusing SOC with a favorite concept of the chaos/dynamical
systems people, namely the “edge of chaos”. It went through several incarna-
tions. Each one tried to formally specify the domain, intermediate between
order and chaos, in which complex systems were most “interesting”.

Wikipedia summarizes this pretty well. I append the listing for convenience.

All My Best,
Jim Given

The Wikipedia article is:

19) “Edge of chaos”, Wikipedia, http://en.wikipedia.org/wiki/Edge of chaos
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Week 229

April 13, 2006

I’m visiting Chicago now. I came just in time for a conference in honor of Saunders Mac
Lane, one of the founders of category theory, who taught at the University of Chicago for
many years and died last year at the age of 95:

1) Category Theory and its Applications: A Conference in Memory of Saunders Mac
Lane, http://www.math.uchicago.edu/~may/MACLANE/

On Friday there was a memorial service where the friends and family of Mac Lane
spoke about him, and a kind of reminiscence session where everyone could tell their
favorite stories involving him. Then there were a bunch of math talks, both by people
with strong connections to Mac Lane — Peter Johnstone, Bill Lawvere, Peter Freyd, Ieke
Moerdijk, Peter May and Steve Awodey — and by people working on higher categories
and their applications.

My own connection to Mac Lane is tiny. Everything I do uses his work, but that’s true
of lots of mathematicians: he discovered so much. Apart from watching him celebrate
his 90th birthday at a category theory conference in Portugal back in 1999, the best
moment happened when I came to Chicago and gave a talk. He invited me up to his
office and we talked a bit. He told me I should write a book explaining n-categories. I
promised I would. . . I was too shy to say much.

Now I’m trying to write that book, and I just happen to be staying in Mac Lane’s old
office, which makes me feel especially obliged to do it. This office is on the third floor
of the Ryerson Physical Laboratory. It has a very high ceiling, and one wall is lined with
two stacks of metal bookshelves. You’d need a ladder to reach the top! When I spoke to
Mac Lane in his office, they were all full of books. Alas, they’re empty now.

Next time I’ll say a bit about Julie Bergner’s talk at the Maclane memorial conference
— she spoke about derived categories of quiver representations and quantum groups.
But the conference was so intense and exhausting that first I need to recover by thinking
about something completely different. So, I’ll concentrate on last week’s puzzle about
rational tangles.

But first: the astronomy picture of the week!
It’ll be more fun after a little background. The northern part of Mars is very different
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from the rest. It’s much smoother, and the altitude is much less:

2) Linda M. V. Martel, “Ancient floodwaters and seas on Mars”, http://www.psrd.
hawaii.edu/July03/MartianSea.html

Why is this?
Many scientists believe the north was an ocean during the Hesperian Epoch, a pe-

riod of Martian history that stretches from about 3.5 to about 1.8 billion years ago. In
particular, the beautifully named “Vastitas Borealis”, an enormous plain that covers most
of northern Mars, has textures that may have been formed by an ocean that froze and
then slowly sublimated. (Sublimation is what happens when ice turns directly into water
vapor without actually melting.) Mike Carr and James Head wrote a paper suggesting
that around the end of the Hesperian, about 30% of the water on Mars evaporated and
left the atmosphere, drifting off into outer space. . . part of the danger of life on a planet
without much gravity:

3) M. H. Carr and J. W. Head, III, “Oceans of Mars: An assessment of the observational
evidence and possible fate”, Journal of Geophysical Research 108 (2003), 5042.

The rest of the water is now frozen at the poles or lurking underground.
And that brings us to our picture. Here’s some ice in a crater in Vastitas Borealis:
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4) “Water ice in crater at Martian north pole”, European Space Agency (ESA), http:/
/www.esa.int/esaMI/Mars Express/SEMGKA808BE 3.html

Perhaps this is a remnant of a once mighty ocean!
The picture is close to natural color, but the vertical relief is exaggerated by a factor

of 3. The crater is 35 kilometers wide and 2 kilometers deep. It’s incredible how they
can get this kind of picture from satellite photos and lots of clever image processing. I
hope they didn’t do too much stuff just to make it look pretty.

Next: rational tangles.
In “Week 228”, I asked for help understanding the connection between rational tan-

gles and the group PSL(2,Z). I got a great reply from Michael Hutchings, which winds
up relating these ideas to the branched double cover of the sphere by the torus. And,
this gives me an excuse to tell you some stuff I learned from James Dolan about elliptic
functions and a map of the world called “Peirce’s quincuncial”.

So, let’s dive in!
Did you ever try to wrap a sphere around itself twice? Mentally, I mean? Slit it open,

grab it, pull it, stretch it, wrap it around itself twice, and glue the seams back together?
It’s not hard. You just take the Riemann sphere — the complex numbers together

with a point at infinity — and map it to itself by the function

f(z) = z2

If you think of the sphere as the surface of the Earth, with zero at the south pole and
infinity as the north pole, this function doubles the longitude. So, it wraps the sphere
around itself twice!

I hope you’re visualizing this.
This function is not quite a “double cover”, because it’s not quite two-to-one every-

where. Only one point gets mapped to z = 0, namely itself, and only one point gets
mapped to z =∞, namely itself. Elsewhere f is two-to-one.

If you walk once around the north pole or south pole, and then apply the function
f to your path, you get a path that goes around these points twice. Summarizing these
properties, we call the function a “branched double cover” of the sphere by itself, with
zero and infinity as branch points.

Now, how about wrapping a torus twice around a sphere?
This too can be done. It turns out there’s a nice branched double cover of the sphere

by the torus, which has four branch points.
To visualize this, first take the surface of the Earth and mold it into a regular octahe-

dron. There will be six corners: the north pole, the south pole, the east pole, the west
pole, the front pole and the back pole. Now take the octahedron and unfold it like this:

S F S

W N E

S B S
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We get an interesting map of the world, which was invented in 1876 by the American
mathematician and philosopher C. S. Peirce while he was working at the U. S. Coast and
Geodetic Survey. This map is called “Peirce’s quincuncial”, since when you arrange five
dots this way:

• •
•

• •

it’s called a “quincunx”. (Somehow this word goes back to the name of an ancient Roman
coin. I don’t understand how this pattern is related to the coin.)

This is how Peirce’s quincuncial looks as an actual map:

5) Carlos A. Furuti, “Conformal projections”, http://www.progonos.com/furuti/

MapProj/Normal/ProjConf/projConf.html
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The cool part is that you can tile the plane indefinitely with this map:

S F S

W N E

S B S SFS

WNE

SBS S F S

W N E

S B S SFS

WNE

SBSSFS

WNE

SBS S F S

W N E

S B S SFS

WNE

SBS S F S

W N E

S B S

This gives a branched cover of the sphere by the plane! It has branch points at the east,
west, front and back poles, since walking once around a point like that on the above
map corresponds to walking around it twice on the actual Earth. This is pretty weird,
but Peirce cleverly located two of these branch points in the Pacific Ocean, one in the
Atlantic, and one in the Indian Ocean.

We can be less extravagant and get a branched cover of the sphere by the torus if we
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take the smallest parallelogram whose opposite edges match up:

B

E N W

B S F S B

W N E

B

We can curl this into a torus by gluing together the opposite edges. There’s then an
obvious function from this torus to the sphere sending both points labelled “N” to the
north pole, both points labelled “S” to the south pole, and so on.

This function is mostly two-to-one, but it’s one-to-one at the points labelled E, F , W ,
and B. After all, there’s just one point of each of these sorts in the above picture after we
glue together the opposite edges. There are two copies of any other sort of point.

So, our function is a branched double cover of the sphere by the torus, which has
four branch points. In fact, this function is quite famous. It’s an example of an “elliptic
function”!

I explained elliptic functions way back in “Week 13”. Briefly, what we just did starting
with this parallelogram:

B

E N W

B S F S B

W N E

B

actually works for a parallelogram of any shape. The parallelogram curls up to give
a torus, and we get a map from this torus to the Riemann sphere, called an “elliptic
function”.

As before, this is a branched double cover with four branch points. However, where
the branch points sit on the sphere depends on the shape of the parallelogram. By picking
the parallelogram carefully, you can put the branch points wherever you want! Peirce’s
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neat idea was to put them evenly spaced along the equator — at the east, front, west
and back poles. This is nice and symmetrical.

It’s also especially nice to put the branch points at the vertices of a regular tetrahe-
dron. I’m not sure, but this may give a map developed by the cartographer Laurence P.
Lee in 1965. There’s also a picture of this on Furuti’s webpage:

In fact, these two specially nice locations for branch points correspond to the two most
symmetrical lattices in the plane: the square one and the hexagonal one. I talked about
these in “Week 125” — they’re really important in the theory of elliptic functions, and
even in string theory.

Anyway: for any parallelogram we can make a map of the Earth that tiles the plane,
with tiles shaped like this parallelogram. A cool thing about these maps is that they’re
all “conformal” — they preserve angles except at the branch points. If you want to show
off, you express this by saying “elliptic functions are complex analytic”.

But now I’m digressing a little. Let’s get back on track. What does all this have to do
with rational tangles??

Recall my puzzle from last time. We build rational tangles by starting with the trivial
one, which we call “zero”

and repeatedly doing two operations. The first is a twisting operation that we call
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“adding one”:

T T = T + 1

where the box labelled “T ” stands for any tangle we’ve built so far. The second is a
rotation that we call “negative reciprocal”:

T T = −1/T

Using these tricks we can try to assign a rational number to any rational tangle. The
shocking theorem is that this number is indeed well-defined, and in fact a complete
invariant of rational tangles.

Every operation built from “adding one” and “negative reciprocal” looks like this:

z 7→ az + b

cz + d

with a, b, c, d integer and ad − bc = 1. The group of these transformations is called
PSL(2,Z). This group acts on the rational numbers together with a point at infinity (the
“rational projective line”) by the formula above. It also acts on rational tangles. The
puzzle is to see why these actions are isomorphic. The proofs I listed in “Week 228”
show it’s true; the problem is to understand what’s really going on!

Here’s the answer given by Michael Hutching on sci.math.research:

There’s a simple topological interpretation of the element of the rational projec-
tive line associated to a rational tangle. I don’t know how to use this to prove the
theorem, and I don’t know a reference for it (maybe it is in one of the references
you cited). Anyway, regard a rational tangle as a two-component curve C in
the 3-ball B3 whose four boundary points are on the 2-sphere S2. Consider the
double branched cover of B3 along C. This is a 3-manifold Y whose boundary
can be identified with the 2-torus T 2. (In fact Y is a solid torus.) The inclusion
of T 2 into Y induces a map from H1(T

2) to H1(Y ), and the kernel of this map
is a one-dimensional subspace of H1(T

2) = Z2. If I am not mistaken, this is the
element in question of the rational projective line.
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In other words, we take a 3-dimensional ball and draw a picture of a rational tangle
in it:

T

The boundary of this ball is a sphere with 4 points marked. If we take a branched
double cover of the sphere with these as the branch points, we get a torus T 2. If we
take a branched double cover of the whole ball with everything along the vertical lines
as branched points, we get a solid doughnut Y having T 2 as its boundary.

This gets the torus into the game, and also the branched cover I was talking about.
And this gets the group PSL(2,Z) into the game! SL(2,Z) is the group of 2× 2 matrices
with determinant 1. When you mod out by the matrices ±1, you get PSL(2,Z). But,
topologists know that SL(2,Z) is the “mapping class group” of the torus — the group of
orientation-preserving diffeomorphisms modulo those that can be smoothly deformed to
the identity.

So, something nice is happening.
Even better, the rational first homology group of the torus is Q2 (pairs of rational

numbers), and SL(2,Z) acts in the obvious way, by matrix multiplication:(
a b
c d

)
:

(
x
y

)
7→
(
ax+ by
cx+ dy

)
It therefore acts on the set of 1-dimensional subspaces of Q2. Any such subspace consists
of vectors like this: (

kx
ky

)
The subspace is determined by the ratio x/y, which however could be infinite — so it’s
just a point in the rational projective line. So, we get an action of SL(2,Z) on the rational
projective line. Indeed we get an action of PSL(2,Z) since ±1 act trivially. And, you can
easily check that it’s the action we’ve already seen:(

a b
c d

)
: z 7→ az + b

cz + d

In short: “projectivizing” the action of mapping class group of the torus on its first ho-
mology gives the usual action of PSL(2,Z) on the rational projective line.

What we need next is a natural way to assign to any rational tangle a 1-dimensional
subspace of the homology of the torus. And this is what Hutchings describes: a rational
tangle gives a way of mapping the torus T 2 into the solid torus Y , and this gives a map
on rational homology

H1(T
2)→ H1(Y )

whose kernel is a 1-dimensional subspace of H1(T
2).

There’s more stuff to check. . . .
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Personally I’ve been trying to think of the mapping class group of the 4-punctured
sphere as acting on pictures like this:

T

and show that the resulting action on rational tangles factors through a homomorphism
from this mapping class group to PSL(2,Z). The mapping class group should be gener-
ated by the twist

T T

and the 90 degree rotation

T T

and our homomorphism should map these to the famous matrices

T =

(
1 1
0 1

)
= “shear”

and

S =

(
0 −1
1 0

)
= “90 degree rotation”

respectively. If this works, and I could figure out the kernel of this homomorphism and
show it acts trivially on rational tangles, I think I’d be almost done. But, I haven’t had
time!

By the way, if this works, there’s a beautiful little sideshow where we use as genera-
tors of SL(2,Z) not the above matrices but S and

ST =

(
0 −1
1 1

)
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I explained why these are so great in “Week 125”. S is a symmetry of the square lat-
tice, while ST is a symmetry of the hexagonal lattice. The square lattice gives Peirce’s
quincuncial map, while the hexagonal one presumably gives Laurence Lee’s triangular
map!

So, there’s some intriguing story about elliptic functions and rational tangles taking
shape before our eyes. . . . and if I weren’t so darn busy, I’d figure out all the details and
write a little paper about it.

Before quitting, there’s one more thing I can’t resist mentioning. Any ordered 4-tuple
of points (a, b, c, d) in the Riemann sphere gives a number called its “cross-ratio”:

(a− b)(c− d)
(a− d)(c− b)

It’s a famous fact that you can find a conformal transformation of the Riemann sphere
mapping one ordered 4-tuple to another if and only if their cross-ratios are equal!

So, we can play a little trick. Given a lattice we can get a branched double cover of
the Riemann sphere as I sketched earlier. Then we can use the location of the branch
points to calculate a cross ratio.

But actually, I’m being a bit sloppy here. To compute a cross ratio from a lattice, we
need some extra information to order the 4-tuple of branch points. In other words, if one
of the points S is the origin here:

S F S

W N E

S B S SFS

WNE

SBS S F S

W N E

S B S SFS

WNE

SBSSFS

WNE

SBS S F S

W N E

S B S SFS

WNE

SBS S F S

W N E

S B S

and the lattice is taken just big enough so the pattern repeats, we need enough informa-
tion to label the points E, F , W and B. This extra information amounts to “choosing
a basis for the 2-torsion subgroup of the plane modulo the lattice”. So, the cross ratio
gives a “modular function of level 2”.

Hmm, this is getting pretty jargonesque! I don’t want to explain the jargon now, but
you can read all about this trick and its consquences in Lecture 9 here:

6) Igor V. Dolgachev, Lectures on modular forms, Fall 1997/8, available at http://
www.math.lsa.umich.edu/~idolga/modular.pdf

Addenda: Andrei Sobolevskii points out that the etymology of the word “quincunx”
is explained here:
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7) “Quincunx”, World Wide Words, http://www.worldwidewords.org/weirdwords/
ww-qui2.htm

Very briefly, “quincunx” was a Latin word for “five twelfths”, from quinque and uncia.
The latter word is also the root of the word “ounce”. They had a copper coin called the
as weighing twelve ounces (!), and the quincunx was apparently not a coin a symbol for
5/12 of an as — or in other words, 5 ounces of copper.

After reading the above, Peter Dickof clarified and corrected the story:

Love “This Week’s Finds” (though I seldom follow it all) and can’t pass up the
opportunity to say something.

The as was indeed a unit of currency and also a specific bronze coin. Early asses
(aes = bronzes — hence the AE ligature. . . ) were full Roman pounds (librae
— hence the British pound “£” sign) of 288 scruples with twelve unciae to the
pound. Each uncia was ˜27 grams, a modern ounce near enough. Debasement
set in around the time of the first Punic war and accelerated through the second
(Hannibal’s), by the end of which an as, still of bronze, weighed only ˜30 grams.

Multiples of the as were minted (misnomer, this was a cast currency): the de-
cussis (X asses), quincussis (V asses), tressis (III asses), and the dupondius
(two-pounder). The asses were marked with the Roman numeral I. Common
fractions were the semis (half, marked with an S), triens (third, sometimes
called a quatrunx, marked with four “pellets” or dots), quadrans (quarter, also
teruncius, 3 pellets), sextans (sixth, also biunx, 2 pellets), uncia and semuncia
(usually unmarked).

There were quincunx coins (5 pellets), and also a dextans (S + 4 pellets),
mostly produced by non-Roman Italians. I have appended photos of three quin-
cunxes produced in Luceria (see Thurlow and Vecchi numbers 274, 281). Note
that the “pellets” are sometimes (not always) arranged in a quincunx. Luceria
(modern Lucera) is 2/3 of the way across the boot from Neapolis (Naples).

During the second Punic war, after they captured Syracuse and its treasure (and
killed Archimedes), the Romans introduced the silver denarius, quinarius and
sesterius; they were worth 10, 5, 2 1/2 (IIS) asses. The denarius is the origin
of the “d” for the British shilling, and was about the size of a dime. Later, circa
141 BC, the value of silver was re-tariffed so that denarii, quinarii and sestertii
became worth 16, 8, 4 asses; the names did not change but the quinarius and
sestertius became rare.

Julius Caesar doubled the pay of a legionary to 300 sestertii per installment
(stipendium), 3 installments per year.

Later yet, during Imperial Rome, the largest bronze/brass coin minted (no
longer a misnomer) was a sestertius; its weight was less than 30 grams by
the time of Claudius and falling, always falling. . . .

Appropriate references are:

— Michael H. Crawford, Roman Republican Coinage, Cambridge University
Press, Cambridge, 1974. (See picture of Quincunx on plate XVIII.) — Bradbury
K. Thurlow, Italian Cast Coinage: Italian Aes Grave. Italo G. Vecchi, Italian
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Aes Rude, Signatum and the Aes Grave of Sicily. Printed together by Veechi,
London, 1979. — Herbert A. Grueber, A Catalogue of the Coins of the Roman
Republic in the British Museum, three volumes, reprinted 1970.

My old pal Squark noted some sloppy language about branched covers. Here’s my
reply to what he wrote. I’ve changed what he wrote a tiny bit, for cosmetic reasons.

Squark wrote:

Hello John and everyone!

Hello! Long time no see! How are you doing?

I had written:

There’s a simple topological interpretation of the element of the ratio-
nal projective line associated to a rational tangle. I don’t know how
to use this to prove the theorem, and I don’t know a reference for it
(maybe it is in one of the references you cited). Anyway, regard a
rational tangle as a two-component curve C in the 3-ball B3 whose
four boundary points are on the 2-sphere S2. Consider the double
branched cover of B3 along C.

Squark wrote:

What is “the double branched cover”? Is there a way to choose a
canonical one, or is there only one in this case, for some reason?

Good point. I hope there’s a specially nice one.

To pick a branched cover of B3 along C, it’s necessary and sufficient to pick a
homomorphism from the fundamental group ofB3\C to Z/2. This says whether
or not the two sheets switch places as we walk around C following some loop in
B3 \ C.

In the case of a sphere with 4 points removed it should be easy to
check.

Yes.

The fundamental group has 4 generators — a, b, c, d (loops around
each of the points) and one relation abc = d (since we’re on a sphere).
Hence, it is freely generated by a, b, c (say).

Right, the fundamental group of the four-punctured sphere is the free group on
3 generators, F3. I believe the “specially nice” homomorphism

f : F3 → Z/2

is the one that sends each generator to −1, where I’m thinking multiplicatively:

Z/2 = {1,−1}
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One reason this homomorphism is especially nice is that it also sends d = abc to
−1.

So, if you walk around ANY of the four punctures, the two sheets switch!

This is just what you want for the Riemann surface of an elliptic integral, as
someone else pointed out in another post: there are four branch points each like
the branch point of

√
z. It’s also the most symmetrical, beautiful thing one can

imagine.

Now let’s see if and how this branched cover extends to a branched cover of the
ball B3 with C (two arcs) removed. The fundamental group of B3 \ C is the
free group on two generators, say X and Y .

The inclusion of the 4-punctured sphere in B3 \ C gives a homomorphism

g : F3 → F2

as follows:
a 7→ X

b 7→ X−1

c 7→ Y

d 7→ Y −1

So, to extend our branched cover, we need to write our homomorphism

f : F3 → Z/2

as
f = hg

for some homomorphism
h : F2 → Z/2

The obvious nice thing to try for h is

X 7→ −1
Y 7→ −1

It works, and it’s unique!

Lee Rudolph adds:

Squark wrote:

What is “the double branched cover”? Is there a way to choose a
canonical one, or is there only one in this case, for some reason?

John Baez wrote:

Good point. I hope there’s a specially nice one.
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In this kind of context, there’s always exactly one “double branched cover” that
actually does branch doubly over every component of the proposed branch locus.
In particular, in the context of a rational tangle, of course the pair (B3, C) is
homeomorphic to (B2, X) × I, where X is a 2-point set in Int(B2) and the
homeomorphism isn’t required to preserve the tangle structure; so the double
branched cover of B3 branched over C is the product of the double branched
cover of B2 branched over X with the interval I. Now, because the branching
is double at each point of X, and there are two points of X, it follows that
the monodromy around the boundary of B2 must be trivial, so that we can sew
another B2 to that boundary and extend the branched double covering over the
resulting 2-sphere. But of course the branched double cover of a 2-sphere over 2
points is another 2-sphere, the model for the situation being z 7→ z2 as a map of
the Riemann sphere to itself. Now remove the interior of the sewed-on second B2

from the downstairs S2, and correspondingly the interiors of its two preimage
B2s from the upstairs S2; you see that the double cover of B2 branched over X
is an annulus. (Once you know that, you can see it directly: take an annulus
embedded in R3 as the cylinder where x2 + y2 = 1 and −1 ⩽ z ⩽ 1; rotate it
by 180 degrees around the x-axis, and convince yourself that the quotient space
is a 2-disk by considering the fundamental domain consisting of those points
of the annulus with non-negative y-coordinate.) Then the double cover of B3

branched over C must be a solid torus. (Again, now that you know this, you
can see it directly: take the solid torus to be a tubular neighborhood in R3 of the
circle where x2 + y2 = 1 and z = 0, and again rotate by 180 degrees around
the x-axis to give yourself the “deck involution”.)

Lee Rudolph

Well, what if we consider our lives to be formed of a series of interlocking
practices, including the very important ones of maintaining a thriving family
and community? Then we might learn from a practice with the pedigree
of mathematics — mankind’s longest conversation — about the necessity of
certain intellectual and moral virtues.

— David Corfield
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As we’ve seen in previous weeks, Mars is a beautiful world, but a world in a minor key,
a world whose glory days — the Hesperian Epoch — are long gone, whose once grand
oceans are now reduced to windy canyons and icy dunes. Let’s say goodbye to it for
now. . . leaving off with this Martian sunset, photographed by the rover Spirit in Gusev
Crater on May 19th, 2005:

1) “A moment frozen in time”, NASA Mars Exploration Rover Mission, http://marsrovers.
nasa.gov/gallery/press/spirit/20050610a.html

This week I’ll talk about Dynkin diagrams, quivers and Hall algebras. But first, some
cool identities!

My student Mike Stay did computer science before he came to UCR. When he was
applying, he mentioned a result he helped prove, which relates Goedel’s theorem to the
Heisenberg uncertainty principle:

2) C. S. Calude and M. A. Stay, “From Heisenberg to Goedel via Chaitin”, International
Journal of Theoretical Physics, 44 (2005), 1053–1065. Also available at http://
math.ucr.edu/~mike/

Now, this particular combination of topics is classic crackpot fodder. People think
“Gee, uncertainty sounds like incompleteness, they’re both limitations on knowledge —
they must be related!” and go off the deep end. So I got pretty suspicious until I read
his paper and saw it was correct. . . at which point I definitely wanted him around! The
connection they establish is not as precise as I’d like, but it’s solid math.

So, now Mike is here at UCR working with me on quantum logic and quantum com-
putation using ideas from category theory. In his spare time, he sometimes fools around
with math identities and tries to categorify them — see “Week 184” and “Week 202” if
you don’t know what that means. Anyway, maybe that’s how he stumbled on this:
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3) Jonathan Sondow, “A faster product for π and a new integral for ln(π/2)”, Amer.
Math. Monthly 112 (2005), 729–734. Also available as math.NT/0401406.

In this paper, Sondow gives eerily similar formulas for some of our favorite math
constants. First, one for e:

e =

(
2

1

) 1
1
(

22

1× 3

) 1
2
(
23 × 4

1× 33

) 1
3
(

24 × 44

1× 36 × 5

) 1
4

· · ·

Then, one for π/2:

π

2
=

(
2

1

) 1
2
(

22

1× 3

) 1
4
(
23 × 4

1× 33

) 1
8
(

24 × 44

1× 36 × 5

) 1
16

· · ·

Then one for eγ , where γ is Euler’s constant:

eγ =

(
2

1

) 1
2
(

22

1× 3

) 1
3
(
23 × 4

1× 33

) 1
4
(

24 × 44

1× 36 × 5

) 1
5

· · ·

He also points out Wallis’ product for π/2 and Pippenger’s for e:

π

2
=

(
2

1

) 1
1
(
2× 4

3× 3

) 1
1
(
4× 6× 6× 8

5× 5× 7× 7

) 1
1

· · ·

e =

(
2

1

) 1
2
(
2× 4

3× 3

) 1
4
(
4× 6× 6× 8

5× 5× 7× 7

) 1
8

· · ·

What does it all mean? I haven’t a clue! Another mystery thrown down to us by the
math gods, like a bone from on high. . . we can merely choose to chew on it or not, as
we wish.

Julie Bergner gave a great talk on “derived Hall algebras” at the Mac Lane memorial
conference. I just want to explain the very first result she mentioned, due to Ringel
— a surprising trick for constructing certain quantum groups from simply-laced Dynkin
diagrams. It’s very different from the usual method for getting quantum groups from
Dynkin diagrams, and it’s a miracle that it works.

But, I guess I should start near the beginning!
Way back in 1995, in “Week 62”, “Week 63”, “Week 64” and “Week 65”, I explained

how “Dynkin diagrams” — little gizmos like this:

• • • • • • •

•

show up all over mathematics. They have a strange way of tying together subjects that
superficially seem completely unrelated. In one sense people understand how they work,
but in another sense they’re very puzzling — their power keeps growing in unexpected
ways.

I love mysterious connections, so as soon I understood enough about Dynkin dia-
grams to appreciate them, I became fascinated by them, and I’ve been studying them
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ever since. I explained their relation to geometry in “Week 178”, “Week 179”, “Week
180”, “Week 181” and “Week 182”, and their relation to quantum deformation and com-
binatorics in “Week 186” and “Week 187”.

You might think that would be enough — but you’d be wrong, way wrong!
I haven’t really talked about the most mysterious aspects of Dynkin diagrams, like

their relation to singularity theory and representations of quivers. That’s because these
aspects were too mysterious! I didn’t understand them at all. But lately, James Dolan
and Todd Trimble and I have been making some progress understanding these aspects.

First, I should remind you how Dynkin diagrams infest so much of mathematics. Let’s
start with a little puzzle mentioned in “Week 182”.

Draw n dots and connect some of them with edges — at most one edge between any
pair of dots, please:

• • • • • •

•

•

• •

Now, try to find a basis of Rn consisting of one unit vector per dot, subject to these
rules: if two dots are connected by an edge, the angle between their vectors must be 120
degrees, but otherwise their vectors must be at right angles.

This sounds like a silly puzzle that only a mathematician could give a hoot about. It
takes a while to see its magnificent depth. But anyway, it turns out you can solve this
problem only for certain special diagrams called “simply-laced Dynkin diagrams”. The
basic kinds are called An, Dn, E6, E7, and E8.

The An Dynkin diagram is a line of n dots connected by edges like this:

• • • •

The Dn diagram has n dots arranged like this:

• • • •

•

•

A line of them but then a little fishtail at the end! We should take n to be at least 4, to
make the diagram connected and different from An.

The E6, E7, and E8 diagrams look like this:

• • • • •

•

• • • • • •

•

• • • • • • •

•
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You’re also allowed to take disjoint unions of the above diagrams.
So, a weird problem with a weird answer! Its depth is revealed only when we see

that many different puzzles lead us to the same diagrams. For example:

A) the classification of integral lattices in Rn having a basis of vectors whose length
squared equals 2

B) the classification of simply laced semisimple Lie groups

C) the classification of finite subgroups of the 3d rotation group

D) the classification of simple singularities

E) the classification of tame quivers

Let me run through these problems and say a bit about how they’re connected:

A) An “integral lattice” in Rn is a lattice where the dot product of any two vectors
in the lattice is an integer. There are zillions of these — but if we demand that
they have a basis of vectors whose length squared is 2, we can only get them from
simply-laced Dynkin diagrams.

It’s not very hard to see that finding a lattice like this is equivalent to the puzzle I
mentioned earlier. For example, given a solution of that puzzle, you can just multi-
ply all your vectors by

√
2 and form the lattice of their integer linear combinations.

Here are the lattices you get:

• The diagram An gives the n-dimensional lattice of all (n+1)-tuples of integers
(x1, . . . , xn+1) with

x1 + . . .+ xn+1 = 0.

For example, A2 is a 2-dimensional hexagonal lattice, the sort you use to pack
pennies as densely as possible. Similarly, A3 gives a standard way of packing
grapefruit.

• The diagram Dn gives the n-dimensional lattice of all n-tuples of integers
(x1, . . . , xn) where

x1 + . . .+ xn

is even. To visualize this, just take an n-dimensional checkerboard, color the
cubes alternately red and black, and take the center of each red cube.

• The diagram E8 gives the 8-dimensional lattice of 8-tuples (x1, . . . , x8) such
that the xi are either all integers or all half-integers — a half-integer being an
integer plus 1/2 — and such that

x1 + . . .+ x8

is even.

• The diagram E7 gives the 7-dimensional lattice consisting of all vectors in E8

that are orthogonal to some vector that’s closest to the origin (and thus has
length

√
2).
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• The diagram E6 gives the 6-dimensional lattice consisting of all vectors in E7

that are orthogonal to some vector that’s closest to the origin (and thus has
length

√
2).

For more on these lattices, see “Week 65”. They show up in the theory of Lie
groups. . . .

B) Lie groups are fundamental throughout math and physics: they’re groups of con-
tinuous symmetries, like rotations. The nicest of the lot are the semisimple Lie
groups. Some familiar examples are the group of rotations in n-dimensional space,
which is called SO(n), and the group of unitary matrices with determinant 1, which
is called SU(n). There are more, but people know what they all are. They’re clas-
sified by Dynkin diagrams!

Why? The key point is that any semisimple Lie group has a “root lattice”. This is an
integral lattice spanned by special vectors called “roots”. I won’t give the details,
since I explained this stuff in “Week 63” and “Week 64”, but it turns out that root
lattices, and thus semisimple Lie groups, are classified by Dynkin diagrams.

Not all these Dynkin diagrams look like the A, D and E diagrams listed above. But,
it turns out that the length squared of any root must be either 1 or 2. If all the roots
have length squared equal to 2, we say our semisimple Lie group is “simply laced”.
In this case, we’re back to problem B), which we already solved! So then our Lie
group corresponds to a diagram of type A, D, or E — or a disjoint union of such
diagrams.

Here’s how it goes:

• The diagram An gives the compact Lie group SU(n + 1), consisting of (n +
1) × (n + 1) unitary matrices with determinant 1. It’s the isometry group of
complex projective n-space.

• The diagram Dn gives the compact Lie group SO(2n), consisting of 2n × 2n
orthogonal matrices with determinant 1. It’s the isometry group of real pro-
jective (2n)-space.

• The diagram E6 gives a 78-dimensional compact Lie group that people call
E6. It’s the isometry group of the bioctonionic projective plane.

• The diagram E7 gives a 133-dimensional compact Lie group that people call
E7. It’s the isometry group of the quateroctonionic projective plane.

• The diagram E8 gives a 248-dimensional compact Lie group that people call
E8. It’s the isometry group of the octooctonionic projective plane.

In short, two regular series and three exotic weirdos.

You may ask where the rotation groups SO(n) with n odd went! Well, these corre-
spond to fancier Dynkin diagrams that aren’t simply laced, like this:

• • • • •

The funny arrow here indicates that the last two vectors aren’t at a 120-degree
angle; they’re at a 135-degree angle, and the last vector is shorter than the rest: it
has length one instead of

√
2.

372



WEEK 230 MAY 4, 2006

Why are semisimple Lie groups “better” when they’re simply laced? What’s the big
deal? I don’t really understand this, but for one, when all the roots have the same
length, they’re all alike — a certain symmetry group called the Weyl group acts
transitively on them.

Anyway, so far our A, D, E Dynkin diagrams have been classifying things that are
clearly related to lattices. But now things get downright spooky. . . .

C) Take a Platonic solid and look at its group of rotational symmetries. You get a finite
subgroup of the 3d rotation group SO(3). But in general, finite subgroups of SO(3)
are classified by ADE Dynkin diagrams!

So, Platonic solids turn out to fit into the game we’re playing here!

First I’ll say which diagram corresponds to which subgroup of SO(3). Then I’ll
explain how the correspondence works:

• The diagram An corresponds to the group of obvious rotational symmetries
of the regular n-gon. This group is called the “cyclic group” Z/n.

• The diagram Dn corresponds to the group of rotational symmetries of the
regular n-gon where you can turn it and also flip it over. By sheer coincidence,
this group is called the “dihedral group” Dn. A cosmic stroke of good luck!

• The diagram E6 corresponds to the group of rotational symmetries of the
tetrahedron: the “tetrahedral group”. This is also the group of even permuta-
tions of 4 elements, the “alternating group” A4 — not to be confused with the
An’s we were just talking about. A cosmic stroke of bad luck!

• The diagram E7 corresponds to the group of rotational symmetries of the
octahedron or cube: the “octahedral group”. This is also the group of all
permutations of 4 elements, the “symmetric group” S4.

• The diagram E8 corresponds to the group of rotational symmetries of the
icosahedron or dodecahedron: the “icosahedral group”. This is also the group
of even permutations of 5 elements, called A5. Darn!

So, the exceptional Lie groups E6, E7 and E8 correspond to Platonic solids in a
sneaky way.

To understand what’s going on here, first we need to switch from SO(3) to SU(2).
The group SU(2) is used to describe rotations in quantum mechanics: it’s the dou-
ble cover of the rotation group SO(3).

It’s really finite subgroups of SU(2) that are classified by ADE Dynkin diagrams! It
just so happens that these correspond, in a slightly slippery way, to finite subgroups
of SO(3).

You’ll see how if I list the finite subgroups of SU(2):

• The diagram An corresponds to the cyclic subgroup Z/n of SU(2). This double
covers a cyclic subgroup of SO(3) when n is even.

• The diagram Dn corresponds to a subgroup of SU(2) that double covers the
dihedral group Dn.
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• The diagram E6 corresponds to a subgroup of SU(2) that double covers the
rotational symmetries of the tetrahedron. This subgroup has 24 elements and
it’s called the “binary tetrahedral group”.

• The diagram E7 corresponds to a subgroup of SU(2) that double covers the
rotational symmetries of the octahedron. This subgroup has 48 elements and
it’s called the “binary octahedral group”.

• The diagram E8 corresponds to a subgroup of SU(2) that double covers the
rotational symmetries of the icosahedron. This subgroup has 120 elements
and it’s called the “binary icosahedral group”.

Now, how does the correspondence work? For this, I’m afraid I have to raise the
sophistication level a bit — I’ve been trying to keep things simple, but it’s getting
tough.

In his book on the icosahedron, Felix Klein noticed it was interesting to let the
icosahedral group act on the Riemann sphere, and look for rational functions in-
variant under this group.

It turned out that every such function depends on a single one: Klein’s icosahedral
function! The explict formula for it is pretty disgusting, but it’s a beautiful thing:
you can pick it so that it equals 0 at all the vertices of the icosahedron, 1 at the
midpoints of the edges, and infinity at the midpoints of the faces. Even better, if
you write the function like this:

w = f(z)

then Klein showed that knowing how to solve for z as a function of w lets you solve
every quintic equation! The reason is that the Galois group of the general quintic
is a close relative of the icosahedral group: the former is S5, the latter is A5.

Anyway, when I said that “every such function depends on a single one”, what I
really meant was this. Let C(z) be the field of rational functions of one variable;
then the icosahedral group acts on this, and the invariant functions form a subfield
C(w) where w is Klein’s icosahedral function. The Galois group of the little field in
the big one is the icosahedral group.

The same kind of thing works for the other finite subgroups of SO(3), except of
course for the connection to the quintic equation.

But, it’s actually even better to think about finite subgroups of SU(2), since SU(2)
acts on C2, and when we projectivize C2 we get SO(3) acting on the Riemann
sphere. This viewpoint fits more squarely into the worldview of algebraic geometry.

If we take the quotient of C2 by a finite subgroupG of SU(2), we don’t get a smooth
manifold: the quotient has a singularity at 0. But we can “resolve” the singularity,
finding a smooth complex manifold with a holomorphic map

p : M → C2/G

that has a holomorphic inverse on a dense open set. There may be lots of ways to
do this, but in the present case there’s just one “minimal” resolution, meaning a
resolution that every other resolution factors through.
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Then — and here’s the magic part! — the inverse image of 0 in M turns out to be
the union of a bunch of Riemann spheres. And if we draw a dot for each sphere,
and an edge between these dots whenever their spheres intersect, we get a simply
laced Dynkin diagram on the above list!!!

Well, almost. We get this diagram with an extra dot thrown in, connected by some
extra edges in a specific way. This is called the “extended” Dynkin diagram. It
also shows up naturally from the Lie group viewpoint, when we consider central
extensions of loop groups.

That’s one way the correspondence works. Another way, discovered by McKay, is to
draw a dot for each irrep of G. There’s always a 2-dimensional representation of G
coming from the action of SU(2) on C2. Let’s just call this irrep C2. Then, draw an
edge from the dot R to the dot S whenever the irrep S shows up in the rep R⊗C2.
You get the same extended Dynkin diagram as before! The special extra dot in the
Dynkin diagram corresponds to the trivial rep of G.

This second way is called the “McKay correspondence”. The first way is sometimes
called the “geometric McKay correspondence”, though I think it was discovered
earlier.

Now we’re well on the road to the next item. . .

D) Simply-laced Dynkin diagrams also classify the simple critical points of holomor-
phic functions

f : C3 → C

A “critical point” is just a place where the gradient of f vanishes. We can try to
classify critical points up to a holomorphic change of variables. It’s better to classify
their “germs”, meaning we only look at what’s going on right near the critical point.
But, even this is hopelessly complicated unless we somehow limit our quest.

To do this, we can restrict attention to “stable” critical points, which are those that
don’t change type under small perturbations. But we can do better: we can classify
“simple” critical points, namely those that change into only finitely many other
types under small perturbations.

These correspond to simply-laced Dynkin diagrams!

First I’ll say which diagram corresponds to which type of critical point. To do this,
I’ll give a polynomial f(x, y, z) that has a certain type of critical point at x = y =
z = 0. Then I’ll explain how the correspondence works:

• The diagram An corresponds to the critical point of xn+1 + y2 + z2.

• The diagram Dn corresponds to the critical point of xn−1 + xy2 + z2.

• The diagram E6 corresponds to the critical point of x4 + y3 + z2.

• The diagram E7 corresponds to the critical point of x3y + y3 + z2.

• The diagram E8 corresponds to the critical point of x5 + y3 + z2.

Here’s how the correspondence works. For each of our Dynkin diagrams we have
a finite subgroup of SU(2), thanks to item C). This subgroup acts on the ring of
polynomials on C2, so we can form the subring of invariant polynomials. This
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turns out to be generated by three polynomials that we will arbitrarily call x, y,
and z. But, they satisfy one relation, given by the polynomial above!

Conversely, we can start with the polynomial

f : C3 → C

The zero set
{f = 0}

has an isolated singularity at the origin. But, we can resolve this singularity, finding
a smooth complex manifold N with a holomorphic map

q : N → {f = 0}

that has a holomorphic inverse on a dense open set. There may be lots of ways to
do this, but in the present case there’s just one “minimal” resolution, meaning one
that every other resolution factors through this one.

Then — and here’s the magic part! — the inverse image of 0 in N turns out to be
the union of a bunch of Riemann spheres. And if we draw a dot for each sphere,
and an edge between these dots whenever their spheres intersect, we get back our
simply laced Dynkin diagram!!!

This whole section should have given you a feeling of deja vu. It’s a lot like section
C). If I were smarter, I’d probably see how it’s exactly the same stuff, repackaged
slightly.

The last item on our list seems different. . . .

E) A quiver is just a category freely generated by some set of morphisms. To specify a
quiver we just write down some dots and arrows. The dots are the objects of our
category; the arrows are the generating morphisms.

A representation of a quiver Q is just a functor

F : Q→ Vect

So, we get a vector space for each dot and a linear map for each arrow, with
no extra restrictions. There’s an obvious category of representations Rep(Q) of a
quiver Q.

A guy named Gabriel proved a divine result about these categories Rep(Q). We
say a quiver Q has “finite representation type” if Rep(Q) has finitely many inde-
composable objects — objects that aren’t direct sums of others. And, it turns out
the quivers of finite representation type are just those coming from simply-laced
Dynkin diagrams!!

Actually, for this to make sense, you need to take your Dynkin diagram and turn
it into a quiver by putting arrows along the edges. If you have an ADE Dynkin
diagram, you get a quiver of finite representation type no matter which way you
let the arrows point.

There’s clearly a lot of mysterious stuff going on here. In particular, this last item
sounds completely unrelated to the rest. But it’s not! There are cool relationships
between quivers and quantum groups, which tie this item to the rest.
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I’ll just mention one — the one Julie Bergner started her talk with.

For this, you need to know a bit about abelian categories.

Abelian categories are categories like the category of abelian groups, or more gen-
erally the category of modules of any ring, where you can talk about chain com-
plexes, exact sequences and stuff like that. You can see the precise definition here:

4) “Abelian categories”, Wikipedia, http://en.wikipedia.org/wiki/Abelian category

and learn more here:

5) Peter Freyd, Abelian Categories, Harper and Row, New York, 1964. Also avail-
able at http://www.tac.mta.ca/tac/reprints/articles/3/tr3abs.html

It’s really interesting to study the “Grothendieck group” K(A) of an abelian cate-
gory A. As a set, this consists of formal linear combinations of isomorphism classes
of objects of A, where we impose the relations

[a] + [b] = [x]

whenever we have a short exact sequence

0→ a→ x→ b→ 0

It becomes an abelian group in an obvious way.

For example, if A is the category of representations of some group G, it’s an abelian
category and K(A) is called the “representation ring” of A — it’s a ring because
we tensor representations. Or, if A is the category of vector bundles over a space
X, it’s again abelian, and K(A) is called the “K-theory of X”.

The Hall ring H(A) of an abelian category is a vaguely similar idea. As a set, this
consists of formal linear combinations of isomorphism classes of objects of A. No
extra relations! It’s an abelian group with the obvious addition. But the cool part is,
with a little luck, we can make it into a ring by letting the product [a][b] be the sum
of all isomorphism classes of objects [x] weighted by the number of isomorphism
classes of short exact sequences

0→ a→ x→ b→ 0

This only works if the number is always finite.

So far when speaking of “formal linear combinations” I’ve been implicitly using
integer coefficients, but people seem to prefer complex coefficients in the Hall
case, and they get something called the “Hall algebra” instead of the “Hall ring”.

The fun starts when we take the Hall algebra of Rep(Q), where Q is a quiver. We
could look at representations in vector spaces over any field, but let’s use a finite
field — necessarily a field with q elements, where q is a prime power.

Then, Ringel proved an amazing theorem about the Hall algebra H(Rep(Q)) when
Q comes from a Dynkin diagram of type A, D, or E:
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5) C. M. Ringel, “Hall algebras and quantum groups”, Invent. Math. 101 (1990),
583–592.

He showed this Hall algebra is a quantum group! More precisely, it’s isomorphic to
the q-deformed universal enveloping algebra of a maximal nilpotent subalgebra of
the Lie algebra associated to the given Dynkin diagram.

That’s a mouthful, but it’s cool. For example, the Lie algebra associated to An is
sl(n + 1), and the maximal nilpotent subalgebra consists of strictly upper trian-
gular matrices. We’re q-deforming the universal enveloping algebra of this. One
cool thing is that the “q” of q-deformation gets interpreted as a prime power —
something we’ve already seen in “Week 185” and subsequent weeks.

So, it seems that all the ways simply-laced Dynkin diagrams show up in math are
related. But, I don’t think anyone understands what’s really going on! It’s like black
magic.

And, I’ve just described some of the black magic!
For example, you’ll notice I portrayed the Hall algebra H(A) as a kind of evil twin of

the more familiar Grothendieck group K(A). They have some funny relations. For ex-
ample, if you take the minimal resolution of C2/G where G is a finite subgroup of SU(2),
you get a variety whose K-theory (as defined above) is isomorphic to the representation
ring of G! This was shown here:

6) G. Gonzalez-Springberg and J. L. Verdier, “Construction geometrique de la corre-
spondance de McKay”, Ann. ENS 16 (1983), 409–449.

For further developments, try this paper, which studies the derived category of coher-
ent sheaves on this minimal resolution of C2/G:

7) Mikhail Kapranov and Eric Vasserot, “Kleinian singularities, derived categories and
Hall algebras”, available as math.AG/9812016.

Now let me give a bunch of references for further study. For a really quick overview
of the whole ADE business, try these:

8) Andrei Gabrielov, “Coxeter-Dynkin diagrams and singularities”, in Selected Papers
of E. B. Dynkin with Commentary, eds. A. A. Yushkevich, G. M. Seitz and A. I. On-
ishchik, AMS, 1999. Also available at http://www.math.purdue.edu/~agabriel/
dynkin.pdf

9) John McKay, “A rapid introduction to ADE theory”, http://math.ucr.edu/home/
baez/ADE.html

Here’s a more detailed but still highly readable introduction:

10) Joris van Hoboken, Platonic solids, binary polyhedral groups, Kleinian singularities
and Lie algebras of type A,D,E, Master’s Thesis, University of Amsterdam, 2002,
available at http://math.ucr.edu/home/baez/joris van hoboken platonic.pdf
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This classic has recently become available online:

11) M. Hazewinkel, W. Hesselink, D. Siermsa, and F. D. Veldkamp, “The ubiquity of
Coxeter-Dynkin diagrams (an introduction to the ADE problem)”, Niew. Arch.
Wisk. 25 (1977), 257–307. Also available at http://repos.project.cwi.nl:8888/
cwi repository/docs/I/10/10039A.pdf or http://math.ucr.edu/home/baez/

hazewinkel et al.pdf

Here’s a really nice, elementary introduction to Klein’s work on the icosahedron and
the quintic:

12) Jerry Shurman, Geometry of the Quintic, Wiley, New York, 1997. Also available at
http://people.reed.edu/~jerry/Quintic/quintic.html

I haven’t seen this book, but I hear it’s good:

13) P. Slodowy, Simple Singularities and Algebraic Groups, Lecture Notes in Mathemat-
ics 815, Springer, Berlin, 1980.

Here’s a bibliography with links to online references:

14) Miles Reid, Links to papers on McKay correspondence, http://www.maths.warwick.
ac.uk/~miles/McKay/

Of those references, I especially like this:

15) Miles Reid, “La Correspondence de McKay” (in English), Seminaire Bourbaki, 52eme
annee, November 1999, no. 867, to appear in Asterisque 2000. Also available as
math.AG/9911165.

Here you’ll also see some material about generalizations of the McKay correspon-
dence. For example, if we take a finite subgroup G of SU(3), we get a quotient C3/G,
which has singularities. If we take a “crepant” resolution of

p : M → C3/G,

which is the right generalization of a minimal resolution, then M is a Calabi-Yau mani-
fold. This gets string theory into the act! Around 1985, Dixon, Harvey, Vafa and Witten
used this to guess that the Euler characteristic of M equals the number of irreps of G. A
lot of work has been done on this since then, and Reid’s article summarizes a bunch.

Apparently a “crepant” resolution is one that induces an isomorphism of canonical
bundles; when this fails to happen folks say there’s a discrepancy, so a crepant resolution
is one with no dis-crepancy. Get it? Since a Calabi-Yau manifold is one whose canon-
ical bundle is trivial, it shouldn’t be completely shocking that crepant resolutions yield
Calabi-Yaus. This all works in the original 2d McKay correspondence, too — the minimal
resolutions we saw there are also crepant.

In fact, string theory also sheds light on the original McKay correspondence. The
reason is that the minimal resolution of C2/G is a very nice Riemannian 4-manifold
(when viewed as a real manifold). It’s an “asymptotically locally Euclidean” manifold,
or ALE manifold for short. Doing string theory on this gives a way of seeing how the
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extended Dynkin diagrams sneak into the McKay correspondence: they’re the Dynkin
diagrams for central extensions of loop groups, which show up as gauge groups in string
theory! I don’t really understand this, but it makes a kind of sense.

I guess this is a famous paper about this stuff:

16) Michael R. Douglas and Gregory Moore, “D-branes, quivers and ALE instantons”,
available as hep-th/9603167.

Addenda: Thanks go to Jeff Barnes for showing how to get ahold of Hazewinkel et
al’s paper online. I got some nice feedback from Graham Leuschke, David Rusin, and
Leslie Coghlan, and I used Leuschke’s to fix a mistake.

Graham Leuschke wrote:

Hi -

A quick correction to your TWF this week. The ADE diagrams are actually the
underlying graphs of quivers of finite representation type, not tame. You gave
the right definition, but the wrong name for it. Tame representation type usually
means that there are infinitely many indecomposable representations, but they
come in nice one-dimensional families. (The third option is wild representation
type, which usually means that classifying the representations would be at least
as hard as classifying all modules over the non-commutative polynomial ring k.
It’s a theorem of Drozd that one of these must hold.)

This actually points toward more black magic: the quivers of finite type have
ADE diagrams for underlying graphs, while the quivers of tame type have “ex-
tended ADE” diagrams underneath them. These extended graphs are the result
of adding one (particular) vertex to each of the ADE graphs, and they often
arise as the answer to questions that are just slightly weaker than the questions
answered by the ADE graphs. For example, the ADE graphs are those for which
the Tits form is positive definite, while the extended ADEs are those for which it’s
positive semi-definite. They correspond to Kac-Moody affine Lie algebras rather
than simple Lie algebras, and so on and so on.

Harm Derksen and Jerzy Weyman had a nice overview of quiver representations
and the theorem of Gabriel in the Notices last year:

17) Harm Derksen and Jerzy Weyman, “Quiver representations”, AMS Notices
52 (2005), 200–206. Also available as http://www.ams.org/notices/
200502/fea-weyman.pdf

Idun Reiten had a similar one in the Notices back in 1997, but I can’t find it
online anywhere:

18) Idun Reiten, “Dynkin diagrams and the representation theory of algebras”,
AMS Notices 44 (1997), 546–556.
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She did a really nice job of explaining the connections with quadratic forms and
(sub)additive functions.

Cheers,
Graham

David Rusin wrote:

John Baez wrote:

The diagram E8 corresponds to the critical point of x5 + y3 + z2.

Milnor has a lovely little book:

19) John Milnor, Singular points of complex hypersurfaces, Ann. Math.
Studies 61, Princeton U. Press, Princeton, 1968.

which takes the point of view that the RIGHT thing to do at an isolated critical
point of a complex-analytic projective variety is to intersect the variety with a
small sphere centered at the critical point.

Brieskorn did this with the varieties

x4k+1 + y3 + z2 + w2 + u2 = 0

which are 4-dimensional complex varieties with isolated critical points at the ori-
gin. So apart from the origin the equation describes an 8-dimensional manifold
and the intersection with the sphere in C5 = R10 is a 7-dimensional manifold.
Brieskorn showed:

1. For every k, these manifolds Mk are homeomorphic to the sphere

2. For every k, Mk is a smooth manifold.

3. Mj and Mk are diffeomorphic iff j = k mod 28.

Thus in particular, the whole group of diffeomorphism classes of manifolds
which are homeomorphic to the sphere has order 28. Milnor had earlier proved
that there are 28 diffeomorphism classes of 7-spheres. But here they are very
explicit!

dave

Leslie Coghlan wrote:

Please add to Week 230 links to copies of these two papers:

20) H. S. M. Coxeter: “The evolution of Coxeter-Dynkin diagrams”, in: Poly-
topes: Abstract, Convex and Computational, eds. T. Bisztriczky, P. Mc-
Mullen, R. Schneider and A. Ivic Weiss, NATO ASI Series C, Vol. 440,
Kluwer, Dordrecht, 1994, pp. 21–42.

21) E. Witt, “Spiegelungsgruppen und Aufzahlung halbeinfacher Liescher Ringe”,
Abhandl. Math. Sem. Univ. Hamburg. 14 (1941), 289–337.
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Yours,

Leslie Coghlan

Here are a couple more online introductions:

22) William Crawley-Boevey, Notes on quiver representations, available at http://

www.amsta.leeds.ac.uk/~pmtwc/quivlecs.pdf.

23) Alistair Savage, “Finite-dimensional algebras and quivers”, available as arXiv:math/
0505082.

This thesis is an attempt to show an astonishing relation between basic ob-
jects from different fields in mathematics. Most peculiarly it turns out that
their classification is “the same”: the ADE classification. Altogether these
objects and the connections between them form a coherent web.

The connections are accomplished by direct constructions leading to bijec-
tions between these classes of objects. These constructions however do not
always explain or give satisfactory intuition why these classifications [exist],
or to say it better, why they should be related in this way. Therefore the
deeper reason remains mysterious and when discovered will have to be of
great depth. This gives a high motivation to look for new concepts and it
shows that simple and since long understood mathematics can still raise very
interesting questions, show paths for new research and give a glance at the
mystery of mathematics. In my opinion to be aware of a certain truth without
having its reason is fundamental to the practise of mathematics.

— Joris van Hoboken
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Week 231

May 9, 2006

Enceladus is a moon of Saturn with a cracked icy surface, twisted and buckled by tidal
forces, hinting at mysteries beneath:

1) NASA, “Enceladus the storyteller”, http://www.nasa.gov/mission pages/cassini/

multimedia/pia07800.html

Recently the NASA space probe Cassini has been getting a good look at Enceladus.
In March, Cassini discovered that it has geysers among the cracks near its south pole —
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geysers that spray water right out into space!

2) “NASA’s Cassini discovers potential liquid water on Enceladus”, http://saturn.
jpl.nasa.gov/news/press-release-details.cfm?newsID=639

3) Special issue on Enceladus, Science 311 (March 10th 2006).

The water freezes in microscopic crystals, which replenish Saturn’s E ring — a diffuse
bluish ring that was previously a mystery.

The currently popular theory for the geysers looks like this:

4) NASA, ‘Enceladus “cold geyser” model’, http://www.nasa.gov/mission pages/

cassini/multimedia/pia07799.html
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Enceladus is now the the only place besides Earth where liquid water has been seen
— though people believe Jupiter’s moon Europa has oceans under a layer of ice, and
maybe Ganymede and Callisto do too.

While we tend to take it for granted, water is a very strange chemical:

5) Martin Chaplin, “Forty-one anomalies of water”, http://www.lsbu.ac.uk/water/
anmlies.html

As you probably know, the specific heat of water is unusually high, which stabilizes
the Earth’s temperature. And no other simple compound exhibits so many different
forms. There at least 18 forms of ice! You can tour them here:

6) Martin Chaplin, “The phase diagram of water”, http://www.lsbu.ac.uk/water/
phase.html

The hexagonal form of ice we find here on earth is called ice Ih. There’s also a
slightly denser cubic phase, ice Ic, which forms when water vapor is condensed on a
cold substrate. Below −130 Celsius, a low-density amorphous solid form called LDA is
possible. By compressing ordinary ice Ih to high pressures, you get a different higher-
density amorphous form, called HDA. And there’s an even denser amorphous form called
VHDA.

(It’s unusual for a crystal to become amorphous when you compress it or cool it, but
ordinary ice is unusually light: it floats on liquid water! That’s because the powerful
hydrogen bonds of water allow it to maintain a very sparse hexagonal crystal structure
— so sparse you could even fit extra water molecules in the gaps. When you crush this,
it becomes amorphous.)

There are also crystal forms called ice II through ice XIV, in order of discovery. It
would take a few weeks to discuss all these, but luckily Chaplin’s website has a separate
page on each kind, with nice explanations and pictures of the crystal structures.

Kurt Vonnegut wrote a novel called “Cat’s Cradle” starring a substance called ice
IX, which was supposedly more stable than liquid water at ordinary temperatures and
pressures. When it got loose, it destroyed the world. Luckily the actual ice IX isn’t like
that, and it couldn’t be: the most stable form of water already prevails.

But enough about ice IX. I want to talk about ice X!
This is one of the most extreme forms of ice known. It’s only stable at pressures of

about 50 gigapascals — in other words, roughly 500,000 atmospheres.
Hmm. Do those quantities mean as little to you as they do to me? A “pascal” is a unit

of pressure, or force per area, equal to one newton per square meter. An “atmosphere”
is another unit of pressure, basically the average air pressure at sea level here on Earth.
This has the annoying value of 101,325 pascals. Personally I have some trouble getting
a feel for how much pressure this is, since a newton per square meter isn’t much, but
101,325 of them sounds like a lot. So for me, being an American, it’s helpful to know
that an atmosphere equals 2116 pounds per square foot. If you’re a metric sort of person,
that’s about the weight of 1 kilogram pushing down on each square centimeter. That’s a
lot of pressure we’re under! No wonder we feel stressed sometimes.

(Yes, I know a kilogram is not a unit of weight. I mean the weight corresponding to
a mass of a kilogram in the Earth’s gravitational field at sea level. Sheesh!)
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But I digress. I was saying that ice X only forms at a pressure of about 50 gigapascals.
But I’ve actually read figures ranging from 44 to 80 gigapascals. This raises the question:
how do people know these things? Do they actually know, or just guess?

Well, some overgrown kids get paid to study these issues by actually squashing water
to enormous pressures using “diamond anvil cells”. Not many substances can withstand
such huge pressures, but diamonds can: as you know, they’re really hard! They’re also
transparent, so you can see what’s going on while you’re squashing something. You
basically just stick something between two carefully carved diamonds, surrounded by a
metal foil gasket, and squash the heck out of it:

7) “Diamond anvil cell”, Wikipedia, http://en.wikipedia.org/wiki/Diamond Anvil Cell

Apparently they can get pressures of up to 360 gigapascals this way, which is the
pressure at the center of the Earth.

Another method, which sounds even more fun, is to use a “light gas gun”. Here
you explode a few kilograms of gunpowder to shoot a piston down a tube. As it shoots
forwards, the piston pushes some gas down the tube. The tube narrows to a tiny tip
at the end, so the gas is going really fast by the time it shoots out. It shoots out into a
much narrower tube, where it pushes a projectile. You can then fire the projectile into
something, to generate very high pressures for a very short time.

8) “Light gas gun”, Wikipedia, http://en.wikipedia.org/wiki/Light Gas Gun

It’s not called a “light” gas gun because it’s wimpy — in fact they’re huge, and ev-
eryone evacuates the lab when they run the one at NASA! It’s called that because the
speed of the projectile is limited only by the speed of sound in the gas, which is higher
for a light gas like helium — or even better, hydrogen. Even better, that is, you don’t
mind exploding gunpowder near highly flammable hydrogen! But, as you can imagine,
people who do this stuff are precisely the sort who don’t mind. You may enjoy reading
how folks at Lawrence Livermore National Laboratory used a light gas gun to compress
hydrogen to pressures of up to 200 gigapascals, enough to convert it into a metal:

9) Robert C. Cauble, “Putting more pressure on hydrogen”, http://www.llnl.gov/
str/Cauble.html

This supports the theory that the hydrogen at Jupiter’s core is in metallic form, which
would explain its enormous magnetic field. They know their hydrogen became a metal
because they fired a laser at it and saw it was shiny! In fact, they fired three lasers at it
simultaneously, just for kicks.

(By the way, this article erroneously says a “megabar” is 100 pascals. It’s a million
atmospheres, or 100 gigapascals.)

But I’m digressing again. I was saying ice X forms at a pressure of around 50 gigapas-
cals. It’s pretty far-out stuff. It’s a cubic crystal with density 2.5 times that of ordinary
liquid water. It’s so compressed that separate water molecules no longer exist! Instead,
the oxygen atoms form a body-centered cubic. This means they lie at the corners of a
lattice of cubes, but with one at the center of each cube too, like the red dots in this
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picture by Cavazzoni:

10) Carlo Cavazzoni, Large scale first-principles simulations of water and ammonia at
high pressure and temperature, Ph.D. thesis, Scuola Internazionale Superiore di
Studi Avanzati, October 1998. Figure 4.10: symmetric and super-ionic ice X struc-
tures, p. 57. Available at http://sirio.cineca.it/~acv0/thesis.html

Hydrogen ions — in other words, protons — sit at the midpoints of half the edges
connecting cube corners to cube centers. There are two ways they can do this, illustrated
by the yellow and gray dots shown above. They can form a right-side-up tetrahedron, or
an upside-down tetrahedron.

A body-centered cubic can also be visualized as two interpenetrating cubic lattices,
labelled A and B here:

Each oxygen has 4 hydrogens next to it. If you compress water a bit less than enough
to make ice X, you get ice VII. This is almost the same, but two of those hydrogens are
closer to the oxygen than the other two, so there are still separate water molecules! It’s
completely random which two hydrogens are closer than the other two. But if you cool
down ice VII, you get ice VIII, where it’s not random.

So, Nature explores all the options.
Recently people have gotten interested in ice at even higher pressures — and also

higher temperatures, to understand the interiors of planets like Neptune and Uranus.
Here pressures range from 20 to 800 gigapascals, and temperatures from 2000 to 8000
kelvin. In “Week 160” I mentioned that on Neptune it may rain diamonds, formed by
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methane in the atmosphere. But what happens to the water, and the ammonia? If
they became good electrical conductors, that might explain the magnetic fields of these
planets.

People have done computer simulations to study this:

12) C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi and M. Par-
rinello, “Superionic and metallic states of water and ammonia at giant planet
conditions”, Science 283 (January 1999), 44–46. Also available at http://www.
sciencemag.org/cgi/content/full/283/5398/44

It seems that when you heat up ice X, it goes into a “superionic” state where the little
tetrahedra of hydrogen ions in each cube are constantly randomizing themselves, instead
of remaining fixed. It’s a curious hybrid of a solid and a liquid, since the hydrogens are
moving around, while the oxygens stay in their body-centered cubic crystal.

But if you heat it even more, the oxygen melts too! As you can see from the phase
diagram above, it then becomes an ionic fluid.

As you heat it even more, you enter the region labelled “gap closure”, where the
water starts to act like a metallic plasma. Then it’s a really good conductor of electricity.

The curve labelled “Neptune isentrope” describes the pressures and temperatures
you’d experience if you unwisely jumped into Neptune!

As you fell in, it would keep getting hotter and the pressure would keep rising until
you entered this chart, at a temperature of about 2000 kelvin. At this point you’d see
molecular fluid water — I say this because at temperatures above 650 kelvin (the critical
point for water), there’s no sharp difference between liquid and gas. Then the fluid
would become ionic. . . and then you’d start drifting towards gap closure and the metallic
plasma phase. Down deep, metallic plasmas of water and ammonia might explain the
magnetic field of this planet.

Recently people have done some experiments with water at extremely high pressures,
checking what theorists like Cavazzoni and company predict. For example, this paper
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says that using “extremely large lasers”, people have studied water at pressures near a
terapascal — 1000 gigapascals:

13) P. M. Celliers et al, “Electronic conduction in shock-compressed water”, Plasmas 11
(2004), L41–L48.

They also mention that “a single datum at 1.4 terapascals from an underground nu-
clear experiment has never been repeated.” Some people just don’t know when to stop
in the quest for higher pressures.

While I’m at it, I should mention a few more interesting articles on weird forms of
ice. There’s a lot of research on this subject! Here’s a quick overview:

14) Nancy McGuire, “The many phases of water”, American Chemical Society, https:/
/web.archive.org/web/20051201104533/http://www.chemistry.org/portal/a/

c/s/1/feature pro.html?id=c373e9fbed0a01c78f6a4fd8fe800100

Here’s a webpage with some nice pictures and an interesting story:

15) J. L. Finney, “The phase diagram of water and a new metastable form of ice”,
http://www.cmmp.ucl.ac.uk/people/finney/soi.html

And finally, there’s a paper that talks about how ordinary ice Ih but also silica and ice
XI become amorphous when you squeeze them enough:

16) Koichiro Umemoto, Renata M. Wentzcovitch, Stefano Baroni and Stefano de Ciron-
coli, “Anomalous pressure-induced transition(s) in ice XI”, Physical Review Letters
92 (2004), 105502-1. Also available at http://www.cems.umn.edu/research/

wentzcovitch/papers/Phys. Rev. Lett. 92 105502 (2004).pdf

There’s some interesting math in here, because they do computer simulations of the
transition from a crystal to an amorphous substance, which is interesting to study using
Fourier analysis. The idea is that certain vibrational modes of the crystal “go soft”, so
they get easily excited. When a bunch of modes go soft that have wavelengths not equal
to the crystal lattice spacing, the crystal structure becomes unstable, and there can be a
transition to an amorphous state.

There’s also interesting math lurking in Cavazzoni et al’s models of ice X! If you think
particle physics is hard, just wait until you try understanding something complicated,
like water.

I’ve been sort of obsessed with ice lately. If you like it too, I recommend this book for
general information:

16) Mariana Gosnell, Ice: The Nature, the History, and the Uses of an Astonishing Sub-
stance, Alfred A. Knopf, New York, 2005.

but I bought this one, because it tells an interesting history of the science of climate
change as seen from icy peaks:

17) Mark Bowen, Thin Ice: Unlocking the Secrets of Climate in the World’s Highest Moun-
tains, Henry Holt & Co., 2005.
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Now for some math. Last week I said a bit about quivers, the McKay correspondence,
and string theory. I want to dig deeper into the relation between these subjects, because
Urs Schreiber has some interesting ideas about them, which he’s mentioned here:

18) Urs Schreiber, “A note on RCFT and quiver reps”, http://golem.ph.utexas.edu/
string/archives/000794.html

But, I’m not feeling sufficiently energetic to explain these ideas right now, especially
since he already has! For some more clues, try this:

19) Paul Aspinwall, “D-branes on Calabi-Yau manifolds”, section 7.3.1, The McKay cor-
respondence, p. 101 and following. Available as hep-th/0403166

For more on the the representation theory of quivers, see the references in the “Ad-
denda” to “Week 230”, and also this excellent book:

20) David J. Benson, Representations and Cohomology I, Cambridge U. Press, Cam-
bridge 1991.

You’ll see how the non-simply-laced Dynkin diagrams get into the act! A more thor-
ough treatment, fascinating but somewhat quirky, can be found here:

21) P. Gabriel and A. V. Roiter, Representations of Finite-Dimensional Algebras, Enc. of
Math. Sci. 73, Algebra VIII, Springer, Berlin 1992.

If you like category theory you may enjoy this book, because it’s all about represen-
tations of categories, i.e. functors

F : C → Vect

where C is a category. It’s full of nontrivial theorems about these, starting with Gabriel’s
classification of quivers into those of finite representation type (see “Week 230”), the
tame quivers (which have an infinite but still manageable set of indecomposable repre-
sentations), and the wild ones. But, you may be puzzled when you read about “svelte”
categories, or functors that “preserve heteromorphisms”.

I might as well say what those are. A category is “svelte” if its isomorphism classes of
objects form a mere set instead of a proper class, like the category of finite-dimensional
vector spaces. Most people would say such a category is “essentially small”.

And, a functor “preserves heteromorphisms” if it maps heteromorphisms to hetero-
morphisms. Well, duh! But what’s a “heteromorphism”? It’s their term for a mor-
phism that’s not an isomorphism. Most people would say such a functor “reflects iso-
morphisms”.

You may also be interested in what a “locular” category is, or a “spectroid”. . . but I
won’t tell you! Read the book.

Speaking of category theory, this is my last week in Chicago, which is really sad,
because Steve Lack is just starting to give us a crash course on “Australian category
theory”. Australia, you see, is the center of macho category theory, where they’re heavy
on the calculus of mates, doctrinal adjunctions are a dime a dozen, and everything should
be V-enriched if not W-enriched. But Chicago is starting to get macho too: tomorrow
Nick Gurski defends his Ph.D. thesis on “Algebraic Tricategories”! So, the Chicago gang
wants to learn some tricks from the Australians. But next Monday I’m off to the Perimeter
Institute, to indulge the physics side of my personality. . . .
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Addenda: I thank Colin Rust for correcting a serious typo. Uncle Al points out that
a newton is, quite appropriately, about the weight of an average apple. Aaron Bergman
had this to say:

John Baez wrote:

Now for some math. Last week I said a bit about quivers, the McKay
correspondence, and string theory. I want to dig deeper into the rela-
tion between these subjects,

You want

22) Tom Bridgeland, Alaistair King and Miles Reid, “Mukai implies McKay: the
McKay correspondence as an equivalence of derived categories”, available
as math.AG/9908027.

Much coolness there.

For more on the representation theory of quivers, see the references in
the “Addenda” to “Week 230”, and also this excellent book:

20) David J. Benson, Representations and Cohomology I, Cambridge
U. Press, Cambridge 1991.

There’s a whole lot of cool things to say about non-Dynkin quivers. If you put a
D-brane at an ADE singularity, you get the affine Dynkin quivers, but there are
plenty of other singularities out there. Another nice set is the canonical bundle
over a del Pezzo with the zero section collapsed. Quivers can be associated to
this via a work of Bridgeland:

23) Tom Bridgeland, “T-structures on some local Calabi-Yau varieties”, avail-
able as math.AG/0502050.

with many of the same results in some physics papers by Herzog, Aspinwall and
Wijnholt.

My modest contribution to this story is where myself and Nick Proudfoot show
that the moduli space of representations of these quivers (for a subclass of ex-
amples) has as a component the original cone:

24) Aaron Bergman, “Undoing orbifold quivers”, available as hep-th/0502105.

Aaron Bergman, “Moduli spaces for Bondal quivers”, available as math.AG/

0512166.

Aaron
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That the glass would melt in heat,
That the water would freeze in cold,
Shows that this object is merely a state,
One of many, between two poles.

— Wallace Stevens
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Week 232

May 18, 2006

I’m at the Perimeter Institute now. It’s great to see how it’s developed since I first saw
their new building back in 2004 (see “Week 208” for the story).

There’s now a busy schedule of seminars and weekly colloquia, with string theorists
and loop quantum gravity people coexisting happily. Their program of Superstring Quar-
tets features some really hot bands, like the Julliard and Emerson — unfortunately not
playing while I’m here. The Black Hole Bistro serves elegant lunches and dinners, there
are at least two espresso machines on each floor, and my friend Eugenia Cheng will be
happy to hear that they still have a piano available (after 6 pm).

But don’t get the impression that it’s overly sophisticated: there are also a couple of
guys constantly playing foosball in the Feynman Lounge.

Since I’m here, I should talk about quantum gravity — so I will. But first, let’s have
the astronomy picture of the week.

This week it comes, not from outer space, but beneath the surface of the South Pole:

1) Steve Yunck / NSF, “Cerenkov light passing through the IceCube neutrino detec-
tor”, http://icecube.wisc.edu/gallery/detector concepts/ceren hires

This is an artist’s impression of a huge neutrino observatory called “IceCube”. (Maybe
they left out the space here so the rap star of that name doesn’t sue them for trademark
infringement, or go down there and shoot them.)

IceCube is being built in the beautifully clear 18,000-year old ice deep beneath the
Amundsen-Scott South Pole Station. When a high-energy neutrino hits a water molecule,
sometimes the collision produces a muon zipping faster than the speed of light in ice.
This in turn produces something like a sonic boom, but with light instead of sound. It’s
called “Cerenkov radiation”, and it’s the blue light in the picture. This will be detected
by an array of 5000 photomultiplier tubes — those gadgets hanging on electrical cables.
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One thing the artist’s impression doesn’t show is that IceCube is amazingly large.
The whole array is a cubic kilometer in size! It will encompass the already existing
AMANDA detector, itself 10,000 meters tall, shown as a yellow cylinder here with a
neutrino zipping through:

2) Darwin Rianto / NSF, “Comparison of AMANDA and IceCube”, http://icecube.
wisc.edu/gallery/detector concepts/icecubeencomp 300

Even the very top of IceCube is 1.4 kilometers beneath the snowy Antarctic surface,
to minimize the effect of stray cosmic rays. The station on top looks like this — not very
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cozy, I’d say:

3) Robert G. Stokstad / NSF, “South Pole Station”, http://icecube.wisc.edu/gallery/
antarctica/PC140287 300

I heard about IceCube from Adrian Burd, one of the old-timers who used to post a
lot on sci.physics, a former cosmologist turned oceanographer who recently visited
Antarctica as part of an NSF-run field course. He ran into some people working on
IceCube. It sounds like an interesting community down there! You can read about it in
their newspaper, the Antarctic Sun. For example:

4) “Ice Cube turns up the heat”, The Antarctic Sun, January 29, 2006, http://antarcticsun.
usap.gov/2005-2006/contentHandler.cfm?id=959

For more on IceCube and Amanda, these are fun to read:

5) Francis Halzen, “Ice fishing for neutrinos”, http://icecube.berkeley.edu/amanda/
ice-fishing.html

6) Katie Yurkiewicz, “Extreme neutrinos”, Symmetry, volume 1 issue 1, November
2004, http://symmetrymagazine.org/cms/?pid=1000014

For some of AMANDA’s results, including a map of the sky as seen in neutrinos, try
this:

7) M. Ackermann et al, “Search for extraterrestrial point sources of high energy neutri-
nos with AMANDA-II using data collected in 2000–2002”, available as astro-ph/
0412347.

For much more, try these:

8) AMANDA II Project, http://amanda.uci.edu/
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9) Welcome to IceCube, http://icecube.wisc.edu/

And now, on to gravity.
You may have heard of the gravitational 3-body problem. Well, Richard Montgomery

(famous from “Week 181”) recently pointed out this movie of the 60-body problem:

10) Davide L. Ferrario, “Periodic orbits for the 60-body problem”, http://www.matapp.
unimib.it/~ferrario/mov/index.html

60 equal masses do a complicated dance while always preserving icosahedral sym-
metry! First 12 groups of 5 swing past each other, then 20 groups of 3. If you want to
know how he found these solutions, read this:

11) Davide L. Ferrario and S. Terracini, “On the existence of collisionless equivariant
minimizers for the classical n-body problem”. Invent. Math. 155 (2004), 305–362.

It’s quite math-intensive — though just what you’d expect if you know this sort of
thing: they use the G-equivariant topology of loop spaces, where G is the symme-
try group in question (here the icosahedral group), to prove the existence of action-
minimizing loops with given symmetry properties.

Next, I’d like to say a little about point particles in 3d quantum gravity, and some
recent work with Alissa Crans, Derek Wise and Alejandro Perez on string-like defects in
4d topological gravity:

12) John Baez, Derek Wise and Alissa Crans, “Exotic statistics for strings in 4d BF
theory”, available as gr-qc/0603085.

13) John Baez and Alejandro Perez, “Quantization of strings and branes coupled to BF
theory”, available as gr-qc/0605087.

(Jeffrey Morton is also involved in this project, a bit more on the n-category side of
things, but that aspect is top secret for now.)

In “Week 222” I listed a bunch of cool papers on 3d quantum gravity, but I didn’t
really explain them. What we’re trying to do now is generalize this work to higher
dimensions. But first, let me start by explaining the wonders of 3d quantum gravity.

The main wonder is that we actually understand it! The classical version of general
relativity is exactly solvable when spacetime has dimension 3, and so is the quantum
version. Most of the wonders I want to discuss are already visible in the classical theory,
where they are easier to understand, so I’ll focus on the classical case.

A nice formulation of general relativity in 3 dimensions uses a “Lorentz connection”
A and a “triad field” e. This is a gauge theory where the gauge group is SO(2, 1), the
Lorentz group for 3d spacetime. If we’re feeling lowbrow we can think of both A and e
as so(2, 1)-valued 1-forms on the 3-manifold M that describes spacetime. The action for
this theory is: ∫

M

tr(e ∧ F )

where F is the curvature of A. If you work out the equations of motion one of them says
that F = 0, so our connection A is flat. The other, dAe = 0, says A is basically just the
Levi-Civita connection.
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This is exactly what we want, because in the absence of matter, general relativity in
3 dimensions says spacetime is flat.

A fellow named Phillipp de Sousa Gerbert came up with an interesting way to couple
point particles to this formulation of quantum gravity:

14) Phillipp de Sousa Gerbert, “On spin and (quantum) gravity in 2+1 dimensions”,
Nuclear Physics B346 (1990), 440–472.

He actually did it for particles with spin, but I’ll just do the spin-zero case.
The idea is to fix a 1-dimensional submanifold W in our 3-manifold M and think

of it as the worldlines of some particles. Put so(2, 1)-valued functions p and q on these
worldlines — think of these as giving the particles’ momentum and position as a function
of time.

Huh? Well, normally we think of position and momentum as vectors. In special
relativity, “position” means “position in spacetime”, and “momentum” means “energy-
momentum”. We can think of both of these as vectors in Minkowksi spacetime. But in
3 dimensions, Minkowski spacetime is naturally identified with the Lorentz Lie algebra
so(2, 1). So, it makes sense to think of q and p as elements of so(2, 1) which vary from
point to point along the particle’s worldline.

To couple our point particles to gravity, we then add a term to the action like this:

S =

∫
M

tr(e ∧ F )−
∫
W

tr((e+ dAq) ∧ p)

Now if you vary the e field you get a field equation saying that

F = pδW

Here δW is like the Dirac delta function of the worldline W ; it’s a distributional 2-form
defined by requiring that ∫

W

X =

∫
M

(X ∧ δW )

for any smooth 1-form X on W . This sort of “distributional differential form” is also
called a “current”, and you can read about them in the classic tome by Choquet-Bruhat
et al. But the main point is that the field equation

F = pδW

says our connection on spacetime is flat except along the worldlines of our particles,
where the curvature is a kind of “δ function”. This is nice, because that’s what we expect
in 3d gravity: if you have a particle, spacetime will be flat everywhere except right at the
particle, where it will have a singularity like the tip of a cone.

A cone, you see, is intrinsically flat except at its tip: that’s why you can curl paper
into a cone without crinkling it!

So, our spacetime is flat except along the particles’ worldlines, and there it’s like a
cone. The “deficit angle” of this cone — the angle of the slice you’d need to cut out to
curl some paper into this cone - is specified by the particle’s momentum p.
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Since delta functions are a bit scary, it’s actually better to work with an “integrated”
form of the equation

F = −pδW
The integrated form says that if we parallel transport a little tangent vector around a
little loop circling our particle’s worldline, it gets rotated and/or Lorentz transformed by
the element

exp(p)

in SO(2, 1). This will be a rotation if the particle’s momentum p is timelike, as it is for
normal particles. Again, that’s just as it should be: if you parallel transport a little arrow
around a massive particle in 3d gravity, it gets rotated!

If p is timelike, our particle is a tachyon and exp(p) is a Lorentz boost. And so on. . .
we get the usual classification of particles corresponding to various choices of p:

There are other equations of motion, obtained by varying other fields, but all I want
to note is the one you get by varying q:

dAp = 0

This says that the momentum p is covariantly constant along the particles’ worldlines.
So, momentum is conserved!

The really cool part is the relation between the Lie algebra element p and the group
element exp(p). Originally we thought of p as momentum — but there’s a sense in which
exp(p) is the momentum that really counts!

First, exp(p) is what we actually detect by parallel transporting a little arrow around
our particle.

Second, suppose we let two particles collide and form a new one:

p p′

p′′

Now our worldlines don’t form a submanifold anymore, but if we keep our wits about
us, we can see that everything still makes sense, and we get momentum conservation in
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this form:
exp(p′′) = exp(p) exp(p′)

since little loops going around the two incoming particles can fuse to form a loop going
around the outgoing particle. Note that we’re getting conservation of the group-valued
momentum, not the Lie-algebra-valued momentum — we don’t have

p′′ = p+ p′

So, conservation of energy-momentum is getting modified by gravitational effects! This
goes by the name of “doubly special relativity”:

15) Laurent Freidel, Jerzy Kowalski-Glikman and Lee Smolin, “2+1 gravity and doubly
special relativity”, Phys. Rev. D69 (2004) 044001. Also available as hep-th/

0307085.

This effect is a bit less shocking if we put the units back in. I’ve secretly been setting
4πG = 1, where G is Newton’s gravitational constant. If we put that constant back in —
let’s call it k instead of 4πG — we get

exp(kp′′) = exp(kp) exp(kp′)

or if you expand things out:

p′′ = p+ p′ +
k

2
[p, p′] + terms of order k2 and higher

So, as long as the momenta are small compared to the Planck mass, the usual law of
conservation of momentum

p′′ = p+ p′

almost holds! But, for large momenta this law breaks down — we must think of momen-
tum as group-valued if we want it to be conserved!

I think this is incredibly cool: as we turn on gravity, the usual “flat” momentum
space curls up into a group, and we need to multiply momenta in this group, instead
of add them in the Lie algebra. We can think of this group has having a “radius” of
1/k, so it’s really big and almost flat when the strength of gravity is small. In this limit,
multiplication in the group reduces to addition in the Lie algebra.

I should point out that this effect is purely classical! It’s still there when we quantize
the theory, but it only depends on the gravitational constant, not Planck’s constant. In-
deed, in 3d quantum gravity, we can build a unit of mass using just G and c: we don’t
need ℏ. This unit is the mass that curls space into an infinitely skinny cone! It would be
a bit misleading to call it “Planck mass”, but it’s the maximum possible mass. Any mass
bigger than this acts like a negative mass. That’s because the corresponding group-valued
momenta “wrap around” in the group SO(2, 1).

We also get another cool effect — exotic statistics. In the absence of gravitational or
quantum effects, when you switch two particles, you just switch their momenta:

(p, p′) 7→ (p′, p)
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But in 3d gravity, you can think of this process of switching particles as a braid:

and if you work out what happens to their group-valued momenta, say

g = exp(kp)

g′ = exp(kp′)

it turns out that one momentum gets conjugated by the other:

(g, g′) 7→ (gg′g−1, g)

To see this, remember that we get these group elements by doing parallel transport
around loops that circle our particles. When we move our particles, the loops get dragged
along, like this:

Note that the left-hand red loop moves until it looks just like the right one did initially,
but the right-hand one gets wrapped around the left one. If you ponder this carefully,
and you know some math, you can see it yields this:

(g, g′) 7→ (gg′g−1, g)
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So, the process of braiding two particles around each other has a nontrivial effect on
their momenta. In particular, if you braid two particles around other twice they don’t
wind up in their original state!

Thus, our particles are neither bosons nor fermions, but “nonabelian anyons” — the
process of switching them is governed not by the permutation group, but by the braid
group. But again, if you expand things out in powers of k you’ll see this effect is only
noticeable for large momenta:

(p, p′) 7→ (p′ + k[p, p′] + higher order terms, p)

Summarizing, we see quantum gravity is lots of fun in 3 dimensions: it’s easy to intro-
duce point particles, and they have group-valued momentum, which gives rise to doubly
special relativity and braid group statistics.

Now, what happens when we go from 3 dimensions to 4 dimensions?
Well, we can write down the same sort of theory:

S =

∫
M

tr(B ∧ F )−
∫
W

tr((B + dAq) ∧ p)

The only visible difference is that what I’d been calling “e” is now called “B”, so you can
see why folks call this “BF theory”.

But more importantly, nowM is an 4-dimensional spacetime andW is an 2-dimensional
“worldsheet”. A is again a Lorentz connection, which we can think of as an so(3, 1)-
valued 1-form. B is an so(3, 1)-valued 2-form. p is an so(3, 1)-valued function on the
worldsheet W . q is an so(3, 1)-valued 1-form on W .

So, only a few numbers have changed. . . so everything works very similarly! The big
difference is that instead of spacetime having a conical singularity along the worldline
of a particle, now it’s singular along the worldsheet of a string. When I call it a “string”,
I’m not trying to say it behaves like the ones they think about in string theory — at least
superficially, it’s a different sort of theory, a purely topological theory. But, we’ve got
these closed loops that move around, split and join, and trace out surfaces in spacetime.

They can also braid around each other in topologically nontrivial ways, as shown in
this “movie”:
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(By the way, all the math pictures this week were drawn by Derek for our paper.)
So, we get exotic statistics as before, but now they are governed not by the braid

group but by the ”loop braid group’ ’, which keeps track of all the ways we can move a
bunch of circles around in 3d space. Let’s take our spacetime M to be R4, to keep things
simple. Then our circles can move around in R3. . . and there are two basic ways we can
switch two of them: move them around each other, or pass one through the other, like
this:

If we just move them around each other, they might as well have been point particles:
we get a copy of the permutation group, and all we see are ordinary statistics. But when
we consider all the ways of passing them through each other, we get a copy of the braid
group!
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When we allow ourselves both motions, we get a group called the “loop braid group’ ’
or”braid permutation group’ ’ — and one thing Alissa Derek and I did was to get a pre-
sentation of this group. This is an example of a ”motion group’ ’: just as the motion group
of point particles in the plane is the braid group, and motion group of point particles in
R3 is the permutation group, the motion group of strings in R3 is the loop braid group.

As before, our strings have group-valued momenta: we can get an element of the
Lorentz group SO(3, 1) by parallel transporting a little tangent vector around a string.
And, we can see how different ways of switching our strings affect the momenta. When
we move two strings around each other, their momenta switch in the usual way:

(g, g′) 7→ (g′, g)

but when we move one through the other, one momentum gets conjugated by the other:

(g, g′) 7→ (gg′g−1, g)

So, we have exotic statistics, but you can only notice them if you can pass one string
through another!

In the paper with Alejandro, we go further and begin the project of quantizing these
funny strings, using ideas from loop quantum gravity. Loop quantum gravity has its
share of problems, but it works perfectly well for 3d quantum gravity, and matches the
spin foam picture of this theory. People have sort of believed this for a long time, but
Alejandro demonstrated this quite carefully in a recent paper with Karim Noui:

15) Karim Noui and Alejandro Perez, “Dynamics of loop quantum gravity and spin
foam models in three dimensions”, to appear in the proceedings of the Third In-
ternational Symposium on Quantum Theory and Symmetries (QTS3), available as
gr-qc/0402112.

The reason everything works so nicely is that the equations of motion say the con-
nection is flat. Since the same is true in BF theory in higher dimensions, we expect that
the loop quantization and spin foam quantization of the theory I’m talking about now
should also work well.

We find that we get a Hilbert space with a basis of “string spin networks”, meaning
spin networks that can have loose ends on the stringy defects.

So, there’s some weird blend of loop quantum gravity and strings going on here —
but I don’t really understand the relation to ordinary string theory, if any. It’s possible
that I can get a topological string theory (some sort of well-defined mathematical gadget)
which describes these stringy defects, and that would be quite interesting.

But, I spoke about this today at the Perimeter Institute, and Malcolm Perry said that
instead of “strings” I should call these guys (n − 2)-branes, because the connection has
conical singularities on them, “which is what one would expect for any respectable (n−
2)-brane”.

I will talk to him more about this and try to pick his, umm, branes. In fact I took
my very first GR course from him, back when he was a postdoc at Princeton and I was a
measly undergraduate. I was too scared to ask him many questions then. I’m a bit less
scared now, but I’ve still got a lot to learn. Tomorrow he’s giving a talk about this:

17) David S. Berman, Malcolm J. Perry, “M-theory and the string genus expansion”,
Phys. Lett. B635 (2006) 131–135. Also available as hep-th/0601141.
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Addenda: Here’s an email from Greg Egan, and my reply:

John Baez wrote:

The really cool part is the relation between the Lie algebra element
p and the group element exp(p). Originally we thought of p as mo-
mentum — but there’s a sense in which exp(p) is the momentum that
really counts!

Would it be correct to assume that the ordinary tangent vector p still transforms
in the usual way? In other words, suppose I’m living in a 2+1 dimensional uni-
verse, and there’s a point particle with rest massm and hence energy-momentum
vector in its rest frame of p = me0. If I cross its world line with a certain relative
velocity, there’s an element g of SO(2, 1) which tells me how to map the particle’s
tangent space to my own. Would I measure the particle’s energy-momentum to
be p′ = gp? (e.g. if I used the particle to do work in my own rest frame) Would
there still be no upper bound on the total energy, i.e. by making our relative
velocity close enough to c, I could measure the particle’s kinetic energy to be as
high as I wished?

I guess I’m trying to clarify whether the usual Lorentz transformation of the
tangent space has somehow been completely invalidated for extreme boosts, or
whether it’s just a matter of there being a second definition of “momentum”
(defined in terms of the Hamiltonian) which transforms differently and is the
appropriate thing to consider in gravitational contexts.

In other words, does the cut-off mass apply only to the deficit angle, and do
boosts still allow me to measure (by non-gravitational means) arbitrarily large
energies (at least in the classical theory)?

I replied:

Greg Egan wrote:

John Baez wrote:

The really cool part is the relation between the Lie alge-
bra element p and the group element exp(p). Originally we
thought of p as momentum — but there’s a sense in which
exp(p) is the momentum that really counts!

Would it be correct to assume that the ordinary tangent vector p still
transforms in the usual way?

Hi! Yes, it would.
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In other words, suppose I’m living in a 2+1 dimensional universe,
and there’s a point particle with rest mass m and hence energy-
momentum vector in its rest frame of p = me0. If I cross its world line
with a certain relative velocity, there’s an element g of SO(2, 1) which
tells me how to map the particle’s tangent space to my own. Would I
measure the particle’s energy-momentum to be p′ = gp? (e.g. if I used
the particle to do work in my own rest frame) Would there still be no
upper bound on the total energy, i.e. by making our relative velocity
close enough to c, I could measure the particle’s kinetic energy to be
as high as I wished?

To understand this, it’s good to think of the momenta as elements of the Lie
algebra so(2, 1) — it’s crucial to the game.

Then, if you have momentum p, and I zip past you, so you appear transformed
by some element g of the Lorentz group SO(2, 1), I’ll see your momentum as

p′ = gpg−1

This is just another way of writing the usual formula for Lorentz transforms in
3d Minkowski space. No new physics so far, just a clever mathematical formal-
ism.

But when we turn on gravity, letting Newton’s constant k be nonzero, we should
instead think of momentum as group-valued, via

h = exp(kp)

and similarly
h′ = exp(kp′)

Different choices of p now map to the same choice of h. In particular, a particle
of a certain large mass — the Planck mass — will turn out to act just like a
particle of zero mass!

So, if we agree to work with h instead of p, we are now doing new physics. This
is even more obvious when we decide to multiply momenta instead of adding
them, since multiplication in SO(2, 1) is noncommutative!

But, if we transform our group-valued momentum in the correct way:

h′ = ghg−1

this will be completely compatible with our previous transformation law for
vector-valued momentum!

I guess I’m trying to clarify whether the usual Lorentz transforma-
tion of the tangent space has somehow been completely invalidated
for extreme boosts, or whether it’s just a matter of there being a sec-
ond definition of “momentum” (defined in terms of the Hamiltonian)
which transforms differently and is the appropriate thing to consider
in gravitational contexts.
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Good question! Amazingly, the usual Lorentz transformations still work EX-
ACTLY — even though the rule for adding momentum is new (now it’s multi-
plication in the group). We’re just taking exp(kp) instead of p as the “physical”
aspect of momentum.

This effectively puts an upper limit on mass, since as we keep increasing the
mass of a particle, eventually it “loops around” SO(2, 1) and act exactly like a
particle of zero mass.

But, it doesn’t exactly put an upper bound on energy-momentum, since SO(2, 1)
is noncompact. Of course energy and momentum don’t take real values any-
more, so one must be a bit careful with this “upper bound” talk.

In other words, does the cut-off mass apply only to the deficit angle,
and do boosts still allow me to measure (by non-gravitational means)
arbitrarily large energies (at least in the classical theory)?

There’s some sense in which energy-momenta can be arbitrarily large. That’s
because the space of energy-momenta, namely SO(2, 1), is noncompact. Maybe
you can figure out some more intuitive way to express this.

I was sitting in a chair in the patent office in Bern when all of a sudden a
thought occurred to me. If a person falls freely, he will not feel his own
weight.

— Albert Einstein
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Week 233

May 20, 2006

On Tuesday I’m supposed to talk with Lee Smolin about an idea he’s been working on
with Fotini Markopoulou and Sundance Bilson-Thompson. This idea relates the elemen-
tary particles in one generation of the Standard Model to certain 3-strand framed braids:

1) Sundance O. Bilson-Thompson, “A topological model of composite preons”, avail-
able as hep-ph/0503213.

2) Sundance O. Bilson-Thompson, Fotini Markopoulou, and Lee Smolin, “Quantum
gravity and the Standard Model”, hep-th/0603022.

It’s a very speculative idea: they’ve found some interesting relations, but nobody
knows if these are coincidental or not.

Luckily, one of my hobbies is collecting mysterious relationships between basic math-
ematical objects and trying to figure out what’s going on. So, I already happen to know
a bunch of weird facts about 3-strand braids. I figure I’ll tell Smolin about this stuff. But
if you don’t mind, I’ll practice on you!

So, today I’ll try to tell a story connecting the 3-strand braid group, the trefoil knot,
rational tangles, the groups SL(2,Z) and PSL(2,Z), conformal field theory, and Mon-
strous Moonshine.

I’ve talked about some of these things before, but now I’ll introduce some new puzzle
pieces, which come from two places:

3) Imre Tuba and Hans Wenzl, “Representations of the braid groupB3 and of SL(2,Z)”,
available as math.RT/9912013.

4) Terry Gannon, “The algebraic meaning of genus-zero”, available as math.NT/0512248.

You could call it “a tale of two groups”.
On the one hand, the 3-strand braid group has generators

A =

and

B =

and the only relation is
ABA = BAB

407

http://arxiv.org/abs/hep-ph/0503213
https://arxiv.org/abs/hep-th/0603022
http://arxiv.org/abs/math.RT/9912013
http://arxiv.org/abs/math.NT/0512248


WEEK 233 MAY 20, 2006

otherwise known as the “third Reidemeister move”:

=

On other hand, the group SL(2,Z) consists of 2 × 2 integer matrices with determinant
1. It’s important in number theory, complex analysis, string theory and other branches
of pure mathematics. I’ve described some of its charms in “Week 125”, “Week 229” and
elsewhere.

These groups look pretty different at first. But, there’s a homomorphism from B3

onto SL(2,Z)! It goes like this:

A 7−→
(

1 1
0 1

)
B 7−→

(
1 0
−1 1

)
Both these matrices describe “shears” in the plane. You may enjoy drawing these shears
and visualizing the equation ABA = BAB in these terms. I did.

I would like to understand this better. . . and here are some clues.
The center of B3 is generated by the element (AB)3. This element corresponds to a

“full twist”. In other words, it’s the braid you get by hanging 3 strings from the ceiling,
grabbing them all with one hand at the bottom, and giving them a full 360-degree twist:

A

B

A

B

A

B

This full twist gets sent to −1 in SL(2,Z):

(AB)3 7−→
(
−1 0
0 −1

)
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So, the double twist gets sent to the identity:

(AB)6 7−→
(

1 0
0 1

)
In fact, Tuba and Wenzl say the double twist generates the kernel of our homomorphism
from B3 to SL(2,Z). So, SL(2,Z) is isomorphic to the group of 3-strand braids modulo
double twists!

This reminds me of spinors. . . since you have to twist an electron around twice to
get its wavefunction back to where it started. And indeed, SL(2,Z) is a subgroup of
SL(2,C), which is the double cover of the Lorentz group. So, 3-strand braids indeed act
on the state space of a spin-1/2 particle, with double twists acting trivially!

(For more on this, check out Trautman’s work on “Pythagorean spinors” in “Week
196”. There’s also a version where we use integers mod 7, described in “Week 219”.)

If instead we take 3-strand braids modulo full twists, we get the so-called “modular
group”:

PSL(2,Z) = SL(2,Z)/{±1}

Now, SL(2,Z) is famous for being the “mapping class group” of the torus — that is, the
group of orientation-preserving diffeomorphisms, modulo diffeomorphisms connected to
the identity. Similary, PSL(2,Z) is famous for acting on the rational numbers together
with a point at infinity by means of fractional linear transformations:

z 7→ az + b

cz + d

where a, b, c, d are integers and ad − bc = 1. The group PSL(2,Z) also acts on certain
2-strand tangles called “rational tangles”. In “Week 229”, I told a nice story I heard from
Michael Hutchings, explaining how these three facts fit together in a neat package.

But now let’s combine those facts with the stuff I just said! Since PSL(2,Z) acts
on rational tangles, and there’s a homomorphism from B3 to PSL(2,Z), 3-strand braids
must act on rational tangles. How does that go?

There’s an obvious guess, or two, or three, or four, but let’s just work it out.
I just said that the 3-strand braid A gets mapped to this shear:

A 7−→
(

1 1
0 1

)
In “Week 229” I said what this shear does to a rational tangle. It gives it a 180 degree
twist at the bottom, like this:

T T
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Next, Tuba and Wenzl point out that

ABA = BAB 7−→
(

0 1
−1 0

)
which is a quarter turn. From “Week 229” you can see how this quarter turn acts on a
rational tangle:

T T

It gives it a quarter turn!
From these facts, we can figure out what the braid B does to a rational tangle. So,

let me do the calculation.
Scribble, scribble, curse and scribble. . . . Eureka!
Since we know what A does, and what ABA does, we can figure out what B must

do. But, to make the answer look cute, I needed a sneaky fact about rational tangles,
which is that A also acts like this:

T T

This is proved in Goldman and Kauffman’s paper cited in “Week 228”. With the help of
this, I can show B acts like this:

T T

And this is great! It means our action of 3-strand braids on rational tangles is really easy
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to describe. Just take your tangle and let the upper left strand dangle down:

T

To let a 3-strand braid act on this, just attach it to the bottom of the picture!
(That’s why there were four obvious guesses about this would work: one can easily

imagine four variations on this trick, depending on which strand is the “odd man out”
— here it’s the upper right. It’s just a matter of convention which we use, but my
conventions give this.)

In fact, even the group of 4-strand braids acts on rational tangles in an obvious way,
but the 3-strand braid group is enough for now.

Let me summarize. The 3-strand braid groupB3 acts on rational tangles in an obvious
way. The subgroup that acts trivially is precisely the center of B3, generated by the full
twist. Using stuff from “Week 229”, it follows that the quotient of B3 by its center acts on
the projectivized rational homology of the torus. We thus get a topological explanation
of why B3 mod its center is PSL(2,Z).

But there’s more.
For starters, the 3-strand braid group is also the fundamental group of S3 minus the

trefoil knot!
And, S3 minus the trefoil knot is secretly the same as SL(2,R)/SL(2,Z)!
In fact, Terry Gannon writes that the 3-strand braid group can be regarded as “the

universal central extension of the modular group, and the universal symmetry of its
modular forms”. I’m not completely sure what that means, but here’s part of what it
means.

Just as PSL(2,C) is the Lorentz group in 4d spacetime, PSL(2,R) is the Lorentz
group in 3d spacetime. This group has a double cover SL(2,R), which shows up when
you study spinors. But, it also has a universal cover, which shows up when you study
anyons. The universal cover has infinitely many sheets. And up in this universal cover,
sitting over the subgroup SL(2,Z), we get. . . the 3-strand braid group!

In math jargon, we have this commutative diagram where the rows are short exact
sequences:

1 Z B3 SL(2,Z) 1

1 Z SL(2,R)∼ SL(2,R) 1

Here SL(2,R)∼ is the universal cover of SL(2,R). Since π1(SL(2,R)) = Z, this is a Z-fold
cover. You can describe this cover explicitly using the Maslov index, which is a formula
that actually computes an integer for any loop in SL(2,R), or indeed any symplectic
group.
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But anyway, fiddling around with this diagram and the long exact sequence of homo-
topy groups for a fibration, you can show that indeed:

π1(SL(2,R)/SL(2,Z)) = B3.

This also follows from the fact that SL(2,R)/SL(2,Z) looks like S3 minus a trefoil.
Gannon believes that number theorists should think about all this stuff, since he

thinks it’s lurking behind that weird network of ideas called Monstrous Moonshine (see
“Week 66”).

And here’s the basic reason why. I’ll try to get this right. . . .
Any rational conformal field theory has a “chiral algebra” A which acts on the left-

moving states. Mathematicians call this sort of thing a “vertex operator algebra”. A
representation of this on some vector space V is a space of states for the circle in some
“sector” of our theory. Let’s pick some state v in V . Then we can define a “one-point
function” where we take a Riemann surface with little disk cut out and insert this state
on the boundary. This is a number, essentially the amplitude for a string in the give state
to evolve like this Riemann surface says.

In fact, instead of chopping out a little disk it’s nice to just remove a point — a
“puncture”, they call it. But, we get an ambiguous answer unless we pick coordinates at
this point, or in the lingo of complex analysis, a choice of “uniforming parameter”. Then
our one-point function becomes a function on the moduli space of Riemann surfaces
equipped with a puncture and a choice of uniformizing parameter.

If we didn’t have this uniformizing parameter to worry about, we’d just have the
moduli space of tori equipped with a marked point, which is nothing but the usual
moduli space of elliptic curves,

H/PSL(2,Z)

where H is the complex upper halfplane. Then our one-point function would have nice
transformation properties under PSL(2,Z).

But, with this uniformizing parameter to worry about, our one-point function only
has nice transformation properties under B3. This is somehow supposed to be related to
how B3 is the “universal central extension” of PSL(2,Z): in conformal field theory, all
sorts of naive symmetries hold only up to a phase, so you have to replace various groups
by central extensions thereof. . . and here that’s what’s happening to PSL(2,Z)!

That last paragraph was pretty vague. If I’m going to understand this better, either
someone has to help me or I’ve got to read something like this:

5) Yongchang Zhu, “Modular invariance of characters of vertex operator algebras”,
J. Amer. Math. Soc 9 (1996), 237–302. Also available at http://www.ams.org/
jams/1996-9-01/S0894-0347-96-00182-8/home.html

But I shouldn’t need any conformal field theory to see how the moduli space of punc-
tured tori with uniformizing parameter is related to the 3-strand braid group! I bet this
moduli space is X/B3 for some space X, or something like that. There’s something
simple at the bottom of all this, I’m sure.
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Addenda: Another relation between the trefoil and the punctured torus: the trefoil
has genus 1, meaning that it bounds a torus minus a disc embedded in R3. You can see
this in the lecture “Genus and knot sum” in this course on knot theory:

6) Brian Sanderson, “The knot theory MA3F2 page”, http://www.maths.warwick.
ac.uk/\~bjs/MA3F2-page.html

This course also has material on rational tangles.
The fact thatB3 is a central extension of PSL(2,Z) by Z, and the quantum-mechanical

interpretation of a central extension in terms of phases, plays an important role here:

7) R. Voituriez, “Random walks on the braid group B3 and magnetic translations
in hyperbolic geometry”, Nucl. Phys. B621 (2002), 675–688. Also available as
http://arxiv.org/abs/math-ph/0103008.

Among other things, he points out that the homomorphism B3 → SL(2,Z) described
above is the “Burau representation” of B3 evaluated at t = 1. In general, the Burau
representation of B3 is given by:

A 7−→
(

t 1
0 1

)
B 7−→

(
1 0
−t t

)
(Conventions differ, and this may not be the best, but it’s the one he uses.) The Burau
representation can also be used to define a knot invariant called the Alexander poly-
nomial. I believe that with some work, one can use this to explain why Conway could
calculate the rational number associated to a rational tangle in terms of the ratio of
Alexander polynomials of two links associated to it, called its “numerator” and “denom-
inator”. In fact he computed this ratio of polynomials and then evaluate it at a special
value of t — presumably the same special value we’re seeing here (modulo differences
in convention).

Another issue: I wrote

For starters, the 3-strand braid group is also the fundamental group of S3 minus
the trefoil knot!

And, S3 minus the trefoil knot is secretly the same as SL(2,R)/SL(2,Z)!

The first one is pretty easy to see; you start with the “Wirtinger presentation” of the
fundamental group of S3 minus a trefoil, and show by a fun little calculation that this
isomorphic to the braid group on 3 strands. A more conceptual proof would be very nice,
though. (See “Week 261” for such a proof — and much more on all this stuff.)

What about the second one? Why is S3 minus the trefoil knot diffeomorphic to
SL(2,R)/SL(2,Z)? Terry Gannon says so in his paper above, but doesn’t say why. Some
people asked about this, and eventually some people found some explanations. First of
all, there’s a proof on page 84 of this book:

8) John Milnor, Introduction to Algebraic K-theory, Annals of Math. Studies 72, Prince-
ton U. Press, Princeton, New Jersey, 1971.
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Milnor credits it to Quillen. Joe Christy summarizes it below. I can’t tell if this proof
is essentially the same as another sketched below by Swiatoslaw Gal, which exhibits a
diffeomorphism using functions called the Eisenstein series g2 and g3. They are probably
quite similar arguments.

Joe Christy writes:

I wouldn’t be surprised if this was known to Seifert in the 30’s, though I can’t lay
my hands on Seifert & Threfall at the moment to check. Likewise for Hirzebruch,
Brieskorn, Pham & Milnor in the 60’s in relation to singularities of complex
hypersurfaces and exotic spheres. When I was learning topology in the 80’s it
was considered a warm up case of Thurston’s Geometrization Program — the
trefoil knot complement has PSL(2,R) geometric structure.

In any case, peruse Milnor’s Annals of Math Studies for concrete references.
There is a (typically) elegant proof on p.84 of “Introduction to Algebraic K-
theory” [study 72], which Milnor credits to Quillen. It contains the missing piece
of John’s argument: introducing the Weierstrass ℘-function and remarking that
the differential equation that it satisfies gives the diffeomorphism to S3-trefoil
as the boundary of the pair (discriminant of diff-eq, C2 = (℘, ℘′)-space).

This point of view grows out of some observations of Zariski, fleshed out in “Sin-
gular Points of Complex Hypersurfaces” [study 61]. The geometric viewpoint is
made explicit in the paper “On the Brieskorn Manifolds M(p, q, r)” in “Knots,
Groups, and 3-manifolds” [study 84].

It is also related to the intermediate case between the classical Platonic solids
and John’s favorite Platonic surface — the Klein quartic. By way of a hint, look
to relate the trefoil, qua torus knot, the seven-vertex triangulation of the torus,
and the dual hexagonal tiling of a (flat) Clifford torus in S3.

Joe

Swiatoslaw Gal writes:

In fact the isomorphism is a part of the modular theory:

Looking for
f : GL(2,R)/SL(2,Z)→ C2 \ {x2 = y3}

(there is an obvious action of R+ on both sides:

M 7→ tM for M in GL(2,R),
x 7→ t6x,

y 7→ t4y,

and the quotient is what we want).

GL(2,R)/SL(2,Z) is a space of lattices in C. Such a lattice L has classical
invariants

g2(L) = 60
∑
z∈L′

z−4,
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and
g3(L) = 140

∑
z∈L′

z−6,

where L′ = L \ {0}.
The modular theory asserts that:

1. For every pair (g2, g3) there exist a lattice L such that g2(L) = g2 and
g3(L) = g3 provided that g32 is not equal to 27g23 .

2. Such a lattice is unique.

Best,
S. R. Gal

The quantity g32 − 27g23 is called the “discriminant” of the lattice L, and vanishes as
the lattice squashes down to being degenerate, i.e. a discrete subgroup of C with one
rather than two generators.
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Week 234

June 12, 2006

Today I’d like to talk about the math of music — including torsors, orbifolds, and maybe
even Mathieu groups. But first, some movies of the n-body problem:

1) Cris Moore, “The 3-body (and n-body) problem”, http://www.santafe.edu/~moore/
gallery.html

In 1993 Cris Moore discovered solutions of the gravitational n-body problem where
the particles’ paths lie in a plane and trace out braids in spacetime! I spoke about these
in “Week 181”.

More recently, Moore and Michael Nauenberg have found solutions with cubic sym-
metry and vanishing angular momentum, and made movies of these:

For the mathematical details, try this:

2) Cristopher Moore and Michael Nauenberg, “New periodic orbits for the n-body
problem”, available at math.DS/0511219.

Next, math and music.
Some of you have been in this situation. A stranger at a party asks what you do.

You reluctantly admit you’re a mathematician, expecting one of the standard responses:
“Oh! I hate math!” or “Oh! I was pretty good at math until. . . .”

But instead, after a strained moment they say: “Oh! Do you play an instrument too?
Isn’t music really mathematical?”
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I guess it’s like meeting a Martian and asking them if they like Arizona: an attempt
to humanize something alien and threatening. You may not have much in common, but
at least you can chat about red rocks.

Of course there is something mathematical about music, and lots of mathematicians
play music. I rarely think about music in a mathematical way. But I know they have
something in common: the transcendent beauty of pure form.

Indeed, in the Middle Ages, music was part of a “quadrivium” of mathematical arts:
arithmetic, geometry, music, and astronomy. These were studied after the “trivium” of
grammar, rhetoric and logic. This is why mathematicians scorn a result as “trivial” when
it’s easy to see using straightforward logic. So when a result seems more profound, they
should call it “quadrivial”.

Try saying it sometime: “Cool! That’s quadrivial!” It might catch on.
There are also modern applications of math to music theory. I had never heard of

“neo-Riemannian theory” until Tom Fiore explained it to me while I was visiting Chicago.
Tom is a postdoc who works on categorified algebraic theories, double categories and the
like — but he’s also into music theory:

3) Thomas M. Fiore, “Music and mathematics”, available at http://www.math.uchicago.
edu/~fiore/1/music.html

4) Thomas M. Fiore and Ramon Satyendra, “Generalized contextual groups”, Music
Theory Online 11 (2005), available at http://www.math.uchicago.edu/˜fiore/1/music.html

The first of these is a very nice gentle introduction, suitable both for musicians who
don’t know group theory and mathematicians who don’t know a triad from a tritone!

When Tom first mentioned “neo-Riemannian theory”, I thought this was some bizarre
application of differential geometry to music. But no — we’re not talking about the 19th-
century mathematician Bernhard Riemann, we’re talking about the 19th-century music
theorist Hugo Riemann!

Based on the work on Euler — yes, the Euler — Hugo Riemann introduced diagrams
called “tone nets” to study the network of relations between similar chords. You can see
his original setup here:

5) Joe Monzo, “Tonnetz: the tonal lattice invented by Riemann”, “Tonalsoft: the
Encyclopedia of Microtonal Music Theory”, http://www.tonalsoft.com/enc/t/
tonnetz.aspx

6) Paul Dysart, “Tonnetz: musics, harmony and donuts”, http://members2.boo.net/
~knuth/

Apparently Riemann’s ideas have caught on in a big way. Monzo says that “use
of lattices is endemic on internet tuning lists”, as if they were some sort of infectious
disease.

Dysart seems more gung-ho about it all. The “donuts” he mentions arise when you
curl up tone nets by identifying notes that differ by an octave. He has some nice pictures
of them!

In neo-Riemannian theory, people like Lewin and Hyer started extending Riemann’s
ideas by using group theory to systematize operations on chords. The best easy intro-
duction to this is Fiore’s paper “Music and mathematics”. Here you can read about math
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lurking in the music of Elvis and the Beatles! Or, if you’re more of a highbrow sort, see
what he has to say about Hindemith and Liszt’s “Transcendental Etudes”. And if you
like doughnuts and music, you’ll love the section where he explains how Beethoven’s
Ninth traces out a systematic path in a torus-shaped tone net! This amazing fact was
discovered by Cohn, Douthett, and Steinbach.

(If I weren’t so darn honest, I’d add that Liszt wrote the “Transcendental Etudes”
as a sequel to his popular “Algebraic Etudes”, and explain how Mozart’s “eine kleine
Nachtmusik” tours a tone net shaped like a Klein bottle. But alas. . . .)

Let me explain a bit about group theory and music — just enough to reach something
really cool Tom told me.

If you’re a musician, you’ll know the notes in an octave go like this, climbing up:

C, C#, D, D#, E, F, F#, G, G#, A, A#, B

until you’re back to C. If you’re a mathematician, you might be happier to call these
notes

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

and say that we’re working in the group of integers mod 12, otherwise known as Z/12.
Let’s be mathematicians today.

The group Z/12 has been an intrinsic feature of Western music ever since pianos were
built to have “equal temperament” tuning, which makes all the notes equally spaced in a
certain logarithmic sense: each note vibrates at a frequency of 2

1
12 times the note directly

below it.
Only 7 of the 12 notes are used in any major or minor key — for example, C,D,E,F,G,A,B

is C major and A,B,C,D,E,F,G is A minor. So, as long as Western composers stuck to writ-
ing pieces in a single fixed key, the Z/12 symmetry was “spontaneously broken” by their
choice of key, only visible in the freedom to change keys.

But, as composers gradually started changing keys ever more frequently within a
given piece, the inherent Z/12 symmetry became more visible. In the late 1800s this
manifested itself in trend called “chromaticism”. Roughly speaking, music is “chromatic”
when it freely uses all 12 notes, but still within the context of an — often changing — key.
I guess Wagner and Richard Strauss are often mentioned as pinnacles of chromaticism.

Chromaticism then led to full-fledged “twelve-tone music” starting with Schoenberg
in the early 1900s. This is music that fully exploits the Z/12 symmetry and doesn’t seek
to privilege a certain 7-element subset of notes defining a key. People found Schoenberg’s
music disturbing and dissonant at the time, but I find it very beautiful.

Now comes the really exciting thing Tom told me: two other symmetry groups lurking
in music, and a relationship between them.

First, the transposition-inversion group. This acts as permutations of the set Z/12. It’s
generated by two especially nice permutations. The first is “transposition”. This raises
each note a step:

x 7→ x+ 1

Musicians would call this a half-step, just like physicists measure spin in multiples of
1/2, but we’re being mathematicians! The second is “inversion”. This turns notes upside
down:

x 7→ −x
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The relevance of this to music is a bit less obvious: composers like Bach and Schoenberg
used it explicitly, but we’ll see it playing a subtler role, relating major and minor chords.

The transposition-inversion group has 24 elements. Mathematicians call it the 24-
element “dihedral group”, since it consists of the symmetries of a regular 12-sided poly-
gon where you’re allowed to rotate the polygon (transposition) and also flip it over
(inversion). I hope you see that this geometrical picture is just a way of visualizing the
12 notes.

So, the transposition-inversion group obviously on the 12-element set of notes. But,
it also acts on the 24-element set of “triads”!

Triads are among the most basic chords in music. Mathematically they are certain
3-element subsets of Z/12. They come in two kinds, major and minor. There are 12
major triads, namely

{0, 4, 7} = {C,E,G} = C major triad

and everything you can get from this by transposition. If you invert these, you get the
12 minor triads, namely

{0,−4,−7} = {5, 8, 0} = {F,A♭,C} = F minor triad

and everything you can get from this by transposition.
(Note that {0,−4,−7} = {5, 8, 0} because we’re working mod 12 and the order

doesn’t matter. I’ve also included the way musicians talk about these triads, in case you
care.)

Major triads sound happy; when you invert them they sound sad, just like an upside-
down smile looks sad. There could be some profound truth lurking here. A smile has a
positive second derivative:

which says that things are “looking up”, while a frown has negative second derivative:

which says that things are “looking down”. An upside-down smile is a frown.
(On the other hand, a backwards smile is still a smile, and a backwards frown is still

a frown. So, if you’re a company and the second derivative of your profits is positive,
you can say business is looking up — and you could still say this if time were reversed!)

But never mind. We had this transposition-inversion group acting on our set of notes,
namely Z/12. Since tranposition and inversion act on notes, they also act on triads. For
example, transposition does this:

{0, 4, 7} 7→ {1, 5, 8}
C major triad 7→ C♯ major triad

while inversion does this:

{0, 4, 7} 7→ {5, 8, 0}
C major triad 7→ F minor triad

419



WEEK 234 JUNE 12, 2006

So, we’ve got this 24-element transposition-inversion group acting on the 24-element set
of triads!

But here’s really cool part: there’s another important 24-element group acting on the
same set! It’s easy to define mathematically, but it also has a musical meaning.

Mathematically, it’s just the “centralizer” of the transposition- inversion group. In
other words, it consists of all ways of permuting triads that commute with transposition
and inversion!

Musically, it’s called the “PLR” group, because it’s generated by 3 famous transfor-
mations.

To describe these transformations, I’ll need to talk about the “bottom”, “middle” and
“top” note of a triad. If you know a wee bit of music theory this should be obvious as long
as you know I’m talking about triads in root position. If you’re a mathematician who has
never studied music theory and you think of triads as 3-element subsets of Z/12, it might
be less obvious, since Z/12 doesn’t have a nice ordering — it only has a cyclic ordering.
But this is enough. The point is that major triads are sets of the form

{n, n+ 4, n+ 7},

while minor triads are of the form

n, n+ 3, n+ 7.

So, we can call the note n the “bottom”, the note n+ 3 or n+ 4 the “middle”, and n+ 7
the “top”. Musicians call them the “root”, “third” and “fifth”, but let’s be simple-minded
mathematicians.

Okay, what are the transformations P , L, and R? They stand for “parallel”, “leading
tone change”, and “relative” — but what are they?

Each of these transformations keeps exactly 2 of the notes in our triad the same. Also,
each changes major triads into minor triads and vice versa. These features make these
transformations musically interesting.

The transformation “P ” keeps the top and bottom notes the same. I’ve now said
enough for you to figure out what it does. . . at least in principle. For example:

P : {0, 4, 7} 7→ {0, 3, 7}
C major triad 7→ C minor triad

P : {0, 3, 7} 7→ {0, 4, 7}
C minor triad 7→ C major triad

The tranformation “L” turns the middle and top note into the bottom and middle
note when you start with a major triad. It turns the bottom and middle note into the
middle and top note when you start with a minor triad. For example:

L : {0, 4, 7} 7→ {4, 7, 11}
C major triad 7→ E minor triad

L : {0, 3, 7} 7→ {8, 0, 3}
C minor triad 7→ G major triad
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The transformation “R” works the other way around. It turns the middle and top note
into the bottom and middle note when you start with a minor triad. And it turns the
bottom and middle note into the middle and top note when you start with a major triad:

R : {0, 4, 7} 7→ {9, 0, 4}
C major triad 7→ A minor triad

R : {0, 3, 7} 7→ {3, 7, 10}
C minor triad 7→ D♯ major triad

Can you see why the transformations P , L, and R commute with transposition and
inversion? It should be easy to see that they commute with transposition. Commuting
with inversion means that if I switch the words “top” and “bottom” and also the words
“major” and “minor” in my descriptions above, these transformations don’t change!

You should be left wondering why P , L, and R generate the group of all transfor-
mations of triads that commute with transposition and inversion — and why this group,
like the transposition-inversion group itself, has exactly 24 elements!

It turns out some of this has a simple explanation, which has very little to do with the
details of triads or even the 12-note scale.

Imagine a scale with n equally spaced notes. Transpositions and inversions will gen-
erate a group with 2n elements. Let’s call this group G. If you take any “sufficiently
generic” chord in our scale, G will act on it to give a set S consisting of 2n different
chords. Then it’s a mathematical fact that the group of permutations of S that commute
with all transformations in G will be isomorphic to G! So, it too will have 2n elements.

To explain why this is true, I need a bit more math.
First of all, I need to define my terms. I’m defining a chord to be “sufficiently generic”

if no element of G maps it to itself. We then say G acts freely on S. By the way we’ve set
things up, G also acts transitively on S. A nonempty set on which G acts both freely and
transitively is called a “G-torsor”. You can read about torsors here:

7) John Baez, “Torsors made easy”, http://math.ucr.edu/home/baez/torsors.html

They’re philosophically very interesting, since they’re related to gauge symmetries in
physics. . . but right now the only fact we need is that any G-torsor is isomorphic to G.
So, we can identify S with G, with G acting by left multiplication.

Then, it’s a well-known fact that any permutation of G that commutes with left mul-
tiplication by all elements of G must be given by right multiplication by some element of
G. And these right multiplications form a group of transformations that is isomorphic to
G. . . just as we were trying to show!

In other words: the group of permutations of G has a subgroup isomorphic to G,
namely the left translations. It also has another subgroup isomorphic to G, namely the
right translations. Each of these subgroups is the “centralizer” of the other. That is, each
one consists of all permutations that commute with every permutation in the other one!
Fiore and Satyendra call them “dual groups”.

In our application to music, the first copy of G is our good old transposition-inversion
group, while the second copy is a generalization of the PLR group. Fiore and Satyendra
call it the “generalized contextual group”.
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All this is indeed very general. I don’t know a similarly general explanation of why
the operations P , L, and R succeed in generating all transformations that commute with
transposition and inversion.

I asked Tom Fiore if he and Ramon Satyendra were the first to show that the PRL
group was the centralizer of the transposition- inversion group. His reply was packed
with information, so I’ll quote it:

The initial insight about the duality between the T/I group and the PLR group
was at least 20 year ago. Dual groups in the musical sense were introduced in
David Lewin’s seminal 1987 book “Generalized Musical Intervals and Transfor-
mation Theory.” This book stimulated interest in neo-Riemannian theory, since
Lewin recalled the transformations P , L, and R as objects of study.

Major-minor duality was a concern of Hugo Riemann, a theorist from the second
half of the 19th century. Given his interest in duality, Riemann may have had
some intuition about a duality between T/I and PLR, though it wasn’t until
after his death that this duality was formulated in algebraic terms. An algebraic
proof of the duality of T/I and PLR was in the thesis of Julian Hook in 2002.

Ramon and I were the first to prove that the “generalized contextual group”
is dual to the T/I group acting on a set generated by an arbitrary pitch-class
segment satisfying the tritone condition. (The tritone condition says that the
inital pitch-class segment contains an interval other than a tritone and unison.)
Our theorem has the PLR group and major/minor triads as a special case,
since the generalized contextual group becomes the PLR group when one takes
the generating pitch class segment to be the three pitches of a major chord. The
advantage of our generalization is that one can now apply the PLR insight to
passages that are not triadic. There was a general move toward this in practice
for the past decade (Childs and Gollin considered seventh chords rather than
triads, Lewin analyzed instances of a non-diatonic phrase in a piano work of
Schoenberg, we analyzed Hindemith, and so on). Most music does not consist
entirely of triads (e.g. late 19th century chromatic music), so the restriction of
PLR to triads was not conclusive.

We did a literature review of recent neo-Riemannian theory in Part 5 of our
article “Generalized Contextual Groups”, since there have been a lot of insights
in the past 10 years. One of the main thinkers is Rick Cohn, who came up with
(among other things) a nice tiling of the plane which one navigates using P , L,
and R (Richard Cohn, “Neo-Riemannian operations, parsimonious trichords,
and their Tonnetz representations”, Journal of Music Theory, 1997). It is quite
geometric.

You read more about these matters here. . . I’ll list these references in the order Tom
mentions them:

8) David Lewin, Generalized Musical Intervals and Transformations, Yale University
Press, New Haven, Connecticut, 1987.

9) Julian Hook, Uniform Triadic Transformations, Ph.D. thesis, Indiana University,
2002.
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10) Adrian P. Childs, “Moving beyond neo-Riemannian triads: exploring a transforma-
tional model for seventh chords”, Journal of Music Theory 42/2 (1998), 191–193.

11) Edward Gollin, “Some aspects of three-dimensional Tonnetze”, Journal of Music
Theory 42/2 (1998), 195–206.

12) Richard Cohn, ‘Neo-Riemannian operations, parsimonious trichords, and their “Ton-
netz” representations’, Journal of Music Theory 41/1 (1997), 1–66.

13) David Lewin, “Transformational considerations in Schoenberg’s Opus 23, Number
3”, preprint.

In fact, the notion of “torsor” pervades the work of David Lewin, but not under this
name — Lewin calls it a “general interval system”. Stephen Lavelle noticed the connec-
tion to torsors in 2005:

14) Stephen Lavelle, “Some formalizations in musical set theory”, June 3, 2005, avail-
able at http://www.maths.tcd.ie/~icecube/lewin.pdf and http://www.maths.

tcd.ie/~icecube/lewin.ps

Unfortunately the music theorists seem not to have set up an “arXiv”, so some of
their work is a bit hard to find. For example, all of Volume 42 Issue 2 of the Journal
of Music Theory is dedicated to neo-Riemannian theory, but I don’t think it’s available
online. Luckily, the music theorists have set up some free online journals, like this:

15) Music Theory Online, http://mto.societymusictheory.org/

and this one has links to others. The Society for Music Theory also has online re-
sources including a nice bibliography on the basics of music theory:

16) Society for Music Theory, “Fundamentals of music theory, selected bibliography”,
http://societymusictheory.org/index.php?pid=37

Now let me turn up the math level a notch. . . .
If you’re the right sort of mathematician, you’ll have noticed by now that we’re doing

some fun stuff starting with the abelian group A = Z/12. First we’re forming the group
G consisting of all “affine transformations” of A. These are the transformations that
preserve all these operations:

(x, y) 7→ cx+ (1− c)y

where c is an integer. ForA = Z/n, the group of affine transformations has the transposition-
inversion group as a subgroup. The whole affine group has 48 elements, but for now we
only keep this subgroup with 24 elements. Call it G.

Then, we’re saying that we can take any “sufficiently generic” subset of A, hit it with
all elements of G, and get a G-torsor, say S. G is then seen as a subgroup of the group
of permutations of S, and the centralizer of this subgroup is again isomorphic to G.

You may be more familiar with affine transformations on a vector space, where we
get to use any real number for c. Then

cx+ (1− c)y
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describes the line through x and y, so you can say that affine transformations are those
that preserve lines. Vector spaces areR-modules forR the reals, while abelian groups are
R-modules for R the integers. The concept of “affine transformations” of an R-module
works pretty much the same way whenever R is any commutative ring. And, indeed,
everything I just said in the last paragraph works if we let A be an R-module for any
commutative ring R.

So, there’s some very simple nice abstract stuff going on here: we’re taking an abelian
group A, looking at a subgroup G of its affine transformations, and seeing that suffi-
ciently generic subsets of A give rise to G-torsors!

These are nice examples of G-torsors, since nobody is likely to accidentally confuse
them with the group G. If you read my webpage on torsors, you’ll see it’s often easy to
mix up a G-torsor with the group G itself.

In fact, I just committed this sin myself! The set of notes is not naturally an abelian
group until we pick an origin — a place for the chromatic scale to start. It’s really just
an A-torsor, where A is the abelian group generated by transposition.

So, there lots of torsors lurking in music. . . .
The pretty math I’ve just described only captures a microscopic portion of what makes

music interesting. It doesn’t, for example, have anything to say about what makes some
intervals more dissonant than others. As Pythagoras noticed, simple frequency ratios
like 3/2 or 4/3 make for less dissonant chords than gnarly fractions like 1259/723. The
equal tempered tuning system, where the basic frequency ratio is 2

1
12 , would have made

Pythagoras roll in his grave! Advocates of other tuning systems say these irrational
frequency ratios are driving us crazy, making wars break out and plants wilt — but
there’s an unavoidable conflict between the desire for simple ratios and the desire for
evenly spaced notes, built into the fabric of mathematics and music. Every tuning system
is thus a compromise. I would like to understand this better; there’s bound to be a lot of
nice number theory here.

To study different tuning systems in a unified way, one first step is replace the group
Z/12 by a continuous circle. Points on this circle are “frequencies modulo octaves”, since
for many — though certainly not all — purposes it’s good to consider two notes “the
same” if they differ by an octave. Mathematically this circle is R+/2, namely the multi-
plicative group of positive real numbers modulo doubling. As a group, it’s isomorphic to
the usual circle group, U(1).

This “pitch class circle” plays a major role in the work of Dmitri Tymoczko, a composer
and music theorist from Princeton, who emailed me after I left a grumpy comment on
the discussion page for this fascinating but slightly obscure article:

17) Wikipedia, “Musical set theory”, http://en.wikipedia.org/wiki/Musical set theory

He’s recently been working on voice leading and orbifolds. They’re related topics,
because if you have a choir of n indistinguishable angels, each singing a note, the set of
possibilities is:

Tn/Sn

where Tn is the n-torus — the product of n copies of the pitch class circle — and Sn

is the permutation group, acting on n-tuples of notes in the obvious way. This quotient
is not usually a manifold, because it has singularities at certain points where more than
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one voice sings the same note. But, it’s an orbifold. This kind of slightly singular quotient
space is precisely what orbifolds were invented to deal with.

Tymoczko is coming out with an article about this in Science magazine. For now,
you can learn more about the geometry of music by playing with his “ChordGeometries”
software:

18) Dmitri Tymoczko, ChordGeometries, http://music.princeton.edu/~dmitri/ChordGeometries.
html

As for “voice leading”, let me just quote his explanation, suitable for mathematicians,
of this musical concept:

BTW, if you’re writing on neo-Riemannian theory in music, it might be helpful
to keep the following basic distinction in mind. There are chord progressions,
which are essentially functions from unordered chords to unordered chords
(e.g. the chord progression (function) that takes C major to E minor).

Then there are voice leadings, which are mappings from the notes of one chord
to the notes of the other E.g. “take the C in a C major triad and move it down
by semitone to the B.” This voice leading can be written:

(C, E,G) 7→ (B, E,G).

This distinction is constantly getting blurred by neo-Riemannian music theorists.
But to really understand “neo-Riemannian chord progressions” you have to be
quite clear about it.

To form a generalized neo-Riemannian chord progression, start with an ordered
pair of chords, say (C major, E minor). Then apply all the transpositions and
inversions to this pairs, producing (D major, F# minor), (C minor, Ab major),
etc. The result is a function that commutes with the isometries of the pitch class
circle. As a result, it identifies pairs of chords that can be linked by exactly
similar collections of voice leading motions.

For example, I can transform C major to E minor by moving C down by semitone
to B.

Similarly, I can transform D major to F# minor by moving D down by semitone
to C#.

Similarly, I can transform C minor to Ab major by moving G up to Ab.

This last voice leading,
(C, E♭,G) 7→ (C, E♭,A♭)

is just an inversion (reflection) of the voice leading

(C, E,G)| → (B, E,G).

As a result it moves one note up by semitone, rather than moving one note down
by semitone.

More generally: if you give me any voice leading between C major and E minor, I
can give you an exactly analogous voice leading between D major and F# minor,
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or C minor and Ab major, etc. So “neo-Riemannian” progressions identify a class
of harmonic progressions (functions between unordered collections of points on
the circle) that are interesting from a voice leading perspective. (They identify
pairs of chord progressions that can be linked by the same voice leadings, to
within rotation and reflection.)

You can learn more about this here:

19) Dmitri Tymoczko, “Scale theory, serial theory, and voice leading”, available at
http://music.princeton.edu/~dmitri/scalesarrays.pdf

I’d like to conclude tonight’s performance with a “chromatic fantasy” — some wild
ideas that you shouldn’t take too seriously, at least as far as music theory goes. In
this rousing finale, I’ll list some famous subgroups of the permutations of a 12-element
set. They may not be relevant to music, but I can’t resist mentioning them and hoping
somebody dreams up an application.

So far I’ve only mentioned two: the cyclic or “transposition” group, Z/12, and the
dihedral or “transposition/inversion” group with 24 elements. These are motivated by
thinking of Z/12 as a discrete analogue of a circle and considering either just its rotations,
or rotations together with reflections. But, mathematically, it’s nice to loosen up this
rigid geometry and consider projective transformations of a circle, now viewed as a line
together with a point at infinity — a “projective line”.

Indeed, the group Z/11 becomes a field with 11 elements if we multiply as well as
add mod 11. If we throw in a point at infinity, we get a projective line with 12 elements.
It looks just like our circle of 12 notes. But now we see that the group PGL(2,Z/11) acts
on this projective line in a natural way. This group consists of invertible 2 × 2 matrices
with entries in Z/11, mod scalars. People call it PGL(2, 11) for short.

So, PGL(2, 11) acts on our 12-element set of notes. And, it’s a general fact for any
field F that PGL(2,F) acts on the corresponding projective line in a “triply transitive”
way. In other words, given any ordered triple of distinct points on the projective line, we
can find a group element that maps it to any other ordered triple of distinct points.

Even better, the action is “sharply” triply transitive, meaning there’s exactly one group
element that does the job!

This lets us count the elements in PGL(2, 11). Since we can find exactly one group
element that maps our favorite ordered triple of distinct elements to any other, we just
need to count such triples, and there are

12× 11× 10 = 1320

of them — so this is the size of PGL(2, 11).
This may be too much symmetry for music, since this group carries any three-note

chord to any other, not just in the sense of chord progressions but in the sense of voice
leadings. Still, it’s cute.

We might go further and look for a quadruply transitive group of permutations of our
12-element set of notes — in other words, one that maps any ordered 4-tuple of distinct
notes to any other.

But if we do, we’ll run smack dab into Mathieu groups!
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Here’s an utterly staggering fact about reality. Apart from the group of all permuta-
tions of an n-element set and the group of even permutations of an n-element set, there
are only FOUR groups of permutations that are k-tuply transitive for k > 3. Here they
are:

• The Mathieu group M11. This is a quadruply transitive group of permuations of an
11-element set — and sharply so! It has

11× 10× 9× 8 = 7920

elements.

• The Mathieu group M12. This is a quintuply transitive group of permutations of a
12-element set — and sharply so! It has

12× 11× 10× 9× 8 = 95, 040

elements.

• The Mathieu group M23. This is a quadruply transitive group of permutations of a
23-element set — but not sharply so. It has

23× 22× 21× 20× 48 = 10, 200, 960

elements. As you can see, 48 group elements carry any distinct ordered 4-tuple to
any other.

• The Mathieu group M24. This is a quintuply transitive group of permutations of a
24-element set — but not sharply so. It has

24× 23× 22× 21× 20× 48 = 244, 823, 040

elements. As you can see, 48 group elements carry any distinct ordered 4-tuple to
any other.

These groups all arise as symmetries of certain discrete geometries called Steiner
systems. An “S(L,M,N) Steiner system” is a set of N “points” together with a collection
of “lines”, such that each line contains M points, and any set of L points lies on a unique
line. The symmetry group of a Steiner system consists of all permutations of the set of
points that map lines to lines. It turns out that:

• There is a unique S(5, 6, 12) Steiner system, and the Mathieu group M12 is its
symmetry group. The stabilizer group of any point is isomorphic to M11.

• There is a unique S(5, 8, 24) Steiner system, and the Mathieu group M24 is its
symmetry group. The stabilizer group of any point is isomorphic to M23.

So, the group M12 could be related to music if there were a musically interesting
way of taking the chromatic scale and choosing 6-note chords such that any 5 notes lie
in a unique chord. I can’t imagine such a way — most of these chords would need to
be wretchedly dissonant. Another way to put the problem is that such a big group of
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permutations would impose more symmetry on the set of chords than I can imagine my
ears hearing. It’s like those grand unified theories that posit symmetries interchanging
particles that look completely different. They could be true, but they’ve got their work
cut out for them.

Luckily, the Mathieu groups appear naturally in other contexts - wherever the num-
bers 12 and 24 cast their magic spell over mathematics! For example, M24 is related to
the 24-dimensional Leech lattice, and M12 can be nicely described in terms of 12 equal-
sized balls rolling around the surface of another ball of the same size. See “Week 20” for
more on this — and the book by Conway and Sloane cited there for even more.

For a pretty explanation of M24, also try this:

20) Steven H. Cullinane, Geometry of the 4×4 square, http://finitegeometry.org/
sc/16/geometry.html

For explanations of both M24 and M12, try this:

21) Peter J. Cameron, Projective and Polar Spaces, QMW Math Notes 13, 1991. Also
available at http://www.maths.qmul.ac.uk/~pjc/pps/ Chapter 9: The geometry
of the Mathieu groups, available at http://www.maths.qmul.ac.uk/~pjc/pps/

pps9.pdf

It would be fun to dream up more relations between incidence geometry and music
theory. Could Klein’s quartic curve play a role? Remember from “Week 214”, “Week 215”
and “Week 219” that this 3-holed torus can be nicely tiled by 24 regular heptagons:

Its orientation-preserving symmetries form the group PSL(2, 7), which consists of all
2x2 matrices with determinant 1 having entries in Z/7, modulo scalars. This group has
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24×7 = 168 elements. Since there are 7 notes in a major or minor scale, and 24 of these
scales, it’s hard to resist wanting to think of each heptagon as a scale!

Indeed, after I mentioned this idea to Dmitri Tymoczko, he said that David Lewin and
Bob Peck have written about related topics.

Alas, the heptagonal tiling of Klein’s quartic has a total of 56 vertices, not a multiple
of 12, so there’s no great way to think of the vertices as notes. But, it has 84 = 7 × 12
edges, so maybe the edges are labelled by notes and each note labels 7 edges.

Unlike some groups I mentioned earlier, PSL(2, 7) is not a transitive subgroup of the
permutations of a 12-element set. And while PSL(2, 7) has lots of 12-element subgroups,
these are not cyclic groups but instead copies of A4. These facts put some further limita-
tions on any crazy ideas you might try.

On the bright side, mathematically if not musically, there is a fascinating way to
embed PSL(2, 7) into the Mathieu group M24, which can be described by getting M24 to
act on the set of 24 heptagons in the Klein quartic:

22) David Richter, “How to make the Mathieu group M24”, http://homepages.wmich.
edu/~drichter/mathieu.htm

He works in the Poincaré dual picture, where the Klein quartic is tiled by 56 triangles,
but that’s no big deal.

By the way, in “Week 79” I explained how PSL(2,F) acts on the projective line over
the field F; the same thing works for PGL(2,F). I also passed on some interesting facts
mentioned by Bertram Kostant, which relate PSL(2, 5), PSL(2, 7) and PSL(2, 11) to the
symmetry groups of the tetrahedron, cube/octahedron and dodecahedron/icosahedron.
Kostant put these together to give a nice description of the buckyball!

Kepler would be pleased. But, he’d be happier if we could find the music of the
spheres lurking in here, too.

Addenda: This week’s issue provoked more discussion than any in recent history!
You can read a lot on sci.math.research. Here are some comments from Dave Rusin,
David Corfield, Mike Stay, Dmitri Tymoczko, Cris Moore, Robert Israel, Noam Elkies,
Stephen Lavelle, and Steve Lubin.

Dave Rusin explained the logic behind having 12 notes in the chromatic scale. David
Corfield mentioned a book on topos theory in music, and a paper by Noam Elkies on
Mathieu groups. Mike Stay pointed out William Sethares’ work on how the timbre of
an instrument affects which scales sound good. Dmitri Tymoczko had more comments
on this issue. Cris Moore mentioned an interesting microtonal composer named Easley
Blackwood. Robert Israel pointed out an unusual fact about Riemann and Einstein.
Noam Elkies explained what David Lewin was trying to do with PSL(2, 7) in music theory.
And Stephen Lavelle gave some more references on torsors and topoi in music, and said
more about the origin of the 12-note scale.

So, here we go! Dave Rusin wrote:

You wrote:

429

http://groups.google.com/group/sci.physics.research/browse_frm/thread/e86672156f1477ea/d572967a25665fba
http://www.youtube.com/watch?v=-tPuwCUulBQ


WEEK 234 JUNE 12, 2006

. . . there’s an unavoidable conflict between the desire for simple ratios
and the desire for evenly spaced notes, built into the fabric of mathe-
matics and music. Every tuning system is thus a compromise. I would
like to understand this better; there’s bound to be a lot of nice number
theory here.

Sure there is. You want to choose a number N of intervals into which to divide
the octave, so that there are two tones in the scale that, like C and G, have
frequencies very nearly in a 3 : 2 ratio. (This also gives a bonus pair like G and
the next C up, which are then in a 4 : 3 ratio.) But that just means you want 2

n
N

to be nearly 3/2, i.e. n/N is a good rational approximation to log2(3/2). Use
continued fractions or Farey sequences as you like. You’ll find that a five-note
octave is not a bad choice (roughly giving you just the black keys on a piano,
and roughly corresponding to ancient Oriental musical sounds) but a 12-note
octave is a really good choice. So it’s not just happenstance that we have a
firmly-entrenched system of 12-notes-per-octave. I’m sure you’ve seen this “7–
12” magic before, e.g. the circle-of-fifths in music takes you through 7 octaves,
or the simple arithmetic that 219 ∼ 312 (i.e. 524288 ∼ 531441). Long ago
I programmed an old PC to play a 41-tone scale because the next continued-
fractions approximant calls for such a scale.

Of course you could argue that music consists of more than just (musical)
fourths and fifths and so the REAL number theory comes about by choosing
numbers of tones which allow lots of sets of notes to be in (or nearly in) simple
Pythagorean harmonies. How, exactly, you balance the conflicting goals is a
matter of personal choice.

What with the musicians in your family and all that, I’m guessing you probably
knew all this already and simply withheld the comments because of space lim-
itations, but just in case, I thought I’d complete your train of thought for you.
This stuff is pretty classic and it’s all over the web. I get more hits on my web
page about this than any of my math pages!

dave

Here’s Dave’s web page:

23) Dave Rusin, “Mathematics and music”, http://www.math.niu.edu/~rusin/uses-math/
music/

David Corfield wrote:

Hi,

Next you need to wade through all 1300 pages of The Topos of Music. This is
“topos” in the category theoretic sense. Check out the table of contents!

24) Guerino Mazzola, The Topos of Music: Geometric Logic of Concepts,
Theory and Performance, Birkhauser, Berlin, 2002. Preface and contents
available at http://www.encyclospace.org/tom/tom preface toc.pdf

Guerino Mazzola, homepage, http://www.ifi.unizh.ch/staff/mazzola/
mazzola.html
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Colin McLarty reviewed it for MathSciNet. I like the part:

Symmetries within scores, and structural relations between scores,
drive the mathematics up to sheaves, and very briefly to toposes and
Grothendieck topologies. The author candidly states he is unsure
whether this musicological perspective can use topos cohomology (p.
436).

Did you ever hear about Conway’s M13?

25) John H. Conway, Noam D. Elkies, Jeremy L. Martin, “The Mathieu group
M12 and its pseudogroup extension M13”, available as math.GR/0508630.

I can’t remember whether it was this that Alexander Borovik mentioned to me
as a sign that the simple sporadic groups are just islands sticking up above the
water.

Best, David

Needless to say, David doesn’t write me emails with numbered references; I often
polish the emails I get, with the permission of the authors, trying not to violate the spirit
of the thing.

My student Mike Stay wrote:

Music really does sound better if the piano is tuned to the particular key, i.e. the
Pythagorean intervals.

Start with a frequency for C. At each step, multiply by 2 (up an octave) or by
2/3 (down a fourth). Go down a fourth unless it will take you out of the octave;
in the latter case, multiply by 2 first.

*2 C’

*2/3 G

*2/3 D

*2 D’

*2/3 A

*2/3 E

*2 E’

*2/3 B

*2/3 F#

*2/3 C#

etc.

Classical music was written for a particular key because the keys sounded differ-
ent! Using the tuning above induces a “distance” on the keys–how in tune they
are. Pieces would use the dissonant tunings of other keys for effect. My friend is
an organist and piano tuner; he says that with the logarithmic tuning all keys
sound “equally bad.”
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But the timbre of the instrument — the harmonics and overtones — apparently
have a great deal to do with whether a particular chord is consonant or not.
This is a really cool paper that illustrates how to choose nearly any collection
of frequencies as a scale and then come up with a timbre for which it sounds
natural and right:

26) William Sethares, “Relating tuning and timbre”, http://eceserv0.ece.
wisc.edu/~sethares/consemi.html

Sethares’ home page has a bunch of MP3’s on it for people who want to listen:

27) William Sethares, “MP3 Download Central”, http://eceserv0.ece.wisc.
edu/~sethares/otherperson/all mp3s.html

I like “Truth on a Bus”, played in a 19-note scale.

There are some tracks from the CD mentioned above here:

28) William Sethares, Tuning, Timbre, Spectrum, Scale, 2nd edition, Springer
Verlag, Berlin, 2004. Author’s guide available at http://eceserv0.ece.
wisc.edu/~sethares/ttss.html. Sound examples available at http:/
/eceserv0.ece.wisc.edu/~sethares/html/soundexamples.html

The first several tracks play a tune on a typical 12-tone instrument. Then they
change its timbre by adjusting the harmonics. Now if played in 12 divisions of
a perfect octave (twice the frequency), it sounds perfectly awful; but if played in
12 divisions of 2.1, it sounds “right” again.

Mike Stay
http://math.ucr.edu/~mike

In response to my comment “Every tuning system is thus a compromise. I would like
to understand this better. . . ”, Dmitri Tymoczko wrote:

William Sethares’ “Tuning, Timbre, Spectrum, Scale” is the best book about this.
He has a convincing demonstration that “pure ratios” are not in themselves im-
portant: what’s important is that the overtones of two simultaneously-sounding
notes match. Since harmonic tones have partials that are integer multiples of
the fundamental, you get pure ratios.

However, for inharmonic tones, such as bell-sounds, the overtones are not integer
multiples of the lowest tone. Hence, to get the partials to match you often need
to use non-integer ratios. Sethares’ book comes with a CD demonstrating this.
It has to be heard to be believed.

It seems that a bunch of the music on Sethares’ CD is available online, as Mike pointed
out above. I find most of his music interesting but unpleasant, not because of the tuning
systems, but because it lacks soul. I haven’t listened to “Truth on a Bus” yet.

Cris Moore wrote:
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By the way, you should check out the music of Easley Blackwood. He wrote a
series of microtonal etudes, where the number of tones per octave ranges from
13 to 24. Some of them (17, I think) are quite beautiful.

Cris

Here’s an interesting syllabus and list of references that gives a feel for what mathe-
matically sophisticated music theorists need to know these days:

29) John Rahn, “Music 575: Music and Mathematics”, November 2004, syllabus avail-
able at http://faculty.washington.edu/jrahn/5752004.htm

Rahn makes some interesting comments on David Lewin’s book Generalized Musical
Intervals and Transformations, which defines a concept of “generalized interval system”,
or GIS. As far as I can tell without having read the book, a generalized interval system is
a G-torsor for some group G, where quite likely we might wish to restrict G to be abelian
or even cyclic. Thus, concretely, a generalized interval system is a set S of “pitch classes”
on which some group G acts, and such that for any two elements s, s′ in S there is a
unique g in G with gs = s′. In this situation we say g is the “difference in pitch” between
s and s′.

A subtle feature of G-torsors is that they are isomorphic to G, but not in a canonical
way, because they don’t have a god-given “identity element”. I explain the importance of
this in my webpage Torsors made easy. However, as in physics and mathematics, some
people in music theory seem willing to ignore this subtlety and identity any G-torsor
with G.

Rahn has the following comments on Lewin’s book. I find them interesting because
it shows music theorists grappling with ideas like category theory.

There are some problems in the formal ideas in this book, and extensions to
them:

GIS: Oren Kolman has recently shown (Kolman 2003) that every GIS can be
rewritten as a group, so that all group theory applies directly (“transfers”) to
GIS. Among other things, this points up a possible flaw in the definition of GIS; a
more intuitive definition would restrict a group of intervals to some cyclic group
of one generator (my assertion). (See Kolman 2003.)

Definitions in Ch 9: There is a problem here which prevents having more than
one arrow-label between any two nodes. Lewin defines an arrow in his node-
arrow def (p. 193) as an ordered pair of points, then maps ARROW into SGP,
so each ordered pair of nodes has exactly one transformation in the semigroup
that labels the arrow (one arrow). This probably originates in Lewin’s work
with groups of intervals, which are constrained to work this way. Of course
in most groups, such as D24, you need multiple arrows. There are various
alternatives which would work for networks with multiple arrow(-labels) for a
given ordered pair of nodes. Multiple arrows (or labels on an arrow, depending
on the definitional system) in digraphs are standard, and it is hard to see what
is accomplished by not allowing more than one relationship between any two
nodes in the model. You also need multiple arrows for groups applied to graphs,
category theory, etc.
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With this change, a Lewin network is formally a commutative diagram in some
musical category — a directed graph with arrows labeled in a monoid, such
that the composition of paths in the underlying category is associative and so
on (definition of category and of commutative diagram.) Lewin says the labels
are in a semigroup but his definition of node-arrow system makes every graph
reflexive, providing the identities that augment a semigroup to a monoid. So
it is possible to use category theory to explore Lewin networks, much as GIS
turned out to be groups: group theory transfers into GIS theory, and category
theory transfers into Lewin network theory.

I made this connection in my paper, “The Swerve and the Flow: Music’s Relation
to Mathematics,” delivered at IRCAM in October 2003 and subsequently pub-
lished in PNM 42/1; I think I was the first to say this. I expanded on this idea
in a talk at the ICMC, Miami, Nov 2 2004, called “Musical Acts”; in this talk I
expanded into the relation of Lewin nets to the fundamental group of a topolog-
ical space, and to homotopy classes, and adding category theory as a solution to
part of a set of criteria for a general music theory. Later in this seminar I’ll give
a talk about all this.

I don’t know what a Lewin network is, except from the above. Unfortunately, Lewin’s
book is out of print. Lewin died in 2003, and Milton Babbitt said that a fair portion of
his writing remains unpublished:

30) “Ken Gewertz, Composer, music theorist David Lewin dies at 69”, Harvard Univer-
sity Gazette, http://www.news.harvard.edu/gazette/2003/05.15/13-lewinobit.
html

Robert Israel pointed out an interesting connection between Einstein and Riemann:

John Baez wrote:

When Tom first mentioned “neo-Riemannian theory”, I thought this
was some bizarre application of differential geometry to music. But
no — we’re not talking about the 19th-century mathematician Bern-
hard Riemann, we’re talking about the 19th-century music theorist
Hugo Riemann!

Interestingly, both Bernhard Riemann and Hugo Riemann had a connection
with Einstein. But in Hugo’s case, it was not Albert but his cousin Alfred, the
musicologist, who edited Hugo Riemann’s “Musik Lexicon”

Robert Israel
Department of Mathematics
University of British Columbia

Noam Elkies explained what David Lewin was doing with PSL(2, 7):

John Baez wrote:
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Today I’d like to talk about the math of music — including torsors,
orbifolds, and maybe even Mathieu groups. [. . . ]

Lots of interesting points there (though curiously none about Fourier analysis,
which seem to be a natural connection in the context of mathematical physics).
For now I’ll just address Mathieu groups and the like. First, though, a trivial
etymological point:

[. . . ] in the Middle Ages, music was part of a “quadrivium” of math-
ematical arts: arithmetic, geometry, music, and astronomy. These
were studied after the “trivium” of grammar, rhetoric and logic. This
is why mathematicians scorn a result as “trivial” when it’s easy to
see using straightforward logic. When a result seems more profound,
they should call it “quadrivial”!
Try saying it sometime: “Cool! That’s quadrivial!” It might catch on.

I hope not; while the usual sense “commonplace, ordinary, unimportant” of
“trivial” does come from a Latin word “trivium”, it’s not the academic trivium
but a fork in the road — the meeting of “tres viae”, three ways. Apparently it was
common for people to make gossip and other trivial small talk at these three-
way crossings. See for instance http://www.m-w.com/dictionary/trivial,
which to its credit includes also the technical meaning

2b : relating to or being the mathematically simplest case; specifically
: characterized by having all variables equal to zero

— it would surely be too much to ask a general dictionary to mention identity
elements or maps involving an arbitrary group. To its discredit, the same dic-
tionary glosses “trivium” as “crossroads”, which should of course be where at
least four ways meet, that is, a quadrivium! In fact the www.m-w.com entry for
“quadrivium” also glosses that Latin word as “crossroads”. . .

[Given the TWFiMP context, perhaps this is the place to digress further and
suggest that a Feynman diagram is a network of trivialities, in the original
meaning of “3-way meetings” :-)]

Back to groups and music:

I’d like to conclude tonight’s performance with a “chromatic fantasy”
- some wild ideas that you shouldn’t take too seriously, at least as
far as music theory goes. In this rousing finale, I’ll list some famous
subgroups of the permutations of a 12-element set. They may not
be relevant to music, but I can’t resist mentioning them and hoping
somebody dreams up an application. [. . . ]

• The Mathieu group M12. This is a quintuply transitive group of
permutations of a 12-element set — and sharply so! [. . . ]

These groups all arise as symmetries of certain discrete geometries
called Steiner systems. An “S(L,M,N) Steiner system” is a set of
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N “points” together with a collection of “lines”, such that each line
contains M points, and any set of L points lies on a unique line. The
symmetry group of a Steiner system consists of all permutations of
the set of points that map lines to lines. It turns out that:

• There is a unique S(5, 6, 12) Steiner system, and the Mathieu
group M12 is its symmetry group. The stabilizer group of any
point is isomorphic to M11. [. . . ]

So, the group M12 could be related to music if there were a musically
interesting way of taking the chromatic scale and choosing 6-note
chords such that any 5 notes lie in a unique chord. I can’t imag-
ine such a way — most of these chords would need to be wretchedly
dissonant.

This from the man who finds Schoenberg’s music so beautiful?. . . (Actually not
all of Schoenberg’s music is 12-tone, and some of it is not even atonal; perhaps
you had heard only his tonal music and/or early explorations outside tonality
such as the Op.19 piano pieces.)

Another way to put the problem is that such a big group of permu-
tations would impose more symmetry on the set of chords than I can
imagine my ears hearing.

Curiously the real problem here is that M12, big as it is, is missing an important
kind of symmetry: a 12-cycle. While one wouldn’t need all the symmetries of the
Steiner system to be evident in the music, it would be nice for any transposition
of any Steiner chord to be again a Steiner chord. But, since M12 is a simple
group, it contains only even permutations, whereas a 12-cycle is odd. It follows
that M12 does not contain the triply-transitive group PGL2(Z/11Z) – though
it does contain the index-2 subgroup PSL2(Z/11Z), in two different ways that
are switched by an outer automorphism of M12!

While M12 does not contain any 12-cycles, it does contain double 6-cycles. We
can choose one of them (doesn’t matter which, because they’re all conjugate in
M12), and then choose an action ofM12 on Z/12Z that makes our double 6-cycle
act by translation by 2. This gives a Steiner (5, 6, 12) system on Z/12Z that’s in-
variant under all even translations. Now there are Binom(12, 5)/Binom(6, 5) =
132 hexads in the system, in 66 complementary pairs, and it turns out that none
of the hexads is taken to itself or its complement by a nontrivial element of M12.
So, under the standard identification of Z/12Z with the chromatic pitch classes,
we get 11 six-note chords that, together with their whole-tone transpositions
and complements of whole-tone transpositions (all different), form a (5, 6, 12)
Steiner system and thus contain every 5-note chord in just one way.

One problem with this is that our musical training does not prepare us to dis-
tinguish whole-tone transpositions from non-whole-tone transpositions. So, let’s
form a double Steiner system by allowing arbitrary transpositions. This ruins
most of the M12 symmetry (most of which wasn’t audible anyway), but gives us
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symmetry under the full group of musical transpositions, inversion, and comple-
ments. It so happens that this group still acts freely, so we get 11 six-note chords
that, together with their transpositions and complements of transpositions, con-
tain every 5-note chord in exactly two ways.

Back in 1991 I figured out what these 11 chords are. Written as subsets of
Z/12Z rather than of {C,C#,D,. . . }, they are:

{0, 1, 2, 3, 4, 6}, {0, 1, 2, 3, 5, 7}, {0, 1, 2, 3, 6, 7},
{0, 1, 2, 4, 5, 8}, {0, 1, 3, 4, 6, 9}, {0, 1, 3, 5, 7, 9},
{0, 1, 2, 4, 5, 9}, {0, 1, 2, 4, 7, 8}, {0, 1, 2, 5, 6, 8},

{0, 1, 2, 4, 7, 9}, {0, 1, 3, 5, 6, 8}.

Each five-note chord can be regarded as a link between two of these chords (not
necessarily different ones; for instance, the two completions of a symmetrical
chord such as {0, 1, 2, 3, 4} must be each others inversion, here {0, 1, 2, 3, 4, 6}
and {−2, 0, 1, 2, 3, 4}). The resulting graph is here, with some cryptic labeling to
indicate things like whether one of the chords linked by an edge must be inverted
to get a 5-note overlap:

http://www.math.harvard.edu/~elkies/m12.pdf

It would be fun to dream up more relations between incidence geom-
etry and music theory. Could Klein’s quartic curve play a role? [. . . ]
Its orientation-preserving symmetries form the group PSL(2, 7), which
consists of all 2x2 matrices with determinant 1 having entries in Z/7,
modulo scalars. This group has 24 × 7 = 168 elements. Since there
are 7 notes in a major or minor scale, and 24 of these scales, it’s hard
to resist wanting to think of each heptagon as a scale!
Indeed, after I mentioned this idea to Dmitri Tymoczko, he said that
David Lewin and Bob Peck have written about related topics.

Right. In fact this group, call it G168, also has a doubly-transitive action on 7
objects, which includes a 7-cycle and thus gives a natural way for this group to
act on a 7-note diatonic scale. David Lewin noted this possibility in one of his
last papers.

The key (no pun intended) is that this group G168 is also isomorphic with the
invertible 3 × 3 matrices over Z/2Z — one of those remarkable isomorphisms
between small matrix groups. So, G168 permutes the 23−1 = 7 nonzero vectors
in a 3-dimensional vector space V over Z/2Z. The existence of a 7-cycle is
automatic because 7 is prime, though it is true in general that for any finite field
k and any positive integer n the group of n×nmatrices over k contains elements
that cyclically permute the nonzero vectors of kn. The reason is that k has a
degree-n extension k′; any finite field has cyclic unit group, and multiplication
by a generator is a cyclic permutation of the nonzero elements that acts linearly
over k′, so a fortiori over k!

But back to G168. This group also permutes the 7 codimension-1 subspaces
(planes) of V , each of which contains three nonzero vectors. Any two distinct
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nonzero vectors are contained in a unique such plane, so we get a (2, 3, 7) Steiner
system, a.k.a. projective plane of order 2, whose group of symmetries is G168.

If we use a 7-cycle to identify the nonzero vectors of V with a diatonic scale, then
the Steiner system gives us a distinguished collection of 7 three-note chords,
which form a single orbit under translation (or “diatonic transposition” in
music-theory lingo). It is well-known that these can be chosen to be either
{n, n+ 1, n+ 3} or {n, n− 1, n− 3}. Using the first one yields the chords

{CDF}, {DEG}, {EFA}, {FGB}, {GAC}, {ABD}, {BCE},
and either this or its inversions is what David Lewin suggested using.

Unlike some groups I mentioned earlier, PSL(2, 7) is not a subgroup
of the permutations of a 12-element set.

Not a transitive subgroup, you mean. Since the group acts on 7 objects, it can
certainly act on 12 while keeping five of them unmoved. That’s basically what
we did above, with the five untouched objects being the “black keys” C#, D#,
F#, G#, A#. Or, use the action on the 8 points of the projective line over Z/7Z
and leave four of the 12 untouched.

–Noam D. Elkies

P.S.

(If I weren’t so darn honest, I’d add that Liszt wrote the “Transcenden-
tal Etudes” as a sequel to his popular “Algebraic Etudes”, and explain
how Mozart’s “eine kleine Nachtmusik” tours a tone net shaped like
a Klein bottle. But alas. . . .)

Ha. Here’s another kind of transcendental etude:

http://math.harvard.edu/~elkies/stego.pdf

which sounds like this:

http://math.harvard.edu/~elkies/stego.mid

(an automatic realization that has all the notes but makes no attempt at inter-
pretations). I premiered the piece here last year on March 14; for more hints
see

http://math.harvard.edu/~elkies/stego.hints

:-)

I used Noam Elkies’ remark to correct my claim that PSL(2, 7) isn’t a subgroup of
permutations of a 12-element set. Interestingly, the triples (n, n+1, n+3) and (n, n−1, n−
3) in Z/7 are also famous as two equivalent ways of defining the octonion multiplication
tables! If we call the seven unit imaginary octonions A, B, C, D, E, F , and G, then we
can define octonion multiplication using the chords Elkies lists by saying that

CD = F, DE = G, EF = A, FG = B,

GA = C, AB = D, BC = E
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along with knowing they anticommute and square to −1.
Unfortunately, these chords don’t seem particularly fundamental to music! Alas, if

only they were triads. . . .
Here are some more nice references and comments from Stephen Lavelle:

I may have been the first to say torsor, but there’s a lot of stuff in existence about
group actions as they apply to music theory. In particular, Fripertinger’s page
here:

31) Harald Fripertinger, “Mathematical music theory”, http://www.uni-graz.
at/~fripert/index 11.html

has a lot of pretty damned useful articles.

There’re also some pretty cool, and possibly musical, applications of proper
Topos Theory to music by Mazzola’s school — see, for instance:

32) Thomas Noll, The topos of triads, available at http://www.cs.tu-berlin.
de/~noll/ToposOfTriads.pdf

John Baez wrote:

Apparently Riemann’s ideas have caught on in a big way. Monzo says
that “use of lattices is endemic on internet tuning lists”, as if they
were some sort of infectious disease.
Dysart seems more gung-ho about it all. The “donuts” he mentions
arise when you curl up tone nets by identifying notes that differ by an
octave. He has some nice pictures of them!

More general “nets”, which look quite like commutative diagrams, are put into
use by Lewin. Actually, they are commutative diagrams, and one can concep-
tually quite reasonably formulate a category of musically meaningful limits —
see:

33) Guerino Mazzola and Moreno Andreatta, “From a categorical point of
view: K-nets as limit denotators”, available at recherche.ircam.fr/

equipes/repmus/mamux/documents/mazzola-andreatta.pdf

In neo-Riemannian theory, people like Lewin and Hyer started extend-
ing Riemann’s ideas by using group theory to systematize operations
on chords. The best easy introduction to this is Fiore’s paper “Mu-
sic and mathematics”. Here you can read about math lurking in the
music of Elvis and the Beatles! Or, if you’re more of a highbrow sort,
see what he has to say about Hindemith and Liszt’s “Transcendental
Etudes”. And if you like doughnuts and music, you’ll love the sec-
tion where he explains how Beethoven’s Ninth traces out a systematic
path in a torus-shaped tone net! This amazing fact was discovered by
Cohn, Douthett, and Steinbach.
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Mazzola has a nice argument as well (in his book “The Topos of Music”), where
he shows an inconsistency in Riemann’s logic of harmonic functions by showing
that his construction would allow one to fix an orientation on a Moebius strip
:) (if you take the seven notes in the major scale, and connect any three points
with a triangle when they form a major, minor, or diminished chord, you get a
Moebius strip — this was first come up with by Schoenberg).

(If I weren’t so darn honest, I’d add that Liszt wrote the “Transcenden-
tal Etudes” as a sequel to his popular “Algebraic Etudes”, and explain
how Mozart’s “eine kleine Nachtmusik” tours a tone net shaped like
a Klein bottle. But alas. . . .)

Encore! Encore!

C, C#, D, D#, E, F, F#, G, G#, A, A#, B
until you’re back to C. If you’re a mathematician, you might be hap-
pier to call these notes

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

and say that we’re working in the group of integers mod 12, other-
wise known as Z/12. Let’s be mathematicians today.

Here’s a question for you, that you might want to know the answer to: Histori-
cally, why are there twelve notes in the scale? And why are seven white and five
black?

The answer is that one that ties in lots of stuff about continued fractions, but
goes along these lines: one is looking at the octave, and divides it up by looking
at the first n fifths (in our scale c,g,d,a,e,b,. . . ) — this divides up the scale.

Pythagoras et al. thought that one should try to keep the variety of intervals
between consecutive notes as small as possible — in the end, deciding that the
fewer different intervals present the better. Scales generated by fifths that have
only two intervals present between side-by-side notes are called Pythagorean.
None have just one interval, and the first three Pythagorean scales have 5,7,
and 12 notes. 12 was thought pretty much enough, I’m guessing, and it can
have nicely embedded into it the two smaller scales (as white and black notes).

I should have a reference for the original article where I read this (some Irish
maths society bulletin I think), but I’ve said enough that the material should be
findable online. Ah yes, here it is:

34) Maria Jose Garmendia Rodriguez and Juan Antonio Navarro Gonzalez,
“Musical scales”, IMS Bulletin 35 (Christmas 1995), 24.

for all the good it’ll do you.

Steve Lubin wrote:
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Dear John,

I just came across your charming page on the web about donuts and music and
related matters, and I’d like to contribute a bit of info. Your statement:

And if you like doughnuts and music, you’ll love the section where
he [Fiore] explains how Beethoven’s Ninth traces out a systematic
path in a torus-shaped tone net! This amazing fact was discovered by
Cohn, Douthett, and Steinbach.

isn’t quite accurate; or at least, doesn’t do justice to priority of discovery. In
1974 I wrote a dissertation in musicology at NYU entitled Techniques for the
Analysis of Development in Middle-Period Beethoven, in which I laid out four
ideas:

The 18th-century European composers behaved as though they inhab-
ited a communally shared abstract tonal space that existed indepen-
dently of individual works and served as a substrate for them.
This space evolved in the course of the century, with respect to its
internal features and the ways in which it encouraged or discouraged
composers’ choices in navigating through it.
A suitable graphic representation of this space could be used as a map
for describing composers’ itineraries in particular pieces; and these
intineraries in themselves constitute an important contribution to the
effect and beauty of their works (in coordination with other factors:
rhythmic, textural, and so on).
The tonal space inhabited by the late-18th-century composers had the
form of a torus, for reasons arising from the internal geometry of the
key-relationships they favored.

Recently I’ve been gratified to discover that some neo-Riemannian theorists have
been acknowledging my contribution in their publications: e.g., Cohn, Lerdahl
and Gollin.

I wonder what Bernhard Riemann might have thought of this! My understand-
ing of what his namesake Otto did is as follows: Otto described two-dimensional
tone nets that extended out indefinitely in all directions like wallpaper -in this
I believe he followed out earlier work of Gottfried Weber. The initial insight of
taking the patterns on this flat surface and giving them closure by covering a
torus with them was mine–I’m not aware of any prior precedents.

BTW, I’m a physics groupie, always starved for laypersons’ accounts of the latest
stuff. (The collapse of Scientific American as a classy journal was a catastrophe
for me.) I’ve decided to set aside the rest of August for reading your diaries.
Thanks and best,
Steve
http://www.stevenlubin.com/
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A guiding principle in modern mathematics is this lesson: Whenever you
have to do with a structure-endowed entity S, try to determine its group
of automorphisms, the group of those element-wise transformations which
leave all structural relations undisturbed. You can expect to gain a deep
insight into the constitution of S in this way.

— Hermann Weyl
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Week 235

July 15, 2006

After leaving the Perimeter Institute near the end of June, I went home to Riverside and
then took off for a summer in Shanghai. That’s where I am now. I’m having a great time
— you can read about it in my online diary!

Today I’ll talk about classical and quantum computation, then quantum gravity, and
finally a bit about higher gauge theory.

My interest in quantum computation was revived when Scott Aaronson invited me to
this building near the Perimeter Institute:

1) Institute for Quantum Computing (IQC), http://www.iqc.ca/

Raymond Laflamme gave me a fun tour of the labs, especially the setup where he’s
using nuclear magnetic resonance to control the spins of three carbon-13 nuclei in a
substance called malonic acid. Each molecule is its own little quantum computer:

This picture was drawn by Osama Moussa, a grad student working with Laflamme on
this project. The black spheres are carbons, the whites are hydrogens and the blues are
oxygens.

One of the banes of quantum computation is “decoherence”, in which the quantum
state of the computer interacts with its environment and becomes correlated with it, or
“entangled”, in a way that appears to “collapse its wavefunction” and ruin the calcula-
tion.

In general it’s good to keep things cool if you don’t want things to get messed up.
Surprisingly, Laflamme said that for liquids, keeping them hot reduces the rate of deco-
herence: the different molecules zip around so fast they don’t stay near each other long
enough to affect each other much!

But malonic acid is a solid, so the main way to keep the molecules from disturbing
each other is to keep them far apart on average. So, they dilute the malonic acid made
using carbon-13 nuclei in a lot of ordinary malonic acid made using carbon-12. Since
12 is an even number, such carbon atoms have no unpaired spinning neutron in their
nuclei. So, the ordinary malonic acid serves as an inert “shield” that keeps the active
molecules well separated most of the time.
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So, each active molecule acts like an isolated system, doing its own computation
as they zap it with carefully timed pulses of microwaves and the three spinning nuclei
interact. About a quadrillion of these molecules are doing their thing in parallel, mixed
in with a bunch more made using carbon-12. For more details, see:

2) Jonathan Baugh, Osama Moussa, Colm A. Ryan, Raymond Laflamme, Chandrasekhar
Ramanathan, Timothy F. Havel and David G. Cory, “Solid-state NMR three-qubit
homonuclear system for quantum information processing: control and characteri-
zation”, Phys. Rev. A 73 (2006), 022305. Also available as quant-ph/0510115.

Laflamme also showed me some beams of spin-entangled photons which they can use
as keys for quantum cryptography. Nobody can peek at these photons without affecting
them! It’s a great scheme. If you don’t know it, try this simple explanation:

3) Artur Ekert, “Cracking codes, part II”, Plus Magazine, http://pass.maths.org.
uk/issue35/features/ekert/index.html

There are already two companies — idQuantique and MagiQ — selling quantum key
distribution systems that send entangled photons down optical fibers. But the folks at
the IQC are planning to send them right through the air!

Eventually they want to send them from satellites down to the Earth. But as a
warmup, they’ll send beams of entangled photons from an intermediate building to the
Institute of Quantum Computing and the Perimeter Institute.

4) IQC, “Free-space quantum key distribution”, http://www.iqc.ca/laboratories/
peg/free space.php

Then they can share secrets with nobody able to spy on them unnoticed. They should
do something to dramatize this capability! Unfortunately they don’t actually have any
secrets. So, they might need to make some up.

444

http://arxiv.org/abs/quant-ph/0510115
http://www.iqc.ca/laboratories/peg/free_space.php


WEEK 235 JULY 15, 2006

The really cool part, though, is that Scott helped me see that at least in principle,
quantum computers could keep from drifting off course without the computation getting
ruined by quantum entanglement with the environment. I had long been worried about
this.

You see, to make any physical system keep acting “digital” for a long time, one needs a
method to keep its time evolution from drifting off course. It’s easiest to think about this
issue for an old-fashioned, purely classical digital computer. It’s already an interesting
problem.

What does it mean for a physical system to act “digital”? Well, we like to idealize our
computers as having a finite set of states; with each tick of the clock it jumps from one
state to another in a deterministic way. That’s how we imagine a digital computer.

But if our computer is actually a machine following the laws of classical mechanics, its
space of states is actually continuous — and time evolution is continuous too! Physicists
call the space of states of a classical system its “phase space”, and they describe time
evolution by a “flow” on this phase space: states move continuously around as time
passes, following Hamilton’s equations.

So, what we like to idealize as a single state of our classical computer is actually a
big bunch of states: a blob in phase space, or “macrostate” in physics jargon.

For example, in our idealized description, we might say a wire represents either a 0
or 1 depending on whether current is flowing through it or not. But in reality, there’s a
blob of states where only a little current is flowing through, and another blob of states
where a lot is flowing through. All the former states count as the “0” macrostate in our
idealized description; all the latter count as the “1” macrostate.

Unfortunately, there are also states right on the brink, where a medium amount of
current is flowing through! If our machine gets into one of these states, it won’t act like
the perfect digital computer it’s trying to mimic. This is bad!

So, you should imagine the phase space of our computer as having a finite set of
blobs in it — macrostates where it’s doing something good — separated by a no-man’s
land of states where it’s not doing anything good. For a simple 2-bit computer, you can
imagine 4 blobs like this:

00 01

10 11

though in reality the phase space won’t be 2-dimensional, but instead much higher-
dimensional.

Now, as time evolves for one tick of our computer’s clock, we’d like these nice
macrostates to flow into each other. Unfortunately, as they evolve, they sort of spread
out. Their volume doesn’t change — this was shown by Liouville back in the 1800s:

5) Wikipedia, “Liouville’s theorem (Hamiltonian)”, http://en.wikipedia.org/wiki/
Liouville%27s theorem (Hamiltonian)
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But, they get stretched in some directions and squashed in others. So, it seems hard
for each one to get mapped completely into another, without their edges falling into the
dangerous no-man’s-land (shaded in gray in the diagram).

We want to keep our macrostates from getting hopelessly smeared out. It’s a bit like
herding a bunch of sheep that are drifting apart, getting them back into a tightly packed
flock. Unfortunately, Liouville’s theorem says you can’t really “squeeze down” a flock of
states! Volume in phase space is conserved. . . .

So, the trick is to squeeze our flock of states in some directions while letting them
spread out in other, irrelevant directions.

The relevant directions say whether some bit in memory is a zero or one — or
more generally, anything that affects our computation. The irrelevant ones say how
the molecules in our computer are wiggling around. . . or the molecules of air around
the computer — or anything that doesn’t affect our computation.

So, for our computer to keep acting digital, it should pump out heat!
Here’s a simpler example. Take a ball bearing and drop it into a wine glass. Regard-

less of its initial position and velocity — within reason - the ball winds up motionless at
the bottom of the glass. Lots of different states seem to be converging to one state!

But this isn’t really true. In fact, information about the ball’s position and velocity
has been converted into heat: irrelevant information about the motion of atoms.

In short: for a fundamentally analogue physical system to keep acting digital, it must
dispose of irrelevant information, which amounts to pumping out waste heat.

In fact, Rolf Landauer showed back in 1961 that getting rid of one bit of information
requires putting out this much energy in the form of heat:

kT ln(2)

where T is the temperature and k is Boltzmann’s constant. That’s not much — about
3× 10−21 joules at room temperature! But, it’s theoretically important.

What had me worried was how this would work for quantum computation. A bunch
of things are different, but some should be the same. When we pump information —
i.e., waste heat — from the computer into the environment, we inevitably correlate its
state with that of the environment.

In quantum mechanics, correlations often take the form of “entanglement”. And this
is a dangerous thing. For example, if our quantum computer is in a superposition of
lots of states where it’s doing interesting things, and we peek at it to see which, we get
entangled with it, and its state seems to “collapse” down to one specific possibility. We
say it “decoheres”.

Won’t the entanglement caused by pumping out waste heat screw up the coherence
needed for quantum computation to work its wonders?

I finally realized the answer was: maybe not. Yes, the quantum state of the computer
gets entangled with that of the environment — but maybe if one is clever, only the
irrelevant aspects of its state will get entangled: aspects that don’t affect the computation.
After all, it’s this irrelevant information that one is trying to pump out, not the relevant
information.

So, maybe it can work. I need to catch up on what people have written about this,
even though most of it speaks the language of “error correction” rather than thermo-
dynamics. Here are some things, including material Scott Aaronson recommended to
me.
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Gentle introductions:

6) Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum In-
formation, Cambridge University Press, Cambridge, 2000.

7) John Preskill, Quantum computation — lecture notes, references etc. at http://
www.theory.caltech.edu/people/preskill/ph229/

8) John Preskill, “Fault-tolerant quantum computation”, to appear in Introduction to
Quantum Computation, eds. H.-K. Lo, S. Popescu, and T. P. Spiller. Also available
as quant-ph/9712048.

Chapter 7 of Preskill’s lecture notes is about error correction.
This is a nice early paper on getting quantum computers to work despite some inac-

curacy and decoherence:

9) Peter Shor, “Fault-tolerant quantum computation”, 37th Symposium on Foundations
of Computing, IEEE Computer Society Press, 1996, pp. 56–65. Also available as
quant-ph/9605011.

This more recent paper shows that in a certain model, quantum computation can be
made robust against errors that occur at less than some constant rate:

10) Dorit Aharonov and Michael Ben-Or, “Fault-tolerant quantum computation with
constant error rate”, available as quant-ph/9906129.

Here’s a paper that assumes a more general model:

11) Barbara M. Terhal and Guido Burkard, “Fault-tolerant quantum computation for
local non-markovian noise”, Phys. Rev. A 71, 012336 (2005). Also available as
quant-ph/0402104.

Rolf Landauer was a physicist at IBM, and he discovered the result mentioned above
— the “thermodynamic cost of forgetting” — in a study of Maxwell’s demon. This is a
fascinating and controversial subject, and you can learn more about it in this book of
reprints:

12) H. S. Leff and Andrew F. Rex, editors, Maxwell’s Demon: Entropy, Information and
Computing, Institute of Physics Publishing, 1990.

I think Landauer’s original paper is in here. He figured out why you can’t get free
energy from heat by using a little demon to watch the molecules and open a door to let
the hot ones into a little box. The reason is that it takes energy for the demon to forget
what it’s seen!

Finally, on a somewhat different note, if you just want a great read on the interface
between physics and computation, you’ve got to try this:

13) Scott Aaronson, “NP-complete problems and physical reality”, ACM SIGACT News,
March 2005. Also available as quant-ph/0502072.
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Can a soap film efficiently solve the traveling salesman problem by minimizing its
area? If quantum mechanics were slightly nonlinear, could quantum computers solve NP
problems in polynomial time? And what could quantum gravity computers do? Read
and learn and the state of the art on puzzles like these.

At the Perimeter Institute I also had some great discussions with Laurent Freidel
and his student Aristide Baratin. They have a new spin foam model that reproduces
ordinary quantum field theory — in other words, particle physics in flat spacetime. It’s
not interesting as a model of quantum gravity — it doesn’t include gravity! Instead, it
serves as a convenient target for spin foam models that do include gravity: it should be
the limit of any such model as the gravitational constant approaches zero.

14) Aristide Baratin and Laurent Freidel, “Hidden quantum gravity in 4d Feynman
diagrams: emergence of spin foams”. Available as hep-th/0611042.

It’s the sequel of this paper for 3d spacetime:

15) Aristide Baratin and Laurent Freidel, “Hidden quantum gravity in 3d Feynman
diagrams”. Available as gr-qc/0604016.

Freidel, Kowalski-Glikman and Starodubtsev have also just come out with a paper
carrying out some of the exciting project I mentioned in “Week 208”:

16) Laurent Freidel, Jerzy Kowalski-Glikman and Artem Starodubtsev, “Particles as Wil-
son lines in the gravitational field”, available as gr-qc/0607014.

Their work is based on the MacDowell-Mansouri formulation of gravity. This is a
gauge theory with gauge group SO(4, 1) — the symmetry group of deSitter spacetime.
DeSitter spacetime is a lot like Minkowski spacetime, but it has constant curvature in-
stead of being flat. It’s really just a hyperboloid in 5 dimensions:

{(w, x, y, z, t) | w2 + x2 + y2 + z2 − t2 = k2}

for some constant k. It describes an exponentially expanding universe, a lot like ours to-
day. It’s the most symmetrical solution of Einstein’s equation with a positive cosmological
constant. The cosmological constant is proportional to 1/k2.

When you let the cosmological constant approach zero, which is the same as letting
k →∞, DeSitter spacetime flattens out to Minkowski spacetime, and the group SO(4, 1)
contracts to the symmetry group of Minkowski spacetime: the Poincare group.

So, MacDowell-Mansouri gravity is similar to the formulation of gravity as gauge
theory with the Poincare group as gauge group. I explained that pretty carefully back in
“Week 176”.

But, there’s one way SO(4, 1) is better than the Poincare group. It’s a “simple” Lie
group, so it has an inner product on its Lie algebra that’s invariant under conjugation.
This lets us write down the BF Lagrangian:

tr(B ∧ F )

where tr is defined using the inner product, F is the curvature of an SO(4, 1) connection
A, and B is an so(4, 1)-valued 2-form. Spin foam models of BF theory work really well:
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17) John Baez, “An introduction to spin foam models of BF theory and quantum grav-
ity”, in Geometry and Quantum Physics, eds. Helmut Gausterer and Harald Grosse,
Lecture Notes in Physics, Springer-Verlag, Berlin, 2000, pp. 25–93. Also available
as gr-qc/9905087.

So, the MacDowell-Mansouri approach is a natural for spin foam models. It’s not that
MacDowell-Mansouri gravity is a BF theory — but its Lagrangian is the BF Lagrangian
plus extra terms. So, we can think of it as a perturbed version of BF theory.

There’s also one way SO(4, 1) is worse than the Poincare group. It’s a simple Lie
group — so it doesn’t have a god-given “translation” subgroup the way the Poincare
group does. The Poincare gauge theory formulation of general relativity requires that we
treat translations differently from boosts and rotations. We can’t do this in an SO(4, 1)
gauge theory unless we break the symmetry down to a smaller group: the Lorentz group,
SO(3, 1).

So, to get MacDowell-Mansouri gravity from SO(4, 1) BF theory, we need to add
extra terms to the Lagrangian that break the symmetry group down to SO(3, 1). This
isn’t bad, just a bit sneaky.

The new paper by Freidel, Kowalski-Glikman and Starodubtsev is mainly about the
SO(4, 1) BF theory rather than full-fledged MacDowell-Mansouri gravity. They show
that if you cut out curves in spacetime and couple them to the A field in the right way,
they act like the worldlines of point particles. In particular, they have a mass and spin,
and they trace out geodesics when their spin is zero. Spinning particles do something a
bit fancier, but it’s the right thing.

This generalizes some results for 3d gravity that I explained in detail back in “Week
232”. It’s nice to see it working in 4 dimensions too.

Back then I also explained something else about 4d BF theory: if you cut out sur-
faces in spacetime and couple them to the B field, they act like the worldsheets of 1-
dimensional extended objects, which one might call strings. I don’t think they’re the
wiggling stretchy strings that string theorists like; I think their equation of motion is
different. But I should actually check! It’s stupid; I should have checked this a long time
ago.

Ahem. Anyway, it’s really neat how particles couple to theA field and “strings” couple
to the B field in BF theory.

This is vaguely reminiscent of how theA andB field form two parts of a “2-connection”
— a gadget that lets you define parallel transport along curved and surfaces. You can
read about 2-connections here:

18) John Baez and Urs Schreiber, “Higher gauge theory”, to appear in the volume
honoring Ross Street’s 60th birthday, available as math.DG/0511710.

The cool thing is that a pair consisting of an A field and a B field gives well-behaved
parallel transport for curves and surfaces only if they satisfy an equation. . . which is
implied by the basic equation of BF theory!

The above paper is a summary of results without proofs. Before one can talk about
2-connections, one needs to understand 2-bundles, which are a “categorified” sort of
bundle where the fiber is not a smooth manifold but a smooth category. My student
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Toby Bartels recently finished writing an excellent thesis that defines 2-bundles and re-
lates them to “gerbes” — another popular approach to higher gauge theory, based on
categorifying the concept of “sheaf” instead of “bundle”:

19) Toby Bartels, “Higher Gauge Theory I: 2-bundles”, available as math.CT/0410328.

The detailed study of 2-connections will show up in the next installment — a paper
I’m writing with Urs Schreiber.

You can also see transparencies of some talks about this stuff:

20) John Baez, Alissa Crans and Danny Stevenson, “Chicago lectures on higher gauge
theory”, available at http://math.ucr.edu/home/baez/namboodiri/

21) John Baez, “Higher gauge theory”, 2006 Barrett lectures, available at http://

math.ucr.edu/home/baez/barrett/

It’ll be lots of fun if higher gauge theory and the work relating MacDowell-Mansouri
gravity to BF theory fit together and develop in some nontrivial direction. But the funny
thing is, I don’t how they fit together yet.

Here’s why. In gauge theory, there’s a famous way to get a number from a connection
A and a loop. First you take the “holonomy” of A around the loop, and then you take
the trace (in some representation of your gauge group) to get a number. This number is
called a “Wilson loop”.

This is an obvious way to define an action for a particle coupled to a connection A
— at least if the particle moves around a loop. For example, it’s this action that let us
compute knot invariants from BF theory: you use the BF action for your fields, you use
the Wilson loop as an action for your particle, and you compute the amplitude for your
particle to trace out some knot in spacetime.

One might guess from the title “Particles as Wilson lines in the gravitational field”
that this is the action Freidel and company use. But it’s not!

Instead, they use a different action, which involves extra fields on the particle’s world-
line, describing its position and momentum. I explained a close relative of this action
back in “Week 232”, when I was coupling particles to 3d gravity.

The same funny difference shows up when we couple strings to the B field. In higher
gauge theory you can define holonomies and Wilson loops using the A field, but you
can also define “2-holonomies” and “Wilson surfaces” using both the A and B fields.
The 2-holonomy describes how a string changes as it moves along a surface, just as
the holonomy describes how a particle changes as it moves along a curve. If you have
a closed surface you can take a “trace” of the 2-holonomy and get a number, which
deserves to be called a “Wilson surface”.

This is an obvious way to define an action for a string coupled to the A and B fields
— at least if it traces out a closed surface. But, it’s not the one Perez and I use! Why not?
Because we were trying to do something analogous to what people did for particles in
3d gravity.

So, there’s some relation between this “particles and strings coupled to 4dBF theory”
business and the mathematics of higher gauge theory, but it’s not the obvious one you
might have guessed at first.

Mysteries breed mysteries. For more musings on these topics, try my talk at the
Perimeter Institute:
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22) John Baez, “Higher-dimensional algebra: a language for quantum spacetime”,
colloquium talk at Perimeter Institute, available at http://math.ucr.edu/home/
baez/quantum spacetime/

Addenda: I thank Chris Weed for catching some errors, Osama Moussa for letting me
display his picture and for catching some more errors, and Ben Rubiak-Gould, Nathan
Urban and K. Eric Drexler for some interesting comments. Here’s my reply to Ben Rudiak-
Gould:

John Baez wrote:

In fact, Rolf Landauer showed back in 1961 that getting rid of one
bit of information requires putting out this much energy in the form
of heat:

kT ln(2)

Ben Rubiak-Gould replied:

It’s easy to understand where this formula comes from. Getting rid of
a bit means emitting one bit of entropy, which is k ln 2 in conventional
units. The associated quantity of heat is ST = kT ln 2.

Thanks; I should have said that.

Landauer’s analysis showing that “forgetting information” costs energy is still
interesting, and it was surprising at the time. There had been a number of
other analyses of why Maxwell’s demon can’t get you something for nothing, by
Szilard and others, but none (I think) had focussed on the key importance of
resetting the demon’s memory to its initial state.

But it seems to me that you’re conflating two different issues here.
One is the cost of forgetting a bit, which only affects irreversible com-
putation, and the other is the cost of keeping the computation on
track, which affects reversible computation also. Landauer’s formula
tells you the former, but I don’t think there’s any lower bound on the
latter.

Not in principle: with a perfectly tuned dynamics, an analogue system can act
perfectly digital, since each macrostate gets mapped perfectly into another one
with each click of the clock. But with imperfect dynamics, dissipation is needed
to squeeze each macrostate down enough so it can get mapped into the next
— and the dissipation makes the dynamics irreversible, so we have to pay a
thermodynamic cost.

If I were smarter I could prove an inequality relating the “imperfection of the
dynamics” (how to quantify that?) to the thermodynamic cost of computation,
piggybacking off Landauer’s formula.
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Here’s what Nathan Urban wrote:

John Baez wrote:

[quantum computation] So, maybe it can work. I need to catch up
on what people have written about this, even though most of it speaks
the language of “error correction” rather than thermodynamics.

A nice recent overview of some of this work can be found in the latest Physics
Today:

23) Sarma, Freedman, and Nayak, “Topological quantum computation”, Physics
Today (July 2006).

In this approach, error-free computation is accomplished using topological quan-
tum field theories, as topological theories are robust against local perturbations.

The article has some nice discussion of anyons, braidings, non-Abelian topolog-
ical phases of condensed matter systems, etc. It speculates that the ν = 12/5
state of the fractional quantum Hall effect might support universal topological
quantum computation (meaning that its braiding operators could realize any
desired unitary transformation).

Here’s my reply:

Long time no see, Nathan!

Nathan Urban wrote:

John Baez wrote:

[quantum computation] So, maybe it can work. I need
to catch up on what people have written about this, even
though most of it speaks the language of “error correction”
rather than thermodynamics.

A nice recent overview of some of this work can be found in the latest
Physics Today (July 2006), in the article “Topological quantum com-
putation” by Sarma, Freedman, and Nayak. (Nayak is at UCLA if
you ever get out that way.)

Thanks, I’ll check that out.

I’m usually too lazy to drive into LA, but now that I’m in Shanghai, I thought
I’d take the chance to visit Zhenghan Wang in the nearby city of Hangzhou and
talk to him about topological quantum computation.

Wang and Freedman both work for “Project Q”, aptly named after the Star
Trek villain — it’s Microsoft’s project to develop quantum computers using non-
abelian anyons:

24) Topological quantum computing at Indiana University, http://www.tqc.
iu.edu/
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The article has some nice discussion of anyons, braidings, non-Abelian
topological phases of condensed matter systems, etc. It speculates that
the ν = 12/5 state of the fractional quantum Hall effect might sup-
port universal topological quantum computation (meaning that its
braiding operators could realize any desired unitary transformation).

Freedman, Larsen and Wang have already proved that certain versions of Chern-
Simons theory support universal quantum computation:

25) Michael Freedman, Michael Larsen, and Zhenghan Wang, “A modular
functor which is universal for quantum computation”, available as quant-ph/
0001108.

The fractional quantum Hall effect is supposedly described by Chern-Simons
theory, so this is relevant. I don’t know anything about the “ν = 12/5 state” of
the fractional quantum Hall effect, but the folks at Project Q do want to use the
fractional quantum Hall effect for quantum computation, and some people are
looking for nonabelian anyons in the ν = 5/2 state:

26) Parsa Bonderson, Alexei Kitaev and Kirill Shtengel, “Detecting non-abelian
statistics in the ν = 5/2 fractional quantum Hall state”, Phys. Rev. Lett.
96 (2006) 016803. Also available as cond-mat/0508616.

Apparently there’s just one lab in the world that has the capability of producing
these fractional quantum Hall states!

The article in the latest Physics Today isn’t free for nonsubscribers, but this is, and it
seems to cover similar ground:

27) Charles Day, “Devices based on the fractional quantum Hall effect may fulfill the
promise of quantum computing”, Physics Today (October 2005), also available at
http://www.physicstoday.org/vol-58/iss-10/p21.html

It discusses both the ν = 12/5 and ν = 5/2 states.
Alas, I never managed to visit Zhenghan Wang in Hangzhou.
K. Eric Drexler writes:

Dear John,

To continue a thread in Week 235:

John Baez wrote:

[. . . ] with a perfectly tuned dynamics, an analogue system can act
perfectly digital, since each macrostate gets mapped perfectly into an-
other one with each click of the clock. But with imperfect dynamics,
dissipation is needed to squeeze each macrostate down enough so it
can get mapped into the next — and the dissipation makes the dy-
namics irreversible, so we have to pay a thermodynamic cost.
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Logically reversible computation can, in fact, be kept on track without expending
energy and without accurately tuned dynamics. A logically reversible computa-
tion can be embodied in a constraint system resembling a puzzle with sliding,
interlocking pieces, in which all configurations accessible from a given input
state correspond to admissible states of the computation along an oriented path
to the output configuration. The computation is kept on track by the contact
forces that constrain the motion of the sliding pieces. The computational state
is then like a ball rolling along a deep trough; an error would correspond to the
ball jumping out of the trough, but the energy barrier can be made high enough
to make the error rate negligible. Bounded sideways motion (that is, motion in
computationally irrelevant degrees of freedom) is acceptable and inevitable.

Keeping a computation of this sort on track clearly requires no energy expendi-
ture, but moving the computational state in a preferred direction (forward!) is
another matter. This requires a driving force, and in physically realistic systems,
this force will be resisted by a “friction” caused by imperfections in dynamics
that couple motion along the progress coordinate to motion in other, compu-
tationally irrelevant degrees of freedom. In a broad class of physically realistic
systems, this friction scales like viscous drag: the magnitude of the mean force is
proportional to speed, hence energy dissipation per distance travelled (equiva-
lently, dissipation per logic operation) approaches zero as the speed approaches
zero.

Thus, the thermodynamic cost of keeping a classical computation free of er-
rors can be zero, and the thermodynamic cost per operation of a logically re-
versible computation can approach zero. Only Landauer’s ln(2)kT cost of bit
erasure is unavoidable, and the number of bits erased is a measure of how far
a computation deviates from logical reversibility. These results are well-known
from the literature, and are important in understanding what can be done with
atomically-precise systems.

With best wishes,

Eric

For an introduction to Drexler’s plans for atomically-precise reversible computers,
see:

28) K. Eric Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computa-
tion, John Wiley and Sons, New York, 1992.

The issue of heat dissipation in such devices is also studied here:

29) Ralph C. Merkle, “Two types of mechanical reversible logic”, Nanotechnology 4
(1993), 114–131. Also available at http://www.zyvex.com/nanotech/mechano.
html

I need to think about this stuff more!
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Week 236

July 26, 2006

This week I’d like to catch you up on some papers about categorification and quantum
mechanics.

But first, since it’s summer vacation, I’d like to take you on a little road trip — to
infinity. And then, for fun, a little detective story about the history of the icosahedron.

Cantor invented two kinds of infinities: cardinals and ordinals. Cardinals are more
familiar. They say how big sets are. Two sets can be put into 1-1 correspondence iff they
have the same number of elements — where this kind of “number” is a cardinal.

But today I want to talk about ordinals. Ordinals say how big “well-ordered” sets are.
A set is well-ordered if it’s linearly ordered and every nonempty subset has a smallest
element.

For example, the empty set
{}

is well-ordered in a trivial sort of way, and the corresponding ordinal is called

0.

Similarly, any set with just one element, like this:

{0}

is well-ordered in a trivial sort of way, and the corresponding ordinal is called

1.

Similarly, any set with two elements, like this:

{0, 1}

becomes well-ordered as soon as we decree which element is bigger; the obvious choice
is to say 0 < 1. The corresponding ordinal is called

2.

Similarly, any set with three elements, like this:

{0, 1, 2}

becomes well-ordered as soon as we linearly order it; the obvious choice here is to say
0 < 1 < 2. The corresponding ordinal is called

3.

Perhaps you’re getting the pattern — you’ve probably seen these particular ordinals be-
fore, maybe sometime in grade school. They’re called finite ordinals, or “natural num-
bers”.

But there’s a cute trick they probably didn’t teach you then: we can define each
ordinal to be the set of all ordinals less than it:
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• 0 = {} (since no ordinal is less than 0)

• 1 = {0} (since only 0 is less than 1)

• 2 = {0, 1} (since 0 and 1 are less than 2)

• 3 = {0, 1, 2} (since 0, 1 and 2 are less than 3)

and so on. It’s nice because now each ordinal is a well-ordered set of the size that
ordinal stands for. And, we can define one ordinal to be “less than or equal” to another
precisely when its a subset of the other.

Now, what comes after all the finite ordinals? Well, the set of all finite ordinals is
itself well-ordered:

{0, 1, 2, 3, . . .}

So, there’s an ordinal corresponding to this — and it’s the first infinite ordinal. It’s usually
called omega (ω). Using the cute trick I mentioned, we can actually define

ω = 0, 1, 2, 3, . . .

Now, what comes after this? Well, it turns out there’s a well-ordered set

{0, 1, 2, 3, . . . , ω}

containing the finite ordinals together with ω, with the obvious notion of “less than”: ω
is bigger than the rest. Corresponding to this set there’s an ordinal called

ω + 1

As usual, we can simply define

ω + 1 = {0, 1, 2, 3, . . . , ω}

(At this point you could be confused if you know about cardinals, so let me throw in
a word of reassurance. The sets ω and ω + 1 have the same “cardinality”, but they’re
different as ordinals, since you can’t find a 1-1 and onto function between them that
preserves the ordering. This is easy to see, since ω+1 has a biggest element while ω does
not.)

Now, what comes next? Well, not surprisingly, it’s

ω + 2 = {0, 1, 2, 3, . . . , ω, ω + 1}

Then comes
ω + 3, ω + 4, ω + 5, . . .

and so on. You get the idea.
What next?
Well, the ordinal after all these is called ω+ω. People often call it “ω times 2” or “ω2”

for short. So,
ω2 = {0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . .}
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What next? Well, then comes
ω2 + 1, ω2 + 2, . . .

and so on. But you probably have the hang of this already, so we can skip right ahead to
ω3.

In fact, you’re probably ready to skip right ahead to ω4, and ω5, and so on.
In fact, I bet now you’re ready to skip all the way to “ω times ω”, or ω2 for short:

ω2 = {0, 1, 2, . . . ω, ω + 1, ω + 2, . . . , ω2, ω2 + 1, ω2 + 2, . . .}

It would be fun to have a book with ω pages, each page half as thick as the previous
page. You can tell a nice long story with an ω-sized book. But it would be even more fun
to have an encyclopedia with ω volumes, each being an ω-sized book, each half as thick
as the previous volume. Then you have ω2 pages — and it can still fit in one bookshelf!

What comes next? Well, we have

ω2 + 1, ω2 + 2, . . .

and so on, and after all these come

ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . .

and so on — and eventually
ω2 + ω2 = ω22

and then a bunch more, and then
ω23

and then a bunch more, and then
ω24

and then a bunch more, and more, and eventually

ω2ω = ω3.
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You can probably imagine a bookcase containing ω encyclopedias, each with ω volumes,
each with ω pages, for a total of ω3 pages.

I’m skipping more and more steps to keep you from getting bored. I know you have
plenty to do and can’t spend an infinite amount of time reading This Week’s Finds, even
if the subject is infinity.

So, if you don’t mind me just mentioning some of the high points, there are guys like
ω4 and ω5 and so on, and after all these comes

ωω.

And then what?
Well, then comes ωω+1, and so on, but I’m sure that’s boring by now. And then come

ordinals like
ωω2, . . . , ωω3, . . . , ωω4, . . .

leading up to
ωωω = ωω+1

Then eventually come ordinals like

ωωω2, . . . , ωωω3, . . . , ωωω4, . . .

and so on, leading up to:
ωωωω = ωω+ω = ωω2

This actually reminds me of something that happened driving across South Dakota one
summer with a friend of mine. We were in college, so we had the summer off, so we
drive across the country. We drove across South Dakota all the way from the eastern
border to the west on Interstate 90.

This state is huge — about 600 kilometers across, and most of it is really flat, so the
drive was really boring. We kept seeing signs for a bunch of tourist attractions on the
western edge of the state, like the Badlands and Mt. Rushmore — a mountain that they
carved to look like faces of presidents, just to give people some reason to keep driving.

Anyway, I’ll tell you the rest of the story later — I see some more ordinals coming up:

ωω3, . . . , ωω4, . . . , ωω5, . . .

We’re really whizzing along now just to keep from getting bored — just like my friend
and I did in South Dakota. You might fondly imagine that we had fun trading stories
and jokes, like they do in road movies. But we were driving all the way from Princeton
to my friend Chip’s cabin in California. By the time we got to South Dakota, we were all
out of stories and jokes.

Hey, look! It’s
ωωω = ωω2

That was cool. Then comes
ωω3

, . . . ωω4

, . . . ωω5

, . . .

and so on.
Anyway, back to my story. For the first half of our half of our trip across the state, we

kept seeing signs for something called the South Dakota Tractor Museum.
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Oh, wait, here’s an interesting ordinal — let’s slow down and take a look:

ωωω

I like that! Okay, let’s keep driving:

ωωω

+ 1, ωωω

+ 2, . . .

and then
ωωω

+ ω, . . . , ωωω

+ ω2, . . . , ωωω

+ 3, . . .

and then
ωωω

+ ω2, . . . , ωωω

+ ω3, . . .

and eventually
ωωω

+ ωω

and eventually
ωωω

+ ωωω

= ωωω

2

and then
ωωω

3, . . . , ωωω

4, . . . , ωωω

5, . . .

and eventually
ωωω

ω = ωωω+1

and then
ωωω+2, . . . , ωωω+3, . . . , ωωω+4, . . .

This is pretty boring; we’re already going infinitely fast, but we’re still just picking up
speed, and it’ll take a while before we reach something interesting.

Anyway, we started getting really curious about this South Dakota Tractor Museum
— it sounded sort of funny. It took 250 kilometers of driving before we passed it. We
wouldn’t normally care about a tractor museum, but there was really nothing else to
think about while we were driving. The only thing to see were fields of grain, and these
signs, which kept building up the suspense, saying things like “ONLY 100 MILES TO THE
SOUTH DAKOTA TRACTOR MUSEUM!”

We’re zipping along really fast now:

ωωωω

, . . . , ωωωωω

, . . . , ωωωωωω

, . . .

What comes after all these?
At this point we need to stop for gas. Our notation for ordinals runs out at this point!
The ordinals don’t stop; it’s just our notation that gives out. The set of all ordinals

listed up to now — including all the ones we zipped past — is a well-ordered set called

ε0

or “epsilon-nought”. This has the amazing property that

ε0 = ωε0
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And, it’s the smallest ordinal with this property.
In fact, all the ordinals smaller than ε0 can be drawn as trees. You write them in

“Cantor normal form” like this:

ωωωω+ω+1

+ ωωω+ωω

+ ωω + ω + ω + 1 + 1 + 1

using just + and exponentials and 1 and ω, and then you turn this notation into a picture
of a tree. I’ll leave it as a puzzle to figure out how.

So, the set of (finite, rooted) trees becomes a well-ordered set whose ordinal is ε0.
Trees are important in combinatorics and computer science, so ε0 is not really so weird
after all.

Another cool thing is that Gentzen proved the consistency of the usual axioms for
arithmetic — “Peano arithmetic” — with the help of ε0. He did this by drawing proofs
as trees, and using this to give an inductive argument that there’s no proof in Peano
arithmetic that 0 = 1. But, this inductive argument goes beyond the simple kind you use
to prove facts about all natural numbers. It uses induction up to ε0.

You can’t formalize Gentzen’s argument in Peano arithmetic: thanks to Gödel, this
system can’t proof itself consistent unless it’s not. I used to think this made Gentzen’s
proof pointless, especially since “induction up to ε0” sounded like some sort of insane
logician’s extrapolation of ordinary mathematical induction.

But now I see that induction up to ε0 can be thought of as induction on trees, and it
seems like an obviously correct principle. Of course Peano’s axioms also seem obviously
correct, so I don’t know that Gentzen’s proof makes me more sure Peano arithmetic is
consistent. But, it’s interesting.

Induction up to ε0 also lets you prove other stuff you can’t prove with just Peano
arithmetic. For example, it lets you prove that every Goodstein sequence eventually
reaches zero!

Huh?
To write down a Goodstein sequence, you start with any natural number and write it

in “recursive base 2”, like this:
22

2+1 + 21

Then you replace all the 2’s by 3’s:

33
3+1 + 31

Then you subtract 1 and write the answer in “recursive base 3”:

33
3+1 + 1 + 1

Then you replace all the 3’s by 4’s, subtract 1 and write the answer in recursive base 4.
Then you replace all the 4’s by 5’s, subtract 1 and write the answer in recursive base 5.
And so on.

You can try some examples using the applet on this site:

1) National Curve Bank, “Goodstein’s theorem”, http://curvebank.calstatela.edu/
goodstein/goodstein.htm
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You’ll see that for any starting number bigger than 3, the Goodstein sequence seems
to keep growing forever. So, it’s shocking to learn that they all eventually go to zero!

For example, if you start with the number 4, you get this sequence:

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, . . .

Believe it or not, this goes to zero after about 7×10121210694 steps! For a proof, see Kevin
Buzzard’s calculations in the Addendum at the bottom of this article.

In fact, it takes nothing but algebra, careful reasoning and persistence to work out
when any given Goodstein sequence reaches zero. But, proving they all eventually reach
zero uses induction up to ε0.

How can that be?
The point is that these numbers in “recursive base n” look a lot like ordinals in Cantor

normal form. If we translate them into ordinals by replacing n by ω, the ordinals keep
getting smaller at each step, even when the numbers get bigger!

For example, when we do the translation

22
2+1 + 21 7→ ωωω+1 + ω1

33
3+1 + 1 + 1 7→ ωωω+1 + 1 + 1

we see the ordinal got smaller even though the number got bigger. Since ε0 is well-
ordered, the ordinals must bottom out at zero after a finite number of steps — that’s
what “induction up to ε0” tells us. So, the numbers must too!

In short, induction up to ε0 lets us prove all Goodstein sequences eventually reach
zero. But Kirby and Paris showed something much deeper: they showed that you need
induction up to ε0 to get the job done.

And, they noted a big consequence of this fact. Suppose Peano arithmetic is consis-
tent. Then you can’t do induction up to ε0 in this system — since if you could, Gentzen’s
work would let this system prove itself consistent, and Gödel’s theorem would kick in
and say it’s not. But since you need induction up to ε0 to prove all Goodstein sequences
go to zero, you can’t prove this in Peano arithmetic.

So, the fact that Goodstein sequences go to zero is obvious if you think about it the
right way, but it’s not provable in Peano arithmetic.

I don’t know any results in mathematical physics that use induction up to ε0, but
these could be one — after all, trees show up in the theory of Feynman diagrams. That
would be pretty interesting.

There’s a lot more to say about this, but I hear what you’re asking: what comes after
ε0?

Well, duh! It’s
ε0 + 1

Then comes
ε0 + 2

and then eventually we get to
ε0 + ω

and then
ε0 + ω2, . . . , ε0 + ω3, . . . , ε0 + ω4, . . .
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and after a long time
ε0 + ε0 = ε02

and then eventually
ε20

and then eventually..
Oh, I see! You want to know the first really interesting ordinal after ε0.
Well, this is a matter of taste, but you might be interested in ε1. This is the first

ordinal after ε0 that satisfies this equation:

x = ωx

How do we actually reach this ordinal? Well, just as ε0 was the limit of this sequence:

ω, ωω, ωωω

, ωωωω

, . . .

ε1 is the limit of this:

ε0 + 1, ωε0+1, ωωε0+1

, ωωωε0+1

, . . .

In other words, it’s the union of all these well-ordered sets.
In what sense is ε1 the “first really interesting ordinal” after ε0? I’m not sure! Maybe

it’s the first one that can’t be built out of 1, ω and ε0 using finitely many additions,
multiplications and exponentiations. Does anyone out there know?

Anyway, the next really interesting ordinal I know after ε1 is ε2. It’s the next solution
of

x = ωx

and it’s defined to be the limit of this sequence:

ε1 + 1, ωε1+1, ωωε1+1

, ωωωε1+1

, . . .

Maybe now you get the pattern. In general, εα is the αth solution of

x = ωx

and we can define this, if we’re smart, for any ordinal α.
So, we can keep driving on through fields of ever larger ordinals:

ε2, . . . , ε3, . . . , ε4, . . .

and eventually
εω, . . . , εω+1, . . . , εω+2, . . .

and eventually
εω2 , . . . , εω3 , . . . , εω4 , . . .

and eventually
εωω , . . . , εωωω , . . .

As you can see, this gets boring after a while — it’s suspiciously similar to the begin-
ning of our trip through the ordinals, with them now showing up as subscripts under this
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“ε” notation. But this is misleading: we’re moving much faster now. I’m skipping over
much bigger gaps, not bothering to mention all sorts of ordinals like

εωω + εω248 + ωωω+17

+ 1

Anyway. . . so finally we got to this South Dakota Tractor Museum, driving pretty
darn fast at this point, about 85 miles an hour. . . and guess what?

Oh — wait a minute — it’s sort of interesting here:

εε0 , . . . , εε1 , . . . , εε2 , . . .

and now we reach
εεω

and then
εεωω , . . . , ε+ εωωω , . . .

and then as we keep speeding up, we see:

εεε0 , . . . εεεε0 , . . . εεεεε0
, . . .

So, anyway: by the time we got that tractor museum, we were driving really fast. And,
all we saw as we whizzed by was a bunch of rusty tractors out in a field! It was over in
a split second! It was a real anticlimax — just like this little anecdote, in fact.

But that’s the way it is when you’re driving through these ordinals. Every ordinal, no
matter how large, looks pretty pathetic and small compared to the ones ahead — so you
keep speeding up, looking for a really big one. . . and when you find one, you see it’s
part of a new pattern, and that gets boring to. . .

Anyway, when we reach the limit of this sequence:

ε0, εε0 , εεε0 , εεεε0 , εεεεε0 , . . .

our notation breaks down, since this is the first solution of

x = εx

We could make up a new name for this ordinal, like η0.
Then we could play the whole game again, defining ηα to be the αth solution of

x = εx

sort of like how we defined the epsilons. This kind of equation, where something equals
some function of itself, is called a “fixed point” equation.

But since we’ll have to play this game infinitely often, we might as well be more
systematic about it!

As you can see, we keep running into new, qualitatively different types of ordinals.
First we ran into the powers of ω, then we ran into the epsilons, and now these etas. It’s
gonna keep happening! For each type of ordinal, our notation runs out when we reach
the first “fixed point” — when the xth ordinal of this type is actually equal to x.

So, instead of making up infinitely many Greek letters, let’s use φγ for the γth type
of ordinal, and φγ(α) for the αth ordinal of type γ.
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We can use the fixed point equation to define φγ+1 in terms of φγ . In other words,
we start off by defining

φ0(α) = ωα

and then define
φγ+1(α)

to be the αth solution of
x = φγ(x)

We can even define this stuff when γ itself is infinite. For a more precise definition see
the Wikipedia article cited below. . . but I hope you get the rough idea.

This defines a lot of really big ordinals, called the “Veblen hierarchy”.
There’s a souped-up version of Cantor normal form that can handle every ordinal

that’s a finite sum of guys in the Veblen hierarchy: you can write them uniquely as finite
sums of the form

φγ1
(α1) + . . .+ φγk

(αk)

where each term is less than or equal to the previous one, and each αi is not a fixed
point of φγi

But as you might have suspected, not all ordinals can be written in this way. For one
thing, every ordinal we’ve reached so far is countable: as a set you can put it in one-to-
one correspondence with the integers. There are much bigger uncountable ordinals — at
least if you believe you can well-order uncountable sets.

But even in the realm of the countable, we’re nowhere near done!
As I hope you see, the power of the human mind to see a pattern and formalize it gives

the quest for large countable ordinals a strange quality. As soon as we see a systematic
way to generate a sequence of larger and larger ordinals, we know this sequence has a
limit that’s larger then all of those! And this opens the door to even larger ones. . .

So, this whole journey feels a bit like trying to outrace our car’s own shadow — the
faster we drive, the faster it chases after us. But, it’s interesting to hear what happens
next. At this point we reach something a bit like the Badlands on the western edge of
South Dakota — something a bit spooky!

It’s called the Feferman-Schütte ordinal, Γ0. This is just the limit, or union if you
prefer, of all the ordinals mentioned so far: all the ones you can get from the Veblen
hierarchy. You can also define Γ0 by a fixed point property: it’s the smallest ordinal x
with

φx(0) = x

Now, we’ve already seen that induction up to different ordinals gives us different amounts
of mathematical power: induction up to ω is just ordinary mathematical induction as for-
malized by Peano arithmetic, but induction up to ε0 buys us more — it lets us prove the
consistency of Peano arithmetic!

Logicians including Feferman and Schütte have carried out a detailed analysis of
this subject. They know a lot about how much induction up to different ordinals buys
you. And apparently, induction up to Γ0 lets us prove the consistency of a system called
“predicative analysis”. I don’t understand this, nor do I understand the claim I’ve seen
that Γ0 is the first ordinal that cannot be defined predicatively — i.e., can’t be defined
without reference to itself. Sure, saying Γ0 is the first solution of

φx(0) = x
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is non-predicative. But what about saying that Γ0 is the union of all ordinals in the
Veblen hierarchy? What’s non-predicative about that?

If anyone could explain this in simple terms, I’d be much obliged.
As you can see, I’m getting out my depth here. That’s pretty typical in This Week’s

Finds, but this time — just to shock the world — I’ll take it as a cue to shut up. So, I
won’t try to explain the outrageously large Bachmann-Howard ordinal, or the even more
outrageously large Church-Kleene ordinal — the first one that can’t be written down
using any computable system of notation. You’ll just have to read the references.

For a fun introduction to the infinite, try

2) Rudy Rucker, Infinity and the Mind: The Science and Philosophy of the Infinite,
Princeton University Press, Princeton, 2004.

Rucker also wrote a novel, White Light, about a mathematician who actually goes to
the transfinite realms and climbs some transfinite mountains.

For online self-study, I urge you to start by reading the Wikipedia article on ordinal
numbers, then the article on ordinal arithmetic, and then the one on large countable
ordinals — they’re really well-written:

3) Wikipedia, “Ordinal numbers”, http://en.wikipedia.org/wiki/Ordinal number

“Ordinal arithmetic”, http://en.wikipedia.org/wiki/Ordinal arithmetic

“Large countable ordinals”, http://en.wikipedia.org/wiki/Large countable ordinals

The last one has a tempting bibliography, but warns us that most books on this subject
are hard to read and out of print. Apparently nobody can agree on notation for ordinals
beyond the Veblen hierarchy, either.

Gentzen proved the consistency of Peano arithmetic in 1936:

4) Gerhard Gentzen, “Die Widerspruchfreiheit der reinen Zahlentheorie”, Mathema-
tische Annalen 112 (1936), 493–565. Translated as “The consistency of arithmetic”
in M. E. Szabo ed., The Collected Works of Gerhard Gentzen, North-Holland, Ams-
terdam, 1969.

Goodstein’s theorem came shortly afterwards:

5) R. Goodstein, “On the restricted ordinal theorem”, Journal of Symbolic Logic 9
(1944), 33–41.

but Kirby and Paris proved it independent of Peano arithmetic only in 1982:

6) L. Kirby and J. Paris, “Accessible independence results for Peano arithmetic”, Bull.
London. Math. Soc. 14 (1982), 285–93.

That marvelous guy Alan Turing wrote his PhD thesis at Princeton under the logician
Alonzo Church. It was about ordinals and their relation to logic:

7) Alan M. Turing, “Systems of logic defined by ordinals”, Proc. London Math. Soc.,
Series 2, 45 (1939), 161–228.
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This is regarded as his most difficult paper. The idea is to take a system of logic
like Peano arithmetic and throw in an extra axiom saying that system is consistent, and
then another axiom saying that system is consistent, and so on ad infinitum — getting a
new system for each ordinal. These systems are recursively axiomatizable up to (but not
including) the Church-Kleene ordinal.

These ideas were later developed much further. . .
But, reading original articles is not so easy, especially if you’re in Shanghai without

access to a library. So, what about online stuff — especially stuff for the amateur, like
me?

Well, this article is great fun if you’re looking for a readable overview of the grand
early days of proof theory, when Hilbert was battling Brouwer, and then Gödel came and
blew everyone away:

8) Jeremy Avigad and Erich H. Reck, ‘ “Clarifying the nature of the infinite”: the de-
velopment of metamathematics and proof theory’, Carnegie-Mellon Technical Re-
port CMU-PHIL-120, 2001. Also available as http://www.andrew.cmu.edu/user/
avigad/Papers/infinite.pdf

But, it doesn’t say much about the newer stuff, like the idea that induction up to a
given ordinal can prove the consistency of a logical system — the bigger the ordinal, the
stronger the system. For work up to 1960, this is a good overview:

9) Solomon Feferman, “Highlights in proof theory”, in Proof Theory, eds. V. F. Hen-
dricks et al, Kluwer, Dordrecht (2000), pp. 11–31. Also available at http://math.
stanford.edu/~feferman/papers.html

For newer stuff, try this:

10) Solomon Feferman, “Proof theory since 1960”, prepared for the Encyclopedia of
Philosophy Supplement, Macmillan Publishing Co., New York. Also available at
http://math.stanford.edu/~feferman/papers.html

Also try the stuff on proof theory, trees and categories mentioned in “Week 227”, and
this book mentioned in “Week 70” — now you can get it free online:

11) Jean-Yves Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge Tracts in
Theoretical Computer Science 7, Cambridge U. Press, 1989. Also available at
http://www.cs.man.ac.uk/\~pt/stable/Proofs+Types.html

Finally, sometime I want to get ahold of this book by someone who always enlivened
logic discussions on the internet until his death in April this year:

12) Torkel Franzen, Inexhaustibility: A Non-Exhaustive Treatment, Lecture Notes in
Logic 16, A. K. Peters, Ltd., 2004.

The blurb sounds nice: “The inexhaustibility of mathematical knowledge is treated
based on the concept of transfinite progressions of theories as conceived by Turing and
Feferman.”

Okay, now for a bit about the icosahedron — my favorite Platonic solid.

466



WEEK 236 JULY 26, 2006

I’ve been thinking about the “geometric McKay correspondence” lately, and among
other things this sets up a nice relationship between the symmetry group of the icosahe-
dron and an amazing entity called E8. E8 is the largest of the exceptional Lie groups —
it’s 248-dimensional. It’s related to the octonions (the number “8” is no coincidence) and
it shows up in string theory. It’s very beautiful how this complicated sounding stuff can
be seen in distilled form in the icosahedron.

I have a lot to say about this, but you’re probably worn out by our road trip through
the land of big ordinals. So for now, try “Week 164” and “Week 230” if you’re curious.
Let’s talk about something less stressful — the early history of the icosahedron.

I spoke about the early history of the dodecahedron in “Week 63”. It’s conjectured
that the Greeks got interested in this shape from looking at crystals of iron pyrite. These
aren’t regular dodecahedra, since normal crystals can’t have 5-fold symmetry — though
“quasicrystals” can. Instead, they’re “pyritohedra”. The Greeks’ love of mathematical
perfection led them to the regular dodecahedron. . .

. . . and it also led them to invent the icosahedron:

13) Benno Artmann, “About the cover: the mathematical conquest of the third dimen-
sion”, Bulletin of the AMS 43 (2006), 231–235. Also available at http://www.ams.
org/bull/2006-43-02/S0273-0979-06-01111-6/

According to Artmann, an ancient note written in the margins of a copy of Euclid’s
Elements says the regular icosahedron and octahedron were discovered by Theaetetus!

If you’re a cultured sort, you may know Theaetetus through Plato’s dialog of the
same name, where he’s described as a mathematical genius. He’s also mentioned in
Plato’s “The Sophist”. He probably discovered the icosahedron between 380 and 370
BC, and died at an early age in 369. Euclid wrote his construction of the icosahedron
that we find in Euclid’s Elements:

14) Euclid, Elements, Book XIII, Proposition 16, online version due to David Joyce at
http://aleph0.clarku.edu/~djoyce/java/elements/bookXIII/propXIII16.html

Artmann says this was the first time a geometrical entity appeared in pure thought
before it was seen! An interesting thought.

Book XIII also contains a complete classification of the Platonic solids — perhaps the
first really interesting classification theorem in mathematics, and certainly the first “ADE
classification”:

15) Euclid, Elements, Book XIII, Proposition 18, online version due to David Joyce at
http://aleph0.clarku.edu/~djoyce/java/elements/bookXIII/propXIII18.html

If you don’t know about ADE classifications, see “Week 62”.
I got curious about the “ancient note written in the margins of a copy of Euclid” that

Artmann mentions. It seemed too good to be true. Just for fun, I tried to track down the
facts about this, using only my web browser here in Shanghai.

First of all, if you’re imagining an old book in a library somewhere with marginal
notes scribbled by a pal of Theaetetus, dream on. It ain’t that simple! Our knowledge
of Euclid’s original Elements relies on copies of copies of copies. . . and centuries of
detective work, with each detective having to root through obscure journals and dim-lit
library basements to learn what the previous detectives did.
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The oldest traces of Euclid’s Elements are pathetic fragments of papyrus. People
found some in a library roasted by the eruption of Mount Vesuvius in 79 AD, some more
in a garbage dump in the Egyptian town of Oxyrhynchus (see “Week 221”), and a couple
more in the Fayum region near the Nile. All these were written centuries after Euclid
died. Here’s one from Oxyrhynchus, photographed by Bill Casselman, who kindly let me
include this picture:

What math is being discussed here? What’s that red “29” doing there? For the answer to
these and other questions, check out his website!

16) Bill Casselman, “One of the oldest extant diagrams from Euclid”, http://www.

math.ubc.ca/~cass/Euclid/papyrus/

The oldest nearly complete copy of the Elements lurks in a museum called the Bodleian
at Oxford. It dates back to 888 AD, about a millennium after Euclid.

More copies date back to the 10th century; you can find their stories here:

17) Thomas L. Heath, editor, Euclid’s Elements, chap. V: the text, Cambridge U. Press,
Cambridge, 1925. Also available at http://www.perseus.tufts.edu/cgi-bin/
ptext?lookup=Euc.+5

18) Menso Folkerts, “Euclid’s Elements in Medieval Europe”, http://www.math.ubc.
ca/~cass/Euclid/folkerts/folkerts.html

All these copies are somewhat different. So, getting at Euclid’s original Elements is
as hard as sequencing the genome of Neanderthal man, seeing a quark, or peering back
to the Big Bang!

A lot of these copies contain “scholia”: comments inserted by various usually un-
named copyists. These were collected and classified by a scholar named Heiberg in the
late 1800s:

19) Thomas L. Heath, editor, Euclid’s Elements, chap. VI: the scholia, Cambridge U.
Press, Cambridge, 1925. Also available at http://www.perseus.tufts.edu/cgi-bin/
ptext?lookup=Euc.+6
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One or more copies contains a scholium about Platonic solids in book XIII. Which
copies? Ah, for that I’ll have to read Heiberg’s book when I get back to UC Riverside —
our library has it, I’m proud to say.

And, it turns out that another scholar named Hultsch argued that this scholium was
written by Geminus of Rhodes.

Geminus of Rhodes was an astronomer and mathematician who may have lived be-
tween 130 and 60 BC. He seems like a cool dude. In his Introduction to Astronomy, he
broke open the “celestial sphere”, writing:

. . . we must not suppose that all the stars lie on one surface, but rather that
some of them are higher and some are lower.

And in his Theory of Mathematics, he proved a classification theorem stating that the
helix, the circle and the straight line are the only curves for which any portion is the
same shape as any other portion with the same length.

Anyway, the first scholium in book XIII of Euclid’s Elements, which Hultsch attributes
to Geminus, mentions

. . . the five so-called Platonic figures which, however, do not belong to Plato,
three of the five being due to the Pythagoreans, namely the cube, the pyramid,
and the dodecahedron, while the octahedron and the icosahedron are due to
Theaetetus.

So, that’s what I know about the origin of the icosahedron! Someday I’ll read more,
so let me make a note to myself:

20) Benno Artmann, “Antike Darstellungen des Ikosaeders”, Mitt. DMV 13 (2005),
45–50. (Here the drawing of the icosahedron in Euclid’s elements is analysed in
detail.)

21) A. E. Taylor, Plato: the Man and His Work, Dover Books, New York, 2001, page 322.
(This discusses traditions concerning Theaetetus and Platonic solids.)

22) Euclid, Elementa: Libri XI-XIII cum appendicibus, postscript by Johan Ludvig Heiberg,
edited by Euangelos S. Stamatis, Teubner BSB, Leipzig, 1969. (Apparently this
contains information on the scholium in book XIII of the Elements.)

Now for something a bit newer: categorification and quantum mechanics. I’ve said
so much about this already that I’m pretty much talked out:

23) John Baez and James Dolan, “From finite sets to Feynman diagrams”, in Mathemat-
ics Unlimited — 2001 and Beyond, vol. 1, eds. Björn Engquist and Wilfried Schmid,
Springer, Berlin, 2001, pp. 29–50.

24) John Baez and Derek Wise, “Quantization and Categorification”, Quantum Gravity
Seminar lecture notes, available at: http://math.ucr.edu/home/baez/qg-fall2003/
http://math.ucr.edu/home/baez/qg-winter2004/ http://math.ucr.edu/home/

baez/qg-spring2004/
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As I explained in “Week 185”, many basic facts about harmonic oscillators, Fock space
and Feynman diagrams have combinatorial interpretations. For example, the commuta-
tion relation between the annihilation operator a and the creation operator a∗:

aa∗ − a∗a = 1

comes from the fact that if you have some balls in a box, there’s one more way to put
a ball in and then take one out than to take one out and then put one in! This way of
thinking amounts to using finite sets as a substitute for the usual eigenstates of the num-
ber operator, so we’re really “categorifying” the harmonic oscillator: giving it a category
of states instead of a set of states.

Working out the detailed consequences takes us through Joyal’s theory of “structure
types” or “species” — see “Week 202” — and on to more general “stuff types”. Some
nice category and 2-category theory is needed to make the ideas precise. For a careful
treatment, see this thesis by a student of Ross Street:

25) Simon Byrne, On Groupoids and Stuff, honors thesis, Macquarie University, 2005,
available at http://www.maths.mq.edu.au/~street/ByrneHons.pdf and http:/

/math.ucr.edu/home/baez/qg-spring2004/ByrneHons.pdf

However, none of this work dealt with the all-important phases in quantum mechan-
ics! For that, we’d need a generalization of finite sets whose cardinality can be be com-
plex. And that’s what my student Jeffrey Morton introduces here:

26) Jeffrey Morton, “Categorified algebra and quantum mechanics”, Theory and Ap-
plication of Categories 16 (2006), 785–854. Available at http://www.emis.de/

journals/TAC/volumes/16/29/16-29abs.html; also available as math.QA/0601458.

He starts from the beginning, explains how and why one would try to categorify the
harmonic oscillator, introduces the “U(1)-sets” and “U(1)-stuff types” needed to do this,
and shows how the usual theorem expressing time evolution of a perturbed oscillator as
a sum over Feynman diagrams can be categorified. His paper is now the place to read
about this subject. Take a look!

Addendum: I thank Tim Chow, Phillip Helbig, Rudy Rucker, Jeffrey Winkler and
especially Kevin Buzzard for interesting comments.

Jeffrey Winkler wrote:

Are the ridiculously infinite forms of infinity you discuss in your article ever used
for anything?

If they only refer to themselves, if the only thing these infinite sets refer to is
other infinite sets, then it’s pointless self-reflexive recursive circular reasoning. A
set that has the same number of elements as the number of apples on your table,
or the number of points in a line or a plane, or in infinitely dimensional Hilbert
space, could be said to refer to something, but give an example of something,
other than one of the sets you’re talking about, which would have ε0 elements.
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Where in mathematics or physics would you ever use such a concept? If you
never would, then what’s the point? In other words, is there anything where
you could have ε0 “many” of something, other than the sets themselves, and if
there isn’t, then are these actually numbers? If nothing is ever “that many”,
then is it a number? Of course, we’ve expanded the concept of “number” to
include complex numbers, quaternions, octonions, vectors, tensors, matrices,
etc. where they don’t literally correspond to “how many” something is, yet in
all those examples, they have uses in various fields of mathematics and physics,
other than just when talking about themselves, so there is a reason for inventing
them.

Jeffery

I replied:

Jeffery Winkler wrote:

Are the ridiculously infinite forms of infinity you discuss in your arti-
cle ever used for anything?

Without ε0 you can’t prove that Goodstein sequences converge to zero — an
obviously true fact. As I mentioned, the main use of these ordinals is to measure
the strength of axiom systems. But, I didn’t write about these ordinals because
they’re useful. I wrote about them because they’re fun.

They’re not “ridiculously infinite”, though. The ordinals I mentioned are all
countable ordered sets, and you can describe them all explicitly as subsets of the
rational numbers.

More precisely: any one of the ordinals I mentioned, up to and including the
Feferman-Schütte ordinal (and quite a ways beyond), is isomorphic as an or-
dered set to a subset of the rational numbers. Moreover, you can write a com-
puter program that will decide whether or not any given fraction is in this subset.
As a consequence, you can also write a computer program that lists the fractions
in this set.

It’s pretty obvious how to do this for ω2:
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But you can do it for any one of the ordinals I mentioned! David Madore has
drawn a picture of ε0, for example.

So, for someone to reject these ordinals as “ridiculously infinite”, they must have
some doubts about the legitimacy of computable subsets of the rational numbers
as valid objects of study. That seems like an extreme position.

The Church-Kleene ordinal is much larger than any of the ordinals I discussed in
detail. It’s still countable. Any ordinal below it can be described in a computable
way — but it itself can’t. So, if you believe that only computable mathematical
entities are worth studying, you might want to stop shy of this one. I stopped
far short of this one.

If they only refer to themselves, if the only thing these infinite sets
refer to is other infinite sets, then it’s pointless self-reflexive recursive
circular reasoning.

I hope you see that this is not true for the countable ordinals I was discussing.
I deliberately refrained from mentioning the large cardinals that logicians often
discuss, precisely because I share your distaste for such stuff.

I realized after I posted “Week 236” that some people might think I was talking
about mystical entities, when I was actually talking about very concrete things.
So, I’m glad you brought this up.

Best,
jb

And now for Kevin Buzzard’s wonderful calculation! In the original version of this
Week’s Finds, I wrote:

if you start with the number 4, you get this Goodstein sequence:

4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, . . .

and apparently it takes about 3× 1060605351 steps to reach zero!

I got this figure from the “National Curve Bank” website mentioned above, but I got
the details wrong: they said the sequence “can increase for approximately 2.6×1060605351
steps”, whatever that means.

Kevin Buzzard then sent me an email in which he worked out the number himself.
After correcting a few small mistakes, we seem to have settled on a different answer.

Kevin writes:

You write this as if it were some kind of mystery. I remember working out this
number explicitly when I was a graduate student! There is some nice form for
it, as I recall. Let’s see if I can reconstruct what I did.

If I’ve understood the sequence correctly, it should be (where “n” at the beginning
of a line denotes we’re working in base n on this line, so strictly speaking it’s
probably the n− 1st term in the sequence)
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2) 22 = 4

3) 33 − 1 = 2.32 + 2.3 + 2 = 26 [note: base 3, ends in 2, and 3+2=5]

4) 2 · 42 + 2 · 4 + 1 = 41 [note: base 4, ends in 1, and 4+1=5]

5) 2 · 52 + 2 · 5 = 60 [we’re at a limit ordinal here, note 3+2=4+1=5]

6) 2 · 62 + 2 · 6− 1 = 2 · 62 + 6 + 5 = 83 [note: base 6, ends in 5]

7) 2 · 72 + 7 + 4 [note: base 7, ends in 4]

8) 2 · 82 +8+3 [note: base 8, ends in 3, so we next get a limit ordinal at. . . ]

. . .

11) 2 · 112 + 11

12) 2 · 122 + 12− 1 = 2 · 122 + 11

13) 2 · 132 + 10

. . .

23) 2 · 232 (as 23 = 12 + 11 = 13 + 10 = . . .)

24) 242 + 23 · 24 + 23

. . .

47) 472 + 23 · 47
48) 482 + 22 · 48 + 47

. . .

95) 952 + 22 · 95
96) 962 + 21 · 96 + 95

. . .

and now we spot a pattern: we’re just doubling—getting a limit ordinal at bases
24− 1, 48− 1, 96− 1 and so on. Let’s look again at those limit ordinals:

47) 472 + 23 · 47
48) 952 + 22 · 95

. . .

24 · 2t−1) (24 · 2t−1)2 + (24− t) · (24 · 2t−1)

. . .

so the last one with a square in it will be the case t = 24, corresponding to

r) r2

where
r = 24 · 224 − 1 = 402653183.
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All those 24s, but I’m sure you’ll not get carried away. Let’s define

n = r + 1 = 24 · 224

and continue on. At the next step, the ordinal decreases sharply:

n) n2− 1 = (n− 1)n+(n− 1) n+1) (n− 1)(n+1)+ (n− 2) [note: now back
to the usual tricks]

. . .

2n−1) (n−1)(2n−1) [the next limit, at base 2n−1] 2n) (n−2)(2n)+(2n−1)
. . .

4n− 1) (n− 2)(4n− 1) 4n) (n− 2)(4n) + (4n− 1)

. . .

and the limit ordinals we’re running into now (and we’re going to run into
about n of them, which is a lot), are

2n− 1) (n− 1)(2n− 1) 4n− 1) (n− 2)(4n− 1) 8n− 1) (n− 3)(8n− 1)

. . .

n2s − 1) (n− s)(n2s − 1)

. . .

and finally when s = n− 1

m) m

where m = n2n−1 − 1. The sequence now looks like

m+ 1) (m+ 1)− 1 = m m+ 2) m− 1 m+ 3) m− 2

. . .

2m+ 1) 0

So the sequence becomes zero at base n2n − 1, where n = 24 · 224. If 22 is the
first term in the sequence, I guess this is the (n2n−2)th term. I make this about
6.9 × 10121210694 — curses, you got something else! Actually, I have about the
square of what you wrote and hence I have most likely made a slip. On the other
hand you can see that it’s not a mystery at all, it’s just an elementary exercise. It
really helps you learn about why the countable ordinals are well-ordered too: as
you continue working out the numbers, you always have this impending sense of
doom telling you that your gut feeling that the sequence tends to infinity might
just be wrong. . .

Kevin

So, in simple terms, the 4th Goodstein sequence starts out by shooting up faster and
faster, reaching almost n2 by the nth term, where

n = 24 · 224=402653184.

By the (2n)th term it reaches almost 2n2.
Then it grows by steps of n− 2, and by the (4n)th term it reaches almost 4n2.
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Then it grows by steps of n− 3, and by the (8n)th term it reaches almost 8n2.
And so on. . . it’s slowing down now.
After about the (2n−2n)th term it levels off completely, and by the (2n−1n)th term it

equals almost 2n−1n. Note these numbers are the same.
From this point on the sequence decreases by one each time, and it hits zero at about

the (2nn)th term.
So, it spends the last half of its life decreasing by one each time. Right before that,

it spends a quarter of its life remaining constant. Right before that, it spends an eighth
of its life growing by one each time. Right before that it, it spends a sixteenth of its life
growning by two each time. And so on, but not indefinitely: this description covers the
phase after the nth term.

In particular, it reaches its maximum and then levels off after about quarter of its life
is done. It spends about the next quarter of its life being constant, and the next half
going down one step at a time.

Let’s be a bit more precise. For this let’s call the ith term of the 4th Goodstein se-
quence ai, where we count things so that

a1 = 4, a2 = 26, . . .

Then ai first reaches its maximum value at exactly

i =
1

4
· 24 · 224 · 2(24 · 224)− 2 ∼ 1.72× 10121210694

Its value at this point is exactly

ai =
1

2
· 24 · 224 · 2(24 · 224)− 1 ∼ 3.45× 10121210694

It then stays constant for about twice as many more terms, and then goes to zero one
step at a time, hitting zero precisely when

i = 24 · 224 · 2(24 · 224)− 2 ∼ 6.89× 10121210694

Believe me, it’s a lot more fun to figure this stuff out than to read it.
I was worried that Kevin and I had made a mistake until we found this thesis which

gets the same answer (though the author starts the sequence at a0 = 4, so it looks one
off from ours):

27) Justin T. Miller, On the Independence of Goodstein’s Theorem, Masters thesis, Uni-
versity of Arizona, 2001. Also available as http://www.u.arizona.edu/~miller/
thesis/thesis.html

Tim Chow had some comments about why the Feferman-Schütte ordinal is consid-
ered the first “impredicative” ordinal. He wrote:

John Baez wrote:

Logicians including Feferman and Schütte have carried out a detailed
analysis of this subject. They know a lot about how much induction

475



WEEK 236 JULY 26, 2006

up to different ordinals buys you. And apparently, induction up to Γ0

lets us prove the consistency of a system called “predicative analysis”.
I don’t understand this, nor do I understand the claim I’ve seen that
Γ0 is the first ordinal that cannot be defined predicatively — i.e.,
can’t be defined without reference to itself. Sure, saying Γ0 is the first
solution of

φx(0) = x

is non-predicative. But what about saying that Γ0 is the union of all
ordinals in the Veblen hierarchy? What’s non-predicative about that?

The situation is somewhat akin to the situation with the Church-Turing thesis, in
that one is tentatively equating an informal notion (predicativity or computabil-
ity) with a precise mathematical notion. Therefore there is no definitive answer
to your question, and Feferman himself has articulated potential objections to
the “standard view” that Γ0 marks the boundary of predicativity.

Having said that, I’ll also say that one of the reasons for the standard view is
that Γ0 marks the boundary of “autonomous progressions” of arithmetical the-
ories. The book by Torkel Franzen that you cited is probably the most accessible
introduction to this subject. Roughly speaking, the idea is that if anyone fully
accepts first-order Peano arithmetic PA, then implicitly he accepts its consis-
tency Con(PA), as well as Con(PA + Con(PA)), etc. If one tries to articulate
exactly what is “implicitly” involved in accepting PA in this sense, then one can
make a plausibility argument that Γ0 is a natural stopping point. I think you
have a better shot at grasping the underlying intuition via this approach than
by staring at Γ0 itself and trying to figure out what is non-predicative about its
definition.

I replied asking if “etc.” means there’s one theory like this per ordinal. I also asked
for more clues about this “plausibility argument”, and noted:

There’s also someone named Nik Weaver who has debated Feferman on this
subject:

http://www.cs.nyu.edu/pipermail/fom/2006-April/010472.html

http://www.math.wustl.edu/~nweaver/conceptualism.html

He seems to claim that Γ0 and even larger ordinals have predicative definitions.
However, I’m too ignorant to follow this debate. Usually in physics I have a sense
for when people are being reasonable even if I don’t follow the details. In this
debate I can’t even do that.

Tim Chow replied:

Let’s look more closely at what the notion of “one theory like this per ordi-
nal” means. There’s no difficulty figuring out what “Con(PA)” means or how
to express that statement in the first-order language of arithmetic. Ditto with
“Con(PA + Con(PA))”. However, once you start ascending the ordinal hierar-
chy, a difficulty appears. The language of arithmetic doesn’t let you talk about
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“ordinals” directly—that’s a set-theoretical concept. In order to express a state-
ment like “Con(T )” for some theory T , you need at minimum to be able to give
some sort of “recursive description” or “recursive axiomatization” of T (where
here I use the word “recursive” in the technical sense of recursive function the-
ory) in the first-order language of arithmetic. This observation already yields
the intuition that we’re not going to be able to ascend beyond the Church-Kleene
ordinal, because we won’t even be able to figure out how to say “T is consistent”
for a theory T that requires that many iterations to reach from PA.

There are other problems, though, that potentially get in the way before we
reach the Church-Kleene ordinal. Once we realize that what we need is a sys-
tem of “ordinal notations” to “fake” the relevant set theory, we may (if we are
predicativists) worry about issues such as:

1. As we ascend the ordinal hierarchy, isn’t it illegitimate to make a jump to
an ordinal α unless we’ve already proved, at the level of some ordinal β
that we’ve already reached, that an ordinal of type α exists?

2. And isn’t it illegitimate to create sets by quantification over things other
than the natural numbers themselves and sets that we’ve already created?

Condition 1 goes by the name of “autonomy” and condition 2 goes by the name
of “ramification.” If one formalizes these notions in a certain plausible manner,
then one arrives at Γ0 as the least upper bound of theories that you can get to,
starting with (for example) PA.

One can of course wonder whether 1 and 2 above really capture the concept
of “predicativity.” Some secondary evidence has accumulated of the following
form: Some argument that intuitively seems to be predicative but that is not
immediately seen to be provable in the Feferman-Schütte framework is shown,
after some work, to indeed be provable below Γ0.

It’s still possible, of course, for someone—you mentioned Nik Weaver— to come
along and argue that our intuitive notion of predicativism, fuzzy though it is,
can’t possibly be identified with the level Γ0. The reason you can’t seem to
decide immediately whether Weaver’s position is nonsensical or not is probably
because the critical questions are not mathematical but philosophical, and of
course it’s usually harder to arrive at definitive answers in philosophy than in
mathematics.

Finally, let me record a number of papers that treat notations for ordinals above the
Feferman-Schütte ordinal. In the discussion of this Week’s Finds on sci.math.research,
Dave Renfro pointed out a really nice readable paper on large countable ordinals which
goes far beyond what I discussed:

28) Hilbert Levitz, “Transfinite ordinals and their notations: For the uninitiated”, avail-
able at http://www.cs.fsu.edu/~levitz/research.html

This paper introduced the “Schütte Klammersymbole”, which generalize the Veblen
hierarchy:
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29) Kurt Schütte, “Kennzeichnung von Orgnungszahlen durch rekursiv erklärte Funk-
tionen”, Math. Ann 127 (1954), 15–32.

These papers discuss a general concept of “ordinal notation system”, which includes
the Schütte Klammersymbole and also something called the “n-ary Veblen hierarchy”:

30) Anton Setzer, “An introduction to well-ordering proofs in Martin-Löf’s type the-
ory”, in Twenty-Five Years of Constructive Type Theory, eds. G. Sambin and J. Smith,
Clarendon Press, Oxford, 1998, pp. 245–263. Also available at http://www.cs.
swan.ac.uk/~csetzer/index.html

Anton Setzer, “Ordinal systems”, in Sets and Proofs, Cambridge U. Press, Cam-
bridge, 2011, pp. 301-331. Also available at http://www.cs.swan.ac.uk/~csetzer/
index.html

This paper has a nice expository section on generalizations of the Veblen hierarchy:

31) Jean H. Gallier, “What’s so special about Kruskal’s theorem and the ordinal Γ0? A
survey of some results in proof theory”, sec. 7, A glimpse at Veblen hierarchies,
Ann. Pure Appl. Logic 53 (1991), 199–260. Also available at http://www.cis.
upenn.edu/~jean/gallier-old-pubs.html

This paper is very useful, since it compares different notations:

32) Larry W. Miller, “Normal functions and constructive ordinal notations”, J. Symb.
Log. 41 (1976), 439–459.

You can get it through JSTOR if you have access to that.
This webpage gives a nice definition of “ordinal notation system” as a coalgebra of a

certain functor — nice if you understand categories, that is:

33) Peter Hancock, “Ordinal notation systems”, http://homepages.inf.ed.ac.uk/

v1phanc1/ordinal-notations.html

Kevin Watkins pointed out this website, which contains several papers on ordinal
notations:

34) Harold Simmons, Abstracts of papers and notes, http://www.cs.man.ac.uk/~hsimmons/
DOCUMENTS/papersandnotes.html

Finally, the Wikipedia article on “large countable ordinals” has some references to
books which are, alas, out of print.

Said Conrad Cornelius O’Donald O’Dell,
My very young friend who is learning to spell,
“The A is for Ape. And the B is for Bear.
The C is for Camel. The H is for Hare.
The M is for Mouse. And the R is for Rat.
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I know all the twenty-six letters like that. . .
. . . through to Z is for Zebra. I know them all well.
So now I know everything anyone knows
From beginning to end. From the start to the close.
Because Z is as far as the alphabet goes.”

Then he almost fell flat on his face on the floor
When I picked up the chalk and drew one letter more!
A letter he never had dreamed of before!
And I said, “You can stop, if you want, with the Z
Because most people stop with the Z
But not me!
In the places I go there are things that I see
That I never could spell if I stopped with the Z.
I’m telling you this ’cause you’re one of my friends.
My alphabet starts where your alphabet ends!”

— Doctor Seuss
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Week 237

August 10, 2006

This Week I’d like to talk about math books in Shanghai, and Urs Schreiber’s blog entry
on the gauge 3-group of M-theory. But first:

1) Greg Egan, “Klein’s quartic equation”, http://gregegan.customer.netspace.net.
au/SCIENCE/KleinQuartic/KleinQuarticEq.html

I discussed Klein’s quartic curve in “Week 214” and “Week 215”. The idea is to take
the nontrivial complex solutions of

u3v + v3w + w3u = 0

and “projectivize” them — in other words, count two as the same if one is just a multiple
of the other:

(u′, v′, w′) = c(u, v, w)

The result is a 3-holed Riemann surface with the maximum number of symmetries! Here
by a “symmetry” I mean a conformal transformation mapping the surface to itself. Back
in 1893 Hurwitz proved something quite bizarre: an n-holed Riemann surface can’t have
more than 84(n−1) symmetries if n > 1. So, a 3-holed Riemann surface can’t have more
than 168 symmetries — and Klein’s quartic curve has exactly that many!

These 168 symmetries were constructed by Klein way back in 1879, but Egan gives an
elementary proof that uses only algebra and a bit of calculus. . . and a lot of cleverness.

480



WEEK 237 AUGUST 10, 2006

And, his page has a wonderful spinning picture of the real solutions of

u3v + v3w + w3u = 0.

This is what you see above.
As you can see, it consists of lots of lines through the origin, including the u, v, and

w axes. When we “projectivize”, we get one point for each of these lines, so we get a
curve which is the real version of Klein’s quartic curve. This curve has an obvious 3-fold
symmetry, from cyclically permuting the coordinate axes. The rest of the 168 symmetries
are only easy to visualize when we go to the complex version — as Egan explains.

It’s great that Egan can draw this thing in Perth and I can easily see it my apartment
here in Shanghai — I feel like I’m living in a futuristic world, and I’m only 45. What it’ll
be like when I’m 64?

Another pleasant thing about life in Shanghai, at least for a well-off visitor from
America, is how cheap everything is. It’s clear why the US is running an enormous trade
deficit: there’s a vast economic differential. Stopping the flow of goods one way and
dollars the other would be like damming the Niagara Falls.

For example, last night I saw this excellent hardcover book on sale for 78 yuan, or
about $10:

2) Yu. I. Manin and A. A. Panchishkin, Introduction to Modern Number Theory, second
edition, Science Press, 2005.

It’s a great overview of number theory, from the basics through class field theory to
L-functions, modular forms and the Langlands program! It’s wisely divided into three
sections: “problems and tricks”, “ideas and theories”, and “analogies and visions”. Back
when I used to hate number theory, I thought it was all problems and tricks. Now
I’m beginning to learn some of the ideas and theories, and I hope eventually to grasp
the analogies and visions discussed here — for example, the analogy between Arakelov
geometry and noncommutative geometry.

$10 is a nice price for a math book. If you buy this one from Springer Verlag, you’ll
pay ten times that. Illegal knockoffs of Western books are common in China, but I think
the one I saw is legal, since Springer has signed an agreement with Science Press, which
is run by the Chinese Academy of Sciences. In exchange for letting Science Press publish
Springer books in China at affordable prices, Springer gets to publish translations of
Chinese journals in the West at unaffordable prices.

By the way — after checking out the bookstore, I went out to the street vendors and
bought an excellent dinner of rice, sausage and vegetables for 35 yuan — about 40 cents
US. It was cooked by a husband and wife in a wok on a cart.

Just after I bought it, someone yelled the Chinese equivalent of “cops!”, and all the
street vendors suddenly dashed away with their carts, leaving only the woman, who
kindly handed me my dinner in a styrofoam pack before walking off. They clearly had
this down to a fine art: it all happened faster than my brain could process. I guess the
cops don’t allow street vendors there.

I only wish I’d noticed: did the street vendors turn off their gas stoves before running,
or run while still cooking?

Anyway, on to some serious math and physics.
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You’ve probably heard of some mysterious thing called “M-theory” that lives in 11
dimensions. Back in “Week 158” and “Week 159” I took a stab at understanding this.
Now I’ll try again, with a lot of help from Urs Schreiber:

3) Urs Schreiber, “Castellani on free differential algebras in supergravity: gauge 3-
group of M-theory”, http://golem.ph.utexas.edu/string/archives/000840.

html

Calling M-theory a “theory” is a bit misleading, because nobody knows what this
theory is! There’s just a lot of clues pointing to its existence. It seems to be the quantum
version of a well-defined classical field theory called “11-dimensional supergravity”. And,
it seems to involve 2-branes and 5-branes: 2- and 5-dimensional membranes that trace
out 3- and 6-dimensional surfaces in spacetime, just like strings trace out 2-dimensional
surfaces.

Back in “Week 158” I wrote down a Lagrangian for 11d supergravity. This is a truly
monstrous thing involving three fields:

A) a frame field e — the “graviton”,

B) a field ψ taking values in the real spin-3/2 representation of the 11d Lorentz group
— the “gravitino”,

C) a 3-form A.

When it was discovered back in 1978, people were interested in 11d supergrav-
ity mainly because it was the highest-dimensional theory they could concoct that in-
cludes general relativity and supersymmetry — a symmetry that interchanges bosons
and fermions, in this case gravitons and gravitinos — without including any particles of
spin > 2. So, the fact that it looked like a mess wasn’t such a big deal. But now that
some people are taking it very seriously, it’s worth trying to understand the math behind
it more deeply, to see what makes it tick.

For example: what’s so great about 11 dimensions? And: what’s the reason for that
3-form?

I’m not a huge fan of string theory, but I like puzzles of this sort — finding patterns
that make certain things work only in certain dimensions, and stuff like that. So, I got
intrigued when I learned that super-Yang-Mills theory and superstring theory are nice in
dimension 10 because of special properties of the octonions — see “Week 104”. Maybe
a little extra stretch could bring us to dimension 11?

I got even more intrigued when I ran across two competing explanations for that 3-
form in 11d supergravity. One was that it’s a connection on a twice categorified version
of a U(1) bundle. The other was that it’s the Chern-Simons form for an E8 gauge theory.

Let me say a bit about what these means. I talked about categorified U(1) bundles in
“Week 210”, so I’ll be sort of brief about those. . . .

A connection on a U(1)-bundle looks locally like a 1-form, so we can integrate it along
a path and compute how the phase of charged particle changes when we move it along
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that path:

x
f−→ y

a path f from the point x to the point y;

we write this as f : x→ y.

Believe it or not, this is the basis of all modern ideas on electromagnetism!
If we categorify this whole idea once, we get a kind of connection that looks locally

like a 2-form. Folks call this a “connection on a U(1) gerbe”, but don’t let the use of
French here intimidate you: they just do that so they can charge more for the wine.
It’s just a gadget that you can integrate over a surface, to compute how the phase of a
charged string moves when we slide it along that surface:

x y

f

g

F

a path f from the point x to the point y;

we write this as f : x→ y.

And, if we categorify once more, we get a “connection on a U(1) 2-gerbe”. This is
something that looks locally like a 3-form, which describes what happens when we move
2-branes around!

If you’re wondering why I’m talking about “categorifying”, it’s because this:

x
f−→ y

is also a picture of a morphism in a category, while this:

x y

f

g

F

is a picture of a 2-morphism in a 2-category and so on. We’re talking about processes
between processes between processes. . . so we’re climbing up the ladder of n-categories.

Anyway: since 11d supergravity has a 3-form in it, and M-theory apparently has
2-branes in it, maybe we need to categorify the concept of a U(1) bundle twice to under-
stand what’s going on here!

I came up with this crazy idea on my own back in “Week 158”, but it’s an obvious
guess after you learn that the 2-form field called B in 10d superstring theory really is a
connection on a U(1) gerbe:

4) Alan L. Carey, Stuart Johnson and Michael K. Murray, “Holonomy on D-branes”,
available as hep-th/0204199.

483

http://arxiv.org/abs/hep-th/0204199


WEEK 237 AUGUST 10, 2006

Unfortunately there are some problems with naively pushing this idea up a dimen-
sion. For example, a crucial factor of 1/6 in the Lagrangian for 11d supergravity is not
explained by thinking of A this way.

Another possible explanation was that this 3-form is the Chern-Simons form of an E8

bundle over spacetime:

5) Emanuel Diaconescu, Gregory Moore and Edward Witten, “E8 gauge theory, and a
derivation of K-theory from M-theory”, Adv. Theor. Math. Phys. 6 (2003) 1031–
1134. Also available as hep-th/0005090.

6) Emanuel Diaconescu, Daniel S. Freed and Gregory Moore, “The M-theory 3-form
and E8 gauge theory”, available as hep-th/0312069.

This idea explains that factor of 1/6. And, it might move towards an explanation
of how the octonions get into the act, because the group E8 is deeply related to the
octonions. But as the authors of the above paper say, “the E8 gauge field plays a purely
topological role and appears, in some sense, to be a ‘fake’.” In particular, you don’t see
any E8 connection staring you in the face in the Lagrangian for 11d supergravity that I
wrote down in “Week 158”.

Later, it started becoming clear that both ideas — the twice categorified U(1) connec-
tion and the E8 gauge theory — fit together in some way:

7) Paolo Aschieri and Branislav Jurco, Gerbes, “M5-brane anomalies and E8 gauge
theory”, JHEP 0410 (2004), 068. Also available as hep-th/0409200.

It all became a lot clearer to me when Urs Schreiber read these papers and translated
them into a language I like:

8) Leonardo Castellani, “Lie derivatives along antisymmetric tensors, and the M-
theory superalgebra”, available as hep-th/0508213.

9) Pietro Fré and Pietro Antonio Grassi, “Pure spinors, free differential algebras, and
the supermembrane”, available as hep-th/0606171.

The idea is to think of 11d supergravity as a twice categorifed gauge theory — not
just the 3-form field in 11d supergravity, but all the fields, in a unified way!

For this, we need to do something much more clever than taking 11d spacetime and
slapping a U(1) 2-gerbe on top of it. We need to combine the graviton, the gravitino and
the 2-form field into a connection on a nonabelian 2-gerbe.

Here things get a bit technical, but Urs has covered the technical points quite nicely
in his blog, so right now I’ll just try to give you some hand-wavy intuitions.

Very roughly speaking, an connection on a bundle takes any path in spacetime

x
f−→ y

and gives you an element of some group, which says how a particle would transform if
you moved it along this path. This group could be U(1) — the group of phases — or it
could be something more fun, like a nonabelian group.
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If we categorify this concept, we get the concept of a connection on a “2-bundle”
(which is more or less the same as a gerbe). Such a connection takes any path and gives
you an object in some 2-group, but it also takes any surface like this:

x y

f

g

F

and gives you a morphism in this 2-group. You see, 2-group is a kind of category that acts
like a group, and a category has “objects” and “morphisms”. The morphisms go between
objects. For more on 2-groups, try:

10) “Higher-dimensional algebra V: 2-Groups”, with Aaron D. Lauda, Theory and Appli-
cations of Categories 12 (2004), available at http://www.tac.mta.ca/tac/volumes/
12/14/12-14abs.html. Also available as math.QA/0307200.

If we categorify once more, we get connections on a “3-bundle”, which is more or less
the same thing as a “2-gerbe” — unfortunately the numbering systems are off by one.
This gives us objects, morphisms and 2-morphisms in a 3-group, which describe what
happens when we move particles, strings and 2-branes.

And so on:

group point particles
2-group point particles and strings
3-group point particles, strings and 2-branes
4-group point particles, strings, 2-branes and 3-branes

etc.
So, if 11d supergravity is a twice categorified gauge theory, we need to know its

symmetry 3-group.
But actually, since we’re doing geometry, this 3-group should be a “Lie 3-group”. In

other words, very roughly speaking, a 3-group that has a manifold of objects, a manifold
of morphisms, and a manifold of 2-morphisms, where all the operations are smooth.

But actually, since we’re doing supersymmetric geometry, we need a “Lie 3-supergroup”!
In other words, very roughly speaking, a 3-group that has a supermanifold of objects, a
supermanifold of morphisms, and a supermanifold of 2-morphisms, where all the opera-
tions are smooth. (Maybe I should say “supersmooth”, just to be consistent.)

If you don’t know what a supermanifold is, now is probably not the time to learn.
I mean, not right this second. The point is just this: supersymmetry infests everything
once you let it in the door, just like n-categories, and just like manifolds — and now
we’re doing all three.

In fact, nobody has even written down a rigorous definition of a Lie 3-supergroup
yet! But, Lie algebras are in some ways simpler than Lie groups, and they’re a good start,
so we can be glad that people do know what a Lie 3-superalgebra is!

And Urs describes, in his blog, the relevant Lie 3-superalgebra for 11d supergravity!
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I would like to say more about this, but it’s getting a bit tough trying to talk about
this stuff in a fun, easily accessible style, and I have the feeling I’m no longer succeeding.
In fact, I don’t think I can give a “fun, easily accessible” description of this specific Lie
3-superalgebra — at least not yet. So, now I’ll completely give up trying to be compre-
hensible, and simply state some facts.

As shown here:

11) “Higher-dimensional algebra VI: Lie 2-Algebras”, with Alissa Crans, Theory and
Applications of Categories 12 (2004), available at http://www.tac.mta.ca/tac/
volumes/12/15/12-15abs.html Also available as math.QA/0307200.

the category of Lie n-algebras is equivalent to the category of L∞ algebras which as
chain complexes have only n nonvanishing terms, the 0th to the (n− 1)st. L∞ algebras
are just algebras of Stasheff’s L∞ operad in the category of chain complexes of vector
spaces — see “Week 191” and especially these:

12) Martin Markl, Steve Schnider and Jim Stasheff, Operads in Algebra, Topology and
Physics, AMS, Providence, Rhode Island, 2002.

James Stasheff, Hartford/Luminy talks on operads, available at http://www.math.
unc.edu/Faculty/jds/operadchik.ps

But, we can replace vector spaces by Z/2-graded vector spaces and everything still
works. Physicists call Z/2-graded vector spaces “super vector spaces”. So, a “Lie n-
superalgebra” is an algebra of the L∞ operad in the category of chain complexes of
super vector spaces.

Given this, to specify a Lie 3-superalgebra we first need to specify the 0-chains, then
the 1-chains, then the 2-chains.

For the particular one Urs mentions, we have

• {0-chains} = 11d Poincaré Lie superalgebra

• {1-chains} = {0}

• {2-chains} = R

Here R is the real numbers, and this 1-dimensional thing is what ultimately gives the
3-form fieldA in 11d supergravity. As a vector space, the 11d Poincaré Lie superalgebra is
the direct sum of an even part, which is the usual Poincaré Lie algebra iso(11, 1), and an
odd part, which is the 32-dimensional real spinor rep of so(11, 1). These give the graviton
(or more precisely the Levi-Civita connection) and the gravitino in 11d supergravity.

Next we need to make this stuff into a chain complex. That’s easy: the differential
has to be zero.

Next, we need to specify the L∞ structure on this chain complex. First, we need a
binary bracket operation, like in an ordinary Lie superalgebra. The bracket of 0-chains is
the usual bracket in the 11d Poincaré Lie superalgebra. All the other binary brackets are
zero.

Then, we need a ternary bracket operation, which expresses how the Jacobi identity
holds only up to chain homotopy. This is zero.
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Then, we need a quaternary bracket operation (since that chain homotopy satisfies its
own identity only up to chain homotopy). This is nonzero: when we take the quaternary
bracket of four 0-chains we get a 2-chain, and there’s a nontrivial way to define this! This
is the interesting bit, since ultimately it relates the graviton/gravitino to the 3-form field.

How do we get that quaternary bracket? Well, here’s where things get funky: D’Auria
and Fré dreamt up a formula that gives a number from 2 spinors and 2 vectors:

(ψ,φ, v, w) 7→ ψΓabφvawb.

And, magically, in 11 dimensions this gives a 4-cocycle on the Poincaré Lie superalgebra!
The proof of this uses some Fierz identity in 11 dimensions:

12) R. D’Auria and Pietro Fré, “Geometric supergravity in D = 11 and its hidden super-
group”, Nucl. Phys. B201 (1982), 101–140. Also available at http://www.math.
uni-hamburg.de/home/schreiber/sdarticle.pdf

And, from HDA6 we know that the 4-cocycle condition is just what’s needed to make
the quaternary bracket satisfy the identity we need for a Lie 3-superalgebra. (Alissa and
I just did the calculation for Lie n-algebras, but the “super” stuff should work too with a
few signs thrown in.)

So, this is all very cool, but I need to understand Fierz identities in different dimen-
sions to see what if anything is special to 11d here — or, alternatively, work out the
cohomology of Poincaré Lie superalgebras, to see when they can be deformed to Lie
n-superalgebras. Sounds like a lot of work — maybe someone already did it. Actually
D’Auria and Fre make it look like a matter of understanding tensor products of irreps of
so(n, 1), which is not bad. A worthwhile project in any event.

I also need to understand what all this has to do with E8. For that the paper by
Diaconescu, Freed and Moore should help.

Well, this is just the beginning, but Urs explains the rest.

Addenda: I thank Noam Elkies for a correction. Aaron Bergman has this to say about
E8 and M-theory:

John Baez wrote:

I also need to understand what all this has to do with E8.

E8 might not have much of anything to do with this. As mentioned in Dia-
conescu, Freed and Moore, E8 appears to function solely as a convenient stand-
in for K(Z, 3).
On the other hand, the split form of the E-series (up to E11 if you’re feeling
particularly speculative) is known to show up in describing the fields of 11D
SUGRA, but the I don’t think anyone knows of a connection between the two
E8s. Just to add to the fun, E8 gauge fields also show up on the fixed points of
M-theory on S1/Z2 giving the E8 × E8 heterotic string.

Aaron
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Urs Schreiber replied:

Aaron Bergman wrote:

E8 gauge fields also show up on the fixed points of M-theory on S1/Z2

giving the E8 × E8 heterotic string.

The topological part of the membrane action involves the integral of the sugra
3-form over the worldvolume. By DFW, part of that 3-form can be thought of as
an E8 CS 3-form.

So part of the membrane action looks similar to an E8 CS-theory over the world-
volume.

Now let the membrane have a boundary. A bulk E8 CS-theory is well known to
induce an E8 WZW theory on the boundary.

Could this be the connection between the DWF E8 and the Horava-Witten E8?

I have asked this question before: http://golem.ph.utexas.edu/string/

archives/000791.html. Jarah then agreed that this must be about right. But
it is not completely clear to me yet.

One problem is that in CS-theory we vary the connection, while in the topolog-
ical membrane the E8 connection on the background is fixed and we vary the
embedding by which we pull it back to the worldvolume. Under suitable assump-
tions that might be equivalent to varying an E8 connection on the worldvolume
itself?

Aaron Bergman replied:

Urs Schreiber wrote:

Now let the membrane have a boundary. A bulk E8 CS-theory is well
known to induce an E8 WZW theory on the boundary.
Could this be the connection between the DWF E8 and the Horava-
Witten E8?

A similar observation was made by Horava way back in hep-th/9712130 (in
the final section).

Aaron
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Week 238

August 16, 2006

NASA is trying to built up suspense with this “media advisory”:

1) NASA, “NASA Announces Dark Matter Discovery”, http://www.nasa.gov/home/
hqnews/2006/aug/HQ M06128 dark matter.html

which says simply:

Astronomers who used NASA’s Chandra X-ray Observatory will host a media
teleconference at 1 p.m. EDT Monday, Aug. 21, to announce how dark and
normal matter have been forced apart in an extraordinarily energetic collision.

Hmm! What’s this about?
Someone nicknamed “riptalon” at Slashdot made a good guess. The media advisory

lists the “briefing participants” as Maxim Markevitch, Doug Clowe and Sean Carroll.
Markevitch and Clowe work with the Chandra X-ray telescope to study galaxy collisions
and dark matter. Last November, Markevitch gave a talk on this work, which you can see
here:

2) Maxim Markevitch, Scott Randall, Douglas Clowe, and Anthony H. Gonzalez, “In-
sights on physics of gas and dark matter from cluster mergers”, available at http:/
/cxc.harvard.edu/symposium 2005/proceedings/theme energy.html#abs23

So, barring any drastic new revelations, we can guess what’s up. Markevitch and
company have been studying the “Bullet Cluster”, a bunch of galaxies that has a small
bullet-shaped subcluster zipping away from the center at 4,500 kilometers per second.
Here’s a picture of it from the above paper:
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To help you understand this picture a bit: the official name of the Bullet Cluster is
1E0657-56. The “exposure” for this X-ray photograph taken by Chanda was apparently
0.5 million seconds — 140 hours! The distance scale shown, 0.5 megaparsecs, is about
1.6 million light years. The cluster itself has a redshift z = 0.3, meaning its light has
wavelengths stretched by a factor of 1.3. Under currently popular ideas on cosmology,
this means it’s roughly 4 billion light years away.

Anyway, what are we seeing here?
You can see rapidly moving galaxy cluster with a shock wave trailing behind it. It

seems to have hit another cluster at high speed. When this kind of thing happens, the
gas in the clusters is what actually collides — the individual galaxies are too sparse to hit
very often. And when the gas collides, it gets hot. In this case, it heated up to about 160
million degrees and started emitting X-rays like mad! The picture shows these X-rays.
This may be hottest known galactic cluster.

That’s fun. But that’s not enough reason to call a press conference. The cool part is
not the crashing of gas against gas. The cool part is that the dark matter in the clusters
was unstopped — it kept right on going!

How do people know this? Simple. Folks can see the gravity of the dark matter
bending the light from more distant galaxies! It’s called “gravitational lensing”. Here are
the mass density contours, as seen by this effect. I guess Clowe took this photo using the
Hubble Space Telescope:

So: X-rays show the gas in one place, but gravity shows most of the mass is somewhere
else — two lumps zipping along unstopped. That’s good evidence that dark matter is for
real.

For more try these:

3) M. Markevitch, S. Randall, D. Clowe, A. Gonzalez, and M. Bradac, “Dark matter
and the Bullet Cluster”, available at http://www.cosis.net/abstracts/COSPAR2006/
02655/COSPAR2006-A-02655.pdf

4) M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, L. David, W. Forman,
C. Jones, S. Murray, and W. Tucker, “Direct constraints on the dark matter self-
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interaction cross-section from the merging galaxy cluster 1E0657-56”, available as
astro-ph/0309303.

5) Maxim Markevitch, “Chandra observation of the most interesting cluster in the
Universe”, available as astro-ph/0511345.

6) M. Markevitch, A. H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C.
Jones and W. Tucker, “A textbook example of a bow shock in the merging galaxy
cluster 1E0657-56”, Astrophys. J. 567 (2002), L27. Also available as astro-ph/

0110468.

7) Eric Hayashi and Simon D. M. White, “How rare is the Bullet Cluster?”, Mon. Not.
Roy. Astron. Soc. Lett. 370 (2006), L38–L41, available as astro-ph/0604443.

The first of these is, alas, only the abstract of a talk. But it’s worth reading, so I’ll
quote it in its entirety here:

1E0657-56, the “Bullet Cluster”, is a merger with a uniquely simple geometry.
From the long Chandra X-ray observation which revealed a classic bow shock in
front of a small subcluster, we can derive the velocity of the subcluster and its
direction of motion. Recent accurate weak and strong lensing total mass maps
clearly show two merging subclusters, including the host of the gas bullet seen
in X-rays. This cluster provided the first direct, model-independent proof of the
dark matter existence (as opposed to any modified gravity theory) and a direct
constraint on the self-interaction cross-section of the dark matter particles. I will
review these and other related results.

The Bullet Cluster is not the only direct evidence for dark matter. In fact, last year
folks claimed to have found a “ghost galaxy” made mainly of dark matter and cold hy-
drogen, with very few stars:
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8) PPARC, “New evidence for a dark matter galaxy”, http://www.interactions.

org/cms/?pid=1023641

However, Matt Owers informs me that the consensus on this ghost, VIRGOHI 21,
is that it’s hydrogen stripped off from a galaxy by the “wind” it felt as it fell into the
Virgo Cluster. This effect is called “ram pressure stripping” — the gas of a galaxy can be
stripped off if the galaxy is moving rapidly through a cluster, due to interaction with the
gas in the cluster.

Nonetheless, dark matter is seeming more and more real. It thus becomes ever more
interesting to find out what dark matter actually is. The lightest neutralino? Axions?
Theoretical physicists are good at inventing plausible candidates, but finding them is
another thing.

Since I’d like to send this off in time to beat NASA, I won’t say a lot more today. . .
just a bit.

Dan Christensen and Igor Khavkine have discovered some fascinating things by plot-
ting the amplitude of the tetrahedral spin network — the basic building block of space-
time in 3d quantum gravity — as a function of the cosmological constant.

They get pictures like this:

9) Dan Christensen and Igor Khavkine, “Plots of q-deformed tets”, http://jdc.math.
uwo.ca/spinnet/

Here the color indicates the real part of the spin network amplitude, and it’s plotted
as a function of q, which is related to the cosmological constant by a funky formula I
won’t bother to write down here.

You can get some nice books on category theory for free these days:
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10) Jiri Adamek, Horst Herrlich and George E. Strecker, Abstract and Concrete Cat-
egories: the Joy of Cats, available at http://katmat.math.uni-bremen.de/acc/
acc.pdf

11) Robert Goldblatt, Topoi: the Categorial Analysis of Logic, available at http://cdl.
library.cornell.edu/cgi-bin/cul.math/docviewer?did=Gold010

12) Michael Barr and Charles Wells, Toposes, Triples and Theories, available at http://
www.case.edu/artsci/math/wells/pub/ttt.html

The first two are quite elementary — don’t be scared of the title of Goldblatt’s book;
the only complaints I’ve ever heard about it boil down to the claim that it’s too easy!

You can also download this classic text on synthetic differential geometry, which is an
approach to differential geometry based on infinitesimals, formalized using topos theory:

13) Anders Kock, Synthetic Differential Geometry, available at http://home.imf.au.
dk/kock/

He asks that we not circulate it in printed form — electrons are okay, but not paper.
Next I want to say a tiny bit about Koszul duality for Lie algebras, which plays a big

role in the work of Castellani on the M-theory Lie 3-algebra, which I discussed in “Week
237”.

Let’s start with the Maurer-Cartan form. This is a gadget that shows up in the study of
Lie groups. It works like this. Suppose you have a Lie group G with Lie algebra Lie(G).
Suppose you have a tangent vector at any point of the group G. Then you can translate
it to the identity element of G and get a tangent vector at the identity of G. But, this is
nothing but an element of Lie(G)!

So, we have a god-given linear map from tangent vectors on G to the Lie algebra
Lie(G). This is called a “Lie(G)-valued 1-form” on G, since an ordinary 1-form eats
tangent vectors and spits out numbers, while this spits out elements of Lie(G). This
particular god-given Lie(G)-valued 1-form on G is called the “Maurer-Cartan form”, and
denoted ω.

Now, we can define exterior derivatives of Lie(G)-valued differential forms just as we
can for ordinary differential forms. So, it’s interesting to calculate dω and see what it’s
like.

The answer is very simple. It’s called the Maurer-Cartan equation:

dω = −ω ∧ ω

On the right here I’m using the wedge product of Lie(G)-valued differential forms. This
is defined just like the wedge product of ordinary differential forms, except instead of
multiplication of numbers we use the bracket in our Lie algebra.

I won’t prove the Maurer-Cartan equation; the proof is so easy you can even find it
on the Wikipedia:

14) Wikipedia, “Maurer-Cartan form”, http://en.wikipedia.org/wiki/Maurer-Cartan form

An interesting thing about this equation is that it shows everything about the Lie
algebra Lie(G) is packed into the Maurer-Cartan form. The reason is that everything
about the bracket operation is packed into the definition of ω ∧ ω.
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If you have trouble seeing this, note that we can feed ω ∧ ω a pair of tangent vectors
at any point of G, and it will spit out an element of Lie(G). How will it do this? The two
copies of ω will eat the two tangent vectors and spit out elements of Lie(G). Then we
take the bracket of those, and that’s the final answer.

Since we can get the bracket of any two elements of Lie(G) using this trick, ω ∧ ω
knows everything about the bracket in Lie(G). You could even say it’s the bracket viewed
as a geometrical entity — a kind of “field” on the group G!

Now, since
dω = −ω ∧ ω

and the usual rules for exterior derivatives imply that

d2ω = 0

we must have
d(ω ∧ ω) = 0

If we work this concretely what this says, we must get some identity involving the bracket
in our Lie algebra, since ω∧ω is just the bracket in disguise. What identity could this be?

The Jacobi identity!
It has to be, since the Jacobi identity says there’s a way to take 3 Lie algebra elements,

bracket them in a clever way, and get zero:

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0

while d(ω ∧ω) is a Lie(G)-valued 3-form that happens to vanish, built using the bracket.
It also has to be since the equation d2 = 0 is just another way of saying the Jacobi

identity. For example, if you write out the explicit grungy formula for d of a differential
form applied to a list of vector fields, and then use this to compute d2 of that differential
form, you’ll see that to get zero you need the Jacobi identity for the Lie bracket of vector
fields. Here we’re just using a special case of that.

The relationship between the Jacobi identity and d2 = 0 is actually very beautiful and
deep. The Jacobi identity says the bracket is a derivation of itself, which is an infinites-
imal way of saying that the flow generated by a vector field, acting as an operation on
vector fields, preserves the Lie bracket! And this, in turn, follows from the fact that the
Lie bracket is preserved by diffeomorphisms — in other words, it’s a “canonically defined”
operation on vector fields.

Similarly, d2 = 0 is related to the fact that d is a natural operation on differential
forms — in other words, that it commutes with diffeomorphisms. I’ll leave this cryptic; I
don’t feel like trying to work out the details now.

Instead, let me say how to translate this fact:

d2ω = 0 is secretly the Jacobi identity

into pure algebra. We’ll get something called “Kozsul duality”. I always found Koszul
duality mysterious, until I realized it’s just a generalization of the above fact.

How can we state the above fact purely algebraically, only using the Lie algebra
Lie(G), not the group G? To get ourselves in the mood, let’s call our Lie algebra simply
L.
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By the way we constructed it, the Maurer-Cartan form is “left-invariant”, meaning it
doesn’t change when you translate it using maps like this:

Lg : G→ G

x 7→ gx

that is, left multiplication by any element g of G. So, how can we describe the left-
invariant differential forms on G in a purely algebraic way? Let’s do this for ordinary
differential forms; to get Lie(G)-valued ones we can just tensor with L = Lie(G).

Well, here’s how we do it. The left-invariant vector fields on G are just

L

so the left-invariant 1-forms are
L∗

So, the algebra of all left-invariant diferential forms on G is just the exterior algebra on
L∗. And, defining the exterior derivative of such a form is precisely the same as giving
the bracket in the Lie algebra L! And, the equation d2 = 0 is just the Jacobi identity in
disguise.

To be a bit more formal about this, let’s think of L as a graded vector space where
everything is of degree zero. Then L∗ is the same sort of thing, but we should add
one to the degree to think of guys in here as 1-forms. Let’s use S for the operation
of “suspending” a graded vector space — that is, adding one to the degree. Then the
exterior algebra on L∗ is the “free graded-commutative algebra on SL∗”.

So far, just new jargon. But this lets us state the observation of the penultimate
paragraph in a very sophisticated-sounding way. Take a vector space L and think of it as
a graded vector space where everything is of degree zero. Then:

Making the free graded-commutative algebra on SL∗ into a differential graded-
commutative algebra is the same as making L into a Lie algebra.

This is a basic example of “Koszul duality”. Why do we call it “duality”? Because it’s
still true if we switch the words “commutative” and “Lie” in the above sentence!

Making the free graded Lie algebra on SL∗ into a differential graded Lie algebra
is the same as making L into a commutative algebra.

That’s sort of mind-blowing. Now the equation d2 = 0 secretly encodes the commu-
tative law.

So, we say the concepts “Lie algebra” and “commutative algebra” are Koszul dual.
Interestingly, the concept “associative algebra” is its own dual:

Making the free graded associative algebra on SL∗ into a differential graded
associative algebra is the same as making L into an associative algebra.

This is the beginning of a big story, and I’ll try to say more later. If you get impatient,
try the book on operads mentioned in “Week 191”, or else these:
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15) Victor Ginzburg and Mikhail Kapranov, “Koszul duality for quadratic operads”,
Duke Math. J. 76 (1994), 203–272. Also “Erratum”, Duke Math. J. 80 (1995),
293.

16) Benoit Fresse, “Koszul duality of operads and homology of partition posets”, Ho-
motopy theory and its applications (Evanston, 2002), Contemp. Math. 346 (2004),
115–215. Also available at http://math.univ-lille1.fr/~fresse/PartitionHomology.
html

The point is that Lie, commutative and associative algebras are all defined by “quadratic
operads”, and one can define for any such operad O a “dual” operad O∗ such that:

Making the free graded O-algebra on SL∗ into a differential graded O-algebra
is the same as making L into an O∗-algebra.

And, we have O∗∗ = O, hence the term “duality”.
This has always seemed incredibly cool and mysterious to me. There are other mean-

ings of the term “Koszul duality”, and if really understood them I might better understand
what’s going on here. But, I’m feeling happy now because I see this special case:

Making the free graded-commutative algebra on SL∗ into a differential graded-
commutative algebra is the same as making L into a Lie algebra.

is really just saying that the exterior derivative of left-invariant differential forms on
a Lie group encodes the bracket in the Lie algebra. That’s something I have a feeling
for. And, it’s related to the Maurer-Cartan equation. . . though notice, I never completely
spelled out how.

Addenda: Let me say some more about how d2 = 0 is related to the fact that d is a
canonically defined operation on differential forms. Being “canonically defined” means
that d commutes with the action of diffeomorphisms. Saying that d commutes with
“small” diffeomorphisms — those connected by a path to the identity — is the same as
saying

dLv = Lvd

where v is any vector field and Lv is the corresponding “Lie derivative” operation on
differential forms. But, Weil’s formula says that

Lv = ivd+ div

where iv is the “interior product with v”, which sends p-forms to (p − 1)-forms. If we
plug Weil’s formula into the equation we’re pondering, we get

d(ivd+ div) = (ivd+ div)d

which simplifies to give
d2iv = ivd

2
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So, as soon as we know d2 = 0, we know d commutes with small diffeomorphisms. Alas,
I don’t see how to reverse the argument.

Similarly, as soon as we know the Jacobi identity, we know the Lie bracket operation
on vector fields is preserved by small diffeomorphisms, by the argument outlined in the
body of this Week. This argument is reversable.

So, maybe it’s an exaggeration to say that d2 = 0 and the Jacobi identity say that d
and the Lie bracket are preserved by diffeomorphisms — but at least they imply these
operations are preserved by small diffeomorphisms.
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Week 239

September 8, 2006

David Corfield, Urs Schreiber and I have started up a new blog!
David is a philosopher, Urs is a physicist, and I’m a mathematician, but one thing we

all share is a fondness for n-categories. We also like to sit around and talk shop in a
public place where our friends can drop by. Hence the title of our blog:

1) The n-Category Café, http://golem.ph.utexas.edu/category

Technologically speaking, the cool thing about this blog is that it uses itex and
MathML to let us (and you) write pretty equations in TeX. For this we thank Jacques
Distler, who pioneered the technology on his own blog:

2) Jacques Distler, Musings, http://golem.ph.utexas.edu/~distler/blog/

It’s great!
Urs began by posting about 11d supergravity and higher gauge theory (see “Week

237”). Now he’s discussing Barrett and Connes’ new work on the Standard Model.
Meanwhile, I’ve been obsessed with the categorical semantics of quantum computation,
and David has been running discussions on categorifying Klein’s Erlangen program (see
“Week 213”), the differences between mathematicians and historians when it comes to
writing histories of math, and so on.

And, it’s all free.
Meanwhile, in the bad old world of extortionist math publishers, we see a gleam

of hope. The entire editorial board of the journal Topology resigned to protest Reed-
Elsevier’s high prices!

3) Topology board of editors, letter of resignation, http://math.ucr.edu/home/baez/
topology-letter.pdf

The board includes some topologists I respect immensely. It takes some guts for
full-fledged memmbers of the math establishment to do something like this, and I con-
gratulate them for it. It’ll be fun to see what stooges Reed-Elsevier rounds up to form a
new board of editors. I can’t imagine they’ll just declare defeat and let the journal fold.

This is part of trend where journal editors “declare independence” from their pub-
lishers and move toward open access:

4) Open Access News, “Journal declarations of independence”, http://www.earlham.
edu/%7Epeters/fos/lists.htm#declarations

Speaking of open access, you can now get the notes from the course Freeman Dyson
taught on quantum electrodynamics when he first became a professor of physics at Cor-
nell:

5) Freeman J. Dyson, 1951 Lectures on Advanced Quantum Mechanics, second edition,
available as quant-ph/0608140. For historical context and original mimeographs,
see http://hrst.mit.edu/hrs/renormalization/dyson51-intro/
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These notes are from an exciting period in physics, shortly after the 1947 Shelter Is-
land conference where Feynman and Schwinger presented their approaches to quantum
electrodynamics to an audience of luminaries including Bohr, Oppenheimer, von Neu-
mann, and Weisskopf. Nobody understood Feynman’s diagrams except Schwinger and
maybe Feynman’s thesis advisor, John Wheeler.

Every true fan of physics loves reading about this heroic era and its figures, especially
Feynman. So, if you haven’t read these yet, run to the bookstore and buy them now!

6) James Gleick, Genius: the Life and Science of Richard Feynman, Vintage Press, 1993.

7) Jagdish Mehra, The Beat of a Different Drum: the Life and Science of Richard Feyn-
man, Oxford U. Press, 1996.

8) Silvan S. Schweber, QED and the Men Who Made It, Princeton U. Press, Princeton,
1994.

The first book is a barrel of fun but doesn’t get into the nitty-gritty details of Feyn-
man’s work. The second more scholarly treatment also has lots of Feynman anecdotes
— even some new ones! But, it covers his work in enough detail to intimidate any
non-physicist. The third offers a broader panorama of the development of quantum
electrodynamics. Taken together, they add up to quite a nice story.

Of course, I’m assuming you’ve read these:

9) Richard P. Feynman, Surely You’re Joking, Mr. Feynman! (Adventures of a Curious
Character), W. W. Norton and Company, New York, 1997.

10) Richard P. Feynman, What Do You Care What Other People Think? (Further Adven-
tures of a Curious Character), W. W. Norton and Company, New York, 2001.

They’re more fun than everything else I’ve ever recommended on This Week’s Finds,
combined. If you haven’t read them, don’t just run to the nearest bookstore — get in a
time machine, go back, and make sure you did read them.

Today I’d like to wrap up the discussion of Koszul duality which I began last Week.
As we’ll see, this gives a really efficient way of categorifying the theory of Lie algebras
and defining “Lie n-algebras”. And, as Urs Schreiber notes, these seem to be just what
we need to understand 11-dimensional supergravity in a nice geometric way.

But before I dive into this heavy stuff, something fun. Thanks to Christine Dantas’
blog, I just saw a webpage on the origins of math and writing in Mesopotamia:

11) Duncan J. Melville, “Tokens: the origin of mathematics”, from his website Mesopotamian
Mathematics, http://it.stlawu.edu/%7Edmelvill/mesomath/
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Before people in the Near East wrote on clay tablets, there were “tokens”:

12) The Schøyen Collection, MS 5067/1-8, “Neolithic plain counting tokens possibly
representing 1 measure of grain, 1 animal and 1 man or 1 day’s labour, respec-
tively”, http://www.nb.no/baser/schoyen/5/5.11/index.html

These are little geometric clay figures that represented things like sheep, jars of oil,
and various amounts of grain. They are found throughout the Near East starting with
the agricultural revolution in about 8000 BC. Apparently they were used for contracts!

Eventually groups of tokens were sealed in clay envelopes, so any attempt to tamper
with them would be visible.

But, it’s annoying to have to break a clay envelope just to see what’s in it. So, after a
while, they started marking the envelopes to say what was inside. At first, they did this
simply by pressing the tokens into the soft clay of the envelopes.

Later, these marks were simply drawn on tablets. Eventually they gave up on the
tokens — a triumph of convenience over security. The marks on tablets then developed
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into the Babylonian number system! The transformation was complete by 3000 BC.

So, five millennia of gradual abstraction led to the writing of numbers! From three
tokens representing jars of oil, we eventually reach the abstract number “3” applicable
to anything.

Of course, all history is detective work. The story I just told is an interpretation
of archaeological evidence. It could be wrong. This particular interpretation is due to
Denise Schmandt-Besserat. It seems to be fairly well accepted in broad outline, but
scholars are still arguing about it.

For more on her ideas, try this:

13) Denise Schmandt-Besserat, “Accounting with tokens in the ancient Near East”,
http://www.utexas.edu/cola/centers/lrc/numerals/dsb/dsb.html

For a bibliography of her many papers, try:

14) Denise Schmandt-Besserat, “Publications”, http://www.utexas.edu/cola/centers/
lrc/iedocctr/ie-pubs/dsb-pubs.html

For more work on this subject — I want to read more! — try:

15) Eleanor Robson, “Bibliography of Mesopotamian mathematics”, http://it.stlawu.
edu/~dmelvill/mesomath/erbiblio.html

And for a fun intro to writing on clay tablets, try this:

16) John Heise, “Cuneiform writing system”, http://xoomer.alice.it/bxpoma/akkadeng/
cuneiform.htm

Next, from 8000 BC, let’s shoot forward ten millennia straight into the 20th century.
Last week I gave three examples of Koszul duality:

Making the free graded-commutative algebra on SL∗ into a differential graded-
commutative algebra is the same as making L into a Lie algebra.
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Making the free graded Lie algebra on SL∗ into a differential graded Lie algebra
is the same as making L into a commutative algebra.

Making the free graded associative algebra on SL∗ into a differential graded
associative algebra is the same as making L into an associative algebra.

Here L is a vector space, which we think of as a graded vector space concentrated in
degree zero. L∗ is its dual, and SL∗ is the “shifted” or “suspended” version of L∗, where
we add one to the degree of everything.

Now, what if we replace L by a graded vector space that can have stuff of any degree?
We get a fancier version of Koszul duality, which goes like this:

Making the free graded-commutative algebra on SL∗ into a differential graded-
commutative algebra is the same as making L into an L∞-algebra.

Making the free graded Lie algebra on SL∗ into a differential graded Lie algebra
is the same as making L into a C∞-algebra.

Making the free graded associative algebra on SL∗ into a differential graded
associative algebra is the same as making L into an A∞-algebra.

Here an “L∞-algebra” is a chain complex that’s like a Lie algebra, except the Jacobi
identity holds up to a chain homotopy called the “Jacobiator”, which in turn satisfies its
own identity up to a chain homotopy called the “Jacobiatorator”, and so on ad infinitum.
Keeping track of all these higher homotopies is quite a chore. Well, it’s sort of fun
when you get into it, but the great thing about Koszul duality is that you don’t need to
remember any fancy formulas: all the higher homotopies are packed into the differential
on SL∗.

Similarly, a “C∞-algebra” is a chain complex that’s like a graded-commutative algebra
up to homotopy, ad infinitum.

Similarly, an “A∞-algebra” is a chain complex that’s like an associative algebra up
to homotopy, ad infinitum. Here you can read off all the higher homotopies from the
Stasheff associahedra, which you know and love from “Week 144” — but again, Koszul
duality means you don’t have to!

As mentioned last week, all this stuff generalizes to any kind of algebraic gadget in
Vect — the category of vector spaces — which is defined by a “quadratic operad” O. Any
such operad has a “Koszul dual” operad O∗ such that:

Making the free gradedO∗-algebra on SL∗ into a differential gradedO∗-algebra
is the same as making L into an O∞-algebra.

Here O∞ is an operad in the category of chain complexes defined by “weakening” O
in a systematic way — replacing all the laws by chain homotopies, ad infinitum. We can
define O∞ using the “bar construction”, as nicely described here:

16) Todd Trimble, “Bar constructions”, http://math.ucr.edu/home/baez/trimble/
bar.html

or in the book by Markl, Schnider and Stasheff:
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17) Martin Markl, Steve Schnider and Jim Stasheff, Operads in Algebra, Topology and
Physics, AMS, Providence, Rhode Island, 2002.

See “Week 191” for more on this book, and what the heck an “operad” is. By the way,
we have

O∗∗ ∼= O

so we can also say:

Making the free graded O-algebra on SL∗ into a differential graded O-algebra
is the same as making L into an O∗

∞-algebra.

Anyway, I don’t have much intuition for how Koszul duality lets us magically sidestep
the bar construction of O∞. Someday I hope I’ll understand this.

But, once we have the concept of “L∞-algebra”, we can restrict ourselves to chain
complexes that vanish except for their first n terms — that is, degrees 0, 1, . . . , n − 1 —
and get the concept of “Lie n-algebra”.

In fact, a Lie n-algebra is like a hybrid of a Lie algebra and an n-category! The
definition I just gave says a Lie n-algebra is an L∞-algebra which as a chain complex
vanishes above degree n − 1. But, such chain complexes are equivalent to strict n-
category objects in Vect! So, we can think of Lie n-algebras as strict n-categories that do
their best to act like Lie algebras, but with some of the laws holding up to isomorphism,
with these isomorphisms satisfying their own laws up to isomorphism, etcetera.

But, the really cool part is that we can do gauge theory using Lie n-algebras instead of
Lie algebras, and taking n = 3 we get an example that seems to explain the geometry of
11d supergravity. . . that is, the classical limit of that mysterious thing called M-theory.

For this, you really need to read Urs Schreiber’s stuff:

18) Urs Schreiber, “Castellani on free differential algebras in supergravity: gauge 3-
group of M-theory”, http://golem.ph.utexas.edu/string/archives/000840.

html

19) Urs Schreiber, “SuGra 3-connection reloaded”, http://golem.ph.utexas.edu/category/
2006/08/sugra 3connection reloaded.html

and many other things he’s been writing on the n-Category Café lately.

Addenda: You can see discussion of this Week’s Finds at the n-Category Café. In his
blog Not Even Wrong, Peter Woit has more to say about the open access movement and
a questionable plan broached by CERN to pay for-profit journals to make their papers
freely available. Some comments on this blog article dig deeper into the evolution of
Babylonian numerals:

19) John Baez and Richard Elwes, “Babylon and the square root of 2”, Azimuth, De-
cember 2nd, 2011.
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In particular, Duncan Melville points out that when number systems first evolved in
Babylonia, they had about a dozen different systems for different kinds of products! A
base-60 system called the S system, was used to count most discrete objects, such as
sheep or people. For ‘rations’ such as cheese or fish, they used a base 120 system, the
B system. Another system, the ŠE system, was used to measure quantities of grain, and
so on. So, number systems were a bit more like business software today, with different
kinds used by different trades.

I never once doubted that I would eventually succeed in getting to the bottom
of things.

— Alexander Grothendieck
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Week 240

October 22, 2006

I’m back from Shanghai, and classes are well underway now. For the last few weeks
I’d been frantically preparing a talk for Stewart Brand’s “Seminars About Long-Term
Thinking”, up in San Francisco. I talked about how we need to “zoom out” of our short-
term perspective to understand the history of the earth’s climate and what we’re doing
to it now:

1) John Baez, “Zooming out in time”, http://math.ucr.edu/home/baez/zoom/

There’s a lot of tricky physics in this business. Consider, for example, this graph of
cycles governing the Earth’s precession, the obliquity of its orbit, and the eccentricity of
its orbit:

2) Wikipedia, “Milankovitch cycles”, http://en.wikipedia.org/wiki/Milankovitch cycles

Here a “kyr” is a thousand years. The yellow curve combines information from all
three of these cycles and shows the amount of solar radiation at 65 degrees north lati-
tude. The bottom black curve shows the amount of glaciation. As Milankovitch’s theory
predicts, you can sort of see a correlation between the yellow and black curves — but
it’s nothing simple or obvious. One reason is the complex feedback mechanisms within
the Earth’s climate.

Here’s a great place to read about this stuff:

3) Barry Saltzman, Dynamical Paleoclimatology: Generalized Theory of Global Climate
Change, Academic Press, New York, 2002.

Anyway, now this talk is done, and I can focus more on teaching.
In my seminar this year, we’re focusing on two topics: quantization and cohomology,

and classical versus quantum computation. I’m trying out something new: not only are
the notes available on the web, there’s also a blog entry for each class, where you can
ask questions, make comments and correct my mistakes!
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4) John Baez, Fall 2006 seminars: “Quantization and cohomology”, and “Classical
versus quantum computation”. Notes by Derek Wise, homeworks and blog entries
available at http://math.ucr.edu/home/baez/qg-fall2006/

I hope more people blend teaching with blogging. It’s not too much work if someone
with legible handwriting takes notes and the lectures can actually be followed from the
notes. You can use blogging to interactively teach people scattered all over the planet!

This week, James Dolan gave a talk on something he’s been working on for a long
time: games and cartesian closed categories. Lately he’s been working with Todd Trim-
ble, and they reproved some important results in a fun new way. Let me sketch the ideas
for you. . . .

Let’s play a game. I have a set X in my pocket, and I’m not telling you what it is. Can
you pick an element of X in a systematic way?

No, of course not: you don’t have enough information. X could even be empty, in
which case you’re clearly doomed! But even if it’s nonempty, if you don’t know anything
about it, you can’t pick an element in a systematic way.

So, you lose.
Okay, let’s play another game. Can you pick an element of

XX

in a systematic way? Here AB means the set of functions from B to A. So, I’m asking if
you can pick a function from X to itself in a systematic way.

Yes! You can pick the identity function! This sends each element of X to itself:

x 7→ x

You don’t need to know anything about X to describe this function. X can even be
empty.

So, you win.
Are there any other ways to win? No.
Now let’s play another game. Can you pick an element of

XXX

in a systematic way?
An element in here takes functions from X to itself and turns them into elements of

X. When X is the set of real numbers, people call this sort of thing a “functional”, so
let’s use that term. A functional eats functions and spits out elements.

You can scratch your head for a while trying to dream up a systematic way to pick a
functional for any set X. But, there’s no way.

So, you lose.
Let’s play another game. Can you pick an element of

(XX)X
X

in a systematic way?
An element in here eats functions and spits out functions. When X is the set of real

numbers, people often call this sort of thing an “operator”, so let’s use that term.
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Given an unknown set X, can you pick an operator in a systematic way? Sure! You
can pick the identity operator. This operator eats any function from X to itself and spits
out the same function:

f 7→ f

Anyway: you win.
Are there any other ways to win? Yes! There’s an operator that takes any function

and spits out the identity function:

f 7→ (x 7→ x)

This is a bit funny-looking, but I hope you get what it means: you put in any function f ,
and out pops the identity function x 7→ x.

This arrow notation is very powerful. It’s usually called the “λ calculus”, since when
Church invented it in the 1930s, he wrote it using the Greek letter λ instead of an arrow:
instead of

x 7→ y

he wrote
λx.y

But this just makes things more confusing, so let’s not do it.
Are there more ways to win this game? Yes! There’s also an operator called “squar-

ing”, which takes any function f from X to itself and “squares” it — in other words, does
it twice. If we write the result as f2, this operator is

f 7→ f2

But, we can express this operator without using any special symbol for squaring. The
function f is the same as the function

x 7→ f(x)

so the function f2 is the same as
x 7→ f(f(x))

and the operator “squaring” is the same as

f 7→ (x 7→ f(f(x)))

This looks pretty complicated. But, it shows that our systematic way of choosing an
element of

(XX)X
X

can still be expressed using just the λ calculus.
Now that you know “squaring” is a way to win this particular game, you’ll immedi-

ately guess a bunch of other ways: “cubing”, and so on. It turns out all the winning
strategies are of this form! We can list them all using the λ calculus:

f 7→ (x 7→ x)

f 7→ (x 7→ f(x))

f 7→ (x 7→ f(f(x)))

f 7→ (x 7→ f(f(f(x))))
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etc. Note that the second one is just a longer name for the identity operator. The longer
name makes the pattern clear.

So far, all these methods of picking an element of (XX)X
X

for an unknown set X
can be written using the λ calculus. There are other sneakier ways. For example, there’s
the operator that sends functions with fixed points to the identity function, and sends
functions without fixed points to themselves. It’s an interesting challenge to figure out
all these sneaky ways, but it’s way too hard for me. So, from now on, just to keep things
simple, let’s only consider “systematic ways” that can be expressed using the λ calculus.
To win one of my games, you need to use the λ calculus to pick an element of the set I
write down.

So, let’s play another game. Can you write down an element of

XXXX

using the λ calculus?
An element in here eats functionals and spits out elements of X. So, it’s called a

“functionalal” on X. At least that’s what Jim calls it.
If I have an unknown set in my pocket, can you write down functionalal on this set

using the λ calculus?
Yes! You need to dream up a recipe that takes functionals on X and turns them into

elements of X. Here’s one recipe: take any functional and evaluate it on the identity
function, getting an element of x.

In λ calculus notation, this recipe looks like this:

f 7→ f(x 7→ x)

Can you think of other ways to win this game? I hope so: there are infinitely many! Jim
and Todd figured out a systematic way to list them all.

Now let’s play another game. Can you write down an element of

XXXXX

using the λ calculus? A thing in here eats functionalals and spits out elements of X, so
it’s called a “functionalalal”.

So, can you write down a functionalalal on an unknown set using the λ calculus?
The answer is no: you lose.
How about writing down an element of

((XX)X
X

)((X
X)X

X
)

using the λ calculus? Such a thing eats operators and spits out operators, so it’s called
an “operatorator”.

The answer is yes: there are lots of ways to win this game. The real challenge is
listing all of them! This is the sort of question Dolan and Trimble figured out the answer
to — though as we’ll see, they weren’t the first.

In fact, instead of moving on to functionalators, operatorals, operatoralatorals, and
so on, let me just tell you trick for instantly deciding which of all these games you can
win.
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You just take your game, like this:

((XX)X
X

)((X
X)X

X
)

and evaluate it by setting X = 0. If you get 0, there’s no way to win. If you get 1, there’s
at least one way to win.

To use this trick, you need to know that

00 = 1

This is something they don’t teach in school! In analysis, XY can approach anything
between 0 and 1 when X and Y approach 0 from above. So, teachers like to say 00 is
undefined. But XX approaches 1 when X → 0. More importantly, in set theory, AB

stands for the set of functions from B to A, and the number of elements in this set is

|AB | = |A||B|

When A and B are empty, there’s just one function from B to A, namely the identity. So,
for our purposes we should define 00 = 1.

Consider the case of functionals, which are elements of XXX

. If we evaluate this at
X = 0 we get

00
0

= 01 = 0

So, there are no functionals when X is the empty set. So, you can’t pick a functional on
a unknown set in any systematic way. That’s why you lose when your game evaluates
to 0. It’s more interesting to prove that for games evaluating to 1, there’s a way to win,
using the λ calculus.

But we’d really like to understand all the ways to win using the λ calculus. And for
this, Dolan and Trimble used the theory of holodeck games.

In Star Trek, the “holodeck” is a virtual reality environment where you can play
various games:
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On the holodeck, if you regret a move you made, you can back up to any earlier point in
the game and make a new move.

Actually I’m deviating from the technical specifications of the holodeck on Star Trek,
as explained here:

6) Wikipedia, “Holodeck”, http://en.wikipedia.org/wiki/Holodeck

So, if you’re a Star Trek purist, it’s better to imagine a video game where you can
save your game at any state of play, and go back to these saved games whenever you
want. And, you have to imagine being so paranoid that you always save your game
before making a move. This allows games to go on forever, so we only say you have a
winning strategy if you can win in a finite number of moves, no matter what the other
player does.

To make this completely precise, we consider two-player games where the players
take turns making moves. When a player can’t make a move, they lose. Any such game
can be written as a “game tree”, like this:

In this example, the first player has three choices for her first move. If she picks the
middle branch, the second player has one choice for his first move. Then the first player
has one choice for her second move. Then the second player has no choice for his second
move — so he loses.

So, in this particular example the second player has no winning strategy.
A cool thing about such a game is that we can take its game tree and turn it into an

expression built from some variable X using products and exponentials. To do this, just
put an X at each vertex of the tree except the root:

X

X

X

X

X X

X

X

X

Then blow on the tree with a strong westerly wind, so strong that the branches blow
away and only the X ’s are left:

X X X
X X X

X XX
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This is just a way of writing an expression built from X using products and exponentials:

XXXXX

XXXX

Conversely, any such expression can be turned back into a tree, at least after we simplify
it using these rules:

(AB)C = ACBC

(AB)C = ABC

For example, consider the set of operators:

(XX)X
X

If we simplify this, we get
XXXX

or

X
XX

X

giving the tree

X

X

X

X

or in other words

And here’s a cool fact: if you take any expression built from X using products and
exponentials, and evaluate it at X = 0, you can tell which player has a winning strategy
for the game described by the corresponding tree! If you get 1, the second player has a
winning strategy; if you get 0, they don’t.

It’s pretty easy to prove: try it.
But if you’ve been paying attention, you’ll have noticed something weird.
I’ve told you two ways to get a game from any expression built from X using products

and exponentials. First, the game of defining an element of the resulting set, using the
λ calculus. Second, the game we get by turning this expression into a game tree, like I
just did.
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For both these games, you can decide if there’s a winning strategy by evaluating the
expression at X = 0.

But are they the same game? No! One is the holodeck version of the other!
Let’s look at the familiar example of operators:

(XX)X
X

= XXXX

This evaluates to 1 at X = 0. So, if we turn it into a tree

we get a game where the second player has a winning strategy.
This game is not very exciting, but it becomes more exciting if you call it “The Lady

or the Tiger”. In this game, the first player has only one first move: he takes the second
player to a room with two doors, corresponding to the two branches of the above tree.

Then it’s the second player’s turn.
If he opens the left door, a beautiful lady pops out and they instantly get married

and live happily ever after. If he opens the right door, the first player opens a tiger cage.
Then the tiger jumps out and eats the second player.

In this game, the second player has just one winning strategy: on his first move he
should choose the left door.

Next look at the game of defining an element of

(XX)X
X

= XXXX

using the λ calculus. We’ve seen there are infinitely many strategies for winning this:

f 7→ (x 7→ x)

f 7→ (x 7→ f(x))

f 7→ (x 7→ f(f(x)))

f 7→ (x 7→ f(f(f(x))))

and so on. These correspond to 2nd-player winning strategies for the holodeck version of
The Lady or the Tiger.

What are these strategies?
One is just to play the game and win by choosing the left door.
Another is to choose the right door — and then, just when the tiger is about to eat

you, back up and choose the left door!
Another is to choose the right door — and then, just when the tiger is about to eat

you, back up and choose. . . the right door!
Then, when the tiger is about to devour you again, back up again, and this time

choose the left door.
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And so on: for each n, there’s a strategy where you choose the right door n times
before wising up and choosing the left door.

Now, if you want a really nice math project, ponder the pattern relating all these
strategies to the corresponding λ calculus expressions:

f 7→ (x 7→ x)

f 7→ (x 7→ f(x))

f 7→ (x 7→ f(f(x)))

f 7→ (x 7→ f(f(f(x))))

Then, figure out how to prove that for any 2-person game, say:

there’s a 1-1 correspondence between winning second-person strategies for the holodeck
verson of this game and ways of using the λ calculus to define elements of the corre-
sponding set:

XXXXX

XXXX

Apparently this result goes back to work of Hyland and Ong in the early 1990s. Dolan
rediscovered the idea, and Trimble and he have recently worked out a new proof.

If you get stuck proving this result yourself, first try these notes from Dolan’s talk, for
some hints:

7) James Dolan, “Holodeck strategies and cartesian closed categories”, lecture at
UCR, notes by John Baez, Oct. 19, 2006, available at http://math.ucr.edu/home/
baez/qg-fall2006/f06week03b.pdf

Then try Trimble’s more rigorous, technical treatment, and the original paper by
Hyland and Ong:

8) Todd Trimble, “Holodeck games and CCCs”, available at http://math.ucr.edu/
home/baez/trimble/holodeck.html

9) Martin Hyland and C.-H. Luke Ong, “On full abstraction for PCF”, Information and
Computation 163 (2000), 285–408. Also available at ftp://ftp.comlab.ox.ac.
uk/pub/Documents/techpapers/Luke.Ong/pcf.ps.gz

Dolan’s talk also explains some other fun stuff, like how to multiply and exponentiate
games. So, if you read these notes, you’ll learn how to play

chess× go

and
chessgo
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at least after chess and go have been “improved” so games never last forever and the last
player able to make a move wins.

But, if you’re planning to study this stuff, I’d better admit right now that Dolan and
Trimble make heavy use of the relation between the λ calculus and cartesian closed
categories.

A category is “cartesian” if it has finite products — or in other words, binary products
and a terminal object. It’s “cartesian closed” if it also has exponentials. All these terms
are carefully defined in the week 2 and week 3 notes of my classical versus quantum
computation course, so let me just illustrate them with an example: the category of
sets. Here the product A × B of two sets A and B is their usual Cartesian product. The
exponential AB is the set of functions from B to A. Any 1-element set is a terminal
object.

Dolan and Trimble don’t really talk about an unknown set X, as I did above. What
they really study is the “free cartesian closed category on one object x”, which I like to
call CCC[x]. Any object in CCC[x] is built from the object x by means of binary products,
exponentials and the terminal object. For example, we have objects like this:

x11x
x

(xx)x1x
xx

where I’ve omitted the times symbols for products.
However, every object is isomorphic to one in “tree form”. For example, the above

object is isomorphic to
xxxx

xx

xxx
xx

which we can draw as a tree:

x

x

x

x

x

x

x

x

x

Dolan and Trimble consider the set of elements of any object in CCC[x], where an
“element” is a morphism from the terminal object, e.g.

f : 1→ xxxx
xx

xxx
xx

And, they show these elements are in 1-1 correspondence with second-player winning
strategies for the holodeck version of the game whose tree is constructed as above.

If we pick any set X, the universal property of CCC[x] gives a functor

F : CCC[x]→ Set

This maps elements of any object in CCC[x] to elements of the corresponding object in
Set:

F (f) : 1→ XXXXXX

XXXXX
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So, the element f gives a systematic way of picking elements of any set built from any
arbitrary set X using finite products and exponentials.

By the way, in a cartesian closed category, there’s a 1-1 correspondence between
morphisms

f : B → A

and elements
f : 1→ AB

So, one can use games to describe all the objects and morphisms in the free cartesian
closed category on one object! One can also describe composition of morphisms using
games. In short, there’s a complete description of CCC[x] in terms of games.

Now let me give you some references on cartesian closed categories, the λ calculus,
categorical semantics, and games. It’s an interesting network of subjects.

Categorical semantics was born in Lawvere’s celebrated 1963 thesis on algebraic the-
ories:

10) F. William Lawvere, Functorial Semantics of Algebraic Theories, Dissertation, Columbia
University, 1963. Also available at http://www.tac.mta.ca/tac/reprints/articles/
5/tr5abs.html

Semantics deals with theories and their models. Dual to the concept of semantics is
the concept of “syntax”, which deals with proofs. In the case of algebraic theories, the
syntax was studied before Lawvere in the subject called “universal algebra”:

11) Stanley Burris and H.P. Sankappanavar, “A Course in Universal Algebra”, available
at http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html

Lawvere modernized universal algebra by realizing that an algebraic theory is just
a cartesian category, and a model is a product-preserving functor from this theory into
Set or some other cartesian category — hence his thesis title, “Functorial Semantics”. I
explained this in much more detail back in week200.

The relevance of all this to computer science becomes visible when we note that
a proof in universal algebra can be seen as a rudimentary form of computation. The
“input” of the computation is a set of assumptions, while the “output” is the equation to
be proved.

Treating proofs as computations may seem strained, but it becomes less so when
we move to richer formalisms which allow for more complex logical reasoning. One of
best-known of these is the λ calculus, invented by Church and Kleene in the 1930s as a
model of computation. Any function computable by the λ calculus is also computable by
a Turing machine, and according to the Church-Turing thesis these are all the functions
computable by any sort of systematic process. Moreover, computations in the λ calculus
can actually be seen as proofs.

The usefulness of this way of thinking was brought out in Landin’s classic paper:

12) P. Landin, “A correspondence between ALGOL 60 and Church’s λ-notation”, Comm.
ACM 8 (1965), 89–101, 158–165.

This began a long and fruitful line of research — see for example this:
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13) H. Barendregt, The Lambda Calculus, its Syntax and Semantics, North-Holland,
1984.

The power of the λ calculus is evident in the textbook developed for MIT’s introduc-
tory course in computer science, which is available online:

14) H. Abelson, G. J. Sussman and J. Sussman, Structure and Interpretation of Computer
Programs, available at http://www-mitpress.mit.edu/sicp/

It cites pioneers like Haskell Curry, and it even has a big “λ” on the cover!
Students call it “the wizard book”, because the cover also features a picture of a

wizard. It’s used at over 100 colleges and universities, and it has spawned a semi-
mythical secret society called The Knights of the Lambda Calculus, whose self-referential
emblem celebrates the ability of the λ calculus to do recursion.

In 1980, Lambek made a great discovery:

15) Joachim Lambek, “From lambda calculus to Cartesian closed categories”, in To H.
B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, eds. J. P.
Seldin and J. Hindley, Academic Press, 1980, pp. 376-402.

He showed that just as algebraic theories can be regarded as cartesian categories,
theories formulated in the λ calculus can be regarded as cartesian closed categories (or
CCCs, for short).

Lambek’s discovery introduced a semantics for the λ calculus, since it lets us to speak
of “models” of theories formulated in the λ calculus, just as we could for algebraic the-
ories. In computer programming, the importance of a model is that it gives a picture
of what a program actually accomplishes. A model in the category of sets, for example,
sends any program to an actual function between sets.

There’s no way to list all the interesting references to CCCs and the λ-calculus, but
here are some online places to get going on them, starting out easy and working up to
the harder ones. This Wikipedia article is quite good:

16) Wikipedia, “Lambda calculus”, available at http://en.wikipedia.org/wiki/Lambda calculus.

These blog entries by Mark Chu-Carroll are lots of fun — just the kind of readable,
informal exposition I aspire to:

17) Mark Chu-Carroll, “Lambda calculus”, available at http://goodmath.blogspot.
com/2006/06/lamda-calculus-index.html

Mark Chu-Carroll, “Category theory”, available at http://scienceblogs.com/goodmath/
goodmath/category theory/

These go deeper:

18) Peter Selinger, “Lecture notes on the lambda calculus”, available at http://www.
mscs.dal.ca/~selinger/papers.html#lambdanotes

and deeper:
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19) Phil Scott, “Some aspects of categories in computer science”, available at http://
www.site.uottawa.ca/~phil/papers/handbook.ps

and here’s a classic:

20) Joachim Lambek and Phil Scott, Introduction to Higher Order Categorical Logic,
volume 7 of Cambridge Studies in Advanced Mathematics, Cambridge U. Press,
1986.

Dolan and Trimble are far from the first to study the relation between games and
categories. In the 1970s, Conway invented a wonderful theory of games and surreal
numbers:

21) John H. Conway, On Numbers and Games, Academic Press, New York, 1976. Second
edition: A. K. Peters, Wellesley, Massachusetts, 2001.

22) Elwyn Berlekamp, John H. Conway, Richard Guy, Winning Ways, vols. 1-2, Aad-
mic Press, New York, 1982. Second edition, vols. 1-4, A. K. Peters, Wellelsey,
Massachusetts, 2001-2004.

23) Dierk Schleicher and Michael Stoll, “An introduction to Conway’s games and num-
bers”, available as math.CO/0410026.

In 1977, Joyal modified Conway’s work a bit and related it explicitly to category
theory:

24) André Joyal, “Remarques sur la theorie des jeux a deux personnes”, Gazette des
Sciences Mathematiques du Quebec, Vol I no 4 (1977), 46–52.

For an online version in English, try:

25) André Joyal, trans. Robin Houston, “Remarks on the theory of two-person games”,
2003. Available at http://www.ma.man.ac.uk/~rhouston/Joyal-games.ps

I don’t know the subsequent history very well — I’m no expert on any of this stuff!
— but by 1990 Martin Hyland was giving lectures on Conway games and logic. In
1992, Andreas Blass published an influential paper on “game semantics” for logic, where
propositions are interpreted as games and winning strategies are proofs:

26) Andreas R. Blass, “Game semantics and linear logic”, Annals of Pure and Applied
Logic 56 (1992), 183–220.

Then came these important papers:

27) Samson Abramsky and Radha Jagadeesan, “Games and full completeness for multi-
plicative linear logic”, Journal of Symbolic Logic 59 (1994), 543–574. Also available
at http://citeseer.ist.psu.edu/564168.html

28) Martin Hyland and C.-H. Luke Ong, “Fair games and full completeness for multi-
plicative linear logic without the MIX-rule”, available at http://citeseer.ist.
psu.edu/hyland93fair.html
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According to Samson Abramsky,

After these results, it was clear that the most notorious issue in programming
language semantics, the “full abstraction problem for PCF”, was in range. Re-
markably enough, two different teams:

• Abramsky, Jagadeesan and Malacaria

• Hyland and Ong

produced really quite different constructions which yielded in the end the same
result: a synthetic construction of the fully abstract model. (The technical issue
in both cases was how to accomodate the linear exponentials, i.e. the possibility
to copy and delete inputs to functions. It turned out there are two very different
approaches which can be taken. The HO approach (also independently found
by Hanno Nickau, incidentally) is quite related to the ideas of the Lorenzen
school, but, crucially, done compositionally. The AJM approach is related to the
Geometry of Interaction — but takes the quite demanding step of making an
honest CCC out of it.)

After that, the next key step was to see that the whole space of programming
languages and computational features opened up to a game theoretic analysis
in a very systematic way, by varying the conditions on strategies. This step was
taken by myself and my students, and has led to a substantial further develop-
ment. More recently, Luke Ong, Dan Ghica, Andrzej Murawski and myself have
developed algorithmic game semantics, as a basis for compositional program
analysis and verification, and — in Luke and Andrzej’s hands — as a beautiful
meeting point between semantics and algorithmics.

There have of course been many other developments too, and many people have
contributed. There have been recent workshops on these topics, e.g. in Seattle as
part of the Federated Logic Conference in August.

“PCF” is a souped-up version of the typed λ calculus that allows one to do arithmetic
and full-fledged computation. Here are the papers on PCF mentioned above:

29) Samson Abramsky, R. Jagadeesan, and P. Malacaria, “Full abstraction for PCF”,
Information and Computation 163 (2000), 409–470. Available at http://web.

comlab.ox.ac.uk/oucl/work/samson.abramsky/pubs.html

30) Martin Hyland and C.-H. Luke Ong, “On full abstraction for PCF”, Information and
Computation 163 (2000), 285–408.

Luke Ong has also written other papers using game theory to study the λ calculus:

31) A. D. Ker, H. Nickau, and C.-H. Luke Ong, “A universal innocent game model for
the Böhm tree λ theory”, in Computer Science Logic: Proceedings of the 8th An-
nual Conference on the EACSL Madrid, Spain, September 1999, LNCS Volume 1683,
Springer-Verlag, 1999, pp. 405–419.

32) A. D. Ker, H. Nickau, and C.-H. Luke Ong, “Innocent game models of untyped
λ-calculus”, Theoretical Computer Science 272 (2002), 247–292.
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For a good introduction to all this work, try these:

33) Robin Houston, Categories of Games, M.Sc. thesis, U. Manchester, 2003. Available
at http://www.cs.man.ac.uk/~houstorx/msc.pdf

Robin Houston, Mathematics of Games, continuation report, U. Manchester, 2004.
Available at http://www.cs.man.ac.uk/~houstorx/continuation.pdf

Finally, for more on categories, intuitionistic logic, and linear logic, see “Week 227”.

Addenda: I thank Samson Abramsky, James Dolan, Dominic Hughes, Tom Payne, Esa
Peuha and Vaughn Pratt for helpful corrections. When I wrote the first version of this
Week’s Finds, I was ignorant of work before Dolan and Trimble’s that also described the
free cartesian closed category on one object in terms of games. In addition to Abramsky’s
corrections (some of which are above), I was gently set straight by Dominic Hughes, who
has permitted me to attach this post of his from the category theory mailing list:

This “backtracking game” characterisation has been known since around ’93–
’94, in the work of Hyland and Ong:

• M. Hyland and L. Ong. “On full abstraction for PCF”. Information and
Computation, Volume 163, pp. 285–408, December 2000. [Under review
for 6 years!] ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/

Luke.Ong/pcf.ps.gz

(PCF is an extension of typed λ calculus.) My D.Phil. thesis extended the λ
calculus (free CCC) characterisation to second-order, published in:

• “Games and Definability for System F”. Logic in Computer Science, 1997
http://boole.stanford.edu/~dominic/papers/

To characterise the free CCC on an arbitrary set {Z, Y,X, . . .} of generators
(rather than a single generator, as you discuss), one simply adds the following
Copycat Condition:

Whenever first player plays an occurrence of X, the second player
must play an occurrence of X.

[Try it: see how X → Y → X has just one winning strategy.] Although the
LICS’97 paper cited above appears to be the first place the Copycat Condition
appears in print, I like to think it was already understood at the time by peo-
ple working in the area. Technically speaking, winning strategies correspond
to η-expanded β-normal forms. See pages 5–7 of my thesis for an informal
description of the correspondence.

It sounds like you’ve reached the point of trying to figure out how composition
should work. Proving associativity is fiddly. Hyland and Ong give a very elegant
treatment, via a larger CCC of games in which both players can backtrack. The
free CCC subcategory is carved out as the so-called innocent strategies. This
composition is almost identical to that presented by Coquand in:
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• “A semantics of evidence for classical arithmetic”. Thierry Coquand. Pro-
ceedings of the CLICS workshop, Aarhus, 1992.

Dominic

PS A game-theoretic characterisation with an entirely different flavour (winning
strategies less “obviously” corresponding to η-long β-normal forms) is:

• Abramsky, S., Jagadeesan, R. and Malacaria, P., “Full Abstraction for
PCF”. Info. & Comp. 163 (2000), 409–470. http://web.comlab.

ox.ac.uk/oucl/work/samson.abramsky/pcf.pdf [Announced concur-
rently with Hyland-Ong, around ’93-’94.]

On a different subject, James Dolan had this to say:

you describe holodeck strategies for “lady or tiger” where you take back “just
when the tiger is about to eat you”, but that’s not the way it works. you take
back just after the tiger has eaten you.

(i guess that this is partially because of your lack of experience with computer
games with a “saved game” feature. typically you die in the game and the
computer plays some sort of funeral or at least funereal music; then you’re
taken to the reincarnation gallery where you select one to return to from your
catalog of previous lives. or something like that.)

In the first version of this Week’s Finds I claimed that all systematic ways of picking
an element of (XX)X

X

could be defined using the λ calculus. I was disabused of this
notion by Vaughan Pratt, who wrote:

Hi, John,

In “Week 240”, you said

The moral of this game is that all systematic methods for picking an
element of (XX)X

X

for an unknown set X can be written using the
λ calculus.

What is unsystematic about the contagious-fixpoint functional? This is the func-
tional that maps those functions that have any fixpoints to the identity function
(the function that makes every element a fixpoint) and functions without fix-
points to themselves (thus preserving the absence of fixpoints). It’s a perfectly
good functional that is equally well defined for all sets X, its statement in no
way depends on X, and conceptually the concept of contagious fixpoints is even
intuitively natural, but how do you write it using the λ calculus?

Many more examples in this vein at JPAA 128, 33–92 (Pare and Roman, “Di-
natural numbers”, 1998). The above is the case K = {0} of Freyd’s (proper)
class of examples.

Vaughan

Here Pratt uses “functional” to mean what I was calling an “operator”.
For more discussion, go to the n-Category Café.
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Unlike chess or astrology, mathematics has the curious property of being an
intellectual game that really matters.

— Rudy Rucker
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Week 241

November 20, 2006

I’ve been working too hard, and running around too much, to write This Week’s Finds for
a while. A bunch of stuff has built up that I want to explain. Luckily I’ve been running
around explaining stuff — higher gauge theory, and tales of the dodecahedron.

This weekend I went to Baton Rouge. I was invited to Louisiana State University by
Jorge Pullin of loop quantum gravity fame, and I used the opportunity to get a look at
LIGO — the Laser Interferometry Gravitational-Wave Observatory!

I described this amazing experiment back in “Week 189”, so I won’t rehash all that.
Suffice it to say that there are two installations: one in Hanford Washington, and one in
Livingston Louisiana. Each consists of two evacuated tubes 4 kilometers long, arranged
in an L shape.

Laser beams bounce back and forth between mirrors suspended at the ends of the
tubes, looking for tiny changes in their distance that would indicate a gravitational wave
passing through, stretching or squashing space. And when I say “tiny”, I mean smaller
than the radius of a proton! This is serious stuff.

Jorge drove me in his SUV to Livingston, a tiny town about 20 minutes from Baton
Rouge. While he runs the gravity program at Louisiana State University, which has links
to LIGO, he isn’t officially part the LIGO team. His wife is. When I first met Gabriela
Gonzalez, she was studying the Brownian motion of torsion pendulums. The mirrors in
LIGO are hung on pendulums made of quartz wire, to minimize the effect of vibrations.
But, the random jittering of atoms due to thermal noise still affects these pendulums.
She was studying this noise to see its effect on the accuracy of the experiment.

This was way back when LIGO was just being planned. Now that LIGO is a reality,
she’s doing data analysis, helping search for gravitational waves produced by pairs of
neutron stars and/or black holes as they spiral down towards a sudden merger. Together
with an enormous pageful of authors, she helped write this paper, based on data taken
from the “first science run” — the first real LIGO experiment, back in 2002:

1) The LIGO Scientific Collaboration, “Analysis of LIGO data for gravitational waves
from binary neutron stars”, Phys. Rev. D69 (2004), 122001. Also available at
gr-qc/0308069.

She’s one of the folks with an intimate knowledge of the experimental setup, who
keeps the theorists’ feet on the ground while they stare up into the sky.

On the drive to Livingston, Jorge pointed out the forests that surround the town.
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These forests are being logged:

I asked him about this — when I last checked, the vibrations from falling trees were
making it impossible to look for gravitational waves except at night! He said they’ve
added a “hydraulic external pre-isolator” to shield the detector from these vibrations —
basically a super-duper shock absorber:

Now they can operate LIGO day and night.
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I also asked him how close LIGO had come to the sensitivity levels they were seeking.
When I wrote “Week 189”, during the first science run, they still had a long way to go.
That’s why the above paper only sets upper limits on neutron star collisions within 180
kiloparsecs. This only reaches out to the corona of the Milky Way — which includes
the Small and Large Magellanic Clouds. We don’t expect many neutron star collisions
in this vicinity: maybe one every 3 years or so. The first science run didn’t see any, and
the set an upper limit of about 170 per year: the best experimental upper limit so far,
but definitely worth improving, and nowhere near as fun as actually seeing gravitational
waves.

But Jorge said the LIGO team has now reached its goals: they should be able to see
collisions out to 15 megaparsecs! By comparison, the center of the Virgo cluster is about
20 megaparsecs away. In fact, they should already be able to see about half the galaxies
in this cluster.

They’re now on their seventh science run, and they’ll keep upping the sensitivity
in future projects called “Enhanced LIGO” and “Advanced LIGO”. The latter should see
neutron star collisions out to 300 megaparsecs:

2) Advanced LIGO, http://www.ligo.caltech.edu/advLIGO/

When we arrived at the gate, Jorge spoke into the intercom and got us let in. Our
guide, Joe Giaime, was running a bit a late, so we walked over and looked at the inter-
ferometer’s arms, each of which stretched off beyond sight, 2.5 kilometers of concrete
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tunnel surrounding the evacuated piping — the world’s largest vacuum facility:

Schoolkids have been invited to paint pictures on some of these pipes:
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One can tell this is the South. The massive construction caused pools of water to form
in the boggy land near the facility, and these pools then attracted alligators. These have
been dealt with firmly. The game hunters who occasionally fired potshots at the facility
were treated more forgivingly: instead of feeding them to the alligators, the LIGO folks
threw a big party and invited everyone from the local hunting club. Hospitality works
wonders down here.

The place was pretty lonely. During the week lots of scientists work here, but this
was Saturday, and on weekends there’s just a skeleton crew of two. There’s usually not
much to do now that the experiment is up and running. As Joe Giaime later said, there
have been no “Jodie Foster moments” like in the movie Contact, where the scientists on
duty suddenly see a signal, turn on the suspenseful background music, and phone the
President. There’s just too much data analysis required to see any signal in real time:
data from both Livingston and Hanford is sent to Caltech, and then people grind away at
it. So, about the most exciting thing that happens is when the occasional tiny earthquake
throws the laser beam out of phase lock.

When Joe showed up, I got to see the main control room, which is dimly lit, full
of screens indicating noise and sensitivity levels of all sorts — and even some video
monitors showing the view down the laser tube:
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This is where the people on duty hang out — you can see those video monitors on top:

One of them had brought his sons, in a feeble attempt to dispose of the huge supply of
Halloween candy that had somehow collected here.

I also got to see a sample of the 400 “optical baffles” which have been installed to
absorb light spreading out from the main beam before it can bounce back in and screw
things up. The interesting thing is that these baffles and their placement were personally
designed by Kip Thorne and some other godlike LIGO figure. Moral: unless they’ve gone
soft, even bigshot physicists like to actually think about physics now and then, not just
manage enormous teams.

But overall, there was surprisingly little to see, since the innermost workings are all
sealed off, in vacuum. The optics are far more complicated than my description — “a
laser bouncing between two suspended mirrors” — could possibly suggest. But, all I got
to see was a chart showing how they work:
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Oh well. I’m glad I don’t need to understand this stuff in detail. It was fun to get a peek.
By the way, I wasn’t invited to Louisiana just to tour LIGO and eat beignets and

alligator sushi. My real reason for going there was to talk about higher gauge theory
— a generalization of gauge theory which studies the parallel transport not just of point
particles, but also strings and higher-dimensional objects:

3) John Baez, “Higher gauge theory”, http://math.ucr.edu/home/baez/highergauge

This is a gentler introduction to higher gauge theory than my previous talks, some
of which I inflicted on you in “Week 235”. It explains how BF theory can be seen as
a higher gauge theory, and briefly touches on Urs Schreiber’s work towards exhibiting
Chern-Simons theory and 11-dimensional supergravity as higher gauge theories. The
webpage has links to more details.

I was also travelling last weekend — I went to Dartmouth and gave this talk:

4) John Baez, “Tales of the Dodecahedron: from Pythagoras through Plato to Poincare”,
http://math.ucr.edu/home/baez/dodecahedron/

It’s full of pictures and animations — fun for the whole family!
I started with the Pythagorean fascination with the pentagram, and how you can use

the pentagram to give a magical picture proof of the irrationality of the golden ratio.
I then mentioned how Plato used four of the so-called Platonic solids to serve as atoms

of the four elements — earth, air, water and fire - leaving the inconvenient fifth solid, the
dodecahedron, to play the role of the heavenly sphere. This is what computer scientists
call a “kludge” — an awkard solution to a pressing problem. Yes, there are twelve
constellations in the Zodiac — but unfortunately, they’re arranged quite differently than
the faces of the dodecahedron.

This somehow led to the notion of the dodecahedron as an atom of “aether” or
“quintessence” — a fifth element constituting the heavenly bodies. If you’ve ever seen
the science fiction movie The Fifth Element, now you know where the title came from!
But once upon a time, this idea was quite respectable. It shows up as late as Kepler’s
Mysterium Cosmographicum, written in 1596.

I then went on to discuss the 120-cell, which gives a way of chopping a spherical
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universe into 120 dodecahedra.

This leads naturally to the Poincare homology sphere, a closely related 3-dimensional
manifold made by gluing together opposite sides of one dodecahedron.

The Poincare homology sphere was briefly advocated as a model of the universe that
could explain the mysterious weakness of the longest-wavelength ripples in the cosmic
background radiation — the ripples that only wiggle a few times as we scan all around
the sky:

5) J.-P. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq, and J.-P. Uzan, “Dodecahedral
space topology as an explanation for weak wide-angle temperature correlations in
the cosmic microwave background”, Nature 425 (2003), 593. Also available as
astro-ph/0310253.

The idea is that if we lived in a Poincare homology sphere, we’d see several images
of each very distant point in the universe. So, any ripple in the background radiation
would repeat some minimum number of times: the lowest-frequency ripples would be
suppressed.

Alas, this charming idea turns out not to fit other data. We just don’t see the same
distant galaxies in several different directions:

6) Neil J. Cornish, David N. Spergel, Glenn D. Starkman and Eiichiro Komatsu, “Con-
straining the topology of the universe”, Phys. Rev. Lett. 92 (2004) 201302. Also
available as astro-ph/0310233.

For a good review of this stuff, see:
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7) Jeffrey Weeks, “The Poincare dodecahedral space and the mystery of the missing
fluctuations”, Notices of the AMS 51 (2004), 610–619. Also available at http://
www.ams.org/notices/200406/fea-weeks.pdf

In the abstract of my talk, I made the mistake of saying that the regular dodecahedron
doesn’t appear in nature — that instead, it was invented by the Pythagoreans. You should
never say things like this unless you want to get corrected!

Dan Piponi pointed out this dodecahedral virus:

8) Liang Tang et al, “The structure of Pariacoto virus reveals a dodecahedral cage of
duplex RNA”, Nature Structural Biology 8 (2001), 77–83. Also available at http:/
/www.nature.com/nsmb/journal/v8/n1/pdf/nsb0101 77.pdf

The first black line is 100 angstroms long (10−8 meters), while the second is 50
angstroms long.

Garett Leskowitz pointed out the molecule “dodecahedrane”, with 20 carbons at the
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vertices of a dodecahedron and 20 hydrogens bonded to these:

9) Wikipedia, “Dodecahedrane”, http://en.wikipedia.org/wiki/Dodecahedrane

This molecule hasn’t been found in nature yet, but chemists can synthesize it using
reactions like these:
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10) Robert J. Ternansky, Douglas W. Balogh and Leo A. Paquette, “Dodecahedrane”, J.
Am. Chem. Soc. 104 (1982), 4503–4504.

11) Leo A. Paquette, “Dodecahedrane — the chemical transliteration of Plato’s universe
(a review)”, Proc. Nat. Acad. Sci. USA 14 part 2 (1982), 4495–4500. Also available
at http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=346698

So, there’s probably a bit somewhere in our galaxy.
Of course, what I meant was that people didn’t come up with regular dodecahedra

after seeing them in nature — that instead, the Pythagoreans dreamt them up, possibly
after seeing pyrite crystals that look sort of similar. These crystals are called “pyritohe-
dra”.

But, even here I made a mistake. The Pythagoreans seem not to have been the first to
discover the dodecahedron. John McKay told me that stone spheres with Platonic solids
carved on them have been found in Scotland, dating back to around 2000 BC!

13) Michael Atiyah and Paul Sutcliffe, “Polyhedra in physics, chemistry and geometry”,
available as math-ph/0303071.

14) Dorothy N. Marshall, “Carved stone balls”, Proc. Soc. Antiq. Scotland 108 (1976/77),
40–72. Available at http://ads.ahds.ac.uk/catalogue/library/psas/

Indeed, stone balls with geometric patterns on them have been found throughout
Scotland, and occasionally Ireland and northern England. They date from the Late Ne-
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olithic to the Early Bronze age: 2500 BC to 1500 BC. For comparison, the megaliths at
Stonehenge go back to 2500–2100 BC.

Nobody knows what these stone balls were used for, though the article by Marshall
presents a number of interesting speculations.

The pyritohedron is interesting in itself, so before I turn to some really fancy math,
let me talk a bit about this guy. Since pyrite is fundamentally a cubic crystal, the pyrito-
hedron is basically made out of little cubic cells, as shown here:

12) Steven Dutch, “Building isometric crystals with unit cells”, http://www.uwgb.edu/
dutchs/symmetry/isometuc.htm

It has 12 pentagonal faces, orthogonal to these vectors:

(2, 1, 0) (2,−1, 0) (−2, 1, 0) (−2,−1, 0)
(1, 0, 2) (−1, 0, 2) (1, 0,−2) (−1, 0,−2)
(0, 2, 1) (0, 2,−1) (0,−2, 1) (0,−2,−1)

You can see how this works by going here:

13) mindat.org, “Pyrite”, http://www.mindat.org/min-3314.html

If your webbrowswer can handle Java, go to this webpage and click on “Pyrite no.
3” to see a rotating pyritohedron. Then, while holding your left mouse button down
when the cursor is over the picture of the pyritohedron, type “m” to see the vectors listed
above.
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Why “m”? These vectors are called “Miller indices”. In general, Miller indices are
outwards-pointing vectors orthogonal to the faces of a crystal; we can use them to clas-
sify crystals.

The Miller indices for the pyritohedron have a nice property. If you think of these 12
vectors as points in space, they’re the corners of three 2×1 rectangles: a rectangle in the
xy plane, a rectangle in the xz plane, and a rectangle in the yz plane.

These points are also corners of an icosahedron! It’s not a regular icosahedron,
though. It’s probably the “pseudoicosahedron” shown in Steven Dutch’s site above:

Apparently iron pyrite can also form a pseudoicosahedron — see “Pyrite No. 7” on the
mindat.org website above. Does anyone have actual photos?

To get the corners of a regular icosahedron, we just need to replace the number 2 by
the golden ratio Φ = (

√
5 + 1)/2:

(Φ, 1, 0) (Φ,−1, 0) (−Φ, 1, 0) (−Φ,−1, 0)
(1, 0,Φ) (−1, 0,Φ) (1, 0,−Φ) (−1, 0,−Φ)
(0,Φ, 1) (0,Φ,−1) (0,−Φ, 1) (0,−Φ,−1)
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Now our rectangles are golden rectangles:

Since the pseudoicosahedron does a cheap imitation of this trick, with the number 2
replacing the golden ratio, the number 2 deserves to be called the “fool’s golden ratio”.
I thank Carl Brannen for explaining this out to me!

The regular docahedron is “dual” to the regular icosahedron: the vertices of the
icosahedron are Miller indices for the dodecahedron. Similarly, I bet the pyritohedron is
dual to the pseudoicosahedron.

So, we could call the pyritohedron the “fool’s dodecahedron”, and the pseudoicosa-
hedron the “fool’s icosahedron”. Fool’s gold may have fooled the Greeks into inventing
the regular dodecahedron, by giving them an example of a fool’s dodecahedron.

As pointed out by Noam Elkies and James Dolan, there is a sequence of less and less
foolish dodecahedra whose faces have normal vectors

(B,A, 0) (B,−A, 0) (−B,A, 0) (−B,−A, 0)
(A, 0, B) (−A, 0, B) (A, 0,−B) (−A, 0,−B)

(0, B,A) (0, B,−A) (0,−B,A) (0,−B,−A)

where A and B are the nth and (n + 1)st Fibonacci numbers, respectively. As n →
∞, these dodecahedra approach a regular dodecahedron in shape, because the ratio of
successive Fibonacci numbers approaches the golden ratio.

When A = 1 and B = 2, we get the fool’s dodecahedron, since only a fool would
think 2/1 is the golden ratio.

However, this is not the most foolish of all dodecahedra! The case A = 1 and B = 1
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gives the rhombic dodecahedron, which doesn’t even have pentagonal faces:

14) Wikipedia, “Rhombic dodecahedron”, http://en.wikipedia.org/wiki/Rhombic dodecahedron

So, the rhombic dodecahedron deserves to be called the “moron’s dodecahedron” —
at least for people who think it’s actually a regular dodecahedron.

But actually, even this dodecahedron isn’t the dumbest. The Fibonacci numbers start
with 0:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

So, even more foolish is the case A = 0 and B = 1. Here our 12 vectors reduce to just 6
different ones:

(1, 0, 0) (1,−0, 0) (−1, 0, 0) (−1,−0, 0)
(0, 0, 1) (−0, 0, 1) (0, 0,−1) (−0, 0,−1)
(0, 1, 0) (0, 1,−0) (0,−1, 0) (0,−1,−0)

These are normal to the faces of a cube. So, the cube deserves to be called the “half-wit’s
dodecahedron”: it doesn’t even have 12 faces, just 6.

Moving in the direction of increasing wisdom, we can consider the case A = 2,
B = 3. This gives a dodecahedron which is closer to regular than the pyritohedron. And,
apparently it exists in nature! It shows up as number 12 in this list of crystals:

15) Ian O. Angell and Moreton Moore, “Projections of cubic crystals”, section 4: The
diagrams, http://www.iucr.org/education/pamphlets/12/full-text

They also call this guy a pyritohedron, so presumably some pyrite forms these less
foolish crystals! You can compare it with the A = 1, B = 2 case here:

16) Ian O. Angell and Moreton Moore, “Projections of cubic crystals, Graphical index
of figures”, http://www.iucr.org/education/pamphlets/12/graphical-index

The A = 1, B = 2 pyritohedron is figure 9, while the A = 2, B = 3 pyritohedron is
figure 12. It’s noticeably better!
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Let me wrap up by mentioning a fancier aspect of the dodecahedron which has been
intriguing me lately. I already mentioned it in “Week 230”, but in such a general setting
that it may have whizzed by too fast. Let’s slow down a bit and enjoy it.

The rotational symmetries of the dodecahedron form a 60-element subgroup of the
rotation group SO(3). So, the “double cover” of the rotational symmetry group of the do-
decahedron is a 120-element subgroup of SU(2). This is called the “binary dodecahedral
group”. Let’s call it G.

The group SU(2) is topologically a 3-sphere, so G acts as left translations on this 3-
sphere, and we can use a dodecahedron sitting in the 3-sphere as a fundamental domain
for this action. This gives the 120-cell. The quotient SU(2)/G is the Poincare homology
sphere!

But, we can also think of G as acting on C2. The quotient C2/G is not smooth: it has
an isolated singular coming from the origin in C2. But as I mentioned in “Week 230”, we
can form a “minimal resolution” of this singularity. This gives a holomorphic map

p : M → C2/G

where M is a complex manifold. If we look at the points in M that map to the origin in
C2/G, we get a union of 8 Riemann spheres, which intersect each other in this pattern:

Here I’ve drawn linked circles to stand for these intersecting spheres, for a reason soon
to be clear. But, already you can see that we’ve got 8 spheres corresponding to the dots
in this diagram:

• • • • • • •

•

where the spheres intersect when there’s an edge between the corresponding dots. And,
this diagram is the Dynkin diagram for the exceptional Lie group E8!

I already mentioned the relation between the E8 Dynkin diagram and the Poincare
homology sphere in “Week 164”, but now maybe it fits better into a big framework. First,
we see that if we take the unit ball in C2, and see what points it gives in C2/G, and then
take the inverse image of these under

p : M → C2/G,

we get a 4-manifold whose boundary is the Poincare homology 3-sphere. So, we have a
cobordism from the empty set to the Poincare homology 3-sphere! Cobordisms can be
described using “surgery on links”, and the link that describes this particular cobordism
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is:

Second, by the “McKay correspondence” described in “Week 230”, all this stuff also
works for other Platonic solids! Namely:

If G is the “binary octahedral group” — the double cover of the rotational symmetry
group of the octahedron — then we get a minimal resolution

p : M → C2/G

which yields, by the same procedure as above, a cobordism from the empty set to the
3-manifold SU(2)/G.

This cobordism can be described using surgery on this link:

which encodes the Dynkin diagram of E7:

• • • • • •

•

And, ifG is the “binary tetrahedral group” — the double cover of the rotational symmetry
group of the tetrahedron — then a minimal resolution

p : M → C2/G

yields, by the same procedure as above, a cobordism from the empty set to the 3-manifold
SU(2)/G. This cobordism can be described using surgery on this link:

which encodes the Dynkin diagram of E6:

• • • • •

•

I don’t fully understand this stuff, that’s for sure. But, I want to. The Platonic solids
are still full of mysteries.
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Addenda: Someone with the handle “Dileffante” has found another nice example of
the dodecahedron in nature — and even in Nature:

While perusing a Nature issue I found this short notice on a paper, and I remem-
bered that in your talk (which I saw online) you mentioned that the dodecahe-
dron was not found in nature. Now I see in “Week 241” that there are some
things dodecahedral after all, but nevertheless, I send this further dodecahedron
which was missing there.

Nature commented in issue 7075:

15) “The complete Plato”, Nature 439 (26 January 2006), 372–373.

According to Plato, the heavenly ether and the classical elements —
earth, air, fire and water — were composed of atoms shaped like
polyhedra whose faces are identical, regular polygons. Such shapes
are now known as the Platonic solids, of which there are five: the
tetrahedron, cube, octahedron, icosahedron and dodecahedron. Mi-
croscopic clusters of atoms have already been identified with all of
these shapes except the last.
Now, researchers led by José Luis Rodŕıguez-López of the Institute for
Scientific and Technological Research of San Luis Potosé in Mexico
and Miguel José-Yacamén of the University of Texas, Austin, complete
the set. They find that clusters of a gold-palladium alloy about two
nanometres across can adopt a dodecahedral shape.

The article is in:

16) Juan Mart́ın Montejano-Carrizales, José Luis Rodŕıguez-López, Umapada
Pal, Mario Miki-Yoshida and Miguel José-Yacamán, “The completion of the
Platonic atomic polyhedra: the dodecahedron”, Small 2 (2006), 351–355.

Here’s the abstract:

Binary AuPd nanoparticles in the 1–2 nm size range are synthesized.
Through HREM imaging, a dodecahedral atomic growth pattern of
five fold axis is identified in the round shaped (85%) particles. Our
results demonstrate the first experimental evidence of this Platonic
atomic solid at this size range of metallic nanoparticles. Stability
of such Platonic structures are validated through theoretical calcula-
tions.

Either there is some additional value in the construction, or the authors (and
Nature editors) were unaware of dodecahedrane.
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Dodecahedrane is a molecule built from carbon and hydrogen — a bit different from
an “atomic cluster” of the sort discussed here. It’s a matter of taste whether that’s impor-
tant, but I bet these gold-palladium nanoparticles occur in nature, while dodecahedrane
seems to be unstable.

My friend Geoffrey Dixon contributed these pictures of Platonic life forms:

They look a bit like Ernst Haeckel’s pictures from his book “Kunstformen der Natur”
(artforms of nature).

Finally, here’s a really important addendum: in March 2009, Lieven le Bruyn discov-
ered that the ancient Scots did not carve stone balls to look like Platonic solids! The
whole story is something between a hoax and a series of misunderstandings:

17) Lieven le Bruyn, “The Scottish solids hoax”, from his blog neverendingbooks, March
25, 2009, http://www.neverendingbooks.org/index.php/the-scottish-solids-hoax.
html

18) John Baez, “Who discovered the icosahedron?”, talk at the Special Session on His-
tory and Philosophy of Mathematics, 2009 Fall Western Section Meeting of the AMS,
November 7, 2009. Available at http://math.ucr.edu/home/baez/icosahedron/

You can read a bunch of freewheeling discussions triggered by this Week’s Finds at
the n-Category Café.

The essence of mathematics lies in its freedom.

— Georg Cantor
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Week 242

December 17, 2006

This week I’d like to talk about a paper by Jeffrey Morton. Jeff is a grad student now
working with me on topological quantum field theory and higher categories. I’ve already
mentioned his work on categorified algebra and quantum mechanics in “Week 236”. He’ll
be be finishing his Ph.D. thesis in the spring of 2007 — and as usual, that means he’s
already busy applying for jobs.

As all you grad students reading this know, applying for jobs is pretty scary the first
time around: there are some tricks involved, and nobody prepares you for it. I remember
myself, wondering what I’d do if I didn’t succeed. Would I have to sell ice cream from
one of those trucks that plays a little tune as it drives around the neighborhood? A job
in the financial industry seemed scarcely more appealing: less time to think about math,
and less ice cream too.

Luckily things worked out for me. . . and I’m sure they’ll work out for Jeff and my
other student finishing up this year — Derek Wise, who is working on Cartan geometry
and MacDowell-Mansouri gravity.

But, to help them out a bit, I’d like to talk about their work. This has been high on
my list of interests for the last few years, of course, but I’ve mostly been keeping it under
wraps.

This time I’ll talk about Jeff’s thesis; next time Derek’s. But first, let’s start with some
cool astronomy pictures!

Here’s a photo of Saturn, Saturn’s rings, and its moon Dione, taken by the Cassini
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orbiter in October last year:

1) NASA, “Ringside with Dione”, http://solarsystem.nasa.gov/multimedia/display.
cfm?IM ID=4163

It’s so vivid it seems like a composite fake, but it’s not! With the Sun shining from
below, delicate shadows of the B and C rings cover Saturn’s northern hemisphere. Dione
seems to hover nearby. Actually it’s 39,000 kilometers away in this photo. It’s 1,200
kilometers in diameter, about the third the size of our Moon.
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Here’s a photo of Saturn, its rings, and its moon Mimas, taken in November 2004:

2) NASA, “Nature’s canvas”, http://saturn.jpl.nasa.gov/multimedia/images/image-details.
cfm?imageID=1088

It’s gorgeous, but it takes some work to figure out what’s going on!
The blue stuff in the background is Saturn, with lines created by shadows of rings.

The bright blue-white stripe near Mimas is sunlight shining through a break in the rings
called the “Cassini division”. The brownish stuff near the bottom is the A ring — you can
see right through it. Above it there’s a break and a thinner ring called the F ring. Below
it is the Cassini division itself.

This is just one of many photos taken by Cassini and Huyghens, the probe that Cassini
dropped onto Saturn’s moon Titan — see “Week 210” for more on that. You can see more
of these photos here:

3) NASA, “Cassini-Huygens”, http://saturn.jpl.nasa.gov/

I hope you see from these beautiful images, and others on This Week’s Finds, that we
are already in space. We don’t need people up there for us to effectively be there.

Alas, not everyone recognizes this. An expensive American program to set up a base
on the Moon, perhaps as a stepping stone to a manned mission to Mars, is starting to
drain money from more exciting unmanned missions. NASA guesses this program will
cost $104 billion up to the time when we land on the Moon — again — in 2020. By 2024,
the Government Accounting Office guesses the price will be $230 billion. By comparison,
the Cassini-Huygens mission cost just about $3.3 billion.

And what will be benefits of a Moon base be? It’s unclear: at best, some vague dream
of “space colonization”.

Mind you, I’m in favor of space exploration, and even colonization. But, these are
very different things!
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Colonies are usually about making money. Governments support them in hopes of
turning a profit: think Columbus and Isabella, or other adventurers funded by colonial
powers.

Right now most of the money lies in near-earth orbit, not on the Moon and Mars.
Telecommunication satellites and satellite photos are established businesses. The next
step may be tourism. Dennis Tito, Gregory Olsen and Mark Shuttleworth have already
paid the Russian government $20 million each to visit the International Space Station.
This orbits at an altitude of about 350 kilometers, in the upper “thermosphere” — the
layer of the Earth’s atmosphere where gases get ionized by solar radiation.

If this is too pricey for you, wait a few years. Richard Branson’s company Virgin
Galactic plans to give 500 people per year a 7-minute experience of weightlessness at a
cost of just $200,000 each. Alas, you’ll only go up 100 kilometers, near the bottom of
the thermosphere.

Some competition may lower the price. Jeff Bezos, the founder of Amazon, has
bought a lot of land in Texas to a build space port for his company Blue Origins. He
wants to do test flights by next year, and he eventually wants 50 flights a year in a
vehicle that holds 3. If you’ve always looked forward to using your seat cushion as a
flotation device in the event of a water landing, you’ll love this:

“During an abort situation, the crew capsule would separate, using small solid-
rocket motors to safely recover the space flight participants. The abort module
containing the solid-rocket motors would then jettison from the crew capsule.”

None of this stuff requires any taxpayer funding. It’s a bit self-indulgent and silly, but
it may eventually grow and merge with other profit-making forms of space colonization.

Exploration is a bit different: seeing what’s out there, mainly for the sake of adven-
ture and understanding. For this we should send machines, not people. Machines can be
designed to do well in vacuum. People can’t - not yet. This will probably change when
nanotech, AI and cyborg technologies kick in. But for now, unmanned probes are the
way to go.

Here are some of the wonderful things we could do, all for less than setting up a
Moon base:

4) The Laser Interferometer Space Antenna (LISA), http://saturn.jpl.nasa.gov/

The idea of LISA is to put 3 satellites in a huge equilateral triangle following the Earth
in its orbit around the Sun, and bounce lasers between them to detect gravitational waves
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(see “Week 143”):

This would avoid the ground noise that plagues LIGO (see “Week 241”), and it could
detect waves of much lower frequencies. If all works well, it could see gravitational
waves from the very early Universe, long before the hot gas enough cooled to let light
through. We’re talking times like $10ˆ{-38} seconds after the Big Bang! That’s the
biggest adventure I can imagine. . . back to the birth pangs of the Universe.

Right now LISA is scheduled for launch around 2016. But as you’ll soon see, this may
not happen.

5) Constellation-X, http://constellation.gsfc.nasa.gov

This would be a team of X-ray telescopes, combining forces to be 100 times more
powerful than any previous single one. Among many other things, Constellation-X could
study the X-rays emitted by matter falling into things that look like black holes. The
redshift of these X-rays is our best test of general relativity for very strong gravitational
fields. So, it’s our best way of checking that these black hole candidates really do have
event horizons!

In February 2006, when NASA put out their latest budget, they said Constellation-X
would be “delayed indefinitely”. And in September 2006, a National Research Council
committee was formed to pick one of NASA’s five “Beyond Einstein” programs for the
first shot at funding: LISA, Constellation-X, the Joint Dark Energy Mission, the Inflation
Probe and the Black Hole Finder. Currently the Joint Dark Energy Mission seems to be
in the lead:

6) Steinn Sigurðsson, “NASA: double down on science”, Dynamics of Cats, September
16, 2006, http://scienceblogs.com/catdynamics/2006/09/nasa_double_down_on_science.
php

A decision is expected around September 2007.

7) The Terrestrial Planet Finder (TPF), http://planetquest.jpl.nasa.gov/TPF/

This could study Earth-like planets orbiting stars up to 45 light years away. It would
consist of two observatories: a visible-light “coronagraph” that blocks out the light from
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a star so it can see nearby fainter objects:

and an infrared interferometer made of several units flying in formation:

In February 2006, NASA halted work on the TPF. In June 2006, thanks to public pres-
sure, Congress reinstated funding for this program and also a mission to Jupiter’s moon
Europa, which could have oceans underneath its icy crust. However, at last report, NASA
was continuing to fight against reinstating these missions:

8) Louis D. Friedman, “Congressional inaction leaves science still devastated”, The
Planetary Society, November 26, 2006, http://planetary.org/programs/projects/
sos/20061122.html

The constantly shifting situation makes it hard to know what’s going on.

9) The Nuclear Spectroscopic Telescope Array (NuStar), http://www.nustar.caltech.
edu/
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This is an orbiting observatory with three telescopes, designed to see hard X-rays.
It could conduct a thorough survey of black hole candidates throughout the universe.
It could study relativistic jets of particles from the cores of active galaxies (which are
probably also black holes). And, it could study young supernova remnants — hot new
neutron stars.

NASA suddenly canceled work on NuStar in February 2006.

10) Dawn, http://dawn.jpl.nasa.gov/

The Dawn mission seeks to understand the early Solar System by probing the asteroid
belt and taking a good look at Ceres and Vesta. Ceres is the largest asteroid of all, 950
kilometers in diameter. It seems have a rocky core, a thick mantle of water ice, and a
thin dusty outer crust. Vesta is the second largest, about 530 kilometers in diameter.
It’s very different from Ceres: it’s not round, and it’s all rock. A certain group of stony
meteorites called “HED meteorites” are believed to be pieces of Vesta!

NASA cancelled the Dawn mission in March 2006 — but later that month, they
changed their minds.

It’s depressing to contemplate all the wonderful things we could miss while spending
hundreds of billions to “send canned primates to Mars”, as Charles Stross so cleverly put
it in his novel “Accelerando” (see “Week 222”). I’m all for humanity spreading through
space. I just don’t think we should do it in a clunky, low-tech way like setting up a base
on the Moon where astronauts sit around and. . . what, play golf? It’s like something out
of old science fiction!

To cheer myself up again, here’s a picture of the Sun:

11) Joanne Hewett, “Sun Shots”, http://cosmicvariance.com/2006/10/13/sun-shots/
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It was taken not with light, but with neutrinos. It was made at the big neutrino
observatory in Japan, called Super-Kamiokande. It took about 504 days and nights to
make.

That’s right — nights! Neutrinos go right through the Earth.
As you probably know, neutrinos oscillate between three different kinds, but only

electron neutrinos are easy to detect, so we see about third as many neutrinos from the
Sun as naively expected. That’s the kind of thing they’re studying at Super-Kamiokande.

But what I want to know is: what’s the “glare” in this picture? Neutrinos are made
by the process of fusion, which involves this reaction:

proton + electron→ neutron + electronneutrino

Fusion mostly happens in the Sun’s core, which has a density of 160 grams per cubic
centimeter (10 times denser than lead) and a temperature of 15 million kelvin (300
thousand times hotter than the “broil” setting on an American oven).

So, what’s the disk in this picture: the whole Sun, or the Sun’s core? And what’s the
glare?

Okay, now for some serious mathematical physics:

12) Jeffrey Morton, “A double bicategory of cobordisms with corners”, available as
math.CT/0611930v1.

People have been talking a long time about topological quantum field theory and
higher categories. The idea is that categories, 2-categories, 3-categories and the like can
describe how manifolds can be chopped into little pieces — or more precisely, how these
little pieces can be glued together to form manifolds. Then the problem of doing quan-
tum field theory on some manifold can be reduced to the problem of doing it on these
pieces and gluing the results together. This works easiest if the theory is “topological”,
not requiring a background metric.

There’s a lot of evidence that this is a good idea, but getting the details straight has
proved tough, even at the 2-category level. This is what Morton does, in a rather clever
way. Very roughly, his idea is to use something I’ll call a “weak double category”, and
prove that these:

• (n− 2)-dimensional manifolds

• (n− 1)-dimensional manifolds with boundary

• n-dimensional manifolds with corners

give a weak double category called nCob2. The proof is a cool mix of topology and
higher category theory. He then shows that this particular weak double category can be
reinterpreted as something a bit more familiar — a “weak 2-category”.

In the rest of his thesis, Jeff will use this formalism to construct some examples of
“extended TQFTs”, which are roughly maps of weak 2-categories

Z : nCob2 → 2Vect

where 2Vect is the weak 2-category of “2-vector spaces”. He’s focusing on some extended
TQFTs called the Dijkgraaf-Witten models, coming from finite groups.
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But, he’s also thought about the case where the finite group is replaced by a compact
Lie group. In this case we get something called BF theory, which is a lot like an extended
TQFT, but not quite, because there are some divergences (infinities) that arise. In this
case of 3d spacetime with the Lie group SU(2), BF theory gives a nice theory of quantum
gravity called the Ponzano-Regge model. And, as I hinted back in “Week 232”, we can
let 2d space in this model be a manifold with boundary by poking little holes in space.
Then these holes wind up acting like particles!

So, we get a relation like this:

(n− 2)-dimensional manifolds matter
(n− 1)-dimensional manifolds with boundary space
n-dimensional manifolds with corners spacetime

I like this a lot: it reminds me of the title of Weyl’s famous book “Raum, Zeit, Materie”,
meaning “Space, Time, Matter”. He never guessed this trio was related to the objects,
morphisms and 2-morphisms in a weak 2-category! It’s too bad we can’t seem to get
something like this to work for full-fledged quantum gravity.

It would be fun to talk more about this. However, to understand Morton’s work more
deeply, you need to understand a bit about “weak double categories”. He explains them
quite nicely, but I think I’ll spend the rest of this Week’s Finds giving a less detailed
introduction, just to get you warmed up.

This chart should help:

Bigons Squares

Laws holding as equations strict 2-categories strict double categories
Laws holding up to isomorphism weak 2-categories weak double categories

2-categories are good for describing how to glue together 2-dimensional things that,
at least in some abstract sense, are shaped like bigons. A “bigon” is a disc with its
boundary divided into two halves:

•X • Y

f

g

B

The big arrow indicates that we think of the bigon B as “going from” the top semicircle,
f , to the bottom semicircle, g. Similarly, we think of the arcs f and g as going from the
point X to the point Y .

Similarly, double categories are good for describing how to glue together 2-dimensional
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gadgets that are shaped like squares:

•X •X
′

•
Y

•
Y ′

f

g g′

f ′

S

Both 2-categories and double categories come in “strict” and “weak” versions. The strict
versions have operations satisfying a bunch of laws “on the nose”, as equations. In the
weak versions, these laws hold up to isomorphism whenever possible.

A few more details might help. . . .
A 2-category has a set of objects, a set of morphisms f : X → Y going from any object

X to to any object Y , and a set of 2-morphisms T : f ⇒ g going from any morphism
f : X → Y to any morphism g : X → Y . We can visualize the objects as dots:

•
X

the morphisms as arrows:

•X • Y
f

and the 2-morphisms as bigons:

•X • Y

f

g

B

We can compose morphisms like this:

•
X

•
Y

•
Z

f g
gives •

X

•
Z

fg

We can also compose 2-morphisms vertically:

•X • Y
g

f

h

S

T

gives •X • Y

f

h

ST
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and horizontally:

•X •
Y

• Z

f

g

S

f ′

g′

T
gives •X • Y

f

g

S · T

There are also a bunch of laws that need to hold. I don’t want to list them; you can
find them in Jeff’s paper (also see “Week 80”). I just want to emphasize how a strict
2-category is different from a weak one.

In a strict 2-category, the composition of morphisms is associative on the nose:

(fg)h = f(gh)

and there are identity morphisms that satisfy these laws on the nose:

1f = f = f1

In a weak 2-category, these equations are replaced by 2-isomorphisms — that is, invert-
ible 2-morphisms. And, these 2-isomorphisms need to satisfy new equations of their
own!

What about double categories?
Double categories are like 2-categories, but instead of bigons, we have squares.
More precisely, a double category has a set of objects:

•
X

a set of horizontal arrows:

•X • X ′
f

a set of vertical arrows:
•X

•Y

g

and a set of squares:

•X •X
′

•
Y

•
Y ′

f

g g′

f ′

S
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We can compose the horizontal arrows like this:

•
X

•
Y

•
Z

f f ′
gives •

X

•
Z

f · f ′

We can compose the vertical arrows like this:

•X

•Y

•Z

g

g

gives

•X

•Z

gg′

And, we can compose the squares both vertically:

•X •X
′

•Y •Y ′

•
Z

•
Z ′

f

g

h

g′

h′

f ′

S

S′

gives

•X •X
′

•
Z

•
Z ′

f

gh g′h′

f ′

SS′

and horizontally:

•X •
Y

•Z

•
X ′

•
Y ′

•
Z ′

f g

f ′ g′

h h′S S′ gives

•X •Z

•
X ′

•
Z ′

h

f · g

f ′ · g′

h′S · S′

In a strict double category, both vertical and horizontal composition of morphisms is
associative on the nose:

(fg)h = f(gh)

(f · g) · h = f · (g · h)
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and there are identity morphisms for both vertical and horizontal composition, which
satisfy the usual identity laws on the nose.

In a weak double category, we want these laws to hold only up to isomorphism. But,
it turns out that this requires us to introduce bigons as well! The reason is fascinating
but too subtle to explain here. I didn’t understand it until Jeff pointed it out. But, it
turns out that Dominic Verity had already introduced the right concept of weak double
category — a gadget with both squares and bigons — in his Ph.D. thesis a while back:

13) Dominic Verity, Enriched categories, internal categories, and change of base, Ph.D. dis-
sertation, University of Cambridge, 1992.

Interestingly, if you weaken only the laws for vertical composition, you don’t need
to introduce bigons. The resulting concept of “horizontally weak double category” has
been studied by Grandis and Pare:

14) Marco Grandis and Bob Paré, “Limits in double categories”, Cah. Top. Geom.
Diff. Cat. 40 (1999), 162–220. Also available at http://www.dima.unige.it/
~grandis/Dbl.Cahiers.pdf

Marco Grandis and Bob Paré, “Adjoints for double categories”, Cah. Top. Geom.
Diff. Cat. 45 (2004), 193–240. Also available at http://www.dima.unige.it/
~grandis/Dbl.Adj.pdf

and more recently by Martin Hyland’s student Richard Garner:

15) Richard Garner, “Double clubs”, available as math.CT/0606733

and Tom Fiore:

16) Thomas M. Fiore, “Pseudo algebras and pseudo double categories”, available as
math.CT./0608760.

At this point I should admit that the terminology in this whole field is a bit of a mess.
I’ve made up simplified terminology for the purposes of this article, but now I should
explain how it maps to the terminology most people use:

ME THEM

strict 2-category 2-category
weak 2-category bicategory
strict double category double category
weak double category double bicategory
horizontally weak double category pseudo double category

Verity used the term “double bicategory” to hint that his gadgets have both squares
and bigons, so they’re like a blend of double categories and bicategories. It’s a slightly
unfortunate term, since experts know that a double category is a category object in Cat,
but Verity’s double bicategories are not bicategory objects in BiCat. Morton mainly uses
Verity’s double bicategories — but in the proof of his big theorem, he also uses bicategory
objects in BiCat.

There’s a lot more to say, but I’ll stop here and let you read the rest in Jeff’s paper!
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Addenda: I thank Charlie Clingen for catching some typos in my diagrams, and
Nathan Urban and Torbjörn Larsson for helping me update some of my information on
the funding of NASA programs. I won’t attempt to keep this information up to date,
since it’s changing too often. But, I’d like to it be correct as of the date I wrote it!

Sean Carroll writes:

Hi John–

Just a couple of comments on This Week’s Finds —

You mention a bunch of missions that could “probably” be funded for the cost of
a Moon base. That’s being quite conservative! Each of those missions is about
$1 billion or less, while the Moon base is upwards of $200 billion.

And you asked about the neutrino image of the Sun. The “haze” is just an
imaging problem, not a feature of the Sun; the resolution of this image is worse
than 10 degrees (I forget the exact number), so we’re certainly not looking at
any substructure inside the Sun (whose entire disk is only half a degree wide).

Sean

I’ve deleted the word “probably”. According to a comment on Joanne Hewett’s blog
entry, each pixel in the neutrino picture of the Sun is one degree in size. The Sun itself
is just half a degree wide.

For more discussion, go to the n-Category Café.
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Week 243

December 25, 2006

Today I’d like to talk a bit about the first stars in the Universe, and some hotly contested
possible observations of these stars. Then I want to describe a new paper by my student
Derek Wise. But first — if anyone gave you a gift certificate for a bookstore this holiday
season, here are two suggestions.

The first one is really easy and fun:

1) William Poundstone, Fortune’s Formula: The Untold Story of the Scientific Betting
System that Beat the Casinos and Wall Street, Farrar, Strauss and Giroux, New York,
2005.

Packed with rollicking tales of gangsters, horse-racing, blackjack, and insider trad-
ing, this is secretly the story of how Claude Shannon developed information theory —
and how he and his sidekick John Kelly Jr. used it to make money in casinos and Wall
Street. I’d known about Shannon’s work on information. . . but not that he beat 99.9%
of mutual fund managers, making an average compound return of 28% for many years
— as compared to 27% for Warren Buffett!

This book has just a few equations in it. I was delighted by one discovered by Kelly,
which I’d never seen before. Translating into my own favorite notation, it goes like this:

S = logM

It’s the fundamental equation relating gambling to information! Let me explain it — in
language far more complicated than you’ll see in Poundstone’s book.

What’s M? It’s the best possible average growth of a gambler’s money. For example,
if his best possible strategy lets him triple his money on average, then M = 3.

What’s S? This is the amount of “inside information” the gambler has: information
he has, that the people he’s betting against don’t.

Some technical stuff: First, the above “average” is a geometric mean, not an arith-
metic mean. Second, if we measure information in bits, we need to use base 2 in the
logarithm. Physicists would probably prefer to use base e, which means measuring in-
formation in “nits”. It doesn’t really matter, but let’s use base 2 for now.

To get a feeling for why Kelly’s theorem is true, it’s best to start with the simplest
example. If S = 1, then M = 2. So, if a gambler receives one bit of inside information,
he can double his money!

This sounds amazing, but it’s also obvious.
Suppose you have one bit of inside information: for example, whether a flipped coin

will land heads up or tails up. Then you can make a bet with somebody where they give
you $1,000,000 if you guess the coin flip correctly, and you give them $1,000,000 if you
guess wrong. This is a fair bet, so they will accept. That is, they’ll think it’s fair if they
don’t suspect you have inside information! But since you do have this information, you’ll
win the bet, and double your money on this coin flip.

Kelly’s equation is usually phrased in terms of the rate at which the gambler gets
inside information, and the rate at which his money grows. So, for example, to earn
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12% interest annually, you only need to receive

log(1.12) = 0.163

bits of inside information — and find some dupe willing to make bets with you about
this.

The last part is the hard part: the “inside information” really needs to be information
people don’t believe you have. I must learn hundreds of bits of information about math
each year — stuff only I know — but I haven’t found anyone simultaneously smart
enough to understand it and dumb enough to make bets with me about it!

Still, I like this relation between information theory and gambling, because one
stream of Bayesian probability theory says probabilities are subjectively defined in terms
of the bets you would accept.

The argument for this is called the “Dutch book argument”. It basically shows how
you can make money off someone who makes bets in ways that correspond to stupid
probabilities that don’t add to 1, or fail to be coherent in other ways:

2) Carlton M. Caves, Probabilities as betting odds and the Dutch book, available at
http://info.phys.unm.edu/~caves/reports/dutchbook.pdf

So, there’s a deep relation between gambling and probability — no news here, really.
But, there’s also a deep relation between probability and information theory, discov-

ered by Shannon. Briefly, it goes like this: the information you obtain by learning the
value of a random variable is

S = −
∑
i

pi log(pi)

where the sum is taken over all the possible values of this random variable, and pi is
the probability that it takes its ith value. So, for example, if you flip a fair coin, where
p1 = p2 = 1/2, the information you get by looking at the coin is

−
[
1

2
log

(
1

2

)
+

1

2
log

(
1

2

)]
= 1

One bit!
So: gambling is related to probability, and probability is related to information.

Kelly’s result closes the circle by providing a direct relation between gambling and infor-
mation!

But, apparently some of Kelly’s ideas are still controversial in the world of economics
and stock trading. If you read Poundstone’s book, you’ll learn why.

The next book takes more persistence to read:

3) Avner Ash and Robert Gross, Fearless Symmetry: Exposing the Hidden Patterns of
Numbers, Princeton U. Press, Princeton, 2006.

The authors do a creditable job of what might at first seem utterly impossible: ex-
plaining heavy-duty modern number theory to ordinary mortals. The formal prerequi-
sites are little more than high school algebra, and the style is expository, but anyone
except an expert will need to stop and think at times.
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They start by explaining modular arithmetic — you know, stuff like adding and mul-
tiplying “ mod 7”. Then they tackle groups, and permutations, since the main theme of
the book is symmetry. Then they move on to algebraic varieties, in a simple no-nonsense
style cleverly adapted from Grothendieck’s later work (without terrifying the reader by
mentioning this fact).

Next they tackle some serious number theory: quadratic reciprocity, Galois groups,
and elliptic curves. Then they describe more general forms of reciprocity, leading up
to a taste of the Langlands program. They conclude with a sketch of how Fermat’s last
theorem was proved.

These days mathematical physicists are all excited about a variant of the Langlands
program: the so-called “geometric” Langlands program, which is related to string theory.
Drinfeld has been running a seminar on this at Chicago for years, but that’s not what got
the physicists interested — it’s these papers by Witten that did it:

4) Anton Kapustin and Edward Witten, “Electric-magnetic duality and the geometric
Langlands program”, 225 pages, available as hep-th/0604151.

5) Sergei Gukov and Edward Witten, “Gauge theory, ramification, and the geometric
Langlands program”, 160 pages, available as hep-th/0612073.

So, if you’re trying to learn this geometric Langlands stuff, and you want to fit it into
the grand landscape of mathematics, the book Fearless Symmetry could be a fun way to
learn some the math underlying the ordinary Langlands stuff.

I started girding myself for a discussion of the Langlands program in “Week 217”,
“Week 218” and “Week 221”, but then I got distracted. I’ll get back to it someday, but
right now I’m in the mood for lighter stuff. . . so let me tell you a bit about the first stars.

The story starts around 380,000 years after the Big Bang, when the hot hydrogen
and helium forming our Universe cooled down to 3000 kelvin - just cool enough for the
electrons to stick to the atomic nuclei instead of zipping around on their own.

When the electrons in a gas are hot enough for some to zip around on their own, we
say the gas is “ionized”. When a lot of them are zipping around, we call it a “plasma”. Be-
cause charged particles interact with the electromagnetic field, light doesn’t pass through
plasma cleanly: it keeps getting absorbed and re-emitted.

So, before our story started, you couldn’t see very far: it would be like trying to look
through a wall of fire. But, around 380,000 years after the Big Bang, the gas became
transparent!

What would it have looked like? Nobody ever seems to talk about this. So, I’ll just
guess, and hope some expert corrects me.

Back when the gas filling the Universe was 5000 kelvin in temperature, just a bit
cooler than the surface of the Sun, everything was yellow. You couldn’t see far at all:
you would have been blinded by a yellow glare.

But when it cooled to 4000 kelvin in temperature, the Universe became orange.
And when it cooled to 3000 kelvin, the Universe became red.
And when it cooled a tiny bit further, it became infrared. As far as visible light goes,

the Universe became transparent!
This would happen everywhere more or less at once. But since light takes time to

travel, you’d see a transparent sphere around you, expanding outwards at the speed of
light, with reddish walls.
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It’s been sort of like this ever since.
So, when we look far away with our best telescopes, we look back in time to the time

when the Universe became transparent — but no further. We’re surrounded by a distant,
ancient wall of fire. It’s now about 13.3 billion light-years away — or 13.3 billion year
back in time, if you prefer. And, it’s receding at a rate of one light-year per year.

But by now, the light from this wall of fire has been severely redshifted. In other
words, it’s been stretched along with the expansion of the Universe — stretched by a
factor of 1100, in fact!

So, what had been the hot infrared glow of 3000-kelvin plasma is now a feeble mi-
crowave glow corresponding to an icy temperature of 2.7 kelvin. This is the famous
“cosmic microwave background radiation”.

But let’s go back in time. . . .
From the moment the hot gas became transparent to the time when the first stars

formed, the Universe was dark except for the dimming infrared glow of that distant wall
of fire. This era is called the “Dark Ages”.

During the Dark Ages, gas cooled down and clumped under its own gravity — appar-
ently with a lot of help from cold dark matter of some unknown sort. Without postulating
this matter, nobody can figure out how galaxies formed as soon as they did.

As befits their name, the Dark Ages are still shrouded in mystery. There are a lot of
unanswered questions besides the nature of dark matter. Which formed first — individ-
ual stars, or galaxies? And, when did the Dark Ages end?

It’s currently believed that the first stars formed sometime between 150 million and
1 billion years after the Big Bang.

At the later end of that range, the Universe could have gotten quite cold before
starlight warmed up the interstellar gas and reionized it. There’s even a spooky theory
that the Universe was full of hydrogen snowflakes near the end of the Dark Ages — see
“Week 196” for more on this, and a timeline of the earlier history of the Universe.

But, the current best guess, based on data from the Wilkinson Microwave Anisotopy
Probe, says that reionization happened 400 million years after the Big Bang:

6) Marcelo A. Alvarez, Paul R. Shapiro, Kyungjin Ahn and Ilian T. Iliev, “Implications
of WMAP 3 year data for the sources of reionization”, Astrophys. J. 644 (2006),
L101–L104. Also available as astro-ph/0604447.

This would be too early for hydrogen snow, since my rough calculation says the mi-
crowave background radiation was 30 kelvin then, while hydrogen freezes at 14 kelvin.

What were the first stars like? Without heavier elements to catalyze nuclear fusion,
they could have been larger than current-day stars: perhaps hundreds of times the size
of our Sun! These so-called Population III stars have not actually been seen. But, it’s
possible that we’ve finally caught a glimpse of them, not individually but in a sort of
statistical sense:

7) A. Kashlinsky, R. G. Arendt, J. Mather and S. H. Moseley, “New measurements of
cosmic infrared background fluctuations from early epochs”, to appear in Ap. J.
Letters. Available as astro-ph/0612445.

8) A. Kashlinsky, R. G. Arendt, J. Mather and S. H. Moseley, “On the nature of the
sources of the cosmic infrared background”, to appear in Ap. J. Letters. Available
as astro-ph/0612447.
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Using delicate techniques to carefully sift through the infrared (not microwave) back-
ground radiation, the authors claim to find radiation not accounted for by previously
known sources. Assuming the standard cosmological scenario, the sources of this radia-
tion date back to less than 1 billion years after the Big Bang, and were individually much
brighter than current-day stars.

Here’s a picture of their data:

9) NASA / JPL-Caltech / A. Kashlinsky, “Infrared background light from first stars”,
http://www.spitzer.caltech.edu/Media/releases/ssc2005-22/

On top is a photograph taken by the Spitzer Space Telescope: a 10-hour infrared
exposure of a tiny patch of sky, 6× 12 arcminutes across, chosen for having a bare mini-
mum of foreground stars, galaxies and dust. (For comparison, the Moon is 30 arcminutes
across.) On the bottom is the same picture with known sources of infrared subtracted.
What’s left may be the severely redshifted light from early stars!

Or, it may not. In the following news story, Ned Wright of UCLA said, “I’m very
skeptical of this result. I think it’s wrong. I think what they’re seeing is incompletely
subtracted residuals from nearby sources.”

10) Dinesh Ramde, Associated Press, “Hints of early stars may have been found”,
http://www.usatoday.com/tech/science/space/2005-11-02-early-stars x.htm

So, we’ll have to see how it goes. . . .
But in the meantime, we can think about mathematical physics. My student Derek

Wise is graduating this year, and he’s doing his thesis on Cartan geometry, MacDowell-
Mansouri gravity and BF theory. Let me say a little about this paper of his:
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11) Derek Wise, “MacDowell-Mansouri gravity and Cartan geometry”, available as
gr-qc/0611154.

Elie Cartan is one of the most influential of 20th-century geometers. At one point he
had an intense correspondence with Einstein on general relativity. His “Cartan geom-
etry” idea is an approach to the concept of parallel transport that predates the widely
used Ehresmann approach (connections on principal bundles). It simultaneously gener-
alizes Riemannian geometry and Klein’s Erlangen program (see “Week 213”), in which
geometries are described by their symmetry groups:

Euclidean geometry Klein geometry

Riemannian geometry Cartan geometry

Given all this, it’s somewhat surprising how few physicists know about Cartan geometry!
Recognizing this, Derek explains Cartan geometry from scratch before showing how

it underlies the so-called MacDowell-Mansouri approach to general relativity. This plays
an important role both in supergravity and Freidel and Starodubtsev’s work on quantum
gravity (see “Week 235”) — but until now, it’s always seemed like a “trick”.

What’s the basic idea? Derek explains it all very clearly, so I’ll just provide a quick
sketch. Cartan describes the geometry of a lumpy bumpy space by saying what it would
be like to roll a nice homogeneous “model space” on it. Homogeneous spaces are what
Klein studied; now Cartan takes this idea and runs with it. . . or maybe we should say he
rolls with it!

For example, we could study the geometry of a lumpy bumpy surface by rolling a
plane on it. If our surface is itself a plane, this rolling motion is trivial, and we say the
surface is “flat” in the sense of Cartan geometry. But in general, the rolling motion is
interesting and serves to probe the geometry of the surface.

Alternatively, we could study the geometry of the same surface by rolling a sphere on
it. Derek illustrates this with a picture of a hamster crawling around in a plastic “hamster
ball”, which is something you can actually buy for your pet hamster to let it explore your
house without escaping or getting in trouble:

(I’ve read about falling cats in papers on gauge theory, but this is the first mathematical
physics paper I’ve read containing the word “hamster”.)
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If our surface is itself a sphere of the same radius, this rolling motion is trivial, and
we say the surface is flat in the sense of Cartan geometry — but now it’s a different sense
than when we used a plane as our “model geometry”!

Which model geometry should we use in a given problem? It depends on which one
best approximates the lumpy bumpy space we’re studying!

The ordinary formulation of general relativity fits into this framework, with a lit-
tle work. Two well-known mathematical gadgets called the “Lorentz connection” and
“coframe field” fit together to describe what would happen if we rolled a copy of Minkowski
spacetime over the lumpy bumpy spacetime we live in.

That’s great if Minkowski spacetime is the best homogeneous approximation to the
spacetime we live in. But nowadays we think the cosmological constant is nonzero,
so the Universe is expanding in a roughly exponential way. This makes another model
geometry, “deSitter spacetime”, the best one to use!

So, if we know Cartan geometry, we can use that. . . and we get something called the
MacDowell-Mansouri formulation of gravity. Or, if we don’t want our spacetime to have
lumps and bumps — if we want it to look locally just like the Klein model geometry —
we can use a different theory, a topological field theory called BF theory (see “Week
232”).

In short, the passage from a topological field theory describing a “locally homoge-
neous” spacetime to full-fledged gravity with all its lumps and bumps is nicely under-
stood in terms of how Cartan’s approach to geometry generalizes Klein’s!

For more details, you’ll just have to read Derek’s paper. You might also try these:

12) Michel Biesunski, “Inside the coconut: the Einstein-Cartan discussion on distant
parallelism”, in Einstein and the History of General Relativity, eds. D. Howard and
J. Stachel, Birkhauser, Boston, 1989.

This describes the correspondence between Cartan and Einstein. I believe this cen-
tered, not on Cartan geometry per se, but on the “teleparallel” formulation of gravity
(see “Week 176”). But, they’re somewhat related.

13) Richard W. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Erlan-
gen Program, Springer-Verlag, New York, 1997.

This is the main textbook on Cartan geometry. But, it’s probably best to read a few
chapters of Derek’s paper first, since the key ideas are presented more intuitively.

My friend the geometer and analyst Rafe Mazzeo, whom I recently saw at Stanford,
told me that Cartan geometry was all the rage these days. I’m embarrassed to say I
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hadn’t known this! I think the kinds of Cartan geometry being intensively studied are
related to conformal geometry, CR structures and stuff like that. . .

Merry Christmas!

Addenda: I thank Chris Weed for catching typos. For more discussion, go to the
n-Category Café.

The Universe has as many different centers as there are living beings in it.

— Alexander Solzhenitsyn
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Week 244

February 2, 2007

In January I spent a week at this workshop at the Fields Institute in Toronto:

1) Higher Categories and Their Applications, http://math.ucr.edu/home/baez/fields/

It was really fun — lots of people working on n-categories were there. I’ll talk about it
next time. But as usual, more happens at a fun conference than can possibly be reported.
So, this time I’ll only talk about a conversation I had in a café before the conference
started!

But first, here’s a fun way to challenge your math pals:

Q: When the first calculus textbook was written — and in what language?

A: In 1530, in Malayalam — a south Indian language!

This book is called the Ganita Yuktibhasa, or “compendium of astronomical ratio-
nales”. It was written by Jyesthadeva, an astronomer and mathematician from Kerala —
a state on the southwest coast of India. It summarizes and explains the work of many
researchers of the Kerala school, which flourished from the 1400’s to the 1600’s. But it’s
unique for its time, since it contains proofs of many results.

For example, it has a proof that

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

Of course, this result isn’t stated in modern notation! It’s actually stated as a poem — a
recipe for the circumference of a circle, which in translation goes something like this:

Multiply the diameter by four. Subtract from it and add to it alternately the
quotients obtained by dividing four times the diameter by the odd numbers
3, 5, etc.

The proof sounds nice! Jyesthadeva starts with something like this:

π

4
= lim

N→∞

1

N

N∑
n=1

1

1 +
(
n
N

)2
In modern terms, the right-hand side is just the integral∫ 1

0

dx

1 + x2

You can use geometry to see this equals π/4. Then, as far as I can tell, he writes

1

1 +
(
n
N

)2 = 1−
( n
N

)2
+
( n
N

)4
− . . .
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and notes that

1k + 2k + . . .+Nk ∼ Nk+1

k + 1

for large N . This gives
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

Voila!
In fact, this result goes back to Madhava, an amazing mathematician from Kerala who

lived much earlier, from 1350 to 1425. What’s even more impressive is that Madhava
also knew a formula equivalent to the more general result

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ . . .

He used this to compute π to 11 decimal places!
It’s an interesting question whether any of the results of the Kerala school found their

way west and influenced the development of mathematics in Europe. There’s been a lot
of speculation, but nobody seems to know for sure. For more info, try these:

2) The MacTutor History of Mathematics Archive, “Madhava of Sangamagramma”,
http://www-history.mcs.st-andrews.ac.uk/Biographies/Madhava.html

3) The MacTutor History of Mathematics Archive, “Jyesthadeva”, http://www-history.
mcs.st-andrews.ac.uk/Biographies/Jyesthadeva.html

4) Wikipedia, “Yuktibhasa”, http://en.wikipedia.org/wiki/Yuktibhasa

Before the conference started, I spent a nice morning talking with Tom Leinster in a
café on Bloor Street. There’s nothing like talking about math in a nice warm café when
it’s cold outside! At some point my former grad student Toby Bartels showed up — he’d
just taken a long Greyhound bus from Nebraska — and joined in the conversation. We
talked about this paper:

5) Tom Leinster, “The Euler characteristic of a category”, available as math.CT/0610260.

Everyone know how to measure the size of a set — by its number of elements, or
“cardinality”. But what’s the size of a category? That’s the question this paper tackles!

Some categories are just sets in disguise: the “discrete” categories, whose only mor-
phisms are identity morphisms. We’d better define the size of such a category to be the
cardinality of its set of objects.

For example, the category with just one object and its identity morphism is called 1.
It looks sort of like this:

•

where I’ve drawn the object but not its identity morphism. Clearly, its size should be 1.
We could also have a category with just two objects and their identity morphisms. It

looks like this:
• •

and its size should be 2.
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But what about this?
• •

Here we have a category with two objects and an invertible morphism between them,
which I’ve drawn as an arrow pointing both ways. Again, I won’t draw the identity
morphisms.

In other words, we have two objects that are isomorphic — and in a unique way. How
big should this category be?

Any mathematician worth her salt knows that having two things that are isomorphic
in a unique way is just like having one: you can’t do anything more with them — or less.
So, the size of this category:

• •

should equal the size of this one:
•

namely, 1.
More technically, we say these categories are “equivalent”. We’ll demand that equiv-

alent categories have the same size. This is a powerful principle. If we didn’t insist on
this, we’d be insane.

But what about this category:

• •

Now we have two objects and a morphism going just one way! This is not equivalent to
a discrete category, so we need a new idea to define its size.

If we were willing to make up new kinds of numbers, we could make up a new
number for the size of this category. But let’s suppose that this is against the rules.

There’s a cute way to turn any category into a space, which I described in “Week
70” — and in more detail in items J and K of “Week 117”, back when I was giving a
minicourse on homotopy theory. If we do this to the category

• •

what do we get? The unit interval, of course! It’s a pretty intuitive notion, at least in this
example.

We also get the unit interval if we turn this guy

• •

into a space. So, even though these categories aren’t equivalent, they give the same
space. So, let’s declare that they have the same size — namely, 1.

In fact, let’s adopt this as a new principle! We’ll demand that two categories have the
same size whenever they give the same space.

Whenever categories are equivalent, they give the same space (where “the same”
means “homotopy equivalent”). So, our new principle includes our previous principle
as a special case. But, we can say more. If you like adjoint functors, you’ll enjoy this:
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whenever there’s a pair of adjoint functors going between two categories, they give the
same space. For example, these categories

• •

and
• •

aren’t equivalent, but there’s a pair of adjoint functors going between them. (If you don’t
like adjoint functors, oh well — just ignore this.)

Next, what’s the size of this category?

• •

This is my feeble attempt to draw a category with two objects, and two morphisms going
from the first object to the second.

If we turn this category into the space, what do we get? The circle, of course! But
what’s the “size”, or “cardinality”, of a circle?

That’s a tricky puzzle, because it’s hard to know what counts as a right answer. It
turns out the right answer is zero. Why? Because the “Euler characteristic” of the circle
is zero!

As you may know, Euler lived in Königsberg, a city with lots of islands and bridges:

In fact, he published a paper in 1736 showing that you can’t walk around Königsberg
and cross each bridge exactly once, winding up where you started. My crazy theory is
that living there also helped him invent the concept of Euler characteristic. I have no
evidence for this, except for this apocryphal story I just made up:

Once upon a time, Euler was strolling along one of the bridges of Königsberg. He
looked across the river, and noticed that workers were building a bridge to a small island
that had previously been unconnected to the rest. He noticed that this reduced the
number of isolated islands by one. Of course, anyone could have seen that! But in a
burst of genius, Euler went further — he realized this meant a bridge was like a “negative
island”. And so, he invented the concept of “Euler characteristic”. In its simplest form,
it’s just the number of islands minus the number of bridges.
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For example, if you have two islands in the sea:

• •

the land has Euler characteristic 2.
If you build a bridge:

• •

the land now has Euler characteristic 1. This makes sense, because the land is now
effectively just one island. So, a bridge acts as a “negative island”!

But now, if you build a second bridge:

• •

the land has Euler characteristic 0. This is sort of weird. But, Euler saw it was a good
idea.

To understand why, you have to go further and imagine building a “bridge between
bridges” — filling in the space between the bridges with an enormous deck:

• •

This reduces the number of bridges by one. We’ve effectively got one island again,
though much bigger now. So, we’re back to having Euler characteristic 1.

In short, adding a “bridge between bridges” should add 1 to the Euler characteristic.
Just as a bridge counts as a negative island, a bridge between bridges counts as a negative
bridge — or an island:

−(−1) = 1.

It’s all consistent, in its own weird way.
So, Euler defined the Euler characteristic to be

V − E + F

where V is the number of islands (or “vertices”), E is the number of bridges (or “edges”)
and F is the number of bridges between bridges (or “faces”).

At least that’s how the story goes.
By the way, you must have noticed that the number 1 looks like an interval, while

the number 0 looks like a circle. But did you notice that the Euler characteristic of the
interval is 1, and the Euler characteristic of the circle is 0? I can never make up my mind
whether this is a coincidence or not.

Anyway, we can easily generalize the Euler characteristic to higher dimensions, and
define it as an alternating sum. And that turns out to be important for us now, because
it turns out that often when we turn a category into a space, we get something higher-
dimensional!
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This shouldn’t be obvious, since I haven’t told you the rule for turning a category into
a space. You might think we always get something 1-dimensional, built from vertices
(objects) and edges (morphisms). But the rule is more subtle. Whenever we have 2
morphisms end to end, like this:

•
X

•
Y

•
Z

f g

we can compose them and get a morphism fg going all the way from x to z. We should
draw this morphism too. . . so the space we get is a triangle:

•
X

•
Y

•
Z

f g

fg

More importantly, the triangle is filled in, just like Euler’s “bridge between bridges”, to
show that it’s solid, not hollow.

Simlarly, when we have 3 morphisms laid end to end we get a tetrahedron, and so
on.

Using these rules, it’s not hard to find a category that gives a sphere, or a torus, or an
n-holed torus, when you turn it into a space. I’ll leave that as a puzzle.

In fact, for any manifold, you can find a category that gives you that manifold when
you turn it into a space! In fact we can get any space at all this way, up to “weak ho-
motopy equivalence” — whatever that means. So, let’s adopt a new principle: whenever
our category gives a space whose Euler characteristic is well-defined, we should define
the size of our category to be that.

I say “when it’s well-defined”, because it’s also possible for a category — even one
with just finitely many objects and morphisms — to give an infinite-dimensional space
whose Euler characteristic is a divergent series:

n0 − n1 + n2 − n3 + n4 − . . .

Okay. At this point it’s time for me to say what Leinster actually did: he came up with a
formula that you can use to compute the size of a category, without using any topology.
Sometimes it gives divergent answers — which is no shame: after all, some categories
are infinitely big. But when it converges, it satisfies all the principles I’ve mentioned.

Even better, it works for a lot of categories that give spaces whose Euler chacteristic
diverges! For example, we can take any group G and think of it as a category with
one object, with the group elements as morphisms. When we turn this category into a
space, it becomes something famous called the “classifying space” of G. This is often
an infinite-dimensional monstrosity whose Euler characteristic diverges. But, Leinster’s
formula still works — and it gives

1/|G|
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the reciprocal of the usual cardinality of G.
Now we’re getting fractions!
For example, suppose we take G to be the group with just 2 elements, called Z/2.

If we think of it as a category, and then turn that into a space, we get a huge thing
usually called “infinite-dimensional real projective space”, or RP∞ for short. This is built
from one vertex, one edge, one triangle, and so on. So, if we try to work out its Euler
characteristic, we get the divergent series

1− 1 + 1− 1 + 1− . . .

But, if we use Leinster’s formula, we get 1/2. And that’s cute, because once there were
heated arguments about the value of

1− 1 + 1− 1 + 1− . . .

Some mathematicians said it was 0:

(1− 1) + (1− 1) + (1− 1) + . . . = 0

while others said it was 1:

1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + . . . = 1

Some said “it’s divergent, so forget it!” But others wisely compromised and said it equals
1/2. This can be justified using “Abel summation”.

All this may seem weird — and it is; that’s part of the fun. But, Leinster’s answer
matches what you’d expect from the theory of “homotopy cardinality”:

6) John Baez, “The mysteries of counting: Euler characteristic versus homotopy car-
dinality”, http://math.ucr.edu/home/baez/counting/

This webpage has transparencies of a talk I gave on this, and lots of links to papers
that generalize the concepts of cardinality and Euler characteristic. I’m obsessed with
this topic. It’s really exciting to think about new ways to extend the simplest concepts of
math, like counting.

That’s why I invented a way to compute the cardinality of a groupoid — a category
where every morphism has an inverse, so all the morphisms describe “symmetries”. The
idea is that the more symmetries an object has, the smaller it is. Applying this to the
above example, where our category has one object, and this object has 2 symmetries,
one gets 1/2. If this seems strange, try the explanation in “Week 147”.

Later James Dolan took this idea, generalized it to a large class of spaces that don’t
necessarily come from groupoids, and called the result “homotopy cardinality”. We wrote
a paper about this.

What Leinster has done is generalize the idea in another direction: from groupoids to
categories. The cool thing is that his generalization matches the Euler characteristic of
spaces coming from categories (when that’s well-defined, without divergent series) and
the homotopy cardinality of spaces coming from groupoids (when that’s well-defined).

Of course he doesn’t call his thing the “size” of a category; he calls it the “Euler
characteristic” of a category.
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Our conversation over coffee was mainly about me trying to understand the formula
he used to define this Euler characteristic. One thing I learned is that the “category
algebra” idea plays a key role here.

It’s a simple idea. Given a category X, the category algebra C[X] consists of all
formal complex linear combinations of morphisms in X. To define the multiplication in
this algebra, it’s enough to define the product fg whenever f and g are morphisms in
our category. If the composite of f and g is defined, we just let fg be this composite. If
it’s not, we set fg = 0.

Mathematicians seem to be most familiar with the category algebra idea when our
category happens to be a group (a category with one object, all of whose morphisms are
invertible). Then it’s called a “group algebra”.

Category algebras are also pretty familiar when our category is a “quiver” (a category
formed from a directed graph by freely throwing in formal composites of edges). Then
it’s called a “quiver algebra”. These are really cool — especially if our graph becomes a
Dynkin diagram, like this:

• • • • • • •

•

when we ignore the directions of the edges. To see what I mean, try item E in “Week
230”, where I sketch how these quiver algebras are related to quantum groups. There’s
a lot more to say about this, but not today!

In combinatorics, category algebras are familiar when our category is a “partially
ordered set”, or “poset” for short (a category with at most one morphism from any given
object to any other). These category algebras are usually called “incidence algebras”.

In physics, Alain Connes has given a nice explanation of how Heisenberg invented
“matrix mechanics” when he was trying to understand how atoms jump from one state
to another, emitting and absorbing radiation. In modern language, Heisenberg took a
groupoid with n objects, each one isomorphic to each other in a unique way. He called
the objects “states” of a quantum system, and he called the morphisms “transitions”.
Then, he formed its category algebra. The result is the algebra of n× n matrices!

(This might seem like a roundabout way to get to n × n matrices, but Heisenberg
didn’t know about matrices at this time. They weren’t part of the math curriculum for
physicists back then!)

Connes has generalized the heck out of Heisenberg’s idea, studying the “groupoid
algebras” of various groupoids.

So, category algebras are all over the place. But for some reason, few people study
all these different kinds of category algebra in a unified way — or even realize they’re
all category algebras! I feel sort of sorry for this neglected concept. That’s one reason
I was happy to see it plays a role in Leinster’s definition of the Euler characteristic for
categories.

Suppose our category X is finite. Then, we can define an element of the category
algebra C[X] which is just the sum of all the morphisms in X. This is called ζ, or the
“zeta function” of our category. Sometimes ζ has an inverse, and then this inverse is
called µ, or the “Möbius function” of our category.
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Actually, these terms are widely used only when our category is a poset, thanks to
the work of Gian-Carlo Rota, who used these ideas in combinatorics:

7) Gian-Carlo Rota, “On the foundations of combinatorial theory I: Theory of Möbius
Functions”, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 2 (1964),
340–368.

If you want to know what these ideas are good for, check this out:

8) Wikipedia, “Incidence algebra”, http://en.wikipedia.org/wiki/Incidence algebra

See the stuff about Euler characteristics in this article? That’s a clue! The relation to
the Riemann zeta function and its inverse (the original “Möbius function”) are clearer
here:

9) Wikipedia, “Möbius inversion formula”, http://en.wikipedia.org/wiki/M%C3%B6bius inversion formula

These show up when we think of the whole numbers 1, 2, 3, . . . as a poset ordered by
divisibility.

Anyway, Leinster has wisely generalized this terminology to more general categories.
And when ζ−1 = µ exists, it’s really easy to define his Euler characteristic of the category
X. You just write µ as a linear combination of morphisms in your category, and sum all
the coefficients in this linear combination!

Unfortunately, there are lots of important categories whose zeta function is not invert-
ible: for example, any group other than the trivial group. So, Leinster needs a somewhat
more general definition to handle these cases. I don’t feel I deeply understand it, but I’ll
explain it, just for the record.

Besides the category algebra C[X], consisting of linear combinations of morphisms in
X, there’s also a vector space consisting of linear combinations of objects in X. Heisen-
berg would probably call this “the space of states”, and call C[X] the “algebra of ob-
servables”, since that’s what they were in his applications to quantum physics. Let’s do
that.

The algebra of observables has an obvious left action on the vector space of states,
where a morphism f : x→ y acts on x to give y, and it acts on every other object to give
0. In Heisenberg’s example, this is precisely how he let the algebra of observables act on
states.

The algebra of observables also has an obvious right action on the vector space of
states, where f : x→ y acts on y to give x, and it acts on every other object to give 0.

Leinster defines a “weighting” on X to be an element w of the vector space of states
with

ζw = 1

Here “1” is the linear combination of objects where all the coefficients equal 1. He also
defines a “coweighting” to be an element w∗ in the vector space of states with

w∗ζ = 1

If ζ has an inverse, our category has both a weighting and a coweighting, since we
can solve both these equations to find w and w∗. But often there will be a weighting
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and coweighting even when ζ doesn’t have an inverse. When both a weighting and
coweighting exist, the sum of the coefficients of w equals the sum of coefficients of w∗

— and this sum is what Leinster takes as the “Euler characteristic” of the category X!
This is a bit subtle, and I don’t deeply understand it. But, Leinster proves so many

nice theorems about this “Euler characteristic” that it’s clearly the right notion of the size
of a category — or, with a further generalization he mentions, even an n-category! And,
it has nice relationships to other ideas, which are begging to be developed further.

We’re still just learning to count.

Addendum: For more discussion, go to the n-Category Café.
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Week 245

February 11, 2007

The University of Toronto is an urban campus, rather grey and chilly at this time of year.
Nestled amid other buildings at the southern edge of campus, the Fields Institute doesn’t
stand out.

But inside, you’ll find a spacious and peaceful atrium, with a fireplace to keep you
cozy. A spiral staircase winds up three or four stories. Hanging from the ceiling far
above is a 3d model of the “120-cell”: a beautiful 4-dimensional solid with 120 regular
dodecahedra as faces.

This is a tribute to the great geometer H. S. M. Coxeter, master of polyhedra, who
worked for 60 years at the University of Toronto after studying philosophy at Cambridge
under Wittgenstein. You’ll also find Coxeter’s piano sitting at the base of the spiral
staircase.

It’s out of tune, but resting on it there’s a wonderful strange portrait of him playing the
very same piano — at the age of three. He looks a bit like the child Mozart. And indeed,
at the age of 12 Coxeter composed an opera!

The Fields Institute specializes in having conferences, and it’s a great place for that. A
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friendly and efficient staff, public workstations, wireless internet everywhere, a nice little
cafe in the back, and the centerpiece: a large lecture room with 3 double blackboards.
Unfortunately the middle blackboard doesn’t stay up — it’s needed that repair for years,
old-timers say. But apart from that, everything is as close to mathematician’s heaven as
could be expected.

Eugenia Cheng, Peter May and I ran a workshop at the Fields Institute from January
9th to 13th:

1) “Higher Categories and Their Applications”, http://math.ucr.edu/home/baez/
fields/

You can see photos of people and abstracts of their talks at this site. You can also see
PDF files of many of their talks — and even listen to talks!

The first day, Tuesday, was all about 2-categories and 3-categories - “lower cate-
gory theory”, you might say. While some are eagerly sailing into the stratosphere of
n-categories for general n, or even n =∞, there’s still a lot to understand for n = 2 and
3.

For starters, Tom Leinster spoke about strict 2-categories versus weak ones (also
known as bicategories). It’s a famous fact — a generalization of Mac Lane’s coherence
theorem — that every weak 2-category C is equivalent to a strict one st(C). However,
this is true if your notion of equivalence is suitably weak! In short, what we’ve got is an
inclusion of weak 3-categories:

i : Strict2Cat→Weak2Cat

where
Strict2Cat = [strict 2-categories,

strict 2-functors,

strict natural transformations,

modifications]

and
Weak2Cat = [weak 2-categories,

weak 2-functors,

weak natural transformations,

modifications]

Every object in Weak2Cat is equivalent to one in the image of this inclusion. But, the
inclusion is not itself an equivalence!

Steve Lack spoke about Gray-categories, also known as “semistrict” 3-categories —
a convenient middle ground between the strict 3-categories and the weak ones (also
known as tricategories).

The idea here goes back to John Gray. In the usual Cartesian product of categories,
whenever we have a morphism

f : A→ B

in the first category and a morphism

f ′ : A′ → B′
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in the second, we get a commuting square:

(A,A′) (B,A′)

(A,B′) (B,B′)

(f,1)

(1,f ′) (1,f ′)

(f,1)

in their Cartesian product. The same is true for the Cartesian product of 2-categories.
But in the “Gray” tensor product of 2-categories, these squares commute only up to 2-
isomorphism. And, we can use this weakening of the Cartesian product to weaken the
concept of strict 3-category, and obtain the concept of “semistrict” 3-category, or “Gray-
category”.

Here’s how. A strict 3-category is a gizmo with:

• a bunch of objects,

• for any pair of objects x, y, a 2-category Hom(x, y),

and

• for any triple of objects x, y, z, a 2-functor

◦ : Hom(x, y)×Hom(y, z)→ Hom(x, z)

such that

• associativity and the unit laws hold.

A semistrict 3-category is a gizmo with:

• a bunch of objects,

• for any pair of objects x, y, a 2-category Hom(x, y),

and

• for any triple of objects x, y, z, a 2-functor

◦ : Hom(x, y)⊗Hom(y, z)→ Hom(x, z)

where ⊗ is the Gray tensor product, such that

• associativity and the unit laws hold.

The slight difference is very important. Not every weak 3-category is equivalent to a
strict one. But, they’re all equivalent to semistrict ones!

There are, alas, some deficiencies in the semistrict world, which Steve Lack has re-
cently noted:
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2) Steve Lack, “Bicat is not triequivalent to Gray”, available as math.CT/0612299.

To understand this, you may need a little warmup. Given strict 2-categories B and C
there’s a strict 2-category Hom(B, C) such that strict 2-functors

A× B → C

are in natural 1-1 correspondence with strict 2-functors

A → Hom(B, C)

Here’s what Hom(B, C) is like:

• Hom(B, C) has strict 2-functors from B to C as objects,

• strict natural transformations between these as morphisms,

• modifications between these as 2-morphisms.

We can pose the same question with the Gray tensor product replacing the Cartesian
product. Given 2-categories B and C there’s a 2-category [B, C] such that strict 2-functors

A⊗ B → C

are in natural 1-1 correspondence with strict 2-functors

A → [B, C]

Here’s what [B, C] is like:

• [B, C] has strict 2-functors from B to C as objects,

• weak natural transformations between these as morphisms,

• modifications between these as 2-morphisms.

This suggests that we consider a 3-category intermediate between Strict2Cat and
Weak2Cat. It’s called Gray, and it goes like this:

Gray = [strict 2-categories,

strict 2-functors,

weak natural transformations,

modifications]

We have inclusions of weak 3-categories:

Strict2Cat→ Gray→Weak2Cat

and Lack shows, not only that the second inclusion fails to be an equivalence, but that
there’s no equivalence between Gray and Weak2Cat.
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All this suggests that for some purposes we really need to face up to weak 2-categories:
the strict and semistrict setups aren’t flexible enough for every job. The same is undoubt-
edly true at the 3-category level — and that’s where the next talk comes in!

In the next talk, Nick Gurski spoke about weak 3-categories. He wrote his thesis
about these, and I’m starting to really wish he’d put his thesis on the arXiv, so everyone
can see how cool it is and learn more about 3-categories. But, I guess he wants to perfect
it.

In his talk, Nick not only explained the definition of weak 3-category, which is fa-
mously complicated — he did his best to convince us that we could reinvent this defini-
tion ourselves if we tried! Then he went ahead and discussed various proofs that every
weak 3-category is equivalent to a semistrict one.

An interesting theme of all three talks was the idea of treating the “strictification”
functor implicit in Mac Lane’s coherence theorem:

st : Weak2Cat→ Strict2Cat

as the left adjoint of the inclusion

i : Strict2Cat→Weak2Cat

where now we think of both Strict2Cat and Weak2Cat as mere 1-categories. You can read
more about this idea here:

3) Miles Gould, “Coherence for categorified operadic theories”, available as math.CT/
0607423.

On Tuesday night, Mike Shulman gave an introduction to model categories, which are
a tool developed by Quillen in the late 1960s to unify homotopy theory and homological
algebra. If you want to understand the basics of model categories, you should probably
start by listening to his talk, and then read this:

4) W. G. Dwyer and J. Spalinski, “Homotopy theories and model categories”, available
at http://hopf.math.purdue.edu/Dwyer-Spalinski/theories.pdf

For more references, try “Week 170”.
Here’s the rough idea:
In homotopy theory we study topological spaces; in homological algebra we study

chain complexes. But, in both cases we study them in a funny way. There’s a category of
topological spaces and continuous maps, and there’s a category of chain complexes and
chain maps, but these categories are not everything that counts. Normally, we say two
objects in a category are “the same” if they’re isomorphic. But in this case we often use
a weaker concept of equivalence!

In homotopy theory, we say a map between spaces

f : X → Y

is a “weak homotopy equivalence” if it induces isomorphisms on homotopy groups:

πn(f) : πn(X)→ πn(Y )
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In homological algebra, we say a map between chain complexes

f : X → Y

is a “quasi-isomorphism” if it induces isomorphisms on homology groups:

Hn(f) : Hn(X)→ Hn(Y )

Model category theory formalizes this by speaking of a category C equipped with a classes
of morphisms called “weak equivalences”. We can formally invert these and get a new
category Ho(C) where the weak equivalences are isomorphisms: this is called the “homo-
topy category” or “derived category” of our model category. But this loses information,
so it’s often good not to do this.

In a model category, we also have a class of morphisms called “fibrations”, which you
should imagine as being like fiber bundles. Dually, we have a class of morphisms called
“cofibrations”, which you should imagine as well-behaved inclusions, like the inclusion
of the closed unit interval in the real line — not the inclusion of the rationals into the
real line.

Finally, the weak equivalences, fibrations and cofibrations satisfy some axioms that
make them interlock in a powerful way. These axioms are a bit mind-numbing at first
glance, so I won’t list them. But, they encapsulate a lot of wisdom about homotopy
theory and homological algebra!

On Wednesday the talks were about n-categories and homotopy theory. I kicked them
off with a general introduction to the “Homotopy Hypothesis”: Grothendieck’s idea that
homotopy theory was secretly about∞-groupoids — that is,∞-categories where all the
j-morphisms have weak inverses.

5) John Baez, “The homotopy hypothesis”, http://math.ucr.edu/home/baez/homotopy/

Part of the idea is that if you hand me a space X, I can cook up an∞-groupoid which
has:

• points of X as objects,

• paths in X as morphisms,

• homotopies between paths in X as 2-morphisms,

• homotopies between homotopies between paths in X as 3-morphisms,

• etc. . .

This is called the “fundamental∞-groupoid of X”.
But another part of the idea is that if you hand me a model category C, I can cook up

an∞-category which has:

• nice objects of C as objects,

• morphisms in C as morphisms,
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• homotopies between morphisms in C as 2-morphisms,

• homotopies between homotopies between morphisms in C as 3-morphisms,

• etc. . . .

The basic idea here is simple: we’re studying homotopies between homotopies be-
tween. . . and so on.

(But, there’s a little technicality — this “nice object” business. An object of C is
“fibrant” if its unique morphism from the initial object is a fibration, and “cofibrant” if
its unique morphism to terminal object is a cofibration. Objects with both properties
are what I’m calling “nice”. For example, in the category of topological spaces, the “cell
complexes” (made by gluing balls together) are nice. In the category of chain complexes,
the “projective” chain complexes are nice. Only for these nice objects do homotopies
work as well as you’d hope. Luckily, every object in C is weakly equivalent to one of
these nice ones.)

The interesting thing about the above ∞-category is that it’s an “(∞, 1)-category”,
meaning that all its j-morphisms are weakly invertible for j > 1. For example, maps
between spaces aren’t necessarily invertible, even up to homotopy — but homotopies
are always invertible.

We can define “(∞, k)-categories” for any k in the same way, and we see that (∞, 0)-
categories are just∞-groupoids. So, the Homotopy Hypothesis reveals the beginning of
what might be a very nice pattern. Roughly:

• Topological spaces, as studied in homotopy theory, are secretly (∞, 0)-categories.

• Model categories, as studied in homotopy theory, are secretly (∞, 1)-categories.

• ????, as studied in homotopy theory (not yet?), are secretly (∞, 2)-categories.

• Etcetera. . . .

Presumably the ???? should be filled in with something like “model 2-categories”,
with the primordial example being the 2-category of model categories, just as the pri-
mordial example of a model category is the category of spaces.

But, there’s only been a little study of this sort of “meta-homotopy theory” so far. For
example:

6) Julie Bergner, “Three models for the homotopy theory of homotopy theories”, avail-
able as math.AT/0504334.

After my talk, Simona Paoli spoke about her work on turning the homotopy hypoth-
esis from a dream into a reality:

7) Simona Paoli, “Semistrict models of connected 3-types and Tamsamani’s weak 3-
groupoids”, available as math.AT/0607330.

8) Simona Paoli, “Semistrict Tamsamani n-groupoids and connected n-types”, avail-
able as math.AT/0701655.

Eugenia Cheng then spent the afternoon leading us through another approach:
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9) Clemens Berger, “A cellular nerve for higher categories”, available at http://

citeseer.ist.psu.edu/383423.html

10) Denis-Charles Cisinski, “Batanin higher groupoids and homotopy types”, available
as math.AT/0604442.

I would love to explain this stuff, mainly as an excuse for learning it better! But alas,
I’m getting a bit tired and we’re only on the second day of the workshop. . . I must hurry
on.

On Wednesday evening, Peter May spoke about some applications of weak 2-categories
that appear in his new book:

11) Peter May and J. Sigurdsson, Parametrized Homotopy Theory, American Mathemat-
ical Society, 2006.

The rough idea is that we have a weak 2-category with:

• spaces as objects,

• spectra over X × Y as morphisms from X to Y ,

• maps between spectra over X × Y as 2-morphisms.

Lots of ideas from “parametrized” stable homotopy theory are neatly encoded as
results about this 2-category.

Thursday was all about (∞, 1)-categories. The first talk was by Mike Shulman, who
gave a nice intuitive treatment of André Joyal’s approach to (∞, 1)-categories.

In 1957, Daniel Kan figured out a nice way to describe ∞-groupoids as simplicial
sets with a certain property: now they’re called “Kan complexes”. They’re very popular
among homotopy theorists. You can read about them here:

12) Paul G. Goerss and J. F. Jardine, Simplicial Homotopy Theory, Birkhäuser, Basel,
1999.

Given this, it’s not so surprising that we can describe (∞, 1)-categories as simplicial
sets with some more general property. In fact this was done by Boardmann and Vogt
back in 1973. In the last decade or so, Joyal has developed an enormous body of results
about these (∞, 1)-categories, which he calls “quasicategories”. He is writing a book on
the subject, which is not quite done yet — but it’s already enormously influenced the
state of higher category theory, and I expect it will continue to do so.

Next Julie Bergner compared different approaches to (∞, 1)-categories. I mentioned
a while back that she’s one of the few people who has worked hard on “meta-homotopy
theory”. That was very much in evidence in her talk.

She began by describing a bunch of different definitions of (∞, 1)-category. But then
she showed these definitions weren’t really so different! For each definition, she con-
structed a model category of all (∞, 1)-categories of that type. And then, she sketched
the proof that all these model categories were “Quillen equivalent”.

For details, listen to her talk or try this paper:

13) Julie Bergner, A survey of (∞, 1)-categories, available as math.AT/0610239.
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In the afternoon, André Joyal spoke about quasicategories. I urge you to listen to his
talk and also the minicourse he later gave on this subject:

14) André Joyal, “Graduate course on basic aspects of quasicategories”, http://www.
fields.utoronto.ca/audio/#crs-quasibasic

I can’t possibly summarize this stuff! It basically amounts to taking the whole of
category theory and extending it to quasicategories.

(Well, I guess I just summarized it, but. . . .)
After Joyal’s talk, Joshua Nichols-Barrer spoke about using quasicategories as an ap-

proach to understanding “stacks”, which are like sheaves, only categorified.
In the evening, Kathryn Hess spoke about some work she’s doing with Steve Lack, on

parallel transport in bundles of bicategories. Sounds like physics, but they came to the
subject from a completely different motivation!

Finally, Dorette Pronk spoke about weak 2-categories and weak 3-categories of frac-
tions. The notion of a “calculus of fractions” goes back at least to the work of Gabriel
and Zisman in 1967:

15) P. Gabriel and M. Zisman, Categories of Fractions and Homotopy Theory, Springer-
Verlag, Berlin, 1967.

Say you have a category and you want to throw in formal inverses to some mor-
phisms. Well, you can do it! But in general, the morphisms in the resulting category will
be arbitrarily long “zig-zag” diagrams in your original category, like this:

X1 → X2 ← X3 → X4 ← X5 → X6

The arrows pointing backwards are the ones you threw in formal inverses for.
This is a nuisance! But luckily, in nice cases, you only need to use zig-zags of length

two. This is what a “calculus of fractions” achieves. A classic example is when you start
with a model category C, and you throw in formal inverses for the weak equivalences to
get the “homotopy category” Ho(C).

Dorette Pronk has been looking at how all this generalizes when you have a weak
2-category or weak 3-category and you throw in weak inverses to some morphisms. This
has some interesting applications to stacks:

16) Dorette A. Pronk, “Etendues and stacks as bicategories of fractions”, Compositio
Mathematica 102 (1996), 243–303. Also available at http://www.numdam.org/
numdam-bin/recherche?h=nc&id=CM 1996 102 3 243 0

Dorette’s talk ended at 9pm, and everyone went home and collapsed after a hard
day’s work. Actually not: a bunch of us went out and partied! One of the great things
about working on n-categories is the sense of camaraderie among the small crowd that
does this.

Friday’s talks were about higher gauge theory. Since I’ve discussed this many times
here, I’ll be terse. Alissa Crans explained Lie 2-groups and Lie 2-algebras, and then Danny
Stevenson explained his work on connections, 2-connections and Schreier theory (see
“Week 223”). In the afternoon, Urs Schreiber described his ideas on higher-dimensional
parallel transport and local trivializations, with a little help from Toby Bartels.
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Friday evening, we heard talks from Simon Willerton (on Hopf monads) and Igor
Bakovic (on 2-bundles). Quite an evening! Bakovic is an impressive young Croatian
fellow who seems to have taught himself n-categories. We were all horrified when it
became clear he had over 30 pages of transparencies, but his talk was actually quite
nice.

And if you like higher-dimensional diagrams anywhere near as much as I do, you’ve
got to take a look at Willerton’s slides:

17) Simon Willerton, “The diagrammatics of Hopf monads”, http://math.ucr.edu/
home/baez/fields/willerton/

Again the talks ended at 9pm.
Finally, on Saturday morning, Aaron Lauda spoke about Frobenius algebras and their

relation to Khovanov homology:

18) Aaron Lauda, “Frobenius algebras, quantum topology and higher categories”, avail-
able at http://www.math.columbia.edu/~lauda/talks/Fields/

Urs Schreiber then wrapped things up with a talk about the quantization of strings
from a higher category viewpoint. You can get a good feeling for this from his blog
entries at the n-Category Café, which are all listed on my webpage for this workshop.

Speaking of the n-Category Café — after the workshop ended, Bruce Bartlett inter-
viewed Urs and me about this blog, which we run together with David Corfield. You can
see the interview here:

19) John Baez and Urs Schreiber, “Interview by Bruce Bartlett”, http://math.ucr.

edu/home/baez/interview2.html

Addendum: For more discussion, go to the n-Category Café.
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Week 246

February 25, 2007

I’ve been gearing up to tell a big, wonderful story about the quest to generalize quantum
knot invariants to higher dimensions by categorifying the theory of quantum groups.
This story began at least 14 years ago! I talked about it way back in “Week 2”.

At the time, Louis Crane and Igor Frenkel had just come out with a draft of a paper
called “Hopf categories and their representations”, which began tackling this problem.
This is roughly when Crane invented the word “categorification” — and their paper is a
big part of why I got interested in n-categories.

The subject moved rather slowly until Frenkel’s student Mikhail Khovanov got into
the game and categorified the Jones polynomial — a famous invariant of knots related
to the very simplest quantum group, the one called “quantum SU(2)”. Now categorifying
knot theory is a hot topic.

James Dolan, Todd Trimble and I have been chewing away on this subject from a quite
different angle, which may ultimately turn out to be the same — or at least related. In
the process, we’ve needed to learn, reinvent or remodel a lot of classical work on group
theory, incidence geometry, and combinatorics. It’s been a great adventure, and it’s far
from over.

I’m dying to explain some of this stuff, and I’ll start soon. But first I need to talk about
something less pleasant: the troubles with fundamental physics.

If you care at all about physics, you’ve probably heard about these:

1) Peter Woit, Not Even Wrong: The Failure of String Theory and the Continuing Chal-
lenge to Unify the Laws of Physics, Basic Books, New York, 2006.

2) Lee Smolin, The Trouble With Physics: The Rise of String Theory, the Fall of a Science,
and What Comes Next, Houghton Mifflin, New York, 2006.

I won’t “review” these books. I’ll just talk about some points they raise — in a very
nontechnical way.

Their importance is that they explain the problems of string theory to the large au-
dience of people who get their news about fundamental physics from magazines and
popular books. Experts were already aware of these problems, but in the popular me-
dia there’s always been a lot of hype, which painted a much rosier picture. So, casual
observers must have gotten the impression that physics was always on the brink of a
Theory of Everything. . . but mysteriously never reaching it. These books correct that
impression.

In fact, string theory still hasn’t reached the stage of making any firm predictions.
For the last few decades, astrophysicists have been making amazing discoveries in fun-
damental physics: dark matter, dark energy, neutrino oscillations, maybe even cosmic
inflation in the very early universe! Soon the Large Hadron Collider will smash particles
against each other hard enough to see the Higgs boson — or not. With luck, it may even
see brand new particles. But about all this, string theory has had little to say.

To get actual predictions, practical physicists sometimes build “string-inspired” sce-
narios. These scenarios aren’t derived from string theory: to get specific predictions, they
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have to throw in lots of extra assumptions. For example, since string theory involves su-
persymmetry, string theorists resort to supersymmetric versions of the Standard Model
to guess what the Large Hadron Collider might see. But the simplest supersymmetric
version of the Standard Model involves over 100 undetermined parameters! Even the
particles we actually see are put in by hand, not derived from string theory. If it turns
out we see some other particles, we can just stick those in too.

Someday this situation may change, but it’s dragged on for a while now. There’s
no reason why theoretical physics should always move fast. The universe has taken
almost 14 billion years to reach its current state of self-knowledge — what’s a few more
decades? But, coming after an era of incredibly rapid progress stretching from 1905 to
1983, the current period of stagnation feels like an eternity. So, physicists are getting a
bit desperate. This has led to some strange behavior.

For example, some people have tried to refute the claim that string theory makes no
testable predictions by arguing that it predicts the existence of gravity! This is better
known as a “retrodiction”.

Others say that since string theory requires extra assumptions to make definite pre-
dictions about our universe, we should — instead of making some assumptions and
using them to predict something — study the space of all possible extra assumptions.
For example, there are lots of Calabi-Yau manifolds that could serve as the little curled-
up dimensions of spacetime, and lots of ways we could stick D-branes here or there,
etcetera.

This space of all possible extra assumptions is called the “Landscape”. Since it’s
vaguely defined, the main things we know about it are:

a) it’s big,

b) it keeps growing as string theorists come up with new ideas,

c) nobody has yet found a point in it that matches our universe.

Despite this, or perhaps because of it, the Landscape has been the subject of many dis-
cussions. Often these devolve into arguments about the “anthropic principle”. Roughly,
this says that if the universe were really different, we wouldn’t be having this argument
— so it must be like it is!

One can in fact draw some conclusions from the anthropic principle. But it’s really
just the low-budget limit of experimental physics. You can always get more conclusions
from doing more experiments. The experiment where you just check to see if you’re alive
is really cheap — but you don’t learn much from it.

(Of course I’m oversimplifying things for comic effect, but usually people take the
opposite approach, overcomplicating this stuff to make it sound more profound than it
is.)

Serious string theorists are mostly able to work around this tomfoolery, but it exerts
a demoralizing effect. So, when Woit and Smolin came out with their books, a lot of
tempers snapped, and a lot of strange arguments were applied against them.

For example, one popular argument was “Okay, buster — can you do better?” The
idea here seems to be that until you know a solution to the problems faced by string
theory, you shouldn’t point out these problems — at least not publicly. This goes against
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my experience: hard problems tend to get solved only after lots of people openly admit
they exist.

Another closely related argument was “String theory is the only game in town.” Until
some obviously better theory shows up, we should keep working on string theory.

It’s true there’s no obviously better theory than string theory. Loop quantum gravity,
in particular, has problems that are just as serious as string theory.

But, the “only game in town” argument is still flawed.
Once I drove through Las Vegas, where there really is just one game in town: gam-

bling. I stopped and took a look. I saw the big fancy casinos. I saw the glazed-eyed
grannies feeding quarters into slot machines, hoping to strike it rich someday. It was
clear: the odds were stacked against me. But, I didn’t respond by saying “Oh well — it’s
the only game in town” and starting to play.

Instead, I left that town.
It’s no good to work on string theory with a glum attitude like “it’s the only game in

town.” There are lots of other wonderful things for theoretical physicists to do. Things
where your work has a good chance of matching experiment. . . or things where you
take a huge risk by going out on your own and trying something new.

Indeed, if following the crowd were the name of the game, string theory might never
have been invented in the first place. It didn’t fall from the sky fully formed, obviously
better than its competitors. A handful of people took a big chance by working on it for
many years before it proved its worth.

In his book, Lee Smolin argues that physics is in the midst of a scientific revolution,
and that these times demand people who don’t just follow fashion:

The point is that different kinds of people are important in normal and revo-
lutionary science. In the normal periods, you need only people who, regardless
of their degree of imagination (which may well be high), are really good at
working with the technical tools — let us call them master craftspeople. During
revolutionary periods, you need seers, who can peer ahead into the darkness.

He later regretted this way of putting it, and I think rightly so. The term “seer”
suggests that some people have a better-than-average ability to see the right answers to
profound questions. This may be true, but it’s hard to tell ahead of time who is a seer
and who is not. Smolin later wrote:

Here is a metaphor due to Eric Weinstein that I would have put in the book had
I heard it before. Let us take a different twist on the landscape of theories and
consider the landscape of possible ideas about post standard model or quantum
gravity physics that have been proposed. Height is proportional to the number
of things the theory gets right. Since we dont have a convincing case for the
right theory yet, that is a high peak somewhere off in the distance. The existing
approaches are hills of various heights that may or may not be connected across
some ridges and high valleys to the real peak. We assume the landscape is
covered by fog so we cant see where the real peak is, we can only feel around
and detect slopes and local maxima.

Now to a rough approximation, there are two kinds of scientists — hill climbers
and valley crossers. Hill climbers are great technically and will always advance
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an approach incrementally. They are what you want once an approach has
been defined, i.e. a hill has been discovered, and they will always go uphill and
find the nearest local maximum. Valley crossers are perhaps not so good at
those skills, but they have great intuition, a lot of serendipity, the ability to
find hidden assumptions and look at familiar topics new ways, and so are able
to wander around in the valleys, or cross exposed ridges, to find new hills and
mountains.

I used craftspeople vs. seers for this distinction, Kuhn referred to normal science
vs. revolutionary science, but the idea was the same.

With the scene set, here is my critique. First, to progress, science needs a mix of
hill climbers and valley crossers. The balance needed at any one time depends on
the problem. The more foundational and risky a problem is the more the balance
needs to be shifted towards valley crossers. If the landscape is too rugged, with
too many local maxima, and there are too many hill climbers vs. valley crossers,
you will end up with a lot of hill climbers camped out on the tops of hills,
each group defending their hills, with not enough valley crossers to cross those
perilous ridges and swampy valleys to find the real mountain.

This is what I believe is the situation we are in. And — and this is the point of
Part IV [of the book] — we are in it, because science has become professionalized
in a way that takes the characteristics of a good hill climber as representative
of what is a good, or promising scientist. The valley crossers we need have been
excluded, or pushed to the margins where they are not supported or paid much
attention to.

My claim is then 1) we need to shift the balance to include more valley crossers,
and 2) this is easy to do, if we want to do it, because there also are criteria
that can allow us to pick out who is worthy of support. They are just different
criteria.

This is a good analysis, but it leaves out one thing: most “valley crossers” get stuck
wandering around in valleys. Even those who succeed once are likely to fail later: think
of Einstein’s long search for a unified field theory, or Schrödinger’s “unitary field theory”
involving a connection with torsion, or Heisenberg’s nonlinear spinor field theory, or
Kelvin’s vortex atoms. It’s not surprising these geniuses spent a lot of time on failed
theories — what’s surprising is their successes.

So, failure is an unavoidable cost of doing business, and encouraging more “valley
crossers” or “risk takers” will inevitably look like encouraging more failures.

Unfortunately, the alternative is even more risky. If everyone pursues the same ap-
proach, we’ll all succeed or fail together — and chances are we’ll fail. The reason for
backing some risk takers is that it “diversifies our portfolio”. It reduces overall risk by
increasing the chance that someone will succeed.

(It’s no coincidence that Eric Weinstein, mentioned above by Smolin, works as an
investment banker. He’s also a student of Raoul Bott — but that’s another story!)

Near the end of his book, Woit quotes the mathematican Michael Atiyah, who also
seems to raise the possibility that we need some more risk-taking:

If we end up with a coherent and consistent unified theory of the universe, in-
volving extremely complicated mathematics, do we believe that this represents
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“reality”? Do we believe that the laws of nature are laid down using the elabo-
rate algebraic machinery that is now emerging in string theory? Or is it possible
that nature’s laws are much deeper, simple yet subtle, and that the mathemat-
ical description we use is simply the best we can do with the tools we have? In
other words, perhaps we have not yet found the right language or framework to
see the ultimate simplicity of nature.

Most people who read these words and try to find this “right framework” will fail.
But, we can hope that someday a few succeed.

For the fascinating tale of Schrödinger’s “unitary field theory”, see this nice book:

3) Walter Moore, Schrödinger: His Life and Thought, Cambridge U. Press, Cambridge,
1989.

For more about the search for unified field theories in early 20th century, see:

4) Hubert F. M Goenner, “On the history of unified field theories”, Living Reviews of
Relativity 7, (2004), 2. Available at http://www.livingreviews.org/lrr-2004-2

Addenda: I thank Eugenia Cheng and Eugene Lerman for catching mistakes. For
more discussion, go to the n-Category Café.

Apart from agreeing with reality it is certainly a magnificent achievement of
pure thought.

— Einstein, to Hermann Weyl, about Weyl’s attempt to unify gravity and elec-
tromagnetism.
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Symmetry has fascinated us throughout the ages. Greek settlers in Sicily may have seen
irregular 12-sided crystals of pyrite in Sicily and dreamt up the regular dodecahedron
simply because it was more beautiful, more symmetrical.

The Alhambra, a Moorish palace in Granada built around 1300, has tile patterns with at
least 13 of the 17 possible symmetry groups:

1) Branko Grünbaum, “What symmetry groups are present in the Alhambra?”, Notices
of the AMS 53 (2006), 670–673. Also available at http://www.ams.org/notices/
200606/comm-grunbaum.pdf

You can see some of these patterns here:

2) “Moresque tiles”, http://www.spsu.edu/math/tile/grammar/moor.htm

Recently, Peter Lu and Paul Steinhardt discovered that Islamic tile designs also include
“quasicrystals”. A perfectly repetitive tiling can’t have 5-fold symmetry. Nor can a 3-
dimensional crystal: that’s why the dodecahedra formed by pyrite aren’t regular. But by
using patterns that never quite repeat, the Islamic artists achieved approximate 5-fold
symmetry:

3) Peter J. Lu and Paul J. Steinhardt, “Decagonal and quasi-crystalline tilings in me-
dieval Islamic architecture”, Science 315 (2007), 1106–1110.

Here’s an example from the I’timad al-Daula mausoleum in the Indian city of Agra,
built by Islamic conquerors in 1622 - together with a more mathematical version con-
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structed by Lu and Steinhardt:

Here’s another, from the Darb-i Imam shrine in Isfahan, Iran, also built in the 1600s:

This came as a big surprise, since everyone had thought that the math behind quasicrys-
tals was first discovered by Penrose around 1974, then seen in nature by Shechtman,
Blech, Gratias and Cahn in 1983. It goes to show that the appeal of symmetry, even in
its subtler forms, is very old! It also goes to show that you can make big discoveries just
by looking carefully at what’s in front of you.

For more on quasicrystals, try this:

4) Steven Webber, “Quasicrystals”, http://www.jcrystal.com/steffenweber/

Of course, the appeal of symmetry didn’t end with ancient Greeks or medieval Is-
lamic monarchs. It also seems to have gotten ahold of John Fry, chief executive of Fry’s
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Electronics — a chain of retail shops whose motto is “Your best buys are always at Fry’s”.
In 1994 he set up something called the American Institute of Mathematics. The head-
quarters was in a Fry’s store in Palo Alto — not very romantic. But last year, this institute
announced plans to move to a full-scale replica of the Alhambra!

5) Associated Press, “Silicon valley will get Alhambra-like castle”, August 18, 2006.
Available at http://www.jcrystal.com/steffenweber/

And this week, the institute flexed its mighty PR muscles and coaxed reporters from
the New York Times, BBC, Le Monde, Scientific American, Science News, and so on to
write about a highly esoteric advance in our understanding of symmetry — a gargantuan
calculation involving the Lie group E8:

6) American Institute of Mathematics, Mathematicians map E8, http://aimath.org/
E8

The calculation is indeed huge. The answer takes up 60 gigabytes of data: the equiv-
alent of 45 days of music in MP3 format. If this information were written out on paper,
it would cover Manhattan!

But what’s the calculation about? It almost seems a good explanation of that would
also cover Manhattan. I took a stab at it here:

7) John Baez, “News about E8”, http://golem.ph.utexas.edu/category/2007/03/
news about e8.html

but I only got as far as sketching a description of E8 and some gadgets called R-
polynomials. Then come Kazhdan-Lusztig polynomials, and Kazhdan-Lusztig-Vogan poly-
nomials. . . . For more details, follow the links, especially to the page written by Jeffrey
Adams, who led the project.

In weeks to come, I’ll say more about some topics tangentially related to this calcu-
lation — especially flag varieties, representation theory and the Weil conjectures. I may
even talk about Kazhdan-Lusztig polynomials!

For starters, though, let’s just look at some pretty pictures by John Stembridge that
hint at the majesty of E8. Then I’ll sketch the real subject of Weeks to come: symmetry,
geometry, and “groupoidification”.

To warm up to E8, let’s first take a look at D4, D5, E6, and E7.
In “Week 91” I spoke about the D4 lattice. To get this, first take a bunch of equal-

sized spheres in 4 dimensions. Stack them in a hypercubical pattern, so their centers lie
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at the points with integer coordinates. A bit surprisingly, there’s a lot of room left over
— enough to fit in another copy of this whole pattern: a bunch of spheres whose centers
lie at the points with half-integer coordinates!

If you stick in these extra spheres, you get the densest known packing of spheres in 4
dimensions. Their centers form the “D4 lattice”. It’s an easy exercise to check that each
sphere touches 24 others. The centers of these 24 are the vertices of a marvelous shape
called the “24-cell” — one of the six 4-dimensional Platonic solids. It looks like this:

8) John Baez, picture of 24-cell, in ”a review of On Quaternions and Octonions: Their
Geometry, Arithmetic and Symmetry, by John H. Conway and Derek A. Smith’,
available at http://math.ucr.edu/home/baez/octonions/conway smith/

Here I’m using a severe form of perspective to project 4 dimensions down to 2. The
coordinate axes are drawn as dashed lines; the solid lines are the edges of the 24-cell.

How about in 5 dimensions? Here the densest known packing of spheres uses the
“D5 lattice”. This is a lot like the D4 lattice. . . but only if you think about it the right
way.

Imagine a 4-dimensional checkerboard with “squares” — really hypercubes! — alter-
nately colored red and black. Put a dot in the middle of each black square. Voila! You
get a rescaled version of the D4 lattice. It’s not instantly obvious that this matches my
previous description, but it’s true.

If you do the same thing with a 5-dimensional checkerboard, you get the “D5 lattice”,
by definition. This gives the densest known packing of spheres in 5 dimensions. In this
packing, each sphere has 40 nearest neighbors. The centers of these nearest neighbors
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are the vertices of a solid that looks like this:

9) John Stembridge, “D5 root system”, available at http://www.math.lsa.umich.

edu/~jrs/data/coxplanes/

If you do the same thing with a 6-dimensional checkerboard, you get the “D6 lat-
tice”. . . and so on.

However, in 8 dimensions something cool happens. If you pack spheres in the pattern
of the D8 lattice, there’s enough room left to stick in an extra copy of this whole pattern!
The result is called the “E8 lattice”. It’s twice as dense as the D8 lattice.

If you then take a well-chosen 7-dimensional slice through the origin of the E8 lattice,
you get the E7 lattice. And if you take a well-chosen 6-dimensional slice of this, you get
the E6 lattice. For precise details on what I mean by “well-chosen”, see “Week 65”.

E6 and E7 give denser packings of spheres than D6 and D7. In fact, they give the
densest known packings of spheres in 6 and 7 dimensions!

In the E6 lattice, each sphere has 72 nearest neighbors. They form the vertices of a
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solid that looks like this:

10) John Stembridge, “E6 root system”, available at http://www.math.lsa.umich.

edu/~jrs/data/coxplanes/

In the E7 lattice, each sphere has 126 nearest neighbors. They form the vertices of a
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solid like this:

11) John Stembridge, “E7 root system”, available at http://www.math.lsa.umich.

edu/~jrs/data/coxplanes/

In the E8 lattice, each sphere has 240 nearest neighbors. They form the vertices of a
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solid like this:

12) John Stembridge, “E8 root system”, available at http://www.math.lsa.umich.

edu/~jrs/data/coxplanes/

Faithful readers will know I’ve discussed these lattices often before. For how they
give rise to Lie groups, see “Week 63”. For more about “ADE classifications”, see “Week
64” and “Week 230”. I haven’t really added much this time, except Stembridge’s nice
pictures. I’m really just trying to get you in the mood for a big adventure involving all
these ideas: the Tale of Groupoidification!

If we let this story lead us where it wants to go, we’ll meet all sorts of famous and
fascinating creatures, such as:

• Coxeter groups, buildings, and the quantization of logic

• Hecke algebras and Hecke operators

• categorified quantum groups and Khovanov homology

• Kleinian singularities and the McKay correspondence

• quiver representations and Hall algebras

• intersection cohomology, perverse sheaves and Kazhdan-Lusztig theory

However, the charm of the tale is how many of these ideas are unified and made
simpler thanks to a big, simple idea: groupoidification.

So, what’s groupoidification? It’s a method of exposing the combinatorial underpin-
nings of linear algebra — the hard bones of set theory underlying the flexibility of the
continuum.
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Linear algebra is all about vector spaces and linear maps. One of the lessons that gets
drummed into you when you study this subject is that it’s good to avoid picking bases for
your vector spaces until you need them. It’s good to keep the freedom to do coordinate
transformations. . . and not just keep it in reserve, but keep it manifest!

As Hermann Weyl wrote, “The introduction of a coordinate system to geometry is an
act of violence”.

This is a deep truth, which hits many physicists when they study special and general
relativity. However, as Niels Bohr quipped, a deep truth is one whose opposite is also
a deep truth. There are some situations where a vector space comes equipped with a
god-given basis. Then it’s foolish not to pay attention to this fact!

The most obvious example is when our vector space has been defined to consist of
formal linear combinations of the elements of some set. Then this set is our basis.

This often happens when we use linear algebra to study combinatorics.
But if sets give vector spaces, what gives linear operators? Your first guess might be

functions. And indeed, functions between sets do give linear operators between their
vector spaces. For example, suppose we have a function

f : {livecat,deadcat} → {livecat,deadcat}

which “makes sure the cat is dead”:

f(livecat) = deadcat

f(deadcat) = deadcat

Then, we can extend f to a linear operator defined on formal linear combinations of
cats:

F (alivecat + bdeadcat) = adeadcat + bdeadcat

Written as a matrix in the {livecat,deadcat} basis, this looks like(
0 0
1 1

)
(The relation to quantum mechanics here is just a vague hint of themes to come. I’ve
deliberately picked an example where the linear operator is not unitary.)

So, we get some linear operators from functions. . . but not all! We only get operators
whose matrices have exactly a single 1 in each column, the rest of the entries being 0.
That’s because a function f : X → Y sends each element of X to a single element of Y .

This is very limiting. We can do better if we get operators from relations between
sets. In a relation between sets X and Y , an element of X can be related to any number
of elements of Y , and vice versa. For example, let the relation

R : {1, 2, 3, 4}↛ {1, 2, 3, 4}

be “is a divisor of”. Then 1 is a divisor of everybody, 2 is a divisor of itself and 4, 3 is only
a divisor of itself, and 4 is only a divisor of itself. We can encode this in a matrix:

1 0 0 0
1 1 0 0
1 0 1 0
1 1 0 1
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where 1 means “is a divisor of” and 0 means “is not a divisor of”.
We can get any matrix of 0’s and 1’s this way. Relations are really just matrices of

truth values. We’re thinking of them as matrices of numbers. Unfortunately we’re still
far from getting all matrices of numbers!

We can do better if we get matrices from spans of sets. A span of sets, written S : X ↛
Y , is just a set S equipped with functions to X and Y . We can draw it like this:

S

X Y

FG

It’s supposed to look like a bridge — hence the term “span”.
Spans of sets are like relations, but where you can be related to someone more than

once!
For example, X could be the set of Frenchman and Y could be the set of English-

women. S could be the set of Russians. As you know, every Russian has exactly one
favorite Frenchman and one favorite Englishwoman. So, F could be the function “your
favorite Frenchman”, and G could be “your favorite Englishwoman”.

Then, given a Frenchman x and an Englishwoman y, they’re related by the Russian s
whenever s has x as their favorite Frenchman and y as their favorite Englishwoman:

F (s) = xandG(s) = y.

Some pairs (x, y) will be related by no Russians, others will be related by one, and others
will be related by more than one! I bet the pair

(x, y) = (Gérard Depardieu,Emma Thompson)

is related by at least 57 Russians.
This idea lets us turn spans of sets into matrices of natural numbers. Given a span of

finite sets:
S

X Y

FG

we get an X×Y matrix whose (x, y) entry is the number of Russians — I mean elements
s of S — such that

F (s) = xandG(s) = y.

We can get any finite-sized matrix of natural numbers this way.
Even better, there’s a way to “compose” spans that nicely matches the usual way of

multiplying matrices. You can figure this out yourself if you solve this puzzle:

Let X be the set of people on Earth. Let T be the X ×X matrix corresponding
to the relation “is the father of”. Why does the matrix T 2 correspond to the
relation “is the paternal grandfather of”? Let S correspond to the relation “is a
friend of”. Why doesn’t the matrix S2 correspond to the relation “is a friend of
a friend of”? What span does this matrix correspond to?
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To go further, we need to consider spans, not of sets, but of groupoids!
I’ll say more about this later — I suspect you’re getting tired. But for now, briefly:

a groupoid is a category with inverses. Any group gives an example, but groupoids are
more general — they’re the modern way of thinking about symmetry.

There’s a way to define the cardinality of a finite groupoid:

12) John Baez and James Dolan, “From finite sets to Feynman diagrams”, in Mathemat-
ics Unlimited — 2001 and Beyond, vol. 1, eds. Bjorn Engquist and Wilfried Schmid,
Springer, Berlin, 2001, pp. 29–50. Also available as math.QA/0004133.

And, this can equal any nonnegative rational number! This lets us generalize what
we’ve done from finite sets to finite groupoids, and get rational numbers into the game.

A span of groupoids is a diagram

S

X Y

FG

where X,Y, S are groupoids and F,G are functors. If all the groupoids are finite, we
can turn this span into a finite-sized matrix of nonnegative rational numbers, by copying
what we did for spans of finite sets.

There’s also a way of composing spans of groupoids, which corresponds to multiply-
ing matrices. However, there’s a trick involved in getting this to work — I’ll have to
explain this later. For details, try:

13) Jeffrey Morton, “Categorified algebra and quantum mechanics”, Theory and Ap-
plication of Categories 16 (2006), 785–854. Available at http://www.emis.de/

journals/TAC/volumes/16/29/16-29abs.html; also available as math.QA/0601458.

14) Simon Byrne, On Groupoids and Stuff, honors thesis, Macquarie University, 2005,
available at http://www.maths.mq.edu.au/~street/ByrneHons.pdf and http:/

/math.ucr.edu/home/baez/qg-spring2004/ByrneHons.pdf

Anyway: the idea of “groupoidification” is that in many cases where mathematicians
think they’re playing around with linear operators between vector spaces, they’re actually
playing around with spans of groupoids!

This is especially true in math related to simple Lie groups, their Lie algebras, quan-
tum groups and the like. While people usually study these gadgets using linear algebra,
there’s a lot of combinatorics involved — and where combinatorics and symmetry show
up, one invariably finds groupoids.

As the name suggests, groupoidification is akin to categorification. But, it’s a bit
different. In categorification, we try to boost up mathematical ideas this way:

sets→ categories
functions→ functors

In groupoidification, we try this:
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vector spaces→ groupoids
linear operators→ spans of groupoids

Actually, it’s “decategorification” and “degroupoidification” that are systematic pro-
cesses. These processes lose information, so there’s no systematic way to reverse them.
But, as I explained in “Week 99”, it’s still fun to try! If we succeed, we discover an ex-
tra layer of structure beneath the math we thought we understood. . . and this usually
makes that math clearer and less technical, because we’re not seeing it through a blurry,
information-losing lens.

Okay, that’s enough for now. On a completely different note, here’s a book on “struc-
tural realism” and quantum mechanics:

15) Dean Rickles, Steven French, and Juha Saatsi, The Structural Foundations of Quan-
tum Gravity, Oxford University Press, Oxford, 2006. Containing:

• Dean Rickles and Steven French, “Quantum gravity meets structuralism: in-
terweaving relations in the foundations of physics”. Also available at http:/
/fds.oup.com/www.oup.co.uk/pdf/0-19-926969-6.pdf

• Tian Yu Cao, “Structural realism and quantum gravity”.

• John Stachel, “Structure, individuality, and quantum gravity”. Also available
as gr-qc/0507078.

• Oliver Pooley, “Points, particles, and structural realism”. Also available at
http://philsci-archive.pitt.edu/archive/00002939/

• Mauro Dorato and Massimo Pauri, “Holism and structuralism in classical and
quantum general relativity”. Also available at http://philsci-archive.

pitt.edu/archive/00001606/

• Dean Rickles, “Time and structure in canonical gravity”. Also available at
http://philsci-archive.pitt.edu/archive/00001845/

• Lee Smolin, “The case for background independence”. Also available as hep-th/
0507235.

• John Baez, “Quantum quandaries: A category-theoretic perspective”. Also
available at http://math.ucr.edu/home/baez/quantum/ and as quant-ph/

0404040.

Very loosely speaking — I ain’t no philosopher — structural realism is the idea that
what’s “real” about mathematics, or the abstractions in physical theories, are not indi-
vidual entities but the structures, or patterns, they form. So, instead of asking tired
questions like “What is the number 2, really?” or “Do points of spacetime really exist?”,
we should ask more global questions about the roles that structures like “natural num-
bers” or “spacetime” play in math and physics. It’s a bit like how in category theory, we
can only understand an object in the context of the category it inhabits.

Finally, here’s a puzzle for lattice and Lie group fans. The dots in Stembridge’s pic-
tures are the shortest nonzero vectors in the D5, E6, E7, and E8 lattices — or in technical
terms, the “roots”. Of course, only for ADE Dynkin diagrams are the roots all of equal
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length — but those are the kind we have here. Anyway: in the D5 case, only 32 of the
40 roots are visible. The other 8 are hidden in back somewhere. Where are they?

I asked John Stembridge about this and he gave a useful clue. His planar pictures
show projections of the roots into what he calls the “Coxeter plane”.

Recall from “Week 62” that the “Coxeter group” associated to a Dynkin diagram acts
as rotation/reflection symmetries of the roots; it’s generated by reflections through the
roots. There’s a basis of roots called “simple roots”, one for each dot in our Dynkin
diagram, and the product of reflections through all these simple roots is called the “Cox-
eter element” of our Coxeter group — it’s well-defined up to conjugation. The “Coxeter
plane” is the canonical plane on which the Coxeter element acts as a rotation.

A rotation by how much? The order of the Coxeter element is called the “Coxeter
number” and denoted h, so the Coxeter element acts on the Coxeter plane as a rotation
of 2π/h. The Coxeter number is important for other reasons, too! Here’s how it goes:

Coxeter group Coxeter number

An n+ 1
Bn 2n
Cn 2n
Dn 2n− 2
E6 12
E7 18
E8 30
F4 12
G2 6

For D5 the Coxeter number is 8, which accounts for the 8-fold symmetry of Stem-
bridge’s picture in that case. The E8 picture has 30-fold symmetry! My D4 picture has
8-fold symmetry, so I must not have been projecting down to the Coxeter plane.

Anyway, this stuff should help answer my puzzle. I don’t know the answer, though.

Addenda: I thank David Corfield and James Dolan for catching mistakes. Tony Smith
found a nice picture created by Günter Ziegler of the D4 root system (that is, the 24-cell)
viewed from the Coxeter plane. The D4 root system is 4-dimensional, but it’s been drawn
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with a bit of 3d perspective. The 6-fold symmetry is evident:

16) Günter M. Ziegler, “picture of 24-cell”, http://www.math.tu-berlin.de/~ziegler/
24-cell.jpeg

For more discussion, go to the n-Category Café.

The true spirit of delight, the exaltation, the sense of being more than Man,
which is the touchstone of the highest excellence, is to be found in mathe-
matics as surely as poetry.

— Bertrand Russell
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Week 248

March 28, 2007

This week I’ll continue the Tale of Groupoidification. But first: some new views of the
Sun!

Here’s a cool movie of the Moon passing in front of the Sun, as viewed from the
“STEREO B” spacecraft. Click on it:

2) Astronomy Picture of the Day, March 3 2007, “Lunar transit from STEREO”, http:/
/antwrp.gsfc.nasa.gov/apod/ap070303.html

As the name hints, there’s a pair of STEREO satellites in orbit around the Sun. One is
leading the Earth a little, the other lagging behind a bit, to provide a stereoscopic view
of coronal mass ejections.

What’s a “coronal mass ejection”? It’s an event where the Sun shoots off a blob of
ionized gas — billions of tons of it — at speeds around 1000 kilometers per second!

That sounds cataclysmic. . . but it happens between once a day and 5-6 times a
day, depending on where we are in the 11-year solar cycle, also known as the “sunspot
cycle”. Right now we’re near the minimum of this cycle. Near the maximum, coronal
mass ejections can really screw up communication systems here on Earth. For example,
in 1998 a big one seems to have knocked out a communication satellite called Galaxy 4,
causing 45 million people in the US to lose their telephone pager service:

3) Gordon Holman and Sarah Benedict, “Solar Flare Theory: Coronal mass ejec-
tions, solar flares, and the Earth-Sun connection”, http://www.agu.org/sci soc/

articles/eisbaker.html

So, it’s not only fun but also practical to understand coronal mass ejections. Here’s a
movie of one taken by the Solar and Heliospheric observatory (SOHO):
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4) NASA, “Cannibal coronal mass ejections”, http://science.nasa.gov/headlines/
y2001/ast27mar 1.htm

As I mentioned in “Week 150”, SOHO is a satellite orbiting the Sun right in front of the
Earth, at an unstable equilibrium — a “Lagrange point” — called L1. SOHO is bristling
with detectors and telescopes of all sorts, and this movie was taken by a coronagraph,
which is a telescope specially designed to block out the Sun’s disk and see the fainter
corona.

If a coronal mass ejection hits the Earth, it does something like this:

5) NASA, “What is a CME?”, http://www.nasa.gov/mpg/111836main what is a cme NASA%20WebV 1.

mpg

In this artist’s depiction you can see the plasma shoot off from the Sun, hit the Earth’s
magnetic field — this actually takes one to five days — and squash it, pushing field
lines around to the back side of the Earth. When the magnetic field lines reconnect in
back, trillions of watts of power come cascading down through the upper atmosphere,
producing auroras. Here’s a nice movie of what those can look like:

6) YouTube, “Aurora (Northern Lights)”, http://www.youtube.com/watch?v=qIXs6Sh0DKs

I wish I understood this magnetic field line trickery better! Magnetohydrodynamics
— the interactions between electromagnetic fields and plasma — is a branch of physics
that always gave me the shivers. The Navier-Stokes equations describing fluid flow are
bad enough — if you can prove they have solutions, you’ll win $1,000,000 from the Clay
Mathematics Institute. Throw in Maxwell’s equations and you get a real witches’ brew
of strange phenomena.

In fact, this subject is puzzling even to experts. For example, why is the Sun’s upper
atmosphere — the corona — so hot? Here’s a picture of the Sun in X-rays taken by
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another satellite:

7) Transition Region and Coronal Explorer (TRACE), “Images of the sun”, http://
trace.lmsal.com/POD/TRACEpodarchive26.html

This lets you see plasma in the corona with temperatures between 1 million kelvin
(shown as blue) and 2 million kelvin (red). By comparison, the visible surface of the Sun
is a mere 5800 kelvin!

Where does the energy come from to heat the corona? There are lots of competing
theories. It could even be due to “magnetic field reconnection”, the same topological
phenomenon that triggers auroras when coronal mass ejections smash into the Earth’s
magnetic field, as in that movie above. For more, try this:

8) Andrew L. Haynes, Clare E. Parnell, Klaus Galsgaard and Eric R. Priest, “Magne-
tohydrodynamic evolution of magnetic skeletons”, Proc. Roy. Soc. Lond. A 463
(2007) 1097–1115. Also available as astro-ph/0702604.

A new satellite called Hinode is getting a good look at what’s going on, and it seems
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the magnetic field on the Sun’s surface is much more dynamic than before thought:

9) NASA, “Hinode: investigating the Sun’s magnetic field”, http://www.nasa.gov/
mission pages/solar-b/

In fact, weather on the Sun may be more complex than on the Earth. There’s “rain”
when plasma from the corona cools and falls back down to the Sun’s surface. . . and
sometimes there are even tornados! You think tornados on Earth are scary? Check out
this movie made during an 8-hour period in August 2000, near the height of the solar
cycle:

10) TRACE, “Tornados and fountains in a filament on 2 Aug. 2000”, movie 13, http:/
/trace.lmsal.com/POD/

Besides the tornados, near the end you can see glowing filaments of plasma following
magnetic field lines!

Now for something simpler: the Tale of Groupoidification.
I don’t want this to be accessible only to experts, since a bunch of it is so wonderfully

elementary. So, I’m going to proceed rather slowly. This may make the experts impatient,
so near the end I’ll zip ahead and sketch out a bit of the big picture.

Last time I introduced spans of sets. A span of sets is just a set S equipped with
functions to X and Y :

S

X Y

FG

Simple! But the important thing is to understand this thing as a “witnessed relation”.
Have you heard how computer scientists use the term “witness”? They say the num-

ber 17 is a “witness” to the fact that the number 221 isn’t prime, since 17 evenly divides
221.

That’s the idea here. Given a span S as above, we can say an element x of X and an
element y of Y are “related” if there’s an element s of S with

F (s) = x and G(s) = y
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The element s is a “witness” to the relation.
Last week, I gave an example where a Frenchman x and an Englishwoman y were

related if they were both the favorites of some Russian s.
Note: there’s more information in the span than the relation it determines. The

relation either holds or fails to hold. The span does more: it provides a set of “witnesses”.
The relation holds if this set of witnesses is nonempty, and fails to hold if it’s empty.

At least, that’s how mathematicians think. When I got married last month, I discov-
ered the state of California demands two witnesses attend the ceremony and sign the
application for a marriage license. Here the relation is “being married”, and the wit-
nesses attest to that relation — but for the state, one witness is not enough to prove that
the relation holds! They’re using a more cautious form of logic.

To get the really interesting math to show up, we need to look at other examples of
“witnessed relations” — not involving Russians or marriages, but geometry and symme-
try.

For example, suppose we’re doing 3-dimensional geometry. There’s a relation “the
point x and the line y lie on a plane”, but it’s pretty dull, since it’s always true. More
interesting is the witnessed relation “the point x and the line y lie on the plane z”. The
reason is that sometimes there will be just one plane containing a point and a line, but
when the point lies on the line, there will be lots.

To think of this “witnessed relation” as a span

S

X Y

FG

we can take X to be the set of points and Y to be the set of lines.
Can we take S to be the set of planes? No! Then there would be no way to define the

functions F and G, because the same plane contains lots of different points and lines.
So, we should take S to be the set of triples (x, y, z) where x is a point, y is a line, and z
is a plane containing x and y. Then we can take

F (x, y, z) = x

and
G(x, y, z) = y

A “witness” to the fact that x and y lie on a plane is not just a plane containing them,
but the entire triple.

(If you’re really paying attention, you’ll have noticed that we need to play the same
trick in the example of witnesses to a marriage.)

Spans like this play a big role in “incidence geometry”. There are lots of flavors of
incidence geometry, with “projective geometry” being the most famous. But, a common
feature is that we always have various kinds of “figures” — like points, lines, planes, and
so on. And, we have various kinds of “incidence relations” involving these figures. But
to really understand incidence geometry, we need to go beyond relations and use spans
of sets.

Actually, we need to go beyond spans of sets and use spans of groupoids! The reason
is that incidence geometries usually have interesting symmetries, and a groupoid is like

606



WEEK 248 MARCH 28, 2007

a “set with symmetries”. For example, consider lines in 3-dimensional space. These form
a set, but there are also symmetries of 3-dimensional space mapping one line to another.
To take these into account we need a richer structure: a groupoid!

Here’s the formal definition: a groupoid consists of a set of “objects”, and for any
objects x and y, a set of “morphisms”

f : x→ y

which we think of as symmetries taking x to y. We can compose a morphism f : x → y
and a morphism g : y → z to get a morphism fg : x → z. We think of fg as the result of
doing first f and then g. So, we demand the associative law

(fg)h = f(gh)

whenever either side is well-defined. We also demand that every object x has an identity
morphism

1x : x→ x

We think of this as the symmetry that doesn’t do anything to x. So, given any morphism
f : x→ y, we demand that

f1y = f = 1xf

So far this is the definition of a “category”. What makes it a “groupoid” is that every
morphism f : x→ y has an “inverse”

f−1 : y → x

with the property that
ff−1 = 1x

and
f−1f = 1y

In other words, we can “undo” any symmetry.
So, in our spans from incidence geometry:

S

X Y

FG

X, Y and S will be groupoids, while F and G will be maps between groupoids: that is,
“functors”!

What’s a functor? Given groupoids A and B, clearly a functor

F : A→ B

should send any object x in A to an object F (x) in B. But also, it should send any
morphism in A:

f : x→ y
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to a morphism in B:
F (f) : F (x)→ F (y)

And, it should preserve all the structure that a groupoid has, namely composition:

F (fg) = F (f)F (g)

and identities:
F (1x) = 1F (x)

It then automatically preserves inverses too:

F (f−1) = F (f)−1

Given this, what’s the meaning of a span of groupoids? You could say it’s a “invariant”
witnessed relation — that is, a relation with witnesses that’s preserved by the symmetries
at hand. These are the very essence of incidence geometry. For example, if we have a
point and a line lying on a plane, we can rotate the whole picture and get a new point
and a new line lying on a new plane. Indeed, a “symmetry” in incidence geometry is
precisely something that preserves all such “incidence relations”.

For those of you not comfy with groupoids, let’s see how this actually works. Suppose
we have a span of groupoids:

S

X Y

FG

and the object s is a witness to the fact that x and y are related:

F (s) = x and G(s) = y

Also suppose we have a symmetry sending s to some other object of S:

f : s→ s′

This gives morphisms
F (f) : F (s)→ F (s′)

in X and
G(f) : G(s)→ G(s′)

in Y . And if we define
F (s′) = x′ and G(s′) = y′

we see that s′ is a witness to the fact that x′ and y′ are related.
Let me summarize the Tale so far:

• Spans of groupoids describe “invariant witnessed relations”.

• Invariant witnessed relations are the essence of incidence geometry.
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• There’s a way to turn spans of groupoids into matrices of numbers, so that multi-
plying matrices corresponds to some nice way of “composing” spans of groupoids
(which I haven’t really explained yet).

From all this, you should begin to vaguely see that starting from any sort of incidence
geometry, we should be able to get a bunch of matrices. Facts about incidence geometry
will give facts about linear algebra!

“Groupoidification” is an attempt to reverse-engineer this process. We will discover
that lots of famous facts about linear algebra are secretly facts about incidence geometry!

To prepare for what’s to come, the maniacally diligent reader might like to review
“Week 178”, “Week 180”, “Week 181”, “Week 186” and “Week 187”, where I explained
how any Dynkin diagram gives rise to a flavor of incidence geometry. For example, the
simplest-looking Dynkin diagrams, the An series, like this for n = 3:

•
points

•
lines

•
planes

give rise to n-dimensional projective geometry. I may have to review this stuff, but first
I’ll probably say a bit about the theory of group representations and Hecke algebras.

(There will also be other ways to get spans of groupoids, that don’t quite fit into
what’s customarily called “incidence geometry”, but still fit very nicely into our Tale.
For example, Dynkin diagrams become “quivers” when we give each edge a direction,
and the “groupoid of representations of a quiver” gives rise to linear-algebraic structures
related to a quantum group. In fact, I already mentioned this in item E of “Week 230”.
Eventually this will let us groupoidify the whole theory of quantum groups! But, I don’t
want to rush into that, since it makes more sense when put in the right context.)

By the way, some of you have already pointed out how unfortunate it is that last
Week was devoted to E8, instead of this one. Sorry.

Addendum: I thank logopetria for catching typos. For more discussion, go to the
n-Category Café.

Science is the only news. When you scan through a newspaper or magazine,
all the human interest stuff is the same old he-said-she-said, the politics and
economics the same sorry cyclic dramas, the fashions a pathetic illusion of
newness, and even the technology is predictable if you know the science.

— Stewart Brand
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Week 249

April 8, 2007

As you may recall, I’m telling a long story about symmetry, geometry, and algebra. Some
of this tale is new work done by James Dolan, Todd Trimble and myself. But a lot of it is
old work by famous people which deserves a modern explanation.

A great example is Felix Klein’s “Erlangen program” — a plan for reducing many sorts
of geometry to group theory. Many people tip their hat to the Erlanger program, but few
seem to deeply understand it, and even fewer seem to have read what Klein actually
wrote about it!

The problem goes back a long ways. In 1871, while at Göttingen, Klein worked on non-
Euclidean geometry, and showed that hyperbolic geometry was consistent if and only if
Euclidean geometry was. In the process, he must have thought hard about the role of
symmetry groups in geometry. When he was appointed professor at Erlangen in 1872,
he wrote a lecture outlining his “Erlanger Programm” for reducing geometry to group
theory.

But, he didn’t actually give this lecture as his inaugural speech! He spoke about
something else.

So, nobody ever heard him announce the Erlangen program. And, until recently, the
lecture he wrote was a bit hard to find. Luckily, now you can get it online:
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1) Felix Klein, “Vergleichende Betrachtungen ueber neuere geometrische Forschun-
gen”, Verlag von Andreas Deichert, Erlangen, 1872. Also available at the University
of Michigan Historical Mathematics Collection, http://www.hti.umich.edu/cgi/
t/text/text-idx?c=umhistmath;idno=ABN7632

Even better, Johan Ernst Mebius has recently prepared an HTML version, with links
to the above version:

2) Johan Ernst Mebius, “Felix Klein’s Erlanger Programm”, http://www.xs4all.nl/
~jemebius/ErlangerProgramm.htm

But what if you have the misfortune of only reading English, not German? Until now
the only translation was quite hard to obtain:

3) Felix Klein, “A comparative review of recent researches in geometry”, trans. M. W.
Haskell, Bull. New York Math. Soc. 2, (1892-1893), 215–249.

In case you’re wondering, the “New York Mathematical Society” no longer exists! It
was founded in 1888, but in 1894 it went national and became the American Mathemat-
ical Society.

Luckily, after Thomas Love pointed out the existence of this old translation, Chris
Hillman was able to get ahold of it and scan it in! Then Robin Houston created a PDF file
of the whole thing, and Lukas-Fabian Moser created a DjVu file. Then Nitin C. Rughoo-
nauth took the marvelous step of putting it into LaTeX! So now, you can read Klein’s
paper in English here:

4) “The Erlangen program”, http://math.ucr.edu/home/baez/erlangen/

English-speakers can read more about the Erlangen program here:

5) Felix Klein, Elementary Mathematics from an Advanced Standpoint: Geometry, part
3: “Systematic discussion of geometry and its foundations”, Dover, New York,
1939.

Luckily Dover keeps its books in print!
For more on the Erlangen program, try these:

6) Garrett Birkhoff and M. K. Bennett, ‘Felix Klein and his “Erlanger Programm” ’,
in History and Philosophy of Modern Mathematics, eds. W. Aspray and P. Kitcher,
Minnesota Stud. Philos. Sci. XI, University of Minnesota Press, Minneapolis, 1988,
pp. 145–176.

7) Hans A. Kastrup, “The contributions of Emmy Noether, Felix Klein and Sophus Lie
to the modern concept of symmetries in physical systems”, in Symmetries in Physics
(1600–1980), ed. M. G. Doncel, World Scientific, Singapore, 1987, pp. 113–163.

8) I. M. Yaglom, Felix Klein and Sophus Lie: Evolution of the Idea of Symmetry in the
Nineteenth Century, trans. S. Sossinsky, Birkhauser, Boston, 1988.

For more about Klein, try “Week 213” and this little biography:
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9) MacTutor History of Mathematics Archive, “Felix Klein”, http://www-history.

mcs.st-andrews.ac.uk/Biographies/Klein.html

But what does the Erlangen program actually amount to, in the language of modern
mathematics? This will take a while to explain, so the best thing is to dive right in.

Last week in the Tale of Groupoidification I tried to explain two slogans:

groupoids are like ‘sets with symmetries’
and
spans of groupoids are like ‘invariant witnessed relations’

They’re a bit vague; they’re mainly designed to give you enough intuition to follow
the next phase of the Tale, which is all about how:

groupoids give vector spaces
and
spans of groupoids give linear operators

But before the next phase, I need to say a bit about how groupoids and spans of
groupoids fit into Klein’s Erlangen program.

Groupoids are a modern way to think about symmetries. A more traditional approach
would use a group acting as symmetries of some set. And the most traditional approach
of all, going back to Galois and Klein, uses a group acting transitively on a set.

So, let me explain the traditional approach, and then relate it to the modern one.
I hope you know what it means for a group G to “act” on a set X. It means that for

any element x of X and any guy g in G, we get a new element gx in X. We demand that

1x = x

and
g(hx) = (gh)x.

More precisely, this is a “left action” of G on X, since we write the group elements to the
left of x. We can also define right actions, and someday we may need those too.

We say an action of a group G on a set X is “transitive” if given any two elements of
X, there’s some guy in G mapping the first element to the second. In this case, we have
an isomorphism of sets

X = G/H

for some subgroup H of G.
For example, suppose we’re studying a kind of geometry where the symmetry group

is G. Then X could be the set of figures of some sort: points, or lines, or something
fancier. If G acts transitively on X, then all figures of this sort “look alike”: you can get
from any one to any other using a symmetry. This is often the case in geometry. . . but
not always.

Suppose G acts transitively on X. Pick any figure x of type X and let H be its
“stabilizer”: the subgroup consisting of all guys in G that map x to itself. Then we get a
one-to-one and onto map

f : X → G/H
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sending each figure gx in X to the equivalence class [g] in G/H.
If you haven’t seen this fact before, you should definitely prove it — it’s one of the

big ways people use symmetry!
Here’s one kind of thing people do with this fact. The 3d rotation group G = SO(3)

acts on the sphere X = S2, and the stabilizer of the north pole is the 2d rotation group
H = SO(2), so the sphere is isomorphic to G/H = SO(3)/SO(2). The same sort of result
holds in any dimension, and we can use it to derive facts about spheres from facts about
rotation groups, and vice versa.

A grander use of this fact is to set up a correspondence between sets on which G
acts transitively and subgroups of G. This is one of the principles lurking behind Galois
theory.

Galois applied this principle to number theory — see “Week 201” for details. But, it
really has nothing particular to do with number theory! In his Erlangen program, Klein
applied it to geometry.

Klein’s goal was to systematize a bunch of different kinds of non-Euclidean geometry.
Each kind of geometry he was interested in had a different group of symmetries. For
example:

• n-dimensional spherical geometry has the rotation group SO(n+1) as symmetries.
(Or, if you want to include reflections, the bigger group O(n+ 1).)

• n-dimensional Euclidean geometry has the Euclidean group ISO(n) as symmetries.
(This group is built from rotations in SO(n) together with translations in Rn.)

• n-dimensional hyperbolic geometry has the group SO(n, 1) as symmetries. (This
group also shows up in special relativity under the name of the “Lorentz group”: it
acts on the “mass hyperboloid”, and that’s how hyperbolic geometry shows up in
special relativity.)

• n-dimensional projective geometry has the group SL(n + 1) as symmetries. (This
group consists of (n + 1) × (n + 1) matrices with determinant 1. Scalar multiples
of the identity act trivially on projective space, so it’s actually better to use the
“projective general linear group” PGL(n+1), consisting of invertible matrices mod
scalars. But, this has the same Lie algebra as SL(n + 1), so people are often a bit
slack about which group they use.)

The details here don’t matter much yet; the point is that there are lots of interesting
kinds of geometry, with interesting symmetry groups!

Klein realized that in any kind of geometry like this, a “type of figure” corresponds
to a set on which G acts transitively. Here a “figure” could be a point, a line, a plane, or
something much fancier. Regardless of the details, the set of all figures of the same type
can be written as G/H, and G acts transitively on this set.

The really cool part is that we can use Klein’s idea to define a geometry for any group
G. To do this, we just say that every subgroup H of G gives rise to a type of figure. So,
we work out all the subgroups of G. Then, we work out all the incidence relations —
relations like “a point lies on a line”. To do this, we take two sets of figures, say

X = G/H
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and
Y = G/K

and find all the invariant relations between them: that is, subsets of X ×Y preserved by
all the symmetries. I’ll say more about how to do this next time — we can use something
called “double cosets”. In nice cases, like when G is a simple Lie group and H and K are
so-called “parabolic” subgroups, these let us express all the invariant relations in terms
of finitely many “atomic” ones! So, we can really carry out Klein’s program of thoroughly
understanding geometry starting from groups — at least in nice cases.

In short, group actions — especially transitive ones — are a traditional and very
powerful way of using symmetry to tackle lots of problems.

So, to bridge the gap between the traditional and the new, I should explain how
group actions give groupoids. I’ll show you that:

a groupoid equipped with certain extra stuff is
the same as a group action

It’s not very hard to get a groupoid from a group action. Say we have a groupG acting
on a set X. Then the objects of our groupoid are just elements of X, and a morphism

g : x→ y

is just a group element g with
gx = y.

Composing morphisms works the obvious way — it’s basically just multiplication in the
group G.

Some people call this groupoid an “action groupoid”. I often call it the “weak quo-
tient” X//G, since it’s like the ordinary quotient X/G, but instead of declaring that x
and y are equal when we have a group element g sending x to y, we instead declare
they’re isomorphic via a specified isomorphism g : x→ y.

But for now, let’s call X//G the “action groupoid”.
So, group actions give action groupoids. But, these groupoids come with extra stuff!
First of all, the action groupoid X//G always comes equipped with a functor

X//G
p−→ G

sending any object of X//G to the one object of G, and any morphism g : x → y to the
corresponding element of G. Remember, a group is a groupoid with one object: this is
the 21st century!

Second of all, this functor p is always “faithful”: given two morphisms from x to y, if
p maps them to the same morphism, then they were equal.

And that’s all! Any groupoid with a faithful functor to G is equivalent to the action
groupoid X//G for some action of G on some set X. This takes a bit of proving. . . let’s
not do it now.

So: in my slogan

a groupoid equipped with certain extra stuff is
the same as a group action

614



WEEK 249 APRIL 8, 2007

the “certain extra stuff” was precisely a faithful functor to G.
What if we have a transitive group action? Then something nice happens.
First of all, saying that G acts transitively on X is the same as saying there’s a mor-

phism between any two objects of X//G. In other words, all objects of X//G are iso-
morphic. Or in other words, there’s just one isomorphism class of objects.

Just as a groupoid with one object is a group, a groupoid with one isomorphism class
of objects is equivalent to a group. Here I’m using the usual notion of “equivalence” of
categories, as explained back in “Week 76”.

So, G acts transitively on X precisely when X//G is equivalent to a group!
And what group? Well, what could it possibly be? It’s just the stabilizer of some

element of X! So, in the case of a transitive group action, our functor

X//G
p−→ G

is secretly equivalent to the inclusion

H
i−→ G

of the stabilizer group of this element.
So, we see how Klein’s old idea of geometrical figures as subgroups of G is being

generalized. We can start with any groupoid Y of “figures” and “symmetries between
figures”, and play with that. It becomes an action groupoid if we equip it with a faithful
functor to some group G:

Y → G

Then the action is transitive if all the objects of Y are isomorphic. In that case, our
functor is equivalent to an inclusion

H → G

and we’re back down to Klein’s approach to geometry. But, it’s actually good to gener-
alize what Klein did, and think about arbitrary “groupoids over G” — that is, groupoids
equipped with functors to G.

So, when we blend our ideas on spans of groupoids with Klein’s ideas, we’ll want
to use spans of groupoids “over G” — that is, commutative diamonds of groupoids and
functors, like this:

S

X Y

G

There’s much more to say about this, but not today!
I’ll say one last thing before quitting. It’s a bit more technical, but I feel an urge to

see it in print.
People often talk about “the” stabilizer group of a transitive action of some group G

on some set X. This is a bit dangerous, since every element of X has its own stabilizer,
and they’re not necessarily all equal!
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However, they’re all conjugate: if the stabilizer of x is H, then the stabilizer of gx is
gHg−1.

So, when I say above that
X//G

p−→ G

is equivalent to
H

i−→ G

I could equally well have said it’s equivalent to

H
i′−→ G

where the inclusion i′ is the inclusion i conjugated by g. If you know some category
theory, you’ll see that i and i′ are naturally isomorphic: a natural isomorphism between
functors between groups is just a “conjugation”. Picking the specific inclusion i requires
picking a specific element x of X.

Of course, I’ll try to write later issues in a way that doesn’t force you to have under-
stood all these nuances!

Addendum: For more discussion, go to the n-Category Café.

There is no benefit today in arithmetic in Roman numerals. There is also no
benefit today in insisting that the group concept is more fundamental than
that of groupoid.

— Ronald Brown
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Week 250

April 26, 2007

Right now I’m in a country estate called Les Treilles in southern France, at a conference
organized by Alexei Grinbaum and Michel Bitbol:

1) “Philosophical and Formal Foundations of Modern Physics”, http://www-drecam.
cea.fr/Phocea/Vie des labos/Ast/ast visu.php?id ast=762

It’s very beautiful here, but about 20 philosophers, physicists and mathematicians have
agreed to spend six days indoors discussing quantum gravity, the history of relativity,
quantum information theory and the like. And guess what? Now it’s our afternoon off,
and I’m spending my time writing This Week’s Finds! Some people just don’t know how
to enjoy life.

In fact, I want to continue telling you The Tale of Groupoidification. But before I do,
here’s a puzzle that Jeffrey Bub raised the other night at dinner. It’s not hard, but it’s still
a bit surprising.

You and your friend each flip a fair coin and then look at it. You can’t look at your
friend’s coin; they can’t look at yours. You can’t exchange any information while the
game is being played, though you can choose a strategy beforehand. Each of you must
guess whether the other’s coin lands heads up or tails up. Your goal, as a team, is to
maximize the chance that you’re both correct.

What’s the best strategy, and what’s the probability that you both guess correctly?
Here’s an obvious line of thought.
Since you don’t have any information about your friend’s coin flip, it doesn’t really

matter what you guess. So, you might as well guess “heads”. You’ll then have a 1/2
chance of being right. Similarly, your friend might as well guess “heads” — or for that
matter, “tails”. They’ll also have a 1/2 chance of being right. So, the chance that you’re
both right is 1/2× 1/2 = 1/4.
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I hope that sounds persuasive — but you can actually do much better!
How? I’ll give away the answer at the end.
Jeffrey Bub is famous for his work on the philosophy of quantum mechanics, and in

his talk today he mentioned a similar but more sophisticated game, the Popescu-Rohrlich
game. Here you and your friend each flip coins as before. But now, after looking at your
coin, you each write either “yes” or “no” on a pad of paper. Your goal, as a team, is to
give the same response when at least one coin lands heads up, but different responses
otherwise.

Classically the best you can do is both say “yes” — or, if you prefer, both say “no”.
Then you’ll have a 3/4 chance of winning. But, if before playing the game you and your
friend prepare a pair of spin-1/2 particles in the Bell state, and you each keep one, you
can use these to boost your chance of winning to about 85%!

I think the underlying idea first appeared here:

1) S. Popescu and D. Rohrlich, “Nonlocality as an axiom”, Found. Phys. 24 (1994),
379–385.

For the “game” version, try this:

2) Nicolas Gisin, “Can relativity be considered complete? From Newtonian nonlocal-
ity to quantum nonlocality and beyond”, available as quant-ph/0512168.

There’s a lot more to say about this — especially about the “Popescu-Rohrlich box”,
a mythical device which would let you win all the time at this game, but still not allow
signalling. The existence of such a box is logically possible, but forbidden by quan-
tum mechanics. It can only exist in certain “supra-quantum theories” which allow even
weirder correlations than quantum mechanics.

But, I don’t understand this stuff, so you should just read this:

3) Valerio Scarani, “Feats, features and failures of the PR-box”, available as quant-ph/
0603017.

Okay — now for our Tale. I want to explain double cosets as spans of groupoids. . .
but it’s best if I start with some special relativity.

Though Newton seems to have believed in some form of “absolute space”, the idea
that motion is relative predates Einstein by a long time. In 1632, in his Dialogue Con-
cerning the Two Chief World Systems, Galileo wrote:

Shut yourself up with some friend in the main cabin below decks on some large
ship, and have with you there some flies, butterflies, and other small flying
animals. Have a large bowl of water with some fish in it; hang up a bottle that
empties drop by drop into a wide vessel beneath it. With the ship standing still,
observe carefully how the little animals fly with equal speed to all sides of the
cabin. The fish swim indifferently in all directions; the drops fall into the vessel
beneath; and, in throwing something to your friend, you need throw it no more
strongly in one direction than another, the distances being equal; jumping with
your feet together, you pass equal spaces in every direction.

When you have observed all these things carefully (though doubtless when the
ship is standing still everything must happen in this way), have the ship proceed

618

https://arxiv.org/abs/quant-ph/0512168
https://arxiv.org/abs/quant-ph/0603017
https://arxiv.org/abs/quant-ph/0603017


WEEK 250 APRIL 26, 2007

with any speed you like, so long as the motion is uniform and not fluctuating
this way and that. You will discover not the least change in all the effects named,
nor could you tell from any of them whether the ship was moving or standing
still.

As a result, the coordinate transformation we use in Newtonian mechanics to switch
from one reference frame to another moving at a constant velocity relative to the first is
called a “Galilei transformation”. For example:

(t, x, y, z) 7→ (t, x+ vt, y, z)

By the time Maxwell came up with his equations describing light, the idea of relativity
of motion was well established. In 1876, he wrote:

Our whole progress up to this point may be described as a gradual development
of the doctrine of relativity of all physical phenomena. Position we must evi-
dently acknowledge to be relative, for we cannot describe the position of a body
in any terms which do not express relation. The ordinary language about mo-
tion and rest does not so completely exclude the notion of their being measured
absolutely, but the reason of this is, that in our ordinary language we tacitly
assume that the earth is at rest. . . . There are no landmarks in space; one por-
tion of space is exactly like every other portion, so that we cannot tell where we
are. We are, as it were, on an unruffled sea, without stars, compass, sounding,
wind or tide, and we cannot tell in what direction we are going. We have no log
which we can case out to take a dead reckoning by; we may compute our rate
of motion with respect to the neighboring bodies, but we do not know how these
bodies may be moving in space.

So, the big deal about special relativity is not that motion is relative. It’s that this is
possible while keeping the speed of light the same for everyone — as Maxwell’s equations
insist, and as we indeed see! This is what forced people to replace Galilei transformations
by “Lorentz transformations”, which have the new feature that two coordinate systems
moving relative to each other will disagree not just on where things are, but when they
are.

As Einstein wrote in 1905:

Examples of this sort, together with the unsuccessful attempts to discover any
motion of the earth relative to the “light medium”, suggest that the phenomena
of electrodynamics as well as mechanics possess no properties corresponding to
the idea of absolute rest. They suggest rather that, as has already been shown to
the first order of small quantities, the same laws of electrodynamics and optics
will be valid for all frames of reference for which the equations of mechanics are
valid. We will elevate this conjecture (whose content will be called the “principle
of relativity”) to the status of a postulate, and also introduce another postulate,
which is only apparently irreconcilable with it, namely, that light is always
propagated in empty space with a definite velocity c which is independent of the
state of motion of the emitting body. These two postulates suffice for attaining a
simple and consistent theory of the electrodynamics of moving bodies based on
Maxwell’s theory for stationary bodies.
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So, what really changed with the advent of special relativity? First, our understand-
ing of precisely which transformations count as symmetries of spacetime. These trans-
formations form a group. Before special relativity, it seemed the relevant group was a
10-dimensional gadget consisting of:

• 3 dimensions of spatial translations

• 1 dimension of time translations

• 3 dimensions of rotations

• 3 dimensions of Galilei transformations

Nowadays this is called the “Galilei group”:
With special relativity, the relevant group became the “Poincare group”:

• 3 dimensions of spatial translations

• 1 dimension of time translations

• 3 dimensions of rotations

• 3 dimensions of Lorentz transformations

It’s still 10-dimensional, not any bigger. But, it acts differently as transformations of
the spacetime coordinates (t, x, y, z).

Another thing that changed was our appreciation of the importance of symmetry!
Before the 20th century, group theory was not in the toolkit of most theoretical physicists.
Now it is.

Okay. Now suppose you’re the only thing in the universe, floating in empty space,
not rotating. To make your stay in this thought experiment a pleasant one, I’ll give you
a space suit. And for simplicity, suppose special relativity holds true exactly, with no
gravitational fields to warp the geometry of spacetime.

Would the universe be any different if you were moving at constant velocity? Or
translated 2 feet to the left or right? Or turned around? Or if it were one day later?

No! Not in any observable way, at least! It would seem exactly the same.
So in this situation, it doesn’t really make much sense to say “where you are”, or

“which way you’re facing”, or “what time it is”. There are no “invariant propositions” to
make about your location or motion. In other words, there’s nothing to say whose truth
value remains unchanged after you apply a symmetry.

Well, almost nothing to say! The logicians in the crowd will note that you can say
“T ”: the tautologously true statement. You can also say “F ”: the tautologously false
statement. But, these aren’t terribly interesting.

Next, suppose you have a friend also floating through space. Now there are more
interesting invariant propositions. There’s nothing much invariant to say about just you,
and nothing to say about just your friend, but there are invariant relations. For example,
you can measure your friend’s speed relative to you, or your distance of closest approach.

Mathematicians study invariant relations using a tool called “double cosets”. I want
to explain these today, since we’ll need them soon in the Tale of Groupoidification.
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“Double cosets” sound technical, but that’s just to keep timid people from under-
standing the subject. A double coset is secretly just an “atomic” invariant relation: one
that can’t be expressed as “P or Q” where P and Q are themselves invariant relations —
unless precisely one of P or Q is tautologously false.

So, atomic invariant relations are like prime numbers: they can’t be broken down
into simpler bits. And, as we’ll see, every invariant relation can be built out of atomic
ones!

Here’s an example in the case we’re considering:

“My friend’s speed relative to me is 50 meters/second, and our distance of closest
approach is 10 meters.”

This is clearly an invariant relation. It’s atomic if we idealize the situation and assume
you and your friends are points — so we can’t ask which way you’re facing, whether
you’re waving at each other, etc.

To see why it’s atomic, note that we can always find a frame of reference where you’re
at rest and your friend is moving by like this:

friend

you

If you and your friend are points, the situation is completely described (up to symmetries)
by the relative speed and distance of closest approach. So, the invariant relation quoted
above can’t be written as “P or Q” for other invariant relations.

The same analysis shows that in this example, every atomic invariant relation is of
this form:

“My friend’s speed relative to me is s, and our distance of closest approach is d.”

for some nonnegative numbers s and d.
(Quiz: why don’t we need to let s be negative if your friend is moving to the left?)
From this example, it’s clear there are often infinitely many double cosets. But there

are some wonderful examples with just finitely many double cosets — and these are what
I’ll focus on in our Tale.

Here’s the simplest one. Suppose we’re doing projective plane geometry. This is a
bit like Euclidean plane geometry, but there are more symmetries: every transformation
that preserves lines is allowed. So, in addition to translations and rotations, we also have
other symmetries.

For example, imagine taking a blackboard with some points and lines on it:

• •

•
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We can translate it and rotate it. But, we can also view it from an angle: that’s another
symmetry in projective geometry! This hints at how projective geometry arose from the
study of perspective in painting.

We get even more symmetries if we use a clever trick. Suppose we’re standing on
the blackboard, and it extends infinitely like an endless plain. Points on the horizon
aren’t really points on the blackboard. They’re called “points at infinity”. But, it’s nice
to include them as part of the so-called “projective plane”. They make things simpler:
now every pair of lines intersects in a unique point, just as every pair of points lies on
a unique line. You’ve probably seen how parallel railroad tracks seem to meet at the
horizon — that’s what I’m talking about here. And, by including these extra points at
infinity, we get extra symmetries that map points at infinity to ordinary points, and vice
versa.

I gave a more formal introduction to projective geometry in “Week 106” and “Week
145”, and “Week 178”. If you read these, you’ll know that points in the projective plane
correspond to lines through the origin in a 3d space. And, you’ll know a bit about the
group of symmetries in projective geometry: it’s the group G = PGL(3), consisting of
3× 3 invertible matrices, modulo scalars.

(I actually said SL(3), but I was being sloppy — this is another group with the same
Lie algebra.)

For some great examples of double cosets, let F be the space of “flags”. A “flag” is a
very general concept, but in projective plane geometry a flag is just a point x on a line y:

y•
x

An amazing fact is that there are precisely 6 atomic invariant relations between a pair of
flags. You can see them all in this picture:

y

y′′y′

•
x

•
x′

• x′′

There are six flags here, and each exemplifies a different atomic invariant relation to our
favorite flag, say (x, y).

For example, the flag (x′, y′) has the following relation to (x, y):

“The point of (x′, y′) lies on the line of (x, y), and no more.”

By “no more” I mean that no further incidence relations hold.
There’s a lot more to say about this, and we’ll need to delve into it much deeper

soon. . . but not yet. For now, I just want to mention that all this stuff generalizes from
G = PGL(3) to any other simple Lie group! And, the picture above is an example of a
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general concept, called an “apartment”. Apartments are a great way to visualize atomic
invariant relations between flags.

This “apartment” business is part of a wonderful theory due to Jacques Tits, called the
theory of “buildings”. The space of all flags is a building; a building has lots of apartments
in it. Buildings have a reputation for being scary, because in his final polished treatment,
Tits started with a few rather unintuitive axioms and derived everything from these. But,
they’re actually lots of fun if you draw enough pictures!

Next, let me explain why people call atomic invariant relations “double cosets”.
First of all, what’s a relation between two sets X and Y ? We can think of it as a

subset S of X × Y : we say a pair (x, y) is in S if the relation holds.
Next, suppose some group G acts on both X and Y . What’s an “invariant” relation?

It’s a subset S of X × Y such that whenever (x, y) is in S, so is (gx, gy). In other words,
the relation is preserved by the symmetries.

Now let’s take these simple ideas and make them sound more complicated, to prove
we’re mathematicians. Some of you may want to take a little nap right around now —
I’m just trying to make contact with the usual way experts talk about this stuff.

First, let’s use an equivalent but more technical way to think of an invariant relation:
it’s a subset of the quotient space G\(X × Y ).

Note: often I’d call this quotient space (X × Y )/G. But now I’m writing it with the G
on the left side, since we had a left action of G on X and Y , hence on X × Y — and in a
minute we’re gonna need all the sides we can get!

Second, recall from last Week that if G acts transitively on both X and Y , we have
isomorphisms

X ∼= G/H

and
Y ∼= G/K

for certain subgroups H and K of G. Note: here we’re really modding out by the right
action of H or K on G.

Combining these facts, we see that when G acts transitively on both X and Y , an
invariant relation is just a subset of

G\(X × Y ) ∼= G\(G/H ×G/K)

Finally, if you lock yourself in a cellar and think about this for a few minutes (or months),
you’ll realize that this weird-looking set is isomorphic to

H\G/K

This notation may freak you out at first — I know it scared me! The point is that we
can take G, mod out by the right action of K to get G/K, and then mod out by the left
action of H on G/K, obtaining

H\(G/K).

Or we can take G, mod out by the left action of H to get H\G, and then mod out by the
right action of K on H\G, obtaining

(H\G)/K.
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And, these two things are isomorphic! So, we relax and write

H\G/K

A point in here is called a “double coset”: it’s an equivalence class consisting of all guys
in G of the form

hgk

for some fixed g, where h ranges over H and k ranges over K.
Since subsets of H\G/K are invariant relations, we can think of a point in H\G/K

as an “atomic” invariant relation. Every invariant relation is the union — the logical “or”
— of a bunch of these.

So, just as any hunk of ordinary matter can be broken down into atoms, every in-
variant statement you can make about an entity of type X and an entity of type Y can
broken down into “atomic” invariant relations — also known as double cosets!

So, double cosets are cool. But, it’s good to fit them into the “spans of groupoids”
perspective. When we do this, we’ll see:

a span of groupoids equipped with certain extra stuff is
the same as a double coset.

This relies on the simpler slogan I mentioned last time:

a groupoid equipped with certain extra stuff is
the same as a group action.

Let’s see how it goes. Suppose we have two sets on which G acts transitively, say X
and Y . Pick a figure x of type X, and a figure y of type Y . Let H be the stabilizer of x,
and let K be the stabilizer of y. Then we get isomorphisms

X ∼= G/H

and
Y ∼= G/K

The subgroup H ∩K stabilizes both x and y, and

Z = G/(H ∩K)

is another set on which G acts transitively. How can we think of this set? It’s the set of
all pairs of figures, one of type X and one of type Y , which are obtained by taking the
pair (x, y) and applying an element of G. So, it’s a subset of X×Y that’s invariant under
the action of G. In other words, it’s an invariant relation between X and Y !

Furthermore, it’s the smallest invariant subset of X × Y that contains the pair (x, y).
So, it’s an atomic invariant relation — or in other words, a double coset!

Now, let’s see how to get a span of groupoids out of this. We have a commutative
diamond of group inclusions:

H ∩K

H K

G
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This gives a commutative diamond of spaces on which G acts transitively:

G/(H ∩K)

G/H G/K

G/G

We already have names for three of these spaces — and G/G is just a single point, say ∗:

Z

X Y

∗

Now, in “Week 249” I explained how you could form the “action groupoid” X//G
given a group G acting on a space X. If I were maniacally consistent, I would write it as
G\\X, since G is acting on the left. But, I’m not. So, the above commutative diamond
gives a commutative diamond of groupoids:

Z//G

X//G Y//G

∗//G

The groupoid on the bottom has one object, and one morphism for each element of G.
So, it’s just G! So we have this:

Z//G

X//G Y//G

G

So — voila! — our double coset indeed gives a span of groupoids

Z//G

X//G Y//G
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X//G is the groupoid of figures just like x (up to symmetry), Y//G is the groupoid of
figures just like y, and Z//G is the groupoid of pairs of figures satisfying the same atomic
invariant relation as the pair (x, y). For example, point-line pairs, where the point lies
on the line! For us, a pair of figures is just a more complicated sort of figure.

But, this span of groupoids is a span “over G”, meaning it’s part of a commutative
diamond with G at the bottom:

Z//G

X//G Y//G

G

If you remember everything in “Week 249” — and I bet you don’t — you’ll notice that
this commutative diamond is equivalent to diamond we started with:

H ∩K

H K

G

We’ve just gone around in a loop! But that’s okay, because we’ve learned something en
route.

To tersely summarize what we’ve learned, let’s use the fact that a groupoid is equiv-
alent to a group precisely when it’s “connected”: that is, all its objects are isomorphic.
Furthermore, a functor between connected groupoids is equivalent to an inclusion of
groups precisely when it’s “faithful”: one-to-one on each homset. So, when I said that:

a span of groupoids equipped with certain extra stuff is
the same as a double coset.

what I really meant was:

a span of connected groupoids faithfully over G
is the same as a double coset.

If that’s too terse, let me elaborate for you: a “span of connected groupoids faithfully
over G” is a commutative diamond

C

A B

G
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where A,B,C are connected groupoids and the arrows are faithful functors.
This sounds complicated, but it’s mainly because we’re trying to toss in extra con-

ditions to make our concepts match the old-fashioned “double coset” notion. Here’s a
simpler, more general fact:

a span of groupoids faithfully over g
is the same as a span of g-sets.

where a “G-set” is a set on which G acts. This is the natural partner of the slogan I
explained last Week, though not in this language:

a groupoid faithfully over g
is the same as a g-set.

Things get even simpler if we drop the “faithfulness” assumption, and simply work
with groupoids over G, and spans of these. This takes us out of the traditional realm of
group actions on sets, and into the 21st century! And that’s where we want to go.

Indeed, for the last couple weeks I’ve just been trying to lay out the historical context
for the Tale of Groupoidification, so experts can see how the stuff to come relates to stuff
that’s already known. In some ways things will get simpler when I stop doing this and
march ahead. But, I’ll often be tempted to talk about group actions on sets, and double
cosets, and other traditional gadgets. . . so I feel obliged to set the stage.

Okay — here’s the answer to the puzzle. Close your eyes if you want to think about
it more.

An optimal strategy is for you and your friend to each look at your own coin, and
then guess that the other coin landed the other way: heads if yours was tails, and tails if
yours was heads. With this strategy, the chance you’re both correct is 1/2.

Or, you can both guess that the other coin landed the same way. This works just as
well.

The point is: you and your friend can do twice as well at this game if you each use
the result of your own coin toss to guess the result of the other’s coin toss!

It seems paradoxical that using this random and completely uncorrelated piece of
information — the result of your own coin toss — helps you guess what your friend’s
coin will do, and vice versa.

But of course it doesn’t. You each still have just a 1/2 chance of guessing the other’s
coin toss correctly. What the trick accomplishes is correlating your guesses, so you both
guess right or both guess wrong together. This improves the chance of winning from
1/2× 1/2 (the product of two independent probabilities) to 1/2.

By the way, the translation of the passage by Einstein is due to Michael Friedman, a
philosopher at Stanford; he used it in his talk at this conference. There’s a lot more to
say about talks at this conference. Let’s see if I get around to it.

Also by the way: if you fix a collection of n G-sets, there’s always a Boolean algebra of
n-ary invariant relations. Only the case n = 2 is related to double cosets, but everything
else I said generalizes easily to higher n using “n-legged spans” of groupoids: an obvious
generalization of the 2-legged spans I’ve been discussing so far. In Boolean algebra
people often use the term “atom” to stand for an element that can’t be written as “P or
Q” unless exactly one of P or Q is tautologously false.
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Although I am a typical loner in daily life, my consciousness of belonging to
the invisible community of those who strive for truth, beauty and justice has
preserved me from feeling isolated.

— Albert Einstein
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Lately James Dolan and I have been studying number theory. I used to
\emph{hate} this subject: it seemed like a massive waste of time.
Newspapers, magazines and even lots of math books seem to celebrate the
idea of people slaving away for centuries on puzzles whose only virtue
is that they're easy to state but hard to solve. For example: are any
odd numbers the sum of all their divisors? Are there infinitely many
pairs of primes that differ by 2? Is every even number bigger than 2 a
sum of two primes? Are there any positive integer solutions to
\[x^n + y^n = z^n\] for \(n > 2\)? My response to all these was:
\textbf{who cares}?!

Sure, it's noble to seek knowledge for its own sake. But working on a
math problem just because it's \emph{hard} is like trying to drill a
hole in a concrete wall with your nose, just to prove you can! If you
succeed, I'll be impressed --- but I'll still wonder why you didn't put
all that energy into something more interesting.

Now my attitude has changed, because I'm beginning to see that behind
these silly hard problems there lurks an actual \emph{theory}, full of
deep ideas and interesting links to other branches of mathematics,
including mathematical physics. It just so happens that now and then
this theory happens to crack another hard nut.

I'd known for a while that something like this must be true: after all,
when Andrew Wiles proved Fermat's Last Theorem, even the newspapers
admitted this was just a spinoff of something more important, namely a
special case of the Taniyama-Shimura Conjecture. They said this had
something to do with elliptic curves and modular forms, which are very
nice geometrical things that show up all over in complex analysis and
string theory. Unfortunately, the actual statement of this conjecture
seemed impenetrable --- it didn't resonate with things I understood.

In fact, the Taniyama-Shimura Conjecture is part of a big \emph{network}
of problems that are more interesting but harder to explain than the
flashy ones I listed above: problems like the Extended Riemann
Hypothesis, the Weil Conjecture (now solved), the Birch-Swinnerton-Dyer
Conjecture, and bigger projects like the Langlands Program and
developing the theory of ``motives''. And these problems rest on top of
a solid foundation of beautiful stuff that's already known, like Galois
theory and class field theory, and stuff about modular forms and
\(L\)-functions.

As I'm gradually beginning to understand little bits of these things,
I'm getting really excited about number theory\ldots{} so I'm dying to
\emph{explain} some of it! But where to start? I have to start with
something basic that underlies all the fancy stuff. Hmm, I think I'll
start with Galois theory.

As you may have heard, Galois invented group theory in the process of
showing you can't solve the quintic equation
\[ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0\]

by radicals. In other words, he showed you can't solve this equation by
means of some souped-up version of the quadratic formula that just
involves taking the coefficients \(a,b,c,d,e,f\) and adding,
subtracting, multiplying, dividing and taking \(n\)th roots.

The basic idea is something like this. In general, a quintic equation
has 5 solutions --- and there's no ``best one'', so your formula has got
to be a formula for all five. And there's a puzzle: how do you give one
formula for five things?

Well, think about the quadratic formula! It has that ``plus or minus''
in it, which comes from taking a square root. So, it's really a formula
for \emph{both} solutions of the quadratic equation. If there were a
formula for the quintic that worked like this, we'd have to get all 5
solutions from different choices of \(n\)th roots in this formula.

Galois showed this can't happen. And the way he did it used
\emph{symmetry!} Roughly speaking, he showed that the general quintic
equation is completely symmetrical under permuting all 5 solutions, and
that this symmetry group --- the group of permutations of 5 things ---
can't be built up from the symmetry groups that arise when you take
\(n\)th roots.

The moral is this: you can't solve a problem if the answer has some
symmetry, and your method of solution doesn't let you write down a
correct answer that has this symmetry!

An old example of this principle is the medieval puzzle called
``Buridan's Ass''. Placed equidistant between two equally good piles of
hay, this donkey starves to death because it can't make up its mind
which alternative is best. The problem has a symmetry, but the donkey
can't go to \emph{both} bales of hay, so the only symmetrical thing he
can do is stand there.

Buridan's ass would also get stuck if you asked it for \emph{the}
solution to the quadratic equation. Galois proof of the unsolvability of
the quintic by radicals is just a more sophisticated variation on this
theme. (Of course, you \emph{can} solve the quintic if you strengthen
your methods.)

A closely related idea is ``Curie's principle'', named after Marie's
husband Pierre. This says that if your problem has a symmetry and it is
a unique solution, the solution must be symmetrical.

For example, if some physical system has rotation symmetry and it has a
unique equilibrium state, this state must be rotationally invariant.

Now, in the case of a ferromagnet below its ``Curie temperature'', the
equilibrium state is \emph{not} rotationally invariant: the little
magnetized electrons line up in some specific direction! But this
doesn't contradict Curie's principle, since there's not a unique
equilibrium state --- there are lots, since the electrons can line up in
any direction.

Physicists use the term ``spontaneous symmetry breaking'' when any
\emph{one} solution of a symmetric problem is not symmetrical, but the
whole set of them is. This is precisely what happens with the quintic,
or even the quadratic equation.

While these general ideas about symmetry apply to problems of all sorts,
their application to number theory kicks in when we apply them to
\emph{fields}. A ``field'' is a gadget where you can add, subtract,
multiply and divide by anything nonzero, and a bunch of familiar laws of
arithmetic hold, which I won't bore you with here. The three most famous
fields are the rational numbers \(\mathbb{Q}\), the real numbers
\(\mathbb{R}\), and the complex numbers \(\mathbb{C}\). However, there
are lots of other interesting fields.

Number theorists are especially fond of algebraic number fields. An
``algebraic number'' is a solution to a polynomial equation whose
coefficients are rational numbers. You get an ``algebraic number field''
by taking the field of rational numbers, throwing in finitely many
algebraic numbers, and then adding, subtracting, multiplying and
dividing them to get more numbers until you've got a field.

For example, we could take the rationals, throw in the square root of
\(2\), and get a field consisting of all numbers of the form
\[a + b \sqrt{2}\] where \(a\) and \(b\) are rational. Notice: if we
add, multiply, subtract or divide two numbers like this, we get another
number of this form. So this is really a field --- and it's called
\(\mathbb{Q}(\sqrt{2})\), since we use round pare\(n\)theses to denote
the result of taking a field and ``extending'' it by throwing in some
extra numbers.

More generally, we could throw in the square root of any integer \(n\),
and get an algebraic number field called \(\mathbb{Q}(\sqrt{n})\),
consisting of all numbers \[a + b \sqrt{n}\] where \(a\) and \(b\) are
rational. If \(\sqrt{n}\) is rational then this field is just
\(\mathbb{Q}\), which is boring. Otherwise, we call it a ``quadratic
number field''.

Even more generally, we could take the rationals and throw in a solution
of any quadratic equation with rational coefficients. But it's easy to
see that this doesn't give anything beyond fields like
\(\mathbb{Q}(\sqrt{n})\). And that's the real reason we call these the
``quadratic number fields''.

There are also ``cubic number fields'', and ``quartic number fields'',
and ``quintic number fields'', and so on. And others, too, where we
throw in solutions to a whole bunch of polynomial equations!

Now, it turns out you can answer lots of classic but rather
goofy-sounding number theory puzzles like ``which integers are a sum of
two squares?'' by converting them into questions about algebraic number
fields. And the good part is, the resulting questions are connected to
all sorts of other topics in math --- they're not just glorified mental
gymnastics! So, from a modern viewpoint, a bunch of classic number
theory puzzles are secretly just tricks to get certain kinds of people
interested in algebraic number fields.

But right now I \emph{don't} want to explain how we can use algebraic
number fields to solve classic but goofy-sounding number theory puzzles.
In fact, I want to downplay the whole puzzle aspect of number theory.

Instead, I hope you're reeling with horror at thought of this vast
complicated wilderness of fields containing \(\mathbb{Q}\) but contained
in \(\mathbb{C}\). First there's a huge infinite thicket of algebraic
number fields\ldots{} and then, there's an ever scarier jungle of fields
that contain transcendental numbers like \(\pi\) and \(e\)! I won't even
talk about \emph{that} jungle, it's so dark and scary. Physicists
usually zip straight past this whole wilderness and work with
\(\mathbb{C}\).

But in fact, if you stop and carefully examine all the algebraic number
fields and how they sit inside each other, you'll find some incredibly
beautiful patterns. And these patterns are turning out to be related to
Feynman diagrams, topological quantum field theory, and so on\ldots{}

However, before we can talk about all that, we need to understand the
basic tool for analyzing how one field fits inside another: Galois
theory!

A function from a field to itself that preserves addition, subtraction,
multiplication and division is called an ``automorphism''. It's just a
\emph{symmetry} of the field. But now, suppose we have a field \(K\)
which contains some smaller field \(k\). Then we define the ``Galois
group of \(K\) over \(k\)'' to be the group of all automorphisms of
\(K\) that act as the identity on \(k\). We call this group
\[\mathrm{Gal}(K/k)\] for short.

The classic example, familiar to all physicists, is the Galois group of
the complex numbers, \(\mathbb{C}\), over the real numbers,
\(\mathbb{R}\). This group has two elements: the identity
transformation, which leaves everything alone, and complex conjugation,
which switches \(i\) and \(-i\). Since the only group with 2 elements is
\(\mathbb{Z}/2\), we have
\[\mathrm{Gal}(\mathbb{C}/\mathbb{R}) = \mathbb{Z}/2\] Where does
complex conjugation come from? It comes from the fact that we get
\(\mathbb{C}\) from \(\mathbb{R}\) by throwing in a solution of the
quadratic equation \[x^2 = -1\] We say \(\mathbb{C}\) is a ``quadratic
extension of \(\mathbb{R}\)''. But as soon as we throw in one solution
of this equation, we inevitably throw in another, namely its negative
--- and there's no way to tell which is which. And complex conjugation
is the symmetry that switches them!

Note: we know that \(i\) and \(-i\) are different, but we can't tell
which is which! This sounds a bit odd at first. It's a bit hard to
explain precisely in ordinary language, which is part of why Galois had
to invent group theory. But it's fun to try to explain it in plain
English\ldots{} so let me try. The complex numbers have two solutions to
\[x^2 = -1\] By convention, one of them is called ``\(i\)'', and the
other is called ``\(-i\)''. Having made this convention, there's never
any problem telling them apart. But we could reverse our convention and
nothing would go wrong. For example, if the ghost of Galois wafted into
your office one moonless night and wrote ``\(-i\)'' in all your math and
physics books wherever there had been ``\(i\)'', everything in these
books would still be true!

Here's another way to think about it. Suppose we meet some
extraterrestrials and find that they too have developed the complex
numbers by taking the real numbers and adjoining a square root of
\(-1\), only they call it ``\(@\)''. Then there would be no way for us
to tell if their ``\(@\)'' was our ``\(i\)'' or our ``\(-i\)''. All we
can do is choose an arbitrary convention as to which is which.

Of course, if they put their ``\(@\)'' in the lower halfplane when
drawing the complex plane, we might feel like calling it
``\(-i\)''\ldots{} but here we are secretly making use of a convention
for matching their complex plane with ours, and the \emph{other}
convention would work equally well! If they drew their real line
\emph{vertically} in the complex plane, it would be more obvious that we
need a convention to match their complex plane with ours, and that there
are two conventions for doing this, both perfectly self-consistent.

If you've studied enough physics, this extraterrestrial scenario should
remind you of those thought experiments where you're trying to explain
to some alien civilization the difference between left and right\ldots{}
by means of radio, say, where you're \emph{not} allowed to refer to
specific objects you both know --- so it's cheating to say ``imagine
you're on Earth looking at the Big Dipper and the handle is pointing
down; then Arcturus is to the right.''

If the laws of physics didn't distinguish between left and right, you
couldn't explain the difference between left and right without
``cheating'' like this, so the laws of physics would have a symmetry
group with two elements: the identity and the transformation that
switches left and right. As it turns out, the laws of physics \emph{do}
distinguish between left and right --- see
\protect\hyperlink{week73}{``Week 73''} for more on that. But that's
another story. My point here is that the Galois group of \(\mathbb{C}\)
over \(\mathbb{R}\) is a similar sort of thing, but built into the very
fabric of mathematics! And that's why complex conjugation is so
important.

I could tell you a nice long story about how complex conjugation is
related to ``charge conjugation'' (switching matter and antimatter) and
also ``time reversal'' (switching past and future). But I won't!

Here's another example of a Galois group that physicists should like.
Let \(\mathbb{C}(z)\) be the field of rational functions in one complex
variable \(z\) --- in other words, functions like
\[f(z) = \frac{P(z)}{Q(z)}\] where \(P\) and \(Q\) are polynomials in
\(z\) with complex coefficients. You can add, subtract, multiply and
divide rational functions and get other rational functions, so they form
a field. And they contain \(\mathbb{C}\) as a subfield, because we can
think of any complex number as a \emph{constant} function. So, we can
ask about the Galois group of \(\mathbb{C}(z)\) over \(\mathbb{C}\).
What's it like?

It's the Lorentz group!

To see this, it's best to think of rational functions as functions not
on the complex plane but on the ``Riemann sphere'' --- the complex plane
together with one extra point, the ``point at infinity''. The only
conformal transformations of the Riemann sphere are ``fractional linear
transformations'': \[T(z) = \frac{az+b}{cz+d}\] So, the only symmetries
of the field of rational functions that act as the identity on constant
functions are those coming from fractional transformations, like this:
\[f \mapsto fT \qquad \mbox{where $fT(z) = f(T(z))$}\] If you don't
follow my reasoning here, don't worry --- the details aren't hard to
fill in, but they'd be distracting here.

The last step is to check that the group of fractional linear
transformations is the same as the Lorentz group. You can do this
algebraically, but you can also do it geometrically by thinking of the
Riemann sphere as the ``heavenly sphere'': that imaginary sphere the
stars look like they're sitting on. The key step is to check this
remarkable fact: if you shoot past the earth near the speed of light,
the constellations will look distorted by a Lorentz transformation ---
but if you draw lines connecting the stars, all the \emph{angles}
between these lines will remain the same; only their \emph{lengths} will
get messed up!

Moreover, it's obvious that if you rotate your head, both angles and
lengths on the heavenly sphere are preserved. So, any rotation or
Lorentz boost gives an angle-preserving transformation of the heavenly
sphere --- that is, a conformal transformation! And this must be a
fractional linear transformation.

Summarizing, the Galois group of \(\mathbb{C}(z)\) over \(\mathbb{C}\)
is the Lorentz group, or more precisely, its connected component,
\(\mathrm{SO}_0(3,1)\):
\[\mathrm{Gal}(\mathbb{C}(z)/\mathbb{C}) = \mathrm{SO}_0(3,1).\]

We've talked about the Galois group of \(\mathbb{C}(z)\) over
\(\mathbb{C}\) and the Galois group of \(\mathbb{C}\) over
\(\mathbb{R}\). What about the Galois group of \(\mathbb{C}(z)\) over
\(\mathbb{R}\)? Unsurprisingly, this is the group of transformations of
the Riemann sphere generated by fractional linear transformations
\emph{and} complex conjugation. And physically, this corresponds to
taking the connected component of the Lorentz group and throwing in
\emph{time reversal!} So you see, complex conjugation is related to time
reversal. But I promised not to go into that\ldots.

I've been talking about Galois groups that physicists should like, but
you're probably wondering where the number theory went! Well, it's all
part of the same big story. In number theory we're especially interested
in Galois groups like \[\mathrm{Gal}(K/k)\] where \(K\) is some
algebraic number field and \(k\) is some subfield of \(K\). For
starters, consider this example:
\[\mathrm{Gal}(\mathbb{Q}(\sqrt{n})/\mathbb{Q})\] where \(\sqrt{n}\) is
irrational. I've already hinted at what this group is!
\(\mathbb{Q}(\sqrt{n})\) has \(\sqrt{n}\) in it, so it also has
\(-\sqrt{n}\) in it, and there's an automorphism that switches these two
while leaving all the rational numbers alone, namely
\[a + b \sqrt{n} \mapsto a - b \sqrt{n} \qquad \mbox{($a,b$ in $\mathbb{Q}$)}\]
So, we have:
\[\mathrm{Gal}(\mathbb{Q}(\sqrt{n}))/\mathbb{Q}) = \mathbb{Z}/2\] just
like the Galois group of \(\mathbb{C}\) over \(\mathbb{R}\).

To get some bigger Galois groups, let's take \(\mathbb{Q}\) and throw in
a ``primitive \(n\)th root of unity''. Hmm, I may need to explain what
that means. There are \(n\) different \(n\)th roots of 1 --- but unlike
the two square roots of \(-1\), these are not all created equal! Only
some are ``primitive''.

For example, among the 4th roots of unity we have \(1\) and \(-1\),
which are actually square roots of unity, and \(i\) and \(-i\), which
aren't. A ``primitive \(n\)th root of unity'' is an \(n\)th root of
\(1\) that's not an \(k\)th root for any \(k < n\). If you take all the
powers of any primitive \(n\)th root of unity, you get \emph{all} the
\(n\)th roots of unity. So, if we take some primitive \(n\)th root of
unity, call it \[1^{\frac1n}\] for lack of a better name, and extend the
rationals by this number, we get a field \[\mathbb{Q}(1^{\frac1n})\]
which contains all the \(n\)th roots of unity. Since the \(n\)th roots
of unity are evenly distributed around the unit circle, this sort of
field is called a ``cyclotomic field'', for the Greek word for ``circle
cutting''. In fact, one can apply Galois theory to this field to figure
out which regular \(n\)-gons one can construct with a ruler and compass!

But what's the Galois group
\[\mathrm{Gal}(\mathbb{Q}(1^{\frac1n})/\mathbb{Q})\] like? Any symmetry
in this group must map \(1^{\frac1n}\) to some root of unity, say
\(1^{\frac{m}{n}}\) --- and once you know which one, you completely know
the symmetry. But actually, this symmetry must map \(1^{\frac1n}\) to
some \emph{primitive} root of unity, so \(m\) has to be relatively prime
to \(n\). Apart from that, though, anything goes --- so the size of
\[\mathrm{Gal}(\mathbb{Q}(1^{\frac1n})/\mathbb{Q})\] is just the number
of guys \(m\) less than \(n\) that are relatively prime to \(n\). And if
you think about it, these numbers relatively prime to \(n\) are just the
same as elements of \(\mathbb{Z}/n\) that have multiplicative inverses!
So if you think some more, you'll see that
\[\mathrm{Gal}(\mathbb{Q}(1^{\frac1n})/\mathbb{Q}) = (\mathbb{Z}/n)^\times\]

where \((\mathbb{Z}/n)^\times\) is the ``multiplicative group'' of
\(\mathbb{Z}/n\) --- that is, the elements of \(\mathbb{Z}/n\) that have
multiplicative inverses, made into a group via multiplication!

This group can be big, but it's still abelian. Can we get some
nonabelian Galois groups from algebraic number fields?

Sure! Let's say you take some polynomial equation with rational
coefficients, take \emph{all} its solutions, throw them into the
rationals - and keep adding, subtracting, multiplying and dividing until
you get some field \(K\). This \(K\) is called the ``splitting field''
of your polynomial.

But here's the interesting thing: if you pick your polynomial equation
at random, the chances are really good that it has n different solutions
if the polynomial is of degree \(n\), and that \emph{any} permutation of
these solutions comes from a unique symmetry of the field \(K\). In
other words: barring some coincidence, all roots are created equal! So
in general we have \[\mathrm{Gal}(K/\mathbb{Q}) = S_n\] where \(S_n\) is
the group of all permutations of \(n\) things.

Sometimes of course the Galois group will be smaller, since our
polynomial could have repeated roots or, more subtly, algebraic
relations between roots --- as in the cyclotomic case we just looked at.

But, we can already start to see how to prove the unsolvability of the
general quintic! Pick some random 5th-degree polynomial, let \(K\) be
its splitting field, and note \[\mathrm{Gal}(K/\mathbb{Q}) = S_5\] Then,
show that if we build up an algebraic number field by starting with
\(\mathbb{Q}\) and repeatedly throwing in \(n\)th roots of numbers we've
already got, we just can't get \(S_5\) as its Galois group over the
rationals! We've already seen this in the case where we throw in a
square root of \(n\), or an \(n\)th root of \(1\). The general case is a
bit more work. But instead of giving the details, I'll just mention a
good textbook on Galois theory for beginners:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Ian Stewart, \emph{Galois Theory}, 3rd edition, Chapman and Hall, New
  York, 2004.
\end{enumerate}

Ian Stewart is famous as a popularizer of mathematics, and it shows here
--- he has nice discussions of the history of the famous problems solved
by Galois theory, and a nice demystification of the Galois' famous duel.
But, this is a real math textbook --- so you can really learn Galois
theory from it! Make sure to get the 3rd edition, since it has more
examples than the earlier ones.

Having given Ian Stewart the dirty work of explaining Galois theory in
the usual way, let me say some things that few people admit in a first
course on the subject.

So far, we've looked at examples of a field \(k\) contained in some
bigger field \(K\), and worked out the group \(\mathrm{Gal}(K/k)\)
consisting of all automorphisms of \(K\) that fix everything in \(k\).

But here's the big secret: this has \textbf{nothing to do with fields}!
It works for ANY sort of mathematical gadget! If you've got a little
gadget \(k\) sitting in a big gadget \(K\), you get a ``Galois group''
\(\mathrm{Gal}(K/k)\) consisting of symmetries of the big gadget that
fix everything in the little one.

But now here's the cool part, which is also very general. Any subgroup
of \(\mathrm{Gal}(K/k)\) gives a gadget containing \(k\) and contained
in \(K\): namely, the gadget consisting of all the elements of \(K\)
that are fixed by everything in this subgroup.

And conversely, any gadget containing \(k\) and contained in \(K\) gives
a subgroup of \(\mathrm{Gal}(K/k)\): namely, the group consisting of all
the symmetries of \(K\) that fix every element of this gadget.

This was Galois' biggest idea: we call this a \textbf{galois
correspondence}. It lets us use \emph{group theory} to classify gadgets
contained in one and containing another. He applied it to fields, but it
turns out to be useful much more generally.

Now, it would be great if the Galois corresondence were always a perfect
1-1 correspondence between subgroups of \(\mathrm{Gal}(K/k)\) and
gadgets containing \(k\) and contained in \(K\). But, it ain't true. It
ain't even true when we're talking about fields!

However, that needn't stop us. For example, we can restrict ourselves to
cases when it \emph{is} true. And this is where the Fundamental Theorem
of Galois Theory comes in! It's easiest to state this theorem when \(k\)
and \(K\) are algebraic number fields, so that's what I'll do. In this
case, there's a 1-1 correspondence between subgroups of
\(\mathrm{Gal}(K/k)\) and extensions of \(k\) contained in \(K\) if:

\begin{enumerate}
\def\labelenumi{\roman{enumi})}
\item
  \(K\) is a ``finite'' extension of \(k\). In other words, \(K\) is a
  finite-dimensional vector space over \(k\).
\item
  \(K\) is a ``normal'' extension of \(k\). In other words, if a
  polynomial with coefficients in \(k\) can't be factored at all in
  \(k\), but has one root in \(K\), then all its roots are in \(K\).
\end{enumerate}

For general fields we also need another condition, namely that \(K\) be
a ``separable'' extension of \(k\). But this is automatic for algebraic
number fields, so let's not worry about it.

At this point, if we had time, we could work out a bunch of Galois
groups and see a bunch of patterns. Using these, we could see why you
can't solve the general quintic using radicals, why you can't trisect
the angle or double the cube using ruler-and-compass constructions, and
why you can draw a regular pentagon using ruler and compass, but not a
regular heptagon. Basically, to prove something is impossible, you just
show that some number can't possibly lie in some particular algebraic
number field, because it's the root of a polynomial whose splitting
field has a Galois group that's ``fancier'' than the Galois group of
that algebraic number field.

For example, ruler-and-compass constructions produce distances that lie
in ``iterated quadratic extensions'' of the rationals --- meaning that
you just keep throwing in square roots of stuff you've got. Doubling the
cube requires getting your hands on the cube root of 2. But the Galois
group of the splitting field of \[x^3 = 2\] has size divisible by 3,
while an iterated quadratic extension has a Galois group whose size is a
power of 2. Using the Galois correspondence, we see there's no way to
stuff the former field into the latter.

But you can read about this in any good book on Galois theory, so I'd
rather dive right into that thicket I was hinting at earlier: the field
of ALL algebraic numbers! The roots of any polynomial with coefficients
in this field again lie in this field, so we say this field is
``algebraically closed''. And since it's the smallest algebraically
closed field containing \(\mathbb{Q}\), it's called the ``algebraic
closure of \(\mathbb{Q}\)'', or \(\overline{\mathbb{Q}}\) for short ---
that is, \(\mathbb{Q}\) with a bar over it. (I can't quite draw it
here.)

This field \(\overline{\mathbb{Q}}\) is huge. In particular, it's an
infinite-dimensional vector space over \(\mathbb{Q}\). So, condition i)
in the Fundamental Theorem of Galois Theory doesn't hold. But that's no
disaster: when this happens, we just need to put a topology on the group
\(\mathrm{Gal}(K/k)\) and set up the Galois correspondence using
\emph{closed} subgroups of \(\mathrm{Gal}(K/k)\). Using this trick,
every algebraic number field corresponds to some closed subgroup of
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\).

So, for people studying algebraic number fields,
\[\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\] is like the holy
grail. It's the symmetry group of the algebraic numbers, and the key to
how all algebraic number fields sit inside each other! But alas, this
group is devilishly complicated. In fact, it has literally driven men
mad. One of my grad students knows someone who had a breakdown and went
to the mental hospital while trying to understand this group!

(There may have been other reasons for his breakdown, too, but as
readers of E. T. Bell's book ``Men in Mathematics'' know, the facts
should never get in the way of a good anecdote.)

If \(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) were just an
infinitely tangled thicket, it wouldn't be so tantalizing. But there are
things we can understand about it! To describe these, I'll have to turn
up the math level a notch\ldots{}

First of all, an extension \(K\) of a field \(k\) is called ``abelian''
if \(\mathrm{Gal}(K/k)\) is an abelian group. Abelian extensions of
algebraic number fields can be understood using something called class
field theory. In particular, the Kronecker-Weber theorem says that every
finite abelian extension of \(\mathbb{Q}\) is contained in a cyclotomic
field. So, they all sit inside a field called
\(\mathbb{Q}^{\mathrm{cyc}}\), which is gotten by taking the rationals
and throwing in \emph{all} \(n\)th roots of unity for \emph{all} \(n\).
Since
\[\mathrm{Gal}(\mathbb{Q}(1^{\frac1n})/\mathbb{Q}) = (\mathbb{Z}/n)^\times\]
we know from Galois theory that
\(\mathrm{Gal}(\mathbb{Q}^{\mathrm{cyc}}/\mathbb{Q})\) must be a big
group containing all the groups \((\mathbb{Z}/n)^\times\) as closed
subgroups. It's easy to see that \((\mathbb{Z}/n)^\times\) is a quotient
group of \((\mathbb{Z}/m)^\times\) if \(m\) is divisible by \(n\); this
lets us take the ``inverse limit'' of all the groups
\((\mathbb{Z}/m)^\times\) --- and that's
\(\mathrm{Gal}(\mathbb{Q}^{\mathrm{cyc}}/\mathbb{Q})\). This inverse
limit is also the multiplicative group of the ring
\(\widehat{\mathbb{Z}}\), the inverse limit of all the rings
\(\mathbb{Z}/n\). \(\widehat{\mathbb{Z}}\) is also called the
``profinite completion of the integers'', and I urge you to play around
with it if you never have! It's a cute gadget.

In short:
\[\mathrm{Gal}(\mathbb{Q}^{\mathrm{cyc}}/\mathbb{Q}) = \widehat{\mathbb{Z}}^\times\]
and if we stay inside \(\mathbb{Q}^{\mathrm{cyc}}\), we're in a zone
where the pattern of algebraic number fields can be understood. This
stuff was worked out by people like Weber, Kronecker, Hilbert and
Takagi, with the final keystone, the Artin reciprocity theorem, laid in
place by Emil Artin in 1927. In a certain sense
\(\mathbb{Q}^{\mathrm{cyc}}\) is to \(\overline{\mathbb{Q}}\) as
homology theory is to homotopy theory: it's all about \emph{abelian}
Galois groups, so it's manageable.

People now use \(\mathbb{Q}^{\mathrm{cyc}}\) as a kind of base camp for
further expeditions into the depths of \(\overline{\mathbb{Q}}\). In
particular, since
\[\mathbb{Q} \subset \mathbb{Q}^{\mathrm{cyc}} \subset \overline{\mathbb{Q}}\]
we get an exact sequence of Galois groups:
\[1 \to \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}^{\mathrm{cyc}}) \to \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathrm{Gal}(\mathbb{Q}^{\mathrm{cyc}}/\mathbb{Q}) \to 1\]
So, to understand \(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) we
need to understand
\(\mathrm{Gal}(\mathbb{Q}^{\mathrm{cyc}}/\mathbb{Q})\),
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}^{\mathrm{cyc}})\) and
how they fit together! The last two steps are not so easy. Shafarevich
has conjectured that
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}^{\mathrm{cyc}})\) is the
profinite completion of a free group, say \(\widehat{F}\). This would
give
\[1 \to \widehat{F} \to \mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{Z}^\times \to 1\]
but I have no idea how much evidence there is for Shafarevich's
conjecture, or how much people know or guess about this exact sequence.

More recently, Deligne has turned attention to a certain ``motivic''
version of \(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\), which is
a proalgebraic group scheme. This sort of group has a \emph{Lie
algebra}, which makes it more tractable. And there are a bunch of
fascinating conjectures about this Lie algebra is related to the Riemann
zeta function at odd numbers, Connes and Kreimer's work on Feynman
diagrams, Drinfeld's work on the Grothendieck-Teichmueller group, and
more!

I really want to understand this stuff better --- right now, it's a
complete muddle in my mind. When I do, I will report back to you. For
now, though, let me give you some references.

For two very nice but very different introductions to algebraic number
fields, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  H. P. F. Swinnerton-Dyer, \emph{A Brief Guide to Algebraic Number
  Theory}, Cambridge U. Press, Cambridge 2001.
\item
  Juergen Neukirch, \emph{Algebraic Number Theory}, trans. Norbert
  Schappacher, Springer, Berlin, 1986.
\end{enumerate}

Both assume you know some Galois theory or at least can fake it.
Neukirch's book is good for the all-important analogy between Galois
groups and fundamental groups, which I haven't even touched upon here!
Swinnerton-Dyer's book has the virtue of brevity, so you can see the
forest for the trees. Both have a friendly, slightly chatty style that I
like.

For Shafarevich's conjecture, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  K. Iwasawa, ``On solvable extensions of algebraic number fields'',
  \emph{Ann. Math.} \textbf{58} (1953) 548--572.
\end{enumerate}

For Deligne's motivic analogue, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Pierre Deligne, ``Le groupe fondamental de la droite projective moins
  trois points'', in \emph{Galois Groups over \(\mathbb{Q}\)}, MSRI
  Publications \textbf{16} (1989), 79--313.
\end{enumerate}

This stuff has a lot of relationships to 3d topological quantum field
theory, braided monoidal categories, and the like\ldots{} and it all
goes back to the Grothendieck-Teichmueller group. To learn about this
group try this book, and especially this article in it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Leila Schneps, ``The Grothendieck-Teichmuller group: a survey'', in
  \emph{The Grothendieck Theory of Dessins D'Enfants}, London Math.
  Society Notes \textbf{200}, Cambridge U. Press, Cambridge 1994,
  pp.~183--204.
\end{enumerate}

To hear and watch some online lectures on this material, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Leila Schneps, ``The Grothendieck-Teichmuller group and fundamental
  groups of moduli spaces'', MSRI lecture available at
  \texttt{http://www.msri.org/publications/ln/msri/1999/vonneumann/schneps/1/}

  ``Grothendieck-Teichmuller group and Hopf algebras'', MSRI lecture
  available at
  \texttt{http://www.msri.org/publications/ln/msri/1999/vonneumann/schneps/2/}
\end{enumerate}

For a quick romp through many mindblowing ideas which touches on this
material near the end:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Pierre Cartier, ``A mad day's work: from Grothendieck to Connes and
  Kontsevich --- the evolution of concepts of space and symmetry'',
  \emph{Bulletin of the AMS} \textbf{38} (2001), 389--408. Also
  available at
  \href{http://www.ams.org/joursearch/servlet/DoSearch?sendit=Search\&f1=msc\&v1=\&co1=and\&f2=title\&v2=\&co2=and\&f3=anywhere\&v3=\&co3=and\&f4=author\&v4=cartier\&jrnl=all\&onejrnl=\&startmo=00\&startyr=0000\&endmo=00\&endyr=0000\&format=standard\&sperpage=30\&cperpage=50\&ssort=d\&cso}{http://www.ams.org/}
\end{enumerate}

For even more mindblowing ideas along these lines:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Jack Morava, ``The motivic Thom isomorphism'', talk at the Newton
  Institute, December 2002, also available at
  \href{http://www.arXiv.org/abs/math.AT/0306151}{\texttt{math.AT/0306151}}.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} I received the following email from Avinoam Mann,
which corrects some mistakes I made:

\begin{quote}
Dear John,

It's very nice that you've come to appreciate the beauties of number
theory, and I enjoyed reading your description of Galois theory, but I
hope that you would not mind if I ask you not to help spread some common
misunderstandings about it. First, it was not Galois who proved the
impossibility of solving the quintic by radicals. This was attempted
first by Ruffini, I think in 1799, and the proof by Abel, about ten
years befors Galois, was the one that the mathematical community
accepted. While I often teach Galois theory (e.g.~next semester), I
never studied Ruffini's and Abel's work in detail. What Galois did was
to give a criterion checking for an arbitrary equation whether it is
soluble by radicals or not.

Another point: there is no need for Galois theory to prove that
duplication of the cube and trisection of an angle cannot be done by
ruler and compass. Since ruler and compass constructions are equivalent
to solving a series of quadratics, they can lead only to fields
\(\mathbb{F}\) of dimension \(2^n\), for some \(n\), over the rationals.
But the two problems that I mentioned lead to extensions of dimension 3.
All this is very elementary. Similar considerations lead to necessary
conditions for the constructibility of regular polygons, but proving
these conditions sufficient does require more theory (unless, I guess,
you provide directly the relevant system of quadratics; I think that is
what Gauss did --- his proof also preceded Galois). Squaring the circle
is, of course, a different matter. Here we need the transcendence of
\(\pi\).

Best wishes from wet Jerusalem,

Avinoam Mann
\end{quote}

It's true that Abel and Ruffini beat Galois when it came to the quintic;
the details of this history are covered pretty well by Ian Stewart's
book, I think. And, it's quite true that one doesn't need of Galois
theory to solve a bunch of these problems: for example, to show one
can't duplicate the cube, we just need to see that
\(\mathbb{Q}(2^{1/3})\) has dimension 3 as a vector space over
\(\mathbb{Q}\), while quadratic extensions have dimension \(2^n\). My
use of the Galois correspondence to express this in terms of the size of
certain Galois groups was overkill! The real point of Galois theory is
that it provides a unified framework for tackling a wide range of
problems.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Paris, 1 June --- A deplorable duel yesterday has deprived the
exact sciences of a young man who gave the highest expectations, but
whose celebrated precosity was lately overshadowed by his political
activities. The young Evariste Galois\ldots{} was fighting with one of
his old friends, a young man like himself, like himself a member of the
Society of Friends of the People, and who was known to have figured
equally in a political trial. It is said that love was the cause of the
combat. The pistol was the chosen weapon of the adversaries, but because
of their old friendship they could not bear to look at one another and
left their decision to blind fate.}

--- Le Precursor, June 4, 1832
\end{quote}
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This week I'll deviate from my plan of discussing number theory, and
instead say a bit about something else that's been on my mind lately:
structure types. But, you'll see my fascination with Galois theory
lurking beneath the surface.

Andre Joyal invented structure types in 1981 --- he called them
``espÃ¨ces de structure'', and lots of people call them ``species''.
Basically, a structure type is just any sort of structure we can put on
finite sets: an ordering, a coloring, a partition, or whatever. In
combinatorics we count such structures using ``generating functions''. A
generating function is a power series where the coefficient of \(x^n\)
keeps track of how many structures of the given kind we can put on an
\(n\)-element set. By playing around with these functions, we can often
figure out the coefficients and get explicit formulas --- or at least
asymptotic formulas --- that count the structures in question.

The reason this works is that operations on generating functions come
from operations on structure types. For example, in
\protect\hyperlink{week190}{``Week 190''}, I described how addition,
multiplication and composition of generating functions correspond to
different ways to get new structure types from old.

Joyal's great contribution was to give structure types a rigorous
definition, and use this to show that many calculations involving
generating functions can be done directly with structure types. It turns
out that just as generating functions form a \emph{set} equipped with
various operations, structure types form a \emph{category} with a bunch
of completely analogous operations. This means that instead of merely
proving \emph{equations} between generating functions, we can construct
\emph{isomorphisms} between their underlying structure types --- which
imply such equations, but are worth much more. It's like the difference
between knowing two things are equal and knowing a specific reason WHY
they're equal!

Of course, this business of replacing equations by isomorphisms is
called ``categorification''. In this lingo, structure types are
categorified power series, just as finite sets are categorified natural
numbers.

A while back, James Dolan and I noticed that since you can use power
series to describe states of the quantum harmonic oscillator, you can
think of structure types as states of a categorified version of this
physical system! This gives new insights into the combinatorial
underpinnings of quantum physics.

For example, the discrete spectrum of the harmonic oscillator
Hamiltonian can be traced back to the discreteness of finite sets! The
commutation relations between annihilation and creation operators boil
down to a very simple fact: there's one more way to put a ball in a box
and then take one out, than to take one out and then put one in. Even
better, the whole theory of Feynman diagrams gets a simple combinatorial
interpretation. But for this, one really needs to go beyond structure
types and work with a generalization called ``stuff types''.

I've been thinking about this business for a while now, so last fall I
decided to start giving a year-long course on categorification and
quantization. The idea is to explain bunches of quantum theory, quantum
field theory and combinatorics all from this new point of view. It's
fun! Derek Wise has been scanning in his notes, and a bunch of people
have been putting their homework online. So, you can follow along if you
want:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez and Derek Wise, ``Quantization and Categorification''.\\
  Fall 2003 notes: \texttt{http://math.ucr.edu/home/baez/qg-fall2003}\\
  Winter 2004 notes:
  \texttt{http://math.ucr.edu/home/baez/qg-winter2004/}\\
  Spring 2004 notes:
  \texttt{http://math.ucr.edu/home/baez/qg-spring2004/}
\end{enumerate}

I'd like to give you a little taste of this subject now. But, instead of
explaining it in detail, I'll just give some examples of how structure
types yield some far-out generalizations of the concept of
``cardinality''. This stuff is a continuation of some themes developed
in \protect\hyperlink{week144}{``Week 144''},
\protect\hyperlink{week147}{``Week 147''},
\protect\hyperlink{week185}{``Week 185''},
\protect\hyperlink{week190}{``Week 190''}, so I'll start with a review.

Suppose \(F\) is a structure type. Let \(F_n\) be the \emph{set} of ways
we can put this structure on a \(n\)-element set, and let \(|F_n|\) be
the \emph{number} of ways to do it. In combinatorics, people take all
these numbers \(|F_n|\) and pack them into a single power series. It's
called the generating function of \(F\), and it's defined like this:
\[|F|(x) = \sum \frac{|F_n|}{n!}x^n\] It may not converge, so in general
it's just a ``formal'' power series --- but for interesting structure
types it often converges to an interesting function.

What's good about generating functions is that simple operations on them
correspond to simple operations on structure types. We can use this to
count structures on finite sets. Let me remind you how it works for
binary trees!

There's a structure type \(T\) where a \(T\)-structure on a set is a way
of making it into the leaves of a binary tree drawn in the plane. For
example, here's one \(T\)-structure on the set \(\{a,b,c,d\}\): \[
  \begin{tikzpicture}[scale=0.7]
    \node[label=above:{$b$}] at (0,0) {};
    \node[label=above:{$d$}] at (1,0) {};
    \node[label=above:{$c$}] at (2,0) {};
    \node[label=above:{$a$}] at (3,0) {};
    \draw[thick] (0,0) to (1.5,-3);
    \draw[thick] (1,0) to (1.5,-1);
    \draw[thick] (2,0) to (1,-2);
    \draw[thick] (3,0) to (1.5,-3);
  \end{tikzpicture}
\] Thanks to the choice of different orderings, the number of
\(T\)-structures on an \(n\)-element set is \(n!\) times the number of
binary trees with \(n\) leaves. Annoyingly, the latter number is
traditionally called the \((n-1)\)st Catalan number, \(C_{n-1}\). So, we
have: \[|T|(x) = \sum_{n=1} C_{n-1} x^n.\]

There's a nice recursive definition of \(T\):

\begin{quote}
``To put a \(T\)-structure on a set, either note that it has one
element, in which case there's just one \(T\)-structure on it, or chop
it into two subsets and put a \(T\)-structure on each one.''
\end{quote}

In other words, any binary tree is either a degenerate tree, with just
one leaf: \[X\] or a pair of binary trees stuck together at the root: \[
  \begin{tikzpicture}
    \draw[thick,rounded corners] (-0.75,1) rectangle (-0.25,1.5);
    \draw[thick,rounded corners] (0.75,1) rectangle (0.25,1.5);
    \node at (-0.5,1.25) {$T$};
    \node at (0.5,1.25) {$T$};
    \draw[thick] (-0.5,1) to (0,0) to (0.5,1);
  \end{tikzpicture}
\] We can write this symbolically as \[T \cong X + T^2\]

Here's why: \(X\) is a structure type called ``being the one-element
set'', \(+\) means ``exclusive or'', and squaring a structure type means
you chop your set in two parts and put that structure on each part. (I
explained these rules more carefully in
\protect\hyperlink{week190}{``Week 190''}.)

Note that we only have an \emph{isomorphism} between structure types
here, not an equation. But if we take the generating function of both
sides we get an actual equation, and the notation is set up to make this
really easy: \[|T| = x + |T|^2\] In \protect\hyperlink{week144}{``Week
144''} I showed how you can solve this using the quadratic equation:
\[|T| = \frac{1-\sqrt{1-4x}}{2}\] and then do a Taylor expansion to get
\[|T| = x + x^2 + 2x^3 + 5x^4 + 14x^5 + 42x^6 + \ldots\]

Lo and behold! The coefficient of \(x^n\) is the number of binary trees
with \(n\) leaves!

There's also another approach where we work directly with the structure
types themselves, instead of taking generating functions. This is harder
because we can't subtract structure types, or divide them by 2, or take
square roots of them --- at least, not without stretching the rules of
this game. All we can do is use the isomorphism \[T \cong X + T^2 \] and
the basic rules of category theory. It's not as efficient, but it's
illuminating. It's also incredibly simple: we just keep sticking in
``\(X + T^2\)'' wherever we see ``\(T\)'' on the right-hand side, over
and over again. Like this: \[
  \begin{aligned}
    T
    &\cong X + T^2
  \\&\cong X + (X + T^2)^2
  \\&\cong X + (X + (X + T^2)^2)^2
  \end{aligned}
\] and so on. You might not think we're getting anywhere, but if you
stop at the \(n\)th stage and expand out what we've got, you'll get the
first \(n\) terms of the Taylor expansion we had before! At least, you
will if you count ``stages'' and ``terms'' correctly.

I won't actually do this, because it's better if you do it yourself.
When you do, you'll see it captures the recursive process of building a
binary tree from lots of smaller binary trees. Each time you see a
``\(T\)'' and replace it with an ``\(X + T^2\)'', you're really taking a
little binary tree: \[
  \begin{tikzpicture}
    \draw[thick,rounded corners] (-0.75,1) rectangle (-0.25,1.5);
    \node at (-0.5,1.25) {$T$};
  \end{tikzpicture}
\] and replacing it with either a degenerate tree with just a single
leaf: \[X\] or a pair of binary trees: \[
  \begin{tikzpicture}
    \draw[thick,rounded corners] (-0.75,1) rectangle (-0.25,1.5);
    \draw[thick,rounded corners] (0.75,1) rectangle (0.25,1.5);
    \node at (-0.5,1.25) {$T$};
    \node at (0.5,1.25) {$T$};
    \draw[thick] (-0.5,1) to (0,0) to (0.5,1);
  \end{tikzpicture}
\] So, each term in the final result actually corresponds to a specific
tree! This is a good example of categorification: when we calculate the
coefficient of \(x^n\) this way, we're not just getting the
\emph{number} of binary planar trees with \(n\) leaves --- we're getting
an actual explicit description of the \emph{set} of such trees.

Now, what happens if we take the generating function \(|T|(x)\) and
evaluate it at \(x = 1\)? On the one hand, we get a divergent series:
\[|T|(1) = 1 + 1 + 2 + 5 + 14 + 42 + \ldots\]

This is the sum of all Catalan numbers --- or in other words, the number
of binary planar trees. On the other hand, we can use the formula
\[|T| = \frac{1-\sqrt{1-4x}}{2}\] to get \[|T| = \frac{1-\sqrt{-3}}{2}\]
It may seem insane to conclude
\[1 + 1 + 2 + 5 + 14 + 42 + \ldots = \frac{1-\sqrt{-3}}{2}\] but Lawvere
noticed that there's a kind of strange sense to it.

The trick is to work not with generating function \(|T|\) but with the
structure type \(T\) itself. Since \(|T|(1)\) is equal to the
\emph{number} of planar binary trees, \(T(1)\) should be naturally
isomorphic to the \emph{set} of planar binary trees. And it is --- it's
obvious, once you think about what it really means.

The number of binary planar trees is not very interesting, but the set
of them is. In particular, if we take the isomorphism
\[T \cong X + T^2\]

and set \(X = 1\), we get an isomorphism \[T(1) \cong 1 + T(1)^2\] which
says

\begin{quote}
``a planar binary tree is either the tree with one leaf or a pair of
planar binary trees.''
\end{quote}

Starting from this, we can derive lots of other isomorphisms involving
the set \(T(1)\), which turn out to be categorified versions of
equations satisfied by the number \[|T|(1) = \frac{1-\sqrt{-3}}{2}\] For
example, this number is a sixth root of unity. While there's no
one-to-one correspondence between \(6\)-tuples of trees and the 1
element set, which would categorify the formula \[|T|(1)^6 = 1\] there
\emph{is} a very nice one-to-correspondence between 7-tuples of trees
and trees, which categorifies the formula \[|T|(1)^7 = |T|(1)\] Of
course the set of binary trees is countably infinite, and so is the set
of 7-tuples of binary trees, so they can be placed in one-to-one
correspondence --- but that's boring. When I say ``very nice'', I mean
something more interesting: starting with the isomorphism
\[T \cong X + T^2\] we get a one-to-one correspondence
\[T(1) \cong 1 + T(1)^2\] which says that any binary planar tree is
either degenerate or a pair of binary planar trees\ldots{} and using
this we can \emph{construct} a one-to-one correspondence
\[T(1)^7 \cong T(1)\]

The construction is remarkably complicated. Even if you do it as
efficiently as possible, I think it takes 18 steps, like this: \[
  \begin{aligned}
    T(1)^7
    \cong&\, T(1)^6 + T(1)^8
  \\\cong&\, \ldots
  \\&\vdots
  \\\cong&\, 1 + T(1) + T(1)^2 + T(1)^4
  \\\cong&\, 1 + T(1) + T(1)^3
  \\\cong&\, 1 + T(1)^2
  \\\cong&\, T(1).
  \end{aligned}
\] I'll let you fill in the missing steps --- it's actually quite fun if
you like puzzles.

If you get stuck, you can find the answer online in a couple of
different places:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Andreas Blass, ``Seven trees in one'', \emph{Jour. Pure Appl. Alg.}
  \textbf{103} (1995), 1--21. Also available at
  \texttt{http://www.math.lsa.umich.edu/\textasciitilde{}ablass/cat.html}
\item
  Marcelo Fiore, ``Isomorphisms of generic recursive polynomial types'',
  to appear in \emph{31st Symposium on Principles of Programming
  Languages (POPL04)}. Also available at
  \texttt{http://www.cl.cam.ac.uk/\textasciitilde{}mpf23/papers/Types/recisos.ps.gz}
\end{enumerate}

Or, take a peek at the ``Addenda'' down below.

Robbie Gates, Marcelo Fiore and Tom Leinster have also proved some very
general theorems about this sort of thing. Gates focused on
``distributive categories'' (categories with with products and
coproducts, the former distributing over the latter), while the work of
Fiore and Leinster applies to more general ``rig categories'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Robbie Gates, ``On the generic solution to \(P(X) = X\) in
  distributive categories'', \emph{Jour. Pure Appl. Alg.} \textbf{125}
  (1998), 191--212.
\item
  Marcelo Fiore and Tom Leinster, ``Objects of categories as complex
  numbers'', available as
  \href{http://www.arXiv.org/abs/math.CT/0212377}{\texttt{math.CT/0212377}}.
\end{enumerate}

A rig category is basically the most general sort of category in which
we can ``add'' and ``multiply'' as we do in a ring --- but without
negatives, hence the missing letter ``n''. It turns out that whenever we
have an object \(Z\) in a rig category and it's equipped with an
isomorphism \[Z = P(Z)\] where \(P\) is a polynomial with natural number
coefficients, we can associate to it a ``cardinality'' \(|Z|\), namely
any complex solution of the equation \[|Z| = P(|Z|)\] Which solution
should we use? Well, for simplicity let's consider the case where \(P\)
has degree at least 2 and the relevant Galois group acts transitively on
the solutions of this equation, so ``all roots are created equal''. Then
we can pick \emph{any} solution as the cardinality \(|Z|\). Any
polynomial equation with natural number coefficients satisfied by one
solution will be satisfied by \emph{all} solutions, so it won't matter
which one we choose.

Now suppose the cardinality \(|Z|\) satisfies such an equation:
\[Q(|Z|) = R(|Z|)\] where neither \(Q\) nor \(R\) is constant. Then the
results of Fiore and Leinster say we can construct an isomorphism
\[Q(Z) = R(Z)\;\mbox{!}\] In other words, a bunch of equations satisfied
by the object's cardinality automatically come from isomorphisms
involving the object itself.

This explains why the set \(T(1)\) of binary trees acts like it has
cardinality \[|T|(1) = \frac{1-\sqrt{-3}}{2}\] or equally well,
\[|T|(1) = \frac{1+\sqrt{-3}}{2}\] (Since the relevant Galois group
interchanges these two numbers, we can use either one.) More generally,
the set \(T(n)\) consisting of binary trees with \(n\)-colored leaves
acts a lot like the number \(|T|(n)\).

This has gotten me interested in trying to find a nice example of a
``Golden Object'': an object \(G\) in some rig category that's equipped
with an isomorphism \[G^2 = G + 1\] The Golden Object doesn't fit into
Fiore and Leinster's formalism, since this isomorphism is not of the
form \(G = P(G)\) where \(P\) has natural number coefficients. But, it
still seems that such an object deserves to have a ``cardinality'' equal
to the golden number:
\[|G| = \frac{1 + \sqrt{5}}{2} = 1.618033988749894848204586834365\ldots\]

James Propp came up with an interesting idea related to the Golden
Object: consider what happens when we evaluate the generating function
for binary trees at \(-1\). On the one hand we get an alternating sum of
Catalan numbers: \[|T|(-1) = -1 + 1 - 2 + 5 - 14 + 42 + \ldots\] On the
other hand, we can use the formula \[|T| = \frac{1 - \sqrt{1 - 4x}}{2}\]
to get \[|T|(-1) = \frac{1 - \sqrt{5}}{2}\] which is \(-1\) divided by
the golden number. Of course, it's possible we should use the other sign
of the square root, and get \[|T|(-1) = {1 + \sqrt{5}}{2}\] which is
just the golden number! Galois theory says these two roots are created
equal. Either way, we get a bizarre and fascinating formula:
\[- 1 + 1 - 2 + 5 - 14 + 42 + \ldots = \frac{1\pm\sqrt{5}}{2}\] Can we
fit this into some clear and rigorous framework, or is it just nuts?
We'd like some generalization of cardinality for which ``the set of
binary trees with \(-1\)-colored leaves'' has cardinality equal to the
golden number.

James Propp suggested one avenue. A while back, Steve Schanuel made an
incredibly provocative observation: if we treat ``Euler measure'' as a
generalization of cardinality, it makes sense to treat the real line as
a ``space of cardinality \(-1\)'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Stephen H. Schanuel, ``What is the length of a potato?: an
  introduction to geometric measure theory'', in \emph{Categories in
  Continuum Physics}, Springer Lecture Notes in Mathematics
  \textbf{1174}, Springer, Berlin, 1986, pp.~118--126.
\item
  Stephen H. Schanuel, ``Negative sets have Euler characteristic and
  dimension'', Lecture Notes in Mathematics \textbf{1488}, Springer
  Verlag, Berlin, 1991, pp.~379--385.
\end{enumerate}

James Propp has developed this idea in a couple of fascinating papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  James Propp, ``Euler measure as generalized cardinality'', available
  as
  \href{http://arxiv.org/abs/math/0203289}{\texttt{arXiv:math/0203289}}.
\item
  James Propp, ``Exponentiation and Euler measure'', available as
  \href{http://arxiv.org/abs/math/0204009}{\texttt{arXiv:math/0204009}}.
\end{enumerate}

Using this idea, it seems reasonable to consider the space of binary
trees with leaves labelled by real numbers as a rigorous version of
``the set of binary trees with \(-1\)-colored leaves''. So, we just need
to figure out what generalization of Euler characteristic gives this
space an Euler characteristic equal to the golden number. It would be
great if we could make this space into a Golden Object in some rig
category, but that may be asking too much.

Whew! There's obviously a lot of work left to be done here. Here's
something easier: a riddle. What's this sequence?

\begin{quote}
un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu,\ldots{}
\end{quote}

The answer is at the end of this article.

Now I'd like to mention some important papers on \(n\)-categories. You
may think I'd lost interest in this topic, because I've been talking
about other things. But it's not true!

Most importantly, Tom Leinster has come out with a big book on
\(n\)-categories and operads:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Tom Leinster, \emph{Higher Operads, Higher Categories}, Cambridge U.
  Press, Cambridge, 2003. Also available as
  \href{http://arxiv.org/abs/math.CT/0305049}{\texttt{math.CT/0305049}}.
\end{enumerate}

As you'll note, he managed to talk the press into letting him keep his
book freely available online! We should all do this. Nobody will ever
make much cash writing esoteric scientific tomes --- it takes so long,
you could earn more per hour digging ditches. The only \emph{financial}
benefit of writing such a book is that people will read it, think you're
smart, and want to hire you, promote you, or invite you to give talks in
cool places. So, maximize your chances of having people read your books
by keeping them free online! People will still buy the paper version if
it's any good\ldots.

And indeed, Leinster's book has many virtues besides being free. He
gracefully leads the reader from the very basics of category theory
straight to the current battle front of weak \(n\)-categories,
emphasizing throughout how operads automatically take care of the
otherwise mind-numbing thicket of ``coherence laws'' that inevitably
infest the subject. He doesn't take well-established notions like
``monoidal category'' and ``bicategory'' for granted --- instead, he
dives in, takes their definitions apart, and compares alternatives to
see what makes these concepts tick. It's this sort of careful thinking
that we desperately need if we're ever going to reach the dream of a
clear and powerful theory of higher-dimensional algebra. He does a
similar careful analysis of ``operads'' and ``multicategories'' before
presenting a generalized theory of operads that's powerful enough to
support various different approaches to weak \(n\)-categories. And then
he describes and compares some of these different approaches!

In short: if you want to learn more about operads and \(n\)-categories,
this is \emph{the} book to read.

Leinster doesn't say too much about what \(n\)-categories are good for,
except for a nice clear introduction entitled ``Motivation for
Topologists'', where he sketches their relevance to homology theory,
homotopy theory, and cobordism theory. But this is understandable, since
a thorough treatment of their applications would vastly expand an
already hefty 380-page book, and diffuse its focus. It would also steal
sales from \emph{my} forthcoming book on higher-dimensional algebra ---
which would be really bad, since I plan to retire on the fortune I'll
make from this.

Secondly, Michael Batanin has worked out a beautiful extension of his
ideas on \(n\)-categories which sheds new light on their applications to
homotopy theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\item
  Michael A. Batanin, ``The Eckmann-Hilton argument, higher operads and
  \(E_n\) spaces'', available as
  \href{http://arxiv.org/abs/math.CT/0207281}{\texttt{math.CT/0207281}}.

  Michael A. Batanin, ``The combinatorics of iterated loop spaces'',
  available as
  \href{http://arxiv.org/abs/math.CT/0301221}{\texttt{math.CT/0301221}}.
\end{enumerate}

Getting a manageable combinatorial understanding of the space of loops
in the spaces of loops in the space of loops\ldots{} in some space has
always been part of the dream of higher-dimensional algebra. These
``\(k\)-fold loop spaces'' or have been important in homotopy theory
since the 1970s --- see the end of \protect\hyperlink{week199}{``Week
199''} for a little bit about them. People know that \(k\)-fold loop
spaces have \(k\) different products that commute up to homotopy in a
certain way that can be summarized by saying they are algebras of the
\(E_k\) operad, also called the ``little \(k\)-cubes operad''. However,
their wealth of structure is still a bit mind-boggling. James Dolan and
I made some conjectures about their relation to \(k\)-tuply monoidal
categories in our paper ``Categorification'' (see
\protect\hyperlink{week121}{``Week 121''}), and now Batanin is making
this more precise using his approach to \(n\)-categories --- which is
one of the ones described in Leinster's book.

There's also been a lot of work applying higher-dimensional algebra to
topological quantum field theory --- that's what got me interested in
\(n\)-categories in the first place, but a lot has happened since then.
For a highly readable introduction to the subject, with tons of great
pictures, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Joachim Kock, \emph{Frobenius Algebras and 2D Topological Quantum
  Field Theories}, Cambridge U. Press, Cambridge, 2003.
\end{enumerate}

This is mainly about 2d TQFTs, where the concept of ``Frobenius
algebra'' reigns supreme, and everything is very easy to visualize.

When we go up to \(3\)-dimensional spacetime life gets harder, but also
more interesting. This book isn't so easy, but it's packed with
beautiful math and wonderfully drawn pictures:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Thomas Kerler and Volodymyr L. Lyubashenko, \emph{Non-Semisimple
  Topological Quantum Field Theories for \(3\)-Manifolds with Corners},
  Lecture Notes in Mathematics \textbf{1765}, Springer, Berlin, 2001.
\end{enumerate}

The idea is that if we can extend the definition of a quantum field
theory to spacetimes that have not just boundaries but \emph{corners},
we can try to build up the theory for arbitrary spacetimes from its
behavior on simple building blocks --- since it's easier to chop
manifolds up into a few basic shapes if we let those shapes have
corners. However, it takes higher-dimensional algebra to describe all
the ways we can stick together manifolds with corners! Here Kerler and
Lyubashenko make \(3\)-dimensional manifolds going between
\(2\)-manifolds with boundary into a ``double category''\ldots{} and
make a bunch of famous 3d TQFTs into ``double functors''.

Closely related is this paper by Kerler:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Thomas Kerler, ``Towards an algebraic characterization of
  3-dimensional cobordisms'', \emph{Contemp. Math.} \textbf{318} (2003)
  141--173. Also available as
  \href{http://arxiv.org/abs/math/0106253}{\texttt{arXiv:math/0106253}}.
\end{enumerate}

It relates the category whose objects are \(2\)-manifolds with a circle
as boundary, and whose morphisms are \(3\)-manifolds with corners going
between these, to a braided monoidal category ``freely generated by a
Hopf algebra object''. (I'm leaving out some fine print here, but
probably putting in more than most people want!) It comes close to
showing these categories are the same, but suggests that they're not
quite --- so the perfect connection between topology and higher
categories remains elusive in this important example.

Answer to the riddle: these are the Catalan numbers --- i.e., the
natural numbers as written in Catalan. This riddle was taken from the
second volume of Stanley's book on enumerative combinatorics (see
\protect\hyperlink{week144}{``Week 144''}).

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Long after this issue was written, we had a discussion
on the \(n\)-Category CafÃ© about the ``seven trees in one'' problem. Let
\(B\) be the set of binary planar trees --- the set I was calling
\(T(1)\) above. Starting from the isomorphism \[B \cong B^2 + 1\] we
want to construct an isomorphism \[B \cong B^7\] Here is the proof in
Marcelo Fiore's paper:
\[\includegraphics[max width=0.65\linewidth]{../images/seven_trees_in_one_fiore.jpg}\]
At each step he either replaces \(B^n\) by \(B^{n-1} + B^{n+1}\), or the
reverse. The underlined portion shows where this will be done. Over at
the \emph{n}-CafÃ©, Stuart Presnell made a beautiful picture of this
proof:
\[\includegraphics[max width=0.65\linewidth]{../images/seven_trees_in_one_presnell_fiore.png}\]
He also made a picture of another proof, which is on page 29 of Pierre
Ageron's book Logiques, Ensembles, Catgories: Le Point de Vue
Constructif:
\[\includegraphics[max width=0.65\linewidth]{../images/seven_trees_in_one_presnell_bell.png}\]
You can watch a \emph{movie} of a proof here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Dan Piponi," Arboreal isomorphisms from nuclear pennies", \emph{A
  Neighborhood of Infinity}, September 30, 2007. Available at
  \texttt{http://blog.sigfpe.com/2007/09/arboreal-isomorphisms-from-nuclear.html}.
\end{enumerate}

It was in the ensuing discussion on this blog that George Bell came up
with his more efficient proof. For a bit more discussion, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  John Baez, `Searching for a video proof of ``seven trees in one''\,',
  \(n\)-Category CafÃ©, July 16, 2009. Available at
  \texttt{http://golem.ph.utexas.edu/category/2009/07/searching\_for\_a\_video\_proof\_of.html}.
\end{enumerate}

Now, on to some older addenda!

My pal Squark pointed out that if we try to compute the generating
function for binary trees by making an initial guess for \(|T|(x)\), say
\(t\), and repeatedly improving this guess via \[t \mapsto x + t^2\] the
guess will converge to the right answer if \(t\) is small --- but the
process will fail miserably, with \(t\) approaching \(\infty\), if and
only if the complex number \(x\) lies outside the Mandelbrot set!

After an earlier version of this Week appeared on the category theory
mailing list, Steve Schanuel posted some corrections. I've tried to
correct the text above as much as possible without making it too
technical --- for example, by citing the important work of Robbie Gates,
and distinguishing more clearly between his work on distributive
categories and the paper by Fiore and Leinster, which applies to rig
categories. I tend to talk about 3 different sorts of ring-like
categories in This Week's Finds:

\begin{itemize}
\item
  Rig categories. A \textbf{rig category} is one equipped with a
  symmetric monoidal structure called \(+\) and a monoidal structure
  called \(\otimes\), with all the usual rig axioms holding up to
  natural isomorphism, and these isomorphisms satisfying a set of
  coherence laws worked out by Laplaza and Kelly:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{16}
  \item
    M. Laplaza, ``Coherence for distributivity'', Lecture Notes in
    Mathematics \textbf{281}, Springer Verlag, Berlin, 1972, pp.~29--72.
  \item
    G. Kelly, ``Coherence theorems for lax algebras and distributive
    laws'', Lecture Notes in Mathematics \textbf{420}, Springer Verlag,
    Berlin, 1974, pp.~281--375.
  \end{enumerate}

  (These authors spoke of ``ring categories'', but the term ``rig
  category'' is more appropriate since, as in a rig, there need be no
  additive inverses.)
\item
  \(2\)-Rigs. A \textbf{2-rig} is a symmetric monoidal cocomplete
  category where the monoidal structure, which we call \(\otimes\),
  distributes over the colimits, which we think of as a generalized form
  of addition. For more on rigs, \(2\)-rigs and structure types see
  \href{week191.html}{week191}. In a \(2\)-rig, distributivity is just a
  property of the monoidal structure, rather than a structure, as it is
  in a rig category. However, by choosing a particular coproduct for
  each pair of objects, and a particular initial object, we can promote
  any \(2\)-rig to a rig category. To get an example of a rig category
  that's not a \(2\)-rig, just take any rig and think of it as a
  discrete category (a category with only identity morphisms). Another
  example would be the category of finite-dimensional vector spaces,
  since this only has finite colimits. (Of course, we could make up some
  sort of ``finitary \(2\)-rig'' that only had finite colimits, but the
  profusion of terminology is already annoying.)
\item
  Distributive categories. A \textbf{distributive category} is a
  category with finite products and coproducts, the products
  distributing over the coproducts. Here again, distributivity is just a
  property. But, by choosing specified products and coproducts for every
  pair of objects, and choosing terminal and initial objects, we can
  promote any distributive category into a rig category. A good example
  of a \(2\)-rig that is not a distributive category is the category
  \(\mathsf{Vect}\), with direct sum and tensor product as \(+\) and
  \(\otimes\). Another example is the discrete category on a rig.
\end{itemize}

By not distinguishing these, the original version of
\protect\hyperlink{week202}{``Week 202''} made it sound as if Fiore and
Leinster had simply redone Gates' work on distributive categories. I
hope this is a bit clearer now. Schanuel's remarks are still worth
reading for their description of what Gates actually did:

\begin{quote}
Dear colleagues,

For those who read the most recent long discursion of John Baez, a few
of the errors in the section on distributive categories merit
correction:

\begin{enumerate}
\def\labelenumi{(\arabic{enumi})}
\item
  J. B. suggests that Blass published what Lawvere had already worked
  out. In fact, Lawvere (partly to counteract some incorrect uses of
  infinite series in analyses of `data types' in computer science) had
  worked out the algebra of the rig presented by one generator \$ \$and
  one relation \(X=1+X^2\), roughly by the method in (3) below, and
  conjectured that this rig could be realized as the isomorphism classes
  in a distributive (even extensive) category, which conjecture Blass
  then proved (and a bit more) in ``Seven Trees\ldots{}''.
\item
  The generalization of Blass's theorem to one generator ond one
  polynomial relation of the `fixed-point' form \(X=p(X)\), where \(p\)
  is a polynomial with natural number coefficients and nonzero constant
  term is not, as J. B. seems to suggest, due to Fiore and Leinster; it
  was part of the prize-winning doctoral thesis of Robbie Gates, who
  (using a calculus of fractions) described explicitly the free
  distributive category on one object \(X\) together with an isomorphism
  from \(p(X)\) to \(X\), proving that this category is extensive and
  that its rig of isomorphism classes satisfies no further relations,
  i.e.~is the rig \(R\) presented by one generator and the one relation
  above.
\item
  If \(p\) is as in (2) and of degree at least 2, the algebra of the rig
  \(R\) is made by J. B. to seem mysterious. It is more easily
  understood in the way the \(X=2^X+1\) case was treated in my
  ``Negative Sets\ldots{}'' paper; just show that the Euler and
  dimension homomorphisms, tensoring with \(\mathbb{Z}\) and with
  \(\mathsf{2}\) (the rig true/false) respectively, are jointly
  injective. In this case the dimension rig has only three elements,
  which explains why the Euler characteristic captures almost, but not
  quite, everything.
\end{enumerate}

Greetings to all,\\
Steve Schanuel
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{A traveller who refuses to pass over a bridge until he personally
tests the soundness of every part of it is not likely to go far;
something must be risked, even in mathematics.}

--- Horace Lamb
\end{quote}



\hypertarget{week203}{%
\section{February 28, 2004}\label{week203}}

Last week I posed this puzzle: to find a ``Golden Object''.

A couple days ago I got a wonderful solution from Robin Houston, a
computer science grad student at the University of Manchester. So, I
want to say a bit more about the golden number, then describe his
solution, and then describe how he found it.

Supposedly the Greeks thought the most beautiful rectangle was one such
that when you chop a square off one end, you're left with a rectangle of
the same shape. If your original rectangle was \(1\) unit across and
\(G\) units long, after you chop a \(1\)-by-\(1\) square off the end
you're left with a rectangle that's \(G-1\) units across and \(1\) unit
long: \[
  \begin{tikzpicture}[scale=2]
    \draw[thick] (0,0) rectangle (1.618,1);
    \draw[dashed] (1,1) to (1,0);
    \draw[decoration={brace,raise=1.5,mirror},decorate] (0,0) to (0.99,0);
    \draw[decoration={brace,raise=1.5,mirror},decorate] (1.01,0) to (1.618,0);
    \draw[decoration={brace,raise=1.5},decorate] (0,0) to (0,1);
    \draw[decoration={brace,raise=1.5},decorate] (0,1) to (1.618,1);
    \node at (0.5,-0.2) {$1$};
    \node at (1.3,-0.2) {$G-1$};
    \node at (-0.2,0.5) {$1$};
    \node at (0.805,1.2) {$G$};
  \end{tikzpicture}
\] So, to make the proportions of the little rectangle the same as those
of the big one, you want

\begin{quote}
``1 is to G as G-1 is to 1''
\end{quote}

or in other words: \[\frac{1}{G} = G - 1 \] or after a little algebra,
\[G^2 = G + 1\] so that
\[G = \frac{1+\sqrt{5}}{2} = 1.618033988749894848204586834365\ldots\]
while \[\frac1G = 1.618033988749894848204586834365\ldots\] and
\[G^2 = 2.618033988749894848204586834365\ldots\] (At this point I
usually tell my undergraduates that the pattern continues like this,
with \(G^3 = 3.618\ldots\) and so on --- just to see if they'll believe
anything I say.)

These days, the number \(G\) is called the Golden Number, the Golden
Ratio, or the Golden Section. It's often denoted by the Greek letter
\(\Phi\), after the Greek sculptor Phidias. Phidias helped design the
Parthenon - and supposedly packed it full of golden rectangles, to make
it as beautiful as possible.

The golden number is a great favorite among amateur mathematicians,
because it has a flashy sort of charm. You can find it all over the
place if you look hard enough --- and if you look too hard, you'll find
it even in places where it's not. It's the ratio of the diagonal to the
side of a regular pentagon! If you like the number 5, you'll be glad to
know that \[G = \sqrt{\frac{5+\sqrt{5}}{5-\sqrt{5}}}\] If you don't,
maybe you'd prefer this:
\[G = \exp\left(\operatorname{arcsinh}\left(\frac12\right)\right)\] My
favorite formulas for the golden number are
\[G = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \ldots}}}}}}\]
and the continued fraction:
\[G = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + }}}}\]
These follow from the equations \(G^2 = G + 1\) and \(G = 1 + 1/G\),
respectively. If you chop off the continued fraction for \(G\) at any
point, you'll see that \(G\) is also the limit of the ratios of
successive Fibonacci numbers. See \protect\hyperlink{week190}{``Week
190''} for a very different proof of this fact.

However, don't be fooled! The charm of the golden number tends to
attract kooks and the gullible --- hence the term ``fool's gold''. You
have to be careful about anything you read about this number. In
particular, if you think ancient Greeks ran around in togas
philosophizing about the ``golden ratio'' and calling it ``\(\Phi\)'',
you're wrong. This number was named \(\Phi\) after Phidias only in 1914,
in a book called \emph{The Curves of Life} by the artist Theodore Cook.
And, it was Cook who first started calling \(1.618\ldots\) the golden
ratio. Before him, \(\ldots0.618\) was called the golden ratio! Cook
dubbed this number ``\(\varphi\)'', the lower-case baby brother of
\(\Phi\).

In fact, the whole ``golden'' terminology can only be traced back to
1826, when it showed up in a footnote to a book by one Martin Ohm,
brother of Georg Ohm, the guy with the law about resistors. Before then,
a lot of people called \(1/G\) the ``Divine Proportion''. And the guy
who started \emph{that} was Luca Pacioli, a pal of Leonardo da Vinci who
translated Euclid's \emph{Elements}. In 1509, Pacioli published a
3-volume text entitled \emph{Divina Proportione}, advertising the
virtues of this number. Some people think da Vinci used the divine
proportion in the composition of his paintings. If so, perhaps he got
the idea from Pacioli.

Maybe Pacioli is to blame for the modern fascination with the golden
ratio; it seems hard to trace it back to Greece. These days you can buy
books and magazines about ``Elliot Wave Theory'', a method for making
money on the stock market using patterns related to the golden number.
Or, if you're more spiritually inclined, you can go to workshops on
``Sacred Geometry'' featuring talks about the healing powers of the
golden ratio. But Greek texts seem remarkably quiet about this number.

The first recorded hint of it is
\href{http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII11.html}{Proposition
11 in Book II} of Euclid's \emph{Elements}. It also shows up elsewhere
in Euclid, especially
\href{http://aleph0.clarku.edu/~djoyce/java/elements/bookVI/propVI30.html}{Proposition
30 of Book VI}, where the task is ``to cut a given finite straight line
in extreme and mean ratio'', meaning a ratio \(A:B\) such that \[
  \begin{gathered}
    A:B :: (A+B):A
  \\\mbox{i.e. "$A$ is to $B$ as $A+B$ is to $A$"}
  \end{gathered}
\] This is later used in
\href{http://aleph0.clarku.edu/~djoyce/java/elements/bookXIII/propXIII17.html}{Proposition
17 of Book XIII} to construct the pentagonal face of a regular
dodecahedron.

Of course, Euclid wasn't the first to do all these things; he just wrote
them up in a nice textbook. By now it's impossible to tell who
discovered the golden ratio and just what the Greeks thought about it.
For a sane and detailed look at the history of the golden ratio, try
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  J. J. O'Connor and E. F. Robertson, ``The Golden Ratio'',
  \texttt{http://www-gap.dcs.st-and.ac.uk/\textasciitilde{}history/HistTopics/Golden\_ratio.html}
\end{enumerate}

While I'm at it, I should point out that Theodore Cook's book
introducing the notation ``\(\Phi\)'' is still in print:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Theodore A. Cook, \emph{The Curves of Life: Being an Account of Spiral
  Formations and Their Application to Growth in Nature, to Science, and
  to Art: with Special Reference to the Manuscripts of Leonardo da
  Vinci}, Dover Publications, New York, 1979.
\end{enumerate}

If you want to see what Euclid said about the golden ratio, you can also
pick up a cheap copy of the Elements from Dover --- but it's probably
quicker to go online. There are a number of good places to find Euclid's
Elements online these days.

Topologists know David Joyce as the inventor of the ``quandle'' --- an
algebraic structure that captures most of the information in a knot. Now
he's writing a high-tech edition of Euclid, complete with Java applets:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  David E. Joyce's edition of Euclid's Elements,
  \texttt{http://aleph0.clarku.edu/\textasciitilde{}djoyce/java/elements/toc.html}
\end{enumerate}

Joyce is carrying on a noble tradition: back in 1847, Oliver Byrne did a
wonderful edition of Euclid complete with lots of beautiful color
pictures and even some pop-up models. You can see this online at the
Digital Mathematics Archive:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Oliver Byrne's edition of Euclid's Elements, online at the Digital
  Mathematics Archive,
  \texttt{http://www.sunsite.ubc.ca/DigitalMathArchive/}
\end{enumerate}

The most famous scholarly English translation of Euclid was done by Sir
Thomas Heath in 1908. You can find it together with an edition in Greek
and a nearly infinite supply of other classical texts at the Perseus
Digital Library:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Thomas L. Heath's edition of Euclid's Elements, online at The Perseus
  Digital Library, \texttt{http://www.perseus.tufts.edu/}
\end{enumerate}

But I'm digressing! My main point was that while
\(G = (1 + \sqrt{5})/2\) is a neat number, it's a lot easier to find
nuts raving about it on the net than to find truly interesting
mathematics associated with it --- or even interesting references to it
in Greek mathematics! The cynic might conclude that the charm of this
number is purely superficial. However, that would be premature.

First of all, there's a certain sense in which \(G\) is ``the most
irrational number''. To get the best rational approximations to a number
you use its continued fraction expansion. For \(G\), this converges as
slowly as possible, since it's made of all 1's:
\[G = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + }}}}\] We
can make this more precise. For any number \(x\) there's a constant
\(c(x)\) that says how hard it is to approximate \(x\) by rational
numbers, given by
\[\liminf_{q\to\infty}\left\vert x-\frac{p}{q}\right\vert = \frac{c(x)}{q^2}\]
where \(q\) ranges over integers, and \(p\) is an integer chosen to
minimize \(|x - p/q|\). This constant is as big as possible when \(x\)
is the golden ratio!

It'd be ironic if the famously ``rational'' Greeks, who according to
legend even drowned the guy who proved \(\sqrt{2}\) was irrational,
chose the most irrational number as the proportions of their most
beautiful rectangle! But, it wouldn't be a coincidence. Their obsession
with ratios and proportions led them to ponder the situation where
\(A:B::(A+B):A\), and this proportion instantly implies that \(A\) and
\(B\) are incommensurable, since if you assume \(A\) and \(B\) are
integers and try to find their greatest common divisor using Euclid's
algorithm, you get stuck in an infinite loop. Euclid even mentions this
idea in
\href{http://aleph0.clarku.edu/~djoyce/java/elements/bookX/propX2.html}{Proposition
2 of Book X}:

\begin{quote}
If, when the less of two unequal magnitudes is continually subtracted in
turn from the greater that which is left never measures the one before
it, then the two magnitudes are incommensurable.
\end{quote}

He doesn't explicitly come out and apply it to what we now call the
golden ratio --- but how could he not have made the connection? For more
info on the Greek use of continued fractions and the Euclidean
algorithm, check out the chapter on ``antihyphairetic ratio theory'' in
this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  D. H. Fowler, \emph{The Mathematics of Plato's Academy: A New
  Reconstruction}, Oxford U. Press, Oxford, 1987.
\end{enumerate}

Anyway, it's actually important in physics that the golden number is so
poorly approximated by rationals. This fact shows up in the Kolmogorov-
Arnold-Moser theorem, or ``KAM theorem'', which deals with small
perturbations of completely integrable Hamiltonian systems. Crudely
speaking, these are classical mechanics problems that have as many
conserved quantities as possible. These are the ones that tend to show
up in textbooks, like the harmonic oscillator and the gravitational
2-body problem. The reason is that you can solve such problems if you
can do a bunch of integrals --- hence the term ``completely
integrable''.

The cool thing about a completely integrable system is that time
evolution carries states of the system along paths that wrap around
tori. Suppose it takes \(n\) numbers to describe the position of your
system. Then it also takes \(n\) numbers to describe its momentum, so
the space of states is \(2n\)-dimensional. But if the system has n
different conserved quantities --- that's basically the maximum allowed
--- the space of states will be foliated by \(n\)-dimensional tori. Any
state that starts on one of these tori will stay on it forever! It will
march round and round, tracing out a kind of spiral path that may or may
not ever get back to where it started.

Things are pretty simple when \(n = 1\), since a \(1\)-dimensional torus
is a circle, so the state \emph{has} to loop around to where it started.
For example, when you have a pendulum swinging back and forth, its
position and momentum trace out a loop as time passes.

When n is bigger, things get trickier. For example, when you have n
pendulums swinging back and forth, their motion is periodic if the
ratios of their frequencies are rational numbers.

This is how it works for any completely integrable system. For any
torus, there's an \(n\)-tuple of numbers describing the frequency with
which paths on this torus wind around in each of the \(n\) directions.
If the ratios of these frequencies are all rational, paths on this torus
trace out periodic orbits. Otherwise, they don't!

KAM theory says what happens when you perturb such a system a little. It
won't usually be completely integrable anymore. Interestingly, the tori
with rational frequency ratios tend to fall apart due to resonance
effects. Instead of periodic orbits, we get chaotic motions instead. But
the ``irrational'' tori are more stable. And, the ``more irrational''
the frequency ratios for a torus are, the bigger a perturbation it takes
to disrupt it! Thus, the most stable tori tend to have frequency ratios
involving the golden number. As we increase the perturbation, the last
torus to die is called a ``golden torus''.

You can actually \emph{watch} tori breaking into chaotic dust if you
check out the applet illustrating the ``standard map'' on this website:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Takashi Kanamaru and J. Michael T. Thompson, ``Introduction to Chaos
  and Nonlinear Dynamics'', standard map applet,
  \texttt{http://brain.cc.kogakuin.ac.jp/\textasciitilde{}kanamaru/Chaos/e/Standard/}
\end{enumerate}

The ``standard map'' is a certain dynamical system that's good for
illustrating this effect. You won't actually see 2d tori, just 1d
cross-sections of them --- but it's pretty fun. For more details, try
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  M. Tabor, \emph{Chaos and Integrability in Nonlinear Dynamics: An
  Introduction}, Wiley, New York, 1989.
\end{enumerate}

In short, the golden number is the best frequency ratio for avoiding
resonance!

Some audiophiles even say this means the best shaped room for listening
to music is one with proportions \(1:G:G^2\). I leave it to you to find
the flaw in this claim. For more dubious claims, check out the ad for
expensive speaker cables at the end of this article.

KAM theory is definitely cool, but we shouldn't rest content with this
when skeptics ask if the golden number is all it's cracked up to be. I
figure it's part of our job as mathematicians to keep on discovering
mind-blowing facts about the golden number. A small part, but part: we
shouldn't give up the field to amateurs!

Penrose has done his share. His ``Penrose tiles'' take crucial advantage
of the self-similarity embodied by the golden number to create
nonperiodic tilings of the plane. This helped spawn a nice little
industry, the study of ``quasicrystals'' with \(5\)-fold symmetry.
Here's a good introduction for mathematicians:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Andre Katz, ``A short introduction to quasicrystallography'', in
  \emph{From Number Theory to Physics}, eds.~M. Waldschmit et al,
  Springer, Berlin, 1992, pp.~496--537.
\end{enumerate}

By the way, this same book has some nice stuff on the role of the golden
number in KAM theory and the theory of iterated maps from the circle to
itself:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Predrag Cvitanovic, ``Circle maps: irrationally winding'', in
  \emph{From Number Theory to Physics}, eds.~M. Waldschmit et al,
  Springer, Berlin, 1992, pp.~631--658.
\item
  Jean-Christophe Yoccoz, ``Introduction to small divisors problems'',
  in \emph{From Number Theory to Physics}, eds.~M. Waldschmit et al,
  Springer, Berlin, 1992, pp.~659--679.
\end{enumerate}

Conway and Sloane are also pulling their weight. Starting from the
relation between the golden ratio, the isosahedron, and the
\(4\)-dimensional big brother of the icosahedron (the ``600-cell''),
they've described how to construct the coolest lattices in 8 and 24
dimensions using ``icosians'' --- which are certain quaternions built
using the golden ratio. I discussed this circle of ideas in
\protect\hyperlink{week20}{``Week 20''},
\protect\hyperlink{week59}{``Week 59''} and
\protect\hyperlink{week155}{``Week 155''}.

But if you want some really scary formulas involving the golden ratio,
Ramanujan is the one to go to. Check these out:
\[\frac{1}{1 + \frac{\exp(-2\pi)}{1 + \frac{\exp(-4\pi)}{1 + \frac{\exp(-6\pi)}{1 + \ldots}}}} = \exp\left(\frac{2\pi}{5}\right)\left(\sqrt{G\sqrt{5}}-5\right)\]
and
\[1 + \frac{\exp(-2\pi\sqrt{5})}{1 + \frac{\exp(-4\pi\sqrt{5})}{1 + \frac{\exp(-6\pi\sqrt{5})}{1 + \ldots}}} = \exp\left(\frac{2\pi}{5}\right)\left(\frac{\sqrt{5}}{1+(5^\frac34(G-1)^\frac52-1)^\frac15}-G\right)\]
These are special cases of a monstrosity called the Rogers-Ramanujan
continued fraction, which is a kind of ``\(q\)-deformation'' of the
continued fraction for the golden ratio. For details, start here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Eric W. Weisstein, ``Rogers-Ramanujan Continued Fraction'',
  \texttt{http://mathworld.wolfram.com/Rogers-RamanujanContinuedFraction.html}
\end{enumerate}

It's these two formulas, and one other like it, that led Hardy to write
the famous lines:

\begin{quote}
A single look at them is enough to show that they could only be written
down by a mathematician of the highest class. They must be true because,
if they were not true, no one would have had the imagination to invent
them.
\end{quote}

For more by Hardy on these continued fractions, see section 1 and
section 6.17 of his book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  G. H. Hardy, \emph{Ramanujan: Twelve Lectures on Subjects Suggested by
  His Life and Work}, Chelsea Publishing Co., New York, 1959.
\end{enumerate}

The golden number also shows up in the theory of quantum groups. I
talked about this in \protect\hyperlink{week22}{``Week 22''} so I won't
explain it again here. But, I can't resist mentioning that Freedman,
Larsen and Wang have subsequently shown that a certain topological
quantum field theory called Chern-Simons theory, built using the quantum
group \(\mathrm{SU}_q(2)\), can serve as a universal quantum computer
when the parameter \(q\) is a fifth root of unity. And, this is exactly
the case where the spin-\(1/2\) representation of \(\mathrm{SU}_q(2)\)
has quantum dimension equal to the golden number!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Michael Freedman, Michael Larsen, Zhenghan Wang, ``A modular functor
  which is universal for quantum computation'', available at
  \href{http://www.arXiv.org/quant-ph/0001108}{\texttt{quant-ph/0001108}}.
\end{enumerate}

But don't get the wrong idea: it's not that some magic feature of the
golden number is required to build a universal quantum computer! It's
just that the 5 seems to be the \emph{smallest} number \(n\) such that
\(\mathrm{SU}_q(2)\) Chern-Simons theory is computationally universal
when \(q\) is an \(n\)th root of \(1\).

That's pretty much everything I know about the golden number. So now,
what about this ``Golden Object'' puzzle?

Basically, the problem was to find an object that acts like the golden
number. The golden number has \(G^2 = G + 1\), so we want to find a
object \(G\) equipped with a nice isomorphism between \(G^2\) and
\(G + 1\).

If \(G\) is just a set, this means we want a nice one-to-one
correspondence between pairs of elements of \(G\), and elements of \(G\)
together with one other thing. It doesn't matter what that other thing
is, so let's call it ``\(@\)''.

(You may be wondering about the word ``nice''. The point is, the problem
is too easy if we don't demand that the solution be nice in some way ---
some way that I don't feel like making precise.)

Here's Robin Houston's answer:

Define a ``bit'' to be either \(0\) or \(1\). Define a ``golden tree''
to be a (planar) binary tree with leaves labelled by \(0\), \(1\), or
\(*\), where every node has at most one bit-child. For example: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (-1,-2) node[label=below:{$0$}]{};
    \draw[thick] (0,0) to (0.5,-1) node[label=below:{$1$}]{};
    \draw[thick] (-0.5,-1) to (0,-2) node[label=below:{$*$}]{};
  \end{tikzpicture}
\] is a golden tree, but \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (-1,-2) node[label=below:{$0$}]{};
    \draw[thick] (0,0) to (0.5,-1) node[label=below:{$*$}]{};
    \draw[thick] (-0.5,-1) to (0,-2) node[label=below:{$1$}]{};
  \end{tikzpicture}
\] is not. Let \(G\) be the set of golden trees. We define an
isomorphism \[f\colon G^2 \to G + \{@\}\] as follows. First we define
\(f(X, Y)\) when both \(X\) and \(Y\) are golden trees with just one
node, this node being labelled by a bit. We can identify such a tree
with a bit, and doing this we set \[
  \begin{aligned}
    f(0, 0) &= 0
  \\f(0, 1) &= 1
  \\f(1, 0) &= *
  \\f(1, 1) &= @
  \end{aligned}
\] In the remaining case, where the golden trees X and Y are not just
bits, we set \[
  \begin{tikzpicture}
    \node at (0,0) {$f(X,Y)$};
    \node at (1,0) {$=$};
    \draw[thick] (1.5,-0.5) node[label=below:{$X$}]{} to (2,0.5) to (2.5,-0.5) node[label=below:{$Y$}]{};
  \end{tikzpicture}
\] There are different ways to show this function \(f\) is a one-to-one
correspondence, but the best way is to see how Houston came up with this
answer! He didn't just pull it out of a hat; he tackled the problem
systematically, and that's why his solution counts as ``nice''.

It's easy to find a set \(S\) equipped with an isomorphism \[S = P(S)\]
where \(P\) is some polynomial with natural number coefficients. You
just use the fixed-point principle described in
\protect\hyperlink{week108}{``Week 108''}. Namely, you start with the
empty set, keep hitting it with \(P\) forever, and take a kind of limit.
This is how I built the set of binary trees last week, as a solution of
\(T = T^2 + 1\).

The problem is that the isomorphism we seek now: \[G^2 = G + 1 \tag{1}\]
is not of this form. So, what Houston does is to make a substitution:
\[G = H + 2\] Given this, we'd get (1) if we had
\[H^2 + 4H + 4 = H + 3 \tag{2}\] and we'd get (2) if we had
\[H^2 + 4H + 1 = H \tag{3}\] which is of the desired form.

We can rewrite (3) as \[H = 1 + H^2 + 2H + H2\] and in English this says
"an element of \(H\) is either a *, or a pair consisting of two guys
that are either bits or elements of \(H\) --- but not both bits". So, a
guy in \(H\) is a golden tree! But, if it has just one node, that node
can only be labelled by a \(*\), not a \(0\) or \(1\). This means there
are precisely 2 golden trees not in \(H\). So, \(G = H + 2\) is the set
of all golden trees, and our calculation above gives an isomorphism
\(G^2 = G + 1\).

Voila!

Note that to derive (3) from (1) we need to subtract, which in general
is not allowed in this game. Here we are subtracting constants, and
Houston says that's allowed by the ``Garsia-Milne involution theorem''.
I don't know this theorem, so I'll make a note to myself to learn it.
But luckily, we don't really need it here: we only need to derive (1)
from (3), and that involves addition, so it's fine.

Part of what makes Houston's solution ``nice'' is that it suggests a
general method for turning polynomial equations into recursive
definitions of the form \(S = P(S)\). Another nice thing is that his
trick delivers a structure type \(G(X)\) that reduces to \(G\) when
\(X = 1\). To get this, first use the fixed-point method to construct a
structure type \(H(X)\) with an isomorphism
\[H(X) = (H(X) + X)^2 + 2H(X)\] Then, define \[G(X) = H(X) + X + 1\] and
note that this gives \[G(X)^2 = G(X) + X\] which reduces to G\^{}2 = G +
1 when X = 1.

As if this weren't enough, Houston also gave another solution to the
puzzle. He showed that James Propp's proposed Golden Object, described
last week, really is a Golden Object! Maybe Propp already knew this, but
I sure didn't.

The idea of the proof is pretty general. Suppose we're in some category
that's a ``\(2\)-rig'' in the sense of
\protect\hyperlink{week191}{``Week 191''}. And, suppose we've got an
object X equipped with an isomorphism \[X = 1 + 2X \tag{4}\] so that
\(X\) acts like ``\(-1\)''. For example, following Schanuel and Propp,
we can take the category of ``\(\sigma\)-polytopes'' and let \(X\) be
the open interval: then isomorphism (4) says
\[(0,1) = (0,1/2) + \{1/2\} + (1/2,1)\] Or, following Houston, we can
take the category of sets and let \(X\) be the set of finite
bit-strings. Then (4) says ``a finite bit-string is either the empty
bit-string, or a bit followed by a finite bit-string''. The relation
between these two examples is puzzling to me --- if anyone understands
it, let me know! But anyway, either one works.

Now let \(G\) be the object of ``binary trees with \(X\)-labelled
leaves'': \[G = X + X^2 + 2X^3 + 5X^4 + 14X^5 + 42X^6 + \ldots\] where
the coefficients are Catalan numbers. Let's show that \(G\) is a Golden
Object. To do this, we'll use (4) and this isomorphism:
\[G = G^2 + X \tag{5}\] which says ``a binary tree with \(X\)-labelled
leaves is a pair of such trees, or a degenerate tree with just one
\(X\)-labelled node''. The formula for \(G\) involving Catalan numbers
is really just the fixed-point solution to this!

Here is Houston's fiendishly clever argument. Suppose \(Z\) is any type
equipped with an isomorphism \[Z = Z' + X\] for some \(Z'\). Then \[
  \begin{aligned}
    Z + X + 1
    &= Z' + 2X + 1
  \\&= X' + X
  \\&= Z
  \end{aligned}
\] This applies to \(Z = G^2\), since
\[G^2 = (X + G^2)^2 = (2X + 1 + G^2)^2\] has a \(X\) term in it when you
multiply it out, so it's of the form \(Z' + X\). Therefore we have an
isomorphism \[G^2 = G^2 + X + 1\] But we also have an isomorphism
\(G + 1 = G^2 + X + 1\) by (5). Composing these, we get our isomorphism
\[G^2 = G + 1.\] Golden! I'll stop here.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} The computer scientist Sebastiano Vigna pointed out
this paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Paolo Boldi, Massimo Santini, and Sebastiano Vigna, ``Measuring with
  jugs, or: what if mathematicians were asked to defuse bombs?'',
  \emph{Theoret. Comput. Sci.} \textbf{2} (2002). Also available at
  \texttt{http://vigna.dsi.unimi.it/papers.php}
\end{enumerate}

which shows that if you want to approximately measure an arbitrary
amount of water using only two jugs, it's best if they have capacity
\(1\) and \(G\). This paper cites a a charming result by Swierczkowski
which picks up where a famous theorem due to Dedekind leaves off.
Dedekind showed that if \(x\) is any irrational number, the numbers
\(nx \mod 1\) are uniformly distributed in the interval \([0,1]\). But
if \(x = 1/G\), these numbers have an especially nice property: each new
point in the sequence \((nx \mod 1)\) lands in one of the \emph{longest}
intervals not containing a previous point! And, it chops this interval
in a golden way.

Stephen Schanuel said some things about
\protect\hyperlink{week203}{``Week 203''} on the category theory mailing
list, so I'll include his post here along with various replies,
concluding with my own.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
From: Stephen Schanuel Subject: categories: mystification and
categorification Date: Thu, 4 Mar 2004 00:44:46 -0500

I was unable to understand John Baez' golden object problem, nor his
description of the solutions. He refuses to tell us what `nice' means,
but let me at least propose that to be `tolerable' a solution must be an
object in a category, and John doesn't tell us what category is involved
in either of the solutions; at least I couldn't find a specification of
the objects, nor the maps, so I found the descriptions `intolerable', in
the technical sense defined above. He is very generous, allowing one to
use a category with both plus and times as extra monoidal structures.
(Does anyone know an example of interest in which the plus is not
coproduct?) This freedom is unnecessary; a little algebra plus Robbie
Gates' theorem provides a solution \(G\) to \(G^2=G+1\) which satisfies
no additional equations, in an extensive category (with coproduct as
plus, cartesian product as times).

Briefly, here it is. A primitive fifth root of unity \(z\) is a root of
the polynomial \(1+X+X^2+X^3+X^4\), hence satisfies
\(1+z+z^2+z^3+z^4+z=z\), which is of the `fixed point' form \(p(z)=z\)
with \(p\) in \(\mathbb{N}[X]\) and \(p(0)\) not \(0\). Gates' theorem
then says that the free distributive category containing an object \(Z\)
and an isomorphism from \(p(Z)\) to \(Z\) is extensive, and its Burnside
rig \(B\) (of isomorphism classes of objects) is, as one would hope,
\(\mathbb{N}[X]/(p(X)=X)\); that is, \(Z\) satisfies no unexpected
equations. Since the degree of \(p\) is greater than \(1\), an easy
general theorem tells us (from the joint injectivity of the Euler and
dimension homomorphisms) that two polynomials agree at the object \(Z\)
if and only if either they are the same polynomial or both are
non-constant and they agree at the number \(z\). Now the `algebra': the
golden number is \(1+z+z^4\). So \(G=1+Z+Z^4\) satisfies \(G^2=G+1\), as
desired. It satisfies no unexpected equations, because the relation
\(X^2=X+1\) reduces any polynomial in \(\mathbb{N}[X]\) to a linear
polynomial, and these reduced forms have distinct Euler characteristics,
i.e.~differ at \(z\). Thus the homomorphism from
\(\mathbb{N}[X]/(X^2=X+1)\) to \(B\) (sending \(X\) to \(G\)) is
injective, and that's all I wanted.

Since in the category of sets, any nasty old infinite set satisfies the
golden equation and many others, I have taken the liberty of
interpreting `nice' to mean at least `satisfying no unexpected
equations'. One could ask for more; the construction above has produced
a distributive, but not extensive, category whose Burnside rig is
\(\mathbb{N}[X]/(X^2=X+1)\), the full subcategory with objects
polynomials in \(G\). (If it were extensive, it would be closed under
taking summands, but every object in the larger category is a summand of
\(G\).) I don't know whether there is an extensive category with
\(\mathbb{N}[X]/(X^2=X+1)\) as its full Burnside rig; perhaps one or
both of the examples John mentioned would do, if I knew what they were.

While I'm airing my confusions, can anyone tell me what
`categorification' means? I don't know any such process; the simplest
exanple, `categorifying' natural numbers to get finite sets, seems to me
rather `remembering the finite sets and maps which gave rise to natural
numbers by the abstraction of passing to isomorphism classes'.

Finally, a note to John: While you're trying to give your audience some
feeling for the virtues of \(n\)-categories, couldn't you give them a
little help with \(n=1\), by being a little more precise about objects
and maps?

Greetings to all, and thanks for your patience while I got this stuff
off my chest,

Steve Schanuel
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
From: David Yetter Subject: categories: Re: mystification and
categorification Date: Fri, 5 Mar 2004 10:55:26 -0600

Categorification is a bit like quantization: it isn't a construction so
much as a desideratum for a relationship between one thing and another
(in the case of categorification an \((n+1)\)-categorical structure and
an \(n\)-categorical structure; in the case of quantization a quantum
mechanical system and a classical mechanical system).

Categorification wants to find a higher-dimensional categorical
structure corresponding to a lower-dimensional one by weakening
equations to natural isomorphisms and imposing new, sensible, coherence
conditions. In general, for the original purpose for which it was
proposed--constructions of TQFT's and models of quantum gravity--one
wants the highest categorical level to have a linear structure (hence
Baez wanting tensor product and a sum it distributes over, rather than
cartesian product and coproduct). Specific lower-dimensional categories
with structure are `categorified' by finding a higher-dimensional
category with the new structure which `lies over' the lower dimensional
one in the way an additive monoidal category lies over its Grothendieck
rig.

For instance any (\(k\)-linear) monoidal category with monoid of
isomorphism classes \(M\) is a categorification of \(M\), and more
generally (\(k\)-linear) monoidal categories are a categorification of
monoids.

A simple example shows why it is not a construction: commutative monoids
(as rather special categories with one object) admit two different
categorifications: symmetric monoidal categories and braided monoidal
categories (each regarded as a kind of bicategory with one object).
There is a good argument for regarding braided monoidal categories as
the `correct' categorification: the Eckmann-Hilton theorem (`a group in
\(\mathsf{GROUPS}\) is an abelian group' or, really as the proof shows,
`a monoid in \(\mathsf{MONOIDS}\) is a commutative monoid')
`categorifies' to: A monoidal category in \(\mathsf{MONCAT}\) is a
braided monoidal category.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
From: Vaughan Pratt Subject: categories: Re: mystification and
categorification Date: Fri, 05 Mar 2004 22:49:56 -0800

\begin{quote}
While I'm airing my confusions, can anyone tell me what
`categorification' means? I don't know any such process; the simplest
exanple, `categorifying' natural numbers to get finite sets, seems to me
rather `remembering the finite sets and maps which gave rise to natural
numbers by the abstraction of passing to isomorphism classes'.
\end{quote}

A fair question. I attended John's Coimbra lectures on this stuff in
1999 but a lot of it leaked out afterwards. If I had to guess I'd say he
was categorifying the free monoid on one generator to make it a monoidal
category, but then how did the monoid end up as coproduct and the
generator as the final object? One suspects some free association there
--- John, how do you make that connection?

With regard to categorification in general, sets seem to play a central
role in at least one development of category theory. The homobjects of
``ordinary'' categories are homsets. (In that sense I guess ``ordinary''
must entail ``locally small.'') \(2\)-categories are what you get if
instead you let them be homcats, suitably elaborated.

Going in the other direction, if you take homsets to be vacuous, not in
the sense that they are empty but rather that they are all the same,
then you get sets. One more step in that direction makes everything look
the same, which may have something to do with the Maharishi Yogi hiring
category theorists for the math dept. of his university in Fairfield,
Iowa. (When I spoke last with the MY's ``Minister of World Health,'' an
MD who like Ross Street was a classmate of mine but eight years earlier
starting in 1957, the entire conversation seemed to be largely a
skirting of the minefield of the sameness of everything, which may
subconsciously have been behind my obscure reply to Peter Freyd's
posting a while back about unique existence going back to Descartes,
where I tried to one-up him by claiming it went much further back.)

Categorification isn't the only way to get to \(2\)-categories, which
can be understood instead in terms of the interchange law as a
two-dimensional associativity principle. However John has got a lot of
mileage out of the categorification approach, which one can't begrudge
in an era where mileage and minutes are as integral to a balanced life
as one's checkbook. (Q: How many minutes in a month? A: Depends on your
plan.)

\begin{quote}
Since in the category of sets, any nasty old infinite set satisfies the
golden equation and many others, I have taken the liberty of
interpreting `nice' to mean at least `satisfying no unexpected
equations'.
\end{quote}

Quite right. I would add to this ``and satisfying the expected
equations.'' The ``nasty sets'' of which Steve speaks fail to satisy
such expected equations as \(2^{2^X} \sim X\). (The power set of a set
is a Boolean algebra, for heaven's sake. Why on earth forget that
structure prior to taking the second exponentiation? Set theorists seem
to think that they can simply forget structure without paying for it,
but in the real world it costs \(kT/2\) joules per element of \(X\) to
forget that structure. If set theorists aren't willing to pay real-world
prices in their modeling, why should we taxpayers pay them real-world
salaries? Large cardinals are a figment of their overactive
imaginations, and the solution to consistency concerns is not to go
there.)

Vaughan Pratt
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
From: Tom Leinster Subject: Re: categories: mystification and
categorification Date: 07 Mar 2004 20:50:39 +0000

Steve Schanuel wrote: \textgreater{} a category with both plus and times
as extra monoidal structures. \textgreater{} (Does anyone know an
example of interest in which the plus is not \textgreater{} coproduct?)

Here are two examples that I've come across previously of rig categories
in which the plus is not coproduct:

\begin{enumerate}
\def\labelenumi{(\roman{enumi})}
\item
  the category of finite sets and bijections, with \(+\) and \(\times\)
  inherited from the category of sets;
\item
  discrete rig categories, which are of course the same thing as rigs.
\end{enumerate}

\begin{quote}
This freedom is unnecessary; a little algebra plus Robbie Gates' theorem
provides a solution \(G\) to \(G^2=G+1\) which satisfies no additional
equations, in an extensive category (with coproduct as plus, cartesian
product as times).
\end{quote}

If you do allow yourself the freedom to use any rig category then an
even simpler solution exists, also satisfying no additional equations:
just take the rig freely generated by an element \(G\) satisfying
\(G^2 = G + 1\) and regard it as a discrete rig category.

\begin{quote}
Since in the category of sets, any nasty old infinite set satisfies the
golden equation and many others, I have taken the liberty of
interpreting `nice' to mean at least `satisfying no unexpected
equations'.
\end{quote}

I'd interpret ``nice'' differently. (Apart from anything else, the
trivial example in my previous paragraph would otherwise make the golden
object problem uninteresting.) ``Nice'' as I understand it is not a
precise term --- at least, I don't know how to make it precise. Maybe I
can explain my interpretation by analogy with the equation
\(T = 1 + T^2\). A nice solution \(T\) would be the set of finite,
binary, planar trees together with the usual isomorphism
\(T\xrightarrow{\sim}1 + T^2\); a nasty solution would be a random
infinite set \(T\) with a random isomorphism to \(1 + T^2\). (Both these
solutions are in the rig category \(\mathsf{Set}\) with its standard
\(+\) and \(\times\).) I regard the first solution as nice because I can
see some combinatorial content to it (and maybe, at the back of my mind,
because it has a constructive feel), and the second as nasty because I
can't. I'm not certain what I think of the solution given by the set of
not-necessarily-finite binary planar trees (nice?), or by the set of
binary planar trees of cardinality at most \(\aleph_5\) (probably
nasty).

Maybe the finding of a ``nice'' solution is similar in spirit to the
finding of a ``concrete interpretation'' of a combinatorial identity. As
an extremely simple example, consider the identity saying that each
entry in Pascal's triangle is the sum of the two above it,
\[\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}.\] This is a doddle to
prove, but all the same you'd be missing something if you didn't know
the standard ``concrete interpretation'': choosing \(r\) objects out of
\(n+1\) objects amounts to EITHER choosing the first one and then
choosing \(r-1\) of the remaining \(n\) OR \ldots{} . Even if the
challenge of finding a ``nice solution'' or ``concrete interpretation''
isn't made precise, I think there is a shared sense of what would count
as an answer, and finding an answer is in general not straightforward.

Best wishes, Tom
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
From: John Baez Subject: golden objects Date: Sun, 7 Mar 2004 12:50:29
-0800 (PST)

Dear Categorists ---

Sorry to take a while to respond. People at UCR have been unable to
receive posts on the category theory mailing list, due to problems with
our internet connection.

I'd asked for some nice examples of an object \(G\) in a rig category
equipped with an isomorphism from \(G^2\) to \(G + 1\). Steve Schanuel
replied:

\begin{quote}
I was unable to understand John Baez' golden object problem, nor his
description of the solutions. He refuses to tell us what `nice' means,
{[}\ldots{]}
\end{quote}

The problem was deliberately open-ended, but you seem to have understood
it perfectly, since you've given a nice solution, including a precise
specification of what you consider ``nice''.

Let me repeat the two solutions given by Robin Houston:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  The first solution works in any rig category having an object \(H\)
  equipped with an isomorphism to \(H^2 + 4H + 1\). The solution is to
  take \[G = H + 2.\] I described how Houston uses the isomorphism
  \(H \to H^2 + 4H + 1\) to construct an isomorphism \(G^2 \to G + 1\).
  What's nice about this is that it reduces a problem that's not
  obviously of fixed-point form to one that is.
\item
  Houston's second solution works in any monoidal cocomplete category,
  tensor product distributing over colimits, that contains an object
  \(X\) equipped with an isomorphism to \(2X + 1\). The solution is to
  let \(G\) be the object of ``binary planar rooted trees with
  \(X\)-labelled leaves'', i.e.
  \[G = X + X^2 + 2X^3 + 5X^4 + 14X^5 + 42X^6 + \ldots\] where the
  coefficients are Catalan numbers. He uses the obvious isomorphism
  \(G \to G^2 + X\) to construct an isomorphism \(G^2 \to G + 1\).
  What's nice about this is that it shows Propp's originally proposed
  golden object really is one: just take the category of
  \(\sigma\)-polytopes with its cartesian product, and let \(X\) be the
  open interval! And, it makes precise the sense in which the
  alternating sum of Catalan numbers equals the golden ratio.
\end{enumerate}

Steve writes:

\begin{quote}
I don't know whether there is an extensive category with
\(\mathbb{N}[X]/(X^2=X+1)\) as its full Burnside rig; perhaps one or
both of the examples John mentioned would do, if I knew what they were.
\end{quote}

I think example 1) does the job if we take the free distributive
category on an object H equipped with an isomorphism to
\(H^2 + 4H + 1\). Right?

Steve also writes:

\begin{quote}
He is very generous, allowing one to use a category with both plus and
times as extra monoidal structures. (Does anyone know an example of
interest in which the plus is not coproduct?) This freedom is
unnecessary {[}\ldots{]}
\end{quote}

It's unnecessary, but handy: I think there's also an golden object in
the rig category of reps of quantum \(\mathrm{SU}(2)\) at a suitable
value of \(q\). Here the tensor product is not cartesian.

In the lingo of quantum group theory, this object has ``quantum
dimension'' equal to the golden number. It's interesting how such
nonintegral but algebraic ``dimensions'' show up naturally in quantum
group theory, just as nonintegral but algebraic ``cardinalities'' show
up in the theory of distributive categories.

I don't know any golden objects in rig categories where the plus is not
coproduct, and I agree that such rig categories arise less often than
those where times is not product. But, if you use the obvious way of
making the groupoid of finite sets into a rig category, \(+\) isn't
coproduct, nor is \(\times\) product.

\begin{quote}
While I'm airing my confusions, can anyone tell me what
`categorification' means? I don't know any such process; the simplest
exanple, `categorifying' natural numbers to get finite sets, seems to me
rather `remembering the finite sets and maps which gave rise to natural
numbers by the abstraction of passing to isomorphism classes'.
\end{quote}

You're right: categorification is not a systematic process! I explained
this idea back in ``Week 121'', and also in my paper
``Categorification'', at
\texttt{http://www.arXiv.org/abs/math.QA/9802029}. Here's what I said:

\begin{quote}
If one studies categorification one soon discovers an amazing fact: many
deep-sounding results in mathematics are just categorifications of facts
we learned in high school! There is a good reason for this. All along,
we have been unwittingly `decategorifying' mathematics by pretending
that categories are just sets. We `decategorify' a category by
forgetting about the morphisms and pretending that isomorphic objects
are equal. We are left with a mere set: the set of isomorphism classes
of objects.

To understand this, the following parable may be useful. Long ago, when
shepherds wanted to see if two herds of sheep were isomorphic, they
would look for an explicit isomorphism. In other words, they would line
up both herds and try to match each sheep in one herd with a sheep in
the other. But one day, along came a shepherd who invented
decategorification. She realized one could take each herd and `count'
it, setting up an isomorphism between it and some set of `numbers',
which were nonsense words like `one, two, three, \ldots{}' specially
designed for this purpose. By comparing the resulting numbers, she could
show that two herds were isomorphic without explicitly establishing an
isomorphism! In short, by decategorifying the category of finite sets,
the set of natural numbers was invented.

According to this parable, decategorification started out as a stroke of
mathematical genius. Only later did it become a matter of dumb habit,
which we are now struggling to overcome by means of categorification.
While the historical reality is far more complicated, categorification
really has led to tremendous progress in mathematics during the 20th
century. For example, Noether revolutionized algebraic topology by
emphasizing the importance of homology groups. Previous work had focused
on Betti numbers, which are just the dimensions of the rational homology
groups. As with taking the cardinality of a set, taking the dimension of
a vector space is a process of decategorification, since two vector
spaces are isomorphic if and only if they have the same dimension.
Noether noted that if we work with homology groups rather than Betti
numbers, we can solve more problems, because we obtain invariants not
only of spaces, but also of maps.

In modern language, the \(n\)th rational homology is a functor defined
on the category of topological spaces, while the \(n\)th Betti number is
a mere function, defined on the set of isomorphism classes of
topological spaces. Of course, this way of stating Noether's insight is
anachronistic, since it came before category theory. Indeed, it was in
Eilenberg and Mac Lane's subsequent work on homology that category
theory was born!

Decategorification is a straightforward process which typically destroys
information about the situation at hand. Categorification, being an
attempt to recover this lost information, is inevitably fraught with
difficulties.
\end{quote}

\begin{quote}
Finally, a note to John: While you're trying to give your audience some
feeling for the virtues of \(n\)-categories, couldn't you give them a
little help with \(n=1\), by being a little more precise about objects
and maps?
\end{quote}

I hope it's clearer now.

Best, jb
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{As a high-end cable manufacturer, Cardas Audio strives to address
every detail of cable and conductor construction, no matter how small.
An elegant solution deals with quality, not quantity. Cable geometry
problems are resolved in the cable's design, not after the fact with
filters. George Cardas received U.S. Patent Number 4,628,151 for
creating Golden Section Stranding Audio Cable. It is truly unique.
George introduced the concept of Golden Section Stranding to high-end
audio, but the Golden Ratio, \(1.6180339887... : 1\), is as old as
nature itself. The Golden Ratio is the mathematical proportion nature
uses to shape leaves and sea shells, insects and people, hurricanes and
galaxies, and the heart of musical scales and chords. ``Discovered'' by
the Greeks, but used by the Egyptians in the Great Pyramid centuries
before, man has employed the Golden Ratio to create his most beautiful
and naturally pleasing works of art and architecture}

--- Cardas Audio speaker cable advertisement
\end{quote}
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The star we know as GRB030329 was named after the day the news of its
death reached Earth. About 2,650 million years ago, this star exploded.
For thirty seconds it put out more power in the form of \(\gamma\) rays
than everything else in the visible universe combined. These \(\gamma\)
rays reached us on March 3rd, 2003, and they were detected by a
satellite called HETE-II: the High-Energy Transient Explorer.

The detection of GRB03029 set off a frenzy of activity among astronomers
all over the world. As the closest \(\gamma\)-ray burster to be seen by
well-prepared earthlings, GRB030329 taught us a lot. We're not
completely sure what it was --- but we have a pretty good guess, and it
makes a nice story, so I'll recount it as if it were a fact.

As far as we can tell, GRB030329 was a Wolf-Rayet star before it
exploded. Wolf-Rayet stars are very rare: only 200 have been seen in our
galaxy. They're huge and very bright --- up to a million times as bright
as the Sun. They're surrounded by enormous bluish-purple nebulae like
the one in this picture:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  NGC 2359, the nebula around the Wolf-Rayet star HD56925, picture at
  \texttt{http://cfa-www.harvard.edu/cfa/hotimage/n2359.html}
\end{enumerate}

But what makes them really special is that their spectral lines show
\emph{little or no hydrogen}. Since most of the universe is made of
hydrogen, a star without hydrogen is like a dry fish. How can this be?

Well, the life of a star is largely determined by its mass. Small stars
last a long time and fade away inconspicuously, while big stars live
fast and die with a bang. Wolf-Rayet stars are among the biggest, about
60 times as heavy as the Sun. Like the sun, they begin life as cloud of
gas that collapses and heats up until the hydrogen in its core ``catches
fire'' and starts fusing into helium, like a gigantic H-bomb held
together by its own gravity. The core is surrounded by a envelope of
cooler gas that transmits energy to the surface by convection and
radiation, but doesn't actually do any fusion itself.

This stage of a star's life is called the ``core burning phase''. But
after a while helium builds up and sinks to the center, forming an inert
helium core, with all the fusion going on in the layer of hydrogen right
next to the core. This is called the ``shell burning phase''.

What next? Well, for the Sun, as its hydrogen gradually runs out it'll
become a ``red giant'', expanding to engulf the Earth\ldots{} while
meanwhile its helium core shrinks to a ball twice the size of the Earth
and about 100 times the density of water, turning from ordinary plasma
into something called a ``degenerate electron gas'', where the Pauli
exclusion principle limits further compression. As the core shrinks
it'll heat up, and when it reaches a temperature of 100 million kelvin
the helium will catch fire and start fusing --- mainly into carbon.
Models predict that this happens in a runaway reaction called the
``helium flash'', which puts out about 100 billion times the power of
the present-day sun for a few hours --- zounds! --- but gradually
settles down into a more stable phase of helium burning that lasts for
tens of millions of years. During this phase, the Sun will not be a red
giant anymore, but instead a hotter ``yellow giant''.

The Sun will never get hot enough to burn elements heavier than helium,
so eventually it'll develop an inert core of carbon and other junk,
surrounded by a helium burning shell, surrounded by a hydrogen burning
shell. Then the outer layers will peel off and expand to form a huge
nebula, leaving the core as a tiny ``white dwarf''\ldots{} which will
cool, after eons, to a ``black dwarf''. Here's a nice chart of the whole
story:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Sloan Digital Sky Survey, Evolutionary track of a sun-like star,
  \texttt{http://skyserver.sdss.org/dr1/en/astro/stars/images/starevol.jpg}
\end{enumerate}

Bigger stars do more exciting things. In particular, stars heavier than
about 5 solar masses undergo a ``carbon flash'' when the carbon-rich
core reaches 600 million kelvin and starts fusing into heavier elements.
Heavier stars then go on to an oxygen-burning phase. Even heavier ones
go on to a silicon-burning phase.

But when silicon fuses, it forms highly stable nuclei like iron that
don't want to fuse any further. So, silicon burning is the end of the
line. And it doesn't last long! For example, a star 25 times the mass of
the Sun is expected to spend about 5 to 10 million years burning
hydrogen, 0.5 to 1 million years burning helium, 500 to 1000 years
burning carbon, 6 to 12 months burning oxygen\ldots{} but just a day or
so burning silicon!

Then what? Well, the details depend on the star's mass. But when a star
of at least 8 solar masses runs out of fuel, its core is made mainly of
iron, and heavier than our Sun. When it cools, it reaches a point where
all of a sudden it collapses --- in about a tenth of a second. When it
crashes in on itself, it gets so hot that the iron nuclei disintegrate
and the whole mess explodes in a ``type II supernova''. The star's outer
layers get thrown off at high speeds, while the core itself gets crushed
into a neutron star\ldots{} or, for truly heavy stars, a black hole!

Type II supernovae are among the most violent events in the cosmos. They
can easily reach a temperature of about 50 billion kelvin and emit
10\textsuperscript{46} joules of energy, which is what our galaxy puts
out in 10 years! 99\% of this energy is in the form of neutrinos,
emitted when protons in the iron core absorb electrons and turn into
neutrons. But, the remaining 1\% in the form of electromagnetic
radiation is still enough to fry anything in the vicinity. The supernova
in the Crab Nebula was about 6,300 light years away, but when its light
reached us in 1054 AD, Chinese astronomers could see it in the daytime
for 23 days!

You may think I've forgotten about GRB030329 and Wolf-Rayet stars, but I
haven't. This big digression was just to set the stage. I've sketched
what stars of up to 25 solar masses will do, but remember, Wolf-Rayets
are a lot bigger: they begin life at about 60 solar masses. And
astronomy resembles opera in this way: the bigger the star, the more
noise they make in their final scene. So, the stuff about supernovae was
just to whet your appetite.

So, let's sit back and watch the thrilling life story of
GRB030329\ldots{} assuming that it began its days as most Wolf-Rayets
do.

As a child, it burnt hydrogen in a huge core of about 50 solar masses.
After a while helium ``ashes'' built up in this core, so it moved on to
burning hydrogen in a shell. But this process put out so much energy
that the envelope started getting blown away in a powerful stellar wind!

Since the helium wasn't burning, the core contracted until the
temperature hit 40 million kelvin and the helium caught fire. It started
burning into carbon-12, but some hydrogen got into the core and made
carbon-13 and nitrogen-14, and later --- when the helium was almost all
burnt --- oxygen-16.

All the while the stellar wind was increasing, and eventually almost all
the hydrogen was blown away, leaving only a bluish-white core full of
helium, carbon, nitrogen and a little oxygen. Now you see how a star
gets rid of its hydrogen! At this point GRB030329 was a classic
Wolf-Rayet star: almost no hydrogen in the star itself, lots of stellar
wind, and surrounded by a big nebula of gas and dust that had been blown
off.

When all its helium was burnt, our hero's days were numbered. In an
ever-accelerating frenzy, it spent its last centuries burning carbon,
then oxygen, then silicon. Meanwhile its stellar wind kept picking up
speed, up to 5 or 10 thousand kilometers per second, blowing away more
and more gas and dust. By the time all the silicon had burnt to iron,
the core had shrunk down to about 10 solar masses.

And when the fuel ran out, the core cooled down and collapsed.

The core was so big, and its collapse so drastic, that it didn't
``bounce back'' and explode outwards, as in a supernova. Instead,
gravity triumphed! A black hole formed, sucking down a hefty amount of
the core in less than a tenth of a second.

As several solar masses of iron rapidly spiralled down the throat of
this growing black hole, it formed a pancake-like ``accretion disk'',
which emitted powerful jets of radiation and matter in both directions
along its axis of rotation. In a few seconds, these jets passed through
the outer shell of the star and, together with a blast of newly created
radioactive nickel-56, shattered it completely. Our star became a
``hypernova''!

Meanwhile, the jets plowed into the material surrounding the star and
created highly directional beams of \(\gamma\) rays shooting in opposite
directions\ldots{} one of which just happened to be pointed directly at
the Earth.

2,650 million years later, the \(\gamma\) rays reached us, and were
detected on March 23, 2003 by HETE-II. Hundreds of such bursts are
detected each year, but this one was closer than most, and a whole
system had recently been devised for quickly turning the attention of
the world's telescopes to the spot where a \(\gamma\)-ray burster had
been seen --- in this case, within the constellation Leo.

So, within 90 min, a 40-inch telescope at the Siding Spring Observatory
in Australia was looking at this spot. So was a telescope in Japan. They
saw the optical afterglow of the \(\gamma\)-ray burster and watched how
its brightness changed with time. And within 24 hours, a spectrograph on
a telescope in Chile made detailed readings of the spectrum, measuring
the redshift (\(z = 0.1685\)) and thus the distance of the burst, and
seeing signs of radioactive nickel --- about \(1/3\) of a solar mass of
the stuff, according to one estimate! Later, more telescopes probed the
event in different ways.

The details of what was seen gave a lot of credence to the ``hypernova''
or ``collapsar'' model of \(\gamma\)-ray bursters, championed by Stan
Woosley of U. C. Santa Cruz, among others. But much remains mysterious
about \(\gamma\)-ray bursters. Nobody knows exactly how the energy from
the jet gets turned into \(\gamma\) rays! And, the hypernova model only
fits ``long'' \(\gamma\)-ray bursters, where the burst lasts about 2
seconds or more. There are also ``short'' ones, which may work some
other way.

So, the hows and whys of \(\gamma\) ray bursts remain one of the most
fascinating mysteries in physics. And since we can't actually peek
inside a star, a lot of the attempts to study these things involve
complicated mathematical models\ldots{} very technical stuff, when you
actually try to read it. So, I really \emph{am} talking about
mathematical physics. Honest!

Here are some ways to learn more, starting with the fun easy stuff.

The online version of the Messier Catalog --- a famous old catalog of
galaxies and nebulae --- is a really fun way to learn some astronomy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  The Messier Catalog, \texttt{http://www.maa.agleia.de/Messier/}
\end{enumerate}

It's packed with interesting stuff. For example, here's a great page
about nebulae like the one the sun will form after it becomes a yellow
giant:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  The Messier Catalog, ``Planetary nebulae'',
  \texttt{http://www.maa.agleia.de/Messier/planetar.html}
\end{enumerate}

(They're misleadingly called ``planetary nebulae'', though they don't
have anything to do with planets.) And here's a nice page about the Crab
Nebula, which is now a pulsar --- a rapidly spinning neutron star left
over from a supernova:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  The Messier Catalog, ``The crab nebula (M1)'',
  \texttt{http://www.maa.agleia.de/Messier/E/m001.html}
\end{enumerate}

This website is good for Wolf-Rayet stars and other things:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Chris Clowes' Astronomy Page,
  \texttt{http://www.peripatus.gen.nz/Astronomy/}
\end{enumerate}

I learned a lot about GRB030329 from this page:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  European Southern Observatory (ESO), ``Cosmological \(\gamma\)-ray
  bursts and hypernovae conclusively linked'', June 18, 2003,
  \texttt{http://www.eso.org/outreach/press-rel/pr-2003/pr-16-03.html}
\end{enumerate}

For another key moment in the history of \(\gamma\)-ray bursters, try
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Burst and Transient Source Experiment (BATSE), ``GOTCHA! --- The big
  one that didn't get away'', January 27, 1999,
  \texttt{http://www.batse.com/jan27.html}
\end{enumerate}

For more on \(\gamma\)-ray bursters, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  NASA, \(\gamma\) ray bursts,
  \texttt{http://imagine.gsfc.nasa.gov/docs/introduction/bursts.html}
\item
  Edo Berger, Gamma-ray burst FAQ,
  \texttt{http://www.astro.caltech.edu/\textasciitilde{}ejb/faq.html}
\end{enumerate}

If you get more serious, there are lots of conference proceedings to
read, like this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  M. Livio, N. Panagia and K. Sahu, editors, \emph{Supernovae and
  Gamma-Ray Bursts: The Greatest Explosions since the Big Bang},
  Cambridge U. Press, 2001.
\end{enumerate}

There must be a bunch of conference proceedings written after the March
2003 burster, but maybe they haven't been published yet, since I haven't
been able to find them!

If you're looking for a more general background in astrophysics, this
hefty tome is supposed to be a good intro, though I haven't tried it
yet:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Bradley W. Carroll and Dale A. Ostlie, \emph{Introduction to Modern
  Astrophysics}, Addison Wesley, 1996.
\end{enumerate}

Personally I've found these helpful in writing the above stuff, though
they're full of equations, so I find myself yearning for some purple
prose here and there:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\item
  R. J. Tayler, \emph{The Stars: Their Structure and Evolution}, 2nd
  edition, Cambridge U. Press, Cambridge, 1994.
\item
  R. Kippenhahn and A. Weigert, \emph{Stellar Structure and Evolution},
  Springer Verlag, Berlin, 1991.
\end{enumerate}

By the way, I don't know much about astrophysics, so I'd love to hear
from any experts out there who'd like to correct or add detail to my
description of Wolf-Rayet stars, the ``hypernova'' scenario, or
\(\gamma\)-ray bursters in general. I've been fond of Wolf-Rayet stars
ever since I wrote a few little articles on weird kinds of stars:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  John Baez, ``Stuff about Stars'',
  \texttt{http://math.ucr.edu/home/baez/stars.html}
\end{enumerate}

back before anyone suspected they were related to \(\gamma\)-ray
bursters! My interest in them was rekindled while revising the physics
FAQ on open questions in physics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  John Baez, ``Open Questions in Physics'',
  \texttt{http://math.ucr.edu/home/baez/open.questions.html}
\end{enumerate}

It hadn't been rewritten since 1997, and it was interesting to see how
outdated it had become, particularly in the area of cosmology and
astrophysics! Here's the current list of problems:

\begin{quote}
\textbf{Condensed Matter and Nonlinear Dynamics}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  What causes sonoluminescence?
\item
  What causes high temperature superconductivity?
\item
  How can turbulence be understood and its effects calculated?
\item
  The Navier-Stokes equations are the basic equations describing fluid
  flow. Does these equations have solutions that last for all time,
  given arbitrary sufficiently nice initial data?
\end{enumerate}

\textbf{Quantum Mechanics}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  How should we think about quantum mechanics?
\item
  Can we build a working quantum computer big enough to do things
  ordinary computers can't easily do?
\end{enumerate}

\textbf{Cosmology and Astrophysics}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  What happened at or before the Big Bang?
\item
  Are there really three dimensions of space and one of time? If so,
  why? Or is spacetime higher-dimensional, or perhaps not really a
  manifold at all when examined on a short enough distance scale?
\item
  Why is there an arrow of time; that is, why is the future so much
  different from the past?
\item
  Is the Universe infinite in spatial extent? More generally: what is
  the topology of space?
\item
  Will the future of the Universe go on forever or not?
\item
  Is the universe really full of ``dark energy''? If so, what causes it?
\item
  Why does it seem like the gravitational mass of galaxies exceeds the
  mass of all the stuff we can see, even taking into account our best
  bets about invisible stuff like brown dwarfs, ``Jupiters'', and so on?
\item
  The Horizon Problem: why is the Universe almost, but not quite,
  homogeneous on the very largest distance scales?
\item
  Why are the galaxies distributed in clumps and filaments?
\item
  When were the first stars formed, and what were they like?
\item
  What are \(\gamma\) ray bursters?
\item
  What is the origin and nature of ultra-high-energy cosmic rays?
\item
  Do gravitational waves really exist? If so, can we detect them? If so,
  what will they teach us about the universe? Will they mainly come from
  expected sources, or will they surprise us?
\item
  Do black holes really exist? (It sure seems like it.) Do they really
  radiate energy and evaporate the way Hawking predicts? If so, what
  happens when, after a finite amount of time, they radiate completely
  away? What's left? Do black holes really violate all conservation laws
  except conservation of energy, momentum, angular momentum and electric
  charge? What happens to the information contained in an object that
  falls into a black hole?
\item
  Is the Cosmic Censorship Hypothesis true? Roughly, for generic
  collapsing isolated gravitational systems are the singularities that
  might develop guaranteed to be hidden beyond a smooth event horizon?
\end{enumerate}

\textbf{Particle Physics}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Why are the laws of physics not symmetrical between left and right,
  future and past, and between matter and antimatter?
\item
  Why is there more matter than antimatter, at least around here?
\item
  Are there really just three generations of leptons and quarks? If so,
  why?
\item
  Why does each generation of particles have precisely this structure:
  two leptons and two quarks?
\item
  Do the quarks or leptons have any substructure, or are they truly
  elementary particles?
\item
  Is there really a Higgs boson, as predicted by the Standard Model of
  particle physics? If so, what is its mass?
\item
  What is the correct theory of neutrinos? Why are they almost but not
  quite massless? Do all three known neutrinos --- electron, muon, and
  \(\tau\) --- all have a mass?
\item
  Is quantum chromodynamics (QCD) a precise description of the behavior
  of quarks and gluons? Can we prove that quarks are gluons are confined
  at low temperatures using QCD? Is it possible to calculate masses of
  hadrons (such as the proton, neutron, pion, etc.) correctly from the
  Standard Model, with the help of QCD? Does QCD predict that quarks and
  gluons become deconfined and form plasma at high temperature? If so,
  what is the nature of the deconfinement phase transition?
\item
  Is there a mathematically rigorous formulation of a relativistic
  quantum field theory describing interacting (not free) fields in four
  spacetime dimensions? For example, is the Standard Model
  mathematically consistent? How about Quantum Electrodynamics?
\item
  Is the proton really stable, or does it eventually decay?
\item
  Why do the particles have the precise masses they do?
\item
  Why are the strengths of the fundamental forces (electromagnetism,
  weak and strong forces, and gravity) what they are?
\item
  Are there important aspects of the Universe that can only be
  understood using the Anthropic Principle? Or is this principle
  unnecessary, or perhaps inherently unscientific?
\item
  Do the forces really become unified at sufficiently high energy?
\item
  Does some version of string theory or M-theory give specific
  predictions about the behavior of elementary particles? If so, what
  are these predictions? Can we test these predictions in the near
  future? And: are they correct?
\end{enumerate}

\textbf{The Big Question}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  How can we merge quantum theory and general relativity to create a
  quantum theory of gravity? How can we test this theory?
\end{enumerate}
\end{quote}

A bunch of these questions could turn out to be a bit silly --- a good
answer might require changing the question. But that's always how it
goes for really interesting puzzles. I should also warn you that the
statements above are deliberately a bit naive-sounding: as the example
of \(\gamma\) ray bursters shows, we actually do know a lot about all
these questions --- we're just not sure about the answers! So, see the
webpage itself for a bit more information on these questions, and the
links for even more\ldots{}

Hmm. I was going to say something about number theory, but I'm out of
time!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Of course: abstraction, irrelevance, purity, formalism make for
good mathematics\ldots. But sadly, they make for bad mathematics
education. Each one of these concepts --- abstract, irrelevance, purity,
formalism - pushes mathematics further away from a growing human being,
a being whose psyche is in the phase of it development that no
soft-brained psychologist but a great mathematician, Alfred North
Whitehead, calls the Romantic Phase.}

---
\href{http://www.apostolosdoxiadis.com/files/essays/embeddingmath.pdf}{Apostolos
Doxiadis}
\end{quote}
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This week I'd like to say more about number theory, but first --- here's
the most fun book on astronomy I've ever seen:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  James B. Kaler, \emph{The Hundred Greatest Stars}, Copernicus Books
  (Springer Verlag), New York, 2002.
\end{enumerate}

It's just what the title says: a compilation of the author's 100
favorite stars, each with a picture and a one-page description of what
makes that star interesting. They're incredibly diverse, from the
mammoth Eta Carinae to tiny brown dwarf Gliese 229B. You'll see soft
gamma repeaters, yellow hypergiants, pulsars, Mira-type variables,
barium stars, symbiotic stars, and more. There's also an introduction
that explains the concepts needed to enjoy all these different kinds of
stars, like the Hertzsprung-Russell diagram and a bit of nuclear
physics. With the help of this, the whole book forms a wonderful
taxonomy of stellar astrophysics. I suggest keeping it by your bed and
reading one star a night --- though you may wind up staying up late and
devouring the whole book.

On to number theory\ldots.

There's a widespread impression that number theory is about
\emph{numbers}, but I'd like to correct this, or at least supplement it.
A large part of number theory --- and by the far the coolest part, in my
opinion --- is about a strange sort of \emph{geometry}. I don't
understand it very well, but that won't prevent me from taking a crack
at trying to explain it\ldots.

The basic idea is to push the analogy between integers and polynomials
as far as it will go. They're similar because you can add, subtract and
multiply them, and these operations satisfy the usual rules we all
learned in high school:

\begin{itemize}
\tightlist
\item
  \(x + y = y + x\)
\item
  \((x + y) + z = x + (y + z)\)
\item
  \(x + 0 = x\)
\item
  \(x + (-x) = 0\)
\item
  \(xy = yx\)
\item
  \((xy)z = x(yz)\)
\item
  \(x1 = x\)
\item
  \(x(y + z) = xy + xz\)
\end{itemize}

Anything satisfying these rules is called a ``commutative ring''. There
are also a lot of deeper similarities between integers and polynomials,
which I'll talk about later. But, there's a big difference! Polynomials
are functions on the line, whereas the integers aren't functions on some
space --- at least, not in any instantly obvious way.

The fact that polynomials are functions on a space is what lets us graph
them. This lets us think about them using \emph{geometry} --- and also
think about geometry using \emph{them}. This was the idea behind
Descartes' ``analytic geometry'', and it was immensely fruitful.

So, it would be cool if we could also think about the integers using
geometry. And it turns out we can, but only if we stretch our concept of
geometry far enough!

If we do this, we'll see some cool things. First of all, we'll see that
algebra is just like geometry, only backwards.

What do I mean by this? Well, whenever you have a map
\(T\colon X \to Y\) going from the space \(X\) to the space \(Y\), you
can use it to take functions on \(Y\) and turn them into functions on
\(X\). Since this goes backwards, it's called ``pulling back along
\(T\)''. Here's how it goes: if \(f\) is a function on \(Y\), we get a
function \(T^*(f)\) on \(X\) given by: \[T^*(f)(x) = f(T(x))\] Moreover,
functions on a space form a commutative ring, since you can add and
multiply them pointwise, and pulling back is a ``homomorphism'', meaning
that it preserves all the structure of a commutative ring:

\begin{itemize}
\tightlist
\item
  \(T^*(f + g) = T^*(f) + T^*(g)\)
\item
  \(T^*(0) = 0\)
\item
  \(T^*(fg) = T^*(f) T^*(g)\)
\item
  \(T^*(1) = 1\)
\end{itemize}

Conversely, any sufficiently nice homomorphism from functions on \(Y\)
to functions on \(X\) will come from some map \(T\colon X \to Y\) this
way! Here I'm summarizing a whole bunch of different theorems, each of
which goes along with its own precise definition of ``space'', ``map'',
and ``nice''.

Some of these theorems are technical, but the basic idea is simple: we
can translate back and forth between the study of commutative rings
(algebra) and the study of spaces (geometry) and by thinking of
commutative rings as consisting of functions on spaces. We get a little
dictionary for translating between geometry and algebra, like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
Geometry & Algebra\tabularnewline
\midrule
\endhead
spaces & commutative rings\tabularnewline
maps & homomorphisms\tabularnewline
\bottomrule
\end{longtable}

But be careful: this translation turns maps into homomorphisms going
backwards: it's ``contravariant''. This is really important in two ways.
First, suppose we have a point \(x\) in a space \(X\). This gives a map
\[i\colon \{x\} \to X\] This, in turn, gives a homomorphism \(i^*\)
sending functions on \(X\) to functions on \(\{x\}\). Functions on a
one-point space are like numbers, so \(i^*\) acts like ``evaluation at
\(x\)''. Moreover, \(i^*\) will tend to be onto: that's the backwards
analogue of the fact that i is one-to-one!

Second, suppose we have a map from a space \(E\) onto the space \(X\):
\[p\colon E \to X.\] If you know some topology, think of \(E\) as a
``covering space'' of \(X\). Then we get a homomorphism \(p^*\) from
functions on \(X\) to functions on \(E\). Moreover \(p^*\) will tend to
be one-to-one: that's the backwards version of the fact that p was onto!

We can use these examples to figure out the analogue of a ``point'' or a
``covering space'' in the world of commutative rings! And the resulting
ideas turn out to be crucial to modern number theory.

In \protect\hyperlink{week199}{``Week 199''} I explained the analogue of
a ``point'' for commutative rings: it's a ``prime ideal''. So, now I
want to explain the analogue of a ``covering space''. This will expand
our dictionary so that it relates Galois groups to fundamental groups of
topological spaces\ldots{} and so on.

But, we won't get too far if we don't remember why a ``prime ideal'' is
like a ``point''! So, I guess I'd better review some of
\protect\hyperlink{week199}{``Week 199''} before charging ahead into the
beautiful wilderness.

What's special about the ring of functions on a space consisting of just
one point? Take real- or complex-valued functions, for example. How do
these differ from the functions on a space with lots of points?

The answer is pretty simple: on a space with just one point, a function
that vanishes anywhere vanishes everywhere! So, the only function that
fails to have a multiplicative inverse is \(0\). For bigger spaces, this
isn't true.

A commutative ring where only \(0\) fails to have a multiplicative
inverse is called a ``field''. So, the algebraic analogue of a one-point
space is a field.

This means that the algebraic analogue of a map from a one-point space
into some other space: \[i\colon \{x\} \to X\] should be a homomorphism
from a commutative ring \(R\) to a field \(k\): \[f\colon R \to k.\]

Our translation dictionary now looks like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
Geometry & Algebra\tabularnewline
\midrule
\endhead
spaces & commutative rings\tabularnewline
maps & homomorphisms\tabularnewline
one-point spaces & fields\tabularnewline
maps from one-point spaces & homomorphisms to fields\tabularnewline
\bottomrule
\end{longtable}

It's worth noting some subtleties here. In the geometry we learned in
high school, once we see one point, we've seen 'em all: all one-point
spaces are isomorphic. But not all fields are isomorphic! So, if we're
trying to think of algebra as geometry, it's a funny sort of geometry
where points come in different flavors!

Moreover, there are homomorphisms between different fields. These act
like ``flavor changing'' maps --- maps from a point of one flavor to a
point of some other flavor.

If we have a homomorphism \(f\colon R \to k\) and a homomorphism from
\(k\) to some other field \(k'\), we can compose them to get a
homomorphism \(f'\colon R \to k'\). So, we're doing some funny sort of
geometry where if we have a point mapped into our space, we can convert
it into a point of some other flavor, using a ``flavor changing'' map.

Now let's take this strange sort of geometry really seriously, and
figure out how to actually turn a commutative ring into a space! First
I'll describe what people usually do. Eventually I'll describe what
perhaps they really should do --- but maybe you can guess before I even
tell you.

People usually cook up a space called the ``spectrum'' of the
commutative ring \(R\), or \(\mathrm{Spec}(R)\) for short. What are the
points of \(\mathrm{Spec}(R)\)? They're not just all possible
homomorphisms from \(R\) to all possible fields. Instead, we count two
such homomorphisms as the same point of \(\mathrm{Spec}(R)\) if they're
related by a ``flavor changing process''. In other words,
\(f'\colon R \to k'\) gives the same point as \(f\colon R \to k\) if you
can get \(f'\) by composing \(f\) with a homomorphism from \(k\) to
\(k'\).

This is a bit ungainly, but luckily there's a quick and easy way to tell
when \(f\colon R \to k\) and \(f'\colon R \to k'\) are related by such a
flavor changing process, or a sequence of such processes. You just see
if they have the same kernel! The ``kernel'' of \(f\colon R \to k\) is
the subset of \(R\) consisting of elements \(r\) with \[f(r) = 0\] The
kernel of a homomorphism to a field is a ``prime ideal'', and two
homomorphisms are related by a sequence of flavor changing processes iff
they have the same kernel. Furthermore, every prime ideal is the kernel
of a homomorphism to some field. So, we can save time by defining
\(\mathrm{Spec}(R)\) to be the set of prime ideals in \(R\).

For completeness I should remind you what a prime ideal is! An ``ideal''
in a ring \(R\) is a set closed under addition and closed under
multiplication by anything in \(R\). It's ``prime'' if it's not all of
\(R\), and whenever the product of two elements of \(R\) lies in the
ideal, at least one of them lies in the ideal.

So, we have something like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
Geometry & Algebra\tabularnewline
\midrule
\endhead
spaces & commutative rings\tabularnewline
maps & homomorphisms\tabularnewline
one-point spaces & fields\tabularnewline
maps from one-point spaces & homomorphisms to fields\tabularnewline
points of a space & prime ideals of a commutative ring\tabularnewline
\bottomrule
\end{longtable}

Now let's use these ideas to study ``branched covering spaces'' and
their analogues in algebra. This week I'll talk about two examples. The
first is very geometrical, and it should be familiar to anyone who has
studied a little complex analysis. The second is more algebraic, and
it's important in number theory. But, the cool part is that they fit
into the same formalism!

If you don't know what a branched covering space is, don't worry: we'll
start with the very simplest example. We'll look at this map from the
complex plane to itself: \[
  \begin{aligned}
    p\colon \mathbb{C} &\to \mathbb{C}
  \\z &\mapsto z^2
  \end{aligned}
\] Except for zero, every complex number has two square roots, so this
map is two-to-one and onto away from the origin. In fact, away from the
origin you can visualize this thing locally as two sheets of paper
sitting above one. But these two sheets have a global complication: if
you start on the top sheet and hike once around the origin, you wind up
on the bottom sheet --- and vice versa! In topology we call this sort of
thing a ``double cover''. When we include the point \(z = 0\) things get
even more complicated, since the two sheets meet there. So we have
something trickier: a ``branched cover''. In general, a branched cover
is like a covering space except that the different ``sheets'' can merge
together at certain points, called ``branch points''.

Now let's think about this algebraically. To keep from getting confused,
let's write \[z^2 = w\] so that \(p\) is a map from the ``\(z\)-plane''
down to the ``\(w\)-plane'', sending each point \(z\) to the point
\(z^2 = w\). The ring of polynomial functions on the \(z\)-plane is
called \(\mathbb{C}[z]\); the ring of polynomial functions on the
\(w\)-plane is called \(\mathbb{C}[w]\). We can pull functions from the
\(w\)-plane back up to the \(z\)-plane:
\[p^*\colon \mathbb{C}[w] \to \mathbb{C}[z]\] and \(p^*\) works in the
obvious way, taking any function \(f(w)\) to the function \(f(z^2)\).

Just as \(p\) is onto, \(p^*\) is one-to-one! So, we can think of
\(\mathbb{C}[w]\) as sitting inside \(\mathbb{C}[z]\), consisting of
those polynomials in \(z\) that only depend on \(z^2\): the even
functions. We say \(\mathbb{C}[w]\) is a ``subring'' of
\(\mathbb{C}[z]\), or equivalently, that \(\mathbb{C}[z]\) is an
``extension'' of \(\mathbb{C}[w]\).

In this example we can get the bigger ring from the smaller one by
throwing in solutions of some polynomial equations, so we call it an
``algebraic extension''. We've already seen some algebraic extensions,
namely algebraic number fields, where take the field of rational numbers
and throw in some solutions of polynomial equations. Algebraic
extensions can be complicated, but this one is really simple: we just
start with \(\mathbb{C}[w]\) and throw in the solution of \emph{one}
polynomial equation, namely \[z^2 = w\] It turns out that quite
generally, algebraic extensions of commutative rings act a lot like
branched covering spaces. I probably don't have the technical details
perfectly straight, but let's add this to our translation dictionary,
because it's an important idea:

\begin{longtable}[]{@{}ll@{}}
\toprule
Geometry & Algebra\tabularnewline
\midrule
\endhead
spaces & commutative rings\tabularnewline
maps & homomorphisms\tabularnewline
one-point spaces & fields\tabularnewline
maps from one-point spaces & homomorphisms to fields\tabularnewline
points of a space & prime ideals of a commutative ring\tabularnewline
branched covering spaces & algebraic extensions of commutative
rings\tabularnewline
\bottomrule
\end{longtable}

Now let's have some fun: let's see how our algebraic concept of
``point'', namely ``prime ideal'', interacts with our branched double
cover of the complex plane. There's something straightforward going on,
but also something more subtle and interesting.

The straightforward thing is that any point up on the \(z\)-plane maps
to one down on the \(w\)-plane. We don't need fancy algebra to see this!
But, it's worth doing algebraically. According to the fancy algebraic
definition, a ``point'' in the spectrum of the commutative ring
\(\mathbb{C}[z]\) is a prime ideal. But as you might hope, these are the
same as good old-fashioned points in the complex plane!

It works like this: given any point \(x\) in \(\mathbb{C}\), we get a
homomorphism from \(\mathbb{C}[z]\) to \(\mathbb{C}\) called
``evaluation at \(x\)'', which sends any polynomial \(f\) to the number
\(f(x)\). The kernel of this is the prime ideal consisting of all
polynomials that vanish at \(x\). These are just the polynomials
containing a factor of \(z - x\), so we call this ideal
\[\langle z - x\rangle\] So, we get some prime ideals in
\(\mathbb{C}[z]\) from points of \(\mathbb{C}\) this way. But in fact
there's a theorem that \emph{every} prime ideal in \(\mathbb{C}[z]\) is
of this form! So, we get a one-to-one correspondence
\[\mathrm{Spec}(\mathbb{C}[z]) = \mathbb{C}\] Similarly,
\[\mathrm{Spec}(\mathbb{C}[w]) = \mathbb{C}\]

Now let's think about our branched cover
\[p\colon \mathbb{C} \to \mathbb{C}\] in different ways. It starts out
life as a map from the \(z\)-plane down to the \(w\)-plane. We can use
this to pull back functions on the \(w\)-plane up to the \(z\)-plane:
\[p^*\colon \mathbb{C}[w] \to \mathbb{C}[z]\] But then, by general
abstract baloney, the inverse image under \(p^*\) of any prime ideal in
\(\mathbb{C}[z]\) is a prime ideal back in \(\mathbb{C}[w]\). This gives
a map from \(\mathrm{Spec}(\mathbb{C}[z])\) to
\(\mathrm{Spec}(\mathbb{C}[w])\). But this is just a map from the
\(z\)-plane to the \(w\)-plane! And it's the same map \(p\) we started
with. If you don't see why, it's a good exercise to check this.

So: we translated from geometry to algebra and back to geometry, and we
got right back where we started. Note that each time we translated, our
description of the map p got turned around backwards.

But there's a subtler and more interesting thing we can do with our
branched cover. We can take a point down on the \(w\)-plane and look at
the points up on the \(z\)-plane that map down to it!

Usually there will be two, but for the origin there's just one. This
much is clear from thinking geometrically. But if we think
algebraically, we'll see something funny going on at the origin. We can
already see it geometrically: the origin is where the two sheets of our
branched cover meet, so we call it a ``branch point''. But the algebraic
viewpoint sheds an interesting new light on this.

What we'll do is take a prime ideal in \(\mathbb{C}[w]\) and push it
forwards via \[p^*\colon \mathbb{C}[w] \to \mathbb{C}[z]\] The resulting
subset won't be an ideal, but it will ``generate'' an ideal, meaning we
can take the smallest ideal containing it. This ideal won't be prime,
but we can ``factor'' it into prime ideals: there's a fairly obvious way
to multiply ideals, and we happen to be working with rings where there's
a unique way to factor any ideal into prime ideals.

Let's try it. First pick a number \(x\) that's not zero. It gives a
prime ideal in \(\mathbb{C}[w]\), namely \[\langle w - x\rangle\] Next
push this ideal forwards via \(p^*\) and let it generate an ideal in
\(\mathbb{C}[z]\), namely \[\langle z^2 - x\rangle\] This is not prime,
but we can factor it, which in this case simply amounts to factoring the
polynomial that generates it:
\[\langle z^2-x\rangle = \langle (z-\sqrt{x})(z+\sqrt{x})\rangle = \langle z-\sqrt{x}\rangle\langle z+\sqrt{x}\rangle\]
We get a product of two prime ideals, corresponding to two points in the
\(z\)-plane, namely \(+\sqrt{x}\) and \(-\sqrt{x}\). These are the two
points that map down to \(x\).

In this sort of situation, we say the prime ideal
\(\langle w - x\rangle\) ``splits'' into the prime ideals
\(\langle z - \sqrt{x}\rangle\) and \(\langle z + \sqrt{x}\rangle\) when
we go from \(\mathbb{C}[w]\) to the extension \(\mathbb{C}[z]\). This is
just an overeducated way of saying the number \(x\) has two different
square roots.

But suppose \(x = 0\). This doesn't have two square roots! Everything
works the same except we get
\[\langle z^2\rangle = \langle z\rangle \langle z\rangle\] We say the
prime ideal \(\langle w\rangle\) ``ramifies'' when we go from
\(\mathbb{C}[w]\) to the extension \(\mathbb{C}[z]\). We still get a
product of prime ideals; they just happen to be the same. This is a way
of making sense of the funny notion that the number \(0\) has two square
roots\ldots{} which just happen to be the same! Lots of mathematicians
and physicists talk about ``repeated roots'' when an equation has ``two
solutions that just happen to be equal''. This is just a way of making
that precise.

But all this algebraic machinery must seem like overkill if this is the
first time you've seen it. It pays off when we get to more algebraic
examples. So, let me sketch the simplest one.

Let \(\mathbb{Z}\) be the ring of integers, and let \(\mathbb{Z}[i]\) be
the ring of Gaussian integers, namely numbers of the form \(a+bi\) where
\(a\) and \(b\) are integers. \(\mathbb{Z}[i]\) is an algebraic
extension of \(\mathbb{Z}\), since we can get it by throwing in a
solution \(z\) of the polynomial equation \[z^2 = -1\] This equation is
quadratic, just like it was in the example we just did! Now we're
throwing in a square root of \(-1\) instead of a square root of some
function on the complex plane. But if we take the analogy between
geometry and algebra seriously, this extension should still give some
sort of ``branched double cover''
\[p\colon \mathrm{Spec}(\mathbb{Z}[i]) \to \mathrm{Spec}(\mathbb{Z})\]
What's this like?

It's actually really interesting, but I'll just \emph{sketch} how it
works.

The points of \(\mathrm{Spec}(\mathbb{Z})\) are prime ideals in
\(\mathbb{Z}\). In \protect\hyperlink{week199}{``Week 199''} we saw that
except for the prime ideal \(\langle 0\rangle\), these are generated by
prime numbers.

Similarly, except for \(\langle 0\rangle\), the prime ideals in
\(\mathbb{Z}[i]\) are generated by ``Gaussian primes'': Gaussian numbers
that have no factors except themselves and the ``units'' \(1\), \(-1\),
\(i\) and \(-i\). (A ``unit'' in a ring is an element with a
multiplicative inverse; we don't count units as primes.)

The map \(p\) sends each Gaussian prime to a prime, and it's fun to work
out how this goes\ldots{} but it's even more fun to work backwards!
Let's take primes in the integers and see what happens when we let them
generate ideals in the Gaussian integers! This is like taking points in
the base space of a branched cover and seeing what's sitting up above
them.

For example, the prime \(5\) ``splits''. It has two prime factors in the
Gaussian integers: \[5 = (2 + i)(2 - i)\] so in \(\mathbb{Z}[i]\) the
ideal it generates is a product of two prime ideals:
\[\langle 5\rangle = \langle 2 + i\rangle \langle 2 - i\rangle\] This
means that two different points in \(\mathrm{Spec}(\mathbb{Z}[i])\) map
down to the point \(\langle 5\rangle\) in \(\mathrm{Spec}(Z)\), namely
\(\langle 2 + i\rangle\) and \(\langle 2 - i\rangle\). So we indeed have
something like a double cover!

On the other hand, the prime \(2\) ``ramifies''. It has two prime
factors in the Gaussian integers: \[2 = (1 + i)(1 - i)\] but these two
Gaussian primes generate the same prime ideal:
\[\langle 1 + i\rangle = \langle 1 - i\rangle\] since if we multiply
\(1+i\) by the unit \(-i\) we get \(1-i\). So, in the Gaussian integers
we have \[\langle 2\rangle = \langle 1 + i\rangle \langle 1 + i\rangle\]
A repeated factor! This is just what happened to the branch point in our
previous example: it had ``two points sitting over it, which happen to
be the same''.

So far, everything seems to be working nicely. But, besides splitting
and ramification, there's a third thing that happens here, which didn't
happen in our example involving the complex plane. In fact, this third
option never happens when we're doing algebraic geometry over the
complex numbers!

Here's how it works. Consider the prime \(3\). This is still prime in
the Gaussian integers! It doesn't split, and it doesn't ramify. If we
factorize the ideal generated by \(3\) in \(\mathbb{Z}[i]\) we just get
\[\langle 3\rangle = \langle 3\rangle\] It doesn't do anything --- it
just sits there! So, we say this prime is ``inert''.

This may seem boring, but it's actually mysterious --- and downright
\textbf{maddening} if we take the analogy between geometry and algebra
seriously. It's weird enough to have a ``branched'' cover where sheets
merge at certain points, but at least in that case we can \emph{see}
they've merged: a prime ideal in our subring generates an ideal in the
extension that's not prime, but is a product of several prime factors,
some of which happen to be the same. But when a prime ideal in our
subring generates a \emph{prime} ideal in the extension, it's as if our
``cover'' has just \emph{one} sheet over this point in the base space!
And if this happens for a quadratic extension --- as it just did ---
something seems to have gone horribly wrong with the nice idea that
``quadratic extensions are like branched double covers''.

Luckily, this puzzle has a nice resolution. We shouldn't have
decategorified! When we started discussing ``points'' for a commutative
ring, we saw they form a category in a nice way: there are points of
different ``flavors'', with ``flavor-changing operations'' going between
them. Then we freaked out and turned this category into a set by
decreeing that two point are the same whenever there's a morphism
between them. If we hadn't done this, we'd have seen more clearly how
``inert'' primes fit into a nice pattern along with ``split'' and
``ramified'' ones.

I'll probably talk about this more sometime, and also look more
carefully at what happens to all the different primes when we go to the
Gaussian integers --- to show you that we are, indeed, doing number
theory!

But for now, I just want to make a few comments about this idea of
points of different ``flavors''.

In fact Grothendieck proposed an even more general idea of this sort in
his second approach to ``schemes'', which is simpler but much less
widely discussed than his first approach. Basically, he said that given
a commutative ring \(R\), we should not only consider points that are
homomorphisms from \(R\) to any \emph{field}, but also to any
\emph{commutative ring}. For each commutative ring \(k\) we get a set
consisting of all ``\(k\)-points'' of \(R\), namely homomorphisms
\[f\colon R \to k\] And, for each homomorphism \(g\colon k \to k'\) we
get a ``flavor changing operation'' that sends \(k\)-points to
\(k'\)-points. So, we get a functor from \(\mathsf{CommRing}\) to
\(\mathsf{Set}\)! He called such a functor a ``scheme''. We can get
schemes from commutative rings as just described --- these are called
``affine schemes'' --- but there are also others, for example those
coming from projective varieties.

Anyway, here are some places to read more about number theory\ldots{}
mostly with an emphasis on the geometric viewpoint and the issue of
``splitting, ramification and inertia''.

For a really quick and friendly no-nonsense introduction, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Harold M. Stark, ``Galois Theory, Algebraic Number Theory, and Zeta
  Function'', in \emph{From Number Theory to Physics}, eds.~M.
  Waldschmit et al, Springer, Berlin, 1992, pp.~313--393.
\end{enumerate}

To dig a lot deeper, try this book by Neukirch:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Juergen Neukirch, \emph{Algebraic Number Theory}, trans. Norbert
  Schappacher, Springer, Berlin, 1986.
\end{enumerate}

I already mentioned it, but it's worth mentioning again, because it's
pretty elementary, and very clear on the analogy between ``function
fields'' (fields of functions on Riemann surfaces) and ``number fields''
(algebraic number fields).

This book by Borevich and Shafarevich doesn't make the analogy to
geometry explicit:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Z. I. Borevich and I. R. Shafarevich, \emph{Number Theory}, trans.
  Newcomb Greenleaf, Academic Press, New York, 1966.
\end{enumerate}

However, it has a nice concept of a ``theory of divisors'' for a
commutative ring --- and if you know a bit about divisors from algebraic
geometry, you'll see that this is \emph{secretly} very geometrical! They
show how to classify algebraic extensions of commutative rings using a
theory of divisors, and show how to get a theory of divisors using
``valuations''. This manages to accomplish a lot of what other texts do
using ``adeles'', without actually mentioning adeles. I find this
instructive.

This book goes much further in the geometric direction, but still
without introducing schemes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Dino Lorenzini, \emph{An Invitation to Arithmetic Geometry}, American
  Mathematical Society, Providence, Rhode Island, 1996.
\end{enumerate}

It's really great --- very pedagogical! It develops number fields and
function fields in parallel. You'll need to be pretty comfy with
commutative algebra to work all the way through it, though.

If you want to learn about schemes --- not the kind I just talked about,
just the usual sort, which still includes cool ``spaces'' like
\(\mathrm{Spec}(Z)\) --- try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  V. I. Danilov, V. V. Shokurov, and I. Shafarevich, \emph{Algebraic
  Curves, Algebraic Manifolds and Schemes}, Springer, Berlin, 1998.
\item
  David Eisenbud and Joe Harris, \emph{The Geometry of Schemes},
  Springer, Berlin, 2000.
\end{enumerate}

Schemes have a reputation for being scary, but both these books try hard
to make them less so, including lots of actual \emph{pictures} of things
like \(\mathrm{Spec}(\mathbb{Z}[i])\) sitting over \(\mathrm{Spec}(Z)\).

To wrap things up, I just want to mention two papers on subjects I'm
fond of\ldots.

In \protect\hyperlink{week172}{``Week 172''} I discussed Tarski's ``high
school algebra problem''. This asks whether every identity involving
\(1\), \(+\), \(\times\), and exponentials that holds in the positive
natural numbers follows from the eleven we learned in high school:

\begin{itemize}
\tightlist
\item
  \(x + y = y + x\)
\item
  \((x + y) + z = x + (y + z)\)
\item
  \(xy = yx\)
\item
  \((xy)z = x(yz)\)
\item
  \(1x=x\)
\item
  \(x^1 = x\)
\item
  \(1^x = 1\)
\item
  \(x(y + z) = xy + xz\)
\item
  \(x^{y + z} = x^y x^z\)
\item
  \((xy)^z = x^z y^z\)
\item
  \(x^{yz} = (x^y)^z\)
\end{itemize}

The rules of this game allow only purely equational reasoning --- not
stuff like mathematical induction. The reason is that this is secretly a
problem about ``universal algebra'' or ``algebraic theories'', as
explained in \protect\hyperlink{week200}{``Week 200''}.

It turns out the answer is \emph{no!} In fact there are infinitely many
more independent identities! Here is the first one, due to Wilkies: \[
  \begin{aligned}
    &[(x + 1)^x + (x^2 + x + 1)^x]^y  [(x^3 + 1)^y + (x^4 + x^2 + 1)^y]^x
  \\= &[(x + 1)^y + (x^2 + x + 1)^y]^x  [(x^3 + 1)^x + (x^4 + x^2 + 1)^x]^y
  \end{aligned}
\]

I just found a paper, apparently written after
\protect\hyperlink{week172}{``Week 172''}, which gives a very detailed
account of this problem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Stanley Burris and Karen Yeats, ``The saga of the high school
  identities'', available at
  \texttt{http://web.archive.org/web/20070212200835/http://www.math.uwaterloo.ca/\textasciitilde{}snburris/htdocs/MYWORKS/PREPRINTS/saga.ps}
\end{enumerate}

It includes some new results, like the smallest known algebraic gadget
satisfying all the high school identities but not Wilkies' identity ---
but also more interesting things that are a bit harder to describe.

Also, here's a cool paper relating some of Ramanujan's work to string
theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Antun Milas, `Ramanujan's ``Lost Notebook'' and the Virasoro Algebra',
  available as
  \href{http://www.arXiv.org/abs/math.QA/0309201}{\texttt{math.QA/0309201}}.
\end{enumerate}

A \emph{lot} of Ramanujan's weird identities turn out to be related to
concepts from string theory, suggesting that he was born about a century
too soon to be fully appreciated\ldots{} but this paper tackles an
identity of his that nobody had managed to explain using string theory
before.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Here's something a friend of mine wrote, and an
expanded version of my reply.

\begin{quote}
By the way, I very much liked your explanation of points and prime
ideals. Up until now I haven't seen a satisfactory explanation of why
points correspond to \emph{prime} rather than \emph{maximal} ideals, and
although I haven't completely digested what you wrote, it looks like it
might do the job\ldots{}
\end{quote}

Both here and in my discussion of spectra in
\protect\hyperlink{week199}{``Week 199''}, I've been avoiding saying the
things people usually say. People usually note that a maximal ideal is
the same as the kernel of a homomorphism ONTO a field, while a prime
ideal is the same as the kernel of a homomorphism ONTO an integral
domain. (Recall that an integral domain is a commutative ring where
\(xy = 0\) implies that \(x\) or \(y\) is zero.) If we define the
``points'' of a commutative ring \(R\) to be its maximal or prime
ideals, we can therefore think of these as the kernels of homomorphisms
from \(R\) onto fields or integral domains.

However, defining points in terms of homomorphisms ONTO a given sort of
commutative ring is rather irksome, because it doesn't tell us how
points transform under homomorphisms of commutative rings, nor how they
transform under the ``flavor-changing operations'' I was describing. The
problem is that the composite of a homomorphism with an onto
homomorphism needn't be onto!

So, what really matters is that a prime ideal is the same as the kernel
of a homomorphism TO a field. To see how this follows from the usual
story, note that any integral domain is contained in a field called its
``field of fractions'' --- just as \(\mathbb{Z}\) is contained in
\(\mathbb{Q}\). Any homomorphism ONTO the integral domain thus becomes a
homomorphism TO this field, with the same kernel. Conversely, any
homorphism TO a field becomes a homomorphism ONTO its image, with the
same kernel --- and this image is always an integral domain.

Much later, in 2013, someone wrote:

\begin{quote}
Dear Professor Baez,

In TWF 205 you discuss the puzzle of inert primes and indicate that this
puzzle has a nice resolution in terms of decategorification. You also
indicated then that you may talk further about this at a later date. By
any chance did you return to this topic and if so might you be able to
point me to the appropriate TWF (or other reference)?

My apologies for asking about a nine year old remark.
\end{quote}

I replied:

Sorry, I never wrote more about that. I sort of forget what I was
talking about, because it comes from a time long ago when I was
discussing number theory with James Dolan, and he understood this stuff
much better than me. But I think I can remember a bit if I try\ldots{}

\begin{quote}
{[}\ldots{]} you discuss the puzzle of inert primes and indicate that
this puzzle has a nice resolution in terms of decategorification.
\end{quote}

I remember that the resolution of the puzzle is to \emph{refrain} from
decategorifying.

In Grothendieck's approach, the ``\(k\)-points'' of a ring \(R\) of
algebraic numbers, for various choices of field \(k\), are homomorphisms
\[R \to k\] These are the objects of a category, in the manner I
described, with ``flavor-changing operations'' coming from homomorphisms
\(k \to k'\) as the morphisms.

If we restrict our attention to the case I was talking about, where
\(R = \mathbb{Z}[i]\) is the Gaussian integers and \(k\) is a finite
field, the ``inert'' primes correspond to situations where a \(k\)-point
down in \(\mathbb{Z}\) lifts to two different but isomorphic
\(k\)-points in \(\mathbb{Z}[i]\). When we decategorify, as we do in the
usual approach, it looks like there's just one point in
\(\mathbb{Z}[i]\) sitting over this point in \(\mathbb{Z}\).

Let me warm up by considering the prime \(5\), which is not inert. The
ideal in \(\mathbb{Z}\) generated by \(5\) splits into two ideals in
\(\mathbb{Z}[i]\), \(\langle 2 - i\rangle\) and
\(\langle 2 + i\rangle\). Correspondingly, there are two k-points
\[\mathbb{Z}[i] \to \mathbb{F}_5\] one having \(\langle 2 - i\rangle\)
as its kernel (it sends \(i\) to \(2\)), and having
\(\langle 2 + i\rangle\) as its kernel (it sends \(i\) to \(-2\)). These
\(k\)-points are not isomorphic.

On the other hand, \(3\) is inert. The ideal in \(\mathbb{Z}\) generated
by \(3\) does not split in \(\mathbb{Z}[i]\). Now we can find a field
\(k = \mathbb{F}_9\) such that \(\mathbb{Z}[i]\) has two different
\(k\)-points with the ideal \(\langle 3\rangle\) as kernel. One
\(k\)-point \[\mathbb{Z}[i] \to \mathbb{F}_9\] sends \(i\) to one of the
square roots of \(-1\) in \(\mathbb{F}_9\), the other sends it to the
other. (We have to go up to \(\mathbb{F}_9\) since there's no square
root of \(-1\) in \(\mathbb{F}_3\).) However, these two \(k\)-points are
isomorphic, since there's an automorphism of \(\mathbb{F}_9\)
interchanging its two square roots of \(-1\).

Moral: When we work with prime ideals as points instead of homomorphisms
whose kernels are these prime ideals, it looks like there's just one
point in \(\mathrm{Spec}(\mathbb{Z}[i])\) sitting over the prime ideal
\(\langle 3\rangle\). But when we define points to be homomorphisms, we
see \(\mathbb{Z}[i]\) has two isomorphic points
\(\mathbb{Z}[i] \to \mathbb{F}_9\) sitting over the unique point
\(\mathbb{Z} \to \mathbb{F}_9\) whose kernel is that prime ideal.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{One discovery opens another, and then another. Everything in this
country is nested like Russian dolls. Even a solid artifact in front of
me drew back into other levels. Schemes within schemes.}

--- Craig Childs, Soul of Nowhere
\end{quote}



\hypertarget{week206}{%
\section{May 10, 2004}\label{week206}}

I just got back from Marseille, where Carlo Rovelli, Laurent Freidel and
Phillipe Roche held the first really big conference on loop quantum
gravity and spin foams since the 2nd Warsaw workshop run by Jerzy
Lewandowski back in 1997:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Non Perturbative Quantum Gravity: Loops and Spin Foams}, 3--7
  May 2004, CIRM, Luminy, Marseille, France,
  \texttt{http://w3.lpm.univ-montp2.fr/\textasciitilde{}philippe/quantumgravitywebsite/}
\end{enumerate}

It was good to see old friends and talk about quantum gravity near the
``\href{https://math.ucr.edu/home/baez/marseille/}{Calanques}'' --- the
rugged limestone cliffs lining the Mediterranean coastline. It was good
to meet lots of young people who have recently entered this difficult
field: about 100 people attended, considerably more than at any previous
meeting. But most of all, it was good to see some progress on the tough
problem of understanding dynamics in nonperturbative quantum gravity.

Can we get the \(4\)-dimensional spacetime we know and love, whose
geometry is described by general relativity, to emerge from some theory
that takes quantum physics into account? And can we do it
\emph{nonperturbatively?}

In other words, can we do quantum physics without choosing some fixed
spacetime geometry from the start, a ``background'' on which small
perturbations move like tiny quantum ripples on a calm pre-established
lake? A background geometry is convenient: it lets us keep track of
times and distances. It's like having a fixed stage on which the actors
--- gravitons, strings, branes, or whatever --- cavort and dance. But,
the main lesson of general relativity is that spacetime is \emph{not} a
fixed stage: it's a lively, dynamical entity! There's no good way to
separate the ripples from the lake. This distinction is no more than a
convenient approximation --- and a dangerous one at that.

So, we should learn to make do without a background when studying
quantum gravity. But it's tough! There are knotty conceptual issues like
the ``problem of time'': how do we describe time evolution without using
a fixed background to measure the passage of time? There are also
practical problems: in most attempts to describe spacetime from the
ground up in a quantum way, all hell breaks loose!

We can easily get spacetimes that crumple up into a tiny blob\ldots{} or
spacetimes that form endlessly branching fractal ``polymers'' of
Hausdorff dimension 2\ldots{} but it seems hard to get reasonably smooth
spacetimes of dimension 4. It's even hard to get spacetimes of dimension
10 or 11\ldots{} or \emph{anything} remotely interesting!

It almost seems as if we need a solid background as a bed frame to keep
the mattress of spacetime from rolling up, getting all lumpy, or
otherwise misbehaving. Unfortunately, even \emph{with} a background
there are serious problems: we can use perturbation theory to write the
answers to physics questions as power series, but these series diverge
and nobody knows how to resum them.

String theorists are pragmatic in a certain sense: they don't mind using
a background, and they don't mind doing what physicists always do:
approximating a divergent series by the sum of the first couple of
terms. But this attitude doesn't solve everything, because right now in
string theory there is an enormous ``landscape'' of different
backgrounds, with no firm principle for choosing one. Some estimates
guess there are over \(10^{100}\). Leonard Susskind guesses there are
\(10^{500}\), and argues that we'll need the anthropic principle to
choose the one describing our world:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Leonard Susskind, ``The Landscape'', article and interview on John
  Brockman's ``EDGE'' website,
  \texttt{http://www.edge.org/3rd\_culture/susskind03/susskind\_index.html}
\end{enumerate}

This position is highly controversial, but my point here shouldn't be:
developing a background-free theory of quantum gravity is tough, but
working \emph{with} a background has its own difficulties. And let's
face it: we haven't spent nearly as much time thinking about
background-free or nonperturbative physics as we've spent on
background-dependent or perturbative physics. So, it's quite possible
that our failures with the former are just a matter of inexperience.

Given all this, I'm delighted to see some real progress on getting 4d
spacetime to emerge from nonperturbative quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Jan Ambjorn, Jerzy Jurkiewicz and Renate Loll, ``Emergence of a 4d
  world from causal quantum gravity'', available as
  \href{https://arxiv.org/abs/hep-th/0404156}{\texttt{hep-th/0404156}}.
\end{enumerate}

This trio of researchers have revitalized an approach called ``dynamical
triangulations'' where we calculate path integrals in quantum gravity by
summing over different ways of building spacetime out of little
4-simplices. They showed that if we restrict this sum to spacetimes with
a well-behaved concept of causality, we get good results. This is a bit
startling, because after decades of work, most researchers had despaired
of getting general relativity to emerge at large distances starting from
the dynamical triangulations approach. But, these people hadn't noticed
a certain flaw in the approach\ldots{} a flaw which Loll and
collaborators noticed and fixed!

If you don't know what a path integral is, don't worry: it's pretty
simple. Basically, in quantum physics we can calculate the expected
value of any physical quantity by doing an average over all possible
histories of the system in question, with each history weighted by a
complex number called its ``amplitude''. For a particle, a history is
just a path in space; to average over all histories is to integrate over
all paths --- hence the term ``path integral''. But in quantum gravity,
a history is nothing other than a \textbf{spacetime}.

Mathematically, a ``spacetime'' is something like a \(4\)-dimensional
manifold equipped with a Lorentzian metric. But it's hard to integrate
over all of these --- there are just too darn many. So, sometimes people
instead treat spacetime as made of little discrete building blocks,
turning the path integral into a sum. You can either take this seriously
or treat it as a kind of approximation. Luckily, the calculations work
the same either way!

If you're looking to build spacetime out of some sort of discrete
building block, a handy candidate is the ``4-simplex'': the
\(4\)-dimensional analogue of a tetrahedron. This shape is rigid once
you fix the lengths of its 10 edges, which correspond to the 10
components of the metric tensor in general relativity.

There are lots of approaches to the path integrals in quantum gravity
that start by chopping spacetime into \(4\)-simplices. The weird special
thing about dynamical triangulations is that here we usually assume
every \(4\)-simplex in spacetime has the same shape. The different
spacetimes arise solely from different ways of sticking the
\(4\)-simplices together.

Why such a drastic simplifying assumption? To make calculations quick
and easy! The goal is get models where you can simulate quantum geometry
on your laptop --- or at least a supercomputer. The hope is that
simplifying assumptions about physics at the Planck scale will wash out
and not make much difference on large length scales.

Computations using the so-called ``renormalization group flow'' suggest
that this hope is true \emph{if} the path integral is dominated by
spacetimes that look, when viewed from afar, almost like 4d manifolds
with smooth metrics. Given this, it seems we're bound to get general
relativity at large distance scales --- perhaps with a nonzero
cosmological constant, and perhaps including various forms of matter.

Unfortunately, in all previous dynamical triangulation models, the path
integral was \emph{not} dominated by spacetimes that look like nice 4d
manifolds from afar! Depending on the details, one either got a
``crumpled phase'' dominated by spacetimes where almost all the
\(4\)-simplices touch each other, or a ``branched polymer phase''
dominated by spacetimes where the \(4\)-simplices form treelike
structures. There's a transition between these two phases, but
unfortunately it seems to be a 1st-order phase transition --- not the
sort we can get anything useful out of. For a nice review of these
calculations, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Renate Loll, ``Discrete approaches to quantum gravity in four
  dimensions'', available as
  \href{https://arxiv.org/abs/gr-qc/9805049}{\texttt{gr-qc/9805049}} or
  as a website at \emph{Living Reviews in Relativity},
  \texttt{http://www.livingreviews.org/Articles/Volume1/1998-13loll/}
\end{enumerate}

Luckily, all these calculations shared a common flaw!

Computer calculations of path integrals become a lot easier if instead
of assigning a complex ``amplitude'' to each history, we assign it a
positive real number: a ``relative probability''. The basic reason is
that unlike positive real numbers, complex numbers can cancel out when
you sum them!

When we have relative probabilities, it's the \emph{highly probable}
histories that contribute most to the expected value of any physical
quantity. We can use something called the ``Metropolis algorithm'' to
spot these highly probable histories and spend most of our time focusing
on them.

This doesn't work when we have complex amplitudes, since even a history
with a big amplitude can be canceled out by a nearby history with the
opposite big amplitude! Indeed, this happens all the time. So, instead
of histories with big amplitudes, it's the \emph{bunches of histories
that happen not to completely cancel out} that really matter. Nobody
knows an efficient general-purpose algorithm to deal with this!

For this reason, physicists often use a trick called ``Wick rotation''
that converts amplitudes to relative probabilities. To do this trick, we
just replace time by imaginary time! In other words, wherever we see the
variable ``\(t\)'' for time in any formula, we replace it by ``\(it\)''.
Magically, this often does the job: our amplitudes turn into relative
probabilities! We then go ahead and calculate stuff. Then we take this
stuff and go back and replace ``\(it\)'' everywhere by ``\(t\)'' to get
our final answers.

While the deep inner meaning of this trick is mysterious, it can be
justified in a wide variety of contexts using the ``Osterwalder-Schrader
theorem''. Here's a pretty general version of this theorem, suitable for
quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Abhay Ashtekar, Donald Marolf, Jose Mourao and Thomas Thiemann,
  ``Constructing Hamiltonian quantum theories from path integrals in a
  diffeomorphism invariant context'', \emph{Class. Quant. Grav.}
  \textbf{17} (2000) 4919--4940. Also available as
  \href{http://www.arxiv.org/abs/quant-ph/9904094}{\texttt{quant-ph/9904094}}.
\end{enumerate}

People use Wick rotation in all work on dynamical triangulations.
Unfortunately, this is \emph{not} a context where you can justify this
trick by appealing to the Osterwalder-Schrader theorem. The problem is
that there's no good notion of a time coordinate ``\(t\)'' on your
typical spacetime built by sticking together a bunch of \(4\)-simplices!

The new work by Ambjorn, Jurkiewiecz and Loll deals with this by
restricting to spacetimes that \emph{do} have a time coordinate. More
precisely, they fix a \(3\)-dimensional manifold and consider all
possible triangulations of this manifold by regular tetrahedra. These
are the allowed ``slices'' of spacetime --- they represent different
possible geometries of space at a given time. They then consider
spacetimes having slices of this form joined together by \(4\)-simplices
in a few simple ways.

The slicing gives a preferred time parameter ``\(t\)''. On the one hand
this goes against our desire in general relativity to avoid a preferred
time coordinate --- but on the other hand, it allows Wick rotation. So,
they can use the Metropolis algorithm to compute things to their hearts'
content and then replace ``\(it\)'' by ``\(t\)'' at the end.

When they do this, they get convincing good evidence that the spacetimes
which dominate the path integral look approximately like nice smooth
\(4\)-dimensional manifolds at large distances! Take a look at their
graphs and pictures --- a picture is worth a thousand words.

Naturally, what \emph{I'd} like to do is use their work to develop some
spin foam models with better physical behavior than the ones we have so
far. If you look at my talk you can see some of the problems we've
encountered:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez, ``Spin foam models'', talk at \emph{Non Perturbative
  Quantum Gravity: Loops and Spin Foams}, May 4, 2004, transparencies
  available at
  \texttt{http://math.ucr.edu/home/baez/spin\_foam\_models/}
\end{enumerate}

Now that Loll and her collaborators have gotten something that works, we
can try to fiddle around and make it more elegant while making sure it
still works. In particular, I'm hoping we can get well-behaved models
that don't introduce a preferred time coordinate as long as they rule
out ``topology change'' --- that is, slicings where the topology of
space changes. After all, the Osterwalder-Schrader theorem doesn't
require a \emph{preferred} time coordinate, just \emph{any} time
coordinate together with good behavior under change of time coordinate.
For this we mainly need to rule out topology change. Moreover, Loll and
her collaborators have argued in 2d toy models that topology change is
one thing that makes models go bad: the path integral can get dominated
by spacetimes where ``baby universes'' keep branching off the main one:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Jan Ambjorn, Jerzy Jurkiewicz and Renate Loll, ``Non-perturbative
  Lorentzian quantum gravity, causality and topology change'',
  \emph{Nucl. Phys.} \textbf{B536} (1998) 407--434. Also available as
  \href{https://arxiv.org/abs/hep-th/9805108}{\texttt{hep-th/9805108}}.

  Renate Loll and W. Westra, ``Space-time foam in 2d and the sum over
  topologies'', \emph{Acta Phys. Polon.} \textbf{B34} (2003) 4997--5008.
  Also available as
  \texttt{hep-th/0309012}{]}(https://arxiv.org/abs/hep-th/0309012).
\end{enumerate}

By the way, it's also reading about their 3d model:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Jan Ambjorn, Jerzy Jurkiewicz and Renate Loll, ``Non-perturbative 3d
  Lorentzian quantum gravity'', \emph{Phys. Rev.} \textbf{D64} (2001)
  044011. Also available as
  \href{https://arxiv.org/abs/hep-th/0011276}{\texttt{hep-th/0011276}}.
\end{enumerate}

and for a general review, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Renate Loll, ``A discrete history of the Lorentzian path integral'',
  Lecture Notes in Physics \textbf{631}, Springer, Berlin, 2003,
  pp.~137--171. Also available as
  \href{https://arxiv.org/abs/hep-th/0212340}{\texttt{hep-th/0212340}}.
\end{enumerate}

All this is great, but don't get me wrong --- there were a lot of
\emph{other} cool talks at the conference besides Loll's. I'll just
mention a few.

Laurent Freidel spoke on his work on spin foam models. Especially
exciting is how David Louapre and he have managed to ``sum over
topologies'' in 3d Riemannian quantum gravity with vanishing
cosmological constant --- otherwise known as the Ponzano-Regge model He
has to subtract out a counterterm that would otherwise lead to a bubble
divergence, but then he gets a beautiful theory where the sum over spin
foams is Borel summable:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Laurent Freidel and David Louapre, ``Non-perturbative summation over
  3D discrete topologies'', \emph{Phys. Rev.} \textbf{D68} (2003)
  104004. Also available as
  \href{https://arxiv.org/abs/hep-th/0211026}{\texttt{hep-th/0211026}}.
\end{enumerate}

Their work on gauge-fixing and the inclusion of spinning point particles
in the Ponzano-Regge model is also very impressive, especially given how
long this model has been studied. It shows we have lots left to learn!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Laurent Freidel and David Louapre, ``Ponzano-Regge model revisited I:
  Gauge fixing, observables and interacting spinning particles'',
  available as
  \href{https://arxiv.org/abs/hep-th/0401076}{\texttt{hep-th/0401076}}.
\end{enumerate}

The title suggests we're in for more treats to come.

Kirill Krasnov gave a talk entitled simple ``\(\ln(3)\)'' --- it was all
about the appearance of this constant in the work of Hod, Dreyer, Motl
and Neitzke on black hole entropy and the ringing of black holes. I've
discussed all this at length in \protect\hyperlink{week198}{``Week
198''}, but Krasnov has given an elegant new proof of Hod's conjecture
using Riemann surface theory. One can even think of this as a
``stringy'' explanation of the quasinormal modes of black holes --- but
much remains mysterious here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  Kirill Krasnov, ``Black hole thermodynamics and Riemann surfaces'',
  \emph{Class. Quant. Grav.} \textbf{20} (2003) 2235--2250. Also
  available as
  \href{https://arxiv.org/abs/gr-qc/0302073}{\texttt{gr-qc/0302073}}.

  Kirill Krasnov and Sergey N. Solodukhin, ``Effective stringy
  description of Schwarzschild black holes'', available as
  \href{https://arxiv.org/abs/hep-th/0403046}{\texttt{hep-th/0403046}}.
\end{enumerate}

While I'm at it, I can't resist mentioning Krasnov's work on including
point particles in 3d Lorentzian quantum gravity with negative
cosmological constant, since it has close connections with that of
Freidel and Louapre, though the context is a bit different:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\item
  Kirill Krasnov, ``\(\Lambda<0\) quantum gravity in 2+1 dimensions I:
  quantum states and stringy S-matrix'', \emph{Class. Quant. Grav.}
  \textbf{19} (2002) 3977--3998. Also available as
  \href{https://arxiv.org/abs/hep-th/0112164}{\texttt{hep-th/0112164}}.

  Kirill Krasnov, ``\(\Lambda<0\) quantum gravity in 2+1 dimensions II:
  black hole creation by point particles'', \emph{Class. Quant. Grav.}
  \textbf{19} (2002) 3999--4028. Also available as
  \href{https://arxiv.org/abs/hep-th/0202117}{\texttt{hep-th/0202117}}.
\end{enumerate}

If I could duplicate myself, I'd have one copy write a book on 3d
quantum gravity that would synthesize all these wonderful results in a
nice big picture. It's not realistic physics; it's just a toy model. But
the math is \emph{so} nice, and so enlightening for real-world physics
in some ways, that it's hard to resist pondering it! TQFTs, Riemann
surfaces, hyperbolic geometry, spinning point particles colliding and
creating black holes --- a wonderful stew! Alas, I don't have time to
savor it.

There were a lot of other interesting talks --- but I don't have time to
go through and describe all of them, either. So, I'll wrap up with
something very different!

Lee Smolin told me some neat stuff about MOND --- that's ``Modified
Newtonian Dynamics'', which is Mordehai Milgrom's way of trying to
explain the strange behavior of galaxies without invoking dark matter.
The basic problem with galaxies is that the outer parts rotate faster
than they should given how much mass we actually see.

If you have a planet in a circular orbit about the Sun, Newton's laws
say its acceleration is proportional to \(1/r^2\), where \(r\) is its
distance to the Sun. Similarly, if almost all the mass in a galaxy were
concentrated right at the center, a star orbiting in a circle at
distance \(r\) from the center would have acceleration proportional to
\(1/r^2\). Of course, not all the mass is right at the center! So, the
acceleration should drop off more slowly than \(1/r^2\) as you go
further out. And it does. But, the observed acceleration drops off a lot
more slowly than the acceleration people calculate from the mass they
see. It's not a small effect: it's a \emph{huge} effect!

One solution is to say there's a lot of mass we don't see: ``dark
matter'' of some sort. If you take this route, which most astronomers
do, you're forced to say that \emph{most} of the mass of galaxies is in
the form of dark matter.

Milgrom's solution is to say that Newton's laws are messed up.

Of course this is a drastic, dangerous step: the last guy who tried this
was named Einstein, and we all know what happened to him. Milgrom's
theory isn't even based on deep reasoning and beautiful math like
Einstein's! Instead, it's just a blatant attempt to fit the experimental
data. And it's not even elegant. In fact, it's downright ugly.

Here's what it says: the usual Newtonian formula for the acceleration
due to gravity is correct as long as the acceleration is bigger than
\[a = 2 \times 10^{-10} \;\mathrm{m}/\mathrm{sec}^2\] But, for
accelerations less than this, you take the geometric mean of the
acceleration Newton would predict and this constant \(a\).

In other words, there's a certain value of acceleration such that above
this value, the Newtonian law of gravity works as usual, while below
this value the law suddenly changes.

Any physicist worth his salt who hears this modification of Newton's law
should be overcome with a feeling of revulsion! There just \emph{aren't}
laws of physics that split a situation in two cases and say ``if this is
bigger than that, then do X, but if it's smaller, then do Y.'' Not in
fundamental physics, anyway! Sure, water is solid below \(0\) centigrade
and fluid above this, but that's not a fundamental law --- it presumably
follows from other stuff. Not that anyone has derived the melting point
of ice from first principles, mind you. But we think we could if we were
better at big messy calculations.

Furthermore, you can't easily invent a Lagrangian for gravity that makes
it fall off more \emph{slowly} than \(1/r^2\). It's easy to get it to
fall off \emph{faster} --- just give the graviton a mass, for example!
But not more slowly. It turns out you can do it --- Bekenstein and
Milgrom have a way --- but it's incredibly ugly.

So, MOND should instantly make any decent physicist cringe. Esthetics
alone would be enough to rule it out, except for one slight problem: it
seems to fit the data! In some cases it matches the observed rotation of
galaxies in an appallingly accurate way, fitting every wiggle in the
graph of stellar rotation velocity as a function of distance from the
center.

So, even if MOND is wrong, there may need to be some reason why it
\emph{acts} like it's right! Apparently even some proponents of dark
matter agree with this.

But: take everything I'm saying here with a grain of salt. I'm no expert
on this stuff, so if you know any astrophysics you should read the
literature and make up your own mind.

Here are two reviews that Smolin especially recommended:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\item
  Robert H. Sanders and Stacy S. McGaugh, ``Modified Newtonian Dynamics
  as an Alternative to Dark Matter'', available as
  \href{https://arxiv.org/abs/astro-ph/0204521}{\texttt{astro-ph/0204521}}.
\item
  Anthony Aguirre, ``Alternatives to dark matter (?)'', available as
  \href{https://arxiv.org/abs/astro-ph/0310572}{\texttt{astro-ph/0310572}}.
\end{enumerate}

Here's McGaugh's website with links to many papers on MOND, including
Milgrom's original papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  ``The MOND pages'',
  \texttt{http://www.astro.umd.edu/\textasciitilde{}ssm/mond/litsub.html}
\end{enumerate}

McGaugh is a strong proponent of MOND --- though he didn't start out
that way --- so the selection may be biased. Does anyone know an
intelligent detailed critique of MOND? If so, I want to see it! We can't
throw out Newton's law of gravity (or more precisely, general
relativity, which has Newtonian gravity as a limiting case for low
densities and low velocities) unless we have \emph{very} good reasons!
So we have to think about things carefully, and weigh the evidence on
both sides.

If I could duplicate myself, I'd have one copy try to get to the bottom
of this dark matter / MOND puzzle. But I can't\ldots{}

\ldots{} so if you're an expert who knows a lot about this, let me know
what you think --- or better yet, post an article about this to
\texttt{sci.physics.research}!

By the way, you can see lots of photos of the Marseille conference here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  John Baez, Marseille,
  \texttt{http://math.ucr.edu/home/baez/marseille/}
\end{enumerate}

Almost everyone working on loop quantum gravity and spin foams can be
seen here!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} A few people took me up on my request.

Steve Carlip wrote:

\begin{quote}
John Baez wrote:

\begin{quote}
So, even if MOND is wrong, there may need to be some reason why it acts
like it's right! Apparently even some proponents of dark matter agree
with this.
\end{quote}

Try this:

M. Kaplinghat and M. S. Turner, ``How Cold Dark Matter Theory Explains
Milgrom's Law,''
\href{http://www.arXiv.org/abs/astro-ph/0107284}{\texttt{astro-ph/0107284}},
\emph{Astrophys. J.} \textbf{569} (2002) L19. Note that this analysis
also explains why the ``critical acceleration'' in MOND does \emph{not}
apply at cluster scales. There is some debate over these results, but
the paper is certainly worth reading.

Steve Carlip
\end{quote}

Rein Halbersma wrote:

\begin{quote}
Dear John Baez,

Your writings in Week 206 brought back some vivid memories from the good
old days in graduate school with all-night philosophical discussions! In
your Finds in Week 206 you discuss the MOND-framework of Milgrom and
asked for detailed critique of it. A few years ago the authors Scott,
White, Cohn and Pierpaoli
(\href{http://www.arXiv.org/astro-ph/0104435}{\texttt{astro-ph/0104435}})
published precisely such an account. Hopefully it is of use to you.

As an aside, my connection with the whole MOND story is this: I have a
PhD in high-energy physics from Groningen University (my advisor was
Eric Bergshoeff, one of the inventors of the supermembrane). While I was
working as a graduate student in string theory \& conformal
supergravity, a roommate of mine, Roland Eppinga, was an undergraduate
student for Robert Sanders, who is an astronomy professor in Groningen.
My friend was assigned a project involving cosmological simulations
within the MOND-framework. Needless to say, we had many discussions on
MOND in which my esthetical views of general relativity were put to the
test by the need to fit a damn rotational curve.

My personal view is that MOND is indeed too ugly to be true. Or as
Einstein would have said, if Nature is not described by relativity, then
God designed it badly!

Best wishes,

Rein Halbersma
\end{quote}

Christine Dantas wrote:

\begin{quote}
Hello all,

Concerning MOND x GR, the recent paper by Bekenstein seems to be a
relevant contribution to this issue (see below).

Regards,\\
Christine Dantas\\
INPE/Brazil\\

\href{http://www.arXiv.org/abs/astro-ph/0403694}{\texttt{astro-ph/0403694}}~\\
Relativistic gravitation theory for the MOND paradigm\\
Jacob D. Bekenstein\\

The modified newtonian dynamics (MOND) paradigm of Milgrom can boast of
a number of successful predictions regarding galactic dynamics; these
are made without the assumption that dark matter plays a significant
role. MOND requires gravitation to depart from Newtonian theory in the
extragalactic regime where dynamical accelerations are small. So far
relativistic gravitation theories proposed to underpin MOND have either
clashed with the post-Newtonian tests of general relativity, or failed
to provide significant gravitational lensing, or violated hallowed
principles by exhibiting superluminal scalar waves or an a priori vector
field. We develop a relativistic MOND inspired theory which resolves
these problems. In it gravitation is mediated by metric, a scalar field
and a 4-vector field, all three dynamical. For a simple choice of its
free function, the theory has a Newtonian limit for nonrelativistic
dynamics with significant acceleration, but a MOND limit when
accelerations are small. We calculate the \(\beta\) and \(\gamma\) PPN
coefficients showing them to agree with solar system measurements. The
gravitational light deflection by nonrelativistic systems is governed by
the same potential responsible for dynamics of particles. Consequently,
the new theory predicts gravitational lensing by extragalactic
structures that cannot be distinguished from that predicted within the
dark matter paradigm by general relativity. Cosmological models based on
the theory are quite similar to those based on general relativity; they
predict slow evolution of the scalar field. For a range of initial
conditions, this last result makes it easy to rule out superluminal
propagation of metric, scalar and vector waves.
\end{quote}

Ethan Vishniac wrote:

\begin{quote}
Hi,

I don't have a reference for a skeptical review of MOND. As you might
expect, this is considered a fringe hypothesis by most. However, there
is an interesting paper you should see:
\href{http://www.arXiv.org/abs/astro-ph/0312273}{\texttt{astro-ph/0312273}}.

Briefly, they examine a galaxy cluster with a strong sub-cluster, which
has just passed through the main cluster for the first time (probably).
Most of the baryonic mass is in the hot gas (by a factor of ten) so the
initial pass has stripped the gas out of the sub-cluster. In fact, in
the X-rays the subcluster is not evident. If stars and gas are all there
is then there is no significant mass concentration associated with the
sub-cluster. However, the sub-cluster is quite easy to see in the
gravitational lensing map. Evidently, the mass of the sub-cluster has
not been significantly reduced by losing all of the gas. (That is, the
mass to light ratio for the sub-cluster is what one would expect for an
isolated system.) This looks like a simple demonstration that most of
the mass in galaxy clusters is non-luminous and dissipationless. There
have also been attempts to disprove MOND by comparing time delays in
strong lensing systems with MOND based models. Unfortunately, the real
problem here is that there is no clear set of predictions for MOND.

Ethan Vishniac
\end{quote}

He also wrote:

\begin{quote}
BTW, one way to address MOND on its own terms is to try to follow
galactic rotation curves out to very very great distances. If the dark
matter model is correct, they will eventually turn over and fall as
\(r^{-1/2}\). This is hard, perhaps impossible, using gas. There is some
work using the velocity dispersion of satellite galaxies around
otherwise isolated bright galaxies (Prada et al., \emph{ApJ}
\textbf{598}, 260--,2003). (The Sloan Digital Sky Survey makes it
possible to get good statistics for very weak signals.) They claim to
have detected a drop in the velocity dispersion by a factor of 2 between
20 and 350 kpc. This is roughly in line with expectations from
cosmological simulations, and stands in contradiction to what one would
expect from MOND.

Finally, one can try to measure the shape of galaxy halos using weak
lensing. The line of reasoning is a bit indirect, but the point is that
an elliptical or disk-like distribution of mass at small radii gives
rise to nearly spherical equipotential surfaces at large radii. On the
other hand, dark matter halos are generally triaxial, and will appear
elliptical on the sky. Hoekstra et al.~(\emph{Astrophysical Journal},
\textbf{606}, 67--77, 2004) have done this and claim a strong elliptical
signal in the weak lensing data.
\end{quote}

Finally, Renate Loll corrected an oversimplification in my account of
her model:

\begin{quote}
{[}\ldots{]} I never claimed the geometries we find are nice \emph{and
smooth}, I think they almost certainly will be fairly wild individually,
even at relatively large scales. Like the particle paths in the quantum
mechanical path integral, the individual histories should not be taken
too literally, the physics'll all be in suitable expectation values of
course.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{When I am working on a problem, I never think about beauty. I
think only about how to solve the problem. But when I have finished, if
the solution is not beautiful, I know it is wrong.}

--- Buckminister Fuller
\end{quote}



\hypertarget{week207}{%
\section{July 25, 2004}\label{week207}}

I'm spending the summer in Cambridge, but last week I was in Dublin
attending ``GR17'', which is short for the 17th International Conference
on General Relativity and Gravitation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  GR17 homepage,
  \texttt{http://www.dcu.ie/\textasciitilde{}nolanb/gr17.htm}
\end{enumerate}

This is where Stephen Hawking decided to announce his solution of the
black hole information loss problem. Hawking is a media superstar right
up there with Einstein and Michael Jackson, so when reporters heard
about this, the ensuing hoopla overshadowed everything else in the
conference.

As soon I arrived, one of the organizers complained to me that they'd
had to spend 4000 pounds on a public relations firm to control the
reporters and other riff-raff who would try to attend Hawking's talk.
Indeed, there seemed to be more than the usual number of crackpots
floating about, though I admit I haven't been to this particular series
of conferences before --- perhaps general relativity attracts such
people? The public lecture by Penrose on the last day of the conference
may have helped lure them in. He spoke on ``Fashion, Faith and Fantasy
in Theoretical Physics'', and people by the door sold copies of his
brand new thousand-page blockbuster:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Roger Penrose, The Road To Reality: A Complete Guide to the Physical
  Universe, Jonathan Cape, 2004.
\end{enumerate}

(You may enjoy guessing which popular theories he classified under the
three categories of fashion, faith and fantasy.) After his talk,
\emph{all} the questions were actually harangues from people propounding
idiosyncratic theories of their own, and the question period was drawn
to an abrupt halt in the middle of one woman's rant about fractal
cosmology. But I bumped into the saddest example when I was having a
chat with some colleagues at a local pub. A fellow with long curly grey
locks and round horn-rimmed glasses sat down beside me. I'd seen him
around the conference, so I said hello. He asked me if I'd like to hear
about his theory; at this point my internal alarm bells started ringing.
I told him I was busy, but said I'd take a look at his manuscript later.

It turned out to describe an idea I'd never even dreamt of before: a
heliocentric cosmology in which the planets move along circular orbits
with epicycles a la Ptolemy! And his evidence comes from a neolithic
Irish tomb called Newgrange. This tomb may have been aligned to let in
the sun on the winter solstice, but some people doubt this, because it
seems the alignment would have been slightly off back in 3200 BC when
Newgrange was built. However, it's slightly off only if you work out the
precession of the equinox using standard astronomy. If you use his
theory, it lines up perfectly! Pretty cute. The only problem is that his
paper contains no evidence for this claim. Instead, it's only a short
note sketching the idea, followed by lengthy attachments containing his
correspondence with the Dublin police. In these, he complained that
people were trying to block his patent on a refrigerator that produces
no waste heat. They were constantly flying airplanes over his house, and
playing pranks like boiling water in his teakettle when he was away,
trying to drive him insane.

Anyway, on Wednesday the 21st the whole situation built to a head when
Hawking gave his talk in the grand concert hall of the Royal Dublin
Society. As we had been warned, the PR firm checked our badges at the
door. Reporters with press badges were also allowed in, so the aisles
were soon lined with cameras and recording equipment. I got there half
an hour early to get a good seat, and while I was waiting, Jenny Hogan
from the New Scientist asked if she could interview me for my reaction
afterwards. In short, a thoroughly atypical physics talk!

But you shouldn't imagine the mood as one of breathless anticipation. At
least for the physicists present, a better description would be
something like ``skeptical curiosity''. None of them seemed to believe
that Hawking could suddenly shed new light on a problem that has been
attacked from many angles for several decades. One reason is that
Hawking's best work was done almost 30 years ago. A string theorist I
know said that thanks to work relating anti-deSitter space and conformal
field theory --- the so-called ``AdS-CFT'' hypothesis --- string
theorists had become convinced that no information is lost by black
holes. Thus, Hawking had been feeling strong pressure to fall in line
and renounce his previous position, namely that information \emph{is}
lost. A talk announcing this would come as no big surprise.

After a while Kip Thorne, John Preskill, Petros Florides and Hawking's
grad student Christophe Galfard came on stage. Then, amid a burst of
flashbulbs, Hawking's wheelchair gradually made its way down the aisle
and up a ramp, attended by a nurse --- possibly his wife, I don't know.
He had been recently sick with pneumonia.

Once Hawking was on stage, the conference organizer Petros Florides made
an introduction, joking that while physicists believe no information can
travel faster than light, this seems to have been contradicted by the
speed with which the announcement of Hawking's talk spread around the
globe. Then he recalled the famous bet that Preskill made with Hawking
and Thorne. In case you don't know, John Preskill is a leader in quantum
computation at Caltech. Kip Thorne is an expert on relativity, also at
Caltech, one of the authors of the famous textbook ``Gravitation'', and
now playing a key role in the LIGO project to detect gravitational
waves.

The \href{dublin/index.html\#hawking}{bet} went like this:

\begin{quote}
Whereas Stephen Hawking and Kip Thorne firmly believe that information
swallowed by a black hole is forever hidden from the outside universe,
and can never be revealed even as the black hole evaporates and
completely disappears,

And whereas John Preskill firmly believes that a mechanism for the
information to be released by the evaporating black hole must and will
be found in the correct theory of quantum gravity,

Therefore Preskill offers, and Hawking/Thorne accept, a wager that:

\begin{quote}
When an initial pure quantum state undergoes gravitational collapse to
form a black hole, the final state at the end of black hole evaporation
will always be a pure quantum state.
\end{quote}

The loser(s) will reward the winner(s) with an encyclopedia of the
winner's choice, from which information can be recovered at will.

Stephen W. Hawking, Kip S. Thorne, John P. Preskill\\
Pasadena, California, 6 February 1997
\end{quote}

It's signed by Thorne and Preskill, with a thumbprint of Hawking's.

After a bit of joking around and an explanation of how the question
session would work, Hawking began his talk. Since it's fairly short and
not too easy to summarize, I think I'll just quote the whole transcript
which I believe Sean Carroll got from the New York Times science
reporter Dennis Overbye. I've made a few small corrections.

There were also some slides, but you're not missing a lot by not seeing
them. The talk was not easy to understand, so unless quantum gravity is
your speciality you may feel like just skimming it to get the flavor,
and then reading my attempt at a summary.

The talk began with Hawking's trademark introduction, uttered as usual
in his computer-generated voice:

\begin{quote}
Can you hear me?

I want to report that I think I have solved a major problem in
theoretical physics, that has been around since I discovered that black
holes radiate thermally, thirty years ago. The question is, is
information lost in black hole evaporation? If it is, the evolution is
not unitary, and pure quantum states, decay into mixed states.

I'm grateful to my graduate student Christophe Galfard for help in
preparing this talk.

The black hole information paradox started in 1967, when Werner Israel
showed that the Schwarzschild metric, was the only static vacuum black
hole solution. This was then generalized to the no hair theorem: the
only stationary rotating black hole solutions of the Einstein-Maxwell
equations are the Kerr-Newman metrics. The no hair theorem implied that
all information about the collapsing body was lost from the outside
region apart from three conserved quantities: the mass, the angular
momentum, and the electric charge.

This loss of information wasn't a problem in the classical theory. A
classical black hole would last for ever, and the information could be
thought of as preserved inside it, but just not very accessible.
However, the situation changed when I discovered that quantum effects
would cause a black hole to radiate at a steady rate. At least in the
approximation I was using, the radiation from the black hole would be
completely thermal, and would carry no information. So what would happen
to all that information locked inside a black hole, that evaporated
away, and disappeared completely? It seemed the only way the information
could come out would be if the radiation was not exactly thermal, but
had subtle correlations. No one has found a mechanism to produce
correlations, but most physicists believe one must exist. If information
were lost in black holes, pure quantum states would decay into mixed
states, and quantum gravity wouldn't be unitary.

I first raised the question of information loss in '75, and the argument
continued for years, without any resolution either way. Finally, it was
claimed that the issue was settled in favour of conservation of
information, by AdS/CFT. AdS/CFT is a conjectured duality between
supergravity in anti-deSitter space and a conformal field theory on the
boundary of anti-deSitter space at infinity. Since the conformal field
theory is manifestly unitary, the argument is that supergravity must be
information preserving. Any information that falls in a black hole in
anti-deSitter space, must come out again. But it still wasn't clear how
information could get out of a black hole. It is this question I will
address.

Black hole formation and evaporation can be thought of as a scattering
process. One sends in particles and radiation from infinity, and
measures what comes back out to infinity. All measurements are made at
infinity, where fields are weak, and one never probes the strong field
region in the middle. So one can't be sure a black hole forms, no matter
how certain it might be in classical theory. I shall show that this
possibility allows information to be preserved and to be returned to
infinity.

I adopt the Euclidean approach, the only sane way to do quantum gravity
non-perturbatively. {[}He grinned at this point.{]} In this, the time
evolution of an initial state is given by a path integral over all
positive definite metrics that go between two surfaces that are a
distance \(T\) apart at infinity. One then Wick rotates the time
interval, \(T\), to the Lorentzian.

The path integral is taken over metrics of all possible topologies that
fit in between the surfaces. There is the trivial topology: the initial
surface cross the time interval. Then there are the nontrivial
topologies: all the other possible topologies. The trivial topology can
be foliated by a family of surfaces of constant time. The path integral
over all metrics with trivial topology, can be treated canonically by
time slicing. In other words, the time evolution (including gravity)
will be generated by a Hamiltonian. This will give a unitary mapping
from the initial surface to the final.

The nontrivial topologies cannot be foliated by a family of surfaces of
constant time. There will be a fixed point in any time evolution vector
field on a nontrivial topology. A fixed point in the Euclidean regime
corresponds to a horizon in the Lorentzian. A small change in the state
on the initial surface would propagate as a linear wave on the
background of each metric in the path integral. If the background
contained a horizon, the wave would fall through it, and would decay
exponentially at late time outside the horizon. For example, correlation
functions decay exponentially in black hole metrics. This means the path
integral over all topologically nontrivial metrics will be independent
of the state on the initial surface. It will not add to the amplitude to
go from initial state to final that comes from the path integral over
all topologically trivial metrics. So the mapping from initial to final
states, given by the path integral over all metrics, will be unitary.

One might question the use in this argument, of the concept of a quantum
state for the gravitational field on an initial or final spacelike
surface. This would be a functional of the geometries of spacelike
surfaces, which is not something that can be measured in weak fields
near infinity. One can measure the weak gravitational fields on a
timelike tube around the system, but the caps at top and bottom, go
through the interior of the system, where the fields may be strong.

One way of getting rid of the difficulties of caps would be to join the
final surface back to the initial surface, and integrate over all
spatial geometries of the join. If this was an identification under a
Lorentzian time interval, \(T\), at infinity, it would introduce closed
timelike curves. But if the interval at infinity is the Euclidean
distance, beta, the path integral gives the partition function for
gravity at temperature \(1/\beta\).

The partition function of a system is the trace over all states,
weighted with \(e^{-\beta H}\). One can then integrate \(\beta\) along a
contour parallel to the imaginary axis with the factor \(e^{-\beta E}\).
This projects out the states with energy \(E_0\). In a gravitational
collapse and evaporation, one is interested in states of definite
energy, rather than states of definite temperature.

There is an infrared problem with this idea for asymptotically flat
space. The Euclidean path integral with period \(\beta\) is the
partition function for space at temperature \(1/\beta\). The partition
function is infinite because the volume of space is infinite. This
infrared problem can be solved by a small negative cosmological
constant. It will not affect the evaporation of a small black hole, but
it will change infinity to anti-deSitter space, and make the thermal
partition function finite.

The boundary at infinity is then a torus, \(S^1\) cross \(S^2\). The
trivial topology, periodically identified anti-deSitter space, fills in
the torus, but so also do nontrivial topologies, the best known of which
is Schwarzschild anti-deSitter. Providing that the temperature is small
compared to the Hawking-Page temperature, the path integral over all
topologically trivial metrics represents self-gravitating radiation in
asymptotically anti-deSitter space. The path integral over all metrics
of Schwarzschild AdS topology represents a black hole and thermal
radiation in asymptotically anti-deSitter.

The boundary at infinity has topology \(S^1\) cross \(S^2\). The
simplest topology that fits inside that boundary is the trivial
topology, \(S^1\) cross \(D^3\), the three-disk. The next simplest
topology, and the first nontrivial topology, is \(S^2\) cross \(D^2\).
This is the topology of the Schwarzschild anti-deSitter metric. There
are other possible topologies that fit inside the boundary, but these
two are the important cases: topologically trivial metrics and the black
hole. The black hole is eternal. It cannot become topologically trivial
at late times.

In view of this, one can understand why information is preserved in
topologically trivial metrics, but exponentially decays in topologically
non trivial metrics. A final state of empty space without a black hole
would be topologically trivial, and be foliated by surfaces of constant
time. These would form a \(3\)-cycle modulo the boundary at infinity.
Any global symmetry would lead to conserved global charges on that
\(3\)-cycle. These would prevent correlation functions from decaying
exponentially in topologically trivial metrics. Indeed, one can regard
the unitary Hamiltonian evolution of a topologically trivial metric as
the conservation of information through a \(3\)-cycle.

On the other hand, a nontrivial topology, like a black hole, will not
have a final \(3\)-cycle. It will not therefore have any conserved
quantity that will prevent correlation functions from exponentially
decaying. One is thus led to the remarkable result that late time
amplitudes of the path integral over a topologically non trivial metric,
are independent of the initial state. This was noticed by Maldacena in
the case of asymptotically anti-deSitter in 3d, and interpreted as
implying that information is lost in the BTZ black hole metric.
Maldacena was able to show that topologically trivial metrics have
correlation functions that do not decay, and have amplitudes of the
right order to be compatible with a unitary evolution. Maldacena did not
realize, however that it follows from a canonical treatment that the
evolution of a topologically trivial metric, will be unitary.

So in the end, everyone was right, in a way. Information is lost in
topologically nontrivial metrics, like the eternal black hole. On the
other hand, information is preserved in topologically trivial metrics.
The confusion and paradox arose because people thought classically, in
terms of a single topology for spacetime. It was either
\(\mathbb{R}^4\), or a black hole. But the Feynman sum over histories
allows it to be both at once. One can not tell which topology
contributed the observation, any more than one can tell which slit the
electron went through, in the two slits experiment. All that observation
at infinity can determine is that there is a unitary mapping from
initial states to final, and that information is not lost.

My work with Hartle showed the radiation could be thought of as
tunnelling out from inside the black hole. It was therefore not
unreasonable to suppose that it could carry information out of the black
hole. This explains how a black hole can form, and then give out the
information about what is inside it, while remaining topologically
trivial. There is no baby universe branching off, as I once thought. The
information remains firmly in our universe. I'm sorry to disappoint
science fiction fans, but if information is preserved, there is no
possibility of using black holes to travel to other universes. If you
jump into a black hole, your mass-energy will be returned to our
universe, but in a mangled form, which contains the information about
what you were like, but in an unrecognisable state.

There is a problem describing what happens, because strictly speaking
the only observables in quantum gravity are the values of the field at
infinity. One cannot define the field at some point in the middle,
because there is quantum uncertainty in where the measurement is done.
However, in cases in which there are a large number, N, of light matter
fields, coupled to gravity, one can neglect the gravitational
fluctuations, because they are only one among N quantum loops. One can
then do the path integral over all matter fields, in a given metric, to
obtain the effective action, which will be a functional of the metric.

One can add the classical Einstein-Hilbert action of the metric to this
quantum effective action of the matter fields. If one integrated this
combined action over all metrics, one would obtain the full quantum
theory. However, the semiclassical approximation is to represent the
integral over metrics by its saddle point. This will obey the Einstein
equations, where the source is the expectation value of the energy
momentum tensor, of the matter fields in their vacuum state.

The only way to calculate the effective action of the matter fields,
used to be perturbation theory. This is not likely to work in the case
of gravitational collapse. However, fortunately we now have a
non-perturbative method in AdS/CFT. The Maldacena conjecture says that
the effective action of a CFT on a background metric is equal to the
supergravity effective action of anti-deSitter space with that
background metric at infinity. In the large \(N\) limit, the
supergravity effective action is just the classical action. Thus the
calculation of the quantum effective action of the matter fields, is
equivalent to solving the classical Einstein equations.

The action of an anti-deSitter-like space with a boundary at infinity
would be infinite, so one has to regularize. One introduces subtractions
that depend only on the metric of the boundary. The first counter-term
is proportional to the volume of the boundary. The second counter-term
is proportional to the Einstein-Hilbert action of the boundary. There is
a third counter-term, but it is not covariantly defined. One now adds
the Einstein-Hilbert action of the boundary and looks for a saddle point
of the total action. This will involve solving the coupled four- and
five-dimensional Einstein equations. It will probably have to be done
numerically.

In this talk, I have argued that quantum gravity is unitary, and
information is preserved in black hole formation and evaporation. I
assume the evolution is given by a Euclidean path integral over metrics
of all topologies. The integral over topologically trivial metrics can
be done by dividing the time interval into thin slices and using a
linear interpolation to the metric in each slice. The integral over each
slice will be unitary, and so the whole path integral will be unitary.

On the other hand, the path integral over topologically nontrivial
metrics, will lose information, and will be asymptotically independent
of its initial conditions. Thus the total path integral will be unitary,
and quantum mechanics is safe.

It is great to solve a problem that has been troubling me for nearly
thirty years, even though the answer is less exciting than the
alternative I suggested. This result is not all negative however,
because it indicates that a black hole evaporates, while remaining
topologically trivial. However, the large \(N\) solution is likely to be
a black hole that shrinks to zero. This is what I suggested in 1975.

In 1997, Kip Thorne and I bet John Preskill that information was lost in
black holes. The loser or losers of the bet are to provide the winner or
winners with an encyclopaedia of their own choice, from which
information can be recovered with ease. I'm now ready to concede the
bet, but Kip Thorne isn't convinced just yet. I will give John Preskill
the encyclopaedia he has requested. John is all-American, so naturally
he wants an encyclopaedia of baseball. I had great difficulty in finding
one over here, so I offered him an encyclopaedia of cricket, as an
alternative, but John wouldn't be persuaded of the superiority of
cricket. Fortunately, my assistant, Andrew Dunn, persuaded the
publishers Sportclassic Books to fly a copy of ``Total Baseball: The
Ultimate Baseball Encyclopedia'' to Dublin. I will give John the
encyclopaedia now. If Kip agrees to concede the bet later, he can pay me
back.
\end{quote}

At this point the encyclopedia was brought on stage and given to John
Preskill, who \href{dublin/index.html\#preskill}{waved it over his head
in a parody of athletic triumph}. The order of events is a bit fuzzy in
my mind, but sometime around then he said ``I always hoped that when
Stephen conceded, there would be a witness --- this really exceeds my
expectations.''

After this, Kip Thorne ran a question and answer period, saying that he
would alternate between questions from conference participants, which
Hawking's grad student would answer, and questions from the press, which
Hawking would answer --- after Thorne checked Hawking's facial
expressions to see whether he felt they were worth answering.

First, a correspondent from the BBC asked Stephen Hawking what the
significance of this result was for ``life, the universe and
everything''. (Here I'm using John Preskill's humorous paraphrase.)
Hawking agreed to answer this, and while he began laboriously composing
a reply using the computer system on his wheelchair, his grad student
Christophe Galfard fielded three questions from experts: Bill Unruh,
Gary Horowitz and Robb Mann. I didn't find the replies terribly
illuminating, except that when asked if information would be lost if we
kept feeding the black hole matter to keep it from evaporating away,
Galfard said ``yes''. Everyone afterwards commented on what a tough job
it would be for a student to field questions in front of about 800
physicists and the international press.

At this point Kip Thorne checked to see if Hawking was done composing
his reply. He was not. To fill time, Thorne explained why he hadn't yet
conceded the bet, saying ``This looks to me, on the face of it, to be a
lovely argument. But I haven't seen all the details.'' He took this
opportunity to tell the reporters a bit about how science was done: we
don't just listen to Hawking and take his word for everything, we have
to go off and check things ourselves. He told a nice story about how
when Hawking first showed that black holes radiate, everyone with their
own approach to quantum field theory on curved spacetime needed to redo
this calculation their own way to be convinced --- with Yakov Zeldovich,
who'd gotten the game started by showing that energy could be extracted
from \emph{rotating} black holes in the form of radiation, being one of
the very last to agree! Preskill chimed in, saying ``I'll be honest ---
I didn't understand the talk'', and that he too would need to see more
details.

After a bit more of this sort of thing, Hawking was ready to answer the
BBC reporter's question. His answer was surprisingly short, and it went
something like this (I can't find an exact quote): ``This result shows
that everything in the universe is governed by the laws of physics.'' A
suitably grandiose answer for a grandiose question! One can imagine
better explanations of unitarity, but not quicker ones.

At this point Kip Thorne solicited more questions from the press but
said they should confine themselves to yes-or-no questions, so Hawking
could answer them more efficiently. Jenny Hogan got the first question,
asking what Hawking would do now that he'd solved this problem. Kip
Thorne pointed out that this was not a yes-or-no question. Hogan replied
that it shouldn't take long to reply; Thorne was doubtful, but in the
midst of the ensuing conversation Hawking shot off an unexpectedly rapid
response: ``I don't know.'' Everyone laughed, and at this point the
public question period was called to a close, though reporters were
allowed to stay and pester Hawking some more.

At the time Hawking's talk seemed very cryptic to me, but in the process
of editing the above transcript it's become a lot clearer, so I'll try
to give a quick explanation.

I should start by saying that the jargon used in this talk, while
doubtless obscure to most people, is actually quite standard and not
very difficult to anyone who has spent some time studying the Euclidean
path integral approach to quantum gravity. The problem is not the jargon
so much as the lack of detail, which requires some imagination to fill
in. When I first heard the talk, this lack of detail had me completely
stumped. But now it makes a little more sense\ldots.

He's studying the process of creating a black hole and letting it
evaporate away. He's imagining studying this in the usual style of
particle physics, as a ``scattering experiment'', where we throw in a
bunch of particles and see what comes out. Here we throw in a bunch of
particles, let them form a black hole, let the black hole evaporate
away, and examine the particles (typically photons for the most part)
that shoot out.

The rules of the game in a ``scattering experiment'' are that we can
only talk about what's going on ``at infinity'', meaning very far from
where the black hole forms --- or more precisely, where it may or may
not form!

The advantage of this is that physics at infinity can be described
without the full machinery of quantum gravity: we don't have to worry
about quantum fluctuations of the geometry of spacetime messing up our
ability to say where things are. The disadvantage is that we can't
actually say for sure whether or not a black hole formed. At least this
\emph{seems} like a ``disadvantage'' at first --- but a better term for
it might be a ``subtlety'', since it's crucial for resolving the puzzle:

\begin{quote}
Black hole formation and evaporation can be thought of as a scattering
process. One sends in particles and radiation from infinity, and
measures what comes back out to infinity. All measurements are made at
infinity, where fields are weak, and one never probes the strong field
region in the middle. So one can't be sure a black hole forms, no matter
how certain it might be in classical theory. I shall show that this
possibility allows information to be preserved and to be returned to
infinity.
\end{quote}

Now, the way Hawking likes to calculate things in this sort of problem
is using a ``Euclidean path integral''. This is a rather controversial
approach --- hence his grin when he said it's the ``only sane way'' to
do these calculations --- but let's not worry about that. Suffice it to
say that we replace the time variable ``\(t\)'' in all our calculations
by ``\(it\)'', do a bunch of calculations, and then replace ``\(it\)''
by ``\(t\)'' again at the end. This trick is called ``Wick rotation''.
In the middle of this process, we hope all our formulas involving the
geometry of 4d \emph{spacetime} have magically become formulas involving
the geometry of 4d \emph{space}. The answers to physical questions are
then expressed as integrals over all geometries of 4d space that satisfy
some conditions depending on the problem we're studying. This integral
over geometries also includes a sum over topologies.

That's what Hawking means by this:

\begin{quote}
I adopt the Euclidean approach, the only sane way to do quantum gravity
non-perturbatively. In this, the time evolution of an initial state is
given by a path integral over all positive definite metrics that go
between two surfaces that are a distance T apart at infinity. One then
Wick rotates the time interval, T, to the Lorentzian. The path integral
is taken over metrics of all possible topologies that fit in between the
surfaces.
\end{quote}

Unfortunately, nobody knows how to define these integrals. However,
physicists like Hawking are usually content to compute them in a
``semiclassical approximation''. This means integrating not over all
geometries, but only those that are close to some solution of the
classical equations of general relativity. We can then do a clever
approximation to get a closed-form answer.

(Nota bene: here I'm talking about the equations of general relativity
on 4d \emph{space}, not 4d spacetime. That's because we're in the middle
of this Wick rotation trick.)

Actually, I'm oversimplifying a bit. We don't get ``the answer'' to our
physics question this way: we get one answer for each solution of the
equations of general relativity that we deem relevant to the problem at
hand. To finish the job, we should add up all these partial answers to
get the total answer. But in practice this last step is always too hard:
there are too many topologies, and too many classical solutions, to keep
track of them all.

So what do we do? We just add up a few of the answers, cross our
fingers, and hope for the best! If this procedure offends you, go do
something easy like math.

In the problem at hand here, Hawking focuses on two classical solutions,
or more precisely two classes of them. One describes a spacetime with no
black hole, the other describes a spacetime with a black hole which
lasts forever. Each one gives a contribution to the semiclassical
approximation of the integral over all geometries. To get answers to
physical questions, he needs to sum over \emph{both}. In principle he
should sum over infinitely many others, too, but nobody knows how, so
he's probably hoping the crux of the problem can be understood by
considering just these two.

He says that if you just do the integral over geometries near the
classical solution where there's no black hole, you'll find -
unsurprisingly --- that no information is lost as time passes.

He also says that if you do the integral over geometries near the
classical solution where there is a black hole, you'll find -
surprisingly --- that the answer is \emph{zero} for a lot of questions
you can measure the answers to far from the black hole. In physics
jargon, this is because a bunch of ``correlation functions decay
exponentially''.

So, when you add up both answers to see if information is lost in the
real problem, where you can't be sure if there's a black hole or not,
you get the same answer as if there were no black hole!

\begin{quote}
So in the end, everyone was right, in a way. Information is lost in
topologically nontrivial metrics, like the eternal black hole. On the
other hand, information is preserved in topologically trivial metrics.
The confusion and paradox arose because people thought classically, in
terms of a single topology for spacetime. It was either
\(\mathbb{R}^4\), or a black hole. But the Feynman sum over histories
allows it to be both at once. One can not tell which topology
contributed the observation, any more than one can tell which slit the
electron went through, in the two slits experiment. All that observation
at infinity can determine is that there is a unitary mapping from
initial states to final, and that information is not lost.
\end{quote}

The mysterious part is why the geometries near the classical solution
where there's a black hole don't contribute at all to information loss,
even though they do contribute to other important things, like the
Hawking radiation. Here I'd need to see an actual calculation. Hawking
gives a nice hand-wavy topological argument, but that's not enough for
me.

Since this issue is long enough already and I want to get it out soon, I
won't talk about other things that happened at this conference --- nor
will I talk about the conference on \(n\)-categories earlier this
summer! I just want to say a few elementary things about the topology
lurking in Hawking's talk\ldots{} since some mathematicians may enjoy
it.

As he points out, the answers to a bunch of questions diverge unless we
put our black hole in a box of finite size. A convenient way to do this
is to introduce a small negative cosmological constant, which changes
our default picture of spacetime from Minkowski spacetime, which is
topologically \(\mathbb{R}^4\), to anti-deSitter spacetime, which is
topologically \(\mathbb{R}\times D^3\) after we add the ``boundary at
infinity''. Here \(\mathbb{R}\) is time and the \(3\)-disk \(D^3\) is
space. This is a Lorentzian manifold with boundary, but when we do Wick
rotation we get a Riemannian manifold with boundary having the same
topology.

However, when we are doing Euclidean path integrals at nonzero
temperature, we should replace the time line \(\mathbb{R}\) here by a
circle whose radius is the reciprocal of that temperature. (Take my word
for it!) So now our Riemannian manifold with boundary is
\(S^1 \times D^3\). This is what Hawking uses to handle the geometries
without a black hole. The boundary of this manifold is
\(S^1 \times S^2\). But there's another obvious manifold with this
boundary, namely \(D^2 \times S^2\). And this corresponds to the
geometries with a black hole! This is cute because we see it all the
time in surgery theory. In fact I commented on Hawking's use of this
idea a long time ago, in \protect\hyperlink{week67}{``Week 67''}.

In his talk, Hawking points out that \(S^1 \times D^3\) has a nontrivial
\(3\)-cycle in it if we use relative cohomology and work relative to the
boundary \(S^1 \times S^2\). But, \(D^2 \times S^2\) does not. When
spacetime is \(n\)-dimensional, conservation laws usually come from
integrating closed \((n-1)\)-forms over cycles that correspond to
``space'', so we get interesting conservation laws when there are
nontrivial \((n-1)\)-cycles. Here Hawking is using this to argue for
conservation of information when there's no black hole --- namely for
\(S^1 \times D^3\) --- but not when there is, namely for
\(D^2 \times S^2\).

All this is fine and dandy; the hard part is to see why the case when
there \emph{is} a black hole doesn't screw things up! This is where his
allusions to ``exponentially decaying correlation functions come in''
--- and this is where I'd like to see more details. I guess a good place
to start is Maldacena's papers on the black hole in 3d spacetime --- the
so-called Banados-Teitelboim-Zanelli or ``BTZ'' black hole. This is a
baby version of the problem, one dimension down from the real thing,
where everything should get much simpler. For a bunch about the BTZ
black hole, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Maximo Banados, Marc Henneaux, Claudio Teitelboim, and Jorge Zanelli,
  ``Geometry of the 2+1 black hole'', \emph{Phys. Rev.} \textbf{D48}
  (1993) 1506--1525, also available as
  \href{http://www.arXiv.org/abs/gr-qc/9302012}{\texttt{gr-qc/9302012}}.
\end{enumerate}

The relevant paper by Maldacena seems to be:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Juan Maldacena, ``Eternal Black Holes in AdS'', \emph{JHEP}
  \textbf{0304} (2003) 021, also available as
  \href{http://arxiv.org/abs/hep-th/0106112}{\texttt{hep-th/0106122}}.
\end{enumerate}

You can also see a talk he gave on this at the Institute for Theoretical
Physics at U. C. Santa Barbara:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Juan Maldacena, ``Eternal Black Holes in AdS'',
  \texttt{http://online.itp.ucsb.edu/online/mtheory\_c01/maldacena/}.
\end{enumerate}

By the way, here are some photos of the conference\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez, Dublin, \texttt{http://math.ucr.edu/home/baez/dublin/}
\end{enumerate}

\ldots{} and also photos of the
\href{http://math.ucr.edu/home/baez/dublin/index.html\#hamilton}{plaque}
on the bridge where Hamilton carved his defining relations for the
quaternions!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} My friend Ted Bunn filled a gap in my understanding
of the history of astronomy. I had written:

\begin{quote}
It turned out to describe an idea I'd never even dreamt of before: a
heliocentric cosmology in which the planets move along circular orbits
with epicycles a la Ptolemy!
\end{quote}

to which he replied:

\begin{quote}
There is nothing new under (or orbiting) the Sun. This idea is
originally due to Copernicus. Thomas Kuhn's book ``The Copernican
Revolution'' has a nice discussion.
\end{quote}

In retrospect it's obvious that \emph{someone} had to try this idea
before Kepler came up with elliptical heliocentric orbits. In fact,
Kepler tried ellipses only because the epicycle theory didn't work well
for Mars.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{I'm not that good at math, but I do know that the universe is
formed with mathematical principles whether I understand them or not,
and I was going to let that guide me.}

--- Bob Dylan, Chronicles (vol.~1)
\end{quote}



\hypertarget{week208}{%
\section{November 6, 2004}\label{week208}}

Last weekend I went to a conference at the Perimeter Institute:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Workshop on Quantum Gravity in the Americas,
  \texttt{http://www.perimeterinstitute.ca/activities/scientific/PI-WORK-2/}
\end{enumerate}

It was great to see the new building. I'd visited this institute before
in its temporary location, which was a funky old hotel building complete
with pool tables and a bar. The new building is very different: four
stories of intensely modern architecture overlooking a lake, consisting
mainly of an enormous atrium lined with walkways and glass-walled
offices. There's also a big lecture theater, a couple of smaller seminar
rooms, a library, a restaurant whose walls are all blackboards, a
reflecting pool, and lots of little places to sit and talk, complete
with espresso machines.

In short, a theoretical physicist's idea of heaven!

But perhaps the design of heaven shouldn't be left to theoretical
physicists. Some aspects of the setup don't seem very comfortable. Like
most modern architecture, the place is short on coziness --- there's too
much glass, metal and concrete for my taste. You also find yourself
spending a lot of time climbing up and down uncomfortably narrow
staircases.

The last, at least, is no accident: they made the stairs skinny on
purpose, so you have to say hello to anyone you meet going the other
way. It'll be interesting to see how many collaborative papers come out
of this.

Abhay Ashtekar was supposed to give the first talk, but he got lost
walking to the new building, so suddenly I had to give the first talk.
Yikes! Jet-lagged and not fully awake, I sketched the problem of
dynamics in quantum gravity: the problem of describing motion in a world
where the geometry of spacetime is quantum-mechanical and interacts with
matter. I gave a generally downbeat assessment of the progress so far in
all known approaches:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Baez, ``The problem of dynamics in quantum gravity'',
  \texttt{http://math.ucr.edu/home/baez/dynamics/}
\end{enumerate}

Even though the last few Weeks have been on quantum gravity conferences,
I've been mainly working on \(n\)-categories lately, because I've been
sort of fed up with quantum gravity. I did, however, sketch some avenues
for progress --- and later in this workshop I saw some work that really
cheered me up!

For example, I've always been fascinated by John Wheeler's old dream of
``matter without matter''. In its original version, the idea was to
describe elementary particles as the ends of wormholes: if there's an
electric field going in one end and out the other, the ends will look
like particles of equal and opposite charge! So, the formation of a
wormhole could mimic the creation of a particle-antiparticle pair. But
there were big problems with this idea: for example, getting the
wormhole ends to act like spin-\(1/2\) particles.

More recently this idea was reincarnated in the spin network formalism
by Lee Smolin, with spin network edges replacing wormholes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Lee Smolin, ``Fermions and topology'', available as
  \href{https://arxiv.org/abs/gr-qc/9404010}{\texttt{gr-qc/9404010}}.
\end{enumerate}

A spin network is a gadget with vertices and edges, where the edges
represent ``field lines'' --- lines of the electric field or the
analogous thing for other forces, including gravity. If a spin network
edge goes between vertices that would otherwise be far apart, it acts a
bit like a wormhole. It will be hidden from observers in the rest of
spacetime, and its ends will look like particles of equal and opposite
charge. Even better, it seems easy to get spin-\(1/2\) particles this
way: they don't call them ``spin networks'' for nothing!

A variant on this idea is to have spin networks with ``loose ends'':
edges that just fizzle out. This is more ad hoc, but easier to study in
some ways. A decade ago, Kirill Krasnov and I showed how to describe the
kinematics of charged spin-\(1/2\) particles this way:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez and Kirill Krasnov, ``Quantization of
  diffeomorphism-invariant theories with fermions'',
  \href{https://arxiv.org/abs/hep-th/9703112}{\texttt{hep-th/9703112}}.
\end{enumerate}

However, the hard problem in quantum gravity is always dynamics.

Does the dynamics of spin networks with loose ends actually mimic that
of particles? Recently Krasnov and other people have begun tackling this
question in a toy model, \(3\)-dimensional Lorentzian gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Kirill Krasnov, ``\(\Lambda<0\) Quantum Gravity in 2+1 Dimensions I:
  Quantum States and Stringy S-Matrix'', \emph{Class. Quant. Grav.}
  \textbf{19} (2002) 3977--3998, also available as
  \href{https://arxiv.org/abs/hep-th/0112164}{\texttt{hep-th/0112164}}.

  Kirill Krasnov, ``\(\Lambda<0\) Quantum Gravity in 2+1 Dimensions II:
  Black Hole Creation by Point Particles'', \emph{Class. Quant. Grav.}
  \textbf{19} (2002) 3999--4028, also available as
  \href{https://arxiv.org/abs/hep-th/0202117}{\texttt{hep-th/0202117}}.
\end{enumerate}

He saw that in this theory you can indeed think of particles as spin
network ends --- though you don't need to emphasize that viewpoint,
since there are also other nice ways to think about what's going on,
using hyperbolic geometry and complex analysis. It all fits together in
a beautiful picture. In principle you can even calculate the amplitude
for particles to form black holes when they collide!

In this conference, Laurent Freidel explained how this idea works in
3-dimensional Riemannian gravity --- a less physical but mathematically
more tractable spin foam model. Some but not all of his work can be
found here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Laurent Freidel and David Louapre, ``Ponzano-Regge model revisited I:
  Gauge fixing, observables and interacting spinning particles'',
  available as
  \href{https://arxiv.org/abs/hep-th/0401076}{\texttt{hep-th/0401076}}.

  Laurent Freidel and David Louapre, ``Ponzano-Regge model revisited II:
  Equivalence with Chern-Simons'', available as
  \href{https://arxiv.org/abs/gr-qc/0410141}{\texttt{gr-qc/0410141}}.
\end{enumerate}

Freidel showed that if you take this theory and allow spin networks with
loose ends, they'll act like particles. The spin of these particles is
automatically quantized. More surprisingly, so is their mass --- and
there's an upper bound on the mass! That's because when we quantize this
theory, its gauge group automatically gets replaced by a ``quantum
group''. Physically, this means that spacetime becomes
quantum-mechanical in such a way that it no longer makes sense to talk
about times shorter than about the Planck time. Since the energy of a
particle is proportional to the rate at which its wavefunction
oscillates, this puts an upper bound on the energy of a particle. And
since \(E = mc^2\), this means there's an upper bound on the mass a
particle can have.

Mathematically, part of the point is that we can describe 3d Riemannian
gravity as a gauge theory where the gauge group is the double cover of
the 3d Euclidean group --- the analogue of the Poincare group in this
context. But when we quantize the theory, this gets replaced by a
quantum group: the ``quantum double'' of \(\mathrm{SU}(2)\). As with the
3d Euclidean group, unitary representations of this quantum group are
classified by mass and spin\ldots{} but now both mass and spin are
discrete, and both are bounded above.

Anyway, what's great about Freidel and Louapre's work is that it gives a
simplified but mathematically rigorous testbed in which loose ends of
spin networks act like particles. We can also think about spin networks
with ``hidden edges'' in this setup. So, we should be able to do
calculations and see if a spin network with a hidden edge acts like a
spin network with a pair of loose ends --- and thus, a
particle-antiparticle pair.

Unfortunately, all this work on gravity in 3d spacetime doesn't easily
generalize to 4d spacetime. The reason is that gravitational waves are
only possible when spacetime has dimension 4 or more\ldots{} so 3d
gravity theories have no local degrees of freedom until we include
particles: all the fun comes from global topology, like wormholes.
That's why 3d theories are easy to calculate with --- we can use ideas
from topological quantum field theory. The danger, though, is that these
calculations are misleading it comes to real-world physics. Indeed,
that's precisely the sort of thing I was worrying about in my talk.

So, it really cheered me up when a young guy named Artem Starodubtsev
spoke about a promising new spin foam model of quantum gravity in 4
dimensions! He's working on it now with Laurent Freidel. He has a couple
of papers out that \emph{hint} at the main ideas, but you'll have to
wait to see what they're up to now:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Artem Starodubtsev, ``Topological excitations around the vacuum of
  quantum gravity I: The symmetries of the vacuum'', available as
  \href{https://arxiv.org/abs/hep-th/0306135}{\texttt{hep-th/0306135}}.

  Artem Starodubtsev and Lee Smolin, ``General relativity with a
  topological phase: an action principle'', available as
  \href{https://arxiv.org/abs/hep-th/0311163}{\texttt{hep-th/0311163}}.
\end{enumerate}

The basic idea is to treat 4d general relativity with positive
cosmological constant as a perturbation of a topological quantum field
theory. The topological theory has a single state, which corresponds to
a quantum version of ``deSitter space'': an exponentially expanding
universe similar to the one we see today, but with no matter. To
calculate in full-fledged gravity, we then use perturbation theory,
getting answers as power series in a coupling constant. But the cool
part is that unlike ordinary perturbative quantum gravity this
perturbation theory is manifestly diffeomorphism invariant term by term.
And each term is a sum over spin foams!

Even better, the coupling constant in this theory is the cosmological
constant in Planck units! That's an incredibly small dimensionless
number: about \(10^{-123}\). Physicists like perturbation theory when
the coupling constant is small, since then the first few terms tend to
give reasonably accurate answers --- even if the whole series diverges.
For example, quantum electrodynamics gives high-precision answers
because the fine structure constant is about \(1/137\), which is pretty
small. But \(10^{-123}\) is \emph{really} small.

I'd seen Starodubtsev talk about this in Marseille (see
\protect\hyperlink{week206}{``Week 206''}) but now he and Freidel have
done calculations recovering Newton's law of gravity in an appropriate
approximation from this theory. That may not seem like a big deal, but
it's actually very cool to see Newton's law reemerge from a manifestly
diffeomorphism-invariant theory of quantum gravity: no model had ever
managed this feat before.

For those of you hungering for technical details, I'll just say that the
topological theory in question is \(BF\) theory with the symmetry group
of deSitter spacetime, namely \(\mathrm{SO}(4,1)\), as the gauge group.
General relativity can be regarded as a perturbation of this \(BF\)
theory by borrowing some ideas from the ``MacDowell-Mansouri''
formulation of general relativity. If you haven't heard of that, well,
neither had I. It's a sort of old idea:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  S. W. MacDowell and F. Mansouri, ``Unified geometric theory of gravity
  and supergravity'', \emph{Phys. Rev.~Lett.} \textbf{38} (1977),
  739--742.
\end{enumerate}

\ldots{} but here we aren't using anything anything about supergravity,
just the fact that ordinary general relativity can be treated as a
theory with gauge group \(\mathrm{SO}(4,1)\) and a Lagrangian that
breaks this symmetry down to the Lorentz group \(\mathrm{SO}(3,1)\). The
paper by Smolin and Starodubtsev listed above describes the details, but
in the case of going from \(\mathrm{SO}(5)\) down to \(\mathrm{SO}(4)\).

When we quantize \(BF\) theory in 4 dimensions we get a spin foam model
called the Crane-Yetter model, where the spin foams are defined using
the representation theory of a quantum group: a ``\(q\)-deformed
version'' of the original gauge group. So, the real engine behind
Freidel and Starodubtsev's calculations are spin foams involving the
\(q\)-deformed version of \(\mathrm{SO}(4,1)\), called
\(\mathrm{SO}_q(4,1)\). This is technically tricky because
\(\mathrm{SO}(4,1)\) is noncompact, and noncompact quantum groups are
just beginning to be understood. So, there's probably still tons of
mathematical work left to be done. But, the upshot is that Freidel and
Starodubtsev calculate stuff as power series in the cosmological
constant where each term is computed using \(\mathrm{SO}_q(4,1)\) spin
foams. It's sort of like a souped-up Feynman diagram expansion, but with
spin foams replacing Feynman diagrams.

Now that I've thrown around enough buzzwords to scare off the kids, I
can tell you about Lee Smolin's talk, which was definitely X-rated: for
adults only, people who can listen to speculations with just the right
mixture of disbelief and open-mindedness. It was the last talk in the
conference. And it was about the possible physical effects of spin
networks with ``hidden edges''!

First of all, he reminded us how these can mimic particles, and even
some of the usual particle interactions. But then he went ahead and
suggested that hidden edges can cause nonlocal effects in physics, like
the force of gravity decaying more slowly than \(1/r^2\) --- just as it
does in MOND, the wacky but strangely accurate explanation of galactic
rotation curves that uses a modification of Newtonian gravity instead of
positing dark matter! (See \protect\hyperlink{week206}{``Week 206''} for
more on MOND.) It's hard to make up sensible theories of forces that
decay more slowly than \(1/r^2\), but nonlocal interactions would be one
way to do it\ldots{} and hidden spin network edges might cause those.

There are a million things that could go wrong with this idea, but I
like it, because it suggests a way quantum gravity might try to explain
one of the big mysteries of physics --- dark matter. And until we get
our theories to make contact with experiment, it'll be very hard for us
to tell if they're on the right track.

Anyway, Smolin hasn't come out with a paper on this stuff yet, so we'll
have to wait for more details.

By the way:

In what I've written this week, I've had to seriously downplay the cool
math involved, to give (I hope) some inkling of the cool physics.
Krasnov work on \(2+1\)-dimensional Lorentzian gravity with positive
cosmological constant uses the fact that the phase space of this theory
is closely related to ``Teichmueller space'' --- the space of complex
structures mod diffeomorphisms that are connected to the identity. I
talked about this space in \protect\hyperlink{week28}{``Week 28''}, but
I forgot to say that we can think of it as a space of flat
\(\mathrm{SO}(2,1)\) connections mod gauge transformations. Here
\(\mathrm{SO}(2,1)\) is just the Lorentz group in 3 dimensions. So, if
we quantize 2+1 Lorentzian gravity with positive cosmological constant,
we get a theory where states are described by \(\mathrm{SO}_q(2,1)\)
spin networks\ldots{} but this is also a theory of ``quantum
Teichmueller space''. Again this is tricky because \(\mathrm{SO}(2,1)\)
is noncompact, but people have made a lot of progress lately, thanks in
part to a line of work started by Kashaev:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  R. M. Kashaev, ``Quantization of Teichmueller spaces and the quantum
  dilogarithm'', available as
  \href{https://arxiv.org/abs/q-alg/9705021}{\texttt{q-alg/9705021}}.
\item
  L. Chekhov and V. V. Fock, ``Quantum Teichmueller space'',
  \emph{Theor. Math. Phys.} \textbf{120} (1999) 1245--1259, also
  available as
  \href{http://www.arXiv.org/abs/math.QA/9908165}{\texttt{math.QA/9908165}}.
\end{enumerate}

You can get a sense of who's working on this stuff and what they're
doing by looking at the references for this recent conference on 3d
quantum gravity in Edinburgh, which unfortunately took place when I was
in Hong Kong:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Workshop on physics and geometry of \(3\)-dimensional quantum gravity,
  \texttt{http://www.ma.hw.ac.uk/\textasciitilde{}bernd/references.html}
\end{enumerate}

I should also add that people don't usually don't talk about the 3d
Lorentz group \(\mathrm{SO}(2,1)\) here; they talk about its double
cover \(\mathrm{SL}(2,\mathbb{R})\).

Anyway, I'll quit here. The next conference on loops and spin foams will
probably happen in Berlin at the Albert Einstein Institute in 2005,
which happens to be the hundredth birthday of special relativity. I hope
we can make a lot of progress before then and make Al proud.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{The best way to have a good idea is to have a lot of ideas.}

--- Linus Pauling
\end{quote}

(Not necessarily true, but worth keeping in mind.)
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Time flies! This June, Peter May and I organized a workshop on
\(n\)-categories at the Institute for Mathematics and its Applications:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \(n\)-Categories: Foundations and Applications,
  \texttt{http://www.ima.umn.edu/categories/}
\end{enumerate}

I've been meaning to write about it ever since, but I keep putting it
off because it would be so much work. The meeting lasted almost two
weeks. It was an intense, exhausting affair packed with talks,
conversations, and ``Russian-style seminars'' where the audience
interrupted the speakers with lots of questions. I took about 50 pages
of notes. How am I supposed to describe all that?!

Oh well\ldots{} I'll just dive in. I'll quickly list all the official
talks in this conference. I won't describe the many interesting
``impromptu talks'', some of which you can see on the above webpage. Nor
will I explain what \(n\)-categories are, or what they're good for! If
you want to learn what they're good for, you should go back to
\protect\hyperlink{week73}{``Week 73''} and read ``The Tale of
\(n\)-Categories''. And if you want to know what they \emph{are}, try
this brand-new book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Eugenia Cheng and Aaron Lauda, \emph{Higher-Dimensional Categories: an
  Illustrated Guide Book}, available free online at:
  \texttt{http://www.dpmms.cam.ac.uk/\textasciitilde{}elgc2/guidebook/}
\end{enumerate}

Eugenia and Aaron wrote it specially for the workshop! It's packed with
pictures and it's lots of fun.

I'm just going to list the talks\ldots.

Throwing etiquette to the winds, I kicked off the conference myself with
two talks explaining some reasons why \(n\)-categories are interesting
and what they should be like:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John Baez, ``Why \(n\)-Categories?'' and ``What \(n\)-categories
  should be like''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#mon}
\end{enumerate}

If you're a long-time reader of This Week's Finds you'll know what I
said: \(n\)-categories give a new world of math in which equations are
always replaced by isomorphisms, and this world is incredibly rich in
structure. The \(n\)-categories called ``\(n\)-groupoids'' magically
know everything there is to know about homotopy theory, while those
called ``\(n\)-categories with duals'' know everything there is to know
about the topology of manifolds. There are, unfortunately, some details
that still need to be worked out!

After my talks there was a reception. Later, over dinner, Tom Leinster
gave a ``Russian style seminar'' outlining the different approaches to
\(n\)-categories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Tom Leinster, ``Survey and Taxonomy''. Talk based on chapter 10 of his
  book \emph{Higher Operads, Higher Categories}, Cambridge U. Press,
  Cambridge, 2004, also available free online at
  \href{http://www.arXiv.org/abs/math.CT/0305049}{\texttt{math.CT/0305049}}.
\end{enumerate}

You'll notice these young \(n\)-category people are smart: they force
their publishers to keep their books available for free online! All
scientists should do this, since the only people who make serious money
from scientific monographs are the publishers. What scientists get from
writing technical books is not money but attention. As George Franck
said, ``Attention is a mode of payment\ldots{} reputation is the asset
into which the attention received from colleagues crystallizes.''

The next morning began with a triple-header talk on ``weak categories'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Andre Joyal, Peter May and Timothy Porter, ``Weak categories''. Notes
  available at \texttt{http://www.ima.umn.edu/categories/\#tues}
\end{enumerate}

Here a ``weak category'' means a category where the usual laws hold only
up to homotopy, where the homotopies satisfy laws of their own up to
homotopy, ad infinitum. If you know what weak \(\infty\)-categories are,
you can define a weak category to be one of these where all the
\(j\)-morphisms are equivalences for \(j > 1\). But, the nice thing is
that there are ways to define weak categories without the full machinery
of \(\infty\)-categories! People have come up with different approaches:
``categories enriched over simplicial sets'', ``Segal categories'',
``\(A_\infty\) categories'' and also Joyal's ``quasicategories''. The
talk was a nice introduction to all these approaches.

Then Michael Batanin explained his definition of \(\infty\)-categories.
This was a blackboard talk, so there are no notes on the web, but you
can try his original paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Michael Batanin, ``Monoidal globular categories as natural environment
  for the theory of weak \(n\)-categories'', \emph{Adv. Math.}
  \textbf{136} (1998), 39--103, also available at
  \texttt{http://www.ics.mq.edu.au/\textasciitilde{}mbatanin/papers.html}
\end{enumerate}

and when you get stuck, try the books by Cheng-Lauda and Leinster.

Over dinner, Eugenia Cheng and Tom Leinster explained the concepts of
``operad'' and ``multicategory'' which play such an important role in so
much work on \(n\)-categories. Again there are no notes, so try their
books.

I forget when it happened, but sometime around the second or third day
of the conference people decided it was too much of a nuisance listening
to math lectures while eating dinner --- mainly because there wasn't
enough room in the dining hall to take notes, and the blackboards
weren't big enough. So at that point, we switched to having lectures
\emph{after} dinner. As I said, this workshop was not for wimps!

The morning of the third day began with a no-holds-barred minicourse on
model categories by Peter May:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Peter May, ``Model categories''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#wed}
\end{enumerate}

Model categories are a wonderful framework for relating different
approaches to homotopy theory, and a bunch of people hope they can also
be used to relate different approaches to \(n\)-categories.

Then Clemens Berger explained Andre Joyal's approach to weak
\(n\)-categories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Clemens Berger, ``Cellular definitions''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#wed}
\end{enumerate}

Then, either during or after dinner, Eugenia Cheng explained various
``opetopic'' approaches to weak \(n\)-categories. Again, the best way to
learn about these is to read the book she wrote with Lauda, or else the
book by Leinster.

On the morning of the fourth day, Andre Joyal explained his work on
quasicategories --- an approach to weak categories in which they are
simplicial sets satisfying a restricted version of the Kan condition.
They've been around a long time, but Joyal is redoing all of category
theory in this context! He's been writing a book about this, which
deserves to be called ``Quasicategories for the Working Mathematician''.
Since Joyal is a perfectionist, this will take forever to finish.
However, we're hoping to extract a preliminary version from him for the
proceedings of this conference. For now, you can read a bit about
quasicategories in Tim Porter's notes mentioned in item 5) above.

Then Tom Leinster and Nick Gurski spoke about Ross Street's definition
to weak \(\infty\)-categories, where they are simplicial sets satisfying
an even more subtly restricted version of the Kan condition.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Nick Gurski and Tom Leinster, ``Simplicial definition''. Notes
  available at \texttt{http://www.ima.umn.edu/categories/\#thur}
\end{enumerate}

Street's definition is tough to understand at first, but it should
eventually include Joyal's quasicategories as a special case, which is
nice. For Street's own discussion, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Ross Street, ``Weak \(\omega\)-categories'', in \emph{Diagrammatic
  Morphisms and Applications}, eds.~David Radford, Fernando Souza, and
  David Yetter, Contemp. Math. \textbf{318}, AMS, Providence, Rhode
  Island, 2003, pp.~207--213. Also available as
  \texttt{www.maths.mq.edu.au/\textbackslash{}\textasciitilde{}street/Womcats.pdf}
\end{enumerate}

It relies on some work by Dominic Verity which has finally been written
up after many years of unpublished limbo:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Dominic Verity, ``Complicial sets'', available as
  \href{http://www.arXiv.org/abs/math.CT/0410412}{\texttt{math.CT/0410412}}
\end{enumerate}

After dinner we took a turn towards applications, and Larry Breen
explained his work on \(n\)-stacks and \(n\)-gerbes. An \(n\)-stack is
like a sheaf that has an \((n-1)\)-category of sections, while an
\(n\)-gerbe has an \((n-1)\)-groupoid of sections. Such things show up a
lot in algebraic geometry, and more recently in mathematical physics
inspired by string theory. Alas, the audience was rather tired this
evening, so Larry only got to \(1\)-stacks and \(1\)-gerbes! But he gave
an impromptu talk later where he reached \(n = 2\), and the notes for
both talks are available in combined form here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Larry Breen, ``\(n\)-Stacks and \(n\)-gerbes: homotopy theory''. Notes
  available at \texttt{http://www.ima.umn.edu/categories/\#thur}
\end{enumerate}

You've heard about David Corfield's quest for a philosophy of real
mathematics in \protect\hyperlink{week198}{``Week 198''}. He's one of
the few philosophers who understands enough math to realize how cool
\(n\)-categories are --- which may explain why he's having trouble
getting a job. On the morning of the fourth day, he gave a talk on the
impact \(n\)-categories could have in philosophy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  David Corfield, ``\(n\)-Category theory as a catalyst for change in
  philosophy''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#fri}
\end{enumerate}

Later that day, Bertrand Toen explained Segal categories, which are
another popular approach to weak categories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Bertrand Toen, ``Segal categories''. Notes by Joachim Kock available
  at \texttt{http://www.ima.umn.edu/categories/\#fri}
\end{enumerate}

After dinner, he spoke about \(n\)-stacks and \(n\)-gerbes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Bertrand Toen, ``\(n\)-Stacks and \(n\)-gerbes: algebraic geometry''.
  Notes by Joachim Kock available at
  \texttt{http://www.ima.umn.edu/categories/\#fri}
\end{enumerate}

Everyone slept all weekend long. Then on Monday of the second week, the
homotopy theorist Zbigniew Fiedorowicz spoke about his work on a kind of
\(n\)-fold monoidal category that has an \(n\)-fold loop space as its
nerve. He has some good papers on the web about this, too:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\item
  Zbigniew Fiedorowicz, ``\(n\)-Fold categories''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#mon2}

  C. Balteanu, Z. Fiedorowicz, R. Schwaenzl and R. Vogt, ``Iterated
  monoidal categories'', available at
  \href{http://www.arXiv.org/abs/math.AT/9808082}{\texttt{math.AT/9808082}}

  Z. Fiedorowicz, ``Constructions of \(E_n\) operads'', available at
  \href{http://www.arXiv.org/abs/math.AT/9808089}{\texttt{math.AT/9808089}}.
\end{enumerate}

Stefan Forcey continued this theme by discussing enrichment over
\(n\)-fold monoidal categories. He also has a number of papers about
this on the arXiv, of which I'll just mention one:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\item
  Stefan Forcey, ``Higher enrichment: \(n\)-fold operads and enriched
  \(n\)-categories, delooping and weakening''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\textbackslash{}\#mon2}

  Stefan Forcey, ``Enrichment over iterated monoidal categories'',
  \emph{Algebraic and Geometric Topology} \textbf{4} (2004), 95--119,
  available online at
  \texttt{http://www.maths.warwick.ac.uk/agt/AGTVol4/agt-4-7.abs.html}.
  Also available as
  \href{http://www.arXiv.org/abs/math.CT/0403152}{\texttt{math.CT/0403152}}.
\end{enumerate}

After dinner we discussed how to relate different definitions of weak
\(n\)-category.

On Tuesday of the second week, the logician Michael Makkai presented his
astounding project of redoing logic in a way that completely eliminates
the concept of ``equality''. This \emph{forces} you to do all of
mathematics using weak \(\infty\)-categories. I thought this stuff was
great, in part because I finally understood it, and in part because it
leads naturally to the ``opetopic'' definition of \(n\)-categories that
James Dolan and I introduced. The idea of eliminating equality was very
much on our mind in inventing this definition, but we didn't create a
system of logic that systematizes this idea.

There are no notes for Makkai's talk online, but you can get a lot of
good stuff from his website, including:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Michael Makkai, ``On comparing definitions of weak \(n\)-category'',
  available at \texttt{http://www.math.mcgill.ca/makkai/}
\end{enumerate}

and this more technical paper which works out the details of his vision:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Michael Makkai, ``The multitopic \(\omega\)-category of all multitopic
  \(\omega\)-categories'', available at
  \texttt{http://www.math.mcgill.ca/makkai/}
\end{enumerate}

After Makkai's talk, Mark Weber spoke on \(n\)-categorical
generalizations of the concept of ``monad'', which is a nice way of
describing mathematical gadgets. There are no notes for this talk, but
his work on higher operads is at least morally related:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  Mark Weber, ``Operads within monoidal pseudo algebras'', available as
  \href{http://www.arXiv.org/abs/math.CT/0410230}{\texttt{math.CT/0410230}}.
\end{enumerate}

Again, after dinner we talked about how to relate different definitions
of weak \(n\)-category.

On Wednesday of the second week, Michael Batanin spoke about his recent
work relating \(n\)-categories to \(n\)-fold loop spaces. Again no
notes, but you can read these papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\item
  Michael Batanin, ``The Eckmann-Hilton argument, higher operads and
  \(E_n\)-spaces'', available at
  \texttt{http://www.ics.mq.edu.au/\textasciitilde{}mbatanin/papers.html}

  Michael Batanin, ``The combinatorics of iterated loop spaces'',
  available at
  \texttt{http://www.ics.mq.edu.au/\textasciitilde{}mbatanin/papers.html}
\end{enumerate}

Then Joachim Kock laid the ground for a discussion of \(n\)-categories
and topological quantum field theories, or ``TQFTs'', by explaining the
definition of a TQFT and the classification of 2d TQFTs:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\tightlist
\item
  Joachim Kock, ``Topological quantum field theory primer''. Notes
  available at \texttt{http://www.ima.umn.edu/categories/\#wed2}
\end{enumerate}

In the evening, Marco Mackaay and I said more about the relation between
TQFTs and \(n\)-categories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\item
  Marco Mackaay, ``Topological quantum field theories''. Notes available
  at \texttt{http://www.ima.umn.edu/categories/\#wed2}
\item
  John Baez, ``Space and state, spacetime and process''. Notes available
  at \texttt{http://www.ima.umn.edu/categories/\#wed2}
\end{enumerate}

On Thursday, Ross Street started the day in a pleasantly different way
--- he gave a historical account of work on categories and
\(n\)-categories in Australia! Australia is home to much of the best
work on these subjects, so if you can understand his history you'll wind
up understanding these subjects pretty well:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{24}
\tightlist
\item
  Ross Street, ``An Australian conspectus of higher category theory''.
  Notes available at \texttt{http://www.ima.umn.edu/categories/\#thur2}
\end{enumerate}

As a younger exponent of the Australian tradition, it was then nicely
appropriate for Steve Lack to speak about ways of building a model
category of \(2\)-categories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  Steve Lack, ``Higher model categories''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#thur2}
\end{enumerate}

In the afternoon we had a blast of computer science. First John Power
gave a hilarious talk phrased in terms of how one should convince
computer theorists to embrace categories, then \(2\)-categories, and
then maybe higher categories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\tightlist
\item
  John Power, ``Why tricategories?''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#thur2}
\end{enumerate}

I spoke about Power's paper with this title back in
\protect\hyperlink{week53}{``Week 53''}; now you can get it online!

Then Philippe Gaucher, Lisbeth Fajstrup and Eric Goubault spoke about
higher-dimensional automata and directed homotopy theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{27}
\item
  Philippe Gaucher, ``Towards a homotopy theory of higher dimensional
  automata''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#thur2}

  Lisbeth Fajstrup, ``More on directed topology and concurrency'', Notes
  available at \texttt{http://www.ima.umn.edu/categories/\#thur2}

  Eric Goubault, ``Directed homotopy theory and higher-dimensional
  automata''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#thur2}
\end{enumerate}

On Friday, Martin Hyland and Tony Elmendorf gave a double-header talk on
higher-dimensional linear algebra and how some concepts in this subject
can be simplified using symmetric multicategories. There are, alas, no
notes for this talk. You just had to be there.

Finally, my student Alissa Crans gave a talk on higher-dimensional
linear algebra, with an emphasis on categorified Lie algebras:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{28}
\tightlist
\item
  Alissa Crans, ``Higher linear algebra''. Notes available at
  \texttt{http://www.ima.umn.edu/categories/\#fri2}
\end{enumerate}

Hers was the last talk in the workshop! I would like to say more about
it, but I'm exhausted\ldots{} and her talk fits naturally into a
discussion of ``higher gauge theory'', which deserves a Week of its own.

By the way, you can see pictures of this workshop here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{29}
\tightlist
\item
  John Baez, IMA, \texttt{http://math.ucr.edu/home/baez/IMA/}
\end{enumerate}

If you want to see what these crazy \(n\)-category people look like, you
can see most of them here.

Hmm. If you wanted me to actually \emph{explain} something this week,
I'm afraid you'll be rather disappointed --- so far everything has just
been pointers to other material.

Luckily, while I was at this workshop I wrote a little explanation of
some material on Picard groups and Brauer groups. There's a Spanish
school of higher-dimensional algebra, centered in Granada, and this
spring Aurora del Rio Cabeza came from Granada to visit UCR. She and
James Dolan spent a lot of time talking about categorical groups (also
known as ``\(2\)-groups'') and cohomology theory. I was, alas, too busy
to keep up with their conversations, but I learned a little from
listening in\ldots{} and here's my writeup!

Higher categories show up quite naturally in the study of commutative
rings and associative algebras over commutative rings. I'd heard of
things called ``Brauer groups'' and ``Picard groups'' of rings, and
something called ``Morita equivalence'', but I only understood how these
fit together when I learned they were part of a marvelous thing: a weak
\(3\)-groupoid!

Here's how it goes. You don't need to know much about higher categories
for this to make some sense\ldots{} at least, I hope not.

Starting with a commutative ring \(R\), we can form a weak
\(2\)-category \(\mathsf{Alg}(R)\) where:

\begin{itemize}
\tightlist
\item
  an object \(A\) is an associative algebra over \(R\),
\item
  a \(1\)-morphism \(M\colon A \to B\) is an \((A,B)\)-bimodule,
\item
  a \(2\)-morphism \(f\colon M \to N\) is a homomorphism between
  \((A,B)\)-bimodules.
\end{itemize}

This has all the structure you need to get a \(2\)-category. In
particular, we can ``compose'' an \((A,B)\)-bimodule and a
\((B,C)\)-bimodule by tensoring them over \(B\), getting an
\((A,C)\)-bimodule. But since tensor products are only associative up to
isomorphism, we only get a \emph{weak} \(2\)-category, not a strict one.

This weak \(2\)-category has a tensor product, since we can tensor two
associative algebras over \(R\) and get another one. All the stuff
listed above gets along with this process! When an \(n\)-category has a
well-behaved tensor product we call it ``monoidal'', so
\(\mathsf{Alg}(R)\) is a weak monoidal \(2\)-category. But using a
standard trick we can reinterpret this as a weak \(3\)-category with one
object, as follows:

\begin{itemize}
\tightlist
\item
  there's only one object, \(R\)
\item
  a \(1\)-morphism \(A\colon R \to R\) is an associative algebra over
  \(R\)
\item
  a \(2\)-morphism \(M\colon A \to B\) is an \((A,B)\)-bimodule
\item
  a \(3\)-morphism \(f\colon M \to N\) is a homomorphism between
  \((A,B)\)-bimodules.
\end{itemize}

Note how all the morphisms have shifted up a notch. What used to be
called objects, the associative algebras over \(R\), are now called
1-morphisms. We ``compose'' them by tensoring them over \(R\).

Next, recall a bit of \(n\)-category theory from
\protect\hyperlink{week35}{``Week 35''}. In an \(n\)-category we define
a \(j\)-morphism to be an ``equivalence'' iff it's invertible\ldots{} up
to equivalence! This definition may sound circular, but really just
recursive. To start it off we just need to add that an \(n\)-morphism is
an equivalence iff it's invertible.

What does equivalence amount to in the \(3\)-category
\(\mathsf{Alg}(R)\)? It's easiest to figure this out from the top down:

\begin{itemize}
\item
  A \(3\)-morphism \(f\colon M \to N\) is an equivalence iff it's
  invertible, so it's an isomorphism between \((A,B)\)-bimodules.
\item
  A \(2\)-morphism \(M\colon A \to B\) is an equivalence iff it's
  invertible up to isomorphism, meaning there exists \(N\colon B \to A\)
  such that:

  --- \(M \otimes_B N\) is isomorphic to \(A\) as an \((A,A)\)-bimodule,
  --- \(N \otimes_A M\) is isomorphic to \(B\) as a \((B,B)\)-bimodule.

  In this situation people say \(M\) is a ``Morita equivalence'' from
  \(A\) to \(B\).
\item
  A \(1\)-morphism \(A\colon R \to R\) is an equivalence iff it's
  invertible up to Morita equivalence, meaning there exists a
  \(1\)-morphism \(B\colon x \to x\) such that:

  --- \(A \otimes_R B\) is Morita equivalent to \(R\) as an associative
  algebra over R, --- \(B \otimes_R A\) is Morita equivalent to \(R\) as
  an associative algebra over R.

  In this situation people say \(A\) is an ``Azumaya algebra''.
\end{itemize}

Here's a nice example of how Morita equivalence works. Over any
commutative ring \(R\) there's an algebra \(R[n]\) consisting of
\(n\times n\) matrices with entries in \(R\). \(R[n]\) isn't usually
isomorphic to \(R[m]\), but they're always Morita equivalent! To see
this, suppose

\begin{itemize}
\item
  \(M\colon R[n] \to R[m]\) is the space of \(n\times m\) matrices with
  entries in \(R\),
\item
  \(N\colon R[m] \to R[n]\) is the space of \(m\times n\) matrices with
  entries in \(R\).
\end{itemize}

These become bimodules in an obvious way via matrix multiplication, and
a little calculation shows that they're inverses up to isomorphism!

So, all the algebras \(R[n]\) are Morita equivalent. In particular this
means that they're all Morita equivalent to \(R\), so they are Azumaya
algebras of a rather trivial sort.

If we take \(R\) to be the real numbers there is also a more interesting
Azumaya algebra over \(R\), namely the quaternions \(\mathbb{H}\). This
follows from the fact that
\[\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} = \mathbb{R}[4]\] This says
\(\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}\) is Morita equivalent to
\(\mathbb{R}\) as an associative algebra over \(\mathbb{R}\), which
implies (by the definition above) that \(\mathbb{H}\) is an Azumaya
algebra.

Morita equivalence is really important in the theory of
\(C^*\)-algebras, Clifford algebras, and things like that. Someday I
want to explain how it's connected to Bott periodicity! Oh, there's so
much I want to explain\ldots.

But right now I want to take our \(3\)-category \(\mathsf{Alg}(R)\),
massage it a bit, and turn it into a topological space! Then I'll look
at the homotopy groups of this space and see what they have to say about
our ring \(R\).

To do this, we need a bit more \(n\)-category theory. A weak
\(n\)-category where all the \(1\)-morphisms, \(2\)-morphisms and so on
are equivalences is called a ``\(n\)-groupoid''. For example, given any
weak \(n\)-category, we can form a weak \(n\)-groupoid called its
``core'' by throwing out all the morphisms that aren't equivalences.

So, let's take the core of \(\mathsf{Alg}(R)\) and get a weak
3-groupoid. Here's what it's like:

\begin{itemize}
\tightlist
\item
  There's one object, \(R\).
\item
  The \(1\)-morphisms \(A\colon x \to x\) are Azumaya algebras over
  \(R\).
\item
  The \(2\)-morphisms \(M\colon A \to B\) are Morita equivalences.
\item
  The \(3\)-morphisms \(f\colon M \to N\) are bimodule isomorphisms.
\end{itemize}

Since as a groupoid with one object is a group, this weak \(3\)-groupoid
with one object deserves to be called a ``\(3\)-group''.

Next, given a weak \(n\)-groupoid with one object, it's very nice to
compute its ``homotopy groups''. These are easy to define in general,
but I'll just do it for the core of \(\mathsf{Alg}(R)\) and let you
guess the general pattern. First, notice that:

\begin{itemize}
\tightlist
\item
  The identity \(1\)-morphism \(1_R\colon R \to R\) is just \(R\),
  regarded as an associative algebra over itself in the obvious way.
\item
  The identity \(2\)-morphism \(1_{1_R}\colon 1_R \to 1_R\) is just
  \(R\), regarded as an \((R,R)\)-bimodule in the obvious way.
\item
  The identity \(3\)-morphism \(1_{1_{1_R}}\colon 1_{1_R} \to 1_{1_R}\)
  is just the identity function on \(R\), regarded as an isomorphism of
  \((R,R)\)-bimodules.
\end{itemize}

At this point we let out a cackle of \(n\)-categorical glee. Then, we
define the homotopy groups of the core of \(\mathsf{Alg}(R)\) as
follows:

\begin{itemize}
\tightlist
\item
  The 1st homotopy group consists of equivalence classes of
  \(1\)-morphisms from \(R\) to itself.
\item
  The 2nd homotopy group consists of equivalence classes of
  \(2\)-morphisms from \(1_R\) to itself
\item
  The 3rd homotopy group consists of equivalence classes of
  \(3\)-morphisms from \(1_{1_R}\) to itself.
\end{itemize}

Here we say two morphisms in an \(n\)-category are ``equivalent'' if
there is an equivalence from one to the other (or if they're equal, in
the case of \(n\)-morphisms).

I hope the pattern in this definition of homotopy groups is obvious. In
fact, \(n\)-groupoids are secretly ``the same'' --- in a subtle sense
I'd rather not explain --- as spaces whose homotopy groups vanish above
dimension \(n\). Using this, the homotopy groups as defined above turn
out to be same as the homotopy groups of a certain space associated with
the ring \(R\)! So, we're doing something very funny: we're using
algebraic topology to study algebra.

But, we don't need to know this to figure out what these homotopy groups
are like. Unraveling the definitions a bit, one sees they amount to
this:

\begin{itemize}
\tightlist
\item
  The 1st homotopy group consists of Morita equivalence classes of
  Azumaya algebras over \(R\). This is also called the \textbf{Brauer
  group} of \(R\).
\item
  The 2nd homotopy group consists of isomorphism classes of Morita
  equivalences from \(R\) to \(R\). This is also called the
  \textbf{Picard group} of \(R\).
\item
  The 3rd homotopy group consists of invertible elements of \(R\). This
  is also called the \textbf{unit group} of \(R\).
\end{itemize}

People had been quite happily studying these groups for a long time
without knowing they were the homotopy groups of the core of a weak
\(3\)-category associated to the commutative ring \(R\)! But, the
relationships between these groups are easier to explain if you use the
\(n\)-categorical picture. It's a great example of how \(n\)-categories
unify mathematics.

For example, everything we've done is functorial. So, if you have a
homomorphism between commutative rings, say \[f\colon R \to S\] then you
get a weak 3-functor
\[\mathsf{Alg}(f)\colon \mathsf{Alg}(R) \to \mathsf{Alg}(S)\] This gives
a weak 3-functor from the core of \(\mathsf{Alg}(R)\) to the core of
\(\mathsf{Alg}(S)\), and thus a map between spaces\ldots{} which in turn
gives a long exact sequence of homotopy groups! So, we get interesting
maps going from the unit, Picard and groups of \(R\) to those of \(S\)
--- and these fit into an interesting long exact sequence.

For more, try the following papers. The first paper is actually about a
generalization of Azumaya algebras called ``Azumaya categories'', but it
starts with a nice quick review of Azumaya algebras and Brauer groups:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{30}
\tightlist
\item
  Francis Borceux and Enrico Vitale, ``Azumaya categories'', available
  at \texttt{http://www.math.ucl.ac.be/AGEL/Azumaya\_categories.pdf}
\end{enumerate}

Category theorists will enjoy the generalization: since algebras are
just one-object categories enriched over \(\mathsf{Vect}\), the concept
of Azumaya algebra really \emph{wants} to generalize to that of an
Azumaya category. I'm sure most of the Brauer-Picard-Morita stuff
generalizes too, but I haven't checked that out yet.

This second paper makes the connection between Picard and Brauer groups
explicit using categorical groups:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{31}
\tightlist
\item
  Enrico Vitale, ``A Picard-Brauer exact sequence of categorical
  groups'', \emph{Journal of Pure and Applied Algebra} \textbf{175}
  (2002) 383--408. Also available as
  \texttt{http://www.math.ucl.ac.be/membres/vitale/cat-gruppi2.pdf}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} It turns out that the Picard-Brauer \(3\)-group has a
long and illustrious history. Ross Street explained this to me; I've
taken the liberty of numbering the references in his email.

\begin{quote}
Dear John

It is great that you jumped in and started writing that report on the
Minneapolis meeting. ``A journey of a thousand miles . . .''.

{[}Carrying on the IMA Russian spirit, I just got back from Christchurch
NZ where I gave 11 hours (in 2 days) of lectures on topos theory to a
very patient group of physicists, philosophers, mathematicians, and even
one economist.{]}

It is also great that you promoted the work of the Granada School. That
subject is particularly close to my heart. So here goes another personal
history. Probably back at Tulane U in 1969-70, Jack Duskin (who was a
great source of inspiration to me and, I believe, to the Granada School)
would have pointed me to the papers

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{32}
\item
  Grothendieck, Alexander. ``Le groupe de Brauer. III. Exemples et
  complements.'' (French) 1968. \emph{Dix Exposes sur la Cohomologie des
  Schemas} pp.~88--188 North-Holland, Amsterdam; Masson, Paris
\item
  Grothendieck, Alexander. ``Le groupe de Brauer. II. Theorie
  cohomologique.'' (French) 1968. \emph{Dix Exposes sur la Cohomologie
  des Schemas} pp.~67--87 North-Holland, Amsterdam; Masson, Paris
\item
  Grothendieck, Alexander. ``Le groupe de Brauer. I. Algbres d'Azumaya
  et interpretations diverses.'' (French) 1968. \emph{Dix Exposes sur la
  Cohomologie des Schemas} pp.~46--66 North-Holland, Amsterdam; Masson,
  Paris
\end{enumerate}

pushing the Brauer group concept of ring theorists (e.g.~Azumaya) into
the scheme view of algebraic geometry. I later read papers by category
theorists, like

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{35}
\item
  Lindner, Harald, ``Morita equivalences of enriched categories''.
  Conferences du Colloque sur l'Algebre des Categories (Amiens, 1973),
  III. \emph{Cahiers Topologie Geom. Differentielle} \textbf{15} (1974),
  no. 4, 377--397, 449--450.
\item
  Fisher-Palmquist, J.; Palmquist, P. H. ``Morita contexts of enriched
  categories''. \emph{Proc. Amer. Math. Soc.} \textbf{50} (1975),
  55--60.
\end{enumerate}

which seemed to be the beginning of a simpler understanding. Somehow (?)
I obtained an original bound reprint of

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{37}
\tightlist
\item
  Froehlich, A.; Wall, C. T. C. ``Graded monoidal categories''.
  \emph{Compositio Math.} \textbf{28} (1974), 229--285.
\end{enumerate}

which I have just looked at and realised I should read again (since
Turaev and Mueger have been using \(G\)-graded categories to understand
the \(G\)-equivariant version of Turaev's \(3\)-manifold invariant
work). It was forerunner to

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{38}
\tightlist
\item
  Froehlich, A.; Wall, C. T. C. ``Equivariant Brauer groups''. Quadratic
  forms and their applications (Dublin, 1999), 57--71, \emph{Contemp.
  Math.} \textbf{272}, Amer. Math. Soc., Providence, RI, 2000.
\end{enumerate}

On my sabbatical at Wesleyan University (Middletown CT) in 1976-77, I
joined in the algebraists' workshop on SLNM 181 on separable algebras
over commutative rings which was trying to do some of Grothendieck's
stuff without the cohomology and alg geom. Joyal taught me a bit about
Brauer too, motivating to some extent the work I did on stacks.

Anyway, out of all this, other stuff I've forgotten, and the experience
in module theory for enriched categories, it became clear that Morita
contexts were a bit silly and adjunctions of (bi)modules were probably
better and less ad hoc. The beginning point should be a particular
monoidal bicategory \(\mathsf{Alg}(R\mbox{-}\mathsf{Mod})\) based on a
commutative ring \(R\): objects are \(R\)-algebras, morphisms are
bimodules, 2-cells are module morphisms. The group of units, Picard
group and Brauer group all sat happily in there as homotopy groups of
the monoidal bicategory.

\begin{quote}
I'd heard of things called ``Brauer groups'' and ``Picard groups'' of
rings, and something called ``Morita equivalence'', but I only
understood how these fit together when I learned they were part of a
marvelous thing: a weak \(3\)-groupoid!
\end{quote}

After beginning the work with Joyal on braided monoidal categories and
learning of his work with Tierney on homotopy \(3\)-types, I spoke at
the homotopy meeting in Bangor in 1986(?) on this monoidal bicategory
\(\mathsf{Alg}(R\mbox{-}\mathsf{Mod})\) as a fundamental example. (It is
discussed much later in the last part of

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{39}
\tightlist
\item
  R. Gordon, A.J. Power and R. Street, ``Coherence for tricategories'',
  \emph{Memoirs of the American Math. Society} \textbf{117} (1995)
  Number 558.)
\end{enumerate}

At the 1987 Meeting in Louvain-La-Neuve, Duskin (who loves simplicial
sets) found a simplicial set whose only non-trivial homotopy groups were
the three in question:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{40}
\tightlist
\item
  Duskin, John W. ``The Azumaya complex of a commutative ring''.
  \emph{Categorical algebra and its applications (Louvain-La-Neuve,
  1987)}, 107--117, Lecture Notes in Math. \textbf{1348}, Springer,
  Berlin, 1988.
\end{enumerate}

I pointed out to Jack that this was the nerve of
\(\mathsf{Alg}(R\mbox{-}\mathsf{Mod})\) and he included a remark about
that in the published version. Also see

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{41}
\tightlist
\item
  Duskin, J. ``An outline of a theory of higher-dimensional descent''.
  Actes du Colloque en l'Honneur du Soixantieme Anniversaire de Rene
  Lavendhomme (Louvain-la-Neuve, 1989). \emph{Bull. Soc. Math. Belg.
  Ser. A} \textbf{41} (1989), no. 2, 249--277.
\end{enumerate}

The Brauer group section of

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{42}
\tightlist
\item
  ``Categorical and combinatorial aspects of descent theory'',
  \emph{Applied Categorical Structures} (to appear; March 2003 preprint
  available at
  \href{http://www.arXiv.org/abs/math.CT/0303175}{\texttt{math.CT/0303175}}).
\end{enumerate}

gives some more on this.

The article

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{43}
\tightlist
\item
  K.K. Ulbrich, ``Group cohomology for Picard categories'', \emph{J.
  Algebra} \textbf{91} (1984) 464--498.
\end{enumerate}

should also be mentioned. It is a great, to use your term,
``categorification'' of usual cohomology with abelian group
coefficients: one step towards the grander goal of coefficients in a
general weak \(n\)-category.

The Spanish School (and the Belgian School) is continuing with nice work
in this area. For example there is the recent paper by
Carrasco/Martinez-Moreno. Here is the review I wrote yesterday.

\begin{quote}
Carrasco/Martinez-Moreno: Simplicial cohomology with coefficients in
symmetric categorical groups
\end{quote}

\begin{quote}
The full cohomology theory of simplicial sets with coefficients in a
general weak \(n\)-category is a long-term goal. The classical
cohomology revolves around the fact that an abelian group A can be
regarded as an \(n\)-category whose simplicial nerve is the
combinatorial Eilenberg-Mac Lane space K(A,n). Following Takeuchi and
Ulbrich {[}\emph{J. Pure Appl. Algebra} \textbf{27} (1983) 61--73;
MR84g:18025{]} and Ulbrich {[}\emph{J. Algebra} \textbf{91} (1984)
464--498; MR86h:18003{]}, the present authors develop cohomology where
the coefficient object is a symmetric categorical group \(A\). In this
important case too, \(A\) can be regarded as a weak \(n\)-category whose
simplicial nerve is here denoted by \(K(A,n)\); it has non-vanishing
homotopy groups only in dimensions \(n\) and \(n+1\), and represents the
cohomology of simplicial sets in the homotopy category. This functor
\(K(-,n)\) essentially has a left-adjoint left-inverse \(P_n\) so that
homotopy classes of simplicial maps from \(X\) to \(Y\) are classified
by the cohomology of X with coefficients in \(P_n(Y)\).
\end{quote}

Back to marking papers.

Best wishes,\\
Ross
\end{quote}

This last paper is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{43}
\tightlist
\item
  P. Carrasco and J. Martinez-Moreno, ``Simplicial cohomology with
  coefficients in symmetric categorical groups'', \emph{Applied
  Categorical Structures} \textbf{12} (2004), 257--286.
\end{enumerate}
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As you've probably heard, the Huygens probe has successfully landed on
Saturn's moon Titan and is sending back pictures:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Huygens Probe Descent,
  \texttt{http://saturn.jpl.nasa.gov/news/events/huygensDescent/index.cfm}
\end{enumerate}

Titan averages a chilly \(-180\) degrees Celsius, and its smoggy orange
atmosphere is thicker than the Earth's, mostly nitrogen but 6 percent
methane, together with substantial traces of all sorts of other
hydrocarbons. The orange color may come from ``tholins'': polymers made
by irradiating a mix of nitrogen and methane. Some other icy moons in
the outer solar system are covered with this goop, but Titan is the only
moon in the Solar System to have a substantial atmosphere. It even has
clouds.

As the Huygens probe parachuted to the surface, it photographed what
look like twisty riverbeds flowing into a large lake:
\[\includegraphics[max width=0.65\linewidth]{{../images/huyghens.2}.jpg}\]
People have long suspected that Titan has lakes of made of methane
and/or ethane, but now we may be seeing them. And when Huygens landed,
its sensors reported that it broke through a crusty surface and sunk
about 20 centimeters into something mushy: probably methane mud!

The first color photo of the surface looks disappointingly like Mars at
first sight:
\[\includegraphics[max width=0.65\linewidth]{{../images/huyghens.1}.jpg}\]
But, the surface is pumpkin-colored due to tholins or something, not
rust red. The sky is orange too! The ``rocks'' could be water ice. And
they've detected hints of volcanos that spew molten water and ammonia!
So, it's a strange new world.

Back here on Earth, there was a conference in December in honor of Larry
Breen's 60th birthday:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Arithmetic, Geometry and Topology: Conference on occasion of Larry
  Breen's sixtieth birthday,
  \texttt{http://www-math.univ-paris13.fr/\textasciitilde{}lb2004/}
\end{enumerate}

It was in Paris. This was my first visit to that city, but luckily I got
to stay there an extra week after the conference, so I could focus on
the math while it was going on.

But I can't resist a digression! Paris won my heart, despite my
suspicions that it had somehow been hyped all along. First of all, it's
beautiful. Second, it's nice to be someplace where people take simple
foods like bread, cheese, fruits and vegetables really seriously, and
don't settle for the tasteless crud we so often eat in the US.

None of this came as a surprise, of course. What surprised is that I've
never seen a city with so many bookstores --- and good ones, too!
They're clustered thick near the Sorbonne, but the Latin Quarter is
dotted with them, and there are even lots along the Boulevard
St-Germain, which is the biggest most fashionable shopping street. I
don't think there's any place in the English speaking world with so many
bookstores. Not London, not New York\ldots{} Cambridge Massachusetts
used to have lots near Harvard Square, back when I was a grad student,
but the high rents have long since squeezed them out, replacing bohemian
diversity with clothing shops for boring rich people, like Abercrombie
and Fitch. Somehow in Paris fancy clothing and books coexist.

Umm, but what about the conference?

Well, Breen's work is mainly on algebraic geometry a la Grothendieck,
with a strong emphasis on category theory. Beautiful stuff, and lately
it's it's begun to find applications to string theory --- especially his
work on gerbes. People at his conference spoke on all sorts of topics,
most of which I didn't understand very well --- some heavy-duty number
theory, for example. I understood a few well enough to really enjoy
them, like Mike Hopkins' talk on derived algebraic geometry, Clemens
Berger's talk on geometric Reedy categories, and Ieke Moerdijk's talk on
the homotopy theory of operads. But I won't try to explain these --- I
want to explain what a ``gerbe'' is, so I have my work cut out for me.

One way to get going on the idea of gauge theory is to start with
electromagnetism, where the concept of ``phase'' turns out to play a
crucial role. If you move a charged particle through an electromagnetic
field, its wavefunction gets multiplied by a unit complex number, or
``phase'' --- and it turns out, rather wonderfully, that all effects of
electricity and magnetism on charged particles is due to this!

However, phases are funny. You can't actually measure the phase of a
charged particle --- at least, there's no such thing as a ``phasometer''
where you stick in a particle and the dial on the meter points to a unit
complex number. Of course a unit complex number is just a fancy name for
a point on the circle, and a dial is precisely the right shape for
that\ldots{} but you just can't build this machine.

Instead, you can only measure the \emph{change} in phase of a particle
as it goes around a loop. Or, equivalently, the \emph{difference} in
phases when a particle takes two different paths from here to there.
See, in quantum mechanics you can play tricks like the ``double slit
experiment'', where you coax a particle's wavefunction to smear out and
take two routes from here to there\ldots{} and then when it arrives, it
interferes with itself, and if you're smart you can see by these
interference effects what the relative phase of the two paths is.

Pretty weird, eh? I'm so used to this that it seems completely normal to
me, but I should admit that this way of understanding the
electromagnetic field came fairly late. Weyl had a hint of it in 1918
when he invented the term ``gauge theory'' in his quest to unify
electromagnetism and gravity, but he was mixed up in some crucial ways
that only got sorted out quite a bit later. For more details, try
O'Raiferteagh's book ``The Dawning of Gauge Theory'', which I discussed
in \protect\hyperlink{week116}{``Week 116''}.

Anyway, the concept of relative phase, or difference in phase, is nicely
captured by the concept of a ``torsor''. A unit complex number is a
point on the unit circle in the complex plane. This circle is a group
since we can multiply unit complex numbers and get unit complex numbers
back. This group is called \(\mathrm{U}(1)\). Like a dial,
\(\mathrm{U}(1)\) has standard names for all the points on it --- and it
has one god-given special point, the identity element, namely the number
\(1\).

A ``\(\mathrm{U}(1)\)-torsor'' is a lot like \(\mathrm{U}(1)\), but
subtly different. It's a circle where the points aren't given these
standard names\ldots{} but where you can still tell measure angles, and
tell the difference between clockwise and counterclockwise.

You can't get an element of \(\mathrm{U}(1)\) from \emph{one} point on a
\(\mathrm{U}(1)\)-torsor. But, if you have \emph{two} points on a
\(\mathrm{U}(1)\)-torsor, you can say how much rotation it takes to get
from one to the other, and this give an element of \(\mathrm{U}(1)\). In
other words, you can describe the ``difference in phase'' between these
two points.

For more on torsors, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John Baez, ``Torsors made easy'',
  \texttt{http://math.ucr.edu/home/baez/torsors.html}
\end{enumerate}

Anyway, the real idea behind electromagnetism is that sitting over each
point in spacetime is a \(\mathrm{U}(1)\)-torsor. If a particle is
sitting at some point in spacetime, its phase is not really a number:
it's an element of the \(\mathrm{U}(1)\)-torsor sitting over that point!
To get a \emph{number}, we have to carry the particle around a loop! Its
phase will change when we do this, so we get \emph{two} points in a
\(\mathrm{U}(1)\)-torsor, and their difference is an element of
\(\mathrm{U}(1)\).

So while it sounds far-out, the key mathematical structure in
electromagnetism is a bunch of \(\mathrm{U}(1)\)-torsors, one over each
point in spacetime. This is called a ``principal
\(\mathrm{U}(1)\)-bundle'' or sometimes just a
``\(\mathrm{U}(1)\)-bundle'' for short.

If we wanted to describe some force other than electromagnetism, we
could take this whole setup and replace \(\mathrm{U}(1)\) with some
other group. In fact, this idea works great: it's the main idea behind
gauge theories, which do an excellent job of describing all the forces
in nature.

To set up a gauge theory, the first thing you need to do is pick a group
\(G\) and pick a ``principal \(G\)-bundle'' over spacetime. Spacetime
will be some manifold \(X\). A principal \(G\)-bundle over \(X\) is
gadget that assigns a \(G\)-torsor to each point of \(X\). A
\(G\)-torsor is a space where if you pick two points in it, you get an
element of \(G\) which describes their ``difference''.

I'm being fairly sloppy here, so don't take these as precise
definitions! I give a precise definition of a \(G\)-torsor in the above
webpage, and any decent book on differential geometry will give you a
definition of a principal \(G\)-bundle. However, only rather highbrow
books define principal \(G\)-bundles with the help of
\(G\)-torsors\ldots{} which is sad, because it's not that hard, and
rather enlightening.

Anyway, in gauge theory the forces of nature are described by
``connections'' on principal \(G\)-bundles. Let's say we have a
principal \(G\)-bundle \(P\) which assigns to each point \(x\) of our
manifold a \(G\)-torsor \(P(x)\). Then a ``connection'' on \(P\) is a
gadget that says how any path from \(x\) to \(y\) gives a map from
\(P(x)\) to \(P(y)\). If \(G\) is \(\mathrm{U}(1)\), for example, this
gadget says how the phase of a charged particle changes as we move it
along any path from \(x\) to \(y\).

Now suppose we have a loop that starts and ends at \(x\). Then our
connection gives a map from \(P(x)\) to itself. If we start with a point
in \(P(x)\), and apply this map, we get another point in \(P(x)\). Since
\(P(x)\) is a \(G\)-torsor, these two points determine an element of
\(G\). This is how we get group elements from loops in gauge theory!

Now let me sketch how gerbes enter the game. First I'll do the case
where the group \(G\) is abelian, for example \(\mathrm{U}(1)\). It's
the nonabelian gerbes that really interest me\ldots{} but the abelian
case is a lot easier. The reason is that when \(G\) is abelian, the
group element we get in the previous paragraph doesn't depend on the
choice of a point of \(P(x)\).

Gerbes show up when we try to invent a kind of ``higher gauge theory''
that describes how not just point particles but \(1\)-dimensional
objects transform when you move them around. For example, the strings in
string theory, or the loops in loop quantum gravity.

This leads to a mind-boggling self-referential twist, which is just the
kind of thing I love:

As we've seen, a connection describes how a point particle transforms
when you carry it along a path: \[
  \begin{gathered}
    x\xrightarrow{f}y
  \\[1em]\mbox{a path $f$ from the point $x$ to the point $y$;}
  \\\mbox{we write this as $f\colon x\to y$.}
  \end{gathered}
\] Now we need a gadget that'll describe how a \emph{path} transforms
when you carry it along a \emph{path of paths:} \[
  \begin{gathered}
    \begin{tikzpicture}
      \node (x) at (0,0) {$x$};
      \node (y) at (2,0) {$y$};
      \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,0.7) and (1.3,0.7) .. (y);
      \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (0.7,-0.7) and (1.3,-0.7) .. (y);
      \draw[double,double equal sign distance,-implies] (1,0.5) to node[label={[label distance=-1mm]right:{\scriptsize$F$}}]{} (1,-0.5);
    \end{tikzpicture}
  \\[1em]\mbox{a path $f$ from the point $x$ to the point $y$;}
  \\\mbox{we write this as $f\colon x\to y$.}
  \end{gathered}
\] To do this, we need to boost our level of thinking a notch, working
not with ``\(G\)-torsors'' and ``principal \(G\)-bundles'' but instead
with ``\(G\)-\(2\)-torsors'' and ``\(G\)-gerbes''.

Here's how it goes:

We start by picking an abelian group \(G\) and a manifold \(X\).

Then we pick a ``\(G\)-gerbe'' over \(X\), say \(P\).

What's that? It's a thing that assigns to each point \(x\) of \(X\) a
``\(G\)-\(2\)-torsor'', say \(P(x)\).

What's that? Well, it's a thing where if you pick two points in it, you
get a \emph{\(G\)-torsor} describing their difference!

Get it? This is the beginning of a story that goes on forever:

\begin{itemize}
\tightlist
\item
  Two points in a \(G\)-torsor determine an element of \(G\);
\item
  two points in a \(G\)-\(2\)-torsor determine a \(G\)-torsor;
\item
  two points in a \(G\)-\(3\)-torsor determine a \(G\)-\(2\)-torsor;
\item
  \ldots{}
\end{itemize}

But, you'll probably be relieved to know we won't go beyond
\(G\)-\(2\)-torsors today.

Next, we pick a ``connection'' on \(P\).

What's that? Well, it's a gadget that for each path from \(x\) to \(y\)
gives us a map from the \(G\)-\(2\)-torsor \(P(x)\) to the
\(G\)-\(2\)-torsor \(P(y)\). If we call the path \[f\colon x \to y\]
then we call this map \[P(f)\colon P(x) \to P(y)\] Moroever, this sort
of connection also gives a ``map between maps'' for each path-of-paths!
So, from \[F\colon f \Rightarrow g\] it gives
\[P(F)\colon P(f) \Rightarrow P(g)\]

I haven't explained enough stuff to say yet what these ``maps between
maps'' are, so let's just see what happens if we have a loop
\[f\colon x \to x\] and then a loop-of-loops \[F\colon f \Rightarrow f\]
From the loop \(f\colon x \to x\), our connection gives us a map:
\[P(f)\colon P(x) \to P(x)\] If we start with a point in \(P(x)\), and
apply this map, we get another point in \(P(x)\). Since \(P(x)\) is a
\(G\)-\(2\)-torsor, these two points determine a \(G\)-torsor. This
\(G\)-torsor doesn't depend on our initial choice of point, and it
completely determines the map \(P(f)\). So, we can think of \(P(f)\) as
\emph{being} this \(G\)-torsor, if we like.

From the loop-of-loops \(F\colon f \Rightarrow f\), our connection gives
us a map: \[P(F)\colon P(f) \Rightarrow P(f)\] If we start with a point
in \(P(f)\), and apply this map, we get another point. Since \(P(f)\) is
a \(G\)-torsor, these two points determine an element of \(G\). This
element of \(G\) doesn't depend on our initial choice of point, and it
completely determines the map \(P(F)\). So, we can think of \(P(F)\) as
\emph{being} this element of \(G\), if we like.

In short, the machinery functions just as you'd hope, giving a group
element that describes how a loop of string ``changes phase'' as you
carry it around a loop-of-loops!

So far I've been strenously avoiding the language of categories and
\(2\)-categories, but if you're at all familiar with that language,
you'll have guessed that it's precisely what we need to make everything
I'm saying precise.

It's actually incredibly beautiful\ldots{} but I'm getting lazy, so I'll
explain it very tersely now, in a way that only true lovers of
abstraction will enjoy:

If \(G\) is a group, it acts on itself by left translation. So, it
becomes a left \(G\)-set. Any left \(G\)-set isomorphic to this one is
called a ``\(G\)-torsor''. There's a category \(G\)-\(\mathsf{Tor}\)
whose objects are \(G\)-torsors and whose morphisms are maps compatible
with the action of \(G\). Since all \(G\)-torsors are isomorphic, and
the automorphism group of any one is just \(G\), this category
\(G\)-\(\mathsf{Tor}\) is equivalent to \(G\) (regarded as a
\(1\)-object category).

If \(G\) is abelian, every left \(G\)-set becomes a right \(G\)-set too.
This allows us to define a ``tensor product'' of \(G\)-sets. The tensor
product of \(G\)-torsors is a \(G\)-torsor, so \(G\)-\(\mathsf{Tor}\)
becomes a monoidal category. In fact, it's a ``\(2\)-group'': a monoidal
category where all the objects and morphisms are invertible.

This allows us to iterate what we've just done:

Since \(G\)-\(\mathsf{Tor}\) is a \(2\)-group, it acts on itself by left
translation. So, it becomes a ``left \(G\)-category''. Any left
\(G\)-category isomorphic to this one is called a
``\(G\)-\(2\)-torsor''. There's a \(2\)-category
\(G\)-\(2\)-\(\mathsf{Tor}\) whose objects are \(G\)-\(2\)-torsors,
whose morphisms are functors compatible the action of \(G\), and whose
morphisms are natural transformations compatible with the action of
\(G\). Since all \(G\)-\(2\)-torsors are isomorphic, any the
automorphism \(2\)-group of any one is just \(G\)-\(\mathsf{Tor}\), this
\(2\)-category is equivalent to \(G\)-\(\mathsf{Tor}\) (regarded as a
\(1\)-object \(2\)-category).

And so on! This infinite hierarchy only works when \(G\) is abelian;
when \(G\) is nonabelian we need a different hierarchy, which uses
``bitorsors'', where \(G\) acts on both left and right, instead of
``torsors''.

To learn more about this stuff, here are some references. I'll stick to
ones I didn't already list in \protect\hyperlink{week71}{``Week 71''}
and \protect\hyperlink{week151}{``Week 151''}.

First, for physicists, some work on the role of gerbes and \(2\)-gerbes
in string theory and M-theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Paolo Aschieri, Luigi Cantini and Branislav Jurco, ``Nonabelian bundle
  gerbes, their differential geometry and gauge theory'', available as
  \href{https://arxiv.org/abs/hep-th/0312154}{\texttt{hep-th/0312154}}.
\item
  Paolo Aschieri and Branislav Jurco, ``Gerbes, M5-brane anomalies and
  \(\mathrm{E}_8\) gauge theory'', available as
  \href{https://arxiv.org/abs/hep-th/0409200}{\texttt{hep-th/0409200}}.
\end{enumerate}

Second, for mathematicians, some classic works by Breen:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Lawrence Breen, ``Bitorseurs et cohomologie non-abelienne'', in
  \emph{The Grothendieck Festschrift}, eds.~P. Cartier et al, Progress
  in Mathematics vol.~\textbf{86}, Birkhauser, Boston, 1990,
  pp.~401--476.
\item
  Lawrence Breen, ``Theorie de Schreier superieure'', \emph{Ann. Sci.
  Ecole Norm. Sup.} \textbf{25} (1992), 465--514.
\item
  Lawrence Breen, ``Classification of \(2\)-stacks and \(2\)-gerbes'',
  \emph{Asterisque} \textbf{225}, Societe Mathematique de France, 1994.
\end{enumerate}

\(2\)-gerbes are what you get if you climb the hierarchy one more step.
They should be good for describing the parallel transport of
\(2\)-dimensional surfaces, or ``\(2\)-branes'' --- and indeed they make
an appearance in Aschieri and Jurco's paper for precisely that reason.

Another key reference is Breen's paper with Messing about connections on
nonabelian gerbes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Lawrence Breen and William Messing, ``The differential geometry of
  gerbes'', available as
  \href{http://www.arXiv.org/abs/math.AG/0106083}{\texttt{math.AG/0106083}}.
\end{enumerate}

and Breen's lecture notes from the IMA workshop on higher categories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Larry Breen, ``\(n\)-Stacks and \(n\)-gerbes: homotopy theory''. Notes
  available at \texttt{http://www.ima.umn.edu/categories/\#thur}
\end{enumerate}

I've been working on this stuff myself lately, from a somewhat different
viewpoint. So far I've written papers with Aaron Lauda and Alissa Crans
about \(2\)-groups and Lie \(2\)-algebras:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\item
  John Baez and Aaron Lauda, ``Higher-dimensional algebra V:
  \(2\)-groups'', \emph{Theory and Applications of Categories}
  \textbf{12} (2004), 423--491. Available online at
  \texttt{http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html} or as
  \href{http://www.arXiv.org/abs/math.QA/0307200}{\texttt{math.QA/0307200}}.
\item
  John Baez and Alissa Crans, ``Higher-dimensional algebra VI: Lie
  \(2\)-algebras'', \emph{Theory and Applications of Categories}
  \textbf{12} (2004), 492--528. Available online at
  \texttt{http://www.tac.mta.ca/tac/volumes/12/15/12-15abs.html} or as
  \href{http://www.arXiv.org/abs/math.QA/0307263}{\texttt{math.QA/0307263}}.
\end{enumerate}

Aaron Lauda was getting a masters degree in physics at UCR when we
started our paper on \(2\)-groups. Now he's a grad student in math at
the University of Cambridge, working on things related to topological
quantum field theory with the category theorist Martin Hyland. Alissa
Crans did her PhD in math at UCR, and our paper on Lie \(2\)-algebras
contains a lot of stuff from her thesis. Now she has a job at Loyola
Marymount University, in Los Angeles.

I've had a huge amount of fun working with both of them! Luckily Alissa
lives nearby, and I visit Cambridge most summers. So, we can all keep
working on other projects together --- and we are.

I also have some gerbe-related projects going on with my grad student
Toby Bartels, Danny Stevenson (who is teaching at UCR now) and Urs
Schreiber, a fellow moderator of \texttt{sci.physics.research} who will
soon be a postdoc at Hamburg with Christoph Schweigert. Urs will be
visiting UCR for two weeks in February, and we plan to figure a lot of
stuff out. So, I've got gerbes on the brain, and I'll probably be saying
more about them in the future, unless I burn up all my expository energy
writing papers.

In fact, one of the best places to learn about the differential geometry
of abelian gerbes and \(2\)-gerbes is Danny's thesis:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Danny Stevenson, \emph{The geometry of bundle gerbes}, Ph.D.~thesis,
  University of Adelaide, 2000. Available as
  \href{http://www.arXiv.org/abs/math.DG/0004117}{\texttt{math.DG/0004117}}.
\end{enumerate}

He's also written lots of other papers on gerbes, which you can find on
the arXiv. Physicists may find these the most interesting:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\item
  Michael K. Murray and Danny Stevenson, ``Higgs fields, bundle gerbes
  and string structures'', \emph{Comm. Math. Phys.} \textbf{236} (2003),
  541--555. Also available as
  \href{http://www.arXiv.org/abs/math.DG/0106179}{\texttt{math.DG/0106179}}.
\item
  Alan L. Carey, Stuart Johnson, Michael K. Murray, Danny Stevenson and
  Bai-Ling Wang, ``Bundle gerbes for Chern-Simons and Wess-Zumino-Witten
  models'', available as
  \href{http://www.arXiv.org/abs/math.DG/0410013}{\texttt{math.DG/0410013}}.
\end{enumerate}

Toby is doing his thesis on categorified bundles, or ``\(2\)-bundles'',
and you can already get a preview here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Toby Bartels, ``Categorified gauge theory: \(2\)-bundles'', available
  as
  \href{http://www.arXiv.org/abs/math.CT/0410328}{\texttt{math.CT/0410328}}.
\end{enumerate}

\(2\)-bundles are meant to be an alternative to gerbes: although I've
done my best to hide it above, a gerbe is really more like a
categorified \emph{sheaf} than a bundle. And, just as a bundle has a
sheaf of sections, we're hoping that a \(2\)-bundle has a stack of
sections, which in certain cases will be a gerbe. That's one of the
things we need to figure out, though.

And, while I'm listing the papers of the gerbe gang, I should admit that
Urs and I have written a paper about connections on \(2\)-bundles. But,
I want to polish this paper a bit before talking about it here.

As for \(2\)-groups, various people have been studying their
representations lately, and this should become an important part of
higher gauge theory, just as group representations are crucial in gauge
theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\item
  Magnus Forrester-Barker, \emph{Representations of crossed modules and
  cat\textsuperscript{1}-groups}, Ph.D.~thesis, Department of
  Mathematics, University of Wales, Bangor, 2004. Available at
  \texttt{http://www.maths.bangor.ac.uk/research/ftp/theses/forrester-barker.pdf}
\item
  John Barrett and Marco Mackaay, ``Categorical representations of
  categorical groups'', available as
  \href{http://www.arXiv.org/abs/math.CT/0407463}{\texttt{math.CT/0407463}}.
\item
  Josep Elgueta, ``Representation theory of \(2\)-groups on finite
  dimensional \(2\)-vector spaces'', available as
  \href{http://www.arXiv.org/abs/math.CT/0408120}{\texttt{math.CT/0408120}}.
\item
  Louis Crane and David Yetter, ``Measurable categories and
  \(2\)-groups'', available as
  \href{http://www.arXiv.org/abs/math.QA/0305176}{\texttt{math.QA/0305176}}.
\item
  David Yetter, ``Measurable categories'', available as
  \href{http://www.arXiv.org/abs/math.CT/0309185}{\texttt{math.CT/0309185}}.
\item
  Louis Crane and Marnie D. Sheppeard, ``\(2\)-categorical Poincare
  representations and state sum applications'', available as
  \href{http://www.arXiv.org/abs/math.QA/0306440}{\texttt{math.QA/0306440}}.
\end{enumerate}

Hendryk Pfeiffer's papers on higher gauge theory are also very
interesting. Since he works on lattice gauge theory and spin foam
models, the first two papers here develop higher gauge theory on a
discrete spacetime, and then compare it to higher gauge theory on a
manifold:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\item
  Hendryk Pfeiffer, ``Higher gauge theory and a non-Abelian
  generalization of \(2\)-form electrodynamics'', \emph{Annals Phys.}
  \textbf{308} (2003), 447--477. Also available as
  \href{https://arxiv.org/abs/hep-th/0304074}{\texttt{hep-th/0304074}}.
\item
  Florian Girelli and Hendryk Pfeiffer, ``Higher gauge theory ---
  differential versus integral formulation'', \emph{Jour. Math. Phys.}
  \textbf{45} (2004), 3949--3971. Also available as
  \href{https://arxiv.org/abs/hep-th/0309173}{\texttt{hep-th/0309173}}.
\item
  Hendryk Pfeiffer, ``\(2\)-groups, trialgebras and their Hopf
  categories of representations'', available as
  \href{http://www.arXiv.org/abs/math.QA/0411468}{\texttt{math.QA/0411468}}.
\end{enumerate}

The third one partially fulfills an old dream of Crane and Frenkel --- a
dream I vaguely hinted at way back in \protect\hyperlink{week50}{``Week
50''}. Their dream was to find a concept of ``trialgebra'' such that a
trialgebra has a Hopf category of representations, which in turn can
have a monoidal \(2\)-category of representations of its own. This is a
kind of aggravated version of a pattern already familiar in algebra,
where a Hopf algebra (or bialgebra) has a monoidal category of
representations.

Pfeiffer doesn't define general trialgebras, but only ``cocommutative
trialgebras'' and ``commutative cotrialgebras''. A cocommutative
trialgebra is a category in the category of cocommutative Hopf algebras,
while a commutative cotrialgebra is a category in the opposite of the
category of commutative Hopf algebras. Zounds --- say that three times
fast!

He shows you can get these two gadgets from \(2\)-groups in analogy to
how you get cocommutative or commutative Hopf algebras from groups, by
taking the group algebra or the algebra of functions on a group. He also
proves a Tannaka- Krein theorem that lets you reconstruct commutative
cotrialgebras from their Hopf categories of representations.

Really cool stuff!

By the way, here are some photos of Larry Breen's conference, and of
Paris:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  John Baez, Paris, \texttt{http://math.ucr.edu/home/baez/paris/}
\end{enumerate}
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The last time I wrote an issue of this column, the Huyghens probe was
bringing back cool photos of Titan. Now the European ``Mars Express''
probe is bringing back cool photos of Mars!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Mars Express website,
  \texttt{http://www.esa.int/SPECIALS/Mars\_Express/index.html}
\end{enumerate}

There are some tantalizing pictures of what might be a ``frozen sea''
--- water ice covered with dust --- near the equator in the Elysium
Planitia region:
\[\href{http://www.esa.int/SPECIALS/Mars_Express/SEMCHPYEM4E_0.html}{\includegraphics[max width=0.65\linewidth]{../images/mars_packice.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Mars Express sees signs of a ``frozen sea'',
  \texttt{http://www.esa.int/SPECIALS/Mars\_Express/SEMCHPYEM4E\_0.html}
\end{enumerate}

Ice has already been found at the Martian poles --- it's easily visible
there, and Mars Express is getting some amazing closeups of it now -
here's a here's a view of some ice on sand at the north pole:
\[\href{http://www.esa.int/SPECIALS/Mars_Express/SEMLF6D3M5E_1.html}{\includegraphics[max width=0.65\linewidth]{../images/mars_pole.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Glacial, volcanic and fluvial activity on Mars: latest images,
  \texttt{http://www.esa.int/SPECIALS/Mars\_Express/SEMLF6D3M5E\_1.html}
\end{enumerate}

What's new is the possibility of large amounts of water in warmer parts
of the planet.

Now for some math. It's always great when two subjects you're interested
in turn out to be bits of the same big picture. That's why I've been
really excited lately about Bott periodicity and the ``super-Brauer
group''.

I wrote about Bott periodicity in \protect\hyperlink{week105}{``Week
105''}, and about the Brauer group in \protect\hyperlink{week209}{``Week
209''}, but I should remind you about them before putting them together.

Bott periodicity is all about how math and physics in n+8-dimensional
space resemble math and physics in \(n\)-dimensional space. It's a weird
and wonderful pattern that you'd never guess without doing some
calculations. It shows up in many guises, which turn out to all be
related. The simplest one to verify is the pattern of Clifford algebras.

You're probably used to the complex numbers, where you throw in just
\emph{one} square root of \(-1\), called \(i\). And maybe you've heard
of the quaternions, where you throw in \emph{two} square roots of
\(-1\), called \(i\) and \(j\), and demand that they anticommute:
\[ij = -ji\] This implies that \(k = ij\) is another square root of
\(-1\). Try it and see!

In the late 1800s, Clifford realized there's no need to stop here. He
invented what we now call the ``Clifford algebras'' by starting with the
real numbers and throwing in n square roots of \(-1\), all of which
anticommute with each other. The result is closely related to rotations
in \(n+1\) dimensions, as I explained in
\protect\hyperlink{week82}{``Week 82''}.

I'm not sure who first worked out all the Clifford algebras --- perhaps
it was Cartan --- but the interesting fact is that they follow a
periodic pattern. If we use \(C_n\) to stand for the Clifford algebra
generated by n anticommuting square roots of \(-1\), they go like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
\(n\) & \(C_n\)\tabularnewline
\midrule
\endhead
\(0\) & \(\mathbb{R}\)\tabularnewline
\(1\) & \(\mathbb{C}\)\tabularnewline
\(2\) & \(\mathbb{H}\)\tabularnewline
\(3\) & \(\mathbb{H}\oplus\mathbb{H}\)\tabularnewline
\(4\) & \(\mathbb{H}(2)\)\tabularnewline
\(5\) & \(\mathbb{C}(4)\)\tabularnewline
\(6\) & \(\mathbb{R}(8)\)\tabularnewline
\(7\) & \(\mathbb{R}(8)\oplus\mathbb{R}(8)\)\tabularnewline
\bottomrule
\end{longtable}

where:

\begin{itemize}
\tightlist
\item
  \(\mathbb{R}(n)\) means \(n \times n\) real matrices,
\item
  \(\mathbb{C}(n)\) means \(n \times n\) complex matrices, and
\item
  \(\mathbb{H}(n)\) means \(n \times n\) quaternionic matrices.
\end{itemize}

All these become algebras with the usual addition and multiplication of
matrices. Finally, if \(A\) is an algebra, \(A \oplus A\) consists of
pairs of guys in \(A\), with pairwise addition and multiplication.

What happens next? Well, from then on things sort of ``repeat'' with
period 8: \(C_{n+8}\) consists of \(16 \times 16\) matrices whose
entries lie in \(C_n\)!

So, you can remember all the Clifford algebras with the help of this
eight-hour clock: \[
  \begin{tikzpicture}
    \draw (0,0) circle[radius=2.65cm];
    \node[label=below:{$\mathbb{R}$}] at (90:2.3) {0};
    \node[label=below left:{$\mathbb{C}$}] at (45:2.3) {1};
    \node[label=left:{$\mathbb{H}$}] at (0:2.3) {2};
    \node[label={[label distance=-2mm]above left:{$\mathbb{H}\oplus\mathbb{H}$}}] at (-45:2.3) {3};
    \node[label=above:{$\mathbb{H}$}] at (-90:2.3) {4};
    \node[label=above right:{$\mathbb{C}$}] at (-135:2.3) {5};
    \node[label=right:{$\mathbb{R}$}] at (180:2.3) {6};
    \node[label={[label distance=-2mm]below right:{$\mathbb{R}\oplus\mathbb{R}$}}] at (135:2.3) {7};
    \foreach \a in {0,45,90,135,180,-135,-90,-45}
      \draw (\a:2.5) to (\a:2.65);
  \end{tikzpicture}
\] To use this clock, you have to remember to use matrices of the right
size to get \(C_n\) to have dimension \(2^n\). So, when I write
``\(\mathbb{R}\oplus\mathbb{R}\)'' next to the ``7'' on the clock, I
don't mean \(C_7\) is really \(\mathbb{R}\oplus\mathbb{R}\). To get
\(C_7\), you have to take \(\mathbb{R}\oplus\mathbb{R}\) and beef it up
until it becomes an algebra of dimension \(2^7 = 128\). You do this by
taking \(\mathbb{R}(8)\oplus\mathbb{R}(8)\), since this has dimension
\(8\times8 + 8\times8 = 128\).

Similarly, to get \(C_{10}\), you note that 10 is 2 modulo 8, so you
look at ``2'' on the clock and see ``\(\mathbb{H}\)'' next to it,
meaning the quaternions. But to get \(C_{10}\), you have to take
\(\mathbb{H}\) and beef it up until it becomes an algebra of dimension
\(2^{10} = 1024\). You do this by taking \(\mathbb{H}(16)\), since this
has dimension \(4\times16\times16 = 1024\).

This ``beefing up'' process is actually quite interesting. For any
associative algebra \(A\), the algebra \(A(n)\) consisting of
\(n \times n\) matrices with entries in \(A\) is a lot like \(A\)
itself. The reason is that they have equivalent categories of
representations!

To see what I mean by this, remember that a ``representation'' of an
algebra is a way for its elements to act as linear transformations of
some vector space. For example, \(\mathbb{R}(n)\) acts as linear
transformations of \(\mathbb{R}^n\) by matrix multiplication, so we say
\(\mathbb{R}(n)\) has a representation on \(R^n\). More generally, for
any algebra \(A\), the algebra \(A(n)\) has a representation on \(A^n\).

More generally still, if we have any representation of \(A\) on a vector
space \(V\), we get a representation of \(A(n)\) on \(V^n\). It's less
obvious, but true, that \emph{every} representation of \(A(n)\) comes
from a representation of \(A\) this way.

In short, just as \(n \times n\) matrices with entries in \(A\) form an
algebra \(A(n)\) that's a beefed-up version of \(A\) itself, every
representation of \(A(n)\) is a beefed-up version of some representation
of \(A\).

Even better, the same sort of thing is true for maps between
representations of \(A(n)\). This is what we mean by saying that
\(A(n)\) and \(A\) have equivalent categories of representations. If you
just look at the categories of representations of these two algebras as
abstract categories, there's no way to tell them apart! We say two
algebras are ``Morita equivalent'' when this happens.

It's fun to study Morita equivalence classes of algebras --- say
algebras over the real numbers, for example. The tensor product of
algebras gives us a way to multiply these classes. If we just consider
the invertible classes, we get a \emph{group}. This is called the
``Brauer group'' of the real numbers.

The Brauer group of the real numbers is just \(\mathbb{Z}/2\),
consisting of the classes \([\mathbb{R}]\) and \([\mathbb{H}]\). These
correspond to the top and bottom of the Clifford clock! Part of the
reason is that \[\mathbb{H}\otimes\mathbb{H} = \mathbb{R}(4)\] so when
we take Morita equivalence classes we get
\[[\mathbb{H}]\times[\mathbb{H}] = [\mathbb{R}]\] But, you may wonder
where the complex numbers went! Alas, the Morita equivalence class
\([\mathbb{C}]\) isn't invertible, so it doesn't live in the Brauer
group. In fact, we have this little multiplication table for tensor
product of algebras:

\begin{longtable}[]{@{}lccc@{}}
\toprule
\(\otimes\) & \(\mathbb{R}\) & \(\mathbb{C}\) &
\(\mathbb{H}\)\tabularnewline
\midrule
\endhead
\(\mathbb{R}\) & \(\mathbb{R}\) & \(\mathbb{C}\) &
\(\mathbb{H}\)\tabularnewline
\(\mathbb{C}\) & \(\mathbb{C}\) & \(\mathbb{C}\oplus\mathbb{C}\) &
\(\mathbb{C}(2)\)\tabularnewline
\(\mathbb{H}\) & \(\mathbb{H}\) & \(\mathbb{C}(2)\) &
\(\mathbb{R}(4)\)\tabularnewline
\bottomrule
\end{longtable}

Anyone with an algebraic bone in their body should spend an afternoon
figuring out how this works! But I won't explain it now.

Instead, I'll just note that the complex numbers are very aggressive and
infectious --- tensor anything with a \(\mathbb{C}\) in it and you get
more \(\mathbb{C}\)'s. That's because they're a field in their own right
--- and that's why they don't live in the Brauer group of the real
numbers.

They do, however, live in the \emph{super-Brauer} group of the real
numbers, which is \(\mathbb{Z}/8\) --- the Clifford clock itself!

But before I explain that, I want to show you what the categories of
representations of the Clifford algebras look like: \[
  \begin{tikzpicture}
    \draw (0,0) circle[radius=2.65cm];
    \node[label=below:{\scriptsize real}] at (90:2.3) {0};
    \node[label={[label distance=-2mm]below left:{\scriptsize complex}}] at (45:2.3) {1};
    \node[label=left:{\scriptsize quaternionic}] at (0:2.3) {2};
    \node at (-45:2.3) {3};
    \node at (1,-1) {\scriptsize split};
    \node at (1,-1.32) {\scriptsize quaternionic};
    \node[label=above:{\scriptsize quaternionic}] at (-90:2.3) {4};
    \node[label={[label distance=-2mm]above right:{\scriptsize complex}}] at (-135:2.3) {5};
    \node[label=right:{\scriptsize real}] at (180:2.3) {6};
    \node[label={[label distance=-2mm]below right:{\scriptsize split real}}] at (135:2.3) {7};
    \foreach \a in {0,45,90,135,180,-135,-90,-45}
      \draw (\a:2.5) to (\a:2.65);
  \end{tikzpicture}
\] Here, the labels at each hour describe the type of vector space,
e.g.~at 3-o'clock we have split quaternionic vector spaces.

You can read this information off the 8-hour Clifford clock I showed you
before, at least if you know some stuff:

\begin{itemize}
\tightlist
\item
  A real vector space is just something like \(\mathbb{R}^n\)
\item
  A complex vector space is just something like \(\mathbb{C}^n\)
\item
  A quaternionic vector space is just something like \(\mathbb{H}^n\)
\end{itemize}

and a ``split'' vector space is a vector space that's been written as
the direct sum of two subspaces.

Take \(C_4\), for example --- the Clifford algebra generated by 4
anticommuting square roots of \(-1\). The Clifford clock tells us this
is \(\mathbb{H}\oplus\mathbb{H}\). And if you think about it, a
representation of this is just a pair of representations of
\(\mathbb{H}\). So, it's two quaternionic vector spaces --- or if you
prefer, a ``split'' quaternionic vector space.

Or take \(C_7\). The Clifford clock says this is
\(\mathbb{R}\oplus\mathbb{R}\)\ldots{} or at least Morita equivalent to
\(\mathbb{R}\oplus\mathbb{R}\): it's actually
\(\mathbb{R}(8)\oplus\mathbb{R}(8)\), but that's just a beefed-up
version of \(\mathbb{R}\oplus\mathbb{R}\), with an equivalent category
of representations. So, the category of representations of \(C_7\) is
\emph{equivalent} to the category of split real vector spaces.

And so on. Note that when we loop all the way around the clock, our
Clifford algebra becomes \(16\times16\) matrices of what it was before,
but this is Morita equivalent to what it was. So, we have a truly
period-8 clock of categories!

But here's the really cool part: there are also arrows going clockwise
and counterclockwise around this clock! Arrows between categories are
called ``functors''.

Each Clifford algebra is contained in the next one, since they're built
by throwing in more and more square roots of \(-1\). So, if we have a
representation of \(C_n\), it gives us a representation of \(C_{n-1}\).
Ditto for maps between representations. So, we get a functor from the
category of representations of \(C_n\) to the category of
representations of \(C_{n-1}\). This is called a ``forgetful functor'',
since it ``forgets'' that we have representations of \(C_n\) and just
thinks of them as representations of \(C_{n-1}\).

So, we have forgetful functors cycling around counterclockwise!

Even better, all these forgetful functors have ``left adjoints'' going
back the other way. I talked about left adjoints in
\protect\hyperlink{week77}{``Week 77''}, so I won't say much about them
now. I'll just give an example.

Here's a forgetful functor:
\[\mbox{complex vector spaces}\xrightarrow{\mbox{\scriptsize forget complex structure}}\mbox{real vector spaces}\]
which is one of the counterclockwise arrows on the Clifford clock. This
functor takes a complex vector space and forgets your ability to
multiply vectors by \(i\), thus getting a real vector space. When you do
this to \(\mathbb{C}^n\), you get \(\mathbb{R}^{2n}\).

This functor has a left adjoint:
\[\mbox{complex vector spaces}\xleftarrow{\mbox{\scriptsize complexify}}\mbox{real vector spaces}\]
where you take a real vector space and ``complexify'' it by tensoring it
with the complex numbers. When you do this to \(\mathbb{R}^n\), you get
\(\mathbb{C}^n\).

So, we get a beautiful version of the Clifford clock with forgetful
functors cycling around counterclockwise and their left adjoints cycling
around clockwise! When I realized this, I drew a big picture of it in my
math notebook --- I always carry around a notebook for precisely this
sort of thing. Unfortunately, it's a bit hard to draw this chart in
ASCII, so I won't include it here.

Instead, I'll draw something easier. For this, note the following
mystical fact: the Clifford clock is symmetrical under reflection around
the 3-o'clock/7-o'clock axis. It seems bizarre at first that it's
symmetrical along \emph{this} axis instead of the more obvious
0-o'clock/4-o'clock axis. But there's a good reason, which I already
mentioned: the Clifford algebra \(C_n\) is related to rotations in
\(n+1\) dimensions.

I would be very happy if you had enough patience to listen to a full
explanation of this fact, along with everything else I want to say. But
I bet you don't\ldots{} so I'll hasten on to the really cool stuff.

First of all, using this symmetry we can fold the Clifford clock in
half\ldots{} and the forgetful functors on one side perfectly match
their left adjoints on the other side!

So, we can save space by drawing this ``folded'' Clifford clock: \[
  \begin{tikzpicture}[yscale=1.5]
    \node at (0,0) {split real vector spaces};
    \draw[->] (-0.25,-0.2) to node[label=left:{\scriptsize forget splitting}]{} (-0.25,-0.8);
    \draw[<-] (0.25,-0.2) to node[label=right:{\scriptsize double}]{} (0.25,-0.8);
    \node at (0,-1) {real vector spaces};
    \draw[->] (-0.25,-1.2) to node[label=left:{\scriptsize complexify}]{} (-0.25,-1.8);
    \draw[<-] (0.25,-1.2) to node[label=right:{\scriptsize forget complex structure}]{} (0.25,-1.8);
    \node at (0,-2) {complex vector spaces};
    \draw[->] (-0.25,-2.2) to node[label=left:{\scriptsize quaternionify}]{} (-0.25,-2.8);
    \draw[<-] (0.25,-2.2) to node[label=right:{\scriptsize forget quaternionic structure}]{} (0.25,-2.8);
    \node at (0,-3) {quaternionic vector spaces};
    \draw[->] (-0.25,-3.2) to node[label=left:{\scriptsize double}]{} (-0.25,-3.8);
    \draw[<-] (0.25,-3.2) to node[label=right:{\scriptsize forget splitting}]{} (0.25,-3.8);
    \node at (0,-4) {split quaternionic vector spaces};
  \end{tikzpicture}
\] The forgetful functors march downwards on the right, and their left
adjoints march back up on the left!

The arrows going between 7 o'clock and 0 o'clock look a bit weird: \[
  \begin{tikzpicture}[yscale=1.5]
    \node at (0,0) {split real vector spaces};
    \draw[->] (-0.25,-0.2) to node[label=left:{\scriptsize forget splitting}]{} (-0.25,-0.8);
    \draw[<-] (0.25,-0.2) to node[label=right:{\scriptsize double}]{} (0.25,-0.8);
    \node at (0,-1) {real vector spaces};
  \end{tikzpicture}
\] Why is ``forget splitting'' on the left, where the left adjoints
belong, when it's obviously an example of a forgetful functor?

One answer is that this is just how it works. Another answer is that it
happens when we wrap all the way around the clock --- it's like how
going from midnight to 1 am counts as going forwards in time even though
the number is getting smaller. A third answer is that the whole
situation is so symmetrical that the functors I've been calling ``left
adjoints'' are also ``right adjoints'' of their partners! So, we can
change our mind about which one is ``forgetful'', without getting in
trouble.

But enough of that: I really want to explain how this stuff is related
to the super-Brauer group, and then tie it all in to the \emph{topology}
of Bott periodicity. We'll see how far I get before giving up in
exhaustion\ldots.

What's a super-Brauer group? It's just like a Brauer group, but where we
use superalgebras instead of algebras! A ``superalgebra'' is just
physics jargon for a \(\mathbb{Z}/2\)-graded algebra --- that is, an
algebra \(A\) that's a direct sum of an ``even'' or ``bosonic'' part
\(A_0\) and an ``odd'' or ``fermionic'' part \(A_1\):
\[A = A_0 \oplus A_1\] such that multiplying a guy in \(A_i\) and a guy
in \(A_j\) gives a guy in \(A_{i+j}\), where we add the subscripts
\(\mod 2\).

The tensor product of superalgebras is defined differently than for
algebras. If \(A\) and \(B\) are ordinary algebras, when we form their
tensor product, we decree that everybody in \(A\) commutes with everyone
in \(B\). For superalgebras we decree that everybody in \(A\)
``supercommutes'' with everyone in \(B\) --- meaning that \[ab = ba\] if
either \(a\) or \(b\) are even (bosonic) while \[ab = -ba\] if \(a\) and
\(b\) are both odd (fermionic).

Apart from these modifications, the super-Brauer group works almost like
the Brauer group. We start with superalgebras over our favorite field
--- here let's use the real numbers. We say two superalgebras are
``Morita equivalent'' if they have equivalent categories of
representations. We can multiply these Morita equivalence classes by
taking tensor products, and if we just keep the invertible classes we
get a group: the super-Brauer group.

As I've hinted already, the super-Brauer group of the real numbers is
\(\mathbb{Z}/8\) --- just the Clifford algebra clock in disguise!

Here's why:

The Clifford algebras all become superalgebras if we decree that all the
square roots of \(-1\) that we throw in are ``odd'' elements. And if we
do this, we get something great: \[C_n \otimes C_m = C_{n+m}\] The point
is that all the square roots of \(-1\) we threw in to get \(C_n\)
\emph{anticommute} with those we threw in to get \(C_m\).

Taking Morita equivalence classes, this mean \[[C_n] [C_m] = [C_{n+m}]\]
but we already know that \[[C_{n+8}] = [C_n]\] so we get the group
\(\mathbb{Z}/8\). It's not obvious that this is \emph{all} the
super-Brauer group, but it actually is --- that's the hard part.

Now let's think about what we've got. We've got the super-Brauer group,
\(\mathbb{Z}/8\), which looks like an 8-hour clock. But before that, we
had the categories of representations of Clifford algebras, which formed
an 8-hour clock with functors cycling around in both directions.

In fact these are two sides of the same coin --- or clock, actually. The
super-Brauer group consists of Morita equivalence classes of Clifford
algebras, where Morita equivalence means ``having equivalent categories
of representations''. But, our previous clock just shows their
categories of representations!

This suggests that the functors cycling around in both directions are
secretly an aspect of the super-Brauer group. And indeed they are! The
functors going clockwise are just ``tensoring with \(C_1\)'', since you
can tensor a representation of \(C_n\) with \(C_1\) and get a
representation of \(C_{n+1}\). And the functors going counterclockwise
are ``tensoring with \(C_{-1}\)''\ldots{} or \(C_7\) if you insist,
since \(C_{-1}\) doesn't strictly make sense, but \(7\) equals
\(-1 \mod 8\), so it does the same job.

Hmm, I think I'm tired out. I didn't even get to the topology yet! Maybe
that'll be good as a separate little story someday. If you can't wait,
just read this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Milnor, \emph{Morse Theory}, Princeton U. Press, Princeton, New
  Jersey, 1963.
\end{enumerate}

You'll see here that a representation of \(C_n\) is just the same as a
vector space with \(n\) different anticommuting ways to ``rotate vector
by 90 degrees'', and that this is the same as a real inner product space
equipped with a map from the \(n\)-sphere into its rotation group, with
the property that the north pole of the \(n\)-sphere gets mapped to the
identity, and each great circle through the north pole gives some action
of the circle as rotations. Using this, and stuff about Clifford
algebras, and some Morse theory, Milnor gives a beautiful proof that
\[\Omega^8(\mathrm{SO}(\infty)) \sim \mathrm{SO}(\infty)\] or in
English: the 8-fold loop space of the infinite-dimensional rotation
group is homotopy equivalent to the infinite-dimensional rotation group!

The thing I really like, though, is that Milnor relates the forgetful
functors I was talking about to the process of ``looping'' the rotation
group. That's what these maps from spheres into the rotation group are
all about\ldots{} but I want to really explain it all someday!

I learned about the super-Brauer group here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  V. S. Varadarajan, \emph{Supersymmetry for Mathematicians: An
  Introduction}, American Mathematical Society, Providence, Rhode
  Island, 2004.
\end{enumerate}

though the material here on this topic is actually a summary of some
lectures by Deligne in another book I own:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  P. Deligne, P. Etingof, D.S. Freed, L. Jeffrey, D. Kazhdan, J. Morgan,
  D.R. Morrison and E. Witten, \emph{Quantum Fields and Strings: A
  Course For Mathematicians} 2 vols., American Mathematical Society,
  Providence, 1999. Notes also available at
  \texttt{http://www.math.ias.edu/QFT/}
\end{enumerate}

Varadarajan's book doesn't go as far, but it's much easier to read, so I
recommend it as a way to get started on ``super'' stuff.
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As you may know, theoretical particle physics is highly enamored of
``supersymmetry'' these days. This is not because there's a shred of
experimental evidence for it --- there's not --- but just because it's
such a cool idea from a mathematical point of view. Mathematicians
should have gotten this idea and run with it first, but physicists did
--- and maybe it's turned them into mathematicians.

The unarguable central core of this idea is that everything is made of
bosons and fermions. In the Standard Model, most bosons are ``force
carriers'', like photons, which carry the electromagnetic force.
Fermions are more like what we'd normally call ``matter'': leptons and
quarks, for example. The one big exception is the Higgs boson, which
gives elementary particles their mass and\ldots{} umm\ldots{} hasn't
been seen yet!

But, at a more fundamental level, the really important thing is that
bosons commute: \[xy = yx\] while fermions anticommute: \[xy = -yx\]
Also, in case you're wondering, bosons commute with fermions.

But already, most mathematicians reading this will be confused and
unhappy. What does it mean for two particles to commute, much less
anticommute? Does an apple commute with a grape? Here in the suburbs of
Los Angeles almost everyone commutes, but that's not what we're talking
about.

The whole idea of particles commuting or anticommuting only occurred to
people after they invented quantum theory, where the state of any system
is described by a unit vector in some Hilbert space. In quantum theory,
if you have a system in some state \(x\), and you check to see if it's
in the state \(y\), your experiment gives you the answer ``yes'' with
probability \[|\langle x,y\rangle|^2\] the square of the absolute value
of the inner product of x and y.

There! Now you know quantum theory.

Given this setup, when you have a system consisting of two particles,
the first in some state \(x\) and the second in some state \(y\), it's
natural to write the state of the whole system as a kind of product
\(xy\). But then you have to figure out what rules you want this product
to satisfy!

If you require it to be commutative: \[xy = yx\] you're saying that
there's no difference between the \emph{first} particle being in state x
and the \emph{second} particle being in state y, and the other way
around. In other words, the particles don't have little name tags on
them saying who they are.

This seems reasonable, and particles satisfying this rule are called
``bosons''. But, there's another popular option, called ``fermions'':
\[xy = -yx\] Here again, the particles don't have name tags, since if we
put the whole system in the state \(xy\) and check to see if it's in the
state \(yx\), we get the same answer as when we check to see if it's in
the state \(xy\)! See:
\[|\langle xy,yx\rangle|^2 = |\langle xy,-xy\rangle|^2 = |\langle xy,xy\rangle|^2\]
thanks to the absolute value. This means that the states \(xy\) and
\(yx\) are indistinguishable.

Reading what I just said, you'd be forgiven for wondering what's the big
difference between fermions and bosons! After all, that absolute value
in the formula for probabilities just ignores minus signs.

One difference is the ``Pauli exclusion principle''. Take a pair of
fermions and check to see if they're both in the state \(x\). The
probability is always zero, since \[xx = -xx\] so \(xx = 0\). So,
fermions are antisocial: that's why the electrons in an atom form
``shells'' with different electrons in different states, instead of all
hanging out at the lowest energy state.

Bosons, by contrast, are gregarious: when a store clerk uses a laser
scanner to ring up your purchases, that beam of red light is a bunch of
photons all in the same state! A laser is a quintessentially
quantum-theoretic gadget --- we live in a marvelous world, where such
things are taken for granted.

After getting used to these ideas for a while --- Bose and Einstein
worked out the idea of bosons in 1924, Pauli came up with his exclusion
principle in 1925, and Dirac systematized the whole business in 1926 -
physicists eventually started looking for symmetries that relate bosons
and fermions. \emph{Supersymmetries!} They're not seen in nature, but
physicists were looking to see if they're mathematically possible. They
turn out not only to be possible, but fascinating.

Formulating supersymmetries in a slick way requires that we take
everything we knew about linear algebra and generalize it by letting all
our vector spaces have both an ``even'' or ``bosonic'' part and an
``odd'' or ``fermionic'' part. Mathematically this just amounts to
writing our vector space as a direct sum \[V = V_0 \oplus V_1\] where
\(V_0\) is the ``even part'' and \(V_1\) is the ``odd part''. Such a
thing is called a ``\(\mathbb{Z}/2\)-graded vector space'', or ``super
vector space''.

So far this is pathetically simple. But then --- and this is the really
crucial part! --- whenever we multiply things, we have to follow this
rule:

\begin{longtable}[]{@{}lcc@{}}
\toprule
\(\times\) & \textbf{even} & \textbf{odd}\tabularnewline
\midrule
\endhead
\textbf{even} & even & odd\tabularnewline
\textbf{odd} & odd & even\tabularnewline
\bottomrule
\end{longtable}

It's a little confusing, since this isn't what happens when you multiply
even and odd numbers --- it's what happens when you ADD them. But, one
quickly adapts.

Also, when we generalize equations involving multiplication, we must
remember to stick in an extra minus sign whenever we switch two odd
vectors.

So, for example, the usual concept of an algebra gets replaced by that
of a ``superalgebra''. This is a super vector space \(A\) equipped with
an associative product and unit such that when we multiply even and/or
odd vectors, the rules in the above table hold. We say a superalgebra is
``supercommutative'' if \[xy = yx\] when at least one of \(x,y\) lives
in the even part \(A_0\), while \[xy = -yx\] when both \(x\) and \(y\)
live in \(A_1\).

Similarly we can define super Lie algebras, super Lie groups,
supermanifolds, and so on\ldots.

People have done a lot of work on this stuff: it would take me days to
explain it all --- even longer if I actually knew something about it.

But right now, I just want to zoom in the direction of super division
algebras. These are not the most important aspect of ``superalgebra''
--- but they're pretty cool, and Todd Trimble has been explaining them
to me lately. Everything interesting I'm about to say is due to him.

As you know, I'm inordinately fond of the normed division algebras: the
real numbers, complex numbers, quaternions and octonions. They're so
beautiful, it's a little sad at times that there are only four! Could
superalgebra allow for more?

YES! And, they turn out to be related to Bott periodicity.

Nobody seems to have pondered \emph{nonassociative} super division
algebras yet, but Deligne has a nice article about the associative ones,
which I mentioned in \protect\hyperlink{week211}{``Week 211''}. I'll
give more references later.

So, what's the idea?

I've already told you what a superalgebra is. We say it's a ``super
division algebra'' if every nonzero element that's purely even or purely
odd is invertible.

That's pretty easy. What are they like?

Well, I don't completely understand all the options yet, so I'll just
list the ``central'' super division algebras over the real numbers,
namely those where the elements that supercommute with everything form a
copy of the real numbers. There turn out to be 8, and their beautiful
patterns are best displayed in a circular layout: \[
  \begin{tikzpicture}[scale=1.1]
    \draw (0,0) circle[radius=2.65cm];
    \node[label=below:{\small$\mathbb{R}$}] at (90:2.3) {0};
    \node[label=below left:{$\frac{\mathbb{R}[e]}{(e^2+1)}$}] at (45:2.3) {1};
    \node[label=left:{$\frac{\mathbb{C}[e]}{(e^2+1,ei+ie)}$}] at (0:2.3) {2};
    \node[label=above left:{$\frac{\mathbb{H}[e]}{(e^2-1)}$}] at (-45:2.3) {3};
    \node[label=above:{\small$\mathbb{H}$}] at (-90:2.3) {4};
    \node[label=above right:{$\frac{\mathbb{H}[e]}{(e^2+1)}$}] at (-135:2.3) {5};
    \node[label=right:{$\frac{\mathbb{C}[e]}{(e^2-1,ei+ie)}$}] at (180:2.3) {6};
    \node[label=below right:{$\frac{\mathbb{R}[e]}{(e^2-1)}$}] at (135:2.3) {7};
    \foreach \a in {0,45,90,135,180,-135,-90,-45}
      \draw (\a:2.5) to (\a:2.65);
  \end{tikzpicture}
\] What does this notation mean? Well, as usual \(\mathbb{R}\),
\(\mathbb{C}\), and \(\mathbb{H}\) stand for the reals, complex numbers,
and quaternions. In all but two cases, we start with one of those
algebras and throw in an odd element ``\(e\)'' satisfying the relations
listed: \(e\) is either a square root of \(+1\) or of \(-1\), and in the
complex cases it anticommutes with \(i\).

So, for example, super division algebra number 1:
\[\mathbb{R}[e]/(e^2 + 1)\] is just the real numbers with an odd element
thrown in that satisfies \(e^2 + 1 = 0\). In other words, it's just the
complex numbers made into a superalgebra in such a way that \(i\) is
\emph{odd}.

The real reason I've arranged these guys in a circle numbered from 0 to
7 is to remind you of the Clifford algebra clock in
\protect\hyperlink{week210}{``Week 210''}, where I discussed the super
Brauer group of the real numbers, and said it was \(\mathbb{Z}/8\).

Indeed, the central super division algebras are a complete set of
representatives for this super Brauer group! In particular, the Clifford
algebra \(C_n\) is super Morita equivalent to the \(n\)th algebra on
this circle:

\begin{longtable}[]{@{}lll@{}}
\toprule
\(n\) & \(C_n\) & super-Morita-equivalent algebra\tabularnewline
\midrule
\endhead
\(0\) & \(\mathbb{R}\) & \(\mathbb{R}\)\tabularnewline
\(1\) & \(\mathbb{C}\) & \(\mathbb{R}[e]/(e^2+1)\)\tabularnewline
\(2\) & \(\mathbb{H}\) & \(\mathbb{C}[e]/(e^2+1,ei+ie)\)\tabularnewline
\(3\) & \(\mathbb{H}\oplus\mathbb{H}\) &
\(\mathbb{H}[e]/(e^2-1)\)\tabularnewline
\(4\) & \(\mathbb{H}(2)\) & \(\mathbb{H}\)\tabularnewline
\(5\) & \(\mathbb{C}(4)\) & \(\mathbb{H}[e]/(e^2+1)\)\tabularnewline
\(6\) & \(\mathbb{R}(8)\) &
\(\mathbb{C}[e]/(e^2-1,ei+ie)\)\tabularnewline
\(7\) & \(\mathbb{R}(8)\oplus\mathbb{R}(8)\) &
\(\mathbb{R}[e]/(e^2-1)\)\tabularnewline
\bottomrule
\end{longtable}

where the notation for Clifford algebras was explained last week.

I think this is cool. I'm not quite sure what to do with it yet, though.
How much of what people ordinarily do with division algebras can be done
with super division algebras? For example, can we define projective
spaces over super division algebras? (See
\protect\hyperlink{week106}{``Week 106''} and
\protect\hyperlink{week145}{``Week 145''} for why that would be
interesting.)

To read more about this, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Pierre Deligne, ``Notes on spinors'', in \emph{Quantum Fields and
  Strings: A Course For Mathematicians}, volume \textbf{1}, American
  Mathematical Society, Providence, 1999. Also available at
  \texttt{http://www.math.ias.edu/QFT/fall/spinors.ps}
\end{enumerate}

A lot of the ideas go back to here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  C. T. C. Wall, ``Graded Brauer groups'', \emph{J. Reine Angew. Math.}
  \textbf{213} (1963/1964), 187--199.
\end{enumerate}

and here's another good reference:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Peter Donovan and Max Karoubi, ``Graded Brauer groups and K-theory
  with local coefficients'', \emph{Publications Math. IHES} \textbf{38}
  (1970), 5--25. Also available at
  \texttt{http://www.math.jussieu.fr/\textasciitilde{}karoubi/Donavan.K.pdf}
\end{enumerate}

I should admit that I have a yearning to classify \emph{nonassociative}
super division algebras. Has anyone ever tried this? It's already plain
to see that we have two \(16\)-dimensional nonassociative super division
algebras: \[\mathbb{O}[e]/(e^2 + 1)\] and \[\mathbb{O}[e]/(e^2 - 1)\]
where \(e\) is an odd element that commutes with all the octonions. (I
should have mentioned this before, when talking about \(\mathbb{H}[e]\):
even though the quaternions are noncommutative, we assume that \(e\)
commutes with all of them.) Maybe one of these algebras deserves to be
called the \emph{superoctonions}. I bet these or something awfully
similar are lurking around in string theory.

Hmm\ldots{} next I wanted to write something about the topology of Bott
periodicity and how \emph{that} fits into what I've been discussing, but
I'm running out of energy. Let me say it briefly, without much detail,
just in case I never get around to a decent explanation.

Two super algebras are super Morita equivalent precisely when they have
equivalent categories of super representations. So, the super Brauer
group really consists of 8 different \emph{categories}: the categories
\(\mathsf{SuperRep}(C_n)\), where Bott periodicity says
\[\mathsf{SuperRep}(C_{n+8}) \sim \mathsf{SuperRep}(C_n)\] Moreover
these are symmetric monoidal categories, since direct summing lets us
``add'' objects in these categories in a nice way.

A long time ago, Graeme Segal figured out how to take a symmetric
monoidal category and get an infinite loop space from it. I explained
this construction in \protect\hyperlink{week199}{``Week 199''}, but for
a much more detailed and intense treatment with lots of references to
earlier work, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  R. W. Thomason, ``Symmetric categories model all connective spectra'',
  \emph{Theory and Applications of Categories} \textbf{1} (1995),
  78--118. Available at
  \texttt{http://www.tac.mta.ca/tac/volumes/1995/n5/1-05abs.html}
\end{enumerate}

If we do this to \(\mathsf{SuperRep}(C_n)\), I think we get something
like \[\Omega^n(kO)\] that is, the \(n\)-fold loop space of something
called \(kO\), the ``connective K-theory spectrum'', which I explained
in \protect\hyperlink{week105}{``Week 105''}. The fact that this repeats
with period 8: \[\Omega^{n+8}(kO) \sim \Omega^n(kO)\] is the topological
version of Bott periodicity --- see \protect\hyperlink{week105}{``Week
105''} for more. So, we get the topological version of Bott periodicity
from the algebraic version by turning symmetric monoidal categories into
infinite loop spaces!

But, the interesting puzzle here is: what process can we do to
\(\mathsf{SuperRep}(C_n)\) to get \(\mathsf{SuperRep}(C_{n+1})\), which
is the algebraic version of looping? And I think the answer is: ``taking
super representations of \(C_1\) in it''. You see,
\[C_1 \otimes C_n = C_{n+1}\] where I'm using the super tensor product
of superalgebras, and this means that the category of representations of
\(C_1\) in \(\mathsf{SuperRep}(C_n)\) is \(\mathsf{SuperRep}(C_{n+1})\).

And, if I were trying to really explain this instead of merely
scribbling notes about it, I would try to explain why this is because
\(C_1\) is the complex numbers, and the unit circle in the complex
numbers is related to \emph{loops}.

But, sigh, that will have to wait.

One more thing before I quit for today\ldots{}

I just saw a cool paper by Dror Bar-Natan, Thang Le and Dylan Thurston
about the ``Duflo isomorphism''. This is a cousin of the
Poincare-Birkhoff-Witt theorem, which in its best form says that the
universal enveloping algebra \(UL\) of a Lie algebra \(L\) is isomorphic
\emph{as a coalgebra} to the symmetric algebra \(SL\). You'll often see
worse versions of the PBW theorem in textbooks, and ugly proofs, but
James Dolan showed me the nice version and proof a while back.

The kernel of the idea is this: if \(L\) is the Lie algebra of a group
\(G\), \(UL\) consists of left-invariant differential operators on
\(G\), and there's a map \(UL \to SL\) sending any differential operator
to its ``symbol''. This is an isomorphism of vector spaces and even of
coalgebras, but not of algebras.

Anyway, there's something vaguely similar relating the invariant
subalgebras of \(UL\) and \(SL\). By ``invariant'' here, I mean that
since \(L\) acts as derivations of \(UL\) and \(SL\), we can look at the
subalgebra of either one consisting of guys who are killed by these
derivations; such guys are called ``invariant''. Physicists call
invariant elements of \(UL\) ``Casimirs'', after the first physicist to
think about this stuff. They commute with everything else in \(UL\).
Invariant elements of \(SL\) are like classical Casimirs: there's a
Poisson bracket on \(SL\), and these are the guys whose Poisson bracket
with everyone vanishes.

The Duflo map is an \emph{algebra isomorphism} from the invariant
subalgebra of \(SL\) to the invariant subalgebra of \(UL\). So, it's
like a very nice way to quantize Casimirs, one that gets along with
multiplication. It's called the ``Duflo map'' because it was invented by
Harish-Chandra for semisimple Lie algebras and for Kirillov in general.
Kirillov conjectured that it was always an isomorphism; what Duflo did
is prove it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Michel Duflo, ``Operateurs differentiels bi-invariants sur un groupe
  de Lie'', \emph{Ann. Sci. Ecole Norm. Sup.} \textbf{10} (1977),
  265--288.
\end{enumerate}

Apparently all known proofs are sort of hard! According to Bar-Natan, Le
and Thurston:

\begin{quote}
In the book of Dixmier, the proof is given only in the last chapter and
it utilizes most of the results developed in the whole book, including
many classification results (a situation Godement called
``scandalous''). As discussed below, there have been several recent
proofs that do not use classification results, but they all use tools
from well outside the natural domain of the problem.
\end{quote}

The proof by Bar-Natan, Le and Thurston uses the connection between knot
theory and Lie algebras --- namely, the theory of Vassiliev invariants.
I think there's still something slightly scandalous about this, but it's
awfully interesting. Anyway, take a look:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Dror Bar-Natan, Thang T. Q. Le and Dylan P. Thurston, ``Two
  applications of elementary knot theory to Lie algebras and Vassiliev
  invariants'', \emph{Geometry and Topology} \textbf{7} (2003), 1--31.
  Available at
  \texttt{http://www.maths.warwick.ac.uk/gt/GTVol7/paper1.abs.html} and
  also as
  \href{http://www.arXiv.org/abs/math.QG/0204311}{\texttt{math.QG/0204311}}.
\end{enumerate}

For more, try Thurston's thesis:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Dylan P. Thurston, ``Wheeling: a diagrammatic analogue of the Duflo
  isomorphism'',
  \href{http://www.arXiv.org/abs/math.QG/0006083}{\texttt{math.QG/0006083}}.
\end{enumerate}

and, just for fun, Deligne's handwritten letter to Bar-Natan:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Pierre Deligne, letter to Dror Bar-Natan about the Duflo map,
  available at
  \texttt{http://www.math.toronto.edu/\textasciitilde{}drorbn/Deligne/}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Todd Trimble has kindly allowed me to append some
rough notes in which he outlines proofs of some results above.

\begin{quote}
From: Todd Trimble Subject: notes on super Brauer To: John Baez Cc:
James Dolan Date: Sun, 27 Mar 2005 19:30:00 -0500

John,

These are some notes on some of the super Brauer discussion.

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  Let \(V\) be the category of finite-dimensional super vector spaces
  over \(\mathbb{R}\). By super algebra I mean a monoid in this
  category. There's a bicategory whose objects are super algebras \(A\),
  whose 1-cells \(M\colon A \to B\) are left \(A\)- right \(B\)-modules
  in \(V\), and whose 2-cells are homomorphisms between modules. This is
  a symmetric monoidal bicategory under the usual tensor product on
  \(V\).
\end{enumerate}

\(A\) and \(B\) are super Morita equivalent if they are equivalent
objects in this bicategory. Equivalence classes \([A]\) form an abelian
monoid whose multiplication is given by the monoidal product. The super
Brauer group of \(\mathbb{R}\) is the subgroup of invertible elements of
this monoid.

If \([B]\) is inverse to \([A]\) in this monoid, then in particular
\(A \otimes (-)\) can be considered left biadjoint to \(B \otimes (-)\).
On the other hand, in the bicategory above we always have a biadjunction
\[\frac{A\otimes C\to D}{C\to A^*\otimes D}\] (essentially because left
\(A\)-modules are the same as right \(A^*\)-modules, where \(A^*\)
denotes the super algebra opposite to \(A\)). Since right biadjoints are
unique up to equivalence, we see that if an inverse to \([A]\) exists,
it must be \([A^*]\).

This can be sharpened: an inverse to \([A]\) exists iff the unit and
counit \[1\to A^*\otimes A \qquad A\otimes A^*\to 1\] are equivalences
in the bicategory. Actually, one is an equivalence iff the other is,
because both of these canonical 1-cells are given by the same
\(A\)-bimodule,\\
namely the one given by \(A\) acting on both sides of the underlying
superspace of \(A\) (call it \(S\)) by multiplication.\\
Either is an equivalence if the bimodule structure map
\[A^* \otimes A \to \mathrm{Hom}(S, S),\] which is a map of super
algebras, is an isomorphism.

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\setcounter{enumi}{1}
\tightlist
\item
  As an example, let \(A = C_1\) be the Clifford algebra generated by
  the \(1\)-dimensional space \(\mathbb{R}\) with the usual quadratic
  form \(Q(x) = |x|^2\), and \(\mathbb{Z}/2\)-graded in the usual way.
  Thus, the homogeneous parts of \(A\) are \(1\)-dimensional and there
  is an odd generator \(i\) satisfying \(i^2 = -1\). The opposite
  \(A^*\) is similar except that there is an odd generator \(e\)
  satisfying \(e^2 = 1\). Under the map
  \[A^* \otimes A \to \mathrm{Hom}(S, S),\] where we write \(S\) as a
  sum of even and odd parts \(R + Ri\), this map has a matrix
  representation \[
    \begin{aligned}
  e\otimes i
  &\mapsto
  \left(\begin{array}{cc}-1&0\\0&1\end{array}\right)
    \\1\otimes i
  &\mapsto
  \left(\begin{array}{cc}0&-1\\1&0\end{array}\right)
    \\e\otimes 1
  &\mapsto
  \left(\begin{array}{cc}0&1\\1&0\end{array}\right)
    \end{aligned}
  \] which makes it clear that this map is surjective and thus an
  isomorphism. Hence \([C1]\) is invertible.
\end{enumerate}

One manifestation of Bott periodicity is that \([C1]\) has order 8. We
will soon see a very easy proof of this fact. A theorem of C.T.C. Wall
is that \([C1]\) in fact generates the super Brauer group; I believe
this can be shown by classifying super division algebras, as discussed
below.

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\setcounter{enumi}{2}
\tightlist
\item
  That \([C1]\) has order 8 is an easy calculation. Let \(C_r\) denote
  the \(r\)-fold tensor of \(C_1\). \(C_2\) for instance has two
  super-commuting odd elements \(i\), \(j\) satisfying
  \(i^2 = j^2 = -1\); it follows that \(k := ij\) satisfies\\
  \(k^2 = -1\), and we get the usual quaternions, graded so that the
  even part is the span \(\langle 1, k\rangle\) and the odd part is
  \(\langle i, j\rangle\).
\end{enumerate}

\(C_3\) has three super-commuting odd elements \(i\), \(j\), \(l\), all
of which are square roots of \(-1\). It follows that \(e = ijl\) is an
odd central involution (here ``central'' is taken in the ungraded
sense), and also that \(i' = jl\), \(j' = li\), \(k' = ij\) satisfy the
Hamiltonian equations \[(i')^2 = (j')^2 = (k')^2 = i'j'k' = -1,\] so we
have \(C_3 = \mathbb{H}[e]/(e2 - 1)\). Note this is the same as
\[\mathbb{H} \otimes (C_1)^*\] where the \(\mathbb{H}\) here is the
quaternions viewed as a super algebra concentrated in degree 0 (i.e.~is
purely bosonic).

Then we see immediately that \(C_4 = C_3 \otimes C_1\) is equivalent to
purely bosonic \(\mathbb{H}\) (since the \(C_1\) cancels \((C_1)^*\) in
the super Brauer group).

At this point we are done: we know that conjugation on (purely bosonic)
\(\mathbb{H}\) gives an isomorphism \[\mathbb{H}^* \to \mathbb{H}\]
hence \([\mathbb{H}]-1 = [\mathbb{H}^*] = [\mathbb{H}]\),
i.e.~\([\mathbb{H}] = [C4]\) has order 2!\\
Hence \([C1]\) has order 8.

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\setcounter{enumi}{3}
\tightlist
\item
  All this generalizes to Clifford algebras: if a real quadratic vector
  space \((V, Q)\) has signature \((r, s)\), then the super algebra
  \(\mathrm{Cliff}(V, Q)\) is isomorphic to \(A_r \otimes (A^*)_s\),
  where \(A_r\) denotes \(r\)-fold tensor product of \(A = C_1\). By the
  above calculation we see that \(\mathrm{Cliff}(V, Q)\) is equivalent
  to \(C_{r-s}\) where \(r-s\) is taken modulo 8.
\end{enumerate}

For the record, then, here are the hours of the super Clifford clock,
where \(e\) denotes an odd element, and \(\sim\) denotes equivalence:

\begin{itemize}
\tightlist
\item
  \(C_0 \sim \mathbb{R}\)
\item
  \(C_1 \sim \mathbb{R}\oplus\mathbb{R}[e]\), \(e2 = -1\)
\item
  \(C_2 \sim \mathbb{C}\oplus\mathbb{C}[e]\), \(e2 = -1, ei = -ie\)
\item
  \(C_3 \sim \mathbb{H}\oplus\mathbb{H}[e]\),
  \(e2 = 1, ei = ie, ej = je, ek = ke\)
\item
  \(C_4 \sim \mathbb{H}\)
\item
  \(C_5 \sim \mathbb{H}\oplus\mathbb{H}[e]\),
  \(e2 = -1, ei = ie, ej = je, ek = ke\)
\item
  \(C_6 \sim \mathbb{C}\oplus\mathbb{C}[e]\), \(e2 = 1, ei = -ie\)
\item
  \(C_7 \sim \mathbb{R}\oplus\mathbb{R}[e]\), \(e2 = 1\)
\end{itemize}

All the super algebras on the right are in fact super division algebras,
i.e.~super algebras in which every nonzero homogeneous element is
invertible.

To prove Wall's result that \([C1]\) generates the super Brauer group,
we need a lemma: any element in the super Brauer group is the class of a
super division algebra.

{[}To be continued. I had wanted to show that every element in the super
Brauer group must be of the form \([A]\) where \(A\) is a super division
algebra, and then classify super (associative) division algebras,
showing on a case by case basis that those not in the super Clifford
clock above are seen not to belong to the super Brauer group.{]}

Todd
\end{quote}

Todd finished off the job later\ldots{} though by this point we had
formulated the grander goal of classifying not-necessarily-associative
super division algebras!

\begin{quote}
From: Todd Trimble Subject: super division algebras To: John Baez Date:
Wed, 27 Apr 2005 22:17:12 EDT

John,

This is a warm-up to classifying super division algebras over
\(\mathbb{R}\), where I'll consider just the associative case.\\
Nothing I say will be deep, but I found it somewhat fun and diverting,
and there may be echoes of things to come.

I'll take as known that the only associative division algebras over
\(\mathbb{R}\) are \(\mathbb{R}\), \(\mathbb{C}\), \(\mathbb{H}\) -- the
even part \(A\) of an associative super division algebra must be one of
these cases. We can express the associativity of a super algebra (with
even part \(A\)) by saying that the odd part \(M\) is an \(A\)-bimodule
equipped with a \(A\)-bimodule map pairing
\[\langle -,-\rangle \colon M\otimes_A M \to A\] such that:
\[a\langle b,c\rangle = \langle a,b\rangle c \quad \mbox{for all $a,b,c$ in $M$.} \tag{$\star\star$}\]

If the super algebra is a super division algebra which is not wholly
concentrated in even degree, then multiplication by a nonzero odd
element induces an isomorphism \[A \to M\] and so \(M\) is
\(1\)-dimensional over \(A\); choose a basis element \(e\) for \(M\).

The key observation is that for any \(a\) in \(A\), there exists a
unique \(a'\) in \(A\) such that \[ae = ea'\] and that the
\(A\)-bimodule structure forces \((ab)' = a'b'\). Hence we have an
automorphism (fixing the real field) \[(--)'\colon A \to A\] and we can
easily enumerate (up to isomorphism) the possibilities for associative
super division algebras over \(\mathbb{R}\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
  \(A = \mathbb{R}\). Here we can adjust \(e\) so that either
  \(e^2 := \langle e, e\rangle\) is \(-1\) or \(1\). The corresponding
  super division algebras occur at 1 o'clock and 7 o'clock on the super
  Brauer clock.
\item
  \(A = \mathbb{C}\). There are two \(\mathbb{R}\)-automorphisms
  \(\mathbb{C} \to \mathbb{C}\). In the case where the automorphism is
  conjugation, condition (\(\star\star\)) for super associativity gives
  \(\langle e, e\rangle e = e\langle e, e\rangle\) so that
  \(\langle e, e\rangle\) must be real. Again \(e\) can be adjusted so
  that \(\langle e, e\rangle\) is \(-1\) or \(1\). These possibilities
  occur at 2 o'clock and 6 o'clock on the super Brauer clock.
\end{enumerate}

For the identity automorphism, we can adjust \(e\) so that
\(\langle e, e\rangle\) is \(1\). This gives the super algebra
\(\mathbb{C}[e]/(e^2 - 1)\) (where \(e\) commutes with elements in
\(\mathbb{C}\)). This does not occur on the super Brauer clock over
\(\mathbb{R}\). However, it does generate the super Brauer group over
\(\mathbb{C}\) (which is of order two).

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\setcounter{enumi}{2}
\tightlist
\item
  \(A = \mathbb{H}\). Here \(\mathbb{R}\)-automorphisms
  \(\mathbb{H} \to \mathbb{H}\) are given by \(h \mapsto xhx^{-1}\) for
  \(x\) in \(\mathbb{H}\). In other words \[he = exhx^{-1}\] whence
  \(ex\) commutes with all elements of \(\mathbb{H}\) (i.e.~we can
  assume wlog that the automorphism is the identity). The properties of
  the pairing guarantee that
  \(h\langle e, e\rangle = \langle e, e\rangle h\) for all \(h\) in
  \(\mathbb{H}\), so \(\langle e, e\rangle\) is real and again we can
  adjust \(e\) so that \(\langle e, e\rangle\) is \(1\) or \(-1\). These
  cases occur at 3 o'clock and 5 o'clock on the super Brauer clock.
\end{enumerate}

This appears to be a complete (even if a bit pedestrian) analysis.

Best,

Todd
\end{quote}



\hypertarget{week213}{%
\section{April 3, 2005}\label{week213}}

Here's a book I've been reading lately:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Kenneth S. Brown, \emph{Cohomology of Groups}, Graduate Texts in
  Mathematics \textbf{182}, Springer, 1982.
\end{enumerate}

I should have read this book a long time ago --- but I probably wouldn't
have enjoyed it as much as I do now. All sorts of things I struggled to
learn for years are neatly laid out here. Best of all, he comes right
out and admits from the start that the cohomology of groups is really a
branch of \emph{topology}, instead of hiding this fact like some people
do.

This is something every mathematician should know: you can take any
group and turn it into a space, thus ``reducing'' group theory to
topology. In particular, if you have any trick for telling spaces apart,
like ``cohomology theory'', you can apply it to groups as well.

Of course topology is \emph{harder} than group theory in many ways ---
hence my quotes around ``reducing''. Indeed, algebraic topology was
invented as a trick for reducing topology to group theory! But, the
bridge turns out to go both ways, and there's a lot of profitable
traffic in both directions.

Ultimately, as James Dolan likes to point out, it's all about the unity
of mathematics. Topology is about our concept of \emph{space}, while
group theory is about our concept of \emph{symmetry}\ldots{} but the
amazing fact is that they turn out to be two aspects of the same big
thing! Mathematics is a source of endless surprises, but this is one of
the biggest jaw-droppers of all.

The idea goes back at least to Evariste Galois, who noticed that you can
classify the ways a little thing can sit in a bigger thing by keeping
track of what we now call its ``Galois group'': the group of all
symmetries of the big thing that map the little thing to itself. For
example, you can pick out a point or line in the plane by keeping track
of which symmetries of the plane map this point or line to itself.

However, the idea of using groups to classify how a little thing sits in
a big one was really made explicit in Felix Klein's ``Erlangen
program'', a plan for reducing \emph{geometry} to group theory.

You may know Klein for his famous one-sided bottle:

\begin{quote}
A mathematician named Klein\\
Thought the MÃ¶bius strip was divine.\\
Said he: ``If you glue\\
The edges of two\\
You'll get a weird bottle like mine!''\\
\end{quote}

Or maybe you know that the symmetry group of a rectangle, including
reflections, is called the ``Klein 4-group'':

\begin{longtable}[]{@{}lcccc@{}}
\toprule
\(\cdot\) & \(1\) & \(a\) & \(b\) & \(c\)\tabularnewline
\midrule
\endhead
\(1\) & \(1\) & \(a\) & \(b\) & \(c\)\tabularnewline
\(a\) & \(a\) & \(1\) & \(c\) & \(b\)\tabularnewline
\(b\) & \(b\) & \(c\) & \(1\) & \(a\)\tabularnewline
\(c\) & \(c\) & \(b\) & \(a\) & \(1\)\tabularnewline
\bottomrule
\end{longtable}

He is also known for some other groups called ``Kleinian groups'', which
act as symmetries of fractal patterns like this:
\[\href{http://www.josleys.com/showpic.php?file=INDRA065.jpg&title=Indra20}{\includegraphics[max width=0.65\linewidth]{../images/INDRA065.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Jos Leys, ``Kleinian Pages'',
  \texttt{http://www.josleys.com/creatures42.htm}
\end{enumerate}

If you like cool pictures, check out this website! I've linked you to
the page that most closely connects to Kleinian groups, but there are
lots of other more fanciful pictures. And if you get interested in the
math lurking behind these fractals, you've \emph{got} to try this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  David Mumford, Caroline Series, and David Wright, \emph{Indra's
  Pearls: The Vision of Felix Klein}, Cambridge U. Press, Cambridge,
  2002.
\end{enumerate}

Mumford is a world-class mathematician, so this book is completely
different from the superficial descriptions of fractals one often sees
in math popularizations --- but it's still readable, and it's packed
with beautiful pictures. You can learn a lot about Kleinian groups from
this!

The Kleinian groups arose from Klein's studies of complex functions,
which he considered his best work. But, he was also a mathematical
physicist. Among other things, he wrote a four-volume book on tops with
one of the fathers of quantum mechanics, Arnold Sommerfeld:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Felix Klein and Arnold Sommerfeld, \emph{Ã�ber die Theorie des
  Kreisels}, 4 vols, 1897--1910. Reprinted by Johnson, New York, 1965.
  Also available at
  \texttt{http://www.hti.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABV7354.0001.001}
\end{enumerate}

This came after a book he wrote on his own:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Felix Klein, \emph{The Mathematical Theory of the Top}, Scribner's,
  New York, 1887.
\end{enumerate}

This may seem like a lot of books about a kid's toy! But, tops are
profoundly related to the rotation group, and the ``exactly solvable''
tops discovered by Euler, Lagrange/Poisson, and Sofia Kowalevskaya are
solvable because of their symmetries --- deeply hidden symmetries, in
the case of the Kowalevskaya top. So, one can imagine why Klein liked
this subject.

Klein also wrote a book on the icosahedron and the quintic equation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Felix Klein, \emph{Lectures on the Icosahedron and the Solution of
  Equations of the Fifth Degree}, 1888. Reprinted by Dover, New York,
  2003. Also available at
  \texttt{http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=03070001\&seq=7}
\end{enumerate}

Galois had already noticed that the number field you get by taking the
rationals and throwing in the roots of a typical quintic:
\[ax^5 + bx^4 + cx^3 + dx^2 + ex + f = 0\] has as its symmetry group all
the permutations of the 5 roots. Indeed, he saw that the
``unsolvability'' of this group, in a technical sense, is what makes it
impossible to solve the quintic by radicals. It must have been common
knowledge that the symmetry group of the icosahedron is the group of all
\emph{even} permutations of 5 things. But, Klein took this much further!
Alas, I've never really understood what he did. Perhaps if I read these
and think hard, I'll understand:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Jerry Shurman, \emph{Geometry of the Quintic}, John Wiley and Sons,
  New York, 1997.

  Peter Doyle and Curt McMullen, ``Solving the quintic by iteration'',
  \emph{Acta Math.} \textbf{163} (1989), 151--180. Available at
  \texttt{http://math.dartmouth.edu/\textasciitilde{}doyle/docs/icos/icos/icos.html}
\end{enumerate}

Anyway, it should be clear by now that Klein was a lover of symmetry. He
was also a bit of a visionary, and his obituary by Grace Chisholm Young
shows that this got him in some trouble:

\begin{quote}
One of Weierstrass' pupils, still alive, told me that at Berlin Klein
was anathema: it was said that his work was not mathematics at all, but
mere talk. This criticism shows a want of appreciation of his rare type
of mind. It teemed with ideas and brilliant reflections, but it is true
that his work lacks the stern aspects required by mathematical
exactitude. It was in personal contact that this was corrected, at least
in so far as his students were concerned. His favourite maxim was,
``Never be dull''.
\end{quote}

In a talk he wrote in 1872 when he was made professor at Erlangen
University --- a talk he didn't actually give! --- Klein outlined what
is now called his ``Erlangen program''. The idea here is that different
kinds of geometry correspond to different symmetry groups. Taken to the
extreme, this philosophy says that a geometry is just a group! In a
given geometry, a ``figure'' of any kind --- like a point or line ---
can be detected by the subgroup of symmetries that map that figure to
itself. So, a figure is just a subgroup!

This program eventually led to a grand theory of groups and geometry
based on ``flag manifolds'', which I tried to sketch in
\protect\hyperlink{week178}{``Week 178''},
\protect\hyperlink{week180}{``Week 180''}, and
\protect\hyperlink{week181}{``Week 181''}.

It's important to realize how similar the Erlangen program is to Galois
theory. Galois had also used group theory to classify how a little thing
can sit in a bigger thing, but in situations where the ``things'' in
question are commutative algebras --- for example, the rational numbers
with some roots of polynomials thrown in.

Now, commutative algebra is like topology, only backwards. Any space has
a commutative algebra consisting of functions on it, and if we're very
clever we can think of any commutative algebra as functions on some
space --- though this was only achieved long after Galois, by Alexander
Grothendieck.

What do I mean by ``backwards''? Well, suppose you have a ``covering
space'' --- a big space sitting over a little one, like a spiral sitting
over the circle. In this situation, any function on the little space
downstairs defines a function on the big one upstairs. So, the algebra
of functions on the little space sits inside the algebra of functions on
the big space.

Notice how it's backwards. Classifying how a little commutative algebra
can sit in a big one amounts to classifying how a big space can cover a
little one! For more details on this analogy, try
\protect\hyperlink{week198}{``Week 198''},
\protect\hyperlink{week201}{``Week 201''} and especially
\protect\hyperlink{week205}{``Week 205''}.

I should warn you: the Galois group has a different name when we apply
it to the classification of covering spaces --- we call it the group of
``deck transformations''. The idea is pretty simple. Suppose \(Y\) is a
covering space of \(X\), like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) ellipse (1.5cm and 0.5cm);
    \draw[thick] (40:1.5)++(0,1.5) arc (40:-220:1.5cm and 0.5cm);
    \draw[dashed] (40:1.5)++(0,1.5) arc (40:140:1.5cm and 0.5cm);
    \draw[thick] (40:1.5)++(0,2.15) arc (40:-220:1.5cm and 0.5cm);
    \draw[dashed] (40:1.5)++(0,2.15) arc (40:140:1.5cm and 0.5cm);
    \draw[thick] (40:1.5)++(0,2.8) arc (40:-220:1.5cm and 0.5cm);
    \draw[thick] (40:1.5)++(0,2.8) arc (40:140:1.5cm and 0.5cm);
    \draw[thick,->] (0,1.5) to node[label={[label distance=-1mm]right:{$p$}}]{} (0,0.6);
    \node at (2,0) {$X$};
    \node at (2,2.75) {$Y$};
  \end{tikzpicture}
\] We've got a function \(p\colon Y \to X\), and sitting over each point
of \(X\) are the same number of points of \(Y\), living on different
``sheets'' that look locally just like \(X\). You should imagine the
sheets being able to twist around from place to place, like the edges of
a Moebius strip.

Anyway, a ``deck transformation'' is just a way of mapping \(Y\) to
itself that permutes the different points sitting over each point of
\(X\).

The theory of this was worked out by Riemann, Poincare, and others.
Poincare showed you could use this idea to turn any connected space
\(X\) into a group --- its ``fundamental group''. There are different
ways to define this, but one is to form the most complicated possible
covering space of \(X\) that's still connected --- its ``universal
cover''. Then, take the group of deck transformations of this! Following
Galois' philosophy, all the other connected covering spaces of \(X\)
correspond to subgroups of this group.

The theory of the fundamental group was just the beginning when it came
to groups and topology. One of many later big steps, back in the late
1940s, was due to Sammy Eilenberg and Saunders Mac Lane. They saw how to
reverse the ``fundamental group'' idea and turn any group back into a
space!

More precisely: for any group \(G\), there's a space whose fundamental
group is \(G\) and whose higher homotopy groups vanish. It's sometimes
called the ``Eilenberg--Mac Lane space'' and denoted \(K(G,1)\), but
sometimes it's called the ``classifying space'' and denoted \(BG\). It's
pretty easy to build; I described how back in
\protect\hyperlink{week70}{``Week 70''}.

You start with a point: \[\bullet\] Then you stick on an edge looping
from this point to itself for each element \(a\) in \(G\). Unrolled, it
looks like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$a$} (1,0);
  \end{tikzpicture}
\] where \(a\) is an element of our group. Then, whenever we have
\(ab = c\) in our group, we stick on a triangle like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$c$} (1.5,0) node{$\bullet$} to node[fill=white]{$b$} (0.75,1.3) node{$\bullet$} to node[fill=white]{$a$} cycle;
  \end{tikzpicture}
\] Then, whenever we have \(abc = d\) in our group, we stick on a
tetrahedron like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$d$} (3,0) node{$\bullet$} to node[fill=white]{$bc$} (1.5,2.6) node{$\bullet$} to node[fill=white]{$a$} cycle;
    \draw[thick] (0,0) to node[fill=white]{$ab$} (1.5,1) node{$\bullet$};
    \draw[thick] (1.5,2.6) to node[fill=white]{$b$} (1.5,1);
    \draw[thick] (3,0) to node[fill=white]{$c$} (1.5,1);
  \end{tikzpicture}
\] And so on, forever! For each list of \(n\) group elements, we get an
\(n\)-dimensional simplex in our Eilenberg-Mac Lane space. The resulting
space knows everything about the group we started with. In particular,
the fundamental group of this space will be the group we started with!

Using this idea, we can do some fiendish things. For example, for each
\(n\) we can form a set \(C_n(G,A)\) consisting of all functions that
eat \(n\)-dimensional simplices in the Eilenberg-Mac Lane space of \(G\)
and spit out elements of some abelian group \(A\). There are maps
\[d\colon C_n(G,A) \to C_{n+1}(G,A)\] reflecting the fact that each
\((n+1)\)-simplex has a bunch of \(n\)-simplices as its faces. Since the
boundary of a boundary is zero, \[d^2 = 0\] Guys who live in the kernel
of \[d\colon C_n(G,A) \to C_{n+1}(G,A)\] are called ``\(n\)-cocycles'',
and guys who live in the image of \[d\colon C_{n-1}(G,A) \to C_n(G,A)\]
are called ``\(n\)-coboundaries''. Since \(d^2 = 0\), every coboundary
is a cocycle, but not always vice versa. So, we can form the group of
cocycles mod coboundaries. This is called the ``\(n\)th cohomology
group'' of \(G\) with coefficients in \(A\), and it's denoted
\[H^n(G,A)\] This sounds unmotivated at first, but the \(n\)th
cohomology group of a space is really just a clever way of keeping track
of \(n\)-dimensional holes in that space. So, what we're doing here is
cleverly defining a way to study ``holes'' in a \emph{group!} There are
deeper, more conceptual ways of understanding group cohomology, but this
is not bad for starters.

For example, let's take the simplest group that's not \emph{utterly}
dull --- the integers \(\mod 2\), or \(\mathbb{Z}/2\). Here we get
\[K(\mathbb{Z}/2,1) = \mathbb{RP}^\infty\] where \(\mathbb{RP}^\infty\)
is the space formed by taking an infinite-dimensional sphere and
identifying opposite points. This space has holes of arbitrarily high
dimension, so the cohomology groups of \(\mathbb{Z}/2\) go on being
nontrivial for arbitrarily high \(n\). I sketched a ``picture proof''
here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  John Baez, Fall 2004 Quantum Gravity Seminar, week 10, notes by Derek
  Wise, \texttt{http://math.ucr.edu/home/baez/qg-fall2004/}
\end{enumerate}

and I showed that, for example \[
  H_n(\mathbb{Z}/2,\mathbb{Z}) =
  \begin{cases}
    \mathbb{Z} &\mbox{if $n=0$;}
  \\0 &\mbox{if $n$ is odd;}
  \\\mathbb{Z}/2 &\mbox{if $n$ is even and non-zero.}
  \end{cases}
\] I also explained how this stuff is related to topological quantum
field theory.

Anyway, all this is just the very superficial beginnings of the subject
of group cohomology. Read Brown's book to dig deeper!

Personally, what I find most exciting about this book now are the
remarks on the ``Euler characteristic'' of a group. Let me explain
this\ldots{} though now I'll have to pull out the stops and assume you
know some group cohomology.

We can try to define the ``Euler characteristic'' of a group \(G\) to be
the Euler characteristic of \(K(G,1)\). This is the alternating sum of
the dimensions of the rational cohomology groups \[H_n(G,\mathbb{Q})\]
Of course, this alternating sum only converges if the cohomology groups
vanish for big enough \(n\). Also, they all need to be
finite-dimensional.

Unfortunately, not many groups have well-defined Euler characteristic
with this naive definition!

For example, people have studied groups \(G\) whose \(n\)th cohomology
vanishes for \(n > d\), regardless of the coefficients. If we take the
smallest \(d\) for which this holds, such a group \(G\) is said to have
``cohomological dimension'' \(d\). Eilenberg and Ganea showed that for
\(d \geqslant 3\), a group has cohomological dimension \(d\) whenever we
can build \(K(G,1)\) as a simplicial complex (or CW complex) with no
cells of dimension more than \(d\).

This is a nice geometrical interpretation of the cohomological
dimension. But, one can show that groups with torsion never have finite
cohomological dimension! We've seen an example already:
\(\mathbb{Z}/2\), whose Eilenberg-Mac Lane space is
infinite-dimensional.

However, it turns out that there's a generalization of the Euler
characteristic that makes sense for any group \(G\) that has a
torsion-free subgroup \(H\) whose Euler characteristic is well-defined
in the naive way, as long as \(H\) has finite index in \(G\). We just
define the Euler characteristic of \(G\) to be the Euler characteristic
of \(H\) divided by the index of \(H\) in \(G\). The answer doesn't
depend on the choice of \(H\)!

Take my favorite example, \(\mathrm{SL}(2,\mathbb{Z})\). This has
torsion, so its cohomological dimension is infinite and its naive Euler
characteristic is undefined! Indeed, I wrote a whole issue of This
Week's Finds about some elements of orders 4 and 6 sitting inside
\(\mathrm{SL}(2,\mathbb{Z})\), related to the symmetries of square and
hexagonal lattices --- see \protect\hyperlink{week125}{``Week 125''}.

But, \(\mathrm{SL}(2,\mathbb{Z})\) has a torsion-free subgroup of index
12, namely its commutator subgroup --- the group you need to quotient by
to make \(\mathrm{SL}(2,\mathbb{Z})\) be abelian. This subgroup has
finite cohomological dimension and its Euler characteristic is \(-1\).
I'm not sure why this is true, but Brown says so! This means the Euler
characteristic of \(\mathrm{SL}(2,\mathbb{Z})\) works out to be
\(-1/12\).

If you've read my stuff about Euler characteristics in
\protect\hyperlink{week147}{``Week 147''}, you'll see why this gets me
so excited --- I can add this stuff to my list of weird ways of
calculating the Euler characteristic. Plus, it's related to the magical
role of the number ``24'' in string theory, and also the Riemann zeta
function!

Indeed, the Riemann zeta function gives a way to make rigorous Euler's
zany observation that \[1 + 2 + 3 + \ldots = -\frac{1}{12},\] as I
explained here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  John Baez, ``Euler's Proof that \(1+2+3+\ldots=-1/12\), Bernoulli
  Numbers and the Riemann Zeta Function'', Winter 2004 Quantum Gravity
  Seminar, homework for weeks 5,6,7, available at
  \texttt{http://math.ucr.edu/home/baez/qg-winter2004/}
\end{enumerate}

This suggests that there should be a version of the Eilenberg-Mac Lane
space for \(\mathrm{SL}(2,\mathbb{Z})\) which has 1 cell of dimension
\(0\), 2 cells of dimension \(2\), 3 cells of dimension \(4\), and so
on. Does anyone know if this is true?

More generally, G. Harder computed the (generalized) Euler
characteristic for a large class of arithmetic groups:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  G. Harder, ``A Gauss-Bonnet formula for discrete arithmetically
  defined groups'', \emph{Ann. Sci. Ecole Norm. Sup.} \textbf{4} (1971),
  409--455.
\end{enumerate}

For example, he looked at the symplectic group defined over the
integers, \(\mathrm{Sp}(n,\mathbb{Z})\), and showed that its Euler
characteristic is this product of values of the Riemann zeta function:
\[\zeta(-1) \zeta(-3) \cdots \zeta(1-2n)\] In the case \(n = 1\) we get
back \(\mathrm{SL}(2,\mathbb{Z})\) and \(\zeta(-1) = -1/12\).

In fact, every Chevalley group over the integers has a well-defined
Euler characteristic, and Harder was able to compute it in terms of
Bernoulli numbers. A Chevalley group is sort of like a simple Lie group,
but defined algebraically. \(\mathrm{Sp}(n,\mathbb{Z})\) is one example.
\(\mathrm{SL}(n,\mathbb{Z})\) is another, but it's Euler characteristic
turns out to vanish for \(n > 2\), so it's not too interesting.

Harder worked them all out. For example, he showed the Euler
characteristic of the integral form of the exceptional group
\(\mathrm{E}_7\) is some wacky number like
\[- \frac{691 \times 43867}{2^{21} \times 3^9 \times 5^2 \times 7^3 \times 11 \times 13 \times 19}\]
Serre went even further, computing Euler characteristics of Chevalley
groups defined over algebraic number fields. He also noticed that when
you write the Euler characteristic of a group as a fraction, the primes
in the denominator are precisely the primes \(p\) for which the group
has \(p\)-torsion. He was thus able to conclude, for example, that
\(\mathrm{E}_7\) defined over the integers has \(p\)-torsion for
\(p = 2, 3, 5, 7, 11, 13, 19\).

For more, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Jean-Pierre Serre, ``Cohomologie des groups discretes'', \emph{Ann.
  Math. Studies} \textbf{70} (1971), 77--169.
\end{enumerate}

This only takes us up to 1971. I shudder to think what bizarre results
along these lines are known by now! Probably they'd seem not bizarre but
beautiful if I understood this stuff better: I don't really have a clue
how the Riemann zeta function gets into this game, so everything after
that seems like black magic to me --- bewitching but bewildering.

But, it's clear that the study of groups and symmetry has not lost its
ability to turn up surprises.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I had often wondered how Klein's name got attached to
the pathetic little ``\(4\)-group'' mentioned above, which is just
\(\mathbb{Z}/2 \times \mathbb{Z}/2.\) John McKay proffered an
explanation:

\begin{quote}
There is a group called the Klein group. It is denoted \(V_4\) = The
Vierer-Gruppe (The fours group).

Klein worked with the simple group of order 168 and found the ``Klein
quadric'' which has it for symmetry group.

The suggestion is that friends decided to call the non-cyclic abelian
group of order 4 the ``Klein group'' = the ``little group'' as a joke.

I have a question you may like to posit to your readers:

Is \(V_4\) the abstract group or a permutation group?

There are other points \ldots{} I presume you know that your \(-1/12\)
is \(\zeta(-1)\). There is a paper by Lepowsky on the occurrence of such
\(\zeta(-n)\) involving vertex algebras.

I dearly wish I understood cohomology!

I am busy tethering moonshine!

Best, John
\end{quote}

This group of order 168 has made an appearance here before, in
\protect\hyperlink{week194}{``Week 194''}: it's
\(\mathrm{PSL}(3,\mathbb{Z}/2)\) --- the group of symmetries of the
projective plane over \(\mathbb{Z}/2\), or ``Fano plane'', whose points
can also be thought of as imaginary unit octonions. It's also
\(\mathrm{PSL}(2,\mathbb{Z}/7)\). I've long been mystified by its
relation to Klein's quartic, mainly because I've never spent time trying
to understand it! --- it's just one of those things that's been gnawing
at the edges of my consciousness, especially ever since I saw this book
come out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Silvio Levy, \emph{The Eightfold Way: the Beauty of Klein's Quartic
  Curve}, MSRI Research Publications \textbf{35}, Cambridge U. Press,
  Cambridge 1999. Available at
  \texttt{http://www.msri.org/publications/books/Book35/}
\end{enumerate}

It has a translation of Klein's original paper on this subject. Someday
I'll break down and study this.

Anyway\ldots.

James Dolan mentioned some other folklore saying that the ``Kleinian
groups'' were \emph{also} named after Klein as a joke:

\begin{quote}
by the way, i enjoyed the latest twf a lot (although i don't know why we
seem to never get a chance to talk about all this stuff ourselves that
much), but i noticed that you (apparently non-ironically) mentioned
kleinian groups as a famous thing named after klein, without telling the
story that i always hear about how poincare gave kleinian groups the
name ``kleinian groups'' after klein complained to poincare about
poincare's use of the terminology ``fuchsian groups'' for something that
fuchs apparently didn't event.

i guess that the versions of the story that i'd heard seemed to suggest
that klein was complaining because he thought that fuchs hadn't
significantly contributed to the study of fuchsian groups, and that
poincare may have been naively trying to placate klein and/or
not-so-naively twitting him by then giving the name ``kleinian groups''
to something that klein hadn't significantly contributed to the study
of.

however i did just look for the story on the web, and the tellings that
i found there i guess don't really suggest that klein didn't
``significantly contribute to the study of'' kleinian groups (or at
least not by my standards). it's still not clear though what sort of
reaction poincare may have been trying to provoke in klein, and whether
he succeeded in provoking it. it's claimed that poincare did come up
with the name ``kleinian function'' later in the same day after klein
complained about the name ``fuchsian function'', and also that klein was
subsequently just as vociferous in complaining to poincare about the
name ``kleinian function'' as he was in complaining about the name
``fuchsian function''. but apparently klein's complaints were based on
\emph{very} exacting concerns about absolute priority, so that the names
``fuchsian function'' and ``kleinian function'' can be seen as
inappropriate only by the standards of someone with similarly ridiculous
concerns about absolute priority, rather than by a reasonable person
such as myself.

i'd also heard that klein's nervous breakdown was provoked by the stress
of trying to keep up with a genius like poincare, but maybe it was
actually provoked by poincare's apparently casual attitude towards
priority disputes and/or concept-naming.

i'd thought of asking you about this issue of whether klein really did
have much to do with kleinian groups right after i read the advance copy
of twf that you sent me, but i guess that i didn't notice that it was an
advance copy. i guess that it doesn't matter though, since apparently
there \emph{is} a case to be made that klein had lots to do with
developing the theory of kleinian groups; just not by his own apparently
ridiculous standards.
\end{quote}

Noam Elkies suggested that the commutator subgroup of
\(\mathrm{SL}(2,\mathbb{Z})\) has Euler characteristic \(-1\) because
it's a a free group on 2 generators, so its classifying space is a
figure 8, with Euler characteristic \(1 - 2 = -1\) since it has one
vertex and two edges.

This sounds right. In particular, I already mentioned how Brown claims
the commutator subgroup of \(\mathrm{SL}(2,\mathbb{Z})\) is
torsion-free. Further, Kevin Buzzard shows below that any torsion-free
subgroup of \(\mathrm{SL}(2,\mathbb{Z})\) is a free group. So, we just
need to check that the commutator subgroup of
\(\mathrm{SL}(2,\mathbb{Z})\) can be generated by two elements but not
by just one.

Laurent Bartholdi just made this job easier; he sent me an email saying
these are free generators for the commutator subgroup of
\(\mathrm{SL}(2,\mathbb{Z})\): \[
  \left(
    \begin{array}{rr}
      2&-1\\-1&1
    \end{array}
  \right)
  \quad\mbox{and}\quad
  \left(
    \begin{array}{rr}
      1&-1\\-1&2
    \end{array}
  \right)
\]

In fact, Kevin Buzzard's email was packed with wisdom. He wrote:

\begin{quote}
I know one elementary argument which you don't appear to, so I thought
I'd fill you in. The argument below is waffly but rather easy really.

John Baez wrote:

\begin{quote}
But, \(\mathrm{SL}(2,\mathbb{Z})\) has a torsion-free subgroup of index
12, namely its commutator subgroup --- the group you need to quotient by
to make \(\mathrm{SL}(2,\mathbb{Z})\) be abelian. This subgroup has
finite cohomological dimension and its Euler characteristic is \(-1\).
I'm not sure why this is true, but Brown says so! This means the Euler
characteristic of \(\mathrm{SL}(2,\mathbb{Z})\) works out to be
\(-1/12\).
\end{quote}

One doesn't have to use such a ``strange'' subgroup as the commutator
subgroup of \(\mathrm{SL}(2,\mathbb{Z})\). People who do modular forms,
like me, far prefer ``congruence subgroups'', as these are the ones that
show up when you study automorphic forms for
\(\mathrm{SL}(2,\mathbb{Z})\). So here's an easy way to compute the
Euler characteristic of \(\mathrm{SL}(2,\mathbb{Z})\): take your
favourite congruence subgroup which has no torsion, work out its Euler
characteristic (this is easy, I'll show you how to do it in a second)
and then deduce what the Euler characteristic of
\(\mathrm{SL}(2,\mathbb{Z})\) is.

Here are some examples of congruence subgroups: for any integer
\(N\geqslant1\), consider the subgroup \(\Gamma_1(N)\) of
\(\mathrm{SL}(2,\mathbb{Z})\), defined as the matrices \[
  \left(\begin{array}{cc}a&b\\c&d\end{array}\right)
\] in \(\mathrm{SL}(2,\mathbb{Z})\) such that \(c=0 \mod N\) and
\(a=d=1 \mod N\). It's just the pre-image in
\(\mathrm{SL}(2,\mathbb{Z})\) of the upper triangular unipotent matrices
in \(\mathrm{SL}(2,\mathbb{Z}/N\mathbb{Z})\) so it's a subgroup of
\(\mathrm{SL}(2,\mathbb{Z})\). Here's a neat fact that makes life easy:

\textbf{Lemma:} if \(N\geqslant5\) then \(\Gamma_1(N)\) has no torsion.

\textbf{Proof:} say \(g\) in \(\mathrm{SL}(2,\mathbb{Z})\) has finite
order \(d\geqslant1\). Then its min poly divides \(X^d-1\) so over the
complexes it has distinct linear factors so it's diagonalisable with
roots of unity \(z\) and \(w\) on the diagonal. Now \(|z|=|w|=1\) so
\(|\operatorname{trace}(g)| \leqslant 2\). But it's an integer, so it's
\(-2,-1,0,1,2\). And for \(N\geqslant5\) the only one of these congruent
to \(2 \mod N\) is \(2\). So \(z=w=1\) and so \(g\) is the identity.

Deeper, but also completely standard (and not logically necessary for
what follows)---any torsion-free subgroup of
\(\mathrm{SL}(2,\mathbb{Z})\) is free! This is because
\(\mathrm{SL}(2,\mathbb{Z})\) acts very naturally on a certain tree in
the upper half plane. This is a neat piece of mathematics.
\(\mathrm{SL}(2,\mathbb{Z})\) acts on the upper half plane
\(\{z=x+iy:y>0\}\) via the rule: \[
  \left(\begin{array}{cc}a&b\\c&d\end{array}\right)
\] sends \(z\) to \((az+b)/(cz+d)\). Now draw dots at the points
\(i=\sqrt{-1}\) and \(\rho=\exp(2\pi i/6)\), the primitive 6th root of
unity in the upper half plane, and draw the obvious arc between them
(the one that lies on the circle \(|z|=1\)), this is our first edge, and
now look at the image of what you have under the
\(\mathrm{SL}(2,\mathbb{Z})\) action. It's a rather pretty tree, with
two kinds of vertices---those in the \(i\) orbit have valency 2 and
stabiliser of order 4, and those in the \(\rho\) orbit have valency 3
and stabiliser of order 6. Now a group is free iff it acts freely on a
tree, and anything torsion-free in \(\mathrm{SL}(2,\mathbb{Z})\) must be
acting freely on this tree because the stabiliser of each vertex and
edge under the \(\mathrm{SL}(2,\mathbb{Z})\) action is finite.

So \(\Gamma_1(5)\) is, by this general theorem, free. In fact I don't
really need this general nonsense, one can give a hands-on proof of this
fact, which I'll do now. We've seen that \(\mathrm{SL}(2,\mathbb{Z})\),
and hence \(\Gamma_1(5)\), acts on the upper half plane. There is no
torsion in \(\Gamma_1(5)\) so the action is very nice, one checks easily
that the action is free in fact by a similar sort of argument to the
lemma above, it's the sort of thing you can find in the first few pages
of any book on modular forms. So we can quotient out the upper half
plane by \(\Gamma_1(5)\) and get a quotient Riemann surface. The point
is that this computation is very manageable and can be done ``in
practice''. There is a standard argument which shows how to quotient out
the upper half plane by \(\mathrm{SL}(2,\mathbb{Z})\) --- the answer is
a Riemann surface isomorphic to the complex plane (although you have to
take care at the points where the action isn't free---this is exactly
the vertices of the tree above), and the isomorphism can even be given
``explicitly'' via the \(j\)-function coming from the theory of elliptic
curves---there is a standard fundamental domain even, the one with
corners \(\rho\), \(\rho\)\^{}2 and \(+i\infty\). I'm sure you'll have
come across this sort of thing many times before. Now
\(\mathrm{SL}(2,\mathbb{Z})\) surjects onto
\(\mathrm{SL}(2,\mathbb{Z}/5\mathbb{Z})\) so the index of
\(\Gamma_1(5)\) in \(\mathrm{SL}(2,\mathbb{Z})\) is just the index of \[
  \left(\begin{array}{cc}1&*\\0&1\end{array}\right)
\] in \(\mathrm{SL}(2,\mathbb{Z}/5Z)\) and by counting orders this comes
out to be 24. Now it's not hard to find explicitly 24 translates of the
standard fundamental domain and then glue them together to work out the
quotient of the upper half plane by \(\Gamma_1(5)\) --- it turns out
that it is isomorphic to the Riemann Sphere minus 4 points.

In fact there is no need to do this sort of computation --- the modular
forms people have automated it long ago. The quotient of the upper half
plane by \(\Gamma_1(N)\) is a Riemann surface called \(Y_1(N)\) and I
can just ask my computer to compute the genus of its natural
compactification (this exists and is called \(X_1(N)\)) and also to
compute how many cusps were added to compactify it. So in practice you
just have to find a friendly modular forms person and then say ``hey,
what's the genus of \(X_1(5)\) and how many cusps does it have?'' and
then you have a complete description of \(\Gamma_1(5)\) because it's
\(\pi_1\) of the answer.

OK, the upper half plane modulo \(\Gamma_1(5)\) is the sphere minus 4
points, so \(\Gamma_1(5)\) is \(\pi_1\) of this, i.e.~it's free on three
generators. That makes the Euler characteristic of \(\Gamma_1(5)\) equal
to \(1-3=-2\). And we already checked that the index was 24, so the
Euler Characteristic of \(\mathrm{SL}(2,\mathbb{Z})\) works out to be
\(-1/12\). Grothendieck wouldn't have chosen \(\Gamma_1(5)\); he would
have chosen something called \(\Gamma(2)\), the subgroup of
\(\mathrm{SL}(2,\mathbb{Z})\) consisting of the matrices which are the
identity \(\mod 2\). There is another classical modular function
\(\lambda\) inducing an isomorphism of \(Y(2)\), the quotient of the
upper half plane by \(\Gamma(2)\), with the sphere minus three
points---this is what gives the one-line proof of the fact that any
analytic function \(\mathbb{C}\to\mathbb{C}\) that misses two points
must be constant, because it then lifts to a function from
\(\mathbb{C}\) to the upper half plane which is the same as the unit
disc, so we're done by Liouville. There is a subtlety here though: \[
  \left(\begin{array}{rr}-1&0\\0&-1\end{array}\right)
\] is in \(\Gamma(2)\). So you have to work with
\(\mathrm{PSL}(2,\mathbb{Z})=\mathrm{SL}(2,\mathbb{Z})/\{\pm1\}\)
instead. Let \(\mathrm{P}\Gamma(2)\) denote the image of \(\Gamma(2)\)
in \(\mathrm{PSL}(2,\mathbb{Z})\). Note that \(-1\) is kind of a pain in
the theory of modular forms sometimes because it acts trivially on
everything but isn't the identity. Grothendieck was very interested in
the sphere minus three points but it's much older than this that
\(\mathrm{P}\Gamma(2)\) is its fundamental group, so
\(\mathrm{P}\Gamma(2)\) has Euler characteristic \(2-3=-1\) and index 6
in \(\mathrm{PSL}(2,\mathbb{Z})\), so \(\mathrm{PSL}(2,\mathbb{Z})\) has
Euler characteristic \(-1/6\), so \(\mathrm{SL}(2,\mathbb{Z})\) has
Euler characteristic \(-1/12\) because that's how they work. :-)

John Baez wrote:

\begin{quote}
This only takes us up to 1971. I shudder to think what bizarre results
along these lines are known by now! Probably they'd seem not bizarre but
beautiful if I understood this stuff better: I don't really have a clue
how the Riemann zeta function gets into this game, so everything after
that seems like black magic to me --- bewitching but bewildering.
\end{quote}

Nowadays almost any analytic function that is involved in number theory,
when evaluated at certain ``natural'' points, gives an answer which has
a conjectural interpretation in terms of relations between cohomology
theories --- this is the subject of many conjectures (Deligne,
Beilinson, Bloch-Kato,\ldots). It is still absolutely black magic!
Actually I'm being unfair, the relation between special values of
\(\zeta\) and Euler characteristics is somehow less profound than this
stuff. I wish I knew more about it! It can actually be used to compute
certain values of \(L\)-functions (things more general than the zeta
function but along the same lines)\ldots{}

Kevin
\end{quote}

I replied:

\begin{quote}
Hi -

Thanks VERY much for this email. I was actually wondering why Brown used
the commutator subgroup of \(\mathrm{SL}(2,\mathbb{Z})\) as a kind of
``warmup'' for computing the Euler characteristic of
\(\mathrm{SL}(2,\mathbb{Z})\) instead of one of the congruence
subgroups. It seems this subgroup is not any of the beloved congruence
subgroups\ldots.

In fact, I've finally managed to turn up the thing I was looking for.
How does this relate to the stuff you're saying? It involves
\(\Gamma(3)\) rather than the \(\Gamma_1(N)\) groups:

In \protect\hyperlink{weekux5cux252097}{``Week 97''}, I wrote:

\begin{quote}
Where does the extra 24 come from? I don't know, but Stephan Stolz said
it has something to do with the fact that while
\(\mathrm{PSL}(2,\mathbb{Z})\) doesn't act freely on the upper
half-plane --- hence these elliptic curves with extra symmetries --- the
subgroup ``\(\Gamma(3)\)'' does. This subgroup consists of integer
matrices \[\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\] with
determinant \(1\) such that each entry is congruent to the corresponding
entry of \[\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\] modulo 3.

So, if we form \[H/\Gamma(3)\] we get a nice space without any ``points
of greater symmetry''. To get the moduli space of elliptic curves from
this, we just need to mod out by the group
\[\mathrm{SL}(2,\mathbb{Z})/\Gamma(3) = \mathrm{SL}(2,\mathbb{Z}/3)\]
But this group has 24 elements!

In fact, I think this is just another way of explaining the period-24
pattern in the theory of modular forms, but I like it.
\end{quote}

Kevin wrote:

\begin{quote}
It's a rather pretty tree,
\end{quote}

Yes, there's a picture of it in Brown's book, drawn on top of an old
picture by Klein of a triangulation of the hyperbolic plane.

What Brown seems to be doing there is showing that this tree is a
deformation retract of that triangulation (with its simplicial topology,
where the points on the boundary of the hyperbolic plane form a discrete
set), and thus proving that the cohomological dimension of
\(\mathrm{SL}(2,\mathbb{Z})\) is just 1.

Anyway, this is all great stuff. Do you mind if I attach a copy of your
email to the copy of \protect\hyperlink{week213}{``Week 213''} on my
website? I think people will find it helpful, especially because of its
friendly straight-to-the-point style, which books rarely seem to
manage\ldots.

Best,

jb
\end{quote}

Kevin replied:

\begin{quote}
John Baez wrote:

\begin{quote}
I was actually wondering why Brown used the commutator subgroup of
\(\mathrm{SL}(2,\mathbb{Z})\) as a kind of ``warmup'' for computing the
Euler characteristic of \(\mathrm{SL}(2,\mathbb{Z})\) instead of one of
the congruence subgroups. It seems this subgroup is not any of the
beloved congruence subgroups\ldots.
\end{quote}

You're right, I don't think it is. For \(N\geqslant1\) define
\(\Gamma(N)\) to be the kernel of the obvious map
\(\mathrm{SL}(2,\mathbb{Z})\to\mathrm{SL}(2,\mathbb{Z}/N\mathbb{Z})\); a
congruence subgroup is any subgroup of \(\mathrm{SL}(2,\mathbb{Z})\)
that contains one of these \(\Gamma(N)\)'s. Clearly such things have
finite index in \(\mathrm{SL}(2,\mathbb{Z})\). But unfortunately there
exist subgroups of finite index in \(\mathrm{SL}(2,\mathbb{Z})\) that
are not congruence subgroups. This is a ``low-dimensional''
phenomenon---the moment you have a bit more freedom, e.g.~you're working
with \(\mathrm{SL}(3,\mathbb{Z})\) or indeed
\(\mathrm{SL}(n,\mathbb{Z})\) for any \(n\geqslant3\), or even
\(\mathrm{SL}(2,\mathbb{Z}[1/p])\) for some prime \(p\), then any
subgroup of finite index is a congruence subgroup---these groups satisfy
the ``congruence subgroup property''. But I've never understood the
commutator of \(\mathrm{SL}(2,\mathbb{Z})\) precisely for the reason
that it's not a congruence subgroup (this is essentially because the
commutator subgroup of \(\mathrm{SL}(2,\mathbb{Z}/N\mathbb{Z})\) never
has index 12 in \(\mathrm{SL}(2,\mathbb{Z}/N\mathbb{Z})\)! The index is
always smaller than 12 because \(\mathrm{SL}(2,\mathbb{Z}/p\mathbb{Z})\)
is essentially a simple group.)

John Baez wrote:

\begin{quote}
In fact, I've finally managed to turn up the thing I was looking for.
How does this relate to the stuff you're saying? It involves
\(\Gamma(3)\) rather than the \(\Gamma1(N)\) groups.
\end{quote}

Anything will do. If you know about \(\Gamma(3)\) then great. The same
key observation is true --- \(\Gamma(3)\) contains no elements of finite
order, because any finite order element
\[\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\] of \(\Gamma(3)\)
which isn't the identity must have trace in \(\{-2,-1,0,1\}\) congruent
to \(2 \mod 3\), so the trace must be \(-1\), so \(d=-1-a\), so the det
is \(a(-1-a) \mod 9\), which is never \(1 \mod 9\). Now the index of
\(\Gamma(3)\) in \(\mathrm{SL}(2,\mathbb{Z})\) is 24, and the modular
curve \(X(3)\) has genus 0 (everyone knows this because Wiles needed it
to prove Fermat's Last Theorem!) and four cusps (\(0\), \(1\), \(1/2\)
and \(\infty\)) and hence the Euler Characteristic of \(\Gamma(3)\) is
\(2-4=-2\), so we recover the result that the Euler Characteristic of
\(\mathrm{SL}(2,\mathbb{Z})\) is \(-1/12\) again.

John Baez wrote:

\begin{quote}
Where does the extra 24 come from? I don't know, but Stephan Stolz said
it has something to do with the fact that while
\(\mathrm{PSL}(2,\mathbb{Z})\) doesn't act freely on the upper
half-plane --- hence these elliptic curves with extra symmetries --- the
subgroup ``\(\Gamma(3)\)'' does.
\end{quote}

One can see that any subgroup of \(\mathrm{SL}(2,\mathbb{Z})\) which has
finite index and is free, must have index a multiple of 12 (and hence at
least 12). Because if it has index \(d\) and is free on \(g\)
generators, when we know \((1-g)/d=-1/12\), so 12 divides the
denominator of \((1-g)/d\) in lowest terms. Geometrically what is going
on is that perhaps the ``correct'' quotient of the upper half plane by
\(\mathrm{SL}(2,\mathbb{Z})\) is not just the complex numbers, it's
something that looks a bit like the complex numbers except there is a
little bit of extra magic going on at \(i\) and \(\rho\), corresponding
to the fact that one shouldn't really have attempted to quotient out
there, one should just remember that really the quotient is kind of
``crumpled up'' near there. So for example the fundamental group of the
quotient shouldn't be the trivial group --- if you take a small loop
around \(i\) then this should not be regarded as contractible --- you
have to go around \(i\) twice before you can hope to contract the loop.
Similarly you have to go around \(\rho\) three times. Even worse --- if
you do this carefully enough then even going around \(i\) twice or
\(\rho\) three times isn't enough to contract the loop --- because the
resulting loop somehow corresponds to the element \(-1\) in
\(\mathrm{SL}(2,\mathbb{Z})\), which acts trivially but which isn't the
identity! So you have to do everything again before you get to the
element \(1\). Mumford thought hard about how to make all this sort of
thing rigorous, and managed in the late 60s to prove that the Picard
group of the quotient of the upper half plane by
\(\mathrm{SL}(2,\mathbb{Z})\) was in fact \(\mathbb{Z}/12\mathbb{Z}\).

John Baez wrote:

\begin{quote}
Anyway, this is all great stuff. Do you mind if I attach a copy of your
email to the copy of \protect\hyperlink{week213}{``Week 213''} on my
website?
\end{quote}

Go ahead!

Kevin
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Regarding the fundamental investigations of mathematics, there is
no final ending \ldots{} no first beginning.}

--- Felix Klein
\end{quote}

\begin{quote}
\emph{In point of fact, it has traditionally been the ``continuous''
aspect of things which has been the central focus of Geometry, while
those properties associated with ``discreteness'', notably computational
and combinatorial properties, have been passed over in silence or
treated as an afterthought. It was therefore all the more astonishing to
me when I made the discovery, about a dozen years ago, of the
combinatorial theory of the icosahedron, even though this theory is
barely scratched (and probably not even understood) in the classic
treatise of Felix Klein on the icosahedron. I see in this another
significant indicator of this indifference (of over 2000 years) of
geometers vis-a-vis those discrete structures which present themselves
naturally in Geometry: observe that the concept of the group (notably of
symmetries) appeared only in the last century (introduced by Evariste
Galois), in a context that was considered to have nothing to do with
Geometry. Even in our own time it is true that there are lots of
algebraists who still haven't understood that Galois theory is
primarily, in essence, a geometrical vision, which was able to renew our
understanding of so-called ``arithmetical'' phenomena.}

--- Alexander Grothendieck
\end{quote}



\hypertarget{week214}{%
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What common English slang phrase alludes to the number 168?

I won't tell you --- not right away. But, I'll tell you a bunch of other
cool stuff about this number, and eventually the answer should jump out
at you.

Okay:

Start with a bunch of equilateral triangles. Glue them together so that
3 meet at each corner. You get a regular tetrahedron.

Next, take a bunch of squares. Glue them together so that 3 meet at each
corner. You get a cube.

Next, take a bunch of regular pentagons. Glue them together so that
three meet at each corner. You get a regular dodecahedron.

This is fun! We're getting a series of Platonic solids.

Next, take a bunch of regular hexagons and glue them together so that
three meet at each corner. Now the angles of the hexagons add up to 360
degrees, so we don't get a Platonic solid. Instead, we get a tiling of
the plane. It looks like a honeycomb that stretches out forever in all
directions.

But, if you want something finite in size, you can cut out a portion of
this honeycomb and curl it up to get a doughnut, or torus. There are
actually lots of ways to do this. You might have fun figuring out what
they all are. Can you take just \emph{one} regular hexagon and curl it
up to form a torus?

Anyway, these tori deserve to be called ``Platonic surfaces'', since
they are surfaces tiled with regular polygons, with the same number
meeting at each vertex.

Next, let's take a bunch of regular \emph{heptagons} and glue them
together so that three meet each corner. Now the angles add up to more
than 360 degrees, so we get a tiling of the ``hyperbolic plane''. The
hyperbolic plane is like the opposite of a sphere, since it's
saddle-shaped at every point instead of bulging out at every point. In
fact the sphere and the hyperbolic plane are the two most symmetrical
forms of non-Euclidean geometry. The sphere is ``positively curved'',
while the hyperbolic plane is ``negatively curved''.

You may have trouble visualizing the hyperbolic plane tiled with regular
heptagons, but if we distort it, it fits into a disk and looks really
pretty! Here it is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Don Hatch, Hyperbolic planar tesselations,
  \texttt{http://www.hadron.org/\textbackslash{}\textasciitilde{}hatch/HyperbolicTesselations/}
\end{enumerate}

\[\href{http://www.hadron.org/~hatch/HyperbolicTesselations/}{\includegraphics[max width=0.65\linewidth]{../images/7_3.png}}\]

It's called ``\(\{7,3\}\)'', since it's made of 7-sided figures with 3
meeting at each corner.

In this picture there's one heptagon at the center, surrounded by rings
of heptagons that appear smaller (but aren't really --- that's just an
effect of the distortion).

Can we cut out a portion of this tiling and curl it up to get a torus?
No! But, we can curl up a portion to get a 3-holed torus --- like the
surface of a doughnut with three holes. But, we can only do this if we
use precisely 24 heptagons!

Here's how we do it. Here's a picture of 24 heptagons, taken from an old
paper by Klein and Fricke but prettied up a bit:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Tony Smith, Klein's quartic surface,
  \texttt{http://www.valdostamuseum.org/hamsmith/cdomain.html\#tesselations}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/Klein168.png}\]

You'll notice they're drawn in a fancy style: each heptagon has been
``barycentrically subdivided'' into 14 right triangles. But don't worry
about that yet; concentrate on the heptagons.

There's a blue heptagon in the middle, 7 red ones touching that, 7
yellow ones touching those, then 7 green ones falling off the edge of
the picture, and 2 blue ones broken into bits all around the corners of
the picture. That's a total of 24 heptagons.

We wrap this thing up into a 3-holed torus using the numbers on the
edges of the picture:

\begin{itemize}
\tightlist
\item
  connect edges 1 and 6
\item
  connect edges 3 and 8
\item
  connect edges 5 and 10
\item
  connect edges 7 and 12
\item
  connect edges 9 and 14
\item
  connect edges 11 and 2
\item
  connect edges 13 and 4
\end{itemize}

In other words, connect edges \(2n+1\) and \(2n+6\) \(\mod 14\). To
connect them the right way, make sure that triangles of the same color
never touch each other.

Here's how to see if you get the idea. Ignore the little triangles; just
pay attention to the heptagons! Then:

Start on any edge of any heptagon and march along in either direction.

Then, when you get to the end, turn left.

Then, when you get to the end, turn right.

Then, when you get to the end, turn left.

Then, when you get to the end, turn right.

Then, when you get to the end, turn left.

Then, when you get to the end, turn right.

Then, when you get to the end, turn left.

Then, when you get to the end, turn right.

You should now be back where you started!!!

These are like the driving directions the devil gives people who ask the
way out of hell. LRLRLRLR and you're right back where you started.

But the resulting Platonic surface is heavenly. It has lots of
symmetries. Each of the 24 heptagons has 7-fold rotational symmetry ---
and amazingly, all these rotations extend to a symmetry of the Platonic
surface!

Now let's talk about those little triangles. Since our surface is made
of 24 heptagons, each chopped into 14 right triangles, there are a total
of \[24 \times 14 = 336\] triangles. And this number is also the number
of symmetries of the Klein quartic, including reflections!

This is no coincidence. We can specify a symmetry by saying where it
sends our favorite right triangle. Since it can go to any other
triangle, there are 336 possibilities. If we exclude reflections, we get
half as many symmetries: \(24 \times 7 = 168\).

By the way, this trick works for ordinary Platonic solids as well. For
example, if we take a dodecahedron and barycentrically subdivide all 12
pentagons, we get \(10 \times 12 = 120\) right triangles. If we pick one
of these as the ``identity element'', we can specify any symmetry by
saying which triangle this triangle gets sent to. So, the set of
triangles becomes a vivid \textbf{picture} of the \(120\)-element
symmetry group of the dodecahedron. It's called the ``Coxeter complex''.
This idea generalizes in many directions, and is incredibly useful.

Anyway\ldots{} there is much more to say about this stuff. For example,
if we take our hyperbolic plane tiled with heptagons and count them
grouped according to how far they are from the central one, we get the
sequence \[7, 7, 14, 21, 35, 56, 91, \ldots\] These are \(7\) times the
Fibonacci numbers!

To dig a bit deeper, though, it helps to think about complex analysis.

If we think of the hyperbolic plane as the unit disc in the complex
plane, this surface becomes a ``Riemann surface'', meaning that it gets
equipped with a complex structure. This was Felix Klein's viewpoint when
he discovered all this stuff in about 1878. He showed this surface could
be described by an incredibly symmetrical quartic equation in 3 complex
variables: \[u^3 v + v^3 w + w^3 u = 0\] where we count two solutions as
the same if they differ by an overall factor. So, it's called ``Klein's
quartic curve''.

(Why a ``curve'' and not a surface? Because it takes one \emph{complex}
number to say where you are on it. We have 3 unknowns and one equation,
but we mod out by an overall factor, so we get something locally
parametrized by one complex number\ldots{} so algebraic geometers call
it a curve.)

You can read Klein's original article translated into English. It's
available online as part of a whole \emph{book} about his incredible
quartic:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Silvio Levy, \emph{The Eightfold Way: the Beauty of Klein's Quartic
  Curve}, MSRI Research Publications \textbf{35}, Cambridge U. Press,
  Cambridge 1999. Also available as
  \texttt{http://www.msri.org/publications/books/Book35/}
\end{enumerate}

This book was put out by the Mathematical Sciences Research Institute in
Berkeley, to celebrate the completion of sculpture of Klein's quartic
curve made by Helaman Ferguson. I must admit that the sculpture leaves
me unmoved. But the curve itself --- ah, that's another story!

For example, Klein's quartic curve turns out to have the maximum number
of symmetries of any 3-holed Riemann surface.

Let's back up a minute and think about a Riemann surface with no holes:
a sphere. There's only one way to make a sphere into a Riemann surface
--- it's called the Riemann sphere. You can think of it as the complex
numbers plus a point at infinity. This has \emph{infinitely} many
symmetries. They're called conformal transformations, and they all look
like this: \[z\mapsto\frac{az+b}{cz+d}\] They form a group called
\(\mathrm{PSL}(2,\mathbb{C})\), since it's the same as the group of
\(2\times2\) complex matrices with determinant \(1\), mod scalars. It's
also the same as the Lorentz group!

There are different ways to make a torus into a Riemann surface, some
with more symmetries than others (see \protect\hyperlink{week124}{``Week
124''}). But, there are always translation symmetries in both
directions, so the symmetry group is always infinite.

On the other hand, a Riemann surface with 2 or more holes can only have
a \emph{finite} group of conformal transformations. In fact, in 1893
Hurwitz proved that a Riemann surface with \(g\) holes has at most
\[84(g - 1)\] For \(g = 3\), this is 168. So, Klein's quartic surface is
as symmetrical as possible! (We don't count reflections here, since they
don't preserve the complex structure --- they're like complex
conjugation.)

Now I should break down and give the best description of Klein's quartic
curve as a Riemann surface. Sitting inside
\(\mathrm{PSL}(2,\mathbb{C})\) is \(\mathrm{PSL}(2,\mathbb{Z})\), where
we only use integers \(a,b,c,d\) in our fractional linear transformation
\[z\mapsto\frac{az+b}{cz+d}\] This subgroup acts on the upper half-plane
\(H\), which is just another way of thinking about the hyperbolic plane.

Sitting inside \(\mathrm{PSL}(2,\mathbb{Z})\) is a group \(\Gamma(7)\)
consisting of guys where the matrix \[
  \left(
    \begin{array}{cc}
      a&b\\c&d
    \end{array}
  \right)
\] is congruent to the identity: \[
  \left(
    \begin{array}{cc}
      1&0\\0&1
    \end{array}
  \right)
\] modulo \(7\). This is an example of a ``congruence subgroup''; these
serve to relate complex analysis to number theory in lots of cool ways.
In particular, Klein's quartic curve is just \[H/\Gamma(7)\] Since
\(\Gamma(7)\) is a normal subgroup of \(\mathrm{PSL}(2,\mathbb{Z})\),
the quotient group
\[\mathrm{PSL}(2,\mathbb{Z})/\Gamma(7) = \mathrm{PSL}(2,\mathbb{Z}/7)\]
acts as symmetries of Klein's quartic curve. And, this group has 168
elements!

In fact, this group is the second smallest nonabelian simple group. The
smallest one is the rotational symmetry group of the icosahedron, which
has 60 elements. This group is actually
\(\mathrm{PSL}(2,\mathbb{Z}/5)\), and Klein had run into it in his work
on the icosahedron and quintic equations (see
\protect\hyperlink{week213}{``Week 213''}). So, it's actually far from
sheer luck that he then moved on to \(\mathrm{PSL}(2,\mathbb{Z}/7)\) and
ran into his wonderful quartic curve.

By the way, this \(168\)-element group is also known as
\(\mathrm{PSL}(3,\mathbb{Z}/2)\) --- the symmetry group of the ``Fano
plane''. This is a name for the projective plane over \(\mathbb{Z}/2\).
The Fano plane is closely related to the octonions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John Baez, ``The Fano plane'',
  \texttt{http://math.ucr.edu/home/baez/octonions/node4.html}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/fano.jpg}\]

So in fact, our \(168\)-element group acts on the set of octonion
multiplication tables:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Tony Smith, ``Octonion products'',
  \texttt{http://www.valdostamuseum.org/hamsmith/480op.html}
\item
  Geoffrey Dixon, ``Octonion multiplication tables'',
  \texttt{http://www.7stones.com/Homepage/octotut0.html}
\end{enumerate}

And, as James Dolan just noted today, and Tony Smith seems to have known
all along, there's a way to draw the Fano plane that even \emph{looks}
like the diagram Klein and Fricke used to build the Klein quartic.
Here's a picture drawn by Burkard Polster, author of ``The Mathematics
of Juggling'' and ``Geometries on Surfaces'':

\[\includegraphics[max width=0.65\linewidth]{../images/symfano.png}\]

So, something interesting is going on, and I want to know what it is!

By the way, fans of the quaternions and octonions may like this review
of Conway and Smith's book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez, ``review of \emph{On Quaternions and Octonions: Their
  Geometry, Arithmetic and Symmetry}, by John H. Conway and Derek A.
  Smith'', \emph{Bull. Amer. Math. Soc.} \textbf{42} (2005), 229--243.
  Available at \texttt{http://www.ams.org/bull/2005-42-02/} and
  \texttt{http://math.ucr.edu/home/baez/octonions/node24.html}
\end{enumerate}

It's packed with cool pictures and weird facts --- a more refined
version of the material in \protect\hyperlink{week193}{``Week 193''} and
\protect\hyperlink{week194}{``Week 194''}.

It builds up to a kind of crazy climax in which I describe how when you
pack spheres as densely as possible in 8 dimensions, each sphere touches
240 others\ldots{} and if you look at the 240 neighbors of a given
sphere, each one of those neighbors touches 56 other neighbors. Then I
explain how this gives rise to a \(56\)-dimensional representation of
the exceptional group \(\mathrm{E}_7\) --- its smallest nontrivial
representation! And, how it gives rise to a \(57\)-dimensional manifold
on which the exceptional group \(\mathrm{E}_8\) acts --- the smallest
space on which it acts nontrivially!

Bertram Kostant is one of the real gurus of Lie theory. He teaches at
MIT, and he has a strong fondness for exceptional Lie groups. When he
saw this review of mine, he mentioned a couple of other papers that
construct the \textbf{57}-dimensional space on which \(\mathrm{E}_8\)
acts:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Ranee Brylinski and Bertram Kostant, ``Lagrangian models of minimal
  representations of \(\mathrm{E}_6\), \(\mathrm{E}_7\), and
  \(\mathrm{E}_8\)'', in \emph{Functional Analysis on the Eve of the
  21st Century}, vol.~\textbf{1}, Progress in Math. \textbf{131},
  Birkhauser, Boston, 1995, pp.~13--53.

  Bertram Kostant, ``Minimal coadjoint orbits and symplectic
  induction'', in \emph{The Breadth of Symplectic and Poisson geometry},
  391--422, Progress in Math. \textbf{232}, Birkhauser, Boston, 2005.
  Also available as \texttt{http://www.arXiv.org/abs/math.SG/0312252}
\end{enumerate}

I've got to read these sometime.

Having the number 56 on my brain, I can't resist nothing that if you
take Klein's quartic curve tiled by heptagons, and you count the
vertices, you get \[24 \times 7 / 3 = 56\] since each vertex is shared
by 3 heptagons. I'm hoping this is not a coincidence!

Okay, that's all for this week, except for some silly stuff\ldots.

First of all, speaking of octonions, Geoff Corbishley just told me that
their inventor, John Thomas Graves, is a relative of Robert Graves ---
the author of ``I Claudius''.

Second of all, I hope you've figured out the puzzle I gave at the
beginning of this Week. The phrase is ``24-7'', as in ``we're working on
it 24-7''. 24 hours a day, 7 days a week, makes 168 hours per week!

Finally, speaking of numerology, this number 168 is related to why the
days of the week have the names they do! I explained why in
\protect\hyperlink{week175}{``Week 175''}, but I'll remind you:

Astrologers liked to list the planets in order of decreasing orbital
period, counting the sun as having a period of one year, and the moon as
period of one month:

\begin{longtable}[]{@{}ll@{}}
\toprule
Planet & Orbital period\tabularnewline
\midrule
\endhead
Saturn & 29 years\tabularnewline
Jupiter & 12 years\tabularnewline
Mars & 687 days\tabularnewline
Sun & 365 days\tabularnewline
Venus & 224 days\tabularnewline
Mercury & 88 days\tabularnewline
Moon & 29.5 days\tabularnewline
\bottomrule
\end{longtable}

For the purposes of astrology they wanted to assign a planet to each
hour of each day of the week. To do this, they assigned Saturn to the
first hour of the first day, Jupiter to the second hour of the first
day, and so on, cycling through the list of planets over and over, until
each of the \(24 \times 7 = 168\) hours was assigned a planet. Each day
was then named after the first hour in that day. Since 24 mod 7 equals
3, this amounts to taking the above list and cycling around it, reading
off every third planet:

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
Saturn & Saturday\tabularnewline
Sun & Sunday\tabularnewline
Moon & Monday\tabularnewline
Mars & Tuesday\tabularnewline
Mercury & Wednesday\tabularnewline
Jupiter & Thursday\tabularnewline
Venus & Friday\tabularnewline
\bottomrule
\end{longtable}

And that's how they got listed in this order! At least, this is what the
Roman historian Dion Cassius (AD 150--235) claims. Nobody knows for
sure.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Mike Stay took Don Hatch's picture and drew numbers
from 1 to 24 showing how to identify heptagons in order to get the Klein
quartic curve:
\[\includegraphics[max width=0.65\linewidth]{../images/7-3.png}\]

Gerard Westendorp had some interesting comments on what I wrote:

\begin{quote}
If you take Euler's formula \[V+F-E = 2-2\times\text{holes}\] then you
can figure out that for a \((7,3)\) tiling with \(N\) heptagons, you
have \[
  \begin{aligned}
    V &= \frac{7N}{3}
  \\F &= N
  \\E &= \frac{7N}{2}    
  \end{aligned}
\] so that \[N = 12\times(\text{holes}-1)\] Here's the table of
solutions:

\begin{longtable}[]{@{}ll@{}}
\toprule
holes & \(N\)\tabularnewline
\midrule
\endhead
0 & -12\tabularnewline
1 & 0\tabularnewline
2 & 12\tabularnewline
3 & 24\tabularnewline
4 & 36\tabularnewline
\(\vdots\) & \(\vdots\)\tabularnewline
\bottomrule
\end{longtable}

So indeed, there are no solutions for 0 holes (sphere) or 1 hole
(torus). But a \(2\)-holed torus should be possible, as well as the
\(24\)-faced \(3\)-holed one.

Anyway, see if I can visualise the \(3\)-holed one.

If you start with a sphere, i.e.~genus 0, and drill a tunnel through it,
you will get a genus 1 object. On the outer surface, you see 2 holes,
one for each side of the ``tunnel''. (I use the word ``tunnel'' for
something into a 3D object, and ``hole'' for something in a 2D surface.)

Next, you can drill a second tunnel, and get a genus 2 object, and you
would see 4 holes on the outer surface. But a nice trick is to drill not
to the outer surface, but to a secret ``cave'' in the middle where you
meet the first tunnel. Here you stop drilling. To complete the genus-3
object, you drill the third tunnel again not to the outer surface, but
to the central cave. Thus, you get and object with genus 3, which has 4
holes on its outer surface, each leading to a central cave.

Confusingly, 4 tunnels to a central cave is topologically the same as 3
separate tunnels! The trick is that tunnels do not have to end on the
outer surface, the inner surface is topologically the same.

OK, so we have an object with 4 holes on its outer surface. 4 holes
\(\to\) tetrahedron\ldots{}

I built a cardboard model of a tetrahedron with a central cave.
Truncated tetrahedrons together with tetrahedrons can fill space. So you
can stack 4 truncated tetrahedra on top of each other, leaving a hole in
the shape of an imaginary 5th one. Then use tetrahedra to fill up some
gaps. This was basically the shape I built out of cardboard. Then, I
spent rather a long time trying to tile this with heptagons. A clue to a
solution was that a triangulation of the surface I made had 120
triangle, and \(120 = 24\times5\). What is so good about 5? Well, 5
triangles stuck together have 7 outer sides, sop they are a kind of
pseudo heptagons. Anyway, I got a bit frustrated, and did not find a
nice tiling.

As I was trying to figure it out, I found this site:

\begin{quote}
\texttt{http://www.math.uni-siegen.de/wills/klein/}
\end{quote}

It has some nice pictures.

\begin{quote}
These are like the driving directions the devil gives people who ask the
way out of hell. LRLRLRLR and you're right back where you started.
\end{quote}

Btw, this works the same on other polyhedra, e.g.~the cube.

\begin{quote}
\begin{itemize}
\tightlist
\item
  Saturn (Saturday)
\item
  Sun (Sunday)
\item
  Moon (Monday)
\item
  Mars (Tuesday)
\item
  Mercury (Wednesday)
\item
  Jupiter (Thursday)
\item
  Venus (Friday)
\end{itemize}
\end{quote}

My French is not so good, but in French some names look more convincing:

\begin{itemize}
\tightlist
\item
  tuesday = mardi (Mars?)
\item
  wednesday = mercredi (Mercury?)
\item
  thursday = jeudi (Jove?)
\item
  friday = vendredi (Venus?)
\end{itemize}

Gerard
\end{quote}

I replied:

\begin{quote}
Gerard Westendorp wrote:

\begin{quote}
John Baez wrote:
\end{quote}

\begin{quote}
\begin{quote}
It's called ``\(\{7,3\}\)'', since it's made of 7-sided figures with 3
meeting at each corner.
\end{quote}
\end{quote}

\begin{quote}
\begin{quote}
Can we cut out a portion of this tiling and curl it up to get a torus?
No! But, we can curl up a portion to get a \(3\)-holed torus --- like
the surface of a doughnut with three holes. But, we can only do this if
we use precisely 24 heptagons!
\end{quote}
\end{quote}

\begin{quote}
If you take Euler's formula {[}\ldots.{]}
\end{quote}

\begin{quote}
So indeed, there are no solutions for 0 holes (sphere), 1 hole( torus).
But a \(2\)-holed torus should be possible, as well as the \(24\)-faced
\(3\)-holed one.
\end{quote}

I was going to talk about this, but I figured my article was getting too
long.

Indeed, Euler's formula also allows the possibility of a
\emph{\(2\)-holed} torus tiled with 12 heptagons meeting 3 at each
corner.

But this does not prove such a tiling is possible. I don't know if it
is! Someone should try it.

However: even if such a tiling exists, it's not possible for each
rotational symmetry of each heptagon to extend to a symmetry of the
whole tiled surface. What's marvelous about the 3-holed case is that
they all do --- at least if you do things correctly. This is what makes
the Klein quartic a full-fledged ``Platonic surface''.

If you look here:

\begin{itemize}
\tightlist
\item
  Hermann Karcher and Mattias Weber, ``The Geometry of Klein's Riemann
  Surface'', in \emph{The Eightfold Way: the Beauty of Klein's Quartic
  Curve}, ed.~Silvio Levy, MSRI Research Publications \textbf{35},
  Cambridge U. Press, Cambridge 1999. Also available as
  \href{http://www.msri.org/publications/books/Book35/files/karcher.pdf}{PDF}
  and
  \href{http://www.msri.org/publications/books/Book35/files/karcher.ps.gz}{gzipped
  Postscript}.
\end{itemize}

you'll see that Karcher and Weber study Platonic surfaces using Euler's
formula.

On pages 13--19 they consider Platonic surfaces with 2 holes. On page 19
they give a clever proof that no tiling of the \(2\)-holed torus by
heptagons meeting 3 at each corner can be a Platonic surface. The proof
is so clever that I don't understand it.

(Warning: their article starts on page 9.)

\begin{quote}
Anyway, see if I can visualise the 3-holed one.
\end{quote}

I wish I could visualize it myself.

\begin{quote}
As I was trying to figure it out, I found this site:

\begin{quote}
\texttt{http://www.math.uni-siegen.de/wills/klein/}
\end{quote}

It has some nice pictures.
\end{quote}

These pictures are interesting, but what I'd really like is a nice
picture of a \(3\)-holed torus, not weird or crumpled up, which is tiled
by 24 heptagons just like the Klein quartic.

The heptagons can't all be regular if the torus is embedded in
\(\mathbb{R}^3\), since there's no way to embed a compact surface of
constant negative curvature in \(\mathbb{R}^3\). But, you \emph{can} get
the \emph{topology} correct and still have the torus embedded in
\(\mathbb{R}^3\).

If anyone draws such a picture, and I think it looks nice, I'd love to
put it on This Week's Finds!

If anyone wants instructions on how such a surface should be made, look
above, where Mike Stay has kindly drawn numbers from 1--24 on a portion
of the hyperbolic plane tiled with heptagons. These numbers indicate how
to identify heptagons to get the Klein quartic. For example, all the
heptagons labelled ``21'' are really the same heptagon in the Klein
quartic.

\begin{quote}
\begin{quote}
\begin{itemize}
\tightlist
\item
  Saturn (Saturday)
\item
  Sun (Sunday)
\item
  Moon (Monday)
\item
  Mars (Tuesday)
\item
  Mercury (Wednesday)
\item
  Jupiter (Thursday)
\item
  Venus (Friday)
\end{itemize}
\end{quote}

My French is not so good, but in French some names look more convincing:

\begin{itemize}
\tightlist
\item
  tuesday = mardi (Mars?)
\item
  wednesday = mercredi (Mercury?)
\item
  thursday = jeudi (Jove?)
\item
  friday = vendredi (Venus?)
\end{itemize}
\end{quote}

Yes, this because most of the English names for planets come from Latin,
and French is more like Latin.

English is more complicated, but I'm so used to it that I forgot people
might find the connection to Latin mysterious:

\begin{itemize}
\tightlist
\item
  ``Tuesday'' comes from ``Tiu'' or ``Tyr'', an ancient Germanic god of
  war whom the Romans identified with Mars. We see traces of this in the
  German ``Dienstag'' as well.
\item
  ``Wednesday'' comes from ``Woden'' or ``Odin'', a Germanic god whom
  the Romans identified with Mercury. Modern German uses ``Mittwoch''
  instead, which means ``mid-week''.
\item
  ``Thursday'' comes from ``Thor'', a Germanic thunder god whom the
  Romans identified with Jupiter. Modern German uses ``Donnerstag''
  instead, with ``Donner'' meaning ``thunder''.
\item
  ``Friday'' comes from ``Freya'' or ``Frigga'', a Germanic goddess of
  married love whom the Romans identified with Venus. The German
  ``Freitag'' is very similar.
\end{itemize}
\end{quote}



\hypertarget{week215}{%
\section{May 9, 2005}\label{week215}}

This week I'd like to report on some cool things people have been
explaining to me. The science fiction writer Greg Egan has been helping
me understand Klein's quartic curve, and the mathematician Darin Brown
has been explaining the analogy between geodesics and prime numbers. The
two subjects even overlap slightly!

Last week I talked about Klein's quartic curve. This led Gerard
Westendorp and Mike Stay to draw some pictures of it, and their ideas
helped Greg Egan create this really nice picture:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Greg Egan, ``Klein's quartic curve'',
  \texttt{http://math.ucr.edu/home/baez/mathematical/KleinDual.png}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/KleinDual.png}\]
It looks sort of tetrahedral at first glance, but if you look carefully
you'll see that topologically speaking, it's a \(3\)-holed torus. It's
tiled by triangles, with 7 meeting at each vertex. So, it's the Klein
quartic curve!

Perhaps I should explain. Last week I talked about a tiling of the
hyperbolic plane by regular heptagons with 3 heptagons meeting at each
vertex. Dual to this is a tiling of the hyperbolic plane by equilateral
triangles with 7 triangles meeting at each vertex. We can take a
quotient space of this by a certain symmetry group and get a \(3\)-holed
torus tiled by 56 triangles with 7 meeting at each vertex. This is what
Egan drew!

With this picture you can almost \emph{see} the 168 symmetries of
Klein's quartic curve.

First, you can take any vertex and twist it, causing the 7 triangles
that meet at this vertex to cycle around. It's not obvious that this is
a symmetry of the whole tiled surface, but it is. This gives a
\(7\)-element symmetry group.

Second, the whole thing looks like a tetrahedron, so it inherits the
rotational symmetries of a tetrahedron. This gives a more obvious
\(12\)-element symmetry group.

\(7 \times 12 = 84\), so how do we get a total of 168 symmetries?

Well, there's also a \(2\)-fold symmetry that corresponds to turning the
tetrahedron inside out! And Egan made a wonderful \emph{movie} of this.
If a picture is worth a thousand words, this is worth about a million:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Greg Egan, ``Turning Klein's quartic curve inside out'',
  \texttt{http://math.ucr.edu/home/baez/mathematical/KleinDualInsideOut.gif}
\end{enumerate}

So, we get a total of \(7 \times 24 = 168\) symmetries.

Even better, if you watch carefully, you'll see that the tetrahedron in
Egan's movie gets \emph{reflected} as it turns inside out. More
precisely, if you follow the four corners of the tetrahedron, you'll see
that two come back to where they were, while the other two get switched.
So, this symmetry acts as a reflection, or odd permutation, of the 4
corners. The rotations act as even permutations of the corners.

This means that the Klein quartic has 24 symmetries forming a group
isomorphic to the rotation/reflection symmetry group of a tetrahedron.
Algebraically speaking, this group is \(S_4\): the permutations of 4
things.

This group is also the rotational symmetry group of a cube. In fact,
Egan was able to spot a hidden cube lurking in his picture! Can you?
\[\includegraphics[max width=0.65\linewidth]{../images/KleinDual.png}\]
If you look carefully, you'll see each corner of his tetrahedral gadget
is made of a little triangular prism with one triangle facing out and
one facing in: for example, the pink triangle staring you right in the
face, or the light blue one on top. Since \(4 \times 2 = 8\), there are
8 of these triangles. Abstractly, we can think of these as the 8 corners
of a cube! They aren't really, but we can pretend. The way these 8
triangles come in pairs corresponds to how the vertices of a cube come
in diagonally opposite pairs.

Using this, you can see that the group \(S_4\) acts on these 8 triangles
in precisely the same way it acts via rotations on the vertices of a
cube.

In fact, you can even draw a \emph{picture} of a cube on the Klein
quartic by drawing suitable curves that connect the centers of these 8
triangles! It's horribly distorted, but topologically correct. Part of
the distortion is caused by embedding the Klein quartic in ordinary 3d
Euclidean space. If we gave the Klein quartic the metric it inherits
from the hyperbolic plane, the edges of the cube would be geodesics.

This remark also helps us see something else. The Klein quartic is tiled
by 56 triangles. 8 of them give the cube we've just been discussing. In
Egan's picture these triangles look special, since they lie at the
corners of his tetrahedral gadget. But this is just an illusion caused
by embedding the Klein quartic in 3d space. In reality, the Klein
quartic is perfectly symmetrical: every triangle is just like every
other. So in fact there are lots of these cubes, and every triangle lies
in some cube.

But this is where it gets really cool. In fact, each triangle lies in
just \emph{one} cube. So, there's precisely one way to take the 56
triangles and divide them into 7 bunches of 8 so that each bunch forms a
cube.

So: the symmetry group of the Klein quartic acts on the set of cubes,
which has 7 elements.

But as I explained last week, this symmetry group also acts on the Fano
plane, which has 7 points.

This suggests that cubes in the Klein quartic naturally correspond to
points of the Fano plane. And Egan showed this is true!

He showed this by showing more. The Fano plane also has 7 lines. What 7
things in the Klein quartic do these lines correspond to?

\emph{Anticubes!}

You see, the cubes in the Klein quartic have an inherent handedness to
them. You can go between the 8 triangles of a given cube by following
certain driving directions, but these driving directions involve some
left and right turns. If you follow the mirror-image driving directions
with ``left'' and ``right'' switched, you'll get an \emph{anticube}.

Apart from having the opposite handedness, anticubes are just like
cubes. In particular, there's precisely one way to take the 56 triangles
and divide them into 7 bunches of 8 so that each bunch forms an
anticube.

Here's a picture:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Greg Egan, Cubes and anticubes in the Klein quartic curve,
  \texttt{http://math.ucr.edu/home/baez/KleinFigures.gif}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/KleinFigures.png}\]
Each triangle has a colored circle and a colored square on it. There are
7 colors. The colored circle says which of the 7 \emph{cubes} the
triangle belongs to. The colored square says which of the 7
\emph{anticubes} it belongs to.

If you stare at this picture for a few hours, you'll see that each cube
is completely disjoint from precisely 3 anticubes. Similarly, each
anticube is completely disjoint from precisely 3 cubes.

This is just like the Fano plane, where each point lies on 3 lines, and
each line contains 3 points!

So, we get a vivid way of seeing how every figure in the Fano plane
corresponds to some figure in the Klein quartic curve. This is why they
have the same symmetry group.

This is an excellent example of Klein's Erlangen program for reducing
geometry to group theory, which I discussed in
\protect\hyperlink{week213}{``Week 213''}. Here we are beginning to see
how two superficially different geometries are secretly the same:

\begin{longtable}[]{@{}ll@{}}
\toprule
Fano plane & Klein's quartic curve\tabularnewline
\midrule
\endhead
7 points & 7 cubes\tabularnewline
7 lines & 7 anticubes\tabularnewline
incidence of points and lines & disjointness of cubes and
anticubes\tabularnewline
\bottomrule
\end{longtable}

However, we're only half done! We've seen how to translate simple
figures and indicence relations in the Fano plane to complicated ones in
Klein's quartic curve. But, we haven't figured out translate back!

\begin{longtable}[]{@{}ll@{}}
\toprule
Klein's quartic curve & Fano plane\tabularnewline
\midrule
\endhead
24 vertices & ???\tabularnewline
84 edges & ???\tabularnewline
56 triangular faces & ???\tabularnewline
incidence of vertices and edges & ???\tabularnewline
incidence of edges and faces & ???\tabularnewline
\bottomrule
\end{longtable}

Here I'm talking about the tiling of Klein's quartic curve by 56
equilateral triangles. We could equally well talk about its tiling by 24
regular heptagons, which is the Poincare dual. Either way, the puzzle is
to fill in the question marks. I don't know the answer!

To conclude --- at least for now --- I want to give the driving
directions that define a ``cube'' or an ``anticube'' in Klein's quartic
curve. Say you're on some triangle and you want to get to a nearby
triangle that belongs to the same cube. Here's what you do:

\begin{quote}
hop across any edge,\\
turn right,\\
hop across the edge in front of you,\\
turn left,\\
then hop across the edge in front of you.
\end{quote}

Or, suppose you're on some triangle and you want to get to another
that's in the same anticube. Here's what you do:

\begin{quote}
hop across any edge,\\
turn left,\\
hop across the edge in front of you,\\
turn right,\\
then hop across the edge in front of you.
\end{quote}

(If you don't understand this stuff, look at the picture above and see
how to get from any circle or square to any other circle or square of
the same color.)

You'll notice that these instructions are mirror-image versions of each
other. They're also both \(1/4\) of the ``driving directions from hell''
that I described last time. In other words, if you go LRLRLRLR or
RLRLRLRL, you wind up at the same triangle you started from. You'll have
circled around one face of a cube or anticube!

In fact, your path will be a closed geodesic on the Klein quartic
curve\ldots{} like the long dashed line in Klein and Fricke's original
picture:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Klein and Fricke, Klein's quartic curve with geodesic,
  \texttt{http://math.ucr.edu/home/baez/Klein168.gif}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/Klein168.png}\]

Next, a little about geodesics and prime numbers. I've just been talking
a little about geodesics in the Klein quartic, which is the quotient

\[H/G\]

of the hyperbolic plane \(H\) by a certain group \(G\) which I explained
last week. This group, usually called \(\Gamma(7)\), is a nice example
of a ``Fuchsian group'' --- that is, a discrete subgroup of the
isometries of the hyperbolic plane.

Darin Brown and his thesis advisor Jeff Stopple at U. C. Santa Barbara
have been thinking about geodesics in \(H/G\) for other Fuchsian groups
\(G\), and their relation to number theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Jeff Stopple, ``A reciprocity law for prime geodesics'', \emph{J.
  Number Theory} \textbf{29} (1988), 224--230.
\item
  Darin Brown, \emph{Lifting properties of prime geodesics on hyperbolic
  surfaces}, Ph.D.~thesis, U. C. Santa Barbara, 2004.
\end{enumerate}

I'd really like to learn about this, because it connects all sorts of
stuff I dream of understanding someday, especially quantum chaos
(\protect\hyperlink{week190}{``Week 190''}), zeta functions in physics
and number theory (\protect\hyperlink{week199}{``Week 199''}), and
Galois theory as a theory of covering spaces
(\protect\hyperlink{week205}{``Week 205''}). Also, it involves a big
mysterious analogy, and I always like those!

I don't understand this stuff well enough to try a full-fledged
explanation yet, so I'll just give a vague sketch. A ``prime geodesic''
in a Riemannian manifold \(X\) is a closed geodesic
\[f\colon S^1 \to X\] that cycles around just once. In other words,
\(f\) should be one-to-one.

We say a closed geodesic is the ``\(n\)th power'' of a prime one if it's
just like the prime one but it cycles around \(n\) times. Every closed
geodesic is the \(n\)th power of a prime one in a unique way.

If we have a Fuchsian group \(G\), \(H/G\) is a surface with a
Riemannian metric. It looks locally like the hyperbolic plane, so it's
called a ``hyperbolic surface''. And, we can look at prime geodesics in
it.

If \(G'\) is a subgroup of \(G\), we get a covering map \[H/G' \to H/G\]
so we can ask about lifting prime geodesics in \(H/G\) to closed
geodesics in \(H/G'\). There can be a bunch of ways to do this, so we
say a prime geodesic in \(H/G\) ``splits'' into powers of prime
geodesics up in \(H/G'\).

If you know any number theory --- reading
\protect\hyperlink{week205}{``Week 205''} should be enough --- this
should remind you of how a prime ideal in some algebraic number field
can ``split'' into prime ideals in an extension of this field, and/or
``ramify'' into powers of prime ideals.

And indeed, Darin Brown has found a big mysterious analogy that goes
like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
Number field \(K\) & Hyperbolic surface \(H/G\)\tabularnewline
Field extension \(K'\) of \(K\) & Covering
\(p\colon H/G' \to H/G\)\tabularnewline
Galois group \(\mathrm{Gal}(K'/K)\) & Deck transformation group
\(\mathrm{Aut}(p)\)\tabularnewline
Prime ideal \(Q\) of \(K\) & Prime geodesic \(f\) in
\(H/G\)\tabularnewline
Prime ideal \(Q'\) lying over \(Q\) & Prime geodesic \(f'\) lying over
\(f\)\tabularnewline
Splitting of prime ideal \(Q\) of \(K'\) & Lifting of prime geodesic
\(f\) to \(H/G'\)\tabularnewline
Norm \(N(Q)\) of ideal \(Q\) & Norm \(N(f)\) of closed geodesic
\(f\)\tabularnewline
Frobenius conjugacy class of \(Q\) & Frobenius conjugacy class of
\(f\)\tabularnewline
Artin \(L\)-function & Selberg zeta function\tabularnewline
\bottomrule
\end{longtable}

(Here by ``prime ideal of \(K\)'' we mean a prime ideal in the ring of
algebraic integers of \(K\).)

But this is more than an analogy: there's even a way to associate number
fields to certain hyperbolic surfaces! The reason is that often Fuchsian
groups will consist of matrices whose entries lie in some number field.

I would like to understand the Selberg zeta function and its relation to
quantum mechanics. The Selberg zeta function is related to closed
geodesics, which are periodic classical trajectories, while the zeta
function of a Laplacian is related to periodic \emph{quantum}
trajectories (namely eigenfunctions of the Laplacian). So, the two are
related. I know there's a lot of cool stuff going on here --- especially
since the motion of a particle on a hyperbolic surface tends to be
chaotic, so ``quantum chaos'' rears its ugly head. But, I don't
understand any of the details.

In some notes on quantum chaos, Gutzwiller wrote:

\begin{quote}
The classical periodic orbits are a crucial stepping stone in the
understanding of quantum mechanics, in particular when then classical
system is chaotic. This situation is very satisfying when one thinks of
PoincarÃ© who emphasized the importance of periodic orbits in classical
mechanics, but could not have had any idea of what they could mean for
quantum mechanics. The set of energy levels and the set of periodic
orbits are complementary to each other since they are essentially
related through a Fourier transform. Such a relation had been found
earlier by the mathematicians in the study of the Laplacian operator on
Riemannian surfaces with constant negative curvature. This led to
Selberg's trace formula in 1956 which has exactly the same form, but
happens to be exact. The mathematical proof, however, is based on the
high degree of symmetry of these surfaces which can be compared to the
sphere, although the negative curvature allows for many more different
shapes.
\end{quote}

When I get serious, I'll read these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  M. C. Gutzwiller, \emph{Chaos in Classical and Quantum Mechanics},
  Springer, Berlin, 1990.
\item
  Predrag Cvitanovic, Roberto Artuso, Per Dahlqvist, Ronnie Mainieri,
  Gregor Tanner, Gabor Vattay, Niall Whelan and Andreas Wirzba,
  \emph{Chaos: Classical and Quantum}, available at
  \texttt{http://www.nbi.dk/ChaosBook/}
\item
  Svetlana Katok, \emph{Fuchsian Groups}, U. Chicago Press, Chicago,
  1992.
\item
  J. Elstrodt, F. Grunewald, and J. Mennicke, \emph{Groups Acting on
  Hyperbolic Space}, Springer, Berlin, 1998.
\item
  Peter Sarnak, ``Quantum chaos, symmetry and zeta functions'', in
  \emph{Current Developments in Mathematics}, 1997, eds R. Bott et al.,
  International Press, Boston, 1999, pp.~127--159.
\item
  C. Schmit, ``Quantum and classical properties of some billiards on the
  hyperbolic plane'', in \emph{Chaos and Quantum Physics}, eds.~M.-J.
  Giannoni et al., Elsevier, New York, 1991, pp.~333--369.
\end{enumerate}

For a nice pop treatment of quantum chaos and the Riemann hypothesis,
try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Martin Gutzwiller, ``Quantum chaos'', \emph{Scientific American},
  January 1992. Also available at
  \texttt{http://www.maths.ex.ac.uk/\textasciitilde{}mwatkins/zeta/quantumchaos.html}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Here is some email I got from Greg Egan and Toby
Bartels, and a post from Darin Brown which corrects some mistakes and
answers some questions raised by my pal Squark.

Greg Egan wrote me the following after I suggested a relation between
the Klein quartic curve and 3d Minkowski spacetime over the field
\(\mathbb{Z}/7\) --- a relation that he later exploited in some
fascinating ways.

\begin{quote}
Hi

Thanks for all the Lorentz group stuff! This will take me a while to
digest.

In the meantime, here are some more translations between the geometries.

Every cube intersects 4 anticubes, and any pair of cubes, between them,
intersect 6 anticubes (two of the 4 for each will always be shared). So
together the pair of cubes single out one anticube: the 7th one that
neither of them intersect. This is analogous to the fact that any two
Fano points single out a Fano line.

I'll write \(\mathrm{anti}(\{c_1,c_2\})\) for the anticube singled out
by a pair of cubes, and similarly \(\mathrm{cube}(\{a_1,a_2\})\) for the
cube singled out by a pair of anticubes. In the scheme used in this
diagram:
\[\includegraphics[max width=0.65\linewidth]{../images/KleinFigures.png}\]
both functions have identical outputs for the same input colours:

\begin{longtable}[]{@{}lccccccc@{}}
\caption{\(\mathrm{anti}(\{c_1,c_2\})\) and
\(\mathrm{cube}(\{a_1,a_2\})\)}\tabularnewline
\toprule
& \textbf{R} & \textbf{O} & \textbf{Y} & \textbf{G} & \textbf{LB} &
\textbf{P} & \textbf{DB}\tabularnewline
\midrule
\endfirsthead
\toprule
& \textbf{R} & \textbf{O} & \textbf{Y} & \textbf{G} & \textbf{LB} &
\textbf{P} & \textbf{DB}\tabularnewline
\midrule
\endhead
\textbf{R} & --- & DB & R & DB & Y & Y & R\tabularnewline
\textbf{O} & DB & --- & P & DB & P & O & O\tabularnewline
\textbf{Y} & R & P & --- & LB & P & LB & R\tabularnewline
\textbf{G} & DB & DB & LB & --- & G & LB & G\tabularnewline
\textbf{LB} & Y & P & P & G & --- & Y & G\tabularnewline
\textbf{P} & Y & O & LB & LB & Y & --- & O\tabularnewline
\textbf{DB} & R & O & R & G & G & O & ---\tabularnewline
\bottomrule
\end{longtable}

Now for some actual translations.

\begin{longtable}[]{@{}ll@{}}
\toprule
\begin{minipage}[b]{0.47\columnwidth}\raggedright
Klein's Quartic Curve\strut
\end{minipage} & \begin{minipage}[b]{0.47\columnwidth}\raggedright
Fano plane\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.47\columnwidth}\raggedright
28 pairs of opposite triangular faces\strut
\end{minipage} & \begin{minipage}[t]{0.47\columnwidth}\raggedright
28 choices of a point and a non-incident line, \(\{p,l\}\).
\[\begin{tikzpicture}\draw[thick] (0,0) to (2,0) node[label=right:{$l_1$}]{};\node[label={[label distance=-1mm]above:{$p_1$}}] at (0.8,0.3) {$\bullet$};\node at (1,-0.75) {$7\times4=28$};\end{tikzpicture}\]\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

In Klein's quartic curve, we specify a pair of opposite triangular faces
by picking one of seven cubes, then one of four anticubes that intersect
it. The intersection is a pair of triangular faces which are diagonally
opposite each other both on the cube and on the anticube. The 56
order-\(3\) elements of \(G\) preserve these pairs of triangular faces,
and consist of rotations by \(1/3\) and \(2/3\) turns for each such
pair.

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
\begin{minipage}[t]{0.47\columnwidth}\raggedright
Triangular faces sharing an edge\strut
\end{minipage} & \begin{minipage}[t]{0.47\columnwidth}\raggedright
Pairings of points and non-incident lines \(\{p_1,l_1\}\) and
\(\{p_1,l_1\}\) having \(p_1\) incident on \(l_2\) and \(p_2\) incident
on \(l_1\).
\[\begin{tikzpicture}\draw[thick] (0,0) to (2,0) node[label=right:{$l_1$}]{};\draw[thick] (0,0.5) to (2,0.5) node[label=right:{$l_2$}]{};\node[label={[label distance=-1mm]above:{$p_1$}}] at (0.8,0.5) {$\bullet$};\node[label={[label distance=-1mm]below:{$p_2$}}] at (1.4,0) {$\bullet$};\end{tikzpicture}\]\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

In Klein's quartic curve, whenever two triangular faces share an edge,
the cube each face belongs to will be disjoint from the anticube that
the other face belongs to. This can be checked by noting that the colour
of the anticube appears in the row for \(\mathrm{anti}(c,\cdot)\).

If you inspect a triangle and the three neighbours that share edges with
it, the neighbours will always belong to the three anticubes disjoint
from the cube the central triangle belongs to, i.e.~they will have
exactly the three colours appearing in the row for
\(\mathrm{anti}(c,-)\)

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
\begin{minipage}[t]{0.47\columnwidth}\raggedright
84 edges\strut
\end{minipage} & \begin{minipage}[t]{0.47\columnwidth}\raggedright
84 choices of \(\{p_1,l_1\}\) and \(\{p_2,l_2\}\) non-incident, but
\(\{p_1,l_2\}\) and \(\{p_2,l_1\}\)
incident.\[\begin{tikzpicture}\draw[thick] (0,0) to (2,0) node[label=right:{$l_1$}]{};\draw[thick] (0,0.5) to (2,0.5) node[label=right:{$l_2$}]{};\node[label={[label distance=-1mm]above:{$p_1$}}] at (0.8,0.5) {$\bullet$};\node[label={[label distance=-1mm]below:{$p_2$}}] at (1.4,0) {$\bullet$};\end{tikzpicture}\]
or equivalently: 84 choices of 3 non-colinear points with one point
singled out. In this definition, the special 3rd point is the one point
shared by \(l_1\) and \(l_2\) of the previous definition.
\[\begin{tikzpicture}\draw[thick] (0,0) to node[label={[label distance=-2mm]above right:{$l_2$}}]{} (1,-1) to node[label={[label distance=-2mm]below right:{$l_1$}}]{} (0,-2);\node[label=above:{$p_1$}] at (0,0) {$\bullet$};\node[label=right:{$p_3$}] at (1,-1) {$\bullet$};\node[label=below:{$p_2$}] at (0,-2) {$\bullet$};\end{tikzpicture}\]
We can count this as \(\binom{7}{3}\) triples, minus 7 triples that are
colinear, times three for three choices of distinguished point:
\[(\binom{7}{3} - 7)\times3 = 28\times3 = 84\]\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

In Klein's quartic curve, we specify an edge by picking a pair of cubes
\(\{c_1,c_2\}\) and then a distinguished third one, \(c_3\), so that the
three aren't all disjoint from any one anticube. This means that,
between them, they must intersect all seven anticubes. So the third cube
must be one that intersects \(\mathrm{anti}(\{c_1,c_2\})\). There are
exactly 4 of these (and \(c_1\) and \(c_2\) aren't among them, by
definition). So another way of counting the total is
\((\binom{7}{2})\times4 = 21\times4 = 84\) choices.

To identify the particular edge, suppose we've chosen
\(\{\{c_1,c_2\},c_3\}\) as our cubes. Then
\(\{c_1, \mathrm{anti}(\{c_2,c_3\})\}\) is a cube and an anticube that
intersects it, which specifies a pair of diagonally opposite triangular
faces, and the same is true of \(\{c_2, \mathrm{anti}(\{c_1,c_3\})\}\).
There is a unique edge where two of these triangles meet.

For example, if we pick
\(\{\{\mbox{red}, \mbox{orange}\}, \mbox{yellow}\}\) then we have
\(\{\mbox{red}, \mbox{anti-purple}\}\) and
\(\{\mbox{orange}, \mbox{anti-red}\}\). Both cube/anticube choices
specify two triangles each, but there is only one edge that belongs to
both a \(\{\mbox{red}, \mbox{anti-purple}\}\) and an
\(\{\mbox{orange}, \mbox{anti-red}\}\) triangle.

To reverse the process, if we look at the cube/anticube markings on the
triangles either side of some edge, and they are \(\{c_1,a_1\}\) and
\(\{c_2,a_2\}\), then we can describe this edge by
\(\{\{c_1,c_2\},\mathrm{cube}(\{a_1,a_2\})\}\).

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
\begin{minipage}[t]{0.47\columnwidth}\raggedright
Triangular faces each sharing an edge with a common neighbour, but not
each other. (This is sufficient, but not necessary, for them to share a
vertex.)\strut
\end{minipage} & \begin{minipage}[t]{0.47\columnwidth}\raggedright
Pairings of points and non-incident lines \(\{p_1,l_1\}\) and
\(\{p_2,l_2\}\) having \emph{either} \(p_1\) incident on \(l_2\) or
\(p_2\) incident on \(l_1\), but \emph{not} both.
\[\begin{tikzpicture}\draw[thick] (0,0) to (2,0) node[label=right:{$l_1$ (or $l_2$)}]{};\draw[thick] (0,0.5) to (2,0.5) node[label=right:{$l_2$ (or $l_1$)}]{};\node[label={[label distance=-1mm]above:{$p_1$ (or $p_2$)}}] at (0.8,0.5) {$\bullet$};\node[label={[label distance=-1mm]below:{$p_2$ (or $p_1$)}}] at (1.4,-0.3) {$\bullet$};\end{tikzpicture}\]\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

In Klein's quartic curve, as you go around a triangle anticlockwise and
look at its three (edge-sharing) neighbours, the cube a triangle belongs
to will be disjoint from the anticube of the triangle that follows, but
the anticube it belongs to will intersect the cube of the triangle that
follows. (But what the sense of the rotation means in the Fano plane
depends on whether we map cubes to points and anticubes to lines or vice
versa!)

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
\begin{minipage}[t]{0.47\columnwidth}\raggedright
24 vertices\strut
\end{minipage} & \begin{minipage}[t]{0.47\columnwidth}\raggedright
168 pairings of points and non-incident lines \(\{p_1,l_1\}\) and
\(\{p_2,l_2\}\) having \emph{either} \(p_1\) incident on \(l_2\) or
\(p_2\) incident on \(l_1\), but \emph{not} both.
\[\begin{tikzpicture}\draw[thick] (0,0) to (2,0) node[label=right:{$l_1$ (or $l_2$)}]{};\draw[thick] (0,0.5) to (2,0.5) node[label=right:{$l_2$ (or $l_1$)}]{};\node[label={[label distance=-1mm]above:{$p_1$ (or $p_2$)}}] at (0.8,0.5) {$\bullet$};\node[label={[label distance=-1mm]below:{$p_2$ (or $p_1$)}}] at (1.4,-0.3) {$\bullet$};\end{tikzpicture}\]
There are: (\(28\) choices for \(\{p_1,l_1\}\)) \(\times\) (\(3\)
choices for \(l_2\) passing through \(p_1\)) \(\times\) (\(7-5=2\)
choices for \(p_2\) not in \(l_1\) or \(l_2\)). This count identifies
each vertex as shared by common neighbours of a particular triangle, so
we expect to count each vertex 7 times for the seven triangles. We could
double this to count for swapping the role of \(p_1\) and \(p_2\), and
the we'd be counting each vertex twice as often: once going
anticlockwise between each pair of neighbours, and once going
clockwise\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

This is all a bit strange and inconvenient! I can pin down an edge, but
I haven't really pinned down a single face, or a way to count a vertex
just once. I guess the answer for a vertex is to talk about an
equivalence class of the structures:
\[\begin{tikzpicture}\draw[thick] (0,0) to (2,0) node[label=right:{$l_1$ (or $l_2$)}]{};\draw[thick] (0,0.5) to (2,0.5) node[label=right:{$l_2$ (or $l_1$)}]{};\node[label={[label distance=-1mm]above:{$p_1$ (or $p_2$)}}] at (0.8,0.5) {$\bullet$};\node[label={[label distance=-1mm]below:{$p_2$ (or $p_1$)}}] at (1.4,-0.3) {$\bullet$};\end{tikzpicture}\]
where we mod out by \(\mathbb{Z}/7\) and ``gauge fix'' \(l_1\). Every
vertex is surrounded by 7 triangular faces encompassing all seven cubes
and all seven anticubes, so these equivalence classes do fix a single
vertex.

Best wishes

Greg
\end{quote}

Toby Bartels wrote:

\begin{quote}
In Week 215, you wrote:

\begin{quote}
We say a closed geodesic is the ``\(n\)th power'' of a prime one if it's
just like the prime one but it cycles around \(n\) times. Every closed
geodesic is the \(n\)th power of a prime one in a unique way.
\end{quote}

The latter sentence is not quite true; you've forgotten \(n = 0\) again!

Some manifolds, like the real line, have no prime geodesics, but every
(pointed) manifold has a unique unit closed geodesic, which is the
geodesic that just sits at the basepoint the whole time. Given any prime
geodesic \(f\), this unit geodesic is \(f^0\).

Thinking about this, I noticed that multiplication of closed geodesics,
which involves (the often technically tricky) concatenation of paths,
has a unique definition that's associative on the nose. (Parametrise by
arclength, concatenate, then parametrise to unit length; since the paths
are geodesics, the last step is also unique.)

Unfortunately, this gives no way to define multiplication of closed
geodesics that are (positive) powers of different primes. We could
generalise to piecewise geodesics that may turn corners at the
basepoint, but this seems somewhat artificial, and it doesn't have very
nice properties.

-- Toby
\end{quote}

Darin Brown wrote, in response to some questions by Squark on
\texttt{sci.physics.research}:

\begin{quote}
\begin{quote}
Squark wrote:

\begin{quote}
John Baez wrote:

If \(G'\) is a subgroup of \(G\), we get a covering map \[H/G' \to H/G\]
so we can ask about lifting prime geodesics in \(H/G\) to closed
geodesics in \(H/G'\). There can be a bunch of ways to do this, so we
say a prime geodesic in \(H/G\) ``splits'' into powers of prime
geodesics up in \(H/G'\).
\end{quote}

I don't quite understand how can the lift be a power, rather than just a
prime.
\end{quote}

Quite true. When you lift a geodesic, once you get back to the starting
basepoint, you've gone around once up above, corr. to a prime above, so
it doesn't make sense to go around more than once! (I think this is what
the author of this comment meant.) In fact, I think it's true (I can ask
Jeff) that in a sense, there are no ``ramified primes'' in the geodesic
context. (There are only finitely many in the number theory context.
Actually, ramified primes are bad behaviour in a sense.) It is true,
when you lift a prime, the geodesic above has length a multiple of the
prime below, this is the analogue of the \emph{inertial degree}, not the
ramification degree. It seems all the ramification degrees are 1, and
the magic equation reduces to degree of extension = sum(inertia
degrees).

\begin{quote}
\begin{quote}
\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
Norm \(N(Q)\) of ideal \(Q\) & Norm \(N(f)\) of closed geodesic
\(f\)\tabularnewline
\bottomrule
\end{longtable}
\end{quote}

What is a norm of a geodesic? The length or the energy or\ldots{} ?
\end{quote}

Explicitly, the length of a geodesic is the (natural) log of the norm,
or equivalently, the norm is \(\exp(\text{length})\). For closed
geodesics on \(\Gamma\backslash H\), you find the norm explicitly as
follows: consider the associated hyp. conj. class \(\{\gamma\}\), take
an eigenvalue \(\varepsilon\) of an element of this conj. class, then
the norm is \(\varepsilon^2\). The length of the geodesic is then
\(2\log(\varepsilon)\). This is independent of the choice of \(\gamma\)
in the conj. class.

This is why I now like to think of the norm of an ideal as a kind of
``length function on ideals''.

\begin{quote}
\begin{quote}
\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
Frobenius conjugacy class of \(Q\) & Frobenius conjugacy class of
\(f\)\tabularnewline
\bottomrule
\end{longtable}
\end{quote}

Again, what is the Frobenius on the right side here?
\end{quote}

I can give 2 answers. The first answer is a cop-out, because it would
just give the concrete definition given in Jeff's paper or my thesis,
e.g.~Namely, you take the associated matrix \(\gamma\), and reduce
entries mod the prime \(Q\), where \(Q\) determines the covering surface
\(\Gamma(Q)\backslash H\). This is a very concrete definition that
doesn't hint at the connection to number theory. Remember, secretly,
\(\mathrm{PSL}(2,q)\), \(q = \mathrm{norm}(Q)\) is really (isomorphic
to) the deck transformation group of \(\Gamma(Q)\backslash H\) over
\(\Gamma(H)\), and the Frob conj. class of a geodesic \(f\) should be a
conj. class in this deck transformation group. Conceptually, it should
be an element of the decomposition group, those deck transformations
that fix the prime geodesic above. Choosing different primes above the
prime below should give elements of the deck transformation group which
are conjugate to each other. At least, that should be the idea.

darin
\end{quote}

Darin's description of the Frobenius associated to a prime geodesic in
\(H/G\) is a bit technical. Here's my guess as to a simpler description:

We have a covering space of a Riemannian manifold. A geodesic down below
gives an element of the fundamental group of the base. This acts as deck
transformations of the cover. So, it acts on the set of prime geodesics
in the cover! Indeed, it acts on the set of prime geodesics which are
lifts of the geodesic down below. This is the ``Frobenius automorphism''
associated to the geodesic.

It's just a guess, but I feel sure it's right, or at least close. It's
just like the Frobenius automorphisms in number theory --- at least if
we realize that a Galois group is secretly a fundamental group, as
explained in \protect\hyperlink{week213}{``Week 213''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Wherever there is number, there is beauty.}

--- Proclus
\end{quote}
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There are lots of different things called ``zeta functions'' in
mathematics and physics. The grand-daddy of them all is the Riemann zeta
function:
\[\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \ldots\]
This is deeply related to prime numbers, thanks to Euler's product
formula \[\zeta(s) = \prod\frac{1}{1 - p^{-s}}\] where we take a product
over all primes. This formula is fun to prove: just use the geometric
series to expand each factor, multiply them out and see what happens!

Using this, Riemann and von Mangoldt derived an explicit formula for how
many primes are less than a given number as a sum over the \emph{zeros}
of the Riemann zeta function. Instead of showing you this formula, I'll
just urge you to watch a \emph{movie} of how it works:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Matthew Watkins, Animation: the prime counting function \(\pi(x)\),
  \texttt{http://www.maths.ex.ac.uk/\textasciitilde{}mwatkins/zeta/pianim.htm}
\end{enumerate}

Thanks to this formula, information about the Riemann zeta function is
secretly information about the distribution of primes!

For example, the Riemann Hypothesis says that when we analytically
continue the zeta function to the complex plane, the only zeros occur at
negative even integers and numbers with real part equal to \(1/2\). And,
knowing this would be equivalent to knowing that the number of primes
less than \(x\) differs from
\[\mathrm{Li}(x) = \int_2^x \frac{dt}{\ln t}\] by less than some
constant times \(\ln(x)\sqrt{x}\). Everyone feels sure these facts are
true. But, despite over a century of hard work and a million-dollar
prize offered by the Clay Mathematics Institute, nobody has come close
to proving them!

It's known that apart from the negative even integers, the only place
the Riemann \(\zeta\) function can vanish is in the strip where
\[0 < \Re(s) < 1\] But, nobody has been able to show that all the zeros
in this ``critical strip'' lie on the line \[\Re(s) = \frac12\] Of
course, this can be checked in special cases. The current record may
belong to Xavier Gourdon, who on October 12th of 2004 claimed to have
shown --- with the help of a computer --- that the first \emph{ten
trillion} zeros in the critical strip lie on the line Re(s) = 1/2.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Xavier Gourdon, Computation of zeros of the Riemann zeta function,
  \texttt{http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeroscompute.html}
\end{enumerate}

Alas, such monster calculations don't seem helpful for proving the
Riemann hypothesis. They're more useful when it comes to formulating and
testing conjectures about the \emph{statistical properties} of the
zeros.

The most famous of these traces its way back to a teatime conversation
between Hugh Montgomery and Freeman Dyson\ldots{} you can read the story
here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  K. Sabbagh, \emph{Dr.~Riemann's Zeros}, Atlantic Books, 2002,
  pp.~134=-136. Story about Hugh Montgomery and Freeman Dyson also
  available at
  \texttt{http://www.maths.ex.ac.uk/\textasciitilde{}mwatkins/zeta/dyson.htm}
\end{enumerate}

The upshot is that the distribution of spacings between Riemann zeros
closely mimics the spacings between eigenvalues of a large randomly
chosen self-adjoint matrix.

This suggests fascinating relations between the Riemann zeta function
and quantum physics. In fact, one popular dream for proving the Riemann
zeta function is to find a chaotic classical system whose quantized
version has energy levels related to the Riemann zeta zeros!

I would like to understand this stuff, but it all seems a bit
intimidating --- especially since the coolest aspects are the ones
\emph{nobody} understands.

Luckily, the Riemann zeta function has spawned a lot of other functions
called zeta functions and \(L\)-functions, and many of these are
\emph{simpler} than the original one --- or at least raise fascinating
questions that are easier to solve. Many of these are listed here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Matthew R. Watkins, A directory of all known zeta functions,
  \texttt{http://www.maths.ex.ac.uk/\textasciitilde{}mwatkins/zeta/directoryofzetafunctions.htm}

  Matthew R. Watkins, A directory of all known \(L\)-functions,
  \texttt{http://www.maths.ex.ac.uk/\textasciitilde{}mwatkins/zeta/directoryof\$L\$-functions.htm}
\end{enumerate}

Lately I've been talking about zeta functions with James Dolan and also
Darin Brown, whose work I mentioned last week. I feel some things are
starting to make sense, so I'd like to explain them before it turns out
they don't.

I'll just list some zeta functions, so you can see what we're dealing
with:

\textbf{A) The zeta function of a number field.} A ``number field'' is
something you get by taking the rational numbers and throwing in some
algebraic numbers. One can define ``algebraic integers'' for any number
field, and they act a lot like the ordinary integers. So, one can define
a zeta function for any number field.

Technically, we do this by summing over all nonzero ideals \(I\) in the
ring \(A\) of algebraic integers in our number field:
\[\zeta(s) = \sum |I|^{-s}\] where \(|I|\) is a number called the
``norm'' of \(I\), which is just the cardinality of \(A/I\). We also
have an Euler product formula:
\[\zeta(s) = \prod \frac{1}{1 - |P|^{-s}}\] where we take the product
over prime ideals \(P\).

For example, if our number field is the rational numbers, its algebraic
integers are the ordinary integers. So, each ideal consists of multiples
of some number \(n = 1,2,3,\ldots\), and its norm is just \(n\), so we
get:
\[\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \ldots\]

A more fun example is the number field \(\mathbb{Q}[i]\), where we take
the rational numbers and throw in a square root of \(-1\). Here the
algebraic integers are the so-called ``Gaussian integers''
\(\mathbb{Z}[i]\), namely guys like \[a + bi\] where \(a\) and \(b\) are
ordinary integers.

In this example it's easiest to work out the zeta function using the
Euler product formula. If you ask one of your number theory pals about
prime ideals in the Gaussian integers, they'll say:

\begin{quote}
"Well, the Gaussian integers are a principal ideal domain, so every
ideal is generated by a single element. So, we can actually talk about
\emph{prime numbers} in the Gaussian integers. And there are 3 cases:

\begin{itemize}
\tightlist
\item
  \textbf{INERT}: An ordinary prime number of the form \(4n+3\) is also
  prime in the Gaussian integers: for example, 3.
\item
  \textbf{SPLIT}: An ordinary prime numbers of the form \(4n+1\) is the
  product of two complex conjugate primes in the Gaussian integers: for
  example, \(5 = (2+i)(2-i)\).
\item
  \textbf{RAMIFIED}: The ordinary prime 2 equals \((1+i)(1-i)\), but
  here the two factors give the same prime ideal, since
  \((1-i) = i(1+i)\), and \(i\) is invertible in the Gaussian integers.
\end{itemize}

We get all primes in the Gaussian integers this way."
\end{quote}

So, the zeta function of the Gaussian integers goes like this:
\[\zeta(s) = \frac{1}{1 - 2^{-s}} \frac{1}{1 - 3^{-2s}} \frac{1}{1 - 5^{-s}} \frac{1}{1 - 5^{-s}} \ldots\]
I went just far enough to show you what happens for each kind of prime.
As you might expect, we get two factors for each prime that splits in
two.

I should explain the other details, but number theory is best absorbed
in small doses, especially if you're a physicist. The main lesson to
take home is this:

A number field is like a funny sort of ``branched covering space'' of
the set of ordinary primes. Sitting over each ordinary prime there are
one or more prime ideals in our number field: \[
  \begin{tikzpicture}[xscale=1.4,yscale=1.2]
    \draw[thick] (0,1.5) to (2,1.5);
    \draw[thick] (2,1.5) .. controls (2.25,2) and (2.75,2) .. (3,1.5);
    \draw[thick] (2,1.5) .. controls (2.25,1) and (2.75,1) .. (3,1.5);
    \draw[thick] (3,1.5) to (5,1.5);
    \draw[thick] (5,1.5) .. controls (5.25,2) and (5.75,2) .. (6,1.5);
    \draw[thick] (5,1.5) .. controls (5.25,1) and (5.75,1) .. (6,1.5);
    \draw[thick] (6,1.5) to (6.25,1.5);
    \draw[thick,dotted] (6.25,1.5) to (6.5,1.5);
    \node[fill=white] at (0.5,1.5) {\scriptsize$(1+i)$};
    \node[fill=white] at (1.5,1.5) {\scriptsize$(3)$};
    \node[fill=white] at (2.5,1.75) {\scriptsize$(2+i)$};
    \node[fill=white] at (2.5,1.25) {\scriptsize$(2-i)$};
    \node[fill=white] at (3.5,1.5) {\scriptsize$(7)$};
    \node[fill=white] at (4.5,1.5) {\scriptsize$(11)$};
    \node[fill=white] at (5.5,1.75) {\scriptsize$(2+i)$};
    \node[fill=white] at (5.5,1.25) {\scriptsize$(2-i)$};
    %
    \draw[thick] (0,0) to (6.25,0);
    \draw[thick,dotted] (6.25,0) to (6.5,0);
    \node[fill=white] at (0.5,0) {$2$};
    \node[fill=white] at (1.5,0) {$3$};
    \node[fill=white] at (2.5,0) {$5$};
    \node[fill=white] at (3.5,0) {$7$};
    \node[fill=white] at (4.5,0) {$11$};
    \node[fill=white] at (5.5,0) {$13$};
  \end{tikzpicture}
\] And, the \(\zeta\) function records the details of how this works!

For more on this covering space philosophy see
\protect\hyperlink{week205}{``Week 205''} and
\protect\hyperlink{week213}{``Week 213''}. This geometrical metaphor
lies behind a lot of the really cool work on number theory.

\textbf{B) The zeta function of a discrete dynamical system.} A
``discrete dynamical system'' consists of a set \(X\) together with a
one-to-one and onto function \[f\colon X \to X\] Here \(X\) is the set
of ``states'' of some physical system, and \(f\) describes one step of
time evolution. For each integer \(n\) we get a function
\[f^n\colon X \to X\] Since the integers are called \(\mathbb{Z}\),
mathematicians would call our discrete dynamical system a
``\(\mathbb{Z}\)-set''.

Whatever you call it, its zeta function is defined to be:
\[\zeta(s) = \prod \frac{1}{1 - |P|^{-s}}\] where \(P\) ranges over all
periodic orbits and \(|P|\) is the \emph{exponential} of the size of
this periodic orbit.

This is like an Euler product formula with the periodic orbits being the
``primes''. Just as every natural number can be uniquely factored into
primes, every discrete dynamical system can be uniquely written as a
disjoint union of periodic orbits. This explains the exponential in the
definition of \(|P|\) above: primes like to multiply, while sizes of
orbits like to add.

One nice thing about this zeta function is that when we take the
disjoint union of two discrete dynamical systems, their zeta functions
multiply. Another nice thing is that the zeta function of a dynamical
system completely describes it up to isomorphism, at least when the set
\(X\) is finite. Decategorification at work!

We can also rewrite this zeta function as a sum:
\[\zeta(s) = \sum |I|^{-s}\] where \(I\) ranges over all formal products
of periodic orbits, and we define
\(|P_1 \ldots P_n| = |P_1| \ldots |P_n|\).

Even better, examples A) and B) overlap. I'll explain how later, but the
key is to associate to any number field and any prime \(p\) a discrete
dynamical system \[f\colon X \to X\] called the ``Frobenius
automorphism''. This gives a zeta function. It works best if we take the
exponential of the size of each periodic orbit using the base \(p\)
instead of base \(e\). Then, if we multiply all these zeta functions,
one for each ordinary prime \(p\), we get the zeta function of our
number field!

\textbf{C) The zeta function of a continuous dynamical system.} Now
suppose \(X\) is some topological space and we have a time evolution map
\[f_t\colon X \to X\] for each real number \(t\). We can define a zeta
function \[\zeta(s) = \prod \frac{1}{1 - |P|^{-s}}\] where \(P\) ranges
over all periodic orbits and \(|P|\) is the exponential of the
``period'' of \(P\) --- meaning the time it takes for points on this
orbit to loop around back to where they started.

A famous example is when we have a Riemannian manifold. A free particle
moving around on such a space will trace out geodesics, giving us a
dynamical system. The analogue of primes are now ``prime geodesics'':
periodic geodesics that loop around just once.

The ``covering space'' philosophy described in example A) can now be
taken literally! If the Riemannian manifold \(M'\) is a covering space
of \(M\), any prime geodesic \(P\) in \(M\) defines a deck
transformation of \(M'\). This transformation acts on the set \(X\) of
prime geodesics sitting over \(P\), so we get a one-to-one and onto map
\[f\colon X \to X\] This is exactly like the ``Frobenius automorphism''
in number theory!

All this is particularly interesting when our manifold is a quotient of
the upper halfplane by a discrete group --- see
\protect\hyperlink{week215}{``Week 215''} for more on this. The reason
is that some of these quotients are related to number theory. So, we get
some direct interactions with example A).

\textbf{D) The zeta function of a graph.} We can take the idea of
``periodic geodesic on a Riemannian manifold'' and vastly simplify it by
looking at closed loops in a graph with finitely many edges and
vertices. We get a \(\zeta\) function
\[\zeta(s) = \prod \frac{1}{1 - |P|^{-s}}\] where \(P\) ranges over all
``prime loops'' in our graph: loops that don't backtrack or loop around
more than once. Now \(|P|\) is the exponential of the length of the
loop.

The ``covering space'' philosophy still applies, since we can define
what it means for a graph \(G'\) to be a covering space of a graph
\(G\). Any prime loop \(P\) in \(G\) defines a deck transformation of
\(G'\). This acts on the set \(X\) of prime loops sitting over \(P\), so
we get a one-to-one and onto map \[f\colon X \to X\] which again
deserves to be called the ``Frobenius automorphism''.

\textbf{E) The zeta function of an affine scheme.} Given a commutative
ring, we can think of it as the ring of functions on some space. The
\(\zeta\) function of the commutative ring then counts the points of
this space.

To make this precise, we cleverly invent a kind of space called an
``affine scheme'', which is secretly \emph{just another name for a
commutative ring!} So, any commutative ring \(R\) gives an affine scheme
called \(\mathrm{Spec}(R)\), purely by our fiendish definition.

If we take a function and evaluate it at a point, we should get a
number. This should give a homomorphism from functions to numbers. But
in algebraic geometry, ``numbers'' can be elements of any field \(k\).
So, let's say the ``\(k\)-points'' of \(\mathrm{Spec}(R)\) are the
homomorphisms from \(R\) to \(k\).

(This is a bit nontraditional, but I really need this here. For a more
traditional alternative, see \protect\hyperlink{week205}{``Week 205''}.)

In particular, for any prime \(p\) we can take \(k\) to be the algebraic
closure of the field with \(p\) elements. Let \(X\) be the set of
\(k\)-points of some affine scheme \(\mathrm{Spec}(R)\). Then comes
something wonderful: if \(x\) is a \(k\)-point, so is \(x^p\), since
``raising to the \(p\)th power'' is an automorphism of \(k\). So, we get
a map \[f\colon X \to X\] sending \(x\) to \(x^p\). This is called the
``Frobenius automorphism''!

Since \(f\) is a discrete dynamical system, we can define its zeta
function as in example B): \[\zeta(s) = \prod \frac{1}{1 - |P|^{-s}}\]
where \(P\) ranges over all periodic orbits, and \(|P|\) is the
exponential of the size of the periodic orbit, defined using the base
\(p\).

So far, this is the zeta function of our affine scheme ``localized at
\(p\)''. If we multiply a bunch of factors like this, one for each
ordinary prime \(p\), we get the zeta function of our affine scheme. For
example, the affine scheme \(\mathrm{Spec}(\mathbb{Z})\) gives the
Riemann zeta function.

In fact, all of example A) fits neatly into this one as a sub-example.
And if you know about schemes that aren't affine --- like projective
varieties, such as elliptic curves and other curves --- you'll see this
definition works for them too.

If you know someone else's definition of the zeta function of a scheme,
it may not look like what I wrote here! But don't panic. The reason is
that people like to express the zeta function of a discrete dynamical
system \(f\colon X \to X\) in terms of the number of fixed points of
\(f^n\). When \(f\) is the Frobenius automorphism, these are usually
called ``points defined over the field with \(p^n\) elements''. So,
you'll see lots of formulas for zeta functions phrased in terms of
these\ldots.

Okay. Enough examples.

There are a lot more, but I think these are the simplest. I hope you see
how all these examples are just different expressions of the same idea.
To go further, I would tell you how there are versions of the Riemann
Hypothesis in all these examples, and also things called
``\(L\)-functions'', and lots of theorems and conjectures concerning
them, too!

It's a wonderful example of the unity of mathematics. But, it's also a
wonderful example of how this unity is obscured by people who zoom in on
their own favorite special case and its particular technical
complexities while never discussing the big picture. You wouldn't
believe how hard it's been for me to figure out what I just told you!
It's like trying to learn English by reading the US legal code, or
learning basic chord progressions by listening to Schoenberg.

If you're just trying to get started, here's one of the more readable
introductions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Anton Deitman, ``Panorama of zeta functions'', available as
  \href{http://www.arxiv.org/abs/math.NT/0210060}{\texttt{math.NT/0210060}}.
\end{enumerate}

Audrey Terras has a lot of nice slide presentations about the \(\zeta\)
functions and \(L\)-functions of graphs:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Audrey Terras, Artin \(L\)-functions of graph coverings, available at
  \texttt{http://math.ucsd.edu/\textasciitilde{}aterras/artin1.pdf}

  ``More on \(L\)-functions'', available at
  \texttt{http://math.ucsd.edu/\textasciitilde{}aterras/artin2.pdf}
\end{enumerate}

Here's a paper written in broken English but making a very serious
attempt to explain things to the nonexpert:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  David Zywina, ``The zeta function of a graph'', available at
  \texttt{http://math.berkeley.edu/\textasciitilde{}zywina/zeta.pdf}
\end{enumerate}

He gives a characterization of graphs whose zeta functions satisfy an
analogue of the Riemann Hypothesis. Strangely, this analogue involves
\emph{poles} of the \(\zeta\) function in the critical strip
\[0 < \Re(s) < 1\] Is this a real difference or the result of some
difference in conventions?

Finally, I should explain some more technical stuff about \(\zeta\)
functions and fixed points, just so I don't forget it. Suppose we have a
discrete dynamical system \[f\colon X \to X\] and let
\[|\mathrm{fix}(f^n)|\] be the number of fixed points of the \(n\)th
iterate of \(f\).

We can define a weird function like this:
\[Z(u) = \exp\left(\sum_{n>0} \frac{|\mathrm{fix}(f^n)| u^n}{n}\right)\]
You'll often see formulas like this running around, especially when
\(f\) is some sort of ``Frobenius automorphism''. Sometimes people even
call these guys zeta functions. But what in the world do they have to do
with zeta functions???

Let's see. Suppose first that \(X\) consists of a single cycle of length
\(k\). Then \(f^n\) has \(k\) fixed points when \(n\) is a multiple of
\(k\), but none otherwise, so: \[
  \begin{aligned}
    Z(u)
    &= \exp\left(\frac{ku^k}{k} + \frac{ku^{2k}}{2k} + \frac{ku^{3k}}{3k} + \ldots\right)
  \\&= \exp\left(u^k + \frac{u^{2k}}{2} + \frac{u^{3k}}{3} + \ldots\right)
  \\&= \exp\left(\ln\frac{1}{1-u^k}\right)
  \\&= \frac{1}{1-u^k}
  \end{aligned}
\] This is starting to look more like the zeta functions we know and
love. It looks even better if we pick some prime number \(p\) and define
\[\zeta(s) = Z(p^{-s})\] Then we get
\[\zeta(s) = \frac{1}{1 - p^{-ks}}\] which is precisely what we'd get
using the definition in example B).

Furthermore, for both that old definition and our new one, the zeta
function of a disjoint union of discrete dynamical systems is the
\emph{product} of the zeta functions of the parts. Since every discrete
dynamical system is a disjoint union of cycles, we conclude that the
definitions \emph{always} agree. In other words,
\[\zeta(s) = Z(p^{-s})\] with
\[Z(u) = \exp\left(\sum_{n>0} \frac{|\mathrm{fix}(f^n)| u^n}{n}\right)\]
is always equal to the zeta function defined in example B).

So, don't let anyone fool you --- there aren't lots of completely
different kinds of zeta functions! There's just a few kinds, and we
could probably boil them down to just ONE kind with some work.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Some decades ago I made --- somewhat in jest --- the suggestion
that one should get accepted a non-proliferation treaty of zeta
functions. There was becoming such an overwhelming variety of these
objects.}

--- Atle Selberg
\end{quote}



\hypertarget{week217}{%
\section{May 30, 2005}\label{week217}}

Last week I described lots of different zeta functions, but didn't say
much about what they're good for. This week I'd like to get started on
fixing that problem.

People have made lots of big conjectures related to zeta functions. So
far they've just proved just a few\ldots{} but it's still a big deal.

For example, Andrew Wiles' proof of Fermat's Last Theorem was just a
tiny spin-off of his work on something much bigger called the
Taniyama-Shimura conjecture. Now, personally, I think Fermat's Last
Theorem is a ridiculous thing. The last thing I'd ever want to know is
whether this equation: \[x^n + y^n = z^n\] has nontrivial integer
solutions for \(n > 2\). But the Taniyama-Shimura Conjecture is really
interesting! It's all about the connection between geometry, complex
analysis and arithmetic, and it ties together some big ideas in an
unexpected way. This is how it usually works in number theory: cute but
goofy puzzles get solved as a side-effect of deep and interesting
results related to zeta functions and \(L\)-functions --- sort of like
how the powdered drink ``Tang'' was invented as a spinoff of going to
the moon.

For a good popular book on Fermat's Last Theorem and the
Taniyama-Shimura Conjecture, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Simon Singh, \emph{Fermat's Enigma: The Epic Quest to Solve the
  World's Greatest Mathematical Problem}, Walker, New York, 1997.
\end{enumerate}

Despite the ``world's greatest mathematical problem'' baloney, this book
does a great job of telling the story without drowning the reader in
math.

But you read This Week's Finds because you \emph{want} to be drowned in
math, and I wouldn't want to disappoint you. So, let me list a few of
the big conjectures and theorems related to zeta functions.

Here goes:

\begin{quote}
\textbf{A) The Riemann Hypothesis --- the zeros of the Riemann zeta
function in the critical strip \(0 \leqslant \Re(s) \leqslant 1\)
actually lie on the line \(\Re(s) = 1/2.\)}
\end{quote}

First stated in 1859 by Bernhard Riemann; still open.

This implies a good estimate on the number of primes less than a given
number, as described in \protect\hyperlink{week216}{``Week 216''}.

\begin{quote}
\textbf{B) The Generalized Riemann Hypothesis --- the zeros of any
Dirichlet \(L\)-function that lie in the critical strip actually lie on
the line \(\Re(s) = 1/2.\)}
\end{quote}

Still open, since the Riemann Hypothesis is a special case.

A ``Dirichlet \(L\)-function'' is a function like this:
\[L(\chi,s) = \sum_{n>0} \frac{\chi(n)}{n^s}\] where \(\chi\) is any
``Dirichlet character'', meaning a periodic complex function on the
positive integers such that \[\chi(nm) = \chi(n) \chi(m)\] If we take
\(\chi = 1\) we get back the Riemann zeta function.

Dirichlet used these \(L\)-functions to prove that there are infinitely
many primes equal to \(k \mod n\) as long as \(k\) is relatively prime
to \(n\). The Generalized Riemann Hypothesis would give a good estimate
on the number of such primes less than a given number, just as the
Riemann Hypothesis does for plain old primes.

Erich Hecke established the basic properties of Dirichlet
\(L\)-functions in 1936, including a special symmetry called the
``functional equation'' which Riemann had already shown for his zeta
function. So I bet Hecke must have dreamt of the Generalized Riemann
Hypothesis, even if he didn't dare state it.

\begin{quote}
\textbf{C) The Extended Riemann Hypothesis --- for any number field, the
zeros of its zeta function in the critical strip actually lie on the
line \(\Re(s) = 1/2\).}
\end{quote}

Still open, since the Riemann Hypothesis is a special case.

I described the zeta functions of number fields in
\protect\hyperlink{week216}{``Week 216''}. These are usually called
``Dedekind zeta functions''. Hecke also proved a functional equation for
these back in 1936.

\begin{quote}
\textbf{D) The Grand Riemann Hypothesis --- for any automorphic
\(L\)-function, the zeros in the critical strip actually lie on the line
\(\Re(s) = 1/2\).}
\end{quote}

This is still open too, since it includes A)--C) as special cases!

I don't want to tell you what ``automorphic \(L\)-functions'' are yet.
For now, you can just think of them as grand generalizations of both
Dirichlet \(L\)-functions and zeta functions of number fields.

\begin{quote}
\textbf{E) The Weil Conjectures --- The zeros and poles of the zeta
function of any smooth algebraic variety over a finite field lie on the
lines \(\Re(s) = 1/2, 1, 3/2, \ldots, d/2\) where \(d\) is the dimension
of the variety.} The zeros lie on the lines \(1/2, 3/2, \ldots\) while
the poles lie on the lines \(1, 2, \ldots\). Also: such zeta functions
are quotients of polynomials, they satisfy a functional equation, and a
lot of information about their zeroes and poles can be recovered from
the topology of the corresponding \emph{complex} algebraic varieties.
\end{quote}

First stated in 1949 by Andre Weil; proof completed by Pierre Deligne in
1974 based on much work by Michael Artin, J.-L. Verdier, and especially
Alexander Grothendieck. Grothendieck invented topos theory as part of
the attack on this problem!

\begin{quote}
\textbf{F) The Taniyama-Shimura Conjecture --- every elliptic curve over
the rational numbers is a modular curve.} Or, equivalently: every
\(L\)-function of an elliptic curve is the \(L\)-function of a modular
curve.
\end{quote}

This was first conjectured in 1955 by Yukata Taniyama, who worked on it
with Goro Shimura until committing suicide in 1958. Around 1982 Gerhard
Frey suggested that this conjecture would imply Fermat's Last Theorem;
this was proved in 1986 by Ken Ribet. In 1995 Andrew Wiles and Richard
Taylor proved a big enough special case of the Taniyama-Shimura
Conjecture to get Fermat's Last Theorem. The full conjecture was shown
in 1999 by Breuil, Conrad, Diamond, and Taylor.

I don't want to say what \(L\)-functions of curves are yet\ldots{} but
they are a lot like Dirichlet \(L\)-functions.

\begin{quote}
\textbf{G) The Langlands Conjectures --- any automorphic representation
\(\pi\) of a connected reductive group \(G\), together with a
finite-dimensional representation of its \(L\)-group, gives an
automorphic \(L\)-function \(L(s,\pi)\).} Also: these \(L\)-functions
all satisfy functional equations. Furthermore, they depend functorially
on the group \(G\), its \(L\)-group, and their representations.
\end{quote}

Zounds! Don't worry if this sounds like complete gobbledygook! I only
mention it to show how scary math can get. As Stephen Gelbart once
wrote:

\begin{quote}
The conjectures of Langlands just alluded to amount (roughly) to the
assertion that the other zeta-functions arising in number theory are but
special realizations of these \(L(s,\pi)\).

Herein lies the agony as well as the ecstacy of Langlands' program. To
merely state the conjectures correctly requires much of the machinery of
class field theory, the structure theory of algebraic groups, the
representation theory of real and \(p\)-adic groups, and (at least) the
language of algebraic geometry. In other words, though the promised
rewards are great, the initiation process is forbidding.
\end{quote}

I hope someday I'll understand this stuff well enough to say something
more helpful! Lately I've been catching little glimpses of what it's
about\ldots.

But, right now I think it's best if I talk about the ``functional
equation'' satisfied by the Riemann zeta function, since this gives the
quickest way to see some of the strange things that are going on.

The Riemann zeta function starts out life as a sum:
\[\zeta(s) = 1^{-s} + 2^{-s} + 3^{-s} + 4^{-s} + \ldots\] This only
converges for \(\Re(s) > 1\). It blows up as we approach \(s = 1\),
since then we get the series
\[\frac11 + \frac12 + \frac13 + \frac14 + \ldots\] which diverges.
However, in 1859 Riemann showed that we can analytically continue the
zeta function to the whole complex plane except for this pole at
\(s = 1\).

He also showed that the zeta function has an unexpected symmetry: its
value at any complex number \(s\) is closely related to its value at
\(1-s\). It's not true that \(\zeta(s) = \zeta(1-s)\), but something
similar is true, where we multiply the zeta function by an extra fudge
factor.

To be precise: if we form the function
\[\pi ^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)\] then
this function is unchanged by the transformation \[s \mapsto 1 - s\]
This symmetry maps the line \[\Re(s) = \frac12\] to itself, and the
Riemann Hypothesis says all the \(\zeta\) zeros in the critical strip
actually lie on this magic line.

This symmetry is called the ``functional equation''. It's the tiny tip
of a peninsula of a vast and mysterious continent which mathematicians
are still struggling to explore. Riemann gave two proofs of this
equation. You can find a precise statement and a version of Riemann's
second proof here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Daniel Bump, Zeta Function, lecture notes on ``the functional
  equation'' available at
  \texttt{http://math.stanford.edu/\textasciitilde{}bump/zeta.html} and
  \texttt{http://www.maths.ex.ac.uk/\textasciitilde{}mwatkins/zeta/fnleqn.htm}
\end{enumerate}

This proof is a beautiful application of Fourier analysis. Everyone
should learn it, but let me try to sketch the essential idea here.

I will deliberately be VERY rough, and use some simplified nonstandard
definitions, since the precise details have a way of distracting your
eye just as the magician pulls the rabbit out of the hat.

We start with the function \(\zeta(2s)\):
\[1^{-s} + 4^{-s} + 9^{-s} + 25^{-s} + \ldots.\] Then we apply a curious
thing called the ``inverse Mellin transform'', which turns this function
into \[z^1 + z^4 + z^9 + z^{25} + \ldots\] Weird, huh? This is almost
the ``theta function''
\[\theta(t) = \sum_{n\in\mathbb{Z}} e^{\pi i n^2 t}\] Indeed, it's easy
to see that
\[\frac{\theta(t) - 1}{2} = z^1 + z^4 + z^9 + z^25^ + \ldots\] when
\[z = e^{\pi it}\] The theta function transforms in a very simple way
when we replace \(t\) by \(-1/t\), as one can show using Fourier
analysis.

Unravelling the consequences, this implies that the zeta function
transforms in a simple way when we replace \(s\) by \(1-s\). You have to
go through the calculation to see precisely how this works\ldots{} but
the basic idea is: a symmetry in the theta function yields a symmetry in
the zeta function.

Hmm, I'm not sure that explained anything! But I hope at least the
mystery is more evident now. A bunch of weird tricks, and then
\emph{presto} --- the functional equation! To make progress on
understanding the Riemann Hypothesis and its descendants, we need to get
what's going on here.

I feel I \emph{do} get the inverse Mellin transform; I'll say more about
that later. But for now, note that the theta function transforms in a
simple way, not just when we do this: \[t \mapsto -\frac{1}{t}\] but
also when we do this: \[t \mapsto t + 2\] Indeed, it doesn't change at
all when we add \(2\) to \(t\), since \(e^{2\pi i} = 1\).

Now, the maps \[t \mapsto -\frac1t\] and \[t \mapsto t + 1\] generate
the group of all maps \[t \mapsto \frac{at+b}{ct+d}\] where \(a,b,c,d\)
form a \(2\times2\) matrix of integers with determinant \(1\). These
maps form a group called \(\mathrm{PSL}(2,\mathbb{Z})\), or the
``modular group''.

A function that transforms simply under this group and doesn't blow up
in nasty ways is called a ``modular form''. In
\protect\hyperlink{week197}{``Week 197''} I gave the precise definition
of what counts as transforming simply and not blowing up in nasty ways.
I also explained how modular forms are related to elliptic curves and
string theory. So, please either reread
\protect\hyperlink{week197}{``Week 197''} or take my word for it:
modular forms are cool!

The theta function is almost a modular form, but not quite. It doesn't
blow up in nasty ways. However, it only transforms simply under a
subgroup of \(\mathrm{PSL}(2,\mathbb{Z})\), namely that generated by
\[t \mapsto -\frac1t\] and \[t \mapsto t + 2\] So, the theta function
isn't a full-fledged modular form. But since it comes close, we call it
an ``automorphic form''.

Indeed, for any discrete subgroup \(G\) of
\(\mathrm{PSL}(2,\mathbb{Z})\), functions that transform nicely under
\(G\) and don't blow up in nasty ways are called ``automorphic forms''
for \(G\). They act a lot like modular forms, and people know vast
amounts about them. It's the power of automorphic forms that makes
number theory what it is today!

We can summarize everything so far in this slogan:

\begin{quote}
\textbf{the functional equation for the riemann zeta function says:}\\
\textbf{``the theta function is an automorphic form''}
\end{quote}

But before you start printing out bumper stickers, I should
explain\ldots.

The point of this slogan is this. We \emph{thought} we were interested
in the Riemann zeta function for its own sake, or what it could tell us
about prime numbers. But with the wisdom of hindsight, the first thing
we should do is hit this function with the inverse Mellin transform and
repackage all its information into an automorphic form --- the theta
function.

\(\zeta\) is dead, long live \(\theta\)!

The Riemann zeta function is just like all the fancier zeta functions
and \(L\)-functions in this respect. The fact that they satisfy a
``functional equation'' is just another way of saying their inverse
Mellin transforms are automorphic forms\ldots{} and it's these
automorphic forms that exhibit the deeper aspects of what's going on.

Now let me say a little bit about the inverse Mellin transform.

Ignoring various fudge factors, the inverse Mellin transform is
basically just the linear map that sends any function of \(s\) like
this: \[n^{-s}\] to this function of \(z\): \[z^n\] In other words, it
basically just turns things upside down, replacing the base by the
exponent and vice versa. The minus sign is just a matter of convention;
don't worry about that too much.

So, the inverse Mellin transform basically sends any function like this,
called a ``Dirichlet series'':
\[a_1 1^{-s} + a_2 2^{-s} + a_3 3^{-s} + a_4 4^{-s} + \ldots\] to this
function, called a ``Taylor series'':
\[a_1 z^1 + a_2 z^2 + a_3 z^3 + a_4 z^4 + \ldots\] Now, why would we
want to do this?

The reason is that multiplying Taylor series is closely related to
\emph{addition} of natural numbers: \[z^n z^m = z^{n+m}\] while
multiplying Dirichlet series is closely related to \emph{multiplication}
of natural numbers: \[n^{-s} m^{-s} = (nm)^{-s}\] The Mellin transform
(and its inverse) are how we switch between these two pleasant setups!

Indeed, it's all about algebra --- at least at first. We can add natural
numbers and multiply them, so \(\mathbb{N}\) becomes a monoid in two
ways. A ``monoid'', recall, is a set with a binary associative product
and unit. So, we have two closely related monoids: \[(\mathbb{N},+,0)\]
and \[(\mathbb{N},\times,1)\] Given a monoid, we can form something
called its ``monoid algebra'' by taking formal complex linear
combinations of monoid elements. We multiply these in the obvious way,
using the product in our monoid.

If we take the monoid algebra of \((\mathbb{N},+,0)\), we get the
algebra of Taylor series! If we take the monoid algebra of
\((\mathbb{N},\times,1)\), we get the algebra of Dirichlet series!

(Actually, this is only true if we allow ourselves to use
\emph{infinite} linear combinations of monoid elements in our monoid
algebra. So, let's do that. If we used finite linear combinations, as
people often do, \((\mathbb{N},+,0)\) would give us the algebra of
polynomials, while \((\mathbb{N},\times,0)\) would give us the algebra
of ``Dirichlet polynomials''.)

Of course, algebraically we can combine these structures.
\((\mathbb{N},+,\times,0,1)\) is a rig, and by taking formal complex
linear combinations of natural numbers we get a ``rig algebra'' with two
products: the usual product of Taylor series, and the usual product of
Dirichlet series. They're compatible, too, since one distributes over
the other. They both distribute over addition.

However, if we're trying to get an algebra of functions on the complex
plane, with pointwise multiplication as the product, we need to make up
our mind: either Taylor series or Dirichlet series! We then need the
Mellin transform to translate between the two.

So, what seems to be going on is that people take a puzzle, like

\begin{quote}
``what is the sum of the squares of the divisors of \(n\)?''
\end{quote}

or

\begin{quote}
``how many ideals of order \(n\) are there in this number field?''
\end{quote}

and they call the answer \(a_n\).

Then they encode this sequence as either a Dirichlet series:
\[a_1 1^{-s} + a_2 2^{-s} + a_3 3^{-s} + a_4 4^{-s} + \ldots\] or a
Taylor series: \[a_1 z^1 + a_2 z^2 + a_3 z^3 + a_4 z^4 + \ldots\] The
first format is nice because it gets along well with multiplication of
natural numbers. For example, in the puzzle about ideals, every ideal is
a product of prime ideals, and its norm is the product of the norms of
those prime ideals\ldots{} so our Dirichlet series will have an Euler
product formula.

The second format is nice \emph{if} our Taylor series is an automorphic
form. This will happen precisely when our Dirichlet series satisfies a
functional equation.

(For experts: I'm ignoring some fudge factors involving the gamma
function.)

I still need to say more about \emph{which} puzzles give automorphic
forms, what it really means when they \emph{do}. But, not this week! I'm
tired, and I bet you are too.

For now, let me just give some references. There's a vast amount of
material on all these subjects, and I've already referred to lots of it.
But right now I want to focus on stuff that's free online, especially
stuff that's readable by anyone with a solid math background --- not
journal articles for experts, but not fluff, either.

Here's some information on the Riemann Hypothesis provided by the Clay
Mathematics Institute, which is offering a million dollars for its
solution:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Clay Mathematics Institute, ``Problems of the Millennium: the Riemann
  Hypothesis'', \texttt{http://www.claymath.org/millennium/}
\end{enumerate}

The official problem description by Enrico Bombieri talks about evidence
for the Riemann Hypothesis, including the Weil Conjectures. The article
by Peter Sarnak describes generalizations leading up to the Grand
Riemann Hypothesis. In particular, he gives a super-rapid introduction
to automorphic \(L\)-functions.

Here's a nice webpage that sketches Wiles and Taylor's proof of Fermat's
last theorem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Charles Daney, ``The Mathematics of Fermat's Last Theorem'',
  \texttt{http://www.mbay.net/\textasciitilde{}cgd/flt/fltmain.htm}
\end{enumerate}

I like the quick introductions to ``Elliptic curves and elliptic
functions'', ``Elliptic curves and modular functions'', ``Zeta and
\(L\)-functions'', and ``Galois Representations'' --- they're neither
too detailed nor too vague, at least for me.

Here's a nice little intro to the Weil Conjectures:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Runar Ile, ``Introduction to the Weil Conjectures'',
  \texttt{http://folk.uio.no/\textasciitilde{}ile/WeilA4.pdf}
\end{enumerate}

James Milne goes a lot deeper --- his course notes on etale cohomology
include a proof of the Weil Conjectures:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  James Milne, ``Lectures on Etale Cohomology'',
  \texttt{http://www.jmilne.org/math/CourseNotes/math732.html}
\end{enumerate}

while his course notes on elliptic curves sketch the proof of Fermat's
Last Theorem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  James Milne, ``Elliptic Curves'',
  \texttt{http://www.jmilne.org/math/CourseNotes/math679.html}
\end{enumerate}

Here's a nice history of what I've been calling the Taniyama-Shimura
Conjecture, which explains why some people call it the
Taniyama-Shimura-Weil conjecture, or other things:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Serge Lang, ``Some history of the Shimura-Taniyama Conjecture'',
  \emph{AMS Notices} \textbf{42} (November 1995), 1301--1307. Available
  at \texttt{http://www.ams.org/notices/199511/forum.pdf}
\end{enumerate}

Here's a quick introduction to the proof of this conjecture, whatever
it's called:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Henri Darmon, ``A proof of the full Shimura-Taniyama-Weil Conjecture
  is announced'', \emph{AMS Notices} \textbf{46} (December 1999),
  1397--1401. Available at
  \texttt{http://www.ams.org/notices/199911/comm-darmon.pdf}
\end{enumerate}

I won't give any references to the Langlands Conjectures, since I hope
to talk a lot more about those some other time.

And, I hope to keep on understanding this stuff better and better!

I thank James Borger and Kevin Buzzard for help with this issue of This
Week's Finds.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Here's part of an email exchange I had with Kevin
Buzzard of Imperial College after he read this Week's Finds:

I wrote:

\begin{quote}
What I \emph{REALLY} want to know is: what combinatorial properties of
an integer sequence an are we being told when we're told that the
Dirichlet series \[\sum_n a^n n^{-s}\] comes from an automorphic form?
\end{quote}

He replied:

\begin{quote}
Yeah, that's a really key question. I'm not sure that there is an
elementary answer. Here is another question: given a sequence of complex
numbers \(a_1, a_2,\ldots,a_n,\ldots\), with \[a_n = \mathcal{O}(n^r),\]
what is a neat easy-to-understand property of this sequence which
implies (or is implied by, or is equivalent to) the statement that
\[\sum \frac{a_n}{n^s}\] has analytic (or meromorphic) continuation
beyond \(\Re(s)>r\)? Maybe even this is hard---or maybe there is no such
elementary criterion.

\begin{quote}
I'll be happy to assume for starters that an is multiplicative.
\end{quote}

This might not ``logically speaking'' be necessary, but on the other
hand probably the most interesting cases have this property. Here is an
example. Take a sequence of complex numbers \(a_1, a_2, \ldots\) which
is periodic with prime period \(p\) (primality probably isn't necessary
but it simplifies the combinatorics). Then the associated \(L\)-function
\[\sum \frac{a_n}{n^s}\] has meromorphic continuation with at worst a
simple pole at \(s=1\) and no other poles, and one could even argue that
the \(a_i\) ``came from an automorphic form''.

On the other hand, this is not the kind of automorphic form that people
usually think about because it's not an eigenform. What is happening is
that ``there are enough Dirichlet characters'': consider the trivial
character \(\chi(n)=1\) for all \(n\), and then the \(p-1\) Dirichlet
characters of level \(p\), those defined by group homomorphisms
\[\chi\colon (\mathbb{Z}/p\mathbb{Z})^* \to \mathbb{C}^*\] and extended
to functions on \(\mathbb{Z}\) by \(\chi(n)=0\) for \(n\) a multiple of
\(p\). These \(p\) functions on \(\mathbb{Z}\) form a basis of the
vector space of periodic functions on \(\mathbb{Z}\) with period \(p\).

The Dirichlet characters give automorphic forms, but automorphic forms
are a vector space so you can add them together and get an automorphic
form for any periodic function. However the Dirichlet characters are the
most interesting such forms because these are the ones which are
eigenforms. The eigenforms give multiplicative \(a_n\), but it's
certainly not true in general that a periodic function is
multiplicative.

But I can't really enlighten you much further. I know that the
\(L\)-function of an automorphic form has meromorphic continuation and
that we understand the poles (but we only conjecturally understand the
zeroes). However if someone put some \(a_n\) in front of me I would
demand that they told me where the \(a_n\) had come from before I put my
money on whether there was an automorphic form.

The example where I actually proved something was in the case where the
\(a_n\) came from a finite-dimensional complex representation of
\(\mathrm{Gal}(K/\mathbb{Q})\) with \(K\) a number field, Galois over
\(\mathbb{Q}\). (In fact my only contribution was in the
\(2\)-dimensional case, the \(1\)-dimensional case having been
understood for some time.) The \(a_n\) are then related to traces of the
representation. Artin conjectured in the 1930s that \[\sum a_n/n^s\]
should have analytic continuation to all of the complex plane if the
representation was irreducible and not the trivial \(1\)-dimensional
representation. Langlands conjectured much later that the \(a_n\) should
come from an automorphic form, and we knew by then that Langlands'
conjecture implied Artin's. But none of the analytic guys know how to
prove Artin's conjecture without essentially deducing it from
Langlands'! I did something with some other Brits in the
\(2\)-dimensional case. Ironically, to deduce our analytic continuation
results, we proved some \(p\)-adic analytic continuation results first
:-) We constructed a modular form using \(p\)-adic techniques (and all
of Wiles' machinery).

\begin{quote}
I get the feeling that nobody knows the answer, except perhaps for
specific cases like modular forms, where we know they're all linear
combinations of products of Eisenstein series, so that an is built out
of sequences like \(\sigma_k(n)\) --- sums of \(k\)th powers of
divisors.
\end{quote}

But unfortunately this is only true for ``level 1'' modular forms: you
can build all modular forms of level 1 from the Eisenstein series
\(\mathrm{E}_4\) and \(\mathrm{E}_6\). There is no neat analogous result
for modular forms for the group \(\Gamma_0(N)\) for general \(N\). In
particular you will never see the \(a_n\) for an elliptic curve built up
from Eisenstein series in this way :-(

\begin{quote}
What I'd like is a really ``conceptual'' answer\ldots{} or else for
someone to admit that nobody knows such an answer yet.
\end{quote}

I think I will freely admit that, although that's just a personal
opinion.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Here is why Dirichlet characters are the same as \(1\)-dimensional
complex representations of
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\). It's called the
Kronecker-Weber theorem, it pre-dates class field theory (although it is
now a special case), and you can \emph{just about} prove it at the end
of an introductory undergraduate course on number fields, as the last
starred question on the example sheet, and only for people that have
done the Galois theory course too. Let \(K\) be a number field and
assume \(K\) is Galois over \(\mathbb{Q}\) (equivalently, that there is
a polynomial \(f\) with rational coefficients such that \(K\) is the
smallest subfield of the complex numbers containing all the roots of
\(f\); \(K\) is called the ``splitting field'' of \(f\)).

Then \(K\) has a Galois group \(\mathrm{Gal}(K/\mathbb{Q})\), which is
the field automorphisms of \(K\) that fix \(\mathbb{Q}\). Say \(f\) has
degree \(n\) and \(n\) roots \(z_1, z_2, \ldots , z_n\). Then any
automorphism of \(K\) fixes \(f\), so it permutes the roots of \(f\). So
we get an embedding \[\mathrm{Gal}(K/\mathbb{Q}) \to S_n\] where \(S_n\)
is the symmetric group on the set \(z_1, z_2, \ldots , z_n\). Then any
automorphism of \(K\) fixes \(f\), so it permutes the roots of \(f\). So
we get an embedding

``Generically'' this map is an isomorphism. But certainly not always ---
if there are subtle relations amongst the \(z_i\) with rational
coefficients then these subtle relations must also be preserved by the
Galois group. One of my favourite examples is the equation \(x^4-2\).
This is an irreducible polynomial of degree 4, the four roots are \(z\),
\(iz\), \(-z\) and \(-iz\) where \(z\) is the real 4th root of \(2\) and
\(i\) is \(\sqrt{-1}\). But \(z+(-z) = 0\), so if \(K\) is the field
generated by these roots and \(\sigma\) is an automorphism of \(K\) then
\(\sigma(z)+\sigma(-z)\) will also be zero, and the Galois group cannot
possibly be all of \(S_4\). In fact one can check that the Galois group
is \(D_8\), the dihedral group with 8 elements (the four roots form a
square in the complex plane and it's the symmetries of this square).

So there's Galois theory. Now here's a question: can we classify all the
number fields \(K\), Galois over \(\mathbb{Q}\), with
\(\mathrm{Gal}(K/\mathbb{Q})\) an abelian group?

Here are some examples: \(K=\mathbb{Q}(\sqrt{d})\), the splitting field
of \(x^2-d\). If \(d\) is the square of a rational then \(K=\mathbb{Q}\)
and if not then it's an extension of degree 2, with Galois group \(S_2\)
which is abelian.

The splitting field of \(x^n-1\), called the \(n\)th cyclotomic field,
also turns out to have abelian Galois group; if \(z = \exp(2\pi in)\)
then any automorphism of \(K\) must send \(z\) to another \(n\)th root
of unity and furthermore the \(n\)th root of unity must have ``exact
order \(n\)'', i.e. its \(n\)th power must be 1 but none of its \(m\)th
powers can be 1 for \(0 < m < n\). So \(z\) must get sent to \(z^a\)
with \(0 < a < n\) coprime to \(n\). This gives us an injection
\[\mathrm{Gal}(K/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^*,\] where
\((\mathbb{Z}/n\mathbb{Z})^*\) is the units in the ring
\(\mathbb{Z}/n\mathbb{Z}\) (send \(\sigma\) to \(a\)), and it's tricky
but true that this is in fact an isomorphism (use the fundamental
theorem of Galois theory, and cyclotomic polynomials, or try and get a
``trick'' proof that uses as little of this as possible, but it's still
some work). In any case \(\mathrm{Gal}(K/\mathbb{Q})\) is certainly
abelian.

Next example: any subfield of any previous example, because this is how
Galois theory works: if \(K\) contains \(L\) contains \(\mathbb{Q}\),
and both \(K\) and \(L\) are Galois over \(Q\), then the obvious
restriction map
\(\mathrm{Gal}(K/\mathbb{Q}) \to \mathrm{Gal}(L/\mathbb{Q})\) is a
surjection.

So we now have quite a general example of a number field \(K\) with
\(\mathrm{Gal}(K/\mathbb{Q})\) abelian: any subfield of a cyclotomic
field. The hard theorem (not really too hard, but quite messy) is that
the converse is true: \(\mathrm{Gal}(K/\mathbb{Q})\) abelian implies
that \(K\) is contained within a cyclotomic field. For example
\(\mathbb{Q}(\sqrt{5})\) is in the 5th cyclotomic field because
\(\cos(72^\circ) = (\sqrt{5}-1)/4\).

Any Dirichlet character gives a group homomorphism
\[(\mathbb{Z}/n\mathbb{Z})^* \to \mathbb{C}^*,\] so a map
\[\mathrm{Gal}(K_n/\mathbb{Q}) \to \mathbb{C}^*,\] with \(K_n\) the
\(n\)th cyclotomic field, so a continuous group homomorphism
\[\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{C}^*.\]
Conversely any continuous group homomorphism
\[\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{C}^*\]
factors through a compact discrete quotient of
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\), which is just
\(\mathrm{Gal}(K/\mathbb{Q})\) for some number field \(K\), and we get
an injection \[\mathrm{Gal}(K/\mathbb{Q}) \to \mathbb{C}^*,\] so
\(\mathrm{Gal}(K/\mathbb{Q})\) is abelian, so \(K\) is contained in a
\(K^n\) for some \(n\), so we get a map
\[\mathrm{Gal}(K_n/\mathbb{Q}) \to \mathbb{C}^*\] so it's a Dirichlet
character.

Amazingly it might have been Langlands who really sold this ``duality''
point, 100 years after it was understood: people always used to state
Kronecker--Weber as ``any abelian number field is contained in a cyclo
field'' rather than the dual ``any \(1\)-dimensional rep of
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) comes from a
Dirichlet character''. It was perhaps Langlands who realised that the
correct generalisation of this statement was ``any \(n\)-dimensional rep
of \(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) comes from an
automorphic form'', rather than a statement about non-abelian extensions
of \(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\). Perhaps you will
like the reason that people find the representation-theoretic approach
appealing: I have been talking about number fields as subfields of the
complexes, but really a number field is an abstract object which is a
field and happens to have finite dimension over \(\mathbb{Q}\), but it
does not have a preferred embedding into the complexes. As a result of
this sort of thinking, one realises that \(\overline{\mathbb{Q}}\) is
unique, but only up to highly non-unique isomorphism, and hence
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) is a ``group only
defined up to inner automorphism''! Hence it almost makes no sense to
study this group---we cannot make any serious sense of an element of
this group, because it's only the conjugacy classes that are
well-defined. Hence we should study the representations of the group on
abstract vector spaces (i.e.~ones without preferred bases), because
these are well-defined up to isomorphism. The reason there was so much
mileage in the abelian case was that this subtlety goes away: an abelian
group up to inner automorphism is an abelian group.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

I know some facts about the sequence \(a_n\) coming from, say, an
elliptic curve over the rationals, but the killer, and one that is
really hard to ``read off'' from the \(a_n\), is that the \(a_n\) are
related to the traces of Frobenius elements on a \(2\)-dimensional
\(p\)-adic Galois representation (the Tate module of the curve). The
moment I see a Galois representation I think that this must be something
to do with automorphic forms, so that's why I believe that the
\(L\)-function of an elliptic curve should come from a modular form. And
it does! On the other hand, if you give me any finite set of primes
\(p\), and any integers \(a_p\) with \(p\) running through the set, such
that \(|a_p|^2\leqslant 4p\), then I can concoct an elliptic curve with
these \(a_p\), so at the very least one has to look at infinitely many
of the \(a_n\) before one can begin to guess whether the \(a_n\) come
from an automorphic form.

Kevin
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{If I were to awaken after having slept for a thousand years, my
first question would be: ``Has the Riemann hypothesis been proven?''}

--- David Hilbert
\end{quote}
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Classes are over! Summer is here! Now I can finally get some work done!
I'll be travelling to Sydney, Canberra, Beijing, Chengdu and Calgary,
but mainly I want to finish writing some papers.

First, though, I need to recover from a hard quarter. I need to goof off
a bit! I spent most of yesterday lying in bed reading. Now I want to
talk some more about number theory.

Let's see, where were we? I had just begun to introduce the theme of
\(L\)-functions and their corresponding automorphic forms. My ultimate
goal is to understand the Langlands Conjectures well enough to give a
decent explanation of what they say. Instead of simply stating them, I'd
like to really make them plausible, and this will take quite an
elaborate warmup. So, this Week I want to talk about some background.

Actually, this reminds me of something Feynman wrote: whenever he worked
on a problem, he needed the feeling he had some ``inside track'' ---
some insight or trick up his sleeve that nobody else had. Most of us
will never be as good as Feynman at choosing an ``inside track''. But I
think we all need one to convert what would otherwise be a dutiful and
doomed struggle to catch up with the experts into something more hopeful
and exciting: a personal quest!

For anyone with a physics background, a good ``inside track'' on almost
any math problem is to convert it into some kind of crazy physics
problem. It doesn't need to be realistic physics, just anything you can
apply physics intuition to! This is part of why string theorists have
been so successful in cracking math problems. It also underlies Alain
Connes' attempt to prove the Riemann Hypothesis:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Alain Connes, ``Noncommutative Geometry, Trace Formulas, and the Zeros
  of the Riemann Zeta Function''. Ohio State course notes and videos at
  \texttt{http://www.math.ohio-state.edu/lectures/connes/Connes.html}

  Alain Connes, ``Trace formula in noncommutative geometry and the zeros
  of the Riemann zeta function'', available as
  \href{http://www.arxiv.org/abs/math.NT/9811068}{\texttt{math.NT/9811068}}.
\item
  Mathilde Marcolli, ``Noncommutative geometry and number theory'',
  available at
  \texttt{http://www.math.fsu.edu/\textasciitilde{}marcolli/ncgntE.pdf}
\end{enumerate}

Of course, Connes also has another ``inside track'', namely his theory
of noncommutative geometry.

By the way: a number theorist I know says he thinks Connes has
essentially proved the Riemann Hypothesis, in the same way that Riemann
``essentially'' proved the Prime Number Theorem. Namely, he has reduced
it to some facts that seem obviously true! Of course, it took about 40
years, from 1859 to 1896, for Riemann's plan to be fulfilled by Hadamard
and De La Vallee Poussin. So, even if Connes' insights are correct, it
may be a while before the Riemann Hypothesis is actually proved.

For anyone with a background in geometry, a good ``inside track'' on
almost any math problem is to convert it into a geometry problem. In the
case of number theory this trick is old news, but still very much worth
knowing. It's based on an analogy which I began discussing in
\protect\hyperlink{week198}{``Week 198''}.

The analogy starts out like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
\begin{minipage}[b]{0.42\columnwidth}\raggedright
Number theory\strut
\end{minipage} & \begin{minipage}[b]{0.52\columnwidth}\raggedright
Complex geometry\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.42\columnwidth}\raggedright
Integers, \(\mathbb{Z}\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Polynomial functions on the complex plane, \(\mathbb{C}[z]\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.42\columnwidth}\raggedright
Rational numbers, \(\mathbb{Q}\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Rational functions on the complex plane, \(\mathbb{C}(z)\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.42\columnwidth}\raggedright
Prime numbers, \(\mathbb{P}\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Points in the complex plane, \(\mathbb{C}\)\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

Why is this analogy good? Well, for starters:

\begin{quote}
Every rational number is a ratio of integers.\\

Every rational function is a ratio of polynomials.
\end{quote}

Better yet:

\begin{quote}
Every integer can be uniquely factored into primes\\
(modulo invertible integers, namely \(+1\) and \(-1\)).\\

Every complex polynomial can be uniquely factored into linear
polynomials\\
(modulo invertible polynomials, namely nonzero constants).
\end{quote}

There's one linear polynomial \(z-a\) for each point \(a\) in the
complex plane, so \emph{primes} are like \emph{points} in the complex
plane.

We can make this precise using the concept of ``spectrum'', which I
defined in \protect\hyperlink{week199}{``Week 199''}. Ignoring a certain
little sublety which is discussed there:

\begin{quote}
The spectrum of \(\mathbb{Z}\) is the set of prime numbers.\\

The spectrum of \(\mathbb{C}[z]\) is the complex plane.
\end{quote}

This way of thinking lets us treat the spectrum of any algebraic
extension of the integers, like the Gaussian integers, as a ``covering
space'' of the set of prime numbers. I've already drawn this picture: \[
  \begin{tikzpicture}[xscale=1.4,yscale=1.2]
    \draw[thick] (0,1.5) to (2,1.5);
    \draw[thick] (2,1.5) .. controls (2.25,2) and (2.75,2) .. (3,1.5);
    \draw[thick] (2,1.5) .. controls (2.25,1) and (2.75,1) .. (3,1.5);
    \draw[thick] (3,1.5) to (5,1.5);
    \draw[thick] (5,1.5) .. controls (5.25,2) and (5.75,2) .. (6,1.5);
    \draw[thick] (5,1.5) .. controls (5.25,1) and (5.75,1) .. (6,1.5);
    \draw[thick] (6,1.5) to (6.25,1.5);
    \draw[thick,dotted] (6.25,1.5) to (6.5,1.5);
    \node[fill=white] at (0.5,1.5) {\scriptsize$(1+i)$};
    \node[fill=white] at (1.5,1.5) {\scriptsize$(3)$};
    \node[fill=white] at (2.5,1.75) {\scriptsize$(2+i)$};
    \node[fill=white] at (2.5,1.25) {\scriptsize$(2-i)$};
    \node[fill=white] at (3.5,1.5) {\scriptsize$(7)$};
    \node[fill=white] at (4.5,1.5) {\scriptsize$(11)$};
    \node[fill=white] at (5.5,1.75) {\scriptsize$(2+i)$};
    \node[fill=white] at (5.5,1.25) {\scriptsize$(2-i)$};
    %
    \draw[thick] (0,0) to (6.25,0);
    \draw[thick,dotted] (6.25,0) to (6.5,0);
    \node[fill=white] at (0.5,0) {$2$};
    \node[fill=white] at (1.5,0) {$3$};
    \node[fill=white] at (2.5,0) {$5$};
    \node[fill=white] at (3.5,0) {$7$};
    \node[fill=white] at (4.5,0) {$11$};
    \node[fill=white] at (5.5,0) {$13$};
  \end{tikzpicture}
\] But, now I'm saying that the ``line'' down below really acts like the
complex \emph{plane}. Taking this strange idea seriously leads to all
sorts of amazing insights.

For example, if you poke a hole in this ``plane'' at some prime, there's
something like a little \emph{loop} that goes around this hole! In other
words, there's a sense in which the spectrum of \(\mathbb{Z}\) has a
nontrivial ``fundamental group'', which contains an element for each
prime. Technically this group is called the Galois group
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\), and we get an
element in it for each prime, called the ``Frobenius automorphism'' for
that prime.

Another cool thing is that we can study integers ``locally'', one prime
at a time, just like we study complex functions locally. We can analyze
functions at a point using Taylor series and Laurent series. And, we can
stretch our analogy to include these concepts:

\begin{longtable}[]{@{}ll@{}}
\toprule
\begin{minipage}[b]{0.42\columnwidth}\raggedright
Number theory\strut
\end{minipage} & \begin{minipage}[b]{0.52\columnwidth}\raggedright
Complex geometry\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.42\columnwidth}\raggedright
Integers, \(\mathbb{Z}\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Polynomial functions on the complex plane, \(\mathbb{C}[z]\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.42\columnwidth}\raggedright
Rational numbers, \(\mathbb{Q}\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Rational functions on the complex plane, \(\mathbb{C}(z)\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.42\columnwidth}\raggedright
Prime numbers, \(\mathbb{P}\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Points in the complex plane, \(\mathbb{C}\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.42\columnwidth}\raggedright
Integers \(\mod p^n\), \(\mathbb{Z}/p^n\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
\((n-1)\)st-order Taylor series, \(\mathbb{C}[z]/(z-a)^n\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.42\columnwidth}\raggedright
\(p\)-adic integers, \(\mathbb{Z}_p\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Taylor series, \(\mathbb{C}[[z-a]]\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.42\columnwidth}\raggedright
\(p\)-adic numbers, \(\mathbb{Q}_p\)\strut
\end{minipage} & \begin{minipage}[t]{0.52\columnwidth}\raggedright
Laurent series, \(\mathbb{C}((z-a))\)\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

All the weird symbols are just the standard notations for these gadgets.
The analogy goes as follows:

\begin{quote}
To study a polynomial ``at a point'' \(a\) in the complex plane,\\
we can look at its value modulo \((z-a)\), or more generally mod
\((z-a)^n\).\\

To study an integer ``at a prime'' \(p\),\\
we can look at its value modulo \(p\), or more generally \(\mod p^n\).
\end{quote}

This is nice because the value of a polynomial modulo \((z-a)^n\) is
just its Taylor series at the point \(a\), where we keep terms up to
order \(n-1\).

We can also also take the limit as \(n \to \infty\). If we do this to
the integers \(\mod p^n\) we get a ring called the ``\(p\)-adic
integers''. For example, a typical \(3\)-adic integer, written in base
3, looks like this: \[\ldots21001102020110102012102201\] They're just
like natural numbers in base 3, except they go on forever to the left!
We add and multiply them in the obvious way, for example: \[
  \begin{aligned}
    &\ldots21001102020110102012102201
  \\+&\ldots10201101012201201122010012
  \\=&\ldots01202210110012010211112220
  \end{aligned}
\] If we take the same sort of limit for Taylor series, we get Taylor
series that go on forever --- in other words, formal power series.

We can also ratios of \(p\)-adic integers, which are called \(p\)-adic
numbers, and ratios of Taylor series, which are called Laurent series. A
typical \(3\)-adic number, written in base 3, looks like this:
\[\ldots121010010012121201201201011.21021\]

They have to stop at some finite stage at the right, just as Laurent
series have to stop at some finite stage: they can't have arbitrarily
large negative powers of \(z-a\).

Laurent series can be used to describe functions that have a pole at
some point, like rational functions. Similarly, \(p\)-adic numbers can
be used to describe rational numbers. Using more math jargon:

\begin{quote}
For any point \(a\) in \(\mathbb{C}\), there's a homomorphism\\
from the field of rational functions\\
to the field of Laurent series,\\
which sends polynomials to Taylor series.\\

For any prime \(p\), there's a homomorphism\\
from the field of rational numbers\\
to the field of \(p\)-adic numbers,\\
which sends integers to \(p\)-adic integers.
\end{quote}

This lets us study rational numbers ``locally'' at the prime p using
\(p\)-adic numbers, just as we can study a rational function locally at
a point using its Laurent series. This technique can be quite useful.
For example, a polynomial equation can have rational solutions only if
it has \(p\)-adic solution for all primes \(p\).

We might hope for the converse, but then we would be ignoring a funny
extra ``prime'' besides the usual ones\ldots{} something called the
``real prime''!

The point is, besides being able to embed the rational numbers in the
\(p\)-adics for any prime \(p\), we can also embed them in the real
numbers! This embedding is a bit different than the rest: it's based on
a weird thing called an ``Archimedean valuation'', while the usual
primes correspond to non-Archimedean valuations.

I'm sort of joking here, since if you're more used to real numbers than
\(p\)-adics, you'll probably find Archimedean valuations to be
\emph{less} weird than non-Archimedean ones. The Archimedean valuation
on the rational numbers is just the usual absolute value, while the
non-Archimedean ones are other concepts of ``absolute value'', one for
each prime \(p\). If we take limits of rational numbers that converge
using the usual distance function \(|x-y|\), we get real numbers; if we
take limits that converge using one of the non-Archimedean versions of
this distance function, we get \(p\)-adic numbers. But from the
viewpoint of number theory, it's the Archimedean valuation that's the
odd man out! It indeed does act very weird and different than all the
rest. That's why someone wrote this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  M. J. Shai Haran, \emph{The Mysteries of the Real Prime}, Oxford U.
  Press, Oxford, 2001.
\end{enumerate}

\ldots{} which you will see is deeply connected to mathematical physics.

If we take this weird ``real prime'' into account, things work better.
We sometimes get results saying that some kind of polynomial equations
have a rational solution if they have \(p\)-adic solutions for all
primes p and also a real solution. For example, Hasse proved this was
true for systems of quadratic equations in many variables.

Results like this are called ``local-to-global'' results, since they're
analogous to constructing a function from local information, like its
Laurent series at all different points.

In 1950, in his famous PhD thesis, John Tate came up with a clever way
to formalize this ``Laurent series at all different points'' idea in the
context of number theory. To do this, he formed a ring called the
``adeles''.

Indeed, this is what my whole discussion so far has been leading up to!
Adeles are a really nice formalism, and you pretty much need to
understand them to follow what people are doing in work on the Langlands
Conjectures, or even simpler things, like class field theory. But,
adeles seem like an arbitrary construction until you see them as an
inevitable outgrowth of our desire to study integers ``locally'' at all
different primes, including the real prime.

The definition is simple. An adele consists of a \(p\)-adic number for
each prime \(p\), together with a real number\ldots{} but where all but
finitely many of the \(p\)-adic numbers are \(p\)-adic integers!

This is the number-theoretic analogue of a Laurent series for each point
in the complex plane, including the point at infinity\ldots{} but with
poles at only finitely many points! We could call such a thing an
``adele for the rational functions''.

Any rational function gives such a thing, just as any rational number
gives an adele. And, we don't lose any information this way:

\begin{quote}
There's a one-to-one (but not onto) homomorphism\\
from the rational functions to the adeles for the rational functions.

There's a one-to-one (but not onto) homomorphism\\
from the rational numbers to the adeles for the rational numbers.
\end{quote}

So, our table now looks like this. For good measure, I'll combine it
with the related table in \protect\hyperlink{week205}{``Week 205''}:

\begin{longtable}[]{@{}ll@{}}
\toprule
Number theory & Complex geometry\tabularnewline
\midrule
\endhead
Integers & Polynomial functions on the complex plane\tabularnewline
Rational numbers & Rational functions on the complex
plane\tabularnewline
Prime numbers & Points in the complex plane\tabularnewline
Integers \(\mod p^n\) & \((n-1)\)st-order Taylor series\tabularnewline
\(p\)-adic integers & Taylor series\tabularnewline
\(p\)-adic numbers & Laurent series\tabularnewline
Adeles for the rationals & Adeles for the rational
functions\tabularnewline
Fields & One-point spaces\tabularnewline
Homomorphisms to fields & Maps from one-point spaces\tabularnewline
Algebraic number fields & Branched covering spaces of the complex
plane\tabularnewline
\bottomrule
\end{longtable}

There's a \emph{lot} more to say about this analogy, but I think this is
enough for now. Again, one of my secret goals was to start getting you
comfy with adeles and the idea of studying number theory ``locally''.

For more on the geometrical side of number theory, I again recommend
these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Juergen Neukirch, \emph{Algebraic Number Theory}, trans. Norbert
  Schappacher, Springer, Berlin, 1986.
\item
  Dino Lorenzini, \emph{An Invitation to Arithmetic Geometry}, American
  Mathematical Society, Providence, Rhode Island, 1996.
\end{enumerate}

But now, back to the subject of ``inside tracks'' --- sneaky ways to get
the beneficial feeling that you have secret insights into some problem.

For anyone with a background in categories, a good ``inside track'' on
almost any math problem is to categorify it: to see that people are
using sets where they could, and therefore \emph{should}, be using
categories or \(n\)-categories.

I've already hinted that zeta functions are an example of
``decategorification''. Now I'd like to make this more precise.

Let's think about the zeta function of a set \(X\) equipped with a
one-to-one and onto function \[f\colon X \to X\] If you're a physicist,
you might call this a ``discrete dynamical system'', with \(f\)
describing one step of ``time evolution''. If you're a mathematician,
you might call this a ``\(\mathbb{Z}\)-set''. After all, for any group
\(G\), a ``\(G\)-set'' is a set equipped with an action of \(G\). If
\(G = \mathbb{Z}\) (the additive group of integers), this amounts to a
one-to-one and onto function from some set to itself.

No matter what you call them, these are fundamental things. So, let's
look at the \emph{category} of \(\mathbb{Z}\)-sets! Here the objects are
\(\mathbb{Z}\)-sets and the morphisms are functions that commute with
time evolution.

As explained near the end of \protect\hyperlink{week216}{``Week 216''},
we can define a kind of zeta function for a \(\mathbb{Z}\)-set as
follows:
\[Z(x) = \exp\left(\sum_{n>0} \frac{|\mathrm{fix}(f^n)| x^n}{n}\right)\]
where \(|\mathrm{fix}(f^n)|\) is the number of fixed points of \(f^n\).
Of course, this only makes sense if all these numbers are finite;
henceforth I'll assume my \(\mathbb{Z}\)-sets are ``finite'' in this
special sense.

It turns out that you know a finite \(\mathbb{Z}\)-set up to isomorphism
if you know its zeta function. So, a zeta function is just a sneaky way
of talking about an \emph{isomorphism class} of finite
\(\mathbb{Z}\)-sets.

This is a fancy example of something we all learn as kids: counting!
When we ``count'' a finite set, assigning a natural number to it, we are
really determining its isomorphism class. Two finite sets are isomorphic
if and only if they have the same number of elements. Operations on
finite sets, like disjoint union and Cartesian product, are what give
rise to operations on natural numbers, like addition and multiplication.

Summarizing this, we have the following motto, suitable for making into
a bumper sticker:

\begin{quote}
\textbf{the set of natural numbers is the decategorification of}\\
\textbf{the category of finite sets}
\end{quote}

Similarly, this is what we're seeing now:

\begin{quote}
\textbf{the set of zeta functions is the decategorification of}\\
\textbf{the category of finite \(\mathbb{z}\)-sets}
\end{quote}

Beware: here I'm only talking about zeta functions of the above form.
There are lots of other things people call zeta functions. So, don't
read too much into this statement. But don't read too little into it,
either! With an extra twist we can get most of the zeta functions
showing up in number theory. In number theory, we typically get a
\(\mathbb{Z}\)-set for each prime \(p\), coming from the ``Frobenius''
for that prime. We thus get a bunch of ``local'' zeta functions
\(Z_p(x)\), one for each prime. We then multiply these to get one big
fat ``global'' zeta function: \[\zeta(s) = \prod_p Z(p^{-s})\] Each
local zeta function is a formal power series, while this global zeta
function is a Dirichlet series. As I mentioned in
\protect\hyperlink{week217}{``Week 217''}, formal power series live in
the monoid algebra of \((\mathbb{N},+,0)\), while Dirichlet series live
in the monoid algebra of \((\mathbb{N},\times,1)\). \((\mathbb{N},+,0)\)
is the free commutative monoid on one generator, while
\((\mathbb{N},\times,1)\) is the free commutative monoid on countably
many generators --- the primes! Everything fits together sweetly.

So, it's a good first step to think about the zeta function of a single
\(\mathbb{Z}\)-set.

Now, there's another motto along the lines of the above two, which I've
talked about before:

\begin{quote}
\textbf{the set of generating functions is a decategorification of}\\
\textbf{the category of finite structure types}
\end{quote}

I explained this in \protect\hyperlink{week185}{``Week 185''},
\protect\hyperlink{week190}{``Week 190''}, and
\protect\hyperlink{week202}{``Week 202''}. I've even taught a whole
course on structure types (also known as ``species'') and the
combinatorics of Feynman diagrams. The course notes by Derek Wise are
available online:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez and Derek Wise, ``Quantization and Categorification'',
  available at:\\
  \texttt{http://math.ucr.edu/home/baez/qg-fall2003/}~\\
  \texttt{http://math.ucr.edu/home/baez/qg-winter2004/}~\\
  \texttt{http://math.ucr.edu/home/baez/qg-spring2004/}
\end{enumerate}

So, I think this third example of decategorification is great. But, I'm
not going to explain it in much detail here --- just enough to say how
it's related to zeta functions!

A stucture type \(F\) is a gadget that gives a set \(F_n\) for each
\(n = 0,1,2,\ldots\). We think of the elements of \(F_n\) as
``structures of type \(F\)'' on an \(n\)-element set --- for example,
orderings, or cyclic orderings, or \(n\)-colorings, or whatever type of
structure you like. We only require that permutations of the
\(n\)-element set act on this set of structures.

Let's say a structure type is ``finite'' if all the sets \(F_n\) are
finite. Any finite structure type has a ``generating function'', which
is a formal power series \(|F|\) given by
\[|F|(x) = \sum \frac{|F_n|}{n!}x^n\] Isomorphic structure types have
the same generating function. However, structure types with the same
generating function can fail to be isomorphic. This is why I said
generating functions are ``a'' decategorification of finite structure
types, instead of ``the'' decategorification.

Despite this defect, generating functions are still very useful in
combinatorics. So, when we see a zeta function like
\[Z(x) = \exp\left(\sum_{n>0} \frac{|\mathrm{fix}(f^n)| x^n}{n}\right)\]
as a trick for decategorifying \(\mathbb{Z}\)-sets, we should instantly
wonder if it's a generating function in disguise. And of course, it is!

Actually it's easiest to leave out the exponential at first. This power
series: \[\sum_{n>0} \frac{|\mathrm{fix}(f^n)| x^n}{n}\] is the
generating function for the structure type ``being cyclically ordered
and equipped with a morphism to the \(\mathbb{Z}\)-set \(X\)''.

Huh?

We ``cyclically order'' a finite set by drawing it as a little circle of
dots with arrows pointing clockwise from each dot to the next. A
cyclically ordered set is automatically a \(\mathbb{Z}\)-set in an
obvious way. So, here's a type of structure you can put on a finite set:
cyclically ordering it and equipping the resulting \(\mathbb{Z}\)-set
with a morphism to the \(\mathbb{Z}\)-set \(X\).

And, if you work out the generating function of this structure type, you
get \[\sum_{n>0} \frac{|\mathrm{fix}(f^n)| x^n}{n}\] Check it and see!

What about the exponential? Luckily, there's a standard way to take the
exponential of a structure type: to put an \(\exp(F)\)-structure on a
finite set \(S\), we chop \(S\) into disjoint parts and put an
\(F\)-structure on each part. So, the zeta function
\[Z(x) = \exp\left(\sum_{n>0} \frac{|\mathrm{fix}(f^n)| x^n}{n}\right)\]

is the generating function for ``being chopped up into cyclically
ordered parts, each equipped with a morphism to the \(\mathbb{Z}\)-set
\(X\)''.

But this is just a long way of saying: ``being made into a
\(\mathbb{Z}\)-set and equipped with a morphism to the
\(\mathbb{Z}\)-set \(X\)''.

Or, in category theory jargon, ``being a \(\mathbb{Z}\)-set over
\(X\)''.

So:

\begin{quote}
\textbf{the zeta function of the \(\mathbb{z}-set\) \(x\) is the
generating function of}\\
\textbf{``being a \(\mathbb{z}-set\) over \(x\)''}
\end{quote}

By the way, this is the kind of thing you could do with \emph{any}
structure type \(F\). Given an \(F\)-structured set \(X\), we get a new
structure type ``being an \(F\)-structured set equipped with a morphism
to \(X\)''. Or, in category theory jargon, ``being an \(F\)-structured
set over \(X\)''. The generating function of this could be called the
``zeta function'' of our \(F\)-structured set \(X\). I have no idea how
important this is\ldots{}

\ldots{} but I want to keep gnawing away on the connection between zeta
functions and the generating functions of combinatorics, because to
understand number theory, I need all the ``inside tracks'' I can get!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum}: After reading this Week's Finds, Kevin Buzzard
emailed me the following remarks. He begins by talking about adeles for
any algebraic number field \(K\) --- a fairly straightforward
generalization of the case I discussed above, where \(K\) is the
rational numbers:

\begin{quote}
The adeles were used in a really powerful way in the theorems and proofs
of global class field theory (you don't want to read the proofs. I did
this precisely once in my life and they are very unilluminating). But
the theorem --- if \(K\) is a number field then the abelianisation of
\(\mathrm{Gal}(\overline{K}/K)\) is canonically isomorphic to
\[K^*\setminus\mathrm{Adeles}_{K^*}/(K_\infty^*)^0\] (the last term
being the connected component of the product of the infinite completions
of \(K\)) --- is incredibly important.

Much easier going is Tate's thesis (in the book by Cassels and
Froehlich). Tate observes that Fourier analysis works on any locally
compact abelian group (Haar measure is the replacement for ``usual''
measure), and then gives a very short proof of the analytic continuation
and functional equation of all Hecke's \(L\)-functions by simply pushing
through an analogue of the proof you know of the functional equation of
the zeta function in this much more general context. I think this is an
amazingly powerful use of the adeles. Tate's approach explains the fudge
factors, the factors at infinity, everything.

A word on analogies. If you want to say that the \(p\)-adic integers are
analogous to the formal power series ring \(\mathbb{C}[[z-a]]\) (call it
\(\mathbb{C}[[z]]\) for simplicity) then in fact some people would say
that this was \emph{not} an analogy---this was simply two instances of
the same thing, namely a complete discrete valuation ring. Similarly,
you might say that \(\mathbb{Z}\) is analogous to \(\mathbb{C}[z]\), but
again some people would just tell you to go and get a book on
commutative algebra and look up the word ``Dedekind domain'' --- both of
these are examples. A geometer might even go and tell you to go and find
out what a regular \(1\)-dimensional scheme was!

One thing I didn't realise when I was learning all this stuff however,
was that there is some stuff that just goes through for all Dedekind
domains (e.g.~construction of adeles, existence of class group etc), and
there is some stuff that actually requires more. Tate's thesis for
example requires more --- it doesn't just work for all Dedekind domains
because Tate needs a Haar measure and so he needs completions to be
locally compact, which is basically the same as demanding that \emph{all
residue fields are finite}. Here's something you can do for
\(\mathbb{Z}_p\) which you can't do for \(\mathbb{C}[[z]]\): let's
define the measure of \(a+p^n\mathbb{Z}_p\) to be \(p^{-n}\). Then this
is finitely additive, because \(\mathbb{Z}_p\) is the disjoint union
\(p\mathbb{Z} \cup 1+p\mathbb{Z} \cup\ldots\cup (p-1)+p\mathbb{Z}\), and
\(1/p+1/p+\ldots+1/p\) (\(p\) times) is \(1\). But you can't do this for
\(\mathbb{C}[[z]]\) because the cardinality of \(\mathbb{C}\) is
infinite. This naive measure on \(Z_p\) is exactly what you need to
define \(p\)-adic \(L\)-functions, by the way! But they are another
(related) story.

When you move from Discrete Valuation Rings to Dedekind Domains the same
care needs to be applied: it's a famous theorem that the ideal class
group of (the integers of) a number field is finite. But it's not true
that the class group of a Dedekind domain is finite: the class group of
\(\mathbb{C}[z]\) is finite as \(\mathbb{C}[z]\) is a principal ideal
domain, but the class group of \(\mathbb{C}[x,y]/(y^2-x^3-1)\) is
infinite (the class group is essentially the underlying elliptic curve,
which is an infinite group). Again you have to demand that residue
fields are finite. So this stops you thinking about \(\mathbb{C}[z]\)
and its finite extensions, it forces you to start thinking about
\(k[z]\) where \(k\) is a \emph{finite} field. Of course algebraic
geometers aren't scared of finite fields (well, at least, the ones I
talk to the most aren't), so after a while your analogy is going to
break because \(\mathbb{C}\) is infinite. Langlands' philosophy is (or
at least, was---it has been generalised in various directions now) about
global fields, which means either number fields or finite extensions of
\(k(z)\) where \(k\) is a finite field. Of course Lafforgue recently
proved everything in the function field case, hence the Fields Medal.

Kevin
\end{quote}

I replied:

\begin{quote}
\begin{quote}
The adeles were used in a really powerful way in the theorems and proofs
of global class field theory (you don't want to read the proofs. I did
this precisely once in my life and they are very unilluminating).
\end{quote}

Then I think there must exist nicer proofs! There can't possibly be such
important and beautiful results where the best possible proof is
unilluminating. So, someone needs to work on this more\ldots{} perhaps
me, if everyone else is too busy. :-)

\begin{quote}
But the theorem --- if \(K\) is a number field then the abelianisation
of \(\mathrm{Gal}(\overline{K}/K)\) is canonically isomorphic to
\(K^*\setminus\mathrm{Adeles}_{K^*}/(K_\infty^*)^0\) (the last term
being the connected component of the product of the infinite completions
of \(K\)) --- is incredibly important.
\end{quote}

It's beautiful, too!

\begin{quote}
Much easier going is Tate's thesis (in the book by Cassels and
Froehlich). Tate observes that Fourier analysis works on any locally
compact group (Haar measure is the replacement for ``usual'' measure),
and then gives a very short proof of the analytic continuation and
functional equation of all Hecke's \(L\)-functions by simply pushing
through an analogue of the proof you know of the functional equation of
the zeta function in this much more general context. I think this is an
amazingly powerful use of the adeles. Tate's approach explains the fudge
factors, the factors at infinity, everything.
\end{quote}

This sounds great. I've always heard people rave about Tate's thesis,
and now it's time for me to read it\ldots{} or at least the book you
mention --- but I get the feeling the actual thesis is good.

\begin{quote}
A word on analogies.If you want to say that the \(p\)-adic integers are
analogous to the formal power series ring \(\mathbb{C}[[z-a]]\) (call it
\(\mathbb{C}[[z]]\) for simplicity) then in fact some people would say
that this was not an analogy --- this was simply two instances of the
same thing, namely a complete discrete valuation ring.
\end{quote}

Yes, but I don't want to intimidate my readers with concepts like
``complete discrete valuation ring'' --- I'd rather lure them in with
the charm of a mysterious analogy! I think think this is how things went
historically, too\ldots{} judging from Weil's remarks:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Martin H. Krieger, ``A 1940 letter of Andre Weil on analogy in
  mathematics'', \emph{AMS Notices} \textbf{52} (March 2005), 334--341.
  Available at
  \texttt{http://www.ams.org/notices/200503/200503-toc.html}
\end{enumerate}

He even talks about how the charm of an analogy evaporates when you find
a generalization that encompasses both terms:

\begin{quote}
``The day dawns when the illusion vanishes; intuition turns to
certitude; the twin theories reveal their common source before
disappearing; as the Gita teaches us, knowledge and indifference are
attained at the same moment. Metaphysics has become mathematics, ready
to form the material for a treatise whose icy beauty no longer has the
power to move us.''
\end{quote}

Wouldn't want that!

\begin{quote}
Similarly, you might say that \(\mathbb{Z}\) is analogous to
\(\mathbb{C}[z]\), but again some people would just tell you to go and
get a book on commutative algebra and look up the word ``Dedekind
domain'' --- both of these are examples. A geometer might even go and
tell you to go and find out what a regular \(1\)-dimensional scheme was!
\end{quote}

I've read lots of theorems about Dedekind domains, and on good days I
can even remember the definition\ldots{}

But, I really want to keep things a bit vague and misty for my readers
--- most importantly because This Week's Finds is supposed to be fun,
but also because a lot of the coolest stuff happens when you extend
vague analogies in shocking ways.

For example, thinking of \(\mathrm{Spec}(\mathbb{Z})\) as a plane that
gets a fundamental group when you poke a hole in it and remove a prime
is nice for visualizing an individual Frobenius generator, but deeper
results suggest that it's good to think of \(\mathrm{Spec}(\mathbb{Z})\)
as \(3\)-dimensional! This leads to the extensive analogy between
\(\mathrm{Spec}(\mathbb{Z})\) and knot theory discussed here\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Adam Sikora, ``Analogies between group actions on \(3\)-manifolds and
  number fields'', available as
  \href{http://www.arXiv.org/abs/math.NT/0107210}{\texttt{math.GT/0107210}}.
\item
  Christopher Deninger, ``A note on arithmetic topology and dynamical
  systems'', available as
  \href{http://www.arXiv.org/abs/math.NT/0204274}{\texttt{math.NT/0204274}}.
\end{enumerate}

\begin{quote}
(Actually I think there is even a kind of Langlands philosophy for
\(\mathbb{C}(z)\) and its finite extensions nowadays worked out recently
by Beilinson and Drinfeld. I saw Beilinson give several lectures on it,
more than once, and still didn't really get it, I am too
number-theoretic.)
\end{quote}

Is this the ``geometric Langlands program'' stuff? Physicists are
getting interested in that\ldots{}

Best,\\
jb
\end{quote}

To understand Kevin's reply, recall that any algebraic number field
\(K\) has a ``maximal abelian extension'' \(K^{\mathrm{ab}}\). This is
the biggest algebraic extension of \(K\) whose Galois group is
\emph{abelian}. When \(K = \mathbb{Q}\), the Kronecker-Weber theorem
says this is obtained by throwing in all the roots of unity. Since a
field obtained from \(\mathbb{Q}\) by throwing in a root of unity is
called a ``cyclotomic field'', people sometimes call this
\(\mathbb{Q}^{\mathrm{cyc}}\).

In \protect\hyperlink{week201}{``Week 201''} I described the Galois
group \(\mathrm{Gal}(\mathbb{Q}^{\mathrm{cyc}}/\mathbb{Q})\).
Unsurprisingly, this is the abelianization of the big bad Galois group
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\): the Galois group of
the algebraic closure of \(\mathbb{Q}\). In what follows, Kevin more
generally discusses \(\mathrm{Gal}(K^{\mathrm{ab}}/K)\), which is the
abelianization of \(\mathrm{Gal}(\overline{K}/K)\).

Understanding groups like \(\mathrm{Gal}(\overline{K}/K)\) is one of the
great unfulfilled dreams of number theory. Understanding its
abelianization is one of the great triumphs of late nineteenth to mid
twentieth century mathematics. This is called \emph{class field theory}.

\begin{quote}
\begin{quote}
\begin{quote}
The adeles were used in a really powerful way in the theorems and proofs
of global class field theory (you don't want to read the proofs. I did
this precisely once in my life and they are very unilluminating).
\end{quote}
\end{quote}

\begin{quote}
Then I think there must exist nicer proofs!
\end{quote}

This is related to one of Hilbert's problems! (the 12th one). So you
must be thinking along the right lines :-)

Abstract theorem: if \(K\) is a number field then the abelianisation of
\(\mathrm{Gal}(\overline{K}/K)\) is isomorphic to
\(K^*\setminus\mathrm{Adeles}_{K^*}/(K_\infty^*)^0\).

Remark: the right hand group is very ``concrete'', in the sense that one
can write down explicit finite quotients of it. (Why quotients? Because
quotients of Galois groups are again Galois groups.) For example, I can
just write down a big subgroup e.g.~\(K_\infty^*\) times the product of
\(O_{K_v}^*\), where \(v\) runs through all the finite places of \(K\),
and the quotient of the big group by the big subgroup can be checked to
be compact and discrete, so it's finite. We have hence ``explicitly''
written down a finite quotient of \(\mathrm{Gal}(\overline{K}/K)\),
corresponding to a finite extension \(H\) of \(K\). The objects on the
right hand side are rather abstract, but this is as explicit a quotient
group of the right hand side as you could possibly ask for --- we
understand exactly what's going on at every place, for example. Hence
this is as explicit a finite extension of \(K\) as you could possibly
ask for, if you admit the isomorphism of class field theory. Indeed, if
you know a bit more about the isomorphism, you will know that this
quotient \(H\) is unramified at all the primes of \(K\), and is indeed
the largest abelian extension of \(K\) with this property. \(H\) is (by
definition) the Hilbert Class Field of \(K\). In your analogy, given a
curve, a natural thing to think of would be the universal covering space
of the curve. Unfortunately number theorists aren't good enough to
understand all of \(\mathrm{Gal}(\overline{K}/K)\), they have to
abelianise first, so \(H\) corresponds to the maximal unramified cover
of the curve with abelian covering group.

Great! So we have all this machinery, this beautiful isomorphism, this
completely canonical description of the Galois group, and we make a very
explicit and natural construction on the right hand side, so now let me
give you a number field like \(\mathbb{Q}(\sqrt{10})\) and ask you what
H is!

Now suddenly you see a big disadvantage of the glorious proof of the
isomorphism which goes via all this cohomological chasing around --- it
shows the existence of H but doesn't tell us what it is. At all. And at
the end of the day, there are a lot of number theorists out there that
are actually interested \emph{in numbers}, rather than in abstract
results which hold for all number fields or whatever.

Hilbert's question was: ``well, this is all well and good, but can
anyone actually \emph{write down} the isomorphism, rather than actually
prove its existence? Can anyone write it down sufficiently concretely so
that people can just read off the Hilbert Class Group of a number field,
given the field?'' And, to be honest, although a lot is known, Hilbert
would probably say that the answer is still ``no''. If you were to find
a ``better'' proof of global class field theory then perhaps the answer
would change. In fact the Hilbert Class Field is just the tip of the
iceberg --- global class field theory gives us a description of the
abelianisation of \(\mathrm{Gal}(\overline{K}/K)\), and this
abelianisation corresponds to a field \(K^{\mathrm{ab}}\), of infinite
degree over \(K\), but Galois, with infinite abelian Galois group. If I
give you \(K\), can you tell me \(K^{\mathrm{ab}}\)? Hilbert even wanted
to know this (his questions are maximally greedy, I guess).

Hilbert's question was not totally out of the blue. It can be done for
\(K=\mathbb{Q}\), indeed it had been done 50 years before Hilbert's
question. Kronecker and Weber knew not just the Hilbert class field of
\(\mathbb{Q}\), they even knew \(\mathbb{Q}^{\mathrm{ab}}\), it's just
the union of \(\mathbb{Q}(1^{\frac1n})\), where \(1^{\frac1n}\) is
\(\exp(2\pi i/n)\). Let me labour a point which experts in the theory
feel is highly important: the exponential function is transcendental ---
it doesn't belong in algebraic geometry because it's not in
\(\mathbb{C}(z)\). On the other hand, this transcendental function, when
evaluated at certain places, gives algebraic numbers out, and it is
these algebraic numbers which explain all the class field theory of the
rationals.

Now a \textbf{TOTALLY AMAZING GENERALISATION}: let \(K\) be an imaginary
quadratic field, so \(\mathbb{Q}(\sqrt{d})\) for some integer \(d<0\).
Let \(L\) be the lattice in the complex numbers with basis \(1\) and
\(\sqrt{d}\) (this is a lattice as \(d<0\)). Quotient out the complex
numbers by this lattice. You get a \(1\)-dimensional complex torus, so
an elliptic curve. The curve has a \(j\)-invariant, which is going to be
a ``random'' complex number. One can compute this number to as many
decimal places as one likes nowadays (in practice). For example, if
\(d=-5\) then my computer instantly tells me that the \(j\)-invariant of
the corresponding elliptic curve is
\[1264538.90947514050932022704741070342148144212156690839688175141278172815944442224994634954784218993\ldots\]
Equally quickly, my computer spots that this (to 100 decimal places, at
least) looks awfully like one of the roots of
\[x^2 - 1264000x - 681472000\] (it agrees with it to 100 decimal places,
despite the fact that the \(j\)-function is again ``transcendental'' ---
we have put an algebraic number in and appear to have got an algebraic
number out).

The awesome fact is that the splitting field of this polynomial over
\(\mathbb{Q}(\sqrt{-5})\) (i.e.~the field you get by adjoining all of
the roots of this polynomial to \(\mathbb{Q}(\sqrt{-5})\)) is the
Hilbert Class Field of \(\mathbb{Q}(\sqrt{5})\)! \emph{Even better}: I
can even tell you \(K^{\mathrm{ab}}\), if \(K\) is
\(\mathbb{Q}(\sqrt{-5})\): write down a model for the elliptic curve in
the form \(y^2=f(x)\) with \(f\) a cubic with coefficients in \(K\) (use
the Weierstrass \(\wp\)-function and its derivative), and now look at
all the points of finite order on this elliptic curve. The \(x\) and
\(y\) coordinates of all these points are algebraic numbers, and they
generate \(K^{\mathrm{ab}}\).

I am proud now to give you a genuine analogy :-)

\begin{longtable}[]{@{}ll@{}}
\toprule
\begin{minipage}[b]{0.34\columnwidth}\raggedright
Rational field\strut
\end{minipage} & \begin{minipage}[b]{0.60\columnwidth}\raggedright
Imaginary quadratic field\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.34\columnwidth}\raggedright
Group \(\mathbb{C}/\mathbb{Z}\)\strut
\end{minipage} & \begin{minipage}[t]{0.60\columnwidth}\raggedright
Elliptic curve \(\mathbb{C}/(\text{integers of the field})\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.34\columnwidth}\raggedright
Element of finite order in the group\strut
\end{minipage} & \begin{minipage}[t]{0.60\columnwidth}\raggedright
Element of finite order in the group\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.34\columnwidth}\raggedright
function \(z\mapsto\exp(2\pi iz)\)\strut
\end{minipage} & \begin{minipage}[t]{0.60\columnwidth}\raggedright
Weierstrass \(\wp\)-function (and its derivative)\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

In both cases, the function maps the group to an algebraic variety
(\(\mathbb{C}^*\) in the first case, \(y^2=\text{cubic}\) in the
second), and evaluating the function at complex numbers which give
torsion points of the group (rational numbers in the first case,
elements of the imaginary quadratic field in the second) gives numbers
which by all rights should be random complex numbers, but turn out to be
not only algebraic, but to generate the maximal abelian extension of the
number field.

This really is an analogy because no-one has (as far as I know) a clue
how to do this more generally. Note that the rationals and the imaginary
quadratic fields are the only fields with exactly one infinite place. Is
this why they are the only fields we can ``do''? This technique, of
``explicitly'' generating abelian extensions of a number field, is
called ``explicit class field theory'' and, other than the (non-trivial)
contribution by Shimura and Taniyama where they used higher-dimensional
abelian varieties to push the analogy slightly further, it's still a big
mystery.

\begin{quote}
There can't possibly be such important and beautiful results where the
best possible proof is unilluminating.
\end{quote}

In the case of local class field theory, there are now some really neat
proofs, where you in some sense really do write down the maximal abelian
extension of an arbitrary finite extension of Q\_p, again using torsion
points in groups (formal groups). But people have spent a century
looking for more illuminating proofs, motivated by Hilbert's question.
Until then, we just have to rely on known algorithms for computing
Hilbert Class Fields (there are algorithms that work in lots of cases,
and they rely on known abstract theorems, but one might argue that none
of them are really ``explicit'', they just go, I think, by essentially
looking at lots of fields until one finds the one that works, rather
than working out which one is the right one by pure thought).

You should talk about special values of \(L\)-functions! Do you know the
analytic class number formula? The degree of \(H\) over \(K\) is called
the class number of \(K\) and, totally amazingly, it is related to the
special value of an \(L\)-function. The Birch-Swinnerton-Dyer conjecture
is just a natural generalisation of this formula to elliptic curves over
the rationals, but again, what used to be an analogy has turned into two
instances of a more general piece of mathematics (ranks of \(K\)-groups,
Beilinson's conjectures etc.).

Sorry to go on! I just get quite enthusiastic about this stuff.

\begin{quote}
This sounds great. I've always heard people rave about Tate's thesis,
and now it's time for me to read it\ldots{} or at least the book you
mention --- but I get the feeling the actual thesis is good.
\end{quote}

The thesis was never published, Tate I guess wasn't happy that he just
reproved a known theorem or something? Cassels--Froehlich is the
canonical reference. Serre's article in there talks about the links to
elliptic curves in the im quad case too. A nice book!

Thanks for the link to the letter of Weil --- interesting stuff! I have
pity on his sister. I have heard that (Andre) Weil's house in Paris had
a plaque on it saying ``Simone Weil used to live here'' (because she
did). Funny that a genius had to live in the shadows of his sister (who
by all accounts might also have been a genius).

Another funny piece of gossip. I think it was Chevalley who originally
started thinking about ideles (the ideles are the group of units of the
adeles). I am no historian so might have this wrong. Chevalley(?) wrote
a book on algebraic number theory where he talked about ideals and also
about these ideles, which he referred to as ``ideal elements'' and which
he abbreviated as ``id.eles''. Later on the period was dropped, so they
became ideles. I think it was Serre who saw that the ideles were the
units of a ring, and christened the ring with the name of ``adeles''. If
you get Serre's collected works and look at his CV at the beginning, you
will see that his mother was called Adele. Coincidence? :-)

\begin{quote}
\begin{quote}
(Actually I think there is even a kind of Langlands philosophy for
\(\mathbb{C}(z)\) and its finite extensions nowadays worked out recently
by Beilinson and Drinfeld. I saw Beilinson give several lectures on it,
more than once, and still didn't really get it, I am too
number-theoretic.)
\end{quote}
\end{quote}

\begin{quote}
Is this the ``geometric Langlands program'' stuff? Physicists are
getting interested in that\ldots{}
\end{quote}

Yes.

Kevin
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{The scientific life of mathematicians can be pictured as a trip
inside the geography of the ``mathematical reality'' which they unveil
gradually in their own private mental frame.}

\emph{It often begins by an act of rebellion with respect to the
existing dogmatic description of that reality that one will find in
existing books. The young ``to be mathematician'' realize in their own
mind that their perception of the mathematical world captures some
features which do not fit with the existing dogma. This first act is
often due in most cases to ignorance but it allows one to free oneself
from the reverence to authority by relying on one's intuition provided
it is backed by actual proofs. Once mathematicians get to really know,
in an original and ``personal'' manner, a small part of the mathematical
world, as esoteric as it can look at first, their trip can really start.
It is of course vital not to break the ``fil d'arianne'' which allows
one to constantly keep a fresh eye on whatever one will encounter along
the way, and also to go back to the source if one feels lost at
times\ldots{}}

\emph{It is also vital to always keep moving. The risk otherwise is to
confine oneself in a relatively small area of extreme technical
specialization, thus shrinking one's perception of the mathematical
world and its bewildering diversity.}

\emph{The really fundamental point in that respect is that while so many
mathematicians have been spending their entire life exploring that world
they all agree on its contours and on its connexity: whatever the origin
of one's itinerary, one day or another if one walks long enough, one is
bound to reach a well known town i.e.~for instance to meet elliptic
functions, modular forms, zeta functions. ``All roads lead to Rome'' and
the mathematical world is ``connected''.}

\emph{In other words there is just ``one'' mathematical world, whose
exploration is the task of all mathematicians, and they are all in the
same boat somehow.}

--- Alain Connes
\end{quote}
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I'm about to head to Sydney and Canberra to help celebrate the 60th
birthday of Ross Street \ldots{} the world's best \(n\)-category
theorist!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Categories in Algebra, Geometry and Mathematical Physics, conference
  in honor of the 60th birthday of Ross Street,
  \texttt{http://streetfest.maths.mq.edu.au/}
\end{enumerate}

Lots of people will be talking about the interface of higher-dimensional
algebra and physics. Some will be talking about higher gauge theory,
which generalizes ordinary gauge theory from point particles to strings,
loops, or higher-dimensional ``branes'' by replacing groups with
\(n\)-groups.

Ezra Getzler will be speaking on how to get an \(n\)-group from a Lie
\(n\)-algebra, and Mikhail Kapranov will be speaking on
higher-dimensional holonomies. Alissa Crans, Danny Stevenson and I will
also be talking about this stuff.

There will eventually be a conference proceedings, but for now you can
see the abstracts of people's talks on the website. You can see my talks
here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Baez, ``Higher gauge theory'',
  \texttt{http://math.ucr.edu/home/baez/street/}
\end{enumerate}

Anyway, before I take off, here's a roundup of stuff I've been meaning
to mention: the centennial of Einstein's ``annus mirabilis'', the
Pioneer anomaly, silicon photonics, a company that plans to sell quantum
computers, and some relationships between Klein's quartic curve, the
Fano plane, and special relativity over the integers \(\mod 7\). I want
to leave you lots of stuff to think about. :-)

Okay\ldots{} let's start with Einstein's ``annus mirabilis''.

1905 was indeed a miraculous year for Albert Einstein. He published four
earth-shaking papers, all in the same journal:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Albert Einstein, ``On a heuristic viewpoint concerning the production
  and transformation of light'', \emph{Annalen der Physik} \textbf{17}
  (1905), 132--148. Available at
  \texttt{http://dbserv.ihep.su/\textasciitilde{}elan/src/einstein05/eng.pdf}

  ``On the movement of small particles suspended in stationary liquids
  required by the molecular-kinetic theory of heat'', \emph{Annalen der
  Physik} \textbf{17} (1905), 549--560. Available at
  \texttt{http://lorentz.phl.jhu.edu/AnnusMirabilis/AeReserveArticles/eins\_brownian.pdf}

  ``On the electrodynamics of moving bodies'', \emph{Annalen der Physik}
  \textbf{17} (1905), 891--921. Available at
  \texttt{http://dbserv.ihep.su/\textasciitilde{}elan/src/einstein05b/eng.pdf}

  ``Does the inertia of a body depend upon its energy content?'',
  \emph{Annalen der Physik} 18 (1905), 639--641. Available at
  \texttt{http://dbserv.ihep.su/\textasciitilde{}elan/src/einstein05c/eng.pdf}
\end{enumerate}

In the first of these papers, Einstein explained the photoelectric
effect by assuming that light consisted of particles each carrying an
energy equal to Planck's constant times its frequency. This was an
important step towards quantum mechanics --- a theory he would later
fight against.

In the second, he showed that Brownian motion was explained by the
existence of atoms. His calculations were later used to measure
Boltzmann's constant.

In the third, Einstein derived the formula for Lorentz transformations
from two simple assumptions: only relative motion can be detected, and
every unaccelerated observer measures light to have the same speed.

In the fourth, he derived a relation between mass, momentum, and energy,
including as a special case the famous formula \(E = mc^2\) relating the
mass of a body to its energy at rest.

The most impressive thing about these papers is how simple and readable
they are: they go from clearly stated assumptions to world-shaking
conclusions with clear logic and only a little math.

Which makes one wonder: will there ever be another Einstein? Can one
person ever again make such revolutions in physics? Or are all the
remaining discoveries yet to be made in physics too complicated? Why has
fundamental physics been stuck ever since the completion of the Standard
Model? There are lots of glorious theories, but none of them have gotten
any experimental confirmation. There have also been some big empirical
discoveries --- dark matter, dark energy, neutrino oscillations, and
more --- but these weren't predicted, and our theories still don't shed
much light on them.

So, are the times ripe for a good new idea\ldots{} a really smart person
who will fit the jigsaw puzzle together? Or are there still too many
missing pieces?

Lee Smolin has some interesting thoughts about this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Lee Smolin, `Why no ``new Einsteins''?', \emph{Physics Today}, June
  2005, 56--57.
\end{enumerate}

I think the mention of Einstein is mainly just a trick to get people to
read the article. He focuses on institutional pressures that push
physicists to conform: to follow ``research programs'' in big teams
rather than strike out on their own.

This is certainly a big problem. But I'm not sure it's the only problem.

Fundamental physics is in a tough situation, partly a victim of its own
success. Pure thought may not be enough. To make real progress, it helps
to have lots of experimental results that don't fit the current
theories. Not just a few numbers here or there, like neutrino masses. We
want \emph{piles} of unexplained data! --- enough to draw lots of
graphs. Then we could cook up theories that fit the data.

Barring this, we need to assemble all the mysteries we can get our hands
on, and see if they fit together somehow.

Luckily, right now several spacecraft are leaving the the Solar
System\ldots{} and they're leaving us with the best of gifts: a mystery!

Pioneer 10 was launched in 1972. It was the first spacecraft to travel
through the asteroid belt, and the first to take closeups photos of
Jupiter, and study the intense magnetic field of this planet. I remember
getting excited about this when I was a kid.

Pioneer 10 was also the first spacecraft to explore the outer solar
system. In 1983 it passed the orbit of Neptune. On February 7th, 2003,
Pioneer 10's radioactive power source weakened to the point where its
radio signals became too feeble to detect. When this happened, it was 80
astronomical units from the Sun: in other words, 80 times as far from
the Sun as we are, or about twice as far out as Pluto.

But this was just the beginning of its cold dark journey. It will
continue to coast through deep space in the general direction of the red
giant Aldebaran, 68 light years from us. A light year is about 63,000
astronomical units, so this journey will take a while: over 2 million
years! We'll probably be long gone by then, for better or worse.

Pioneer 11 was launched in 1973. It followed its sister ship to Jupiter,
then swung past Saturn, and then sailed out into the night, studying the
solar wind as it went. On September 30, 1995 its power source became too
weak to run any more experiments, and NASA stopped monitoring it. It was
45 astronomical units from the Sun, moving out at 2 AU per year.

We are no longer in the beam of its radio signal. Its antenna cannot be
rotated. It is heading towards Aquila --- the Eagle --- and it will pass
one of the stars in this constellation in 4 million years.

Here's a picture of what these spacecraft are doing:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  NASA, Pioneer path,
  \texttt{http://spaceprojects.arc.nasa.gov/Space\_Projects/pioneer/path.html}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/pioneer.png}\]

See how they'll eventually pass through a bubble called the
``termination shock''? That's where the solar wind drops below
supersonic speed as it crashes into the gas of the Milky Way. You can
see a pattern vaguely reminscient of the wave formed by a boat sailing
through the sea --- that's because we're moving through the Milky Way.

There are also two other spacecraft in this picture: Voyager 1 and 2!
These craft are still transmitting, and Voyager 1 is now farther than
Pioneer 10. It crossed the termination shock in December 2004, zipping
along at \(3.6\) AU per year. It's sending back information about this
region of space --- called the ``heliosheath'' --- and its batteries
should be good until 2020.

But what's the mystery?

Well, the Pioneer missions yielded the most precise information we have
about navigation in deep space. However, analysis of their radio
tracking data indicates a small unexplained acceleration towards the
Sun! The magnitude of this acceleration is roughly
10\textsuperscript{-9} meters per second per second. It's called the
``Pioneer anomaly''.

This anomaly has also been seen in the Ulysses spacecraft, and possibly
also in the Galileo spacecraft, though the data is much more noisy,
since these were Jupiter probes, hence much closer to the Sun, where
there is a lot more pressure from solar radiation. The Voyagers are not
set up to provide good data on this issue, since they are able to rotate
themselves and this messes things up. The Viking mission to Mars did
\emph{not} detect the Pioneer anomaly --- and it would have, had an
acceleration of this magnitude been present, because its radio tracking
was incredibly accurate --- good to about 12 meters.

Many physicists and astronomers have tried to explain the Pioneer
anomaly using conventional physics, but so far nobody seems to have
succeeded. Radiation pressure from the Sun, the solar wind, the
back-reaction from the radio emissions: all these point the wrong way!
Other explanations also seem to fail, like gravity from the Kuiper belt,
small amounts of gas venting from the spacecraft, and thermal radiation
from the craft,

As conventional explanations seemed to fail, people started trying to
explain the anomaly using new physics --- for example, modified theories
of gravity, or dark matter. But it's hard to get these explanations to
work, either. For example, explaining the Pioneer anomaly by the
gravitational attraction of dark matter would require more than .0003
solar masses of dark matter within 50 AU units of the Sun. But this is
in conflict with our highly successful calculations of planetary orbits
--- even a millionth of a solar mass of dark matter in this region would
be enough to throw those off!

So, we may have an interesting clue on our hands.

For more information on the Pioneer anomaly, see these sources and the
many references therein:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Wikipedia, ``Pioneer anomaly'',
  \texttt{http://en.wikipedia.org/wiki/Pioneer\_anomaly}
\item
  Chris P. Duif, ``Pioneer anomaly --- literature and links'',
  \texttt{http://www.space-time.info/pioneer/pioanomlit.html}
\end{enumerate}

I got interested in the Pioneer anomaly when I read this recent proposal
for a mission to study it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  The Pioneer Collaboration, ``A mission to explore the Pioneer
  anomaly'', available as
  \href{http://arxiv.org/abs/gr-qc/0506139}{\texttt{gr-qc/0506139}}.
\end{enumerate}

Finally, here's a fun book on the Pioneer missions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Mark Wolverton, \emph{The Depths of Space: The Story of the Pioneer
  Planetary Probes}, Joseph Henry Press, 2004. Available at
  \texttt{http://www.nap.edu/books/0309090504/html/}
\end{enumerate}

Next: silicon lasers. I don't want to say much about these, just that
Intel thinks they could be the next big thing. You've probably heard
about ``Moore's Law'', how the number of components in an integrated
circuit doubles every 2 years. Or more vaguely: how computers keeping
getting more powerful, really fast! And you've probably heard that this
exponential growth is in danger of running into a brick wall someday.
One of the problems is that copper wire carries too little data, too
slowly.

For a long time some people have touted ``photonics'' as the way around
this: transmitting information as pulses of light, rather than clumps of
electrons. One problem is that substances that emit such pulses tend to
be expensive, like gallium arsenide and indium phosphide. But now
they've figured out to make silicon function as a laser! Researchers at
Intel have created a silicon laser that emits a continuous beam of
light. They've also developed a modulator that chops the beam into 10
billion pulses per second --- a 10 gigahertz signal.

For details, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Intel, ``Silicon photonics'',
  \texttt{http://www.intel.com/technology/silicon/sp/}
\item
  Robert Service, ``Intel's breakthrough'', \emph{Technology Review},
  July 2005, 62--65. Also available at
  \texttt{http://www.technologyreview.com/articles/05/07/issue/feature\_intel.asp}
\end{enumerate}

While we're talking about high tech, how about quantum computers? Most
of them don't work very well --- yet, say the optimists. Interaction
with the environment ruins the coherence of the quantum state. But
there's a company called D-Wave Systems that aims to build a different
breed of quantum computer --- one that doesn't mind a fair amount of
noise. It's an analog chip made of lots of superconductors, which is
supposed to quantum tunnel to a lowest-energy state, The idea is that
you can get it to solve lots of minimization problems this way, like the
travelling salesman problem.

I don't see why it'll work better than other analogue computers, or
methods like simulated annealing. It could get stuck when there are lots
of ``almost-minima'' to sift through\ldots{} just like glass gets stuck
when it tries to find \emph{its} lowest energy state. Physicists call
this ``frustration'': the poor glass in your window is ``frustrated'',
trying to crystallize but unable to decide how to do it. In principle it
could do it by quantum tunnelling, but in practice that takes forever.
Why will D-Wave Systems' computer be better?

By the way, they admit their computer \emph{can't} do cool stuff like
rapidly factor large numbers via Shor's algorithm, the way full-fledged
quantum computers should. True devotees of quantum computation probably
wouldn't even call it a quantum computer! But I'll be happy if it works.

They've certain managed to convince some investors. Here's some more
info:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Erika Jonietz, ``Quantum calculation'', \emph{Technology Review}, July
  2005, 24--25. Also available at
  \texttt{http://www.technologyreview.com/articles/05/07/issue/forward\_quantum.asp}
\end{enumerate}

But enough practical stuff! Now let me say a bit more about the Klein
quartic.

I wrote about this gadget in \protect\hyperlink{week214}{``Week 214''}
and \protect\hyperlink{week215}{``Week 215''}. Simply put, this is a
``Platonic surface'': a \(3\)-holed torus tiled by regular heptagons,
with 3 heptagons meeting at each vertex.

It's perfectly symmetrical, but you can't stuff it into
\(3\)-dimensional Euclidean space without warping it. So, its charms are
a bit more esoteric than those of, say, a dodecahedron.

Of course, this is the kind of challenge that some people just can't
resist. Mike Stay and Gerard Westendorp bravely tried making paper
models of it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\item
  Mike Stay, ``Klein quartic'',
  \texttt{http://math.ucr.edu/\textasciitilde{}mike/klein/}
\item
  Gerard Westendorp, ``Geometry'',
  \texttt{http://www.xs4all.nl/\textasciitilde{}westy31/Geometry/Geometry.html}
\end{enumerate}

Mike wisely stopped just short of the final step, which would create a
nasty crumpled mess. Gerard succeeded in completing the task by
switching to \emph{pastry} instead of paper. Check it out!

There might be a small niche market for Klein quartic birthday
cakes\ldots{} but computer graphics are probably better if you just want
to visualize this surface instead of actually eat it. About 10 or 12
years ago, Joe Christy made the following pictures using a program
called Geomview, which makes virtual 3d objects:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Joe Christy, Klein quartic pictures:\\
  \texttt{http://math.ucr.edu/home/baez/pentacontihexahedron.jpg}~\\
  \texttt{http://math.ucr.edu/home/baez/pentacontihexahedron2.jpg}~\\
  \texttt{http://math.ucr.edu/home/baez/pentacontihexahedron3.jpg}
\end{enumerate}

\[
  \includegraphics[max width=0.25\linewidth]{../images/pentacontihexahedron.jpg}
  \includegraphics[max width=0.25\linewidth]{../images/pentacontihexahedron2.jpg}
  \includegraphics[max width=0.25\linewidth]{../images/pentacontihexahedron3.jpg}
\]

It took about a day on the fastest Linux machine they had at the time.
The advantage of Geomview is that once the virtual object is done, you
can quickly create different views. These pictures show the dual version
of Klein's quartic, which has 7 regular triangles meeting at each
quarter. The funky name ``pentacontihexahedron'' refers to the fact that
there are 56 of these triangles.

While I'm at it, I can't resist showing you another beautiful picture:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Joe Christy, ``Fano plane on Roman surface'',
  \texttt{http://math.ucr.edu/home/baez/roman.jpg}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/roman.jpg}\]

The blue thing is called the ``Roman surface'' because it was discovered
by the mathematician Jakob Steiner while he was visiting Rome. It's a
self-intersecting immersion of the projective plane in 3d space. On it,
the 7 lines of the Fano plane are visible in red, with four of them
drawn as circles.

Mathematically, one nice thing about this picture is that it exhibits
the tetrahedral symmetry of the Fano plane!

You can see all these pictures and much more on my Klein quartic
website:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  John Baez, ``Klein's quartic curve'',
  \texttt{http://math.ucr.edu/home/baez/klein.html}
\end{enumerate}

You may think I'm digressing, but the relation between Klein's quartic
curve and the Fano plane underlies what I want to talk about today. Greg
Egan and I realized that this relation is just part of a bigger picture
involving special relativity in \(3\)-dimensional spacetime\ldots{} over
the integers \(\mod 7\).

Huh?

Well, these days so-called physicists have no shame studying physics in
all sorts of dimensions, but they usually confine themselves to building
their spacetimes out of the real numbers.

That makes sense if they're trying to claim some relevance to real-world
physics, however slight. But mathematically, there's no reason not to
try other number systems, like finite fields, just for the fun of it.

And this sheds new light on the Klein quartic. Why? Because the
symmetries of the Klein quartic and the Fano plane also act as
\emph{Lorentz transformations} in 3 dimensional spacetime if you work
using the integers \(\mod 7\). This lets us see the Klein quartic and
Fano plane as being closely related to special relativity in this funny
context.

Let's see how this goes.

First, recall that a ``field'' is a number system where you can add,
subtract, multiply and divide to your hearts content, with all the basic
laws holding that hold for real numbers. A ``finite field'' is one with
finitely many elements, like the integers mod any prime number \(p\).
This example is called \(\mathbb{Z}/p\), or \(\mathbb{F}_p\) if you
really want to emphasize that you're thinking of it as a field.

So, let's do some 3d special relativity with \(\mathbb{Z}/7\), and see
what it has to say about the Klein quartic.

First, some basic stuff about finite fields.

The concepts of ``positive'' and ``negative'' make sense in any finite
field! Say a nonzero element of the field is ``positive'' if it's of the
form \(x^2\) and ``negative'' otherwise. (Number theorists call the
positive elements ``quadratic residues'', just to intimidate outsiders.)

Then multiplication works nicely:

\begin{itemize}
\tightlist
\item
  if you multiply two positive elements you get a positive one;
\item
  if you multiply two negative elements you get a positive one;
\item
  if you multiply a positive and a negative element you get a negative
  one.
\end{itemize}

There are finite fields whose cardinality is any prime power, but if we
focus on those whose cardinality is a prime, namely the fields
\(\mathbb{Z}/p\), there are three possibilities: the good, the bad, and
the ugly.

\begin{itemize}
\tightlist
\item
  GOOD: If the field is \(\mathbb{Z}/p\) for \(p = 4n+3\) then \(-1\) is
  negative,\\
  so we can switch the ``sign'' of a number by multiplying it by \(-1\).
\item
  BAD: If the field is \(\mathbb{Z}/p\) for \(p = 4n+1\) then \(-1\) is
  positive,\\
  so we can't do this.
\end{itemize}

In both these cases there are as many positive as negative elements.
Then there's

\begin{itemize}
\tightlist
\item
  UGLY: If the field is \(\mathbb{Z}/2\) then every element is positive.
\end{itemize}

Luckily, \(p = 7\) is good. But beware: addition doesn't get along with
positivity very well. In fields like \(\mathbb{Z}/p\), \emph{every}
element is a sum of positive elements.

Next, let's ponder the peculiarities of special relativity over a finite
field.

We can define Minkowski spacetime of any dimension over any field
\(\mathbb{F}\): it's just \(\mathbb{F}^{n+1}\) with the quadratic form
\[x^2 = x_0^2 - x_1^2 - \ldots - x_n^2\] We define \(\mathrm{O}(n,1)\)
to be the group of transformations of \(\mathbb{F}^{n+1}\) that preserve
the above quadratic form, and define the ``Lorentz group''
\(\mathrm{SO}(n,1)\) to be the subgroup consisting of transformations
that also have determinant \(1\).

As usual, we say that a vector \(x\) in Minkowski spacetime is:

\begin{itemize}
\tightlist
\item
  timelike if \(x^2 > 0\)
\item
  lightlike if \(x^2 = 0\)
\item
  spacelike if \(x^2 < 0\)
\end{itemize}

We define a ``ray'' to be a line through the origin. We say a ray is
timelike, spacelike or lightlike if any vector on it --- hence all! ---
is of that type.

The lightlike rays are usually called ``light rays'', both because it
sounds cool (we went into physics because we liked things like X-rays
and rayguns) and because it's accurate. The light rays going through a
given point --- the origin --- are precisely like this.

Next, let's ponder the peculiarities of \(3\)-dimensional spacetime.

For any field \(\mathbb{F}\), \(2\times2\) matrices with determinant
\(1\) act as Lorentz transformations of 3d Minkowski spacetime. I
touched upon this idea when discussing Trautman's ``Pythagorean
spinors'' in \protect\hyperlink{week196}{``Week 196''}. Here's how it
works:

We can think of 3d Minkowski spacetime as consisting of all \(2\times2\)
matrices that are equal to their own transpose: \[
  x = \left(
    \begin{array}{cc}
      x_0+x_1 & x_2
    \\x_2 & x_0-x_1
    \end{array}
  \right)
\] since the determinant of such a matrix is just
\[x^2 = x_0^2 - x_1^2 - x_2^2\]

In this picture, the group \(\mathrm{SL}(2,\mathbb{F})\) consisting of
\(2\times2\) matrices with determinant \(1\) acts as Lorentz
transformations: \[g\colon x \mapsto gxg^*\] where \(g^*\) is the
transpose of \(g\). So, we get a homomorphism from
\(\mathrm{SL}(2,\mathbb{F})\) to the 3d Lorentz group:
\[\mathrm{SL}(2,\mathbb{F}) \to \mathrm{SO}(2,1)\] This is two-to-one,
since it sends both \(1\) and \(-1\) to the identity Lorentz
transformation. People typically cure this by defining
\[\mathrm{PSL}(2,\mathbb{F}) = \mathrm{SL}(2,\mathbb{F})/\{\pm1\}\] We
then get a one-to-one homomorphism
\[\mathrm{PSL}(2,\mathbb{F}) \to \mathrm{SO}(2,1)\] Alas, this
homomorphism is not onto: it's only ``half-onto''. In the traditional
case where \(\mathbb{F}\) is the real numbers, its range is just one of
the two connected components of \(\mathrm{SO}(2,1)\). In the case we're
interested in here, where \(\mathbb{F} = \mathbb{Z}/7\), the group
\(\mathrm{PSL}(2,\mathbb{Z}/7)\) has 168 elements but
\(\mathrm{SO}(2,1)\) has twice as many.

Next, let's bring the hyperbolic plane into the game!

Special relativity in 3 dimensions is closely related to the hyperbolic
plane. The reason is that the set of timelike rays in
\((n+1)\)-dimensional Minkowski spacetime forms a copy of hyperbolic
\(n\)-space: physicists call this the ``mass hyperboloid''. So, for
\(n = 2\), we get the hyperbolic plane. This is most familiar for
special relativity based on the real numbers, but the same idea applies
to other fields.

So, let's make some definitions:

\begin{itemize}
\tightlist
\item
  the hyperbolic plane \(H_+\) is the set of timelike rays in 3d
  Minkowski spacetime
\item
  the heavenly circle \(L\) is the set of light rays in 3d Minkowski
  spacetime
\item
  the hyperbolic cylinder \(H_-\) is the set of spacelike rays in 3d
  Minkowski spacetime
\end{itemize}

You may think I'm being silly to call the set of light rays ``the
heavenly circle'', but in \(4\)-dimensional spacetime the analogous
thing is often called ``the heavenly sphere'', and we're studying things
one dimension down.

Why ``heavenly sphere''? Well, when you look at the stars at night, they
seem to be lying on a sphere. That's the heavenly sphere: the set of
light rays entering your eye --- the set of directions you can look!

One dimension down, flatlanders get to enjoy the ``heavenly circle''.
Mathematicians call this the projective line, since it's a line with one
extra point added on.

Now for something fun: points on the hyperbolic plane give lines on the
hyperbolic cylinder and vice versa!

This is basically by definition of ``line''. We define a ``line'' in
\(H_+\) to consist of all points that are orthogonal to a given point in
\(H_-\), and vice versa. Note a point in either of these spaces is
really a ray in Minkowski spacetime, but it makes sense to say that two
rays are orthogonal.

This definition isn't arbitrary: it reduces to a standard notion of
``line'' in the hyperbolic plane --- namely a geodesic --- when our
field is the real numbers.

Finally, let's dive into the case we're really interested in:
\(3\)-dimensional Minkowski spacetime over
\(\mathbb{F} = \mathbb{Z}/7\).

In this case the positive numbers are \(1,2,4\), and the negative
numbers are \(3,5,6\).

It turns out that:

\begin{itemize}
\tightlist
\item
  The hyperbolic plane over \(\mathbb{Z}/7\), namely \(H_+\), has size
  21.
\item
  The heavenly circle over \(\mathbb{Z}/7\), namely \(L\), has size 8.
\item
  The hyperbolic cylinder over \(\mathbb{Z}/7\), namely \(H_-\), has
  size 28.
\end{itemize}

So, \(H_+\) is a nice finite version of the hyperbolic plane with 21
points and 28 lines! A little calculation shows there are 3 points on
each line and 4 lines through each point.

We know that \(\mathrm{PSL}(2,\mathbb{Z}/7)\) acts on everything in
sight here: \(H_+\), \(H_-\), and \(L\). It also acts on the Fano plane
and Klein's quartic curve. So, we can try to match up various features
of 3d special relativity with features in the Fano plane or Klein's
quartic curve!

Greg Egan found the following correspondence:

\begin{longtable}[]{@{}ll@{}}
\toprule
Hyperbolic plane over \(\mathbb{Z}/7\) & Fano plane\tabularnewline
\midrule
\endhead
7 triads & 7 points\tabularnewline
7 antitriads & 7 lines\tabularnewline
21 points & 21 flags\tabularnewline
28 lines & 28 apartments\tabularnewline
\bottomrule
\end{longtable}

As usual with these correspondences, simple things in the Fano plane
correspond to subtle things in the hyperbolic plane, and simple things
in the hyperbolic plane correspond to subtle things in the Fano plane.

First of all, points and lines in the Fano plane correspond to
``triads'' and ``antitriads'' in \(H_+\).

Huh?

Well, for starters, a ``triad'' or ``antitriad'' is an unordered triple
of orthogonal points in \(H_+\).

Huh?

Well, remember that a point in \(H_+\) is a timelike ray in 3d Minkowski
spacetime. You can't have three timelike rays that are orthogonal in
ordinary special relativity, but you can over \(\mathbb{Z}/7\), because
the sum of postive numbers can be zero, or even negative. For example,
these three vectors are timelike and orthogonal:
\[(1,0,0), \quad (0,4,2), \quad (0,-2,4)\] We call the corresponding
triple of rays a ``triad'', and we get a total of 7 triads by applying
elements of \(\mathrm{PSL}(2,\mathbb{Z}/7)\) to it. But, there are
triples of orthogonal timelike rays that aren't among these 7. For
example, we get one from these three vectors:
\[(1,0,0), \quad (0,2,4), \quad (0,-4,2)\] We call the corresponding
triple of rays an ``antitriad'', and we get 7 antitriads by applying
elements of \(\mathrm{PSL}(2,\mathbb{Z}/7)\).

Each line in the Fano plane contains 3 points, and each point lies on 3
lines. This incidence relation can also be seen in terms of triads and
antitriads: each triad has nonempty intersection with 3 antitriads, and
each antitriad has nonempty intersection with 3 triads!

We can also go backwards: points and lines in the hyperbolic plane
correspond to ``flags'' and ``apartments'' in the Fano plane.

Huh?

Flags and apartments are standard concepts in the theory of
``buildings'' which I began to explain in
\protect\hyperlink{week186}{``Week 186''}. But, I don't want or need to
explain this general theory here. In the Fano plane, a ``flag'' consists
of a point lying on a line: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to node{$\bullet$} (2,0);
  \end{tikzpicture}
\] An ``apartment'' consists of 3 distinct points lying on 3 distinct
lines like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0.5) to (3,0.5);
    \draw[thick] (0.25,1) to (2,-1);
    \draw[thick] (1,-1) to (2.75,1);
    \node at (0.68,0.5) {$\bullet$};
    \node at (2.32,0.5) {$\bullet$};
    \node at (1.5,-0.43) {$\bullet$};
  \end{tikzpicture}
\] Each apartment in the Fano plane contains 3 flags, and each flag is
contained in 4 apartments. This incidence can also been seen in terms of
points and lines in the hyperbolic plane: each line contains 3 points,
and each point lies on 4 lines!

So, there's an interesting but complicated relation between hyperbolic
geometry over \(\mathbb{Z}/7\) and the Fano plane. How does the Klein
quartic curve fit in? There's more to this side of the story than I've
managed to absorb, so I'll just say a few words --- probably more than
you want to hear. For more detail, try my Klein quartic curve webpage.

There are 48 nonzero lightlike vectors in 3d Minkowksi spacetime, but if
you take one of them and apply elements of
\(\mathrm{PSL}(2,\mathbb{Z}/7)\) to it, you get an orbit consisting of
only 24. These 24 guys correspond to the 24 heptagons in the heptagonal
tiling of the Klein quartic curve! In other words,
\(\mathrm{PSL}(2,\mathbb{Z}/7)\) acts in precisely the same way.

You may ask what the point of all this stuff is, and the answer is ---
I'm not sure yet, except that it's fun! Apparently the coincidence
\[\mathrm{PSL}(2,\mathbb{Z}/7) = \mathrm{PSL}(3,\mathbb{Z}/2)\] is the
only coincidence among classical groups over finite fields, not counting
the ones we already know over the real numbers. So, it's got to be good
for something! And, I haven't even begun to exploit the fact that the
Klein quartic curve is a quotient space of the real hyperbolic plane:
this has got to be related to the hyperbolic plane over
\(\mathbb{Z}/7\). So, I think something interesting should emerge,
though I'm not sure what.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Regarding the Pioneer anomaly, the cosmologist Ned
Wright writes:

\begin{quote}
John,

I don't think the obvious possibilities have been ruled out. In this I
disagree with Anderson but that's science at the fringes.

I have a Web page on this at:\\
\texttt{http://www.astro.ucla.edu/\textasciitilde{}wright/PioneerAA.html}
\end{quote}

Just for the record, that's:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Ned Wright, ``Pioneer anomalous acceleration'',
  \texttt{http://www.astro.ucla.edu/\textasciitilde{}wright/PioneerAA.html}
\end{enumerate}

For a contrasting viewpoint see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Slava G. Turyshev, Michael Martin Nieto, and John D. Anderson, ``The
  Pioneer anomaly and its implications'', available as
  \href{http://arxiv.org/abs/gr-qc/0510081}{\texttt{gr-qc/0510081}}.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Space isn't remote at all. It's only an hour's drive away if your
car could go straight upwards.}

--- Sir Fred Hoyle
\end{quote}
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Work on quantum gravity has seemed stagnant and stuck for the last
couple of years, which is why I've been turning more towards pure math.

Over in string theory they're contemplating a vast ``landscape'' of
possible universes, each with their own laws of physics --- one or more
of which might be ours. Each one is supposed to correspond to a
different ``vacuum'' or ``background'' for the marvelous unifying
M-theory that we don't completely understand yet. They can't choose the
right vacuum except by the good old method of fitting the experimental
data. But these days, this time-honored method gets a lot less airplay
than the ``anthropic principle'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Leonard Susskind, ``The anthropic landscape of string theory'',
  available as
  \href{https://arxiv.org/abs/hep-th/0302219}{\texttt{hep-th/0302219}}.
\end{enumerate}

Perhaps this is because it's more grandiose to imagine choosing one
theory out of a multitude by discovering that it's among the few that
supports intelligent life, than by noticing that it correctly predicts
experimental results. Or, perhaps it's because nobody really knows how
to get string theory to predict experimental results! Even after you
chose a vacuum, you'd need to see how supersymmetry gets broken, and
this remain quite obscure.

There's still tons of beautiful math coming out of string theory, mind
you: right now I'm just talking about physics.

What about loop quantum gravity? This line of research has always been
less ambitious than string theory. Instead of finding the correct theory
of everything, its goal has merely been to find \emph{any} theory that
combines gravity and quantum mechanics in a background-free way. But, it
has major problems of its own: nobody knows how it can successfully
mimic general relativity at large length scales, as it must to be
realistic! Old-fashioned perturbative quantum gravity failed on this
score because it wasn't renormalizable. Loop quantum gravity may get
around this somehow\ldots{} but it's about time to see exactly how.

Loop quantum gravity follows two main approaches: the so-called
``Hamiltonian'' or ``spin network'' approach, which focuses on the
geometry of space at a given time, and the so-called ``Lagrangian'' or
``spin foam'' approach, which focuses on the geometry of spacetime.

In the last couple of years, the most interesting new work in the
Hamiltonian approach has focussed on problems with extra symmetry, like
black holes and the big bang. Here's a nontechnical introduction:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Abhay Ashtekar, ``Gravity and the quantum'', available as
  \href{https://arxiv.org/abs/gr-qc/0410054}{\texttt{gr-qc/0410054}}.
\end{enumerate}

and here's some new work that treats the information loss puzzle:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Abhay Ashtekar and Martin Bojowald, ``Black hole evaporation: a
  paradigm'', \emph{Class. Quant. Grav.} \textbf{22} (2005) 3349--3362.
  Also available as
  \href{https://arxiv.org/abs/gr-qc/0504029}{\texttt{gr-qc/0504029}}.
\end{enumerate}

However, by focusing on solutions with extra symmetry, one puts off
facing the hardest aspects of renormalization, or whatever its
equivalent might be in loop quantum gravity.

The other approach --- the spin foam approach --- got stalled when the
most popular model seemed to give spacetimes made mostly of
squashed-flat ``degenerate \(4\)-simplexes''. Various papers have found
an effect like this: see \protect\hyperlink{week198}{``Week 198''} for
more details. So, there's definitely a real phenomenon going on here.
However, its physical significance remains a bit obscure. The devil is
in the details.

In particular, even though the \emph{amplitude} for a single large
\(4\)-simplex in the Barrett-Crane model is dominated by degenerate
geometries, certain \emph{second derivatives} of the amplitude might not
--- and this may be what really matters. Carlo Rovelli has recently come
out with a paper on this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Carlo Rovelli, ``Graviton propagator from background-independent
  quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/0508124}{\texttt{gr-qc/0508124}}.
\end{enumerate}

If the idea holds up, I'll be pretty excited. If not, I'll be bummed.
But luckily, I've already gone through the withdrawal pains of switching
my focus away from quantum gravity. When you do theoretical physics,
sometimes you feel the high of discovering hidden truths about the
physical universe. Sometimes you feel the agony of suspecting that those
``hidden truths'' were probably just a bunch of baloney\ldots{} or,
realizing that you may never know. Ultimately nature has the last word.

Math is, at least for me, a less nerve-racking pursuit, since the truths
we find can be confirmed simply by discussing them: we don't need to
wait for experiment. Math is just as grand as physics, or more so. But
it's more wispy and ethereal, since it's about pure pattern in general
--- not the particular magic patterns that became the world we see. So,
the stakes are lower, but the odds are higher.

Speaking of math, I really want to talk about the Streetfest --- the
conference in honor of Ross Street's 60th birthday. It was a real blast:
over sixty talks in two weeks in two cities, Sydney and Canberra.
However, I accidentally left my notes from those talks at home before
zipping off to Calgary for a summer school on homotopy theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  \emph{Topics in Homotopy Theory}, graduate summer school at the
  Pacific Institute of Mathematics run by Kristine Bauer and Laura
  Scull. Recommended reading material available at
  \texttt{http://www.pims.math.ca/science/2005/05homotopy/reading.html}
\end{enumerate}

So, I'll say a bit about what I learned at this school.

Dan Dugger spoke about motivic homotopy theory, which was \emph{great},
because I've been trying to understand stuff from number theory and
algebraic geometry like the Weil conjectures, etale cohomology, motives,
and Voevodsky's proof of the Milnor conjecture\ldots{} and thanks to his
wonderfully pedagogical lectures, it's all starting to make some sense!

I hope to talk about this someday, but not now.

Alejandro Adem spoke about orbifolds and group cohomology. Purely
personally, the most exciting thing here was seeing that orbifolds can
also be seen as certain kinds of topological groupoids, or stacks, or
topoi\ldots{} so that various versions of ``categorified topology'' are
actually different faces of the same thing!

I may talk about this someday, too, but not now.

I spoke about higher gauge theory and its relation to Eilenberg-Mac Lane
spaces. I may talk about that too someday, but not now.

Dev Sinha spoke about operads, and besides explaining the basics, he
said a couple of things that really blew me away. So, I want to talk
about this now.

For one, the homology of the little \(k\)-cubes operad is a graded
version of the Poisson operad! For two, the little \(2\)-cubes operad
acts on the space of thickened long knots!

But for this to thrill you like it thrills me, I'd better say a word
about operads --- and especially little \(k\)-cubes operads.

Operads, and especially the little \(k\)-cubes operads, were invented by
Peter May in the early 1970s to formalize the algebraic structures
lurking in ``infinite loop spaces''. In
\protect\hyperlink{week149}{``Week 149''} I explained what infinite loop
spaces are, and how they give generalized cohomology theories, but let's
not get bogged down in this motivation now, since operads are actually
quite simple.

In its simplest form, an operad is a gizmo that has for each
\(n = 0,1,2,\ldots\) a set \(\mathcal{O}(n)\) whose elements are thought
of as \(n\)-ary operations --- operations with \(n\) inputs. It's good
to draw such operations as black boxes with \(n\) input wires and one
output: \[
  \begin{tikzpicture}
    \draw[thick] (-1,2) to (-0.33,1);
    \draw[thick] (0,2) to (0,1);
    \draw[thick] (1,2) to (0.33,1);
    \node at (0,0.5) {$f$};
    \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \draw[thick] (0,0) to (0,-1);
  \end{tikzpicture}
\] For starters these operations are purely abstract things that don't
actually operate on anything. Only when we consider a ``representation''
or ``action'' of an operad do they get incarnated as actual \(n\)-ary
operations on some set. The point of operads is to study their actions.

But, for completeness, let me sketch the definition of an operad. An
operad tells us how to compose its operations, like this: \[
  \begin{tikzpicture}[scale=0.5]
    \begin{scope}[shift={(-2.5,3)}]
      \draw[thick] (-0.5,2) to (-0.25,1);
      \draw[thick] (0.5,2) to (0.25,1);
      \node at (0,0.5) {$g_1$};
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \end{scope}
    \begin{scope}[shift={(0,3)}]
      \draw[thick] (-1,2) to (-0.33,1);
      \draw[thick] (0,2) to (0,1);
      \draw[thick] (1,2) to (0.33,1);
      \node at (0,0.5) {$g_2$};
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \end{scope}
    \begin{scope}[shift={(2.5,3)}]
      \draw[thick] (0,2) to (0,1);
      \node at (0,0.5) {$g_3$};
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \end{scope}
      \draw[thick] (-2.5,3) to (-0.33,1);
      \draw[thick] (0,3) to (0,1);
      \draw[thick] (2.5,3) to (0.33,1);
      \node at (0,0.5) {$f$};
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \draw[thick] (0,0) to (0,-1);
  \end{tikzpicture}
\] Here we are composing \(f\) with \(g_1\), \(g_2\), and \(g_3\) to get
an operation with 6 inputs called \(f\circ(g_1,g_2,g_3)\).

An operad needs to have a unary operation serving as the identity for
composition. It also needs to satisfy an ``associative law'' that makes
a composite of composites like this well-defined: \[
  \begin{tikzpicture}[xscale=0.7,yscale=0.5]
    \begin{scope}[shift={(0,3)},xscale=0.45,yscale=0.67]
      \begin{scope}[shift={(-2.5,3)}]
        \draw[thick] (-0.5,2) to (-0.25,1);
        \draw[thick] (0.5,2) to (0.25,1);
        \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \end{scope}
      \begin{scope}[shift={(0,3)}]
        \draw[thick] (-1,2) to (-0.33,1);
        \draw[thick] (0,2) to (0,1);
        \draw[thick] (1,2) to (0.33,1);
        \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \end{scope}
      \begin{scope}[shift={(2.5,3)}]
        \draw[thick] (0,2) to (0,1);
        \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \end{scope}
    \end{scope}
    \begin{scope}[shift={(2.5,3)},xscale=0.45,yscale=0.67]
      \begin{scope}[shift={(0,3)}]
        \draw[thick] (-0.5,2) to (-0.25,1);
        \draw[thick] (0.5,2) to (0.25,1);
        \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \end{scope}
    \end{scope}
    \begin{scope}[shift={(-2.5,3)}]
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \end{scope}
    \begin{scope}[shift={(0,3)}]
      \draw[thick] (-1,2) to (-0.33,1);
      \draw[thick] (0,2) to (0,1);
      \draw[thick] (1,2) to (0.33,1);
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \end{scope}
    \begin{scope}[shift={(2.5,3)}]
      \draw[thick] (0,2) to (0,1);
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \end{scope}
      \draw[thick] (-2.5,3) to (-0.33,1);
      \draw[thick] (0,3) to (0,1);
      \draw[thick] (2.5,3) to (0.33,1);
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \draw[thick] (0,0) to (0,-1);
  \end{tikzpicture}
\] (This picture has a \(0\)-ary operation in it, just to emphasize that
this is allowed.)

That's the complete definition of a ``planar operad''. In a full-fledged
operad we can do more: we can permute the inputs of any operation and
get a new operation: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (-0.6,2.5)
        to [out=down,in=up,looseness=1.5] (0.33,1);
      \strand[thick] (0,2.5)
        to [out=down,in=up,looseness=1.5] (-0.33,1);
      \strand[thick] (0.6,2.5)
        to [out=down,in=up,looseness=1.5] (0,1);
      \flipcrossings{1,2};
    \end{knot}
    \node at (0,0.5) {$f$};
    \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \draw[thick] (0,0) to (0,-1);
  \end{tikzpicture}
\] This gives actions of the permutation groups on the sets
\(\mathcal{O}(n)\). We also demand that these actions be compatible with
composition, in a way that's supposed to be obvious from the pictures.
For example: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (-0.6,2.5)
        to [out=down,in=up,looseness=1.5] (0.33,1);
      \strand[thick] (0,2.5)
        to [out=down,in=up,looseness=1.5] (-0.33,1);
      \strand[thick] (0.6,2.5)
        to [out=down,in=up,looseness=1.5] (0,1);
      \flipcrossings{1,2};
    \end{knot}
    \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
    \node at (0,0.5) {$d$};
    \draw[thick] (0,0) to (0,-1);
    \begin{scope}[xscale=0.3,yscale=0.4,shift={(-2,6.25)}]
      \draw[thick] (-0.5,2) to (-0.33,1);
      \draw[thick] (0,2) to (0,1);
      \draw[thick] (0.5,2) to (0.33,1);
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \node at (0,0.5) {$a$};
    \end{scope}
    \begin{scope}[xscale=0.3,yscale=0.4,shift={(0,6.25)}]
      \draw[thick] (0,2) to (0,1);
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \node at (0,0.5) {$b$};
    \end{scope}
    \begin{scope}[xscale=0.3,yscale=0.4,shift={(2,6.25)}]
      \draw[thick] (-0.5,2) to (-0.25,1);
      \draw[thick] (0.5,2) to (0.25,1);
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \node at (0,0.5) {$c$};
    \end{scope}
    \node at (1.5,1) {$=$};
    \begin{scope}[shift={(3,0)}]
      \draw[thick] (-0.6,1.6) to (-0.33,1);
      \draw[thick] (0,1.6) to (0,1);
      \draw[thick] (0.6,1.6) to (0.33,1);
      \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
      \node at (0,0.5) {$d$};
      \draw[thick] (0,0) to (0,-1);
      \begin{scope}[xscale=0.3,yscale=0.4,shift={(-2,4)}]
        \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
        \node at (0,0.5) {$a$};
      \end{scope}
      \begin{scope}[xscale=0.3,yscale=0.4,shift={(0,4)}]
        \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
        \node at (0,0.5) {$b$};
      \end{scope}
      \begin{scope}[xscale=0.3,yscale=0.4,shift={(2,4)}]
        \draw[thick,rounded corners=1mm] (-0.75,1) rectangle ++(1.5,-1);
        \node at (0,0.5) {$c$};
      \end{scope}
      \begin{scope}[shift={(0,2)}]
        \begin{knot}
          \strand[thick] (0,1.3)
            to [out=down,in=up] (-0.6,0);
          \strand[thick] (0.62,1.3)
            to [out=down,in=up] (-0.04,0);
          \strand[thick] (0.7,1.3)
            to [out=down,in=up] (0.04,0);
          \strand[thick] (-0.7,1.3)
            to [out=down,in=up] (0.5,0);
          \strand[thick] (-0.6,1.3)
            to [out=down,in=up] (0.6,0);
          \strand[thick] (-0.5,1.3)
            to [out=down,in=up] (0.7,0);
        \end{knot}
      \end{scope}
    \end{scope}
  \end{tikzpicture}
\] and similarly for permuting the inputs of the black boxes on top.

\emph{VoilÃ !}

Now, operads make sense in various contexts. So far we've been talking
about operads that have a \emph{set} \(\mathcal{O}(n)\) of \(n\)-ary
operations for each n. These have actions on \emph{sets}, where each guy
in \(\mathcal{O}(n)\) gets incarnated as a \emph{function} that eats n
elements of some set and spits out an element of that set.

But historically, Peter May started by inventing operads that have a
\emph{topological space} of \(n\)-ary operations for each \(n\). These
like to act on \emph{topological spaces}, with the operations getting
incarnated as \emph{continuous maps}.

Most importantly, he invented an operad called the ``little \(k\)-cubes
operad''. Here \(\mathcal{O}(n)\) is the space of ways of putting \(n\)
nonoverlapping little \(k\)-dimensional cubes in a big one. We don't
demand that the little cubes are actually cubes: they can be rectangular
boxes. We do demand that their walls are nicely lined up with the walls
of the big cube: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) rectangle ++(3,3);
    \draw[thick] (0.5,0.5) rectangle ++(2,1);
    \draw[thick] (0.3,1.8) rectangle ++(1,1);
    \draw[thick] (1.8,1.6) rectangle ++(0.6,1);
    \node at (1.5,-0.5) {typical $3$-ary operation};
    \node at (1.5,-0.95) {in the little $2$-cubes operad};
  \end{tikzpicture}
\] This is an operation in \(\mathrm{O}(3)\), where \(\mathcal{O}\) is
the little \(2\)-cubes operad. Or, at least it would be if I labelled
each of the 3 little \(2\)-cubes --- we need that extra information.

We compose operations by sticking pictures like this into each of the
little \(k\)-cubes in another picture like this! I should draw you an
example, but I'm too lazy. So, figure it out yourself and check the
associative law.

The reason this example is so important is that we get an action of the
little \(k\)-cubes operad whenever we have a ``\(k\)-fold loop space''.

Starting from a space \(S\) equipped with a chosen point \(*\), the
\(k\)-fold loop space \(\Omega^k(S)\) is the space of all maps from a
\(k\)-sphere into \(S\) that send the north pole to the point \(*\). But
this is also the space of all maps from a \(k\)-cube into \(S\) sending
the boundary of the \(k\)-cube to the point \(*\).

So, given \(n\) such such maps, we can glom them together using an
\(n\)-ary operation in the little \(k\)-cubes operad: \[
  \begin{tikzpicture}
    \draw[thick,fill=gray] (0,0) rectangle ++(3,3);
    \draw[thick,fill=white] (0.5,0.5) rectangle ++(2,1);
    \draw[thick,fill=white] (0.3,1.8) rectangle ++(1,1);
    \draw[thick,fill=white] (1.8,1.6) rectangle ++(0.6,1);
  \end{tikzpicture}
\] where we map all the shaded stuff to the point \(*\). We get another
map from the \(k\)-cube to \(S\) sending the boundary to \(*\). So:

\begin{quote}
\textbf{any \(k\)-fold loop space has an action of}\\
\textbf{the little \(k\)-cubes operad}
\end{quote}

But the really cool part is the converse:

\begin{quote}
\textbf{any connected pointed space with an action of}\\
\textbf{the little \(k\)-cubes operad is}\\
\textbf{homotopy equivalent to a \(k\)-fold loop space}
\end{quote}

This is too technical to make a good bumper sticker, so if you want
people in your neighborhood to get interested in operads, I suggest
combining both the above slogans into one:

\begin{quote}
\textbf{a \(k\)-fold loop space is the same as}\\
\textbf{an action of the little \(k\)-cubes operad}
\end{quote}

Like any good slogan, this leaves out some important fine print, but it
gets the basic idea across. Modulo some details, being a \(k\)-fold loop
space amounts to having a bunch of operations: one for each way of
stuffing little \(k\)-cubes in a big one!

By the way:

Speaking of bumper stickers, I'm in Montreal now, and there's a funky
hangout on the Boulevard Saint-Laurent called Cafe \(\pi\) where people
play chess --- and they sell T-shirts, key rings, baseball caps and
coffee mugs decorated with the Greek letter \(\pi\)! The T-shirts are
great if you're going for a kind of math-nerd/punk look; I got one to
wow the students in my undergraduate courses. I don't usually provide
links to commercial websites, but I made an exception for Acme Klein
Bottles, and I'll make an exception for Cafe \(\pi\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  \(Cafe \pi\), \texttt{http://www.cafepi.ca/}
\end{enumerate}

Unfortunately they don't sell bumper stickers.

But where were we? Ah yes --- the little \(k\)-cubes operad.

The little \(k\)-cubes operad sits in the little \((k+1)\)-cubes operad
in an obvious way. Indeed, it's a ``sub-operad''. So, we can take the
limit as \(k\) goes to \(\infty\) and form the ``little \(\infty\)-cubes
operad''. Any infinite loop space gets an action of this\ldots{} and
that's why Peter May invented operads!

You can read more about these ideas in May's book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  J. Peter May, \emph{The Geometry of Iterated Loop Spaces}, Lecture
  Notes in Mathematics \textbf{271}, Springer, Berlin, 1972.
\end{enumerate}

or for a more gentle treatment, try this expository article:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  J. Peter May, ``Infinite loop space theory'', \emph{Bull. Amer. Math.
  Soc.} \textbf{83} (1977), 456--494.
\end{enumerate}

But Dev Sinha told us about some subsequent work by Fred Cohen, who
computed the homology and cohomology of the little \(k\)-cubes operad.

For this, we need to think about operads in the world of linear algebra.
Here we consider operads that have a \emph{vector space} of \(n\)-ary
operations for each n, which get incarnated as \emph{multilinear maps}
when they act on some \emph{vector space}. These are sometimes called
``linear operads''.

An example is the operad for Lie algebras. This one is called ``Lie''.
\(\mathrm{Lie}(n)\) is the vector space of \(n\)-ary operations that one
can do whenever one has a Lie algebra. In this example:

\begin{itemize}
\item
  \(\mathrm{Lie}(0)\) is zero-dimensional, since there are no nullary
  operations (constants) built into the definition of Lie algebra,
  except zero.
\item
  \(\mathrm{Lie}(1)\) is one-dimensional, since the only unary
  operations are multiples of the identity operation: \[a \to a\]
\item
  \(\mathrm{Lie}(2)\) is one-dimensional, since the only binary
  operations are multiples of the Lie bracket: \[(a,b) \to [a,b]\] You
  might think we need a second guy in \(\mathrm{Lie}(2)\), namely
  \[(a,b) \to [b,a]\] but the antisymmetry of the Lie bracket says this
  is linearly dependent on the first one: \[[b,a] = -[a,b]\]
\item
  \(\mathrm{Lie}(3)\) is two-dimensional, since the only ternary
  operations are linear combinations of these two:
  \[(a,b,c) \to [a,b],c]\] \[(a,b,c) \to [b,[a,c]\] You might think we
  need a third guy in \(\mathrm{Lie}(3)\), for example
  \[(a,b,c) \to [a,[b,c]\] but the Jacobi identity says this is linearly
  dependent on the first two: \[[a,[b,c] = [a,b],c] + [b,[a,c]\]
\end{itemize}

You may enjoy trying to show that the dimension of \(\mathrm{Lie}(n)\)
is \((n-1)!\), at least for \(n > 0\). There's an incredibly beautiful
conceptual proof, and probably lots of obnoxious brute-force proofs.

There's a lot more to say about the Lie operad, but right now I want to
talk about the Poisson operad. A ``Poisson algebra'' is a commutative
associative algebra that has a bracket operation \(\{a,b\}\) making it
into a Lie algebra, with the property that
\[\{a,bc\} = \{a,b\}c + b\{a,c\}\] So, bracketing with any element is
like taking a derivative: it satisfies the product rule.

For this reason, Poisson algebras arise naturally as algebras of
observables in classical mechanics --- the Poisson bracket of any
observable \(A\) with an observable \(H\) called the ``Hamiltonian''
tells you the time derivative of \(A\): \[\frac{dA}{dt} = \{H,A\}\] This
is the beginning of a nice big story.

But, what's got me excited now is how Poisson algebras show up in
topology!

To understand this, we need to note that there's a linear operad whose
algebras are Poisson algebras. That's not surprising. But, we can get a
very similar operad in a rather shocking way, as follows.

Take the little \(k\)-cubes operad. This has a space \(\mathcal{O}(n)\)
of \(n\)-ary operations for each \(n\). Now take the homology of these
spaces \(\mathcal{O}(n)\), using coefficients in your favorite field,
and get vector spaces \(H(\mathcal{O}(n))\). By functorial abstract
nonsense these form a linear operad. And this is the operad for Poisson
algebras!

Alas, we actually have to be a bit more careful. The homology of each
space \(\mathcal{O}(n)\) with coefficients in some field is really a
\emph{graded} vector space over that field. So, taking the homology of
the little \(k\)-cubes operad gives an operad in the category of graded
vector spaces. And, it's the operad whose algebras are graded Poisson
algebras with a bracket of degree \(k-1\).

What are those? Well, they're like Poisson algebras, but if \(a\) is an
element of degree \(|a|\) and \(b\) is an element of degree \(|b|\),
then:

\begin{itemize}
\tightlist
\item
  \(ab\) has degree \(|a| + |b|\) (we've got a graded algebra)
\item
  \(\{a,b\}\) has degree \(|a| + |b| + k - 1\) (with a bracket of degree
  \(k-1\))
\end{itemize}

and the usual axioms for a Poisson algebra hold, but sprinkled with
minus signs according to the usual yoga of graded vector spaces.

So: whenever we have a \(k\)-fold loop space, its homology is a graded
Poisson algebra with a bracket of degree \(k-1\).

To get an idea of this works, let me sketch how the product and the
bracket work. Suppose we have an space \(X\) with an action of the
little \(k\)-cubes operad:

\begin{itemize}
\tightlist
\item
  The product on homology corresponds to sticking two little cubes side
  by side. Given two points in \(X\), this gives another point in \(X\).
  More generally, given two homology classes \(a\) and \(b\) in \(X\),
  we get a homology class of degree \(|a| + |b|\) in \(X\).
\item
  The bracket comes from taking one little cube and moving it around to
  trace out a sphere surrounding the other little cube. Given two points
  in \(X\), this gives a \((k-1)\)-sphere in \(X\). More generally,
  given a homology class \(a\) in \(X\), and a homology class \(b\) in
  \(X\), we get a homology class \(\{a,b\}\) of degree
  \(|a| + |b| + k - 1\).
\end{itemize}

The equation \[\{a,bc\} = \{a,b\}c + b\{a,c\}\] then says ``moving \(a\)
around \(b\) and \(c\) is like moving a around \(b\) while \(c\) stands
by, plus moving \(a\) around \(c\) while \(b\) stands by''.

I guess this result can be found here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  Frederick Cohen, ``Homology of \(\Omega^{n+1}\Sigma^{n+1}X\) and
  \(C_{n+1}X\), \(n>0\)'', \emph{Bull. Amer. Math. Soc.} \textbf{79}
  (1973), 1236--1241.
\item
  Frederick Cohen, Tom Lada and J. Peter May, \emph{The homology of
  iterated loop spaces}, Lecture Notes in Mathematics \textbf{533},
  Springer, Berlin, 1976.
\end{enumerate}

But, I don't think these old papers talk about graded Poisson operads!
Dev Sinha has a paper where he takes these ideas and distills them all
into the combinatorics of graphs and trees:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Dev Sinha, ``A pairing between graphs and trees'', available as
  \href{http://arxiv.org/abs/math.QA/0502547}{\texttt{math.QA/0502547}}.
\end{enumerate}

However, what I really like is how he gets these graphs and trees
starting from the homology and cohomology (respectively) of the little
\(k\)-cubes operad! He first wrote about it here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  Dev Sinha, ``Manifold theoretic compactifications of configuration
  spaces'', available as
  \href{http://arxiv.org/abs/math.GT/0306385}{\texttt{math.GT/0306385}}.

  Dev Sinha, ``The homology of the little disks operad'', available as
  \href{http://arxiv.org/abs/math/0610236}{\texttt{math/0610236}}.
\end{enumerate}

I have a vague feeling that this relation between the little \(k\)-cubes
operad and the Poisson operad is part of a big picture involving braids
and quantization. Another hint in this direction is Deligne's
Conjecture, now proved in many ways, which says that the operad of
singular chains coming from the little \(2\)-disks operad acts on the
Hochschild cochain complex of any associative algebra. Since Hochschild
cohomology classifies the ways you can deform an associative algebra,
this result is related to quantization and Poisson algebras. But, I
don't get the big picture! This might help:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Maxim Kontsevich, ``Operads and motives in deformation quantization'',
  \emph{Lett. Math. Phys.} \textbf{48} (1999) 35--72. Also available as
  \href{http://arxiv.org/math.QA/9904055}{\texttt{math.QA/9904055}}.
\end{enumerate}

I'd like to ponder this now! But I'm getting tired, and I still need to
say how the little \(2\)-cubes operad acts on the space of thickened
long knots.

What's a thickened long knot? In \(k\) dimensions, it's an embedding of
a little \(k\)-cube in a big one: \[f\colon [0,1]^k \to [0,1]^k\]
subject to the condition that the top and bottom of the little cube get
mapped to the top and bottom of the big one via the identity map. So,
you should imagine a thickened long knot as a fat square rope going from
the ceiling to the floor, all tied up in knots.

There are two ways to ``compose'' thickened long knots.

If you're a knot theorist, the obvious way is to stick one on top of the
other --- just like the usual composition of tangles. But if you just
think of thickened long knots as functions, you can also compose them
just by composing functions! This amounts to stuffing one knot inside
another\ldots{} a little hard to visualize, but fun.

Anyway, it turns out that the whole little \(2\)-cubes operad acts on
the space of thickened long knots, with the two operations \(I\) just
mentioned corresponding to this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) rectangle (2,4);
    \draw[thick] (0,2) to (2,2);
    \node at (1,-0.5) {sticking one thickened long};
    \node at (1,-0.9) {knot on top of another};
  \end{tikzpicture}
\] and this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) rectangle (2,4);
    \draw[thick] (1,0) to (1,4);
    \node at (1,-0.5) {sticking one thickened long};
    \node at (1,-0.9) {knot inside another};
  \end{tikzpicture}
\] This isn't supposed to make obvious sense, but the point is, there
are lots of binary operations interpolating between these two --- one
for each binary operation in the little \(2\)-cubes operad!

This gives a new proof that the operation of ``sticking one thickened
long knot on top of another'' is commutative up to homotopy.

And, using these ideas, Ryan Budney has managed to figure out a lot of
information about the homotopy type of the space of long knots. Check
out these papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\item
  Ryan Budney, ``Little cubes and long knots'', available as
  \href{http://arxiv.org/math.GT/0309427}{\texttt{math.GT/0309427}}.
\item
  Ryan Budney and Frederick Cohen, ``On the homology of the space of
  long knots'', available as
  \href{http://arxiv.org/math.GT/0504206}{\texttt{math.GT/0504206}}.
\item
  Ryan Budney, ``Topology of spaces of knots in dimension 3'', available
  as \href{http://arxiv.org/math.GT/0506524}{\texttt{math.GT/0506524}}.
\end{enumerate}

The paper by Budney and Cohen combines the two ideas I just described
--- the action of the little \(2\)-cubes operad on thickened long knots
and its relation to the Poisson operad. Using these, they show that the
rational homology of the space of thickened long knots in 3 dimensions
is a free Poisson algebra! They also show that the mod-\(p\) homology of
this space is a free ``restricted Poisson'' algebra.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Jesse McKeown had a question about the two operations
on long thickened knots. Here's what he asked:

\begin{quote}
Perhaps I'm being too imaginative, but I don't feel very convinced the
two operations described towards the end of
\protect\hyperlink{week220}{``Week 220''} are fundamentally different.

VagueSpecifically, in map-composition, can't one stretch all the
knottednes of the first composand into an ``upper'', essentially
unknotty portion of the second composand, and similarly squish the
knottedness of the second composand into a ``lower'' section of the big
all-encompassing box?
\end{quote}

Here's my reply:

\begin{quote}
Right! That's exactly what having an action of the little \(2\)-cubes
operad says! There's nothing ``fundamentally different'' between this:
\[
  \begin{tikzpicture}
    \draw[thick] (0,0) rectangle (2,4);
    \draw[thick] (0,2) to (2,2);
    \node at (1,-0.5) {$A$: sticking one thickened long};
    \node at (1,-0.9) {knot on top of another};
  \end{tikzpicture}
\] and this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) rectangle (2,4);
    \draw[thick] (1,0) to (1,4);
    \node at (1,-0.5) {$B$: sticking one thickened long};
    \node at (1,-0.9) {knot inside another};
  \end{tikzpicture}
\] because there is a continuous family of operations interpolating
between these --- one for each way of sticking two little squares in a
big one.

But, the \emph{process} of moving from operation \(A\) to operation
\(B\) is itself nontrivial. If you loop all the way around from \(A\) to
\(B\) to \(A\) --- moving the two little squares around each other in
the big one --- you can get a noncontractible loop in the space of long
thickened knots!

And, this is what gives the bracket operation on the homology of the
space of thickened long knots.

Operads were born to deal with issues like this.
\end{quote}

On another note --- in the summer of 2007, Urs Schreiber posted a 3-part
article on Batalin--Vilkovisky quantization over at the \(n\)-Category
Cafe. The third part has links to the other two:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Urs Schreiber, ``Lyakhovich and Sharapov on QFT (On BV-Quantization,
  Part III)'',
  \texttt{http://golem.ph.utexas.edu/category/2007/08/lyakhonov\_and\_sharapov\_on\_qft.html}.
\end{enumerate}

and in addition to providing lots of references, it led me back to
puzzling about Poisson algebras and the little disks operad. Here's what
I wrote, roughly:

\begin{quote}
Try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\item
  Ezra Getzler, ``Batalin-Vilkovisky algebras and two-dimensional
  topological field theories'', \emph{Comm. Math. Phys.} \textbf{159}
  (1994), 265--285. Available at
  \texttt{http://projecteuclid.org/DPubS?service=UI\&version=1.0\&verb=Display\&handle=euclid.cmp/1104254599}
\item
  Takashi Kimura, Jim Stasheff and Alexander A. Voronov, ``On operad
  structures of moduli spaces and string theory'', \emph{Comm. Math.
  Phys.} \textbf{171} (1995), 1--25. ``Section 3.7: the
  Batalin-Vilkovisky (BV) algebra''. Available at
  \texttt{http://projecteuclid.org/DPubS?service=UI\&version=1.0\&verb=Display\&handle=euclid.cmp/1104273401}
\end{enumerate}

I don't understand this stuff very well!

More precisely:

If you take the space of multivector fields \(V\) on a manifold \(M\),
and think of \(V\) equipped with its wedge product and
\href{http://www.mimuw.edu.pl/~pwit/TOK/sem4/online/node9.html}{Schouten
bracket}, you get the easiest example of a
\href{http://golem.ph.utexas.edu/category/2007/02/infinitely_categorified_calcul.html}{Gerstenhaber
algebra}.

A Gerstenhaber algebra is an associative supercommutative graded algebra
\(A\) together with a bracket of degree \(-1\) which makes \(A\) into a
kind of ``graded Poisson algebra with bracket of degree \(-1\)''. All
the usual \href{http://en.wikipedia.org/wiki/Poisson_algebra}{Poisson
algebra} axioms hold, but sprinkled with minus signs according to the
usual conventions.

If your manifold \(M\) is a Poisson manifold, then the space \(V\) of
multivector fields comes equipped with a differential given by taking
the Schouten bracket with the Poisson bivector field \(\Pi\) in \(V\).

Axiomatizing this mess, we get the definition of a Batalin--Vilkovisky
algebra: a Gerstenhaber algebra with differential that's compatible with
the other structure in a certain way.

There are also lots of Batalin--Vilkovisky algebras that don't come from
Poisson manifolds. But just like Poisson manifolds, we can still think
of these as describing phase spaces in classical mechanics --- in a
clever algebraic way. And, that's what BV quantization is all about:
figuring out how to treat these Batalin-Vilkovisky algebras as classical
phase spaces and quantize them!

All this makes some sense to me. But then it gets weird and
mystical\ldots{}

First, thanks to an old result of Fred Cohen, a Gerstenhaber algebra is
the same as an algebra of the operad \(H(D)\) --- the homology of the
little disks operad!

Did I just hear some of you say ``Huh?''

Well, let me sketch what that means. The little disks operad is a gadget
with a bunch of \(n\)-ary operations corresponding to ways of sticking
\(n\) little disks in a big one. For each \(n\) there's a topological
space of these \(n\)-ary operations. Taking the homology of this
topological space, we get a graded vector space. These are the \(n\)-ary
operations of the operad I'm calling \(H(D)\).

While I roughly follow how this works, I don't understand the deep inner
meaning. It seems amazing: there's a mystical relation between ways of
sticking little 2d disks in bigger ones, and operations you can do on
the space of multivector fields on a manifold!

I don't know if the connections to 2d topological and conformal field
theory (described in the articles I cite) actually \emph{explain} this
mystical relation, or merely \emph{exploit} it.

Now, as I said, a Batalin--Vilovisky algebra is a Gerstenhaber algebra
with an extra operation. And, Getzler showed that this extra operation
corresponds to our ability to \emph{twist} a little disk \(360^\circ\).
(Until we started twisting like this, we could equally have used little
\(2\)-cubes.)

More precisely, Getzler showed that a Batalin--Vilkovisky algebra is the
same as an algebra of the homology of the \emph{framed} little discs
operad.

This extra twist of the knife only makes me more curious to know what's
\emph{really going on here}.

Here's a clue that could help. As I explained to Urs a couple days ago,
this business of ``taking homology'' is really some sort of procedure
for turning weak \(\infty\)-groupoids (i.e.~spaces) into stable strict
\(\infty\)-groupoids (i.e.~chain complexes) --- followed by taking the
homology of the chain complex, which in principle loses even \emph{more}
information, but doesn't in this particular example. That suggests that
these Gerstenhaber (and Batalin--Vilkovisky) algebras are really just
watered-down chain complex versions of \emph{spaces} equipped with
\(n\)-ary operations corresponding to ways of sticking \(n\) (framed)
little disks into a big disk.

But still: \emph{what's really going on? What do classical phase spaces
have to do with little \(2\)-dimensional disks???}

As far as I'm concerned, the Rosetta Stone on the third page of
Getzler's paper only serves to heighten the mystery further!
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{One gets the impression that some physicists have gone for so long
without any experimental data that might resolve the quantum-gravity
debates that they are going a little crazy.}

---
\href{http://www.americanscientist.org/template/BookReviewTypeDetail/assetid/45919;jsessionid=baaayg8keWDBEI}{Jaron
Lanier}
\end{quote}
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After going to the Streetfest this summer, I wandered around China. I
began by going to a big conference in Beijing, the 22nd International
Congress on the History of Science. I learned some interesting stuff.
For example:

You may have heard of
\href{http://en.wikipedia.org/wiki/Andalusia}{Andalusia,} that
fascinating melting-pot of cultures that formed when southern Spain was
invaded by Muslims. The eleventh century was the golden age of
Andalusian astronomy and mathematics, with a lot of innovation in
astrolabes. During the
\href{http://en.wikipedia.org/wiki/Timeline_of_the_Muslim_Occupation_of_the_Iberian_Peninsula}{Caliphate}
(929--1031), three quarters of all mathematical manuscripts were
produced in
\href{http://lexicorient.com/spain/photos/cordoba02.jpg}{Cordoba}, most
of the rest in
\href{http://images.encarta.msn.com/xrefmedia/sharemed/targets/images/pho/t054/T054900A.jpg}{Sevilla},
and only a few in
\href{http://lexicorient.com/spain/photos/granada02.jpg}{Granada} and
\href{http://hopf.chem.brandeis.edu/Milos/PhotoMD/Images/Spain2001/Toledo_Alcazar.JPG}{Toledo}.

I didn't understand the mathematical predominance of Cordoba when I
first heard about it, but the underlying reason is simple. The first
great Muslim dynasty were the
\href{http://en.wikipedia.org/wiki/Umayyads}{Ummayyads}, who ruled from
Damascus. They were massacred by the
\href{http://en.wikipedia.org/wiki/Abbasid}{Abbasids} in 750, who then
moved the capital to Baghdad. When
\href{http://en.wikipedia.org/wiki/Abd-ar-Rahman_I}{Abd ar-Rahman} fled
Damascus in 750 as the only Ummayyad survivor of this massacre, he went
to Spain, which had already been
\href{http://en.wikipedia.org/wiki/Muslim_conquest_of_Iberia}{invaded by
Muslim Berbers} in 711.

Abd ar-Rahman made Cordoba his capital. And, by enforcing a certain
level of religious tolerance, he made this city into \emph{the place to
be} for Muslims, Jews and Christians --- the ``ornament of the world'',
and a beacon of learning --- until it was sacked by Berber troops in
1009.

Other cities in Andalusia became important later. The great philosopher
\href{http://en.wikipedia.org/wiki/Averroes}{Ibn Rushd} --- known to
Westerners by the Latin name ``Averroes'' --- was born in Cordoba in
1128. He later became a judge there. He studied mathematics, medicine,
and astronomy, and wrote detailed line-by-line commentaries on the works
of Aristotle. It was through these commentaries that most of Aristotle's
works, including his Physics, found their way into Western Europe! By
1177, the bishop of Paris had banned the teaching of many of these new
ideas --- but to little effect.

Toledo seems to have only gained real prominence after
\href{http://en.wikipedia.org/wiki/Alfonso_VI_of_Castile}{Alfonso VI}
made it his capital upon capturing it in 1085 as part of the Christian
``reconquista''. By the 1200s, it became a lively center for translating
Arabic and Hebrew texts into Latin.

Mathematics also passed from the Arabs to Western Europe in other ways.
\href{http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html}{Fibonacci}
(1170-1250) studied Arabic accounting methods in North Africa where his
father was a diplomat. His book \emph{Liber Abaci} was important in
transmitting the Indian system of numerals (including zero) from the
Arabs to Europe. However, he wasn't the first to bring these numbers to
Europe. They'd been around for over 200 years!

For example:
\href{http://en.wikipedia.org/wiki/Gerbert_of_Aurillac}{Gerbert
d'Aurillac} (940--1003) spent years studying mathematics in various
Andalusian cities including Cordoba. On his return to France, he wrote a
book about a cumbersome sort of ``abacus'' labelled by a Western form of
the Indian numerals --- close to what we now call ``Arabic numerals''.
This remained popular in intellectual circles until the mid-12th
century.

Amusingly, Arabic numerals were also called ``dust numerals'' since they
were used in calculations on an easily erasable ``dust board''. Their
use was described in the \emph{Liber Pulveris}, or ``book of dust''.

I want to learn more about Andalusian science! I found this book a great
place to start --- it's really fascinating:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Maria Rose Menocal, \emph{The Ornament of the World: How Muslims, Jews
  and Christians Created a Culture of Tolerance in Medieval Spain},
  Little, Brown and Co., 2002.
\end{enumerate}

For something quick and pretty, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Steve Edwards, ``Tilings from the Alhambra'',
  \texttt{http://www2.spsu.edu/math/tile/grammar/moor.htm}
\end{enumerate}

Apparently 13 of the 17 planar symmetry groups can be found in tile
patterns in the Alhambra, a Moorish palace built in Granada in the
1300s.

To dig deeper into the splendors of Arabic mathematics, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  John J. O'Connor and Edmund F. Robertson, ``Arabic mathematics:
  forgotten brilliance?'',
  \texttt{http://www-groups.dcs.st-and.ac.uk/\textasciitilde{}history/HistTopics/Arabic\_mathematics.html}

  John J. O'Connor and Edmund F. Robertson, ``Biographies of
  Arab/Islamic mathematicians'',
  \texttt{http://www-groups.dcs.st-and.ac.uk/\textasciitilde{}history/Indexes/Arabs.html}
\end{enumerate}

For more on Fibonacci and Arabic mathematics, try this paper by Charles
Burnett, who spoke about the history of ``Arabic numerals'' in Beijing:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Charles Burnett, ``Leonard of Pisa and Arabic Arithmetic'',
  \texttt{http://muslimheritage.com/topics/default.cfm?ArticleID=472}
\end{enumerate}

Another interesting talk in Beijing was about the role of the Syriac
language in the transmission of Greek science to Europe. Many important
texts didn't get translated directly from Greek to Arabic! Instead, they
were first translated into \emph{Syriac}.

I don't understand the details yet, but luckily there's a great book on
the subject, available free online:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  De Lacy O'Leary, \emph{How Greek Science Passed to the Arabs},
  Routledge \& Kegan Paul Ltd, 1949. Also available at
  \texttt{http://www.aina.org/books/hgsptta.htm}
\end{enumerate}

So, medieval Europe learned a lot of Greek science by reading Latin
translations of Arab translations of Syriac translations of second-hand
copies of the original Greek texts!

George Baloglu recommends this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Dimitri Gutas, \emph{Greek Thought, Arabic Culture: The Graeco--Arabic
  Translation Movement in Baghdad and Early 'Abbasid Society
  (2nd--4th/8th--10th Centuries)}, Routledge, 1998.
\end{enumerate}

I want to read this book, too:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Scott L. Montgomery, \emph{Science in Translation: Movements of
  Knowledge through Cultures and Time}, U. of Chicago Press, 2000.
  Review by William R. Everdell available at MAA Online,
  \texttt{http://www.maa.org/publications/maa-reviews/science-in-translation-movements-of-knowledge-through-cultures-and-time}
\end{enumerate}

The historian of science John Stachel, famous for his studies of
Einstein, says this book ``strikes a blow at one of the founding myths
of `Western Civilization'\,'' --- namely, that Renaissance Europeans
single-handedly picked up doing science where the Greeks left off. As
Everdell writes in his review:

\begin{quote}
Perhaps the best of the book's many delightful challenges to
conventional wisdom comes in the first section on the translations of
Greek science. Here we learn why it is ridiculous to use a phrase like
``the Renaissance recovery of the Greek classics''; that in fact the
Renaissance recovered very little from the original Greek and that it
was long before the Renaissance that Aristotle and Ptolemy, to name the
two most important examples, were finally translated into Latin. What
the Renaissance did was to create a myth by eliminating all the
intermediate steps in the transmission. To assume that Greek was
translated into Arabic ``still essentially erases centuries of history''
(p.~93). What was translated into Arabic was usually Syriac, and the
translators were neither Arabs (as the great Muslim historian
\href{http://en.wikipedia.org/wiki/Ibn_Khaldun}{Ibn Khaldun} admitted)
nor Muslims. The real story involves Sanskrit compilers of ancient
Babylonian astronomy, Nestorian Christian Syriac-speaking scholars of
Greek in the Persian city of
\href{http://en.wikipedia.org/wiki/Jundishapur}{Jundishapur}, and
Arabic- and Pahlavi-speaking Muslim scholars of Syriac, including the
Nestorian Hunayn
\href{http://www.nestorian.org/hunein_ibn_ishak.html}{Ibn Ishak}
(809--873) of Baghdad, ``the greatest of all translators during this
era'' (p.~98).
\end{quote}

And now for something completely different: the Langlands program! I
want to keep going on my gradual quest to understand and explain this
profoundly difficult hunk of mathematics, which connects number theory
to representations of algebraic groups. I've found this introduction to
be really helpful:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Stephen Gelbart: ``An elementary introduction to the Langlands
  program'', \emph{Bulletin of the AMS} \textbf{10} (1984), 177--219.
\end{enumerate}

There are a lot of more detailed sources of information on the Langlands
program, but the problem for the beginner (me) is that the overall goal
gets swamped in a mass of technicalities. Gelbart's introduction does
the best at avoiding this problem.

I've also found parts of this article to be helpful:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Edward Frenkel, ``Recent advances in the Langlands program'',
  available at
  \href{http://arxiv.org/abs/math.AG/0303074}{\texttt{math.AG/0303074}}.
\end{enumerate}

It focuses on the ``geometric Langlands program'', which I'd rather not
talk about now. But, it starts with a pretty clear introduction to the
basic Langlands stuff\ldots{} at least, clear to me after I've battered
my head on this for about a year!

If you know some number theory or you followed recent issues This Week's
Finds (especially \protect\hyperlink{week217}{``Week 217''} and
\protect\hyperlink{week218}{``Week 218''}) it should make sense, so I'll
quote it:

\begin{quote}
The Langlands Program has emerged in the late 60's in the form of a
series of far-reaching conjectures tying together seemingly unrelated
objects in number theory, algebraic geometry, and the theory of
automorphic forms. To motivate it, recall the classical Kronecker-Weber
theorem which describes the maximal abelian extension
\(\mathbb{Q}^{\mathrm{ab}}\) of the field \(\mathbb{Q}\) of rational
numbers (i.e., the maximal extension of \(\mathbb{Q}\) whose Galois
group is abelian). This theorem states that \(\mathbb{Q}^{\mathrm{ab}}\)
is obtained by adjoining to \(\mathbb{Q}\) all roots of unity; in other
words, \(\mathbb{Q}^{\mathrm{ab}}\) is the union of all cyclotomic
fields \(\mathbb{Q}(1^{\frac1N})\) obtained by adjoining to
\(\mathbb{Q}\) a primitive \(N\)th root of unity \[1^{\frac1N}\] The
Galois group \(\mathrm{Gal}(Q(1^{\frac1N})/\mathbb{Q})\) of
automorphisms of \(\mathbb{Q}(1^{\frac1N})\) preserving \(\mathbb{Q}\)
is isomorphic to the group \((\mathbb{Z}/N)^*\) of units of the ring
\(\mathbb{Z}/N\). Indeed, each element \(m\) in \((\mathbb{Z}/N)^*\),
viewed as an integer relatively prime to \(N\), gives rise to an
automorphism of \(\mathbb{Q}(1^{\frac1N})\) which sends \[1^{\frac1N}\]
to \[1^{\frac{m}{N}}.\] Therefore we obtain that the Galois group
\(\mathrm{Gal}(\mathbb{Q}^{\mathrm{ab}}/\mathbb{Q})\), or, equivalently,
the maximal abelian quotient of
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\), where
\(\overline{\mathbb{Q}}\) is an algebraic closure of \(\mathbb{Q}\), is
isomorphic to the projective limit of the groups \((\mathbb{Z}/N)^*\)
with respect to the system of surjections
\[(\mathbb{Z}/N)^* \to (\mathbb{Z}/M)^*\] for \(M\) dividing \(N\). This
projective limit is nothing but the direct product of the multiplicative
groups of the rings of \(p\)-adic integers, \(\mathbb{Z}_p^*\), where
\(p\) runs over the set of all primes. Thus, we obtain that
\[\mathrm{Gal}(\mathbb{Q}^{\mathrm{ab}}/\mathbb{Q}) = \prod \mathbb{Z}_p^*.\]
The abelian class field theory gives a similar description for the
maximal abelian quotient
\(\mathrm{Gal}(\mathbb{F}^{\mathrm{ab}}/\mathbb{F})\) of the Galois
group \(\mathrm{Gal}(\overline{\mathbb{F}}/\mathbb{F})\), where
\(\mathbb{F}\) is an arbitrary global field, i.e., a finite extension of
\(\mathbb{Q}\) (number field), or the field of rational functions on a
smooth projective curve defined over a finite field (function field).
Namely, \(\mathrm{Gal}(\mathbb{F}^{\mathrm{ab}}/\mathbb{F})\) is almost
isomorphic to the quotient \(A(\mathbb{F})^*/\mathbb{F}^*\), where
\(A(\mathbb{F})\) is the ring of adeles of \(\mathbb{F}\), a subring in
the direct product of all completions of \(\mathbb{F}\). Here we use the
word ``almost'' because we need to take the group of components of this
quotient if \(\mathbb{F}\) is a number field, or its profinite
completion if \(\mathbb{F}\) is a function field.

When \(\mathbb{F} = \mathbb{Q}\) the ring \(A(\mathbb{Q})\) is a subring
of the direct product of the fields \(\mathbb{Q}_p\) of \(p\)-adic
numbers and the field \(\mathbb{R}\) of real numbers, and the quotient
\(A(\mathbb{F})^*/\mathbb{F}^*\) is isomorphic to
\[\mathbb{R}^+ \times \prod_p \mathbb{Z}_p^*.\] where \(\mathbb{R}^+\)
is the multiplicative group of positive real numbers. Hence the group of
its components is \[\prod_p \mathbb{Z}_p^*\] in agreement with the
Kronecker-Weber theorem.

One can obtain complete information about the maximal abelian quotient
of a group by considering its one-dimensional representations. The above
statement of the abelian class field theory may then be reformulated as
saying that one-dimensional representations of
\(\mathrm{Gal}(\overline{\mathbb{F}}/\mathbb{F})\) are essentially in
bijection with one-dimensional representations of the abelian group
\[A(\mathbb{F})^* = \mathrm{GL}(1,A(\mathbb{F}))\] which occur in the
space of functions on
\[A(\mathbb{F})^*/\mathbb{F}^* = \mathrm{GL}(1,A(\mathbb{F}))/\mathrm{GL}(1,\mathbb{F})\]
A marvelous insight of Robert Langlands was to conjecture that there
exists a similar description of \emph{\(n\)-dimensional representations}
of \(\mathrm{Gal}(\overline{\mathbb{F}}/\mathbb{F})\). Namely, he
proposed that those may be related to irreducible representations of the
group \(\mathrm{GL}(n,A(\mathbb{F}))\) which are \emph{automorphic},
that is those occurring in the space of functions on the quotient
\[\mathrm{GL}(n,A(\mathbb{F}))/\mathrm{GL}(n,\mathbb{F})\] This relation
is now called the \emph{Langlands correspondence}.

At this point one might ask a legitimate question: why is it important
to know what the \(n\)-dimensional representations of the Galois group
look like, and why is it useful to relate them to things like
automorphic representations? There are indeed many reasons for that.
First of all, it should be remarked that according to the Tannakian
philosophy, one can reconstruct a group from the category of its
finite-dimensional representations, equipped with the structure of the
tensor product. Therefore looking at \(n\)-dimensional representations
of the Galois group is a natural step towards understanding its
structure. But even more importantly, one finds many interesting
representations of Galois groups in ``nature''.

For example, the group
\(\mathrm{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})\) will act on the
geometric invariants (such as the etale cohomologies) of an algebraic
variety defined over \(\mathbb{Q}\). Thus, if we take an elliptic curve
\(E\) over \(\mathbb{Q}\), then we will obtain a two-dimensional Galois
representation on its first etale cohomology. This representation
contains a lot of important information about the curve \(E\), such as
the number of points of \(E\) over \(\mathbb{Z}/p\) for various primes
\(p\).

The point is that the Langlands correspondence is supposed to relate
\(n\)-dimensional Galois representations to automorphic representations
of \(\mathrm{GL}(n,A(\mathbb{F}))\) in such a way that the data on the
Galois side, such as the number of points of \(E\) over
\(\mathbb{Z}/p\), are translated into something more tractable on the
automorphic side, such as the coefficients in the \(q\)-expansion of the
modular forms that encapsulate automorphic representations of
\(\mathrm{GL}(2,A(\mathbb{Q}))\).

More precisely, one asks that under the Langlands correspondence certain
natural invariants attached to the Galois representations and to the
automorphic representations be matched. These invariants are the
\emph{Frobenius conjugacy classes} on the Galois side and the
\emph{Hecke eigenvalues} on the automorphic side.
\end{quote}

Since I haven't talked about Hecke operators yet, I'll stop here!

But, someday I should really explain the ideas behind the baby
``abelian'' case of the Langlands philosophy in simpler terms than
Frenkel does here. The abelian case goes back way before Langlands: it's
called ``class field theory''. And, it's all about exploiting this
analogy, which I last mentioned in \protect\hyperlink{week218}{``Week
218''}:

\begin{longtable}[]{@{}ll@{}}
\toprule
Number theory & Complex geometry\tabularnewline
\midrule
\endhead
Integers & Polynomial functions on the complex plane\tabularnewline
Rational numbers & Rational functions on the complex
plane\tabularnewline
Prime numbers & Points in the complex plane\tabularnewline
Integers \(\mod p^n\) & \((n-1)\)st-order Taylor series\tabularnewline
\(p\)-adic integers & Taylor series\tabularnewline
\(p\)-adic numbers & Laurent series\tabularnewline
Adeles for the rationals & Adeles for the rational
functions\tabularnewline
Fields & One-point spaces\tabularnewline
Homomorphisms to fields & Maps from one-point spaces\tabularnewline
Algebraic number fields & Branched covering spaces of the complex
plane\tabularnewline
\bottomrule
\end{longtable}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} I thank Fabien Besnard for some suggestions on how to
improve this Week's Finds. Bruce Smith, Noam Elkies, and Miguel
CarriÃ³n-Ã�lvarez had some things to say about the history of science. In
response to this comment of mine:

\begin{quote}
So, medieval Europe learned a lot of Greek science by reading Latin
translations of Arab translations of Syriac translations of second-hand
copies of the original Greek texts!
\end{quote}

my friend Bruce wrote:

\begin{quote}
This all seems so precarious a process that it makes me wonder whether
there was ten times as much valuable ancient math and philosophy as we
know about, most of which got \emph{completely} lost.
\end{quote}

Something like this almost certainly true.

Like Plato, Aristotle is believed to have written dialogs which
presented his ideas in a polished form. They were all lost. His extant
writings are just "lecture notesquot; for courses he taught!

Euripides wrote at least 75 plays, of which only 19 survive in their
full form. We have fragments or excerpts of some more. This isn't
philosophy or math, but it's still incredibly tragic (pardon the pun).

The mathematician Apollonius wrote a book on \emph{Tangencies} which is
lost. Only four of his eight books on \emph{Conics} survive in Greek.
Luckily, the first seven survive in Arabic.

The burning of the library of Alexandria is partially to blame for these
losses.

There's some good news, though:

Archimedes did more work on calculus than previously believed! We know
this now because a manuscript of his on mechanics that had been erased
and written over has recently been read with the help of a synchrotron
X-ray beam! This is a great example of modern science helping the
history of science.

This manuscript, called the Archimedes Palimpsest, also reveals for the
first time that he did work on combinatorics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Nova, ``The Archimedes Palimpsest'',
  \texttt{http://www.pbs.org/wgbh/nova/archimedes/palimpsest.html}
\item
  Heather Rock Woods, ``Placed under X-ray gaze, Archimedes manuscript
  yields secrets lost to time'', \emph{Stanford Report}, May 19, 2005,
  \texttt{http://news-service.stanford.edu/news/2005/may25/archimedes-052505.html}
\item
  Erica Klarreich, ``Glimpses of genius: mathematicians and historians
  piece together a puzzle that Archimedes pondered'', \emph{Science
  News} \textbf{165} (2004), 314. Also available at
  \texttt{http://www.sciencenews.org/articles/20040515/bob9.asp}
\end{enumerate}

Also: a team using ``multispectral imaging'' has recently been able to
read parts of a Roman library in the town of
\href{http://en.wikipedia.org/wiki/Herculaneum}{Herculaneum}. The books
in this library were ``roasted in place'' --- heavily carbonized ---
during the eruption of Vesuvius that destroyed
\href{http://en.wikipedia.org/wiki/Pompeii}{Pompeii}. By distinguishing
between different shades of black, researchers were able to reconstruct
the entire book \emph{On Piety} by one Philodemus:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Julie Walker, ``A library of mud and ashes'', \emph{BYU Magazine},
  Spring 2001, \texttt{http://magazine.byu.edu/?act=view\&a=43}
\end{enumerate}

I can't resist quoting a bit:

\begin{quote}
A sister city to Pompeii that was also buried in the volcanic eruption
of A.D. 79, Herculaneum was a seaside town that sat between Vesuvius'
fertile foot and the gleaming Bay of Naples. The collection of 2,000
carbonized Greek and Latin scrolls, primarily Epicurean philosophical
writings, was found in a luxurious Herculaneum house known as the Villa
of the Papyri, which was discovered in 1752.

The scrolls have endured a destructive path through history: first, rain
soaked the papyri, then a 570-degree swell of molasses-thick mud
engulfed the villa and charred the scrolls. They would remain buried
under 65 feet of mud for hundreds of years.

As a result, many of the fragile scroll cylinders are pressed into
trapezoidal columns; some are bowed and snaked into half-moons, others
folded into v-shapes.

After their discovery the mortality rate for the scrolls continued to
climb as would-be conservators struggled to find a way to unroll the
fragile manuscripts. Some scrolls were turned to mush when they were
painted with mercury; many were sliced down the middle and cut into
fragments. Early transcribers would copy the visible outer layer of a
scroll, then scrape it off and discard it to read the next layer.

Even today, scholars use metaphors of near impossibility to describe the
scroll unrolling process. It is like ``flattening out a potato chip''
without destroying it, or like ``separating (burned) layers of two-ply
tissue,'' says Jeffrey Fish of Baylor University.

The current unrolling methoddeveloped by a team of Norwegian
conservators involves applying a gelatin-based adhesive to the scroll's
outer surface. As the adhesive dries, the outer shell --- which bears
the text on its interior --- can be slowly peeled off. It can take days
to remove a single fragment, months or years to process a complete
scroll. Some 300 of the library's scrolls have yet to be unrolled, and
many more scrolls are in various stages of conservation and repair.

On the Herculaneum project, CPART researchers Steve and Susan Booras
conducted multispectral imaging (MSI) on 3,100 trays of papyrus
fragments and photographed them with a high-quality digital camera. The
images will be used to create a digital library that can be accessed by
scholars worldwide. Developed for NASA scientists, the imaging technique
has only recently been applied to the study of ancient texts. Rather
than focusing on light that is seen at wave lengths visible to the eye,
MSI uses filters to focus on nonvisible portions of the light spectrum.
In the nonvisible infrared spectrum, the black ink on a blackened scroll
can be clearly differentiated. In some cases clear, legible writings
have been found on fragments that researchers believed were completely
blank.
\end{quote}

The same team is now studying over 400,000 fragments of papyrus found in
an ancient garbage dump in the old Egyptian town of
\href{http://en.wikipedia.org/wiki/Oxyrhynchus}{Oxyrhynchus}. They've
pieced together new fragments of plays by Euripides, Sophocles and
Menander, lost lines from the poets Sappho, Hesiod, and Archilocus, and
most of a book by Hesiod:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Oxyrhynchus Online, ``multispectral imaging'',
  \texttt{http://www.papyrology.ox.ac.uk/multi/procedure.html}
\end{enumerate}

If you just want to look at a nice ``before and after'' movie of what
multispectral imaging can do, try this link.

Finally, in response to this remark of mine:

\begin{quote}
Amusingly, Arabic numerals were also called ``dust numerals'' since they
were used in calculations on an easily erasable ``dust board''. Their
use was described in the Liber Pulveris, or ``book of dust''.
\end{quote}

Noam Elkies wrote:

\begin{quote}
This is even more amusing than you may realize: the word ``abacus''
comes from a Greek word ``abax, abak-'' for ``counting board'', which
conjecturally might come from the Hebrew word (or a cognate word in
another semitic language) for ``dust''! See for instance:

\texttt{http://education.yahoo.com/reference/dictionary/entry/abacus}

So these ``dust numerals'' replaced a reckoning device whose name may
also originate with calculation a dust board\ldots{}
\end{quote}

Interesting! While ``calculus'' refers back to pebbles.

My erstwhile student Miguel CarriÃ³n-Ã�lvarez clarified the issue
somewhat:

\begin{quote}
The first abaci were drawn in the sand with sticks. The next step was to
carve grooves in a board (wooden, or clay: think cuneiform tablets) and
place beads in them. Pierced beads moving on beams (wood, later metal)
must have been a pretty recent development, relatively speaking.

Remember that Archimedes was studying geometry by drawing figures in the
sand when he was slain. If a sand abacus is the precursor of the modern
calculator, Archimedes' sandbox is the precursor of GUI geometry
software.

One of Archimedes' most fanciful works is ``The Sand Reckoner''. Here
the reckoner can be understood to be himself, as he is counting the
grains of sand which fit inside the sphere of fixed stars, but it can
also refer to a sand abacus (reckoner = calculator). In fact, romance
translations of this title that I've seen (French: L'arenaire, Spanish:
El arenario, etc.) unambiguously refer to an object, not a person. It is
easy to imagine Archimedes inventing his positional number system on a
sand abacus, and using the counting of grains of sand as an excuse to
write about it.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{We avail ourselves of what our predecessors may have said. That
they were or were not our coreligionists is of no account\ldots.
Whatever accords with the truth, we shall happily and gratefully accept,
and whatever conflicts, we shall scrupulously but generously point out.}

--- Averroes
\end{quote}
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Last week there was a big conference on quantum gravity at the Albert
Einstein Institute near Berlin:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Loops '05, \texttt{http://loops05.aei.mpg.de}
\end{enumerate}

The focus was loop quantum gravity and spin foams, but there were also
talks about other approaches, so it was much bigger than last year's
get-together in Marseille. Last year about 100 people attended; this
time about 160 did! It was strange seeing old pals like Ashtekar,
Lewandowski, Loll, Rovelli and Smolin almost lost in a sea of new faces.
But, it was great to talk to everyone, both old and new.

I'll say more about this conference, but first let's talk about
\(\gamma\) ray bursters, a black hole without a host galaxy, the newly
discovered moon of planet Xena, and lots of other transneptunian
objects.

Actually, just for fun, let's start with this science fiction novel I
picked up in Heathrow en route to Berlin:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Charles Stross, \emph{Accelerando}, Ace Books, New York. Also
  available at \texttt{http://www.accelerando.org/book/}
\end{enumerate}

This is one of the few tales I've read that does a good job of fleshing
out Verner Vinge's ``Singularity'' scenario, where the accelerating
development of technology soars past human comprehension and undergoes a
phase transition to a thoroughly different world. This is a real
possibility, and it's been discussed a lot:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Wikipedia, ``Technological singularity'',
  \texttt{http://en.wikipedia.org/wiki/Technological\_singularity}

  Ray Kurzweil, ``The Singularity'',
  \texttt{http://www.kurzweilai.net/meme/frame.html?m=1}

  Anders Sandberg, ``The Singularity'',
  \texttt{http://www.aleph.se/Trans/Global/Singularity/}
\end{enumerate}

However, it's not an easy subject for fiction --- at least not for mere
human readers! Stross makes it gripping: sometimes goofy, sometimes
thrilling, and sometimes rather sad. Characters include a robot cat with
ever-growing powers and some space-faring uploaded lobsters.

The hero, Manfred Macx, starts out as a freeware developer, futurist and
all-purpose wheeler-dealer. Here's a scene from the beginning of the
book, before all hell breaks loose:

\begin{quote}
Manfred's mood of dynamic optimism is gone, broken by the knowledge that
his vivisectionist stalker has followed him to Amsterdam to say nothing
of Pamela, his dominatrix, source of so much yearning and so many
morning-after weals. He slips his glasses on, takes the universe off
hold, and tells it to take him for a long walk while he catches up on
the latest on the tensor-mode gravitational waves in the cosmic
background radiation (which, it is theorized, may be waste heat
generated by irreversible computational processes back during the
inflationary epoch; the present-day universe being merely the data left
behind by a really huge calculation). And then there's the weirdness
beyond M31: according to the more conservative cosmologists, an alien
superpower --- maybe a collective of Kardashev Type Three
galaxy-spanning civilizations --- is running a timing channel attack on
the computational ultrastructure of space-time itself, trying to break
through to whatever's underneath. The tofu-Alzheimer's link can wait.
\end{quote}

An idea a minute --- and the book is free online: what more could you
want?

But right now, the big news in astronomy is \emph{not} about a type III
civilization lurking beyond M31 (otherwise known as the Andromeda
Galaxy). It's some evidence that short \(\gamma\) ray bursts are caused
by collisions involving neutron stars and black holes!

\(\gamma\) ray bursts are among the most energetic events known in the
heavens. They happen in galaxies throughout the universe; we see about
one a day, and each releases somewhere between \(10^{45}\) and
\(10^{47}\) joules of energy. The larger figure is what you'd get by
turning the entire mass of the Sun into energy.

There could be several kinds of \(\gamma\) ray bursts, but there seem to
be at least two: short and long. Short bursts last between 40
milliseconds and 10 seconds --- imagine the whole Sun turning into
energy that fast! Long ones last between 10 and 100 seconds. The two
kinds seem to be qualitatively different: for example, the short ones
consist of higher-frequency \(\gamma\) rays. The big news is that they
happen in different kinds of galaxies!

In \protect\hyperlink{week204}{``Week 204''}, I described how people
caught a long \(\gamma\) ray burst in the act in March 2003. A
\(\gamma\) ray detector aboard a satellite relayed information to
telescopes in Australia and Japan, allowing them to spot a visible
afterglow right after the burst. The details of this glow fit the
``hypernova'' theory of long \(\gamma\) ray bursts.

The hypernova theory says that when a star more than 25 times heavier
than the Sun runs out of fuel and collapses, it forms a black hole that
sucks down the star's iron core before a normal supernova explosion can
occur. In just a few seconds, about a solar mass of iron spirals into
the black hole, forming a pancake-shaped disk as it goes down. In the
process, this disk becomes incredibly hot and shoots out jets of
radiation in the transverse directions. As they plow through the star's
outer layers, these jets create beams of \(\gamma\) rays.

The short bursts have been harder to catch. By the time a telescope on
Earth could be aimed at the spot where the \(\gamma\) rays were seen, no
afterglow could be seen!

So, in October 2004 NASA launched Swift: a \(\gamma\)-ray detecting
satellite equipped with an X-ray telescope and an ultraviolet/optical
telescope that can respond quickly whenever a burst is seen:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Official NASA Swift homepage,
  \texttt{http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html}
\item
  Gamma-ray burst real-time sky map, \texttt{http://grb.sonoma.edu/}
\end{enumerate}

On May 9th, 2005, Swift detected a short burst and caught 11 photons of
the burst's X-ray afterglow. Another short burst detected by HETE-II had
its X-ray afterglow caught by the Chandra X-ray satellite. Analysis of
these and two more short bursts has convinced some scientists that
they're caused by collisions between neutron stars and/or black holes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  D. B. Fox et al, ``The afterglow of GRB050709 and the nature of the
  short-hard \(\gamma\)-ray bursts'', \emph{Nature} \textbf{437}
  (October 2005), 849--850. Also available at
  \texttt{http://www.nasa.gov/pdf/135397main\_nature\_fox\_final.pdf}
\end{enumerate}

Despite what the news media are saying, I don't see that this paper
``proves'' the short \(\gamma\)-ray bursts are caused by such
collisions. Instead, I see some good pieces of evidence.

The faintness of the afterglows suggests some mechanism other than a
hypernova. But as far as I can tell, the best evidence is that short
\(\gamma\) ray bursts tend to happen near the edges of old galaxies,
while the long ones happen near the centers of young galaxies.

The center of a young galaxy is where you'd expect to find a really huge
Wolf-Rayet star, the sort that dies in a hypernova. The edge of an old
galaxy is where you'd expect to see black holes and neutron stars
collide. Why? Because such collisions can only happen long after stars
are first formed. First you need an orbiting pair of giant stars to go
supernova and collapse into neutron stars and/or black holes. Then you
need plenty more time for this pair to spiral down thanks to
gravitational radiation, and eventually collide. By then the pair may
sail off to the edge of the galaxy, thanks to the ``kick'' delivered by
the supernova explosions.

I hope astronomers can clinch the case for the collision theory of short
\(\gamma\) ray bursts. After all, these collisions involving neutron
stars and black holes are precisely what gravitational wave detectors
like LIGO and VIRGO are hoping to see! If we know to look for
gravitational waves precisely when we see short \(\gamma\) ray bursts,
and we know where they're coming from, we'll have a better chance of
finding them.

(Of course, we'll also have a better chance of \emph{fooling} ourselves
into \emph{thinking} we found them, until we do some double-blind
tests.)

By the way, LIGO is already analysing data to look for gravitational
waves. I talked about this in \protect\hyperlink{week189}{``Week 189''},
but here's something new: now you can help them by running a cool
screensaver called Einstein@Home on your computer! Check it out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Einstein@Home, \texttt{http://einstein.phys.uwm.edu/}
\end{enumerate}

Speaking of black holes, last month the Hubble Space Telescope and the
Very Large Telescope in Chile detected a quasar that seems to have no
host galaxy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  European Southern Observatory, ``Black hole in search of a home'',
  \texttt{http://www.eso.org/outreach/press-rel/pr-2005/pr-23-05.html}

  HubbleSite, ``Quasar without host galaxy compared with normal
  quasar'',
  \texttt{http://hubblesite.org/newscenter/newsdesk/archive/releases/2005/13/image/a}
\end{enumerate}

Quasars are thought to be super massive black holes; they're usually
found in the centers of galaxies, where they devour stars and shoot out
enormously powerful jets of radiation. However, the quasar HE0450-2958
is surrounded only by a blob of ionized gas. Nearby, a wildly disturbed
spiral galaxy can be seen.

Compare HE0450-2958 (at left) with a normal quasar (at right):
\[\href{http://hubblesite.org/newscenter/newsdesk/archive/releases/2005/13/image/a}{\includegraphics[max width=0.65\linewidth]{../images/HE0450-2958.jpg}}\]
The quasar HE0450-2958 is in the middle of the left-hand picture; the
disturbed galaxy is above and a completely irrelevant foreground star is
below. For more details on what this image means, click on it.

Did this quasar begin life in the middle of a galaxy and then get kicked
out when that galaxy collided with something containing a super-massive
black hole? What could that something be?

Puzzles, puzzles, in the sky\ldots.

Closer to home, astronomers at the Keck Observatory in Hawaii have
discovered that planet Xena has a moon!
\[\href{http://www2.keck.hawaii.edu/optics/staff/mvandam/gabrielle}{\includegraphics[max width=0.65\linewidth]{../images/xena.jpg}}\]
They nicknamed it Gabrielle, after this famous TV character's sidekick:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Michael E. Brown, ``The moon of the 10th planet'',
  \texttt{http://www.gps.caltech.edu/\textasciitilde{}mbrown/planetlila/moon/index.html}
\end{enumerate}

If you hadn't heard about planet Xena, or you don't like the idea of
naming a planet after a TV character --- even a ``warrior princess'' -
don't get worked up just yet. Xena's official name is currently 2003
UB\textsubscript{313}, and though she's larger than Pluto, the
International Astronomical Union has not decided whether she'll
officially be considered a planet.

If Xena becomes a planet, she'll probably be renamed Persephone, after
the reluctant queen of the underworld in Greek mythology. But, she may
have to settle for the status of a mere ``transneptunian object'', like
Quaoar and Sedna. Indeed, if Pluto had been discovered more recently,
folks probably wouldn't have called him a planet either.

If you haven't even heard of Quaoar and Sedna\ldots{} well, you must be
too absorbed by mundane concerns to keep track of the burgeoning
population of our Solar System. But it's not too late to mend your ways!
Impress your friends by casually dropping some of this jargon:

\begin{itemize}
\item
  \href{http://en.wikipedia.org/wiki/Trans-Neptunian_object}{\textbf{Transneptunian
  object}} --- any object that orbits the Sun at an average distance
  greater than that of Neptune. Neptune is about 30 AU from the Sun,
  meaning it's 30 times farther from the Sun than we are. Transneptunian
  objects can be roughly divided into three kinds: Kuiper belt objects,
  scattered disc objects, and Oort cloud objects.
  \[\href{http://en.wikipedia.org/wiki/Kuiper_belt}{\includegraphics[max width=0.65\linewidth]{../images/kuiper_oort.jpg}}\]

  \begin{itemize}
  \item
    \href{http://en.wikipedia.org/wiki/Kuiper_belt}{\textbf{Kuiper belt
    object}} --- any object whose orbit lies in the Kuiper belt. This is
    the region in the ecliptic (the plane of the planets' orbits)
    between 30 and 50 AU from the Sun. There are a bunch of planetoids
    in this belt. Beyond 50 AU there seems to be a sharp dropoff in
    their density. Three main kinds of Kuiper belt objects have been
    found so far: cubewanos, plutinos and twotinos.

    \begin{itemize}
    \item
      \href{http://en.wikipedia.org/wiki/Cubewano}{\textbf{Cubewano}}
      --- A cubewano is a Kuiper belt object whose orbit is not in
      resonance with any of the outer planets. The curious name comes
      from ``QB1'', since the first example was named
      \href{http://en.wikipedia.org/wiki/\%2815760\%29_1992_QB1}{1992
      QB\_1}.

      One of the biggest cubewanos is
      \href{http://en.wikipedia.org/wiki/Quaoar}{Quaoar}, with a
      diameter of about 1200 kilometers. This is about half the diameter
      of Pluto, or a third the size of the Moon: much bigger than
      anything in the asteroid belt!
      \[\href{http://en.wikipedia.org/wiki/90377_Sedna}{\includegraphics[max width=0.65\linewidth]{../images/sedna.jpg}}\]
      Folks believe Quaoar is a mixture of ice and rock. It's very dark
      in color, but last year crystalline water ice was detected on its
      surface, using infrared spectroscopy. This came as a surprise,
      because cosmic rays and solar wind should convert exposed ice
      crystals to the amorphous form of ice within about 10 million
      years. Could there have been liquid water volcanos active on
      Quaoar this recently?? Or maybe meteor impacts melt amorphous ice
      and then it crystallizes?

      Other big cubewanos include
      \href{http://en.wikipedia.org/wiki/\%2819521\%29_Chaos}{Chaos},
      \href{http://en.wikipedia.org/wiki/20000_Varuna}{Varuna}, and
      \href{http://en.wikipedia.org/wiki/53311_Deucalion}{Deucalion}.
      2003 EL61 and 2005 FY9 are even bigger, but they haven't got nice
      names yet.
    \item
      \href{http://en.wikipedia.org/wiki/Plutino}{\textbf{Plutino}} ---
      A plutino is a Kuiper belt object whose orbit is in 3:2 resonance
      with Neptune: they go around the Sun twice while Neptune goes
      around three times. About a quarter of Kuiper belt objects are
      plutinos.

      The most famous plutino is
      \href{http://en.wikipedia.org/wiki/Pluto}{Pluto} itself, though
      some pedants argue that Pluto can't be a ``little Pluto''. Pluto
      is quite different than anything else we call a planet: it has an
      eccentric orbit that ranges between 30 and 50 AU, and its orbit is
      tilted 17 degrees to the ecliptic. Its surface is light brown,
      consisting mainly of frozen nitrogen and carbon monoxide. When it
      comes near the sun, as it recently did, it also gets a thin
      atmosphere made of these gases.

      Other plutinos include
      \href{http://en.wikipedia.org/wiki/28978_Ixion}{Ixion},
      \href{http://en.wikipedia.org/wiki/90482_Orcus}{Orcus},
      \href{http://en.wikipedia.org/wiki/38083_Rhadamanthus}{Rhadamanthus},
      and Pluto's moon
      \href{http://en.wikipedia.org/wiki/Charon_\%28moon\%29}{Charon}.
      If you know Greek mythology, you'll know these guys are all named
      after deities of the underworld.
    \item
      \href{http://en.wikipedia.org/wiki/Twotino}{\textbf{Twotino}} ---
      A twotino is a Kuiper belt object whose orbit is in \(2:1\)
      resonance with Neptune. These are rare compared to plutinos, and
      they're smaller, so they're stuck with boring names like 1996
      TR66. There are also a couple of Kuiper belt objects in \(4:3\)
      and \(5:3\) resonances with Neptune.
    \end{itemize}
  \item
    \href{http://en.wikipedia.org/wiki/Scattered_disc}{\textbf{Scattered
    disc object}} --- A scattered disc object is a Kuiper belt object
    that has been perturbed by interactions with Neptune into an orbit
    that is more eccentric or more tilted from the ecliptic.

    \href{http://en.wikipedia.org/wiki/2003_UB313}{Xena} (or more
    properly 2003 UB\textsubscript{313}) is a highly eccentric scattered
    disc object whose orbit carries it between 40 to 100 AU from the
    sun. Its orbit is inclined a whopping 44 degrees, and it's locked in
    a complicated \(17:5\) resonance with Neptune. It's probably larger
    than Pluto --- a reasonable rough guess is 2900 kilometers in
    diameter, as compared with 2400 for Pluto. Its surface has methane
    ice, and we now know it has a moon.

    It's quite possible that scattered disc objects are related to
    \href{http://en.wikipedia.org/wiki/Centaur_\%28planetoid\%29}{centaurs},
    which are planetoids orbiting the Sun between Jupiter and Neptune.
    The centaurs may be Kuiper belt objects that got knocked towards the
    Sun instead of away from it! Centaurs have chaotic orbits and will
    probably either collide with something or be ejected from the Solar
    System.
  \item
    \href{http://en.wikipedia.org/wiki/Oort_cloud}{\textbf{Oort cloud
    object}} --- the Oort cloud is a hypothesized spherical cloud of
    comets, perhaps between 50,000 and 100,000 AU from the Sun. The idea
    is this cloud consists of leftovers from the original nebula that
    collapsed to form our Solar system, and comets come from this region
    when they are perturbed from their orbits by the gravity of other
    stars.

    Nobody has seen a certified Oort cloud object. The best candidate so
    far is \href{http://en.wikipedia.org/wiki/90377_Sedna}{Sedna}, an
    object roughly 1500 kilometers in diameter with a wildly eccentric
    orbit taking it between 80 to 930 AU from the Sun.
    \[\href{http://en.wikipedia.org/wiki/90377_Sedna}{\includegraphics[max width=0.65\linewidth]{../images/sedna_orbit.jpg}}\]
    Sedna was discovered in 2004 when it was 90 AU from the Sun. It's
    redder than Mars, its temperature never rises above 23 Kelvin, and
    its year lasts 11,250 years. It's the farthest known object in our
    Solar System, but still much closer than the Oort cloud was supposed
    to be. Maybe it's a drastic example of a scattered disc object,
    maybe it's part of an ``inner Oort cloud''\ldots{} or maybe the Oort
    cloud isn't as far out as people thought.

    The closest people have come to seeing the Oort cloud is seeing a
    ``Bok globule'':
    \[\href{http://www.eso.org/outreach/press-rel/pr-2001/pr-01-01.html}{\includegraphics[max width=0.65\linewidth]{../images/bok_globule.jpg}}\]
    A Bok globule is a cloud of dust and gas that's collapsing to form a
    star. This one is about 12,500 AU across. The scientists who
    observed it say it's about the size of the Oort cloud. This just
    goes to show how little we know about the Oort cloud!
  \end{itemize}
\end{itemize}

For a great introduction to the Kuiper belt and related topics, try
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  David C. Jewitt, ``Kuiper belt'',
  \texttt{http://www.ifa.hawaii.edu/faculty/jewitt/kb.html}
\end{enumerate}

For transneptunian objects in general, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  William Robert Johnston, ``Transneptunian objects'',
  \texttt{http://www.johnstonsarchive.net/astro/tnos.html}
\end{enumerate}

Also check out this newsletter:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  \emph{Distant EKOs: the Kuiper Belt Electronic Newsletter},
  \texttt{http://www.boulder.swri.edu/ekonews/}
\end{enumerate}

Quaoar was discovered in 2002 by Chad Trujillo and Mike Brown of
Caltech:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Chad Trujillo, ``Quaoar'',
  \texttt{http://www.gps.caltech.edu/\textasciitilde{}chad/quaoar/}
\end{enumerate}

For evidence of crystalline water ice on Quaoar, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  David C. Jewitt and Jane Luu, ``Crystalline water ice on the Kuiper
  belt object (50000) Quaoar'', \emph{Nature} \textbf{432} (2004),
  731--733. Also available at
  \texttt{http://www.ifa.hawaii.edu/faculty/jewitt/quaoar.html}
\end{enumerate}

Xena was discovered in 2003 by Trujillo, Brown and a colleague of theirs
at Yale University:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Michael E. Brown, Chad A. Trujillo and David L. Rabinowitz,
  ``Discovery of a planetary-sized object in the scattered Kuiper
  belt'', submitted to \emph{ApJ Letters}, available at
  \texttt{http://www.gps.caltech.edu/\%7Embrown/papers/ps/xena.pdf}
\end{enumerate}

Brown has a nice webpage about Xena and Gabrielle:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Michael E. Brown, ``The discovery of UB313, the 10th planet'',
  \texttt{http://www.gps.caltech.edu/\textasciitilde{}mbrown/planetlila/}
\end{enumerate}

The same gang of three also discovered Sedna in 2003:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Michael E. Brown, Chad A. Trujillo and David L. Rabinowitz,
  ``Discovery of a candidate inner Oort cloud planetoid'', to appear in
  \emph{ApJ Letters}, available at
  \texttt{http://www.gps.caltech.edu/\%7Embrown/papers/ps/sedna.pdf}
\end{enumerate}

\ldots{} and Brown has a fun Sedna webpage too:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Michael E. Brown, ``Sedna (2003 VB12)'',
  \texttt{http://www.gps.caltech.edu/\textasciitilde{}mbrown/sedna/}
\end{enumerate}

How all these transneptunian objects got where they are is a wonderful
puzzle in celestial mechanics, but you can read more about that in the
references above, especially Jewitt's Kuiper belt webpage.

Now I want to talk about Loops '05!

Instead of trying to review all the talks --- a hopeless task, since
there were 86 --- I'll just mention the \emph{two} strands of work I
find most exciting.

First, there's new evidence that a quantum theory of pure gravity
(meaning gravity without matter) makes sense in \(4\)-dimensional
spacetime.

To understand why this is exciting, you have to realize that in some
quarters, the conventional wisdom says a quantum theory of pure gravity
can't possibly make sense, except as a crude approximation at large
distance scales, because this theory is ``perturbatively
nonrenormalizable''.

Very roughly, this means that as we zoom in and look at the theory at
shorter and shorter distance scales, it looks less and less like a
``free field theory'' where gravitons zip about without interacting.
Instead, the interactions get stronger and more complicated!

So, in the jargon of the trade, we don't get a ``Gaussian ultraviolet
fixed point''.

Huh?

Well, roughly, an ``ultraviolet fixed point'' is a quantum field theory
that keeps looking the same as you keep viewing it on shorter and
shorter distance scales. A ``Gaussian'' ultraviolet fixed point is one
that's also a free quantum field theory: one where particles don't
interact.

If quantum gravity approached a Gaussian ultraviolet fixed point as we
zoomed in, we could calculate what gravitons do at arbitrarily high
energies (at least perturbatively, as power series in Newton's constant
--- no guarantee that these series converge). Particle physicists would
then be happy and say the theory was ``perturbatively renormalizable''.

But, it's not.

The conventional wisdom concludes that to save quantum gravity, we must
include matter of precisely the right sort to \emph{make} it
perturbatively renormalizable. This is the quest that led people first
to supergravity and ultimately to superstring theory --- see
\protect\hyperlink{week195}{``Week 195''} for more of this story.

But, as far back as 1979, the particle physicist Weinberg raised the
possibility that pure quantum gravity is ``nonperturbatively
renormalizable'', or ``asymptotically safe''. This means that as we zoom
in and look at the theory at shorter and shorter distance scales, it
approaches some theory \emph{other than} that of noninteracting
gravitons.

In other words, Weinberg was suggesting that pure quantum gravity
approaches a non-obvious ultraviolet fixed point --- possibly a
``non-Gaussian'' one.

The big news is that this seems to be true!

Even cooler, in this theory spacetime seems to act
\emph{\(2\)-dimensional} at very short distance scales.

This idea has been brewing for a long time --- I talked about it
extensively back in \protect\hyperlink{week139}{``Week 139''}. But now
there's more solid evidence for it, coming from two quite different
approaches.

First, people doing numerical quantum gravity in the ``causal dynamical
triangulations'' approach are seeing this effect in their computer
calculations. This is what Renate Loll explained at Loops '05. The best
place to read the details is here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Jan AmbjÃ¸rn, J. Jurkiewicz and Renate Loll, ``Reconstructing the
  universe'', \emph{Phys. Rev.} \textbf{D72} (2005) 064014. Also
  available as
  \href{https://arxiv.org/abs/hep-th/0505154}{\texttt{hep-th/0505154}}.
\end{enumerate}

but if you need something less technical, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  Jan AmbjÃ¸rn, J. Jurkiewicz and Renate Loll, ``The universe from
  scratch'', available as
  \href{https://arxiv.org/abs/hep-th/0509010}{\texttt{hep-th/0509010}}.
\end{enumerate}

The titles of their papers are a bit grandiose, but their calculations
are solid stuff --- truly magnificent. I described their basic strategy
in my report on the Marseille conference in
\href{week206.html}{week206}. So, I won't explain that again. I'll just
mention their big new result: in pure quantum gravity, spacetime has a
spectral dimension of \(4.02\pm0.1\) on large distance scales, but
\(1.80\pm0.25\) in the limit of very short distance scales!

Zounds! What does that mean?

The ``spectral dimension'' of a spacetime is the dimension as measured
by watching heat spread out on this spacetime: the short-time behavior
of the heat equation probes the spacetime at short distance scales,
while its large-time behavior probes large distance scales. Spectral
dimensions don't need to be integers --- for fractals they're typically
not. But, Loll and company believe they're seeing spacetimes that are
\emph{exactly} \(2\)-dimensional in the limit of very small distance
scales, \emph{exactly} \(4\)-dimensional in the limit of very large
scales, with a continuous change in dimension in between. The error bars
in the above figures come from doing Monte Carlo simulations. They're
just using ordinary computers, not supercomputers. So, with more work
one could shrink their error bars and test their result.

My main worry about their work is that it uses a fixed slicing of
spactime by timelike slices. So, there's a danger that their procedure
breaks Lorentz-invariance, even in the continuum limit which they are
attempting to compute. I would like to find a way around this problem!

Luckily, some other people are getting similar results from a second
procedure that definitely does \emph{not} break Lorentz invariance:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\tightlist
\item
  Oliver Lauscher and Martin Reuter, ``Fractal spacetime structure in
  asymptotically safe gravity'', available as
  \href{https://arxiv.org/abs/hep-th/0508202}{\texttt{hep-th/0508202}}.
\end{enumerate}

Reuter spoke about all this work at Loops '05. The idea is to
investigate Weinberg's original idea in excruciatingly precise detail
using ``renormalization group flow'' ideas. The above paper is a review
of lots of others, and you need to read a bunch to get what's really
going on. The upshot, however, is that they find evidence for a
non-Gaussian ultraviolet fixed point in pure quantum gravity. Moreover,
the spectral dimension of spacetime approaches 2 in the limit of very
short distance scales.

Suppose this is all true. What does it mean?

Nobody knows yet; there are lots of attitudes one could take.

AmbjÃ¸rn, Jurkiewicz and Loll could probably just plunge ahead and use
computers to calculate lots of things about quantum gravity. (Right now
they want to test their results in lots of ways.) One good thing would
be to include matter of various sorts and see how it affects the
conclusions.

Similarly, Lauscher and Reuter could just plunge ahead and compute, if
they wanted.

This is excellent. But personally, I'd like to find a beautiful theory
in which spacetime is \(2\)-dimensional at short distance scales, which
reduces to general relativity at large scales. In other words, to redo
all these calculations ``from the bottom up''.

Unsurprisingly, I hope this beautiful theory is a spin foam model, since
spin foams are \(2\)-dimensional and I like them a lot. I presented some
rough ideas on how one might invent such a model:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\tightlist
\item
  John Baez, ``Towards a spin foam model of quantum gravity'', talk at
  \emph{Loops '05}, available at
  \texttt{http://math.ucr.edu/home/baez/loops05/}
\end{enumerate}

But, these ideas are very tentative and only time will tell if they
amount to anything. What's more important is that pure quantum gravity
seems to exist --- as a theory, that is --- and people seem to be
learning actual facts about it, instead of just arguing endlessly about
it. That's progress!

The second most exciting thing at Loops '05, in my biased opinion, was
the work of John Barrett, Laurent Freidel, Karim Noui and others on
``matter without matter'' in 3d quantum gravity. Simply by carving a
Feynman-diagram-shaped hole in 3d spacetime and doing quantum gravity on
the spacetime that's left over, you get a good theory of quantum gravity
coupled to matter! You can even take the limit as Newton's gravitational
constant goes to zero and get ordinary quantum field theory on flat
spacetime!

Check these out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\item
  John Barrett, ``Feynman diagams coupled to three-dimensional quantum
  gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/0502048}{\texttt{gr-qc/0502048}}.

  John Barrett, ``Feynman loops and three-dimensional quantum gravity'',
  \emph{Mod. Phys. Lett.} \textbf{A20} (2005) 1271. Also available as
  \href{https://arxiv.org/abs/gr-qc/0412107}{\texttt{gr-qc/0412107}}.
\item
  Laurent Freidel and David Louapre, ``Ponzano-Regge model revisited I:
  gauge fixing, observables and interacting spinning particles'',
  \emph{Class. Quant. Grav.} \textbf{21} (2004) 5685--5726. Also
  available as
  \href{https://arxiv.org/abs/hep-th/0401076}{\texttt{hep-th/0401076}}.

  Laurent Freidel and David Louapre, ``Ponzano-Regge model revisited II:
  equivalence with Chern-Simons'', available as
  \href{https://arxiv.org/abs/gr-qc/0410141}{\texttt{gr-qc/0410141}}

  Laurent Freidel and Etera R. Livine, ``Ponzano-Regge model revisited
  III: Feynman diagrams and effective field theory'', available as
  \href{https://arxiv.org/abs/hep-th/0502106}{\texttt{hep-th/0502106}}.
\item
  Laurent Freidel, Daniele Oriti, and James Ryan, ``A group field theory
  for 3d quantum gravity coupled to a scalar field'', available as
  \href{https://arxiv.org/abs/gr-qc/0506067}{\texttt{gr-qc/0506067}}.
\item
  Karin Noui and Alejandro Perez, ``Three dimensional loop quantum
  gravity: coupling to point particles'', available as
  \href{https://arxiv.org/abs/gr-qc/0402111}{\texttt{gr-qc/0402111}}.
\end{enumerate}

This is mindblowingly beautiful, especially because lots of it is
already mathematically rigorous, and we can easily make more so. It's
even related to \(n\)-categories: my student Jeffrey Morton presented a
poster on this aspect.

Together with my student Derek Wise, Jeffrey Morton and I plan to have a
lot of fun studying this stuff. So, I won't talk about it more now ---
I'll probably get around to saying more someday, especially about how
the whole story generalizes to 4 dimensions.

There's a lot more to say about Loops '05, but this will have to do. In
a while, a bunch of the talks should be visible on the conference
homepage\ldots. that should give you a better idea of what happened.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum}: Here are some comments on this Week's Finds by Gene
Partlow, Phillip Helbig and Robert Helling, and my replies --- as well
as a replies by Jonathan Thornburg and Arnold Neumaier.

Gene Partlow writes:

\begin{quote}
In a recent John Baez post he mentions discovery of probably the first
known quasar found without a host galaxy. He says:

\begin{quote}
Did this quasar begin life in this galaxy and then get kicked out when
the galaxy collided with something containing a super-massive black
hole?
\end{quote}

I suggest that a fairly ordinary explanation may be that the nearby
``wildly disturbed'' galaxy may have contained several supermassive
black holes which interacted via a gravitational slingshot scenario.
This would be like a larger version of the effect where smaller mass
stars can be flung out of globular clusters when encountering larger
mass stars near the cluster center.
\end{quote}

Sounds like a possibility worth exploring. I'm no expert, so I can't
tell how likely this is. I agree that a collision with some other object
containing a super-massive black hole sounds a little odd, given that
this object --- most plausibly another galaxy --- has \emph{not been
seen}. I wouldn't have ventured such a guess myself. But, it's mentioned
on the European Southern Observatory webpage I cite above. To quote:

\begin{quote}
The absence of a massive host galaxy, combined with the existence of the
blob and the star-forming galaxy, lead us to believe that we have
uncovered a really exotic quasar, says team member Frederic Courbin
(Ecole Polytechnique Federale de Lausanne, Switzerland). ``There is
little doubt that a burst in the formation of stars in the companion
galaxy and the quasar itself have been ignited by a collision that must
haven taken place about 100 million years ago. What happened to the
putative quasar host remains unknown.''

HE0450-2958 constitutes a challenging case of interpretation. The
astronomers propose several possible explanations, that will need to be
further investigated and confronted. Has the host galaxy been completely
disrupted as a result of the collision? It is hard to imagine how that
could happen. Has an isolated black hole captured gas while crossing the
disc of a spiral galaxy? This would require very special conditions and
would probably not have caused such a tremendous perturbation as is
observed in the neighbouring galaxy.

Another intriguing hypothesis is that the galaxy harbouring the black
hole was almost exclusively made of dark matter. ``Whatever the solution
of this riddle, the strong observable fact is that the quasar host
galaxy, if any, is much too faint'', says team member Knud Jahnke
(Astrophysikalisches Institut Potsdam, Germany).
\end{quote}

Phillip Helbig writes:

\begin{quote}
John Baez writes:

\begin{quote}
Pluto is quite different than anything else we call a planet: it has an
eccentric orbit that ranges between 30 and 50 AU, and its orbit is
tilted 17 degrees to the ecliptic.
\end{quote}

Also, for a period of several years during each orbit, it is closer to
the Sun than Neptune ever is. Until relatively recently, in fact, it was
in this phase and Neptune was farther from the Sun than Pluto.
\end{quote}

Yeah! The US may still send a mission to Pluto before its atmosphere
freezes, despite delays and indecision. The ``Pluto Express'' satellite
was scheduled for launch in December 2004, but in 2000 NASA ordered a
stop-work order on the project, due to lack of money and rising cost
estimates. In 2003, Congress gave NASA money to proceed with the
project:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\tightlist
\item
  The Planetary Society, ``Pluto and Europa Campaign Page'',
  \texttt{http://www.planetary.org/html/UPDATES/Pluto/pluto\_europa\_action.html}
\end{enumerate}

and I guess it's now called ``New Horizons'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{27}
\tightlist
\item
  ``New Horizons: NASA's Pluto-Kuiper Belt Mission'',
  \texttt{http://pluto.jhuapl.edu/}
\end{enumerate}

This webpage gives a timetable of:

\begin{itemize}
\tightlist
\item
  launch in January 2005
\item
  slingshot off Jupiter in February 2007
\item
  arrival at Pluto and Charon in July 2015
\item
  exploration of Kuiper belt during 2016-2020
\end{itemize}

I wonder if they have any plans to study the Pioneer anomaly?

Robert Helling writes:

\begin{quote}
John Baez wrote:

\begin{quote}
\begin{itemize}
\tightlist
\item
  \textbf{Twotino} --- A twotino is a Kuiper belt object whose orbit is
  in \(2:1\) resonance with Neptune. These are rare compared to
  plutinos, and they're smaller, so they're stuck with boring names like
  1996 TR66. There are also a couple of Kuiper belt objects in \(4:3\)
  and \(5:3\) resonances with Neptune.
\end{itemize}
\end{quote}

Is there an easy way to see why these resonance orbits come about? Why
do three body systems with a large central object, an intermediate
planet and a small probe happen to get the probe in resonance with the
planet? Is this just ``frequency locking happens in chaotic systems'' or
is there an easy but more quantitative way to understand this?
\end{quote}

I'm shamefully ignorant of this, so ten minutes' research on the web was
able to double my knowledge. I got ahold of this paper online:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{28}
\tightlist
\item
  B. Garfinkel, ``On resonance in celestial mechanics: a survey'',
  \emph{Celestial Mech.} \textbf{28} (1982), 275--290, also available at
  \texttt{http://adsabs.harvard.edu/cgi-bin/nph-bib\_query?bibcode=1982CeMec..28..275G}
\end{enumerate}

and while not easy to understand --- I guess there's a huge body of work
on this subject --- it uses Hamiltonian perturbation theory and
continued fractions to study resonance, and talks about a difference
between ``shallow'' and ``deep'' resonances.

The orbits of Jupiter and Saturn are almost in \(5:2\) resonance, but
this is a ``shallow'' resonance, and Saturn wiggles back and forth
around this resonance with a period of about 880 years --- an effect
called the ``Great Inequality''. The first person to study this was
Laplace. I read elsewhere that:

\begin{quote}
The dynamics of the Sun-Jupiter-Saturn system was recognized as
problematic from the beginnings of perturbation theory. The problems are
due to the so-called Great Inequality (GI), which is the Jupiter-Saturn
\(2:5\) mean-motion near-commensurability.
\end{quote}

This is from:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{29}
\tightlist
\item
  F. Varadi, M. Ghil, and W. M. Kaula, ``The great inequality in a
  planetary Hamiltonian theory'', available as
  \href{http://arxiv.org/abs/chao-dyn/9311011}{\texttt{chao-dyn/9311011}}.
\end{enumerate}

This shallow \(5:2\) resonance is related to the continued fraction
\[\frac{1}{2+\frac{1}{2+\frac{1}{14+\frac{1}{2+\ldots}}}}\] which is
close to \(2/5\).

The Pluto-Neptune \(3:2\) resonance, on the other hand, is a ``deep
resonance'' and related to the continued fraction
\[\frac{1}{2-\frac{1}{2+\frac{1}{10+\ldots}}}\] which starts out close
to \(2/3\).

I wish I understood the connection between continued fractions and
dynamical systems better! I know it gives rise to the role of the Golden
Ratio in chaos theory, which I tried to explain in
\protect\hyperlink{week203}{``Week 203''}. But, I don't understand it
very deeply.

Robert Helling also asked:

\begin{quote}
There are people doing numerical long term stability analysis of the
solar system. From what I know, they are not just taking \(F=ma\) and
Newton's law of gravity, replacing \(dt\) by \(\Delta t\) and then
integrating but use much fancier spectral methods. Could somebody please
point me to an introduction into these methods?
\end{quote}

I referred him to the work of Gerald Sussman, Jack Wisdom and others in
\protect\hyperlink{week107}{``Week 107''}, but Jonathan Thornburg posted
this reply:

\begin{quote}
I don't do this sort of work myself, but the buzzwords you want are
``symplectic ODE integrator''. The basic idea is to use an ODE
integration scheme which conserves energy, angular momentum, and maybe
other nice things, up to floating-point roundoff error, rather than just
up to finite differencing error like a standard ODE integrator would do.
\end{quote}

prompting Arnold Neumaier to give a nice list of references, which I
will take the liberty of numbering:

\begin{quote}
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{30}
\tightlist
\item
  Tetsuharu Fuse, ``Planetary perturbations on the \(2:3\) mean motion
  resonance with Neptune'', \emph{Publ. Astron. Soc. Japan} \textbf{54}
  (2002), 494--499. Also available at
  \texttt{http://astronomy.nju.edu.cn/\textasciitilde{}xswan/reference/Fuse\_PASJ54\_493.pdf}
\end{enumerate}

uses symplectic integration to study \(2:3\) resonances numerically.

The thesis:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{31}
\tightlist
\item
  Luz Vianey Vela-Arevalo, \emph{Time-frequency analysis based on
  wavelets for Hamiltonian systems}, Caltech, 2002. Also available at
  \texttt{http://www.cds.caltech.edu/\textasciitilde{}luzvela/th2s.pdf}
\end{enumerate}

contains in Chapter 4 interesting numerical information about chaos,
resonances, and stability in the restricted 3-body problem. Other
interesting papers include:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{32}
\item
  George Voyatzis and John D. Hadjidemetriou, ``Symmetric and asymmetric
  librations in planetary and satellite systems at the \(2/1\)
  resonance'', available at
  \texttt{http://users.auth.gr/\textasciitilde{}hadjidem/Asymmetric1.pdf}

  Mihailo Cubrovic, ``Regimes of stability and scaling relations for the
  removal time in the asteroid belt'', available as
  \href{http://arxiv.org/abs/astro-ph/0501004}{\texttt{astro-ph/0501004}}.

  Ryszard Gabryszewski and Ireneusz Wlodarczyk, ``The resonant dynamical
  evolution of small body orbits among giant planets'', available as
  \href{http://arxiv.org/abs/astro-ph/0203182}{\texttt{astro-ph/0203182}}.

  Luz V. Vela-Arevalo and Jerrold E. Marsden, ``Time-frequency analysis
  of the restricted three-body problem: transport and resonance
  transitions'', \emph{Class. Quant. Grav.} \textbf{21} (2004),
  S351--S375. Also available at
  \texttt{http://cns.physics.gatech.edu/\textasciitilde{}luzvela/VelaArevaloMarsdenCQG\_2004.pdf}

  Harry Varvogli, Kleomenis Tsiganis, and John D. Hadjidemetriou, ``The
  `third' integral in the restricted three-body problem revisited'',
  available at
  \texttt{http://www.astro.auth.gr/\textasciitilde{}varvogli/varv5.ps}
\end{enumerate}
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{So many worlds, so much to do,\\
So little done, such things to be.}

--- Tennyson, In Memoriam
\end{quote}
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This week I'd like to talk about two aspects of higher gauge theory:
\(p\)-form electromagnetism and nonabelian cohomology. Lurking behind
both of these is the mathematics of \(n\)-categories, but I'll do my
best to hide that until the end, to build up the suspense.

But first, some cool pictures. Astronomy is booming these days, and it's
a great way to see beautiful complexity emerging from simple laws in
this wonderful universe of ours. So, I'd like the freedom to
occasionally start This Week's Finds with some pictures from the skies.
Think of it as an appetizer before the main course. Sometimes I'll
explicitly relate these pictures to math and physics; other times not.

Here's Saturn's moon Hyperion, photographed up close by the Cassini
probe:
\[\href{http://saturn.jpl.nasa.gov/multimedia/images/images.cfm?subCategoryID=29}{\includegraphics[max width=0.65\linewidth]{../images/hyperion.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Cassini-Huyghens Mission, ``Hyperion: Odd World'',
  \texttt{http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=1762}
\end{enumerate}

It seems to be a huge pile of rubble loosely held together by gravity
and heavily cratered by meteor bombardments.

Hyperion is interesting because it's the only known moon that tumbles
chaotically on a short time scale, thanks to its eccentric shape and
gravitational interactions with Saturn and Titan.

This leads to some interesting math. We can think of Hyperion's angular
momentum vector as a point on a sphere. If we started out knowing this
point lay inside some small disk, time evolution would warp this disk
into an ever more complicated region as time passed. This region would
always have the same area, thanks to the wonders of symplectic geometry.
But it would sprout ever more complicated tendrils, with its perimeter
growing by a factor of e about every 100 days or so!

That's chaos for you.

Indeed, only quantum mechanics would stop the intricacy from growing
forever, by blurring it out. After about 37 years, the area of a typical
tendril would equal Planck's constant. At this point, classical
mechanics would no longer be accurate. You'd really need to describe
Hyperion's spin state using quantum theory: for example, a holomorphic
section of some line bundle on the sphere.

Well\ldots{} at least you would if it weren't for decoherence caused by
the interaction of Hyperion with its environment, for example solar
radiation! For an explanation of how this changes the story, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Michael Berry, ``Chaos and the semiclassical limit of quantum
  mechanics (is the moon there when somebody looks?)'', in \emph{Quantum
  Mechanics: Scientific Perspectives on Divine Action}, CTNS
  Publications, Vatican Observatory, 2001. Also available at
  \texttt{http://www.phy.bris.ac.uk/people/berry\_mv/the\_papers/berry337.pdf}
\end{enumerate}

Here's another great picture:
\[\href{http://heritage.stsci.edu/2004/27/index.html}{\includegraphics[max width=0.65\linewidth]{../images/cats-eye_nebula.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  The Hubble Heritage Project, ``Cat's Eye Nebula --- NGC 6543'',
  \texttt{http://heritage.stsci.edu/2004/27/index.html}
\end{enumerate}

This is a star about the size of the Sun, nearing the end of its life,
emitting pulses of gas and dust. Astronomers call such a thing a
``planetary nebula'', though it has nothing to do with planets. It's in
our galaxy, about 3000 light years from us. When it's done shedding its
outer layers, all that's left of this star will be a white dwarf.

Our own Sun will become a planetary nebula in about 6.9 billion years,
after two separate stages of being a red giant --- one as it runs out
hydrogen, and one as it runs out of helium. When the helium is all gone,
the Sun will start to pulsate every 100,000 years, ejecting more and
more mass in each pulse, eventually throwing off all but a hot inner
core made of heavier elements. The astronomer Bruce Balick has written
eloquently on what this will mean for the Earth:

\begin{quote}
Here on Earth, we'll feel the wind of the ejected gases sweeping past,
slowly at first (a mere 5 miles per second!), and then picking up speed
as the spasms continue --- eventually to reach 1000 miles per second!!
The remnant Sun will rise as a dot of intense light, no larger than
Venus, more brilliant than 100 present Suns, and an intensely hot
blue-white color hotter than any welder's torch. Light from the fiendish
blue ``pinprick'' will braise the Earth and tear apart its surface
molecules and atoms. A new but very thin ``atmosphere'' of free
electrons will form as the Earth's surface turns to dust.
\end{quote}

So, don't keep procrastinating --- enjoy life now!

For other pictures of planetary nebulae, try Balick's webpage:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Bruce Balick, ``Hubble Space Telescope images of planetary nebulae'',
  \texttt{http://www.astro.washington.edu/balick/WFPC2/index.html}
\end{enumerate}

For a timeline of the universe, including the future life of our Sun,
try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Baez, ``A brief history of the universe'',
  \texttt{http://math.ucr.edu/home/baez/timeline.html}
\end{enumerate}

Now\ldots{} on to \(p\)-form electromagnetism!

In ordinary electromagnetism, the secret star of the show turns out to
be not the electromagnetic field but the ``vector potential'', \(A\). At
least locally, we can think of this as a \(1\)-form. A \(1\)-form is
just a gadget that you can integrate along a path and get a number. In
the case of the vector potential, this number describes the change in
phase that a charged particle acquires as it moves along this path.

The \(1\)-form \(A\) gives rise to a \(2\)-form \(F\) called the
``electromagnetic field''. A \(2\)-form is a gadget you can integrate
over a surface and get a number. Here's how we get \(F\) from \(A\).
Suppose we move a charged particle around a loop that's the boundary of
some surface. Then the integral of \(F\) over this surface is defined to
be the integral of \(A\) around the loop! We summarize this by saying
that \(F\) is the ``exterior derivative'' of \(A\), and writing
\[F = dA.\] \(F\) is called the electromagnetic field because\ldots{}
that's what it is! It contains both the electric and magnetic fields in
a single neat package. In 4d spacetime, the magnetic field describes the
change in a phase of a charged particle that loops around a surface in
the \(xy\), \(yz\) or \(zx\) planes. The electric field describes the
change in phase of a charged particle that loops around a surface in the
\(xt\), \(yt\) or \(zt\) planes.

If you don't know this stuff, you're missing some of the best fun life
has to offer. For an easy introduction with lots of gorgeous pictures,
see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Derek Wise, ``Electricity, magnetism and hypercubes'', available at
  \texttt{http://math.ucr.edu/\textasciitilde{}derek/talks/050916bw.pdf}
\end{enumerate}

The idea of \(p\)-form electromagnetism is to replace point particles by
strings or higher-dimensional membranes. To see how this goes, it's
enough to look at \(2\)-form electromagnetism.

In \(2\)-form electromagnetism, the star of the show is a \(2\)-form,
\(A\). As already mentioned, a \(2\)-form is a gadget you can integrate
over a surface and get a number. In \(2\)-form electromagnetism, this
number describes the change in phase that a charged string acquires as
it moves along, tracing out a surface in spacetime.

The \(2\)-form \(A\) gives rise to a \(3\)-form, \(F\). A \(3\)-form is
a gadget you can integrate over a \(3\)-dimensional region and get a
number. Suppose we move a charged string and let it trace out a surface
that's the boundary of some \(3\)-dimensional region. Then the integral
of \(F\) over this region is defined to be the integral of \(A\) over
the surface! Again we write this as: \[F = dA.\] So, we're just adding
one to the dimensions of things. This makes it easy to keep on going. In
fact, for any integer \(p\), we can write down a generalization of
Maxwell's equations.

It goes like this. We start with a \(p\)-form \(A\). We define a
\((p+1)\)-form \[F = dA\] This automatically implies some of Maxwell's
equations: \[dF = 0\] but the nontrivial Maxwell equations say that
\[*d*F = J\] where \(*\) is the Hodge star operator and \(J\) is a
\(p\)-form called the ``current'', which is produced by charged matter.

What does this mean, physically? The idea is that we have charged matter
consisting of \((p-1)\)-dimensional membranes. These trace out
\(p\)-dimensional surfaces in spacetime as time passes. The current
\(J\) is a \(p\)-form that's concentrated on these surfaces. The current
affects the \(A\) field in a manner governed by Maxwell's equations.
Conversely, the \(A\) field affects the motion of the membranes.
Classically, we just integrate the \(A\) field over the surface traced
out by a membrane and add the result to the \emph{action} for the
membrane. In the path integral approach to quantum mechanics, this
number gives a change in phase, as already mentioned.

Maxwell's equations and their \(p\)-form generalization make sense when
spacetime is any Lorentzian manifold. However, to get a theory where
initial data determine a unique global solution, we want our spacetime
to be ``globally hyperbolic'', which means that it has a ``Cauchy
surface'': roughly, a spacelike surface that any sufficiently long
timelike curve hits precisely once. To get a good \emph{quantum} theory
of \(p\)-form electromagnetism with a Hilbert space of states on which
time evolution acts as unitary operators, we need more: our spacetime
should be ``stationary'', meaning that it has time translation symmetry.
Otherwise there's no way to define energy and the vacuum state --- which
is defined to be the least-energy state.

My student Miguel Carrion-Alvarez tackled an important special case in
his thesis, namely ``static'' globally hyperbolic spacetimes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Miguel Carrion-Alvarez, ``Loop quantization versus Fock quantization
  of \(p\)-form electromagnetism on static spacetimes'', available as
  \href{http://arxiv.org/abs/math-ph/0412032}{\texttt{math-ph/0412032}}.
\end{enumerate}

There's a lot of interesting analysis involved, especially when space
(the Cauchy surface) is noncompact. When it's compact, we can use
``Hodge's theorem'' to relate its deRham cohomology to its topology, and
this turns out to be crucial for understanding \(p\)-form
electromagnetism --- especially issues like the \(p\)-form Bohm-Aharonov
effect. When it's noncompact we need something called ``twisted L\^{}2
cohomology'' instead, and Miguel proved a generalization of Hodge's
theorem for this.

With the analysis under control, Miguel was able to set up a very
beautiful approach to ``loop quantum electromagnetism'' and its
\(p\)-form generalization. Here the idea is to write Maxwell's equations
in terms of the integrals of \(A\) around all possible loops in space
--- or more generally, over all \(p\)-dimensional surfaces. People
interested in loop quantum gravity should like this.

As you can guess, either from seeing all the ``\(d\)'' operators or
seeing all the buzzwords I'm throwing around, \(p\)-form
electromagnetism is really just cohomology incarnated as physics! My
student Derek Wise made this very precise for a version of the theory
where spacetime is \emph{discrete} --- so-called ``lattice \(p\)-form
electromagnetism'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Derek Wise, ``Lattice \(p\)-form electromagnetism and chain field
  theory'', available as
  \href{https://arxiv.org/abs/gr-qc/0510033}{\texttt{gr-qc/0510033}}.
  Version with better graphics and related material at
  \texttt{http://math.ucr.edu/\textasciitilde{}derek/pform/index.html}
\end{enumerate}

In this paper, he shows lattice \(p\)-form electromagnetism is a ``chain
field theory'': something like a topological quantum field theory, but
where what matters is not spacetime itself so much as the cochain
complex of differential forms \emph{on} spacetime, equipped with just
enough extra geometrical structure to write down the \(p\)-form version
of Maxwell's equations.

Both Miguel's thesis and Derek's papers are great if you want to learn
lots of math and physics. I seem to attract students who enjoy
explaining things.

Speaking of which\ldots.

Next I want to explain some stuff Danny Stevenson told me at a mall in
the little town of Cabazon while we were recovering from a hike in the
desert followed by pancakes at the Wheel Inn --- a roadside restaurant
famous for its
\href{http://www.bigwaste.com/photos/ca/cabazon_dinos/}{enormous statues
of dinosaurs}.

Danny works on gerbes, stacks, and higher gauge theory. Last year we
wrote a paper with Alissa Crans and Urs Schreiber constructing
\(2\)-groups (categorified groups) from the math of string theory ---
more precisely, from central extensions of loop groups. Since then I've
been spending a lot of time writing a paper with Urs on higher gauge
theory, where we set up a theory of parallel transport along surfaces.
\(2\)-form electromagnetism is the simplest case of this theory.
Meanwhile, Danny has been thinking about connections on \(2\)-vector
bundles and their relation to the cohomology of Lie \(2\)-algebras.

This has led him to generalize Schreier theory in some interesting ways.
So, let me tell you about Schreier theory!

Schreier theory is a way to classify short exact sequences of groups.
I'll say what I mean by that in a minute\ldots{} but what makes Schreier
theory special is that avoids some simplifying assumptions you might
have seen if you've studied short exact sequences before.

Normally people water down their short exact sequences by assuming some
of the groups in question are \emph{abelian}. This lets them use
``cohomology theory'' to do the classification. See
\protect\hyperlink{week210}{``Week 210''} for a nice book that takes
this approach.

This standard approach is great --- I'm not knocking it --- but Schreier
theory is more general: it's really a branch of ``nonabelian cohomology
theory''. It's not all that hard to explain, either. So, I'll explain it
and then talk about various simplifying assumptions people make.

The goal of Schreier theory is to classify short exact sequences of
groups: \[1 \to F \to E \to B \to 1\] for a given choice of \(F\) and
\(B\). ``Exact'' means that the arrows stand for homomorphisms and the
image of each arrow is the kernel of the next. Here this just means that
\(F\) is a normal subgroup of \(E\) and \(B\) is the quotient group
\(E/F\). Such a short exact sequence is also called an ``extension of
\(B\) by \(F\)'', since \(E\) is bigger than \(B\) and contains \(F\).
The simplest choice is to let \(E\) be the direct sum of \(F\) and
\(B\). Usually there are other more interesting extensions as well.

To classify these, the trick is to use the analogy between group theory
and topology.

As I explained in \protect\hyperlink{week213}{``Week 213''}, you can
think of a group as a watered-down version of a connected space with a
chosen point. The reason is that given such a space, we get a group
consisting of homotopy classes of loops based at the chosen point. This
is called the ``fundamental group'' of our space. There's a lot more
information in our space than this group. But pretty much anything you
can do for groups, you can do for such spaces. It's usually harder, but
it's completely analogous!

In particular, classifying short exact sequences is a lot like
classifying ``fibrations'': \[1 \to F \to E \to B \to 1\] where now the
letters stand for connected spaces with a chosen point, and the arrows
stand for continuous maps. If you're a physicist or geometer you may
prefer fiber bundles to ``fibrations'' --- but luckily, they're so
similar we can ignore the difference in a vague discussion like this.
The idea is basically just that \(E\) maps onto \(B\), and sitting over
each point of \(B\) we have a copy of \(F\). We call \(B\) the ``base
space'', \(E\) the ``total space'' and \(F\) the ``fiber''.

If we want to classify such fibrations we can consider carrying the
fiber \(F\) around a loop in \(B\) and see how it twists around. For
example, if all our spaces are smooth manifolds, we can pick a
connection on the total space \(E\) and see what parallel transport
around a loop in the base space \(B\) does to points in the fiber \(F\).
This gives a kind of homomorphism \[\Omega B \to \mathrm{Aut}(F)\]
sending loops in \(B\) to invertible maps from \(F\) to itself. And, the
cool thing is: this homomorphism lets us classify the fibration!

Here I say ``kind of homomorphism'' since \(\Omega B\), the space of
loops in \(B\) based at the chosen point, is only ``kind of'' a
topological group: the group laws only hold up to homotopy. But let's
not worry about this technicality --- especially since I'm being vague
about all sorts of other equally important issues!

The reason I can get away with not worrying about these issues is that
I'm trying to explain a very robust powerful principle --- one that can
easily survive a dose of vagueness that would kill a lesser idea.
Namely, if \(B\) is a connected space with a chosen basepoint,

\begin{quote}
\textbf{fibrations over the base space \(B\) with fiber \(F\)}\\
\textbf{are ``the same'' as}\\
\textbf{homomorphisms sending loops in \(B\) to automorphisms of \(F\).}
\end{quote}

This could be called ``the basic principle of Galois theory'', for
reasons explained in \protect\hyperlink{week213}{``Week 213''}. There I
explained the special case where the fiber is discrete. Then our
fibration called a ``covering space'', and the basic principle of Galois
theory boils down to this:

\begin{quote}
\textbf{covering spaces over \(B\) with fiber \(F\)}\\
\textbf{are ``the same'' as}\\
\textbf{homomorphisms from the fundamental group of \(B\) to
automorphisms of \(F\).}
\end{quote}

Okay. Now let's use the same principle to classify extensions of a group
\(B\) by a group \(F\): \[1 \to F \to E \to B \to 1\] The group \(B\)
here acts like ``loops in the base''. But what acts like ``automorphisms
of the fiber''?

You might guess it's the group of automorphisms of \(F\). But, it's
actually the \emph{\(2\)-group} of automorphisms of \(F\)!

A \(2\)-group is a categorified version of a group where all the usual
group laws hold up to natural isomorphism. They play a role in higher
gauge theory like that of groups in ordinary gauge theory. In higher
gauge theory, parallel transport along a path is described by an
\emph{object} in a \(2\)-group, while parallel transport along a
path-of-paths is described by a \emph{morphism}. In \(2\)-form
electromagnetism we use a very simple ``abelian'' \(2\)-group, which has
one object and either the real line or the circle as morphism. But there
are other more interesting ``nonabelian'' examples.

If you want to learn more about \(2\)-form electromagnetism from this
perspective, try \protect\hyperlink{week210}{``Week 210''}. For
\(2\)-groups in general, try this paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  John Baez and Aaron Lauda, ``Higher-dimensional algebra V:
  \(2\)-groups'', \emph{Theory and Applications of Categories}
  \textbf{12} (2004), 423--491. Available online at
  \texttt{http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html} or as
  \href{http://arxiv.org/abs/math.QA/0307200}{\texttt{math.QA/0307200}}.
\end{enumerate}

Anyway: it turns out that any group \(F\) gives a \(2\)-group
\(\mathrm{AUT}(F)\) where the objects are automorphisms of \(F\) and the
morphisms are ``conjugations'' --- elements of \(F\) acting to conjugate
one automorphism and yield another. And, extensions
\[1 \to F \to E \to B \to 1\] are classified by homomorphisms
\[B \to \mathrm{AUT}(F)\] where we think of \(B\) as a \(2\)-group with
only identity morphisms. More precisely:

\begin{quote}
\textbf{extensions of the group \(B\) by the group \(F\)}\\
\textbf{are ``the same'' as}\\
\textbf{homomorphisms from \(B\) to the \(2\)-group \(\mathrm{AUT}(F)\)}
\end{quote}

It's fun to work out the details, but it's probably not a good use of
our time together grinding through them here. So, I'll just sketch how
it works.

Starting with our extension
\[1\to F\xrightarrow{i}E\xrightarrow{p}B\to 1\] we pick a ``section''
\[E\xleftarrow{s}B\] meaning a function with \[p(s(b)) = b\] for all
\(b\) in \(B\). We can find a section because \(p\) is onto. However,
the section usually \emph{isn't} a homomorphism.

Given the section \(s\), we get a function
\[\alpha\colon B \to \mathrm{Aut}(F)\] where \(\mathrm{Aut}(F)\) is the
group of automorphisms of \(F\). Here's how:
\[\alpha(b) f = s(b) f s(b)^{-1}\] However, usually \(\alpha\)
\emph{isn't} a homomorphism.

So far this seems a bit sad: functions between groups want to be
homomorphisms. But, we can measure how much \(s\) fails to be a
homomorphism using the function \[g\colon B^2 \to F\] defined by
\[g(b,b') = s(bb') s(b')^{-1} s(b)^{-1}\] Note that \(g = 1\) iff \(s\)
is a homomorphism.

We can then use this function \(g\) to save \(\alpha\). The sad thing
about \(\alpha\) is that it's not a homomorphism\ldots{} but the good
thing is, it's a homomorphism \emph{up to conjugation by \(g\)!} In
other words:
\[\alpha(bb') f = g(b,b') [ \alpha(b) \alpha(b') f ] g(b,b')^{-1}\]
Taken together, \(\alpha\) and \(g\) satisfy some equations (``cocycle
conditions'') which say precisely that they form a homomorphism from
\(B\) to the \(2\)-group \(\mathrm{AUT}(F)\). Conversely, any such
homomorphism gives an extension of \(B\) by \(F\).

In fact, isomorphism classes of extensions of \(B\) by \(F\) correspond
in a 1-1 way with isomorphism classes of homomorphisms from \(B\) to
\(\mathrm{AUT}(F)\). So, we've classified these extensions!

In fact, something even better is true! It's evil to ``decategorify'' by
taking isomorphism classes as we did in the previous paragraph. To avoid
this, we can form a groupoid whose objects are extensions of \(B\) by
\(F\), and a groupoid whose objects are homomorphisms
\(B \to \mathrm{AUT}(F)\). I'm pretty sure that if you form these
groupoids in the obvious way, they're equivalent. And that's what this
slogan really means:

\begin{quote}
\textbf{extensions of the group \(B\) by the group \(F\)}\\
\textbf{are ``the same'' as}\\
\textbf{homomorphisms from \(B\) to the \(2\)-group \(\mathrm{AUT}(F)\)}
\end{quote}

Next, let me say how Schreier theory reduces to more familiar ideas in
two special cases.

People have thought a lot about the special case where \(F\) is abelian
and lies in the center of \(E\). These are called ``central
extensions''. This is just the case where \(\alpha = 1\). The set of
isomorphism classes of central extensions is called \(H^2(B,F)\) --- the
``second cohomology'' of \(B\) with coefficients in \(F\).

People have also thought about ``abelian extensions''. That's an even
more special case where all three groups are abelian. The set of
isomorphism classes of such extensions is called \(\mathrm{Ext}(B,F)\).

Since we don't make any simplifying assumptions like this in Schreier
theory, it's part of a subject called ``nonabelian cohomology''. It was
actually worked out by Dedecker in the 1960's, based on much earlier
work by Schreier:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  O. Schreier, ``Ueber die Erweiterung von Gruppen I'',
  \emph{Monatschefte fur Mathematik and Physick} \textbf{34} (1926),
  165--180. ``Ueber die Erweiterung von Gruppen II'', \emph{Abh. Math.
  Sem. Hamburg} \textbf{4} (1926), 321--346.
\item
  P. Dedecker, ``Les foncteuers \(\mathrm{Ext}_\Pi\), \(H^2_\Pi\) and
  \(H^2_\Pi\) non abeliens'', \emph{C. R. Acad. Sci. Paris} \textbf{258}
  (1964), 4891--4895.
\end{enumerate}

More recently, Schreier theory was pushed one step up the categorical
ladder by Larry Breen. As far as I can tell, he essentially classified
the extensions of a \(2\)-group B by a \(2\)-group \(F\) in terms of
homomorphisms \(B \to \mathrm{AUT}(F)\), where \(\mathrm{AUT}(F)\) is
the \emph{3-group} of automorphisms of \(F\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Lawrence Breen, ``Theorie de Schreier superieure'', \emph{Ann. Sci.
  Ecole Norm. Sup.} \textbf{25} (1992), 465--514. Also available at
  \texttt{http://www.numdam.org/numdam-bin/feuilleter?id=ASENS\_1992\_4\_25\_5}
\end{enumerate}

We can keep pushing Schreier theory upwards like this, but we can also
expand it ``sideways'' by replacing groups with groupoids. You should
have been annoyed by how I kept assuming my topological spaces were
connected and equipped with a specified point. I did this to make them
analogous to groups. For example, it's for only spaces like this that
the fundamental group is powerful enough to classify covering spaces.
For more general spaces, we must use the fundamental \emph{groupoid}.
And, we can set up a Schreier theory for extensions of groupoids:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  V. Blanco, M. Bullejos and E. Faro, ``Categorical non abelian
  cohomology, and the Schreier theory of groupoids'', available as
  \href{http://arxiv.org/abs/math.CT/0410202}{\texttt{math.CT/0410202}}.
\end{enumerate}

In fact, these authors note that Grothendieck did something similar back
in 1971: he classified \emph{all} groupoids fibered over a groupoid
\(B\) in terms of weak \(2\)-functors from \(B\) to \(\mathsf{Gpd}\),
which is the \(2\)-groupoid of groupoids! The point here is that
\(\mathsf{Gpd}\) contains \(\mathrm{AUT}(F)\) for any fixed groupoid
\(F\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Alexander Grothendieck, \emph{RevÃªtements Ã�tales et Groupe Fondamental
  (SGA1)}, chapter VI: ``CatÃ©gories fibrÃ©es et descente'', Lecture Notes
  in Mathematics \textbf{224}, Springer, Berlin, 1971. Also available as
  \href{http://arxiv.org/abs/math.AG/0206203}{\texttt{math.AG/0206203}}.
\end{enumerate}

Having extended the idea ``sideways'' like this, one can then continue
marching ``upwards''. I don't know how much work has been done on this,
but the slogan should be something like this:

\begin{quote}
\textbf{\(n\)-groupoids fibered over an \(n\)-groupoid \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak \((n+1)\)-functors from \(B\) to the \((n+1)\)-groupoid
\(n\mathsf{Gpd}\)}
\end{quote}

Grothendieck also studied this kind of thing with categories replacing
groupoids, so there should also be an \(n\)-category version, I
think\ldots{} but it's more delicate to define ``fibrations'' for
categories than for groupoids, so I'm a bit scared to state a slogan
suitable for \(n\)-categories.

However, I'm not scared to go from \(n\)-groupoids to
\(\omega\)-groupoids, which are basically the same as spaces. In terms
of spaces, the slogan goes like this:

\begin{quote}
\textbf{spaces fibered over the space \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{maps from \(B\) to the space of all spaces}
\end{quote}

This is how James Dolan taught it to me. Most mortals are scared of
``the space of all spaces'' --- both for fear of Russell's paradox, and
because we really need a \emph{space} of all spaces, not just a mere set
of them. To avoid these terrors, you can water down Jim's slogan by
choosing a specific space \(F\) to be the fiber:

\begin{quote}
\textbf{fibrations with fiber \(F\) over the space \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{maps from \(B\) to the classifying space of \(\mathrm{AUT}(F)\)}
\end{quote}

where \(\mathrm{AUT}(F)\) is the topological group of homotopy
self-equivalences of \(F\). The fearsome ``space of all spaces'' is then
the disjoint union of the classifying spaces of all these topological
groups \(\mathrm{AUT}(F)\). It's too large to be a space unless you pass
to a larger universe of sets, but otherwise it's perfectly fine.
Grothendieck invented the notion of a ``Grothendieck universe'' for
precisely this purpose:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Wikipedia, ``Grothendieck universe'',
  \texttt{http://en.wikipedia.org/wiki/Grothendieck\_universe}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} I'd like to thank Leo Alonso for pointing out that
Grothendieck's famous ``SGA1'' is now available on the arXiv in TeX
form, courtesy of the SociÃ©tÃ© MathÃ©matique de France. SGA2 is also
available on the arXiv, and more are coming.

Here are further addenda thanks to Kevin Buzzard, Toby Bartels, David
Corfield, Peter May, Jim Stasheff, and Ronnie Brown.

First, an email I sent in reply to Kevin Buzzard, who was curious about
how we classify extensions of the group \(B\) by the group \(F\) using
homomorphisms from \(B\) to the \(2\)-group \(\mathrm{AUT}(F)\). In
particular, he wanted to know the definition of ``\(2\)-group'' and
``homomorphism between \(2\)-groups'', and how \(\mathrm{AUT}(F)\) is
defined:

\begin{quote}
Dear Kevin -

You write:

\begin{quote}
I'm just checking some of the details (extensions of groups are
morphisms of \(2\)-groups) and I find that you've not given me quite
enough information to do it (in the sense that I'm not knowledgeable
enough about standard facts about \(2\)-groups to fill in some of the
details that you allude to).
\end{quote}

Sorry. I'm glad you care enough to want to know this stuff: \(2\)-groups
and homomorphisms between them are defined in loving detail in
\href{http://arxiv.org/abs/math.QA/0307200}{my paper with Aaron Lauda},
but I'll answer your questions here and append this to
\protect\hyperlink{week223}{``Week 223''} to help out anyone else who
cares.

\begin{quote}
Say we're in the ``classical'' case where \(F\) is an abelian group,
\(B\) is a group, and we're classifying extensions
\(1\to F\to E\to B\to1\) where \(F\) lies in the centre of \(E\). We
know the answer here: such \(E\)'s are classified by \(H^2(B,F)\) which,
for me, means \(2\)-cocycles over \(2\)-coboundaries. Recall that a
\(2\)-cocycle is \(g\colon B^2\to F\) satisfying
\(g(a,bc)+g(b,c)=g(a,b)+g(ab,c)\).
\end{quote}

Right.

\begin{quote}
You want the answer to be homomorphisms \(B \to \mathrm{AUT}(F)\). You
don't quite give the definitions of these things.
\end{quote}

True. Let me start by saying what a \(2\)-group is, and then how the
group \(B\) becomes a \(2\)-group, and then how \(\mathrm{AUT}(F)\) is
defined.

A group is just a category with one object and with all morphisms
invertible. Slick! But, we usually prefer to think of a group as a set:
the morphisms of our category get called ``elements'' of this set. This
set then has a multiplication function \[m\colon G \times G \to G\] and
an identity element \[1 \in G\] satisfying the associative and unit
laws, and such that every element has an inverse.

All this categorifies painlessly:

A \(2\)-group is just a \(2\)-category with one object and with all
morphisms and \(2\)-morphisms invertible. Slick! But, we sometimes
prefer to think of a \(2\)-group as a category: the morphisms of our
\(2\)-category get called ``objects'' of this category, and the
\(2\)-morphisms get called ``morphisms''. This category then has a
multiplication functor \[m\colon G \times G \to G\] and an identity
object \[1 \in G\] satisfying the associative and unit laws, and such
that every object and morphism has an inverse.

In short: a \(2\)-group is just like a group, but with the word
``category'' replacing the word ``set'', the word ``object'' replacing
the word ``element'', and so on!

Now, how does a group become a \(2\)-group? Simple: we take the
\emph{elements} of our group and make them the \emph{objects} of our
\(2\)-group; then we say the only morphisms of our \(2\)-group are
identity morphisms. The \(2\)-group multiplication
\(m\colon G \times G \to G\) comes from the multiplication in our group,
and so on.

\begin{quote}
Let's stick to \(F\) abelian. You think of \(\mathrm{AUT}(F)\) as being
the \(2\)-category with objects \(\mathrm{Aut}(F)\), \(1\)-morphisms
\(\mathrm{Hom}(\varphi,\psi)=F\) if \(\varphi=\psi\) and empty otherwise
(because \(F\) is abelian). What are the \(2\)-morphisms? Is
\(\mathrm{Hom}(\varphi,\psi)\) supposed to be a category with objects
\(F\)?
\end{quote}

Alas, you're one dimension down: thought of as a \(2\)-category, we want
our \(2\)-group \(\mathrm{AUT}(F)\) to have one object, the usual group
\(\mathrm{Aut}(F)\) as morphisms, and conjugations between these as
\(2\)-morphisms.

Here's how we get this. Think of our group \(F\) as a category. Then let
\(\mathrm{AUT}(F)\) have \(F\) as its only object, invertible functors
\[a\colon F \to F\] as its morphisms, and natural isomorphisms between
these as its \(2\)-morphisms.

That's very slick. But let me say this in a different way using the
other viewpoint, where we think of a \(2\)-group as a ``category with
multiplication and inverses''. Given a group \(F\), our \(2\)-group
\(\mathrm{AUT}(F)\) will be the category where the objects are
automorphisms \[a\colon F \to F\] and where a morphism
\(f\colon a \to a'\) is an element \(f\) of \(F\) that conjugates \(a\)
to give \(a'\): \[f a(g) f^{-1} = a'(g) \quad\mbox{for all $g \in F$}\]
This viewpoint requires some extra work to check that
\(\mathrm{AUT}(F)\) is a \(2\)-group. The \(2\)-category viewpoint is
actually much more efficient.

\begin{quote}
Now what is a homomorphism \(B \to \mathrm{AUT}(F)\)?
\end{quote}

Here's where the subtlety comes in: weakening! So far we haven't
weakened anything: all the equations in the definition of a group became
equations in the definition of a \(2\)-group. We're really just dealing
with ``strict'' \(2\)-groups here. But we need to \emph{weaken} the
definition of homomorphism, replacing some equations by isomorphisms, to
get things to work out well now.

If we think of \(B\) and \(\mathrm{AUT}(F)\) as \(2\)-categories, a
homomorphism \(B \to \mathrm{AUT}(F)\) is just a weak \(2\)-functor.
Slick! But, you may not enjoy this definition as much as I do.

So, let's think of \(B\) and \(\mathrm{AUT}(F)\) as ``categories with
multiplication and inverses''. Then a homomorphism
\[\alpha\colon B \to \mathrm{AUT}(F)\] is a functor that preserves
multiplication of objects \emph{up to a specified isomorphism}, which
must satisfy some laws of its own.

Quite roughly, this means that given two objects \(b\) and \(b'\) of
\(B\), we don't have an equation \[\alpha(bb') = \alpha(b) \alpha(b')\]
Instead, we have an isomorphism
\[g(b,b')\colon \alpha(bb') \to \alpha(b) \alpha(b')\] This needs to
satisfy some equations. I can tell you these if you want, but for
starters you can check that in our application, this \(g(b,b')\) thing
will be the \(2\)-cocycle familiar from group cohomology!

And, the laws \(g\) must satisfy say precisely that \(g\) is a
\(2\)-cocycle.

(Indeed, for a \emph{central} extension \(\alpha = 1\), so all we really
need to think about is this \(2\)-cocycle \(g\). Schreier theory goes on
to consider more general extensions, where \(\alpha \neq 1\).)

\begin{quote}
I'm sure I could just go and read Breen's book, but these questions are
so trivial that I'm sure you can instantly answer them, and you also get
the confirmation that there are still people out there reading TWF.
\end{quote}

That's worth a lot! If you ever want to learn more about \(2\)-groups
and homomorphisms between them, I think
\href{http://arxiv.org/abs/math.QA/0307200}{my paper with Aaron Lauda}
could be easier than
\href{http://www.numdam.org/numdam-bin/feuilleter?id=ASENS_1992_4_25_5}{Breen's
opus}. Breen's opus concerns ``higher Schreier'' theory --- classifying
extensions of \(2\)-groups with the help of \(3\)-groups!

Best,\\
jb
\end{quote}

It's important to note that it's \emph{isomorphism classes} of
extensions that correspond to \emph{isomorphism classes} of
homomorphisms \(B \to \mathrm{Aut}(F)\). For this, one needs to know
what a ``\(2\)-isomorphism'' between homomorphisms of \(2\)-groups is.
Again, this is explained in my paper with Lauda. It's a special case of
a weak natural isomorphism between weak \(2\)-functors between
\(2\)-categories, but we say what this means in terms that working
mathematicians can understand.

Also, Toby Bartels had some comments on the dinosaurs of Cabazon and
size issues in category theory:

\begin{quote}
John wrote in part:

\begin{quote}
Next I want to explain some stuff Danny Stevenson told me at a mall in
the little town of Cabazon while we were recovering from a hike in the
desert followed by pancakes at the Wheel Inn --- a roadside restaurant
famous for its enormous statues of dinosaurs.
\end{quote}

Did you see
\href{http://www.latimes.com/news/local/la-me-dinosaurs27aug27,0,3988775,full.story}{the
creationist sign by the dinosaurs?}

\begin{quote}
\textbf{spaces fibered over the space \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{maps from \(B\) to the space of all spaces}
\end{quote}

\begin{quote}
The fearsome ``space of all spaces'' is then the disjoint union of the
classifying spaces of all these topological groups \(\mathrm{AUT}(F)\).
It's too large to be a space unless you pass to a larger universe of
sets, but otherwise it's perfectly fine.
\end{quote}

So if you want your slogan to treat size issues carefully:

\begin{quote}
\textbf{spaces fibered over the space \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{maps from \(B\) to the space of all small spaces}
\end{quote}

But you were secretly doing this all along! After all, when you wrote:

\begin{quote}
\textbf{\(n\)-groupoids fibered over an \(n\)-groupoid \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak \((n+1)\)-functors from \(B\) to the \((n+1)\)-groupoid
\(n\mathsf{Gpd}\)}
\end{quote}

you simply used ``\(n\mathsf{Gpd}\)'' to abbreviate ``\textbf{of all
small \(n\)-groupoids}''. So there are really no new size issues at the
\(\omega\) level.

(Exercise for those that like this sort of thing: Do we need to state
that \(B\) and \(F\) are small?)

-- Toby
\end{quote}

Thanks for clearing this up. I prefer not to distract people with size
issues, so I didn't mention them until ``the space of all spaces''
walked in the door, at which point I figured alarm bells would start
ringing for lots of people. But, it was already hiding in the ``the
\((n+1)\)-groupoid of all \(n\)-groupoids''. I prefer to use a new
Grothendieck universe for each level of the \(n\)-categorical hierarchy,
to justify such expressions. I guess \(\omega\)-categories then require
an \(\omega\)-th universe.

Yes, I saw that silly sign in front of the dinosaurs, though I didn't
understand its full meaning until now. It wasn't there the last time I
visited. Apparently the new owners have decided to enlist this nice
roadside attraction as part of the propaganda campaign for creationism.
They actually believe Adam and Eve walked with dinosaurs in Eden --- as
one biologist put it, ``they think The Flintstones is a documentary''.

It's sad how just as the magnificent history of the universe is becoming
vividly clear, some want to truncate it to a pitifully human scale ---
and then claim \emph{that} was God's work.

Next, David Corfield had some questions about the ``space of all
spaces'', which I answered in this email:

\begin{quote}
Dear David -

You wrote:

\begin{quote}
Hi,

\begin{quote}
\textbf{spaces fibered over the space \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{maps from \(B\) to the space of all small spaces}
\end{quote}

Is there another handle on this, other than

\begin{quote}
\textbf{omega-groupoids fibered over the omega-groupoid \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak omega-functors from \(B\) to the omega-groupoid of all}\\
\textbf{small omega-groupoids} ?
\end{quote}

Presumably \(B\) must be small, and the spaces fibered over it.
\end{quote}

It suffices for the fibers to be small, so if you want a really nitpicky
motto:

\begin{quote}
\textbf{small \(\omega\)-groupoids fibered over the \(\omega\)-groupoid
\(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak \(\omega\)-functors from \(B\) to the \(\omega\)-groupoid
of all}\\
\textbf{small \(\omega\)-groupoids}
\end{quote}

\begin{quote}
Do you and Jim have other intuitions about \textbf{the space of all
small spaces}?
\end{quote}

One can describe it in a completely precise and rigorous way. It's the
disjoint union over all homotopy types of small spaces \(F\) of the
classifying spaces \(B(\mathrm{Aut}(F))\). Here \(\mathrm{Aut}(F)\) is
the topological group of homotopy self-equivalences of \(F\).

Note: the ``largeness'' of this space is solely due to it being a
disjoint union of a proper class of connected components. When we map
any small space to it, the map can only hit a set's worth of components.
So, it's not really scary.

And, if we map a connected small space \(X\) to it, we get a map
\[X \to B(\mathrm{Aut}(F))\] for some \(F\), which is just what you need
to get an \(F\)-bundle over \(X\).

\begin{quote}
Like, is it one of your \textbf{free such-and-suches}?
\end{quote}

I don't know a description like that offhand, since ``free'' suggests a
left universal property, and the space of all (small) spaces mainly has
a right universal property, which describes maps \emph{into} it.

Namely: maps from \(X\) into the space of all spaces are ``the same as''
fibrations over \(X\).

I could make this completely precise, but it's probably not worth
bothering here; one just needs suitable equivalence relations.
\end{quote}

Next, Peter May wrote:

\begin{quote}
In his posting today, John Baez advertised the slogan:

\begin{quote}
\textbf{fibrations over the base space \(B\) with fiber \(F\)}\\
\textbf{are ``the same'' as}\\
\textbf{homomorphisms sending loops in \(B\) to automorphisms of \(F\)}.
\end{quote}

He hedged it with a ``dose of vagueness'', but in fact I proved a
completely precise and general version of exactly this result in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Peter May, ``Classifying spaces and fibrations'', \emph{Memoirs AMS}
  \textbf{155}, Jan.~1975.
\end{enumerate}

Using Moore loops on \(B\), \(LB\), one has a topological monoid, and
one also has the topological monoid \(\mathrm{Aut}(F)\) of homotopy
equivalences of \(F\). A ``transport'' is a homomorphism of topological
monoids from \(LB\) to \(\mathrm{Aut}(F)\). Allowing \(F\) to vary by a
homotopy equivalence, one can define an equivalence relation on
transports such that the equivalence classes are in natural bijective
correspondence with the equivalence classes of ``fibrations over the
base space \(B\) with fiber \(F\)''. One can generalize the context by
allowing fibers in some nice category and prove the same result. See
opus cit, Theorem 14.2, page 83. That was over 30 years ago, so
naturally I wasn't thinking about categorification, but I would imagine
that the methods categorify.
\end{quote}

Here and below I've taken the liberty of numbering the references to
papers, so it's easier to find them in my table of contents for This
Week's Finds.

Jim Stasheff wrote:

\begin{quote}
Even more ancient:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  James Stasheff, ``Parallel transport in fibre spaces'', \emph{Bol.
  Soc. Mat. Mexicana} (1968), 68--86.
\end{enumerate}

Unfortunately that's a hard paper to get a hold of.

Somewhat related is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  James Stasheff, ``Associated fibre spaces'', \emph{Michigan Math.
  Journal} \textbf{15} (1968), 457--470.
\end{enumerate}

and at the survey level:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  James Stasheff, ``H-spaces and classifying spaces, I-IV'', \emph{AMS
  Proc. Symp. Pure Math.} \textbf{22} (1971), 247--272.
\end{enumerate}

Of course, as you might expect, I describe things in terms of
\(A_\infty\)-morphisms from the space of loops into \(\mathrm{Aut}(F)\)
of homotopy equivalences of \(F\).

Now that some of us are comfortable with \(A_\infty\)-cats,
categorification should proceed, perhaps with some technical details.

jim
\end{quote}

Ronnie Brown wrote:

\begin{quote}
John Baez gave an interesting account of nonabelian cohomology and
extension theory. Here are a few more references with which I have been
involved, all using crossed complexes and free crossed resolutions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  Ronald Brown and P. J. Higgins, ``Crossed complexes and non-abelian
  extensions'', \emph{Category theory proceedings, Gummersbach, 1981},
  (ed.~K.H. Kamps et al) Lecture Notes in Math. \textbf{962} Springer,
  Berlin, 1982, pp.~39--50.
\end{enumerate}

This generalises classical Schreier theory to extensions of groupoids.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\tightlist
\item
  Ronald Brown and O. Mucuk, ``Covering groups of non-connected
  topological groups revisited'', \emph{Math. Proc. Camb. Phil. Soc.}
  \textbf{115} (1994) 97--110. Also available as
  \href{http://arxiv.org/abs/math.AT/0009021}{\texttt{math.AT/0009021}}.
\end{enumerate}

This relates the theory of covering topological groups of non connected
topological groups to the classical theory of extensions and
obstructions to a \(Q\)-kernel with an invariant in \(H3\). It uses the
properties of the internal hom in crossed complexes
\(\mathrm{CRS}(F,C)\), and exact sequences derived from a fibration
\(C \to D\) and the induced fibration on \(\mathrm{CRS}(F,-)\).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\tightlist
\item
  Ronald Brown and Timothy Porter, ``On the Schreier theory of
  non-abelian extensions: generalisations and computations'',
  \emph{Proceedings Royal Irish Academy} \textbf{96A} (1996), 213--227.
  Also available at
  \texttt{http://www.informatics.bangor.ac.uk/public/math/research/ftp/algtop/rb/nonabex4.ps.gz}
\end{enumerate}

This establishes a generalisation of the Schreier theory in two ways
(but only for groups). One is using coefficients in a crossed module,
following Dedecker's key ideas, as in the references in John's account.
Second it shows how to compute with such extensions \[A \to E \to G\] in
terms of presentations of the group \(G\). This involves identities
among relations for the presentation, as shown originally by Turing in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\tightlist
\item
  Alan Turing, ``The extensions of a group'', \emph{Compositio
  Mathematica} \textbf{5} (1938), 357--367.
\end{enumerate}

The advantage of this method is that one can actually do sums, even when
the group \(G\) may be infinite. The example given by us is \(G\) =
trefoil group with two generators \(x,y\) and relation \(x^3=y^2\). This
presentation has no identities among relations, and so the calculation
is especially simple. Equivalence of extensions is described in terms of
homotopies of morphisms of crossed complexes, and this relates the ideas
to other forms of homological or homotopical algebra.

An advantage of this approach is the ability to calculate some small
free crossed resolutions of some groups: this is one reason for using
crossed complexes. Note that a convenient monoidal closed structure on
the category of crossed complexes has been explicitly written down, and
this allows convenient calculation and representations of homotopies,
using the `unit interval' groupid, as a crossed complex.

One of the problems I have with the globular approach is the difficulty
of writing down homotopies, and higher homotopies. For example, Ilhan
Icen and I found it difficult to rewrite in terms of group-groupoids the
well known Whitehead theory of automorphisms of crossed modules,
explained for the crossed modules of groupoids case in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{23}
\tightlist
\item
  Ronald Brown and Ilhan Icen, ``Homotopies and automorphisms of crossed
  modules of groupoids'', \emph{Applied Categorical Structures}
  \textbf{11} (2003) 185--206. Also available as
  \href{http://arxiv.org/abs/math.CT/0008117}{\texttt{math.CT/0008117}}.
\end{enumerate}

It looks as if it would be better expressed in terms of automorphisms of
\(2\)-groupoids: good marks to anyone who writes it down in that way!

One knows such homotopies of globular \(\infty\)-groupoids exist because
globular \(\infty\)-groupoids are equivalent to crossed complexes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{24}
\tightlist
\item
  Ronald Brown and P. J. Higgins, ``The equivalence of
  \(\infty\)-groupoids and crossed complexes'', \emph{Cah. Top. Geom.
  Diff.} \textbf{22} (1981) 371--386.
\end{enumerate}

(This paper contains an early definition of a (strict, globular)
\(\infty\) category.)

This raises a question: what is the crossed complex associated to the
free globular groupoid on one generator of dimension \(n\)? I have a
round-about sketch proof, using also cubical theory, and a van Kampen
theorem, that it \emph{is} the fundamental crossed complex of the
\(n\)-globe. Does anyone have a purely algebraic proof?

The idea of singular nonabelian cohomology of a space \(X\) with
coefficients in a crossed complex \(C\) is given in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  Ronald Brown and P. J. Higgins, ``The classifying space of a crossed
  complex'', \emph{Math. Proc. Camb. Phil. Soc.} \textbf{110} (1991)
  95--120.
\end{enumerate}

This cohomology is given by \([\Pi SX, C]\), homotopy classes of maps
from the fundamental crossed complex of the singular complex of \(X\),
to \(C\). There is also a Cech version (current work with Jim Glazebrook
and Tim Porter).

An interesting problem is to classify extensions of crossed complexes!

There is an interesting account of extensions of principal bundles and
transitive Lie groupoids by Androulidakis, developing work of Mackenzie,
at:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\tightlist
\item
  Iakovos Androulidakis, ``Classification of extensions of principal
  bundles and transitive Lie groupoids with prescribed kernel and
  cokernel'', \emph{J. Math. Phys.} \textbf{45} (2004), 3095--4012. Also
  available as
  \href{http://arxiv.org/abs/math.DG/0402007}{\texttt{math.DG/0402007}}.
\end{enumerate}

(not using crossed complexes).

Ronnie Brown\\
\texttt{http:www.bangor.ac.uk/r.brown}
\end{quote}

Finally, here's my reply to a bemused comment by Jim Stasheff:

\begin{quote}
Jim Stasheff wrote:

\begin{quote}
John and anyone else who cares to weigh in, here are some comments from
the purely topological or rather homotopy theory side:
\end{quote}

\begin{quote}
For both bundles and fibrations (e.g.~over a paracompact base), your
last slogan is the oldest:
\end{quote}

\begin{quote}
\textbf{fibrations with fiber \(F\) over the space \(B\)}\\
\textbf{are ``the same'' as} \textbf{maps from \(B\) to the classifying
space of \(\mathrm{AUT}(F)\)}
\end{quote}

\begin{quote}
``the same as'' referring to homotopy classes.
\end{quote}

It's certainly old, but I mentioned another that may be older:

\begin{quote}
\textbf{covering spaces of \(B\) with fiber \(F\)}\\
\textbf{ARE ``THE SAME'' AS}\\
\textbf{homomorphisms from the fundamental group of \(B\) to
automorphisms of \(F\)}
\end{quote}

although one usually sees this special case (which I didn't bother to
mention):

\begin{quote}
\textbf{connected covering spaces of \(B\) with fiber \(F\)}\\
\textbf{are ``the same'' as}\\
\textbf{transitive actions of the fundamental group of \(B\) on \(F\)}
\end{quote}

which is usually disguised as follows:

\begin{quote}
\textbf{connected covering spaces of \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{subgroups of the fundamental group of \(B\)}
\end{quote}

Anyway, I wasn't trying to present things in historical order. I was
trying present them roughly in order of increasing ``dimension'',
starting with extensions of groups, then going up to \(2\)-groups, then
expanding out to groupoids, then going up to \(n\)-groupoids, and
finally \(\omega\)-groupoids\ldots{} which are the same as homotopy
types!

And here, as usual, the \(n\)-category theorists meet up with the
topologists --- and find that the topologists have already done
everything there is to do with \(\omega\)-groupoids \ldots{} but usually
by thinking of them of them as \emph{spaces}, rather than
\(\omega\)-groupoids!

It's sort of like climbing a mountain, surmounting steep cliffs with the
help of ropes and other equipment, and then finding a Holiday Inn on top
and realizing there was a 4-lane highway going up the other side.

So, as usual, the main point of calling homotopy types
``\(\omega\)-groupoids'' instead of ``spaces'' is not to reinvent
topology, but to see how ideas from topology generalize to
\(n\)-category theory. Think of spaces as \(\omega\)-groupoids, but use
those as a springboard for \(\omega\)-categories --- or at least
\(n\)-categories, perhaps just for low values of \(n\) if one is feeling
tired.

In the case at hand, the \(\omega\)-groupoidal slogan:

\begin{quote}
\textbf{fibrations of \(\omega\)-groupoids with fiber \(F\) and base
\(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak \(\omega\)-functors from \(B\) to \(\mathrm{AUT}(F)\)}
\end{quote}

is just a reformulation of:

\begin{quote}
\textbf{fibrations with fiber \(F\) over the space \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{maps from \(B\) to the classifying space of \(\mathrm{AUT}(F)\)}
\end{quote}

but it suggests a grandiose generalization:

\begin{quote}
\textbf{fibrations of \(\omega\)-categories with base \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak \(\omega\)-functors from \(B^{\mathrm{op}}\) to the
\(\omega\)-category of \(\omega\)-categories!}
\end{quote}

I guess we can thank Grothendieck for making precise and proving a
version of this with \(\omega\) replaced by \(n = 1\):

\begin{quote}
\textbf{fibrations of categories with base \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak \(2\)-functors from \(B^{\mathrm{op}}\) to the
\(2\)-category of categories.}
\end{quote}

More recently people have been thinking about the \(n = 2\) case,
especially Claudio Hermida:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{27}
\tightlist
\item
  Claudio Hermida, ``Descent on \(2\)-fibrations and strongly
  \(2\)-regular \(2\)-categories'', \emph{Applied Categorical
  Structures} \textbf{12} (2004), 427--459. Also available at
  \texttt{http://maggie.cs.queensu.ca/chermida/papers/2-descent.pdf}
\end{enumerate}

He states something that hints at this:

\begin{quote}
\textbf{fibrations of \(2\)-categories with base \(B\)}\\
\textbf{are ``the same'' as}\\
\textbf{weak \(3\)-functors from \(B^{\mathrm{op}}\) to the weak
\(3\)-category of \(2\)-categories.}
\end{quote}

Here I'm using \(B^{\mathrm{op}}\) to mean \(B\) with the directions of
both \(1\)-morphisms and \(2\)-morphisms reversed. Hermida follows
tradition and calls this \(B^{\mathrm{coop}}\) --- ``\(\mathrm{op}\)''
for reversing \(1\)-morphisms and ``\(\mathrm{co}\)'' for reversing
\(2\)-morphisms. But, it looks like we'll be needing to reverse all
kinds of morphisms in \(n\)-category case, so we'll need a short name
for that.

Best,\\
jb
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{``Hah, what a fantastic night,'' Gunn said. ``Arcturus is
absolutely steady.'' He leaned back, put his elbows on the rail of the
lift, and looked up at the sky. His glasses glinted faintly in the
starlight. ``Astronomy is not terribly important,'' he said. He fell
silent for a moment. ``Although it is one of the more important things
we do as a species,'' he said. He did not see any contradiction there.}

--- Richard Preston, \emph{First Light}
\end{quote}
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This week I want to mention a couple of papers lying on the interface of
physics, topology, and higher-dimensional algebra. But first, some
astronomy pictures\ldots{} and a bit about the mathematical physicist
Hamilton!

I like this photo of a jet emanating from the black hole in the center
of galaxy M87:
\[\href{http://hubblesite.org/newscenter/newsdesk/archive/releases/2005/12/image/o}{\includegraphics[max width=0.65\linewidth]{../images/m87_jet.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  NASA and John Biretta, ``M87'',
  \texttt{http://hubblesite.org/newscenter/newsdesk/archive/releases/2005/12/image/o}
\end{enumerate}

M87 is a giant elliptical galaxy. It's long been known as a powerful
radio source, and now we know why: there's a supermassive black hole in
the center, about 3 billion times the mass of our Sun. As matter spirals
into this huge black hole, it forms an ``accretion disk'', and some gets
so hot that it shoots out in a jet, as envisioned here:
\[\href{http://maxim.gsfc.nasa.gov/docs/science/science.html}{\includegraphics[max width=0.65\linewidth]{../images/accretion_disk.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  NASA, MAXIM: ``Micro-Arcsecond X-ray Imaging Mission'',
  \texttt{http://maxim.gsfc.nasa.gov/docs/science/science.html}
\end{enumerate}

Accretion disks and jets are common at many different scales in our
universe. They're just nature's way of letting a bunch of matter fall in
under its own gravitation while losing angular momentum and energy. We
see them when dust clouds collapse to form stars, we see them when black
holes sucks in mass from companion stars, and they're probably also
responsible for slow \(\gamma\) ray bursts as huge stars collapse when
they run out of fuel --- see \protect\hyperlink{week204}{``Week 204''}
for that story.

But, among the biggest accretion disks and jets are those surrounding
supermassive black holes in the middle of galaxies. These are probably
responsible for all the ``active galactic nuclei'' or ``quasars'' that
we see. In the case of M87 the jet is enormous: 5000 light years long!
To get a sense of the scale, look at the small white specks away from
the jet in the next picture. These are globular clusters: clusters
containing between ten thousand and a million stars.
\[\href{http://antwrp.gsfc.nasa.gov/apod/ap000706.html}{\includegraphics[max width=0.65\linewidth]{../images/m87jet_hst.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  A jet from galaxy M87, ``Astronomy Picture of the Day, July 6, 2000'',
  \texttt{http://antwrp.gsfc.nasa.gov/apod/ap000706.html}
\end{enumerate}

The jet in M87 is so hot that it emits not just radio waves and visible
light, but even X-rays, as seen by the Chandra X-ray telescope:
\[\href{http://chandra.harvard.edu/photo/2001/0134/}{\includegraphics[max width=0.65\linewidth]{../images/m87_xray_radio_optical.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  ``M87: Chandra sheds light on the knotty problem of the M87 jet'',
  \texttt{http://chandra.harvard.edu/photo/2001/0134/}
\end{enumerate}

It seems the jet consists mainly of electrons moving at relativistic
speeds, focused by the magnetic field of the accretion disk. They come
in blobs called ``knots''. People can actually see these blobs moving
out, getting brighter and dimmer.

In fact, many galaxies have super-massive black holes at their centers
with jets like this one. The special thing about M87 is that it's fairly
nearby, hence easy to see. M87 is the biggest galaxy in the Virgo
Cluster. This is the closest galaxy cluster to us, about 50 million
light years away. That sounds pretty far, but it's only 1000 times the
radius of the Milky Way. If the Milky Way were a pebble, M87 would be
only a stone's throw away. So, even amateur astronomers --- really good
ones, at least --- can take photos of M87 that show the jet. But here's
a high-quality picture produced by Robert Lupton using data from the
Sloan Digital Sky Survey --- you can see the jet in light blue:
\[\href{http://www.astro.princeton.edu/~rhl/PrettyPictures/}{\includegraphics[max width=0.65\linewidth]{../images/m87_core.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Robert Lupton and the Sloan Digital Sky Survey Consortium, ``The
  central regions of M87'',
  \texttt{http://www.astro.princeton.edu/\textasciitilde{}rhl/PrettyPictures/}
\end{enumerate}

Backing off a bit further, let's take a look at the Virgo Cluster. It
contains over a thousand galaxies, but we can tell it's fairly new as
clusters go, since it consists of a bunch of ``subclusters'' that
haven't merged yet. Our galaxy, and indeed the whole Local Group to
which it belongs, is being pulled towards the Virgo Cluster and will
eventually join it. Here's a nice closeup of part of the Virgo Cluster:
\[\href{http://burro.astr.cwru.edu/Schmidt/Virgo/}{\includegraphics[max width=0.65\linewidth]{../images/virgo_cluster.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Chris Mihos, Paul Harding, John Feldmeier and Heather Morrison, ``Deep
  imaging of the Virgo Cluster'',
  \texttt{http://burro.astr.cwru.edu/Schmidt/Virgo/}
\end{enumerate}

Finally, just for fun, something unrelated --- and more mysterious. It's
called ``Hoag's object'':
\[\href{http://heritage.stsci.edu/2002/21/}{\includegraphics[max width=0.65\linewidth]{../images/hoag.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  The Hubble Heritage Project, ``Hoag's Object'',
  \texttt{http://heritage.stsci.edu/2002/21/}
\end{enumerate}

It's a ring-shaped galaxy full of hot young blue stars surrounding a
ball of yellower stars. Nobody knows how it formed: perhaps by a
collision of two galaxies? Such collisions are fairly common, but they
don't typically create this sort of structure.

The weirdest part is that inside the ring, in the upper right, you can
see \emph{another} ring galaxy in the distance! Maybe an advanced
civilization over there enjoys this form of art? Probably not, but if it
turns out to be true, you heard it here first.

Anyway\ldots{} back here on Earth, in the summer of 2004, I visited
Dublin for a conference on general relativity called GR17. As recounted
in \protect\hyperlink{week207}{``Week 207''}, this was where Hawking
admitted defeat in his famous bet with John Preskill about information
loss due to black hole evaporation. In August of this year, Hawking
finally came out with a short paper on the subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Stephen W. Hawking, ``Information loss in black holes'', available as
  \href{https://arxiv.org/abs/hep-th/0507171}{\texttt{hep-th/0507171}}.
\end{enumerate}

I spent a lot of time talking to physicists, but I also wandered around
Dublin a bit. Besides listening to some great music at a pub called
Cobblestones --- Kevin Rowsome plays a mean uilleann pipe! --- and
tracking down some sites mentioned in James Joyce's novel ``Ulysses'', I
went with Tevian Dray on a pilgrimage to Brougham Bridge.

Tevian Dray is an expert on the octonions, and Brougham Bridge is where
Hamilton carved his famous formula defining the quaternions! Now there
is a plaque commemorating this event, which reads:

\begin{quote}
Here as he walked by\\
on the 16th of October 1843\\
Sir William Rowan Hamilton\\
in a flash of genius discovered\\
the fundamental formula for\\
quaternion multiplication\\
\(i^2 = j^2 = k^2 = ijk = -1\)\\
\& cut it on a stone of this bridge
\end{quote}

It does't mention that Hamilton had been racking his brain for the
entire month of October trying to solve this problem: ``flashes of
genius'' favor the prepared mind. But it's a nice story and a nice
place. My friend Tevian Dray took some photos, which you can see here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  John Baez, ``Dublin'', \texttt{http://math.ucr.edu/home/baez/dublin/}
\end{enumerate}

It was a bit of a challenge finding Brougham Bridge, since nobody at the
main bus station gave us correct information about which bus went there
--- except the bus driver who finally took us there. So, to ease your
way in case you want to make your own pilgrimage, the above page
includes directions. And now, thanks to Dirk Schlimm, it also includes a
link to a map showing the bridge!

Speaking of Hamilton, Theron Stanford recently sent me an answer to one
of life's persistent questions: why is momentum denoted by the letter p?

Since momentum and position play fundamental roles in Hamiltonian
mechanics, and they're denoted by \(p\) and \(q\), one wonders: could
this notation be related to Hamilton's alcoholism in later life? After
all, some claim the saying \emph{mind your p's and q's} began as a
friendly Irish warning not to imbibe too many pints and quarts! So,
maybe he used these letters in his work on physics as a secret plea for
help.

Umm\ldots{} probably not. Just kidding. But in the absence of hard
facts, speculation runs rampant. So, I'm glad Stanford provided some of
the former, to squelch the latter.

He sent me this email:

\begin{quote}
While Googling various subjects, I came across
\href{http://math.ucr.edu/home/baez/qg-winter2001/qg12.2.html}{the
following} from your
\href{http://math.ucr.edu/home/baez/QG.html}{Quantum Gravity Seminar}
notes from 2001:

\begin{quote}
Again Oz was overcome with curiosity, so mimicking Toby's voice, he
asked, ``Why do we call the momentum \(p\)?''

The Wiz glared at Toby. ``Because \(m\) is already taken -- it stands
for mass! Seriously, I don't know why people call position \(q\) and
momentum \(p\). All I know is that if you use any other letters, people
can tell you're not a physicist. So I urge you to follow tradition on
this point.''
\end{quote}

Well, I have an answer. Hamilton, the first physicist to actually
understand the importance of the concept of momentum, chose \(\varpi\)
to stand for momentum (it's not the usual \(\pi\), but what TeX calls
\texttt{varpi}, a lower-case \(\omega\) with a top, kinda like the top
of a lower-case \(\tau\)). Jacobi changed this to \(p\) in one of his
seminal papers on the subject; he also used \(q\) in the same paper to
stand for position. In the 1800s (I want to say 1850s, though it might
have been a decade or two later) Cayley presented a paper to the Royal
Academy in which he says (and I paraphrase), ``Well, it seems that \(p\)
and \(q\) are pretty well established now, so that's what I'm going to
use.''
\end{quote}

So, now the question is why Hamilton chose the letter \(\varpi\) for
momentum. This variant of \(\pi\) was fairly common in the mathematical
literature of the day, so there may be no special explanation. For some
further detective work, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  ``Hamilton: two mysteries solved'',
  \texttt{http://groups.google.com/group/sci.physics/browse\_thread/thread/d1b7b4a998682bbb/3a868ae8218a4bca\#3a868ae8218a4bca}
\end{enumerate}

Also see equation 12 in this paper for one of the first uses of
``\(\varpi\)'' to mean momentum:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  William Rowan Hamilton, ``Second essay on a general method in
  dynamics'', ed.~David R. Wilkins, available at
  \texttt{http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/Dynamics/SecEssay.pdf}
\end{enumerate}

He doesn't say why he chose this letter --- it may have been completely
random!

Before I turn to higher-dimensional algebra, maybe this is a good time
to mention a paper related to the octonions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Jakob Palmkvist, ``A realization of the Lie algebra associated to a
  Kantor triple system'', available as
  \href{http://arxiv.org/abs/math.RA/0504544}{\texttt{math.RA/0504544}}.
\end{enumerate}

In \protect\hyperlink{week193}{``Week 193''} I mentioned how
\(3\)-graded Lie algebras come from ``Jordan triple systems'', and
vaguely hinted that \(5\)-graded Lie algebras come from ``Kantor triple
systems''. I explained how the exceptional Lie algebra \(\mathrm{E}_8\)
gets to be \(5\)-graded, but I didn't really say anything about Kantor
triple systems because my understanding of them was so poor. This paper
by Palmkvist explains them very clearly! And even better, he shows how
the ``magic square'' Lie algebras \(\mathrm{F}_4\), \(\mathrm{E}_6\),
\(\mathrm{E}_7\), and \(\mathrm{E}_8\) can be systematically obtained
from the octonions, bioctonions, quateroctonions and octooctonions by
means of Kantor triple systems.

Now for some mathematical physics that touches on higher-dimensional
algebra. If you still don't get why topological field theory and
\(n\)-categories are so cool, read this thesis:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Bruce H. Bartlett, \emph{Categorical aspects of topological quantum
  field theories}, M.Sc. Thesis, Utrecht University, 2005. Available as
  \href{http://arxiv.org/abs/math.QA/0512103}{\texttt{math.QA/0512103}}.
\end{enumerate}

It's a great explanation of the big picture! I can't wait to see what
Bartlett does for his Ph.D..

If you're a bit deeper into this stuff, you'll enjoy this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Aaron Lauda and Hendryk Pfeiffer, ``Open-closed strings:
  two-dimensional extended TQFTs and Frobenius algebras'', available as
  \href{http://arxiv.org/abs/math.AT/0510664}{\texttt{math.AT/0510664}}.
\end{enumerate}

This paper gives a purely algebraic description of the topology of open
and closed strings, making precise and proving some famous results
stated without proof by Moore and Segal, which can be seen here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Greg Moore, ``Lectures on branes, K-theory and RR charges'',
  \emph{Clay Math Institute Lecture Notes} (2002), available at
  \texttt{http://www.physics.rutgers.edu/\textasciitilde{}gmoore/clay1/clay1.html}
\end{enumerate}

Lauda and Pfeiffer's paper makes heavy use of Frobenius algebras,
developing more deeply some of the themes I mentioned in
\protect\hyperlink{week174}{``Week 174''}. In a related piece of work,
Lauda has figured out how to \emph{categorify} the concept of a
Frobenius algebra, and has applied this to 3d topology:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\item
  Aaron Lauda, ``Frobenius algebras and ambidextrous adjunctions'',
  \href{http://www.tac.mta.ca/tac/volumes/16/4/16-04abs.html}{\emph{Theory
  and Applications of Categories} \textbf{16} (2006) 84--122}. Also
  available as
  \href{http://arxiv.org/abs/math.CT/0502550}{\texttt{math.CT/0502550}}.

  Aaron Lauda, ``Frobenius algebras and planar open string topological
  field theories'', available as
  \href{http://arxiv.org/abs/math.QA/0508349}{\texttt{math.QA/0508349}}.
\end{enumerate}

The basic idea behind all this work is a ``periodic table'' of
categorified Frobenius algebras, which are related to topology in
different dimensions. For example, in \protect\hyperlink{week174}{``Week
174''} I explained how Frobenius algebras formalize the idea of paint
drips on a sheet of rubber. As you move your gaze down a sheet of rubber
covered with drips of paint, you'll notice that drips can merge: \[
  \begin{tikzpicture}[yscale=2]
    \begin{knot}
      \strand[thick] (-0.5,0)
        to [out=up,in=down,looseness=1.5] (-1,1);
      \strand[thick] (-0.45,1)
        to [out=down,in=down,looseness=1.5] (0.45,1);
      \strand[thick] (0.5,0)
        to [out=up,in=down,looseness=1.5] (1,1);
    \end{knot}
  \end{tikzpicture}
\] but also split: \[
  \begin{tikzpicture}[yscale=-2]
    \begin{knot}
      \strand[thick] (-0.5,0)
        to [out=up,in=down,looseness=1.5] (-1,1);
      \strand[thick] (-0.45,1)
        to [out=down,in=down,looseness=1.5] (0.45,1);
      \strand[thick] (0.5,0)
        to [out=up,in=down,looseness=1.5] (1,1);
    \end{knot}
  \end{tikzpicture}
\] In addition, drips can start: \[
  \begin{tikzpicture}[scale=1.3]
    \begin{knot}
      \strand[thick] (-0.5,0)
        to [out=up,in=up,looseness=3] (0.5,0);
    \end{knot}
  \end{tikzpicture}
\] but also end: \[
  \begin{tikzpicture}[scale=-1.3]
    \begin{knot}
      \strand[thick] (-0.5,0)
        to [out=up,in=up,looseness=3] (0.5,0);
    \end{knot}
  \end{tikzpicture}
\] In a Frobenius algebra, these four pictures correspond to four
operations called ``multiplication'' (merging), ``comultiplication''
(splitting), the ``unit'' (starting) and the ``counit'' (ending).
Moreover, these operations satisfy precisely the relations that you can
prove by warping the piece of rubber and seeing how the pictures change.
For example, there's the associative law: \[
  \begin{tikzpicture}[xscale=1,yscale=1.7]
    \begin{knot}
      \strand[thick] (-0.5,0)
        to [out=up,in=down,looseness=1.5] (-1,1);
      \strand[thick] (-0.45,1)
        to [out=down,in=down,looseness=1.5] (0.45,1)
        to (0.45,1.55);
      \strand[thick] (0.5,0)
        to [out=up,in=down,looseness=1] (1,1)
        to (1,1.55);
    \end{knot}
    \begin{scope}[scale=0.55,shift={(-1.32,1.81)}]
      \begin{knot}
        \strand[thick] (-0.5,0)
          to [out=up,in=down,looseness=1.5] (-1,1);
        \strand[thick] (-0.45,1)
          to [out=down,in=down,looseness=1.5] (0.45,1);
        \strand[thick] (0.5,0)
          to [out=up,in=down,looseness=1] (1,1);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
  \quad
  \raisebox{4em}{$=$}
  \quad
  \begin{tikzpicture}[xscale=-1,yscale=1.7]
    \begin{knot}
      \strand[thick] (-0.5,0)
        to [out=up,in=down,looseness=1.5] (-1,1);
      \strand[thick] (-0.45,1)
        to [out=down,in=down,looseness=1.5] (0.45,1)
        to (0.45,1.55);
      \strand[thick] (0.5,0)
        to [out=up,in=down,looseness=1] (1,1)
        to (1,1.55);
    \end{knot}
    \begin{scope}[scale=0.55,shift={(-1.32,1.81)}]
      \begin{knot}
        \strand[thick] (-0.5,0)
          to [out=up,in=down,looseness=1.5] (-1,1);
        \strand[thick] (-0.45,1)
          to [out=down,in=down,looseness=1.5] (0.45,1);
        \strand[thick] (0.5,0)
          to [out=up,in=down,looseness=1] (1,1);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] The idea here is that if you draw the picture on the left-hand side
on a sheet of rubber, you can warp the rubber until it looks like the
right-hand side! There's also the ``coassociative law'', which is just
an upside-down version of the above picture. But the most interesting
laws are the ``\(I = N\)'' equation: \[
  \begin{tikzpicture}[yscale=1.5]
    \begin{knot}
      \strand[thick] (-1,-1.5)
        to [out=up,in=down,looseness=1.5] (-0.4,-0.5)
        to (-0.4,0)
        to [out=up,in=down,looseness=1.5] (-1,1);
      \strand[thick] (-0.45,1)
        to [out=down,in=down,looseness=1.5] (0.45,1);
      \strand[thick] (-0.45,-1.5)
        to [out=up,in=up,looseness=1.5] (0.45,-1.5);
      \strand[thick] (1,-1.5)
        to [out=up,in=down,looseness=1.5] (0.4,-0.5)
        to (0.4,0)
        to [out=up,in=down,looseness=1.5] (1,1);
    \end{knot}
  \end{tikzpicture}
  \qquad
  \raisebox{7em}{$=$}
  \qquad
  \begin{tikzpicture}[yscale=1.5]
    \begin{knot}
      \strand[thick] (-1,-1.5) to (-1,1);
      \strand[thick] (-0.5,-1.5)
        to (-0.5,-0.5)
        to [out=up,in=left] (-0.25,-0.35)
        to [out=right,in=up,looseness=0.6] (0.5,-1.25)
        to (0.5,-1.5);
      \strand[thick] (0.5,1)
        to (0.5,0)
        to [out=down,in=right] (0.25,-0.15)
        to [out=left,in=down,looseness=0.6] (-0.5,0.75)
        to (-0.5,1);
      \strand[thick] (1,-1.5) to (1,1);
    \end{knot}
  \end{tikzpicture}
\] and its mirror-image version.

So, the concept of Frobenius algebra captures the topology of regions in
the plane! Aaron Lauda makes this fact into a precise theorem in his
paper on planar open string field theories, and then generalizes it to
consider ``categorified'' Frobenius algebras where the above equations
are replaced by isomorphisms, which describe the \emph{process} of
warping the sheet of rubber until the left side looks like the right.
You should look at his paper even if you don't understand the math,
because it's full of cool pictures.

Lauda and Pfeiffer's paper goes still further, by considering these
paint stripes as ``open strings'', not living in the plane anymore, but
zipping around in some spacetime of high dimension, where they might as
well be abstract 2-manifolds with corners. Following Moore and Segal,
they also bring ``closed strings'' into the game, which form a Frobenius
algebra of their own, where the multiplication looks like an upside-down
pair of pants: \[
  \begin{tikzpicture}[scale=0.5]
    \draw[thick] (-3,0) ellipse (2cm and 1cm);
    \draw[thick] (3,0) ellipse (2cm and 1cm);
    \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
    \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
    \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
    \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
    \begin{scope}[shift={(0,-6)}]
      \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
      \draw[thick] (180:2) arc (180:360:2cm and 1cm);
    \end{scope}
  \end{tikzpicture}
\] These topological closed strings are the subject of Joachim Kock's
book mentioned in \protect\hyperlink{week202}{``Week 202''}; they
correspond to \emph{commutative} Frobenius algebras. The fun new stuff
comes from letting the open strings and closed strings interact.

You can read more about Lauda and Pfeiffer's work at Urs Schreiber's
blog:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Urs Schreiber, ``Lauda and Pfeiffer on open-closed topological
  strings'',
  \texttt{http://golem.ph.utexas.edu/string/archives/000680.html}
\end{enumerate}

In fact, I recommend Schreiber's blog quite generally to anyone
interested in higher categories and/or the math of string theory!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Bruce Smith, David Rusin and Robert Lupton had some
comments about the astronomy section; Urs Schreiber had more to say
about the role of Frobenius algebras in string theory.

Bruce Smith picked up on my comment about accretion disks being common
at many different scales, and wondered what the smallest accretion disks
are. We talked about it and agreed that hurricanes, tornados, dust
devils and whirlpools are \emph{related} phenomena, but not true
accretion disks.

Given this, the smallest accretion disks I know are those that led to
the formation of planets in our Solar System, and perhaps even some
moons. These probably began as eddies in the bigger accretion disk that
became our Sun. The Sun is about 300,00 times heavier than the Earth,
and the super-massive black hole in M87 is about 3 billion times heavier
than the Sun, so we're seeing accretion disks that differ in mass by a
factor of a trillion!

David Rusin's reaction to Hoag's object was:

\begin{quote}
Cool. But what are the chances that there would be not just one but TWO
fascinating objects which have a significant plane of symmetry, which
``just happens'' to be perpendicular to our line of sight?
\end{quote}

He asked how many ring galaxies are known!

I checked and read there are 100 known ``polar-ring galaxies''. Here's a
nice one called NGC 4650:
\[\href{http://hubblesite.org/newscenter/newsdesk/archive/releases/1999/16/image/a}{\includegraphics[max width=0.65\linewidth]{../images/NGC4650.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  ``Ring around a galaxy'', \emph{HubbleSite News Archive}, May 6, 1999,
  \texttt{http://hubblesite.org/newscenter/newsdesk/archive/releases/1999/16/image/a}
\end{enumerate}

I can imagine this thing looking like Hoag's object if we viewed it
head-on.

Here's another ring galaxy, called AM 0644-741:
\[\href{http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/15/image/a}{\includegraphics[max width=0.65\linewidth]{../images/AM0644-741.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  ``The lure of the rings'', \emph{Hubblesite News Archive}, April 22,
  2004,
  \texttt{http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/15/image/a}
\end{enumerate}

It's the result of a collision involving a galaxy that's not in this
picture. So, maybe Hoag's object is just a specially pretty case of a
galaxy collision!

Robert Lupton referred me to a picture that covers more of the Virgo
Cluster --- but the file is huge, so I won't include it here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  Doug Finkbeiner and the Sloan Digital Sky Survey Consortium, ``Some
  pretty objects as observed by the SDSS: Virgo Cluster'',
  \texttt{http://www.astro.princeton.edu/\textasciitilde{}rhl/dfink}
\end{enumerate}

See the lower right corner for the picture called ``virgobig''.

Here's what Urs Schreiber had to say about Frobenius algebras and string
theory:

\begin{quote}
John Baez wrote:

\begin{quote}
{[}\ldots{]} Following Moore and Segal, they also bring ``closed
strings'' into the game, which form a Frobenius algebra of their own,
where the multiplication looks like an upside-down pair of pants:
{[}\ldots{]}
\end{quote}

I would like to make the following general comment on the meaning of
Frobenius algebras in \(2\)-dimensional quantum field theory.

Interestingly, \emph{non}-commutative Frobenius algebras play a role
even for closed strings, and even if the worldhseet theory is not purely
topological.

The archetypical example for this is the class of 2D TFTs invented by
Fukuma, Hosono and Kawai. There one has a non-commutative Frobenius
algebra which describes not the splitting/joining of the entire
worldsheet, but rather the splitting/joining of edges in any one of its
dual triangulations. It is the \emph{center} of (the Morita class of)
the noncommutative Frobenius algebra decorating dual triangulations
which is the commutative Frobenius algebra describing the closed 2D TFT.

One might wonder if it has any value to remember a non-commutative
Frobenius algebra when only its center matters (in the closed case). The
point is that the details of the non-commutative Frobenius algebra
acting in the ``interior'' of the world sheet affects the nature of
``bulk field insertions'' that one can consider and hence affects the
(available notions of) \(n\)-point correlators of the theory, for
\(n > 0\).

This aspect, however, is pronounced only when one switches from 2D
topological field theories to conformal ones.

The fascinating thing is that even 2D \emph{conformal} field theories
are governed by Frobenius algebras. The difference lies in different
categorical internalization. The Frobenius algebras relevant for CFT
don't live in \(\mathsf{Vect}\), but in some other (modular) tensor
category, usually that of representations of some chiral vertex operator
algebra. It is that ambient tensor category which ``knows'' if the
Frobenius algebra describes a topological or a conformal field theory
(in 2D) --- and which one.

Of course what I am referring to here is the work by Fjelstad,
Froehlich, Fuchs, Runkel, Schweigert and others. I can recommend their
most recent review which will appear in the Streetfest proceedings. It
is available as
\href{http://arxiv.org/abs/math.CT/0512076}{\texttt{math.CT/0512076}}.

The main result is, roughly, that given any modular tensor category with
certain properties, and given any (symmetric and special) Frobenius
algebra object internal to that category, one can construct functions on
surfaces that satisfy all the properties that one would demand of an
\(n\)-point function of a 2D (conformal) field theory.

If we define a field theory to be something not given by an ill-defined
path integral, but something given by its set of correlation functions,
then this amounts to constructing a (conformal) field theory.

This result is achieved by first defining a somewhat involved procedure
for generating certain classes of functions on marked surfaces, and then
proving that the functions generated by this procedure do indeed satisfy
all the required properties.

In broad terms, the prescription is to choose a dual triangulation of
the marked worldsheet whose correlation function is to be computed, to
decorate its edges with symmetric special Frobenius algebra objects in
some modular tensor category, to decorate its vertices by product and
coproduct morphisms of this algebra, to embed the whole thing in a
certain \(3\)-manifold in a certain way and for every boundary or bulk
field insertion to add one or two threads labeled by simple objects of
the tensor category which connect edges of the chosen triangulation with
the boundary of that \(3\)-manifold. Then you are to hit the resulting
extended \(3\)-manifold with the functor of a 3D TFT and hence obtain a
vector in a certain vector space. This vector, finally, is claimed to
encode the correlation function.

This procedure is deeply rooted in well-known relations between
\(3\)-(!)-dimensional topological field theory, modular functors and
modular tensor categories and may seem very natural to people who have
thought long enough about it. It is already indicated in Witten's paper
on the Jone's polynomial, that 3D TFT (Chern-Simons field theory in that
case) computes conformal blocks of conformal field theories on the
boundaries of these \(3\)-manifolds. To others, like me in the
beginning, it may seem like a miracle that an involved and superficially
ad hoc procedure like this has anything to do with correlations
functions of conformal field theory in the end.

In trying to understand the deeper ``meaning'' of it all I played around
with the idea that this prescription is really, to some extent at least,
the ``dual'' incarnation of the application of a certain \(2\)-functor
to the worldsheet. Namely a good part of the rough structure appearing
here automatically drops out when a \(2\)-functor applied to some
\(2\)-category of surfaces is ``locally trivialized''. I claim that any
local trivialization of a \(2\)-functor on some sort of \(2\)-category
of surface elements gives rise to a dual triangulation of the surface
whose edges are labeled by (possibly a generalization of) a Frobenius
algebra object and whose vertices are labeled by (possibly a
generalization of) product and coproduct operations. There is more data
in a locally trivialized \(2\)-functor, and it seems to correctly
reproduce the main structure of bulk field insertions as appearing
above. But of course there is a limit to what a \emph{2}-functor can
know about a structure that is inherently \(3\)-dimensional.

I have begun outlining some of the details that I have in mind here:

\texttt{http://golem.ph.utexas.edu/string/archives/000697.html}

This has grown out of a description of gerbes with connective structure
in terms of transport \(2\)-functors. Note that in what is called a
\emph{bundle} gerbe we also do have a certain product operation playing
a decisive role. Bundle gerbes can be understood as
``pre-trivializations'' of \(2\)-functors to \(\mathsf{Vect}\):

\texttt{http://golem.ph.utexas.edu/string/archives/000686.html}

and the product appearing is one of the Frobenius products mentioned
above. For a bundle gerbe the coproduct is simply the inverse of the
product, since this happens to be an isomorphism. The claim is that
\(2\)-functors to \(\mathsf{Vect}\) more generally give rise to
non-trivial Frobenius algebras when locally trivialized.

This is work in progress and will need to be refined. I thought I'd
mention it here as a comment to John's general statements about how
Frobenius algebras know about \(2\)-dimensional physics. I am grateful
for all kinds of comments.
\end{quote}

Here's the paper Urs refers to:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\tightlist
\item
  Ingo Runkel, Jens Fjelstad, Jurgen Fuchs and Christoph Schweigert,
  ``Topological and conformal field theory as Frobenius algebras'',
  available as
  \href{http://arxiv.org/abs/math.CT/0512076}{\texttt{math.CT/0512076}}.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Here's how you do it:\\
First you're obtuse,\\
Then you intuit,\\
Then you deduce!}

--- Garrison Keillor
\end{quote}



\hypertarget{week225}{%
\section{December 24, 2005}\label{week225}}

Happy holidays! I'll start with some gift suggestions for people who put
off their Christmas shopping a bit too long, before moving on to this
week's astronomy pictures and then some mathematical physics: minimal
surfaces.

Back in 2000 I listed some gift ideas in
\protect\hyperlink{week162}{``Week 162''}. I decided to do it again this
year. After all, where else can you read about quantum gravity,
nonabelian cohomology, higher categories\ldots{} and also get helpful
shopping tips? But, I put off writing this Week's Finds a bit too late.
Oh well.

I just saw this book in a local store, and it's \emph{great}:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Robert Dinwiddie, Philip Eales, David Hughes, Ian Nicholson, Ian
  Ridpath, Giles Sparrow, Pam Spence, Carole Stott, Kevin Tildsley, and
  Martin Rees, \emph{Universe}, DK Publishing, New York, 2005.
\end{enumerate}

If you like the astronomy pictures you've seen here lately, you'll love
this book, because it's \emph{full} of them --- all as part of a
well-organized, clearly written, information-packed but nontechnical
introduction to astronomy. It starts with the Solar System and sails out
through the Oort Cloud to the Milky Way to the Local Group to the Virgo
Supercluster \ldots{} and all the way out and back to the Big Bang!

The only thing this book seems to lack --- though I could have missed it
--- is a 3d map showing the relative scales of our Solar System, Galaxy,
and so on. I recommended a wall chart like this back in
\protect\hyperlink{week162}{``Week 162''}, and my friend Danny Stevenson
just bought me one. I'll probably put it up near my office in the math
department\ldots{} gotta keep the kids thinking big!

You don't really need to buy a chart like this. You can just look at
this website:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Richard Powell, ``An Atlas of the Universe'',
  \texttt{http://www.anzwers.org/free/universe/}
\end{enumerate}

It has nine maps, starting with the stars within 12.5 light years and
zooming out repeatedly by factors of 10 until it reaches the limits of
the observable universe, roughly 14 billion light years away. Or more
precisely, 14 billion years ago!

(The farther we look, the older things we see, since light takes time to
travel. The most distant thing we see is light released when hot gas
from the Big Bang cooled down just enough to let light through! If we
calculate how far this gas would be \emph{now}, thanks to the expansion
of the universe, we get a figure of roughly 78 billion light years. But
of course we can't see what that gas looks like \emph{now} unless we
wait a lot longer. It's a bit confusing until you think about it for a
while.)

For example, here are the clusters of galaxies within 100 million
lightyears of us:
\[\href{http://www.anzwers.org/free/universe/virgo.html}{\includegraphics[max width=0.65\linewidth]{../images/Virgo_supercluster.png}}\]

The biggest of these is the Virgo cluster, which I discussed in
\protect\hyperlink{week224}{``Week 224''}. This contains about 2000
galaxies. The second biggest is the Fornax cluster. The whole
agglomeration shown here is called the Virgo Supercluster. Superclusters
are among the biggest structures in the universe.

This atlas is fun to browse when you're at your computer. But, if
someone you know wants to contemplate the universe in a more relaxing
way, try getting them one of these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Bathsheba Grossman, ``Crystal model of a typical 100-megaparsec cube
  of the universe'',
  \texttt{http://www.bathsheba.com/crystal/largescale/}

  ``Crystal model of the Milky Way'',
  \texttt{http://www.bathsheba.com/crystal/galaxy/}
\end{enumerate}

I found out about these from David Scharffenberg, who owns the Riverside
Computer Center nearby --- a cool little shop that's decorated with
archaic technology ranging from a mammoth slide rule to a gizmo that
computes square roots using air pressure. He gave me the 100-megaparsec
cube as a present, and it's great! It's lit up from below, and it shows
the filaments, sheets and superclusters of galaxies that reign supreme
at this distance scale. 100 megaparsecs is about 300 million light
years, so this view is a bit bigger than the previous picture:
\[\href{http://www.bathsheba.com/crystal/largescale/}{\includegraphics[max width=0.65\linewidth]{../images/largescale_movie2.png}}\]

David says Grossman's model of the Milky Way is also nice: it takes into
account the latest research, which shows our galaxy is a ``barred''
spiral! You can see the bar in the middle here:
\[\href{http://www.spitzer.caltech.edu/Media/mediaimages/sig/sig05-010.shtml}{\includegraphics[max width=0.65\linewidth]{../images/milky_way_bar.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  R. Hurt, NASA/JPL-Caltech, ``Milky Way Bar'',
  \texttt{http://www.spitzer.caltech.edu/Media/mediaimages/sig/sig05-010.shtml}
\end{enumerate}

If you really have money to burn, Grossman has also made nice sculptures
of mathematical objects like the 24-cell, the 600-cell and Schoen's
gyroid --- a triply periodic minimal surface that chops 3-space into two
parts:
\[\href{http://www.bathsheba.com/math/gyroid/gyroid_hex.jpg}{\includegraphics[max width=0.65\linewidth]{../images/gyroid_hex.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Bathsheba Grossman, Mathematical models,
  \texttt{http://www.bathsheba.com/math/}
\end{enumerate}

However, the great thing about the web is that lots of beautiful stuff
is free --- like these \emph{pictures} of the gyroid:
\[\href{http://www.bathsheba.com/math/gyroid/gyroid3q.jpg}{\includegraphics[max width=0.65\linewidth]{../images/gyroid3q.jpg}}\]

I explained the 24-cell and 600-cell in
\protect\hyperlink{week155}{``Week 155''}. So, let me explain the gyroid
--- then I need to start cooking up a Christmas eve dinner!

A ``minimal surface'' is a surface in ordinary 3d space that can't
reduce its area by changing shape slightly. You can create a minimal
surface by building a wire frame and then creating a soap film on it. As
long as the soap film doesn't actually enclose any air, it will try to
minimize its area --- so it will end up being a minimal surface.

If you make a minimal surface this way, it will have edges along the
wire frame. A minimal surface without edges is called ``complete''. For
a long time, the only known complete minimal surfaces that didn't
intersect themselves were the plane, the catenoid, and the helicoid. You
get a ``catenoid'' by taking an infinitely long chain and letting it
hang to form a curve called a ``catenary''; then you use this curve to
form a surface of revolution, which is the catenoid:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Eric Weisstein, ``Catenoid'', from \emph{Mathworld},
  \texttt{http://mathworld.wolfram.com/Catenoid.html}
\end{enumerate}

In cylindrical coordinates the catenoid is given by the equation
\[r = c \cosh\left(\frac{z}{c}\right)\] for your favorite constant
\(c\).

A ``helicoid'' is like a spiral staircase; in cylindrical coordinates
it's given by the equation \[z = c\theta\] for some constant \(c\). You
can see a helicoid here --- and see how it can continuously deform into
a catenoid:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Eric Weisstein, ``Helicoid'', from \emph{Mathworld},
  \texttt{http://mathworld.wolfram.com/Helicoid.html}
\end{enumerate}

In 1987 a fellow named Hoffman discovered a bunch more complete
non-self-intersecting minimal surfaces with the help of a computer:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  D. Hoffman, ``The computer-aided discovery of new embedded minimal
  surfaces'', \emph{Mathematical Intelligencer} \textbf{9} (1987),
  8--21.
\end{enumerate}

Since then people have gotten good at inventing minimal surfaces. You
can see a bunch here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  GRAPE (Graphics Programming Environment), ``Surface overview'',
  \texttt{http://www-sfb256.iam.uni-bonn.de/grape/EXAMPLES/AMANDUS/bmandus.html}
\item
  GANG (Geometry Analysis Numerics Graphics), ``Gallery of minimal
  surfaces'', \texttt{http://www.gang.umass.edu/gallery/min/}
\end{enumerate}

As you can see, people who work on mininal surfaces like goofy acronyms.
If you look at the pictures, you can also see that a minimal surface
needs to be locally saddle-shaped. More precisely, it has ``zero mean
curvature'': at any point, if it curves one way along one principal axis
of curvature, it has to curve an equal and opposite amount along the
perpendicular axis. Supposedly this was proved by Euler.

If we write this requirement as an equation, we get a second-order
nonlinear differential equation called ``Lagrange's equation'' --- a
special case of the Euler-Lagrange equation we get from any problem in
the variational calculus. So, finding new minimal surfaces amounts to
finding new solutions of this equation. Soap films solve this equation
automatically, but only with the help of a wire frame; it's a lot more
work to find minimal surfaces that are complete.

For the theoretical physicist, minimal surfaces also go by another name:
\emph{strings!} The ``worldsheet'' of a bosonic string is just a
2-dimensional surface in spacetime. The equation governing the string's
motion just says that the area of this surface can't be reduced by
wiggling it slightly. In other words, it's just Lagrange's equation.
There's a big difference between string theory and the theory of minimal
surfaces, though: in string theory we need to take quantum mechanics
into account! (Another big difference is that spacetime is a Lorentzian
rather than Riemannian manifold, unless we do a trick called ``Wick
rotation''.)

So, bosonic string theory is about the quantum version of soap films -
and ``D-branes'' serve as the wire frames. But if this reminds you of
``spin foams'', I should warn you: there are a few big differences. The
main thing is that spin foams are background-free: they don't live in
spacetime, they \emph{are} spacetime. So, it doesn't make any obvious
sense for them to minimize area, though Smolin has suggested it might
make an \emph{unobvious} kind of sense. All the fun must happen when the
``bubbles'' of a spin foam meet along their edges\ldots{} but we don't
really know how this should work, to create a foam with the right
consistency at large scales.

Anyway\ldots.

There are a lot of minimal surfaces that have periodic symmetry in 3
directions, like a crystal lattice. You can learn about them here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Elke Koch, ``3-periodic minimal surfaces'',
  \texttt{http://staff-www.uni-marburg.de/\textasciitilde{}kochelke/minsurfs.htm}
\end{enumerate}

In fact, they have interesting relations to crystallography:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Elke Koch and Werner Fischer, ``Mathematical crystallography'',
  \texttt{http://www.staff.uni-marburg.de/\textasciitilde{}kochelke/mathcryst.htm\#minsurf}
\end{enumerate}

I guess people can figure out which of the 230 crystal symmetry groups
(or ``space groups'') can arise as symmetries of triply periodic minimal
surfaces, and use this to help classify these rascals. A cool mixture of
group theory and differential geometry! I don't get the impression that
they have completed the classification, though.

Anyway, Schoen's ``gyroid'' is one of these triply periodic minimal
surfaces. Schoen discovered it before the computer revolution kicked in.
He was working for NASA, and his idea was to use it for building
ultra-light, super-strong structures:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  A. H. Schoen, ``Infinite periodic minimal surfaces without
  selfintersections'', \emph{NASA Tech. Note No.} \textbf{D-5541},
  Washington, DC, 1970.
\end{enumerate}

You can learn more about the gyroid here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Eric Weisstein, ``Gyroid'', from \emph{Mathworld},
  \texttt{http://mathworld.wolfram.com/Gyroid.html}
\end{enumerate}

Apparently it's the only triply periodic non-self-intersecting minimal
surface with ``triple junctions''. I'm not quite sure what that means
mathematically, but I can see them in the picture!

I said that soap films weren't good at creating \emph{complete} minimal
surfaces. But actually, people have seen at least approximate gyroids in
nature, made from soap-like films:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  P. Garstecki and R. Holyst, ``Scattering patterns of self-assembled
  gyroid cubic phases in amphiphilic systems'', \emph{J. Chem. Phys.}
  \textbf{115} (2001), 1095--1099.
\end{enumerate}

An ``amphiphilic'' molecule is one that's attracted by water at one end
and repelled by water at the other. For example, the stuff in soap.
Mixed with water and oil, such molecules form membranes, and really
complicated patterns can emerge, verging on the biological. Sometimes
the membranes make a gyroid pattern, with oil on one side and water on
other! It's a great example of how any sufficiently beautiful
mathematical pattern tends to show up in nature somewhere\ldots{} as
Plato hinted in his theory of ``forms''.

People have fun simulating these ``ternary amphiphilic fluids'' on
computers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\item
  Nelido Gonzalez-Segredo and Peter V. Coveney, ``Coarsening dynamics of
  ternary amphiphilic fluids and the self-assembly of the gyroid and
  sponge mesophases: lattice-Boltzmann simulations'', available as
  \href{http://arxiv.org/abs/cond-mat/0311002}{\texttt{cond-mat/0311002}}.
\item
  Pittsburgh Supercomputing Center, ``Ketchup on the grid with
  joysticks'', \texttt{http://www.psc.edu/science/2004/teragyroid/}
\end{enumerate}

The second site above describes the ``TeraGyroid Project'', in which
people used 17 teraflops of computing power at 6 different facilities to
simulate the gyroidal phase of oil/water/amphiphile mixtures and study
how ``defects'' move around in what's otherwise a regular pattern. The
reference to ketchup comes from some supposed relationship between these
ternary amphiphilic fluids and how ketchup gets stuck in the bottle. I'm
not sure ketchup actually \emph{is} a ternary amphiphilic fluid, though!

Hmm. I just noticed a pattern to the websites I've been referring to:
first one about a ``Milky Way bar'', then one about a ``GRAPE'', and now
one about ketchup! I think it's time to cook that dinner.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Daydreaming admiring being\\
Quietly, open the world\\
I hear the time of the starry sky\\
Turning over at midnight}

--- Massive Attack
\end{quote}



\hypertarget{week226}{%
\section{February 10, 2006}\label{week226}}

This month I'm hanging out at CIRM, the ``Centre International de
Recontres Mathematiques'' near Marseille. It's like a little hotel with
a classroom, library and computers, set at the edge of a forest that
borders the region of limestone hills and cliffs called the Calanques on
the coast of the Mediterranean. All they do here is hold conferences:
guests come in, listen to math talks, and eat nice French meals prepared
by the overworked staff.

This February they're having a conference on logic and computation, with
a strong slant towards the use of diagrams:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Geometry of Computation 2006} (Geocal06),
  \texttt{http://iml.univ-mrs.fr/geocal06/}
\end{enumerate}

The first week they had lots of talks on ``higher-dimensional
rewriting'', where you use diagrams to draw ways of rewriting ways of
rewriting ways of\ldots{} rewriting strings of symbols. This is
inherently connected to \(n\)-categories, since \(n\)-categories show up
whenever you consider ``processes that take a process and turn it into
another process'' --- and iterate this notion until your eyes start
bugging out.

The first week was pretty cool, and I hope to talk about it someday. The
second week I've been recovering from the first week. But today I'll
start with some astronomy pictures and some gossip I heard about
cryptography, random sequences, and logic.

Let's zoom in on NGC 1097. Here's a photograph of this galaxy taken in
ultraviolet light. It's a barred spiral galaxy that's colliding with a
smaller elliptical galaxy called NGC 1097A:
\[\href{http://www.galex.caltech.edu/MEDIA/2005-02/images.html}{\includegraphics[max width=0.65\linewidth]{../images/NGC1097_a.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  ``NGC 1097'', photograph taken by the Galaxy Evolution Explorer,
  NASA/JPL-Caltech/SSC,
  \texttt{http://www.galex.caltech.edu/MEDIA/2005-02/images.html}
\end{enumerate}

NGC 1097 is called a ``Seyfert galaxy'' because its center emits lots of
radio waves, but not enough to be considered a full-fledged ``quasar''.
As you can see, the center also emits visible light --- and stuff is
swirling into it!
\[\href{http://www.eso.org/outreach/press-rel/pr-2004/pr-28-04.html#phot-35d-04}{\includegraphics[max width=0.65\linewidth]{../images/NGC1097_b.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  ``Spiral galaxy NGC 1097'', European Southern Observatory,
  \texttt{http://www.eso.org/outreach/press-rel/pr-2004/pr-28-04.html\#phot-35d-04}
\end{enumerate}

Recently the VLT has gotten a really close look at the center of NGC
1097. VLT stands for ``Very Large Telescope''. It's actually four
8-meter telescopes and three smaller auxiliary ones, all of which can
function as a single unit, making it the biggest telescope in the world.
It's run by Europeans as part of the ``European Southern Observatory''
--- but it's based on a mountain called Cerro Paranal in the driest part
of the Atacama Desert in northern Chile, which makes for wonderful
viewing conditions. They had to carry the enormous mirrors across rugged
desert roads to build this observatory:
\[\href{http://www.eso.org/outreach/press-rel/pr-1997/phot-35-97.html}{\includegraphics[max width=0.65\linewidth]{../images/eso_mirror_transport.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  ``Mirror transport'', European Southern Observatory,
  \texttt{http://www.eso.org/outreach/press-rel/pr-1997/phot-35-97.html}
\end{enumerate}

but the view of the night sky up there makes it all worthwhile:
\[\href{http://www.eso.org/outreach/press-rel/pr-2005/images/phot-40b-05-normal.jpg}{\includegraphics[max width=0.65\linewidth]{../images/eso_night_sky.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  ``The southern sky above Paranal'', European Southern Observatory,
  \texttt{http://www.eso.org/outreach/press-rel/pr-2005/images/phot-40b-05-normal.jpg}
\end{enumerate}

and now they have everything they need to take advantage of that
location:
\[\href{http://www.eso.org/outreach/press-rel/pr-2000/phot-14a-00-normal.jpg}{\includegraphics[max width=0.65\linewidth]{../images/eso_VLT.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  ``The VLT array on Paranal Mountain'', European Southern Observatory,
  \texttt{http://www.eso.org/outreach/press-rel/pr-2000/phot-14a-00-normal.jpg}
\end{enumerate}

So, what did they see when they looked at NGC 1097?

In the middle there seems to be a black hole, emitting radiation as
filaments of gas and dust spiral in. This has caused a ring of new stars
to form, which are ionizing the hydrogen in their vicinity:
\[\href{http://www.eso.org/outreach/press-rel/pr-2005/phot-33-05.html}{\includegraphics[max width=0.65\linewidth]{../images/NGC1097_c.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  ``Feeding the monster'', European Southern Observatory
  \texttt{http://www.eso.org/outreach/press-rel/pr-2005/phot-33-05.html}
\end{enumerate}

This ring is about 5,500 light-years across! That sounds big, but the
galaxy is 45 million light-years away, so this is a stunningly detailed
photo. So, we can examine in great detail the process by which black
holes eat galaxies.

Anyway\ldots.

Talking to the logicians and computer scientists here, I'm hearing lots
of gossip that I don't usually get. For example, I just learned that in
2004 there was a successful collision attack on MD5.

Huh? Well, it sounds very technical, but it boils down to this: it means
somebody took a function \(f\) that is known not to be one-to-one, and
found \(x\) and \(y\) such that \(f(x) = f(y)\).

You wouldn't think this would make news! But such functions, called
``cryptographic hash functions'', are used throughout the computer
security business. The idea is that you can take any file and apply the
hash function to compute a string of, say, 128 bits. It's supposed to be
hard to find two files that give the same bit string. This lets you use
the bit string as a kind of summary or ``digest'' of the file. It's also
supposed to be hard to guess the contents of a file from its digest.
This lets you show someone the digest of a file without giving away any
secrets.

MD5 is a popular hash function invented by Ron Rivest in 1991. People
use it for checking the integrity of files: first you compute the digest
of a file, and then, when you send the file to someone, you send the
digest via some separate channel. If they're worried that the file has
been corrupted or tampered with, they compute its digest and compare it
to what you sent them.

People also use MD5 and other hash functions for things like keeping
passwords safe, digital fingerprinting and copy protection. To
illustrate this I'll give a silly example that's easy to understand.

Suppose that this February, Alice proves that
\(\mathrm{P} = \mathrm{NP}\). She wants to take her time writing a nice
paper about it\ldots{} but she wants to be able to show she was the
first to solve this problem, in case anyone else solves it while she's
writing her paper.

To do this, she types up a quick note explaining her solution, feeds
this file into a cryptographic hash function, and posts the resulting
128-bit string to the newsgroup \texttt{sci.math} in an article entitled
``I PROVED \(\mathrm{P} = \mathrm{NP}\)!'' A dated copy appears on
Google for everyone to see.

Now, if Bob solves the problem in July while Alice is still writing up
her solution, Alice can reveal her note. If anyone doubts she wrote her
note back in February, they can apply the cryptographic hash function
and check that yes, the result matches the bit string she posted on
Google!

For this to work, it had better be hard for a nasty version of Alice to
take Bob's solution and cook up some note summarizing it whose hash
function equals some bit string she already posted.

So, it's very good if the hash function is resistant to a ``preimage
attack''. A preimage attack is where for a given \(x\) you have a trick
for finding \(y\) such that \(f(y) = f(x)\).

Nobody has carried out a successful preimage attack on MD5. But, people
have carried out a successful ``collision attack''. This is where you
can cook up pairs \(x\), \(y\) such that \(f(x) = f(y)\). This isn't as
useful, since you don't have control over \emph{either} \(x\) or \(y\).
But, there do exist fiendish schemes for conning people using collision
attacks:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Magnus Daum and Stefan Lucks, `Attacking hash functions by poisoned
  messages: ``The Story of Alice and Her Boss''\,',
  \texttt{http://www.cits.rub.de/MD5Collisions/}
\end{enumerate}

On this webpage you can see a letter of recommendation for Alice and a
letter granting her a security clearance which both have the same MD5
digest! It also explains how Alice could use these to do evil deeds.

For more on cryptographic hash functions and their woes, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  ``Cryptographic hash function'', Wikipedia,
  \texttt{http://en.wikipedia.org/wiki/Cryptographic\_hash}

  Steve Friedl, ``An illustrated guide to cryptographic hashes'',
  \texttt{http://www.unixwiz.net/techtips/iguide-crypto-hashes.html}
\end{enumerate}

Now, if you're a mathematician, the whole idea of a cryptographic hash
function may seem counterintuitive. Just for a change of pace, take
another important cryptographic hash function, called SHA-1. This is a
function that takes any string of up to \(2^{64}\) bits and gives a
digest that's 160 bits long. So, it's just some function
\[f\colon S \to T\] from a set \(S\) of size \(2^{2^{64}+1}\) to a set
\(T\) of size \(2^{160}\).

The first set is vastly bigger. So, the function \(f\) must be far from
one-to-one! So why in the world is anyone surprised, much less dismayed,
when people find a way to generate two elements in the first set that
map to the same element in the second?

One reason is that while the first set is much bigger than the second,
the second is mighty big too!

Suppose you're trying to do a preimage attack. Someone hands you an
element of \(T\) and asks you to find an element of \(S\) that maps to
it. The brute-force approach, where you keep choosing elements of \(S\),
applying the function, and seeing if you get the desired element, will
on average take about \(2^{160}\) tries. That's infeasible.

Note that the huge size of \(S\) is irrelevant here; what matters most
is the size of \(T\).

Or, suppose you're trying a brute-force collision attack. You start
looking through elements of \(S\), trying to find two that map to the
same thing. On average it will take \(2^{80}\) tries --- the square root
of the size of \(T\). That's a lot less, but still infeasible.

(Why so much less? This is called the ``birthday paradox'': it's a lot
easier to find two people at a big party who share the same birthday
than to find someone with the same birthday as the host.)

Of course, a smarter approach is to use your knowledge about the
function f to help you find pairs of elements that map to the same
thing. This is what Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu actually
did in February 2005. Based on trials with watered-down versions of
SHA-1, they argued that they could do a collision attack that would take
only \(2^{69}\) tries instead of the expected \(2^{80}\).

They didn't actually carry out this attack --- with the computer power
they had, it would have taken them 5 million years. But their
theoretical argument was already enough to make people nervous!

And indeed, in August 2005, an improved version of their strategy
reduced the necessary number of tries to \(2^{63}\) --- in other words,
reducing the time to just 78 thousand years, after only a few months of
work.

So, people are getting wary of SHA-1. This is serious, because it's a
widely used government standard. You can see the algorithm for this
function here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  ``SHA hash functions'', Wikipedia,
  \texttt{http://en.wikipedia.org/wiki/SHA\_hash\_functions}
\end{enumerate}

People still hope that good hash functions exist. They hope that if a
function \(f\) is cleverly chosen, \(f(x)\) will depend in a ``seemingly
random'' way on \(x\), so that given \(f(x)\), it's hard to compute some
\(y\) with \(f(y) = f(x)\). People call this a ``one-way function''.

Now we're finally getting to the really interesting math. It takes work
to make the concept of ``one-way function'' precise, but it can be done.
For example, Chapter 2 of this book starts out by defining ``strong''
and ``weak'' one-way functions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Oded Goldreich, \emph{Foundations of Cryptography}, Cambridge U.
  Press, Cambridge, 2004. Older edition available at
  \texttt{http://www.wisdom.weizmann.ac.il/\textasciitilde{}oded/frag.html}
\end{enumerate}

Since you can look them up and they're a bit gnarly, I won't give these
definitions here. But \emph{roughly}, a ``strong one-way function'' is a
function \(f\) that satisfies two conditions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  You can compute \(f\) in ``polynomial time'': in other words, there's
  an algorithm that computes it in a number of steps bounded by some
  polynomial in the length of the input.
\item
  Given some input \(x\), any polynomial-time probabilistic algorithm
  has a very low chance of finding \(y\) with \(f(y) = f(x)\). Here a
  ``probabilistic algorithm'' is just an algorithm equipped with access
  to a random number generator.
\end{enumerate}

Condition 2 is related to the idea of a ``preimage attack''. We allow
the attacker to use a probabilistic algorithm because it seems this can
help them, and a strong one-way function should be able to resist even
really nasty attacks.

Unfortunately, nobody has proved that a one-way function exists!

In fact, the existence of a one-way function would imply that
``\(\mathrm{P}\) does not equal \(\mathrm{NP}\)''. But, proving or
disproving this claim is one of the most profound unsolved math problems
around. If you settle it, you'll get a million dollars from the Clay
Mathematics Institute:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Clay Mathematics Institute, ``P vs NP problem'',
  \texttt{http://www.claymath.org/millennium/P\_vs\_NP/}
\end{enumerate}

But if you prove that \(\mathrm{P}\) \emph{does} equal \(\mathrm{NP}\),
you might make more money by breaking cryptographic hash codes and
setting yourself up as the Napoleon of crime.

The existence of one-way-functions is also closely related to the
existence of ``pseudorandom'' sequences. These are sequences of numbers
that ``seem'' random, but can be computed using deterministic algorithms
--- so they're not \emph{really} random.

To see the relation, recall that a good cryptographic hash code
shouldn't let you guess a message from its digest. So, for example, if
my message is the \textbf{empty string} --- no message at all! --- its
digest should be a pseudorandom sequence.

For example, if we apply SHA-1 to the empty string we get the following
160 bits, written as 40 hexadecimal digits: \textgreater{}
\texttt{SHA1("")\ =\ "da39a3ee5e6b4b0d3255bfef95601890afd80709"} Seems
mighty random to me! But of course it comes out the same every time.

Indeed, if you've ever seen a ``random number generator'' while messing
with computers, it probably was a pseudorandom number generator. There
are a few people who generate random numbers from physical phenomena
like atmospheric noise. In fact, there's a website called
\texttt{random.org} where you can get such numbers for free:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  ``Random.org: random integer generator'', \texttt{http://random.org/}
\end{enumerate}

There's also a website that offers \emph{nonrandom} numbers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  ``NoEntropy.net: your online source for truly deterministic numbers'',
  \texttt{http://www.noentropy.net/}
\end{enumerate}

But joking aside, it's a really tantalizing and famous problem to figure
out what ``random'' means, and what it means for something to ``seem''
random even if it's the result of a deterministic process. These are
huge and wonderful philosophico-physico-mathematical questions with
serious practical implications. Much ink has been spilt regarding these,
and I don't have the energy to discuss them carefully, so I'll just say
some stuff to pique your curiosity, and then give you some references.

We can define a ``random sequence'' to be one that no algorithm can
generate with a success rate better than chance would dictate. By virtue
of this definition, no algorithm can generate truly random sequences.
It's easy to prove that most sequences are random --- but it's also easy
to prove that you can never exhibit any one \emph{particular} sequence
and prove it's random! Chaitin has given a wonderful definition of a
particular random sequence of bits called \(\Omega\) using the fact that
no algorithm can decide which Turing machines halt\ldots{} but this
random sequence is uncomputable, so you can't really ``exhibit'' it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Gregory Chaitin, ``Paradoxes of randomness'', \emph{Complexity}
  \textbf{7} (2002), 14--21. Also available as
  \texttt{http://www.umcs.maine.edu/\textasciitilde{}chaitin/summer.html}
\end{enumerate}

So, true randomness is somewhat elusive. It seems hard to come by except
in quantum mechanics. For example, the time at which a radioactive atom
decays is believed to be \emph{really} random. I'll be pissed off if it
turns out that God (or his henchman Satan) is fooling us by simulating
quantum mechanics with some cheap pseudorandom number generator!

Similarly, we could define a ``pseudorandom sequence'' to be one that no
\emph{efficient} algorithm can generate with a success rate higher than
chance would dictate.

Efficiency is a somewhat vague concept. It's popular to define it by
saying an algorithm is ``efficient'' if it runs in ``polynomial time'':
the time it takes to run is bounded by some polynomial function of the
size of the input data. If the polynomial is
\[p(n) = 1000000000000000 n^{1000000000000000} + 1000000000000000\] most
people wouldn't consider the algorithm efficient, but this definition is
good for proving theorems, and usually in practice the polynomial turns
out to be more reasonable.

A ``pseudorandom number generator'' needs to be defined carefully if we
want to find efficient algorithms that do this job. After all, no
efficient algorithm can produce a sequence that no efficient algorithm
can guess: \emph{it} can always guess what it's going to do!

So, the basic idea is that a pseudorandom number generator should be an
efficient algorithm that maps short truly random strings to long
pseudorandom strings: we give it a short random ``seed'' and it cranks
out a lot of digits that no efficient algorithm can guess with a success
rate higher than chance would dictate.

If you want a more precise definition and a bunch of theorems, try
these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\item
  Oded Goldreich, papers and lecture notes on pseudorandomness,
  available at
  \texttt{http://www.wisdom.weizmann.ac.il/\textasciitilde{}oded/pp\_pseudo.html}

  Luby, M. \emph{Pseudorandomness and Cryptographic Applications}.
  Princeton, NJ: Princeton University Press, 1996.
\end{enumerate}

Unfortunately, nobody has proved that pseudorandom number generators
exist! So, this whole subject is a bit like axiomatic quantum field
theory, or the legendary Ph.D thesis where the student couldn't produce
any examples of the mathematical gadgets he was studying. It's a risky
business proving results about things that might not exist. But in the
case of pseudorandom number generators, the subject is too important not
to take the chance.

One of the most interesting things about pseudorandom number generators
is that they let us mimic probabilistic algorithms with deterministic
ones. In fact there are some nice theorems about this. Let me sketch one
of them for you.

As I already mentioned, a ``probabilistic algorithm'' is just a
deterministic algorithm that's been equipped with access to a (true)
random number generator. Just imagine a computer with the ability to
reach out and flip a coin when it wants to. A problem is said to be in
``\(\mathrm{BPP}\)'' --- ``bounded-error probabilistic polynomial time''
--- if you can find polynomial-time probabilistic algorithms that solve
this problem with arbitrarily high chance of success.

It's a fascinating question whether randomness actually helps you
compute stuff. I guess most computer scientists think it does. But, it's
tricky. For example, consider the problem of deciding whether an integer
is prime. Nobody knew how to do this in polynomial time\ldots{} but then
in 1977, Solovay and Strassen showed this problem was in
\(\mathrm{BPP}\). This is one of the results that got people really
excited about probabilistic algorithms.

However, in 2002, Maninda Agrawal, Neeraj Kayal and Nitin Saxena showed
that deciding whether numbers are prime is in \(\mathrm{P}\)! In other
words, it can be solved in polynomial time by a plain old deterministic
algorithm:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Anton Stiglic, ``Primes is in P little FAQ'',
  \texttt{http://crypto.cs.mcgill.ca/\textasciitilde{}stiglic/PRIMES\_P\_FAQ.html}
\end{enumerate}

Is \(\mathrm{BPP} = \mathrm{P}\)? Nobody knows! But if good enough
pseudorandom number generators could be shown to exist, we would have
\(\mathrm{BPP} = \mathrm{P}\), since then we could use these
pseudorandom numbers as a substitute for truly random ones. This is not
obvious, but it was proved by Nisan and Wigderson in 1994.

Here's a great review article that discusses their result:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Luca Trevisian, ``Pseudorandomness and combinatorial constructions'',
  available as
  \href{http://arxiv.org/abs/cs.CC/0601100}{\texttt{cs.CC/0601100}}.
\end{enumerate}

I recommend reading it along with this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Scott Aaronson, ``Is \(\mathrm{P}\) versus \(\mathrm{NP}\) formally
  independent?'', available at
  \texttt{http://www.scottaaronson.com/papers/pnp.pdf} and
  \texttt{http://www.scottaaronson.com/papers/pnp.ps}
\end{enumerate}

This is a delightfully funny and mindblowing crash course on logic. It
starts with a review of first-order logic and GÃ¶del's theorems,
featuring a dialog between a mathematician and the axiom system
\(\mathrm{ZF}+\mathrm{not}(\mathrm{Con}(\mathrm{ZF}))\). Here
\(\mathrm{ZF}\) is the popular Zermelo-Fraenkel axioms for set theory
and \(\mathrm{not}(\mathrm{Con}(\mathrm{ZF}))\) is a statement asserting
that \(\mathrm{ZF}\) is not consistent. Thanks to GÃ¶del's second
incompleteness theorem,
\(\mathrm{ZF}+\mathrm{not}(\mathrm{Con}(\mathrm{ZF}))\) is consistent if
\(\mathrm{ZF}\) is! The mathematician is naturally puzzled by this state
of affairs, but in this dialog, the axiom system explains how it works.

Then Aaronson zips on through Loeb's theorem, which is even weirder than
GÃ¶del's first incompleteness theorem. GÃ¶del's first incompleteness
theorem says that the statement

\begin{quote}
This statement is unprovable in \(\mathrm{ZF}\).
\end{quote}

is not provable in \(\mathrm{ZF}\), as long as \(\mathrm{ZF}\) is
consistent. Loeb's theorem says that the statement

\begin{quote}
This statement is provable in \(\mathrm{ZF}\).
\end{quote}

\emph{is} provable in \(\mathrm{ZF}\).

Then Aaronson gets to the heart of the subject: a history of the
\(\mathrm{P}\) vs. \(\mathrm{NP}\) question. This leads up to an amazing
paper of Razborov and Rudich, which I'll now summarize:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Alexander A. Razborov and Steven Rudich, ``Natural proofs'', in
  \emph{Journal of Computer and System Sciences}, Vol. \textbf{55}, No
  1, 1997, pages 24--35. Also available at
  \texttt{http://www-2.cs.cmu.edu/\textasciitilde{}rudich/papers/natural.ps}
  and \texttt{http://genesis.mi.ras.ru/\textasciitilde{}razborov/int.ps}
\end{enumerate}

The basic point of this paper is that if \(\mathrm{P}\) is not equal to
\(\mathrm{NP}\), as most mathematicians expect, then this fact is hard
to prove! Or, as Aaron more dramatically puts it, this conjecture ``all
but asserts the titanic difficulty of finding its own proof''.

Zounds! But let's be a bit more precise. A Boolean circuit is a gizmo
built of ``\(\mathrm{and}\)'', ``\(\mathrm{or}\)'' and
``\(\mathrm{not}\)'' gates, without any loops. We can think of this as
computing a Boolean function, meaning a function of the form:
\[f\colon \{0,1\}^n \to \{0,1\}\] Razborov and Rudich start by studying
a common technique for proving lower bounds on the size of a Boolean
circuit that computes a given function. The technique goes like this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  Invent some way of measuring the complexity of a Boolean function.
\item
  Show that any Boolean circuit of a certain size can compute only
  functions of complexity less than some amount.
\item
  Show that the function \(f\) has high complexity.
\end{enumerate}

They call this style of proof a ``natural'' proof.

The \(\mathrm{P}\) versus \(\mathrm{NP}\) question can be formulated as
a question about the size of Boolean circuits --- but Razborov and
Rudich show that, under certain assumptions, there is no ``natural''
proof that \(\mathrm{P}\) is not equal to \(\mathrm{NP}\). What are
these assumptions? They concern the existence of good pseudorandom
number generators. However, the existence of these pseudorandom number
generators would follow from the fact that \(\mathrm{P}\) is not equal
to \(\mathrm{NP}\). So, if ``\(\mathrm{P}\) is not equal to
\(\mathrm{NP}\)'' is true, it has no natural proof.

Aaronson says this is the deepest insight into the \(\mathrm{P}\) versus
\(\mathrm{NP}\) question so far. I would like to understand it better
--- I explained it very sketchily because I don't really understand it
yet. Aaronson recommends us to these papers for more details:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\item
  Alexander A. Razborov, ``Lower bounds for propositional proofs and
  independence results in bounded arithmetic'', in \emph{Proceedings of
  ICALP 1996}, 1996, pp.~48--62. Also available at
  \texttt{http://genesis.mi.ras.ru/\textasciitilde{}razborov/icalp.ps}

  R. Raz, ``\(\mathrm{P} \neq \mathrm{NP}\), propositional proof
  complexity, and resolution lower bounds for the weak pigeonhole
  principle'', in \emph{Proceedings of ICM 2002}, Vol. \textbf{III},
  2002, pp.~685--693. Also available at
  \texttt{http://www.wisdom/weizmann.ac.il/\textasciitilde{}ranraz/publication/Pchina.ps}

  S. Buss, ``Bounded arithmetic and propositional proof complexity'', in
  \emph{Logic of Computation}, ed.~H. Schwictenberg, Springer-Verlag,
  1997, pp.~67--122. Also available at
  \href{http://math.ucsd.edu/~sbuss/ResearchWeb/theoria/index.html}{\texttt{http://www.wisdom/weizmann.ac.il/\textbackslash{}\textasciitilde{}ranraz/publication/Pchina.ps}}
\end{enumerate}

(Why don't these guys use the arXiv??)

Also, here are some lecture notes on Boolean circuits that might help:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\tightlist
\item
  Uri Zwick, ``Boolean circuit complexity'',
  \texttt{http://www.math.tau.ac.il/\textasciitilde{}zwick/scribe-boolean.html}
\end{enumerate}

Aaronson wraps up by musing on the possibility that the \(\mathrm{P}\)
versus \(\mathrm{NP}\) question is independent from strong axiom systems
like Zermelo-Fraenkel set theory. It's possible\ldots{} and it's
possible that this is true and unprovable!

So, there is a fascinating relationship between one-way functions,
pseudorandom numbers, and incompleteness --- but it's a relationship
shrouded in mystery\ldots{} and perhaps inevitably so. Perhaps it will
always remain unknown whether this mystery is inevitable\ldots{} and
perhaps this is inevitable too! And so on.

Here's a question for you experts out there: have people studied
GÃ¶del-like self-referential sentences of this form?

\begin{quote}
The shortest proof of this statement has \(n\) lines.
\end{quote}

I hear that people \emph{have} studied ones like

\begin{quote}
The shortest proof that \(0 = 1\) has \(n\) lines.
\end{quote}

and they've proved that the shortest proof of \emph{this} has to keep
getting longer with larger \(n\), as long as one is working in a
sufficiently powerful and consistent axiom system. This is fairly
obvious if you know how GÃ¶del's second incompleteness theorem is
proved\ldots{} but it's possible that some interesting, nonobvious lower
bounds have been proved. If so, I'd like to know!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Here is some discussion with Wolfgang Brand, Allan
Erskine, Scott Aaronson, Aaron Bergman and an entity named tessel. I had
written:

\begin{quote}
Chaitin has given a marvelous definition of a particular random sequence
of bits called \(\Omega\) using the fact that no algorithm can decide
which Turing machines halt\ldots{} but this random sequence is
uncomputable, so you can't really ``exhibit'' it.
\end{quote}

However, Wolfgang Brand points out this paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\tightlist
\item
  Cristian Calude, Michael J. Dinneen, and Chi-Kou Shu, ``Computing a
  glimpse of randomness'', \emph{Experimental Mathematics} \textbf{11}
  (2002), 361--370. Also available at
  \texttt{http://www.cs.auckland.ac.nz/\textasciitilde{}cristian/Calude361\_370.pdf}
\end{enumerate}

where the first 64 bits of \(\Omega\) have been computed. There's no
contradiction, as the paper explains --- but it's fairly surprising!

Next, here is an email from Allan Erskine. As usual I will take the
liberty of numbering references and putting them into my own favorite
format.

Allan Erskine wrote:

\begin{quote}
I enjoyed week 226! Algorithmic complexity was the area I studied
in\ldots{} Your readers might find this an enjoyable read:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{23}
\tightlist
\item
  Leonid Levin, ``The tale of one-way functions'', \emph{Problems of
  Information Transmission} (= Problemy Peredachi Informatsii)
  \textbf{39} (2003), 92--103. Also available as
  \href{http://arxiv.org/abs/cs.CR/0012023}{\texttt{cs.CR/0012023}}.
\end{enumerate}

As for your ``shortest proof of this statement has \(n\) lines''
question, you may have noticed that Chaitin asks a very similar question
about the shortest proofs that a LISP program is ``elegant'' (most
short) and proves a strong incompleteness result with an actual
\(410 + n\) character LISP program! Crazy\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{24}
\tightlist
\item
  Gregory Chaitin, ``Elegant LISP programs'', in \emph{People and Ideas
  in Theoretical Computer Science}, ed.~C. Calude, Springer, Singapore,
  1999, pp.~32--52. Also available at
  \texttt{http://www.cs.auckland.ac.nz/CDMTCS/chaitin/lisp.html}
\end{enumerate}
\end{quote}

I replied by pointing Allan to the following old article, which is
related to the idea of Chaitin's paper:

\begin{quote}
\textbf{From: John Baez\\
Subject: Re: compression, complexity, and the universe\\
Date: 1997/11/20\\
Newsgroups: \texttt{sci.physics.research},
\texttt{comp.compression.research}}\\

Aaron Bergman wrote:

\begin{quote}
The smallest number not expressible in under ten words
\end{quote}

Hah! This, by the way, is the key to that puzzle I laid out: prove that
there's a constant \(K\) such that no bitstring can be proved to have
algorithmic entropy greater than \(K\).

Let me take this as an excuse to say a bit more about this. I won't give
away the answer to the puzzle; anyone who gets stuck can find the answer
in this nice survey:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  Peter Gacs, Lecture notes on descriptional complexity and randomness,
  available at \texttt{http://www.cs.bu.edu/faculty/gacs/}
\end{enumerate}

In my more rhapsodic moments, I like to think of \(K\) as the
``complexity barrier''. The world \emph{seems} to be full of incredibly
complicated structures --- but the constant \(K\) sets a limit on our
ability to \emph{prove} this. Given any string of bits, we can't rule
out the possibility that there's some clever way of printing it out
using a computer program less than \(K\) bits long. The Encyclopedia
Brittanica, the human genome, the detailed atom-by-atom recipe for
constructing a blue whale, or for that matter the entire solar system
--- we are unable to prove that a computer program less than \(K\) bits
long couldn't print these out. So we can't firmly rule out the
reductionistic dream that the whole universe evolved mechanistically
starting from a small ``seed'', a bitstring less than \(K\) bits long.
(Maybe it did!)

So this raises the question, how big is \(K\)?

It depends on ones axioms for mathematics.

Recall that the algorithmic entropy of a bitstring is defined as the
length of the shortest program that prints it out. For any finite
consistent first-order axiom system \(A\) exending the usual axioms of
arithmetic, let \(K(A)\) be the constant such that no bitstring can be
proved, using \(A\), to have algorithmic entropy greater than \(K(A)\).
We can't compute \(K(A)\) exactly, but there's a simple upper bound for
it. As Gacs explains, for some constant \(c\) we have:
\[K(A) < L(A) + 2 \log_2 L(A) + c\] where \(L(A)\) denotes the length of
the axiom system \(A\), encoded as bits as efficiently as possible. I
believe the constant \(c\) is computable, though of course it depends on
details like what universal Turing machine you're using as your
computer.

What I want to know is, how big in practice is this upper bound on
\(K(A)\)? I think it's not very big! The main problem is to work out a
bound on \(c\).
\end{quote}

Next, some email from the man himself: Scott Aaronson!

\begin{quote}
Hi John,

I just read the latest issue of TWF. I'd been waiting a long time for
you to tackle computational complexity --- thanks! :) Here are some
comments and responses that you might find helpful.

It's not known whether \(\mathrm{P}\neq\mathrm{NP}\) implies the
existence of one-way functions (OWF's) --- indeed, there's evidence that
proving such an implication will be hard:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\tightlist
\item
  Adi Akavia, Oded Goldreich, Shafi Goldwasser and Dana Moshkovitz, ``On
  basing one-way functions on \(\mathrm{NP}\)-hardness'', November 22,
  2005, available at
  \texttt{http://theory.csail.mit.edu/\textasciitilde{}akavia/AGGM.pdf}
\end{enumerate}

What's known is that one-way functions exist iff pseudorandom generators
(PRG's) do --- that's a long, gnarly result of Hastad et al.:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{27}
\tightlist
\item
  John Hastad, Russell Impagliazzo, Leonid A. Levin and Michael Luby,
  ``A pseudorandom generator from any one-way function'', available at
  \texttt{http://citeseer.ifi.unizh.ch/hastad99pseudorandom.html}
\end{enumerate}

So when I wrote that Razborov-Rudich illustrates the
``self-referentiality'' of proving \(\mathrm{P}\neq\mathrm{NP}\), really
I meant that it illustrates the self-referentiality of proving that
OWF's and PRG's exist! But most of us believe not only that
\(\mathrm{P}\neq\mathrm{NP}\), but also that OWF's exist, and that all
of these questions are ``morally similar'' anyway\ldots{} :)

You write: ``It's a fascinating question whether randomness actually
helps you compute stuff. I guess most computer scientists think it
does.''

Well, today most of us think that good pseudorandom generators exist,
which (as you pointed out) implies that \(\mathrm{P}=\mathrm{BPP}\).
That's not to say that randomness never helps; it just doesn't provide
more than a polynomial advantage.

Incidentally, it followed already from Andy Yao's work in 1982 that if
REALLY good pseudorandom generators exist, then
\(\mathrm{P}=\mathrm{BPP}\). What Nisan and Wigderson showed in 1994 was
that even if only kinda sorta good PRG's exist, then still
\(\mathrm{P}=\mathrm{BPP}\)!

Since you wrote at length about hash functions like MD5, you might be
interested in the following abstraction of the collision-finding
problem. Suppose we have a two-to-one function
\[f\colon \{0,1\}^n \to \{0,1\}^{n-1},\] which we can only access in a
``black-box'' fashion --- i.e., we can feed it an input and get an
output. The goal is to find distinct \(x\) and \(y\) such that
\(f(x)=f(y)\). Classically, it's easy to see that
\(\sim 2^{\frac{n}{2}}\) accesses to \(f\) are necessary and sufficient
--- that's just the birthday paradox you described. But what if we can
access \(f\) in quantum superposition, to create states like
\[\sum_x \vert x\rangle \vert f(x)\rangle\;\mbox{?}\] In that case, it
turns out that one can combine the birthday paradox with Grover's
quantum search algorithm, to find a collision using
\(\sim2^{\frac{n}{3}}\) accesses to \(f\) instead of
\(\sim2^{\frac{n}{2}}\). But could we do it with \(n^{\mathcal{O}(1)}\)
accesses, or even a \emph{constant} number independent of \(n\)? You
might be surprised that this was open for years!

Probably my best-known result was to show that \(\sim2^{\frac{n}{5}}\)
accesses are needed:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{28}
\tightlist
\item
  Scott Aaronson, ``Quantum lower bound for the collision problem'',
  available as
  \href{http://arxiv.org/abs/quant-ph/0111102}{\texttt{quant-ph/0111102}}.
\end{enumerate}

Subsequently Yaoyun Shi improved that to show that
\(\sim2^{\frac{n}{3}}\) is indeed the right answer:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{29}
\tightlist
\item
  Yauyon Shi, ``Quantum lower bounds for the collision and the element
  distinctness problems'', available as
  \href{http://arxiv.org/abs/quant-ph/0112086}{\texttt{quant-ph/0112086}}.
\end{enumerate}

You ask why theoretical computer scientists don't use the arXiv. The
answer is historical and cultural. Quantum computer scientists like me
\emph{do} post to \texttt{quant-ph}, as a result of hanging around
physicists for so long. But in classical complexity, if you want your
paper to be read, then you (1) put in on your homepage, (2) submit it to
STOC or FOCS, which are the top conferences in the field (and are MUCH
more important than journals), and (3) post it here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{30}
\tightlist
\item
  Electronic Colloquium on Computational Complexity,
  \texttt{http://www.eccc.uni-trier.de/eccc/}
\end{enumerate}

which is our own homegrown arXiv.

I like your finite GÃ¶del statement! Let me restate it as follows:

\[G(n) = \mbox{"This statement has no $\mathrm{ZF}$ proof of at most $n$ symbols."}\]

What can we say? Obviously, if \(\mathrm{ZF}\) is consistent, then
\(G(n)\) has no proof of at most \(n\) symbols. Hence \(G(n)\) is true.
Furthermore, \(G(n)\) has a proof of \(\sim2^n\) symbols. This proof
simply enumerates all proofs of \(\leqslant n\) symbols, and shows that
none of them work.

You might wonder: does \(G(n)\) have a proof of \(n+1\) symbols, or for
that matter \(n^{\mathcal{O}(1)}\) symbols? This turns out to be related
to the main open questions of complexity theory! In particular, if
\(\mathrm{NP}=\mathrm{coNP}\), then \(G(n)\) has a proof of
\(n^{\mathcal{O}(1)}\) symbols. \(\mathrm{NP}=\mathrm{coNP}\) just means
that, whenever a Boolean formula of size \(n\) is unsatisfiable, there's
a proof of that fact of length polynomial in \(n\). Clearly if
\(\mathrm{P}=\mathrm{NP}\) then \(\mathrm{NP}=\mathrm{coNP}\), but the
converse isn't known. The prevailing belief is not only that
\(\mathrm{P}\neq\mathrm{NP}\), but also that
\(\mathrm{NP}\neq\mathrm{coNP}\).

Actually I can say more than that: if \(\mathrm{NE}=\mathrm{coNE}\),
then \(G(n)\) has a proof of \(n^{\mathcal{O}(1)}\) symbols. Here
\(\mathrm{NE}\) is Nondeterministic Exponential-Time, or the
exponential-time analogue of \(\mathrm{NP}\). (See my Complexity Zoo:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{31}
\tightlist
\item
  Scott Aaronson and Greg Kuperberg, ``Complexity Zoo'',
  \texttt{http://qwiki.caltech.edu/wiki/Complexity\_Zoo}
\end{enumerate}

for lots more about this and other classes.) \(\mathrm{coNE}\) is just
the complement of \(\mathrm{NE}\). If \(\mathrm{NP}=\mathrm{coNP}\) then
\(\mathrm{NE}=\mathrm{coNE}\), but again the converse isn't known.

What do these weird exponential classes have to do with \(G(n)\)? The
point is that to describe an integer \(n\) takes only \(\log(n)\)
symbols, not \(n\) symbols. So when we ask for a proof of \(G(n)\) with
at most \(n\) symbols, from ``\(\log(n)\)'s standpoint'' we're actually
asking for an exponentially long proof.

At this point I'll conjecture that I have an ``if and only if''
characterization: if \(G(n)\) has a proof of \(n^{\mathcal{O}(1)}\)
symbols, then \(\mathrm{NE}=\mathrm{coNE}\).

Incidentally, your ``finite GÃ¶del statement'' is closely related to the
Hartmanis-Stearns time hierarchy theorem, which launched computational
complexity in the mid-1960's. The time hierarchy theorem is a finite
version of Turing's undecidability theorem, where instead of asking
whether a given Turing machine ever halts, you ask whether it halts
after at most \(T\) steps. Solving this problem turns out to take
slightly more than \(T\) steps. So in particular, you can solve more
problems in \(n^2\) time than in \(n\) time, more in \(n^3\) time than
in \(n^2\) time, and so on.

Let me know if you have other questions.

Best,\\
Scott\\
\end{quote}

Next, here is my reply to a post on \texttt{sci.physics.research} from a
mysterious entity named tessel\ldots{} again, I'll edit it a bit:

\begin{quote}
tessel@um.bot wrote:

\begin{quote}
On Sat, 11 Feb 2006, John Baez mentioned that md5sum was ``broken''
about a year ago. I just wanted to add:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  If I am not mistaken, sha-1 and md5sum are different algorithms (IIRC,
  both are known to be insecure).
\end{enumerate}
\end{quote}

Yeah, I said SHA-1 and MD5 are different, and I said they were both
vulnerable to collision attacks. MD5 is very vulnerable in practice,
while the vulnerability of SHA-1 is still theoretical: you'd have to
have big computers or lots of time or another clever idea to exploit it.
(Guess who's likely to have all three!)

For more on this subject, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{32}
\tightlist
\item
  Arjen K. Lenstra, ``Further progress in hashing cryptanalysis'',
  February 26, 2005, available at
  \texttt{http://cm.bell-labs.com/who/akl/hash.pdf}
\end{enumerate}

\begin{quote}
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\setcounter{enumi}{1}
\tightlist
\item
  The latest versions of the open source utility gpg supports a more
  secure algorithm, SHA-512, which AFAIK has not been broken; see
\end{enumerate}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{33}
\tightlist
\item
  Tony Stieber, ``GnuPG Hacks'', Linux Journal, March 2006.
\end{enumerate}

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\setcounter{enumi}{2}
\item
  Even insecure checksum utilities are probably better than none at all.
  Indeed, checking the given example:

\begin{verbatim}
 gpg --print-md md5 letter_of_rec.ps order.ps
 A2 5F 7F 0B 29 EE 0B 39  68 C8 60 73 85 33 A4 B9
 A2 5F 7F 0B 29 EE 0B 39  68 C8 60 73 85 33 A4 B9
\end{verbatim}
\end{enumerate}

Oh NOOOOOO!!! But wait, there's more:

\begin{verbatim}
    gpg --print-md sha1 letter_of_rec.ps order.ps
    0783 5FDD 04C9 AFD2 8304  6BD3 0A36 2A65 16B7 E216
    3548 DB4D 0AF8 FD2F 1DBE  0228 8575 E8F9 F539 BFA6

    gpg --print-md RIPEMD160 letter_of_rec.ps order.ps
    9069 8ACC 6D67 6608 657B  9C26 F047 59A1 DC0E 6CA1
    C1BB DE12 B312 EAAD DD3D  D3B8 4CA1 CB1B BA47 DD13
\end{verbatim}

Ah HAAAAAA!!! Gotcha, Alice!

JB wrote:

\begin{quote}
These are huge and wonderful philosophico-physico-mathematical questions
with serious practical implications.
\end{quote}

You mean the Weyl curvature hypothesis? :-/
\end{quote}

Heh, no --- I mean stuff like whether there's such a thing as a provably
good cryptographic hash code function, or cipher.

\begin{quote}
But while we should never neglect incompleteness entirely, I was
fascinated to discover from my readings a few years back that even first
order logic has its fascinations!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{34}
\tightlist
\item
  Joel Spencer, \emph{The Strange Logic of Random Graphs}, Springer,
  Berlin, 2001.
\end{enumerate}

Here's a thought: ``Everyone knows'' that if on day \(D\), mathematician
\(M\) is studying an example of size \(S\) in class \(C\), he is more
likely to be studying a ``secretly special'' representative \(R\) than a
generic representative \(G\) of size \(S\). Why? Because the secretly
special reps show up in disguise in other areas, and \(M\) was probably
hacking through the jungle from one of those places when he got lost and
ate a poisoned cache.
\end{quote}

Interesting.
\end{quote}

Finally, here's my reply to an article on \texttt{sci.math.research} by
Aaron Bergman:

\begin{quote}
Aaron Bergman wrote:

\begin{quote}
John Baez wrote:

\begin{quote}
In fact, the existence of a one-way function would imply that
``\(\mathrm{P}\) does not equal \(\mathrm{NP}\)''. But, proving or
disproving this claim is one of the most profound unsolved math problems
around.
\end{quote}

This brings to mind a question I was wondering about. Given an
\(\mathrm{NP}\) (-complete?) problem, is it ever possible to engineer a
(partial) differential equation, the solution of which, if known, would
solve the \(\mathrm{NP}\) problem?

I realize this is vague. The general thought was whether a continuous
dynamical system can somehow be more computationally powerful than
something discrete.
\end{quote}

I was very interested in this question back in college, and I wrote a
paper about it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{35}
\tightlist
\item
  John Baez, ``Recursivity in quantum mechanics'', \emph{Trans. Amer.
  Math. Soc.} \textbf{280} (1983), 339--350.
\end{enumerate}

where I showed that the time evolution for bunch of PDE's --- including
the wave equation, the Klein-Gordon equation, and Schroedinger's
equation for finitely many electrically charged point particles --- is
``computable'' in a precise sense.

This seemed interesting at the time because Pour-El and Richards had
claimed that the behavior of the wave equation in 3+1 dimensions was
uncomputable. Their result is correct, but it's an artifact of using a
funny space of solutions! If you use a sensible Hilbert space of
solutions for which time evolution is unitary, then time evolution is
also computable.

Hmm, I see that someone has rediscovered this a few years ago:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{36}
\tightlist
\item
  Klaus Weihrauch and Ning Zhong, ``Is wave propagation computable or
  can wave computers beat the Turing machine?'', \emph{Proc. Lond. Math.
  Soc.} \textbf{85} (2002) 312--332. Abstract available at
  \texttt{http://www.lms.ac.uk/publications/proceedings/abstracts/p1364a.html}
\end{enumerate}

I wonder if they cite my paper.

Anyway, I came away feeling that time evolution for any PDE people
actually care about is computable once you define your concepts
correctly. This is simply a way of saying that you can numerically
compute the solutions to any desired accuracy: it's sort of obvious,
modulo the crucial technical details.

But a more interesting question would be the one you ask, where mere
``computability'' is replaced by something more refined, like
``computable up to a specified accuracy in polynomial time''.
\end{quote}

\textbf{Another addendum:} here's a new article on the problems with
finding a cryptographic hash function that's hard to crack:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{37}
\tightlist
\item
  Susan Landau, ``Find me a hash'', \emph{AMS Notices} \textbf{53}
  (March 2006), 330--332. Also available at
  \texttt{http://www.ams.org/notices/200603/fea-landau.pdf} and
  \texttt{http://www.ams.org/notices/200603/fea-landau.ps}
\end{enumerate}

Landau points out that there's no good mathematical theory backing up
the most popular hash functions. ``There are hash functions based on
hard mathematical problems, making them likely to be secure, but these
hash function are inefficient and not used in practice.''

Next, here's yet another email from Scott Aaronson, dated July 22, 2006:

\begin{quote}
Hi John,

A while ago you asked whether anyone had studied sentences of the form
\[P(n) = \mbox{"This statement has no proof at most $n$ symbols long."}\]
Clearly \(P(n)\) has a proof with \(\sim2^n\) symbols. I emailed you
conjecturing that \(P(n)\) has no proof much shorter than that.

Well, I just came back from a complexity meeting in Prague, where Pavel
Pudlak gave a talk about exactly this sort of question. It turns out
that Harvey Friedman made the same conjecture I did in the 1970's, but
his conjecture was soon shown to be FALSE! Indeed, the number of symbols
needed to prove \(P(n)\) grows only a little bit faster than \(n\)
itself.

Let me sketch why, since I'm guessing this will be as surprising to you
as it was to me.

To prove \(P(n)\), it clearly suffices to show that, if our proof system
is inconsistent, then any proof of \(0=1\) must contain statements with
more than \(n\) symbols. We can do that using a technique invented by
Tarski in the 1930's for ``defining truth'' --- i.e., for recursively
building up a one-to-one correspondence between syntax and semantics.
More concretely, let \(T_k(A)\) be a function that takes as input a
string \(A\) with \(\pounds k\) symbols. We want \(T_k\) to return \(1\)
if \(A\) encodes a true statement and \(0\) otherwise. So, for all
\(k\), \(T_{k+1}( \mbox{"not"} + A ) := 1\) if \(T_k(A)=0\), or \(0\)
otherwise.

\(T_{k+1}( A + \mbox{"and"} + B ) := 1\) if \(T_k(A)=1\) and
\(T_k(B)=1\), or \(0\) otherwise.

\$T\_\{k+1\}( \mbox{"There exists an $x$ such that"} + A ) := 1\$ if
there exists an \(x^*\) such that \(T_k(A[x=x^*])=1\), or \(0\)
otherwise.

and so on. Of course I'm skipping lots of technicalities, like what I
mean by \(A[x=x^*]\).

Anyway, one can prove that, if \(T_n(A)=T_n(B)=1\), and if \(C\) is
derivable from \(A\) and \(B\) via a first-order inference rule, then
\(T_n(C)=1\) as well. Also, if \(A\) is an axiom of our proof system,
then (reasoning \emph{within} the system) \(A\) is true, and hence
\(T_n(A)=1\).

It follows that, as long as we restrict ourselves to statements of
length \(\pounds n\), no contradiction can be proved. Furthermore, we
can formalize the whole argument using only \(\mathcal{O}(n)\) symbols
(or maybe \(\mathcal{O}(n\log(n))\), depending on the proof system).

So what's the catch? Why can't we generalize this argument to statements
of \emph{all} lengths, thereby contradicting the Incompleteness Theorem?
Because, when we examine the proof that the syntax correctly models the
semantics, we'll always find that it involves statements with more than
n quantifiers. I.e. to prove consistency for statements with \(n\)
quantifiers, we need at least \(n+1\) quantifiers.

So, is there any way to salvage a finitary GÃ¶del's Theorem? There
probably is! In particular, consider the following statement: \[
  \begin{aligned}
    P(n,k) =
     &\mbox{``This statement has no proof at most $n$ symbols long,}
     \\&\phantom{\mbox{"}}\mbox{involving statements with at most $k$ quantifiers."}
   \end{aligned}
\] The new conjecture would be that, for every fixed \(k\), \(P(n,k)\)
has no proof with less than \(2^{\mathcal{O}(n)}\) symbols involving
statements with at most \(k\) quantifiers. According to Pavel, this
conjecture is still open. Indeed, it's not even known whether \(P(n)\)
itself has a proof with less than \(2^{\mathcal{O}(n)}\) symbols,
involving statements with at most \(k\) quantifiers for some fixed
\(k\).

Best,\\
Scott
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Anyone who considers arithmetical methods of producing random
digits is, of course, in a state of sin.}

--- John von Neumann
\end{quote}

\begin{quote}
\emph{He is the Napoleon of crime, Watson. He is the organizer of half
that is evil and of nearly all that is undetected in this great city. He
is a genius, a philosopher, an abstract thinker\ldots.}

--- Sherlock Holmes
\end{quote}



\hypertarget{week227}{%
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Today I want to say a bit about physics, and then a bit about about
logic, since that's what I was studying for the last month in Marseille.
But first, the astronomy pictures of the week:
\[\href{http://marsrovers.jpl.nasa.gov/gallery/press/opportunity/20040806a/Sol187B_P2546_L257false-B187R1.jpg}{\includegraphics[max width=0.65\linewidth]{../images/mars_blue_dunes.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Endurance crater's dazzling dunes'', NASA/JPL, available at
  \texttt{http://marsrovers.jpl.nasa.gov/gallery/press/opportunity/20040806a.html}
\end{enumerate}

\[\href{http://marsrovers.jpl.nasa.gov/gallery/press/opportunity/20040806a/Sol187B_P2546_L456-B187R1.jpg}{\includegraphics[max width=0.65\linewidth]{../images/mars_red_dunes.jpg}}\]

On August 4, 2004, the Mars rover called Opportunity took these pictures
of dunes as it entered Endurance Crater. The red one is what we'd
actually see; the blue one is a false-color image designed to bring out
certain details.

Both images show show tendrils of sand less than 1 meter high stretching
from the big dunes toward the rover, and some rocks in the foreground.
The false-color image emphasizes accumulations of millimeter-sized
spheres called ``blueberries'' on the flat parts of the dunes. Here's
what they look like close up:
\[\href{http://marsrover.nasa.gov/newsroom/pressreleases/20040318a.html}{\includegraphics[max width=0.65\linewidth]{../images/blueberries.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  `Mineral in Mars ``berries'' adds to water story', NASA/JPL, available
  at
  \texttt{http://marsrover.nasa.gov/newsroom/pressreleases/20040318a.html}
\end{enumerate}

Thanks to a MÃ¶ssbauer spectroscope aboard the rover, which studies rocks
by firing \(\gamma\) rays at them, we know these blueberries contain a
lot of hematite.

Hematite is made of ferric oxide, Fe\textsubscript{2}O\textsubscript{3},
otherwise known as ``rust''. It's usually formed in the presence of
water. For this and other reasons, it's believed that the blueberries in
Endurance Crater were formed when Mars was wetter than today. An
interesting puzzle is whether they were formed by groundwater leaching
ferric oxide from rocks, or deposited in standing water --- for example,
a lake.

It's amazing how much we can learn from unmanned space probes. And it's
amazing to me how some people want to spend billions on manned missions.
To read more about what SF writers Larry Niven, Joe Haldeman, Greg Bear
and other folks including me think about the merits of manned versus
unmanned space missions, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  ``Meme Therapy: Life from a science fiction point of view'',
  \texttt{http://memetherapy.blogspot.com/2006/03/brain-parade-feature-where-we-pester.html}
\end{enumerate}

But enough space stuff\ldots{} now for some physics!

A strange thing happened around the 1980s. Before that, theorists had
been making rapid and revolutionary progress in understanding the
fundamental laws of physics for almost a century. They kept predicting
shocking new effects that were soon found in actual experiments: radio
waves, nuclear chain reactions, black holes, lasers, antimatter,
neutrinos, quarks,\ldots{} up to and including the W and Z bosons. The
power of human thought never seemed greater.

Since the 1980s, most of the new discoveries in fundamental physics have
come from unexpected observations in astronomy. These observations were
mostly \emph{not} predicted by theorists. The key examples are: dark
matter, dark energy, and neutrino oscillations. The only serious
counterexamples that come to mind are the top quark, discovered in 1995,
and Alan Guth's inflationary cosmology, dreamt up around 1979 and
\emph{partially} confirmed by recent data --- though the jury is still
out.

Theorists are publishing more than ever, but most of their theories are
either not yet testable (string theory, loop quantum gravity) or seem to
have been disproved by experiment (grand unified theory predictions of
proton decay).

It's interesting to meditate on why this change has happened, what it
means, and what will happen next. I spoke about this in Marseille
shortly before coming home to Riverside. You can see my slides here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez, ``Fundamental physics: where we stand today'', lecture at
  at the Faculty of Sciences, Luminy, February 27th, 2006, available at
  \texttt{http://math.ucr.edu/home/baez/where\_we\_stand/}
\end{enumerate}

This talk was for nonphysicists, so it's not very technical. The first
part is a gentle introduction to the laws of physics as we know them.

For more info on dark matter and dark energy, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Varun Sahri, ``Dark matter and dark energy'', available as
  \href{https://arxiv.org/abs/astro-ph/0403324}{\texttt{astro-ph/0403324}}.
\end{enumerate}

If you read this, you'll learn about the ``cuspy core problem'' ---
existing cold dark matter models produce galaxies with a sharp spikes of
high density near their cores, sharper than observed. You'll learn about
``quintessence'', a kind of hypothetical field that some people use to
model dark energy, thus ``explaining'' the accelerating expansion of the
universe. You'll learn about the ``Chaplygin gas'', a hypothetical
substance whose properties interpolate between those of cold dark matter
and dark energy. And, you'll learn about ``phantom energy'' models of
dark energy, which fit the accelerating expansion of the universe quite
nicely now but predict a ``Big Rip'', in which the expansion rate
eventually becomes \emph{infinite}.

In short, you'll see how people are flailing around trying to understand
dark matter and dark energy.

For more on neutrino oscillations, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  K. M. Heeger, ``Evidence for neutrino mass: a decade of discovery'',
  available as
  \href{http://arxiv.org/abs/hep-ex/0412032}{\texttt{hep-ex/0412032}}.
\end{enumerate}

I had a great time in Marseille. The area around there is great for
mathematicians. Algebraists can visit the beautiful nearby city of Aix
--- pronounced ``x''. Logicians will enjoy the dry, dusty island of If
--- pronounced ``eef'', just like a French logician would say it. And
everyone will enjoy the medieval hill town of Les Baux, which looks like
something out of Escher. Here's a
\href{http://math.ucr.edu/home/baez/france_2006}{picture} of it:
\[\includegraphics[max width=0.65\linewidth]{../images/LesBaux_2006_002small2.jpg}\]
Actually the Chateau D'If, on the island of the same name, is where
Edmond Dantes was imprisoned in Alexander Dumas' novel ``The Count of
Monte Cristo''. It's in this formidable fortress that the wise old Abbe
Faria tells Dantes the location of the treasure that later made him
rich.

I guess everyone except me read this story as a kid --- I'm just reading
it now. But how many of you remember that Faria spent his time in prison
studying the works of Aristotle? There's a great scene where Dantes asks
Faria where he learned so much about logic, and Faria replies: ``If ---
and only If!''

That Dumas guy sure was a joker.

Luckily I didn't need to be locked up on a deserted island to learn some
logic in Marseille. There were lots of great talks on this topic at the
conference I attended:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  \emph{Geometry of Computation 2006} (Geocal06),
  \texttt{http://iml.univ-mrs.fr/geocal06/}
\end{enumerate}

For example, Yves Lafont gave a category-theoretic approach to Boolean
logic gates which explains their relation to Feynman diagrams:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Yves Lafont, ``Towards an algebraic theory of Boolean circuits'',
  \emph{Journal of Pure and Applied Algebra} \textbf{184} (2003),
  257--310. Also available at
  \texttt{http://iml.univ-mrs.fr/\textasciitilde{}lafont/publications.html}
\end{enumerate}

and together with Yves Guiraud, Francois Metayer and Albert Burroni, he
gave a detailed introduction to the homology of \(n\)-categories and its
application to rewrite rules. The idea is to study any sort of algebraic
gadget (like a group) by creating an \(n\)-category where the objects
are ``expressions'' for elements in the gadget, the morphisms are ``ways
of rewriting expressions'' by applying the rules at hand, the
\(2\)-morphisms are ``ways of passing from one way of rewriting
expressions to another'' by applying certain ``meta-rules'', and so on.
Then one can use ideas from algebraic topology to study this
\(n\)-category and prove stuff about the original gadget!

To understand how this actually works, it's best to start with Craig
Squier's work on the word problem for monoids. I explained this pretty
carefully back in \protect\hyperlink{week70}{``Week 70''} when I first
heard Lafont lecture on this topic --- it made a big impression on me!
You can read more here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  Yves Lafont and A. Proute, ``Church-Rosser property and homology of
  monoids'', in \emph{Mathematical Structures in Computer Science},
  Cambridge U. Press, 1991, pp.~297--326. Also available at
  \texttt{http://iml.univ-mrs.fr/\textasciitilde{}lafont/publications.html}
\item
  Yves Lafont, ``A new finiteness condition for monoids presented by
  complete rewriting systems (after Craig C. Squier)'', \emph{Journal of
  Pure and Applied Algebra} \textbf{98} (1995), 229--244. Also available
  at
  \texttt{http://iml.univ-mrs.fr/\textasciitilde{}lafont/publications.html}
\end{enumerate}

Then you can go on to the higher-dimensional stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\item
  Albert Burroni, ``Higher dimensional word problem with application to
  equational logic'', \emph{Theor. Comput. Sci.} \textbf{115} (1993),
  43--62. Also available at
  \texttt{http://www.math.jussieu.fr/\textasciitilde{}burroni/}
\item
  Yves Guiraud, ``The three dimensions of proofs'', \emph{Annals of Pure
  and Applied Logic} (in press). Also available at
  \texttt{http://iml.univ-mrs.fr/\%7Eguiraud/recherche/cos1.pdf}
\item
  Francois Metayer, ``Resolutions by polygraphs'', \emph{Theory and
  Applications of Categories} \textbf{11} (2003), 148--184. Available
  online at
  \texttt{http://www.tac.mta.ca/tac/volumes/11/7/11-07abs.html}
\end{enumerate}

I was also lucky to get some personal tutoring from folks including
Laurent Regnier, Peter Selinger and especially Phil Scott. Ever since
\protect\hyperlink{week40}{``Week 40''}, I've been trying to understand
something called ``linear logic'', which was invented by Jean-Yves
Girard, who teaches in Marseille. Thanks to all this tutoring, I think I
finally get it!

To get a taste of what Phil Scott told me, you should read this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Philip J. Scott, ``Some aspects of categories in computer science'',
  \emph{Handbook of Algebra}, Vol. \textbf{2}, ed.~M. Hazewinkel,
  Elsevier, New York, 2000. Available as
  \texttt{http://www.site.uottawa.ca/\textasciitilde{}phil/papers/}
\end{enumerate}

Right now, I'm only up to explaining a microscopic portion of this
stuff. But since the typical reader of This Week's Finds may know more
about physics than logic, maybe that's good. In fact, I'll use this as
an excuse to simplify everything tremendously, leaving out all sorts of
details that a real logician would want.

Logic can be divided into two parts: \textbf{syntax} and
\textbf{semantics}. Roughly speaking, syntax concerns the symbols you
scribble on the page, while semantics concerns what these symbols mean.

A bit more precisely, imagine some kind of logical system where you
write down some theory --- like the axioms for a group, say --- and use
it to prove theorems.

In the realm of syntax, we focus on the form our theory is allowed to
have, and how we can deduce new sentences from old ones. So, one of the
key concepts is that of a \textbf{proof}. The details will vary
depending on the kind of logical system we're studying.

In the realm of semantics, we are interested in gadgets that actually
satisfy the axioms in our theory --- for example, actual groups, if
we're thinking about the theory of groups. Such a gadget is called a
\textbf{model} of the theory. Again, the details vary immensely.

In the realm of syntax, we say a list of axioms \(X\) ``implies'' a
sentence \(P\) if we can prove \(P\) from \(X\) using some deduction
rules, and we write this as \[X \vdash P\] In the realm of semantics, we
say a list of axioms \(X\) ``entails'' a sentence \(P\) if every model
of \(X\) is also a model of \(P\), and we write this as \[X \models P\]
Syntax and semantics are ``dual'' in a certain sense --- a sense that
can be made very precise if one fixes a specific class of logical
systems. This duality is akin to the usual relation between vector
spaces and their duals, or more generally groups and their categories of
representations. The idea is that given a theory \(T\) you can figure
out its models, which form a category \(\mathsf{Mod}(T)\) --- and
conversely, given the category of models \(\mathsf{Mod}(T)\), perhaps
with a little extra information, you can reconstruct \(T\).

A little extra information? Well, in some cases a model of \(T\) will be
a \emph{set} with some extra structure --- for example, if \(T\) is the
theory of groups, a model of \(T\) will be a group, which is a set
equipped with some operations. So, in these cases there's a functor
\[U\colon \mathsf{Mod}(T) \to \mathsf{Set}\] assigning each model its
underlying set. And, you can easily reconstruct \(T\) from
\(\mathsf{Mod}(T)\) \emph{together} with this functor.

This idea was worked out by Lawvere for a class of logical systems
called algebraic theories, which I discussed in
\protect\hyperlink{week200}{``Week 200''}. But, the same idea goes by
the name of ``Tannaka-Krein duality'' in a different context: a Hopf
algebra \(H\) has a category of comodules \(\mathsf{Rep}(H)\), which
comes equipped with a functor
\[U\colon \mathsf{Rep}(H) \to \mathsf{Vect}\] assigning each comodule
its underlying vector space. And, you can reconstruct \(H\) from
\(\mathsf{Rep}(H)\) together with this functor. The proof is even very
similar to Lawvere's proof for algebraic theories!

I gave a bunch of talks in Marseille about algebraic theories, some
related logical systems called PROPs and PROs, and their relation to
quantum theory, especially Feynman diagrams:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  John Baez, ``Universal algebra and diagrammatic reasoning'', available
  as \texttt{http://math.ucr.edu/home/baez/universal/}
\end{enumerate}

I came mighty close to explaining how to compute the cohomology of an
algebraic theory\ldots{} and you can read more about that here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\item
  Mauka Jibladze and Teimuraz Pirashvili, ``Cohomology of algebraic
  theories'', \emph{J. Algebra} \textbf{137} (1991) 253--296.

  Mauka Jibladze and Teimuraz Pirashvili, ``Quillen cohomology and
  Baues-Wirsching cohomology of algebraic theories'',
  \emph{Max-Planck-Institut fÃ¼r Mathematik}, preprint series \textbf{86}
  (2005).
\end{enumerate}

But alas, I didn't get around to talking about the duality between
syntax and semantics. For that Lawvere's original thesis is a good place
to go:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  F. William Lawvere, \emph{Functorial Semantics of Algebraic Theories},
  Ph.D.~thesis, Columbia University, 1963. Also available at
  \texttt{http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html}
\end{enumerate}

Anyway, the stuff Phil Scott told me about was mainly over on the syntax
side. Here categories show up in another way. Oversimplifying as usual,
the idea is to create a category where an object \(P\) is a
\emph{sentence} --- or maybe a list of sentences --- and a morphism
\[f\colon P \to Q\] is a \emph{proof} of \(Q\) from \(P\) --- or maybe
an equivalence class of proofs.

We can compose proofs in a more or less obvious way, so with any luck
this gives a category! And, different kinds of logical system give us
different kinds of categories.

Quite famously, the multiplicative fragment of intuitionistic logic
gives cartesian closed categories. (The ``multiplicative fragment'' is
the portion that deals with ``and'' and ``implies'' but leaves out
``or'' and ``not''. I'm calling it this because ``and'' acts like
multiplication, while ``or'' acts like addition.) Similarly, the
multiplicative fragment of linear logic gives \(*\)-autonomous
categories. Full-fledged intuitionistic logic gives cartesian closed
categories with finite coproducts, and full-fledged linear logic gives
us even fancier kinds of categories! If you want to learn about these
examples, read the handbook article by Phil Scott mentioned above.

One thing that intrigues me is the equivalence relation we need to get a
category whose morphisms are equivalence classes of proofs. In Gentzen's
``natural deduction'' approach to logic, there are various deduction
rules. Here's one: \[
  \AxiomC{$P\vdash Q$}
  \AxiomC{$P\vdash Q'$}
  \BinaryInfC{$P\vdash Q\&Q'$}
  \DisplayProof
\] This says that if \(P\) implies \(Q\) and it also implies \(Q'\),
then it implies \(Q \& Q'\).

Here's another: \[
  \AxiomC{$P\vdash Q \implies R$}
  \UnaryInfC{$P\,\mbox{and}\,Q\vdash R$}
  \DisplayProof
\] And here's a very important one, called the ``cut rule'': \[
  \AxiomC{$P\vdash Q$}
  \AxiomC{$Q\vdash R$}
  \BinaryInfC{$P\vdash R$}
  \DisplayProof
\] If \(P\) implies \(Q\) and \(Q\) implies \(R\), then \(P\) implies
\(R\)!

There are a bunch more\ldots{} and to get the game rolling we need to
start with this: \[P\vdash P\] In this setup, a proof
\(f\colon P \to Q\) looks vaguely like this: \[
  \AxiomC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \UnaryInfC{$P\vdash Q$}
  \DisplayProof
\] The stuff I'm calling ``\(f\)-crud'' is a bunch of steps which use
the deduction rules to get to \(P \vdash Q.\)

Suppose we also we also have a proof \[g\colon Q \to R\] There's a way
to stick \(f\) and \(g\) together to get a proof \[fg\colon P \to R\]
This proof consists of setting the proofs \(f\) and \(g\) side by side
and then using the cut rule to finish the job. So, \(fg\) looks like
this: \[
  \AxiomC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \UnaryInfC{$P\vdash Q$}
  \AxiomC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \UnaryInfC{$Q\vdash R$}
  \BinaryInfC{$P\vdash R$}
  \DisplayProof
\]

Now let's see if composition is associative. Suppose we also have a
proof \[h\colon R \to S\] We can form proofs \[(fg)h\colon P \to S\] and
\[f(gh)\colon P \to S\] Are they equal? No! The first one looks like
this: \[
  \AxiomC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \UnaryInfC{$P\vdash Q$}
  \AxiomC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \UnaryInfC{$Q\vdash R$}
  \BinaryInfC{$P\vdash R$}
  \AxiomC{$h$-crud}
  \noLine\UnaryInfC{$h$-crud}
  \noLine\UnaryInfC{$h$-crud}
  \noLine\UnaryInfC{$h$-crud}
  \UnaryInfC{$R\vdash S$}
  \BinaryInfC{$P\vdash S$}
  \DisplayProof
\] while the second one looks like this: \[
  \AxiomC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \noLine\UnaryInfC{$f$-crud}
  \UnaryInfC{$P\vdash Q$}
  \AxiomC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \noLine\UnaryInfC{$g$-crud}
  \UnaryInfC{$Q\vdash R$}
  \AxiomC{$h$-crud}
  \noLine\UnaryInfC{$h$-crud}
  \noLine\UnaryInfC{$h$-crud}
  \noLine\UnaryInfC{$h$-crud}
  \UnaryInfC{$R\vdash S$}
  \BinaryInfC{$Q\vdash S$}
  \BinaryInfC{$P\vdash S$}
  \DisplayProof
\] So, they're not quite equal! This is one reason we need an
equivalence relation on proofs to get a category. Both proofs resemble
trees, but the first looks more like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,-2);
    \draw[thick] (1,0) to (0.5,-1);
    \draw[thick] (2,0) to (1,-2);
  \end{tikzpicture}
\] while the second looks more like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,-2);
    \draw[thick] (1,0) to (1.5,-1);
    \draw[thick] (2,0) to (1,-2);
  \end{tikzpicture}
\] So, we need an equivalence relation that identifies these proofs if
we want composition to be associative!

This sort of idea, including this ``tree'' business, is very familiar
from homotopy theory, where we need a similar equivalence relation if we
want composition of paths to be associative. But in homotopy theory,
people have learned that it's often better NOT to impose an equivalence
relation on paths! Instead, it's better to form a \emph{weak
\(2\)-category} of paths, where there's a \(2\)-morphism going from this
sort of composite: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,-2);
    \draw[thick] (1,0) to (0.5,-1);
    \draw[thick] (2,0) to (1,-2);
  \end{tikzpicture}
\] to this one: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (1,-2);
    \draw[thick] (1,0) to (1.5,-1);
    \draw[thick] (2,0) to (1,-2);
  \end{tikzpicture}
\] This is called the ``associator''. In our logic context, we can think
of the associator as a way to transform one proof into another.

The associator should satisfy an equation called the ``pentagon
identity'', which I explained back in \protect\hyperlink{week144}{``Week
144''}. However, it will only do this if we let \(2\)-morphisms be
\emph{equivalence classes} of proof transformations.

So, there's a kind of infinite regress here. To deal with this, it would
be best to work with a ``weak \(\omega\)-category'' with

\begin{itemize}
\tightlist
\item
  sentences (or sequences of sentences) as objects,
\item
  proofs as morphisms,
\item
  proof transformations as \(2\)-morphisms,
\item
  transformations of proof transformations as \(3\)-morphisms, \ldots{}
\end{itemize}

and so on. With this, we would never need any equivalence relations: we
keep track of all transformations explicitly. This is almost beyond what
mathematicians are capable of at present, but it's clearly a good thing
to strive toward.

So far, it seems Seely has gone the furthest in this direction. In his
thesis, way back in 1977, he studied what one might call ``weak
cartesian closed \(2\)-categories'' arising from proof theory. You can
read an account of this work here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\item
  R.A.G. Seely, ``Weak adjointness in proof theory'', in \emph{Proc.
  Durham Conf. on Applications of Sheaves}, Springer Lecture Notes in
  Mathematics \textbf{753}, Springer, Berlin, 1979, pp.~697--701. Also
  available at \texttt{http://www.math.mcgill.ca/rags/WkAdj/adj.pdf}

  R.A.G. Seely, ``Modeling computations: a \(2\)-categorical
  framework'', in \emph{Proc. Symposium on Logic in Computer Science
  1987}, Computer Society of the IEEE, pp.~65--71. Also available at
  \texttt{http://www.math.mcgill.ca/rags/WkAdj/LICS.pdf}
\end{enumerate}

Can we go all the way and cook up some sort of \(\omega\)-category of
proofs? Interestingly, while the logicians at \emph{Geocal06} were
talking about \(n\)-categories and the geometry of proofs, the
mathematician Vladimir Voevodsky was giving some talks at Stanford about
something that sounds pretty similar:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Vladimir Voevodsky, lectures on homotopy \(\lambda\) calculus, notice
  at \texttt{http://math.stanford.edu/distinguished\_voevodsky.htm}
\end{enumerate}

Voevodsky has thought hard about \(n\)-categories, and he won the Fields
medal for his applications of homotopy theory to algebraic geometry.

The typed \(\lambda\) calculus is another way of thinking about
intuitionistic logic --- or in other words, cartesian closed categories
of proofs. The ``homotopy \(\lambda\) calculus'' should thus be
something similar, but where we keep track of transformations between
proofs, transformations between transformations between proofs\ldots{}
and so on ad infinitum.

But that's just my guess! Is this what Voevodsky is talking about??? I
haven't managed to get anyone to tell me. Maybe I'll email him and ask.

There were a lot of other cool talks at \emph{Geocal06}, like Girard's
talk on applications of von Neumann algebras (especially the hyperfinite
type \(\mathrm{II}_1\) factor!) in logic, and Peter Selinger's talk on
the category of completely positive maps, diagrammatic methods for
dealing with these maps, and their applications to quantum logic:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Peter Selinger, ``Dagger compact closed categories and completely
  positive maps'', available at
  \texttt{http://www.mscs.dal.ca/\textasciitilde{}selinger/papers.html}
\end{enumerate}

But, I want to finish writing this and go out and have some waffles for
my Sunday brunch. So, I'll stop here!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} I thank Aaron Lauda, Paul Levy and Peter McBurney for
corrections. Jeffrey Winkler points out that ``hematite'' got its name
from the Greek word for ``blood'' because the ancient Greeks thought
these rocks marked the locations of battles where the blood of warriors
had soaked into the rocks. This is appropriate, since Mars is the god of
war!

An anonymous correspondent had this to say about the ``homotopy
\(\lambda\) calculus'':

\begin{quote}
Several years ago, Kontsevich explained to me an idea he had about
``homotopy proof theory'' (or model theory, or logic, \ldots). As soon
as I saw Voevodsky's abstract it reminded me of what Kontsevich said;
perhaps it's a well-known idea in the Russian-Fields-medallist club.
Somewhere I have notes from what Kontsevich said, but as far as I
remember it went roughly like this.

In certain set-ups (such as Martin-LÃ¶f type theory) every statement
carries a proof of itself. Of course, a statement may have many proofs.
If we imagine that all the statements are of the form ``\(A = B\)'',
then what we're saying is that every equals sign carries with it a
\emph{reason} for equality, or proof of equality. If I remember rightly,
Kontsevich's idea was to do a topological analogue, so that every term
(like \(A\) and \(B\)) is assigned a point in some fixed space, and
equalities of terms induce paths between points. There was more, pushing
the idea further, but I forget what.
\end{quote}
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Last week I showed you some pretty pictures of dunes on Mars. This week
I'll talk about dunes called ``barchans'' and their relation to
self-organized criticality. Then I'll say a bit about Lauscher and
Reuter's work on quantum gravity\ldots{} and then I'll beg for help on a
problem involving so-called ``rational tangles''.

But first, a demonstration of my psychic powers.

Take any book off the shelf and look at its \(10\)-digit ISBN number.
Multiply the first digit by 1, the second digit by 2, the third digit by
3 and so on\ldots{} up to the \emph{next to last} digit. Add them up.

Then take this sum and see what it equals \(\mod 11\). At the end of
this article, I'll say what you got.

Okay. Here's a photo of the icy dunes of northern Mars. I love it
because it shows that Mars is a lively place with wind and water:
\[\href{http://themis.asu.edu/features/polardunes}{\includegraphics[max width=0.65\linewidth]{../images/mars_polardunes.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``North polar sand sea'', Mars Odyssey Mission, THEMIS (Thermal
  emission imaging system),
  \texttt{http://themis.mars.asu.edu/features/polardunes}
\end{enumerate}

These dunes, occupying a region the size of Texas, have been sculpted by
wind into long lines with crests 500 meters apart. Their hollows are
covered with frost, which appears bluish-white in this infrared
photograph. The big white spot near the bottom is a hill 100 meters
high.

Where the dunes become sparser --- for example, near that icy hill ---
they break apart into ``barchans''. These are crescent-shaped formations
whose horns point downwind. Barchans are also found on the deserts of
Earth, and surely on many other planets across the Universe. They are
one of several basic dune patterns, an inevitable consequence of the
laws of nature under fairly common conditions.

The upwind slope of a barchan is gentle, while the downwind slope is
between 32 and 34 degrees. This is the ``angle of repose'' for sand -
the maximum angle it can tolerate before it starts slipping down:
\[\href{http://en.wikipedia.org/wiki/Barchan}{\includegraphics[max width=0.65\linewidth]{../images/barchan.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Wikipedia, ``Barchan'', \texttt{http://en.wikipedia.org/wiki/Barchan}
\end{enumerate}

Wind-blown sand accumulates on the front of the barchan, and then slides
down the ``slip face'' on the back.

Barchans gradually migrate in the direction of the wind at speeds of
about 1-20 meters per year, with small barchans moving faster than big
ones. In fact, when they collide, the smaller barchans pass right
through the big ones! So, they act like solitons in some ways.

It would be great to see one of these frosty Martian barchans close up.
We almost can do it now! The European Space Agency's orbiter called Mars
Express took this wonderful closeup, already shown in
\protect\hyperlink{week211}{``Week 211''}:
\[\href{http://www.esa.int/SPECIALS/Mars_Express/SEMLF6D3M5E_1.html}{\includegraphics[max width=0.65\linewidth]{../images/mars_pole_closeup.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  ESA/DLR/FU Berlin (G. Neukum), ``Glacial, volcanic and fluvial
  activity on Mars: latest images'',
  \texttt{http://www.esa.int/SPECIALS/Mars\_Express/SEMLF6D3M5E\_1.html}
\end{enumerate}

However, this is not a barchan --- it's a lot bigger. On top of the
picture we see dunes, but then there's a cliff almost 2 kilometers high
leading down into what may be a volcanic caldera. The white stuff is
ice, while the dark stuff could be volcanic ash.

It's actually a bit surprising that there's enough wind on Mars to
create dunes. After all, the air pressure there is about 1\% what it is
here on Earth! But in fact the wind speed on Mars often exceeds 200
kilometers per hour, with gusts up to 600 kilometers per hour. There are
dust storms on Mars so big they were first seen from telescopes on Earth
long ago. So, wind is a big factor in Martian geology:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  NASA, ``Mars exploration program: dust storms'',
  \texttt{http://mars.jpl.nasa.gov/gallery/duststorms/}
\end{enumerate}

The Mars rover Spirit even got its solar panels cleaned by some dust
devils, and it took some movies of them:
\[\href{http://marsrovers.nasa.gov/gallery/press/spirit/20050819a.html}{\includegraphics[max width=0.65\linewidth]{../images/mars_dust_devil.png}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  NASA, ``Exploration rover mission: dust devils at Gusev, Sol 525'',
  \texttt{http://marsrovers.nasa.gov/gallery/press/spirit/20050819a.html}
\end{enumerate}

Turning to mathematical physics per se, I can't resist pointing out that
sand piles became very fashionable in this subject a while back.

Why? Well, for this I need to explain ``self-organized criticality''.

First, note that when a pile of sand is exactly at its angle of repose,
it will suffer lots of little landslides --- and a few of these will
become big.

The theory of ``critical phenomena'' suggests that in this situation,
the probability that a landslide grows to size \(L\) should satisfy a
power law. In other, it should be proportional to \[\frac{1}{L^c}\] for
some number \(c\) called the ``critical exponent''. At least, this type
of behavior is seen in many other situations where a physical system is
on the brink of some drastic change --- or more precisely, a ``critical
point''.

When a system is not at a critical ponit, we typically see exponential
laws, where the probability of a disturbance of size \(L\) is
proportional to \[\exp\left(-\frac{L}{L_0}\right)\] where \(L_0\) is a
fixed length scale. This means that our system will look qualitatively
different depending how much we zoom in with our microscope. At length
scales shorter than \(L_c\), disturbances are really common, while at
larger length scales they're incredibly rare.

When a system \emph{is} at a critical point, it's self-similar: you can
zoom in or zoom out, and it looks qualitatively the same! It has no
specific length scale. This is what the power law says.

Here's a good place to learn the basics of power laws and
self-similarity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Manfred R. Schroeder, \emph{Fractals, Chaos, Power Laws}, W. H.
  Freeman, New York, 1992.
\end{enumerate}

What makes sand dunes interesting is that as they seem to \emph{enjoy}
living on the brink of danger. As the wind blows, they heap up until
their slip face is right at the angle of repose\ldots{} ready for
landslides!

This is the idea of ``self-organized criticality'': some physical
systems seem to spontaneously bring themselves towards critical points,
without any need for us to tune their parameters to special values.

The paper that introduced this idea came out in 1987:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Per Bak, Chao Tang and Kurt Wiesenfeld, ``Self-organized criticality:
  an explanation of \(1/f\) noise'', \emph{Phys. Rev.~Lett.} \textbf{59}
  (1987) 381--384.
\end{enumerate}

They came up with a simple model of a sand pile that exhibits
self-organized criticality. In the words of Jos Thijssen:

\begin{quote}
Bak and co-workers modelled the sand pile as a regular array of columns
consisting of cubic sand grains. Addition of new grains is simply
performed by selecting a column at random and increasing its height by
one. If the column then exceeds its neighbours in height more than some
threshold, it will ``collapse'': it will lose some grains which are
distributed evenly over its nearest neighbours. As this collapse alters
the height differences involving those neighbours, there is the
possibility that they collapse in turn. A cascade process sets in until
all height differences are below the threshold. The size of such an
avalanche is defined as the number of sand grains sliding as a result of
a single grain of sand being added to the pile.

What is so interesting about the sand pile model? It turns out that the
sides of the sand pile acquire a specific slope, which is such that the
distribution of avalanches as function of size scales as a power law.
Power laws indicate the absence of scale and indeed avalanches on all
scales are sustained for the equilibrium slope. If the slope is changed
artificially from its equilibrium value, the distribution is no longer a
power law, but it will have an intrinsic scale (e.g.~exponential). Power
laws and absence of scale are the signature of a system being critical.
Because the sand pile tends to adjust the slope of its sides until the
power law scaling sets in, the criticality is called ``self-organised''.
\end{quote}

If your computer runs Java applets, you can play with Thijssen's
simulation sand pile and see the avalanches yourself:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Jos Thijssen, ``The sand pile model and self organised criticality'',
  \texttt{http://www.tn.tudelft.nl/tn/People/Staff/Thijssen/sandexpl.html}
\end{enumerate}

And here's a cellular automaton sand pile you can play with:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Albert Schueller, ``Cellular automaton sand pile model'',
  \texttt{http://schuelaw.whitman.edu/JavaApplets/SandPileApplet/}
\end{enumerate}

This one is only \(2\)-dimensional, so the avalanches are less dramatic,
but you can have some fun using the mouse to build structures that
impede the motion of sand.

Like a speck of sand landing at the right place at the right time, the
original paper of Bak \emph{et al} started a huge landslide of work on
self-organized criticality, some of which has been popularized here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Per Bak, \emph{How Nature Works: The Science of Self-Organized
  Criticality}, Copernicus, New York, 1996.
\end{enumerate}

As you can guess from the title ``How Nature Works'', some people got a
little carried away with the importance of self-organized criticality.
Then there was a kind of backlash, just as happened with fractals,
chaos, and catastrophe theory. These are all perfectly respectable and
interesting topics in mathematical physics that suffered from being
oversold. People are always eager to find the secret key that will
unlock all the mysteries of the universe. So, if some new idea seems
very general, people will run around trying to unlock all the mysteries
of the universe with it --- and become sorely disappointed when it only
unlocks \emph{some}.

I'd be interested to see how well mathematical physicists can model
actual sand dunes. These display an interesting complexity of behavior,
as the pictures here show:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  US Army Corps of Engineers, ``Dunes'',
  \texttt{http://www.tec.army.mil/research/products/desert\_guide/lsmsheet/lsdune.htm}
\end{enumerate}

I've only looked at a few papers on the subject, all dealing with
barchans:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  V. Schwaemmle and H. J. Herrmann, ``Solitary wave behaviour of sand
  dunes'', \emph{Nature} \textbf{426} (Dec.~11, 2003), 619--620.
\item
  Klaus Kroy, Gerd Sauermann, and Hans J. Hermann, ``Minimal model for
  sand dunes'', \emph{Phys. Rev.~Lett.} \textbf{88} (2002), 054301. Also
  available at
  \href{http://arxiv.org/abs/cond-mat/0101380}{\texttt{cond-mat/0101380}}.
\item
  H. Elbelrhiti, P. Claudin, and B. Andreotti, ``Field evidence for
  surface-wave-induced instability of sand dunes'', \emph{Nature}
  \textbf{437} (Sep.~29, 2005), 720--723.
\end{enumerate}

The first paper describes how barchans pass through each other like
solitons, simulating them by an equation that's described in the second
one. (By the way, the term ``minimal model'' in the title of the second
paper is not being used in the sense familiar in conformal field
theory!)

The third paper reports the results of a 3-year field study: in reality,
barchans are not stable, and big ones (called ``megabarchans'') can
break apart into smaller ``elementary barchans''.

If you're more interested in Mars than the mathematical physics of sand
dunes, you'll be happy to hear that Google has just moved to drastically
expand its customer base by introducing ``Google Mars'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  ``Google Mars'', \texttt{http://www.google.com/mars/}
\end{enumerate}

Using this you can explore many features of Mars, including its dunes.

I'm getting a little tired out, but there's one thing I've been meaning
to mention for a while. It's actually related to renormalization, which
is secretly the same subject as this ``critical point'' business I just
mentioned. But, it's not about sand piles --- it's about quantum
gravity!

In \protect\hyperlink{week222}{``Week 222''} I spoke about the work of
Lauscher and Reuter, who claim to have found evidence for an ultraviolet
fixed point in quantum gravity without matter. In other words, as you
zoom in closer and closer, they claim quantum gravity without matter
acts more and more like some fixed theory. This would be big news: it
would suggest that gravity without matter is a sensible theory, contrary
to what everyone in string theory says!

Not surprisingly, the string theorist Jacques Distler examined Lauscher
and Reuter's work with a critical eye. And, he wrote up a nice
explanation of the problems with their work:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Jacques Distler, ``Unpleasantness'',
  \texttt{http://golem.ph.utexas.edu/\textasciitilde{}distler/blog/archives/000648.html}
\end{enumerate}

Briefly, the problem is that Lauscher and Reuter make a drastic
approximation. They start with the ``exact renormalization group
equation'', which is a beautiful thing: it says how a Lagrangian for a
field theory at one length scale gives rise to an effective Lagrangian
for the same theory at a larger length scale. However, then they
truncate the incredibly complicated formula for a fully general
Lagrangian, restricting to Lagrangians with only an Einstein-Hilbert
term and a cosmological constant. Like Distler, I see no reason to think
this approximation is valid. So, their claimed ultraviolet fixed point
could be an artifact of their method.

Whether it's worth going further and checking this by considering a
slightly less brutal approximation, using Lagrangians with a few more
terms, is a matter of taste. Distler doesn't think so. I hope Lauscher
and Reuter do. If they don't, we may never know for sure what happens. I
think it's actually rather amazing that they get an fixed point with
their brutal approximation, instead of coupling constants that run to
infinity or zero, which is what I would have naively expected. But who
knows? Maybe this is easily understood if you think hard enough.

Today I was also going to talk about the \(3\)-strand braid group, the
group \(\mathrm{PSL}(2,\mathbb{Z})\), and rational tangles, but now I
don't have the energy. So instead, I'll just put out a request for help!

There's a wonderful game invented by John Conway called ``rational
tangles''. Here's how it works. It involves two players and a referee.

The players, call them \(A\) and \(B\), start by facing each other and
holding ropes in each hand connecting them together like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node[label=above:{$A$}]{} to (0,-2) node[label=below:{$B$}]{};
    \draw[thick] (1.5,0) node[label=above:{$A$}]{} to (1.5,-2) node[label=below:{$B$}]{};
  \end{tikzpicture}
\] This is called ``position \(0\)''. The referee then cries out either
\emph{add one!} or \emph{take the negative reciprocal!}. If the referee
yells \emph{add one!}, player \(B\) has to switch which hand he's using
to hold which rope, making sure to pass the right one over the left,
like this: \[
  \begin{tikzpicture}
    \draw[white] (0,0) node[label={[black]above:{$A$}}]{} to (0,-2) node[label={[black]below:{$B$}}]{};
    \draw[white] (1.5,0) node[label={[black]above:{$A$}}]{} to (1.5,-2) node[label={[black]below:{$B$}}]{};
    \begin{knot}[clip width=5]
      \strand[thick] (0,0)
        to [out=down,in=up] (1.5,-2);
      \strand[thick] (1.5,0)
        to [out=down,in=up] (0,-2);
    \end{knot}
  \end{tikzpicture}
\] This is called ``position \(1\)'', since we started with ``position
\(0\)'' and then did \emph{add one!} But if the referee says \emph{take
the inverse reciprocal!}, both players must cooperate to move all four
ends of the ropes a quarter-turn clockwise, like this: \[
  \begin{tikzpicture}
    \draw[white] (0,0) node[label={[black]above:{$A$}}]{} to (0,-2) node[label={[black]below:{$B$}}]{};
    \draw[white] (1.5,0) node[label={[black]above:{$A$}}]{} to (1.5,-2) node[label={[black]below:{$B$}}]{};
    \begin{knot}[clip width=5]
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=1.5] (1.5,0);
      \strand[thick] (0,-2)
        to [out=up,in=up,looseness=1.5] (1.5,-2);
    \end{knot}
  \end{tikzpicture}
\] This is called ``position \(-1/0\)'', since we started with \(0\) and
then did \emph{take the negative reciprocal!}

The referee keeps crying \emph{add one!} or \emph{take the negative
reciprocal!} in whatever order she feels like, and players \(A\) and
\(B\) keep doing the same sort of thing: either player \(B\) switches
the ropes right over left, or both players rotate the whole tangle a
quarter-turn clockwise. It's actually best if the referee doesn't start
with \emph{take the negative reciprocal!}, since some people refuse to
divide by zero, for religious reasons. But, it's perfectly legal in this
game.

Anyway, after a while the ropes will be in ``position \(p/q\)'' for some
complicated rational number \(p/q\). The'll be all tangled up --- but in
a special way, called a ``rational tangle''.

Then the players have to \emph{undo} the tangling and get back to
``position \(0\)''. They may not remember the exact sequence of moves
that got them into the mess they are in. In fact the game is much more
fun if they \emph{don't} remember. It's best to do it at a party,
possibly after a few drinks.

Luckily, any sequence of \emph{add one!} and \emph{take the negative
reciprocal!} moves the players make that carry their number back to
\(0\), will carry their tangle back to ``position \(0\)''. So they just
need to figure out how to get their number back to \(0\), and the tangle
will automatically untangle itself. That's the cool part! It's a highly
nonobvious theorem due to Conway.

I'm vaguely aware of a few proofs of this fact. As far as I know,
Conway's original proof uses the Alexander-Conway polynomial:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  John Horton Conway, ``An enumeration of knots and links and some of
  their algebraic properties'', in \emph{Computational Problems of
  Abstract Algebra}, ed.~John Leech, Pergamon Press, Oxford, 1970,
  329--358.
\end{enumerate}

There's also a proof by Goldman and Kauffman using the Jones polynomial:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Jay R. Goldman and Louis H. Kauffman, ``Rational tangles'',
  \emph{Advances in Applied Mathematics} \textbf{18} (1997), 300--332.
  Also available at
  \texttt{http://www.math.uic.edu/\textasciitilde{}kauffman/RTang.pdf}
\end{enumerate}

There are also two proofs in here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Louis H. Kauffman and Sofia Lambropoulou, ``On the classification of
  rational tangles'', available as
  \href{http://arxiv.org/abs/math.GT/0311499}{\texttt{math.GT/0311499}}.
\end{enumerate}

But here's what I want to know: is there a proof that makes extensive
use of the group \(\mathrm{PSL}(2,\mathbb{Z})\) and its relation to
topology?

After all, the basic operations on rational tangles are ``adding one''
and ``negative reciprocal'', and these generate all the fractional
linear transformations \[z\mapsto\frac{az+b}{cz+d}\] with \(a,b,c,d\)
integer and \(ad-bc = 1\). The group of these transformations is
\(\mathrm{PSL}(2,\mathbb{Z})\). It acts on rational tangles, and
Conway's theorem says this action is isomorphic to the obvious action of
\(\mathrm{PSL}(2,\mathbb{Z})\) as fractional linear transformations of
the ``rational projective line'', meaning the rational numbers together
with a point at infinity. Since \(\mathrm{PSL}(2,\mathbb{Z})\) has lots
of relations to topology, there should be some proof of Conway's theorem
that \emph{uses} these relations to get the job done.

Does anybody know one?

Finally, the answer to the psychic powers puzzle: if you did the
calculation right, you got the last digit of the book's ISBN number ---
unless your answer was 10, in which case the ISBN number should end in
the letter X.

This trick is called a ``check sum'' or ``check digit'': it's a way to
spot errors. The Universal Product Code, used in those bar codes you see
everywhere, also has a check digit. So do credit cards.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Aaron Lauda and James Given had comments. Lauda
wrote:

\begin{quote}
Usually people describe the scheme in a different way, which is actually
equivalent to what you said. Denote the 10 digit ISBN number as \(N_i\),
for \(1\leqslant i\leqslant 10\). Compute
\[\sum_{i=1}^{10}(11-i)N_i\mod11\tag{$\star$}\] which should give you
zero. That is take the first digit, multiply it by 10, the second by 9,
etc. Add them up and compute the sum \(\mod 11\). You will always get
zero.

Some fun things you might like to add:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  If you make a mistake writing down a single digit in the ISBN then the
  equation (*) will not equal zero.
\item
  The equation (*) may fail to give you zero \(\mod 11\) if you make a
  mistake with two of the digits, but it will never fail if you
  interchange two adjacent digits.
\end{enumerate}

Regards,\\
Aaron\\
\end{quote}

Given wrote:

\begin{quote}
Self-organized criticality (SOC) does in fact involve special settings
of the parameters in a model.

SOC occurs in sandpile models because one adds the sand extremely
slowly, i.e., one grain at a time. Otherwise a critical state is not
obtained. This makes SOC be a special example of dynamical critical
phenomena in the case that the flux variable (here the rate of sand
addition) is set to \(\varepsilon_+\), i.e., an infinitesimal value
greater than zero. This formulation allows SOC to be studied using
quantum field theory.

Of course the model is built around an underlying instability, namely
the fact that sand piles which are too steep will fall down. Also, one
must remove by idealization most sorts of friction between sand grains
which will otherwise blur out the transition. So SOC is no magic
prescription for generating scale invariant phenomena. SOC systems are
``special'' in the way that equilibrium critical points are ``special''.
As you note, theories of this kind are easily oversold among those eager
to believe in magic formulas.

Also, you may have been confusing SOC with a favorite concept of the
chaos/dynamical systems people, namely the ``edge of chaos''. It went
through several incarnations. Each one tried to formally specify the
domain, intermediate between order and chaos, in which complex systems
were most ``interesting''.

Wikipedia summarizes this pretty well. I append the listing for
convenience.

All My Best,\\
Jim Given
\end{quote}

The Wikipedia article is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  ``Edge of chaos'', Wikipedia,
  \texttt{http://en.wikipedia.org/wiki/Edge\_of\_chaos}
\end{enumerate}
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I'm visiting Chicago now. I came just in time for a conference in honor
of Saunders Mac Lane, one of the founders of category theory, who taught
at the University of Chicago for many years and died last year at the
age of 95:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Category Theory and its Applications: A Conference in Memory of
  Saunders Mac Lane,
  \texttt{http://www.math.uchicago.edu/\textasciitilde{}may/MACLANE/}
\end{enumerate}

On Friday there was a memorial service where the friends and family of
Mac Lane spoke about him, and a kind of reminiscence session where
everyone could tell their favorite stories involving him. Then there
were a bunch of math talks, both by people with strong connections to
Mac Lane --- Peter Johnstone, Bill Lawvere, Peter Freyd, Ieke Moerdijk,
Peter May and Steve Awodey --- and by people working on higher
categories and their applications.

My own connection to Mac Lane is tiny. Everything I do uses his work,
but that's true of lots of mathematicians: he discovered so much. Apart
from watching him celebrate his 90th birthday at a category theory
conference in Portugal back in 1999, the best moment happened when I
came to Chicago and gave a talk. He invited me up to his office and we
talked a bit. He told me I should write a book explaining
\(n\)-categories. I promised I would\ldots{} I was too shy to say much.

Now I'm trying to write that book, and I just happen to be staying in
Mac Lane's old office, which makes me feel especially obliged to do it.
This office is on the third floor of the Ryerson Physical Laboratory. It
has a very high ceiling, and one wall is lined with two stacks of metal
bookshelves. You'd need a ladder to reach the top! When I spoke to Mac
Lane in his office, they were all full of books. Alas, they're empty
now.

Next time I'll say a bit about Julie Bergner's talk at the Maclane
memorial conference --- she spoke about derived categories of quiver
representations and quantum groups. But the conference was so intense
and exhausting that first I need to recover by thinking about something
completely different. So, I'll concentrate on last week's puzzle about
rational tangles.

But first: the astronomy picture of the week!

It'll be more fun after a little background. The northern part of Mars
is very different from the rest. It's much smoother, and the altitude is
much less:
\[\href{http://photojournal.jpl.nasa.gov/catalog/?IDNumber=PIA02820}{\includegraphics[max width=0.65\linewidth]{../images/mars_topography.png}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Linda M. V. Martel, ``Ancient floodwaters and seas on Mars'',
  \texttt{http://www.psrd.hawaii.edu/July03/MartianSea.html}
\end{enumerate}

Why is this?

Many scientists believe the north was an ocean during the Hesperian
Epoch, a period of Martian history that stretches from about 3.5 to
about 1.8 billion years ago. In particular, the beautifully named
``Vastitas Borealis'', an enormous plain that covers most of northern
Mars, has textures that may have been formed by an ocean that froze and
then slowly sublimated. (Sublimation is what happens when ice turns
directly into water vapor without actually melting.) Mike Carr and James
Head wrote a paper suggesting that around the end of the Hesperian,
about 30\% of the water on Mars evaporated and left the atmosphere,
drifting off into outer space\ldots{} part of the danger of life on a
planet without much gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  M. H. Carr and J. W. Head, III, ``Oceans of Mars: An assessment of the
  observational evidence and possible fate'', \emph{Journal of
  Geophysical Research} \textbf{108} (2003), 5042.
\end{enumerate}

The rest of the water is now frozen at the poles or lurking underground.

And that brings us to our picture. Here's some ice in a crater in
Vastitas Borealis:
\[\href{http://www.esa.int/esa-mmg/mmg.pl?b=b&type=I&mission=Mars\%20Express&single=y&start=53&size=b}{\includegraphics[max width=0.65\linewidth]{../images/mars_crater_ice.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  ``Water ice in crater at Martian north pole'', European Space Agency
  (ESA),
  \texttt{http://www.esa.int/esaMI/Mars\_Express/SEMGKA808BE\_3.html}
\end{enumerate}

Perhaps this is a remnant of a once mighty ocean!

The picture is close to natural color, but the vertical relief is
exaggerated by a factor of 3. The crater is 35 kilometers wide and 2
kilometers deep. It's incredible how they can get this kind of picture
from satellite photos and lots of clever image processing. I hope they
didn't do \emph{too} much stuff just to make it look pretty.

Next: rational tangles.

In \protect\hyperlink{week228}{``Week 228''}, I asked for help
understanding the connection between rational tangles and the group
\(\mathrm{PSL}(2,\mathbb{Z})\). I got a great reply from Michael
Hutchings, which winds up relating these ideas to the branched double
cover of the sphere by the torus. And, this gives me an excuse to tell
you some stuff I learned from James Dolan about elliptic functions and a
map of the world called ``Peirce's quincuncial''.

So, let's dive in!

Did you ever try to wrap a sphere around itself twice? Mentally, I mean?
Slit it open, grab it, pull it, stretch it, wrap it around itself twice,
and glue the seams back together?

It's not hard. You just take the Riemann sphere --- the complex numbers
together with a point at infinity --- and map it to itself by the
function \[f(z) = z^2\] If you think of the sphere as the surface of the
Earth, with zero at the south pole and infinity as the north pole, this
function doubles the longitude. So, it wraps the sphere around itself
twice!

I hope you're visualizing this.

This function is not quite a ``double cover'', because it's not quite
two-to-one everywhere. Only one point gets mapped to \(z = 0\), namely
itself, and only one point gets mapped to \(z = \infty\), namely itself.
Elsewhere \(f\) is two-to-one.

If you walk once around the north pole or south pole, and then apply the
function \(f\) to your path, you get a path that goes around these
points \emph{twice}. Summarizing these properties, we call the function
a ``branched double cover'' of the sphere by itself, with zero and
infinity as branch points.

Now, how about wrapping a torus twice around a sphere?

This too can be done. It turns out there's a nice branched double cover
of the sphere by the torus, which has four branch points.

To visualize this, first take the surface of the Earth and mold it into
a regular octahedron. There will be six corners: the north pole, the
south pole, the east pole, the west pole, the front pole and the back
pole. Now take the octahedron and unfold it like this: \[
  \begin{tikzpicture}[scale=1.2]
    \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
    \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
    \draw[thick] (1,0) to (1,2);
    \draw[thick] (0,1) to (2,1);
    \node[fill=white] at (0,0) {$S$};
    \node[fill=white] at (1,0) {$F$};
    \node[fill=white] at (2,0) {$S$};
    \node[fill=white] at (0,1) {$W$};
    \node[fill=white] at (1,1) {$N$};
    \node[fill=white] at (2,1) {$E$};
    \node[fill=white] at (0,2) {$S$};
    \node[fill=white] at (1,2) {$B$};
    \node[fill=white] at (2,2) {$S$};
  \end{tikzpicture}
\] We get an interesting map of the world, which was invented in 1876 by
the American mathematician and philosopher C. S. Peirce while he was
working at the U. S. Coast and Geodetic Survey. This map is called
``Peirce's quincuncial'', since when you arrange five dots this way: \[
  \begin{tikzpicture}[scale=0.4]
    \node at (0,0) {$\bullet$};
    \node at (2,0) {$\bullet$};
    \node at (1,1) {$\bullet$};
    \node at (0,2) {$\bullet$};
    \node at (2,2) {$\bullet$};
  \end{tikzpicture}
\] it's called a ``quincunx''. (Somehow this word goes back to the name
of an ancient Roman coin. I don't understand how this pattern is related
to the coin.)

This is how Peirce's quincuncial looks as an actual map:
\[\href{http://www.progonos.com/furuti/MapProj/Normal/ProjConf/projConf.html}{\includegraphics[max width=0.65\linewidth]{../images/quincuncial.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Carlos A. Furuti, ``Conformal projections'',
  \texttt{http://www.progonos.com/furuti/MapProj/Normal/ProjConf/projConf.html}
\end{enumerate}

The cool part is that you can tile the plane indefinitely with this map:
\[
  \begin{tikzpicture}[scale=1.2]
    \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
    \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
    \draw[thick] (1,0) to (1,2);
    \draw[thick] (0,1) to (2,1);
    \node[fill=white] at (0,0) {$S$};
    \node[fill=white] at (1,0) {$F$};
    \node[fill=white] at (2,0) {$S$};
    \node[fill=white] at (0,1) {$W$};
    \node[fill=white] at (1,1) {$N$};
    \node[fill=white] at (2,1) {$E$};
    \node[fill=white] at (0,2) {$S$};
    \node[fill=white] at (1,2) {$B$};
    \node[fill=white] at (2,2) {$S$};
    \begin{scope}[scale=-1,shift={(-4,-2)}]
      \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
      \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
      \draw[thick] (1,0) to (1,2);
      \draw[thick] (0,1) to (2,1);
      \node[fill=white] at (0,0) {$S$};
      \node[fill=white] at (1,0) {$F$};
      \node[fill=white] at (2,0) {$S$};
      \node[fill=white] at (0,1) {$W$};
      \node[fill=white] at (1,1) {$N$};
      \node[fill=white] at (2,1) {$E$};
      \node[fill=white] at (0,2) {$S$};
      \node[fill=white] at (1,2) {$B$};
      \node[fill=white] at (2,2) {$S$};
    \end{scope}
    \begin{scope}[shift={(4,0)}]
      \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
      \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
      \draw[thick] (1,0) to (1,2);
      \draw[thick] (0,1) to (2,1);
      \node[fill=white] at (0,0) {$S$};
      \node[fill=white] at (1,0) {$F$};
      \node[fill=white] at (2,0) {$S$};
      \node[fill=white] at (0,1) {$W$};
      \node[fill=white] at (1,1) {$N$};
      \node[fill=white] at (2,1) {$E$};
      \node[fill=white] at (0,2) {$S$};
      \node[fill=white] at (1,2) {$B$};
      \node[fill=white] at (2,2) {$S$};
    \end{scope}
    \begin{scope}[scale=-1,shift={(-8,-2)}]
      \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
      \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
      \draw[thick] (1,0) to (1,2);
      \draw[thick] (0,1) to (2,1);
      \node[fill=white] at (0,0) {$S$};
      \node[fill=white] at (1,0) {$F$};
      \node[fill=white] at (2,0) {$S$};
      \node[fill=white] at (0,1) {$W$};
      \node[fill=white] at (1,1) {$N$};
      \node[fill=white] at (2,1) {$E$};
      \node[fill=white] at (0,2) {$S$};
      \node[fill=white] at (1,2) {$B$};
      \node[fill=white] at (2,2) {$S$};
    \end{scope}
    \begin{scope}[scale=-1,shift={(-2,0)}]
      \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
      \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
      \draw[thick] (1,0) to (1,2);
      \draw[thick] (0,1) to (2,1);
      \node[fill=white] at (0,0) {$S$};
      \node[fill=white] at (1,0) {$F$};
      \node[fill=white] at (2,0) {$S$};
      \node[fill=white] at (0,1) {$W$};
      \node[fill=white] at (1,1) {$N$};
      \node[fill=white] at (2,1) {$E$};
      \node[fill=white] at (0,2) {$S$};
      \node[fill=white] at (1,2) {$B$};
      \node[fill=white] at (2,2) {$S$};
    \end{scope}
    \begin{scope}[shift={(2,-2)}]
      \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
      \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
      \draw[thick] (1,0) to (1,2);
      \draw[thick] (0,1) to (2,1);
      \node[fill=white] at (0,0) {$S$};
      \node[fill=white] at (1,0) {$F$};
      \node[fill=white] at (2,0) {$S$};
      \node[fill=white] at (0,1) {$W$};
      \node[fill=white] at (1,1) {$N$};
      \node[fill=white] at (2,1) {$E$};
      \node[fill=white] at (0,2) {$S$};
      \node[fill=white] at (1,2) {$B$};
      \node[fill=white] at (2,2) {$S$};
    \end{scope}
    \begin{scope}[scale=-1,shift={(-6,0)}]
      \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
      \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
      \draw[thick] (1,0) to (1,2);
      \draw[thick] (0,1) to (2,1);
      \node[fill=white] at (0,0) {$S$};
      \node[fill=white] at (1,0) {$F$};
      \node[fill=white] at (2,0) {$S$};
      \node[fill=white] at (0,1) {$W$};
      \node[fill=white] at (1,1) {$N$};
      \node[fill=white] at (2,1) {$E$};
      \node[fill=white] at (0,2) {$S$};
      \node[fill=white] at (1,2) {$B$};
      \node[fill=white] at (2,2) {$S$};
    \end{scope}
    \begin{scope}[shift={(6,-2)}]
      \draw[thick] (0,0) to (2,0) to (2,2) to (0,2) to cycle;
      \draw[thick] (1,0) to (2,1) to (1,2) to (0,1) to cycle;
      \draw[thick] (1,0) to (1,2);
      \draw[thick] (0,1) to (2,1);
      \node[fill=white] at (0,0) {$S$};
      \node[fill=white] at (1,0) {$F$};
      \node[fill=white] at (2,0) {$S$};
      \node[fill=white] at (0,1) {$W$};
      \node[fill=white] at (1,1) {$N$};
      \node[fill=white] at (2,1) {$E$};
      \node[fill=white] at (0,2) {$S$};
      \node[fill=white] at (1,2) {$B$};
      \node[fill=white] at (2,2) {$S$};
    \end{scope}
  \end{tikzpicture}
\]
\[\href{http://www.progonos.com/furuti/MapProj/Normal/ProjConf/projConf.html}{\includegraphics[max width=0.65\linewidth]{../images/quincuncial_tiled.jpg}}\]
This gives a branched cover of the sphere by the plane! It has branch
points at the east, west, front and back poles, since walking once
around a point like that on the above map corresponds to walking around
it twice on the actual Earth. This is pretty weird, but Peirce cleverly
located two of these branch points in the Pacific Ocean, one in the
Atlantic, and one in the Indian Ocean.

We can be less extravagant and get a branched cover of the sphere by the
torus if we take the smallest parallelogram whose opposite edges match
up: \[
  \begin{tikzpicture}[scale=1.2]
    \draw[thick] (-2,0) to (0,-2) to (2,0) to (0,2) to cycle;
    \draw[thick] (-1,-1) to (1,-1) to (1,1) to (-1,1) to cycle;
    \draw[thick] (-2,0) to (2,0);
    \draw[thick] (0,-2) to (0,2);
    \draw[thick] (-1,-1) to (1,1);
    \draw[thick] (1,-1) to (-1,1);
    \node[fill=white] at (0,2) {$B$};
    \node[fill=white] at (-1,1) {$E$};
    \node[fill=white] at (0,1) {$N$};
    \node[fill=white] at (1,1) {$W$};
    \node[fill=white] at (-2,0) {$B$};
    \node[fill=white] at (-1,0) {$S$};
    \node[fill=white] at (0,0) {$F$};
    \node[fill=white] at (1,0) {$S$};
    \node[fill=white] at (2,0) {$B$};
    \node[fill=white] at (-1,-1) {$W$};
    \node[fill=white] at (0,-1) {$N$};
    \node[fill=white] at (1,-1) {$E$};
    \node[fill=white] at (0,-2) {$B$};
  \end{tikzpicture}
\] We can curl this into a torus by gluing together the opposite edges.
There's then an obvious function from this torus to the sphere sending
both points labelled ``\(N\)'' to the north pole, both points labelled
``\(S\)'' to the south pole, and so on.

This function is mostly two-to-one, but it's one-to-one at the points
labelled \(E\), \(F\), \(W\), and \(B\). After all, there's just
\emph{one} point of each of these sorts in the above picture after we
glue together the opposite edges. There are \emph{two} copies of any
other sort of point.

So, our function is a branched double cover of the sphere by the torus,
which has four branch points. In fact, this function is quite famous.
It's an example of an ``elliptic function''!

I explained elliptic functions way back in
\protect\hyperlink{week13}{``Week 13''}. Briefly, what we just did
starting with this parallelogram: \[
  \begin{tikzpicture}[scale=1.2]
    \draw[thick] (-2,0) to (0,-2) to (2,0) to (0,2) to cycle;
    \draw[thick] (-1,-1) to (1,-1) to (1,1) to (-1,1) to cycle;
    \draw[thick] (-2,0) to (2,0);
    \draw[thick] (0,-2) to (0,2);
    \draw[thick] (-1,-1) to (1,1);
    \draw[thick] (1,-1) to (-1,1);
    \node[fill=white] at (0,2) {$B$};
    \node[fill=white] at (-1,1) {$E$};
    \node[fill=white] at (0,1) {$N$};
    \node[fill=white] at (1,1) {$W$};
    \node[fill=white] at (-2,0) {$B$};
    \node[fill=white] at (-1,0) {$S$};
    \node[fill=white] at (0,0) {$F$};
    \node[fill=white] at (1,0) {$S$};
    \node[fill=white] at (2,0) {$B$};
    \node[fill=white] at (-1,-1) {$W$};
    \node[fill=white] at (0,-1) {$N$};
    \node[fill=white] at (1,-1) {$E$};
    \node[fill=white] at (0,-2) {$B$};
  \end{tikzpicture}
\] actually works for a parallelogram of any shape. The parallelogram
curls up to give a torus, and we get a map from this torus to the
Riemann sphere, called an ``elliptic function''.

As before, this is a branched double cover with four branch points.
However, where the branch points sit on the sphere depends on the shape
of the parallelogram. By picking the parallelogram carefully, you can
put the branch points wherever you want! Peirce's neat idea was to put
them evenly spaced along the equator --- at the east, front, west and
back poles. This is nice and symmetrical.

It's also especially nice to put the branch points at the vertices of a
regular tetrahedron. I'm not sure, but this may give a map developed by
the cartographer Laurence P. Lee in 1965. There's also a picture of this
on Furuti's webpage:
\[\includegraphics[max width=0.65\linewidth]{../images/triangular_map.jpg}\]
In fact, these two specially nice locations for branch points correspond
to the two most symmetrical lattices in the plane: the square one and
the hexagonal one. I talked about these in
\protect\hyperlink{week125}{``Week 125''} --- they're really important
in the theory of elliptic functions, and even in string theory.

Anyway: for any parallelogram we can make a map of the Earth that tiles
the plane, with tiles shaped like this parallelogram. A cool thing about
these maps is that they're all ``conformal'' --- they preserve angles
except at the branch points. If you want to show off, you express this
by saying ``elliptic functions are complex analytic''.

But now I'm digressing a little. Let's get back on track. What does all
this have to do with rational tangles??

Recall my puzzle from last time. We build rational tangles by starting
with the trivial one, which we call ``zero'' \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
  \end{tikzpicture}
\] and repeatedly doing two operations. The first is a twisting
operation that we call ``adding one'': \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(4.5,0)}]
      \begin{knot}
        \strand[thick] (0,3) to (0,1);
        \strand[thick] (1,3) to (1,1);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
      \begin{knot}[clip width=7]
        \strand[thick] (1,0)
          to[out=down,in=up] (0,-2);
        \strand[thick] (0,0)
          to[out=down,in=up] (1,-2);
      \end{knot}
    \end{scope}
    \node at (7.25,0.5) {$= T+1$};
  \end{tikzpicture}
\] where the box labelled ``\(T\)'' stands for any tangle we've built so
far. The second is a rotation that we call ``negative reciprocal'': \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(5,0)}]
      \begin{knot}
        \strand[thick] (0,3) to (0,1);
        \strand[thick] (1,1)
          to[out=up,in=up,looseness=2] (2,1)
          to (2,-2);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
      \begin{knot}
        \strand[thick] (0,0)
          to[out=down,in=down,looseness=2] (-1,0)
          to (-1,3);
        \strand[thick] (1,0) to (1,-2);
      \end{knot}
    \end{scope}
    \node at (8.75,0.5) {$= -1/T$};
  \end{tikzpicture}
\] Using these tricks we can try to assign a rational number to any
rational tangle. The shocking theorem is that this number is indeed
well-defined, and in fact a complete invariant of rational tangles.

Every operation built from ``adding one'' and ``negative reciprocal''
looks like this: \[z\mapsto\frac{az+b}{cz+d}\] with \(a,b,c,d\) integer
and \(ad-bc = 1\). The group of these transformations is called
\(\mathrm{PSL}(2,\mathbb{Z})\). This group acts on the rational numbers
together with a point at infinity (the ``rational projective line'') by
the formula above. It also acts on rational tangles. The puzzle is to
see why these actions are isomorphic. The proofs I listed in
\protect\hyperlink{week228}{``Week 228''} show it's true; the problem is
to understand what's really going on!

Here's the answer given by Michael Hutching on
\texttt{sci.math.research}:

\begin{quote}
There's a simple topological interpretation of the element of the
rational projective line associated to a rational tangle. I don't know
how to use this to prove the theorem, and I don't know a reference for
it (maybe it is in one of the references you cited). Anyway, regard a
rational tangle as a two-component curve \(C\) in the \(3\)-ball \(B^3\)
whose four boundary points are on the \(2\)-sphere \(S^2\). Consider the
double branched cover of \(B^3\) along \(C\). This is a \(3\)-manifold
\(Y\) whose boundary can be identified with the \(2\)-torus \(T^2\). (In
fact \(Y\) is a solid torus.) The inclusion of \(T^2\) into \(Y\)
induces a map from \(H_1(T^2)\) to \(H_1(Y)\), and the kernel of this
map is a one-dimensional subspace of \(H_1(T^2) = \mathbb{Z}^2\). If I
am not mistaken, this is the element in question of the rational
projective line.
\end{quote}

In other words, we take a \(3\)-dimensional ball and draw a picture of a
rational tangle in it: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,2) to (0,1);
      \strand[thick] (1,2) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-1);
      \strand[thick] (1,0) to (1,-1);
    \end{knot}
    \draw[thick] (0.5,0.5) circle (1.6cm);
  \end{tikzpicture}
\] The boundary of this ball is a sphere with 4 points marked. If we
take a branched double cover of the sphere with these as the branch
points, we get a torus \(T^2\). If we take a branched double cover of
the whole ball with everything along the vertical lines as branched
points, we get a solid doughnut \(Y\) having \(T^2\) as its boundary.

This gets the torus into the game, and also the branched cover I was
talking about. And this gets the group \(\mathrm{PSL}(2,\mathbb{Z})\)
into the game! \(\mathrm{SL}(2,\mathbb{Z})\) is the group of
\(2\times2\) matrices with determinant \(1\). When you mod out by the
matrices \(\pm1\), you get \(\mathrm{PSL}(2,\mathbb{Z})\). But,
topologists know that \(\mathrm{SL}(2,\mathbb{Z})\) is the ``mapping
class group'' of the torus --- the group of orientation-preserving
diffeomorphisms modulo those that can be smoothly deformed to the
identity.

So, something nice is happening.

Even better, the rational first homology group of the torus is
\(\mathbb{Q}^2\) (pairs of rational numbers), and
\(\mathrm{SL}(2,\mathbb{Z})\) acts in the obvious way, by matrix
multiplication: \[
  \left(
    \begin{array}{cc}
      a&b\\c&d
    \end{array}
  \right)
  \colon
  \left(\begin{array}{c}x\\y\end{array}\right)
  \mapsto
  \left(\begin{array}{c}ax+by\\cx+dy\end{array}\right)
\] It therefore acts on the set of \(1\)-dimensional subspaces of
\(\mathbb{Q}^2\). Any such subspace consists of vectors like this:
\[\left(\begin{array}{c}kx\\ky\end{array}\right)\] The subspace is
determined by the ratio \(x/y\), which however could be infinite --- so
it's just a point in the rational projective line. So, we get an action
of \(\mathrm{SL}(2,\mathbb{Z})\) on the rational projective line. Indeed
we get an action of \(\mathrm{PSL}(2,\mathbb{Z})\) since \(\pm1\) act
trivially. And, you can easily check that it's the action we've already
seen: \[
  \left(
    \begin{array}{cc}
      a&b\\c&d
    \end{array}
  \right)
  \colon z \mapsto \frac{az+b}{cz+d}
\] In short: ``projectivizing'' the action of mapping class group of the
torus on its first homology gives the usual action of
\(\mathrm{PSL}(2,\mathbb{Z})\) on the rational projective line.

What we need next is a natural way to assign to any rational tangle a
\(1\)-dimensional subspace of the homology of the torus. And this is
what Hutchings describes: a rational tangle gives a way of mapping the
torus \(T^2\) into the solid torus \(Y\), and this gives a map on
rational homology \[H_1(T^2) \to H_1(Y)\] whose kernel is a
\(1\)-dimensional subspace of \(H_1(T^2)\).

There's more stuff to check\ldots.

Personally I've been trying to think of the mapping class group of the
4-punctured sphere as acting on pictures like this: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,2) to (0,1);
      \strand[thick] (1,2) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-1);
      \strand[thick] (1,0) to (1,-1);
    \end{knot}
    \draw[thick] (0.5,0.5) circle (1.6cm);
  \end{tikzpicture}
\] and show that the resulting action on rational tangles factors
through a homomorphism from this mapping class group to
\(\mathrm{PSL}(2,\mathbb{Z})\). The mapping class group should be
generated by the twist \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(4.5,0)}]
      \begin{knot}
        \strand[thick] (0,3) to (0,1);
        \strand[thick] (1,3) to (1,1);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
      \begin{knot}[clip width=7]
        \strand[thick] (1,0)
          to[out=down,in=up] (0,-2);
        \strand[thick] (0,0)
          to[out=down,in=up] (1,-2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] and the \(90\) degree rotation \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(5,0)}]
      \begin{knot}
        \strand[thick] (0,3) to (0,1);
        \strand[thick] (1,1)
          to[out=up,in=up,looseness=2] (2,1)
          to (2,-2);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
      \begin{knot}
        \strand[thick] (0,0)
          to[out=down,in=down,looseness=2] (-1,0)
          to (-1,3);
        \strand[thick] (1,0) to (1,-2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] and our homomorphism should map these to the famous matrices \[
  T = \left(
    \begin{array}{cc}
      1&1\\0&1
    \end{array}
  \right)
  =\;\mbox{``shear''}
\] and \[
  S = \left(
    \begin{array}{rr}
      0&-1\\1&0
    \end{array}
  \right)
  =\;\mbox{``90 degree rotation''}
\] respectively. If this works, and I could figure out the kernel of
this homomorphism and show it acts trivially on rational tangles, I
think I'd be almost done. But, I haven't had time!

By the way, if this works, there's a beautiful little sideshow where we
use as generators of \(\mathrm{SL}(2,\mathbb{Z})\) not the above
matrices but \(S\) and \[
  ST = \left(
    \begin{array}{rr}
      0&-1\\1&1
    \end{array}
  \right)
\] I explained why these are so great in
\protect\hyperlink{week125}{``Week 125''}. \(S\) is a symmetry of the
square lattice, while \(ST\) is a symmetry of the hexagonal lattice. The
square lattice gives Peirce's quincuncial map, while the hexagonal one
presumably gives Laurence Lee's triangular map!

So, there's some intriguing story about elliptic functions and rational
tangles taking shape before our eyes\ldots. and if I weren't so darn
busy, I'd figure out all the details and write a little paper about it.

Before quitting, there's one more thing I can't resist mentioning. Any
ordered \(4\)-tuple of points \((a,b,c,d)\) in the Riemann sphere gives
a number called its ``cross-ratio'': \[\frac{(a-b)(c-d)}{(a-d)(c-b)}\]
It's a famous fact that you can find a conformal transformation of the
Riemann sphere mapping one ordered \(4\)-tuple to another if and only if
their cross-ratios are equal!

So, we can play a little trick. Given a lattice we can get a branched
double cover of the Riemann sphere as I sketched earlier. Then we can
use the location of the branch points to calculate a cross ratio.

But actually, I'm being a bit sloppy here. To compute a cross ratio from
a lattice, we need some extra information to \emph{order} the
\(4\)-tuple of branch points. In other words, if one of the points \(S\)
is the origin here: \[
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\] and the lattice is taken just big enough so the pattern repeats, we
need enough information to \emph{label} the points \(E\), \(F\), \(W\)
and \(B\). This extra information amounts to ``choosing a basis for the
\(2\)-torsion subgroup of the plane modulo the lattice''. So, the cross
ratio gives a ``modular function of level 2''.

Hmm, this is getting pretty jargonesque! I don't want to explain the
jargon now, but you can read all about this trick and its consquences in
Lecture 9 here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Igor V. Dolgachev, Lectures on modular forms, Fall 1997/8, available
  at
  \texttt{http://www.math.lsa.umich.edu/\textasciitilde{}idolga/modular.pdf}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Andrei Sobolevskii points out that the etymology of
the word ``quincunx'' is explained here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  ``Quincunx'', World Wide Words,
  \texttt{http://www.worldwidewords.org/weirdwords/ww-qui2.htm}
\end{enumerate}

Very briefly, ``quincunx'' was a Latin word for ``five twelfths'', from
\emph{quinque} and \emph{uncia}. The latter word is also the root of the
word ``ounce''. They had a copper coin called the \emph{as} weighing
twelve ounces (!), and the quincunx was apparently not a coin a symbol
for 5/12 of an \emph{as} --- or in other words, 5 ounces of copper.

After reading the above, Peter Dickof clarified and corrected the story:

\begin{quote}
Love ``This Week's Finds'' (though I seldom follow it all) and can't
pass up the opportunity to say something.

The \emph{as} was indeed a unit of currency and also a specific bronze
coin. Early asses (\emph{aes} = bronzes --- hence the AE ligature\ldots)
were full Roman pounds (\emph{librae} --- hence the British pound ``Â£''
sign) of 288 scruples with twelve unciae to the pound. Each uncia was
\textasciitilde27 grams, a modern ounce near enough. Debasement set in
around the time of the first Punic war and accelerated through the
second (Hannibal's), by the end of which an as, still of bronze, weighed
only \textasciitilde30 grams.

Multiples of the as were minted (misnomer, this was a cast currency):
the \emph{decussis} (X asses), \emph{quincussis} (V asses),
\emph{tressis} (III asses), and the \emph{dupondius} (two-pounder). The
asses were marked with the Roman numeral I. Common fractions were the
\emph{semis} (half, marked with an S), \emph{triens} (third, sometimes
called a quatrunx, marked with four ``pellets'' or dots),
\emph{quadrans} (quarter, also \emph{teruncius}, 3 pellets),
\emph{sextans} (sixth, also biunx, 2 pellets), \emph{uncia} and
\emph{semuncia} (usually unmarked).

There \emph{were} quincunx coins (5 pellets), and also a \emph{dextans}
(S + 4 pellets), mostly produced by non-Roman Italians. I have appended
photos of three quincunxes produced in Luceria (see Thurlow and Vecchi
numbers 274, 281). Note that the ``pellets'' are sometimes (not always)
arranged in a quincunx. Luceria (modern Lucera) is 2/3 of the way across
the boot from Neapolis (Naples).

During the second Punic war, after they captured Syracuse and its
treasure (and killed Archimedes), the Romans introduced the silver
\emph{denarius}, \emph{quinarius} and \emph{sesterius}; they were worth
10, 5, 2 1/2 (IIS) asses. The denarius is the origin of the ``d'' for
the British shilling, and was about the size of a dime. Later, circa 141
BC, the value of silver was re-tariffed so that denarii, quinarii and
sestertii became worth 16, 8, 4 asses; the names did not change but the
quinarius and sestertius became rare.

Julius Caesar doubled the pay of a legionary to 300 sestertii per
installment (stipendium), 3 installments per year.

Later yet, during Imperial Rome, the largest bronze/brass coin minted
(no longer a misnomer) was a sestertius; its weight was less than 30
grams by the time of Claudius and falling, always falling\ldots.

Appropriate references are:

--- Michael H. Crawford, \emph{Roman Republican Coinage}, Cambridge
University Press, Cambridge, 1974. (See picture of Quincunx on plate
XVIII.) --- Bradbury K. Thurlow, \emph{Italian Cast Coinage: Italian Aes
Grave}. Italo G. Vecchi, \emph{Italian Aes Rude, Signatum and the Aes
Grave of Sicily}. Printed together by Veechi, London, 1979. --- Herbert
A. Grueber, \emph{A Catalogue of the Coins of the Roman Republic in the
British Museum}, three volumes, reprinted 1970.
\end{quote}

My old pal Squark noted some sloppy language about branched covers.
Here's my reply to what he wrote. I've changed what he wrote a tiny bit,
for cosmetic reasons.

\begin{quote}
Squark wrote:

\begin{quote}
Hello John and everyone!
\end{quote}

Hello! Long time no see! How are you doing?

I had written:

\begin{quote}
There's a simple topological interpretation of the element of the
rational projective line associated to a rational tangle. I don't know
how to use this to prove the theorem, and I don't know a reference for
it (maybe it is in one of the references you cited). Anyway, regard a
rational tangle as a two-component curve \(C\) in the \(3\)-ball \(B^3\)
whose four boundary points are on the \(2\)-sphere \(S^2\). Consider the
double branched cover of \(B^3\) along \(C\).
\end{quote}

Squark wrote:

\begin{quote}
What is ``\emph{the} double branched cover''? Is there a way to choose a
canonical one, or is there only one in this case, for some reason?
\end{quote}

Good point. I hope there's a specially nice one.

To pick a branched cover of \(B^3\) along \(C\), it's necessary and
sufficient to pick a homomorphism from the fundamental group of
\(B^3\setminus C\) to \(\mathbb{Z}/2\). This says whether or not the two
sheets switch places as we walk around \(C\) following some loop in
\(B^3\setminus C\).

\begin{quote}
In the case of a sphere with 4 points removed it should be easy to
check.
\end{quote}

Yes.

\begin{quote}
The fundamental group has 4 generators --- \(a, b, c, d\) (loops around
each of the points) and one relation \(abc = d\) (since we're on a
sphere). Hence, it is freely generated by \(a, b, c\) (say).
\end{quote}

Right, the fundamental group of the four-punctured sphere is the free
group on 3 generators, \(F_3\). I believe the ``specially nice''
homomorphism \[f\colon F_3 \to \mathbb{Z}/2\] is the one that sends each
generator to \(-1\), where I'm thinking multiplicatively:
\[\mathbb{Z}/2 = \{1, -1\}\] One reason this homomorphism is especially
nice is that it also sends \(d = abc\) to \(-1\).

So, if you walk around ANY of the four punctures, the two sheets switch!

This is just what you want for the Riemann surface of an elliptic
integral, as someone else pointed out in another post: there are four
branch points each like the branch point of \(\sqrt{z}\). It's also the
most symmetrical, beautiful thing one can imagine.

Now let's see if and how this branched cover extends to a branched cover
of the ball \(B^3\) with \(C\) (two arcs) removed. The fundamental group
of \(B^3\setminus C\) is the free group on two generators, say \(X\) and
\(Y\).

The inclusion of the \(4\)-punctured sphere in \(B^3\setminus C\) gives
a homomorphism \[g\colon F_3 \to F_2\] as follows: \[
  \begin{aligned}
    a &\mapsto X
  \\b &\mapsto X^{-1}
  \\c &\mapsto Y
  \\d &\mapsto Y^{-1}
  \end{aligned}
\] So, to extend our branched cover, we need to write our homomorphism
\[f\colon F_3 \to \mathbb{Z}/2\] as \[f = hg\] for some homomorphism
\[h\colon F_2 \to \mathbb{Z}/2\] The obvious nice thing to try for \(h\)
is \[
  \begin{aligned}
    X &\mapsto -1
  \\Y &\mapsto -1
  \end{aligned}
\] It works, and it's unique!
\end{quote}

Lee Rudolph adds:

\begin{quote}
Squark wrote:

\begin{quote}
What is ``\emph{the} double branched cover''? Is there a way to choose a
canonical one, or is there only one in this case, for some reason?
\end{quote}

John Baez wrote:

\begin{quote}
Good point. I hope there's a specially nice one.
\end{quote}

In this kind of context, there's always exactly one ``double branched
cover'' that actually \emph{does} branch doubly over every component of
the proposed branch locus. In particular, in the context of a rational
tangle, of course the pair \((B^3,C)\) is homeomorphic to
\((B^2,X)\times I\), where \(X\) is a \(2\)-point set in
\(\mathrm{Int}(B^2)\) and the homeomorphism isn't required to preserve
the tangle structure; so the double branched cover of \(B^3\) branched
over \(C\) is the product of the double branched cover of \(B^2\)
branched over \(X\) with the interval \(I\). Now, because the branching
is \emph{double} at each point of \(X\), and there are \emph{two} points
of \(X\), it follows that the monodromy around the boundary of \(B^2\)
must be trivial, so that we can sew another \(B^2\) to that boundary and
extend the branched double covering over the resulting \(2\)-sphere. But
of course the branched double cover of a \(2\)-sphere over 2 points is
another \(2\)-sphere, the model for the situation being
\(z \mapsto z^2\) as a map of the Riemann sphere to itself. Now remove
the interior of the sewed-on second \(B^2\) from the downstairs \(S^2\),
and correspondingly the interiors of its \emph{two} preimage \(B^2\)s
from the upstairs \(S^2\); you see that the double cover of \(B^2\)
branched over \(X\) is an annulus. (Once you know that, you can see it
directly: take an annulus embedded in \(\mathbb{R}^3\) as the cylinder
where \(x^2+y^2=1\) and \(-1 \leqslant z \leqslant 1\); rotate it by 180
degrees around the \(x\)-axis, and convince yourself that the quotient
space is a \(2\)-disk by considering the fundamental domain consisting
of those points of the annulus with non-negative \(y\)-coordinate.) Then
the double cover of \(B^3\) branched over \(C\) must be a solid torus.
(Again, now that you know this, you can see it directly: take the solid
torus to be a tubular neighborhood in \(\mathbb{R}^3\) of the circle
where \(x^2+y^2=1\) and \(z = 0\), and again rotate by 180 degrees
around the \(x\)-axis to give yourself the ``deck involution''.)

Lee Rudolph
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Well, what if we consider our lives to be formed of a series of
interlocking practices, including the very important ones of maintaining
a thriving family and community? Then we might learn from a practice
with the pedigree of mathematics} --- mankind's longest conversation ---
\emph{about the necessity of certain intellectual and moral virtues.}

---
\href{http://www.dcorfield.pwp.blueyonder.co.uk/2006/04/philosophy-and-politics.html}{David
Corfield}
\end{quote}
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As we've seen in previous weeks, Mars is a beautiful world, but a world
in a minor key, a world whose glory days --- the Hesperian Epoch --- are
long gone, whose once grand oceans are now reduced to windy canyons and
icy dunes. Let's say goodbye to it for now\ldots{} leaving off with this
Martian sunset, photographed by the rover Spirit in Gusev Crater on May
19th, 2005:
\[\href{http://marsrovers.nasa.gov/gallery/press/spirit/20050610a.html}{\includegraphics[max width=0.65\linewidth]{../images/mars_sunset.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``A moment frozen in time'', NASA Mars Exploration Rover Mission,
  \texttt{http://marsrovers.nasa.gov/gallery/press/spirit/20050610a.html}
\end{enumerate}

This week I'll talk about Dynkin diagrams, quivers and Hall algebras.
But first, some cool identities!

My student Mike Stay did computer science before he came to UCR. When he
was applying, he mentioned a result he helped prove, which relates
Goedel's theorem to the Heisenberg uncertainty principle:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  C. S. Calude and M. A. Stay, ``From Heisenberg to Goedel via
  Chaitin'', \emph{International Journal of Theoretical Physics},
  \textbf{44} (2005), 1053--1065. Also available at
  \texttt{http://math.ucr.edu/\textasciitilde{}mike/}
\end{enumerate}

Now, this particular combination of topics is classic crackpot fodder.
People think ``Gee, uncertainty sounds like incompleteness, they're both
limitations on knowledge --- they must be related!'' and go off the deep
end. So I got pretty suspicious until I read his paper and saw it was
\textbf{correct}\ldots{} at which point I \emph{definitely} wanted him
around! The connection they establish is not as precise as I'd like, but
it's solid math.

So, now Mike is here at UCR working with me on quantum logic and quantum
computation using ideas from category theory. In his spare time, he
sometimes fools around with math identities and tries to categorify them
--- see \protect\hyperlink{week184}{``Week 184''} and
\protect\hyperlink{week202}{``Week 202''} if you don't know what that
means. Anyway, maybe that's how he stumbled on this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Jonathan Sondow, ``A faster product for \(\pi\) and a new integral for
  \(\ln(\pi/2)\)'', \emph{Amer. Math. Monthly} \textbf{112} (2005),
  729--734. Also available as
  \href{http://arxiv.org/abs/math.NT/0401406}{\texttt{math.NT/0401406}}.
\end{enumerate}

In this paper, Sondow gives eerily similar formulas for some of our
favorite math constants. First, one for \(e\):
\[e = \left(\frac{2}{1}\right)^{\frac11} \left(\frac{2^2}{1\times3}\right)^{\frac12} \left(\frac{2^3\times4}{1\times3^3}\right)^{\frac13} \left(\frac{2^4\times4^4}{1\times3^6\times5}\right)^{\frac14}\cdots\]
Then, one for \(\pi/2\):
\[\frac{\pi}{2} = \left(\frac{2}{1}\right)^{\frac12} \left(\frac{2^2}{1\times3}\right)^{\frac14} \left(\frac{2^3\times4}{1\times3^3}\right)^{\frac18} \left(\frac{2^4\times4^4}{1\times3^6\times5}\right)^{\frac{1}{16}}\cdots\]
Then one for \(e^\gamma\), where \(\gamma\) is Euler's constant:
\[e^\gamma = \left(\frac{2}{1}\right)^{\frac12} \left(\frac{2^2}{1\times3}\right)^{\frac13} \left(\frac{2^3\times4}{1\times3^3}\right)^{\frac14} \left(\frac{2^4\times4^4}{1\times3^6\times5}\right)^{\frac15}\cdots\]
He also points out Wallis' product for \(\pi/2\) and Pippenger's for
\(e\): \[
  \begin{aligned}
    \frac{\pi}{2}
    &= \left(\frac{2}{1}\right)^{\frac11} \left(\frac{2\times4}{3\times3}\right)^{\frac11} \left(\frac{4\times6\times6\times8}{5\times5\times7\times7}\right)^{\frac11}\cdots
  \\e
    &= \left(\frac{2}{1}\right)^{\frac12} \left(\frac{2\times4}{3\times3}\right)^{\frac14} \left(\frac{4\times6\times6\times8}{5\times5\times7\times7}\right)^{\frac18}\cdots
  \end{aligned}
\] What does it all mean? I haven't a clue! Another mystery thrown down
to us by the math gods, like a bone from on high\ldots{} we can merely
choose to chew on it or not, as we wish.

Julie Bergner gave a great talk on ``derived Hall algebras'' at the Mac
Lane memorial conference. I just want to explain the very first result
she mentioned, due to Ringel --- a surprising trick for constructing
certain quantum groups from simply-laced Dynkin diagrams. It's very
different from the \emph{usual} method for getting quantum groups from
Dynkin diagrams, and it's a miracle that it works.

But, I guess I should start near the beginning!

Way back in 1995, in \protect\hyperlink{week62}{``Week 62''},
\protect\hyperlink{week63}{``Week 63''},
\protect\hyperlink{week64}{``Week 64''} and
\protect\hyperlink{week65}{``Week 65''}, I explained how ``Dynkin
diagrams'' --- little gizmos like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
    \draw[thick] (4,0) to (4,1) node{$\bullet$};
  \end{tikzpicture}
\] show up all over mathematics. They have a strange way of tying
together subjects that superficially seem completely unrelated. In one
sense people understand how they work, but in another sense they're very
puzzling --- their power keeps growing in unexpected ways.

I love mysterious connections, so as soon I understood enough about
Dynkin diagrams to appreciate them, I became fascinated by them, and
I've been studying them ever since. I explained their relation to
geometry in \protect\hyperlink{week178}{``Week 178''},
\protect\hyperlink{week179}{``Week 179''},
\protect\hyperlink{week180}{``Week 180''},
\protect\hyperlink{week181}{``Week 181''} and
\protect\hyperlink{week182}{``Week 182''}, and their relation to quantum
deformation and combinatorics in \protect\hyperlink{week186}{``Week
186''} and \protect\hyperlink{week187}{``Week 187''}.

You might think that would be enough --- but you'd be wrong, way wrong!

I haven't really talked about the most mysterious aspects of Dynkin
diagrams, like their relation to singularity theory and representations
of quivers. That's because these aspects were too mysterious! I didn't
understand them \emph{at all}. But lately, James Dolan and Todd Trimble
and I have been making some progress understanding these aspects.

First, I should remind you how Dynkin diagrams infest so much of
mathematics. Let's start with a little puzzle mentioned in
\protect\hyperlink{week182}{``Week 182''}.

Draw \(n\) dots and connect some of them with edges --- at most one edge
between any pair of dots, please: \[
  \begin{tikzpicture}
    \node at (0,0) {$\bullet$};
    \node at (1,0) {$\bullet$};
    \node at (2,0) {$\bullet$};
    \node at (3,0) {$\bullet$};
    \node at (4,0) {$\bullet$};
    \node at (5,0) {$\bullet$};
    \node at (1.5,-1) {$\bullet$};
    \node at (2.5,1) {$\bullet$};
    \node at (3.5,-1) {$\bullet$};
    \node at (4.5,-1) {$\bullet$};
    \draw[thick] (1,0) to (5,0);
    \draw[thick] (1.5,-1) to (2.5,1) to (3,0);
    \draw[thick] (3.5,-1) to (4.5,-1);
  \end{tikzpicture}
\] Now, try to find a basis of \(\mathbb{R}^n\) consisting of one unit
vector per dot, subject to these rules: if two dots are connected by an
edge, the angle between their vectors must be 120 degrees, but otherwise
their vectors must be at right angles.

This sounds like a silly puzzle that only a mathematician could give a
hoot about. It takes a while to see its magnificent depth. But anyway,
it turns out you can solve this problem only for certain special
diagrams called ``simply-laced Dynkin diagrams''. The basic kinds are
called \(\mathrm{A}_n\), \(\mathrm{D}_n\), \(\mathrm{E}_6\),
\(\mathrm{E}_7\), and \(\mathrm{E}_8\).

The \(\mathrm{A}_n\) Dynkin diagram is a line of n dots connected by
edges like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node {$\bullet$} to (4,0) node{$\bullet$};
  \end{tikzpicture}
\]

The \(\mathrm{D}_n\) diagram has \(n\) dots arranged like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] A line of them but then a little fishtail at the end! We should take
\(n\) to be at least 4, to make the diagram connected and different from
\(\mathrm{A}_n\).

The \(\mathrm{E}_6\), \(\mathrm{E}_7\), and \(\mathrm{E}_8\) diagrams
look like this: \[
  \begin{gathered}
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
    \qquad
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$};
      \draw[thick] (3,0) to (3,1) node{$\bullet$};
    \end{tikzpicture}
  \\\begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
      \draw[thick] (4,0) to (4,1) node{$\bullet$};
    \end{tikzpicture}
  \end{gathered}
\] You're also allowed to take disjoint unions of the above diagrams.

So, a weird problem with a weird answer! Its depth is revealed only when
we see that many \emph{different} puzzles lead us to the \emph{same}
diagrams. For example:

\begin{enumerate}
\def\labelenumi{\Alph{enumi})}
\tightlist
\item
  the classification of integral lattices in \(\mathbb{R}^n\) having a
  basis of vectors whose length squared equals \(2\)
\item
  the classification of simply laced semisimple Lie groups
\item
  the classification of finite subgroups of the 3d rotation group
\item
  the classification of simple singularities
\item
  the classification of tame quivers
\end{enumerate}

Let me run through these problems and say a bit about how they're
connected:

\begin{enumerate}
\def\labelenumi{\Alph{enumi})}
\item
  An ``integral lattice'' in \(\mathbb{R}^n\) is a lattice where the dot
  product of any two vectors in the lattice is an integer. There are
  zillions of these --- but if we demand that they have a basis of
  vectors whose length squared is 2, we can only get them from
  simply-laced Dynkin diagrams.

  It's not very hard to see that finding a lattice like this is
  equivalent to the puzzle I mentioned earlier. For example, given a
  solution of that puzzle, you can just multiply all your vectors by
  \(\sqrt{2}\) and form the lattice of their integer linear
  combinations.

  Here are the lattices you get:

  \begin{itemize}
  \item
    The diagram \(\mathrm{A}_n\) gives the \(n\)-dimensional lattice of
    all \((n+1)\)-tuples of integers \((x_1,\ldots,x_{n+1})\) with
    \[x_1 + \ldots + x_{n+1} = 0.\] For example, \(\mathrm{A}_2\) is a
    \(2\)-dimensional hexagonal lattice, the sort you use to pack
    pennies as densely as possible. Similarly, \(\mathrm{A}_3\) gives a
    standard way of packing grapefruit.
  \item
    The diagram \(\mathrm{D}_n\) gives the \(n\)-dimensional lattice of
    all \(n\)-tuples of integers \((x_1,\ldots,x_n)\) where
    \[x_1 + \ldots + x_n\] is even. To visualize this, just take an
    \(n\)-dimensional checkerboard, color the cubes alternately red and
    black, and take the center of each red cube.
  \item
    The diagram \(\mathrm{E}_8\) gives the \(8\)-dimensional lattice of
    \(8\)-tuples \((x_1,\ldots,x_8)\) such that the \(x_i\) are either
    all integers or all half-integers --- a half-integer being an
    integer plus \(1/2\) --- and such that \[x_1 + \ldots + x_8\] is
    even.
  \item
    The diagram \(\mathrm{E}_7\) gives the \(7\)-dimensional lattice
    consisting of all vectors in \(\mathrm{E}_8\) that are orthogonal to
    some vector that's closest to the origin (and thus has length
    \(\sqrt{2}\)).
  \item
    The diagram \(\mathrm{E}_6\) gives the \(6\)-dimensional lattice
    consisting of all vectors in \(\mathrm{E}_7\) that are orthogonal to
    some vector that's closest to the origin (and thus has length
    \(\sqrt{2}\)).
  \end{itemize}

  For more on these lattices, see \protect\hyperlink{week65}{``Week
  65''}. They show up in the theory of Lie groups\ldots.
\item
  Lie groups are fundamental throughout math and physics: they're groups
  of continuous symmetries, like rotations. The nicest of the lot are
  the semisimple Lie groups. Some familiar examples are the group of
  rotations in \(n\)-dimensional space, which is called
  \(\mathrm{SO}(n)\), and the group of unitary matrices with determinant
  \(1\), which is called \(\mathrm{SU}(n)\). There are more, but people
  know what they all are. They're classified by Dynkin diagrams!

  Why? The key point is that any semisimple Lie group has a ``root
  lattice''. This is an integral lattice spanned by special vectors
  called ``roots''. I won't give the details, since I explained this
  stuff in \protect\hyperlink{week63}{``Week 63''} and
  \protect\hyperlink{week64}{``Week 64''}, but it turns out that root
  lattices, and thus semisimple Lie groups, are classified by Dynkin
  diagrams.

  Not all these Dynkin diagrams look like the \(\mathrm{A}\),
  \(\mathrm{D}\) and \(\mathrm{E}\) diagrams listed above. But, it turns
  out that the length squared of any root must be either \(1\) or \(2\).
  If all the roots have length squared equal to \(2\), we say our
  semisimple Lie group is ``simply laced''. In this case, we're back to
  problem B), which we already solved! So then our Lie group corresponds
  to a diagram of type \(\mathrm{A}\), \(\mathrm{D}\), or \(\mathrm{E}\)
  --- or a disjoint union of such diagrams.

  Here's how it goes:

  \begin{itemize}
  \tightlist
  \item
    The diagram \(\mathrm{A}_n\) gives the compact Lie group
    \(\mathrm{SU}(n+1)\), consisting of \((n+1) \times (n+1)\) unitary
    matrices with determinant \(1\). It's the isometry group of complex
    projective \(n\)-space.
  \item
    The diagram \(\mathrm{D}_n\) gives the compact Lie group
    \(\mathrm{SO}(2n)\), consisting of \(2n \times 2n\) orthogonal
    matrices with determinant \(1\). It's the isometry group of real
    projective \((2n)\)-space.
  \item
    The diagram \(\mathrm{E}_6\) gives a \(78\)-dimensional compact Lie
    group that people call \(\mathrm{E}_6\). It's the isometry group of
    the bioctonionic projective plane.
  \item
    The diagram \(\mathrm{E}_7\) gives a \(133\)-dimensional compact Lie
    group that people call \(\mathrm{E}_7\). It's the isometry group of
    the quateroctonionic projective plane.
  \item
    The diagram \(\mathrm{E}_8\) gives a \(248\)-dimensional compact Lie
    group that people call \(\mathrm{E}_8\). It's the isometry group of
    the octooctonionic projective plane.
  \end{itemize}

  In short, two regular series and three exotic weirdos.

  You may ask where the rotation groups \(\mathrm{SO}(n)\) with \(n\)
  odd went! Well, these correspond to fancier Dynkin diagrams that
  aren't simply laced, like this: \[
     \begin{tikzpicture}
       \draw[thick] (0,0) to (3,0);
       \draw[double,double equal sign distance] (3.5,0) to (4,0);
       \draw[double,double equal sign distance,-implies] (3,0) to (3.55,0);
       \node at (0,0) {$\bullet$};
       \node at (1,0) {$\bullet$};
       \node at (2,0) {$\bullet$};
       \node at (3,0) {$\bullet$};
       \node at (4,0) {$\bullet$};
     \end{tikzpicture}
   \] The funny arrow here indicates that the last two vectors aren't at
  a 120-degree angle; they're at a 135-degree angle, and the last vector
  is shorter than the rest: it has length one instead of \(\sqrt{2}\).

  Why are semisimple Lie groups ``better'' when they're simply laced?
  What's the big deal? I don't really understand this, but for one, when
  all the roots have the same length, they're all alike --- a certain
  symmetry group called the Weyl group acts transitively on them.

  Anyway, so far our \(\mathrm{A}\), \(\mathrm{D}\), \(\mathrm{E}\)
  Dynkin diagrams have been classifying things that are clearly related
  to lattices. But now things get downright spooky\ldots.
\item
  Take a Platonic solid and look at its group of rotational symmetries.
  You get a finite subgroup of the 3d rotation group \(\mathrm{SO}(3)\).
  But in general, finite subgroups of \(\mathrm{SO}(3)\) are classified
  by ADE Dynkin diagrams!

  So, Platonic solids turn out to fit into the game we're playing here!

  First I'll say which diagram corresponds to which subgroup of
  \(\mathrm{SO}(3)\). Then I'll explain how the correspondence works:

  \begin{itemize}
  \tightlist
  \item
    The diagram \(\mathrm{A}_n\) corresponds to the group of obvious
    rotational symmetries of the regular \(n\)-gon. This group is called
    the ``cyclic group'' \(\mathbb{Z}/n\).
  \item
    The diagram \(\mathrm{D}_n\) corresponds to the group of rotational
    symmetries of the regular \(n\)-gon where you can turn it and also
    flip it over. By sheer coincidence, this group is called the
    ``dihedral group'' \(D_n\). A cosmic stroke of good luck!
  \item
    The diagram \(\mathrm{E}_6\) corresponds to the group of rotational
    symmetries of the tetrahedron: the ``tetrahedral group''. This is
    also the group of even permutations of 4 elements, the ``alternating
    group'' \(A_4\) --- not to be confused with the \(\mathrm{A}_n\)'s
    we were just talking about. A cosmic stroke of bad luck!
  \item
    The diagram \(\mathrm{E}_7\) corresponds to the group of rotational
    symmetries of the octahedron or cube: the ``octahedral group''. This
    is also the group of all permutations of 4 elements, the ``symmetric
    group'' \(S_4\).
  \item
    The diagram \(\mathrm{E}_8\) corresponds to the group of rotational
    symmetries of the icosahedron or dodecahedron: the ``icosahedral
    group''. This is also the group of even permutations of 5 elements,
    called \(A_5\). Darn!
  \end{itemize}

  So, the exceptional Lie groups \(\mathrm{E}_6\), \(\mathrm{E}_7\) and
  \(\mathrm{E}_8\) correspond to Platonic solids in a sneaky way.

  To understand what's going on here, first we need to switch from
  \(\mathrm{SO}(3)\) to \(\mathrm{SU}(2)\). The group \(\mathrm{SU}(2)\)
  is used to describe rotations in quantum mechanics: it's the double
  cover of the rotation group \(\mathrm{SO}(3)\).

  It's really finite subgroups of \(\mathrm{SU}(2)\) that are classified
  by \(\mathrm{ADE}\) Dynkin diagrams! It just so happens that these
  correspond, in a slightly slippery way, to finite subgroups of
  \(\mathrm{SO}(3)\).

  You'll see how if I list the finite subgroups of \(\mathrm{SU}(2)\):

  \begin{itemize}
  \tightlist
  \item
    The diagram \(\mathrm{A}_n\) corresponds to the cyclic subgroup
    \(\mathbb{Z}/n\) of \(\mathrm{SU}(2)\). This double covers a cyclic
    subgroup of \(\mathrm{SO}(3)\) when \(n\) is even.
  \item
    The diagram \(\mathrm{D}_n\) corresponds to a subgroup of
    \(\mathrm{SU}(2)\) that double covers the dihedral group
    \(\mathrm{D}_n\).
  \item
    The diagram \(\mathrm{E}_6\) corresponds to a subgroup of
    \(\mathrm{SU}(2)\) that double covers the rotational symmetries of
    the tetrahedron. This subgroup has 24 elements and it's called the
    ``binary tetrahedral group''.
  \item
    The diagram \(\mathrm{E}_7\) corresponds to a subgroup of
    \(\mathrm{SU}(2)\) that double covers the rotational symmetries of
    the octahedron. This subgroup has 48 elements and it's called the
    ``binary octahedral group''.
  \item
    The diagram \(\mathrm{E}_8\) corresponds to a subgroup of
    \(\mathrm{SU}(2)\) that double covers the rotational symmetries of
    the icosahedron. This subgroup has 120 elements and it's called the
    ``binary icosahedral group''.
  \end{itemize}

  Now, how does the correspondence work? For this, I'm afraid I have to
  raise the sophistication level a bit --- I've been trying to keep
  things simple, but it's getting tough.

  In his book on the icosahedron, Felix Klein noticed it was interesting
  to let the icosahedral group act on the Riemann sphere, and look for
  rational functions invariant under this group.

  It turned out that every such function depends on a single one:
  Klein's icosahedral function! The explict formula for it is pretty
  disgusting, but it's a beautiful thing: you can pick it so that it
  equals \(0\) at all the vertices of the icosahedron, \(1\) at the
  midpoints of the edges, and infinity at the midpoints of the faces.
  Even better, if you write the function like this: \[w = f(z)\] then
  Klein showed that knowing how to solve for \(z\) as a function of
  \(w\) lets you solve every quintic equation! The reason is that the
  Galois group of the general quintic is a close relative of the
  icosahedral group: the former is \(S_5\), the latter is \(A_5\).

  Anyway, when I said that ``every such function depends on a single
  one'', what I really meant was this. Let \(\mathbb{C}(z)\) be the
  field of rational functions of one variable; then the icosahedral
  group acts on this, and the invariant functions form a subfield
  \(\mathbb{C}(w)\) where \(w\) is Klein's icosahedral function. The
  Galois group of the little field in the big one is the icosahedral
  group.

  The same kind of thing works for the other finite subgroups of
  \(\mathrm{SO}(3)\), except of course for the connection to the quintic
  equation.

  But, it's actually even better to think about finite subgroups of
  \(\mathrm{SU}(2)\), since \(\mathrm{SU}(2)\) acts on \(\mathbb{C}^2\),
  and when we \emph{projectivize} \(\mathbb{C}^2\) we get
  \(\mathrm{SO}(3)\) acting on the Riemann sphere. This viewpoint fits
  more squarely into the worldview of algebraic geometry.

  If we take the quotient of \(\mathbb{C}^2\) by a finite subgroup \(G\)
  of \(\mathrm{SU}(2)\), we don't get a smooth manifold: the quotient
  has a singularity at \(0\). But we can ``resolve'' the singularity,
  finding a smooth complex manifold with a holomorphic map
  \[p\colon M \to \mathbb{C}^2/G\] that has a holomorphic inverse on a
  dense open set. There may be lots of ways to do this, but in the
  present case there's just one ``minimal'' resolution, meaning a
  resolution that every other resolution factors through.

  Then --- and here's the magic part! --- the inverse image of \(0\) in
  \(M\) turns out to be the union of a bunch of Riemann spheres. And if
  we draw a dot for each sphere, and an edge between these dots whenever
  their spheres intersect, we get a simply laced Dynkin diagram on the
  above list!!!

  Well, almost. We get this diagram with an extra dot thrown in,
  connected by some extra edges in a specific way. This is called the
  ``extended'' Dynkin diagram. It also shows up naturally from the Lie
  group viewpoint, when we consider central extensions of loop groups.

  That's \emph{one} way the correspondence works. Another way,
  discovered by McKay, is to draw a dot for each irrep of \(G\). There's
  always a \(2\)-dimensional representation of \(G\) coming from the
  action of \(\mathrm{SU}(2)\) on \(\mathbb{C}^2\). Let's just call this
  irrep \(\mathbb{C}^2\). Then, draw an edge from the dot \(R\) to the
  dot \(S\) whenever the irrep \(S\) shows up in the rep
  \(R \otimes \mathbb{C}^2\). You get the same extended Dynkin diagram
  as before! The special extra dot in the Dynkin diagram corresponds to
  the trivial rep of \(G\).

  This second way is called the ``McKay correspondence''. The first way
  is sometimes called the ``geometric McKay correspondence'', though I
  think it was discovered earlier.

  Now we're well on the road to the next item\ldots{}
\item
  Simply-laced Dynkin diagrams also classify the simple critical points
  of holomorphic functions \[f\colon \mathbb{C}^3 \to \mathbb{C}\] A
  ``critical point'' is just a place where the gradient of f vanishes.
  We can try to classify critical points up to a holomorphic change of
  variables. It's better to classify their ``germs'', meaning we only
  look at what's going on \emph{right near} the critical point. But,
  even this is hopelessly complicated unless we somehow limit our quest.

  To do this, we can restrict attention to ``stable'' critical points,
  which are those that don't change type under small perturbations. But
  we can do better: we can classify ``simple'' critical points, namely
  those that change into only finitely many other types under small
  perturbations.

  These correspond to simply-laced Dynkin diagrams!

  First I'll say which diagram corresponds to which type of critical
  point. To do this, I'll give a polynomial \(f(x,y,z)\) that has a
  certain type of critical point at \(x = y = z = 0\). Then I'll explain
  how the correspondence works:

  \begin{itemize}
  \tightlist
  \item
    The diagram \(\mathrm{A}_n\) corresponds to the critical point of
    \(x^{n+1} + y^2 + z^2\).
  \item
    The diagram \(\mathrm{D}_n\) corresponds to the critical point of
    \(x^{n-1} + xy^2 + z^2\).
  \item
    The diagram \(\mathrm{E}_6\) corresponds to the critical point of
    \(x^4 + y^3 + z^2\).
  \item
    The diagram \(\mathrm{E}_7\) corresponds to the critical point of
    \(x^3 y + y^3 + z^2\).
  \item
    The diagram \(\mathrm{E}_8\) corresponds to the critical point of
    \(x^5 + y^3 + z^2\).
  \end{itemize}

  Here's how the correspondence works. For each of our Dynkin diagrams
  we have a finite subgroup of \(\mathrm{SU}(2)\), thanks to item C).
  This subgroup acts on the ring of polynomials on \(\mathbb{C}^2\), so
  we can form the subring of invariant polynomials. This turns out to be
  generated by three polynomials that we will arbitrarily call \(x\),
  \(y\), and \(z\). But, they satisfy one relation, given by the
  polynomial above!

  Conversely, we can start with the polynomial
  \[f\colon \mathbb{C}^3 \to \mathbb{C}\] The zero set \[\{f = 0\}\] has
  an isolated singularity at the origin. But, we can resolve this
  singularity, finding a smooth complex manifold \(N\) with a
  holomorphic map \[q\colon N \to \{f = 0\}\] that has a holomorphic
  inverse on a dense open set. There may be lots of ways to do this, but
  in the present case there's just one ``minimal'' resolution, meaning
  one that every other resolution factors through this one.

  Then --- and here's the magic part! --- the inverse image of \(0\) in
  \(N\) turns out to be the union of a bunch of Riemann spheres. And if
  we draw a dot for each sphere, and an edge between these dots whenever
  their spheres intersect, we get back our simply laced Dynkin
  diagram!!!

  This whole section should have given you a feeling of deja vu. It's a
  lot like section C). If I were smarter, I'd probably see how it's
  \emph{exactly} the same stuff, repackaged slightly.

  The last item on our list seems different\ldots.
\item
  A quiver is just a category freely generated by some set of morphisms.
  To specify a quiver we just write down some dots and arrows. The dots
  are the objects of our category; the arrows are the generating
  morphisms.

  A representation of a quiver \(Q\) is just a functor
  \[F\colon Q \to \mathsf{Vect}\] So, we get a vector space for each dot
  and a linear map for each arrow, with no extra restrictions. There's
  an obvious category of representations \(\mathsf{Rep}(Q)\) of a quiver
  \(Q\).

  A guy named Gabriel proved a divine result about these categories
  \(\mathsf{Rep}(Q)\). We say a quiver \(Q\) has ``finite representation
  type'' if \(\mathsf{Rep}(Q)\) has finitely many indecomposable objects
  --- objects that aren't direct sums of others. And, it turns out the
  quivers of finite representation type are just those coming from
  simply-laced Dynkin diagrams!!

  Actually, for this to make sense, you need to take your Dynkin diagram
  and turn it into a quiver by putting arrows along the edges. If you
  have an \(\mathrm{ADE}\) Dynkin diagram, you get a quiver of finite
  representation type no matter which way you let the arrows point.

  There's clearly a lot of mysterious stuff going on here. In
  particular, this last item sounds completely unrelated to the rest.
  But it's not! There are cool relationships between quivers and quantum
  groups, which tie this item to the rest.

  I'll just mention one --- the one Julie Bergner started her talk with.

  For this, you need to know a bit about abelian categories.

  Abelian categories are categories like the category of abelian groups,
  or more generally the category of modules of any ring, where you can
  talk about chain complexes, exact sequences and stuff like that. You
  can see the precise definition here:

  \begin{enumerate}
  \def\labelenumii{\arabic{enumii})}
  \setcounter{enumii}{3}
  \tightlist
  \item
    ``Abelian categories'', Wikipedia,
    \texttt{http://en.wikipedia.org/wiki/Abelian\_category}
  \end{enumerate}

  and learn more here:

  \begin{enumerate}
  \def\labelenumii{\arabic{enumii})}
  \setcounter{enumii}{4}
  \tightlist
  \item
    Peter Freyd, \emph{Abelian Categories}, Harper and Row, New York,
    1964. Also available at
    \texttt{http://www.tac.mta.ca/tac/reprints/articles/3/tr3abs.html}
  \end{enumerate}

  It's really interesting to study the ``Grothendieck group'' \(K(A)\)
  of an abelian category \(A\). As a set, this consists of formal linear
  combinations of isomorphism classes of objects of \(A\), where we
  impose the relations \[[a] + [b] = [x]\] whenever we have a short
  exact sequence \[0 \to a \to x \to b \to 0\] It becomes an abelian
  group in an obvious way.

  For example, if \(A\) is the category of representations of some group
  \(G\), it's an abelian category and \(K(A)\) is called the
  ``representation ring'' of \(A\) --- it's a ring because we tensor
  representations. Or, if \(A\) is the category of vector bundles over a
  space \(X\), it's again abelian, and \(K(A)\) is called the ``K-theory
  of \(X\)''.

  The Hall ring \(H(A)\) of an abelian category is a vaguely similar
  idea. As a set, this consists of formal linear combinations of
  isomorphism classes of objects of \(A\). No extra relations! It's an
  abelian group with the obvious addition. But the cool part is, with a
  little luck, we can make it into a \emph{ring} by letting the product
  \([a][b]\) be the sum of all isomorphism classes of objects \([x]\)
  weighted by the number of isomorphism classes of short exact sequences
  \[0 \to a \to x \to b \to 0\] This only works if the number is always
  finite.

  So far when speaking of ``formal linear combinations'' I've been
  implicitly using integer coefficients, but people seem to prefer
  complex coefficients in the Hall case, and they get something called
  the ``Hall algebra'' instead of the ``Hall ring''.

  The fun starts when we take the Hall algebra of \(\mathsf{Rep}(Q)\),
  where \(Q\) is a quiver. We could look at representations in vector
  spaces over any field, but let's use a finite field --- necessarily a
  field with \(q\) elements, where \(q\) is a prime power.

  Then, Ringel proved an amazing theorem about the Hall algebra
  \(H(\mathsf{Rep}(Q))\) when \(Q\) comes from a Dynkin diagram of type
  \(\mathrm{A}\), \(\mathrm{D}\), or \(\mathrm{E}\):

  \begin{enumerate}
  \def\labelenumii{\arabic{enumii})}
  \setcounter{enumii}{4}
  \tightlist
  \item
    C. M. Ringel, ``Hall algebras and quantum groups'', \emph{Invent.
    Math.} \textbf{101} (1990), 583--592.
  \end{enumerate}

  He showed this Hall algebra is a quantum group! More precisely, it's
  isomorphic to the \(q\)-deformed universal enveloping algebra of a
  maximal nilpotent subalgebra of the Lie algebra associated to the
  given Dynkin diagram.

  That's a mouthful, but it's cool. For example, the Lie algebra
  associated to \(\mathrm{A}_n\) is \(\mathfrak{sl}(n+1)\), and the
  maximal nilpotent subalgebra consists of strictly upper triangular
  matrices. We're \(q\)-deforming the universal enveloping algebra of
  this. One cool thing is that the ``\(q\)'' of \(q\)-deformation gets
  interpreted as a prime power --- something we've already seen in
  \protect\hyperlink{week185}{``Week 185''} and subsequent weeks.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

So, it seems that all the ways simply-laced Dynkin diagrams show up in
math are related. But, I don't think anyone understands what's really
going on! It's like black magic.

And, I've just described \emph{some} of the black magic!

For example, you'll notice I portrayed the Hall algebra \(H(A)\) as a
kind of evil twin of the more familiar Grothendieck group \(K(A)\). They
have some funny relations. For example, if you take the minimal
resolution of \(\mathbb{C}^2/G\) where \(G\) is a finite subgroup of
\(\mathrm{SU}(2)\), you get a variety whose K-theory (as defined above)
is isomorphic to the representation ring of \(G\)! This was shown here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  G. Gonzalez-Springberg and J. L. Verdier, ``Construction geometrique
  de la correspondance de McKay'', \emph{Ann. ENS} \textbf{16} (1983),
  409--449.
\end{enumerate}

For further developments, try this paper, which studies the derived
category of coherent sheaves on this minimal resolution of
\(\mathbb{C}^2/G\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Mikhail Kapranov and Eric Vasserot, ``Kleinian singularities, derived
  categories and Hall algebras'', available as
  \href{http://arxiv.org/abs/math.AG/9812016}{\texttt{math.AG/9812016}}.
\end{enumerate}

Now let me give a bunch of references for further study. For a really
quick overview of the whole \(\mathrm{ADE}\) business, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Andrei Gabrielov, ``Coxeter-Dynkin diagrams and singularities'', in
  \emph{Selected Papers of E. B. Dynkin with Commentary}, eds.~A. A.
  Yushkevich, G. M. Seitz and A. I. Onishchik, AMS, 1999. Also available
  at
  \texttt{http://www.math.purdue.edu/\textasciitilde{}agabriel/dynkin.pdf}
\item
  John McKay, ``A rapid introduction to ADE theory'',
  \texttt{http://math.ucr.edu/home/baez/ADE.html}
\end{enumerate}

Here's a more detailed but still highly readable introduction:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Joris van Hoboken, \emph{Platonic solids, binary polyhedral groups,
  Kleinian singularities and Lie algebras of type
  \(\mathrm{A}\),\(\mathrm{D}\),\(\mathrm{E}\)}, Master's Thesis,
  University of Amsterdam, 2002, available at
  \texttt{http://math.ucr.edu/home/baez/joris\_van\_hoboken\_platonic.pdf}
\end{enumerate}

This classic has recently become available online:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  M. Hazewinkel, W. Hesselink, D. Siermsa, and F. D. Veldkamp, ``The
  ubiquity of Coxeter-Dynkin diagrams (an introduction to the ADE
  problem)'', \emph{Niew. Arch. Wisk.} \textbf{25} (1977), 257--307.
  Also available at
  \texttt{http://repos.project.cwi.nl:8888/cwi\_repository/docs/I/10/10039A.pdf}
  or \texttt{http://math.ucr.edu/home/baez/hazewinkel\_et\_al.pdf}
\end{enumerate}

Here's a really nice, elementary introduction to Klein's work on the
icosahedron and the quintic:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Jerry Shurman, \emph{Geometry of the Quintic}, Wiley, New York, 1997.
  Also available at
  \texttt{http://people.reed.edu/\textasciitilde{}jerry/Quintic/quintic.html}
\end{enumerate}

I haven't seen this book, but I hear it's good:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  P. Slodowy, \emph{Simple Singularities and Algebraic Groups}, Lecture
  Notes in Mathematics \textbf{815}, Springer, Berlin, 1980.
\end{enumerate}

Here's a bibliography with links to online references:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Miles Reid, Links to papers on McKay correspondence,
  \texttt{http://www.maths.warwick.ac.uk/\textasciitilde{}miles/McKay/}
\end{enumerate}

Of those references, I especially like this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Miles Reid, ``La Correspondence de McKay'' (in English),
  \emph{Seminaire Bourbaki, 52eme annee, November 1999}, no.
  \textbf{867}, to appear in \emph{Asterisque} 2000. Also available as
  \href{http://arxiv.org/abs/math.AG/9911165}{\texttt{math.AG/9911165}}.
\end{enumerate}

Here you'll also see some material about \emph{generalizations} of the
McKay correspondence. For example, if we take a finite subgroup \(G\) of
\(\mathrm{SU}(3)\), we get a quotient \(\mathbb{C}^3/G\), which has
singularities. If we take a ``crepant'' resolution of
\[p\colon M \to \mathbb{C}^3/G,\] which is the right generalization of a
minimal resolution, then \(M\) is a Calabi-Yau manifold. This gets
string theory into the act! Around 1985, Dixon, Harvey, Vafa and Witten
used this to guess that the Euler characteristic of \(M\) equals the
number of irreps of \(G\). A lot of work has been done on this since
then, and Reid's article summarizes a bunch.

Apparently a ``crepant'' resolution is one that induces an isomorphism
of canonical bundles; when this fails to happen folks say there's a
discrepancy, so a crepant resolution is one with no dis-crepancy. Get
it? Since a Calabi-Yau manifold is one whose canonical bundle is
trivial, it shouldn't be completely shocking that crepant resolutions
yield Calabi-Yaus. This all works in the original 2d McKay
correspondence, too --- the minimal resolutions we saw there are also
crepant.

In fact, string theory also sheds light on the original McKay
correspondence. The reason is that the minimal resolution of
\(\mathbb{C}^2/G\) is a very nice Riemannian \(4\)-manifold (when viewed
as a \emph{real} manifold). It's an ``asymptotically locally Euclidean''
manifold, or ALE manifold for short. Doing string theory on this gives a
way of seeing how the extended Dynkin diagrams sneak into the McKay
correspondence: they're the Dynkin diagrams for central extensions of
loop groups, which show up as gauge groups in string theory! I don't
really understand this, but it makes a kind of sense.

I guess this is a famous paper about this stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Michael R. Douglas and Gregory Moore, ``D-branes, quivers and ALE
  instantons'', available as
  \href{https://arxiv.org/abs/hep-th/9603167}{\texttt{hep-th/9603167}}.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Thanks go to Jeff Barnes for showing how to get ahold
of Hazewinkel \emph{et al}'s paper online. I got some nice feedback from
Graham Leuschke, David Rusin, and Leslie Coghlan, and I used Leuschke's
to fix a mistake.

Graham Leuschke wrote:

\begin{quote}
Hi -

A quick correction to your TWF this week. The ADE diagrams are actually
the underlying graphs of quivers of \emph{finite} representation type,
not tame. You gave the right definition, but the wrong name for it. Tame
representation type usually means that there are infinitely many
indecomposable representations, but they come in nice one-dimensional
families. (The third option is wild representation type, which usually
means that classifying the representations would be at least as hard as
classifying all modules over the non-commutative polynomial ring k. It's
a theorem of Drozd that one of these must hold.)

This actually points toward more black magic: the quivers of finite type
have ADE diagrams for underlying graphs, while the quivers of tame type
have ``extended ADE'' diagrams underneath them. These extended graphs
are the result of adding one (particular) vertex to each of the ADE
graphs, and they often arise as the answer to questions that are just
slightly weaker than the questions answered by the ADE graphs. For
example, the ADE graphs are those for which the Tits form is positive
definite, while the extended ADEs are those for which it's positive
semi-definite. They correspond to Kac-Moody affine Lie algebras rather
than simple Lie algebras, and so on and so on.

Harm Derksen and Jerzy Weyman had a nice overview of quiver
representations and the theorem of Gabriel in the Notices last year:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Harm Derksen and Jerzy Weyman, ``Quiver representations'', \emph{AMS
  Notices} \textbf{52} (2005), 200--206. Also available as
  \texttt{http://www.ams.org/notices/200502/fea-weyman.pdf}
\end{enumerate}

Idun Reiten had a similar one in the Notices back in 1997, but I can't
find it online anywhere:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Idun Reiten, ``Dynkin diagrams and the representation theory of
  algebras'', \emph{AMS Notices} \textbf{44} (1997), 546--556.
\end{enumerate}

She did a really nice job of explaining the connections with quadratic
forms and (sub)additive functions.

Cheers,\\
Graham
\end{quote}

David Rusin wrote:

\begin{quote}
John Baez wrote:

\begin{quote}
The diagram \(\mathrm{E}_8\) corresponds to the critical point of
\(x^5 + y^3 + z^2\).
\end{quote}

Milnor has a lovely little book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  John Milnor, \emph{Singular points of complex hypersurfaces}, Ann.
  Math. Studies \textbf{61}, Princeton U. Press, Princeton, 1968.
\end{enumerate}

which takes the point of view that the RIGHT thing to do at an isolated
critical point of a complex-analytic projective variety is to intersect
the variety with a small sphere centered at the critical point.

Brieskorn did this with the varieties
\[x^{4k+1} + y^3 + z^2 + w^2 + u^2 = 0\] which are \(4\)-dimensional
complex varieties with isolated critical points at the origin. So apart
from the origin the equation describes an \(8\)-dimensional manifold and
the intersection with the sphere in \(\mathbb{C}^5 = \mathbb{R}^{10}\)
is a \(7\)-dimensional manifold. Brieskorn showed:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  For every \(k\), these manifolds \(M_k\) are homeomorphic to the
  sphere
\item
  For every \(k\), \(M_k\) is a smooth manifold.
\item
  \(M_j\) and \(M_k\) are diffeomorphic iff \(j = k \mod 28\).
\end{enumerate}

Thus in particular, the whole group of diffeomorphism classes of
manifolds which are homeomorphic to the sphere has order 28. Milnor had
earlier proved that there are 28 diffeomorphism classes of
\(7\)-spheres. But here they are very explicit!

dave
\end{quote}

Leslie Coghlan wrote:

\begin{quote}
Please add to Week 230 links to copies of these two papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\item
  H. S. M. Coxeter: ``The evolution of Coxeter-Dynkin diagrams'', in:
  \emph{Polytopes: Abstract, Convex and Computational}, eds.~T.
  Bisztriczky, P. McMullen, R. Schneider and A. Ivic Weiss, NATO ASI
  Series C, Vol. \textbf{440}, Kluwer, Dordrecht, 1994, pp.~21--42.
\item
  E. Witt, ``Spiegelungsgruppen und Aufzahlung halbeinfacher Liescher
  Ringe'', \emph{Abhandl. Math. Sem. Univ. Hamburg.} \textbf{14} (1941),
  289--337.
\end{enumerate}

Yours,

Leslie Coghlan
\end{quote}

Here are a couple more online introductions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\item
  William Crawley-Boevey, Notes on quiver representations, available at
  \texttt{http://www.amsta.leeds.ac.uk/\textasciitilde{}pmtwc/quivlecs.pdf}.
\item
  Alistair Savage, ``Finite-dimensional algebras and quivers'',
  available as
  \href{http://www.arxiv.org/abs/math/0505082}{\texttt{arXiv:math/0505082}}.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{This thesis is an attempt to show an astonishing relation between
basic objects from different fields in mathematics. Most peculiarly it
turns out that their classification is ``the same'': the ADE
classification. Altogether these objects and the connections between
them form a coherent web.}

\emph{The connections are accomplished by direct constructions leading
to bijections between these classes of objects. These constructions
however do not always explain or give satisfactory intuition why these
classifications {[}exist{]}, or to say it better, why they should be
related in this way. Therefore the deeper reason remains mysterious and
when discovered will have to be of great depth. This gives a high
motivation to look for new concepts and it shows that simple and since
long understood mathematics can still raise very interesting questions,
show paths for new research and give a glance at the mystery of
mathematics. In my opinion to be aware of a certain truth without having
its reason is fundamental to the practise of mathematics.}

--- Joris van Hoboken
\end{quote}
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\href{http://en.wikipedia.org/wiki/Enceladus_(moon)}{Enceladus} is a
moon of Saturn with a cracked icy surface, twisted and buckled by tidal
forces, hinting at mysteries beneath:
\[\href{http://www.nasa.gov/mission_pages/cassini/multimedia/pia07800.html}{\includegraphics[max width=0.65\linewidth]{../images/enceladus.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  NASA, ``Enceladus the storyteller'',
  \texttt{http://www.nasa.gov/mission\_pages/cassini/multimedia/pia07800.html}
\end{enumerate}

Recently the NASA space probe Cassini has been getting a good look at
Enceladus. In March, Cassini discovered that it has geysers among the
cracks near its south pole --- geysers that spray water right out into
space!
\[\href{http://saturn.jpl.nasa.gov/news/press-release-details.cfm?newsID=639}{\includegraphics[max width=0.65\linewidth]{../images/enceladus_geyser.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  ``NASA's Cassini discovers potential liquid water on Enceladus'',
  \texttt{http://saturn.jpl.nasa.gov/news/press-release-details.cfm?newsID=639}
\item
  Special issue on Enceladus, \emph{Science} \textbf{311} (March 10th
  2006).
\end{enumerate}

The water freezes in microscopic crystals, which replenish Saturn's
\href{http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=2091}{E
ring} --- a diffuse bluish ring that was previously a mystery.

The currently popular theory for the geysers looks like this:
\[\href{http://www.nasa.gov/mission_pages/cassini/multimedia/pia07799.html}{\includegraphics[max width=0.65\linewidth]{../images/enceladus_geyser_model.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  NASA, `Enceladus ``cold geyser'' model',
  \texttt{http://www.nasa.gov/mission\_pages/cassini/multimedia/pia07799.html}
\end{enumerate}

Enceladus is now the the only place besides Earth where liquid water has
been seen --- though people believe Jupiter's moon
\href{http://en.wikipedia.org/wiki/Europa_(moon)}{Europa} has oceans
under a layer of ice, and maybe
\href{http://en.wikipedia.org/wiki/Ganymede_(moon)}{Ganymede} and
\href{http://en.wikipedia.org/wiki/Callisto_(moon)}{Callisto} do too.

While we tend to take it for granted, water is a very strange chemical:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Martin Chaplin, ``Forty-one anomalies of water'',
  \texttt{http://www.lsbu.ac.uk/water/anmlies.html}
\end{enumerate}

As you probably know, the specific heat of water is unusually high,
which stabilizes the Earth's temperature. And no other simple compound
exhibits so many different forms. There at least 18 forms of ice! You
can tour them here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Martin Chaplin, ``The phase diagram of water'',
  \texttt{http://www.lsbu.ac.uk/water/phase.html}
\end{enumerate}

The hexagonal form of ice we find here on earth is called
\href{http://www.lsbu.ac.uk/water/ice1h.html}{ice Ih}. There's also a
slightly denser cubic phase,
\href{http://www.lsbu.ac.uk/water/ice1c.html}{ice Ic}, which forms when
water vapor is condensed on a cold substrate. Below \(-130\) Celsius, a
low-density amorphous solid form called
\href{http://www.lsbu.ac.uk/water/amorph.html\#lda}{LDA} is possible. By
compressing ordinary \href{http://www.lsbu.ac.uk/water/ice1h.html}{ice
Ih} to high pressures, you get a different higher-density amorphous
form, called \href{http://www.lsbu.ac.uk/water/amorph.html\#hda}{HDA}.
And there's an even denser amorphous form called
\href{http://www.lsbu.ac.uk/water/amorph.html\#vhda}{VHDA}.

(It's unusual for a crystal to become amorphous when you compress it or
cool it, but ordinary ice is unusually light: it floats on liquid water!
That's because the powerful hydrogen bonds of water allow it to maintain
a very sparse hexagonal crystal structure --- so sparse you could even
fit extra water molecules in the gaps. When you crush this, it becomes
amorphous.)

There are also crystal forms called
\href{http://www.lsbu.ac.uk/water/ice_ii.html}{ice II} through
\href{http://www.lsbu.ac.uk/water/ice_xii.html\#icexiv}{ice XIV}, in
order of discovery. It would take a few weeks to discuss all these, but
luckily Chaplin's website has a separate page on each kind, with nice
explanations and pictures of the crystal structures.

Kurt Vonnegut wrote a novel called ``Cat's Cradle'' starring a substance
called ice IX, which was supposedly more stable than liquid water at
ordinary temperatures and pressures. When it got loose, it destroyed the
world. Luckily the actual
\href{http://www.lsbu.ac.uk/water/ice_ix.html}{ice IX} isn't like that,
and it couldn't be: the most stable form of water already prevails.

But enough about ice IX. I want to talk about
\href{http://www.lsbu.ac.uk/water/ice_vii.html\#iceten}{ice X}!

This is one of the most extreme forms of ice known. It's only stable at
pressures of about 50 gigapascals --- in other words, roughly 500,000
atmospheres.

Hmm. Do those quantities mean as little to you as they do to me? A
``pascal'' is a unit of pressure, or force per area, equal to one newton
per square meter. An ``atmosphere'' is another unit of pressure,
basically the average air pressure at sea level here on Earth. This has
the annoying value of 101,325 pascals. Personally I have some trouble
getting a feel for how much pressure this is, since a newton per square
meter isn't much, but 101,325 of them sounds like a lot. So for me,
being an American, it's helpful to know that an atmosphere equals 2116
pounds per square foot. If you're a metric sort of person, that's about
the weight of 1 kilogram pushing down on each square centimeter. That's
a lot of pressure we're under! No wonder we feel stressed sometimes.

(Yes, I know a kilogram is not a unit of weight. I mean the weight
corresponding to a mass of a kilogram in the Earth's gravitational field
at sea level. Sheesh!)

But I digress. I was saying that
\href{http://www.lsbu.ac.uk/water/ice_vii.html\#iceten}{ice X} only
forms at a pressure of about 50 gigapascals. But I've actually read
figures ranging from 44 to 80 gigapascals. This raises the question: how
do people know these things? Do they actually know, or just guess?

Well, some overgrown kids get paid to study these issues by actually
squashing water to enormous pressures using ``diamond anvil cells''. Not
many substances can withstand such huge pressures, but diamonds can: as
you know, they're really hard! They're also transparent, so you can see
what's going on while you're squashing something. You basically just
stick something between two carefully carved diamonds, surrounded by a
metal foil gasket, and squash the heck out of it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  ``Diamond anvil cell'', Wikipedia,
  \texttt{http://en.wikipedia.org/wiki/Diamond\_Anvil\_Cell}
\end{enumerate}

Apparently they can get pressures of up to 360 gigapascals this way,
which is the pressure at the center of the Earth.

Another method, which sounds even more fun, is to use a ``light gas
gun''. Here you explode a few kilograms of gunpowder to shoot a piston
down a tube. As it shoots forwards, the piston pushes some gas down the
tube. The tube narrows to a tiny tip at the end, so the gas is going
really fast by the time it shoots out. It shoots out into a much
narrower tube, where it pushes a projectile. You can then fire the
projectile into something, to generate very high pressures for a very
short time.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  ``Light gas gun'', Wikipedia,
  \texttt{http://en.wikipedia.org/wiki/Light\_Gas\_Gun}
\end{enumerate}

It's not called a ``light'' gas gun because it's wimpy --- in fact
they're huge, and everyone evacuates the lab when they run the one at
NASA! It's called that because the speed of the projectile is limited
only by the speed of sound in the gas, which is higher for a light gas
like helium --- or even better, hydrogen. Even better, that is, you
don't mind exploding gunpowder near highly flammable hydrogen! But, as
you can imagine, people who do this stuff are precisely the sort who
don't mind. You may enjoy reading how folks at Lawrence Livermore
National Laboratory used a light gas gun to compress hydrogen to
pressures of up to 200 gigapascals, enough to convert it into a metal:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Robert C. Cauble, ``Putting more pressure on hydrogen'',
  \texttt{http://www.llnl.gov/str/Cauble.html}
\end{enumerate}

This supports the theory that the hydrogen at Jupiter's core is in
metallic form, which would explain its enormous magnetic field. They
know their hydrogen became a metal because they fired a laser at it and
saw it was shiny! In fact, they fired three lasers at it simultaneously,
just for kicks.

(By the way, this article erroneously says a ``megabar'' is 100 pascals.
It's a million atmospheres, or 100 gigapascals.)

But I'm digressing again. I was saying
\href{http://www.lsbu.ac.uk/water/ice_vii.html\#iceten}{ice X} forms at
a pressure of around 50 gigapascals. It's pretty far-out stuff. It's a
cubic crystal with density 2.5 times that of ordinary liquid water. It's
so compressed that separate water molecules no longer exist! Instead,
the oxygen atoms form a body-centered cubic. This means they lie at the
corners of a lattice of cubes, but with one at the center of each cube
too, like the red dots in this picture by Cavazzoni:
\[\includegraphics[max width=0.65\linewidth]{../images/cavazzoni_ice_X.jpg}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Carlo Cavazzoni, \emph{Large scale first-principles simulations of
  water and ammonia at high pressure and temperature}, Ph.D.~thesis,
  Scuola Internazionale Superiore di Studi Avanzati, October 1998.
  Figure 4.10: symmetric and super-ionic ice X structures, p.~57.
  Available at
  \texttt{http://sirio.cineca.it/\textasciitilde{}acv0/thesis.html}
\end{enumerate}

Hydrogen ions --- in other words, protons --- sit at the midpoints of
half the edges connecting cube corners to cube centers. There are two
ways they can do this, illustrated by the yellow and gray dots shown
above. They can form a right-side-up tetrahedron, or an upside-down
tetrahedron.

A body-centered cubic can also be visualized as two interpenetrating
cubic lattices, labelled A and B here:
\[\includegraphics[max width=0.65\linewidth]{../images/cavazzoni_ice_X_2.jpg}\]

Each oxygen has 4 hydrogens next to it. If you compress water a bit less
than enough to make
\href{http://www.lsbu.ac.uk/water/ice_vii.html\#iceten}{ice X}, you get
\href{http://www.lsbu.ac.uk/water/ice_vii.html}{ice VII}. This is almost
the same, but two of those hydrogens are closer to the oxygen than the
other two, so there are still separate water molecules! It's completely
random which two hydrogens are closer than the other two. But if you
cool down \href{http://www.lsbu.ac.uk/water/ice_vii.html}{ice VII}, you
get \href{http://www.lsbu.ac.uk/water/ice_viii.html}{ice VIII}, where
it's \emph{not} random.

So, Nature explores all the options.

Recently people have gotten interested in ice at even higher pressures
--- and also higher temperatures, to understand the interiors of planets
like Neptune and Uranus. Here pressures range from 20 to 800
gigapascals, and temperatures from 2000 to 8000 kelvin. In
\protect\hyperlink{week160}{``Week 160''} I mentioned that on Neptune it
may rain diamonds, formed by methane in the atmosphere. But what happens
to the water, and the ammonia? If they became good electrical
conductors, that might explain the magnetic fields of these planets.

People have done computer simulations to study this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  C. Cavazzoni, G. L. Chiarotti, S. Scandolo, E. Tosatti, M. Bernasconi
  and M. Parrinello, ``Superionic and metallic states of water and
  ammonia at giant planet conditions'', \emph{Science} \textbf{283}
  (January 1999), 44--46. Also available at
  \texttt{http://www.sciencemag.org/cgi/content/full/283/5398/44}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/cavazzoni_ice_phases.png}\]

It seems that when you heat up
\href{http://www.lsbu.ac.uk/water/ice_vii.html\#iceten}{ice X}, it goes
into a ``superionic'' state where the little tetrahedra of hydrogen ions
in each cube are constantly randomizing themselves, instead of remaining
fixed. It's a curious hybrid of a solid and a liquid, since the
hydrogens are moving around, while the oxygens stay in their
body-centered cubic crystal.

But if you heat it even more, the oxygen melts too! As you can see from
the phase diagram above, it then becomes an ionic fluid.

As you heat it even more, you enter the region labelled ``gap closure'',
where the water starts to act like a metallic plasma. Then it's a really
good conductor of electricity.

The curve labelled ``Neptune isentrope'' describes the pressures and
temperatures you'd experience if you unwisely jumped into Neptune!

As you fell in, it would keep getting hotter and the pressure would keep
rising until you entered this chart, at a temperature of about 2000
kelvin. At this point you'd see molecular fluid water --- I say this
because at temperatures above 650 kelvin (the critical point for water),
there's no sharp difference between liquid and gas. Then the fluid would
become ionic\ldots{} and then you'd start drifting towards gap closure
and the metallic plasma phase. Down deep, metallic plasmas of water and
ammonia might explain the magnetic field of this planet.

Recently people have done some experiments with water at extremely high
pressures, checking what theorists like Cavazzoni and company predict.
For example, this paper says that using ``extremely large lasers'',
people have studied water at pressures near a terapascal --- 1000
gigapascals:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  P. M. Celliers et al, ``Electronic conduction in shock-compressed
  water'', \emph{Plasmas} \textbf{11} (2004), L41--L48.
\end{enumerate}

They also mention that ``a single datum at 1.4 terapascals from an
underground nuclear experiment has never been repeated.'' Some people
just don't know when to stop in the quest for higher pressures.

While I'm at it, I should mention a few more interesting articles on
weird forms of ice. There's a lot of research on this subject! Here's a
quick overview:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Nancy McGuire, ``The many phases of water'', American Chemical
  Society,
  \texttt{https://web.archive.org/web/20051201104533/http://www.chemistry.org/portal/a/c/s/1/feature\_pro.html?id=c373e9fbed0a01c78f6a4fd8fe800100}
\end{enumerate}

Here's a webpage with some nice pictures and an interesting story:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  J. L. Finney, ``The phase diagram of water and a new metastable form
  of ice'', \texttt{http://www.cmmp.ucl.ac.uk/people/finney/soi.html}
\end{enumerate}

And finally, there's a paper that talks about how ordinary ice Ih but
also silica and ice XI become amorphous when you squeeze them enough:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Koichiro Umemoto, Renata M. Wentzcovitch, Stefano Baroni and Stefano
  de Cironcoli, ``Anomalous pressure-induced transition(s) in ice XI'',
  \emph{Physical Review Letters} \textbf{92} (2004), 105502-1. Also
  available at
  \texttt{http://www.cems.umn.edu/research/wentzcovitch/papers/Phys.\_Rev.\_Lett.\_92\_105502\_(2004).pdf}
\end{enumerate}

There's some interesting math in here, because they do computer
simulations of the transition from a crystal to an amorphous substance,
which is interesting to study using Fourier analysis. The idea is that
certain vibrational modes of the crystal ``go soft'', so they get easily
excited. When a bunch of modes go soft that have wavelengths not equal
to the crystal lattice spacing, the crystal structure becomes unstable,
and there can be a transition to an amorphous state.

There's also interesting math lurking in Cavazzoni et al's models of ice
X! If you think particle physics is hard, just wait until you try
understanding something complicated, like water.

I've been sort of
\href{math.ucr.edu/home/baez/diary/diary_2006.html}{obsessed with ice}
lately. If you like it too, I recommend this book for general
information:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Mariana Gosnell, \emph{Ice: The Nature, the History, and the Uses of
  an Astonishing Substance}, Alfred A. Knopf, New York, 2005.
\end{enumerate}

but I bought this one, because it tells an interesting history of the
science of climate change as seen from icy peaks:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Mark Bowen, \emph{Thin Ice: Unlocking the Secrets of Climate in the
  World's Highest Mountains}, Henry Holt \& Co., 2005.
\end{enumerate}

Now for some math. Last week I said a bit about quivers, the McKay
correspondence, and string theory. I want to dig deeper into the
relation between these subjects, because Urs Schreiber has some
interesting ideas about them, which he's mentioned here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Urs Schreiber, ``A note on RCFT and quiver reps'',
  \texttt{http://golem.ph.utexas.edu/string/archives/000794.html}
\end{enumerate}

But, I'm not feeling sufficiently energetic to explain these ideas right
now, especially since he already has! For some more clues, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Paul Aspinwall, ``D-branes on Calabi-Yau manifolds'', section 7.3.1,
  The McKay correspondence, p.~101 and following. Available as
  \href{https://arxiv.org/abs/hep-th/0403166}{\texttt{hep-th/0403166}}
\end{enumerate}

For more on the the representation theory of quivers, see the references
in the ``Addenda'' to \protect\hyperlink{week230}{``Week 230''}, and
also this excellent book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  David J. Benson, \emph{Representations and Cohomology I}, Cambridge U.
  Press, Cambridge 1991.
\end{enumerate}

You'll see how the non-simply-laced Dynkin diagrams get into the act! A
more thorough treatment, fascinating but somewhat quirky, can be found
here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\tightlist
\item
  P. Gabriel and A. V. Roiter, \emph{Representations of
  Finite-Dimensional Algebras}, Enc. of Math. Sci. \textbf{73}, Algebra
  VIII, Springer, Berlin 1992.
\end{enumerate}

If you like category theory you may enjoy this book, because it's all
about representations of categories, i.e.~functors
\[F\colon \mathcal{C} \to \mathsf{Vect}\] where \(\mathcal{C}\) is a
category. It's full of nontrivial theorems about these, starting with
Gabriel's classification of quivers into those of finite representation
type (see \protect\hyperlink{week230}{``Week 230''}), the tame quivers
(which have an infinite but still manageable set of indecomposable
representations), and the wild ones. But, you may be puzzled when you
read about ``svelte'' categories, or functors that ``preserve
heteromorphisms''.

I might as well say what those are. A category is ``svelte'' if its
isomorphism classes of objects form a mere set instead of a proper
class, like the category of finite-dimensional vector spaces. Most
people would say such a category is ``essentially small''.

And, a functor ``preserves heteromorphisms'' if it maps heteromorphisms
to heteromorphisms. Well, duh! But what's a ``heteromorphism''? It's
their term for a morphism that's not an isomorphism. Most people would
say such a functor ``reflects isomorphisms''.

You may also be interested in what a ``locular'' category is, or a
``spectroid''\ldots{} but I won't tell you! Read the book.

Speaking of category theory, this is my last week in Chicago, which is
really sad, because Steve Lack is just starting to give us a crash
course on ``Australian category theory''. Australia, you see, is the
center of macho category theory, where they're heavy on the calculus of
mates, doctrinal adjunctions are a dime a dozen, and everything should
be \(\mathcal{V}\)-enriched if not \(\mathcal{W}\)-enriched. But Chicago
is starting to get macho too: tomorrow Nick Gurski defends his
Ph.D.~thesis on ``Algebraic Tricategories''! So, the Chicago gang wants
to learn some tricks from the Australians. But next Monday I'm off to
the Perimeter Institute, to indulge the physics side of my
personality\ldots.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank Colin Rust for correcting a serious typo.
Uncle Al points out that a newton is, quite appropriately, about the
weight of an average apple. Aaron Bergman had this to say:

\begin{quote}
John Baez wrote:

\begin{quote}
Now for some math. Last week I said a bit about quivers, the McKay
correspondence, and string theory. I want to dig deeper into the
relation between these subjects,
\end{quote}

You want

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\tightlist
\item
  Tom Bridgeland, Alaistair King and Miles Reid, ``Mukai implies McKay:
  the McKay correspondence as an equivalence of derived categories'',
  available as
  \href{http://www.arxiv.org/abs/math.AG/9908027}{\texttt{math.AG/9908027}}.
\end{enumerate}

Much coolness there.

\begin{quote}
For more on the representation theory of quivers, see the references in
the ``Addenda'' to \protect\hyperlink{week230}{``Week 230''}, and also
this excellent book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  David J. Benson, \emph{Representations and Cohomology I}, Cambridge U.
  Press, Cambridge 1991.
\end{enumerate}
\end{quote}

There's a whole lot of cool things to say about non-Dynkin quivers. If
you put a D-brane at an ADE singularity, you get the affine Dynkin
quivers, but there are plenty of other singularities out there. Another
nice set is the canonical bundle over a del Pezzo with the zero section
collapsed. Quivers can be associated to this via a work of Bridgeland:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\tightlist
\item
  Tom Bridgeland, ``T-structures on some local Calabi-Yau varieties'',
  available as
  \href{http://www.arxiv.org/abs/math.AG/0502050}{\texttt{math.AG/0502050}}.
\end{enumerate}

with many of the same results in some physics papers by Herzog,
Aspinwall and Wijnholt.

My modest contribution to this story is where myself and Nick Proudfoot
show that the moduli space of representations of these quivers (for a
subclass of examples) has as a component the original cone:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{23}
\tightlist
\item
  Aaron Bergman, ``Undoing orbifold quivers'', available as
  \href{http://www.arxiv.org/abs/hep-th/0502105}{\texttt{hep-th/0502105}}.
\end{enumerate}

Aaron Bergman, ``Moduli spaces for Bondal quivers'', available as
\href{http://www.arxiv.org/abs/math.AG/0512166}{\texttt{math.AG/0512166}}.

Aaron
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{That the glass would melt in heat,\\
That the water would freeze in cold,\\
Shows that this object is merely a state,\\
One of many, between two poles.}

--- Wallace Stevens
\end{quote}
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I'm at the Perimeter Institute now. It's great to see how it's developed
since I first saw their \href{PI1.jpg}{new building} back in 2004 (see
\protect\hyperlink{week208}{``Week 208''} for the story).

There's now a busy schedule of seminars and weekly colloquia, with
string theorists and loop quantum gravity people coexisting happily.
Their program of Superstring Quartets features some really hot bands,
like the Julliard and Emerson --- unfortunately not playing while I'm
here. The Black Hole Bistro serves elegant lunches and dinners, there
are at least two espresso machines on each floor, and my friend Eugenia
Cheng will be happy to hear that they still have a piano available
(after 6 pm).

But don't get the impression that it's overly sophisticated: there are
also a couple of guys constantly playing
\href{https://math.ucr.edu/home/baez/foosball.jpg}{foosball} in the
Feynman Lounge.

Since I'm here, I should talk about quantum gravity --- so I will. But
first, let's have the astronomy picture of the week.

This week it comes, not from outer space, but beneath the surface of the
South Pole:
\[\href{http://icecube.wisc.edu/gallery/detector_concepts/ceren_hires}{\includegraphics[max width=0.65\linewidth]{../images/ice_cube.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Steve Yunck / NSF, ``Cerenkov light passing through the IceCube
  neutrino detector'',
  \texttt{http://icecube.wisc.edu/gallery/detector\_concepts/ceren\_hires}
\end{enumerate}

This is an artist's impression of a huge neutrino observatory called
``IceCube''. (Maybe they left out the space here so the rap star of that
name doesn't sue them for trademark infringement, or go down there and
shoot them.)

IceCube is being built in the beautifully clear 18,000-year old ice deep
beneath the Amundsen-Scott South Pole Station. When a high-energy
neutrino hits a water molecule, sometimes the collision produces a muon
zipping faster than the speed of light in ice. This in turn produces
something like a sonic boom, but with light instead of sound. It's
called ``Cerenkov radiation'', and it's the blue light in the picture.
This will be detected by an array of 5000 photomultiplier tubes ---
those gadgets hanging on electrical cables.

One thing the artist's impression doesn't show is that IceCube is
amazingly large. The whole array is a cubic kilometer in size! It will
encompass the already existing AMANDA detector, itself 10,000 meters
tall, shown as a yellow cylinder here with a neutrino zipping through:
\[\href{http://icecube.wisc.edu/gallery/detector_concepts/icecubeencomp_300}{\includegraphics[max width=0.65\linewidth]{../images/ice_cube_AMANDA.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Darwin Rianto / NSF, ``Comparison of AMANDA and IceCube'',
  \texttt{http://icecube.wisc.edu/gallery/detector\_concepts/icecubeencomp\_300}
\end{enumerate}

Even the very top of IceCube is 1.4 kilometers beneath the snowy
Antarctic surface, to minimize the effect of stray cosmic rays. The
station on top looks like this --- not very cozy, I'd say:
\[\href{http://icecube.wisc.edu/gallery/antarctica/PC140287_300}{\includegraphics[max width=0.65\linewidth]{../images/south_pole_station.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Robert G. Stokstad / NSF, ``South Pole Station'',
  \texttt{http://icecube.wisc.edu/gallery/antarctica/PC140287\_300}
\end{enumerate}

I heard about IceCube from Adrian Burd, one of the old-timers who used
to post a lot on \texttt{sci.physics}, a former cosmologist turned
oceanographer who recently visited Antarctica as part of an NSF-run
field course. He ran into some people working on IceCube. It sounds like
an interesting community down there! You can read about it in their
newspaper, the Antarctic Sun. For example:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  ``Ice Cube turns up the heat'', \emph{The Antarctic Sun}, January 29,
  2006,
  \texttt{http://antarcticsun.usap.gov/2005-2006/contentHandler.cfm?id=959}
\end{enumerate}

For more on IceCube and Amanda, these are fun to read:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Francis Halzen, ``Ice fishing for neutrinos'',
  \texttt{http://icecube.berkeley.edu/amanda/ice-fishing.html}
\item
  Katie Yurkiewicz, ``Extreme neutrinos'', \emph{Symmetry}, volume
  \textbf{1} issue 1, November 2004,
  \texttt{http://symmetrymagazine.org/cms/?pid=1000014}
\end{enumerate}

For some of AMANDA's results, including a map of the sky as seen in
neutrinos, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  M. Ackermann et al, ``Search for extraterrestrial point sources of
  high energy neutrinos with AMANDA-II using data collected in
  2000--2002'', available as
  \href{https://arxiv.org/abs/astro-ph/0412347}{\texttt{astro-ph/0412347}}.
\end{enumerate}

For much more, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  AMANDA II Project, \texttt{http://amanda.uci.edu/}
\item
  Welcome to IceCube, \texttt{http://icecube.wisc.edu/}
\end{enumerate}

And now, on to gravity.

You may have heard of the gravitational 3-body problem. Well, Richard
Montgomery (famous from \protect\hyperlink{week181}{``Week 181''})
recently pointed out this movie of the \(60\)-body problem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Davide L. Ferrario, ``Periodic orbits for the \(60\)-body problem'',
  \texttt{http://www.matapp.unimib.it/\textasciitilde{}ferrario/mov/index.html}
\end{enumerate}

60 equal masses do a complicated dance while always preserving
icosahedral symmetry! First 12 groups of 5 swing past each other, then
20 groups of 3. If you want to know how he found these solutions, read
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Davide L. Ferrario and S. Terracini, ``On the existence of
  collisionless equivariant minimizers for the classical \(n\)-body
  problem''. \emph{Invent. Math.} \textbf{155} (2004), 305--362.
\end{enumerate}

It's quite math-intensive --- though just what you'd expect if you know
this sort of thing: they use the \(G\)-equivariant topology of loop
spaces, where \(G\) is the symmetry group in question (here the
icosahedral group), to prove the existence of action-minimizing loops
with given symmetry properties.

Next, I'd like to say a little about point particles in 3d quantum
gravity, and some recent work with Alissa Crans, Derek Wise and
Alejandro Perez on string-like defects in 4d topological gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  John Baez, Derek Wise and Alissa Crans, ``Exotic statistics for
  strings in 4d \(BF\) theory'', available as
  \href{https://arxiv.org/abs/gr-qc/0603085}{\texttt{gr-qc/0603085}}.
\item
  John Baez and Alejandro Perez, ``Quantization of strings and branes
  coupled to \(BF\) theory'', available as
  \href{https://arxiv.org/abs/gr-qc/0605087}{\texttt{gr-qc/0605087}}.
\end{enumerate}

(Jeffrey Morton is also involved in this project, a bit more on the
\(n\)-category side of things, but that aspect is top secret for now.)

In \protect\hyperlink{week222}{``Week 222''} I listed a bunch of cool
papers on 3d quantum gravity, but I didn't really explain them. What
we're trying to do now is generalize this work to higher dimensions. But
first, let me start by explaining the wonders of 3d quantum gravity.

The main wonder is that we actually understand it! The classical version
of general relativity is exactly solvable when spacetime has dimension
3, and so is the quantum version. Most of the wonders I want to discuss
are already visible in the classical theory, where they are easier to
understand, so I'll focus on the classical case.

A nice formulation of general relativity in 3 dimensions uses a
``Lorentz connection'' \(A\) and a ``triad field'' \(e\). This is a
gauge theory where the gauge group is \(\mathrm{SO}(2,1)\), the Lorentz
group for 3d spacetime. If we're feeling lowbrow we can think of both
\(A\) and \(e\) as \(\mathfrak{so}(2,1)\)-valued \(1\)-forms on the
\(3\)-manifold \(M\) that describes spacetime. The action for this
theory is: \[\int_M \operatorname{tr}(e\wedge F)\] where \(F\) is the
curvature of \(A\). If you work out the equations of motion one of them
says that \(F = 0\), so our connection \(A\) is flat. The other,
\(d_A e = 0\), says \(A\) is basically just the Levi-Civita connection.

This is exactly what we want, because in the absence of matter, general
relativity in 3 dimensions says spacetime is \emph{flat}.

A fellow named Phillipp de Sousa Gerbert came up with an interesting way
to couple point particles to this formulation of quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Phillipp de Sousa Gerbert, ``On spin and (quantum) gravity in 2+1
  dimensions'', \emph{Nuclear Physics} \textbf{B346} (1990), 440--472.
\end{enumerate}

He actually did it for particles with spin, but I'll just do the
spin-zero case.

The idea is to fix a \(1\)-dimensional submanifold \(W\) in our
\(3\)-manifold \(M\) and think of it as the worldlines of some
particles. Put \(\mathfrak{so}(2,1)\)-valued functions \(p\) and \(q\)
on these worldlines --- think of these as giving the particles' momentum
and position as a function of time.

Huh? Well, normally we think of position and momentum as vectors. In
special relativity, ``position'' means ``position in spacetime'', and
``momentum'' means ``energy-momentum''. We can think of both of these as
vectors in Minkowksi spacetime. But in 3 dimensions, Minkowski spacetime
is naturally identified with the Lorentz Lie algebra
\(\mathfrak{so}(2,1)\). So, it makes sense to think of \(q\) and \(p\)
as elements of \(\mathfrak{so}(2,1)\) which vary from point to point
along the particle's worldline.

To couple our point particles to gravity, we then add a term to the
action like this:
\[S = \int_M \operatorname{tr}(e\wedge F) - \int_W \operatorname{tr}((e + d_A q)\wedge p)\]
Now if you vary the \(e\) field you get a field equation saying that
\[F = p \delta_W\] Here \(\delta_W\) is like the Dirac delta function of
the worldline \(W\); it's a distributional \(2\)-form defined by
requiring that \[\int_W X = \int_M (X\wedge \delta_W)\] for any smooth
\(1\)-form \(X\) on \(W\). This sort of ``distributional differential
form'' is also called a ``current'', and you can read about them in the
classic tome by Choquet-Bruhat et al.~But the main point is that the
field equation \[F = p \delta_W\] says our connection on spacetime is
flat except along the worldlines of our particles, where the curvature
is a kind of ``\(\delta\) function''. This is nice, because that's what
we expect in 3d gravity: if you have a particle, spacetime will be flat
everywhere except right at the particle, where it will have a
singularity like the tip of a cone.

A cone, you see, is intrinsically flat except at its tip: that's why you
can curl paper into a cone without crinkling it!

So, our spacetime is flat except along the particles' worldlines, and
there it's like a cone. The ``deficit angle'' of this cone --- the angle
of the slice you'd need to cut out to curl some paper into this cone -
is specified by the particle's momentum \(p\).

Since delta functions are a bit scary, it's actually better to work with
an ``integrated'' form of the equation \[F = -p \delta_W\] The
integrated form says that if we parallel transport a little tangent
vector around a little loop circling our particle's worldline, it gets
rotated and/or Lorentz transformed by the element \[\exp(p)\] in
\(\mathrm{SO}(2,1)\). This will be a rotation if the particle's momentum
\(p\) is timelike, as it is for normal particles. Again, that's just as
it should be: if you parallel transport a little arrow around a massive
particle in 3d gravity, it gets rotated!

If \(p\) is timelike, our particle is a tachyon and \(\exp(p)\) is a
Lorentz boost. And so on\ldots{} we get the usual classification of
particles corresponding to various choices of \(p\):
\[\includegraphics[max width=0.65\linewidth]{../images/lightcone.jpg}\]

There are other equations of motion, obtained by varying other fields,
but all I want to note is the one you get by varying \(q\):
\[d_A  p = 0\] This says that the momentum \(p\) is covariantly constant
along the particles' worldlines. So, momentum is conserved!

The really cool part is the relation between the Lie algebra element
\(p\) and the group element \(\exp(p)\). Originally we thought of \(p\)
as momentum --- but there's a sense in which \(\exp(p)\) is the momentum
that really counts!

First, \(\exp(p)\) is what we actually detect by parallel transporting a
little arrow around our particle.

Second, suppose we let two particles collide and form a new one: \[
  \begin{tikzpicture}
    \node[label=above:{$p$}] at (0,0) {};
    \node[label=above:{$p'$}] at (1,0) {};
    \node[label=below:{$p''$}] at (0.5,-2) {};
    \draw[thick] (0,0) to (0.5,-1) to (0.5,-2);
    \draw[thick] (1,0) to (0.5,-1);
  \end{tikzpicture}
\] Now our worldlines don't form a submanifold anymore, but if we keep
our wits about us, we can see that everything still makes sense, and we
get momentum conservation in this form: \[\exp(p'') = \exp(p) \exp(p')\]
since little loops going around the two incoming particles can fuse to
form a loop going around the outgoing particle. Note that we're getting
conservation of the \emph{group-valued} momentum, not the
Lie-algebra-valued momentum --- we don't have \[p'' = p + p'\] So,
conservation of energy-momentum is getting modified by gravitational
effects! This goes by the name of ``doubly special relativity'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Laurent Freidel, Jerzy Kowalski-Glikman and Lee Smolin, ``2+1 gravity
  and doubly special relativity'', \emph{Phys. Rev.} \textbf{D69} (2004)
  044001. Also available as
  \href{https://arxiv.org/abs/hep-th/0307085}{\texttt{hep-th/0307085}}.
\end{enumerate}

This effect is a bit less shocking if we put the units back in. I've
secretly been setting \(4\pi G = 1\), where \(G\) is Newton's
gravitational constant. If we put that constant back in --- let's call
it \(k\) instead of \(4\pi G\) --- we get
\[\exp(kp'') = \exp(kp) \exp(kp')\] or if you expand things out:
\[p'' = p + p' + \frac{k}{2}[p,p'] + \mbox{terms of order $k^2$ and higher}\]
So, as long as the momenta are small compared to the Planck mass, the
usual law of conservation of momentum \[p'' = p + p'\] \emph{almost}
holds! But, for large momenta this law breaks down --- we must think of
momentum as group-valued if we want it to be conserved!

I think this is incredibly cool: as we turn on gravity, the usual
``flat'' momentum space curls up into a group, and we need to
\emph{multiply} momenta in this group, instead of \emph{add} them in the
Lie algebra. We can think of this group has having a ``radius'' of
\(1/k\), so it's really big and almost flat when the strength of gravity
is small. In this limit, multiplication in the group reduces to addition
in the Lie algebra.

I should point out that this effect is purely classical! It's still
there when we quantize the theory, but it only depends on the
gravitational constant, not Planck's constant. Indeed, in 3d quantum
gravity, we can build a unit of mass using just \(G\) and \(c\): we
don't need \(\hbar\). This unit is the mass that curls space into an
infinitely skinny cone! It would be a bit misleading to call it ``Planck
mass'', but it's the maximum possible mass. Any mass bigger than this
acts like a \emph{negative} mass. That's because the corresponding
group-valued momenta ``wrap around'' in the group \(\mathrm{SO}(2,1)\).

We also get another cool effect --- exotic statistics. In the absence of
gravitational or quantum effects, when you switch two particles, you
just switch their momenta: \[(p, p') \mapsto (p', p)\] But in 3d
gravity, you can think of this process of switching particles as a
braid: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=5]
      \strand[thick] (0,0) to (1,-2);
      \strand[thick] (1,0) to (0,-2);
    \end{knot}
  \end{tikzpicture}
\] and if you work out what happens to their group-valued momenta, say
\[
  \begin{aligned}
    g &= \exp(kp)
  \\g' &= \exp(kp')
  \end{aligned}
\] it turns out that one momentum gets conjugated by the other:
\[(g, g') \mapsto (gg'g^{-1}, g)\] To see this, remember that we get
these group elements by doing parallel transport around loops that
circle our particles. When we move our particles, the loops get dragged
along, like this:
\[\includegraphics[max width=0.65\linewidth]{../images/particles_braiding.jpg}\]
Note that the left-hand red loop moves until it looks just like the
right one did initially, but the right-hand one gets wrapped around the
left one. If you ponder this carefully, and you know some math, you can
see it yields this: \[(g, g') \mapsto (gg'g^{-1}, g)\] So, the process
of braiding two particles around each other has a nontrivial effect on
their momenta. In particular, if you braid two particles around other
twice they don't wind up in their original state!

Thus, our particles are neither bosons nor fermions, but ``nonabelian
anyons'' --- the process of switching them is governed not by the
permutation group, but by the braid group. But again, if you expand
things out in powers of \(k\) you'll see this effect is only noticeable
for large momenta:
\[(p, p') \mapsto (p' + k[p,p'] + \mbox{higher order terms}, p)\]
Summarizing, we see quantum gravity is lots of fun in 3 dimensions: it's
easy to introduce point particles, and they have group-valued momentum,
which gives rise to doubly special relativity and braid group
statistics.

Now, what happens when we go from 3 dimensions to 4 dimensions?

Well, we can write down the same sort of theory:
\[S = \int_M \operatorname{tr}(B\wedge F) - \int_W \operatorname{tr}((B + d_A q)\wedge p)\]
The only visible difference is that what I'd been calling ``\(e\)'' is
now called ``\(B\)'', so you can see why folks call this ``\(BF\)
theory''.

But more importantly, now \(M\) is an \(4\)-dimensional spacetime and
\(W\) is an 2-dimensional ``worldsheet''. \(A\) is again a Lorentz
connection, which we can think of as an \(\mathfrak{so}(3,1)\)-valued
\(1\)-form. \(B\) is an \(\mathfrak{so}(3,1)\)-valued \(2\)-form. \(p\)
is an \(\mathfrak{so}(3,1)\)-valued function on the worldsheet \(W\).
\(q\) is an \(\mathfrak{so}(3,1)\)-valued \(1\)-form on \(W\).

So, only a few numbers have changed\ldots{} so everything works very
similarly! The big difference is that instead of spacetime having a
conical singularity along the worldline of a \emph{particle}, now it's
singular along the worldsheet of a \emph{string}. When I call it a
``string'', I'm not trying to say it behaves like the ones they think
about in string theory --- at least superficially, it's a different sort
of theory, a purely topological theory. But, we've got these closed
loops that move around, split and join, and trace out surfaces in
spacetime.

They can also braid around each other in topologically nontrivial ways,
as shown in this ``movie'':
\[\includegraphics[max width=0.65\linewidth]{../images/loopbraid.jpg}\]
(By the way, all the math pictures this week were drawn by Derek for our
paper.)

So, we get exotic statistics as before, but now they are governed not by
the braid group but by the "loop braid group'\,', which keeps track of
all the ways we can move a bunch of circles around in 3d space. Let's
take our spacetime M to be \(\mathbb{R}^4\), to keep things simple. Then
our circles can move around in \(\mathbb{R}^3\)\ldots{} and there are
two basic ways we can switch two of them: move them around each other,
or pass one \emph{through} the other, like this:
\[\includegraphics[max width=0.65\linewidth]{../images/loop_switch.jpg}\]
If we just move them around each other, they might as well have been
point particles: we get a copy of the permutation group, and all we see
are ordinary statistics. But when we consider all the ways of passing
them through each other, we get a copy of the braid group!

When we allow ourselves both motions, we get a group called the ``loop
braid group'\,' or''braid permutation group'\,' --- and one thing Alissa
Derek and I did was to get a presentation of this group. This is an
example of a "motion group'\,': just as the motion group of point
particles in the plane is the braid group, and motion group of point
particles in \(\mathbb{R}^3\) is the permutation group, the motion group
of strings in \(\mathbb{R}^3\) is the loop braid group.

As before, our strings have group-valued momenta: we can get an element
of the Lorentz group \(\mathrm{SO}(3,1)\) by parallel transporting a
little tangent vector around a string. And, we can see how different
ways of switching our strings affect the momenta. When we move two
strings around each other, their momenta switch in the usual way:
\[(g, g') \mapsto (g', g)\] but when we move one through the other, one
momentum gets conjugated by the other:
\[(g, g') \mapsto (gg'g^{-1}, g)\] So, we have exotic statistics, but
you can only notice them if you can pass one string through another!

In the paper with Alejandro, we go further and begin the project of
quantizing these funny strings, using ideas from loop quantum gravity.
Loop quantum gravity has its share of problems, but it works perfectly
well for 3d quantum gravity, and matches the spin foam picture of this
theory. People have sort of believed this for a long time, but Alejandro
demonstrated this quite carefully in a recent paper with Karim Noui:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Karim Noui and Alejandro Perez, ``Dynamics of loop quantum gravity and
  spin foam models in three dimensions'', to appear in the proceedings
  of the \emph{Third International Symposium on Quantum Theory and
  Symmetries (QTS3)}, available as
  \href{https://arxiv.org/abs/gr-qc/0402112}{\texttt{gr-qc/0402112}}.
\end{enumerate}

The reason everything works so nicely is that the equations of motion
say the connection is flat. Since the same is true in \(BF\) theory in
higher dimensions, we expect that the loop quantization and spin foam
quantization of the theory I'm talking about now should also work well.

We find that we get a Hilbert space with a basis of ``string spin
networks'', meaning spin networks that can have loose ends on the
stringy defects.

So, there's some weird blend of loop quantum gravity and strings going
on here --- but I don't really understand the relation to ordinary
string theory, if any. It's possible that I can get a topological string
theory (some sort of well-defined mathematical gadget) which describes
these stringy defects, and that would be quite interesting.

But, I spoke about this today at the Perimeter Institute, and Malcolm
Perry said that instead of ``strings'' I should call these guys
\((n-2)\)-branes, because the connection has conical singularities on
them, ``which is what one would expect for any respectable
\((n-2)\)-brane''.

I will talk to him more about this and try to pick his, umm, branes. In
fact I took my very first GR course from him, back when he was a postdoc
at Princeton and I was a measly undergraduate. I was too scared to ask
him many questions then. I'm a bit less scared now, but I've still got a
lot to learn. Tomorrow he's giving a talk about this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  David S. Berman, Malcolm J. Perry, ``M-theory and the string genus
  expansion'', \emph{Phys. Lett.} \textbf{B635} (2006) 131--135. Also
  available as
  \href{http://arxiv.org/abs/hep-th/0601141}{\texttt{hep-th/0601141}}.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Here's an email from Greg Egan, and my reply:

\begin{quote}
John Baez wrote:

\begin{quote}
The really cool part is the relation between the Lie algebra element
\(p\) and the group element \(\exp(p)\). Originally we thought of \(p\)
as momentum --- but there's a sense in which \(\exp(p)\) is the momentum
that really counts!
\end{quote}

Would it be correct to assume that the ordinary tangent vector \(p\)
still transforms in the usual way? In other words, suppose I'm living in
a 2+1 dimensional universe, and there's a point particle with rest mass
\(m\) and hence energy-momentum vector in its rest frame of \(p=me_0\).
If I cross its world line with a certain relative velocity, there's an
element \(g\) of \(\mathrm{SO}(2,1)\) which tells me how to map the
particle's tangent space to my own. Would I measure the particle's
energy-momentum to be \(p'=gp\)? (e.g.~if I used the particle to do work
in my own rest frame) Would there still be no upper bound on the total
energy, i.e.~by making our relative velocity close enough to \(c\), I
could measure the particle's kinetic energy to be as high as I wished?

I guess I'm trying to clarify whether the usual Lorentz transformation
of the tangent space has somehow been completely invalidated for extreme
boosts, or whether it's just a matter of there being a second definition
of ``momentum'' (defined in terms of the Hamiltonian) which transforms
differently and is the appropriate thing to consider in gravitational
contexts.

In other words, does the cut-off mass apply only to the deficit angle,
and do boosts still allow me to measure (by non-gravitational means)
arbitrarily large energies (at least in the classical theory)?
\end{quote}

I replied:

\begin{quote}
Greg Egan wrote:

\begin{quote}
John Baez wrote:
\end{quote}

\begin{quote}
\begin{quote}
The really cool part is the relation between the Lie algebra element
\(p\) and the group element \(\exp(p)\). Originally we thought of \(p\)
as momentum --- but there's a sense in which \(\exp(p)\) is the momentum
that really counts!
\end{quote}
\end{quote}

\begin{quote}
Would it be correct to assume that the ordinary tangent vector \(p\)
still transforms in the usual way?
\end{quote}

Hi! Yes, it would.

\begin{quote}
In other words, suppose I'm living in a 2+1 dimensional universe, and
there's a point particle with rest mass \(m\) and hence energy-momentum
vector in its rest frame of \(p=m e_0\). If I cross its world line with
a certain relative velocity, there's an element \(g\) of
\(\mathrm{SO}(2,1)\) which tells me how to map the particle's tangent
space to my own. Would I measure the particle's energy-momentum to be
\(p'=gp\)? (e.g.~if I used the particle to do work in my own rest frame)
Would there still be no upper bound on the total energy, i.e.~by making
our relative velocity close enough to \(c\), I could measure the
particle's kinetic energy to be as high as I wished?
\end{quote}

To understand this, it's good to think of the momenta as elements of the
Lie algebra \(\mathfrak{so}(2,1)\) --- it's crucial to the game.

Then, if you have momentum \(p\), and I zip past you, so you appear
transformed by some element \(g\) of the Lorentz group
\(\mathrm{SO}(2,1)\), I'll see your momentum as \[p' = g p g^{-1}\] This
is just another way of writing the usual formula for Lorentz transforms
in 3d Minkowski space. No new physics so far, just a clever mathematical
formalism.

But when we turn on gravity, letting Newton's constant \(k\) be nonzero,
we should instead think of momentum as group-valued, via
\[h = \exp(kp)\] and similarly \[h' = \exp(kp')\] Different choices of
\(p\) now map to the same choice of \(h\). In particular, a particle of
a certain large mass --- the Planck mass --- will turn out to act just
like a particle of zero mass!

So, if we agree to work with \(h\) instead of \(p\), we are now doing
new physics. This is even more obvious when we decide to multiply
momenta instead of adding them, since multiplication in
\(\mathrm{SO}(2,1)\) is noncommutative!

But, if we transform our group-valued momentum in the correct way:
\[h' = ghg^{-1}\] this will be completely compatible with our previous
transformation law for vector-valued momentum!

\begin{quote}
I guess I'm trying to clarify whether the usual Lorentz transformation
of the tangent space has somehow been completely invalidated for extreme
boosts, or whether it's just a matter of there being a second definition
of ``momentum'' (defined in terms of the Hamiltonian) which transforms
differently and is the appropriate thing to consider in gravitational
contexts.
\end{quote}

Good question! Amazingly, the usual Lorentz transformations still work
EXACTLY --- even though the rule for adding momentum is new (now it's
multiplication in the group). We're just taking \(\exp(kp)\) instead of
\(p\) as the ``physical'' aspect of momentum.

This effectively puts an upper limit on mass, since as we keep
increasing the mass of a particle, eventually it ``loops around''
\(\mathrm{SO}(2,1)\) and act exactly like a particle of zero mass.

But, it doesn't exactly put an upper bound on energy-momentum, since
\(\mathrm{SO}(2,1)\) is noncompact. Of course energy and momentum don't
take real values anymore, so one must be a bit careful with this ``upper
bound'' talk.

\begin{quote}
In other words, does the cut-off mass apply only to the deficit angle,
and do boosts still allow me to measure (by non-gravitational means)
arbitrarily large energies (at least in the classical theory)?
\end{quote}

There's some sense in which energy-momenta can be arbitrarily large.
That's because the space of energy-momenta, namely \(\mathrm{SO}(2,1)\),
is noncompact. Maybe you can figure out some more intuitive way to
express this.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{I was sitting in a chair in the patent office in Bern when all of
a sudden a thought occurred to me. If a person falls freely, he will not
feel his own weight.}

--- Albert Einstein
\end{quote}



\hypertarget{week233}{%
\section{May 20, 2006}\label{week233}}

On Tuesday I'm supposed to talk with Lee Smolin about an idea he's been
working on with Fotini Markopoulou and Sundance Bilson-Thompson. This
idea relates the elementary particles in one generation of the Standard
Model to certain \(3\)-strand framed braids:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Sundance O. Bilson-Thompson, ``A topological model of composite
  preons'', available as
  \href{http://arxiv.org/abs/hep-ph/0503213}{hep-ph/0503213}.
\item
  Sundance O. Bilson-Thompson, Fotini Markopoulou, and Lee Smolin,
  ``Quantum gravity and the Standard Model'',
  \href{https://arxiv.org/abs/hep-th/0603022}{\texttt{hep-th/0603022}}.
\end{enumerate}

It's a very speculative idea: they've found some interesting relations,
but nobody knows if these are coincidental or not.

Luckily, one of my hobbies is collecting mysterious relationships
between basic mathematical objects and trying to figure out what's going
on. So, I already happen to know a bunch of weird facts about
\(3\)-strand braids. I figure I'll tell Smolin about this stuff. But if
you don't mind, I'll practice on you!

So, today I'll try to tell a story connecting the \(3\)-strand braid
group, the trefoil knot, rational tangles, the groups
\(\mathrm{SL}(2,\mathbb{Z})\) and \(\mathrm{PSL}(2,\mathbb{Z})\),
conformal field theory, and Monstrous Moonshine.

I've talked about some of these things before, but now I'll introduce
some new puzzle pieces, which come from two places:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Imre Tuba and Hans Wenzl, ``Representations of the braid group \(B_3\)
  and of \(\mathrm{SL}(2,\mathbb{Z})\)'', available as
  \href{http://arxiv.org/abs/math.RT/9912013}{\texttt{math.RT/9912013}}.
\item
  Terry Gannon, ``The algebraic meaning of genus-zero'', available as
  \href{http://arxiv.org/abs/math.NT/0512248}{\texttt{math.NT/0512248}}.
\end{enumerate}

You could call it ``a tale of two groups''.

On the one hand, the \(3\)-strand braid group has generators \[
  \raisebox{2.6em}{$A=$}\quad
  \begin{tikzpicture}
    \begin{knot}[clip width=5]
      \strand[thick] (1,0)
        to [out=down,in=up,looseness=1.5] (0,-2);
      \strand[thick] (0,0)
        to [out=down,in=up,looseness=1.5] (1,-2);
      \strand[thick] (2,0) to (2,-2);
    \end{knot}
  \end{tikzpicture}
\] and \[
  \raisebox{2.6em}{$B=$}\quad
  \begin{tikzpicture}
    \begin{knot}[clip width=5]
      \strand[thick] (1,0)
        to [out=down,in=up,looseness=1.5] (0,-2);
      \strand[thick] (0,0)
        to [out=down,in=up,looseness=1.5] (1,-2);
      \strand[thick] (-1,0) to (-1,-2);
    \end{knot}
  \end{tikzpicture}
\] and the only relation is \[ABA = BAB\] otherwise known as the ``third
Reidemeister move'': \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (2,-2)
        to (2,-3);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1)
        to (0,-2)
        to [out=down,in=up] (1,-3);
      \strand[thick] (2,0)
        to (2,-1)
        to [out=down,in=up] (1,-2)
        to [out=down,in=up] (0,-3);
    \end{knot}
  \end{tikzpicture}
  \raisebox{4em}{\quad=\quad}
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to (0,-1)
        to [out=down,in=up] (1,-2)
        to [out=down,in=up] (2,-3);
      \strand[thick] (1,0)
        to [out=down,in=up] (2,-1)
        to (2,-2)
        to [out=down,in=up] (1,-3);
      \strand[thick] (2,0)
        to [out=down,in=up] (1,-1)
        to [out=down,in=up] (0,-2)
        to (0,-3);
    \end{knot}
  \end{tikzpicture}
\] On other hand, the group \(\mathrm{SL}(2,\mathbb{Z})\) consists of
\(2\times2\) integer matrices with determinant \(1\). It's important in
number theory, complex analysis, string theory and other branches of
pure mathematics. I've described some of its charms in
\protect\hyperlink{week125}{``Week 125''},
\protect\hyperlink{week229}{``Week 229''} and elsewhere.

These groups look pretty different at first. But, there's a homomorphism
from \(B_3\) onto \(\mathrm{SL}(2,\mathbb{Z})\)! It goes like this: \[
  \begin{aligned}
    A &\longmapsto \left(\begin{array}{rr}1&1\\0&1\end{array}\right)
  \\B &\longmapsto \left(\begin{array}{rr}1&0\\-1&1\end{array}\right)
  \end{aligned}
\] Both these matrices describe ``shears'' in the plane. You may enjoy
drawing these shears and visualizing the equation \(ABA = BAB\) in these
terms. I did.

I would like to understand this better\ldots{} and here are some clues.

The center of \(B_3\) is generated by the element \((AB)^3\). This
element corresponds to a ``full twist''. In other words, it's the braid
you get by hanging 3 strings from the ceiling, grabbing them all with
one hand at the bottom, and giving them a full 360-degree twist: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=5]
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-1);
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-1);
      \strand[thick] (2,0) to (2,-1);
    \end{knot}
    \node at (3,-0.5) {$A$};
    \begin{scope}[shift={(1,-1)}]
      \begin{knot}[clip width=5]
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-1);
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-1);
        \strand[thick] (-1,0) to (-1,-1);
      \end{knot}
      \node at (2,-0.5) {$B$};
    \end{scope}
    \begin{scope}[shift={(0,-2)}]
      \begin{knot}[clip width=5]
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-1);
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-1);
        \strand[thick] (2,0) to (2,-1);
      \end{knot}
      \node at (3,-0.5) {$A$};
    \end{scope}
    \begin{scope}[shift={(1,-3)}]
      \begin{knot}[clip width=5]
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-1);
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-1);
        \strand[thick] (-1,0) to (-1,-1);
      \end{knot}
      \node at (2,-0.5) {$B$};
    \end{scope}
    \begin{scope}[shift={(0,-4)}]
      \begin{knot}[clip width=5]
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-1);
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-1);
        \strand[thick] (2,0) to (2,-1);
      \end{knot}
      \node at (3,-0.5) {$A$};
    \end{scope}
    \begin{scope}[shift={(1,-5)}]
      \begin{knot}[clip width=5]
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-1);
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-1);
        \strand[thick] (-1,0) to (-1,-1);
      \end{knot}
      \node at (2,-0.5) {$B$};
    \end{scope}
  \end{tikzpicture}
\] This full twist gets sent to \(-1\) in \(\mathrm{SL}(2,\mathbb{Z})\):
\[(AB)^3 \longmapsto \left(\begin{array}{rr}-1&0\\0&-1\end{array}\right)\]
So, the double twist gets sent to the identity:
\[(AB)^6 \longmapsto \left(\begin{array}{rr}1&0\\0&1\end{array}\right)\]
In fact, Tuba and Wenzl say the double twist \emph{generates} the kernel
of our homomorphism from \(B_3\) to \(\mathrm{SL}(2,\mathbb{Z})\). So,
\(\mathrm{SL}(2,\mathbb{Z})\) is isomorphic to the group of \(3\)-strand
braids modulo double twists!

This reminds me of spinors\ldots{} since you have to twist an electron
around \emph{twice} to get its wavefunction back to where it started.
And indeed, \(\mathrm{SL}(2,\mathbb{Z})\) is a subgroup of
\(\mathrm{SL}(2,\mathbb{C})\), which is the double cover of the Lorentz
group. So, \(3\)-strand braids indeed act on the state space of a
spin-\(1/2\) particle, with double twists acting trivially!

(For more on this, check out Trautman's work on ``Pythagorean spinors''
in \protect\hyperlink{week196}{``Week 196''}. There's also a version
where we use integers \(\mod 7\), described in
\protect\hyperlink{week219}{``Week 219''}.)

If instead we take \(3\)-strand braids modulo full twists, we get the
so-called ``modular group'':
\[\mathrm{PSL}(2,\mathbb{Z}) = \mathrm{SL}(2,\mathbb{Z})/\{\pm1\}\] Now,
\(\mathrm{SL}(2,\mathbb{Z})\) is famous for being the ``mapping class
group'' of the torus --- that is, the group of orientation-preserving
diffeomorphisms, modulo diffeomorphisms connected to the identity.
Similary, \(\mathrm{PSL}(2,\mathbb{Z})\) is famous for acting on the
rational numbers together with a point at infinity by means of
fractional linear transformations: \[z \mapsto \frac{az+b}{cz+d}\] where
\(a,b,c,d\) are integers and \(ad-bc = 1\). The group
\(\mathrm{PSL}(2,\mathbb{Z})\) also acts on certain \(2\)-strand tangles
called ``rational tangles''. In \protect\hyperlink{week229}{``Week
229''}, I told a nice story I heard from Michael Hutchings, explaining
how these three facts fit together in a neat package.

But now let's combine those facts with the stuff I just said! Since
\(\mathrm{PSL}(2,\mathbb{Z})\) acts on rational tangles, and there's a
homomorphism from \(B_3\) to \(\mathrm{PSL}(2,\mathbb{Z})\),
\(3\)-strand braids must act on rational tangles. How does that go?

There's an obvious guess, or two, or three, or four, but let's just work
it out.

I just said that the \(3\)-strand braid A gets mapped to this shear:
\[A \longmapsto \left(\begin{array}{rr}1&1\\0&1\end{array}\right)\] In
\protect\hyperlink{week229}{``Week 229''} I said what this shear does to
a rational tangle. It gives it a 180 degree twist at the bottom, like
this: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(4.5,0)}]
      \begin{knot}
        \strand[thick] (0,3) to (0,1);
        \strand[thick] (1,3) to (1,1);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
      \begin{knot}[clip width=7]
        \strand[thick] (1,0)
          to[out=down,in=up] (0,-2);
        \strand[thick] (0,0)
          to[out=down,in=up] (1,-2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] Next, Tuba and Wenzl point out that
\[ABA = BAB \longmapsto \left(\begin{array}{rr}0&1\\-1&0\end{array}\right)\]
which is a quarter turn. From \protect\hyperlink{week229}{``Week 229''}
you can see how this quarter turn acts on a rational tangle: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(6,0)},xscale=-1]
      \begin{knot}
        \strand[thick] (0,3) to (0,1);
        \strand[thick] (1,1)
          to[out=up,in=up,looseness=2] (2,1)
          to (2,-2);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
      \begin{knot}
        \strand[thick] (0,0)
          to[out=down,in=down,looseness=2] (-1,0)
          to (-1,3);
        \strand[thick] (1,0) to (1,-2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] It gives it a quarter turn!

From these facts, we can figure out what the braid \(B\) does to a
rational tangle. So, let me do the calculation.

Scribble, scribble, curse and scribble\ldots. Eureka!

Since we know what \(A\) does, and what \(ABA\) does, we can figure out
what \(B\) must do. But, to make the answer look cute, I needed a sneaky
fact about rational tangles, which is that \(A\) \emph{also} acts like
this: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(4.5,1)},yscale=-1]
      \begin{knot}
        \strand[thick] (0,3) to (0,1);
        \strand[thick] (1,3) to (1,1);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
      \begin{knot}[clip width=7]
        \strand[thick] (1,0)
          to[out=down,in=up] (0,-2);
        \strand[thick] (0,0)
          to[out=down,in=up] (1,-2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] This is proved in Goldman and Kauffman's paper cited in
\protect\hyperlink{week228}{``Week 228''}. With the help of this, I can
show \(B\) acts like this: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (0,3) to (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
    \draw[thick,|->] (2,0.5) to (3.5,0.5);
    \begin{scope}[shift={(5.5,0)}]
      \begin{knot}[clip width=5]
        \strand[thick] (-1.5,3)
          to[out=down,in=left] (-0.25,-0.5)
          to[out=right,in=down] (0,0);
        \strand[thick] (1,3) to (1,1);
        \strand[thick] (1,0) to (1,-2);
        \strand[thick] (-1.5,-2)
          to[out=up,in=left] (-0.25,1.5)
          to[out=right,in=up] (0,1);
      \end{knot}
      \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
      \node at (0.5,0.5) {$T$};
    \end{scope}
  \end{tikzpicture}
\] And this is \emph{great!} It means our action of \(3\)-strand braids
on rational tangles is really easy to describe. Just take your tangle
and let the upper left strand dangle down: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{knot}
      \strand[thick] (-1,-2)
        to (-1,1)
        to[out=up,in=up,looseness=2] (0,1);
      \strand[thick] (1,3) to (1,1);
    \end{knot}
    \draw[thick,rounded corners] (-0.25,0) rectangle ++(1.5,1);
    \node at (0.5,0.5) {$T$};
    \begin{knot}
      \strand[thick] (0,0) to (0,-2);
      \strand[thick] (1,0) to (1,-2);
    \end{knot}
  \end{tikzpicture}
\] To let a \(3\)-strand braid act on this, just attach it to the bottom
of the picture!

(That's why there were \emph{four} obvious guesses about this would
work: one can easily imagine four variations on this trick, depending on
which strand is the ``odd man out'' --- here it's the upper right. It's
just a matter of convention which we use, but my conventions give this.)

In fact, even the group of \(4\)-strand braids acts on rational tangles
in an obvious way, but the \(3\)-strand braid group is enough for now.

Let me summarize. The \(3\)-strand braid group \(B_3\) acts on rational
tangles in an obvious way. The subgroup that acts trivially is precisely
the center of \(B_3\), generated by the full twist. Using stuff from
\protect\hyperlink{week229}{``Week 229''}, it follows that the quotient
of \(B_3\) by its center acts on the projectivized rational homology of
the torus. We thus get a topological explanation of why \(B_3\) mod its
center is \(\mathrm{PSL}(2,\mathbb{Z})\).

But there's more.

For starters, the \(3\)-strand braid group is also the fundamental group
of \(S^3\) minus the trefoil knot!

And, \(S^3\) minus the trefoil knot is secretly the same as
\(\mathrm{SL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z})\)!

In fact, Terry Gannon writes that the \(3\)-strand braid group can be
regarded as ``the universal central extension of the modular group, and
the universal symmetry of its modular forms''. I'm not completely sure
what that means, but here's \emph{part} of what it means.

Just as \(\mathrm{PSL}(2,\mathbb{C})\) is the Lorentz group in 4d
spacetime, \(\mathrm{PSL}(2,\mathbb{R})\) is the Lorentz group in 3d
spacetime. This group has a double cover \(\mathrm{SL}(2,\mathbb{R})\),
which shows up when you study spinors. But, it also has a universal
cover, which shows up when you study anyons. The universal cover has
infinitely many sheets. And up in this universal cover, sitting over the
subgroup \(\mathrm{SL}(2,\mathbb{Z})\), we get\ldots{} the \(3\)-strand
braid group!

In math jargon, we have this commutative diagram where the rows are
short exact sequences: \[
  \begin{tikzcd}
    1 \rar
    & \mathbb{Z} \rar \dar
    & B_3 \rar \dar
    & \mathrm{SL}(2,\mathbb{Z}) \rar \dar
    & 1
  \\1 \rar
    & \mathbb{Z} \rar
    & \mathrm{SL}(2,\mathbb{R})^\sim \rar
    & \mathrm{SL}(2,\mathbb{R}) \rar
    & 1
  \end{tikzcd}
\] Here \(\mathrm{SL}(2,\mathbb{R})^\sim\) is the universal cover of
\(\mathrm{SL}(2,\mathbb{R})\). Since
\(\pi_1(\mathrm{SL}(2,\mathbb{R})) = \mathbb{Z}\), this is a
\(\mathbb{Z}\)-fold cover. You can describe this cover explicitly using
the Maslov index, which is a formula that actually computes an integer
for any loop in \(\mathrm{SL}(2,\mathbb{R})\), or indeed any symplectic
group.

But anyway, fiddling around with this diagram and the long exact
sequence of homotopy groups for a fibration, you can show that indeed:
\[\pi_1(\mathrm{SL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z})) = B_3.\]
This also follows from the fact that
\(\mathrm{SL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z})\) looks like
\(S^3\) minus a trefoil.

Gannon believes that number theorists should think about all this stuff,
since he thinks it's lurking behind that weird network of ideas called
Monstrous Moonshine (see \protect\hyperlink{week66}{``Week 66''}).

And here's the basic reason why. I'll try to get this right\ldots.

Any rational conformal field theory has a ``chiral algebra'' \(A\) which
acts on the left-moving states. Mathematicians call this sort of thing a
``vertex operator algebra''. A representation of this on some vector
space \(V\) is a space of states for the circle in some ``sector'' of
our theory. Let's pick some state \(v\) in \(V\). Then we can define a
``one-point function'' where we take a Riemann surface with little disk
cut out and insert this state on the boundary. This is a number,
essentially the amplitude for a string in the give state to evolve like
this Riemann surface says.

In fact, instead of chopping out a little disk it's nice to just remove
a point --- a ``puncture'', they call it. But, we get an ambiguous
answer unless we pick coordinates at this point, or in the lingo of
complex analysis, a choice of ``uniforming parameter''. Then our
one-point function becomes a function on the moduli space of Riemann
surfaces equipped with a puncture and a choice of uniformizing
parameter.

If we didn't have this uniformizing parameter to worry about, we'd just
have the moduli space of tori equipped with a marked point, which is
nothing but the usual moduli space of elliptic curves,
\[H/\mathrm{PSL}(2,\mathbb{Z})\] where \(H\) is the complex upper
halfplane. Then our one-point function would have nice transformation
properties under \(\mathrm{PSL}(2,\mathbb{Z})\).

But, with this uniformizing parameter to worry about, our one-point
function only has nice transformation properties under \(B_3\). This is
somehow supposed to be related to how \(B_3\) is the ``universal central
extension'' of \(\mathrm{PSL}(2,\mathbb{Z})\): in conformal field
theory, all sorts of naive symmetries hold only up to a phase, so you
have to replace various groups by central extensions thereof\ldots{} and
here that's what's happening to \(\mathrm{PSL}(2,\mathbb{Z})\)!

That last paragraph was pretty vague. If I'm going to understand this
better, either someone has to help me or I've got to read something like
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Yongchang Zhu, ``Modular invariance of characters of vertex operator
  algebras'', \emph{J. Amer. Math. Soc} \textbf{9} (1996), 237--302.
  Also available at
  \texttt{http://www.ams.org/jams/1996-9-01/S0894-0347-96-00182-8/home.html}
\end{enumerate}

But I shouldn't need any conformal field theory to see how the moduli
space of punctured tori with uniformizing parameter is related to the
\(3\)-strand braid group! I bet this moduli space is \(X/B_3\) for some
space \(X\), or something like that. There's something simple at the
bottom of all this, I'm sure.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Another relation between the trefoil and the punctured
torus: the trefoil has genus 1, meaning that it bounds a torus minus a
disc embedded in \(\mathbb{R}^3\). You can see this in the lecture
``Genus and knot sum'' in this course on knot theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Brian Sanderson, ``The knot theory MA3F2 page'',
  \texttt{http://www.maths.warwick.ac.uk/\textbackslash{}\textasciitilde{}bjs/MA3F2-page.html}
\end{enumerate}

This course also has material on rational tangles.

The fact that \(B_3\) is a central extension of
\(\mathrm{PSL}(2,\mathbb{Z})\) by \(\mathbb{Z}\), and the
quantum-mechanical interpretation of a central extension in terms of
phases, plays an important role here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  R. Voituriez, ``Random walks on the braid group \(B_3\) and magnetic
  translations in hyperbolic geometry'', \emph{Nucl. Phys.}
  \textbf{B621} (2002), 675--688. Also available as
  \texttt{http://arxiv.org/abs/math-ph/0103008}.
\end{enumerate}

Among other things, he points out that the homomorphism
\(B_3 \to \mathrm{SL}(2,\mathbb{Z})\) described above is the ``Burau
representation'' of \(B_3\) evaluated at \(t = 1\). In general, the
Burau representation of \(B_3\) is given by: \[
  \begin{aligned}
    A &\longmapsto \left(\begin{array}{rr}t&1\\0&1\end{array}\right)
  \\B &\longmapsto \left(\begin{array}{rr}1&0\\-t&t\end{array}\right)
  \end{aligned}
\] (Conventions differ, and this may not be the best, but it's the one
he uses.) The Burau representation can also be used to define a knot
invariant called the Alexander polynomial. I believe that with some
work, one can use this to explain why Conway could calculate the
rational number associated to a rational tangle in terms of the ratio of
Alexander polynomials of two links associated to it, called its
``numerator'' and ``denominator''. In fact he computed this ratio of
polynomials and then evaluate it at a special value of \(t\) ---
presumably the same special value we're seeing here (modulo differences
in convention).

Another issue: I wrote

\begin{quote}
For starters, the \(3\)-strand braid group is also the fundamental group
of \(S^3\) minus the trefoil knot!

And, \(S^3\) minus the trefoil knot is secretly the same as
\(\mathrm{SL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z})\)!
\end{quote}

The first one is pretty easy to see; you start with the ``Wirtinger
presentation'' of the fundamental group of \(S^3\) minus a trefoil, and
show by a fun little calculation that this isomorphic to the braid group
on 3 strands. A more conceptual proof would be very nice, though. (See
\protect\hyperlink{week261}{``Week 261''} for such a proof --- and much
more on all this stuff.)

What about the second one? Why is \(S^3\) minus the trefoil knot
diffeomorphic to
\(\mathrm{SL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z})\)? Terry Gannon
says so in his paper above, but doesn't say why. Some people asked about
this, and eventually some people found some explanations. First of all,
there's a proof on page 84 of this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  John Milnor, \emph{Introduction to Algebraic K-theory}, Annals of
  Math. Studies \textbf{72}, Princeton U. Press, Princeton, New Jersey,
  1971.
\end{enumerate}

Milnor credits it to Quillen. Joe Christy summarizes it below. I can't
tell if this proof is essentially the same as another sketched below by
Swiatoslaw Gal, which exhibits a diffeomorphism using functions called
the Eisenstein series \(g_2\) and \(g_3\). They are probably quite
similar arguments.

Joe Christy writes:

\begin{quote}
I wouldn't be surprised if this was known to Seifert in the 30's, though
I can't lay my hands on Seifert \& Threfall at the moment to check.
Likewise for Hirzebruch, Brieskorn, Pham \& Milnor in the 60's in
relation to singularities of complex hypersurfaces and exotic spheres.
When I was learning topology in the 80's it was considered a warm up
case of Thurston's Geometrization Program --- the trefoil knot
complement has \(\mathrm{PSL}(2,\mathbb{R})\) geometric structure.

In any case, peruse Milnor's Annals of Math Studies for concrete
references. There is a (typically) elegant proof on p.84 of
``Introduction to Algebraic K-theory'' {[}study 72{]}, which Milnor
credits to Quillen. It contains the missing piece of John's argument:
introducing the Weierstrass \(\wp\)-function and remarking that the
differential equation that it satisfies gives the diffeomorphism to
\(S^3\)-trefoil as the boundary of the pair (discriminant of diff-eq,
\(\mathbb{C}^2 = (\wp,\wp')\)-space).

This point of view grows out of some observations of Zariski, fleshed
out in ``Singular Points of Complex Hypersurfaces'' {[}study 61{]}. The
geometric viewpoint is made explicit in the paper ``On the Brieskorn
Manifolds \(M(p,q,r)\)'' in ``Knots, Groups, and 3-manifolds'' {[}study
84{]}.

It is also related to the intermediate case between the classical
Platonic solids and John's favorite Platonic surface --- the
\href{https://math.ucr.edu/home/baez/klein.html}{Klein quartic}. By way
of a hint, look to relate the trefoil, qua torus knot, the seven-vertex
triangulation of the torus, and the dual hexagonal tiling of a (flat)
Clifford torus in \(S^3\).

Joe
\end{quote}

Swiatoslaw Gal writes:

\begin{quote}
In fact the isomorphism is a part of the modular theory:

Looking for
\[f\colon \mathrm{GL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z}) \to \mathbb{C}^2\setminus \{x^2=y^3\}\]
(there is an obvious action of \(\mathbb{R}^+\) on both sides: \[
  \begin{aligned}
    M &\mapsto tM \mbox{for $M$ in $\mathrm{GL}(2,\mathbb{R})$},\
  \\x &\mapsto t^6 x,\
  \\y &\mapsto t^4 y,
  \end{aligned}
\] and the quotient is what we want).

\(\mathrm{GL}(2,\mathbb{R})/\mathrm{SL}(2,\mathbb{Z})\) is a space of
lattices in \(\mathbb{C}\). Such a lattice \(L\) has classical
invariants \[g_2(L) = 60 \sum_{z \in L'} z^{-4},\] and
\[g_3(L) = 140 \sum_{z \in L'} z^{-6},\] where \(L'=L\setminus\{0\}\).

The modular theory asserts that:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
  For every pair \((g_2,g_3)\) there exist a lattice \(L\) such that
  \(g_2(L) = g_2\) and \(g_3(L) = g_3\) provided that \(g_2^3\) is not
  equal to \(27g_3^2\).
\item
  Such a lattice is unique.
\end{enumerate}

Best,\\
S. R. Gal
\end{quote}

The quantity \(g_2^3 - 27 g_3^2\) is called the ``discriminant'' of the
lattice \(L\), and vanishes as the lattice squashes down to being
degenerate, i.e.~a discrete subgroup of \(\mathbb{C}\) with one rather
than two generators.
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Today I'd like to talk about the math of music --- including torsors,
orbifolds, and maybe even Mathieu groups. But first, some movies of the
\(n\)-body problem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Cris Moore, ``The \(3\)-body (and \(n\)-body) problem'',
  \texttt{http://www.santafe.edu/\textasciitilde{}moore/gallery.html}
\end{enumerate}

In 1993 Cris Moore discovered solutions of the gravitational \(n\)-body
problem where the particles' paths lie in a plane and trace out braids
in spacetime! I spoke about these in \protect\hyperlink{week181}{``Week
181''}.

More recently, Moore and Michael Nauenberg have found solutions with
cubic symmetry and vanishing angular momentum, and made movies of these:
\[\includegraphics[max width=0.65\linewidth]{../images/cris_moore_cube.png}\]
For the mathematical details, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Cristopher Moore and Michael Nauenberg, ``New periodic orbits for the
  \(n\)-body problem'', available at
  \href{http://arxiv.org/abs/math.DS/0511219}{\texttt{math.DS/0511219}}.
\end{enumerate}

Next, math and music.

Some of you have been in this situation. A stranger at a party asks what
you do. You reluctantly admit you're a mathematician, expecting one of
the standard responses: ``Oh! I hate math!'' or ``Oh!
\href{https://math.ucr.edu/home/baez/math_cliff.jpg}{I was pretty good
at math until}\ldots.''

But instead, after a strained moment they say: ``Oh! Do you play an
instrument too? Isn't music really mathematical?''

I guess it's like meeting a Martian and asking them if they like
Arizona: an attempt to humanize something alien and threatening. You may
not have much in common, but at least you can chat about red rocks.

Of course there \emph{is} something mathematical about music, and lots
of mathematicians play music. I rarely think about music in a
mathematical way. But I know they have something in common: the
transcendent beauty of pure form.

Indeed, in the Middle Ages, music was part of a ``quadrivium'' of
mathematical arts: arithmetic, geometry, music, and astronomy. These
were studied after the ``trivium'' of grammar, rhetoric and logic. This
is why mathematicians scorn a result as ``trivial'' when it's easy to
see using straightforward logic. So when a result seems more profound,
they should call it ``quadrivial''.

Try saying it sometime: ``Cool! That's quadrivial!'' It might catch on.

There are also modern applications of math to music theory. I had never
heard of ``neo-Riemannian theory'' until Tom Fiore explained it to me
while I was visiting Chicago. Tom is a postdoc who works on categorified
algebraic theories, double categories and the like --- but he's also
into music theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Thomas M. Fiore, ``Music and mathematics'', available at
  \texttt{http://www.math.uchicago.edu/\textasciitilde{}fiore/1/music.html}
\item
  Thomas M. Fiore and Ramon Satyendra, ``Generalized contextual
  groups'', \emph{Music Theory Online} \textbf{11} (2005), available at
  \href{http://mto.societymusictheory.org/issues/mto.05.11.3/toc.11.3.html}{http://www.math.uchicago.edu/\textasciitilde fiore/1/music.html}
\end{enumerate}

The first of these is a very nice gentle introduction, suitable both for
musicians who don't know group theory and mathematicians who don't know
a triad from a tritone!

When Tom first mentioned ``neo-Riemannian theory'', I thought this was
some bizarre application of differential geometry to music. But no ---
we're not talking about the 19th-century mathematician Bernhard Riemann,
we're talking about the 19th-century music theorist Hugo Riemann!

Based on the work on Euler --- yes, \emph{the} Euler --- Hugo Riemann
introduced diagrams called ``tone nets'' to study the network of
relations between similar chords. You can see his original setup here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Joe Monzo, ``Tonnetz: the tonal lattice invented by Riemann'',
  ``Tonalsoft: the Encyclopedia of Microtonal Music Theory'',
  \texttt{http://www.tonalsoft.com/enc/t/tonnetz.aspx}
\item
  Paul Dysart, ``Tonnetz: musics, harmony and donuts'',
  \texttt{http://members2.boo.net/\textasciitilde{}knuth/}
\end{enumerate}

Apparently Riemann's ideas have caught on in a big way. Monzo says that
``use of lattices is endemic on internet tuning lists'', as if they were
some sort of infectious disease.

Dysart seems more gung-ho about it all. The ``donuts'' he mentions arise
when you curl up tone nets by identifying notes that differ by an
octave. He has some nice pictures of them!

In neo-Riemannian theory, people like Lewin and Hyer started extending
Riemann's ideas by using \emph{group theory} to systematize operations
on chords. The best easy introduction to this is Fiore's paper ``Music
and mathematics''. Here you can read about math lurking in the music of
Elvis and the Beatles! Or, if you're more of a highbrow sort, see what
he has to say about Hindemith and Liszt's ``Transcendental Etudes''. And
if you like doughnuts and music, you'll love the section where he
explains how Beethoven's Ninth traces out a systematic path in a
torus-shaped tone net! This amazing fact was discovered by Cohn,
Douthett, and Steinbach.

(If I weren't so darn honest, I'd add that Liszt wrote the
``Transcendental Etudes'' as a sequel to his popular ``Algebraic
Etudes'', and explain how Mozart's ``eine kleine Nachtmusik'' tours a
tone net shaped like a Klein bottle. But alas\ldots.)

Let me explain a bit about group theory and music --- just enough to
reach something really cool Tom told me.

If you're a musician, you'll know the notes in an octave go like this,
climbing up:

\begin{quote}
C, C\#, D, D\#, E, F, F\#, G, G\#, A, A\#, B
\end{quote}

until you're back to C. If you're a mathematician, you might be happier
to call these notes \[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\] and say
that we're working in the group of integers \(\mod 12\), otherwise known
as \(\mathbb{Z}/12\). Let's be mathematicians today.

The group \(\mathbb{Z}/12\) has been an intrinsic feature of Western
music ever since pianos were built to have ``equal temperament'' tuning,
which makes all the notes equally spaced in a certain logarithmic sense:
each note vibrates at a frequency of \(2^{\frac{1}{12}}\) times the note
directly below it.

Only 7 of the 12 notes are used in any major or minor key --- for
example, C,D,E,F,G,A,B is C major and A,B,C,D,E,F,G is A minor. So, as
long as Western composers stuck to writing pieces in a single fixed key,
the \(\mathbb{Z}/12\) symmetry was ``spontaneously broken'' by their
choice of key, only visible in the freedom to change keys.

But, as composers gradually started changing keys ever more frequently
within a given piece, the inherent \(\mathbb{Z}/12\) symmetry became
more visible. In the late 1800s this manifested itself in trend called
``chromaticism''. Roughly speaking, music is ``chromatic'' when it
freely uses all 12 notes, but still within the context of an --- often
changing --- key. I guess Wagner and Richard Strauss are often mentioned
as pinnacles of chromaticism.

Chromaticism then led to full-fledged ``twelve-tone music'' starting
with Schoenberg in the early 1900s. This is music that fully exploits
the \(\mathbb{Z}/12\) symmetry and doesn't seek to privilege a certain
\(7\)-element subset of notes defining a key. People found Schoenberg's
music disturbing and dissonant at the time, but I find it very
beautiful.

Now comes the really exciting thing Tom told me: two other symmetry
groups lurking in music, and a relationship between them.

First, the transposition-inversion group. This acts as permutations of
the set \(\mathbb{Z}/12\). It's generated by two especially nice
permutations. The first is ``transposition''. This raises each note a
step: \[x \mapsto x + 1\] Musicians would call this a half-step, just
like physicists measure spin in multiples of \(1/2\), but we're being
mathematicians! The second is ``inversion''. This turns notes upside
down: \[x \mapsto -x\] The relevance of this to music is a bit less
obvious: composers like Bach and Schoenberg used it explicitly, but
we'll see it playing a subtler role, relating major and minor chords.

The transposition-inversion group has 24 elements. Mathematicians call
it the \(24\)-element ``dihedral group'', since it consists of the
symmetries of a regular \(12\)-sided polygon where you're allowed to
rotate the polygon (transposition) and also flip it over (inversion). I
hope you see that this geometrical picture is just a way of visualizing
the 12 notes.

So, the transposition-inversion group obviously on the \(12\)-element
set of notes. But, it also acts on the \(24\)-element set of ``triads''!

Triads are among the most basic chords in music. Mathematically they are
certain \(3\)-element subsets of \(\mathbb{Z}/12\). They come in two
kinds, major and minor. There are 12 major triads, namely
\[\{0,4,7\} = \{\text{C},\text{E},\text{G}\} = \mbox{C major triad}\]
and everything you can get from this by transposition. If you invert
these, you get the 12 minor triads, namely
\[\{0,-4,-7\} = \{5,8,0\} = \{\text{F},\mbox{A${}^\flat$},\text{C}\} = \mbox{F minor triad}\]
and everything you can get from \emph{this} by transposition.

(Note that \(\{0,-4,-7\} = \{5,8,0\}\) because we're working \(\mod 12\)
and the order doesn't matter. I've also included the way musicians talk
about these triads, in case you care.)

Major triads sound happy; when you invert them they sound sad, just like
an upside-down smile looks sad. There could be some profound truth
lurking here. A smile has a positive second derivative: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) .. controls (0.8,-1) and (1.2,-1) .. (2,0);
  \end{tikzpicture}
\] which says that things are ``looking up'', while a frown has negative
second derivative: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) .. controls (0.8,1) and (1.2,1) .. (2,0);
  \end{tikzpicture}
\] which says that things are ``looking down''. An upside-down smile is
a frown.

(On the other hand, a backwards smile is still a smile, and a backwards
frown is still a frown. So, if you're a company and the second
derivative of your profits is positive, you can say business is looking
up --- and you could still say this if time were reversed!)

But never mind. We had this transposition-inversion group acting on our
set of notes, namely \(\mathbb{Z}/12\). Since tranposition and inversion
act on notes, they also act on triads. For example, transposition does
this: \[
  \begin{aligned}
    \{0,4,7\} &\mapsto \{1,5,8\}
  \\\mbox{C major triad} &\mapsto \mbox{C${}^\sharp$ major triad}
  \end{aligned}
\] while inversion does this: \[
  \begin{aligned}
    \{0,4,7\} &\mapsto \{5,8,0\}
  \\\mbox{C major triad} &\mapsto \mbox{F minor triad}
  \end{aligned}
\] So, we've got this \(24\)-element transposition-inversion group
acting on the \(24\)-element set of triads!

But here's really cool part: there's \emph{another} important
\(24\)-element group acting on the same set! It's easy to define
mathematically, but it also has a musical meaning.

Mathematically, it's just the ``centralizer'' of the transposition-
inversion group. In other words, it consists of all ways of permuting
triads that \emph{commute} with transposition and inversion!

Musically, it's called the ``\(PLR\)'' group, because it's generated by
3 famous transformations.

To describe these transformations, I'll need to talk about the
``bottom'', ``middle'' and ``top'' note of a triad. If you know a wee
bit of music theory this should be obvious as long as you know I'm
talking about triads in root position. If you're a mathematician who has
never studied music theory and you think of triads as \(3\)-element
subsets of \(\mathbb{Z}/12\), it might be less obvious, since
\(\mathbb{Z}/12\) doesn't have a nice ordering --- it only has a
\emph{cyclic} ordering. But this is enough. The point is that major
triads are sets of the form \[\{n,n+4,n+7\},\] while minor triads are of
the form \[{n,n+3,n+7}.\] So, we can call the note \(n\) the ``bottom'',
the note \(n+3\) or \(n+4\) the ``middle'', and \(n+7\) the ``top''.
Musicians call them the ``root'', ``third'' and ``fifth'', but let's be
simple-minded mathematicians.

Okay, what are the transformations \(P\), \(L\), and \(R\)? They stand
for ``parallel'', ``leading tone change'', and ``relative'' --- but what
\emph{are} they?

Each of these transformations keeps exactly 2 of the notes in our triad
the same. Also, each changes major triads into minor triads and vice
versa. These features make these transformations musically interesting.

The transformation ``\(P\)'' keeps the top and bottom notes the same.
I've now said enough for you to figure out what it does\ldots{} at least
in principle. For example: \[
  \begin{aligned}
    P\colon \{0,4,7\} &\mapsto \{0,3,7\}
  \\\mbox{C major triad} &\mapsto \mbox{C minor triad}
  \\P\colon \{0,3,7\} &\mapsto \{0,4,7\}
  \\\mbox{C minor triad} &\mapsto \mbox{C major triad}
  \end{aligned}
\]

The tranformation ``\(L\)'' turns the middle and top note into the
bottom and middle note when you start with a \textbf{major} triad. It
turns the bottom and middle note into the middle and top note when you
start with a \textbf{minor} triad. For example: \[
  \begin{aligned}
    L\colon \{0,4,7\} &\mapsto \{4,7,11\}
  \\\mbox{C major triad} &\mapsto \mbox{E minor triad}
  \\L\colon \{0,3,7\} &\mapsto \{8,0,3\}
  \\\mbox{C minor triad} &\mapsto \mbox{G major triad}
  \end{aligned}
\] The transformation ``\(R\)'' works the other way around. It turns the
middle and top note into the bottom and middle note when you start with
a \textbf{minor} triad. And it turns the bottom and middle note into the
middle and top note when you start with a \textbf{major} triad: \[
  \begin{aligned}
    R\colon \{0,4,7\} &\mapsto \{9,0,4\}
  \\\mbox{C major triad} &\mapsto \mbox{A minor triad}
  \\R\colon \{0,3,7\} &\mapsto \{3,7,10\}
  \\\mbox{C minor triad} &\mapsto \mbox{D${}^\sharp$ major triad}
  \end{aligned}
\] Can you see why the transformations \(P\), \(L\), and \(R\) commute
with transposition and inversion? It should be easy to see that they
commute with transposition. Commuting with inversion means that if I
switch the words ``top'' and ``bottom'' and also the words ``major'' and
``minor'' in my descriptions above, these transformations don't change!

You should be left wondering why \(P\), \(L\), and \(R\) generate the
group of \emph{all} transformations of triads that commute with
transposition and inversion --- and why this group, like the
transposition-inversion group itself, has exactly 24 elements!

It turns out some of this has a simple explanation, which has very
little to do with the details of triads or even the \(12\)-note scale.

Imagine a scale with \(n\) equally spaced notes. Transpositions and
inversions will generate a group with \(2n\) elements. Let's call this
group \(G\). If you take any ``sufficiently generic'' chord in our
scale, \(G\) will act on it to give a set \(S\) consisting of \(2n\)
different chords. Then it's a mathematical fact that the group of
permutations of \(S\) that commute with all transformations in \(G\)
will be isomorphic to \(G\)! So, it too will have \(2n\) elements.

To explain \emph{why} this is true, I need a bit more math.

First of all, I need to define my terms. I'm defining a chord to be
``sufficiently generic'' if no element of \(G\) maps it to itself. We
then say \(G\) acts \emph{freely} on \(S\). By the way we've set things
up, \(G\) also acts \emph{transitively} on \(S\). A nonempty set on
which \(G\) acts both freely and transitively is called a
``\(G\)-torsor''. You can read about torsors here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  John Baez, ``Torsors made easy'',
  \texttt{http://math.ucr.edu/home/baez/torsors.html}
\end{enumerate}

They're philosophically very interesting, since they're related to gauge
symmetries in physics\ldots{} but right now the only fact we need is
that any \(G\)-torsor is isomorphic to \(G\). So, we can identify \(S\)
with \(G\), with \(G\) acting by left multiplication.

Then, it's a well-known fact that any permutation of \(G\) that commutes
with left multiplication by all elements of \(G\) must be given by
\emph{right} multiplication by some element of \(G\). And these right
multiplications form a group of transformations that is isomorphic to
\(G\)\ldots{} just as we were trying to show!

In other words: the group of permutations of \(G\) has a subgroup
isomorphic to \(G\), namely the left translations. It also has another
subgroup isomorphic to \(G\), namely the right translations. Each of
these subgroups is the ``centralizer'' of the other. That is, each one
consists of all permutations that commute with every permutation in the
other one! Fiore and Satyendra call them ``dual groups''.

In our application to music, the first copy of \(G\) is our good old
transposition-inversion group, while the second copy is a generalization
of the \(PLR\) group. Fiore and Satyendra call it the ``generalized
contextual group''.

All this is indeed very general. I don't know a similarly general
explanation of why the operations \(P\), \(L\), and \(R\) succeed in
generating all transformations that commute with transposition and
inversion.

I asked Tom Fiore if he and Ramon Satyendra were the first to show that
the \(PRL\) group was the centralizer of the transposition- inversion
group. His reply was packed with information, so I'll quote it:

\begin{quote}
The initial insight about the duality between the \(T/I\) group and the
\(PLR\) group was at least 20 year ago. Dual groups in the musical sense
were introduced in David Lewin's seminal 1987 book ``Generalized Musical
Intervals and Transformation Theory.'' This book stimulated interest in
neo-Riemannian theory, since Lewin recalled the transformations \(P\),
\(L\), and \(R\) as objects of study.

Major-minor duality was a concern of Hugo Riemann, a theorist from the
second half of the 19th century. Given his interest in duality, Riemann
may have had some intuition about a duality between \(T/I\) and \(PLR\),
though it wasn't until after his death that this duality was formulated
in algebraic terms. An algebraic proof of the duality of \(T/I\) and
\(PLR\) was in the thesis of Julian Hook in 2002.

Ramon and I were the first to prove that the ``generalized contextual
group'' is dual to the \(T/I\) group acting on a set generated by an
arbitrary pitch-class segment satisfying the tritone condition. (The
tritone condition says that the inital pitch-class segment contains an
interval other than a tritone and unison.) Our theorem has the \(PLR\)
group and major/minor triads as a special case, since the generalized
contextual group becomes the \(PLR\) group when one takes the generating
pitch class segment to be the three pitches of a major chord. The
advantage of our generalization is that one can now apply the \(PLR\)
insight to passages that are not triadic. There was a general move
toward this in practice for the past decade (Childs and Gollin
considered seventh chords rather than triads, Lewin analyzed instances
of a non-diatonic phrase in a piano work of Schoenberg, we analyzed
Hindemith, and so on). Most music does not consist entirely of triads
(e.g.~late 19th century chromatic music), so the restriction of \(PLR\)
to triads was not conclusive.

We did a literature review of recent neo-Riemannian theory in Part 5 of
our article ``Generalized Contextual Groups'', since there have been a
lot of insights in the past 10 years. One of the main thinkers is Rick
Cohn, who came up with (among other things) a nice tiling of the plane
which one navigates using \(P\), \(L\), and \(R\) (Richard Cohn,
``Neo-Riemannian operations, parsimonious trichords, and their Tonnetz
representations'', \emph{Journal of Music Theory}, 1997). It is quite
geometric.
\end{quote}

You read more about these matters here\ldots{} I'll list these
references in the order Tom mentions them:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  David Lewin, \emph{Generalized Musical Intervals and Transformations},
  Yale University Press, New Haven, Connecticut, 1987.
\item
  Julian Hook, \emph{Uniform Triadic Transformations}, Ph.D.~thesis,
  Indiana University, 2002.
\item
  Adrian P. Childs, ``Moving beyond neo-Riemannian triads: exploring a
  transformational model for seventh chords'', \emph{Journal of Music
  Theory} \textbf{42/2} (1998), 191--193.
\item
  Edward Gollin, ``Some aspects of three-dimensional Tonnetze'',
  \emph{Journal of Music Theory} \textbf{42/2} (1998), 195--206.
\item
  Richard Cohn, `Neo-Riemannian operations, parsimonious trichords, and
  their ``Tonnetz'' representations', \emph{Journal of Music Theory}
  \textbf{41/1} (1997), 1--66.
\item
  David Lewin, ``Transformational considerations in Schoenberg's Opus
  23, Number 3'', preprint.
\end{enumerate}

In fact, the notion of ``torsor'' pervades the work of David Lewin, but
not under this name --- Lewin calls it a ``general interval system''.
Stephen Lavelle noticed the connection to torsors in 2005:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Stephen Lavelle, ``Some formalizations in musical set theory'', June
  3, 2005, available at
  \texttt{http://www.maths.tcd.ie/\textasciitilde{}icecube/lewin.pdf}
  and \texttt{http://www.maths.tcd.ie/\textasciitilde{}icecube/lewin.ps}
\end{enumerate}

Unfortunately the music theorists seem not to have set up an ``arXiv'',
so some of their work is a bit hard to find. For example, all of Volume
42 Issue 2 of the Journal of Music Theory is dedicated to neo-Riemannian
theory, but I don't think it's available online. Luckily, the music
theorists have set up some free online journals, like this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  \emph{Music Theory Online},
  \texttt{http://mto.societymusictheory.org/}
\end{enumerate}

and this one has links to others. The Society for Music Theory also has
online resources including a nice bibliography on the basics of music
theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Society for Music Theory, ``Fundamentals of music theory, selected
  bibliography'',
  \texttt{http://societymusictheory.org/index.php?pid=37}
\end{enumerate}

Now let me turn up the math level a notch\ldots.

If you're the right sort of mathematician, you'll have noticed by now
that we're doing some fun stuff starting with the abelian group
\(A = \mathbb{Z}/12\). First we're forming the group \(G\) consisting of
all ``affine transformations'' of \(A\). These are the transformations
that preserve all these operations: \[(x,y) \mapsto cx + (1-c)y\] where
\(c\) is an integer. For \(A = \mathbb{Z}/n\), the group of affine
transformations has the transposition-inversion group as a subgroup. The
whole affine group has 48 elements, but for now we only keep this
subgroup with 24 elements. Call it \(G\).

Then, we're saying that we can take any ``sufficiently generic'' subset
of \(A\), hit it with all elements of \(G\), and get a \(G\)-torsor, say
\(S\). \(G\) is then seen as a subgroup of the group of permutations of
S, and the centralizer of this subgroup is again isomorphic to \(G\).

You may be more familiar with affine transformations on a vector space,
where we get to use any real number for \(c\). Then \[cx + (1-c)y\]
describes the line through \(x\) and \(y\), so you can say that affine
transformations are those that preserve lines. Vector spaces are
\(R\)-modules for \(R\) the reals, while abelian groups are
\(R\)-modules for \(R\) the integers. The concept of ``affine
transformations'' of an \(R\)-module works pretty much the same way
whenever \(R\) is any commutative ring. And, indeed, everything I just
said in the last paragraph works if we let \(A\) be an \(R\)-module for
any commutative ring \(R\).

So, there's some very simple nice abstract stuff going on here: we're
taking an abelian group \(A\), looking at a subgroup \(G\) of its affine
transformations, and seeing that sufficiently generic subsets of \(A\)
give rise to \(G\)-torsors!

These are nice examples of \(G\)-torsors, since nobody is likely to
accidentally confuse them with the group \(G\). If you read my webpage
on torsors, you'll see it's often easy to mix up a \(G\)-torsor with the
group \(G\) itself.

In fact, I just committed this sin myself! The set of notes is not
naturally an abelian group until we pick an origin --- a place for the
chromatic scale to start. It's really just an \(A\)-torsor, where \(A\)
is the abelian group generated by transposition.

So, there lots of torsors lurking in music\ldots.

The pretty math I've just described only captures a microscopic portion
of what makes music interesting. It doesn't, for example, have anything
to say about what makes some intervals more dissonant than others. As
Pythagoras noticed, simple frequency ratios like \(3/2\) or \(4/3\) make
for less dissonant chords than gnarly fractions like \(1259/723\). The
equal tempered tuning system, where the basic frequency ratio is
\(2^{\frac{1}{12}}\), would have made Pythagoras roll in his grave!
Advocates of other tuning systems say these irrational frequency ratios
are driving us crazy, making wars break out and plants wilt --- but
there's an unavoidable conflict between the desire for simple ratios and
the desire for evenly spaced notes, built into the fabric of mathematics
and music. Every tuning system is thus a compromise. I would like to
understand this better; there's bound to be a lot of nice number theory
here.

To study different tuning systems in a unified way, one first step is
replace the group \(\mathbb{Z}/12\) by a continuous circle. Points on
this circle are ``frequencies modulo octaves'', since for many ---
though certainly not all --- purposes it's good to consider two notes
``the same'' if they differ by an octave. Mathematically this circle is
\(\mathbb{R}^+/2\), namely the multiplicative group of positive real
numbers modulo doubling. As a group, it's isomorphic to the usual circle
group, \(\mathrm{U}(1)\).

This ``pitch class circle'' plays a major role in the work of Dmitri
Tymoczko, a composer and music theorist from Princeton, who emailed me
after I left a grumpy comment on the discussion page for this
fascinating but slightly obscure article:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Wikipedia, ``Musical set theory'',
  \texttt{http://en.wikipedia.org/wiki/Musical\_set\_theory}
\end{enumerate}

He's recently been working on voice leading and orbifolds. They're
related topics, because if you have a choir of \(n\) indistinguishable
angels, each singing a note, the set of possibilities is: \[T^n/S_n\]
where \(T^n\) is the \(n\)-torus --- the product of \(n\) copies of the
pitch class circle --- and \(S_n\) is the permutation group, acting on
\(n\)-tuples of notes in the obvious way. This quotient is not usually a
manifold, because it has singularities at certain points where more than
one voice sings the same note. But, it's an \emph{orbifold}. This kind
of slightly singular quotient space is precisely what orbifolds were
invented to deal with.

Tymoczko is coming out with an article about this in Science magazine.
For now, you can learn more about the geometry of music by playing with
his ``ChordGeometries'' software:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Dmitri Tymoczko, ChordGeometries,
  \texttt{http://music.princeton.edu/\textasciitilde{}dmitri/ChordGeometries.html}
\end{enumerate}

As for ``voice leading'', let me just quote his explanation, suitable
for mathematicians, of this musical concept:

\begin{quote}
BTW, if you're writing on neo-Riemannian theory in music, it might be
helpful to keep the following basic distinction in mind. There are chord
progressions, which are essentially functions from unordered chords to
unordered chords (e.g.~the chord progression (function) that takes C
major to E minor).

Then there are voice leadings, which are mappings from the notes of one
chord to the notes of the other E.g. ``take the C in a C major triad and
move it down by semitone to the B.'' This voice leading can be written:
\[(\text{C}, \text{E}, \text{G}) \mapsto (\text{B}, \text{E}, \text{G}).\]
This distinction is constantly getting blurred by neo-Riemannian music
theorists. But to really understand ``neo-Riemannian chord
progressions'' you have to be quite clear about it.

To form a generalized neo-Riemannian chord progression, start with an
ordered pair of chords, say (C major, E minor). Then apply all the
transpositions and inversions to this pairs, producing (D major, F\#
minor), (C minor, Ab major), etc. The result is a function that commutes
with the isometries of the pitch class circle. As a result, it
identifies pairs of chords that can be linked by exactly similar
collections of voice leading motions.

For example, I can transform C major to E minor by moving C down by
semitone to B.

Similarly, I can transform D major to F\# minor by moving D down by
semitone to C\#.

Similarly, I can transform C minor to Ab major by moving G up to Ab.

This last voice leading,
\[(\text{C}, \mbox{E${}^\flat$}, \text{G}) \mapsto (\text{C}, \mbox{E${}^\flat$}, \mbox{A${}^\flat$})\]
is just an inversion (reflection) of the voice leading
\[(\text{C}, \text{E}, \text{G})| \to (\text{B}, \text{E}, \text{G}).\]
As a result it moves one note up by semitone, rather than moving one
note down by semitone.

More generally: if you give me \emph{any} voice leading between C major
and E minor, I can give you an exactly analogous voice leading between D
major and F\# minor, or C minor and Ab major, etc. So ``neo-Riemannian''
progressions identify a class of \emph{harmonic} progressions (functions
between unordered collections of points on the circle) that are
interesting from a \emph{voice leading} perspective. (They identify
pairs of chord progressions that can be linked by the same voice
leadings, to within rotation and reflection.)
\end{quote}

You can learn more about this here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Dmitri Tymoczko, ``Scale theory, serial theory, and voice leading'',
  available at
  \texttt{http://music.princeton.edu/\textasciitilde{}dmitri/scalesarrays.pdf}
\end{enumerate}

I'd like to conclude tonight's performance with a ``chromatic fantasy''
--- some wild ideas that you shouldn't take too seriously, at least as
far as music theory goes. In this rousing finale, I'll list some famous
subgroups of the permutations of a \(12\)-element set. They may not be
relevant to music, but I can't resist mentioning them and hoping
somebody dreams up an application.

So far I've only mentioned two: the cyclic or ``transposition'' group,
\(\mathbb{Z}/12\), and the dihedral or ``transposition/inversion'' group
with 24 elements. These are motivated by thinking of \(\mathbb{Z}/12\)
as a discrete analogue of a circle and considering either just its
rotations, or rotations together with reflections. But, mathematically,
it's nice to loosen up this rigid geometry and consider
\emph{projective} transformations of a circle, now viewed as a line
together with a point at infinity --- a ``projective line''.

Indeed, the group \(\mathbb{Z}/11\) becomes a field with 11 elements if
we multiply as well as add \(\mod 11\). If we throw in a point at
infinity, we get a projective line with 12 elements. It looks just like
our circle of 12 notes. But now we see that the group
\(\mathrm{PGL}(2,\mathbb{Z}/11)\) acts on this projective line in a
natural way. This group consists of invertible \(2\times2\) matrices
with entries in \(\mathbb{Z}/11\), mod scalars. People call it
\(\mathrm{PGL}(2,11)\) for short.

So, \(\mathrm{PGL}(2,11)\) acts on our \(12\)-element set of notes. And,
it's a general fact for any field \(\mathbb{F}\) that
\(\mathrm{PGL}(2,\mathbb{F})\) acts on the corresponding projective line
in a ``triply transitive'' way. In other words, given any ordered triple
of distinct points on the projective line, we can find a group element
that maps it to any \emph{other} ordered triple of distinct points.

Even better, the action is ``sharply'' triply transitive, meaning
there's \emph{exactly one} group element that does the job!

This lets us count the elements in \(\mathrm{PGL}(2,11)\). Since we can
find exactly one group element that maps our favorite ordered triple of
distinct elements to any other, we just need to count such triples, and
there are \[12 \times 11 \times 10 = 1320\] of them --- so this is the
size of \(\mathrm{PGL}(2,11)\).

This may be too much symmetry for music, since this group carries
\emph{any} three-note chord to any other, not just in the sense of chord
progressions but in the sense of voice leadings. Still, it's cute.

We might go further and look for a quadruply transitive group of
permutations of our \(12\)-element set of notes --- in other words, one
that maps any ordered \(4\)-tuple of distinct notes to any other.

But if we do, we'll run smack dab into \textbf{Mathieu groups}!

Here's an utterly staggering fact about reality. Apart from the group of
\emph{all} permutations of an \(n\)-element set and the group of
\emph{even} permutations of an \(n\)-element set, there are only FOUR
groups of permutations that are \(k\)-tuply transitive for \(k > 3\).
Here they are:

\begin{itemize}
\item
  The Mathieu group \(M_{11}\). This is a quadruply transitive group of
  permuations of an \(11\)-element set --- and sharply so! It has
  \[11 \times 10 \times 9 \times 8 = 7920\] elements.
\item
  The Mathieu group \(M_{12}\). This is a quintuply transitive group of
  permutations of a \(12\)-element set --- and sharply so! It has
  \[12 \times 11 \times 10 \times 9 \times 8 = 95,040\] elements.
\item
  The Mathieu group \(M_{23}\). This is a quadruply transitive group of
  permutations of a \(23\)-element set --- but not sharply so. It has
  \[23 \times 22 \times 21 \times 20 \times 48 = 10,200,960\] elements.
  As you can see, 48 group elements carry any distinct ordered
  \(4\)-tuple to any other.
\item
  The Mathieu group \(M_{24}\). This is a quintuply transitive group of
  permutations of a \(24\)-element set --- but not sharply so. It has
  \[24 \times 23 \times 22 \times 21 \times 20 \times 48 = 244,823,040\]
  elements. As you can see, 48 group elements carry any distinct ordered
  \(4\)-tuple to any other.
\end{itemize}

These groups all arise as symmetries of certain discrete geometries
called Steiner systems. An ``\(S(L,M,N)\) Steiner system'' is a set of
\(N\) ``points'' together with a collection of ``lines'', such that each
line contains \(M\) points, and \emph{any} set of \(L\) points lies on a
unique line. The symmetry group of a Steiner system consists of all
permutations of the set of points that map lines to lines. It turns out
that:

\begin{itemize}
\tightlist
\item
  There is a unique \(S(5,6,12)\) Steiner system, and the Mathieu group
  \(M_{12}\) is its symmetry group. The stabilizer group of any point is
  isomorphic to \(M_{11}\).
\item
  There is a unique \(S(5,8,24)\) Steiner system, and the Mathieu group
  \(M_{24}\) is its symmetry group. The stabilizer group of any point is
  isomorphic to \(M_{23}\).
\end{itemize}

So, the group \(M_{12}\) could be related to music if there were a
musically interesting way of taking the chromatic scale and choosing
\(6\)-note chords such that any 5 notes lie in a unique chord. I can't
imagine such a way --- most of these chords would need to be wretchedly
dissonant. Another way to put the problem is that such a big group of
permutations would impose more symmetry on the set of chords than I can
imagine my ears hearing. It's like those grand unified theories that
posit symmetries interchanging particles that look completely different.
They could be true, but they've got their work cut out for them.

Luckily, the Mathieu groups appear naturally in other contexts -
wherever the numbers 12 and 24 cast their magic spell over mathematics!
For example, \(M_{24}\) is related to the \(24\)-dimensional Leech
lattice, and \(M_{12}\) can be nicely described in terms of 12
equal-sized balls rolling around the surface of another ball of the same
size. See \protect\hyperlink{week20}{``Week 20''} for more on this ---
and the book by Conway and Sloane cited there for even more.

For a pretty explanation of \(M_{24}\), also try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  Steven H. Cullinane, Geometry of the \(4 \times 4\) square,
  \texttt{http://finitegeometry.org/sc/16/geometry.html}
\end{enumerate}

For explanations of both \(M_{24}\) and \(M_{12}\), try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\tightlist
\item
  Peter J. Cameron, \emph{Projective and Polar Spaces}, QMW Math Notes
  \textbf{13}, 1991. Also available at
  \texttt{http://www.maths.qmul.ac.uk/\textasciitilde{}pjc/pps/} Chapter
  9: The geometry of the Mathieu groups, available at
  \texttt{http://www.maths.qmul.ac.uk/\textasciitilde{}pjc/pps/pps9.pdf}
\end{enumerate}

It would be fun to dream up more relations between incidence geometry
and music theory. Could Klein's quartic curve play a role? Remember from
\protect\hyperlink{week214}{``Week 214''},
\protect\hyperlink{week215}{``Week 215''} and
\protect\hyperlink{week219}{``Week 219''} that this 3-holed torus can be
nicely tiled by 24 regular heptagons:
\[\includegraphics[max width=0.65\linewidth]{../images/Klein168.png}\]
Its orientation-preserving symmetries form the group
\(\mathrm{PSL}(2,7)\), which consists of all \(2x2\) matrices with
determinant \(1\) having entries in \(\mathbb{Z}/7\), modulo scalars.
This group has \(24 \times 7 = 168\) elements. Since there are 7 notes
in a major or minor scale, and 24 of these scales, it's hard to resist
wanting to think of each heptagon as a scale!

Indeed, after I mentioned this idea to Dmitri Tymoczko, he said that
David Lewin and Bob Peck have written about related topics.

Alas, the heptagonal tiling of Klein's quartic has a total of 56
vertices, not a multiple of 12, so there's no great way to think of the
vertices as notes. But, it has \(84 = 7 \times 12\) edges, so maybe the
edges are labelled by notes and each note labels 7 edges.

Unlike some groups I mentioned earlier, \(\mathrm{PSL}(2,7)\) is not a
transitive subgroup of the permutations of a \(12\)-element set. And
while \(\mathrm{PSL}(2,7)\) has lots of \(12\)-element subgroups, these
are not cyclic groups but instead copies of \(A_4\). These facts put
some further limitations on any crazy ideas you might try.

On the bright side, mathematically if not musically, there is a
fascinating way to embed \(\mathrm{PSL}(2,7)\) into the Mathieu group
\(M_{24}\), which can be described by getting \(M_{24}\) to act on the
set of 24 heptagons in the Klein quartic:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\tightlist
\item
  David Richter, ``How to make the Mathieu group \(M_{24}\)'',
  \texttt{http://homepages.wmich.edu/\textasciitilde{}drichter/mathieu.htm}
\end{enumerate}

He works in the PoincarÃ© dual picture, where the Klein quartic is tiled
by 56 triangles, but that's no big deal.

By the way, in \protect\hyperlink{week79}{``Week 79''} I explained how
\(\mathrm{PSL}(2,\mathbb{F})\) acts on the projective line over the
field \(\mathbb{F}\); the same thing works for
\(\mathrm{PGL}(2,\mathbb{F})\). I also passed on some interesting facts
mentioned by Bertram Kostant, which relate \(\mathrm{PSL}(2,5)\),
\(\mathrm{PSL}(2,7)\) and \(\mathrm{PSL}(2,11)\) to the symmetry groups
of the tetrahedron, cube/octahedron and dodecahedron/icosahedron.
Kostant put these together to give a nice description of the buckyball!

Kepler would be pleased. But, he'd be happier if we could find the music
of the spheres lurking in here, too.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} This week's issue provoked more discussion than any in
recent history! You can read a lot on
\href{http://groups.google.com/group/sci.physics.research/browse_frm/thread/e86672156f1477ea/d572967a25665fba}{\texttt{sci.math.research}}.
Here are some comments from Dave Rusin, David Corfield, Mike Stay,
Dmitri Tymoczko, Cris Moore, Robert Israel, Noam Elkies, Stephen
Lavelle, and \href{http://www.youtube.com/watch?v=-tPuwCUulBQ}{Steve
Lubin}.

Dave Rusin explained the logic behind having 12 notes in the chromatic
scale. David Corfield mentioned a book on topos theory in music, and a
paper by Noam Elkies on Mathieu groups. Mike Stay pointed out William
Sethares' work on how the timbre of an instrument affects which scales
sound good. Dmitri Tymoczko had more comments on this issue. Cris Moore
mentioned an interesting microtonal composer named Easley Blackwood.
Robert Israel pointed out an unusual fact about Riemann and Einstein.
Noam Elkies explained what David Lewin was trying to do with
\(\mathrm{PSL}(2,7)\) in music theory. And Stephen Lavelle gave some
more references on torsors and topoi in music, and said more about the
origin of the \(12\)-note scale.

So, here we go! Dave Rusin wrote:

\begin{quote}
You wrote:

\begin{quote}
\ldots there's an unavoidable conflict between the desire for simple
ratios and the desire for evenly spaced notes, built into the fabric of
mathematics and music. Every tuning system is thus a compromise. I would
like to understand this better; there's bound to be a lot of nice number
theory here.
\end{quote}

Sure there is. You want to choose a number N of intervals into which to
divide the octave, so that there are two tones in the scale that, like C
and G, have frequencies very nearly in a \(3:2\) ratio. (This also gives
a bonus pair like G and the next C up, which are then in a \(4:3\)
ratio.) But that just means you want \(2^{\frac{n}{N}}\) to be nearly
\(3/2\), i.e.~\(n/N\) is a good rational approximation to
\(\log_2(3/2)\). Use continued fractions or Farey sequences as you like.
You'll find that a five-note octave is not a bad choice (roughly giving
you just the black keys on a piano, and roughly corresponding to ancient
Oriental musical sounds) but a \(12\)-note octave is a really good
choice. So it's not just happenstance that we have a firmly-entrenched
system of 12-notes-per-octave. I'm sure you've seen this ``7--12'' magic
before, e.g.~the circle-of-fifths in music takes you through 7 octaves,
or the simple arithmetic that \(2^{19}\sim 3^{12}\) (i.e.
\(524288 \sim 531441\)). Long ago I programmed an old PC to play a
\(41\)-tone scale because the next continued-fractions approximant calls
for such a scale.

Of course you could argue that music consists of more than just
(musical) fourths and fifths and so the REAL number theory comes about
by choosing numbers of tones which allow lots of sets of notes to be in
(or nearly in) simple Pythagorean harmonies. How, exactly, you balance
the conflicting goals is a matter of personal choice.

What with the musicians in your family and all that, I'm guessing you
probably knew all this already and simply withheld the comments because
of space limitations, but just in case, I thought I'd complete your
train of thought for you. This stuff is pretty classic and it's all over
the web. I get more hits on my web page about this than any of my math
pages!

dave
\end{quote}

Here's Dave's web page:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\tightlist
\item
  Dave Rusin, ``Mathematics and music'',
  \texttt{http://www.math.niu.edu/\textasciitilde{}rusin/uses-math/music/}
\end{enumerate}

David Corfield wrote:

\begin{quote}
Hi,

Next you need to wade through all 1300 pages of The Topos of Music. This
is ``topos'' in the category theoretic sense. Check out the table of
contents!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{23}
\item
  Guerino Mazzola, \emph{The Topos of Music: Geometric Logic of
  Concepts, Theory and Performance}, Birkhauser, Berlin, 2002. Preface
  and contents available at
  \texttt{http://www.encyclospace.org/tom/tom\_preface\_toc.pdf}

  Guerino Mazzola, homepage,
  \texttt{http://www.ifi.unizh.ch/staff/mazzola/mazzola.html}
\end{enumerate}

Colin McLarty reviewed it for MathSciNet. I like the part:

\begin{quote}
Symmetries within scores, and structural relations between scores, drive
the mathematics up to sheaves, and very briefly to toposes and
Grothendieck topologies. The author candidly states he is unsure whether
this musicological perspective can use topos cohomology (p. 436).
\end{quote}

Did you ever hear about Conway's \(M_{13}\)?

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{24}
\tightlist
\item
  John H. Conway, Noam D. Elkies, Jeremy L. Martin, ``The Mathieu group
  \(M_{12}\) and its pseudogroup extension \(M_{13}\)'', available as
  \href{http://arxiv.org/abs/math.GR/0508630}{\texttt{math.GR/0508630}}.
\end{enumerate}

I can't remember whether it was this that Alexander Borovik mentioned to
me as a sign that the simple sporadic groups are just islands sticking
up above the water.

Best, David
\end{quote}

Needless to say, David doesn't write me emails with numbered references;
I often polish the emails I get, with the permission of the authors,
trying not to violate the spirit of the thing.

My student Mike Stay wrote:

\begin{quote}
Music really does sound better if the piano is tuned to the particular
key, i.e.~the Pythagorean intervals.

Start with a frequency for C. At each step, multiply by \(2\) (up an
octave) or by \(2/3\) (down a fourth). Go down a fourth unless it will
take you out of the octave; in the latter case, multiply by \(2\) first.

\begin{verbatim}
*2    C'
*2/3  G
*2/3  D
*2    D'
*2/3  A
*2/3  E
*2    E'
*2/3  B
*2/3  F#
*2/3  C#
\end{verbatim}

etc.

Classical music was written for a particular key because the keys
sounded different! Using the tuning above induces a ``distance'' on the
keys--how in tune they are. Pieces would use the dissonant tunings of
other keys for effect. My friend is an organist and piano tuner; he says
that with the logarithmic tuning all keys sound ``equally bad.''

But the timbre of the instrument --- the harmonics and overtones ---
apparently have a great deal to do with whether a particular chord is
consonant or not. This is a really cool paper that illustrates how to
choose nearly any collection of frequencies as a scale and then come up
with a timbre for which it sounds natural and right:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  William Sethares, ``Relating tuning and timbre'',
  \texttt{http://eceserv0.ece.wisc.edu/\textasciitilde{}sethares/consemi.html}
\end{enumerate}

Sethares' home page has a bunch of MP3's on it for people who want to
listen:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\tightlist
\item
  William Sethares, ``MP3 Download Central'',
  \texttt{http://eceserv0.ece.wisc.edu/\textasciitilde{}sethares/otherperson/all\_mp3s.html}
\end{enumerate}

I like ``Truth on a Bus'', played in a 19-note scale.

There are some tracks from the CD mentioned above here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{27}
\tightlist
\item
  William Sethares, \emph{Tuning, Timbre, Spectrum, Scale}, 2nd edition,
  Springer Verlag, Berlin, 2004. Author's guide available at
  \texttt{http://eceserv0.ece.wisc.edu/\textasciitilde{}sethares/ttss.html}.
  Sound examples available at
  \texttt{http://eceserv0.ece.wisc.edu/\textasciitilde{}sethares/html/soundexamples.html}
\end{enumerate}

The first several tracks play a tune on a typical \(12\)-tone
instrument. Then they change its timbre by adjusting the harmonics. Now
if played in 12 divisions of a perfect octave (twice the frequency), it
sounds perfectly awful; but if played in 12 divisions of \(2.1\), it
sounds ``right'' again.

Mike Stay\\
\texttt{http://math.ucr.edu/\textasciitilde{}mike}
\end{quote}

In response to my comment ``Every tuning system is thus a compromise. I
would like to understand this better\ldots{}'', Dmitri Tymoczko wrote:

\begin{quote}
William Sethares' ``Tuning, Timbre, Spectrum, Scale'' is the best book
about this. He has a convincing demonstration that ``pure ratios'' are
not in themselves important: what's important is that the overtones of
two simultaneously-sounding notes match. Since harmonic tones have
partials that are integer multiples of the fundamental, you get pure
ratios.

However, for inharmonic tones, such as bell-sounds, the overtones are
not integer multiples of the lowest tone. Hence, to get the partials to
match you often need to use non-integer ratios. Sethares' book comes
with a CD demonstrating this. It has to be heard to be believed.
\end{quote}

It seems that a bunch of the music on Sethares' CD is available online,
as Mike pointed out above. I find most of his music interesting but
unpleasant, not because of the tuning systems, but because it lacks
soul. I haven't listened to ``Truth on a Bus'' yet.

Cris Moore wrote:

\begin{quote}
By the way, you should check out the music of Easley Blackwood. He wrote
a series of microtonal etudes, where the number of tones per octave
ranges from 13 to 24. Some of them (17, I think) are quite beautiful.

Cris
\end{quote}

Here's an interesting syllabus and list of references that gives a feel
for what mathematically sophisticated music theorists need to know these
days:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{28}
\tightlist
\item
  John Rahn, ``Music 575: Music and Mathematics'', November 2004,
  syllabus available at
  \texttt{http://faculty.washington.edu/jrahn/5752004.htm}
\end{enumerate}

Rahn makes some interesting comments on David Lewin's book Generalized
Musical Intervals and Transformations, which defines a concept of
``generalized interval system'', or GIS. As far as I can tell without
having read the book, a generalized interval system is a \(G\)-torsor
for some group \(G\), where quite likely we might wish to restrict \(G\)
to be abelian or even cyclic. Thus, concretely, a generalized interval
system is a set \(S\) of ``pitch classes'' on which some group \(G\)
acts, and such that for any two elements \(s,s'\) in \(S\) there is a
unique g in \(G\) with \(gs = s'\). In this situation we say \(g\) is
the ``difference in pitch'' between \(s\) and \(s'\).

A subtle feature of \(G\)-torsors is that they are isomorphic to \(G\),
but not in a canonical way, because they don't have a god-given
``identity element''. I explain the importance of this in my webpage
\href{http://math.ucr.edu/home/baez/torsors.html}{Torsors made easy}.
However, as in physics and mathematics, some people in music theory seem
willing to ignore this subtlety and identity any \(G\)-torsor with
\(G\).

Rahn has the following comments on Lewin's book. I find them interesting
because it shows music theorists grappling with ideas like category
theory.

\begin{quote}
There are some problems in the formal ideas in this book, and extensions
to them:

GIS: Oren Kolman has recently shown (Kolman 2003) that every GIS can be
rewritten as a group, so that all group theory applies directly
(``transfers'') to GIS. Among other things, this points up a possible
flaw in the definition of GIS; a more intuitive definition would
restrict a group of intervals to some cyclic group of one generator (my
assertion). (See Kolman 2003.)

Definitions in Ch 9: There is a problem here which prevents having more
than one arrow-label between any two nodes. Lewin defines an arrow in
his node-arrow def (p.~193) as an ordered pair of points, then maps
ARROW into SGP, so each ordered pair of nodes has exactly one
transformation in the semigroup that labels the arrow (one arrow). This
probably originates in Lewin's work with groups of intervals, which are
constrained to work this way. Of course in most groups, such as
\(D_{24}\), you need multiple arrows. There are various alternatives
which would work for networks with multiple arrow(-labels) for a given
ordered pair of nodes. Multiple arrows (or labels on an arrow, depending
on the definitional system) in digraphs are standard, and it is hard to
see what is accomplished by not allowing more than one relationship
between any two nodes in the model. You also need multiple arrows for
groups applied to graphs, category theory, etc.

With this change, a Lewin network is formally a commutative diagram in
some musical category --- a directed graph with arrows labeled in a
monoid, such that the composition of paths in the underlying category is
associative and so on (definition of category and of commutative
diagram.) Lewin says the labels are in a semigroup but his definition of
node-arrow system makes every graph reflexive, providing the identities
that augment a semigroup to a monoid. \emph{So it is possible to use
category theory to explore Lewin networks, much as GIS turned out to be
groups: group theory transfers into GIS theory, and category theory
transfers into Lewin network theory}.

I made this connection in my paper, ``The Swerve and the Flow: Music's
Relation to Mathematics,'' delivered at IRCAM in October 2003 and
subsequently published in PNM 42/1; I think I was the first to say this.
I expanded on this idea in a talk at the ICMC, Miami, Nov 2 2004, called
``Musical Acts''; in this talk I expanded into the relation of Lewin
nets to the fundamental group of a topological space, and to homotopy
classes, and adding category theory as a solution to part of a set of
criteria for a general music theory. Later in this seminar I'll give a
talk about all this.
\end{quote}

I don't know what a Lewin network is, except from the above.
Unfortunately, Lewin's book is out of print. Lewin died in 2003, and
Milton Babbitt said that a fair portion of his writing remains
unpublished:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{29}
\tightlist
\item
  ``Ken Gewertz, Composer, music theorist David Lewin dies at 69'',
  \emph{Harvard University Gazette},
  \texttt{http://www.news.harvard.edu/gazette/2003/05.15/13-lewinobit.html}
\end{enumerate}

Robert Israel pointed out an interesting connection between Einstein and
Riemann:

\begin{quote}
John Baez wrote:

\begin{quote}
When Tom first mentioned ``neo-Riemannian theory'', I thought this was
some bizarre application of differential geometry to music. But no ---
we're not talking about the 19th-century mathematician Bernhard Riemann,
we're talking about the 19th-century music theorist Hugo Riemann!
\end{quote}

Interestingly, both Bernhard Riemann and Hugo Riemann had a connection
with Einstein. But in Hugo's case, it was not Albert but his cousin
Alfred, the musicologist, who edited Hugo Riemann's ``Musik Lexicon''

Robert Israel\\
Department of Mathematics\\
University of British Columbia\\
\end{quote}

Noam Elkies explained what David Lewin was doing with
\(\mathrm{PSL}(2,7)\):

\begin{quote}
John Baez wrote:

\begin{quote}
Today I'd like to talk about the math of music --- including torsors,
orbifolds, and maybe even Mathieu groups. {[}\ldots{]}
\end{quote}

Lots of interesting points there (though curiously none about Fourier
analysis, which seem to be a natural connection in the context of
mathematical physics). For now I'll just address Mathieu groups and the
like. First, though, a trivial etymological point:

\begin{quote}
{[}\ldots{]} in the Middle Ages, music was part of a ``quadrivium'' of
mathematical arts: arithmetic, geometry, music, and astronomy. These
were studied after the ``trivium'' of grammar, rhetoric and logic. This
is why mathematicians scorn a result as ``trivial'' when it's easy to
see using straightforward logic. When a result seems more profound, they
should call it ``quadrivial''!

Try saying it sometime: ``Cool! That's quadrivial!'' It might catch on.
\end{quote}

I hope not; while the usual sense ``commonplace, ordinary, unimportant''
of ``trivial'' does come from a Latin word ``trivium'', it's not the
academic trivium but a fork in the road --- the meeting of ``tres
viae'', three ways. Apparently it was common for people to make gossip
and other trivial small talk at these three-way crossings. See for
instance \texttt{http://www.m-w.com/dictionary/trivial}, which to its
credit includes also the technical meaning

\begin{quote}
2b : relating to or being the mathematically simplest case; specifically
: characterized by having all variables equal to zero
\end{quote}

--- it would surely be too much to ask a general dictionary to mention
identity elements or maps involving an arbitrary group. To its
\emph{dis}credit, the same dictionary glosses ``trivium'' as
``crossroads'', which should of course be where at least \emph{four}
ways meet, that is, a quadrivium! In fact the \texttt{www.m-w.com} entry
for ``quadrivium'' also glosses that Latin word as
``crossroads''\ldots{}

{[}Given the TWFiMP context, perhaps this is the place to digress
further and suggest that a Feynman diagram is a network of trivialities,
in the original meaning of ``3-way meetings'' :-){]}

Back to groups and music:

\begin{quote}
I'd like to conclude tonight's performance with a ``chromatic fantasy''
- some wild ideas that you shouldn't take too seriously, at least as far
as music theory goes. In this rousing finale, I'll list some famous
subgroups of the permutations of a \(12\)-element set. They may not be
relevant to music, but I can't resist mentioning them and hoping
somebody dreams up an application. {[}\ldots{]}

\begin{itemize}
\tightlist
\item
  The Mathieu group \(M_{12}\). This is a quintuply transitive group of
  permutations of a \(12\)-element set --- and sharply so! {[}\ldots{]}
\end{itemize}

These groups all arise as symmetries of certain discrete geometries
called Steiner systems. An ``\(S(L,M,N)\) Steiner system'' is a set of
\(N\) ``points'' together with a collection of ``lines'', such that each
line contains \(M\) points, and any set of \(L\) points lies on a unique
line. The symmetry group of a Steiner system consists of all
permutations of the set of points that map lines to lines. It turns out
that:

\begin{itemize}
\tightlist
\item
  There is a unique \(S(5,6,12)\) Steiner system, and the Mathieu group
  \(M_{12}\) is its symmetry group. The stabilizer group of any point is
  isomorphic to \(M_{11}\). {[}\ldots{]}
\end{itemize}

So, the group \(M_{12}\) could be related to music if there were a
musically interesting way of taking the chromatic scale and choosing
\(6\)-note chords such that any 5 notes lie in a unique chord. I can't
imagine such a way --- most of these chords would need to be wretchedly
dissonant.
\end{quote}

This from the man who finds Schoenberg's music so beautiful?\ldots{}
(Actually not all of Schoenberg's music is \(12\)-tone, and some of it
is not even atonal; perhaps you had heard only his tonal music and/or
early explorations outside tonality such as the Op.19 piano pieces.)

\begin{quote}
Another way to put the problem is that such a big group of permutations
would impose more symmetry on the set of chords than I can imagine my
ears hearing.
\end{quote}

Curiously the real problem here is that \(M_{12}\), big as it is, is
\emph{missing} an important kind of symmetry: a \(12\)-cycle. While one
wouldn't need all the symmetries of the Steiner system to be evident in
the music, it would be nice for any transposition of any Steiner chord
to be again a Steiner chord. But, since \(M_{12}\) is a simple group, it
contains only even permutations, whereas a \(12\)-cycle is odd. It
follows that \(M_{12}\) does not contain the triply-transitive group
\(PGL_2(\mathbb{Z}/11\mathbb{Z})\) -- though it \emph{does} contain the
index-\(2\) subgroup \(PSL_2(\mathbb{Z}/11\mathbb{Z})\), in two
different ways that are switched by an outer automorphism of \(M_{12}\)!

While \(M_{12}\) does not contain any \(12\)-cycles, it does contain
double \(6\)-cycles. We can choose one of them (doesn't matter which,
because they're all conjugate in \(M_{12}\)), and then choose an action
of \(M_{12}\) on \(\mathbb{Z}/12\mathbb{Z}\) that makes our double
\(6\)-cycle act by translation by 2. This gives a Steiner \((5,6,12)\)
system on \(\mathbb{Z}/12\mathbb{Z}\) that's invariant under all even
translations. Now there are
\(\mathrm{Binom}(12,5)/\mathrm{Binom}(6,5) = 132\) hexads in the system,
in 66 complementary pairs, and it turns out that none of the hexads is
taken to itself or its complement by a nontrivial element of \(M_{12}\).
So, under the standard identification of \(\mathbb{Z}/12\mathbb{Z}\)
with the chromatic pitch classes, we get 11 six-note chords that,
together with their whole-tone transpositions and complements of
whole-tone transpositions (all different), form a \((5,6,12)\) Steiner
system and thus contain every \(5\)-note chord in just one way.

One problem with this is that our musical training does not prepare us
to distinguish whole-tone transpositions from non-whole-tone
transpositions. So, let's form a double Steiner system by allowing
arbitrary transpositions. This ruins most of the \(M_{12}\) symmetry
(most of which wasn't audible anyway), but gives us symmetry under the
full group of musical transpositions, inversion, and complements. It so
happens that this group still acts freely, so we get 11 six-note chords
that, together with their transpositions and complements of
transpositions, contain every 5-note chord in exactly two ways.

Back in 1991 I figured out what these 11 chords are. Written as subsets
of \(\mathbb{Z}/12\mathbb{Z}\) rather than of \{C,C\#,D,\ldots\}, they
are: \[
  \begin{gathered}
    \{0,1,2,3,4,6\}, \quad \{0,1,2,3,5,7\}, \quad \{0,1,2,3,6,7\},
  \\ \{0,1,2,4,5,8\}, \quad \{0,1,3,4,6,9\}, \quad \{0,1,3,5,7,9\},
  \\ \{0,1,2,4,5,9\}, \quad \{0,1,2,4,7,8\}, \quad \{0,1,2,5,6,8\},
  \\ \{0,1,2,4,7,9\}, \quad \{0,1,3,5,6,8\}.
  \end{gathered}
\] Each five-note chord can be regarded as a link between two of these
chords (not necessarily different ones; for instance, the two
completions of a symmetrical chord such as \(\{0,1,2,3,4\}\) must be
each others inversion, here \(\{0,1,2,3,4,6\}\) and
\(\{-2,0,1,2,3,4\}\)). The resulting graph is here, with some cryptic
labeling to indicate things like whether one of the chords linked by an
edge must be inverted to get a 5-note overlap:

\texttt{http://www.math.harvard.edu/\textasciitilde{}elkies/m12.pdf}

\begin{quote}
It would be fun to dream up more relations between incidence geometry
and music theory. Could Klein's quartic curve play a role? {[}\ldots{]}
Its orientation-preserving symmetries form the group
\(\mathrm{PSL}(2,7)\), which consists of all \(2x2\) matrices with
determinant \(1\) having entries in \(\mathbb{Z}/7\), modulo scalars.
This group has \(24\times7 = 168\) elements. Since there are 7 notes in
a major or minor scale, and 24 of these scales, it's hard to resist
wanting to think of each heptagon as a scale!

Indeed, after I mentioned this idea to Dmitri Tymoczko, he said that
David Lewin and Bob Peck have written about related topics.
\end{quote}

Right. In fact this group, call it \(G_{168}\), also has a
doubly-transitive action on 7 objects, which includes a \(7\)-cycle and
thus gives a natural way for this group to act on a \(7\)-note diatonic
scale. David Lewin noted this possibility in one of his last papers.

The key (no pun intended) is that this group \(G_{168}\) is also
isomorphic with the invertible \(3\times3\) matrices over
\(\mathbb{Z}/2\mathbb{Z}\) --- one of those remarkable isomorphisms
between small matrix groups. So, \(G_{168}\) permutes the \(2^3-1 = 7\)
nonzero vectors in a \(3\)-dimensional vector space \(V\) over
\(\mathbb{Z}/2\mathbb{Z}\). The existence of a \(7\)-cycle is automatic
because 7 is prime, though it is true in general that for any finite
field \(k\) and any positive integer \(n\) the group of \(n\times n\)
matrices over \(k\) contains elements that cyclically permute the
nonzero vectors of \(k^n\). The reason is that \(k\) has a degree-\(n\)
extension \(k'\); any finite field has cyclic unit group, and
multiplication by a generator is a cyclic permutation of the nonzero
elements that acts linearly over \(k'\), so a fortiori over k!

But back to \(G_{168}\). This group also permutes the 7
codimension-\(1\) subspaces (planes) of \(V\), each of which contains
three nonzero vectors. Any two distinct nonzero vectors are contained in
a unique such plane, so we get a \((2,3,7)\) Steiner system, a.k.a.
projective plane of order \(2\), whose group of symmetries is
\(G_{168}\).

If we use a \(7\)-cycle to identify the nonzero vectors of \(V\) with a
diatonic scale, then the Steiner system gives us a distinguished
collection of 7 three-note chords, which form a single orbit under
translation (or ``diatonic transposition'' in music-theory lingo). It is
well-known that these can be chosen to be either \(\{n,n+1,n+3\}\) or
\(\{n,n-1,n-3\}\). Using the first one yields the chords

\{CDF\}, \{DEG\}, \{EFA\}, \{FGB\}, \{GAC\}, \{ABD\}, \{BCE\},

and either this or its inversions is what David Lewin suggested using.

\begin{quote}
Unlike some groups I mentioned earlier, \(\mathrm{PSL}(2,7)\) is not a
subgroup of the permutations of a \(12\)-element set.
\end{quote}

Not a transitive subgroup, you mean. Since the group acts on 7 objects,
it can certainly act on 12 while keeping five of them unmoved. That's
basically what we did above, with the five untouched objects being the
``black keys'' C\#, D\#, F\#, G\#, A\#. Or, use the action on the 8
points of the projective line over \(\mathbb{Z}/7\mathbb{Z}\) and leave
four of the 12 untouched.

--Noam D. Elkies

P.S.

\begin{quote}
(If I weren't so darn honest, I'd add that Liszt wrote the
``Transcendental Etudes'' as a sequel to his popular ``Algebraic
Etudes'', and explain how Mozart's ``eine kleine Nachtmusik'' tours a
tone net shaped like a Klein bottle. But alas\ldots.)
\end{quote}

Ha. Here's another kind of transcendental etude:

\texttt{http://math.harvard.edu/\textasciitilde{}elkies/stego.pdf}

which sounds like this:

\texttt{http://math.harvard.edu/\textasciitilde{}elkies/stego.mid}

(an automatic realization that has all the notes but makes no attempt at
interpretations). I premiered the piece here last year on March 14; for
more hints see

\texttt{http://math.harvard.edu/\textasciitilde{}elkies/stego.hints}

:-)
\end{quote}

I used Noam Elkies' remark to correct my claim that
\(\mathrm{PSL}(2,7)\) isn't a subgroup of permutations of a
\(12\)-element set. Interestingly, the triples \((n,n+1,n+3)\) and
\((n,n-1,n-3)\) in \(\mathbb{Z}/7\) are also famous as two equivalent
ways of defining the
\href{http://math.ucr.edu/home/baez/octonions/node4.html}{octonion
multiplication tables}! If we call the seven unit imaginary octonions
\(A\), \(B\), \(C\), \(D\), \(E\), \(F\), and \(G\), then we can define
octonion multiplication using the chords Elkies lists by saying that \[
  \begin{gathered}
    CD = F, \quad DE = G, \quad EF = A, \quad FG = B,
  \\GA = C, \quad AB = D, \quad BC = E
  \end{gathered}
\] along with knowing they anticommute and square to \(-1\).

Unfortunately, these chords \emph{don't} seem particularly fundamental
to music! Alas, if only they were triads\ldots.

Here are some more nice references and comments from Stephen Lavelle:

\begin{quote}
I may have been the first to say torsor, but there's a lot of stuff in
existence about group actions as they apply to music theory. In
particular, Fripertinger's page here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{30}
\tightlist
\item
  Harald Fripertinger, ``Mathematical music theory'',
  \texttt{http://www.uni-graz.at/\textasciitilde{}fripert/index\_11.html}
\end{enumerate}

has a lot of pretty damned useful articles.

There're also some pretty cool, and possibly musical, applications of
proper Topos Theory to music by Mazzola's school --- see, for instance:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{31}
\tightlist
\item
  Thomas Noll, \emph{The topos of triads}, available at
  \texttt{http://www.cs.tu-berlin.de/\textasciitilde{}noll/ToposOfTriads.pdf}
\end{enumerate}

John Baez wrote:

\begin{quote}
Apparently Riemann's ideas have caught on in a big way. Monzo says that
``use of lattices is endemic on internet tuning lists'', as if they were
some sort of infectious disease.

Dysart seems more gung-ho about it all. The ``donuts'' he mentions arise
when you curl up tone nets by identifying notes that differ by an
octave. He has some nice pictures of them!
\end{quote}

More general ``nets'', which look quite like commutative diagrams, are
put into use by Lewin. Actually, they are commutative diagrams, and one
can conceptually quite reasonably formulate a category of musically
meaningful limits --- see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{32}
\tightlist
\item
  Guerino Mazzola and Moreno Andreatta, ``From a categorical point of
  view: K-nets as limit denotators'', available at
  \texttt{recherche.ircam.fr/equipes/repmus/mamux/documents/mazzola-andreatta.pdf}
\end{enumerate}

\begin{quote}
In neo-Riemannian theory, people like Lewin and Hyer started extending
Riemann's ideas by using group theory to systematize operations on
chords. The best easy introduction to this is Fiore's paper ``Music and
mathematics''. Here you can read about math lurking in the music of
Elvis and the Beatles! Or, if you're more of a highbrow sort, see what
he has to say about Hindemith and Liszt's ``Transcendental Etudes''. And
if you like doughnuts and music, you'll love the section where he
explains how Beethoven's Ninth traces out a systematic path in a
torus-shaped tone net! This amazing fact was discovered by Cohn,
Douthett, and Steinbach.
\end{quote}

Mazzola has a nice argument as well (in his book ``The Topos of
Music''), where he shows an inconsistency in Riemann's logic of harmonic
functions by showing that his construction would allow one to fix an
orientation on a Moebius strip \texttt{:)} (if you take the seven notes
in the major scale, and connect any three points with a triangle when
they form a major, minor, or diminished chord, you get a Moebius strip
--- this was first come up with by Schoenberg).

\begin{quote}
(If I weren't so darn honest, I'd add that Liszt wrote the
``Transcendental Etudes'' as a sequel to his popular ``Algebraic
Etudes'', and explain how Mozart's ``eine kleine Nachtmusik'' tours a
tone net shaped like a Klein bottle. But alas\ldots.)
\end{quote}

Encore! Encore!

\begin{quote}
C, C\#, D, D\#, E, F, F\#, G, G\#, A, A\#, B

until you're back to C. If you're a mathematician, you might be happier
to call these notes

\[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\]

and say that we're working in the group of integers \(\mod 12\),
otherwise known as \(\mathbb{Z}/12\). Let's be mathematicians today.
\end{quote}

Here's a question for you, that you might want to know the answer to:
\emph{Historically}, why are there twelve notes in the scale? And why
are seven white and five black?

The answer is that one that ties in lots of stuff about continued
fractions, but goes along these lines: one is looking at the octave, and
divides it up by looking at the first \(n\) fifths (in our scale
c,g,d,a,e,b,\ldots) --- this divides up the scale.

Pythagoras et al.~thought that one should try to keep the variety of
intervals between consecutive notes as small as possible --- in the end,
deciding that the fewer different intervals present the better. Scales
generated by fifths that have only two intervals present between
side-by-side notes are called Pythagorean. None have just one interval,
and the first three Pythagorean scales have 5,7, and 12 notes. 12 was
thought pretty much enough, I'm guessing, and it can have nicely
embedded into it the two smaller scales (as white and black notes).

I should have a reference for the original article where I read this
(some Irish maths society bulletin I think), but I've said enough that
the material should be findable online. Ah yes, here it is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{33}
\tightlist
\item
  Maria Jose Garmendia Rodriguez and Juan Antonio Navarro Gonzalez,
  ``Musical scales'', \emph{IMS Bulletin} \textbf{35} (Christmas 1995),
  24.
\end{enumerate}

for all the good it'll do you.
\end{quote}

Steve Lubin wrote:

\begin{quote}
Dear John,

I just came across your charming page on the web about donuts and music
and related matters, and I'd like to contribute a bit of info. Your
statement:

\begin{quote}
And if you like doughnuts and music, you'll love the section where he
{[}Fiore{]} explains how Beethoven's Ninth traces out a systematic path
in a torus-shaped tone net! This amazing fact was discovered by Cohn,
Douthett, and Steinbach.
\end{quote}

isn't quite accurate; or at least, doesn't do justice to priority of
discovery. In 1974 I wrote a dissertation in musicology at NYU entitled
Techniques for the Analysis of Development in Middle-Period Beethoven,
in which I laid out four ideas:

\begin{quote}
The 18th-century European composers behaved as though they inhabited a
communally shared abstract tonal space that existed independently of
individual works and served as a substrate for them.

This space evolved in the course of the century, with respect to its
internal features and the ways in which it encouraged or discouraged
composers' choices in navigating through it.

A suitable graphic representation of this space could be used as a map
for describing composers' itineraries in particular pieces; and these
intineraries in themselves constitute an important contribution to the
effect and beauty of their works (in coordination with other factors:
rhythmic, textural, and so on).

The tonal space inhabited by the late-18th-century composers had the
form of a torus, for reasons arising from the internal geometry of the
key-relationships they favored.
\end{quote}

Recently I've been gratified to discover that some neo-Riemannian
theorists have been acknowledging my contribution in their publications:
e.g., Cohn, Lerdahl and Gollin.

I wonder what Bernhard Riemann might have thought of this! My
understanding of what his namesake Otto did is as follows: Otto
described two-dimensional tone nets that extended out indefinitely in
all directions like wallpaper -in this I believe he followed out earlier
work of Gottfried Weber. The initial insight of taking the patterns on
this flat surface and giving them closure by covering a torus with them
was mine--I'm not aware of any prior precedents.

BTW, I'm a physics groupie, always starved for laypersons' accounts of
the latest stuff. (The collapse of Scientific American as a classy
journal was a catastrophe for me.) I've decided to set aside the rest of
August for reading your diaries. Thanks and best,\\
Steve\\
\texttt{http://www.stevenlubin.com/}
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{A guiding principle in modern mathematics is this lesson: Whenever
you have to do with a structure-endowed entity S, try to determine its
group of automorphisms, the group of those element-wise transformations
which leave all structural relations undisturbed. You can expect to gain
a deep insight into the constitution of S in this way.}

--- Hermann Weyl
\end{quote}
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After leaving the Perimeter Institute near the end of June, I went home
to Riverside and then took off for a summer in Shanghai. That's where I
am now. I'm having a great time --- you can read about it in my
\href{http://math.ucr.edu/home/baez/diary/july_2006.html\#july5.06}{online
diary}!

Today I'll talk about classical and quantum computation, then quantum
gravity, and finally a bit about higher gauge theory.

My interest in quantum computation was revived when Scott Aaronson
invited me to this building near the Perimeter Institute:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Institute for Quantum Computing (IQC), \texttt{http://www.iqc.ca/}
\end{enumerate}

Raymond Laflamme gave me a fun tour of the labs, especially the setup
where he's using nuclear magnetic resonance to control the spins of
three carbon-13 nuclei in a substance called malonic acid. Each molecule
is its own little quantum computer:
\[\includegraphics[max width=0.65\linewidth]{../images/malonic_acid.jpg}\]
This picture was drawn by Osama Moussa, a grad student working with
Laflamme on this project. The black spheres are carbons, the whites are
hydrogens and the blues are oxygens.

One of the banes of quantum computation is ``decoherence'', in which the
quantum state of the computer interacts with its environment and becomes
correlated with it, or ``entangled'', in a way that appears to
``collapse its wavefunction'' and ruin the calculation.

In general it's good to keep things cool if you don't want things to get
messed up. Surprisingly, Laflamme said that for liquids, keeping them
hot \emph{reduces} the rate of decoherence: the different molecules zip
around so fast they don't stay near each other long enough to affect
each other much!

But malonic acid is a solid, so the main way to keep the molecules from
disturbing each other is to keep them far apart on average. So, they
dilute the malonic acid made using carbon-13 nuclei in a lot of ordinary
malonic acid made using carbon-12. Since 12 is an even number, such
carbon atoms have no unpaired spinning neutron in their nuclei. So, the
ordinary malonic acid serves as an inert ``shield'' that keeps the
active molecules well separated most of the time.

So, each active molecule acts like an isolated system, doing its own
computation as they zap it with carefully timed pulses of microwaves and
the three spinning nuclei interact. About a quadrillion of these
molecules are doing their thing in parallel, mixed in with a bunch more
made using carbon-12. For more details, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Jonathan Baugh, Osama Moussa, Colm A. Ryan, Raymond Laflamme,
  Chandrasekhar Ramanathan, Timothy F. Havel and David G. Cory,
  ``Solid-state NMR three-qubit homonuclear system for quantum
  information processing: control and characterization'', \emph{Phys.
  Rev.~A} \textbf{73} (2006), 022305. Also available as
  \href{http://arxiv.org/abs/quant-ph/0510115}{\texttt{quant-ph/0510115}}.
\end{enumerate}

Laflamme also showed me some beams of spin-entangled photons which they
can use as keys for quantum cryptography. Nobody can peek at these
photons without affecting them! It's a great scheme. If you don't know
it, try this simple explanation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Artur Ekert, ``Cracking codes, part II'', \emph{Plus Magazine},
  \texttt{http://pass.maths.org.uk/issue35/features/ekert/index.html}
\end{enumerate}

There are already two companies --- idQuantique and MagiQ --- selling
quantum key distribution systems that send entangled photons down
optical fibers. But the folks at the IQC are planning to send them right
through the air!

Eventually they want to send them from satellites down to the Earth. But
as a warmup, they'll send beams of entangled photons from an
intermediate building to the Institute of Quantum Computing and the
Perimeter Institute.
\[\href{http://www.iqc.ca/laboratories/peg/free_space.php}{\includegraphics[max width=0.65\linewidth]{../images/cryptomap.png}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  IQC, ``Free-space quantum key distribution'',
  \texttt{http://www.iqc.ca/laboratories/peg/free\_space.php}
\end{enumerate}

Then they can share secrets with nobody able to spy on them unnoticed.
They should do something to dramatize this capability! Unfortunately
they don't actually \emph{have} any secrets. So, they might need to make
some up.

The really cool part, though, is that Scott helped me see that at least
in principle, quantum computers could keep from drifting off course
without the computation getting ruined by quantum entanglement with the
environment. I had long been worried about this.

You see, to make any physical system keep acting ``digital'' for a long
time, one needs a method to keep its time evolution from drifting off
course. It's easiest to think about this issue for an old-fashioned,
purely classical digital computer. It's already an interesting problem.

What does it mean for a physical system to act ``digital''? Well, we
like to idealize our computers as having a finite set of states; with
each tick of the clock it jumps from one state to another in a
deterministic way. That's how we imagine a digital computer.

But if our computer is actually a machine following the laws of
classical mechanics, its space of states is actually continuous --- and
time evolution is continuous too! Physicists call the space of states of
a classical system its ``phase space'', and they describe time evolution
by a ``flow'' on this phase space: states move continuously around as
time passes, following Hamilton's equations.

So, what we like to idealize as a single state of our classical computer
is actually a big bunch of states: a blob in phase space, or
``macrostate'' in physics jargon.

For example, in our idealized description, we might say a wire
represents either a \(0\) or \(1\) depending on whether current is
flowing through it or not. But in reality, there's a blob of states
where only a little current is flowing through, and another blob of
states where a lot is flowing through. All the former states count as
the ``\(0\)'' macrostate in our idealized description; all the latter
count as the ``\(1\)'' macrostate.

Unfortunately, there are also states right on the brink, where a medium
amount of current is flowing through! If our machine gets into one of
these states, it won't act like the perfect digital computer it's trying
to mimic. This is bad!

So, you should imagine the phase space of our computer as having a
finite set of blobs in it --- macrostates where it's doing something
good --- separated by a no-man's land of states where it's not doing
anything good. For a simple \(2\)-bit computer, you can imagine 4 blobs
like this: \[
  \begin{tikzpicture}
    \draw[thick,fill=gray] (0,0) rectangle ++(3.5,3.5);
    \draw[thick,fill=white] (0.5,0.5) rectangle ++(1,1);
    \draw[thick,fill=white] (2,0.5) rectangle ++(1,1);
    \draw[thick,fill=white] (0.5,2) rectangle ++(1,1);
    \draw[thick,fill=white] (2,2) rectangle ++(1,1);
    \node at (1,2.5) {$00$};
    \node at (2.5,2.5) {$01$};
    \node at (1,1) {$10$};
    \node at (2.5,1) {$11$};
  \end{tikzpicture}
\] though in reality the phase space won't be \(2\)-dimensional, but
instead much higher-dimensional.

Now, as time evolves for one tick of our computer's clock, we'd like
these nice macrostates to flow into each other. Unfortunately, as they
evolve, they sort of spread out. Their volume doesn't change --- this
was shown by Liouville back in the 1800s:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Wikipedia, ``Liouville's theorem (Hamiltonian)'',
  \texttt{http://en.wikipedia.org/wiki/Liouville\%27s\_theorem\_(Hamiltonian)}
\end{enumerate}

But, they get stretched in some directions and squashed in others. So,
it seems hard for each one to get mapped completely into another,
without their edges falling into the dangerous no-man's-land (shaded in
gray in the diagram).

We want to keep our macrostates from getting hopelessly smeared out.
It's a bit like herding a bunch of sheep that are drifting apart,
getting them back into a tightly packed flock. Unfortunately,
Liouville's theorem says you can't really ``squeeze down'' a flock of
states! Volume in phase space is conserved\ldots.

So, the trick is to squeeze our flock of states in some directions while
letting them spread out in other, irrelevant directions.

The relevant directions say whether some bit in memory is a zero or one
--- or more generally, anything that affects our computation. The
irrelevant ones say how the molecules in our computer are wiggling
around\ldots{} or the molecules of air \emph{around} the computer --- or
anything that doesn't affect our computation.

So, for our computer to keep acting digital, it should pump out
\emph{heat!}

Here's a simpler example. Take a ball bearing and drop it into a wine
glass. Regardless of its initial position and velocity --- within reason
- the ball winds up motionless at the bottom of the glass. Lots of
different states seem to be converging to one state!

But this isn't really true. In fact, information about the ball's
position and velocity has been converted into \emph{heat}: irrelevant
information about the motion of atoms.

In short: for a fundamentally analogue physical system to keep acting
digital, it must dispose of irrelevant information, which amounts to
pumping out waste heat.

In fact, Rolf Landauer showed back in 1961 that getting rid of one bit
of information requires putting out this much energy in the form of
heat: \[kT\ln(2)\] where \(T\) is the temperature and \(k\) is
Boltzmann's constant. That's not much --- about \(3\times10^{-21}\)
joules at room temperature! But, it's theoretically important.

What had me worried was how this would work for quantum computation. A
bunch of things are different, but some should be the same. When we pump
information --- i.e., waste heat --- from the computer into the
environment, we inevitably correlate its state with that of the
environment.

In quantum mechanics, correlations often take the form of
``entanglement''. And this is a dangerous thing. For example, if our
quantum computer is in a superposition of lots of states where it's
doing interesting things, and we peek at it to see \emph{which}, we get
entangled with it, and its state seems to ``collapse'' down to one
specific possibility. We say it ``decoheres''.

Won't the entanglement caused by pumping out waste heat screw up the
coherence needed for quantum computation to work its wonders?

I finally realized the answer was: maybe not. Yes, the quantum state of
the computer gets entangled with that of the environment --- but maybe
if one is clever, only the \emph{irrelevant} aspects of its state will
get entangled: aspects that don't affect the computation. After all,
it's this irrelevant information that one is trying to pump out, not the
relevant information.

So, maybe it can work. I need to catch up on what people have written
about this, even though most of it speaks the language of ``error
correction'' rather than thermodynamics. Here are some things, including
material Scott Aaronson recommended to me.

Gentle introductions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Michael A. Nielsen and Isaac L. Chuang, \emph{Quantum Computation and
  Quantum Information}, Cambridge University Press, Cambridge, 2000.
\item
  John Preskill, Quantum computation --- lecture notes, references etc.
  at \texttt{http://www.theory.caltech.edu/people/preskill/ph229/}
\item
  John Preskill, ``Fault-tolerant quantum computation'', to appear in
  \emph{Introduction to Quantum Computation}, eds.~H.-K. Lo, S. Popescu,
  and T. P. Spiller. Also available as
  \href{http://arxiv.org/abs/quant-ph/9712048}{\texttt{quant-ph/9712048}}.
\end{enumerate}

Chapter 7 of Preskill's lecture notes is about error correction.

This is a nice early paper on getting quantum computers to work despite
some inaccuracy and decoherence:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Peter Shor, ``Fault-tolerant quantum computation'', \emph{37th
  Symposium on Foundations of Computing}, IEEE Computer Society Press,
  1996, pp.~56--65. Also available as
  \href{http://arxiv.org/abs/quant-ph/9605011}{\texttt{quant-ph/9605011}}.
\end{enumerate}

This more recent paper shows that in a certain model, quantum
computation can be made robust against errors that occur at less than
some constant rate:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Dorit Aharonov and Michael Ben-Or, ``Fault-tolerant quantum
  computation with constant error rate'', available as
  \href{http://arxiv.org/abs/quant-ph/9906129}{\texttt{quant-ph/9906129}}.
\end{enumerate}

Here's a paper that assumes a more general model:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Barbara M. Terhal and Guido Burkard, ``Fault-tolerant quantum
  computation for local non-markovian noise'', \emph{Phys. Rev.~A}
  \textbf{71}, 012336 (2005). Also available as
  \href{http://arxiv.org/abs/quant-ph/0402104}{\texttt{quant-ph/0402104}}.
\end{enumerate}

Rolf Landauer was a physicist at IBM, and he discovered the result
mentioned above --- the ``thermodynamic cost of forgetting'' --- in a
study of Maxwell's demon. This is a fascinating and controversial
subject, and you can learn more about it in this book of reprints:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  H. S. Leff and Andrew F. Rex, editors, \emph{Maxwell's Demon: Entropy,
  Information and Computing}, Institute of Physics Publishing, 1990.
\end{enumerate}

I think Landauer's original paper is in here. He figured out why you
can't get free energy from heat by using a little demon to watch the
molecules and open a door to let the hot ones into a little box. The
reason is that it takes energy for the demon to forget what it's seen!

Finally, on a somewhat different note, if you just want a great read on
the interface between physics and computation, you've got to try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Scott Aaronson, ``NP-complete problems and physical reality'',
  \emph{ACM SIGACT News}, March 2005. Also available as
  \href{http://arxiv.org/abs/quant-ph/0502072}{\texttt{quant-ph/0502072}}.
\end{enumerate}

Can a soap film efficiently solve the traveling salesman problem by
minimizing its area? If quantum mechanics were slightly nonlinear, could
quantum computers solve NP problems in polynomial time? And what could
quantum \emph{gravity} computers do? Read and learn and the state of the
art on puzzles like these.

At the Perimeter Institute I also had some great discussions with
Laurent Freidel and his student Aristide Baratin. They have a new spin
foam model that reproduces ordinary quantum field theory --- in other
words, particle physics in flat spacetime. It's not interesting as a
model of quantum gravity --- it doesn't include gravity! Instead, it
serves as a convenient target for spin foam models that \emph{do}
include gravity: it should be the limit of any such model as the
gravitational constant approaches zero.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Aristide Baratin and Laurent Freidel, ``Hidden quantum gravity in 4d
  Feynman diagrams: emergence of spin foams''. Available as
  \href{http://arxiv.org/abs/hep-th/0611042}{\texttt{hep-th/0611042}}.
\end{enumerate}

It's the sequel of this paper for 3d spacetime:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Aristide Baratin and Laurent Freidel, ``Hidden quantum gravity in 3d
  Feynman diagrams''. Available as
  \href{http://arxiv.org/abs/gr-qc/0604016}{\texttt{gr-qc/0604016}}.
\end{enumerate}

Freidel, Kowalski-Glikman and Starodubtsev have also just come out with
a paper carrying out some of the exciting project I mentioned in
\protect\hyperlink{week208}{``Week 208''}:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Laurent Freidel, Jerzy Kowalski-Glikman and Artem Starodubtsev,
  ``Particles as Wilson lines in the gravitational field'', available as
  \href{http://arxiv.org/abs/gr-qc/0607014}{\texttt{gr-qc/0607014}}.
\end{enumerate}

Their work is based on the MacDowell-Mansouri formulation of gravity.
This is a gauge theory with gauge group \(\mathrm{SO}(4,1)\) --- the
symmetry group of deSitter spacetime. DeSitter spacetime is a lot like
Minkowski spacetime, but it has constant curvature instead of being
flat. It's really just a hyperboloid in 5 dimensions:
\[\{(w,x,y,z,t) \mid w^2 + x^2 + y^2 + z^2 - t^2 = k^2\}\] for some
constant \(k\). It describes an exponentially expanding universe, a lot
like ours today. It's the most symmetrical solution of Einstein's
equation with a positive cosmological constant. The cosmological
constant is proportional to \(1/k^2\).

When you let the cosmological constant approach zero, which is the same
as letting \(k \to \infty\), DeSitter spacetime flattens out to
Minkowski spacetime, and the group \(\mathrm{SO}(4,1)\) contracts to the
symmetry group of Minkowski spacetime: the Poincare group.

So, MacDowell-Mansouri gravity is similar to the formulation of gravity
as gauge theory with the Poincare group as gauge group. I explained that
pretty carefully back in \protect\hyperlink{week176}{``Week 176''}.

But, there's one way \(\mathrm{SO}(4,1)\) is better than the Poincare
group. It's a ``simple'' Lie group, so it has an inner product on its
Lie algebra that's invariant under conjugation. This lets us write down
the \(BF\) Lagrangian: \[\operatorname{tr}(B\wedge F)\] where
\(\operatorname{tr}\) is defined using the inner product, \(F\) is the
curvature of an \(\mathrm{SO}(4,1)\) connection \(A\), and \(B\) is an
\(\mathfrak{so}(4,1)\)-valued \(2\)-form. Spin foam models of \(BF\)
theory work really well:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  John Baez, ``An introduction to spin foam models of \(BF\) theory and
  quantum gravity'', in \emph{Geometry and Quantum Physics}, eds.~Helmut
  Gausterer and Harald Grosse, Lecture Notes in Physics,
  Springer-Verlag, Berlin, 2000, pp.~25--93. Also available as
  \href{http://arxiv.org/abs/gr-qc/9905087}{\texttt{gr-qc/9905087}}.
\end{enumerate}

So, the MacDowell-Mansouri approach is a natural for spin foam models.
It's not that MacDowell-Mansouri gravity \emph{is} a \(BF\) theory ---
but its Lagrangian is the BF Lagrangian plus extra terms. So, we can
think of it as a perturbed version of \(BF\) theory.

There's also one way \(\mathrm{SO}(4,1)\) is worse than the Poincare
group. It's a simple Lie group --- so it doesn't have a god-given
``translation'' subgroup the way the Poincare group does. The Poincare
gauge theory formulation of general relativity requires that we treat
translations differently from boosts and rotations. We can't do this in
an \(\mathrm{SO}(4,1)\) gauge theory unless we break the symmetry down
to a smaller group: the Lorentz group, \(\mathrm{SO}(3,1)\).

So, to get MacDowell-Mansouri gravity from \(\mathrm{SO}(4,1)\) \(BF\)
theory, we need to add extra terms to the Lagrangian that break the
symmetry group down to \(\mathrm{SO}(3,1)\). This isn't bad, just a bit
sneaky.

The new paper by Freidel, Kowalski-Glikman and Starodubtsev is mainly
about the \(\mathrm{SO}(4,1)\) \(BF\) theory rather than full-fledged
MacDowell-Mansouri gravity. They show that if you cut out curves in
spacetime and couple them to the A field in the right way, they act like
the worldlines of point particles. In particular, they have a mass and
spin, and they trace out geodesics when their spin is zero. Spinning
particles do something a bit fancier, but it's the right thing.

This generalizes some results for 3d gravity that I explained in detail
back in \protect\hyperlink{week232}{``Week 232''}. It's nice to see it
working in 4 dimensions too.

Back then I also explained something else about 4d \(BF\) theory: if you
cut out \emph{surfaces} in spacetime and couple them to the \(B\) field,
they act like the worldsheets of \(1\)-dimensional extended objects,
which one might call \emph{strings}. I don't think they're the wiggling
stretchy strings that string theorists like; I think their equation of
motion is different. But I should actually check! It's stupid; I should
have checked this a long time ago.

Ahem. Anyway, it's really neat how particles couple to the \(A\) field
and ``strings'' couple to the \(B\) field in \(BF\) theory.

This is vaguely reminiscent of how the \(A\) and \(B\) field form two
parts of a ``\(2\)-connection'' --- a gadget that lets you define
parallel transport along curved and surfaces. You can read about
\(2\)-connections here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  John Baez and Urs Schreiber, ``Higher gauge theory'', to appear in the
  volume honoring Ross Street's 60th birthday, available as
  \href{http://arxiv.org/abs/math.DG/0511710}{\texttt{math.DG/0511710}}.
\end{enumerate}

The cool thing is that a pair consisting of an \(A\) field and a \(B\)
field gives well-behaved parallel transport for curves and surfaces only
if they satisfy an equation\ldots{} which is \emph{implied} by the basic
equation of \(BF\) theory!

The above paper is a summary of results without proofs. Before one can
talk about \(2\)-connections, one needs to understand \(2\)-bundles,
which are a ``categorified'' sort of bundle where the fiber is not a
smooth manifold but a smooth category. My student Toby Bartels recently
finished writing an excellent thesis that defines \(2\)-bundles and
relates them to ``gerbes'' --- another popular approach to higher gauge
theory, based on categorifying the concept of ``sheaf'' instead of
``bundle'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Toby Bartels, ``Higher Gauge Theory I: \(2\)-bundles'', available as
  \href{http://arxiv.org/abs/math.CT/0410328}{\texttt{math.CT/0410328}}.
\end{enumerate}

The detailed study of \(2\)-connections will show up in the next
installment --- a paper I'm writing with Urs Schreiber.

You can also see transparencies of some talks about this stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\item
  John Baez, Alissa Crans and Danny Stevenson, ``Chicago lectures on
  higher gauge theory'', available at
  \texttt{http://math.ucr.edu/home/baez/namboodiri/}
\item
  John Baez, ``Higher gauge theory'', 2006 Barrett lectures, available
  at \texttt{http://math.ucr.edu/home/baez/barrett/}
\end{enumerate}

It'll be lots of fun if higher gauge theory and the work relating
MacDowell-Mansouri gravity to \(BF\) theory fit together and develop in
some nontrivial direction. But the funny thing is, I don't how they fit
together yet.

Here's why. In gauge theory, there's a famous way to get a number from a
connection \(A\) and a loop. First you take the ``holonomy'' of \(A\)
around the loop, and then you take the trace (in some representation of
your gauge group) to get a number. This number is called a ``Wilson
loop''.

This is an obvious way to define an \emph{action} for a particle coupled
to a connection \(A\) --- at least if the particle moves around a loop.
For example, it's this action that let us compute knot invariants from
BF theory: you use the \(BF\) action for your fields, you use the Wilson
loop as an action for your particle, and you compute the amplitude for
your particle to trace out some knot in spacetime.

One might guess from the title ``Particles as Wilson lines in the
gravitational field'' that this is the action Freidel and company use.
But it's not!

Instead, they use a different action, which involves extra fields on the
particle's worldline, describing its position and momentum. I explained
a close relative of this action back in
\protect\hyperlink{week232}{``Week 232''}, when I was coupling particles
to 3d gravity.

The same funny difference shows up when we couple strings to the \(B\)
field. In higher gauge theory you can define holonomies and Wilson loops
using the \(A\) field, but you can also define ``\(2\)-holonomies'' and
``Wilson surfaces'' using both the \(A\) and \(B\) fields. The
\(2\)-holonomy describes how a string changes as it moves along a
surface, just as the holonomy describes how a particle changes as it
moves along a curve. If you have a closed surface you can take a
``trace'' of the \(2\)-holonomy and get a number, which deserves to be
called a ``Wilson surface''.

This is an obvious way to define an action for a string coupled to the
\(A\) and \(B\) fields --- at least if it traces out a closed surface.
But, it's not the one Perez and I use! Why not? Because we were trying
to do something analogous to what people did for particles in 3d
gravity.

So, there's some relation between this ``particles and strings coupled
to 4d \(BF\) theory'' business and the mathematics of higher gauge
theory, but it's not the obvious one you might have guessed at first.

Mysteries breed mysteries. For more musings on these topics, try my talk
at the Perimeter Institute:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{21}
\tightlist
\item
  John Baez, ``Higher-dimensional algebra: a language for quantum
  spacetime'', colloquium talk at Perimeter Institute, available at
  \texttt{http://math.ucr.edu/home/baez/quantum\_spacetime/}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank Chris Weed for catching some errors, Osama
Moussa for letting me display his picture and for catching some more
errors, and Ben Rubiak-Gould, Nathan Urban and K. Eric Drexler for some
interesting comments. Here's my reply to Ben Rudiak-Gould:

\begin{quote}
John Baez wrote:

\begin{quote}
In fact, Rolf Landauer showed back in 1961 that getting rid of one bit
of information requires putting out this much energy in the form of
heat: \[kT \ln(2)\]
\end{quote}

Ben Rubiak-Gould replied:

\begin{quote}
It's easy to understand where this formula comes from. Getting rid of a
bit means emitting one bit of entropy, which is \(k \ln 2\) in
conventional units. The associated quantity of heat is
\(ST = kT \ln 2\).
\end{quote}

Thanks; I should have said that.

Landauer's analysis showing that ``forgetting information'' costs energy
is still interesting, and it was surprising at the time. There had been
a number of other analyses of why Maxwell's demon can't get you
something for nothing, by Szilard and others, but none (I think) had
focussed on the key importance of resetting the demon's memory to its
initial state.

\begin{quote}
But it seems to me that you're conflating two different issues here. One
is the cost of forgetting a bit, which only affects irreversible
computation, and the other is the cost of keeping the computation on
track, which affects reversible computation also. Landauer's formula
tells you the former, but I don't think there's any lower bound on the
latter.
\end{quote}

Not in principle: with a perfectly tuned dynamics, an analogue system
can act perfectly digital, since each macrostate gets mapped perfectly
into another one with each click of the clock. But with imperfect
dynamics, dissipation is needed to squeeze each macrostate down enough
so it can get mapped into the next --- and the dissipation makes the
dynamics irreversible, so we have to pay a thermodynamic cost.

If I were smarter I could prove an inequality relating the
``imperfection of the dynamics'' (how to quantify that?) to the
thermodynamic cost of computation, piggybacking off Landauer's formula.
\end{quote}

Here's what Nathan Urban wrote:

\begin{quote}
John Baez wrote:

\begin{quote}
{[}quantum computation{]} So, maybe it can work. I need to catch up on
what people have written about this, even though most of it speaks the
language of ``error correction'' rather than thermodynamics.
\end{quote}

A nice recent overview of some of this work can be found in the latest
\emph{Physics Today}:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\tightlist
\item
  Sarma, Freedman, and Nayak, ``Topological quantum computation'',
  \emph{Physics Today} (July 2006).
\end{enumerate}

In this approach, error-free computation is accomplished using
topological quantum field theories, as topological theories are robust
against local perturbations.

The article has some nice discussion of anyons, braidings, non-Abelian
topological phases of condensed matter systems, etc. It speculates that
the \(\nu = 12/5\) state of the fractional quantum Hall effect might
support universal topological quantum computation (meaning that its
braiding operators could realize any desired unitary transformation).
\end{quote}

Here's my reply:

\begin{quote}
Long time no see, Nathan!

Nathan Urban wrote:

\begin{quote}
John Baez wrote:
\end{quote}

\begin{quote}
\begin{quote}
{[}quantum computation{]} So, maybe it can work. I need to catch up on
what people have written about this, even though most of it speaks the
language of ``error correction'' rather than thermodynamics.
\end{quote}
\end{quote}

\begin{quote}
A nice recent overview of some of this work can be found in the latest
Physics Today (July 2006), in the article ``Topological quantum
computation'' by Sarma, Freedman, and Nayak. (Nayak is at UCLA if you
ever get out that way.)
\end{quote}

Thanks, I'll check that out.

I'm usually too lazy to drive into LA, but now that I'm in Shanghai, I
thought I'd take the chance to visit Zhenghan Wang in the nearby city of
Hangzhou and talk to him about topological quantum computation.

Wang and Freedman both work for ``Project Q'', aptly named after the
Star Trek villain --- it's Microsoft's project to develop quantum
computers using nonabelian anyons:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{23}
\tightlist
\item
  Topological quantum computing at Indiana University,
  \texttt{http://www.tqc.iu.edu/}
\end{enumerate}

\begin{quote}
The article has some nice discussion of anyons, braidings, non-Abelian
topological phases of condensed matter systems, etc. It speculates that
the \(\nu=12/5\) state of the fractional quantum Hall effect might
support universal topological quantum computation (meaning that its
braiding operators could realize any desired unitary transformation).
\end{quote}

Freedman, Larsen and Wang have already proved that certain versions of
Chern-Simons theory support universal quantum computation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{24}
\tightlist
\item
  Michael Freedman, Michael Larsen, and Zhenghan Wang, ``A modular
  functor which is universal for quantum computation'', available as
  \href{http://arxiv.org/abs/quant-ph/0001108}{\texttt{quant-ph/0001108}}.
\end{enumerate}

The fractional quantum Hall effect is supposedly described by
Chern-Simons theory, so this is relevant. I don't know anything about
the ``\(\nu = 12/5\) state'' of the fractional quantum Hall effect, but
the folks at Project Q \emph{do} want to use the fractional quantum Hall
effect for quantum computation, and some people are looking for
nonabelian anyons in the \(\nu = 5/2\) state:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  Parsa Bonderson, Alexei Kitaev and Kirill Shtengel, ``Detecting
  non-abelian statistics in the \(\nu = 5/2\) fractional quantum Hall
  state'', \emph{Phys. Rev.~Lett.} \textbf{96} (2006) 016803. Also
  available as
  \href{http://arxiv.org/abs/cond-mat/0508616}{\texttt{cond-mat/0508616}}.
\end{enumerate}

Apparently there's just one lab in the world that has the capability of
producing these fractional quantum Hall states!
\end{quote}

The article in the latest Physics Today isn't free for nonsubscribers,
but this is, and it seems to cover similar ground:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\tightlist
\item
  Charles Day, ``Devices based on the fractional quantum Hall effect may
  fulfill the promise of quantum computing'', \emph{Physics Today}
  (October 2005), also available at
  \texttt{http://www.physicstoday.org/vol-58/iss-10/p21.html}
\end{enumerate}

It discusses both the \(\nu = 12/5\) and \(\nu = 5/2\) states.

Alas, I never managed to visit Zhenghan Wang in Hangzhou.

K. Eric Drexler writes:

\begin{quote}
Dear John,

To continue a thread in Week 235:

John Baez wrote:

\begin{quote}
{[}\ldots{]} with a perfectly tuned dynamics, an analogue system can act
perfectly digital, since each macrostate gets mapped perfectly into
another one with each click of the clock. But with imperfect dynamics,
dissipation is needed to squeeze each macrostate down enough so it can
get mapped into the next --- and the dissipation makes the dynamics
irreversible, so we have to pay a thermodynamic cost.
\end{quote}

Logically reversible computation can, in fact, be kept on track without
expending energy and without accurately tuned dynamics. A logically
reversible computation can be embodied in a constraint system resembling
a puzzle with sliding, interlocking pieces, in which all configurations
accessible from a given input state correspond to admissible states of
the computation along an oriented path to the output configuration. The
computation is kept on track by the contact forces that constrain the
motion of the sliding pieces. The computational state is then like a
ball rolling along a deep trough; an error would correspond to the ball
jumping out of the trough, but the energy barrier can be made high
enough to make the error rate negligible. Bounded sideways motion (that
is, motion in computationally irrelevant degrees of freedom) is
acceptable and inevitable.

Keeping a computation of this sort on track clearly requires no energy
expenditure, but moving the computational state in a preferred direction
(forward!) is another matter. This requires a driving force, and in
physically realistic systems, this force will be resisted by a
``friction'' caused by imperfections in dynamics that couple motion
along the progress coordinate to motion in other, computationally
irrelevant degrees of freedom. In a broad class of physically realistic
systems, this friction scales like viscous drag: the magnitude of the
mean force is proportional to speed, hence energy dissipation per
distance travelled (equivalently, dissipation per logic operation)
approaches zero as the speed approaches zero.

Thus, the thermodynamic cost of keeping a classical computation free of
errors can be zero, and the thermodynamic cost per operation of a
logically reversible computation can approach zero. Only Landauer's
\(\ln(2)kT\) cost of bit erasure is unavoidable, and the number of bits
erased is a measure of how far a computation deviates from logical
reversibility. These results are well-known from the literature, and are
important in understanding what can be done with atomically-precise
systems.

With best wishes,\\

Eric
\end{quote}

For an introduction to Drexler's plans for atomically-precise reversible
computers, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{27}
\tightlist
\item
  K. Eric Drexler, \emph{Nanosystems: Molecular Machinery,
  Manufacturing, and Computation}, John Wiley and Sons, New York, 1992.
\end{enumerate}

The issue of heat dissipation in such devices is also studied here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{28}
\tightlist
\item
  Ralph C. Merkle, ``Two types of mechanical reversible logic'',
  \emph{Nanotechnology} \textbf{4} (1993), 114--131. Also available at
  \texttt{http://www.zyvex.com/nanotech/mechano.html}
\end{enumerate}

I need to think about this stuff more!



\hypertarget{week236}{%
\section{July 26, 2006}\label{week236}}

This week I'd like to catch you up on some papers about categorification
and quantum mechanics.

But first, since it's summer vacation, I'd like to take you on a little
road trip --- to infinity. And then, for fun, a little detective story
about the history of the icosahedron.

Cantor invented two kinds of infinities: cardinals and ordinals.
Cardinals are more familiar. They say how big sets are. Two sets can be
put into 1-1 correspondence iff they have the same number of elements
--- where this kind of ``number'' is a cardinal.

But today I want to talk about ordinals. Ordinals say how big
``well-ordered'' sets are. A set is well-ordered if it's linearly
ordered and every nonempty subset has a smallest element.

For example, the empty set \[\{\}\] is well-ordered in a trivial sort of
way, and the corresponding ordinal is called \[0.\] Similarly, any set
with just one element, like this: \[\{0\}\] is well-ordered in a trivial
sort of way, and the corresponding ordinal is called \[1.\] Similarly,
any set with two elements, like this: \[\{0,1\}\] becomes well-ordered
as soon as we decree which element is bigger; the obvious choice is to
say \(0 < 1\). The corresponding ordinal is called \[2.\] Similarly, any
set with three elements, like this: \[\{0,1,2\}\] becomes well-ordered
as soon as we linearly order it; the obvious choice here is to say
\(0 < 1 < 2\). The corresponding ordinal is called \[3.\] Perhaps you're
getting the pattern --- you've probably seen these particular ordinals
before, maybe sometime in grade school. They're called finite ordinals,
or ``natural numbers''.

But there's a cute trick they probably didn't teach you then: we can
\emph{define} each ordinal to \emph{be} the set of all ordinals less
than it:

\begin{itemize}
\tightlist
\item
  \(0 = \{\}\) (since no ordinal is less than 0)
\item
  \(1 = \{0\}\) (since only 0 is less than 1)
\item
  \(2 = \{0,1\}\) (since 0 and 1 are less than 2)
\item
  \(3 = \{0,1,2\}\) (since 0, 1 and 2 are less than 3)
\end{itemize}

and so on. It's nice because now each ordinal \emph{is} a well-ordered
set of the size that ordinal stands for. And, we can define one ordinal
to be ``less than or equal'' to another precisely when its a subset of
the other.

Now, what comes after all the finite ordinals? Well, the set of all
finite ordinals is itself well-ordered: \[\{0,1,2,3,\ldots\}\] So,
there's an ordinal corresponding to this --- and it's the first
\emph{infinite} ordinal. It's usually called omega (\(\omega\)). Using
the cute trick I mentioned, we can actually define
\[\omega = {0,1,2,3,\ldots}\] Now, what comes after this? Well, it turns
out there's a well-ordered set \[\{0,1,2,3,\ldots,\omega\}\] containing
the finite ordinals together with \(\omega\), with the obvious notion of
``less than'': \(\omega\) is bigger than the rest. Corresponding to this
set there's an ordinal called \[\omega+1\] As usual, we can simply
define \[\omega+1 = \{0,1,2,3,\ldots,\omega\}\] (At this point you could
be confused if you know about cardinals, so let me throw in a word of
reassurance. The sets \(\omega\) and \(\omega+1\) have the same
``cardinality'', but they're different as ordinals, since you can't find
a 1-1 and onto function between them that \emph{preserves the ordering}.
This is easy to see, since \(\omega+1\) has a biggest element while
\(\omega\) does not.)

Now, what comes next? Well, not surprisingly, it's
\[\omega+2 = \{0,1,2,3,\ldots,\omega,\omega+1\}\] Then comes
\[\omega+3, \omega+4, \omega+5,\ldots\] and so on. You get the idea.

What next?

Well, the ordinal after all these is called \(\omega+\omega\). People
often call it ``\(\omega\) times \(2\)'' or ``\(\omega2\)'' for short.
So,
\[\omega2 = \{0,1,2,3,\ldots,\omega,\omega+1,\omega+2,\omega+3,\ldots\}\]
What next? Well, then comes \[\omega2 + 1, \omega2 + 2,\ldots\] and so
on. But you probably have the hang of this already, so we can skip right
ahead to \(\omega3\).

In fact, you're probably ready to skip right ahead to \(\omega4\), and
\(\omega5\), and so on.

In fact, I bet now you're ready to skip all the way to ``\(\omega\)
times \(\omega\)'', or \(\omega^2\) for short:
\[\omega^2 = \{0,1,2,\ldots\omega,\omega+1,\omega+2,\ldots,\omega2,\omega2+1,\omega2+2,\ldots\}\]

It would be fun to have a book with \(\omega\) pages, each page half as
thick as the previous page. You can tell a nice long story with an
\(\omega\)-sized book. But it would be even more fun to have an
encyclopedia with \(\omega\) volumes, each being an \(\omega\)-sized
book, each half as thick as the previous volume. Then you have
\(\omega^2\) pages --- and it can still fit in one bookshelf!
\[\includegraphics[max width=0.65\linewidth]{../images/omega_squared.png}\]

What comes next? Well, we have \[\omega^2+1, \omega^2+2, \ldots\] and so
on, and after all these come
\[\omega^2+\omega, \omega^2+\omega+1, \omega^2+\omega+2, \ldots\] and so
on --- and eventually \[\omega^2 + \omega^2 = \omega^2 2\] and then a
bunch more, and then \[\omega^2 3\] and then a bunch more, and then
\[\omega^2 4\] and then a bunch more, and more, and eventually
\[\omega^2 \omega = \omega^3.\] You can probably imagine a bookcase
containing \(\omega\) encyclopedias, each with \(\omega\) volumes, each
with \(\omega\) pages, for a total of \(\omega^3\) pages.

I'm skipping more and more steps to keep you from getting bored. I know
you have plenty to do and can't spend an \emph{infinite} amount of time
reading This Week's Finds, even if the subject is infinity.

So, if you don't mind me just mentioning some of the high points, there
are guys like \(\omega^4\) and \(\omega^5\) and so on, and after all
these comes \[\omega^\omega.\] And then what?

Well, then comes \(\omega^\omega + 1\), and so on, but I'm sure that's
boring by now. And then come ordinals like
\[\omega^\omega 2,\ldots, \omega^\omega 3, \ldots, \omega^\omega 4, \ldots\]
leading up to \[\omega^\omega \omega = \omega^{\omega+1}\] Then
eventually come ordinals like
\[\omega^\omega \omega^2 , \ldots, \omega^\omega \omega^3, \ldots, \omega^\omega \omega^4, \ldots\]
and so on, leading up to:
\[\omega^\omega \omega^\omega = \omega^{\omega+\omega} = \omega^{\omega2}\]
This actually reminds me of something that happened driving across South
Dakota one summer with a friend of mine. We were in college, so we had
the summer off, so we drive across the country. We drove across South
Dakota all the way from the eastern border to the west on Interstate 90.

This state is huge --- about 600 kilometers across, and most of it is
really flat, so the drive was really boring. We kept seeing signs for a
bunch of tourist attractions on the western edge of the state, like the
Badlands and Mt. Rushmore --- a mountain that they carved to look like
faces of presidents, just to give people some reason to keep driving.

Anyway, I'll tell you the rest of the story later --- I see some more
ordinals coming up:
\[\omega^{\omega3},\ldots,\omega^{\omega4},\ldots,\omega^{\omega5},\ldots\]
We're really whizzing along now just to keep from getting bored --- just
like my friend and I did in South Dakota. You might fondly imagine that
we had fun trading stories and jokes, like they do in road movies. But
we were driving all the way from Princeton to my friend Chip's cabin in
California. By the time we got to South Dakota, we were all out of
stories and jokes.

Hey, look! It's \[\omega^{\omega\omega} = \omega^{\omega^2}\] That was
cool. Then comes
\[\omega^{\omega^3}, \ldots \omega^{\omega^4}, \ldots \omega^{\omega^5}, \ldots\]
and so on.

Anyway, back to my story. For the first half of our half of our trip
across the state, we kept seeing signs for something called the South
Dakota Tractor Museum.

Oh, wait, here's an interesting ordinal --- let's slow down and take a
look: \[\omega^{\omega^\omega}\] I like that! Okay, let's keep driving:
\[\omega^{\omega^\omega} + 1, \omega^{\omega^\omega} + 2, \ldots\] and
then
\[\omega^{\omega^\omega} + \omega, \ldots, \omega^{\omega^\omega} + \omega 2, \ldots, \omega^{\omega^\omega} + 3, \ldots\]
and then
\[\omega^{\omega^\omega} + \omega^2, \ldots, \omega^{\omega^\omega} + \omega^3, \ldots\]
and eventually \[\omega^{\omega^\omega} + \omega^\omega\] and eventually
\[\omega^{\omega^\omega} + \omega^{\omega^\omega} = \omega^{\omega^\omega} 2\]
and then
\[\omega^{\omega^\omega} 3, \ldots, \omega^{\omega^\omega} 4, \ldots, \omega^{\omega^\omega} 5, \ldots\]
and eventually
\[\omega^{\omega^\omega} \omega = \omega^{\omega^\omega+1}\] and then
\[\omega^{\omega^\omega+2}, \ldots, \omega^{\omega^\omega+3}, \ldots, \omega^{\omega^\omega+4}, \ldots\]
This is pretty boring; we're already going infinitely fast, but we're
still just picking up speed, and it'll take a while before we reach
something interesting.

Anyway, we started getting really curious about this South Dakota
Tractor Museum --- it sounded sort of funny. It took 250 kilometers of
driving before we passed it. We wouldn't normally care about a tractor
museum, but there was really nothing else to think about while we were
driving. The only thing to see were fields of grain, and these signs,
which kept building up the suspense, saying things like ``ONLY 100 MILES
TO THE SOUTH DAKOTA TRACTOR MUSEUM!''

We're zipping along really fast now:
\[\omega^{\omega^{\omega^\omega}}, \ldots, \omega^{\omega^{\omega^{\omega^{\omega}}}},\ldots , \omega^{\omega^{\omega^{\omega^{\omega^{\omega}}}}},\ldots\]
What comes after all these?

At this point we need to stop for gas. Our notation for ordinals runs
out at this point!

The ordinals don't stop; it's just our notation that gives out. The set
of all ordinals listed up to now --- including all the ones we zipped
past --- is a well-ordered set called \[\varepsilon_0\] or
``epsilon-nought''. This has the amazing property that
\[\varepsilon_0 = \omega^{\varepsilon_0}\] And, it's the smallest
ordinal with this property.

In fact, all the ordinals smaller than \(\varepsilon_0\) can be drawn as
trees. You write them in ``Cantor normal form'' like this:
\[\omega^{\omega^{\omega^\omega+\omega+1}} + \omega^{\omega^\omega+\omega^\omega} + \omega^\omega + \omega + \omega + 1 + 1 + 1\]
using just \(+\) and exponentials and \(1\) and \(\omega\), and then you
turn this notation into a picture of a tree. I'll leave it as a puzzle
to figure out how.

So, the set of (finite, rooted) trees becomes a well-ordered set whose
ordinal is \(\varepsilon_0\). Trees are important in combinatorics and
computer science, so \(\varepsilon_0\) is not really so weird after all.

Another cool thing is that Gentzen proved the consistency of the usual
axioms for arithmetic --- ``Peano arithmetic'' --- with the help of
\(\varepsilon_0\). He did this by drawing proofs as trees, and using
this to give an inductive argument that there's no proof in Peano
arithmetic that \(0 = 1\). But, this inductive argument goes beyond the
simple kind you use to prove facts about all natural numbers. It uses
induction up to \(\varepsilon_0\).

You can't formalize Gentzen's argument in Peano arithmetic: thanks to
GÃ¶del, this system can't proof itself consistent unless it's \emph{not}.
I used to think this made Gentzen's proof pointless, especially since
``induction up to \(\varepsilon_0\)'' sounded like some sort of insane
logician's extrapolation of ordinary mathematical induction.

But now I see that induction up to \(\varepsilon_0\) can be thought of
as induction on trees, and it seems like an obviously correct principle.
Of course Peano's axioms also seem obviously correct, so I don't know
that Gentzen's proof makes me \emph{more sure} Peano arithmetic is
consistent. But, it's interesting.

Induction up to \(\varepsilon_0\) also lets you prove other stuff you
can't prove with just Peano arithmetic. For example, it lets you prove
that every Goodstein sequence eventually reaches zero!

Huh?

To write down a Goodstein sequence, you start with any natural number
and write it in ``recursive base \(2\)'', like this: \[2^{2^2+1} + 2^1\]
Then you replace all the \(2\)'s by \(3\)'s: \[3^{3^3+1} + 3^1\] Then
you subtract \(1\) and write the answer in ``recursive base \(3\)'':
\[3^{3^3+1} + 1 + 1\] Then you replace all the \(3\)'s by \(4\)'s,
subtract \(1\) and write the answer in recursive base \(4\). Then you
replace all the \(4\)'s by \(5\)'s, subtract \(1\) and write the answer
in recursive base \(5\). And so on.

You can try some examples using the applet on this site:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  National Curve Bank, ``Goodstein's theorem'',
  \texttt{http://curvebank.calstatela.edu/goodstein/goodstein.htm}
\end{enumerate}

You'll see that for any starting number bigger than \(3\), the Goodstein
sequence seems to keep growing forever. So, it's shocking to learn that
they all eventually go to zero!

For example, if you start with the number \(4\), you get this sequence:
\[4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, \ldots\] Believe
it or not, this goes to zero after about \(7 \times 10^{121210694}\)
steps! For a proof, see Kevin Buzzard's calculations in the Addendum at
the bottom of this article.

In fact, it takes nothing but algebra, careful reasoning and persistence
to work out when any given Goodstein sequence reaches zero. But, proving
they \emph{all} eventually reach zero uses induction up to
\(\varepsilon_0\).

How can that be?

The point is that these numbers in ``recursive base \(n\)'' look a lot
like ordinals in Cantor normal form. If we translate them into ordinals
by replacing \(n\) by \(\omega\), the ordinals keep getting smaller at
each step, even when the numbers get bigger!

For example, when we do the translation \[
  \begin{aligned}
    2^{2^2+1} + 2^1 &\mapsto \omega^{\omega^\omega+1} + \omega^1
  \\3^{3^3+1} + 1 + 1 &\mapsto \omega^{\omega^\omega+1} + 1 + 1
  \end{aligned}
\] we see the ordinal got smaller even though the number got bigger.
Since \(\varepsilon_0\) is well-ordered, the ordinals must bottom out at
zero after a finite number of steps --- that's what ``induction up to
\(\varepsilon_0\)'' tells us. So, the numbers must too!

In short, induction up to \(\varepsilon_0\) lets us prove all Goodstein
sequences eventually reach zero. But Kirby and Paris showed something
much deeper: they showed that you \emph{need} induction up to
\(\varepsilon_0\) to get the job done.

And, they noted a big consequence of this fact. Suppose Peano arithmetic
is consistent. Then you can't do induction up to \(\varepsilon_0\) in
this system --- since if you could, Gentzen's work would let this system
prove itself consistent, and GÃ¶del's theorem would kick in and say it's
\emph{not}. But since you \emph{need} induction up to \(\varepsilon_0\)
to prove all Goodstein sequences go to zero, you can't prove this in
Peano arithmetic.

So, the fact that Goodstein sequences go to zero is obvious if you think
about it the right way, but it's not provable in Peano arithmetic.

I don't know any results in mathematical physics that use induction up
to \(\varepsilon_0\), but these could be one --- after all, trees show
up in the theory of Feynman diagrams. That would be pretty interesting.

There's a lot more to say about this, but I hear what you're asking:
what comes after \(\varepsilon_0\)?

Well, duh! It's \[\varepsilon_0 + 1\] Then comes \[\varepsilon_0 + 2\]
and then eventually we get to \[\varepsilon_0 + \omega\] and then
\[\varepsilon_0 + \omega^2,\ldots, \varepsilon_0 + \omega^3,\ldots,\varepsilon_0 + \omega^4,\ldots\]
and after a long time
\[\varepsilon_0 + \varepsilon_0 = \varepsilon_0 2\] and then eventually
\[\varepsilon_0^2\] and then eventually..

Oh, I see! You want to know the first \emph{really interesting} ordinal
after \(\varepsilon_0\).

Well, this is a matter of taste, but you might be interested in
\(\varepsilon_1\). This is the first ordinal after \(\varepsilon_0\)
that satisfies this equation: \[x = \omega^x\] How do we actually reach
this ordinal? Well, just as \(\varepsilon_0\) was the limit of this
sequence:
\[\omega, \omega^\omega, \omega^{\omega^\omega}, \omega^{\omega^{\omega^\omega}},\ldots\]
\(\varepsilon_1\) is the limit of this:
\[\varepsilon_0 + 1, \omega^{\varepsilon_0 + 1}, \omega^{\omega^{\varepsilon_0 + 1}}, \omega^{\omega^{\omega^{\varepsilon_0 + 1}}},\ldots\]
In other words, it's the \emph{union} of all these well-ordered sets.

In what sense is \(\varepsilon_1\) the ``first really interesting
ordinal'' after \(\varepsilon_0\)? I'm not sure! Maybe it's the first
one that can't be built out of \(1\), \(\omega\) and \(\varepsilon_0\)
using finitely many additions, multiplications and exponentiations. Does
anyone out there know?

Anyway, the next really interesting ordinal I know after
\(\varepsilon_1\) is \(\varepsilon_2\). It's the next solution of
\[x = \omega^x\] and it's defined to be the limit of this sequence:
\[\varepsilon_1 + 1, \omega^{\varepsilon_1 + 1}, \omega^{\omega^{\varepsilon_1 + 1}}, \omega^{\omega^{\omega^{\varepsilon_1 + 1}}},\ldots\]
Maybe now you get the pattern. In general, \(\varepsilon_\alpha\) is the
\(\alpha\)th solution of \[x = \omega^x\] and we can define this, if
we're smart, for any ordinal \(\alpha\).

So, we can keep driving on through fields of ever larger ordinals:
\[\varepsilon_2,\ldots, \varepsilon_3,\ldots, \varepsilon_4, \ldots\]
and eventually
\[\varepsilon_\omega,\ldots, \varepsilon_{\omega+1},\ldots, \varepsilon_{\omega+2},\ldots\]
and eventually
\[\varepsilon_{\omega^2},\ldots , \varepsilon_{\omega^3},\ldots, \varepsilon_{\omega^4},\ldots\]
and eventually
\[\varepsilon_{\omega^\omega},\ldots, \varepsilon_{\omega^{\omega^\omega}},\ldots\]

As you can see, this gets boring after a while --- it's suspiciously
similar to the beginning of our trip through the ordinals, with them now
showing up as subscripts under this ``\(\varepsilon\)'' notation. But
this is misleading: we're moving much faster now. I'm skipping over much
bigger gaps, not bothering to mention all sorts of ordinals like
\[\varepsilon_{\omega^\omega} + \varepsilon_{\omega248} + \omega^{\omega^{\omega+17}} + 1\]

Anyway\ldots{} so finally we \emph{got} to this South Dakota Tractor
Museum, driving pretty darn fast at this point, about 85 miles an
hour\ldots and guess what?

Oh --- wait a minute --- it's sort of interesting here:
\[\varepsilon_{\varepsilon_0},\ldots, \varepsilon_{\varepsilon_1},\ldots, \varepsilon_{\varepsilon_2},\ldots\]
and now we reach \[\varepsilon_{\varepsilon_\omega}\] and then
\[\varepsilon_{\varepsilon_{\omega^\omega}},\ldots, \varepsilon+{\varepsilon_{\omega^{\omega^\omega}}},\ldots\]
and then as we keep speeding up, we see:
\[\varepsilon_{\varepsilon_{\varepsilon_0}},\ldots \varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}},\ldots \varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}}},\ldots\]
So, anyway: by the time we got that tractor museum, we were driving
really fast. And, all we saw as we whizzed by was a bunch of rusty
tractors out in a field! It was over in a split second! It was a real
anticlimax --- just like this little anecdote, in fact.

But that's the way it is when you're driving through these ordinals.
Every ordinal, no matter how large, looks pretty pathetic and small
compared to the ones ahead --- so you keep speeding up, looking for a
really big one\ldots{} and when you find one, you see it's part of a new
pattern, and that gets boring to\ldots{}

Anyway, when we reach the limit of this sequence:
\[\varepsilon_0,\varepsilon_{\varepsilon_0},\varepsilon_{\varepsilon_{\varepsilon_0}},\varepsilon_{\varepsilon_{\varepsilon_{\varepsilon_0}}},\varepsilon_{\varepsilon{\varepsilon_{\varepsilon_{\varepsilon_0}}}},\ldots\]
our notation breaks down, since this is the first solution of
\[x = \varepsilon_x\] We could make up a new name for this ordinal, like
\(\eta_0\).

Then we could play the whole game again, defining \(\eta_\alpha\) to be
the \(\alpha\)th solution of \[x = \varepsilon_x\] sort of like how we
defined the epsilons. This kind of equation, where something equals some
function of itself, is called a ``fixed point'' equation.

But since we'll have to play this game infinitely often, we might as
well be more systematic about it!

As you can see, we keep running into new, qualitatively different types
of ordinals. First we ran into the powers of \(\omega\), then we ran
into the epsilons, and now these etas. It's gonna keep happening! For
each type of ordinal, our notation runs out when we reach the first
``fixed point'' --- when the \(x\)th ordinal of this type is actually
equal to \(x\).

So, instead of making up infinitely many Greek letters, let's use
\(\varphi_\gamma\) for the \(\gamma\)th type of ordinal, and
\(\varphi_\gamma(\alpha)\) for the \(\alpha\)th ordinal of type
\(\gamma\).

We can use the fixed point equation to define \(\varphi_{\gamma+1}\) in
terms of \(\varphi_\gamma\). In other words, we start off by defining
\[\varphi_0(\alpha) = \omega^\alpha\] and then define
\[\varphi_{\gamma+1}(\alpha)\] to be the \(\alpha\)th solution of
\[x = \varphi_\gamma(x)\] We can even define this stuff when \(\gamma\)
itself is infinite. For a more precise definition see the Wikipedia
article cited below\ldots{} but I hope you get the rough idea.

This defines a lot of really big ordinals, called the ``Veblen
hierarchy''.

There's a souped-up version of Cantor normal form that can handle every
ordinal that's a finite sum of guys in the Veblen hierarchy: you can
write them \emph{uniquely} as finite sums of the form
\[\varphi_{\gamma_1}(\alpha_1) + \ldots + \varphi_{\gamma_k}(\alpha_k)\]
where each term is less than or equal to the previous one, and each
\(\alpha_i\) is not a fixed point of \(\varphi_{\gamma_i}\)

But as you might have suspected, not \emph{all} ordinals can be written
in this way. For one thing, every ordinal we've reached so far is
\emph{countable}: as a set you can put it in one-to-one correspondence
with the integers. There are much bigger \emph{uncountable} ordinals ---
at least if you believe you can well-order uncountable sets.

But even in the realm of the countable, we're nowhere near done!

As I hope you see, the power of the human mind to see a pattern and
formalize it gives the quest for large countable ordinals a strange
quality. As soon as we see a systematic way to generate a sequence of
larger and larger ordinals, we know this sequence has a limit that's
larger then all of those! And this opens the door to even larger
ones\ldots{}

So, this whole journey feels a bit like trying to outrace our car's own
shadow --- the faster we drive, the faster it chases after us. But, it's
interesting to hear what happens next. At this point we reach something
a bit like the Badlands on the western edge of South Dakota ---
something a bit spooky!

It's called the Feferman-SchÃ¼tte ordinal, \(\Gamma_0\). This is just the
limit, or union if you prefer, of all the ordinals mentioned so far: all
the ones you can get from the Veblen hierarchy. You can also define
\(\Gamma_0\) by a fixed point property: it's the smallest ordinal \(x\)
with \[\varphi_x(0) = x\] Now, we've already seen that induction up to
different ordinals gives us different amounts of mathematical power:
induction up to \(\omega\) is just ordinary mathematical induction as
formalized by Peano arithmetic, but induction up to \(\varepsilon_0\)
buys us more --- it lets us prove the consistency of Peano arithmetic!

Logicians including Feferman and SchÃ¼tte have carried out a detailed
analysis of this subject. They know a lot about how much induction up to
different ordinals buys you. And apparently, induction up to
\(\Gamma_0\) lets us prove the consistency of a system called
``predicative analysis''. I don't understand this, nor do I understand
the claim I've seen that \(\Gamma_0\) is the first ordinal that cannot
be defined predicatively --- i.e., can't be defined without reference to
itself. Sure, saying \(\Gamma_0\) is the first solution of
\[\varphi_x(0) = x\] is non-predicative. But what about saying that
\(\Gamma_0\) is the union of all ordinals in the Veblen hierarchy?
What's non-predicative about that?

If anyone could explain this in simple terms, I'd be much obliged.

As you can see, I'm getting out my depth here. That's pretty typical in
This Week's Finds, but this time --- just to shock the world --- I'll
take it as a cue to shut up. So, I won't try to explain the outrageously
large Bachmann-Howard ordinal, or the even more outrageously large
Church-Kleene ordinal --- the first one that can't be written down using
\emph{any} computable system of notation. You'll just have to read the
references.

For a fun introduction to the infinite, try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Rudy Rucker, \emph{Infinity and the Mind: The Science and Philosophy
  of the Infinite}, Princeton University Press, Princeton, 2004.
\end{enumerate}

Rucker also wrote a novel, \emph{White Light}, about a mathematician who
actually goes to the transfinite realms and climbs some transfinite
mountains.

For online self-study, I urge you to start by reading the Wikipedia
article on ordinal numbers, then the article on ordinal arithmetic, and
then the one on large countable ordinals --- they're really
well-written:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Wikipedia, ``Ordinal numbers'',
  \texttt{http://en.wikipedia.org/wiki/Ordinal\_number}

  ``Ordinal arithmetic'',
  \texttt{http://en.wikipedia.org/wiki/Ordinal\_arithmetic}

  ``Large countable ordinals'',
  \texttt{http://en.wikipedia.org/wiki/Large\_countable\_ordinals}
\end{enumerate}

The last one has a tempting bibliography, but warns us that most books
on this subject are hard to read and out of print. Apparently nobody can
agree on notation for ordinals beyond the Veblen hierarchy, either.

Gentzen proved the consistency of Peano arithmetic in 1936:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Gerhard Gentzen, ``Die Widerspruchfreiheit der reinen Zahlentheorie'',
  \emph{Mathematische Annalen} \textbf{112} (1936), 493--565. Translated
  as ``The consistency of arithmetic'' in M. E. Szabo ed., \emph{The
  Collected Works of Gerhard Gentzen}, North-Holland, Amsterdam, 1969.
\end{enumerate}

Goodstein's theorem came shortly afterwards:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  R. Goodstein, ``On the restricted ordinal theorem'', \emph{Journal of
  Symbolic Logic} \textbf{9} (1944), 33--41.
\end{enumerate}

but Kirby and Paris proved it independent of Peano arithmetic only in
1982:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  L. Kirby and J. Paris, ``Accessible independence results for Peano
  arithmetic'', \emph{Bull. London. Math. Soc.} \textbf{14} (1982),
  285--93.
\end{enumerate}

That marvelous guy Alan Turing wrote his PhD thesis at Princeton under
the logician Alonzo Church. It was about ordinals and their relation to
logic:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Alan M. Turing, ``Systems of logic defined by ordinals'', \emph{Proc.
  London Math. Soc.}, Series 2, \textbf{45} (1939), 161--228.
\end{enumerate}

This is regarded as his most difficult paper. The idea is to take a
system of logic like Peano arithmetic and throw in an extra axiom saying
that system is consistent, and then another axiom saying \emph{that}
system is consistent, and so on ad infinitum --- getting a new system
for each ordinal. These systems are recursively axiomatizable up to (but
not including) the Church-Kleene ordinal.

These ideas were later developed much further\ldots{}

But, reading original articles is not so easy, especially if you're in
Shanghai without access to a library. So, what about online stuff ---
especially stuff for the amateur, like me?

Well, this article is great fun if you're looking for a readable
overview of the grand early days of proof theory, when Hilbert was
battling Brouwer, and then GÃ¶del came and blew everyone away:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Jeremy Avigad and Erich H. Reck, `\,``Clarifying the nature of the
  infinite'': the development of metamathematics and proof theory',
  Carnegie-Mellon Technical Report CMU-PHIL-120, 2001. Also available as
  \texttt{http://www.andrew.cmu.edu/user/avigad/Papers/infinite.pdf}
\end{enumerate}

But, it doesn't say much about the newer stuff, like the idea that
induction up to a given ordinal can prove the consistency of a logical
system --- the bigger the ordinal, the stronger the system. For work up
to 1960, this is a good overview:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Solomon Feferman, ``Highlights in proof theory'', in \emph{Proof
  Theory}, eds.~V. F. Hendricks et al, Kluwer, Dordrecht (2000),
  pp.~11--31. Also available at
  \texttt{http://math.stanford.edu/\textasciitilde{}feferman/papers.html}
\end{enumerate}

For newer stuff, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Solomon Feferman, ``Proof theory since 1960'', prepared for the
  \emph{Encyclopedia of Philosophy Supplement}, Macmillan Publishing
  Co., New York. Also available at
  \texttt{http://math.stanford.edu/\textasciitilde{}feferman/papers.html}
\end{enumerate}

Also try the stuff on proof theory, trees and categories mentioned in
\protect\hyperlink{week227}{``Week 227''}, and this book mentioned in
\protect\hyperlink{week70}{``Week 70''} --- now you can get it free
online:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Jean-Yves Girard, Y. Lafont and P. Taylor, \emph{Proofs and Types},
  Cambridge Tracts in Theoretical Computer Science \textbf{7}, Cambridge
  U. Press, 1989. Also available at
  \texttt{http://www.cs.man.ac.uk/\textbackslash{}\textasciitilde{}pt/stable/Proofs+Types.html}
\end{enumerate}

Finally, sometime I want to get ahold of this book by someone who always
enlivened logic discussions on the internet until his death in April
this year:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Torkel Franzen, \emph{Inexhaustibility: A Non-Exhaustive Treatment},
  Lecture Notes in Logic \textbf{16}, A. K. Peters, Ltd., 2004.
\end{enumerate}

The blurb sounds nice: ``The inexhaustibility of mathematical knowledge
is treated based on the concept of transfinite progressions of theories
as conceived by Turing and Feferman.''

Okay, now for a bit about the icosahedron --- my favorite Platonic
solid.

I've been thinking about the ``geometric McKay correspondence'' lately,
and among other things this sets up a nice relationship between the
symmetry group of the icosahedron and an amazing entity called
\(\mathrm{E}_8\). \(\mathrm{E}_8\) is the largest of the exceptional Lie
groups --- it's \(248\)-dimensional. It's related to the octonions (the
number ``8'' is no coincidence) and it shows up in string theory. It's
very beautiful how this complicated sounding stuff can be seen in
distilled form in the icosahedron.

I have a lot to say about this, but you're probably worn out by our road
trip through the land of big ordinals. So for now, try
\protect\hyperlink{week164}{``Week 164''} and
\protect\hyperlink{week230}{``Week 230''} if you're curious. Let's talk
about something less stressful --- the early history of the icosahedron.

I spoke about the early history of the dodecahedron in
\protect\hyperlink{week63}{``Week 63''}. It's conjectured that the
Greeks got interested in this shape from looking at crystals of iron
pyrite. These aren't regular dodecahedra, since normal crystals can't
have \(5\)-fold symmetry --- though ``quasicrystals'' can. Instead,
they're ``pyritohedra''. The Greeks' love of mathematical perfection led
them to the regular dodecahedron\ldots{}

\ldots{} and it also led them to invent the icosahedron:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Benno Artmann, ``About the cover: the mathematical conquest of the
  third dimension'', \emph{Bulletin of the AMS} \textbf{43} (2006),
  231--235. Also available at
  \texttt{http://www.ams.org/bull/2006-43-02/S0273-0979-06-01111-6/}
\end{enumerate}

According to Artmann, an ancient note written in the margins of a copy
of Euclid's Elements says the regular icosahedron and octahedron were
discovered by Theaetetus!

If you're a cultured sort, you may know Theaetetus through Plato's
dialog of the same name, where he's described as a mathematical genius.
He's also mentioned in Plato's ``The Sophist''. He probably discovered
the icosahedron between 380 and 370 BC, and died at an early age in 369.
Euclid wrote his construction of the icosahedron that we find in
Euclid's Elements:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Euclid, \emph{Elements, Book XIII}, Proposition 16, online version due
  to David Joyce at
  \texttt{http://aleph0.clarku.edu/\textasciitilde{}djoyce/java/elements/bookXIII/propXIII16.html}
\end{enumerate}

Artmann says this was the first time a geometrical entity appeared in
pure thought before it was seen! An interesting thought.

Book XIII also contains a complete classification of the Platonic solids
--- perhaps the first really interesting classification theorem in
mathematics, and certainly the first ``\(\mathrm{ADE}\)
classification'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Euclid, \emph{Elements, Book XIII}, Proposition 18, online version due
  to David Joyce at
  \texttt{http://aleph0.clarku.edu/\textasciitilde{}djoyce/java/elements/bookXIII/propXIII18.html}
\end{enumerate}

If you don't know about \(\mathrm{ADE}\) classifications, see
\protect\hyperlink{week62}{``Week 62''}.

I got curious about the ``ancient note written in the margins of a copy
of Euclid'' that Artmann mentions. It seemed too good to be true. Just
for fun, I tried to track down the facts about this, using only my web
browser here in Shanghai.

First of all, if you're imagining an old book in a library somewhere
with marginal notes scribbled by a pal of Theaetetus, dream on. It ain't
that simple! Our knowledge of Euclid's original Elements relies on
copies of copies of copies\ldots{} and centuries of detective work, with
each detective having to root through obscure journals and dim-lit
library basements to learn what the previous detectives did.

The oldest traces of Euclid's Elements are pathetic fragments of
papyrus. People found some in a library roasted by the eruption of Mount
Vesuvius in 79 AD, some more in a garbage dump in the Egyptian town of
Oxyrhynchus (see \protect\hyperlink{week221}{``Week 221''}), and a
couple more in the Fayum region near the Nile. All these were written
centuries after Euclid died. Here's one from Oxyrhynchus, photographed
by Bill Casselman, who kindly let me include this picture:
\[\includegraphics[max width=0.65\linewidth]{../images/euclid_oxyrhynchus.jpg}\]
What math is being discussed here? What's that red ``29'' doing there?
For the answer to these and other questions, check out his website!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Bill Casselman, ``One of the oldest extant diagrams from Euclid'',
  \texttt{http://www.math.ubc.ca/\textasciitilde{}cass/Euclid/papyrus/}
\end{enumerate}

The oldest nearly complete copy of the Elements lurks in a museum called
the Bodleian at Oxford. It dates back to 888 AD, about a millennium
after Euclid.

More copies date back to the 10th century; you can find their stories
here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\item
  Thomas L. Heath, editor, \emph{Euclid's Elements}, chap.~V: the text,
  Cambridge U. Press, Cambridge, 1925. Also available at
  \texttt{http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Euc.+5}
\item
  Menso Folkerts, ``Euclid's Elements in Medieval Europe'',
  \texttt{http://www.math.ubc.ca/\textasciitilde{}cass/Euclid/folkerts/folkerts.html}
\end{enumerate}

All these copies are somewhat different. So, getting at Euclid's
original Elements is as hard as sequencing the genome of Neanderthal
man, seeing a quark, or peering back to the Big Bang!

A lot of these copies contain ``scholia'': comments inserted by various
usually unnamed copyists. These were collected and classified by a
scholar named Heiberg in the late 1800s:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Thomas L. Heath, editor, \emph{Euclid's Elements}, chap.~VI: the
  scholia, Cambridge U. Press, Cambridge, 1925. Also available at
  \texttt{http://www.perseus.tufts.edu/cgi-bin/ptext?lookup=Euc.+6}
\end{enumerate}

One or more copies contains a scholium about Platonic solids in book
XIII. Which copies? Ah, for that I'll have to read Heiberg's book when I
get back to UC Riverside --- our library has it, I'm proud to say.

And, it turns out that another scholar named Hultsch argued that this
scholium was written by Geminus of Rhodes.

Geminus of Rhodes was an astronomer and mathematician who may have lived
between 130 and 60 BC. He seems like a cool dude. In his Introduction to
Astronomy, he broke open the ``celestial sphere'', writing:

\begin{quote}
\ldots{} we must not suppose that all the stars lie on one surface, but
rather that some of them are higher and some are lower.
\end{quote}

And in his Theory of Mathematics, he proved a classification theorem
stating that the helix, the circle and the straight line are the only
curves for which any portion is the same shape as any other portion with
the same length.

Anyway, the first scholium in book XIII of Euclid's Elements, which
Hultsch attributes to Geminus, mentions

\begin{quote}
\ldots{} the five so-called Platonic figures which, however, do not
belong to Plato, three of the five being due to the Pythagoreans, namely
the cube, the pyramid, and the dodecahedron, while the octahedron and
the icosahedron are due to Theaetetus.
\end{quote}

So, that's what I know about the origin of the icosahedron! Someday I'll
read more, so let me make a note to myself:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\item
  Benno Artmann, ``Antike Darstellungen des Ikosaeders'', \emph{Mitt.
  DMV} \textbf{13} (2005), 45--50. (Here the drawing of the icosahedron
  in Euclid's elements is analysed in detail.)
\item
  A. E. Taylor, \emph{Plato: the Man and His Work}, Dover Books, New
  York, 2001, page 322. (This discusses traditions concerning Theaetetus
  and Platonic solids.)
\item
  Euclid, \emph{Elementa: Libri XI-XIII cum appendicibus}, postscript by
  Johan Ludvig Heiberg, edited by Euangelos S. Stamatis, Teubner BSB,
  Leipzig, 1969. (Apparently this contains information on the scholium
  in book XIII of the Elements.)
\end{enumerate}

Now for something a bit newer: categorification and quantum mechanics.
I've said so much about this already that I'm pretty much talked out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\item
  John Baez and James Dolan, ``From finite sets to Feynman diagrams'',
  in \emph{Mathematics Unlimited --- 2001 and Beyond}, vol.~1,
  eds.~BjÃ¶rn Engquist and Wilfried Schmid, Springer, Berlin, 2001,
  pp.~29--50.
\item
  John Baez and Derek Wise, ``Quantization and Categorification'',
  \emph{Quantum Gravity Seminar lecture notes}, available at:
  \texttt{http://math.ucr.edu/home/baez/qg-fall2003/}
  \texttt{http://math.ucr.edu/home/baez/qg-winter2004/}
  \texttt{http://math.ucr.edu/home/baez/qg-spring2004/}
\end{enumerate}

As I explained in \protect\hyperlink{week185}{``Week 185''}, many basic
facts about harmonic oscillators, Fock space and Feynman diagrams have
combinatorial interpretations. For example, the commutation relation
between the annihilation operator \(a\) and the creation operator
\(a^*\): \[aa^* - a^*a = 1\] comes from the fact that if you have some
balls in a box, there's one more way to put a ball in and then take one
out than to take one out and then put one in! This way of thinking
amounts to using finite sets as a substitute for the usual eigenstates
of the number operator, so we're really ``categorifying'' the harmonic
oscillator: giving it a category of states instead of a set of states.

Working out the detailed consequences takes us through Joyal's theory of
``structure types'' or ``species'' --- see
\protect\hyperlink{week202}{``Week 202''} --- and on to more general
``stuff types''. Some nice category and \(2\)-category theory is needed
to make the ideas precise. For a careful treatment, see this thesis by a
student of Ross Street:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{24}
\tightlist
\item
  Simon Byrne, \emph{On Groupoids and Stuff}, honors thesis, Macquarie
  University, 2005, available at
  \texttt{http://www.maths.mq.edu.au/\textasciitilde{}street/ByrneHons.pdf}
  and \texttt{http://math.ucr.edu/home/baez/qg-spring2004/ByrneHons.pdf}
\end{enumerate}

However, none of this work dealt with the all-important \emph{phases} in
quantum mechanics! For that, we'd need a generalization of finite sets
whose cardinality can be be complex. And that's what my student Jeffrey
Morton introduces here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  Jeffrey Morton, ``Categorified algebra and quantum mechanics'',
  \emph{Theory and Application of Categories} \textbf{16} (2006),
  785--854. Available at
  \texttt{http://www.emis.de/journals/TAC/volumes/16/29/16-29abs.html};
  also available as
  \href{http://arxiv.org/abs/math.QA/0601458}{\texttt{math.QA/0601458}}.
\end{enumerate}

He starts from the beginning, explains how and why one would try to
categorify the harmonic oscillator, introduces the
``\(\mathrm{U}(1)\)-sets'' and ``\(\mathrm{U}(1)\)-stuff types'' needed
to do this, and shows how the usual theorem expressing time evolution of
a perturbed oscillator as a sum over Feynman diagrams can be
categorified. His paper is now \emph{the} place to read about this
subject. Take a look!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} I thank Tim Chow, Phillip Helbig, Rudy Rucker,
Jeffrey Winkler and especially Kevin Buzzard for interesting comments.

Jeffrey Winkler wrote:

\begin{quote}
Are the ridiculously infinite forms of infinity you discuss in your
article ever used for anything?

If they only refer to themselves, if the only thing these infinite sets
refer to is other infinite sets, then it's pointless self-reflexive
recursive circular reasoning. A set that has the same number of elements
as the number of apples on your table, or the number of points in a line
or a plane, or in infinitely dimensional Hilbert space, could be said to
refer to something, but give an example of something, other than one of
the sets you're talking about, which would have \(\varepsilon_0\)
elements. Where in mathematics or physics would you ever use such a
concept? If you never would, then what's the point? In other words, is
there anything where you could have \(\varepsilon_0\) ``many'' of
something, other than the sets themselves, and if there isn't, then are
these actually numbers? If nothing is ever ``that many'', then is it a
number? Of course, we've expanded the concept of ``number'' to include
complex numbers, quaternions, octonions, vectors, tensors, matrices,
etc. where they don't literally correspond to ``how many'' something is,
yet in all those examples, they have uses in various fields of
mathematics and physics, other than just when talking about themselves,
so there is a reason for inventing them.

Jeffery
\end{quote}

I replied:

\begin{quote}
Jeffery Winkler wrote:

\begin{quote}
Are the ridiculously infinite forms of infinity you discuss in your
article ever used for anything?
\end{quote}

Without \(\varepsilon_0\) you can't prove that Goodstein sequences
converge to zero --- an obviously true fact. As I mentioned, the main
use of these ordinals is to measure the strength of axiom systems. But,
I didn't write about these ordinals because they're useful. I wrote
about them because they're fun.

They're not ``ridiculously infinite'', though. The ordinals I mentioned
are all countable ordered sets, and you can describe them all
\emph{explicitly} as subsets of the rational numbers.

More precisely: any one of the ordinals I mentioned, up to and including
the Feferman-SchÃ¼tte ordinal (and quite a ways beyond), is isomorphic as
an ordered set to a subset of the rational numbers. Moreover, you can
write a computer program that will decide whether or not any given
fraction is in this subset. As a consequence, you can also write a
computer program that lists the fractions in this set.

It's pretty obvious how to do this for \(\omega^2\):
\[\includegraphics[max width=0.65\linewidth]{../images/omega_squared.png}\]
But you can do it for any one of the ordinals I mentioned! David Madore
has drawn a picture of \(\varepsilon_0\), for example.

So, for someone to reject these ordinals as ``ridiculously infinite'',
they must have some doubts about the legitimacy of computable subsets of
the rational numbers as valid objects of study. That seems like an
extreme position.

The Church-Kleene ordinal is much larger than any of the ordinals I
discussed in detail. It's still countable. Any ordinal below it can be
described in a computable way --- but it itself can't. So, if you
believe that only computable mathematical entities are worth studying,
you might want to stop shy of this one. I stopped \emph{far} short of
this one.

\begin{quote}
If they only refer to themselves, if the only thing these infinite sets
refer to is other infinite sets, then it's pointless self-reflexive
recursive circular reasoning.
\end{quote}

I hope you see that this is not true for the countable ordinals I was
discussing. I deliberately refrained from mentioning the large cardinals
that logicians often discuss, precisely because I share your distaste
for such stuff.

I realized after I posted \protect\hyperlink{week236}{``Week 236''} that
some people might think I was talking about mystical entities, when I
was actually talking about very concrete things. So, I'm glad you
brought this up.

Best,\\
jb
\end{quote}

And now for Kevin Buzzard's wonderful calculation! In the original
version of this Week's Finds, I wrote:

\begin{quote}
if you start with the number 4, you get this Goodstein sequence:
\[4, 26, 41, 60, 83, 109, 139, 173, 211, 253, 299, 348, \ldots\] and
apparently it takes about \(3 \times 10^{60605351}\) steps to reach
zero!
\end{quote}

I got this figure from the ``National Curve Bank'' website mentioned
above, but I got the details wrong: they said the sequence ``can
increase for approximately \(2.6 \times 10^{60605351}\) steps'',
whatever that means.

Kevin Buzzard then sent me an email in which he worked out the number
himself. After correcting a few small mistakes, we seem to have settled
on a different answer.

Kevin writes:

\begin{quote}
You write this as if it were some kind of mystery. I remember working
out this number explicitly when I was a graduate student! There is some
nice form for it, as I recall. Let's see if I can reconstruct what I
did.

If I've understood the sequence correctly, it should be (where ``\(n\)''
at the beginning of a line denotes we're working in base \(n\) on this
line, so strictly speaking it's probably the \(n-1\)st term in the
sequence)

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  \(2^2 = 4\)
\item
  \(3^3-1 = 2.3^2+2.3+2 = 26\) {[}note: base 3, ends in 2, and 3+2=5{]}
\item
  \(2\cdot4^2+2\cdot4+1 = 41\) {[}note: base 4, ends in 1, and 4+1=5{]}
\item
  \(2\cdot5^2+2\cdot5 = 60\) {[}we're at a limit ordinal here, note
  3+2=4+1=5{]}
\item
  \(2\cdot6^2+2\cdot6-1 = 2\cdot6^2+6+5 = 83\) {[}note: base 6, ends in
  5{]}
\item
  \(2\cdot7^2+7+4\) {[}note: base 7, ends in 4{]}
\item
  \(2\cdot8^2+8+3\) {[}note: base 8, ends in 3, so we next get a limit
  ordinal at\ldots{]}
\end{enumerate}

\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  \(2\cdot11^2+11\)
\item
  \(2\cdot12^2+12-1 = 2\cdot12^2+11\)
\item
  \(2\cdot13^2+10\)
\end{enumerate}

\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{22}
\tightlist
\item
  \(2\cdot23^2\) (as \(23 = 12+11 = 13+10= \ldots\))
\item
  \(24^2+23\cdot24+23\)
\end{enumerate}

\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{46}
\tightlist
\item
  \(47^2+23\cdot47\)
\item
  \(48^2+22\cdot48+47\)
\end{enumerate}

\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{94}
\tightlist
\item
  \(95^2+22\cdot95\)
\item
  \(96^2+21\cdot96+95\)
\end{enumerate}

\ldots{}

and now we spot a pattern: we're just doubling---getting a limit ordinal
at bases \(24-1\), \(48-1\), \(96-1\) and so on. Let's look again at
those limit ordinals:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{46}
\tightlist
\item
  \(47^2+23\cdot47\)
\item
  \(95^2+22\cdot95\)
\end{enumerate}

\ldots{}

\(24\cdot2^{t-1}\)) \((24\cdot2^{t-1})^2+(24-t)\cdot(24\cdot2^{t-1})\)

\ldots{}

so the last one with a square in it will be the case \(t=24\),
corresponding to

\(r\)) \(r^2\)

where \[r = 24 \cdot 2^{24} - 1 = 402653183.\] All those \(24\)s, but
I'm sure you'll not get carried away. Let's define
\[n = r+1 = 24 \cdot 2^24\] and continue on. At the next step, the
ordinal decreases sharply:

\(n\)) \(n^2-1 = (n-1)n + (n-1)\) \(n+1\)) \((n-1)(n+1) + (n-2)\)
{[}note: now back to the usual tricks{]}

\ldots{}

\(2n-1\)) \((n-1)(2n-1)\) {[}the next limit, at base \(2n-1\){]} \(2n\))
\((n-2)(2n) + (2n-1)\)

\ldots{}

\(4n-1\)) \((n-2)(4n-1)\) \(4n\)) \((n-2)(4n)+(4n-1)\)

\ldots{}

and the limit ordinals we're running into now (and we're going to run
into about \(n\) of them, which is a lot), are

\(2n-1\)) \((n-1)(2n-1)\) \(4n-1\)) \((n-2)(4n-1)\) \(8n-1\))
\((n-3)(8n-1)\)

\ldots{}

\(n2^s-1\)) \((n-s)(n2^s - 1)\)

\ldots{}

and finally when \(s = n-1\)

\(m\)) \(m\)

where \(m = n 2^{n-1} - 1\). The sequence now looks like

\(m+1\)) \((m+1)-1 = m\) \(m+2\)) \(m-1\) \(m+3\)) \(m-2\)

\ldots{}

\(2m+1\)) \(0\)

So the sequence becomes zero at base \(n2^n - 1\), where
\(n = 24 \cdot 2^24\). If \(2^2\) is the first term in the sequence, I
guess this is the \((n2^n - 2)\)th term. I make this about
\(6.9\times10^{121210694}\) --- curses, you got something else!
Actually, I have about the square of what you wrote and hence I have
most likely made a slip. On the other hand you can see that it's not a
mystery at all, it's just an elementary exercise. It really helps you
learn about why the countable ordinals are well-ordered too: as you
continue working out the numbers, you always have this impending sense
of doom telling you that your gut feeling that the sequence tends to
infinity might just be wrong\ldots{}

Kevin
\end{quote}

So, in simple terms, the 4th Goodstein sequence starts out by shooting
up faster and faster, reaching almost \(n^2\) by the \(n\)th term, where
\[n = 24 \cdot 2^24^ = 402653184.\] By the \((2n)\)th term it reaches
almost \(2n^2\).

Then it grows by steps of \(n-2\), and by the \((4n)\)th term it reaches
almost \(4n^2\).

Then it grows by steps of \(n-3\), and by the \((8n)\)th term it reaches
almost \(8n^2\).

And so on\ldots{} it's slowing down now.

After about the \((2^{n-2}n)\)th term it levels off completely, and by
the \((2^{n-1}n)\)th term it equals almost \(2^{n-1}n\). Note these
numbers are the same.

From this point on the sequence decreases by one each time, and it hits
zero at about the \((2^n n)\)th term.

So, it spends the last half of its life decreasing by one each time.
Right before that, it spends a quarter of its life remaining constant.
Right before that, it spends an eighth of its life growing by one each
time. Right before that it, it spends a sixteenth of its life growning
by two each time. And so on, but not indefinitely: this description
covers the phase after the \(n\)th term.

In particular, it reaches its maximum and then levels off after about
quarter of its life is done. It spends about the next quarter of its
life being constant, and the next half going down one step at a time.

Let's be a bit more precise. For this let's call the \(i\)th term of the
4th Goodstein sequence \(a_i\), where we count things so that
\[a1 = 4, a2 = 26, \ldots\] Then \(a_i\) first reaches its maximum value
at exactly
\[i = \frac14 \cdot 24\cdot 2^{24}\cdot 2^(24\cdot 2^{24}) - 2 \sim 1.72 \times 10^{121210694}\]
Its value at this point is exactly
\[a_i = \frac12 \cdot 24\cdot 2^{24}\cdot 2^(24\cdot 2^{24}) - 1 \sim 3.45 \times 10^{121210694}\]
It then stays constant for about twice as many more terms, and then goes
to zero one step at a time, hitting zero precisely when
\[i = 24\cdot 2^{24}\cdot 2^(24\cdot 2^{24}) - 2 \sim 6.89 \times 10^{121210694}\]
Believe me, it's a lot more fun to figure this stuff out than to read
it.

I was worried that Kevin and I had made a mistake until we found this
thesis which gets the same answer (though the author starts the sequence
at \(a_0 = 4\), so it looks one off from ours):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\tightlist
\item
  Justin T. Miller, \emph{On the Independence of Goodstein's Theorem},
  Masters thesis, University of Arizona, 2001. Also available as
  \texttt{http://www.u.arizona.edu/\textasciitilde{}miller/thesis/thesis.html}
\end{enumerate}

Tim Chow had some comments about why the Feferman-SchÃ¼tte ordinal is
considered the first ``impredicative'' ordinal. He wrote:

\begin{quote}
John Baez wrote:

\begin{quote}
Logicians including Feferman and SchÃ¼tte have carried out a detailed
analysis of this subject. They know a lot about how much induction up to
different ordinals buys you. And apparently, induction up to
\(\Gamma_0\) lets us prove the consistency of a system called
``predicative analysis''. I don't understand this, nor do I understand
the claim I've seen that \(\Gamma_0\) is the first ordinal that cannot
be defined predicatively --- i.e., can't be defined without reference to
itself. Sure, saying \(\Gamma_0\) is the first solution of
\[\varphi_x(0) = x\] is non-predicative. But what about saying that
\(\Gamma_0\) is the union of all ordinals in the Veblen hierarchy?
What's non-predicative about that?
\end{quote}

The situation is somewhat akin to the situation with the Church-Turing
thesis, in that one is tentatively equating an informal notion
(predicativity or computability) with a precise mathematical notion.
Therefore there is no definitive answer to your question, and Feferman
himself has articulated potential objections to the ``standard view''
that \(\Gamma_0\) marks the boundary of predicativity.

Having said that, I'll also say that one of the reasons for the standard
view is that \(\Gamma_0\) marks the boundary of ``autonomous
progressions'' of arithmetical theories. The book by Torkel Franzen that
you cited is probably the most accessible introduction to this subject.
Roughly speaking, the idea is that if anyone fully accepts first-order
Peano arithmetic \(\mathrm{PA}\), then implicitly he accepts its
consistency \(\mathrm{Con}(\mathrm{PA})\), as well as
\(\mathrm{Con}(\mathrm{PA}+\mathrm{Con}(\mathrm{PA}))\), etc. If one
tries to articulate exactly what is ``implicitly'' involved in accepting
\(\mathrm{PA}\) in this sense, then one can make a plausibility argument
that \(\Gamma_0\) is a natural stopping point. I think you have a better
shot at grasping the underlying intuition via this approach than by
staring at \(\Gamma_0\) itself and trying to figure out what is
non-predicative about its definition.
\end{quote}

I replied asking if ``etc.'' means there's one theory like this per
ordinal. I also asked for more clues about this ``plausibility
argument'', and noted:

\begin{quote}
There's also someone named Nik Weaver who has debated Feferman on this
subject:

\texttt{http://www.cs.nyu.edu/pipermail/fom/2006-April/010472.html}~\\
\texttt{http://www.math.wustl.edu/\textasciitilde{}nweaver/conceptualism.html}

He seems to claim that \(\Gamma_0\) and even larger ordinals have
predicative definitions. However, I'm too ignorant to follow this
debate. Usually in physics I have a sense for when people are being
reasonable even if I don't follow the details. In this debate I can't
even do that.
\end{quote}

Tim Chow replied:

\begin{quote}
Let's look more closely at what the notion of ``one theory like this per
ordinal'' means. There's no difficulty figuring out what
``\(\mathrm{Con}(\mathrm{PA})\)'' means or how to express that statement
in the first-order language of arithmetic. Ditto with
``\(\mathrm{Con}(\mathrm{PA}+\mathrm{Con}(\mathrm{PA}))\)''. However,
once you start ascending the ordinal hierarchy, a difficulty appears.
The language of arithmetic doesn't let you talk about ``ordinals''
directly---that's a set-theoretical concept. In order to express a
statement like ``\(\mathrm{Con}(T)\)'' for some theory \(T\), you need
at minimum to be able to give some sort of ``recursive description'' or
``recursive axiomatization'' of \(T\) (where here I use the word
``recursive'' in the technical sense of recursive function theory) in
the first-order language of arithmetic. This observation already yields
the intuition that we're not going to be able to ascend beyond the
Church-Kleene ordinal, because we won't even be able to figure out how
to \emph{say} ``\(T\) is consistent'' for a theory \(T\) that requires
that many iterations to reach from \(\mathrm{PA}\).

There are other problems, though, that potentially get in the way before
we reach the Church-Kleene ordinal. Once we realize that what we need is
a system of ``ordinal notations'' to ``fake'' the relevant set theory,
we may (if we are predicativists) worry about issues such as:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
  As we ascend the ordinal hierarchy, isn't it illegitimate to make a
  jump to an ordinal \(\alpha\) unless we've already proved, at the
  level of some ordinal \(\beta\) that we've already reached, that an
  ordinal of type \(\alpha\) exists?
\item
  And isn't it illegitimate to create sets by quantification over things
  other than the natural numbers themselves and sets that we've already
  created?
\end{enumerate}

Condition 1 goes by the name of ``autonomy'' and condition 2 goes by the
name of ``ramification.'' If one formalizes these notions in a certain
plausible manner, then one arrives at \(\Gamma_0\) as the least upper
bound of theories that you can get to, starting with (for example)
\(\mathrm{PA}\).

One can of course wonder whether 1 and 2 above really capture the
concept of ``predicativity.'' Some secondary evidence has accumulated of
the following form: Some argument that intuitively seems to be
predicative but that is not immediately seen to be provable in the
Feferman-SchÃ¼tte framework is shown, after some work, to indeed be
provable below \(\Gamma_0\).

It's still possible, of course, for someone---you mentioned Nik
Weaver--- to come along and argue that our intuitive notion of
predicativism, fuzzy though it is, can't possibly be identified with the
level \(\Gamma_0\). The reason you can't seem to decide immediately
whether Weaver's position is nonsensical or not is probably because the
critical questions are not mathematical but philosophical, and of course
it's usually harder to arrive at definitive answers in philosophy than
in mathematics.
\end{quote}

Finally, let me record a number of papers that treat notations for
ordinals above the Feferman-SchÃ¼tte ordinal. In the discussion of this
Week's Finds on \texttt{sci.math.research}, Dave Renfro pointed out a
really nice readable paper on large countable ordinals which goes far
beyond what I discussed:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{27}
\tightlist
\item
  Hilbert Levitz, ``Transfinite ordinals and their notations: For the
  uninitiated'', available at
  \texttt{http://www.cs.fsu.edu/\textasciitilde{}levitz/research.html}
\end{enumerate}

This paper introduced the ``SchÃ¼tte Klammersymbole'', which generalize
the Veblen hierarchy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{28}
\tightlist
\item
  Kurt SchÃ¼tte, ``Kennzeichnung von Orgnungszahlen durch rekursiv
  erklÃ¤rte Funktionen'', \emph{Math. Ann} \textbf{127} (1954), 15--32.
\end{enumerate}

These papers discuss a general concept of ``ordinal notation system'',
which includes the SchÃ¼tte Klammersymbole and also something called the
``\(n\)-ary Veblen hierarchy'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{29}
\item
  Anton Setzer, ``An introduction to well-ordering proofs in
  Martin-LÃ¶f's type theory'', in \emph{Twenty-Five Years of Constructive
  Type Theory}, eds.~G. Sambin and J. Smith, Clarendon Press, Oxford,
  1998, pp.~245--263. Also available at
  \texttt{http://www.cs.swan.ac.uk/\textasciitilde{}csetzer/index.html}

  Anton Setzer, ``Ordinal systems'', in \emph{Sets and Proofs},
  Cambridge U. Press, Cambridge, 2011, pp.~301-331. Also available at
  \texttt{http://www.cs.swan.ac.uk/\textasciitilde{}csetzer/index.html}
\end{enumerate}

This paper has a nice expository section on generalizations of the
Veblen hierarchy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{30}
\tightlist
\item
  Jean H. Gallier, ``What's so special about Kruskal's theorem and the
  ordinal \(\Gamma_0\)? A survey of some results in proof theory'',
  sec.~7, A glimpse at Veblen hierarchies, \emph{Ann. Pure Appl. Logic}
  \textbf{53} (1991), 199--260. Also available at
  \texttt{http://www.cis.upenn.edu/\textasciitilde{}jean/gallier-old-pubs.html}
\end{enumerate}

This paper is very useful, since it compares different notations:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{31}
\tightlist
\item
  Larry W. Miller, ``Normal functions and constructive ordinal
  notations'', \emph{J. Symb. Log.} \textbf{41} (1976), 439--459.
\end{enumerate}

You can get it through JSTOR if you have access to that.

This webpage gives a nice definition of ``ordinal notation system'' as a
coalgebra of a certain functor --- nice if you understand categories,
that is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{32}
\tightlist
\item
  Peter Hancock, ``Ordinal notation systems'',
  \texttt{http://homepages.inf.ed.ac.uk/v1phanc1/ordinal-notations.html}
\end{enumerate}

Kevin Watkins pointed out this website, which contains several papers on
ordinal notations:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{33}
\tightlist
\item
  Harold Simmons, Abstracts of papers and notes,
  \texttt{http://www.cs.man.ac.uk/\textasciitilde{}hsimmons/DOCUMENTS/papersandnotes.html}
\end{enumerate}

Finally, the Wikipedia article on ``large countable ordinals'' has some
references to books which are, alas, out of print.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Said Conrad Cornelius O'Donald O'Dell,\\
My very young friend who is learning to spell,\\
``The A is for Ape. And the B is for Bear.\\
The C is for Camel. The H is for Hare.\\
The M is for Mouse. And the R is for Rat.\\
I know all the twenty-six letters like that\ldots{}\\
\ldots{} through to Z is for Zebra. I know them all well.\\
So now I know everything anyone knows\\
From beginning to end. From the start to the close.\\
Because Z is as far as the alphabet goes.''}\\

\emph{Then he almost fell flat on his face on the floor\\
When I picked up the chalk and drew one letter more!\\
A letter he never had dreamed of before!\\
And I said, ``You can stop, if you want, with the Z\\
Because most people stop with the Z\\
But not me!\\
In the places I go there are things that I see\\
That I never could spell if I stopped with the Z.\\
I'm telling you this 'cause you're one of my friends.\\
My alphabet starts where your alphabet ends!''}

--- Doctor Seuss
\end{quote}



\hypertarget{week237}{%
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This Week I'd like to talk about math books in Shanghai, and Urs
Schreiber's blog entry on the gauge \(3\)-group of M-theory. But first:
\[\includegraphics[max width=0.65\linewidth]{../images/klein_quartic_egan.png}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Greg Egan, ``Klein's quartic equation'',
  \texttt{http://gregegan.customer.netspace.net.au/SCIENCE/KleinQuartic/KleinQuarticEq.html}
\end{enumerate}

I discussed Klein's quartic curve in \protect\hyperlink{week214}{``Week
214''} and \protect\hyperlink{week215}{``Week 215''}. The idea is to
take the nontrivial complex solutions of \[u^3 v + v^3 w + w^3 u = 0\]
and ``projectivize'' them --- in other words, count two as the same if
one is just a multiple of the other: \[(u',v',w') = c(u,v,w)\] The
result is a \(3\)-holed Riemann surface with the maximum number of
symmetries! Here by a ``symmetry'' I mean a conformal transformation
mapping the surface to itself. Back in 1893 Hurwitz proved something
quite bizarre: an \(n\)-holed Riemann surface can't have more than
\(84(n-1)\) symmetries if \(n > 1\). So, a \(3\)-holed Riemann surface
can't have more than 168 symmetries --- and Klein's quartic curve has
exactly that many!

These 168 symmetries were constructed by Klein way back in 1879, but
Egan gives an elementary proof that uses only algebra and a bit of
calculus\ldots{} and a lot of cleverness. And, his page has a wonderful
spinning picture of the \emph{real} solutions of
\[u^3 v + v^3 w + w^3 u = 0.\] This is what you see above.

As you can see, it consists of lots of lines through the origin,
including the \(u\), \(v\), and \(w\) axes. When we ``projectivize'', we
get one point for each of these lines, so we get a curve which is the
real version of Klein's quartic curve. This curve has an obvious
\(3\)-fold symmetry, from cyclically permuting the coordinate axes. The
rest of the 168 symmetries are only easy to visualize when we go to the
complex version --- as Egan explains.

It's great that Egan can draw this thing in Perth and I can easily see
it my apartment here in Shanghai --- I feel like I'm living in a
futuristic world, and I'm only 45. What it'll be like when I'm 64?

Another pleasant thing about life in Shanghai, at least for a well-off
visitor from America, is how cheap everything is. It's clear why the US
is running an enormous trade deficit: there's a vast economic
differential. Stopping the flow of goods one way and dollars the other
would be like damming the Niagara Falls.

For example, last night I saw this excellent hardcover book on sale for
78 yuan, or about \$10:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Yu. I. Manin and A. A. Panchishkin, \emph{Introduction to Modern
  Number Theory}, second edition, Science Press, 2005.
\end{enumerate}

It's a great overview of number theory, from the basics through class
field theory to \(L\)-functions, modular forms and the Langlands
program! It's wisely divided into three sections: ``problems and
tricks'', ``ideas and theories'', and ``analogies and visions''. Back
when I used to hate number theory, I thought it was all problems and
tricks. Now I'm beginning to learn some of the ideas and theories, and I
hope eventually to grasp the analogies and visions discussed here ---
for example, the analogy between Arakelov geometry and noncommutative
geometry.

\$10 is a nice price for a math book. If you buy this one from Springer
Verlag, you'll pay ten times that. Illegal knockoffs of Western books
are common in China, but I think the one I saw is legal, since Springer
has signed an agreement with Science Press, which is run by the Chinese
Academy of Sciences. In exchange for letting Science Press publish
Springer books in China at affordable prices, Springer gets to publish
translations of Chinese journals in the West at unaffordable prices.

By the way --- after checking out the bookstore, I went out to the
street vendors and bought an excellent dinner of rice, sausage and
vegetables for 35 yuan --- about 40 cents US. It was cooked by a husband
and wife in a wok on a cart.

Just after I bought it, someone yelled the Chinese equivalent of
``cops!'', and all the street vendors suddenly dashed away with their
carts, leaving only the woman, who kindly handed me my dinner in a
styrofoam pack before walking off. They clearly had this down to a fine
art: it all happened faster than my brain could process. I guess the
cops don't allow street vendors there.

I only wish I'd noticed: did the street vendors turn off their gas
stoves before running, or run while still cooking?

Anyway, on to some serious math and physics.

You've probably heard of some mysterious thing called ``M-theory'' that
lives in 11 dimensions. Back in \protect\hyperlink{week158}{``Week
158''} and \protect\hyperlink{week159}{``Week 159''} I took a stab at
understanding this. Now I'll try again, with a lot of help from Urs
Schreiber:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Urs Schreiber, ``Castellani on free differential algebras in
  supergravity: gauge \(3\)-group of M-theory'',
  \texttt{http://golem.ph.utexas.edu/string/archives/000840.html}
\end{enumerate}

Calling M-theory a ``theory'' is a bit misleading, because nobody knows
what this theory is! There's just a lot of clues pointing to its
existence. It seems to be the quantum version of a well-defined
classical field theory called ``\(11\)-dimensional supergravity''. And,
it seems to involve \(2\)-branes and \(5\)-branes: \(2\)- and
\(5\)-dimensional membranes that trace out \(3\)- and \(6\)-dimensional
surfaces in spacetime, just like strings trace out \(2\)-dimensional
surfaces.

Back in \protect\hyperlink{week158}{``Week 158''} I wrote down a
Lagrangian for 11d supergravity. This is a truly monstrous thing
involving three fields:

\begin{enumerate}
\def\labelenumi{\Alph{enumi})}
\item
  a frame field \(e\) --- the ``graviton'',
\item
  a field \(\psi\) taking values in the real spin-\(3/2\) representation
  of the 11d Lorentz group --- the ``gravitino'',
\item
  a \(3\)-form \(A\).
\end{enumerate}

When it was discovered back in 1978, people were interested in 11d
supergravity mainly because it was the highest-dimensional theory they
could concoct that includes general relativity and supersymmetry --- a
symmetry that interchanges bosons and fermions, in this case gravitons
and gravitinos --- without including any particles of spin \(> 2\). So,
the fact that it looked like a mess wasn't such a big deal. But now that
some people are taking it very seriously, it's worth trying to
understand the math behind it more deeply, to see what makes it tick.

For example: what's so great about 11 dimensions? And: what's the reason
for that \(3\)-form?

I'm not a huge fan of string theory, but I like puzzles of this sort ---
finding patterns that make certain things work only in certain
dimensions, and stuff like that. So, I got intrigued when I learned that
super-Yang-Mills theory and superstring theory are nice in dimension 10
because of special properties of the octonions --- see
\protect\hyperlink{week104}{``Week 104''}. Maybe a little extra stretch
could bring us to dimension 11?

I got even more intrigued when I ran across two competing explanations
for that \(3\)-form in 11d supergravity. One was that it's a connection
on a twice categorified version of a \(\mathrm{U}(1)\) bundle. The other
was that it's the Chern-Simons form for an \(\mathrm{E}_8\) gauge
theory.

Let me say a bit about what these means. I talked about categorified
\(\mathrm{U}(1)\) bundles in \protect\hyperlink{week210}{``Week 210''},
so I'll be sort of brief about those\ldots.

A connection on a \(\mathrm{U}(1)\)-bundle looks locally like a
\(1\)-form, so we can integrate it along a path and compute how the
phase of charged particle changes when we move it along that path: \[
  \begin{gathered}
    x\xrightarrow{f}y
  \\[1em]\mbox{a path $f$ from the point $x$ to the point $y$;}
  \\\mbox{we write this as $f\colon x\to y$.}
  \end{gathered}
\] Believe it or not, this is the basis of all modern ideas on
electromagnetism!

If we categorify this whole idea once, we get a kind of connection that
looks locally like a \(2\)-form. Folks call this a ``connection on a
\(\mathrm{U}(1)\) gerbe'', but don't let the use of French here
intimidate you: they just do that so they can charge more for the wine.
It's just a gadget that you can integrate over a surface, to compute how
the phase of a charged \emph{string} moves when we slide it along that
surface: \[
  \begin{gathered}
    \begin{tikzpicture}
      \node (x) at (0,0) {$x$};
      \node (y) at (2,0) {$y$};
      \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,0.7) and (1.3,0.7) .. (y);
      \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (0.7,-0.7) and (1.3,-0.7) .. (y);
      \draw[double,double equal sign distance,-implies] (1,0.5) to node[label={[label distance=-1mm]right:{\scriptsize$F$}}]{} (1,-0.5);
    \end{tikzpicture}
  \\[1em]\mbox{a path $f$ from the point $x$ to the point $y$;}
  \\\mbox{we write this as $f\colon x\to y$.}
  \end{gathered}
\] And, if we categorify once more, we get a ``connection on a
\(\mathrm{U}(1)\) \(2\)-gerbe''. This is something that looks locally
like a \(3\)-form, which describes what happens when we move
\emph{\(2\)-branes} around!

If you're wondering why I'm talking about ``categorifying'', it's
because this: \[
  x\xrightarrow{f}y
\] is also a picture of a morphism in a category, while this: \[
  \begin{tikzpicture}
    \node (x) at (0,0) {$x$};
    \node (y) at (2,0) {$y$};
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,0.7) and (1.3,0.7) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (0.7,-0.7) and (1.3,-0.7) .. (y);
    \draw[double,double equal sign distance,-implies] (1,0.5) to node[label={[label distance=-1mm]right:{\scriptsize$F$}}]{} (1,-0.5);
  \end{tikzpicture}
\] is a picture of a \(2\)-morphism in a \(2\)-category and so on. We're
talking about processes between processes between processes\ldots{} so
we're climbing up the ladder of \(n\)-categories.

Anyway: since 11d supergravity has a \(3\)-form in it, and M-theory
apparently has \(2\)-branes in it, maybe we need to categorify the
concept of a \(\mathrm{U}(1)\) bundle twice to understand what's going
on here!

I came up with this crazy idea on my own back in
\protect\hyperlink{week158}{``Week 158''}, but it's an obvious guess
after you learn that the \(2\)-form field called \(B\) in 10d
superstring theory really \emph{is} a connection on a \(\mathrm{U}(1)\)
gerbe:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Alan L. Carey, Stuart Johnson and Michael K. Murray, ``Holonomy on
  D-branes'', available as
  \href{http://arxiv.org/abs/hep-th/0204199}{\texttt{hep-th/0204199}}.
\end{enumerate}

Unfortunately there are some problems with naively pushing this idea up
a dimension. For example, a crucial factor of \(1/6\) in the Lagrangian
for 11d supergravity is not explained by thinking of \(A\) this way.

Another possible explanation was that this \(3\)-form is the
Chern-Simons form of an \(\mathrm{E}_8\) bundle over spacetime:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Emanuel Diaconescu, Gregory Moore and Edward Witten,
  ``\(\mathrm{E}_8\) gauge theory, and a derivation of K-theory from
  M-theory'', \emph{Adv. Theor. Math. Phys.} \textbf{6} (2003)
  1031--1134. Also available as
  \href{http://arxiv.org/abs/hep-th/0005090}{\texttt{hep-th/0005090}}.
\item
  Emanuel Diaconescu, Daniel S. Freed and Gregory Moore, ``The M-theory
  \(3\)-form and \(\mathrm{E}_8\) gauge theory'', available as
  \href{http://arxiv.org/abs/hep-th/0312069}{\texttt{hep-th/0312069}}.
\end{enumerate}

This idea explains that factor of \(1/6\). And, it might move towards an
explanation of how the octonions get into the act, because the group
\(\mathrm{E}_8\) is deeply related to the octonions. But as the authors
of the above paper say, ``the \(\mathrm{E}_8\) gauge field plays a
purely topological role and appears, in some sense, to be a `fake'.'' In
particular, you don't see any \(\mathrm{E}_8\) connection staring you in
the face in the Lagrangian for 11d supergravity that I wrote down in
\protect\hyperlink{week158}{``Week 158''}.

Later, it started becoming clear that both ideas --- the twice
categorified \(\mathrm{U}(1)\) connection and the \(\mathrm{E}_8\) gauge
theory --- fit together in some way:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Paolo Aschieri and Branislav Jurco, Gerbes, ``M5-brane anomalies and
  \(\mathrm{E}_8\) gauge theory'', \emph{JHEP} \textbf{0410} (2004),
  068. Also available as
  \href{http://arxiv.org/abs/hep-th/0409200}{\texttt{hep-th/0409200}}.
\end{enumerate}

It all became a lot clearer to me when Urs Schreiber read these papers
and translated them into a language I like:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Leonardo Castellani, ``Lie derivatives along antisymmetric tensors,
  and the M-theory superalgebra'', available as
  \href{http://arxiv.org/abs/hep-th/0508213}{\texttt{hep-th/0508213}}.
\item
  Pietro FrÃ© and Pietro Antonio Grassi, ``Pure spinors, free
  differential algebras, and the supermembrane'', available as
  \href{http://arxiv.org/abs/hep-th/0606171}{\texttt{hep-th/0606171}}.
\end{enumerate}

The idea is to think of 11d supergravity as a twice categorifed gauge
theory --- not just the \(3\)-form field in 11d supergravity, but all
the fields, in a unified way!

For this, we need to do something much more clever than taking 11d
spacetime and slapping a \(\mathrm{U}(1)\) \(2\)-gerbe on top of it. We
need to combine the graviton, the gravitino and the \(2\)-form field
into a connection on a \emph{nonabelian} \(2\)-gerbe.

Here things get a bit technical, but Urs has covered the technical
points quite nicely in his blog, so right now I'll just try to give you
some hand-wavy intuitions.

Very roughly speaking, an connection on a bundle takes any path in
spacetime \[x\xrightarrow{f}y\] and gives you an element of some
\emph{group}, which says how a particle would transform if you moved it
along this path. This group could be \(\mathrm{U}(1)\) --- the group of
phases --- or it could be something more fun, like a \emph{nonabelian}
group.

If we categorify this concept, we get the concept of a connection on a
``\(2\)-bundle'' (which is more or less the same as a gerbe). Such a
connection takes any path and gives you an \emph{object} in some
\emph{\(2\)-group}, but it also takes any surface like this: \[
  \begin{tikzpicture}
    \node (x) at (0,0) {$x$};
    \node (y) at (2,0) {$y$};
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,0.7) and (1.3,0.7) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (0.7,-0.7) and (1.3,-0.7) .. (y);
    \draw[double,double equal sign distance,-implies] (1,0.5) to node[label={[label distance=-1mm]right:{\scriptsize$F$}}]{} (1,-0.5);
  \end{tikzpicture}
\] and gives you a \emph{morphism} in this \(2\)-group. You see,
\(2\)-group is a kind of category that acts like a group, and a category
has ``objects'' and ``morphisms''. The morphisms go between objects. For
more on \(2\)-groups, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  ``Higher-dimensional algebra V: \(2\)-Groups'', with Aaron D. Lauda,
  \emph{Theory and Applications of Categories} \textbf{12} (2004),
  available at
  \texttt{http://www.tac.mta.ca/tac/volumes/12/14/12-14abs.html}. Also
  available as
  \href{http://arxiv.org/abs/math.QA/0307200}{\texttt{math.QA/0307200}}.
\end{enumerate}

If we categorify once more, we get connections on a ``\(3\)-bundle'',
which is more or less the same thing as a ``\(2\)-gerbe'' ---
unfortunately the numbering systems are off by one. This gives us
objects, morphisms and \(2\)-morphisms in a \emph{\(3\)-group}, which
describe what happens when we move particles, strings and \(2\)-branes.

And so on:

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
group & point particles\tabularnewline
\(2\)-group & point particles and strings\tabularnewline
\(3\)-group & point particles, strings and \(2\)-branes\tabularnewline
\(4\)-group & point particles, strings, \(2\)-branes and
\(3\)-branes\tabularnewline
\bottomrule
\end{longtable}

etc.

So, if 11d supergravity is a twice categorified gauge theory, we need to
know its symmetry \emph{\(3\)-group}.

But actually, since we're doing geometry, this \(3\)-group should be a
``Lie \(3\)-group''. In other words, very roughly speaking, a
\(3\)-group that has a \emph{manifold} of objects, a manifold of
morphisms, and a manifold of 2-morphisms, where all the operations are
smooth.

But actually, since we're doing supersymmetric geometry, we need a ``Lie
3-supergroup''! In other words, very roughly speaking, a \(3\)-group
that has a \emph{supermanifold} of objects, a supermanifold of
morphisms, and a supermanifold of \(2\)-morphisms, where all the
operations are smooth. (Maybe I should say ``supersmooth'', just to be
consistent.)

If you don't know what a supermanifold is, now is probably not the time
to learn. I mean, not right this second. The point is just this:
supersymmetry infests everything once you let it in the door, just like
\(n\)-categories, and just like manifolds --- and now we're doing all
three.

In fact, nobody has even written down a rigorous definition of a Lie
\(3\)-supergroup yet! But, Lie algebras are in some ways simpler than
Lie groups, and they're a good start, so we can be glad that people
\emph{do} know what a Lie \(3\)-superalgebra is!

And Urs describes, in his blog, the relevant Lie \(3\)-superalgebra for
11d supergravity!

I would like to say more about this, but it's getting a bit tough trying
to talk about this stuff in a fun, easily accessible style, and I have
the feeling I'm no longer succeeding. In fact, I don't think I can give
a ``fun, easily accessible'' description of this specific Lie
\(3\)-superalgebra --- at least not yet. So, now I'll completely give up
trying to be comprehensible, and simply state some facts.

As shown here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  ``Higher-dimensional algebra VI: Lie \(2\)-Algebras'', with Alissa
  Crans, \emph{Theory and Applications of Categories} \textbf{12}
  (2004), available at
  \texttt{http://www.tac.mta.ca/tac/volumes/12/15/12-15abs.html} ~ Also
  available as
  \href{http://arxiv.org/abs/math.QA/0307200}{\texttt{math.QA/0307200}}.
\end{enumerate}

the category of Lie \(n\)-algebras is equivalent to the category of
\(L_\infty\) algebras which as chain complexes have only \(n\)
nonvanishing terms, the \(0\)th to the \((n-1)\)st. \(L_\infty\)
algebras are just algebras of Stasheff's \(L_\infty\) operad in the
category of chain complexes of vector spaces --- see
\protect\hyperlink{week191}{``Week 191''} and especially these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  Martin Markl, Steve Schnider and Jim Stasheff, \emph{Operads in
  Algebra, Topology and Physics}, AMS, Providence, Rhode Island, 2002.

  James Stasheff, Hartford/Luminy talks on operads, available at
  \texttt{http://www.math.unc.edu/Faculty/jds/operadchik.ps}
\end{enumerate}

But, we can replace vector spaces by \(\mathbb{Z}/2\)-graded vector
spaces and everything still works. Physicists call
\(\mathbb{Z}/2\)-graded vector spaces ``super vector spaces''. So, a
``Lie \(n\)-superalgebra'' is an algebra of the \(L_\infty\) operad in
the category of chain complexes of super vector spaces.

Given this, to specify a Lie \(3\)-superalgebra we first need to specify
the \(0\)-chains, then the \(1\)-chains, then the \(2\)-chains.

For the particular one Urs mentions, we have

\begin{itemize}
\tightlist
\item
  \(\{0\text{-chains}\}\) = 11d PoincarÃ© Lie superalgebra
\item
  \(\{1\text{-chains}\}\) = \(\{0\}\)
\item
  \(\{2\text{-chains}\}\) = \(\mathbb{R}\)
\end{itemize}

Here \(\mathbb{R}\) is the real numbers, and this \(1\)-dimensional
thing is what ultimately gives the \(3\)-form field \(A\) in 11d
supergravity. As a vector space, the 11d PoincarÃ© Lie superalgebra is
the direct sum of an even part, which is the usual PoincarÃ© Lie algebra
\(\mathfrak{iso}(11,1)\), and an odd part, which is the
\(32\)-dimensional real spinor rep of \(\mathfrak{so}(11,1)\). These
give the graviton (or more precisely the Levi-Civita connection) and the
gravitino in 11d supergravity.

Next we need to make this stuff into a chain complex. That's easy: the
differential \emph{has} to be zero.

Next, we need to specify the \(L_\infty\) structure on this chain
complex. First, we need a binary bracket operation, like in an ordinary
Lie superalgebra. The bracket of \(0\)-chains is the usual bracket in
the 11d PoincarÃ© Lie superalgebra. All the other binary brackets are
zero.

Then, we need a ternary bracket operation, which expresses how the
Jacobi identity holds only up to chain homotopy. This is zero.

Then, we need a quaternary bracket operation (since that chain homotopy
satisfies its own identity only up to chain homotopy). This is nonzero:
when we take the quaternary bracket of four \(0\)-chains we get a
\(2\)-chain, and there's a nontrivial way to define this! This is the
interesting bit, since ultimately it relates the graviton/gravitino to
the \(3\)-form field.

How do we get that quaternary bracket? Well, here's where things get
funky: D'Auria and FrÃ© dreamt up a formula that gives a number from 2
spinors and 2 vectors:
\[(\psi, \varphi, v, w) \mapsto \overline{\psi} \Gamma^{ab} \varphi v_a w_b.\]
And, magically, in 11 dimensions this gives a \(4\)-cocycle on the
PoincarÃ© Lie superalgebra! The proof of this uses some Fierz identity in
11 dimensions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  R. D'Auria and Pietro FrÃ©, ``Geometric supergravity in \(D = 11\) and
  its hidden supergroup'', \emph{Nucl. Phys.} \textbf{B201} (1982),
  101--140. Also available at
  \texttt{http://www.math.uni-hamburg.de/home/schreiber/sdarticle.pdf}
\end{enumerate}

And, from HDA6 we know that the \(4\)-cocycle condition is just what's
needed to make the quaternary bracket satisfy the identity we need for a
Lie \(3\)-superalgebra. (Alissa and I just did the calculation for Lie
\(n\)-algebras, but the ``super'' stuff should work too with a few signs
thrown in.)

So, this is all very cool, but I need to understand Fierz identities in
different dimensions to see what if anything is special to 11d here ---
or, alternatively, work out the cohomology of PoincarÃ© Lie
superalgebras, to see when they can be deformed to Lie
\(n\)-superalgebras. Sounds like a lot of work --- maybe someone already
did it. Actually D'Auria and Fre make it look like a matter of
understanding tensor products of irreps of \(\mathfrak{so}(n,1)\), which
is not bad. A worthwhile project in any event.

I also need to understand what all this has to do with \(\mathrm{E}_8\).
For that the paper by Diaconescu, Freed and Moore should help.

Well, this is just the beginning, but Urs explains the rest.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda}: I thank Noam Elkies for a correction. Aaron Bergman
has this to say about \(\mathrm{E}_8\) and M-theory:

\begin{quote}
John Baez wrote:

\begin{quote}
I also need to understand what all this has to do with \(\mathrm{E}_8\).
\end{quote}

\(\mathrm{E}_8\) might not have much of anything to do with this. As
mentioned in Diaconescu, Freed and Moore, \(\mathrm{E}_8\) appears to
function solely as a convenient stand-in for \(K(\mathbb{Z},3)\).

On the other hand, the split form of the \(\mathrm{E}\)-series (up to
\(\mathrm{E}_{11}\) if you're feeling particularly speculative) is known
to show up in describing the fields of 11D SUGRA, but the I don't think
anyone knows of a connection between the two \(\mathrm{E}_8\)s. Just to
add to the fun, \(\mathrm{E}_8\) gauge fields also show up on the fixed
points of M-theory on \(S^1/\mathbb{Z}_2\) giving the
\(\mathrm{E}_8 \times \mathrm{E}_8\) heterotic string.

Aaron
\end{quote}

Urs Schreiber replied:

\begin{quote}
Aaron Bergman wrote:

\begin{quote}
\(\mathrm{E}_8\) gauge fields also show up on the fixed points of
M-theory on \(S^1/\mathbb{Z}_2\) giving the
\(\mathrm{E}_8 \times \mathrm{E}_8\) heterotic string.
\end{quote}

The topological part of the membrane action involves the integral of the
sugra \(3\)-form over the worldvolume. By DFW, part of that \(3\)-form
can be thought of as an \(\mathrm{E}_8\) CS \(3\)-form.

So part of the membrane action looks similar to an \(\mathrm{E}_8\)
CS-theory over the worldvolume.

Now let the membrane have a boundary. A bulk \(\mathrm{E}_8\) CS-theory
is well known to induce an \(\mathrm{E}_8\) WZW theory on the boundary.

Could this be the connection between the DWF \(\mathrm{E}_8\) and the
Horava-Witten \(\mathrm{E}_8\)?

I have asked this question before:
\texttt{http://golem.ph.utexas.edu/string/archives/000791.html}. Jarah
then agreed that this must be about right. But it is not completely
clear to me yet.

One problem is that in CS-theory we vary the connection, while in the
topological membrane the \(\mathrm{E}_8\) connection on the background
is fixed and we vary the embedding by which we pull it back to the
worldvolume. Under suitable assumptions that might be equivalent to
varying an \(\mathrm{E}_8\) connection on the worldvolume itself?
\end{quote}

Aaron Bergman replied:

\begin{quote}
Urs Schreiber wrote:

\begin{quote}
Now let the membrane have a boundary. A bulk \(\mathrm{E}_8\) CS-theory
is well known to induce an \(\mathrm{E}_8\) WZW theory on the boundary.

Could this be the connection between the DWF \(\mathrm{E}_8\) and the
Horava-Witten \(\mathrm{E}_8\)?
\end{quote}

A similar observation was made by Horava way back in
\href{http://arxiv.org/abs/hep-th/9712130}{\texttt{hep-th/9712130}} (in
the final section).

Aaron
\end{quote}
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NASA is trying to built up suspense with this ``media advisory'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  NASA, ``NASA Announces Dark Matter Discovery'',
  \texttt{http://www.nasa.gov/home/hqnews/2006/aug/HQ\_M06128\_dark\_matter.html}
\end{enumerate}

which says simply:

\begin{quote}
Astronomers who used NASA's Chandra X-ray Observatory will host a media
teleconference at 1 p.m. EDT Monday, Aug.~21, to announce how dark and
normal matter have been forced apart in an extraordinarily energetic
collision.
\end{quote}

Hmm! What's this about?

Someone nicknamed ``riptalon'' at Slashdot made a good guess. The media
advisory lists the ``briefing participants'' as Maxim Markevitch, Doug
Clowe and Sean Carroll. Markevitch and Clowe work with the Chandra X-ray
telescope to study galaxy collisions and dark matter. Last November,
Markevitch gave a talk on this work, which you can see here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Maxim Markevitch, Scott Randall, Douglas Clowe, and Anthony H.
  Gonzalez, ``Insights on physics of gas and dark matter from cluster
  mergers'', available at
  \texttt{http://cxc.harvard.edu/symposium\_2005/proceedings/theme\_energy.html\#abs23}
\end{enumerate}

So, barring any drastic new revelations, we can guess what's up.
Markevitch and company have been studying the ``Bullet Cluster'', a
bunch of galaxies that has a small bullet-shaped subcluster zipping away
from the center at 4,500 kilometers per second. Here's a picture of it
from the above paper:
\[\href{http://cxc.harvard.edu/symposium_2005/proceedings/theme_energy.html#abs23}{\includegraphics[max width=0.65\linewidth]{../images/bullet_cluster.jpg}}\]
To help you understand this picture a bit: the official name of the
Bullet Cluster is 1E0657-56. The ``exposure'' for this X-ray photograph
taken by Chanda was apparently 0.5 million seconds --- 140 hours! The
distance scale shown, 0.5 megaparsecs, is about 1.6 million light years.
The cluster itself has a redshift \(z = 0.3\), meaning its light has
wavelengths stretched by a factor of 1.3. Under currently popular ideas
on cosmology, this means it's roughly 4 billion light years away.

Anyway, what are we seeing here?

You can see rapidly moving galaxy cluster with a shock wave trailing
behind it. It seems to have hit another cluster at high speed. When this
kind of thing happens, the \emph{gas} in the clusters is what actually
collides --- the individual galaxies are too sparse to hit very often.
And when the gas collides, it gets hot. In this case, it heated up to
about 160 million degrees and started emitting X-rays like mad! The
picture shows these X-rays. This may be hottest known galactic cluster.

That's fun. But that's not enough reason to call a press conference. The
cool part is not the crashing of gas against gas. The cool part is that
the dark matter in the clusters was unstopped --- it kept right on
going!

How do people know this? Simple. Folks can see the \emph{gravity} of the
dark matter bending the light from more distant galaxies! It's called
``gravitational lensing''. Here are the mass density contours, as seen
by this effect. I guess Clowe took this photo using the Hubble Space
Telescope:
\[\href{http://cxc.harvard.edu/symposium_2005/proceedings/theme_energy.html#abs23}{\includegraphics[max width=0.65\linewidth]{../images/bullet_cluster_lensing.jpg}}\]
So: X-rays show the gas in one place, but gravity shows most of the mass
is somewhere else --- two lumps zipping along unstopped. That's good
evidence that dark matter is for real.

For more try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  M. Markevitch, S. Randall, D. Clowe, A. Gonzalez, and M. Bradac,
  ``Dark matter and the Bullet Cluster'', available at
  \texttt{http://www.cosis.net/abstracts/COSPAR2006/02655/COSPAR2006-A-02655.pdf}
\item
  M. Markevitch, A. H. Gonzalez, D. Clowe, A. Vikhlinin, L. David, W.
  Forman, C. Jones, S. Murray, and W. Tucker, ``Direct constraints on
  the dark matter self-interaction cross-section from the merging galaxy
  cluster 1E0657-56'', available as
  \href{http://arxiv.org/abs/astro-ph/0309303}{\texttt{astro-ph/0309303}}.
\item
  Maxim Markevitch, ``Chandra observation of the most interesting
  cluster in the Universe'', available as
  \href{https://arxiv.org/abs/astro-ph/0511345}{\texttt{astro-ph/0511345}}.
\item
  M. Markevitch, A. H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W.
  Forman, C. Jones and W. Tucker, ``A textbook example of a bow shock in
  the merging galaxy cluster 1E0657-56'', \emph{Astrophys. J.}
  \textbf{567} (2002), L27. Also available as
  \href{https://arxiv.org/abs/astro-ph/0110468}{\texttt{astro-ph/0110468}}.
\item
  Eric Hayashi and Simon D. M. White, ``How rare is the Bullet
  Cluster?'', \emph{Mon. Not. Roy. Astron. Soc. Lett.} \textbf{370}
  (2006), L38--L41, available as
  \href{https://arxiv.org/abs/astro-ph/0604443}{\texttt{astro-ph/0604443}}.
\end{enumerate}

The first of these is, alas, only the abstract of a talk. But it's worth
reading, so I'll quote it in its entirety here:

\begin{quote}
1E0657-56, the ``Bullet Cluster'', is a merger with a uniquely simple
geometry. From the long Chandra X-ray observation which revealed a
classic bow shock in front of a small subcluster, we can derive the
velocity of the subcluster and its direction of motion. Recent accurate
weak and strong lensing total mass maps clearly show two merging
subclusters, including the host of the gas bullet seen in X-rays. This
cluster provided the first direct, model-independent proof of the dark
matter existence (as opposed to any modified gravity theory) and a
direct constraint on the self-interaction cross-section of the dark
matter particles. I will review these and other related results.
\end{quote}

The Bullet Cluster is not the only direct evidence for dark matter. In
fact, last year folks claimed to have found a ``ghost galaxy'' made
mainly of dark matter and cold hydrogen, with very few stars:
\[\href{http://www2.naic.edu/~rminchin/press/}{\includegraphics[max width=0.65\linewidth]{../images/ghost_galaxy.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  PPARC, ``New evidence for a dark matter galaxy'',
  \texttt{http://www.interactions.org/cms/?pid=1023641}
\end{enumerate}

However, Matt Owers informs me that the consensus on this ghost, VIRGOHI
21, is that it's hydrogen stripped off from a galaxy by the ``wind'' it
felt as it fell into the Virgo Cluster. This effect is called ``ram
pressure stripping'' --- the gas of a galaxy can be stripped off if the
galaxy is moving rapidly through a cluster, due to interaction with the
gas in the cluster.

Nonetheless, dark matter is seeming more and more real. It thus becomes
ever more interesting to find out what dark matter actually \emph{is}.
The lightest neutralino? Axions? Theoretical physicists are good at
inventing plausible candidates, but finding them is another thing.

Since I'd like to send this off in time to beat NASA, I won't say a lot
more today\ldots{} just a bit.

Dan Christensen and Igor Khavkine have discovered some fascinating
things by plotting the amplitude of the tetrahedral spin network --- the
basic building block of spacetime in 3d quantum gravity --- as a
function of the cosmological constant.

They get pictures like this:
\[\includegraphics[max width=0.65\linewidth]{../images/tet4-real-med.jpg}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Dan Christensen and Igor Khavkine, ``Plots of \(q\)-deformed tets'',
  \texttt{http://jdc.math.uwo.ca/spinnet/}
\end{enumerate}

Here the color indicates the real part of the spin network amplitude,
and it's plotted as a function of \(q\), which is related to the
cosmological constant by a funky formula I won't bother to write down
here.

You can get some nice books on category theory for free these days:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Jiri Adamek, Horst Herrlich and George E. Strecker, \emph{Abstract and
  Concrete Categories: the Joy of Cats}, available at
  \texttt{http://katmat.math.uni-bremen.de/acc/acc.pdf}
\item
  Robert Goldblatt, \emph{Topoi: the Categorial Analysis of Logic},
  available at
  \texttt{http://cdl.library.cornell.edu/cgi-bin/cul.math/docviewer?did=Gold010}
\item
  Michael Barr and Charles Wells, \emph{Toposes, Triples and Theories},
  available at
  \texttt{http://www.case.edu/artsci/math/wells/pub/ttt.html}
\end{enumerate}

The first two are quite elementary --- don't be scared of the title of
Goldblatt's book; the only complaints I've ever heard about it boil down
to the claim that it's too easy!

You can also download this classic text on synthetic differential
geometry, which is an approach to differential geometry based on
infinitesimals, formalized using topos theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Anders Kock, \emph{Synthetic Differential Geometry}, available at
  \texttt{http://home.imf.au.dk/kock/}
\end{enumerate}

He asks that we not circulate it in printed form --- electrons are okay,
but not paper.

Next I want to say a \emph{tiny} bit about Koszul duality for Lie
algebras, which plays a big role in the work of Castellani on the
M-theory Lie \(3\)-algebra, which I discussed in
\protect\hyperlink{week237}{``Week 237''}.

Let's start with the Maurer-Cartan form. This is a gadget that shows up
in the study of Lie groups. It works like this. Suppose you have a Lie
group \(G\) with Lie algebra \(\mathrm{Lie}(G)\). Suppose you have a
tangent vector at any point of the group \(G\). Then you can translate
it to the identity element of \(G\) and get a tangent vector at the
identity of \(G\). But, this is nothing but an element of
\(\mathrm{Lie}(G)\)!

So, we have a god-given linear map from tangent vectors on \(G\) to the
Lie algebra \(\mathrm{Lie}(G)\). This is called a
``\(\mathrm{Lie}(G)\)-valued \(1\)-form'' on \(G\), since an ordinary
\(1\)-form eats tangent vectors and spits out numbers, while this spits
out elements of \(\mathrm{Lie}(G)\). This particular god-given
\(\mathrm{Lie}(G)\)-valued \(1\)-form on \(G\) is called the
``Maurer-Cartan form'', and denoted \(\omega\).

Now, we can define exterior derivatives of \(\mathrm{Lie}(G)\)-valued
differential forms just as we can for ordinary differential forms. So,
it's interesting to calculate \(d\omega\) and see what it's like.

The answer is very simple. It's called the Maurer-Cartan equation:
\[d\omega = -\omega\wedge\omega\] On the right here I'm using the wedge
product of \(\mathrm{Lie}(G)\)-valued differential forms. This is
defined just like the wedge product of ordinary differential forms,
except instead of multiplication of numbers we use the bracket in our
Lie algebra.

I won't prove the Maurer-Cartan equation; the proof is so easy you can
even find it on the Wikipedia:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Wikipedia, ``Maurer-Cartan form'',
  \texttt{http://en.wikipedia.org/wiki/Maurer-Cartan\_form}
\end{enumerate}

An interesting thing about this equation is that it shows everything
about the Lie algebra \(\mathrm{Lie}(G)\) is packed into the
Maurer-Cartan form. The reason is that everything about the bracket
operation is packed into the definition of \(\omega\wedge\omega.\)

If you have trouble seeing this, note that we can feed
\(\omega\wedge\omega\) a pair of tangent vectors at any point of \(G\),
and it will spit out an element of \(\mathrm{Lie}(G)\). How will it do
this? The two copies of \(\omega\) will eat the two tangent vectors and
spit out elements of \(\mathrm{Lie}(G)\). Then we take the bracket of
those, and that's the final answer.

Since we can get the bracket of \emph{any} two elements of
\(\mathrm{Lie}(G)\) using this trick, \(\omega\wedge\omega\) knows
everything about the bracket in \(\mathrm{Lie}(G)\). You could even say
it's the bracket viewed as a geometrical entity --- a kind of ``field''
on the group \(G\)!

Now, since \[d\omega = -\omega\wedge\omega\] and the usual rules for
exterior derivatives imply that \[d^2\omega = 0\] we must have
\[d(\omega\wedge\omega) = 0\] If we work this concretely what this says,
we must get some identity involving the bracket in our Lie algebra,
since \(\omega\wedge\omega\) is just the bracket in disguise. What
identity could this be?

\textbf{The Jacobi identity}!

It has to be, since the Jacobi identity says there's a way to take 3 Lie
algebra elements, bracket them in a clever way, and get zero:
\[[u,[v,w]] + [v,[w,u]] + [w,[u,v]] = 0\] while
\(d(\omega\wedge\omega)\) is a \(\mathrm{Lie}(G)\)-valued \(3\)-form
that happens to vanish, built using the bracket.

It also has to be since the equation \(d^2 = 0\) is just another way of
saying the Jacobi identity. For example, if you write out the explicit
grungy formula for d of a differential form applied to a list of vector
fields, and then use this to compute \(d^2\) of that differential form,
you'll see that to get zero you need the Jacobi identity for the Lie
bracket of vector fields. Here we're just using a special case of that.

The relationship between the Jacobi identity and \(d^2 = 0\) is actually
very beautiful and deep. The Jacobi identity says the bracket is a
derivation of itself, which is an infinitesimal way of saying that the
flow generated by a vector field, acting as an operation on vector
fields, preserves the Lie bracket! And this, in turn, follows from the
fact that the Lie bracket is \emph{preserved by diffeomorphisms} --- in
other words, it's a ``canonically defined'' operation on vector fields.

Similarly, \(d^2 = 0\) is related to the fact that d is a natural
operation on differential forms --- in other words, that it commutes
with diffeomorphisms. I'll leave this cryptic; I don't feel like trying
to work out the details now.

Instead, let me say how to translate this fact:

\begin{quote}
\(d^2\omega = 0\) \textbf{is secretly the Jacobi identity}
\end{quote}

into pure algebra. We'll get something called ``Kozsul duality''. I
always found Koszul duality mysterious, until I realized it's just a
generalization of the above fact.

How can we state the above fact purely algebraically, only using the Lie
algebra \(\mathrm{Lie}(G)\), not the group \(G\)? To get ourselves in
the mood, let's call our Lie algebra simply \(L\).

By the way we constructed it, the Maurer-Cartan form is
``left-invariant'', meaning it doesn't change when you translate it
using maps like this: \[
  \begin{aligned}
    Lg\colon G &\to G
  \\x &\mapsto gx
  \end{aligned}
\] that is, left multiplication by any element \(g\) of \(G\). So, how
can we describe the left-invariant differential forms on \(G\) in a
purely algebraic way? Let's do this for \emph{ordinary} differential
forms; to get \(\mathrm{Lie}(G)\)-valued ones we can just tensor with
\(L = \mathrm{Lie}(G)\).

Well, here's how we do it. The left-invariant vector fields on \(G\) are
just \[L\] so the left-invariant \(1\)-forms are \[L^*\] So, the algebra
of all left-invariant diferential forms on \(G\) is just the exterior
algebra on \(L^*\). And, defining the exterior derivative of such a form
is precisely the same as giving the bracket in the Lie algebra \(L\)!
And, the equation \(d^2 = 0\) is just the Jacobi identity in disguise.

To be a bit more formal about this, let's think of \(L\) as a graded
vector space where everything is of degree zero. Then \(L^*\) is the
same sort of thing, but we should \emph{add one to the degree} to think
of guys in here as \(1\)-forms. Let's use \(S\) for the operation of
``suspending'' a graded vector space --- that is, adding one to the
degree. Then the exterior algebra on \(L^*\) is the ``free
graded-commutative algebra on \(SL^*\)''.

So far, just new jargon. But this lets us state the observation of the
penultimate paragraph in a very sophisticated-sounding way. Take a
vector space \(L\) and think of it as a graded vector space where
everything is of degree zero. Then:

\begin{quote}
Making the free graded-commutative algebra on \(SL^*\) into a
\emph{differential} graded-commutative algebra is the same as making
\(L\) into a Lie algebra.
\end{quote}

This is a basic example of ``Koszul duality''. Why do we call it
``duality''? Because it's still true if we switch the words
``commutative'' and ``Lie'' in the above sentence!

\begin{quote}
Making the free graded Lie algebra on \(SL^*\) into a
\emph{differential} graded Lie algebra is the same as making \(L\) into
a commutative algebra.
\end{quote}

That's sort of mind-blowing. Now the equation \(d^2 = 0\) secretly
encodes the \emph{commutative law}.

So, we say the concepts ``Lie algebra'' and ``commutative algebra'' are
Koszul dual. Interestingly, the concept ``associative algebra'' is its
own dual:

\begin{quote}
Making the free graded associative algebra on \(SL^*\) into a
\emph{differential} graded associative algebra is the same as making
\(L\) into an associative algebra.
\end{quote}

This is the beginning of a big story, and I'll try to say more later. If
you get impatient, try the book on operads mentioned in
\protect\hyperlink{week191}{``Week 191''}, or else these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\item
  Victor Ginzburg and Mikhail Kapranov, ``Koszul duality for quadratic
  operads'', \emph{Duke Math. J.} \textbf{76} (1994), 203--272. Also
  ``Erratum'', \emph{Duke Math. J.} \textbf{80} (1995), 293.
\item
  Benoit Fresse, ``Koszul duality of operads and homology of partition
  posets'', \emph{Homotopy theory and its applications (Evanston,
  2002)}, Contemp. Math. \textbf{346} (2004), 115--215. Also available
  at
  \texttt{http://math.univ-lille1.fr/\textasciitilde{}fresse/PartitionHomology.html}
\end{enumerate}

The point is that Lie, commutative and associative algebras are all
defined by ``quadratic operads'', and one can define for any such operad
\(\mathcal{O}\) a ``dual'' operad \(\mathcal{O}^*\) such that:

\begin{quote}
Making the free graded \(\mathcal{O}\)-algebra on \(SL^*\) into a
\emph{differential} graded \(\mathcal{O}\)-algebra is the same as making
\(L\) into an \(\mathcal{O}^*\)-algebra.
\end{quote}

And, we have \(\mathcal{O}^{**} = \mathcal{O}\), hence the term
``duality''.

This has always seemed incredibly cool and mysterious to me. There are
other meanings of the term ``Koszul duality'', and if really understood
them I might better understand what's going on here. But, I'm feeling
happy now because I see this special case:

\begin{quote}
Making the free graded-commutative algebra on \(SL^*\) into a
\emph{differential} graded-commutative algebra is the same as making
\(L\) into a Lie algebra.
\end{quote}

is really just saying that the exterior derivative of left-invariant
differential forms on a Lie group encodes the bracket in the Lie
algebra. That's something I have a feeling for. And, it's related to the
Maurer-Cartan equation\ldots{} though notice, I never completely spelled
out how.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Let me say some more about how \(d^2 = 0\) is related
to the fact that \(d\) is a canonically defined operation on
differential forms. Being ``canonically defined'' means that \(d\)
commutes with the action of diffeomorphisms. Saying that \(d\) commutes
with ``small'' diffeomorphisms --- those connected by a path to the
identity --- is the same as saying \[d L_v = L_v d\] where \(v\) is any
vector field and \(L_v\) is the corresponding ``Lie derivative''
operation on differential forms. But, Weil's formula says that
\[L_v = i_v d + d i_v\] where \(i_v\) is the ``interior product with
\(v\)'', which sends \(p\)-forms to \((p-1)\)-forms. If we plug Weil's
formula into the equation we're pondering, we get
\[d (i_v d + d i_v) = (i_v d + d i_v) d\] which simplifies to give
\[d^2 i_v = i_v d^2\] So, as soon as we know \(d^2 = 0\), we know \(d\)
commutes with small diffeomorphisms. Alas, I don't see how to reverse
the argument.

Similarly, as soon as we know the Jacobi identity, we know the Lie
bracket operation on vector fields is preserved by small
diffeomorphisms, by the argument outlined in the body of this Week. This
argument is reversable.

So, maybe it's an exaggeration to say that \(d^2 = 0\) and the Jacobi
identity say that \(d\) and the Lie bracket are preserved by
diffeomorphisms --- but at least they \emph{imply} these operations are
preserved by \emph{small} diffeomorphisms.
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David Corfield, Urs Schreiber and I have started up a new blog!

David is a philosopher, Urs is a physicist, and I'm a mathematician, but
one thing we all share is a fondness for \(n\)-categories. We also like
to sit around and talk shop in a public place where our friends can drop
by. Hence the title of our blog:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{The \(n\)-Category CafÃ©},
  \href{http://golem.ph.utexas.edu/category/}{http://golem.ph.utexas.edu/category}
\end{enumerate}

Technologically speaking, the cool thing about this blog is that it uses
itex and MathML to let us (and you) write pretty equations in TeX. For
this we thank Jacques Distler, who pioneered the technology on his own
blog:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Jacques Distler, Musings,
  \texttt{http://golem.ph.utexas.edu/\textasciitilde{}distler/blog/}
\end{enumerate}

It's great!

Urs began by posting about 11d supergravity and higher gauge theory (see
\protect\hyperlink{week237}{``Week 237''}). Now he's discussing Barrett
and Connes' new work on the Standard Model. Meanwhile, I've been
obsessed with the categorical semantics of quantum computation, and
David has been running discussions on categorifying Klein's Erlangen
program (see \protect\hyperlink{week213}{``Week 213''}), the differences
between mathematicians and historians when it comes to writing histories
of math, and so on.

And, it's all free.

Meanwhile, in the bad old world of extortionist math publishers, we see
a gleam of hope. The entire editorial board of the journal Topology
resigned to protest Reed-Elsevier's high prices!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Topology board of editors, letter of resignation,
  \texttt{http://math.ucr.edu/home/baez/topology-letter.pdf}
\end{enumerate}

The board includes some topologists I respect immensely. It takes some
guts for full-fledged memmbers of the math establishment to do something
like this, and I congratulate them for it. It'll be fun to see what
stooges Reed-Elsevier rounds up to form a new board of editors. I can't
imagine they'll just declare defeat and let the journal fold.

This is part of trend where journal editors ``declare independence''
from their publishers and move toward open access:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Open Access News, ``Journal declarations of independence'',
  \texttt{http://www.earlham.edu/\%7Epeters/fos/lists.htm\#declarations}
\end{enumerate}

Speaking of open access, you can now get the notes from the course
Freeman Dyson taught on quantum electrodynamics when he first became a
professor of physics at Cornell:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Freeman J. Dyson, \emph{1951 Lectures on Advanced Quantum Mechanics},
  second edition, available as
  \href{https://arxiv.org/abs/quant-ph/0608140}{\texttt{quant-ph/0608140}}.
  For historical context and original mimeographs, see
  \texttt{http://hrst.mit.edu/hrs/renormalization/dyson51-intro/}
\end{enumerate}

These notes are from an exciting period in physics, shortly after the
1947 Shelter Island conference where Feynman and Schwinger presented
their approaches to quantum electrodynamics to an audience of luminaries
including Bohr, Oppenheimer, von Neumann, and Weisskopf. Nobody
understood Feynman's diagrams except Schwinger and maybe Feynman's
thesis advisor, John Wheeler.

Every true fan of physics loves reading about this heroic era and its
figures, especially Feynman. So, if you haven't read these yet, run to
the bookstore and buy them now!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  James Gleick, \emph{Genius: the Life and Science of Richard Feynman},
  Vintage Press, 1993.
\item
  Jagdish Mehra, \emph{The Beat of a Different Drum: the Life and
  Science of Richard Feynman}, Oxford U. Press, 1996.
\item
  Silvan S. Schweber, \emph{QED and the Men Who Made It}, Princeton U.
  Press, Princeton, 1994.
\end{enumerate}

The first book is a barrel of fun but doesn't get into the nitty-gritty
details of Feynman's work. The second more scholarly treatment also has
lots of Feynman anecdotes --- even some new ones! But, it covers his
work in enough detail to intimidate any non-physicist. The third offers
a broader panorama of the development of quantum electrodynamics. Taken
together, they add up to quite a nice story.

Of course, I'm \emph{assuming} you've read these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  Richard P. Feynman, \emph{Surely You're Joking, Mr.~Feynman!
  (Adventures of a Curious Character)}, W. W. Norton and Company, New
  York, 1997.
\item
  Richard P. Feynman, \emph{What Do \emph{You} Care What Other People
  Think? (Further Adventures of a Curious Character)}, W. W. Norton and
  Company, New York, 2001.
\end{enumerate}

They're more fun than everything else I've ever recommended on This
Week's Finds, combined. If you haven't read them, don't just \emph{run}
to the nearest bookstore --- get in a time machine, go back, and make
sure you \emph{did} read them.

Today I'd like to wrap up the discussion of Koszul duality which I began
last Week. As we'll see, this gives a really efficient way of
categorifying the theory of Lie algebras and defining ``Lie
\(n\)-algebras''. And, as Urs Schreiber notes, these seem to be just
what we need to understand \(11\)-dimensional supergravity in a nice
geometric way.

But before I dive into this heavy stuff, something fun. Thanks to
Christine Dantas' blog, I just saw a webpage on the origins of math and
writing in Mesopotamia:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Duncan J. Melville, ``Tokens: the origin of mathematics'', from his
  website Mesopotamian Mathematics,
  \texttt{http://it.stlawu.edu/\%7Edmelvill/mesomath/}
\end{enumerate}

Before people in the Near East wrote on clay tablets, there were
``tokens'':
\[\includegraphics[max width=0.65\linewidth]{../images/tokens.jpg}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  The SchÃ¸yen Collection, MS 5067/1-8, ``Neolithic plain counting tokens
  possibly representing 1 measure of grain, 1 animal and 1 man or 1
  day's labour, respectively'',
  \texttt{http://www.nb.no/baser/schoyen/5/5.11/index.html}
\end{enumerate}

These are little geometric clay figures that represented things like
sheep, jars of oil, and various amounts of grain. They are found
throughout the Near East starting with the agricultural revolution in
about 8000 BC. Apparently they were used for contracts!

Eventually groups of tokens were sealed in clay envelopes, so any
attempt to tamper with them would be visible.

But, it's annoying to have to break a clay envelope just to see what's
in it. So, after a while, they started marking the envelopes to say what
was inside. At first, they did this simply by pressing the tokens into
the soft clay of the envelopes.

Later, these marks were simply drawn on tablets. Eventually they gave up
on the tokens --- a triumph of convenience over security. The marks on
tablets then developed into the Babylonian number system! The
transformation was complete by 3000 BC.
\[\href{http://www.gap-system.org/~history/HistTopics/Babylonian_numerals.html}{\includegraphics[max width=0.65\linewidth]{../images/Babylonian_symbols.png}}\]
So, five millennia of gradual abstraction led to the writing of numbers!
From three tokens representing jars of oil, we eventually reach the
abstract number ``3'' applicable to anything.

Of course, all history is detective work. The story I just told is an
interpretation of archaeological evidence. It could be wrong. This
particular interpretation is due to Denise Schmandt-Besserat. It seems
to be fairly well accepted in broad outline, but scholars are still
arguing about it.

For more on her ideas, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Denise Schmandt-Besserat, ``Accounting with tokens in the ancient Near
  East'',
  \texttt{http://www.utexas.edu/cola/centers/lrc/numerals/dsb/dsb.html}
\end{enumerate}

For a bibliography of her many papers, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Denise Schmandt-Besserat, ``Publications'',
  \texttt{http://www.utexas.edu/cola/centers/lrc/iedocctr/ie-pubs/dsb-pubs.html}
\end{enumerate}

For more work on this subject --- I want to read more! --- try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Eleanor Robson, ``Bibliography of Mesopotamian mathematics'',
  \texttt{http://it.stlawu.edu/\textasciitilde{}dmelvill/mesomath/erbiblio.html}
\end{enumerate}

And for a fun intro to writing on clay tablets, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  John Heise, ``Cuneiform writing system'',
  \texttt{http://xoomer.alice.it/bxpoma/akkadeng/cuneiform.htm}
\end{enumerate}

Next, from 8000 BC, let's shoot forward ten millennia straight into the
20th century. Last week I gave three examples of Koszul duality:

\begin{quote}
Making the free graded-commutative algebra on \(SL^*\) into a
differential graded-commutative algebra is the same as making \(L\) into
a Lie algebra.
\end{quote}

\begin{quote}
Making the free graded Lie algebra on \(SL^*\) into a differential
graded Lie algebra is the same as making \(L\) into a commutative
algebra.
\end{quote}

\begin{quote}
Making the free graded associative algebra on \(SL^*\) into a
differential graded associative algebra is the same as making \(L\) into
an associative algebra.
\end{quote}

Here \(L\) is a vector space, which we think of as a graded vector space
concentrated in degree zero. \(L^*\) is its dual, and \(SL^*\) is the
``shifted'' or ``suspended'' version of \(L^*\), where we add one to the
degree of everything.

Now, what if we replace \(L\) by a graded vector space that can have
stuff of any degree? We get a fancier version of Koszul duality, which
goes like this:

\begin{quote}
Making the free graded-commutative algebra on \(SL^*\) into a
differential graded-commutative algebra is the same as making \(L\) into
an \(L_\infty\)-algebra.
\end{quote}

\begin{quote}
Making the free graded Lie algebra on \(SL^*\) into a differential
graded Lie algebra is the same as making \(L\) into a
\(C_\infty\)-algebra.
\end{quote}

\begin{quote}
Making the free graded associative algebra on \(SL^*\) into a
differential graded associative algebra is the same as making \(L\) into
an \(A_\infty\)-algebra.
\end{quote}

Here an ``\(L_\infty\)-algebra'' is a chain complex that's like a Lie
algebra, except the Jacobi identity holds up to a chain homotopy called
the ``Jacobiator'', which in turn satisfies its own identity up to a
chain homotopy called the ``Jacobiatorator'', and so on ad infinitum.
Keeping track of all these higher homotopies is quite a chore. Well,
it's sort of fun when you get into it, but the great thing about Koszul
duality is that you don't need to remember any fancy formulas: all the
higher homotopies are packed into the \emph{differential} on \(SL^*\).

Similarly, a ``\(C_\infty\)-algebra'' is a chain complex that's like a
graded-commutative algebra up to homotopy, ad infinitum.

Similarly, an ``\(A_\infty\)-algebra'' is a chain complex that's like an
associative algebra up to homotopy, ad infinitum. Here you can read off
all the higher homotopies from the Stasheff associahedra, which you know
and love from \protect\hyperlink{week144}{``Week 144''} --- but again,
Koszul duality means you don't have to!

As mentioned last week, all this stuff generalizes to any kind of
algebraic gadget in \(\mathsf{Vect}\) --- the category of vector spaces
--- which is defined by a ``quadratic operad'' \(\mathcal{O}\). Any such
operad has a ``Koszul dual'' operad \(\mathcal{O}^*\) such that:

\begin{quote}
Making the free graded \(\mathcal{O}^*\)-algebra on \(SL^*\) into a
differential graded \(\mathcal{O}^*\)-algebra is the same as making
\(L\) into an \(\mathcal{O}_\infty\)-algebra.
\end{quote}

Here \(\mathcal{O}_\infty\) is an operad in the category of chain
complexes defined by ``weakening'' \(\mathcal{O}\) in a systematic way
--- replacing all the laws by chain homotopies, ad infinitum. We can
define \(\mathcal{O}_\infty\) using the ``bar construction'', as nicely
described here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Todd Trimble, ``Bar constructions'',
  \texttt{http://math.ucr.edu/home/baez/trimble/bar.html}
\end{enumerate}

or in the book by Markl, Schnider and Stasheff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Martin Markl, Steve Schnider and Jim Stasheff, \emph{Operads in
  Algebra, Topology and Physics}, AMS, Providence, Rhode Island, 2002.
\end{enumerate}

See \protect\hyperlink{week191}{``Week 191''} for more on this book, and
what the heck an ``operad'' is. By the way, we have
\[\mathcal{O}^{**} \cong \mathcal{O}\] so we can also say:

\begin{quote}
Making the free graded \(\mathcal{O}\)-algebra on \(SL^*\) into a
differential graded \(\mathcal{O}\)-algebra is the same as making \(L\)
into an \(\mathcal{O}^*_\infty\)-algebra.
\end{quote}

Anyway, I don't have much intuition for how Koszul duality lets us
magically sidestep the bar construction of \(\mathcal{O}_\infty\).
Someday I hope I'll understand this.

But, once we have the concept of ``\(L_\infty\)-algebra'', we can
restrict ourselves to chain complexes that vanish except for their first
\(n\) terms --- that is, degrees \(0, 1, \ldots, n-1\) --- and get the
concept of ``Lie \(n\)-algebra''.

In fact, a Lie \(n\)-algebra is like a hybrid of a Lie algebra and an
\(n\)-category! The definition I just gave says a Lie \(n\)-algebra is
an \(L_\infty\)-algebra which as a chain complex vanishes above degree
\(n-1\). But, such chain complexes are equivalent to strict
\(n\)-category objects in Vect! So, we can think of Lie \(n\)-algebras
as strict \(n\)-categories that do their best to act like Lie algebras,
but with some of the laws holding up to isomorphism, with these
isomorphisms satisfying their own laws up to isomorphism, etcetera.

But, the really cool part is that we can do \emph{gauge theory} using
Lie \(n\)-algebras instead of Lie algebras, and taking \(n = 3\) we get
an example that seems to explain the geometry of 11d
supergravity\ldots{} that is, the classical limit of that mysterious
thing called M-theory.

For this, you really need to read Urs Schreiber's stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\item
  Urs Schreiber, ``Castellani on free differential algebras in
  supergravity: gauge 3-group of M-theory'',
  \texttt{http://golem.ph.utexas.edu/string/archives/000840.html}
\item
  Urs Schreiber, ``SuGra 3-connection reloaded'',
  \texttt{http://golem.ph.utexas.edu/category/2006/08/sugra\_3connection\_reloaded.html}
\end{enumerate}

and many other things he's been writing on the \(n\)-Category CafÃ©
lately.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} You can see discussion of this Week's Finds at the
\href{http://golem.ph.utexas.edu/category/2006/09/this_weeks_finds_in_mathematic.html}{\(n\)-Category
CafÃ©}. In his blog
\href{http://www.math.columbia.edu/~woit/wordpress/?p=456}{Not Even
Wrong}, Peter Woit has more to say about the open access movement and a
questionable plan broached by CERN to pay for-profit journals to make
their papers freely available.
\href{http://johncarlosbaez.wordpress.com/2011/12/02/babylon-and-the-square-root-of-2/\#comment-11178}{Some
comments} on this blog article dig deeper into the evolution of
Babylonian numerals:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  John Baez and Richard Elwes,
  \href{http://johncarlosbaez.wordpress.com/2011/12/02/babylon-and-the-square-root-of-2/}{``Babylon
  and the square root of 2''}, Azimuth, December 2nd, 2011.
\end{enumerate}

In particular, Duncan Melville points out that when number systems first
evolved in Babylonia, they had about a dozen \emph{different} systems
for different kinds of products! A base-\(60\) system called the S
system, was used to count most discrete objects, such as sheep or
people. For `rations' such as cheese or fish, they used a base 120
system, the B system. Another system, the Å E system, was used to measure
quantities of grain, and so on. So, number systems were a bit more like
business software today, with different kinds used by different trades.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{I never once doubted that I would eventually succeed in getting to
the bottom of things.}

--- Alexander Grothendieck
\end{quote}



\hypertarget{week240}{%
\section{October 22, 2006}\label{week240}}

I'm back from Shanghai, and classes are well underway now. For the last
few weeks I'd been frantically preparing a talk for Stewart Brand's
``Seminars About Long-Term Thinking'', up in San Francisco. I talked
about how we need to ``zoom out'' of our short-term perspective to
understand the history of the earth's climate and what we're doing to it
now:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez, ``Zooming out in time'',
  \texttt{http://math.ucr.edu/home/baez/zoom/}
\end{enumerate}

There's a lot of tricky physics in this business. Consider, for example,
this graph of cycles governing the Earth's precession, the obliquity of
its orbit, and the eccentricity of its orbit:
\[\includegraphics[max width=0.65\linewidth]{../images/Milankovitch_Variations.png}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Wikipedia, ``Milankovitch cycles'',
  \texttt{http://en.wikipedia.org/wiki/Milankovitch\_cycles}
\end{enumerate}

Here a ``kyr'' is a thousand years. The yellow curve combines
information from all three of these cycles and shows the amount of solar
radiation at 65 degrees north latitude. The bottom black curve shows the
amount of glaciation. As Milankovitch's theory predicts, you can sort of
see a correlation between the yellow and black curves --- but it's
nothing simple or obvious. One reason is the complex feedback mechanisms
within the Earth's climate.

Here's a great place to read about this stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Barry Saltzman, \emph{Dynamical Paleoclimatology: Generalized Theory
  of Global Climate Change}, Academic Press, New York, 2002.
\end{enumerate}

Anyway, now this talk is done, and I can focus more on teaching.

In my seminar this year, we're focusing on two topics: quantization and
cohomology, and classical versus quantum computation. I'm trying out
something new: not only are the notes available on the web, there's also
a blog entry for each class, where you can ask questions, make comments
and correct my mistakes!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez, Fall 2006 seminars: ``Quantization and cohomology'', and
  ``Classical versus quantum computation''. Notes by Derek Wise,
  homeworks and blog entries available at
  \texttt{http://math.ucr.edu/home/baez/qg-fall2006/}
\end{enumerate}

I hope more people blend teaching with blogging. It's not too much work
if someone with legible handwriting takes notes and the lectures can
actually be followed from the notes. You can use blogging to
interactively teach people scattered all over the planet!

This week, James Dolan gave a talk on something he's been working on for
a long time: games and cartesian closed categories. Lately he's been
working with Todd Trimble, and they reproved some important results in a
fun new way. Let me sketch the ideas for you\ldots.

Let's play a game. I have a set \(X\) in my pocket, and I'm not telling
you what it is. Can you pick an element of \(X\) in a systematic way?

No, of course not: you don't have enough information. \(X\) could even
be empty, in which case you're clearly doomed! But even if it's
nonempty, if you don't know anything about it, you can't pick an element
in a systematic way.

So, you lose.

Okay, let's play another game. Can you pick an element of \[X^X\] in a
systematic way? Here \(A^B\) means the set of functions from \(B\) to
\(A\). So, I'm asking if you can pick a function from \(X\) to itself in
a systematic way.

Yes! You can pick the identity function! This sends each element of
\(X\) to itself: \[x \mapsto x\] You don't need to know anything about
\(X\) to describe this function. \(X\) can even be empty.

So, you win.

Are there any other ways to win? No.

Now let's play another game. Can you pick an element of \[X^{X^X}\] in a
systematic way?

An element in here takes functions from \(X\) to itself and turns them
into elements of \(X\). When \(X\) is the set of real numbers, people
call this sort of thing a ``functional'', so let's use that term. A
functional eats functions and spits out elements.

You can scratch your head for a while trying to dream up a systematic
way to pick a functional for any set \(X\). But, there's no way.

So, you lose.

Let's play another game. Can you pick an element of \[(X^X)^{X^X}\] in a
systematic way?

An element in here eats functions and spits out functions. When \(X\) is
the set of real numbers, people often call this sort of thing an
``operator'', so let's use that term.

Given an unknown set \(X\), can you pick an operator in a systematic
way? Sure! You can pick the identity operator. This operator eats any
function from \(X\) to itself and spits out the same function:
\[f \mapsto f\] Anyway: you win.

Are there any other ways to win? Yes! There's an operator that takes any
function and spits out the identity function:
\[f \mapsto (x \mapsto x)\] This is a bit funny-looking, but I hope you
get what it means: you put in any function \(f\), and out pops the
identity function \(x \mapsto x\).

This arrow notation is very powerful. It's usually called the
``\(\lambda\) calculus'', since when Church invented it in the 1930s, he
wrote it using the Greek letter \(\lambda\) instead of an arrow: instead
of \[x \mapsto y\] he wrote \[\lambda x.y\] But this just makes things
more confusing, so let's not do it.

Are there more ways to win this game? Yes! There's also an operator
called ``squaring'', which takes any function \(f\) from \(X\) to itself
and ``squares'' it --- in other words, does it twice. If we write the
result as \(f^2\), this operator is \[f \mapsto f^2\] But, we can
express this operator without using any special symbol for squaring. The
function \(f\) is the same as the function \[x \mapsto f(x)\] so the
function \(f^2\) is the same as \[x \mapsto f(f(x))\] and the operator
``squaring'' is the same as \[f \mapsto (x \mapsto f(f(x)))\] This looks
pretty complicated. But, it shows that our systematic way of choosing an
element of \[(X^X)^{X^X}\] can still be expressed using just the
\(\lambda\) calculus.

Now that you know ``squaring'' is a way to win this particular game,
you'll immediately guess a bunch of other ways: ``cubing'', and so on.
It turns out all the winning strategies are of this form! We can list
them all using the \(\lambda\) calculus: \[
  \begin{aligned}
    f &\mapsto (x \mapsto x)
  \\f &\mapsto (x \mapsto f(x))
  \\f &\mapsto (x \mapsto f(f(x)))
  \\f &\mapsto (x \mapsto f(f(f(x))))
  \end{aligned}
\] etc. Note that the second one is just a longer name for the identity
operator. The longer name makes the pattern clear.

So far, all these methods of picking an element of \((X^X)^{X^X}\) for
an unknown set \(X\) can be written using the \(\lambda\) calculus.
There are other sneakier ways. For example, there's the operator that
sends functions with fixed points to the identity function, and sends
functions without fixed points to themselves. It's an interesting
challenge to figure out all these sneaky ways, but it's way too hard for
me. So, from now on, just to keep things simple, let's only consider
``systematic ways'' that can be expressed using the \(\lambda\)
calculus. To win one of my games, you need to use the \(\lambda\)
calculus to pick an element of the set I write down.

So, let's play another game. Can you write down an element of
\[X^{X^{X^X}}\] using the \(\lambda\) calculus?

An element in here eats functionals and spits out elements of \(X\). So,
it's called a ``functionalal'' on \(X\). At least that's what Jim calls
it.

If I have an unknown set in my pocket, can you write down functionalal
on this set using the \(\lambda\) calculus?

Yes! You need to dream up a recipe that takes functionals on \(X\) and
turns them into elements of \(X\). Here's one recipe: take any
functional and evaluate it on the \emph{identity} function, getting an
element of \(x\).

In \(\lambda\) calculus notation, this recipe looks like this:
\[f \mapsto f(x \mapsto x)\] Can you think of other ways to win this
game? I hope so: there are infinitely many! Jim and Todd figured out a
systematic way to list them all.

Now let's play another game. Can you write down an element of
\[X^{X^{X^{X^X}}}\] using the \(\lambda\) calculus? A thing in here eats
functionalals and spits out elements of \(X\), so it's called a
``functionalalal''.

So, can you write down a functionalalal on an unknown set using the
\(\lambda\) calculus?

The answer is no: you lose.

How about writing down an element of \[((X^X)^{X^X})^{((X^X)^{X^X})}\]
using the \(\lambda\) calculus? Such a thing eats operators and spits
out operators, so it's called an ``operatorator''.

The answer is yes: there are lots of ways to win this game. The real
challenge is listing all of them! This is the sort of question Dolan and
Trimble figured out the answer to --- though as we'll see, they weren't
the first.

In fact, instead of moving on to functionalators, operatorals,
operatoralatorals, and so on, let me just tell you trick for instantly
deciding which of all these games you can win.

You just take your game, like this: \[((X^X)^{X^X})^{((X^X)^{X^X})}\]
and evaluate it by setting \(X = 0\). If you get \(0\), there's no way
to win. If you get \(1\), there's at least one way to win.

To use this trick, you need to know that \[0^0 = 1\] This is something
they don't teach in school! In analysis, \(X^Y\) can approach anything
between \(0\) and \(1\) when \(X\) and \(Y\) approach \(0\) from above.
So, teachers like to say \(0^0\) is undefined. But \(X^X\) approaches
\(1\) when \(X \to 0\). More importantly, in set theory, \(A^B\) stands
for the set of functions from \(B\) to \(A\), and the number of elements
in this set is \[|A^B| = |A|^{|B|}\] When \(A\) and \(B\) are empty,
there's just one function from \(B\) to \(A\), namely the identity. So,
for our purposes we should define \(0^0 = 1\).

Consider the case of functionals, which are elements of \(X^{X^X}\). If
we evaluate this at \(X = 0\) we get \[0^{0^0} = 0^1 = 0\] So, there are
no functionals when \(X\) is the empty set. So, you can't pick a
functional on a unknown set in \emph{any} systematic way. That's why you
lose when your game evaluates to \(0\). It's more interesting to prove
that for games evaluating to \(1\), there's a way to win, using the
\(\lambda\) calculus.

But we'd really like to understand \emph{all} the ways to win using the
\(\lambda\) calculus. And for this, Dolan and Trimble used the theory of
holodeck games.

In Star Trek, the ``holodeck'' is a virtual reality environment where
you can play various games:
\[\href{http://www.startrek.com/startrek/view/library/technology/article/105222.html}{\includegraphics[max width=0.65\linewidth]{../images/holodeck.jpg}}\]
On the holodeck, if you regret a move you made, you can back up to any
earlier point in the game and make a new move.

Actually I'm deviating from the technical specifications of the holodeck
on Star Trek, as explained here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Wikipedia, ``Holodeck'',
  \texttt{http://en.wikipedia.org/wiki/Holodeck}
\end{enumerate}

So, if you're a Star Trek purist, it's better to imagine a video game
where you can save your game at any state of play, and go back to these
saved games whenever you want. And, you have to imagine being so
paranoid that you \emph{always} save your game before making a move.
This allows games to go on forever, so we only say you have a winning
strategy if you can win in a finite number of moves, no matter what the
other player does.

To make this completely precise, we consider two-player games where the
players take turns making moves. When a player can't make a move, they
lose. Any such game can be written as a ``game tree'', like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (-0.5,1);
    \draw[thick] (0,0) to (0,2);
    \draw[thick] (0,0) to (0.5,1) to (0.75,2);
    \draw[thick] (0.5,1) to (0.25,2);
  \end{tikzpicture}
\] In this example, the first player has three choices for her first
move. If she picks the middle branch, the second player has one choice
for his first move. Then the first player has one choice for her second
move. Then the second player has no choice for his second move --- so he
loses.

So, in this particular example the second player has no winning
strategy.

A cool thing about such a game is that we can take its game tree and
turn it into an expression built from some variable \(X\) using products
and exponentials. To do this, just put an \(X\) at each vertex of the
tree except the root: \[
  \begin{tikzpicture}[xscale=2.5,yscale=1.8]
    \draw[thick] (0,0) to node[fill=white]{$X$} (-0.5,1) node[fill=white]{$X$};
    \draw[thick] (0,0) to node[fill=white]{$X$} (0,1) to node[fill=white]{$X$} (0,2) node[fill=white]{$X$};
    \draw[thick] (0.5,1) to (0.25,2) node[fill=white]{$X$};
    \draw[thick] (0,0) to node[fill=white]{$X$} (0.5,1) node[fill=white]{$X$} to (0.75,2) node[fill=white]{$X$};
  \end{tikzpicture}
\] Then blow on the tree with a strong westerly wind, so strong that the
branches blow away and only the \(X\)'s are left: \[
  \begin{tikzpicture}
    \node at (0,0) {$X$};
    \node at (1,0) {$X$};
    \node at (2,0) {$X$};
    \node at (0.3,0.3) {$X$};
    \node at (1.3,0.3) {$X$};
    \node at (2.3,0.3) {$X$};
    \node at (1.6,0.6) {$X$};
    \node at (2.6,0.6) {$X$};
    \node at (2.9,0.6) {$X$};
  \end{tikzpicture}
\] This is just a way of writing an expression built from \(X\) using
products and exponentials: \[X^X X^{X^X} X^{X^{XX}}\] Conversely, any
such expression can be turned back into a tree, at least after we
simplify it using these rules: \[
  \begin{aligned}
    (AB)^C &= A^C B^C
  \\(A^B)^C &= A^{BC}
  \end{aligned}
\] For example, consider the set of operators: \[(X^X)^{X^X}\] If we
simplify this, we get \[X^{X X^X}\] or \[
  \begin{tikzpicture}
    \node at (0,0) {$X$};
    \node at (0.3,0.3) {$X$};
    \node at (0.6,0.3) {$X$};
    \node at (0.9,0.6) {$X$};
  \end{tikzpicture}
\] giving the tree \[
  \begin{tikzpicture}
    \draw[thick] (0,1) to (0.5,2) node[fill=white]{$X$} to (1,3) node[fill=white]{$X$};
    \draw[thick] (0,0) to (0,1) node[fill=white]{$X$} to (-0.5,2) node[fill=white]{$X$};
  \end{tikzpicture}
\] or in other words \[
  \begin{tikzpicture}
    \draw[thick] (0,1) to (0.5,2) to (1,3);
    \draw[thick] (0,0) to (0,1) to (-0.5,2);
  \end{tikzpicture}
\] And here's a cool fact: if you take any expression built from \(X\)
using products and exponentials, and evaluate it at \(X = 0\), you can
tell which player has a winning strategy for the game described by the
corresponding tree! If you get \(1\), the second player has a winning
strategy; if you get \(0\), they don't.

It's pretty easy to prove: try it.

But if you've been paying attention, you'll have noticed something
weird.

I've told you \emph{two} ways to get a game from any expression built
from \(X\) using products and exponentials. First, the game of defining
an element of the resulting set, using the \(\lambda\) calculus. Second,
the game we get by turning this expression into a game tree, like I just
did.

For \emph{both} these games, you can decide if there's a winning
strategy by evaluating the expression at \(X = 0\).

But are they the same game? No! One is the holodeck version of the
other!

Let's look at the familiar example of operators:
\[(X^X)^{X^X} = X^{X X^X}\] This evaluates to \(1\) at \(X = 0\). So, if
we turn it into a tree \[
  \begin{tikzpicture}
    \draw[thick] (0,1) to (0.5,2) to (1,3);
    \draw[thick] (0,0) to (0,1) to (-0.5,2);
  \end{tikzpicture}
\] we get a game where the second player has a winning strategy.

This game is not very exciting, but it becomes more exciting if you call
it ``The Lady or the Tiger''. In this game, the first player has only
one first move: he takes the second player to a room with two doors,
corresponding to the two branches of the above tree.

Then it's the second player's turn.

If he opens the left door, a beautiful lady pops out and they instantly
get married and live happily ever after. If he opens the right door, the
first player opens a tiger cage. Then the tiger jumps out and eats the
second player.

In this game, the second player has just \emph{one} winning strategy: on
his first move he should choose the left door.

Next look at the game of defining an element of
\[(X^X)^{X^X} = X^{X X^X}\] using the \(\lambda\) calculus. We've seen
there are \emph{infinitely many} strategies for winning this: \[
  \begin{aligned}
    f &\mapsto (x \mapsto x)
  \\f &\mapsto (x \mapsto f(x))
  \\f &\mapsto (x \mapsto f(f(x)))
  \\f &\mapsto (x \mapsto f(f(f(x))))
  \end{aligned}
\] and so on. These correspond to 2nd-player winning strategies for the
\emph{holodeck version} of The Lady or the Tiger.

What are these strategies?

One is just to play the game and win by choosing the left door.

Another is to choose the right door --- and then, just when the tiger is
about to eat you, back up and choose the left door!

Another is to choose the right door --- and then, just when the tiger is
about to eat you, back up and choose\ldots{} the right door!

Then, when the tiger is about to devour you again, back up again, and
this time choose the left door.

And so on: for each \(n\), there's a strategy where you choose the right
door \(n\) times before wising up and choosing the left door.

Now, if you want a really nice math project, ponder the pattern relating
all these strategies to the corresponding \(\lambda\) calculus
expressions: \[
  \begin{aligned}
    f &\mapsto (x \mapsto x)
  \\f &\mapsto (x \mapsto f(x))
  \\f &\mapsto (x \mapsto f(f(x)))
  \\f &\mapsto (x \mapsto f(f(f(x))))
  \end{aligned}
\] Then, figure out how to prove that for \emph{any} 2-person game, say:
\[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (-0.5,1);
    \draw[thick] (0,0) to (0,2);
    \draw[thick] (0,0) to (0.5,1) to (0.75,2);
    \draw[thick] (0.5,1) to (0.25,2);
  \end{tikzpicture}
\] there's a 1-1 correspondence between winning second-person strategies
for the holodeck verson of this game and ways of using the \(\lambda\)
calculus to define elements of the corresponding set:
\[X^X X^{X^X} X^{X^{XX}}\] Apparently this result goes back to work of
Hyland and Ong in the early 1990s. Dolan rediscovered the idea, and
Trimble and he have recently worked out a new proof.

If you get stuck proving this result yourself, first try these notes
from Dolan's talk, for some hints:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  James Dolan, ``Holodeck strategies and cartesian closed categories'',
  lecture at UCR, notes by John Baez, Oct.~19, 2006, available at
  \texttt{http://math.ucr.edu/home/baez/qg-fall2006/f06week03b.pdf}
\end{enumerate}

Then try Trimble's more rigorous, technical treatment, and the original
paper by Hyland and Ong:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Todd Trimble, ``Holodeck games and CCCs'', available at
  \texttt{http://math.ucr.edu/home/baez/trimble/holodeck.html}
\item
  Martin Hyland and C.-H. Luke Ong, ``On full abstraction for PCF'',
  \emph{Information and Computation} \textbf{163} (2000), 285--408. Also
  available at
  \texttt{ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Luke.Ong/pcf.ps.gz}
\end{enumerate}

Dolan's talk also explains some other fun stuff, like how to multiply
and exponentiate games. So, if you read these notes, you'll learn how to
play \[\text{chess}\times\text{go}\] and \[\text{chess}^\text{go}\] at
least after chess and go have been ``improved'' so games never last
forever and the last player able to make a move wins.

But, if you're planning to study this stuff, I'd better admit right now
that Dolan and Trimble make heavy use of the relation between the
\(\lambda\) calculus and cartesian closed categories.

A category is ``cartesian'' if it has finite products --- or in other
words, binary products and a terminal object. It's ``cartesian closed''
if it also has exponentials. All these terms are carefully defined in
the week 2 and week 3 notes of my classical versus quantum computation
course, so let me just illustrate them with an example: the category of
sets. Here the product \(A \times B\) of two sets \(A\) and \(B\) is
their usual Cartesian product. The exponential \(A^B\) is the set of
functions from \(B\) to \(A\). Any \(1\)-element set is a terminal
object.

Dolan and Trimble don't really talk about an unknown set \(X\), as I did
above. What they really study is the ``free cartesian closed category on
one object \(x\)'', which I like to call \(\mathrm{CCC}[x]\). Any object
in \(\mathrm{CCC}[x]\) is built from the object \(x\) by means of binary
products, exponentials and the terminal object. For example, we have
objects like this: \[x^1 1^{x^x} (x x)^{x 1 x^{x^x}}\] where I've
omitted the times symbols for products.

However, every object is isomorphic to one in ``tree form''. For
example, the above object is isomorphic to
\[x x^{x x^{x^x}} x^{x x^{x^x}}\] which we can draw as a tree: \[
  \begin{tikzpicture}[xscale=1.5]
    \draw[thick] (0,0) to (-0.5,1) node[fill=white]{$x$};
    \draw[thick] (0,1) to (-0.5,2) node[fill=white]{$x$};
    \draw[thick] (0,0) to (0,1) node[fill=white]{$x$} to (0,2) node[fill=white]{$x$} to (0,3) node[fill=white]{$x$};
    \draw[thick] (0.5,1) to (0.5,2) node[fill=white]{$x$};
    \draw[thick] (0,0) to (0.5,1) node[fill=white]{$x$} to (1,2) node[fill=white]{$x$} to (1.5,3) node[fill=white]{$x$};
  \end{tikzpicture}
\]

Dolan and Trimble consider the set of elements of any object in
\(\mathrm{CCC}[x]\), where an ``element'' is a morphism from the
terminal object, e.g. \[f\colon 1 \to x x^{x x^{x^x}} x^{x x^{x^x}}\]
And, they show these elements are in 1-1 correspondence with
second-player winning strategies for the holodeck version of the game
whose tree is constructed as above.

If we pick any set \(X\), the universal property of \(\mathrm{CCC}[x]\)
gives a functor \[F\colon \mathrm{CCC}[x] \to \mathsf{Set}\] This maps
elements of any object in \(\mathrm{CCC}[x]\) to elements of the
corresponding object in \(\mathsf{Set}\):
\[F(f)\colon 1 \to X X^{X X^{X^X}} X^{X X^{X^X}}\] So, the element \(f\)
gives a systematic way of picking elements of any set built from any
arbitrary set \(X\) using finite products and exponentials.

By the way, in a cartesian closed category, there's a 1-1 correspondence
between morphisms \[f\colon B \to A\] and elements \[f\colon 1 \to A^B\]
So, one can use games to describe \emph{all} the objects and morphisms
in the free cartesian closed category on one object! One can also
describe \emph{composition} of morphisms using games. In short, there's
a complete description of \(\mathrm{CCC}[x]\) in terms of games.

Now let me give you some references on cartesian closed categories, the
\(\lambda\) calculus, categorical semantics, and games. It's an
interesting network of subjects.

Categorical semantics was born in Lawvere's celebrated 1963 thesis on
algebraic theories:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  F. William Lawvere, \emph{Functorial Semantics of Algebraic Theories},
  Dissertation, Columbia University, 1963. Also available at
  \texttt{http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html}
\end{enumerate}

Semantics deals with theories and their models. Dual to the concept of
semantics is the concept of ``syntax'', which deals with proofs. In the
case of algebraic theories, the syntax was studied before Lawvere in the
subject called ``universal algebra'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Stanley Burris and H.P. Sankappanavar, ``A Course in Universal
  Algebra'', available at
  \texttt{http://www.math.uwaterloo.ca/\textasciitilde{}snburris/htdocs/ualg.html}
\end{enumerate}

Lawvere modernized universal algebra by realizing that an algebraic
theory is just a cartesian category, and a model is a product-preserving
functor from this theory into \(\mathsf{Set}\) or some other cartesian
category --- hence his thesis title, ``Functorial Semantics''. I
explained this in much more detail back in \href{week200.html}{week200}.

The relevance of all this to computer science becomes visible when we
note that a proof in universal algebra can be seen as a rudimentary form
of computation. The ``input'' of the computation is a set of
assumptions, while the ``output'' is the equation to be proved.

Treating proofs as computations may seem strained, but it becomes less
so when we move to richer formalisms which allow for more complex
logical reasoning. One of best-known of these is the \(\lambda\)
calculus, invented by Church and Kleene in the 1930s as a model of
computation. Any function computable by the \(\lambda\) calculus is also
computable by a Turing machine, and according to the Church-Turing
thesis these are all the functions computable by any sort of systematic
process. Moreover, computations in the \(\lambda\) calculus can actually
be seen as proofs.

The usefulness of this way of thinking was brought out in Landin's
classic paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  P. Landin, ``A correspondence between ALGOL 60 and Church's
  \(\lambda\)-notation'', \emph{Comm. ACM} \textbf{8} (1965), 89--101,
  158--165.
\end{enumerate}

This began a long and fruitful line of research --- see for example
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  H. Barendregt, \emph{The Lambda Calculus, its Syntax and Semantics},
  North-Holland, 1984.
\end{enumerate}

The power of the \(\lambda\) calculus is evident in the textbook
developed for MIT's introductory course in computer science, which is
available online:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  H. Abelson, G. J. Sussman and J. Sussman, \emph{Structure and
  Interpretation of Computer Programs}, available at
  \texttt{http://www-mitpress.mit.edu/sicp/}
\end{enumerate}

It cites pioneers like Haskell Curry, and it even has a big
``\(\lambda\)'' on the cover!

Students call it ``the wizard book'', because the cover also features a
picture of a wizard. It's used at over 100 colleges and universities,
and it has spawned a semi-mythical secret society called The Knights of
the Lambda Calculus, whose self-referential emblem celebrates the
ability of the \(\lambda\) calculus to do recursion.

In 1980, Lambek made a great discovery:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Joachim Lambek, ``From lambda calculus to Cartesian closed
  categories'', in \emph{To H. B. Curry: Essays on Combinatory Logic,
  Lambda Calculus and Formalism}, eds.~J. P. Seldin and J. Hindley,
  Academic Press, 1980, pp.~376-402.
\end{enumerate}

He showed that just as algebraic theories can be regarded as cartesian
categories, theories formulated in the \(\lambda\) calculus can be
regarded as cartesian closed categories (or CCCs, for short).

Lambek's discovery introduced a semantics for the \(\lambda\) calculus,
since it lets us to speak of ``models'' of theories formulated in the
\(\lambda\) calculus, just as we could for algebraic theories. In
computer programming, the importance of a model is that it gives a
picture of what a program actually accomplishes. A model in the category
of sets, for example, sends any program to an actual function between
sets.

There's no way to list all the interesting references to CCCs and the
\(\lambda\)-calculus, but here are some online places to get going on
them, starting out easy and working up to the harder ones. This
Wikipedia article is quite good:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Wikipedia, ``Lambda calculus'', available at
  \texttt{http://en.wikipedia.org/wiki/Lambda\_calculus}.
\end{enumerate}

These blog entries by Mark Chu-Carroll are \emph{lots} of fun --- just
the kind of readable, informal exposition I aspire to:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\item
  Mark Chu-Carroll, ``Lambda calculus'', available at
  \texttt{http://goodmath.blogspot.com/2006/06/lamda-calculus-index.html}

  Mark Chu-Carroll, ``Category theory'', available at
  \texttt{http://scienceblogs.com/goodmath/goodmath/category\_theory/}
\end{enumerate}

These go deeper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Peter Selinger, ``Lecture notes on the lambda calculus'', available at
  \texttt{http://www.mscs.dal.ca/\textasciitilde{}selinger/papers.html\#lambdanotes}
\end{enumerate}

and deeper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Phil Scott, ``Some aspects of categories in computer science'',
  available at
  \texttt{http://www.site.uottawa.ca/\textasciitilde{}phil/papers/handbook.ps}
\end{enumerate}

and here's a classic:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  Joachim Lambek and Phil Scott, \emph{Introduction to Higher Order
  Categorical Logic}, volume \textbf{7} of Cambridge Studies in Advanced
  Mathematics, Cambridge U. Press, 1986.
\end{enumerate}

Dolan and Trimble are far from the first to study the relation between
games and categories. In the 1970s, Conway invented a wonderful theory
of games and surreal numbers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\item
  John H. Conway, \emph{On Numbers and Games}, Academic Press, New York,
  1976. Second edition: A. K. Peters, Wellesley, Massachusetts, 2001.
\item
  Elwyn Berlekamp, John H. Conway, Richard Guy, \emph{Winning Ways},
  vols. 1-2, Aadmic Press, New York, 1982. Second edition, vols. 1-4, A.
  K. Peters, Wellelsey, Massachusetts, 2001-2004.
\item
  Dierk Schleicher and Michael Stoll, ``An introduction to Conway's
  games and numbers'', available as
  \href{http://arxiv.org/abs/math.CO/0410026}{\texttt{math.CO/0410026}}.
\end{enumerate}

In 1977, Joyal modified Conway's work a bit and related it explicitly to
category theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{23}
\tightlist
\item
  AndrÃ© Joyal, ``Remarques sur la theorie des jeux a deux personnes'',
  \emph{Gazette des Sciences Mathematiques du Quebec}, Vol \textbf{I} no
  4 (1977), 46--52.
\end{enumerate}

For an online version in English, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{24}
\tightlist
\item
  AndrÃ© Joyal, trans. Robin Houston, ``Remarks on the theory of
  two-person games'', 2003. Available at
  \texttt{http://www.ma.man.ac.uk/\textasciitilde{}rhouston/Joyal-games.ps}
\end{enumerate}

I don't know the subsequent history very well --- I'm no expert on any
of this stuff! --- but by 1990 Martin Hyland was giving lectures on
Conway games and logic. In 1992, Andreas Blass published an influential
paper on ``game semantics'' for logic, where propositions are
interpreted as games and winning strategies are proofs:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{25}
\tightlist
\item
  Andreas R. Blass, ``Game semantics and linear logic'', \emph{Annals of
  Pure and Applied Logic} \textbf{56} (1992), 183--220.
\end{enumerate}

Then came these important papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{26}
\item
  Samson Abramsky and Radha Jagadeesan, ``Games and full completeness
  for multiplicative linear logic'', \emph{Journal of Symbolic Logic}
  \textbf{59} (1994), 543--574. Also available at
  \texttt{http://citeseer.ist.psu.edu/564168.html}
\item
  Martin Hyland and C.-H. Luke Ong, ``Fair games and full completeness
  for multiplicative linear logic without the MIX-rule'', available at
  \texttt{http://citeseer.ist.psu.edu/hyland93fair.html}
\end{enumerate}

According to Samson Abramsky,

\begin{quote}
After these results, it was clear that the most notorious issue in
programming language semantics, the ``full abstraction problem for
PCF'', was in range. Remarkably enough, two different teams:

\begin{itemize}
\tightlist
\item
  Abramsky, Jagadeesan and Malacaria
\item
  Hyland and Ong
\end{itemize}

produced really quite different constructions which yielded in the end
the same result: a synthetic construction of the fully abstract model.
(The technical issue in both cases was how to accomodate the linear
exponentials, i.e.~the possibility to copy and delete inputs to
functions. It turned out there are two very different approaches which
can be taken. The HO approach (also independently found by Hanno Nickau,
incidentally) is quite related to the ideas of the Lorenzen school, but,
crucially, done compositionally. The AJM approach is related to the
Geometry of Interaction --- but takes the quite demanding step of making
an honest CCC out of it.)

After that, the next key step was to see that the whole space of
programming languages and computational features opened up to a game
theoretic analysis in a very systematic way, by varying the conditions
on strategies. This step was taken by myself and my students, and has
led to a substantial further development. More recently, Luke Ong, Dan
Ghica, Andrzej Murawski and myself have developed algorithmic game
semantics, as a basis for compositional program analysis and
verification, and --- in Luke and Andrzej's hands --- as a beautiful
meeting point between semantics and algorithmics.

There have of course been many other developments too, and many people
have contributed. There have been recent workshops on these topics,
e.g.~in Seattle as part of the Federated Logic Conference in August.
\end{quote}

``PCF'' is a souped-up version of the typed \(\lambda\) calculus that
allows one to do arithmetic and full-fledged computation. Here are the
papers on PCF mentioned above:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{28}
\item
  Samson Abramsky, R. Jagadeesan, and P. Malacaria, ``Full abstraction
  for PCF'', \emph{Information and Computation} \textbf{163} (2000),
  409--470. Available at
  \texttt{http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/pubs.html}
\item
  Martin Hyland and C.-H. Luke Ong, ``On full abstraction for PCF'',
  \emph{Information and Computation} \textbf{163} (2000), 285--408.
\end{enumerate}

Luke Ong has also written other papers using game theory to study the
\(\lambda\) calculus:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{30}
\item
  A. D. Ker, H. Nickau, and C.-H. Luke Ong, ``A universal innocent game
  model for the BÃ¶hm tree \(\lambda\) theory'', in \emph{Computer
  Science Logic: Proceedings of the 8th Annual Conference on the EACSL
  Madrid, Spain, September 1999}, LNCS Volume \textbf{1683},
  Springer-Verlag, 1999, pp.~405--419.
\item
  A. D. Ker, H. Nickau, and C.-H. Luke Ong, ``Innocent game models of
  untyped \(\lambda\)-calculus'', \emph{Theoretical Computer Science}
  \textbf{272} (2002), 247--292.
\end{enumerate}

For a good introduction to all this work, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{32}
\item
  Robin Houston, \emph{Categories of Games}, M.Sc. thesis, U.
  Manchester, 2003. Available at
  \texttt{http://www.cs.man.ac.uk/\textasciitilde{}houstorx/msc.pdf}

  Robin Houston, \emph{Mathematics of Games}, continuation report, U.
  Manchester, 2004. Available at
  \texttt{http://www.cs.man.ac.uk/\textasciitilde{}houstorx/continuation.pdf}
\end{enumerate}

Finally, for more on categories, intuitionistic logic, and linear logic,
see \protect\hyperlink{week227}{``Week 227''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank Samson Abramsky, James Dolan, Dominic Hughes,
Tom Payne, Esa Peuha and Vaughn Pratt for helpful corrections. When I
wrote the first version of this Week's Finds, I was ignorant of work
before Dolan and Trimble's that also described the free cartesian closed
category on one object in terms of games. In addition to Abramsky's
corrections (some of which are above), I was gently set straight by
Dominic Hughes, who has permitted me to attach this post of his from the
category theory mailing list:

\begin{quote}
This ``backtracking game'' characterisation has been known since around
'93--'94, in the work of Hyland and Ong:

\begin{itemize}
\tightlist
\item
  M. Hyland and L. Ong. ``On full abstraction for PCF''.
  \emph{Information and Computation}, Volume \textbf{163}, pp.~285--408,
  December 2000. {[}Under review for 6 years!{]}
  \texttt{ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/Luke.Ong/pcf.ps.gz}
\end{itemize}

(PCF is an extension of typed \(\lambda\) calculus.) My D.Phil. thesis
extended the \(\lambda\) calculus (free CCC) characterisation to
second-order, published in:

\begin{itemize}
\tightlist
\item
  ``Games and Definability for System F''. \emph{Logic in Computer
  Science}, 1997
  \texttt{http://boole.stanford.edu/\textasciitilde{}dominic/papers/}
\end{itemize}

To characterise the free CCC on an arbitrary set \(\{Z,Y,X,\ldots\}\) of
generators (rather than a single generator, as you discuss), one simply
adds the following Copycat Condition:

\begin{quote}
Whenever first player plays an occurrence of \(X\), the second player
must play an occurrence of X.
\end{quote}

{[}Try it: see how \(X \to Y \to X\) has just one winning strategy.{]}
Although the LICS'97 paper cited above appears to be the first place the
Copycat Condition appears in print, I like to think it was already
understood at the time by people working in the area. Technically
speaking, winning strategies correspond to \(\eta\)-expanded
\(\beta\)-normal forms. See pages 5--7 of my thesis for an informal
description of the correspondence.

It sounds like you've reached the point of trying to figure out how
composition should work. Proving associativity is fiddly. Hyland and Ong
give a very elegant treatment, via a larger CCC of games in which both
players can backtrack. The free CCC subcategory is carved out as the
so-called innocent strategies. This composition is almost identical to
that presented by Coquand in:

\begin{itemize}
\tightlist
\item
  ``A semantics of evidence for classical arithmetic''. Thierry Coquand.
  \emph{Proceedings of the CLICS workshop}, Aarhus, 1992.
\end{itemize}

Dominic

PS A game-theoretic characterisation with an entirely different flavour
(winning strategies less ``obviously'' corresponding to \(\eta\)-long
\(\beta\)-normal forms) is:

\begin{itemize}
\tightlist
\item
  Abramsky, S., Jagadeesan, R. and Malacaria, P., ``Full Abstraction for
  PCF''. \emph{Info. \& Comp.} \textbf{163} (2000), 409--470.
  \texttt{http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/pcf.pdf}
  {[}Announced concurrently with Hyland-Ong, around '93-'94.{]}
\end{itemize}
\end{quote}

On a different subject, James Dolan had this to say:

\begin{quote}
you describe holodeck strategies for ``lady or tiger'' where you take
back ``just when the tiger is about to eat you'', but that's not the way
it works. you take back just \emph{after} the tiger has eaten you.

(i guess that this is partially because of your lack of experience with
computer games with a ``saved game'' feature. typically you die in the
game and the computer plays some sort of funeral or at least funereal
music; then you're taken to the reincarnation gallery where you select
one to return to from your catalog of previous lives. or something like
that.)
\end{quote}

In the first version of this Week's Finds I claimed that all systematic
ways of picking an element of \((X^X)^{X^X}\) could be defined using the
\(\lambda\) calculus. I was disabused of this notion by Vaughan Pratt,
who wrote:

\begin{quote}
Hi, John,

In \protect\hyperlink{week240}{``Week 240''}, you said

\begin{quote}
The moral of this game is that all systematic methods for picking an
element of \((X^X)^{X^X}\) for an unknown set \(X\) can be written using
the \(\lambda\) calculus.
\end{quote}

What is unsystematic about the contagious-fixpoint functional? This is
the functional that maps those functions that have any fixpoints to the
identity function (the function that makes every element a fixpoint) and
functions without fixpoints to themselves (thus preserving the absence
of fixpoints). It's a perfectly good functional that is equally well
defined for all sets \(X\), its statement in no way depends on \(X\),
and conceptually the concept of contagious fixpoints is even intuitively
natural, but how do you write it using the \(\lambda\) calculus?

Many more examples in this vein at \emph{JPAA} \textbf{128}, 33--92
(Pare and Roman, ``Dinatural numbers'', 1998). The above is the case
\(K = \{0\}\) of Freyd's (proper) class of examples.

Vaughan
\end{quote}

Here Pratt uses ``functional'' to mean what I was calling an
``operator''.

For more discussion, go to the
\href{http://golem.ph.utexas.edu/category/2006/10/this_weeks_finds_in_mathematic_1.html}{\(n\)-Category
CafÃ©}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Unlike chess or astrology, mathematics has the curious property of
being an intellectual game that really matters.}

--- Rudy Rucker
\end{quote}



\hypertarget{week241}{%
\section{November 20, 2006}\label{week241}}

I've been working too hard, and running around too much, to write This
Week's Finds for a while. A bunch of stuff has built up that I want to
explain. Luckily I've been running around explaining stuff --- higher
gauge theory, and tales of the dodecahedron.

This weekend I went to Baton Rouge. I was invited to Louisiana State
University by Jorge Pullin of loop quantum gravity fame, and I used the
opportunity to get a look at LIGO --- the Laser Interferometry
Gravitational-Wave Observatory!

I described this amazing experiment back in
\protect\hyperlink{week189}{``Week 189''}, so I won't rehash all that.
Suffice it to say that there are two installations: one in Hanford
Washington, and one in Livingston Louisiana. Each consists of two
evacuated tubes 4 kilometers long, arranged in an L shape.

Laser beams bounce back and forth between mirrors suspended at the ends
of the tubes, looking for tiny changes in their distance that would
indicate a gravitational wave passing through, stretching or squashing
space. And when I say ``tiny'', I mean smaller than the radius of a
proton! This is serious stuff.

Jorge drove me in his SUV to Livingston, a tiny town about 20 minutes
from Baton Rouge. While he runs the gravity program at Louisiana State
University, which has links to LIGO, he isn't officially part the LIGO
team. His wife is. When I first met Gabriela Gonzalez, she was studying
the Brownian motion of torsion pendulums. The mirrors in LIGO are hung
on pendulums made of quartz wire, to minimize the effect of vibrations.
But, the random jittering of atoms due to thermal noise still affects
these pendulums. She was studying this noise to see its effect on the
accuracy of the experiment.

This was way back when LIGO was just being planned. Now that LIGO is a
reality, she's doing data analysis, helping search for gravitational
waves produced by pairs of neutron stars and/or black holes as they
spiral down towards a sudden merger. Together with an enormous pageful
of authors, she helped write this paper, based on data taken from the
``first science run'' --- the first real LIGO experiment, back in 2002:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  The LIGO Scientific Collaboration, ``Analysis of LIGO data for
  gravitational waves from binary neutron stars'', \emph{Phys. Rev.}
  \textbf{D69} (2004), 122001. Also available at
  \href{https://arxiv.org/abs/gr-qc/0308069}{\texttt{gr-qc/0308069}}.
\end{enumerate}

She's one of the folks with an intimate knowledge of the experimental
setup, who keeps the theorists' feet on the ground while they stare up
into the sky.

On the drive to Livingston, Jorge pointed out the forests that surround
the town. These forests are being logged:
\[\includegraphics[max width=0.65\linewidth]{../images/ligo_0.jpg}\] I
asked him about this --- when I last checked, the vibrations from
falling trees were making it impossible to look for gravitational waves
except at night! He said they've added a ``hydraulic external
pre-isolator'' to shield the detector from these vibrations ---
basically a super-duper shock absorber:
\[\includegraphics[max width=0.65\linewidth]{../images/hepi.jpg}\] Now
they can operate LIGO day and night.

I also asked him how close LIGO had come to the sensitivity levels they
were seeking. When I wrote \protect\hyperlink{week189}{``Week 189''},
during the first science run, they still had a long way to go. That's
why the above paper only sets upper limits on neutron star collisions
within 180 kiloparsecs. This only reaches out to the corona of the Milky
Way --- which includes the Small and Large Magellanic Clouds. We don't
expect many neutron star collisions in this vicinity: maybe one every 3
years or so. The first science run didn't see any, and the set an upper
limit of about 170 per year: the best experimental upper limit so far,
but definitely worth improving, and nowhere near as fun as actually
\emph{seeing} gravitational waves.

But Jorge said the LIGO team has now reached its goals: they should be
able to see collisions out to 15 megaparsecs! By comparison, the center
of the Virgo cluster is about 20 megaparsecs away. In fact, they should
already be able to see about half the galaxies in this cluster.

They're now on their seventh science run, and they'll keep upping the
sensitivity in future projects called ``Enhanced LIGO'' and ``Advanced
LIGO''. The latter should see neutron star collisions out to 300
megaparsecs:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Advanced LIGO, \texttt{http://www.ligo.caltech.edu/advLIGO/}
\end{enumerate}

When we arrived at the gate, Jorge spoke into the intercom and got us
let in. Our guide, Joe Giaime, was running a bit a late, so we walked
over and looked at the interferometer's arms, each of which stretched
off beyond sight, 2.5 kilometers of concrete tunnel surrounding the
evacuated piping --- the world's largest vacuum facility:
\[\includegraphics[max width=0.65\linewidth]{../images/ligo_1.jpg}\]
Schoolkids have been invited to paint pictures on some of these pipes:
\[\includegraphics[max width=0.65\linewidth]{../images/ligo_2.jpg}\]

One can tell this is the South. The massive construction caused pools of
water to form in the boggy land near the facility, and these pools then
attracted alligators. These have been dealt with firmly. The game
hunters who occasionally fired potshots at the facility were treated
more forgivingly: instead of feeding them to the alligators, the LIGO
folks threw a big party and invited everyone from the local hunting
club. Hospitality works wonders down here.

The place was pretty lonely. During the week lots of scientists work
here, but this was Saturday, and on weekends there's just a skeleton
crew of two. There's usually not much to do now that the experiment is
up and running. As Joe Giaime later said, there have been no ``Jodie
Foster moments'' like in the movie Contact, where the scientists on duty
suddenly see a signal, turn on the suspenseful background music, and
phone the President. There's just too much data analysis required to see
any signal in real time: data from both Livingston and Hanford is sent
to Caltech, and then people grind away at it. So, about the most
exciting thing that happens is when the occasional tiny earthquake
throws the laser beam out of phase lock.

When Joe showed up, I got to see the main control room, which is dimly
lit, full of screens indicating noise and sensitivity levels of all
sorts --- and even some video monitors showing the view down the laser
tube:
\[\includegraphics[max width=0.65\linewidth]{../images/ligo_3.jpg}\]
This is where the people on duty hang out --- you can see those video
monitors on top:
\[\includegraphics[max width=0.65\linewidth]{../images/ligo_4.jpg}\] One
of them had brought his sons, in a feeble attempt to dispose of the huge
supply of Halloween candy that had somehow collected here.

I also got to see a sample of the 400 ``optical baffles'' which have
been installed to absorb light spreading out from the main beam before
it can bounce back in and screw things up. The interesting thing is that
these baffles and their placement were personally designed by Kip Thorne
and some other godlike LIGO figure. Moral: unless they've gone soft,
even bigshot physicists like to actually think about physics now and
then, not just manage enormous teams.

But overall, there was surprisingly little to see, since the innermost
workings are all sealed off, in vacuum. The optics are far more
complicated than my description --- ``a laser bouncing between two
suspended mirrors'' --- could possibly suggest. But, all I got to see
was a chart showing how they work:
\[\includegraphics[max width=0.65\linewidth]{../images/ligo_5.jpg}\] Oh
well. I'm glad I don't need to understand this stuff in detail. It was
fun to get a peek.

By the way, I wasn't invited to Louisiana just to tour LIGO and eat
\href{http://www.crescentcitybeignets.com/beignet.html}{beignets} and
\href{http://www.servingsushi.com/CatSubCat/CatSubCatDisplay2.asp?p1=9\&p2=Y\&p7=2\&p8=528\&p9=CSC1}{alligator
sushi}. My real reason for going there was to talk about higher gauge
theory --- a generalization of gauge theory which studies the parallel
transport not just of point particles, but also strings and
higher-dimensional objects:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John Baez, ``Higher gauge theory'',
  \texttt{http://math.ucr.edu/home/baez/highergauge}
\end{enumerate}

This is a gentler introduction to higher gauge theory than my previous
talks, some of which I inflicted on you in
\protect\hyperlink{week235}{``Week 235''}. It explains how \(BF\) theory
can be seen as a higher gauge theory, and briefly touches on Urs
Schreiber's work towards exhibiting Chern-Simons theory and
\(11\)-dimensional supergravity as higher gauge theories. The webpage
has links to more details.

I was also travelling last weekend --- I went to Dartmouth and gave this
talk:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez, ``Tales of the Dodecahedron: from Pythagoras through Plato
  to Poincare'', \texttt{http://math.ucr.edu/home/baez/dodecahedron/}
\end{enumerate}

It's full of pictures and animations --- fun for the whole family!

I started with the Pythagorean fascination with the pentagram, and how
you can use the pentagram to give a magical picture proof of the
irrationality of the golden ratio.

I then mentioned how Plato used four of the so-called Platonic solids to
serve as atoms of the four elements --- earth, air, water and fire -
leaving the inconvenient fifth solid, the dodecahedron, to play the role
of the heavenly sphere. This is what computer scientists call a
``kludge'' --- an awkard solution to a pressing problem. Yes, there are
twelve constellations in the Zodiac --- but unfortunately, they're
arranged quite differently than the faces of the dodecahedron.

This somehow led to the notion of the dodecahedron as an atom of
``aether'' or ``quintessence'' --- a fifth element constituting the
heavenly bodies. If you've ever seen the science fiction movie The Fifth
Element, now you know where the title came from! But once upon a time,
this idea was quite respectable. It shows up as late as Kepler's
Mysterium Cosmographicum, written in 1596.

I then went on to discuss the \(120\)-cell, which gives a way of
chopping a spherical universe into 120 dodecahedra.
\[\includegraphics[max width=0.65\linewidth]{../images/Stereographic_polytope_120cell_faces.png}\]

This leads naturally to the Poincare homology sphere, a closely related
3-dimensional manifold made by gluing together opposite sides of
\emph{one} dodecahedron.

The Poincare homology sphere was briefly advocated as a model of the
universe that could explain the mysterious weakness of the
longest-wavelength ripples in the cosmic background radiation --- the
ripples that only wiggle a few times as we scan all around the sky:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  J.-P. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq, and J.-P. Uzan,
  ``Dodecahedral space topology as an explanation for weak wide-angle
  temperature correlations in the cosmic microwave background'',
  \emph{Nature} \textbf{425} (2003), 593. Also available as
  \href{https://arxiv.org/abs/astro-ph/0310253}{\texttt{astro-ph/0310253}}.
\end{enumerate}

The idea is that if we lived in a Poincare homology sphere, we'd see
several images of each very distant point in the universe. So, any
ripple in the background radiation would repeat some minimum number of
times: the lowest-frequency ripples would be suppressed.

Alas, this charming idea turns out not to fit other data. We just don't
see the same distant galaxies in several different directions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Neil J. Cornish, David N. Spergel, Glenn D. Starkman and Eiichiro
  Komatsu, ``Constraining the topology of the universe'', \emph{Phys.
  Rev.~Lett.} \textbf{92} (2004) 201302. Also available as
  \href{https://arxiv.org/abs/astro-ph/0310233}{\texttt{astro-ph/0310233}}.
\end{enumerate}

For a good review of this stuff, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Jeffrey Weeks, ``The Poincare dodecahedral space and the mystery of
  the missing fluctuations'', \emph{Notices of the AMS} \textbf{51}
  (2004), 610--619. Also available at
  \texttt{http://www.ams.org/notices/200406/fea-weeks.pdf}
\end{enumerate}

In the abstract of my talk, I made the mistake of saying that the
regular dodecahedron doesn't appear in nature --- that instead, it was
invented by the Pythagoreans. You should never say things like this
unless you want to get corrected!

Dan Piponi pointed out this dodecahedral virus:
\[\href{http://www.nature.com/nsmb/journal/v8/n1/pdf/nsb0101_77.pdf}{\includegraphics[max width=0.65\linewidth]{../images/pariacoto_virus.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Liang Tang et al, ``The structure of Pariacoto virus reveals a
  dodecahedral cage of duplex RNA'', \emph{Nature Structural Biology}
  \textbf{8} (2001), 77--83. Also available at
  \texttt{http://www.nature.com/nsmb/journal/v8/n1/pdf/nsb0101\_77.pdf}
\end{enumerate}

The first black line is 100 angstroms long (\(10^{-8}\) meters), while
the second is 50 angstroms long.

Garett Leskowitz pointed out the molecule ``dodecahedrane'', with 20
carbons at the vertices of a dodecahedron and 20 hydrogens bonded to
these:
\[\href{http://en.wikipedia.org/wiki/Image:Dodecahedran.png}{\includegraphics[max width=0.65\linewidth]{../images/Dodecahedran.png}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Wikipedia, ``Dodecahedrane'',
  \texttt{http://en.wikipedia.org/wiki/Dodecahedrane}
\end{enumerate}

This molecule hasn't been found in nature yet, but chemists can
synthesize it using reactions like these:
\[\href{http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=346698}{\includegraphics[max width=0.65\linewidth]{../images/dodecahedrane_synthesis_1.jpg}}\]
\[\href{http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=346698}{\includegraphics[max width=0.65\linewidth]{../images/dodecahedrane_synthesis_2.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Robert J. Ternansky, Douglas W. Balogh and Leo A. Paquette,
  ``Dodecahedrane'', \emph{J. Am. Chem. Soc.} \textbf{104} (1982),
  4503--4504.
\item
  Leo A. Paquette, ``Dodecahedrane --- the chemical transliteration of
  Plato's universe (a review)'', \emph{Proc. Nat. Acad. Sci. USA}
  \textbf{14} part 2 (1982), 4495--4500. Also available at
  \texttt{http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=346698}
\end{enumerate}

So, there's probably a bit somewhere in our galaxy.

Of course, what I \emph{meant} was that people didn't come up with
regular dodecahedra after seeing them in nature --- that instead, the
Pythagoreans dreamt them up, possibly after seeing pyrite crystals that
look sort of similar. These crystals are called ``pyritohedra''.

But, even here I made a mistake. The Pythagoreans seem not to have been
the first to discover the dodecahedron. John McKay told me that stone
spheres with Platonic solids carved on them have been found in Scotland,
dating back to around 2000 BC!
\[\href{http://arxiv.org/abs/math-ph/0303071}{\includegraphics[max width=0.65\linewidth]{../images/blocks.png}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\item
  Michael Atiyah and Paul Sutcliffe, ``Polyhedra in physics, chemistry
  and geometry'', available as
  \href{http://arxiv.org/abs/math-ph/0303071}{\texttt{math-ph/0303071}}.
\item
  Dorothy N. Marshall, ``Carved stone balls'', \emph{Proc. Soc. Antiq.
  Scotland} \textbf{108} (1976/77), 40--72. Available at
  \texttt{http://ads.ahds.ac.uk/catalogue/library/psas/}
\end{enumerate}

Indeed, stone balls with geometric patterns on them have been found
throughout Scotland, and occasionally Ireland and northern England. They
date from the Late Neolithic to the Early Bronze age: 2500 BC to 1500
BC. For comparison, the megaliths at Stonehenge go back to 2500--2100
BC.

Nobody knows what these stone balls were used for, though the article by
Marshall presents a number of interesting speculations.

The pyritohedron is interesting in itself, so before I turn to some
really fancy math, let me talk a bit about this guy. Since pyrite is
fundamentally a cubic crystal, the pyritohedron is basically made out of
little cubic cells, as shown here:
\[\href{http://www.uwgb.edu/dutchs/symmetry/isometuc.htm}{\includegraphics[max width=0.65\linewidth]{../images/pyritohedron.png}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Steven Dutch, ``Building isometric crystals with unit cells'',
  \texttt{http://www.uwgb.edu/dutchs/symmetry/isometuc.htm}
\end{enumerate}

It has 12 pentagonal faces, orthogonal to these vectors: \[
  \begin{gathered}
    (2,1,0) \quad (2,-1,0) \quad (-2,1,0) \quad (-2,-1,0)
  \\(1,0,2) \quad (-1,0,2) \quad (1,0,-2) \quad (-1,0,-2)
  \\(0,2,1) \quad (0,2,-1) \quad (0,-2,1) \quad (0,-2,-1)  
  \end{gathered}
\]

You can see how this works by going here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  mindat.org, ``Pyrite'', \texttt{http://www.mindat.org/min-3314.html}
\end{enumerate}

If your webbrowswer can handle Java, go to this webpage and click on
``Pyrite no. 3'' to see a rotating pyritohedron. Then, while holding
your left mouse button down when the cursor is over the picture of the
pyritohedron, type ``m'' to see the vectors listed above.

Why ``m''? These vectors are called ``Miller indices''. In general,
Miller indices are outwards-pointing vectors orthogonal to the faces of
a crystal; we can use them to classify crystals.

The Miller indices for the pyritohedron have a nice property. If you
think of these 12 vectors as points in space, they're the corners of
three \(2\times1\) rectangles: a rectangle in the \(xy\) plane, a
rectangle in the \(xz\) plane, and a rectangle in the \(yz\) plane.

These points are also corners of an icosahedron! It's not a regular
icosahedron, though. It's probably the ``pseudoicosahedron'' shown in
Steven Dutch's site above:
\[\href{http://www.uwgb.edu/dutchs/symmetry/isometuc.htm}{\includegraphics[max width=0.65\linewidth]{../images/pseudoicosahedron.png}}\]
Apparently iron pyrite can also form a pseudoicosahedron --- see
``Pyrite No.~7'' on the mindat.org website above. Does anyone have
actual photos?

To get the corners of a regular icosahedron, we just need to replace the
number \(2\) by the golden ratio \(\Phi = (\sqrt{5} + 1)/2\): \[
  \begin{gathered}
    (\Phi,1,0) \quad (\Phi,-1,0) \quad (-\Phi,1,0) \quad (-\Phi,-1,0)
  \\(1,0,\Phi) \quad (-1,0,\Phi) \quad (1,0,-\Phi) \quad (-1,0,-\Phi)
  \\(0,\Phi,1) \quad (0,\Phi,-1) \quad (0,-\Phi,1) \quad (0,-\Phi,-1)  
  \end{gathered}
\] Now our rectangles are golden rectangles:
\[\href{http://en.wikipedia.org/wiki/Icosahedron#Cartesian_coordinates}{\includegraphics[max width=0.65\linewidth]{../images/Icosahedron-golden-rectangles.png}}\]

Since the pseudoicosahedron does a cheap imitation of this trick, with
the number 2 replacing the golden ratio, the number 2 deserves to be
called the ``fool's golden ratio''. I thank Carl Brannen for explaining
this out to me!

The regular docahedron is ``dual'' to the regular icosahedron: the
vertices of the icosahedron are Miller indices for the dodecahedron.
Similarly, I bet the pyritohedron is dual to the pseudoicosahedron.

So, we could call the pyritohedron the ``fool's dodecahedron'', and the
pseudoicosahedron the ``fool's icosahedron''. Fool's gold may have
fooled the Greeks into inventing the regular dodecahedron, by giving
them an example of a fool's dodecahedron.

As pointed out by Noam Elkies and James Dolan, there is a sequence of
less and less foolish dodecahedra whose faces have normal vectors \[
  \begin{gathered}
    (B,A,0) \quad (B,-A,0) \quad (-B,A,0) \quad (-B,-A,0)
  \\(A,0,B) \quad (-A,0,B) \quad (A,0,-B) \quad (-A,0,-B)
  \\(0,B,A) \quad (0,B,-A) \quad (0,-B,A) \quad (0,-B,-A)  
  \end{gathered}
\] where \(A\) and \(B\) are the \(n\)th and \((n+1)\)st Fibonacci
numbers, respectively. As \(n \to \infty\), these dodecahedra approach a
regular dodecahedron in shape, because the ratio of successive Fibonacci
numbers approaches the golden ratio.

When \(A = 1\) and \(B = 2\), we get the fool's dodecahedron, since only
a fool would think \(2/1\) is the golden ratio.

However, this is not the most foolish of all dodecahedra! The case
\(A = 1\) and \(B = 1\) gives the rhombic dodecahedron, which doesn't
even have pentagonal faces:
\[\href{http://en.wikipedia.org/wiki/Rhombic_dodecahedron}{\includegraphics[max width=0.65\linewidth]{../images/180px-Rhombicdodecahedron.png}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Wikipedia, ``Rhombic dodecahedron'',
  \texttt{http://en.wikipedia.org/wiki/Rhombic\_dodecahedron}
\end{enumerate}

So, the rhombic dodecahedron deserves to be called the ``moron's
dodecahedron'' --- at least for people who think it's actually a regular
dodecahedron.

But actually, even this dodecahedron isn't the dumbest. The Fibonacci
numbers start with \(0\): \[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots\]
So, even more foolish is the case \(A = 0\) and \(B = 1\). Here our 12
vectors reduce to just 6 different ones: \[
  \begin{gathered}
    (1,0,0) \quad (1,-0,0) \quad (-1,0,0) \quad (-1,-0,0)
  \\(0,0,1) \quad (-0,0,1) \quad (0,0,-1) \quad (-0,0,-1)
  \\(0,1,0) \quad (0,1,-0) \quad (0,-1,0) \quad (0,-1,-0)  
  \end{gathered}
\] These are normal to the faces of a cube. So, the cube deserves to be
called the ``half-wit's dodecahedron'': it doesn't even have 12 faces,
just 6.

Moving in the direction of increasing wisdom, we can consider the case
\(A = 2\), \(B = 3\). This gives a dodecahedron which is closer to
regular than the pyritohedron. And, apparently it exists in nature! It
shows up as number 12 in this list of crystals:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Ian O. Angell and Moreton Moore, ``Projections of cubic crystals'',
  section 4: The diagrams,
  \texttt{http://www.iucr.org/education/pamphlets/12/full-text}
\end{enumerate}

They also call this guy a pyritohedron, so presumably some pyrite forms
these less foolish crystals! You can compare it with the \(A = 1\),
\(B = 2\) case here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Ian O. Angell and Moreton Moore, ``Projections of cubic crystals,
  Graphical index of figures'',
  \texttt{http://www.iucr.org/education/pamphlets/12/graphical-index}
\end{enumerate}

The \(A = 1\), \(B = 2\) pyritohedron is
\href{http://www.iucr.org/education/pamphlets/12/graphical-index/figures/individual?show=14180}{figure
9}, while the \(A = 2\), \(B = 3\) pyritohedron is
\href{http://www.iucr.org/education/pamphlets/12/graphical-index/figures/individual?show=14144}{figure
12}. It's noticeably better!

Let me wrap up by mentioning a fancier aspect of the dodecahedron which
has been intriguing me lately. I already mentioned it in
\protect\hyperlink{week230}{``Week 230''}, but in such a general setting
that it may have whizzed by too fast. Let's slow down a bit and enjoy
it.

The rotational symmetries of the dodecahedron form a \(60\)-element
subgroup of the rotation group \(\mathrm{SO}(3)\). So, the ``double
cover'' of the rotational symmetry group of the dodecahedron is a
\(120\)-element subgroup of \(\mathrm{SU}(2)\). This is called the
``binary dodecahedral group''. Let's call it \(G\).

The group \(\mathrm{SU}(2)\) is topologically a \(3\)-sphere, so \(G\)
acts as left translations on this \(3\)-sphere, and we can use a
dodecahedron sitting in the \(3\)-sphere as a fundamental domain for
this action. This gives the \(120\)-cell. The quotient
\(\mathrm{SU}(2)/G\) is the Poincare homology sphere!

But, we can also think of \(G\) as acting on \(\mathbb{C}^2\). The
quotient \(\mathbb{C}^2/G\) is not smooth: it has an isolated singular
coming from the origin in \(\mathbb{C}^2\). But as I mentioned in
\protect\hyperlink{week230}{``Week 230''}, we can form a ``minimal
resolution'' of this singularity. This gives a holomorphic map
\[p\colon M \to \mathbb{C}^2/G\] where \(M\) is a complex manifold. If
we look at the points in \(M\) that map to the origin in
\(\mathbb{C}^2/G\), we get a union of 8 Riemann spheres, which intersect
each other in this pattern: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=left,in=left,looseness=1.75] (0,1)
        to [out=right,in=right,looseness=1.75] (0,0);
      \strand[thick] (0.75,0)
        to [out=left,in=left,looseness=1.75] (0.75,1)
        to [out=right,in=right,looseness=1.75] (0.75,0);
      \strand[thick] (1.5,0)
        to [out=left,in=left,looseness=1.75] (1.5,1)
        to [out=right,in=right,looseness=1.75] (1.5,0);
      \strand[thick] (2.25,0)
        to [out=left,in=left,looseness=1.75] (2.25,1)
        to [out=right,in=right,looseness=1.75] (2.25,0);
      \strand[thick] (3,0)
        to [out=left,in=left,looseness=1.75] (3,1)
        to [out=right,in=right,looseness=1.75] (3,0);
      \strand[thick] (3.75,0)
        to [out=left,in=left,looseness=1.75] (3.75,1)
        to [out=right,in=right,looseness=1.75] (3.75,0);
      \strand[thick] (4.5,0)
        to [out=left,in=left,looseness=1.75] (4.5,1)
        to [out=right,in=right,looseness=1.75] (4.5,0);
      \flipcrossings{1,3,5,7,9,11}
      \strand[thick] (3,-0.8)
        to [out=left,in=left,looseness=1.75] (3,0.2);
    \end{knot}
    \begin{knot}
      \strand[thick] (3,0.2)
        to [out=right,in=right,looseness=1.75] (3,-0.8);
    \end{knot}
  \end{tikzpicture}
\] Here I've drawn linked circles to stand for these intersecting
spheres, for a reason soon to be clear. But, already you can see that
we've got 8 spheres corresponding to the dots in this diagram: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
    \draw[thick] (4,0) to (4,-1) node{$\bullet$};
  \end{tikzpicture}
\] where the spheres intersect when there's an edge between the
corresponding dots. And, this diagram is the Dynkin diagram for the
exceptional Lie group \(\mathrm{E}_8\)!

I already mentioned the relation between the \(\mathrm{E}_8\) Dynkin
diagram and the Poincare homology sphere in
\protect\hyperlink{week164}{``Week 164''}, but now maybe it fits better
into a big framework. First, we see that if we take the unit ball in
\(\mathbb{C}^2\), and see what points it gives in \(\mathbb{C}^2/G\),
and then take the inverse image of these under
\[p\colon M \to \mathbb{C}^2/G,\] we get a \(4\)-manifold whose boundary
is the Poincare homology \(3\)-sphere. So, we have a cobordism from the
empty set to the Poincare homology \(3\)-sphere! Cobordisms can be
described using ``surgery on links'', and the link that describes this
particular cobordism is: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0)
        to [out=left,in=left,looseness=1.75] (0,1)
        to [out=right,in=right,looseness=1.75] (0,0);
      \strand[thick] (0.75,0)
        to [out=left,in=left,looseness=1.75] (0.75,1)
        to [out=right,in=right,looseness=1.75] (0.75,0);
      \strand[thick] (1.5,0)
        to [out=left,in=left,looseness=1.75] (1.5,1)
        to [out=right,in=right,looseness=1.75] (1.5,0);
      \strand[thick] (2.25,0)
        to [out=left,in=left,looseness=1.75] (2.25,1)
        to [out=right,in=right,looseness=1.75] (2.25,0);
      \strand[thick] (3,0)
        to [out=left,in=left,looseness=1.75] (3,1)
        to [out=right,in=right,looseness=1.75] (3,0);
      \strand[thick] (3.75,0)
        to [out=left,in=left,looseness=1.75] (3.75,1)
        to [out=right,in=right,looseness=1.75] (3.75,0);
      \strand[thick] (4.5,0)
        to [out=left,in=left,looseness=1.75] (4.5,1)
        to [out=right,in=right,looseness=1.75] (4.5,0);
      \flipcrossings{1,3,5,7,9,11}
      \strand[thick] (3,-0.8)
        to [out=left,in=left,looseness=1.75] (3,0.2);
    \end{knot}
    \begin{knot}
      \strand[thick] (3,0.2)
        to [out=right,in=right,looseness=1.75] (3,-0.8);
    \end{knot}
  \end{tikzpicture}
\]

Second, by the ``McKay correspondence'' described in
\protect\hyperlink{week230}{``Week 230''}, all this stuff also works for
other Platonic solids! Namely:

If \(G\) is the ``binary octahedral group'' --- the double cover of the
rotational symmetry group of the octahedron --- then we get a minimal
resolution \[p\colon M \to \mathbb{C}^2/G\] which yields, by the same
procedure as above, a cobordism from the empty set to the \(3\)-manifold
\(\mathrm{SU}(2)/G\).

This cobordism can be described using surgery on this link: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0.75,0)
        to [out=left,in=left,looseness=1.75] (0.75,1)
        to [out=right,in=right,looseness=1.75] (0.75,0);
      \strand[thick] (1.5,0)
        to [out=left,in=left,looseness=1.75] (1.5,1)
        to [out=right,in=right,looseness=1.75] (1.5,0);
      \strand[thick] (2.25,0)
        to [out=left,in=left,looseness=1.75] (2.25,1)
        to [out=right,in=right,looseness=1.75] (2.25,0);
      \strand[thick] (3,0)
        to [out=left,in=left,looseness=1.75] (3,1)
        to [out=right,in=right,looseness=1.75] (3,0);
      \strand[thick] (3.75,0)
        to [out=left,in=left,looseness=1.75] (3.75,1)
        to [out=right,in=right,looseness=1.75] (3.75,0);
      \strand[thick] (4.5,0)
        to [out=left,in=left,looseness=1.75] (4.5,1)
        to [out=right,in=right,looseness=1.75] (4.5,0);
      \flipcrossings{1,3,5,7,9,11}
      \strand[thick] (3,-0.8)
        to [out=left,in=left,looseness=1.75] (3,0.2);
    \end{knot}
    \begin{knot}
      \strand[thick] (3,0.2)
        to [out=right,in=right,looseness=1.75] (3,-0.8);
    \end{knot}
  \end{tikzpicture}
\] which encodes the Dynkin diagram of \(\mathrm{E}_7\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$};
    \draw[thick] (3,0) to (3,-1) node{$\bullet$};
  \end{tikzpicture}
\] And, if \(G\) is the ``binary tetrahedral group'' --- the double
cover of the rotational symmetry group of the tetrahedron --- then a
minimal resolution \[p\colon M \to \mathbb{C}^2/G\] yields, by the same
procedure as above, a cobordism from the empty set to the \(3\)-manifold
\(\mathrm{SU}(2)/G\). This cobordism can be described using surgery on
this link: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (1.5,0)
        to [out=left,in=left,looseness=1.75] (1.5,1)
        to [out=right,in=right,looseness=1.75] (1.5,0);
      \strand[thick] (2.25,0)
        to [out=left,in=left,looseness=1.75] (2.25,1)
        to [out=right,in=right,looseness=1.75] (2.25,0);
      \strand[thick] (3,0)
        to [out=left,in=left,looseness=1.75] (3,1)
        to [out=right,in=right,looseness=1.75] (3,0);
      \strand[thick] (3.75,0)
        to [out=left,in=left,looseness=1.75] (3.75,1)
        to [out=right,in=right,looseness=1.75] (3.75,0);
      \strand[thick] (4.5,0)
        to [out=left,in=left,looseness=1.75] (4.5,1)
        to [out=right,in=right,looseness=1.75] (4.5,0);
      \flipcrossings{1,3,5,7,9,11}
      \strand[thick] (3,-0.8)
        to [out=left,in=left,looseness=1.75] (3,0.2);
    \end{knot}
    \begin{knot}
      \strand[thick] (3,0.2)
        to [out=right,in=right,looseness=1.75] (3,-0.8);
    \end{knot}
  \end{tikzpicture}
\] which encodes the Dynkin diagram of \(\mathrm{E}_6\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
    \draw[thick] (2,0) to (2,-1) node{$\bullet$};
  \end{tikzpicture}
\]

I don't fully understand this stuff, that's for sure. But, I want to.
The Platonic solids are still full of mysteries.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Someone with the handle ``Dileffante'' has found
another nice example of the dodecahedron in nature --- and even in
Nature:

\begin{quote}
While perusing a Nature issue I found this short notice on a paper, and
I remembered that in your talk (which I saw online) you mentioned that
the dodecahedron was not found in nature. Now I see in
\protect\hyperlink{week241}{``Week 241''} that there are some things
dodecahedral after all, but nevertheless, I send this further
dodecahedron which was missing there.

Nature commented in issue 7075:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  ``The complete Plato'', \emph{Nature} \textbf{439} (26 January 2006),
  372--373.
\end{enumerate}

\begin{quote}
According to Plato, the heavenly ether and the classical elements ---
earth, air, fire and water --- were composed of atoms shaped like
polyhedra whose faces are identical, regular polygons. Such shapes are
now known as the Platonic solids, of which there are five: the
tetrahedron, cube, octahedron, icosahedron and dodecahedron. Microscopic
clusters of atoms have already been identified with all of these shapes
except the last.

Now, researchers led by JosÃ© Luis RodrÃguez-LÃ³pez of the Institute for
Scientific and Technological Research of San Luis PotosÃ© in Mexico and
Miguel JosÃ©-YacamÃ©n of the University of Texas, Austin, complete the
set. They find that clusters of a gold-palladium alloy about two
nanometres across can adopt a dodecahedral shape.
\end{quote}

The article is in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Juan MartÃn Montejano-Carrizales, JosÃ© Luis RodrÃguez-LÃ³pez, Umapada
  Pal, Mario Miki-Yoshida and Miguel JosÃ©-YacamÃ¡n, ``The completion of
  the Platonic atomic polyhedra: the dodecahedron'', \emph{Small}
  \textbf{2} (2006), 351--355.
\end{enumerate}

Here's the abstract:

\begin{quote}
Binary AuPd nanoparticles in the 1--2 nm size range are synthesized.
Through HREM imaging, a dodecahedral atomic growth pattern of five fold
axis is identified in the round shaped (85\%) particles. Our results
demonstrate the first experimental evidence of this Platonic atomic
solid at this size range of metallic nanoparticles. Stability of such
Platonic structures are validated through theoretical calculations.
\end{quote}

Either there is some additional value in the construction, or the
authors (and Nature editors) were unaware of dodecahedrane.
\end{quote}

Dodecahedrane is a molecule built from carbon and hydrogen --- a bit
different from an ``atomic cluster'' of the sort discussed here. It's a
matter of taste whether that's important, but I bet these gold-palladium
nanoparticles occur in nature, while dodecahedrane seems to be unstable.

My friend Geoffrey Dixon contributed these pictures of Platonic life
forms:
\[\includegraphics[max width=0.65\linewidth]{../images/platonic_lifeforms.jpg}\]
They look a bit like Ernst Haeckel's pictures from his book
``Kunstformen der Natur'' (artforms of nature).

Finally, here's a really important addendum: in March 2009, Lieven le
Bruyn discovered that the ancient Scots did \emph{not} carve stone balls
to look like Platonic solids! The whole story is something between a
hoax and a series of misunderstandings:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\item
  Lieven le Bruyn, ``The Scottish solids hoax'', from his blog
  \emph{neverendingbooks}, March 25, 2009,
  \texttt{http://www.neverendingbooks.org/index.php/the-scottish-solids-hoax.html}
\item
  John Baez, ``Who discovered the icosahedron?'', talk at the
  \emph{Special Session on History and Philosophy of Mathematics}, 2009
  Fall Western Section Meeting of the AMS, November 7, 2009. Available
  at \texttt{http://math.ucr.edu/home/baez/icosahedron/}
\end{enumerate}

You can read a bunch of freewheeling discussions triggered by this
Week's Finds at the
\href{http://golem.ph.utexas.edu/category/2006/11/this_weeks_finds_in_mathematic_2.html}{\(n\)-Category
CafÃ©}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{The essence of mathematics lies in its freedom.}

--- Georg Cantor
\end{quote}



\hypertarget{week242}{%
\section{December 17, 2006}\label{week242}}

This week I'd like to talk about a paper by Jeffrey Morton. Jeff is a
grad student now working with me on topological quantum field theory and
higher categories. I've already mentioned his work on categorified
algebra and quantum mechanics in \protect\hyperlink{week236}{``Week
236''}. He'll be be finishing his Ph.D.~thesis in the spring of 2007 ---
and as usual, that means he's already busy applying for jobs.

As all you grad students reading this know, applying for jobs is pretty
scary the first time around: there are some tricks involved, and nobody
prepares you for it. I remember myself, wondering what I'd do if I
didn't succeed. Would I have to sell ice cream from one of those trucks
that plays a little tune as it drives around the neighborhood? A job in
the financial industry seemed scarcely more appealing: less time to
think about math, and less ice cream too.

Luckily things worked out for me\ldots{} and I'm sure they'll work out
for Jeff and my other student finishing up this year --- Derek Wise, who
is working on Cartan geometry and MacDowell-Mansouri gravity.

But, to help them out a bit, I'd like to talk about their work. This has
been high on my list of interests for the last few years, of course, but
I've mostly been keeping it under wraps.

This time I'll talk about Jeff's thesis; next time Derek's. But first,
let's start with some cool astronomy pictures!

Here's a photo of Saturn, Saturn's rings, and its moon Dione, taken by
the Cassini orbiter in October last year:
\[\includegraphics[max width=0.65\linewidth]{../images/dione_ring.jpg}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  NASA, ``Ringside with Dione'',
  \texttt{http://solarsystem.nasa.gov/multimedia/display.cfm?IM\_ID=4163}
\end{enumerate}

It's so vivid it seems like a composite fake, but it's not! With the Sun
shining from below, delicate shadows of the B and C rings cover Saturn's
northern hemisphere. Dione seems to hover nearby. Actually it's 39,000
kilometers away in this photo. It's 1,200 kilometers in diameter, about
the third the size of our Moon.

Here's a photo of Saturn, its rings, and its moon Mimas, taken in
November 2004:
\[\includegraphics[max width=0.65\linewidth]{../images/mimas_ring_big.jpg}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  NASA, ``Nature's canvas'',
  \texttt{http://saturn.jpl.nasa.gov/multimedia/images/image-details.cfm?imageID=1088}
\end{enumerate}

It's gorgeous, but it takes some work to figure out what's going on!

The blue stuff in the background is Saturn, with lines created by
shadows of rings. The bright blue-white stripe near Mimas is sunlight
shining through a break in the rings called the ``Cassini division''.
The brownish stuff near the bottom is the A ring --- you can see right
through it. Above it there's a break and a thinner ring called the F
ring. Below it is the Cassini division itself.

This is just one of many photos taken by Cassini and Huyghens, the probe
that Cassini dropped onto Saturn's moon Titan --- see
\protect\hyperlink{week210}{``Week 210''} for more on that. You can see
more of these photos here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  NASA, ``Cassini-Huygens'', \texttt{http://saturn.jpl.nasa.gov/}
\end{enumerate}

I hope you see from these beautiful images, and others on This Week's
Finds, that we are \emph{already in space}. We don't need people up
there for us to effectively \emph{be there}.

Alas, not everyone recognizes this. An expensive American program to set
up a base on the Moon, perhaps as a stepping stone to a manned mission
to Mars, is starting to drain money from more exciting unmanned
missions. NASA guesses this program will cost \$104 billion up to the
time when we land on the Moon --- again --- in 2020. By 2024, the
Government Accounting Office guesses the price will be \$230 billion. By
comparison, the Cassini-Huygens mission cost just about \$3.3 billion.

And what will be benefits of a Moon base be? It's unclear: at best, some
vague dream of ``space colonization''.

Mind you, I'm in favor of space exploration, and even colonization. But,
these are very different things!

Colonies are usually about making money. Governments support them in
hopes of turning a profit: think Columbus and Isabella, or other
adventurers funded by colonial powers.

Right now most of the money lies in near-earth orbit, not on the Moon
and Mars. Telecommunication satellites and satellite photos are
established businesses. The next step may be tourism. Dennis Tito,
Gregory Olsen and Mark Shuttleworth have already paid the Russian
government \$20 million each to visit the International Space Station.
This orbits at an altitude of about 350 kilometers, in the upper
``thermosphere'' --- the layer of the Earth's atmosphere where gases get
ionized by solar radiation.

If this is too pricey for you, wait a few years. Richard Branson's
company Virgin Galactic plans to give 500 people per year a 7-minute
experience of weightlessness at a cost of just \$200,000 each. Alas,
you'll only go up 100 kilometers, near the bottom of the thermosphere.

Some competition may lower the price. Jeff Bezos, the founder of Amazon,
has bought a lot of land in Texas to a build space port for his company
Blue Origins. He wants to do test flights by next year, and he
eventually wants 50 flights a year in a vehicle that holds 3. If you've
always looked forward to using your seat cushion as a flotation device
in the event of a water landing, you'll love this:

\begin{quote}
``During an abort situation, the crew capsule would separate, using
small solid-rocket motors to safely recover the space flight
participants. The abort module containing the solid-rocket motors would
then jettison from the crew capsule.''
\end{quote}

None of this stuff requires any taxpayer funding. It's a bit
self-indulgent and silly, but it may eventually grow and merge with
other profit-making forms of space colonization.

Exploration is a bit different: seeing what's out there, mainly for the
sake of adventure and understanding. For this we should send machines,
not people. Machines can be designed to do well in vacuum. People can't
- not yet. This will probably change when nanotech, AI and cyborg
technologies kick in. But for now, unmanned probes are the way to go.

Here are some of the wonderful things we could do, all for less than
setting up a Moon base:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  The Laser Interferometer Space Antenna (LISA),
  \href{http://lisa.jpl.nasa.gov/}{http://saturn.jpl.nasa.gov/}
\end{enumerate}

The idea of LISA is to put 3 satellites in a huge equilateral triangle
following the Earth in its orbit around the Sun, and bounce lasers
between them to detect gravitational waves (see
\protect\hyperlink{week143}{``Week 143''}):
\[\href{http://lisa.jpl.nasa.gov/STRATEGY/getThere.html}{\includegraphics[max width=0.65\linewidth]{../images/LISA_orbit.png}}\]
This would avoid the ground noise that plagues LIGO (see
\protect\hyperlink{week241}{``Week 241''}), and it could detect waves of
much lower frequencies. If all works well, it could see gravitational
waves from the \emph{very} early Universe, long before the hot gas
enough cooled to let light through. We're talking times like
\$10\^{}\{-38\} seconds after the Big Bang! That's the biggest adventure
I can imagine\ldots{} back to the birth pangs of the Universe.

Right now LISA is scheduled for launch around 2016. But as you'll soon
see, this may not happen.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Constellation-X,
  \href{http://constellation.gsfc.nasa.gov/}{http://constellation.gsfc.nasa.gov}
\end{enumerate}

This would be a team of X-ray telescopes, combining forces to be 100
times more powerful than any previous single one. Among many other
things, Constellation-X could study the X-rays emitted by matter falling
into things that look like black holes. The redshift of these X-rays is
our best test of general relativity for very strong gravitational
fields. So, it's our best way of checking that these black hole
candidates really do have event horizons!

In February 2006, when NASA put out their latest budget, they said
Constellation-X would be ``delayed indefinitely''. And in September
2006, a National Research Council committee was formed to pick
\emph{one} of NASA's five ``Beyond Einstein'' programs for the first
shot at funding: LISA, Constellation-X, the Joint Dark Energy Mission,
the Inflation Probe and the Black Hole Finder. Currently the Joint Dark
Energy Mission seems to be in the lead:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Steinn SigurÃ°sson, ``NASA: double down on science'', Dynamics of Cats,
  September 16, 2006,
  \texttt{http://scienceblogs.com/catdynamics/2006/09/nasa\_double\_down\_on\_science.php}
\end{enumerate}

A decision is expected around September 2007.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  The Terrestrial Planet Finder (TPF),
  \texttt{http://planetquest.jpl.nasa.gov/TPF/}
\end{enumerate}

This could study Earth-like planets orbiting stars up to 45 light years
away. It would consist of two observatories: a visible-light
``coronagraph'' that blocks out the light from a star so it can see
nearby fainter objects:
\[\href{http://planetquest.jpl.nasa.gov/TPF/}{\includegraphics[max width=0.65\linewidth]{../images/tpf_coronagraph.jpg}}\]
and an infrared interferometer made of several units flying in
formation:
\[\href{http://planetquest.jpl.nasa.gov/TPF/}{\includegraphics[max width=0.65\linewidth]{../images/tpf_formation_flying_infrared_interferometer.jpg}}\]
In February 2006, NASA halted work on the TPF. In June 2006, thanks to
public pressure, Congress reinstated funding for this program and also a
mission to Jupiter's moon Europa, which could have oceans underneath its
icy crust. However, at last report, NASA was continuing to fight
\emph{against} reinstating these missions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Louis D. Friedman, ``Congressional inaction leaves science still
  devastated'', \emph{The Planetary Society}, November 26, 2006,
  \texttt{http://planetary.org/programs/projects/sos/20061122.html}
\end{enumerate}

The constantly shifting situation makes it hard to know what's going on.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  The Nuclear Spectroscopic Telescope Array (NuStar),
  \texttt{http://www.nustar.caltech.edu/}
\end{enumerate}

This is an orbiting observatory with three telescopes, designed to see
hard X-rays. It could conduct a thorough survey of black hole candidates
throughout the universe. It could study relativistic jets of particles
from the cores of active galaxies (which are probably also black holes).
And, it could study young supernova remnants --- hot new neutron stars.

NASA suddenly canceled work on NuStar in February 2006.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Dawn, \texttt{http://dawn.jpl.nasa.gov/}
\end{enumerate}

The Dawn mission seeks to understand the early Solar System by probing
the asteroid belt and taking a good look at Ceres and Vesta.
\href{http://en.wikipedia.org/wiki/Ceres_\%28dwarf_planet\%29}{Ceres} is
the largest asteroid of all, 950 kilometers in diameter. It seems have a
rocky core, a thick mantle of water ice, and a thin dusty outer crust.
\href{http://en.wikipedia.org/wiki/4_Vesta}{Vesta} is the second
largest, about 530 kilometers in diameter. It's very different from
Ceres: it's not round, and it's all rock. A certain group of stony
meteorites called
``\href{http://en.wikipedia.org/wiki/HED_meteorite}{HED meteorites}''
are believed to be pieces of Vesta!

NASA cancelled the Dawn mission in March 2006 --- but later that month,
they changed their minds.

It's depressing to contemplate all the wonderful things we could miss
while spending hundreds of billions to ``send canned primates to Mars'',
as Charles Stross so cleverly put it in his novel ``Accelerando'' (see
\protect\hyperlink{week222}{``Week 222''}). I'm all for humanity
spreading through space. I just don't think we should do it in a clunky,
low-tech way like setting up a base on the Moon where astronauts sit
around and\ldots{} what, play golf? It's like something out of old
science fiction!

To cheer myself up again, here's a picture of the Sun:
\[\href{http://cosmicvariance.com/2006/10/13/sun-shots/}{\includegraphics[max width=0.65\linewidth]{../images/sun_neutrinos.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Joanne Hewett, ``Sun Shots'',
  \texttt{http://cosmicvariance.com/2006/10/13/sun-shots/}
\end{enumerate}

It was taken not with light, but with \emph{neutrinos}. It was made at
the big neutrino observatory in Japan, called Super-Kamiokande. It took
about 504 days and nights to make.

That's right --- nights! Neutrinos go right through the Earth.

As you probably know, neutrinos oscillate between three different kinds,
but only electron neutrinos are easy to detect, so we see about third as
many neutrinos from the Sun as naively expected. That's the kind of
thing they're studying at Super-Kamiokande.

But what I want to know is: what's the ``glare'' in this picture?
Neutrinos are made by the process of fusion, which involves this
reaction:
\[\mathrm{proton} + \mathrm{electron} \to \mathrm{neutron} + \mathrm{electron neutrino}\]
Fusion mostly happens in the Sun's core, which has a density of 160
grams per cubic centimeter (10 times denser than lead) and a temperature
of 15 million kelvin (300 thousand times hotter than the ``broil''
setting on an American oven).

So, what's the disk in this picture: the whole Sun, or the Sun's core?
And what's the glare?

Okay, now for some serious mathematical physics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Jeffrey Morton, ``A double bicategory of cobordisms with corners'',
  available as
  \href{http://arXiv.org/abs/math.CT/0611930v1}{\texttt{math.CT/0611930v1}}.
\end{enumerate}

People have been talking a long time about topological quantum field
theory and higher categories. The idea is that categories,
\(2\)-categories, 3-categories and the like can describe how manifolds
can be chopped into little pieces --- or more precisely, how these
little pieces can be glued together to form manifolds. Then the problem
of doing quantum field theory on some manifold can be reduced to the
problem of doing it on these pieces and gluing the results together.
This works easiest if the theory is ``topological'', not requiring a
background metric.

There's a lot of evidence that this is a good idea, but getting the
details straight has proved tough, even at the \(2\)-category level.
This is what Morton does, in a rather clever way. Very roughly, his idea
is to use something I'll call a ``weak double category'', and prove that
these:

\begin{itemize}
\tightlist
\item
  \((n-2)\)-dimensional manifolds
\item
  \((n-1)\)-dimensional manifolds with boundary
\item
  \(n\)-dimensional manifolds with corners
\end{itemize}

give a weak double category called \(n\mathsf{Cob}_2\). The proof is a
cool mix of topology and higher category theory. He then shows that this
particular weak double category can be reinterpreted as something a bit
more familiar --- a ``weak \(2\)-category''.

In the rest of his thesis, Jeff will use this formalism to construct
some examples of ``extended TQFTs'', which are roughly maps of weak
\(2\)-categories \[Z\colon n\mathsf{Cob}_2 \to 2\mathsf{Vect}\] where
\(2\mathsf{Vect}\) is the weak \(2\)-category of ``\(2\)-vector
spaces''. He's focusing on some extended TQFTs called the
Dijkgraaf-Witten models, coming from finite groups.

But, he's also thought about the case where the finite group is replaced
by a compact Lie group. In this case we get something called BF theory,
which is a lot like an extended TQFT, but not quite, because there are
some divergences (infinities) that arise. In this case of 3d spacetime
with the Lie group \(\mathrm{SU}(2)\), \(BF\) theory gives a nice theory
of quantum gravity called the Ponzano-Regge model. And, as I hinted back
in \protect\hyperlink{week232}{``Week 232''}, we can let 2d space in
this model be a manifold with \emph{boundary} by poking little holes in
space. Then these holes wind up acting like particles!

So, we get a relation like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
\endhead
\((n-2)\)-dimensional manifolds & \textbf{matter}\tabularnewline
\((n-1)\)-dimensional manifolds with boundary &
\textbf{space}\tabularnewline
\(n\)-dimensional manifolds with corners &
\textbf{spacetime}\tabularnewline
\bottomrule
\end{longtable}

I like this a lot: it reminds me of the title of Weyl's famous book
``Raum, Zeit, Materie'', meaning ``Space, Time, Matter''. He never
guessed this trio was related to the objects, morphisms and
\(2\)-morphisms in a weak \(2\)-category! It's too bad we can't seem to
get something like this to work for full-fledged quantum gravity.

It would be fun to talk more about this. However, to understand Morton's
work more deeply, you need to understand a bit about ``weak double
categories''. He explains them quite nicely, but I think I'll spend the
rest of this Week's Finds giving a less detailed introduction, just to
get you warmed up.

This chart should help:

\begin{longtable}[]{@{}lcc@{}}
\toprule
& \textbf{Bigons} & \textbf{Squares}\tabularnewline
\midrule
\endhead
\textbf{Laws holding as equations} & strict \(2\)-categories & strict
double categories\tabularnewline
\textbf{Laws holding up to isomorphism} & weak \(2\)-categories & weak
double categories\tabularnewline
\bottomrule
\end{longtable}

\(2\)-categories are good for describing how to glue together
\(2\)-dimensional things that, at least in some abstract sense, are
shaped like \emph{bigons}. A ``bigon'' is a disc with its boundary
divided into two halves: \[
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=right:{$Y$}] (y) at (2,0) {$\bullet$};
    \draw[dashed] (x) to (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,1) and (1.3,1) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (0.7,-1) and (1.3,-1) .. (y);
    \draw[double,double equal sign distance,-implies] (1,0.5) to (1,-0.5);
    \node at (1.2,0.3) {\scriptsize$B$};
  \end{tikzpicture}
\] The big arrow indicates that we think of the bigon \(B\) as ``going
from'' the top semicircle, \(f\), to the bottom semicircle, \(g\).
Similarly, we think of the arcs \(f\) and \(g\) as going from the point
\(X\) to the point \(Y\).

Similarly, double categories are good for describing how to glue
together \(2\)-dimensional gadgets that are shaped like \emph{squares}:
\[
  \begin{tikzpicture}
    \node[label={[label distance=-3mm]above left:{$X$}}] (x) at (0,0) {$\bullet$};
    \node[label={[label distance=-3mm]above right:{$X'$}}] (x') at (2,0) {$\bullet$};
    \node[label={[label distance=-3mm]below left:{$Y$}}] (y) at (0,-2) {$\bullet$};
    \node[label={[label distance=-3mm]below right:{$Y'$}}] (y') at (2,-2) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (x');
    \draw[->] (x) to node[label=left:{$g$}]{} (y);
    \draw[->] (x') to node[label=right:{$g'$}]{} (y');
    \draw[->] (y) to node[label=below:{$f'$}]{} (y');
    \node at (1,-1) {$S$};
  \end{tikzpicture}
\] Both \(2\)-categories and double categories come in ``strict'' and
``weak'' versions. The strict versions have operations satisfying a
bunch of laws ``on the nose'', as equations. In the weak versions, these
laws hold up to isomorphism whenever possible.

A few more details might help\ldots.

A \(2\)-category has a set of objects, a set of morphisms
\(f\colon X \to Y\) going from any object \(X\) to to any object \(Y\),
and a set of \(2\)-morphisms \(T\colon f \Rightarrow g\) going from any
morphism \(f: X \to Y\) to any morphism \(g\colon X \to Y\). We can
visualize the objects as dots: \[
  \begin{tikzpicture}
    \node[label=below:{$X$}] at (0,0) {$\bullet$};
  \end{tikzpicture}
\] the morphisms as arrows: \[
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=right:{$Y$}] (y) at (2,0) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (y);
  \end{tikzpicture}
\] and the \(2\)-morphisms as bigons: \[
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=right:{$Y$}] (y) at (2,0) {$\bullet$};
    \draw[dashed] (x) to (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,1) and (1.3,1) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (0.7,-1) and (1.3,-1) .. (y);
    \draw[double,double equal sign distance,-implies] (1,0.5) to (1,-0.5);
    \node at (1.2,0.3) {\scriptsize$B$};
  \end{tikzpicture}
\] We can compose morphisms like this: \[
  \begin{tikzpicture}
    \node[label=below:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=below:{$Y$}] (y) at (2,0) {$\bullet$};
    \node[label=below:{$Z$}] (z) at (4,0) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (y);
    \draw[->] (y) to node[label=above:{$g$}]{} (z);
  \end{tikzpicture}
  \qquad
  \raisebox{2em}{\text{gives}}
  \qquad
  \begin{tikzpicture}
    \node[label=below:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=below:{$Z$}] (z) at (2,0) {$\bullet$};
    \draw[->] (x) to node[label=above:{$fg$}]{} (z);
  \end{tikzpicture}
\] We can also compose \(2\)-morphisms vertically: \[
  \begin{tikzpicture}[yscale=1.2]
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=right:{$Y$}] (y) at (2,0) {$\bullet$};
    \draw[->] (x) to (y);
    \node at (0.6,0.15) {\scriptsize$g$};
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,1) and (1.3,1) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$h$}}]{}controls (0.7,-1) and (1.3,-1) .. (y);
    \draw[double,double equal sign distance,-implies] (1,0.7) to (1,0.05);
    \node at (1.2,0.4) {\scriptsize$S$};
    \draw[double,double equal sign distance,-implies] (1,-0.05) to (1,-0.7);
    \node at (1.2,-0.3) {\scriptsize$T$};
  \end{tikzpicture}
  \qquad
  \raisebox{3.65em}{\text{gives}}
  \qquad
  \begin{tikzpicture}[yscale=1.2]
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=right:{$Y$}] (y) at (2,0) {$\bullet$};
    \draw[dashed] (x) to (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,1) and (1.3,1) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$h$}}]{}controls (0.7,-1) and (1.3,-1) .. (y);
    \draw[double,double equal sign distance,-implies] (1,0.5) to (1,-0.5);
    \node at (1.2,0.3) {\scriptsize$ST$};
  \end{tikzpicture}
\] and horizontally: \[
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node (y) at (2,0) {$\bullet$};
    \node at (2.05,0.3) {$Y$};
    \node[label=right:{$Z$}] (z) at (4,0) {$\bullet$};
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (0.7,1) and (1.3,1) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (0.7,-1) and (1.3,-1) .. (y);
    \draw[dashed] (x) to (y);
    \draw[dashed] (y) to (z);
    \draw[double,double equal sign distance,-implies] (1,0.5) to (1,-0.5);
    \node at (1.2,0.3) {\scriptsize$S$};
    \draw[->] (y) .. node[label={[label distance=-1mm]above:{\scriptsize$f'$}}]{} controls (2.7,1) and (3.3,1) .. (z);
    \draw[->] (y) .. node[label={[label distance=-1mm]below:{\scriptsize$g'$}}]{} controls (2.7,-1) and (3.3,-1) .. (z);
    \draw[double,double equal sign distance,-implies] (3,0.5) to (3,-0.5);
    \node at (3.2,0.3) {\scriptsize$T$};
  \end{tikzpicture}
  \qquad
  \raisebox{3.5em}{\text{gives}}
  \qquad
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=right:{$Y$}] (y) at (3,0) {$\bullet$};
    \draw[->] (x) .. node[label={[label distance=-1mm]above:{\scriptsize$f$}}]{} controls (1.1,1) and (1.9,1) .. (y);
    \draw[->] (x) .. node[label={[label distance=-1mm]below:{\scriptsize$g$}}]{}controls (1.1,-1) and (1.9,-1) .. (y);
    \draw[dashed] (x) to (y);
    \draw[double,double equal sign distance,-implies] (1.5,0.5) to (1.5,-0.5);
    \node at (1.9,0.3) {\scriptsize$S\cdot T$};
  \end{tikzpicture}
\] There are also a bunch of laws that need to hold. I don't want to
list them; you can find them in Jeff's paper (also see
\protect\hyperlink{week80}{``Week 80''}). I just want to emphasize how a
strict \(2\)-category is different from a weak one.

In a strict \(2\)-category, the composition of morphisms is associative
on the nose: \[(fg)h = f(gh)\] and there are identity morphisms that
satisfy these laws on the nose: \[1f = f = f1\] In a weak
\(2\)-category, these equations are replaced by 2-isomorphisms --- that
is, invertible \(2\)-morphisms. And, these 2-isomorphisms need to
satisfy new equations of their own!

What about double categories?

Double categories are like \(2\)-categories, but instead of bigons, we
have squares.

More precisely, a double category has a set of objects: \[
  \begin{tikzpicture}
    \node[label=below:{$X$}] at (0,0) {$\bullet$};
  \end{tikzpicture}
\] a set of horizontal arrows: \[
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=right:{$X'$}] (x') at (2,0) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (x');
  \end{tikzpicture}
\] a set of vertical arrows: \[
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=left:{$Y$}] (y) at (0,-2) {$\bullet$};
    \draw[->] (x) to node[label=left:{$g$}]{} (y);
  \end{tikzpicture}
\] and a set of squares: \[
  \begin{tikzpicture}
    \node[label={[label distance=-3mm]above left:{$X$}}] (x) at (0,0) {$\bullet$};
    \node[label={[label distance=-3mm]above right:{$X'$}}] (x') at (2,0) {$\bullet$};
    \node[label={[label distance=-3mm]below left:{$Y$}}] (y) at (0,-2) {$\bullet$};
    \node[label={[label distance=-3mm]below right:{$Y'$}}] (y') at (2,-2) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (x');
    \draw[->] (x) to node[label=left:{$g$}]{} (y);
    \draw[->] (x') to node[label=right:{$g'$}]{} (y');
    \draw[->] (y) to node[label=below:{$f'$}]{} (y');
    \node at (1,-1) {$S$};
  \end{tikzpicture}
\] We can compose the horizontal arrows like this: \[
  \begin{tikzpicture}
    \node[label=below:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=below:{$Y$}] (y) at (2,0) {$\bullet$};
    \node[label=below:{$Z$}] (z) at (4,0) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (y);
    \draw[->] (y) to node[label=above:{$f'$}]{} (z);
  \end{tikzpicture}
  \qquad
  \raisebox{2em}{\text{gives}}
  \qquad
  \begin{tikzpicture}
    \node[label=below:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=below:{$Z$}] (z) at (2,0) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f\cdot f'$}]{} (z);
  \end{tikzpicture}
\] We can compose the vertical arrows like this: \[
  \begin{tikzpicture}
    \node[label=left:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=left:{$Y$}] (y) at (0,-2) {$\bullet$};
    \node[label=left:{$Z$}] (z) at (0,-4) {$\bullet$};
    \draw[->] (x) to node[label=left:{$g$}]{} (y);
    \draw[->] (y) to node[label=left:{$g$}]{} (z);
    %
    \node at (1.25,-2) {gives};
    %
    \node[label=left:{$X$}] (x1) at (3,-1) {$\bullet$};
    \node[label=left:{$Z$}] (z1) at (3,-3) {$\bullet$};
    \draw[->] (x1) to node[label=left:{$gg'$}]{} (z1);
  \end{tikzpicture}
\] And, we can compose the squares both vertically: \[
  \begin{tikzpicture}
    \node[label={[label distance=-3mm]above left:{$X$}}] (x) at (0,0) {$\bullet$};
    \node[label={[label distance=-3mm]above right:{$X'$}}] (x') at (2,0) {$\bullet$};
    \node[label={[label distance=-3mm]left:{$Y$}}] (y) at (0,-2) {$\bullet$};
    \node[label={[label distance=-3mm]right:{$Y'$}}] (y') at (2,-2) {$\bullet$};
    \node[label={[label distance=-3mm]below left:{$Z$}}] (z) at (0,-4) {$\bullet$};
    \node[label={[label distance=-3mm]below right:{$Z'$}}] (z') at (2,-4) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (x');
    \draw[->] (x) to node[label=left:{$g$}]{} (y);
    \draw[->] (y) to node[label=left:{$h$}]{} (z);
    \draw[->] (y) to (y');
    \draw[->] (x') to node[label=right:{$g'$}]{} (y');
    \draw[->] (y') to node[label=right:{$h'$}]{} (z');
    \draw[->] (z) to node[label=below:{$f'$}]{} (z');
    \node at (1,-1) {$S$};
    \node at (1,-3) {$S'$};
    %
    \node at (3.5,-2) {gives};
    %
    \node[label={[label distance=-3mm]above left:{$X$}}] (x) at (5,-1) {$\bullet$};
    \node[label={[label distance=-3mm]above right:{$X'$}}] (x') at (7,-1) {$\bullet$};
    \node[label={[label distance=-3mm]below left:{$Z$}}] (z) at (5,-3) {$\bullet$};
    \node[label={[label distance=-3mm]below right:{$Z'$}}] (z') at (7,-3) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (x');
    \draw[->] (x) to node[label=left:{$gh$}]{} (z);
    \draw[->] (x') to node[label=right:{$g'h'$}]{} (z');
    \draw[->] (z) to node[label=below:{$f'$}]{} (z');
    \node at (1,-1) {$SS'$};
  \end{tikzpicture}
\] and horizontally: \[
  \begin{tikzpicture}
    \node[label={[label distance=-3mm]above left:{$X$}}] (x) at (0,0) {$\bullet$};
    \node[label={[label distance=-1mm]above:{$Y$}}] (y) at (2,0) {$\bullet$};
    \node[label={[label distance=-3mm]above right:{$Z$}}] (z) at (4,0) {$\bullet$};
    \node[label={[label distance=-3mm]below left:{$X'$}}] (x') at (0,-2) {$\bullet$};
    \node[label={[label distance=-1mm]below:{$Y'$}}] (y') at (2,-2) {$\bullet$};
    \node[label={[label distance=-3mm]below right:{$Z'$}}] (z') at (4,-2) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (y);
    \draw[->] (y) to node[label=above:{$g$}]{} (z);
    \draw[->] (x') to node[label=below:{$f'$}]{} (y');
    \draw[->] (y') to node[label=below:{$g'$}]{} (z');
    \draw[->] (x) to node[label=left:{$h$}]{} (x');
    \draw[->] (y) to (y');
    \draw[->] (z) to node[label=right:{$h'$}]{} (z');
    \node at (1,-1) {$S$};
    \node at (3,-1) {$S'$};
  \end{tikzpicture}
  \qquad
  \raisebox{4.5em}{\text{gives}}
  \qquad
  \begin{tikzpicture}
    \node[label={[label distance=-3mm]above left:{$X$}}] (x) at (0,0) {$\bullet$};
    \node[label={[label distance=-3mm]above right:{$Z$}}] (z) at (2,0) {$\bullet$};
    \node[label={[label distance=-3mm]below left:{$X'$}}] (x') at (0,-2) {$\bullet$};
    \node[label={[label distance=-3mm]below right:{$Z'$}}] (z') at (2,-2) {$\bullet$};
    \draw[->] (x) to node[label=left:{$h$}]{} (x');
    \draw[->] (x) to node[label=above:{$f\cdot g$}]{} (z);
    \draw[->] (x') to node[label=below:{$f'\cdot g'$}]{} (z');
    \draw[->] (z) to node[label=right:{$h'$}]{} (z');
    \node at (1,-1) {$S\cdot S'$};
  \end{tikzpicture}
\] In a strict double category, both vertical and horizontal composition
of morphisms is associative on the nose: \[
  \begin{aligned}
    (fg)h &= f(gh)
  \\(f\cdot g)\cdot h &= f\cdot (g\cdot h)
  \end{aligned}
\] and there are identity morphisms for both vertical and horizontal
composition, which satisfy the usual identity laws on the nose.

In a weak double category, we want these laws to hold only up to
isomorphism. But, it turns out that this requires us to introduce bigons
as well! The reason is fascinating but too subtle to explain here. I
didn't understand it until Jeff pointed it out. But, it turns out that
Dominic Verity had already introduced the right concept of weak double
category --- a gadget with both squares and bigons --- in \emph{his}
Ph.D.~thesis a while back:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Dominic Verity, \emph{Enriched categories, internal categories, and
  change of base}, Ph.D.~dissertation, University of Cambridge, 1992.
\end{enumerate}

Interestingly, if you weaken \emph{only} the laws for vertical
composition, you don't need to introduce bigons. The resulting concept
of ``horizontally weak double category'' has been studied by Grandis and
Pare:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\item
  Marco Grandis and Bob ParÃ©, ``Limits in double categories'',
  \emph{Cah. Top. Geom. Diff. Cat.} \textbf{40} (1999), 162--220. Also
  available at
  \texttt{http://www.dima.unige.it/\textasciitilde{}grandis/Dbl.Cahiers.pdf}

  Marco Grandis and Bob ParÃ©, ``Adjoints for double categories'',
  \emph{Cah. Top. Geom. Diff. Cat.} \textbf{45} (2004), 193--240. Also
  available at
  \texttt{http://www.dima.unige.it/\textasciitilde{}grandis/Dbl.Adj.pdf}
\end{enumerate}

and more recently by Martin Hyland's student Richard Garner:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Richard Garner, ``Double clubs'', available as
  \href{https://arxiv.org/abs/math.CT/0606733}{\texttt{math.CT/0606733}}
\end{enumerate}

and Tom Fiore:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Thomas M. Fiore, ``Pseudo algebras and pseudo double categories'',
  available as
  \href{https://arxiv.org/abs/math.CT/0608760}{\texttt{math.CT./0608760}}.
\end{enumerate}

At this point I should admit that the terminology in this whole field is
a bit of a mess. I've made up simplified terminology for the purposes of
this article, but now I should explain how it maps to the terminology
most people use:

\begin{longtable}[]{@{}ll@{}}
\toprule
ME & THEM\tabularnewline
\midrule
\endhead
strict \(2\)-category & \(2\)-category\tabularnewline
weak \(2\)-category & bicategory\tabularnewline
strict double category & double category\tabularnewline
weak double category & double bicategory\tabularnewline
horizontally weak double category & pseudo double
category\tabularnewline
\bottomrule
\end{longtable}

Verity used the term ``double bicategory'' to hint that his gadgets have
both squares and bigons, so they're like a blend of double categories
and bicategories. It's a slightly unfortunate term, since experts know
that a double category is a category object in \(\mathsf{Cat}\), but
Verity's double bicategories are not bicategory objects in
\(\mathsf{BiCat}\). Morton mainly uses Verity's double bicategories ---
but in the proof of his big theorem, he also uses bicategory objects in
\(\mathsf{BiCat}\).

There's a lot more to say, but I'll stop here and let you read the rest
in Jeff's paper!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank Charlie Clingen for catching some typos in my
diagrams, and Nathan Urban and TorbjÃ¶rn Larsson for helping me update
some of my information on the funding of NASA programs. I won't attempt
to keep this information up to date, since it's changing too often. But,
I'd like to it be correct as of the date I wrote it!

Sean Carroll writes:

\begin{quote}
Hi John--

Just a couple of comments on This Week's Finds ---

You mention a bunch of missions that could ``probably'' be funded for
the cost of a Moon base. That's being quite conservative! Each of those
missions is about \$1 billion or less, while the Moon base is upwards of
\$200 billion.

And you asked about the neutrino image of the Sun. The ``haze'' is just
an imaging problem, not a feature of the Sun; the resolution of this
image is worse than 10 degrees (I forget the exact number), so we're
certainly not looking at any substructure inside the Sun (whose entire
disk is only half a degree wide).

\href{http://preposterousuniverse.com/}{Sean}
\end{quote}

I've deleted the word ``probably''. According to a comment on Joanne
Hewett's blog entry, each pixel in the neutrino picture of the Sun is
one degree in size. The Sun itself is just half a degree wide.

For more discussion, go to the
\href{http://golem.ph.utexas.edu/category/2006/12/this_weeks_finds_in_mathematic_4.html}{\(n\)-Category
CafÃ©}.
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Today I'd like to talk a bit about the first stars in the Universe, and
some hotly contested possible observations of these stars. Then I want
to describe a new paper by my student Derek Wise. But first --- if
anyone gave you a gift certificate for a bookstore this holiday season,
here are two suggestions.

The first one is really easy and fun:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  William Poundstone, \emph{Fortune's Formula: The Untold Story of the
  Scientific Betting System that Beat the Casinos and Wall Street},
  Farrar, Strauss and Giroux, New York, 2005.
\end{enumerate}

Packed with rollicking tales of gangsters, horse-racing, blackjack, and
insider trading, this is secretly the story of how Claude Shannon
developed information theory --- and how he and his sidekick John Kelly
Jr.~used it to make money in casinos and Wall Street. I'd known about
Shannon's work on information\ldots{} but not that he beat 99.9\% of
mutual fund managers, making an average compound return of 28\% for many
years --- as compared to 27\% for Warren Buffett!

This book has just a few equations in it. I was delighted by one
discovered by Kelly, which I'd never seen before. Translating into my
own favorite notation, it goes like this: \[S = \log M\] It's the
fundamental equation relating gambling to information! Let me explain it
--- in language far more complicated than you'll see in Poundstone's
book.

What's \(M\)? It's the best possible average growth of a gambler's
money. For example, if his best possible strategy lets him triple his
money on average, then \(M = 3\).

What's \(S\)? This is the amount of ``inside information'' the gambler
has: information he has, that the people he's betting against don't.

Some technical stuff: First, the above ``average'' is a geometric mean,
not an arithmetic mean. Second, if we measure information in bits, we
need to use base 2 in the logarithm. Physicists would probably prefer to
use base \(e\), which means measuring information in ``nits''. It
doesn't really matter, but let's use base 2 for now.

To get a feeling for why Kelly's theorem is true, it's best to start
with the simplest example. If \(S = 1\), then \(M = 2\). So, if a
gambler receives one bit of inside information, he can double his money!

This sounds amazing, but it's also obvious.

Suppose you have one bit of inside information: for example, whether a
flipped coin will land heads up or tails up. Then you can make a bet
with somebody where they give you \$1,000,000 if you guess the coin flip
correctly, and you give them \$1,000,000 if you guess wrong. This is a
fair bet, so they will accept. That is, they'll \emph{think} it's fair
if they don't suspect you have inside information! But since you do have
this information, you'll win the bet, and double your money on this coin
flip.

Kelly's equation is usually phrased in terms of the \emph{rate} at which
the gambler gets inside information, and the \emph{rate} at which his
money grows. So, for example, to earn 12\% interest annually, you only
need to receive \[\log(1.12) = 0.163\] bits of inside information ---
and find some dupe willing to make bets with you about this.

The last part is the hard part: the ``inside information'' really needs
to be information people don't believe you have. I must learn hundreds
of bits of information about math each year --- stuff only I know ---
but I haven't found anyone simultaneously smart enough to understand it
and dumb enough to make bets with me about it!

Still, I like this relation between information theory and gambling,
because one stream of Bayesian probability theory says probabilities are
subjectively defined in terms of the bets you would accept.

The argument for this is called the ``Dutch book argument''. It
basically shows how you can make money off someone who makes bets in
ways that correspond to stupid probabilities that don't add to 1, or
fail to be coherent in other ways:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Carlton M. Caves, \emph{Probabilities as betting odds and the Dutch
  book}, available at
  \texttt{http://info.phys.unm.edu/\textasciitilde{}caves/reports/dutchbook.pdf}
\end{enumerate}

So, there's a deep relation between gambling and probability --- no news
here, really.

But, there's also a deep relation between probability and information
theory, discovered by Shannon. Briefly, it goes like this: the
information you obtain by learning the value of a random variable is
\[S = -\sum_i p_i \log(p_i)\] where the sum is taken over all the
possible values of this random variable, and \(p_i\) is the probability
that it takes its \(i\)th value. So, for example, if you flip a fair
coin, where \(p_1 = p_2 = 1/2\), the information you get by looking at
the coin is
\[-\left[\frac12 \log\left(\frac12\right) + \frac12 \log\left(\frac12\right)\right] = 1\]
One bit!

So: gambling is related to probability, and probability is related to
information. Kelly's result closes the circle by providing a direct
relation between gambling and information!

But, apparently some of Kelly's ideas are still controversial in the
world of economics and stock trading. If you read Poundstone's book,
you'll learn why.

The next book takes more persistence to read:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Avner Ash and Robert Gross, \emph{Fearless Symmetry: Exposing the
  Hidden Patterns of Numbers}, Princeton U. Press, Princeton, 2006.
\end{enumerate}

The authors do a creditable job of what might at first seem utterly
impossible: explaining heavy-duty modern number theory to ordinary
mortals. The formal prerequisites are little more than high school
algebra, and the style is expository, but anyone except an expert will
need to stop and think at times.

They start by explaining modular arithmetic --- you know, stuff like
adding and multiplying ``\(\mod 7\)''. Then they tackle groups, and
permutations, since the main theme of the book is symmetry. Then they
move on to algebraic varieties, in a simple no-nonsense style cleverly
adapted from Grothendieck's later work (without terrifying the reader by
mentioning this fact).

Next they tackle some serious number theory: quadratic reciprocity,
Galois groups, and elliptic curves. Then they describe more general
forms of reciprocity, leading up to a taste of the Langlands program.
They conclude with a sketch of how Fermat's last theorem was proved.

These days mathematical physicists are all excited about a variant of
the Langlands program: the so-called ``geometric'' Langlands program,
which is related to string theory. Drinfeld has been running a seminar
on this at Chicago for years, but that's not what got the physicists
interested --- it's these papers by Witten that did it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Anton Kapustin and Edward Witten, ``Electric-magnetic duality and the
  geometric Langlands program'', 225 pages, available as
  \href{https://arxiv.org/abs/hep-th/0604151}{\texttt{hep-th/0604151}}.
\item
  Sergei Gukov and Edward Witten, ``Gauge theory, ramification, and the
  geometric Langlands program'', 160 pages, available as
  \href{https://arxiv.org/abs/hep-th/0612073}{\texttt{hep-th/0612073}}.
\end{enumerate}

So, if you're trying to learn this geometric Langlands stuff, and you
want to fit it into the grand landscape of mathematics, the book
Fearless Symmetry could be a fun way to learn some the math underlying
the ordinary Langlands stuff.

I started girding myself for a discussion of the Langlands program in
\protect\hyperlink{week217}{``Week 217''},
\protect\hyperlink{week218}{``Week 218''} and
\protect\hyperlink{week221}{``Week 221''}, but then I got distracted.
I'll get back to it someday, but right now I'm in the mood for lighter
stuff\ldots{} so let me tell you a bit about the first stars.

The story starts around 380,000 years after the Big Bang, when the hot
hydrogen and helium forming our Universe cooled down to 3000 kelvin -
just cool enough for the electrons to stick to the atomic nuclei instead
of zipping around on their own.

When the electrons in a gas are hot enough for some to zip around on
their own, we say the gas is ``ionized''. When a \emph{lot} of them are
zipping around, we call it a ``plasma''. Because charged particles
interact with the electromagnetic field, light doesn't pass through
plasma cleanly: it keeps getting absorbed and re-emitted.

So, before our story started, you couldn't see very far: it would be
like trying to look through a wall of fire. But, around 380,000 years
after the Big Bang, the gas became transparent!

What would it have looked like? Nobody ever seems to talk about this.
So, I'll just guess, and hope some expert corrects me.

Back when the gas filling the Universe was 5000 kelvin in temperature,
just a bit cooler than the surface of the Sun, everything was yellow.
You couldn't see far at all: you would have been blinded by a yellow
glare.

But when it cooled to 4000 kelvin in temperature, the Universe became
orange.

And when it cooled to 3000 kelvin, the Universe became red.

And when it cooled a tiny bit further, it became infrared. As far as
visible light goes, the Universe became transparent!

This would happen everywhere more or less at once. But since light takes
time to travel, you'd see a transparent sphere around you, expanding
outwards at the speed of light, with reddish walls.

It's been sort of like this ever since.

So, when we look far away with our best telescopes, we look back in time
to the time when the Universe became transparent --- but no further.
We're surrounded by a distant, ancient wall of fire. It's now about 13.3
billion light-years away --- or 13.3 billion year back in time, if you
prefer. And, it's receding at a rate of one light-year per year.

But by now, the light from this wall of fire has been severely
redshifted. In other words, it's been stretched along with the expansion
of the Universe --- stretched by a factor of 1100, in fact!

So, what had been the hot infrared glow of 3000-kelvin plasma is now a
feeble microwave glow corresponding to an icy temperature of 2.7 kelvin.
This is the famous ``cosmic microwave background radiation''.

But let's go back in time\ldots.

From the moment the hot gas became transparent to the time when the
first stars formed, the Universe was dark except for the dimming
infrared glow of that distant wall of fire. This era is called the
``Dark Ages''.

During the Dark Ages, gas cooled down and clumped under its own gravity
--- apparently with a lot of help from cold dark matter of some unknown
sort. Without postulating this matter, nobody can figure out how
galaxies formed as soon as they did.

As befits their name, the Dark Ages are still shrouded in mystery. There
are a lot of unanswered questions besides the nature of dark matter.
Which formed first --- individual stars, or galaxies? And, when did the
Dark Ages end?

It's currently believed that the first stars formed sometime between 150
million and 1 billion years after the Big Bang.

At the later end of that range, the Universe could have gotten quite
cold before starlight warmed up the interstellar gas and reionized it.
There's even a spooky theory that the Universe was full of hydrogen
snowflakes near the end of the Dark Ages --- see
\protect\hyperlink{week196}{``Week 196''} for more on this, and a
timeline of the earlier history of the Universe.

But, the current best guess, based on data from the Wilkinson Microwave
Anisotopy Probe, says that reionization happened 400 million years after
the Big Bang:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Marcelo A. Alvarez, Paul R. Shapiro, Kyungjin Ahn and Ilian T. Iliev,
  ``Implications of WMAP 3 year data for the sources of reionization'',
  \emph{Astrophys. J.} \textbf{644} (2006), L101--L104. Also available
  as
  \href{https://arxiv.org/abs/astro-ph/0604447}{\texttt{astro-ph/0604447}}.
\end{enumerate}

This would be too early for hydrogen snow, since my rough calculation
says the microwave background radiation was 30 kelvin then, while
hydrogen freezes at 14 kelvin.

What were the first stars like? Without heavier elements to catalyze
nuclear fusion, they could have been larger than current-day stars:
perhaps hundreds of times the size of our Sun! These so-called
Population III stars have not actually been seen. But, it's possible
that we've finally caught a glimpse of them, not individually but in a
sort of statistical sense:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  A. Kashlinsky, R. G. Arendt, J. Mather and S. H. Moseley, ``New
  measurements of cosmic infrared background fluctuations from early
  epochs'', to appear in \emph{Ap. J. Letters}. Available as
  \href{https://arxiv.org/abs/astro-ph/0612445}{\texttt{astro-ph/0612445}}.
\item
  A. Kashlinsky, R. G. Arendt, J. Mather and S. H. Moseley, ``On the
  nature of the sources of the cosmic infrared background'', to appear
  in \emph{Ap. J. Letters}. Available as
  \href{https://arxiv.org/abs/astro-ph/0612447}{\texttt{astro-ph/0612447}}.
\end{enumerate}

Using delicate techniques to carefully sift through the \emph{infrared}
(not microwave) background radiation, the authors claim to find
radiation not accounted for by previously known sources. Assuming the
standard cosmological scenario, the sources of this radiation date back
to less than 1 billion years after the Big Bang, and were individually
much brighter than current-day stars.

Here's a picture of their data:
\[\href{http://www.spitzer.caltech.edu/Media/releases/ssc2005-22/ssc2005-22a.shtml}{\includegraphics[max width=0.65\linewidth]{../images/infrared_background_first_stars.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  NASA / JPL-Caltech / A. Kashlinsky, ``Infrared background light from
  first stars'',
  \texttt{http://www.spitzer.caltech.edu/Media/releases/ssc2005-22/}
\end{enumerate}

On top is a photograph taken by the Spitzer Space Telescope: a 10-hour
infrared exposure of a tiny patch of sky, \(6 \times 12\) arcminutes
across, chosen for having a bare minimum of foreground stars, galaxies
and dust. (For comparison, the Moon is 30 arcminutes across.) On the
bottom is the same picture with known sources of infrared subtracted.
What's left may be the severely redshifted light from early stars!

Or, it may not. In the following news story, Ned Wright of UCLA said,
``I'm very skeptical of this result. I think it's wrong. I think what
they're seeing is incompletely subtracted residuals from nearby
sources.''

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Dinesh Ramde, Associated Press, ``Hints of early stars may have been
  found'',
  \texttt{http://www.usatoday.com/tech/science/space/2005-11-02-early-stars\_x.htm}
\end{enumerate}

So, we'll have to see how it goes\ldots.

But in the meantime, we can think about mathematical physics. My student
Derek Wise is graduating this year, and he's doing his thesis on Cartan
geometry, MacDowell-Mansouri gravity and \(BF\) theory. Let me say a
little about this paper of his:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Derek Wise, ``MacDowell-Mansouri gravity and Cartan geometry'',
  available as
  \href{https://arxiv.org/abs/gr-qc/0611154}{\texttt{gr-qc/0611154}}.
\end{enumerate}

Elie Cartan is one of the most influential of 20th-century geometers. At
one point he had an intense correspondence with Einstein on general
relativity. His ``Cartan geometry'' idea is an approach to the concept
of parallel transport that predates the widely used Ehresmann approach
(connections on principal bundles). It simultaneously generalizes
Riemannian geometry and Klein's Erlangen program (see
\protect\hyperlink{week213}{``Week 213''}), in which geometries are
described by their symmetry groups: \[
  \begin{tikzcd}[row sep=huge]
    \text{Euclidean geometry} \rar \dar
    & \text{Klein geometry} \dar
  \\\text{Riemannian geometry} \rar
    & \text{Cartan geometry}
  \end{tikzcd}
\] Given all this, it's somewhat surprising how few physicists know
about Cartan geometry!

Recognizing this, Derek explains Cartan geometry from scratch before
showing how it underlies the so-called MacDowell-Mansouri approach to
general relativity. This plays an important role both in supergravity
and Freidel and Starodubtsev's work on quantum gravity (see
\protect\hyperlink{week235}{``Week 235''}) --- but until now, it's
always seemed like a ``trick''.

What's the basic idea? Derek explains it all very clearly, so I'll just
provide a quick sketch. Cartan describes the geometry of a lumpy bumpy
space by saying what it would be like to roll a nice homogeneous ``model
space'' on it. Homogeneous spaces are what Klein studied; now Cartan
takes this idea and runs with it\ldots{} or maybe we should say he
\emph{rolls} with it!

For example, we could study the geometry of a lumpy bumpy surface by
rolling a \emph{plane} on it. If our surface is itself a plane, this
rolling motion is trivial, and we say the surface is ``flat'' in the
sense of Cartan geometry. But in general, the rolling motion is
interesting and serves to probe the geometry of the surface.

Alternatively, we could study the geometry of the same surface by
rolling a \emph{sphere} on it. Derek illustrates this with a picture of
a hamster crawling around in a plastic ``hamster ball'', which is
something you can actually buy for your pet hamster to let it explore
your house without escaping or getting in trouble:
\[\includegraphics[max width=0.65\linewidth]{../images/cartan_geometry_1.jpg}\]
(I've read about falling cats in papers on gauge theory, but this is the
first mathematical physics paper I've read containing the word
``hamster''.)

If our surface is itself a sphere of the same radius, this rolling
motion is trivial, and we say the surface is flat in the sense of Cartan
geometry --- but now it's a different sense than when we used a plane as
our ``model geometry''!

Which model geometry should we use in a given problem? It depends on
which one best approximates the lumpy bumpy space we're studying!

The ordinary formulation of general relativity fits into this framework,
with a little work. Two well-known mathematical gadgets called the
``Lorentz connection'' and ``coframe field'' fit together to describe
what would happen if we rolled a copy of Minkowski spacetime over the
lumpy bumpy spacetime we live in.

That's great if Minkowski spacetime is the best homogeneous
approximation to the spacetime we live in. But nowadays we think the
cosmological constant is nonzero, so the Universe is expanding in a
roughly exponential way. This makes another model geometry, ``deSitter
spacetime'', the best one to use!
\[\includegraphics[max width=0.65\linewidth]{../images/cartan_geometry_2.jpg}\]
So, if we know Cartan geometry, we can use that\ldots{} and we get
something called the MacDowell-Mansouri formulation of gravity. Or, if
we don't want our spacetime to have lumps and bumps --- if we want it to
look locally just like the Klein model geometry --- we can use a
different theory, a topological field theory called \(BF\) theory (see
\protect\hyperlink{week232}{``Week 232''}).

In short, the passage from a topological field theory describing a
``locally homogeneous'' spacetime to full-fledged gravity with all its
lumps and bumps is nicely understood in terms of how Cartan's approach
to geometry generalizes Klein's!

For more details, you'll just have to read Derek's paper. You might also
try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Michel Biesunski, ``Inside the coconut: the Einstein-Cartan discussion
  on distant parallelism'', in \emph{Einstein and the History of General
  Relativity}, eds.~D. Howard and J. Stachel, Birkhauser, Boston, 1989.
\end{enumerate}

This describes the correspondence between Cartan and Einstein. I believe
this centered, not on Cartan geometry per se, but on the
``teleparallel'' formulation of gravity (see
\protect\hyperlink{week176}{``Week 176''}). But, they're somewhat
related.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Richard W. Sharpe, \emph{Differential Geometry: Cartan's
  Generalization of Klein's Erlangen Program}, Springer-Verlag, New
  York, 1997.
\end{enumerate}

This is the main textbook on Cartan geometry. But, it's probably best to
read a few chapters of Derek's paper first, since the key ideas are
presented more intuitively.

My friend the geometer and analyst Rafe Mazzeo, whom I recently saw at
Stanford, told me that Cartan geometry was all the rage these days. I'm
embarrassed to say I hadn't known this! I think the kinds of Cartan
geometry being intensively studied are related to conformal geometry, CR
structures and stuff like that\ldots{}

Merry Christmas!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank Chris Weed for catching typos. For more
discussion, go to the
\href{http://golem.ph.utexas.edu/category/2006/12/this_weeks_finds_in_mathematic_3.html}{\(n\)-Category
CafÃ©}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{The Universe has as many different centers as there are living
beings in it.}

--- Alexander Solzhenitsyn
\end{quote}



\hypertarget{week244}{%
\section{February 2, 2007}\label{week244}}

In January I spent a week at this workshop at the Fields Institute in
Toronto:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Higher Categories and Their Applications},
  \texttt{http://math.ucr.edu/home/baez/fields/}
\end{enumerate}

It was really fun --- lots of people working on \(n\)-categories were
there. I'll talk about it next time. But as usual, more happens at a fun
conference than can possibly be reported. So, this time I'll only talk
about a conversation I had in a cafÃ© before the conference started!

But first, here's a fun way to challenge your math pals:

\begin{quote}
Q: When the first calculus textbook was written --- and in what
language?

A: In 1530, in Malayalam --- a south Indian language!
\end{quote}

This book is called the \emph{Ganita Yuktibhasa}, or ``compendium of
astronomical rationales''. It was written by Jyesthadeva, an astronomer
and mathematician from Kerala --- a state on the southwest coast of
India. It summarizes and explains the work of many researchers of the
Kerala school, which flourished from the 1400's to the 1600's. But it's
unique for its time, since it contains proofs of many results.

For example, it has a proof that
\[\frac{\pi}{4} = 1 - \frac13 + \frac15 - \frac17 + \frac19 - \ldots\]
Of course, this result isn't stated in modern notation! It's actually
stated as a poem --- a recipe for the circumference of a circle, which
in translation goes something like this:

\begin{quote}
\emph{Multiply the diameter by four. Subtract from it and add to it
alternately the quotients obtained by dividing four times the diameter
by the odd numbers 3, 5, etc.}
\end{quote}

The proof sounds nice! Jyesthadeva starts with something like this:
\[\frac{\pi}{4} = \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^N \frac{1}{1 + \left(\frac{n}{N}\right)^2}\]
In modern terms, the right-hand side is just the integral
\[\int_0^1 \frac{dx}{1 + x^2}\] You can use geometry to see this equals
\(\pi/4\). Then, as far as I can tell, he writes
\[\frac{1}{1 + \left(\frac{n}{N}\right)^2} = 1 - \left(\frac{n}{N}\right)^2 + \left(\frac{n}{N}\right)^4 - \ldots\]
and notes that \[1^k + 2^k + \ldots + N^k \sim \frac{N^{k+1}}{k+1}\] for
large \(N\). This gives
\[\frac{\pi}{4} = 1 - \frac13 + \frac15 - \frac17 + \ldots\] Voila!

In fact, this result goes back to Madhava, an amazing mathematician from
Kerala who lived much earlier, from 1350 to 1425. What's even more
impressive is that Madhava also knew a formula equivalent to the more
general result
\[\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \ldots\]
He used this to compute \(\pi\) to 11 decimal places!

It's an interesting question whether any of the results of the Kerala
school found their way west and influenced the development of
mathematics in Europe. There's been a lot of speculation, but nobody
seems to know for sure. For more info, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  The MacTutor History of Mathematics Archive, ``Madhava of
  Sangamagramma'',
  \texttt{http://www-history.mcs.st-andrews.ac.uk/Biographies/Madhava.html}
\item
  The MacTutor History of Mathematics Archive, ``Jyesthadeva'',
  \texttt{http://www-history.mcs.st-andrews.ac.uk/Biographies/Jyesthadeva.html}
\item
  Wikipedia, ``Yuktibhasa'',
  \texttt{http://en.wikipedia.org/wiki/Yuktibhasa}
\end{enumerate}

Before the conference started, I spent a nice morning talking with Tom
Leinster in a cafÃ© on Bloor Street. There's nothing like talking about
math in a nice warm cafÃ© when it's cold outside! At some point my former
grad student Toby Bartels showed up --- he'd just taken a long Greyhound
bus from Nebraska --- and joined in the conversation. We talked about
this paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Tom Leinster, ``The Euler characteristic of a category'', available as
  \href{http://arxiv.org/abs/math/0610260}{\texttt{math.CT/0610260}}.
\end{enumerate}

Everyone know how to measure the size of a set --- by its number of
elements, or ``cardinality''. But what's the size of a category? That's
the question this paper tackles!

Some categories are just sets in disguise: the ``discrete'' categories,
whose only morphisms are identity morphisms. We'd better define the size
of such a category to be the cardinality of its set of objects.

For example, the category with just one object and its identity morphism
is called \(1\). It looks sort of like this: \[\bullet\] where I've
drawn the object but not its identity morphism. Clearly, its size should
be \(1\).

We could also have a category with just two objects and their identity
morphisms. It looks like this: \[
  \begin{tikzpicture}
    \node at (0,0) {$\bullet$};
    \node at (2,0) {$\bullet$};
  \end{tikzpicture}
\] and its size should be 2.

But what about this? \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[<->] (a) to (b);
  \end{tikzpicture}
\] Here we have a category with two objects and an invertible morphism
between them, which I've drawn as an arrow pointing both ways. Again, I
won't draw the identity morphisms.

In other words, we have two objects that are \emph{isomorphic} --- and
in a unique way. How big should this category be?

Any mathematician worth her salt knows that having two things that are
isomorphic in a unique way is just like having one: you can't do
anything more with them --- or less. So, the size of this category: \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[<->] (a) to (b);
  \end{tikzpicture}
\] should equal the size of this one: \[\bullet\] namely, \(1\).

More technically, we say these categories are ``equivalent''. We'll
demand that equivalent categories have the same size. This is a powerful
principle. If we didn't insist on this, we'd be insane.

But what about this category: \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[->] (a) to (b);
  \end{tikzpicture}
\] Now we have two objects and a morphism going just one way! This is
\emph{not} equivalent to a discrete category, so we need a new idea to
define its size.

If we were willing to make up new kinds of numbers, we could make up a
new number for the size of this category. But let's suppose that this is
against the rules.

There's a cute way to turn any category into a space, which I described
in \protect\hyperlink{week70}{``Week 70''} --- and in more detail in
items J and K of \protect\hyperlink{week117}{``Week 117''}, back when I
was giving a minicourse on homotopy theory. If we do this to the
category \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[->] (a) to (b);
  \end{tikzpicture}
\] what do we get? The unit interval, of course! It's a pretty intuitive
notion, at least in this example.

We also get the unit interval if we turn this guy \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[<->] (a) to (b);
  \end{tikzpicture}
\] into a space. So, even though these categories aren't equivalent,
they give the same space. So, let's declare that they have the same size
--- namely, \(1\).

In fact, let's adopt this as a new principle! We'll demand that two
categories have the same size whenever they give the same space.

Whenever categories are equivalent, they give the same space (where
``the same'' means ``homotopy equivalent''). So, our new principle
includes our previous principle as a special case. But, we can say more.
If you like adjoint functors, you'll enjoy this: whenever there's a pair
of adjoint functors going between two categories, they give the same
space. For example, these categories \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[->] (a) to (b);
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[<->] (a) to (b);
  \end{tikzpicture}
\] aren't equivalent, but there's a pair of adjoint functors going
between them. (If you don't like adjoint functors, oh well --- just
ignore this.)

Next, what's the size of this category? \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[->] (a) .. controls (0.7,0.7) and (1.3,0.7) .. (b);
    \draw[->] (a) .. controls (0.7,-0.7) and (1.3,-0.7) .. (b);
  \end{tikzpicture}
\] This is my feeble attempt to draw a category with two objects, and
two morphisms going from the first object to the second.

If we turn this category into the space, what do we get? The circle, of
course! But what's the ``size'', or ``cardinality'', of a circle?

That's a tricky puzzle, because it's hard to know what counts as a right
answer. It turns out the right answer is zero. Why? Because the ``Euler
characteristic'' of the circle is zero!

As you may know, Euler lived in KÃ¶nigsberg, a city with lots of islands
and bridges:
\[\href{http://www.matheory.info/konigsberg/}{\includegraphics[max width=0.65\linewidth]{../images/bridges_of_konigsberg.png}}\]
In fact, he published a paper in 1736 showing that you can't walk around
KÃ¶nigsberg and cross each bridge exactly once, winding up where you
started. My crazy theory is that living there also helped him invent the
concept of Euler characteristic. I have no evidence for this, except for
this apocryphal story I just made up:

Once upon a time, Euler was strolling along one of the bridges of
KÃ¶nigsberg. He looked across the river, and noticed that workers were
building a bridge to a small island that had previously been unconnected
to the rest. He noticed that this reduced the number of isolated islands
by one. Of course, anyone could have seen that! But in a burst of
genius, Euler went further --- he realized this meant a bridge was like
a ``negative island''. And so, he invented the concept of ``Euler
characteristic''. In its simplest form, it's just the number of islands
minus the number of bridges.

For example, if you have two islands in the sea: \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
  \end{tikzpicture}
\] the land has Euler characteristic \(2\).

If you build a bridge: \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[thick] (0,0) to (2,0);
  \end{tikzpicture}
\] the land now has Euler characteristic \(1\). This makes sense,
because the land is now effectively just one island. So, a bridge acts
as a ``negative island''!

But now, if you build a \emph{second} bridge: \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[thick] (0,0) .. controls (0.7,0.7) and (1.3,0.7) .. (2,0);
    \draw[thick] (0,0) .. controls (0.7,-0.7) and (1.3,-0.7) .. (2,0);
  \end{tikzpicture}
\] the land has Euler characteristic \(0\). This is sort of weird. But,
Euler saw it was a good idea.

To understand why, you have to go further and imagine building a
``bridge between bridges'' --- filling in the space between the bridges
with an enormous deck: \[
  \begin{tikzpicture}
    \node (a) at (0,0) {$\bullet$};
    \node (b) at (2,0) {$\bullet$};
    \draw[thick,fill=gray] (0,0)
      .. controls (0.7,0.7) and (1.3,0.7) .. (2,0)
      .. controls (1.3,-0.7) and (0.7,-0.7) .. (0,0);
  \end{tikzpicture}
\] This reduces the number of bridges by one. We've effectively got one
island again, though much bigger now. So, we're back to having Euler
characteristic \(1\).

In short, adding a ``bridge between bridges'' should add \(1\) to the
Euler characteristic. Just as a bridge counts as a negative island, a
bridge between bridges counts as a negative bridge --- or an island:
\[-(-1) = 1.\] It's all consistent, in its own weird way.

So, Euler defined the Euler characteristic to be \[V - E + F\] where
\(V\) is the number of islands (or ``vertices''), \(E\) is the number of
bridges (or ``edges'') and \(F\) is the number of bridges between
bridges (or ``faces'').

At least that's how the story goes.

By the way, you must have noticed that the number \(1\) looks like an
interval, while the number \(0\) looks like a circle. But did you notice
that the Euler characteristic of the interval is \(1\), and the Euler
characteristic of the circle is \(0\)? I can never make up my mind
whether this is a coincidence or not.

Anyway, we can easily generalize the Euler characteristic to higher
dimensions, and define it as an alternating sum. And that turns out to
be important for us now, because it turns out that often when we turn a
category into a space, we get something higher-dimensional!

This shouldn't be obvious, since I haven't told you the rule for turning
a category into a space. You might think we always get something
1-dimensional, built from vertices (objects) and edges (morphisms). But
the rule is more subtle. Whenever we have 2 morphisms end to end, like
this: \[
  \begin{tikzpicture}
    \node[label=below:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=below:{$Y$}] (y) at (2,0) {$\bullet$};
    \node[label=below:{$Z$}] (z) at (4,0) {$\bullet$};
    \draw[->] (x) to node[label=above:{$f$}]{} (y);
    \draw[->] (y) to node[label=above:{$g$}]{} (z);
  \end{tikzpicture}
\] we can compose them and get a morphism \(fg\) going all the way from
\(x\) to \(z\). We should draw this morphism too\ldots{} so the space we
get is a \emph{triangle}: \[
  \begin{tikzpicture}
    \node[label=below:{$X$}] (x) at (0,0) {$\bullet$};
    \node[label=above:{$Y$}] (y) at (1.5,2.1) {$\bullet$};
    \node[label=below:{$Z$}] (z) at (3,0) {$\bullet$};
    \draw[thick,fill=gray] (0,0)
      to node[label=above left:{$f$}]{} (1.5,2.1)
      to node[label=above right:{$g$}]{} (3,0)
      to node[label=below:{$fg$}]{} (0,0);
    \draw[thick,->] (x) to (0.8,1.12);
    \draw[thick,->] (y) to (2.25,1.05);
    \draw[thick,->] (x) to (1.6,0);
  \end{tikzpicture}
\] More importantly, the triangle is filled in, just like Euler's
``bridge between bridges'', to show that it's \emph{solid}, not hollow.

Simlarly, when we have 3 morphisms laid end to end we get a tetrahedron,
and so on.

Using these rules, it's not hard to find a category that gives a sphere,
or a torus, or an \(n\)-holed torus, when you turn it into a space. I'll
leave that as a puzzle.

In fact, for \emph{any} manifold, you can find a category that gives you
that manifold when you turn it into a space! In fact we can get any
space at all this way, up to ``weak homotopy equivalence'' --- whatever
that means. So, let's adopt a new principle: whenever our category gives
a space whose Euler characteristic is well-defined, we should define the
size of our category to be that.

I say ``when it's well-defined'', because it's also possible for a
category --- even one with just finitely many objects and morphisms ---
to give an infinite-dimensional space whose Euler characteristic is a
divergent series: \[n_0 - n_1 + n_2 - n_3 + n_4 - \ldots\] Okay. At this
point it's time for me to say what Leinster actually did: he came up
with a \emph{formula} that you can use to compute the size of a
category, without using any topology. Sometimes it gives divergent
answers --- which is no shame: after all, some categories are infinitely
big. But when it converges, it satisfies all the principles I've
mentioned.

Even better, it works for a lot of categories that give spaces whose
Euler chacteristic diverges! For example, we can take any group \(G\)
and think of it as a category with one object, with the group elements
as morphisms. When we turn this category into a space, it becomes
something famous called the ``classifying space'' of \(G\). This is
often an infinite-dimensional monstrosity whose Euler characteristic
diverges. But, Leinster's formula still works --- and it gives \[1/|G|\]
the reciprocal of the usual cardinality of \(G\).

Now we're getting fractions!

For example, suppose we take \(G\) to be the group with just 2 elements,
called \(\mathbb{Z}/2\). If we think of it as a category, and then turn
that into a space, we get a huge thing usually called
``infinite-dimensional real projective space'', or
\(\mathbb{RP}^\infty\) for short. This is built from one vertex, one
edge, one triangle, and so on. So, if we try to work out its Euler
characteristic, we get the divergent series
\[1 - 1 + 1 - 1 + 1 - \ldots\] But, if we use Leinster's formula, we get
\(1/2\). And that's cute, because once there were heated arguments about
the value of \[1 - 1 + 1 - 1 + 1 - \ldots\] Some mathematicians said it
was \(0\): \[(1 - 1) + (1 - 1) + (1 - 1) + \ldots = 0\] while others
said it was \(1\): \[1 + (-1 + 1) + (-1 + 1) + (-1 + 1) + \ldots = 1\]
Some said ``it's divergent, so forget it!'' But others wisely
compromised and said it equals \(1/2\). This can be justified using
``Abel summation''.

All this may seem weird --- and it is; that's part of the fun. But,
Leinster's answer matches what you'd expect from the theory of
``homotopy cardinality'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez, ``The mysteries of counting: Euler characteristic versus
  homotopy cardinality'',
  \texttt{http://math.ucr.edu/home/baez/counting/}
\end{enumerate}

This webpage has transparencies of a talk I gave on this, and lots of
links to papers that generalize the concepts of cardinality and Euler
characteristic. I'm obsessed with this topic. It's really exciting to
think about new ways to extend the simplest concepts of math, like
counting.

That's why I invented a way to compute the cardinality of a groupoid ---
a category where every morphism has an inverse, so all the morphisms
describe ``symmetries''. The idea is that the more symmetries an object
has, the smaller it is. Applying this to the above example, where our
category has one object, and this object has 2 symmetries, one gets
\(1/2\). If this seems strange, try the explanation in
\protect\hyperlink{week147}{``Week 147''}.

Later James Dolan took this idea, generalized it to a large class of
spaces that don't necessarily come from groupoids, and called the result
``homotopy cardinality''. We wrote a paper about this.

What Leinster has done is generalize the idea in another direction: from
groupoids to categories. The cool thing is that his generalization
matches the Euler characteristic of spaces coming from categories (when
that's well-defined, without divergent series) and the homotopy
cardinality of spaces coming from groupoids (when that's well-defined).

Of course he doesn't call his thing the ``size'' of a category; he calls
it the ``Euler characteristic'' of a category.

Our conversation over coffee was mainly about me trying to understand
the formula he used to define this Euler characteristic. One thing I
learned is that the ``category algebra'' idea plays a key role here.

It's a simple idea. Given a category \(X\), the category algebra
\(C[X]\) consists of all formal complex linear combinations of morphisms
in \(X\). To define the multiplication in this algebra, it's enough to
define the product \(fg\) whenever \(f\) and \(g\) are morphisms in our
category. If the composite of \(f\) and \(g\) is defined, we just let
\(fg\) be this composite. If it's not, we set \(fg = 0\).

Mathematicians seem to be most familiar with the category algebra idea
when our category happens to be a group (a category with one object, all
of whose morphisms are invertible). Then it's called a ``group
algebra''.

Category algebras are also pretty familiar when our category is a
``quiver'' (a category formed from a directed graph by freely throwing
in formal composites of edges). Then it's called a ``quiver algebra''.
These are really cool --- especially if our graph becomes a Dynkin
diagram, like this: \[
  \begin{tikzpicture}
    \foreach \x in {0,1,2,3,4,5,6}
      \node at (\x,0) {$\bullet$};
    \node at (4,1) {$\bullet$};
    \draw[thick] (0,0) to (6,0);
    \draw[thick] (4,0) to (4,1);
  \end{tikzpicture}
\] when we ignore the directions of the edges. To see what I mean, try
item E in \protect\hyperlink{week230}{``Week 230''}, where I sketch how
these quiver algebras are related to quantum groups. There's a lot more
to say about this, but not today!

In combinatorics, category algebras are familiar when our category is a
``partially ordered set'', or ``poset'' for short (a category with at
most one morphism from any given object to any other). These category
algebras are usually called ``incidence algebras''.

In physics, Alain Connes has given a nice explanation of how Heisenberg
invented ``matrix mechanics'' when he was trying to understand how atoms
jump from one state to another, emitting and absorbing radiation. In
modern language, Heisenberg took a groupoid with \(n\) objects, each one
isomorphic to each other in a unique way. He called the objects
``states'' of a quantum system, and he called the morphisms
``transitions''. Then, he formed its category algebra. The result is the
algebra of \(n \times n\) matrices!

(This might seem like a roundabout way to get to \(n \times n\)
matrices, but Heisenberg \emph{didn't know about matrices} at this time.
They weren't part of the math curriculum for physicists back then!)

Connes has generalized the heck out of Heisenberg's idea, studying the
``groupoid algebras'' of various groupoids.

So, category algebras are all over the place. But for some reason, few
people study all these different kinds of category algebra in a unified
way --- or even \emph{realize} they're all category algebras! I feel
sort of sorry for this neglected concept. That's one reason I was happy
to see it plays a role in Leinster's definition of the Euler
characteristic for categories.

Suppose our category \(X\) is finite. Then, we can define an element of
the category algebra \(C[X]\) which is just the sum of all the morphisms
in \(X\). This is called \(\zeta\), or the ``zeta function'' of our
category. Sometimes \(\zeta\) has an inverse, and then this inverse is
called \(\mu\), or the ``MÃ¶bius function'' of our category.

Actually, these terms are widely used only when our category is a poset,
thanks to the work of Gian-Carlo Rota, who used these ideas in
combinatorics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Gian-Carlo Rota, ``On the foundations of combinatorial theory I:
  Theory of MÃ¶bius Functions'', \emph{Zeitschrift fÃ¼r
  Wahrscheinlichkeitstheorie und Verwandte Gebiete} \textbf{2} (1964),
  340--368.
\end{enumerate}

If you want to know what these ideas are good for, check this out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Wikipedia, ``Incidence algebra'',
  \texttt{http://en.wikipedia.org/wiki/Incidence\_algebra}
\end{enumerate}

See the stuff about Euler characteristics in this article? That's a
clue! The relation to the Riemann zeta function and its inverse (the
original ``MÃ¶bius function'') are clearer here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Wikipedia, ``MÃ¶bius inversion formula'',
  \texttt{http://en.wikipedia.org/wiki/M\%C3\%B6bius\_inversion\_formula}
\end{enumerate}

These show up when we think of the whole numbers \(1,2,3,\ldots\) as a
poset ordered by divisibility.

Anyway, Leinster has wisely generalized this terminology to more general
categories. And when \(\zeta ^{-1} = \mu\) exists, it's really easy to
define his Euler characteristic of the category \(X\). You just write
\(\mu\) as a linear combination of morphisms in your category, and sum
all the coefficients in this linear combination!

Unfortunately, there are lots of important categories whose zeta
function is not invertible: for example, any group other than the
trivial group. So, Leinster needs a somewhat more general definition to
handle these cases. I don't feel I deeply understand it, but I'll
explain it, just for the record.

Besides the category algebra \(C[X]\), consisting of linear combinations
of morphisms in \(X\), there's also a vector space consisting of linear
combinations of \emph{objects} in \(X\). Heisenberg would probably call
this ``the space of states'', and call \(C[X]\) the ``algebra of
observables'', since that's what they were in his applications to
quantum physics. Let's do that.

The algebra of observables has an obvious left action on the vector
space of states, where a morphism \(f\colon x \to y\) acts on \(x\) to
give \(y\), and it acts on every other object to give \(0\). In
Heisenberg's example, this is precisely how he let the algebra of
observables act on states.

The algebra of observables also has an obvious \emph{right} action on
the vector space of states, where \(f\colon x \to y\) acts on \(y\) to
give \(x\), and it acts on every other object to give \(0\).

Leinster defines a ``weighting'' on \(X\) to be an element \(w\) of the
vector space of states with \[\zeta w = 1\] Here ``\(1\)'' is the linear
combination of objects where all the coefficients equal \(1\). He also
defines a ``coweighting'' to be an element \(w^*\) in the vector space
of states with \[w^* \zeta = 1\] If \(\zeta\) has an inverse, our
category has both a weighting and a coweighting, since we can solve both
these equations to find \(w\) and \(w^*\). But often there will be a
weighting and coweighting even when \(\zeta\) doesn't have an inverse.
When both a weighting and coweighting exist, the sum of the coefficients
of \(w\) equals the sum of coefficients of \(w^*\) --- and this sum is
what Leinster takes as the ``Euler characteristic'' of the category
\(X\)!

This is a bit subtle, and I don't deeply understand it. But, Leinster
proves so many nice theorems about this ``Euler characteristic'' that
it's clearly the right notion of the size of a category --- or, with a
further generalization he mentions, even an \(n\)-category! And, it has
nice relationships to other ideas, which are begging to be developed
further.

We're still just learning to count.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} For more discussion, go to the
\href{http://golem.ph.utexas.edu/category/2007/02/this_weeks_finds_in_mathematic_5.html}{\(n\)-Category
CafÃ©}.
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The University of Toronto is an urban campus, rather grey and chilly at
this time of year. Nestled amid other buildings at the southern edge of
campus, the Fields Institute doesn't stand out.

But inside, you'll find a spacious and peaceful atrium, with a fireplace
to keep you cozy. A spiral staircase winds up three or four stories.
Hanging from the ceiling far above is a 3d model of the
``\(120\)-cell'': a beautiful 4-dimensional solid with 120 regular
dodecahedra as faces.

This is a tribute to the great geometer H. S. M. Coxeter, master of
polyhedra, who worked for 60 years at the University of Toronto after
studying philosophy at Cambridge under Wittgenstein. You'll also find
Coxeter's piano sitting at the base of the spiral staircase.
\[\includegraphics[max width=0.65\linewidth]{../images/fields_piano.jpg}\]
It's out of tune, but resting on it there's a wonderful strange portrait
of him playing the very same piano --- at the age of three. He looks a
bit like the child Mozart. And indeed, at the age of 12 Coxeter composed
an opera!

The Fields Institute specializes in having conferences, and it's a great
place for that. A friendly and efficient staff, public workstations,
wireless internet everywhere, a nice little cafe in the back, and the
centerpiece: a large lecture room with 3 double blackboards.
Unfortunately the middle blackboard doesn't stay up --- it's needed that
repair for years, old-timers say. But apart from that, everything is as
close to mathematician's heaven as could be expected.

Eugenia Cheng, Peter May and I ran a workshop at the Fields Institute
from January 9th to 13th:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Higher Categories and Their Applications'',
  \texttt{http://math.ucr.edu/home/baez/fields/}
\end{enumerate}

You can see photos of people and abstracts of their talks at this site.
You can also see PDF files of many of their talks --- and even listen to
talks!

The first day, Tuesday, was all about \(2\)-categories and
\(3\)-categories - ``lower category theory'', you might say. While some
are eagerly sailing into the stratosphere of \(n\)-categories for
general \(n\), or even \(n = \infty\), there's still a lot to understand
for \(n = 2\) and \(3\).

For starters, Tom Leinster spoke about strict \(2\)-categories versus
weak ones (also known as bicategories). It's a famous fact --- a
generalization of Mac Lane's coherence theorem --- that every weak
\(2\)-category \(\mathcal{C}\) is equivalent to a strict one
\(\mathrm{st}(\mathcal{C})\). However, this is true \emph{if} your
notion of equivalence is suitably weak! In short, what we've got is an
inclusion of weak \(3\)-categories:
\[i\colon \mathsf{Strict2Cat} \to \mathsf{Weak2Cat}\] where \[
  \begin{aligned}
    \mathsf{Strict2Cat} = [
    &\mbox{strict $2$-categories},
  \\&\mbox{strict $2$-functors},
  \\&\mbox{strict natural transformations},
  \\&\mbox{modifications}
    ]
  \end{aligned}
\] and \[
  \begin{aligned}
    \mathsf{Weak2Cat} = [
    &\mbox{weak $2$-categories},
  \\&\mbox{weak $2$-functors},
  \\&\mbox{weak natural transformations},
  \\&\mbox{modifications}
    ]
  \end{aligned}
\] Every object in \(\mathsf{Weak2Cat}\) is equivalent to one in the
image of this inclusion. But, the inclusion is not itself an
equivalence!

Steve Lack spoke about Gray-categories, also known as ``semistrict''
\(3\)-categories --- a convenient middle ground between the strict
\(3\)-categories and the weak ones (also known as tricategories).

The idea here goes back to John Gray. In the usual Cartesian product of
categories, whenever we have a morphism \[f\colon A \to B\] in the first
category and a morphism \[f'\colon A' \to B'\] in the second, we get a
commuting square: \[
  \begin{tikzcd}[row sep=huge]
    (A,A') \rar["{(f,1)}"] \dar[swap,"{(1,f')}"]
    & (B,A') \dar["{(1,f')}"]
  \\(A,B') \rar[swap,"{(f,1)}"]
    & (B,B')
  \end{tikzcd}
\] in their Cartesian product. The same is true for the Cartesian
product of \(2\)-categories. But in the ``Gray'' tensor product of
\(2\)-categories, these squares commute only up to 2-isomorphism. And,
we can use this weakening of the Cartesian product to weaken the concept
of strict \(3\)-category, and obtain the concept of ``semistrict''
\(3\)-category, or ``Gray-category''.

Here's how. A strict \(3\)-category is a gizmo with:

\begin{itemize}
\tightlist
\item
  a bunch of objects,
\item
  for any pair of objects \(x,y\), a \(2\)-category
  \(\operatorname{Hom}(x,y)\),
\end{itemize}

and

\begin{itemize}
\item
  for any triple of objects \(x,y,z\), a \(2\)-functor
  \[\circ\colon \operatorname{Hom}(x,y) \times \operatorname{Hom}(y,z) \to \operatorname{Hom}(x,z)\]
  such that
\item
  associativity and the unit laws hold.
\end{itemize}

A semistrict \(3\)-category is a gizmo with:

\begin{itemize}
\tightlist
\item
  a bunch of objects,
\item
  for any pair of objects \(x,y\), a \(2\)-category
  \(\operatorname{Hom}(x,y)\),
\end{itemize}

and

\begin{itemize}
\item
  for any triple of objects \(x,y,z\), a \(2\)-functor
  \[\circ\colon \operatorname{Hom}(x,y) \otimes \operatorname{Hom}(y,z) \to \operatorname{Hom}(x,z)\]
  where \(\otimes\) is the Gray tensor product, such that
\item
  associativity and the unit laws hold.
\end{itemize}

The slight difference is very important. Not every weak \(3\)-category
is equivalent to a strict one. But, they're all equivalent to semistrict
ones!

There are, alas, some deficiencies in the semistrict world, which Steve
Lack has recently noted:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Steve Lack, ``\(\mathsf{Bicat}\) is not triequivalent to
  \(\mathsf{Gray}\)'', available as
  \href{https://arxiv.org/abs/math.CT/0612299}{\texttt{math.CT/0612299}}.
\end{enumerate}

To understand this, you may need a little warmup. Given strict
\(2\)-categories \(\mathcal{B}\) and \(\mathcal{C}\) there's a strict
\(2\)-category \(\operatorname{Hom}(\mathcal{B},\mathcal{C})\) such that
strict \(2\)-functors \[\mathcal{A} \times \mathcal{B} \to \mathcal{C}\]
are in natural 1-1 correspondence with strict \(2\)-functors
\[\mathcal{A} \to \operatorname{Hom}(\mathcal{B},\mathcal{C})\] Here's
what \(\operatorname{Hom}(\mathcal{B},\mathcal{C})\) is like:

\begin{itemize}
\tightlist
\item
  \(\operatorname{Hom}(\mathcal{B},\mathcal{C})\) has strict
  \(2\)-functors from \(\mathcal{B}\) to \(\mathcal{C}\) as objects,
\item
  strict natural transformations between these as morphisms,
\item
  modifications between these as \(2\)-morphisms.
\end{itemize}

We can pose the same question with the Gray tensor product replacing the
Cartesian product. Given \(2\)-categories \(\mathcal{B}\) and
\(\mathcal{C}\) there's a \(2\)-category \([\mathcal{B},\mathcal{C}]\)
such that strict \(2\)-functors
\[\mathcal{A} \otimes \mathcal{B} \to \mathcal{C}\] are in natural 1-1
correspondence with strict \(2\)-functors
\[\mathcal{A} \to [\mathcal{B},\mathcal{C}]\] Here's what
\([\mathcal{B},\mathcal{C}]\) is like:

\begin{itemize}
\tightlist
\item
  \([\mathcal{B},\mathcal{C}]\) has strict \(2\)-functors from
  \(\mathcal{B}\) to \(\mathcal{C}\) as objects,
\item
  weak natural transformations between these as morphisms,
\item
  modifications between these as \(2\)-morphisms.
\end{itemize}

This suggests that we consider a \(3\)-category intermediate between
\(\mathsf{Strict2Cat}\) and \(\mathsf{Weak2Cat}\). It's called
\(\mathsf{Gray}\), and it goes like this: \[
  \begin{aligned}
    \mathsf{Gray} = [
    &\mbox{strict $2$-categories},
  \\&\mbox{strict $2$-functors},
  \\&\mbox{weak natural transformations},
  \\&\mbox{modifications}
    ]
  \end{aligned}
\] We have inclusions of weak \(3\)-categories:
\[\mathsf{Strict2Cat} \to \mathsf{Gray} \to \mathsf{Weak2Cat}\] and Lack
shows, not only that the second inclusion fails to be an equivalence,
but that there's \emph{no} equivalence between \(\mathsf{Gray}\) and
\(\mathsf{Weak2Cat}\).

All this suggests that for some purposes we really need to face up to
weak \(2\)-categories: the strict and semistrict setups aren't flexible
enough for every job. The same is undoubtedly true at the \(3\)-category
level --- and that's where the next talk comes in!

In the next talk, Nick Gurski spoke about weak \(3\)-categories. He
wrote his thesis about these, and I'm starting to really wish he'd put
his thesis on the arXiv, so everyone can see how cool it is and learn
more about \(3\)-categories. But, I guess he wants to perfect it.

In his talk, Nick not only explained the definition of weak
\(3\)-category, which is famously complicated --- he did his best to
convince us that we could reinvent this definition ourselves if we
tried! Then he went ahead and discussed various proofs that every weak
\(3\)-category is equivalent to a semistrict one.

An interesting theme of all three talks was the idea of treating the
``strictification'' functor implicit in Mac Lane's coherence theorem:
\[\mathsf{st}\colon \mathsf{Weak2Cat} \to \mathsf{Strict2Cat}\] as the
left adjoint of the inclusion
\[i\colon \mathsf{Strict2Cat} \to \mathsf{Weak2Cat}\] where now we think
of both \(\mathsf{Strict2Cat}\) and \(\mathsf{Weak2Cat}\) as mere
\(1\)-categories. You can read more about this idea here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Miles Gould, ``Coherence for categorified operadic theories'',
  available as
  \href{https://arxiv.org/abs/math.CT/0607423}{\texttt{math.CT/0607423}}.
\end{enumerate}

On Tuesday night, Mike Shulman gave an introduction to model categories,
which are a tool developed by Quillen in the late 1960s to unify
homotopy theory and homological algebra. If you want to understand the
basics of model categories, you should probably start by listening to
his talk, and then read this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  W. G. Dwyer and J. Spalinski, ``Homotopy theories and model
  categories'', available at
  \texttt{http://hopf.math.purdue.edu/Dwyer-Spalinski/theories.pdf}
\end{enumerate}

For more references, try \protect\hyperlink{week170}{``Week 170''}.

Here's the rough idea:

In homotopy theory we study topological spaces; in homological algebra
we study chain complexes. But, in both cases we study them in a funny
way. There's a category of topological spaces and continuous maps, and
there's a category of chain complexes and chain maps, but these
categories are not everything that counts. Normally, we say two objects
in a category are ``the same'' if they're isomorphic. But in this case
we often use a weaker concept of equivalence!

In homotopy theory, we say a map between spaces \[f\colon X \to Y\] is a
``weak homotopy equivalence'' if it induces isomorphisms on homotopy
groups: \[\pi_n(f)\colon \pi_n(X) \to \pi_n(Y)\] In homological algebra,
we say a map between chain complexes \[f\colon X \to Y\] is a
``quasi-isomorphism'' if it induces isomorphisms on homology groups:
\[H_n(f)\colon H_n(X) \to H_n(Y)\] Model category theory formalizes this
by speaking of a category \(\mathcal{C}\) equipped with a classes of
morphisms called ``weak equivalences''. We can formally invert these and
get a new category \(\mathrm{Ho}(\mathcal{C})\) where the weak
equivalences are isomorphisms: this is called the ``homotopy category''
or ``derived category'' of our model category. But this loses
information, so it's often good \emph{not} to do this.

In a model category, we also have a class of morphisms called
``fibrations'', which you should imagine as being like fiber bundles.
Dually, we have a class of morphisms called ``cofibrations'', which you
should imagine as well-behaved inclusions, like the inclusion of the
closed unit interval in the real line --- not the inclusion of the
rationals into the real line.

Finally, the weak equivalences, fibrations and cofibrations satisfy some
axioms that make them interlock in a powerful way. These axioms are a
bit mind-numbing at first glance, so I won't list them. But, they
encapsulate a lot of wisdom about homotopy theory and homological
algebra!

On Wednesday the talks were about \(n\)-categories and homotopy theory.
I kicked them off with a general introduction to the ``Homotopy
Hypothesis'': Grothendieck's idea that homotopy theory was secretly
about \(\infty\)-groupoids --- that is, \(\infty\)-categories where all
the \(j\)-morphisms have weak inverses.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Baez, ``The homotopy hypothesis'',
  \texttt{http://math.ucr.edu/home/baez/homotopy/}
\end{enumerate}

Part of the idea is that if you hand me a space \(X\), I can cook up an
\(\infty\)-groupoid which has:

\begin{itemize}
\tightlist
\item
  points of \(X\) as objects,
\item
  paths in \(X\) as morphisms,
\item
  homotopies between paths in \(X\) as \(2\)-morphisms,
\item
  homotopies between homotopies between paths in \(X\) as
  \(3\)-morphisms,
\item
  etc\ldots{}
\end{itemize}

This is called the ``fundamental \(\infty\)-groupoid of \(X\)''.

But another part of the idea is that if you hand me a model category
\(\mathcal{C}\), I can cook up an \(\infty\)-category which has:

\begin{itemize}
\tightlist
\item
  nice objects of \(\mathcal{C}\) as objects,
\item
  morphisms in \(\mathcal{C}\) as morphisms,
\item
  homotopies between morphisms in \(\mathcal{C}\) as \(2\)-morphisms,
\item
  homotopies between homotopies between morphisms in \(\mathcal{C}\) as
  \(3\)-morphisms,
\item
  etc\ldots.
\end{itemize}

The basic idea here is simple: we're studying homotopies between
homotopies between\ldots{} and so on.

(But, there's a little technicality --- this ``nice object'' business.
An object of \(\mathcal{C}\) is ``fibrant'' if its unique morphism from
the initial object is a fibration, and ``cofibrant'' if its unique
morphism to terminal object is a cofibration. Objects with both
properties are what I'm calling ``nice''. For example, in the category
of topological spaces, the ``cell complexes'' (made by gluing balls
together) are nice. In the category of chain complexes, the
``projective'' chain complexes are nice. Only for these nice objects do
homotopies work as well as you'd hope. Luckily, every object in
\(\mathcal{C}\) is weakly equivalent to one of these nice ones.)

The interesting thing about the above \(\infty\)-category is that it's
an ``\((\infty,1)\)-category'', meaning that all its \(j\)-morphisms are
weakly invertible for \(j > 1\). For example, maps between spaces aren't
necessarily invertible, even up to homotopy --- but homotopies are
always invertible.

We can define ``\((\infty,k)\)-categories'' for any \(k\) in the same
way, and we see that \((\infty,0)\)-categories are just
\(\infty\)-groupoids. So, the Homotopy Hypothesis reveals the beginning
of what might be a very nice pattern. Roughly:

\begin{itemize}
\tightlist
\item
  Topological spaces, as studied in homotopy theory, are secretly
  \((\infty,0)\)-categories.
\item
  Model categories, as studied in homotopy theory, are secretly
  \((\infty,1)\)-categories.
\item
  ????, as studied in homotopy theory (not yet?), are secretly
  \((\infty,2)\)-categories.
\item
  Etcetera\ldots.
\end{itemize}

Presumably the ???? should be filled in with something like ``model
\(2\)-categories'', with the primordial example being the \(2\)-category
of model categories, just as the primordial example of a model category
is the category of spaces.

But, there's only been a little study of this sort of ``meta-homotopy
theory'' so far. For example:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Julie Bergner, ``Three models for the homotopy theory of homotopy
  theories'', available as
  \href{http://arxiv.org/abs/math.AT/0504334}{\texttt{math.AT/0504334}}.
\end{enumerate}

After my talk, Simona Paoli spoke about her work on turning the homotopy
hypothesis from a dream into a reality:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Simona Paoli, ``Semistrict models of connected \(3\)-types and
  Tamsamani's weak \(3\)-groupoids'', available as
  \href{http://arxiv.org/abs/math.AT/0607330}{\texttt{math.AT/0607330}}.
\item
  Simona Paoli, ``Semistrict Tamsamani \(n\)-groupoids and connected
  \(n\)-types'', available as
  \href{http://arxiv.org/abs/math.AT/0701655}{\texttt{math.AT/0701655}}.
\end{enumerate}

Eugenia Cheng then spent the afternoon leading us through another
approach:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  Clemens Berger, ``A cellular nerve for higher categories'', available
  at \texttt{http://citeseer.ist.psu.edu/383423.html}
\item
  Denis-Charles Cisinski, ``Batanin higher groupoids and homotopy
  types'', available as
  \href{http://arxiv.org/abs/math.AT/0604442}{\texttt{math.AT/0604442}}.
\end{enumerate}

I would love to explain this stuff, mainly as an excuse for learning it
better! But alas, I'm getting a bit tired and we're only on the second
day of the workshop\ldots{} I must hurry on.

On Wednesday evening, Peter May spoke about some applications of weak
\(2\)-categories that appear in his new book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Peter May and J. Sigurdsson, \emph{Parametrized Homotopy Theory},
  American Mathematical Society, 2006.
\end{enumerate}

The rough idea is that we have a weak \(2\)-category with:

\begin{itemize}
\tightlist
\item
  spaces as objects,
\item
  spectra over \(X \times Y\) as morphisms from \(X\) to \(Y\),
\item
  maps between spectra over \(X \times Y\) as \(2\)-morphisms.
\end{itemize}

Lots of ideas from ``parametrized'' stable homotopy theory are neatly
encoded as results about this \(2\)-category.

Thursday was all about \((\infty,1)\)-categories. The first talk was by
Mike Shulman, who gave a nice intuitive treatment of AndrÃ© Joyal's
approach to \((\infty,1)\)-categories.

In 1957, Daniel Kan figured out a nice way to describe
\(\infty\)-groupoids as simplicial sets with a certain property: now
they're called ``Kan complexes''. They're very popular among homotopy
theorists. You can read about them here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Paul G. Goerss and J. F. Jardine, \emph{Simplicial Homotopy Theory},
  BirkhÃ¤user, Basel, 1999.
\end{enumerate}

Given this, it's not so surprising that we can describe
\((\infty,1)\)-categories as simplicial sets with some more general
property. In fact this was done by Boardmann and Vogt back in 1973. In
the last decade or so, Joyal has developed an enormous body of results
about these \((\infty,1)\)-categories, which he calls
``quasicategories''. He is writing a book on the subject, which is not
quite done yet --- but it's already enormously influenced the state of
higher category theory, and I expect it will continue to do so.

Next Julie Bergner compared different approaches to
\((\infty,1)\)-categories. I mentioned a while back that she's one of
the few people who has worked hard on ``meta-homotopy theory''. That was
very much in evidence in her talk.

She began by describing a bunch of different definitions of
\((\infty,1)\)-category. But then she showed these definitions weren't
really so different! For each definition, she constructed a model
category of all \((\infty,1)\)-categories of that type. And then, she
sketched the proof that all these model categories were ``Quillen
equivalent''.

For details, listen to her talk or try this paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Julie Bergner, A survey of \((\infty,1)\)-categories, available as
  \href{http://arxiv.org/abs/math.AT/0610239}{\texttt{math.AT/0610239}}.
\end{enumerate}

In the afternoon, AndrÃ© Joyal spoke about quasicategories. I urge you to
listen to his talk and also the minicourse he later gave on this
subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  AndrÃ© Joyal, ``Graduate course on basic aspects of quasicategories'',
  \texttt{http://www.fields.utoronto.ca/audio/\#crs-quasibasic}
\end{enumerate}

I can't possibly summarize this stuff! It basically amounts to taking
the whole of category theory and extending it to quasicategories.

(Well, I guess I just summarized it, but\ldots.)

After Joyal's talk, Joshua Nichols-Barrer spoke about using
quasicategories as an approach to understanding ``stacks'', which are
like sheaves, only categorified.

In the evening, Kathryn Hess spoke about some work she's doing with
Steve Lack, on parallel transport in bundles of bicategories. Sounds
like physics, but they came to the subject from a completely different
motivation!

Finally, Dorette Pronk spoke about weak \(2\)-categories and weak
\(3\)-categories of fractions. The notion of a ``calculus of fractions''
goes back at least to the work of Gabriel and Zisman in 1967:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  P. Gabriel and M. Zisman, \emph{Categories of Fractions and Homotopy
  Theory}, Springer-Verlag, Berlin, 1967.
\end{enumerate}

Say you have a category and you want to throw in formal inverses to some
morphisms. Well, you can do it! But in general, the morphisms in the
resulting category will be arbitrarily long ``zig-zag'' diagrams in your
original category, like this:
\[X_1 \rightarrow X_2 \leftarrow X_3 \rightarrow X_4 \leftarrow X_5 \rightarrow X_6\]
The arrows pointing backwards are the ones you threw in formal inverses
for.

This is a nuisance! But luckily, in nice cases, you only need to use
zig-zags of length two. This is what a ``calculus of fractions''
achieves. A classic example is when you start with a model category
\(\mathcal{C}\), and you throw in formal inverses for the weak
equivalences to get the ``homotopy category''
\(\mathrm{Ho}(\mathcal{C})\).

Dorette Pronk has been looking at how all this generalizes when you have
a weak \(2\)-category or weak \(3\)-category and you throw in
\emph{weak} inverses to some morphisms. This has some interesting
applications to stacks:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  Dorette A. Pronk, ``Etendues and stacks as bicategories of
  fractions'', \emph{Compositio Mathematica} \textbf{102} (1996),
  243--303. Also available at
  \texttt{http://www.numdam.org/numdam-bin/recherche?h=nc\&id=CM\_1996\_\_102\_3\_243\_0}
\end{enumerate}

Dorette's talk ended at 9pm, and everyone went home and collapsed after
a hard day's work. Actually not: a bunch of us went out and partied! One
of the great things about working on \(n\)-categories is the sense of
camaraderie among the small crowd that does this.

Friday's talks were about higher gauge theory. Since I've discussed this
many times here, I'll be terse. Alissa Crans explained Lie \(2\)-groups
and Lie \(2\)-algebras, and then Danny Stevenson explained his work on
connections, \(2\)-connections and Schreier theory (see
\protect\hyperlink{week223}{``Week 223''}). In the afternoon, Urs
Schreiber described his ideas on higher-dimensional parallel transport
and local trivializations, with a little help from Toby Bartels.

Friday evening, we heard talks from Simon Willerton (on Hopf monads) and
Igor Bakovic (on \(2\)-bundles). Quite an evening! Bakovic is an
impressive young Croatian fellow who seems to have taught himself
\(n\)-categories. We were all horrified when it became clear he had over
30 pages of transparencies, but his talk was actually quite nice.

And if you like higher-dimensional diagrams anywhere near as much as I
do, you've got to take a look at Willerton's slides:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Simon Willerton, ``The diagrammatics of Hopf monads'',
  \texttt{http://math.ucr.edu/home/baez/fields/willerton/}
\end{enumerate}

Again the talks ended at 9pm.

Finally, on Saturday morning, Aaron Lauda spoke about Frobenius algebras
and their relation to Khovanov homology:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Aaron Lauda, ``Frobenius algebras, quantum topology and higher
  categories'', available at
  \texttt{http://www.math.columbia.edu/\textasciitilde{}lauda/talks/Fields/}
\end{enumerate}

Urs Schreiber then wrapped things up with a talk about the quantization
of strings from a higher category viewpoint. You can get a good feeling
for this from his blog entries at the
\href{http://golem.ph.utexas.edu/category/}{\(n\)-Category CafÃ©}, which
are all listed on
\href{http://math.ucr.edu/home/baez/fields/index.html\#urs}{my webpage
for this workshop}.

Speaking of the \(n\)-Category CafÃ© --- after the workshop ended, Bruce
Bartlett interviewed Urs and me about this blog, which we run together
with David Corfield. You can see the interview here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  John Baez and Urs Schreiber, ``Interview by Bruce Bartlett'',
  \texttt{http://math.ucr.edu/home/baez/interview2.html}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} For more discussion, go to the
\href{http://golem.ph.utexas.edu/category/2007/02/this_weeks_finds_in_mathematic_6.html}{\(n\)-Category
CafÃ©}.
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I've been gearing up to tell a big, wonderful story about the quest to
generalize quantum knot invariants to higher dimensions by categorifying
the theory of quantum groups. This story began at least 14 years ago! I
talked about it way back in \protect\hyperlink{week2}{``Week 2''}.

At the time, Louis Crane and Igor Frenkel had just come out with a draft
of a paper called ``Hopf categories and their representations'', which
began tackling this problem. This is roughly when Crane invented the
word ``categorification'' --- and their paper is a big part of why I got
interested in \(n\)-categories.

The subject moved rather slowly until Frenkel's student Mikhail Khovanov
got into the game and categorified the Jones polynomial --- a famous
invariant of knots related to the very simplest quantum group, the one
called ``quantum \(\mathrm{SU}(2)\)''. Now categorifying knot theory is
a hot topic.

James Dolan, Todd Trimble and I have been chewing away on this subject
from a quite different angle, which may ultimately turn out to be the
same --- or at least related. In the process, we've needed to learn,
reinvent or remodel a lot of classical work on group theory, incidence
geometry, and combinatorics. It's been a great adventure, and it's far
from over.

I'm dying to explain some of this stuff, and I'll start soon. But first
I need to talk about something less pleasant: the troubles with
fundamental physics.

If you care at all about physics, you've probably heard about these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Peter Woit, \emph{Not Even Wrong: The Failure of String Theory and the
  Continuing Challenge to Unify the Laws of Physics}, Basic Books, New
  York, 2006.
\item
  Lee Smolin, \emph{The Trouble With Physics: The Rise of String Theory,
  the Fall of a Science, and What Comes Next}, Houghton Mifflin, New
  York, 2006.
\end{enumerate}

I won't ``review'' these books. I'll just talk about some points they
raise --- in a very nontechnical way.

Their importance is that they explain the problems of string theory to
the large audience of people who get their news about fundamental
physics from magazines and popular books. Experts were already aware of
these problems, but in the popular media there's always been a lot of
hype, which painted a much rosier picture. So, casual observers must
have gotten the impression that physics was always on the brink of a
Theory of Everything\ldots{} but mysteriously never reaching it. These
books correct that impression.

In fact, string theory still hasn't reached the stage of making any firm
predictions. For the last few decades, astrophysicists have been making
amazing discoveries in fundamental physics: dark matter, dark energy,
neutrino oscillations, maybe even cosmic inflation in the very early
universe! Soon the Large Hadron Collider will smash particles against
each other hard enough to see the Higgs boson --- or not. With luck, it
may even see brand new particles. But about all this, string theory has
had little to say.

To get actual predictions, practical physicists sometimes build
``string-inspired'' scenarios. These scenarios aren't \emph{derived}
from string theory: to get specific predictions, they have to throw in
lots of extra assumptions. For example, since string theory involves
supersymmetry, string theorists resort to supersymmetric versions of the
Standard Model to guess what the Large Hadron Collider might see. But
the simplest supersymmetric version of the Standard Model involves over
100 undetermined parameters! Even the particles we actually see are put
in by hand, not derived from string theory. If it turns out we see some
other particles, we can just stick those in too.

Someday this situation may change, but it's dragged on for a while now.
There's no reason why theoretical physics should always move fast. The
universe has taken almost 14 billion years to reach its current state of
self-knowledge --- what's a few more decades? But, coming after an era
of incredibly rapid progress stretching from 1905 to 1983, the current
period of stagnation feels like an eternity. So, physicists are getting
a bit desperate. This has led to some strange behavior.

For example, some people have tried to refute the claim that string
theory makes no testable predictions by arguing that it predicts the
existence of gravity! This is better known as a ``retrodiction''.

Others say that since string theory requires extra assumptions to make
definite predictions about our universe, we should --- instead of making
some assumptions and using them to predict something --- study the space
of \emph{all possible} extra assumptions. For example, there are lots of
Calabi-Yau manifolds that could serve as the little curled-up dimensions
of spacetime, and lots of ways we could stick D-branes here or there,
etcetera.

This space of all possible extra assumptions is called the
``Landscape''. Since it's vaguely defined, the main things we know about
it are:

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
  it's big,
\item
  it keeps growing as string theorists come up with new ideas,
\item
  nobody has yet found a point in it that matches our universe.
\end{enumerate}

Despite this, or perhaps because of it, the Landscape has been the
subject of many discussions. Often these devolve into arguments about
the ``anthropic principle''. Roughly, this says that if the universe
were really different, we wouldn't be having this argument --- so it
must be like it is!

One can in fact draw some conclusions from the anthropic principle. But
it's really just the low-budget limit of experimental physics. You can
always get more conclusions from doing more experiments. The experiment
where you just check to see if you're alive is really cheap --- but you
don't learn much from it.

(Of course I'm oversimplifying things for comic effect, but usually
people take the opposite approach, overcomplicating this stuff to make
it sound more profound than it is.)

Serious string theorists are mostly able to work around this tomfoolery,
but it exerts a demoralizing effect. So, when Woit and Smolin came out
with their books, a lot of tempers snapped, and a lot of strange
arguments were applied against them.

For example, one popular argument was ``Okay, buster --- can you do
better?'' The idea here seems to be that until you know a solution to
the problems faced by string theory, you shouldn't point out these
problems --- at least not publicly. This goes against my experience:
hard problems tend to get solved only \emph{after} lots of people openly
admit they exist.

Another closely related argument was ``String theory is the only game in
town.'' Until some obviously better theory shows up, we should keep
working on string theory.

It's true there's no obviously better theory than string theory. Loop
quantum gravity, in particular, has problems that are just as serious as
string theory.

But, the ``only game in town'' argument is still flawed.

Once I drove through Las Vegas, where there really \emph{is} just one
game in town: gambling. I stopped and took a look. I saw the big fancy
casinos. I saw the glazed-eyed grannies feeding quarters into slot
machines, hoping to strike it rich someday. It was clear: the odds were
stacked against me. But, I didn't respond by saying ``Oh well --- it's
the only game in town'' and starting to play.

Instead, I \emph{left} that town.

It's no good to work on string theory with a glum attitude like ``it's
the only game in town.'' There are lots of other wonderful things for
theoretical physicists to do. Things where your work has a good chance
of matching experiment\ldots{} or things where you take a huge risk by
going out on your own and trying something new.

Indeed, if following the crowd were the name of the game, string theory
might never have been invented in the first place. It didn't fall from
the sky fully formed, obviously better than its competitors. A handful
of people took a big chance by working on it for many years before it
proved its worth.

In his book, Lee Smolin argues that physics is in the midst of a
scientific revolution, and that these times demand people who don't just
follow fashion:

\begin{quote}
The point is that different kinds of people are important in normal and
revolutionary science. In the normal periods, you need only people who,
regardless of their degree of imagination (which may well be high), are
really good at working with the technical tools --- let us call them
master craftspeople. During revolutionary periods, you need seers, who
can peer ahead into the darkness.
\end{quote}

He later regretted this way of putting it, and I think rightly so. The
term ``seer'' suggests that some people have a better-than-average
ability to see the right answers to profound questions. This may be
true, but it's hard to tell ahead of time who is a seer and who is not.
Smolin later wrote:

\begin{quote}
Here is a metaphor due to Eric Weinstein that I would have put in the
book had I heard it before. Let us take a different twist on the
landscape of theories and consider the landscape of possible ideas about
post standard model or quantum gravity physics that have been proposed.
Height is proportional to the number of things the theory gets right.
Since we dont have a convincing case for the right theory yet, that is a
high peak somewhere off in the distance. The existing approaches are
hills of various heights that may or may not be connected across some
ridges and high valleys to the real peak. We assume the landscape is
covered by fog so we cant see where the real peak is, we can only feel
around and detect slopes and local maxima.

Now to a rough approximation, there are two kinds of scientists --- hill
climbers and valley crossers. Hill climbers are great technically and
will always advance an approach incrementally. They are what you want
once an approach has been defined, i.e.~a hill has been discovered, and
they will always go uphill and find the nearest local maximum. Valley
crossers are perhaps not so good at those skills, but they have great
intuition, a lot of serendipity, the ability to find hidden assumptions
and look at familiar topics new ways, and so are able to wander around
in the valleys, or cross exposed ridges, to find new hills and
mountains.

I used craftspeople vs.~seers for this distinction, Kuhn referred to
normal science vs.~revolutionary science, but the idea was the same.

With the scene set, here is my critique. First, to progress, science
needs a mix of hill climbers and valley crossers. The balance needed at
any one time depends on the problem. The more foundational and risky a
problem is the more the balance needs to be shifted towards valley
crossers. If the landscape is too rugged, with too many local maxima,
and there are too many hill climbers vs.~valley crossers, you will end
up with a lot of hill climbers camped out on the tops of hills, each
group defending their hills, with not enough valley crossers to cross
those perilous ridges and swampy valleys to find the real mountain.

This is what I believe is the situation we are in. And --- and this is
the point of Part IV {[}of the book{]} --- we are in it, because science
has become professionalized in a way that takes the characteristics of a
good hill climber as representative of what is a good, or promising
scientist. The valley crossers we need have been excluded, or pushed to
the margins where they are not supported or paid much attention to.

My claim is then 1) we need to shift the balance to include more valley
crossers, and 2) this is easy to do, if we want to do it, because there
also are criteria that can allow us to pick out who is worthy of
support. They are just different criteria.
\end{quote}

This is a good analysis, but it leaves out one thing: most ``valley
crossers'' get stuck wandering around in valleys. Even those who succeed
once are likely to fail later: think of Einstein's long search for a
unified field theory, or SchrÃ¶dinger's ``unitary field theory''
involving a connection with torsion, or Heisenberg's nonlinear spinor
field theory, or Kelvin's vortex atoms. It's not surprising these
geniuses spent a lot of time on failed theories --- what's surprising is
their successes.

So, failure is an unavoidable cost of doing business, and encouraging
more ``valley crossers'' or ``risk takers'' will inevitably look like
encouraging more failures.

Unfortunately, the alternative is even more risky. If everyone pursues
the same approach, we'll all succeed or fail together --- and chances
are we'll fail. The reason for backing some risk takers is that it
``diversifies our portfolio''. It reduces overall risk by increasing the
chance that \emph{someone} will succeed.

(It's no coincidence that Eric Weinstein, mentioned above by Smolin,
works as an investment banker. He's also a student of Raoul Bott --- but
that's another story!)

Near the end of his book, Woit quotes the mathematican Michael Atiyah,
who also seems to raise the possibility that we need some more
risk-taking:

\begin{quote}
If we end up with a coherent and consistent unified theory of the
universe, involving extremely complicated mathematics, do we believe
that this represents ``reality''? Do we believe that the laws of nature
are laid down using the elaborate algebraic machinery that is now
emerging in string theory? Or is it possible that nature's laws are much
deeper, simple yet subtle, and that the mathematical description we use
is simply the best we can do with the tools we have? In other words,
perhaps we have not yet found the right language or framework to see the
ultimate simplicity of nature.
\end{quote}

Most people who read these words and try to find this ``right
framework'' will fail. But, we can hope that someday a few succeed.

For the fascinating tale of SchrÃ¶dinger's ``unitary field theory'', see
this nice book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Walter Moore, \emph{SchrÃ¶dinger: His Life and Thought}, Cambridge U.
  Press, Cambridge, 1989.
\end{enumerate}

For more about the search for unified field theories in early 20th
century, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Hubert F. M Goenner, ``On the history of unified field theories'',
  \emph{Living Reviews of Relativity} \textbf{7}, (2004), 2. Available
  at \texttt{http://www.livingreviews.org/lrr-2004-2}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank Eugenia Cheng and Eugene Lerman for catching
mistakes. For more discussion, go to the
\href{http://golem.ph.utexas.edu/category/2007/02/this_weeks_finds_in_mathematic_7.html}{\(n\)-Category
CafÃ©}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Apart from agreeing with reality it is certainly a magnificent
achievement of pure thought.}

--- Einstein, to Hermann Weyl, about Weyl's attempt to unify gravity and
electromagnetism.
\end{quote}
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Symmetry has fascinated us throughout the ages. Greek settlers in Sicily
may have seen irregular 12-sided crystals of pyrite in Sicily and dreamt
up the regular dodecahedron simply because it was more beautiful, more
symmetrical.
\[\href{www.minerals.net/mineral/sulfides/pyrite/pyrite.htm}{\includegraphics[max width=0.65\linewidth]{../images/pyrite.jpg}}\]
The Alhambra, a Moorish palace in Granada built around 1300, has tile
patterns with at least 13 of the 17 possible symmetry groups:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Branko GrÃ¼nbaum, ``What symmetry groups are present in the
  Alhambra?'', \emph{Notices of the AMS} \textbf{53} (2006), 670--673.
  Also available at
  \texttt{http://www.ams.org/notices/200606/comm-grunbaum.pdf}
\end{enumerate}

You can see some of these patterns here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  ``Moresque tiles'',
  \texttt{http://www.spsu.edu/math/tile/grammar/moor.htm}
\end{enumerate}

Recently, Peter Lu and Paul Steinhardt discovered that Islamic tile
designs also include ``quasicrystals''. A perfectly repetitive tiling
can't have \(5\)-fold symmetry. Nor can a \(3\)-dimensional crystal:
that's why the dodecahedra formed by pyrite aren't regular. But by using
patterns that never quite repeat, the Islamic artists achieved
\emph{approximate} \(5\)-fold symmetry:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Peter J. Lu and Paul J. Steinhardt, ``Decagonal and quasi-crystalline
  tilings in medieval Islamic architecture'', \emph{Science}
  \textbf{315} (2007), 1106--1110.
\end{enumerate}

Here's an example from the
\href{http://archnet.org/library/sites/one-site.tcl?site_id=7544}{I'timad
al-Daula mausoleum} in the Indian city of Agra, built by Islamic
conquerors in 1622 - together with a more mathematical version
constructed by Lu and Steinhardt:
\[\href{http://www.physics.harvard.edu/~plu/publications/Science_315_1106_2007_SOM.pdf}{\includegraphics[max width=0.65\linewidth]{../images/quasicrystal_I'timid_al-Daula.jpg}}\]
Here's another, from the
\href{http://archnet.org/library/sites/one-site.tcl?site_id=8380}{Darb-i
Imam shrine} in Isfahan, Iran, also built in the 1600s:
\[\href{http://www.physics.harvard.edu/~plu/publications/Science_315_1106_2007_SOM.pdf}{\includegraphics[max width=0.65\linewidth]{../images/quasicrystal_Darb-i_Imam.jpg}}\]
This came as a big surprise, since everyone had \emph{thought} that the
math behind quasicrystals was first discovered by Penrose around 1974,
then seen in nature by Shechtman, Blech, Gratias and Cahn in 1983. It
goes to show that the appeal of symmetry, even in its subtler forms, is
very old! It also goes to show that you can make big discoveries just by
looking carefully at what's in front of you.

For more on quasicrystals, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Steven Webber, ``Quasicrystals'',
  \texttt{http://www.jcrystal.com/steffenweber/}
\end{enumerate}

Of course, the appeal of symmetry didn't end with ancient Greeks or
medieval Islamic monarchs. It also seems to have gotten ahold of John
Fry, chief executive of Fry's Electronics --- a chain of retail shops
whose motto is ``Your best buys are always at Fry's''. In 1994 he set up
something called the American Institute of Mathematics. The headquarters
was in a Fry's store in Palo Alto --- not very romantic. But last year,
this institute announced plans to move to a full-scale replica of the
Alhambra!
\[\href{http://aimath.org/about/morganhill.html}{\includegraphics[max width=0.65\linewidth]{../images/aim_alhambra.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Associated Press, ``Silicon valley will get Alhambra-like castle'',
  August 18, 2006. Available at
  \href{http://www.msnbc.msn.com/id/14412387/}{http://www.jcrystal.com/steffenweber/}
\end{enumerate}

And this week, the institute flexed its mighty PR muscles and coaxed
reporters from the New York Times, BBC, Le Monde, Scientific American,
Science News, and so on to write about a highly esoteric advance in our
understanding of symmetry --- a gargantuan calculation involving the Lie
group \(\mathrm{E}_8\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  American Institute of Mathematics, Mathematicians map
  \(\mathrm{E}_8\), \texttt{http://aimath.org/E8}
\end{enumerate}

The calculation is indeed huge. The \emph{answer} takes up 60 gigabytes
of data: the equivalent of 45 days of music in MP3 format. If this
information were written out on paper, it would cover Manhattan!

But what's the calculation \emph{about?} It almost seems a good
explanation of that would \emph{also} cover Manhattan. I took a stab at
it here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  John Baez, ``News about \(\mathrm{E}_8\)'',
  \texttt{http://golem.ph.utexas.edu/category/2007/03/news\_about\_e8.html}
\end{enumerate}

but I only got as far as sketching a description of \(\mathrm{E}_8\) and
some gadgets called \(R\)-polynomials. Then come Kazhdan-Lusztig
polynomials, and Kazhdan-Lusztig-Vogan polynomials\ldots. For more
details, follow the links, especially to the page written by Jeffrey
Adams, who led the project.

In weeks to come, I'll say more about some topics tangentially related
to this calculation --- especially flag varieties, representation theory
and the Weil conjectures. I may even talk about Kazhdan-Lusztig
polynomials!

For starters, though, let's just look at some pretty pictures by John
Stembridge that hint at the majesty of \(\mathrm{E}_8\). Then I'll
sketch the real subject of Weeks to come: symmetry, geometry, and
``groupoidification''.

To warm up to \(\mathrm{E}_8\), let's first take a look at
\(\mathrm{D}_4\), \(\mathrm{D}_5\), \(\mathrm{E}_6\), and
\(\mathrm{E}_7\).

In \protect\hyperlink{week91}{``Week 91''} I spoke about the
\(\mathrm{D}_4\) lattice. To get this, first take a bunch of equal-sized
spheres in 4 dimensions. Stack them in a hypercubical pattern, so their
centers lie at the points with integer coordinates. A bit surprisingly,
there's a lot of room left over --- enough to fit in another copy of
this whole pattern: a bunch of spheres whose centers lie at the points
with \emph{half-integer} coordinates!

If you stick in these extra spheres, you get the densest known packing
of spheres in 4 dimensions. Their centers form the ``\(\mathrm{D}_4\)
lattice''. It's an easy exercise to check that each sphere touches 24
others. The centers of these 24 are the vertices of a marvelous shape
called the ``\(24\)-cell'' --- one of the six \(4\)-dimensional Platonic
solids. It looks like this:
\[\href{https://math.ucr.edu/home/baez/octonions/conway_smith/}{\includegraphics[max width=0.65\linewidth]{../images/24_cell.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  John Baez, picture of \(24\)-cell, in "a review of On Quaternions and
  Octonions: Their Geometry, Arithmetic and Symmetry, by John H. Conway
  and Derek A. Smith', available at
  \texttt{http://math.ucr.edu/home/baez/octonions/conway\_smith/}
\end{enumerate}

Here I'm using a severe form of perspective to project 4 dimensions down
to 2. The coordinate axes are drawn as dashed lines; the solid lines are
the edges of the \(24\)-cell.

How about in 5 dimensions? Here the densest known packing of spheres
uses the ``\(\mathrm{D}_5\) lattice''. This is a lot like the
\(\mathrm{D}_4\) lattice\ldots{} but only if you think about it the
right way.

Imagine a \(4\)-dimensional checkerboard with ``squares'' --- really
hypercubes! --- alternately colored red and black. Put a dot in the
middle of each black square. Voila! You get a rescaled version of the
\(\mathrm{D}_4\) lattice. It's not instantly obvious that this matches
my previous description, but it's true.

If you do the same thing with a \(5\)-dimensional checkerboard, you get
the ``\(\mathrm{D}_5\) lattice'', by definition. This gives the densest
known packing of spheres in 5 dimensions. In this packing, each sphere
has 40 nearest neighbors. The centers of these nearest neighbors are the
vertices of a solid that looks like this:
\[\href{http://www.math.lsa.umich.edu/~jrs/}{\includegraphics[max width=0.65\linewidth]{../images/d5_stembridge.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  John Stembridge, ``\(\mathrm{D}_5\) root system'', available at
  \texttt{http://www.math.lsa.umich.edu/\textasciitilde{}jrs/data/coxplanes/}
\end{enumerate}

If you do the same thing with a \(6\)-dimensional checkerboard, you get
the ``\(\mathrm{D}_6\) lattice''\ldots{} and so on.

However, in 8 dimensions something cool happens. If you pack spheres in
the pattern of the \(\mathrm{D}_8\) lattice, there's enough room left to
stick in an extra copy of this whole pattern! The result is called the
``\(\mathrm{E}_8\) lattice''. It's twice as dense as the
\(\mathrm{D}_8\) lattice.

If you then take a well-chosen \(7\)-dimensional slice through the
origin of the \(\mathrm{E}_8\) lattice, you get the \(\mathrm{E}_7\)
lattice. And if you take a well-chosen \(6\)-dimensional slice of this,
you get the \(\mathrm{E}_6\) lattice. For precise details on what I mean
by ``well-chosen'', see \protect\hyperlink{week65}{``Week 65''}.

\(\mathrm{E}_6\) and \(\mathrm{E}_7\) give denser packings of spheres
than \(\mathrm{D}_6\) and \(\mathrm{D}_7\). In fact, they give the
densest known packings of spheres in 6 and 7 dimensions!

In the \(\mathrm{E}_6\) lattice, each sphere has 72 nearest neighbors.
They form the vertices of a solid that looks like this:
\[\href{http://www.math.lsa.umich.edu/~jrs/}{\includegraphics[max width=0.65\linewidth]{../images/e6_stembridge.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  John Stembridge, ``\(\mathrm{E}_6\) root system'', available at
  \texttt{http://www.math.lsa.umich.edu/\textasciitilde{}jrs/data/coxplanes/}
\end{enumerate}

In the \(\mathrm{E}_7\) lattice, each sphere has 126 nearest neighbors.
They form the vertices of a solid like this:
\[\href{http://www.math.lsa.umich.edu/~jrs/}{\includegraphics[max width=0.65\linewidth]{../images/e7_stembridge.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  John Stembridge, ``\(\mathrm{E}_7\) root system'', available at
  \texttt{http://www.math.lsa.umich.edu/\textasciitilde{}jrs/data/coxplanes/}
\end{enumerate}

In the \(\mathrm{E}_8\) lattice, each sphere has 240 nearest neighbors.
They form the vertices of a solid like this:
\[\href{http://www.math.lsa.umich.edu/~jrs/}{\includegraphics[max width=0.65\linewidth]{../images/e8_stembridge_small.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  John Stembridge, ``\(\mathrm{E}_8\) root system'', available at
  \texttt{http://www.math.lsa.umich.edu/\textasciitilde{}jrs/data/coxplanes/}
\end{enumerate}

Faithful readers will know I've discussed these lattices often before.
For how they give rise to Lie groups, see
\protect\hyperlink{week63}{``Week 63''}. For more about ``ADE
classifications'', see \protect\hyperlink{week64}{``Week 64''} and
\protect\hyperlink{week230}{``Week 230''}. I haven't really added much
this time, except Stembridge's nice pictures. I'm really just trying to
get you in the mood for a big adventure involving all these ideas: the
Tale of Groupoidification!

If we let this story lead us where it wants to go, we'll meet all sorts
of famous and fascinating creatures, such as:

\begin{itemize}
\tightlist
\item
  Coxeter groups, buildings, and the quantization of logic
\item
  Hecke algebras and Hecke operators
\item
  categorified quantum groups and Khovanov homology
\item
  Kleinian singularities and the McKay correspondence
\item
  quiver representations and Hall algebras
\item
  intersection cohomology, perverse sheaves and Kazhdan-Lusztig theory
\end{itemize}

However, the charm of the tale is how many of these ideas are unified
and made simpler thanks to a big, simple idea: groupoidification.

So, what's groupoidification? It's a method of exposing the
combinatorial underpinnings of linear algebra --- the hard bones of set
theory underlying the flexibility of the continuum.

Linear algebra is all about vector spaces and linear maps. One of the
lessons that gets drummed into you when you study this subject is that
it's good to avoid picking bases for your vector spaces until you need
them. It's good to keep the freedom to do coordinate
transformations\ldots{} and not just keep it in reserve, but keep it
\emph{manifest!}

As Hermann Weyl wrote, ``The introduction of a coordinate system to
geometry is an act of violence''.

This is a deep truth, which hits many physicists when they study special
and general relativity. However, as Niels Bohr quipped, a deep truth is
one whose opposite is also a deep truth. There are some situations where
a vector space comes equipped with a god-given basis. Then it's foolish
not to pay attention to this fact!

The most obvious example is when our vector space has been
\emph{defined} to consist of formal linear combinations of the elements
of some set. Then this set is our basis.

This often happens when we use linear algebra to study combinatorics.

But if sets give vector spaces, what gives linear operators? Your first
guess might be \emph{functions}. And indeed, functions between sets do
give linear operators between their vector spaces. For example, suppose
we have a function
\[f\colon \{\mathrm{livecat}, \mathrm{deadcat}\} \to \{\mathrm{livecat}, \mathrm{deadcat}\}\]
which ``makes sure the cat is dead'': \[
  \begin{aligned}
    f(\mathrm{livecat}) &= \mathrm{deadcat}
  \\f(\mathrm{deadcat}) &= \mathrm{deadcat}
  \end{aligned}
\] Then, we can extend \(f\) to a linear operator defined on formal
linear combinations of cats:
\[F(a \mathrm{livecat} + b \mathrm{deadcat}) = a \mathrm{deadcat} + b \mathrm{deadcat}\]
Written as a matrix in the \(\{\mathrm{livecat}, \mathrm{deadcat}\}\)
basis, this looks like
\[\left(\begin{array}{cc}0&0\\1&1\end{array}\right)\] (The relation to
quantum mechanics here is just a vague hint of themes to come. I've
deliberately picked an example where the linear operator is \emph{not}
unitary.)

So, we get some linear operators from functions\ldots{} but not all! We
only get operators whose matrices have exactly a single \(1\) in each
column, the rest of the entries being \(0\). That's because a function
\(f\colon X \to Y\) sends each element of \(X\) to a single element of
\(Y\).

This is very limiting. We can do better if we get operators from
\emph{relations} between sets. In a relation between sets \(X\) and
\(Y\), an element of \(X\) can be related to any number of elements of
\(Y\), and vice versa. For example, let the relation
\[R\colon \{1,2,3,4\} \nrightarrow \{1,2,3,4\}\] be ``is a divisor of''.
Then \(1\) is a divisor of everybody, \(2\) is a divisor of itself and
\(4\), \(3\) is only a divisor of itself, and \(4\) is only a divisor of
itself. We can encode this in a matrix: \[
  \left(
    \begin{array}{cccc}
      1&0&0&0
    \\1&1&0&0
    \\1&0&1&0
    \\1&1&0&1
    \end{array}
  \right)
\] where \(1\) means ``is a divisor of'' and \(0\) means ``is not a
divisor of''.

We can get any matrix of \(0\)'s and \(1\)'s this way. Relations are
really just matrices of truth values. We're thinking of them as matrices
of numbers. Unfortunately we're still far from getting \emph{all}
matrices of numbers!

We can do better if we get matrices from \emph{spans} of sets. A span of
sets, written \(S\colon X \nrightarrow Y\), is just a set \(S\) equipped
with functions to \(X\) and \(Y\). We can draw it like this: \[
  \begin{tikzcd}
    &S\drar["F"]\dlar[swap,"G"]&
  \\X&&Y
  \end{tikzcd}
\] It's supposed to look like a bridge --- hence the term ``span''.

Spans of sets are like relations, but where you can be related to
someone more than once!

For example, \(X\) could be the set of Frenchman and \(Y\) could be the
set of Englishwomen. \(S\) could be the set of Russians. As you know,
every Russian has exactly one favorite Frenchman and one favorite
Englishwoman. So, \(F\) could be the function ``your favorite
Frenchman'', and \(G\) could be ``your favorite Englishwoman''.

Then, given a Frenchman \(x\) and an Englishwoman \(y\), they're related
by the Russian \(s\) whenever \(s\) has \(x\) as their favorite
Frenchman and \(y\) as their favorite Englishwoman:
\[F(s) = x and G(s) = y.\] Some pairs \((x,y)\) will be related by no
Russians, others will be related by one, and others will be related by
more than one! I bet the pair
\[(x,y) = (\mbox{GÃ©rard Depardieu}, \mbox{Emma Thompson})\] is related
by at least 57 Russians.

This idea lets us turn spans of sets into matrices of natural numbers.
Given a span of finite sets: \[
  \begin{tikzcd}
    &S\drar["F"]\dlar[swap,"G"]&
  \\X&&Y
  \end{tikzcd}
\] we get an \(X \times Y matrix\) whose \((x,y)\) entry is the number
of Russians --- I mean elements \(s\) of \(S\) --- such that
\[F(s) = x and G(s) = y.\] We can get any finite-sized matrix of natural
numbers this way.

Even better, there's a way to ``compose'' spans that nicely matches the
usual way of multiplying matrices. You can figure this out yourself if
you solve this puzzle:

\begin{quote}
Let \(X\) be the set of people on Earth. Let \(T\) be the \(X \times X\)
matrix corresponding to the relation ``is the father of''. Why does the
matrix \(T^2\) correspond to the relation ``is the paternal grandfather
of''? Let \(S\) correspond to the relation ``is a friend of''. Why
doesn't the matrix \(S^2\) correspond to the relation ``is a friend of a
friend of''? What span does this matrix correspond to?
\end{quote}

To go further, we need to consider spans, not of sets, but of groupoids!

I'll say more about this later --- I suspect you're getting tired. But
for now, briefly: a groupoid is a category with inverses. Any group
gives an example, but groupoids are more general --- they're the modern
way of thinking about symmetry.

There's a way to define the cardinality of a finite groupoid:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  John Baez and James Dolan, ``From finite sets to Feynman diagrams'',
  in \emph{Mathematics Unlimited --- 2001 and Beyond}, vol.~1,
  eds.~Bjorn Engquist and Wilfried Schmid, Springer, Berlin, 2001,
  pp.~29--50. Also available as
  \href{https://arxiv.org/abs/math.QA/0004133}{\texttt{math.QA/0004133}}.
\end{enumerate}

And, this can equal any nonnegative \emph{rational} number! This lets us
generalize what we've done from finite sets to finite groupoids, and get
rational numbers into the game.

A span of groupoids is a diagram \[
  \begin{tikzcd}
    &S\drar["F"]\dlar[swap,"G"]&
  \\X&&Y
  \end{tikzcd}
\] where \(X,Y,S\) are groupoids and \(F,G\) are functors. If all the
groupoids are finite, we can turn this span into a finite-sized matrix
of nonnegative rational numbers, by copying what we did for spans of
finite sets.

There's also a way of composing spans of groupoids, which corresponds to
multiplying matrices. However, there's a trick involved in getting this
to work --- I'll have to explain this later. For details, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\item
  Jeffrey Morton, ``Categorified algebra and quantum mechanics'',
  \emph{Theory and Application of Categories} \textbf{16} (2006),
  785--854. Available at
  \texttt{http://www.emis.de/journals/TAC/volumes/16/29/16-29abs.html};
  also available as
  \href{https://arxiv.org/abs/math.QA/0601458}{\texttt{math.QA/0601458}}.
\item
  Simon Byrne, \emph{On Groupoids and Stuff}, honors thesis, Macquarie
  University, 2005, available at
  \texttt{http://www.maths.mq.edu.au/\textasciitilde{}street/ByrneHons.pdf}
  and \texttt{http://math.ucr.edu/home/baez/qg-spring2004/ByrneHons.pdf}
\end{enumerate}

Anyway: the idea of ``groupoidification'' is that in many cases where
mathematicians think they're playing around with linear operators
between vector spaces, they're \emph{actually} playing around with spans
of groupoids!

This is especially true in math related to simple Lie groups, their Lie
algebras, quantum groups and the like. While people usually study these
gadgets using linear algebra, there's a lot of combinatorics involved
--- and where combinatorics and symmetry show up, one invariably finds
groupoids.

As the name suggests, groupoidification is akin to categorification.
But, it's a bit different. In categorification, we try to boost up
mathematical ideas this way:

\begin{quote}
sets \(\to\) categories\\
functions \(\to\) functors\\
\end{quote}

In groupoidification, we try this:

\begin{quote}
vector spaces \(\to\) groupoids\\
linear operators \(\to\) spans of groupoids\\
\end{quote}

Actually, it's ``decategorification'' and ``degroupoidification'' that
are systematic processes. These processes lose information, so there's
no systematic way to reverse them. But, as I explained in
\protect\hyperlink{week99}{``Week 99''}, it's still fun to try! If we
succeed, we discover an extra layer of structure beneath the math we
thought we understood\ldots{} and this usually makes that math
\emph{clearer} and \emph{less technical}, because we're not seeing it
through a blurry, information-losing lens.

Okay, that's enough for now. On a completely different note, here's a
book on ``structural realism'' and quantum mechanics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\item
  Dean Rickles, Steven French, and Juha Saatsi, \emph{The Structural
  Foundations of Quantum Gravity}, Oxford University Press, Oxford,
  2006. Containing:

  \begin{itemize}
  \tightlist
  \item
    Dean Rickles and Steven French, ``Quantum gravity meets
    structuralism: interweaving relations in the foundations of
    physics''. Also available at
    \texttt{http://fds.oup.com/www.oup.co.uk/pdf/0-19-926969-6.pdf}
  \item
    Tian Yu Cao, ``Structural realism and quantum gravity''.
  \item
    John Stachel, ``Structure, individuality, and quantum gravity''.
    Also available as
    \href{https://arxiv.org/abs/gr-qc/0507078}{\texttt{gr-qc/0507078}}.
  \item
    Oliver Pooley, ``Points, particles, and structural realism''. Also
    available at
    \texttt{http://philsci-archive.pitt.edu/archive/00002939/}
  \item
    Mauro Dorato and Massimo Pauri, ``Holism and structuralism in
    classical and quantum general relativity''. Also available at
    \texttt{http://philsci-archive.pitt.edu/archive/00001606/}
  \item
    Dean Rickles, ``Time and structure in canonical gravity''. Also
    available at
    \texttt{http://philsci-archive.pitt.edu/archive/00001845/}
  \item
    Lee Smolin, ``The case for background independence''. Also available
    as
    \href{https://arxiv.org/abs/hep-th/0507235}{\texttt{hep-th/0507235}}.
  \item
    John Baez, ``Quantum quandaries: A category-theoretic perspective''.
    Also available at \texttt{http://math.ucr.edu/home/baez/quantum/}
    and as
    \href{https://arxiv.org/abs/quant-ph/0404040}{\texttt{quant-ph/0404040}}.
  \end{itemize}
\end{enumerate}

Very loosely speaking --- I ain't no philosopher --- structural realism
is the idea that what's ``real'' about mathematics, or the abstractions
in physical theories, are not individual entities but the structures, or
patterns, they form. So, instead of asking tired questions like ``What
is the number 2, really?'' or ``Do points of spacetime really exist?'',
we should ask more global questions about the roles that structures like
``natural numbers'' or ``spacetime'' play in math and physics. It's a
bit like how in category theory, we can only understand an object in the
context of the category it inhabits.

Finally, here's a puzzle for lattice and Lie group fans. The dots in
Stembridge's pictures are the shortest nonzero vectors in the
\(\mathrm{D}_5\), \(\mathrm{E}_6\), \(\mathrm{E}_7\), and
\(\mathrm{E}_8\) lattices --- or in technical terms, the ``roots''. Of
course, only for ADE Dynkin diagrams are the roots all of equal length
--- but those are the kind we have here. Anyway: in the \(\mathrm{D}_5\)
case, only 32 of the 40 roots are visible. The other 8 are hidden in
back somewhere. Where are they?

I asked John Stembridge about this and he gave a useful clue. His planar
pictures show projections of the roots into what he calls the ``Coxeter
plane''.

Recall from \protect\hyperlink{week62}{``Week 62''} that the ``Coxeter
group'' associated to a Dynkin diagram acts as rotation/reflection
symmetries of the roots; it's generated by reflections through the
roots. There's a basis of roots called ``simple roots'', one for each
dot in our Dynkin diagram, and the product of reflections through all
these simple roots is called the ``Coxeter element'' of our Coxeter
group --- it's well-defined up to conjugation. The ``Coxeter plane'' is
the canonical plane on which the Coxeter element acts as a rotation.

A rotation by how much? The order of the Coxeter element is called the
``Coxeter number'' and denoted \(h\), so the Coxeter element acts on the
Coxeter plane as a rotation of \(2\pi/h\). The Coxeter number is
important for other reasons, too! Here's how it goes:

\begin{longtable}[]{@{}ll@{}}
\toprule
Coxeter group & Coxeter number\tabularnewline
\midrule
\endhead
\(\mathrm{A}_n\) & \(n+1\)\tabularnewline
\(\mathrm{B}_n\) & \(2n\)\tabularnewline
\(\mathrm{C}_n\) & \(2n\)\tabularnewline
\(\mathrm{D}_n\) & \(2n-2\)\tabularnewline
\(\mathrm{E}_6\) & \(12\)\tabularnewline
\(\mathrm{E}_7\) & \(18\)\tabularnewline
\(\mathrm{E}_8\) & \(30\)\tabularnewline
\(\mathrm{F}_4\) & \(12\)\tabularnewline
\(\mathrm{G}_2\) & \(6\)\tabularnewline
\bottomrule
\end{longtable}

For \(\mathrm{D}_5\) the Coxeter number is 8, which accounts for the
\(8\)-fold symmetry of Stembridge's picture in that case. The
\(\mathrm{E}_8\) picture has \(30\)-fold symmetry! My \(\mathrm{D}_4\)
picture has 8-fold symmetry, so I must not have been projecting down to
the Coxeter plane.

Anyway, this stuff should help answer my puzzle. I don't know the
answer, though.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank David Corfield and James Dolan for catching
mistakes. Tony Smith found a nice picture created by GÃ¼nter Ziegler of
the \(\mathrm{D}_4\) root system (that is, the \(24\)-cell) viewed from
the Coxeter plane. The \(\mathrm{D}_4\) root system is
\(4\)-dimensional, but it's been drawn with a bit of 3d perspective. The
6-fold symmetry is evident:
\[\includegraphics[max width=0.65\linewidth]{../images/24-cell.jpg}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  GÃ¼nter M. Ziegler, ``picture of 24-cell'',
  \texttt{http://www.math.tu-berlin.de/\textasciitilde{}ziegler/24-cell.jpeg}
\end{enumerate}

For more discussion, go to the
\href{http://golem.ph.utexas.edu/category/2007/03/this_weeks_finds_in_mathematic_8.html}{\(n\)-Category
CafÃ©}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{The true spirit of delight, the exaltation, the sense of being
more than Man, which is the touchstone of the highest excellence, is to
be found in mathematics as surely as poetry.}

--- Bertrand Russell
\end{quote}
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This week I'll continue the Tale of Groupoidification. But first: some
new views of the Sun!

Here's a cool movie of the Moon passing in front of the Sun, as viewed
from the ``STEREO B'' spacecraft. Click on it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Astronomy Picture of the Day, March 3 2007, ``Lunar transit from
  STEREO'', \texttt{http://antwrp.gsfc.nasa.gov/apod/ap070303.html}
\end{enumerate}

As the name hints, there's a pair of STEREO satellites in orbit around
the Sun. One is leading the Earth a little, the other lagging behind a
bit, to provide a stereoscopic view of coronal mass ejections.

What's a ``coronal mass ejection''? It's an event where the Sun shoots
off a blob of ionized gas --- billions of tons of it --- at speeds
around 1000 kilometers per second!

That sounds cataclysmic\ldots{} but it happens between once a day and
5-6 times a day, depending on where we are in the 11-year solar cycle,
also known as the ``sunspot cycle''. Right now we're near the minimum of
this cycle. Near the maximum, coronal mass ejections can really screw up
communication systems here on Earth. For example, in 1998 a big one
seems to have knocked out a communication satellite called Galaxy 4,
causing 45 million people in the US to lose their telephone pager
service:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Gordon Holman and Sarah Benedict, ``Solar Flare Theory: Coronal mass
  ejections, solar flares, and the Earth-Sun connection'',
  \texttt{http://www.agu.org/sci\_soc/articles/eisbaker.html}
\end{enumerate}

So, it's not only fun but also practical to understand coronal mass
ejections. Here's a movie of one taken by the Solar and Heliospheric
observatory (SOHO):
\[\includegraphics[max width=0.65\linewidth]{../images/coronal_mass_ejection.png}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  NASA, ``Cannibal coronal mass ejections'',
  \texttt{http://science.nasa.gov/headlines/y2001/ast27mar\_1.htm}
\end{enumerate}

As I mentioned in \protect\hyperlink{week150}{``Week 150''}, SOHO is a
satellite orbiting the Sun right in front of the Earth, at an unstable
equilibrium --- a ``Lagrange point'' --- called L1. SOHO is bristling
with detectors and telescopes of all sorts, and this movie was taken by
a coronagraph, which is a telescope specially designed to block out the
Sun's disk and see the fainter corona.

If a coronal mass ejection hits the Earth, it does something like this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  NASA, ``What is a CME?'',
  \texttt{http://www.nasa.gov/mpg/111836main\_what\_is\_a\_cme\_NASA\%20WebV\_1.mpg}
\end{enumerate}

In this artist's depiction you can see the plasma shoot off from the
Sun, hit the Earth's magnetic field --- this actually takes one to five
days --- and squash it, pushing field lines around to the back side of
the Earth. When the magnetic field lines
\href{http://en.wikipedia.org/wiki/Magnetic_reconnection}{reconnect} in
back, trillions of watts of power come cascading down through the upper
atmosphere, producing auroras. Here's a nice movie of what \emph{those}
can look like:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  YouTube, ``Aurora (Northern Lights)'',
  \texttt{http://www.youtube.com/watch?v=qIXs6Sh0DKs}
\end{enumerate}

I wish I understood this magnetic field line trickery better!
Magnetohydrodynamics --- the interactions between electromagnetic fields
and plasma --- is a branch of physics that always gave me the shivers.
The Navier-Stokes equations describing fluid flow are bad enough --- if
you can prove they have solutions, you'll win \$1,000,000 from the Clay
Mathematics Institute. Throw in Maxwell's equations and you get a real
witches' brew of strange phenomena.

In fact, this subject is puzzling even to experts. For example, why is
the Sun's upper atmosphere --- the corona --- so hot? Here's a picture
of the Sun in X-rays taken by another satellite:
\[\href{http://trace.lmsal.com/POD/TRACEpodarchive26.html}{\includegraphics[max width=0.65\linewidth]{../images/solar_corona_TRACE.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Transition Region and Coronal Explorer (TRACE), ``Images of the sun'',
  \texttt{http://trace.lmsal.com/POD/TRACEpodarchive26.html}
\end{enumerate}

This lets you see plasma in the corona with temperatures between 1
million kelvin (shown as blue) and 2 million kelvin (red). By
comparison, the visible surface of the Sun is a mere 5800 kelvin!

Where does the energy come from to heat the corona? There are lots of
competing theories. It could even be due to ``magnetic field
reconnection'', the same topological phenomenon that triggers auroras
when coronal mass ejections smash into the Earth's magnetic field, as in
that movie above. For more, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Andrew L. Haynes, Clare E. Parnell, Klaus Galsgaard and Eric R.
  Priest, ``Magnetohydrodynamic evolution of magnetic skeletons'',
  \emph{Proc. Roy. Soc. Lond. A} \textbf{463} (2007) 1097--1115. Also
  available as
  \href{http://arxiv.org/abs/astro-ph/0702604}{\texttt{astro-ph/0702604}}.
\end{enumerate}

A new satellite called Hinode is getting a good look at what's going on,
and it seems the magnetic field on the Sun's surface is much more
dynamic than before thought:
\[\href{http://www.nasa.gov/mission_pages/solar-b/}{\includegraphics[max width=0.65\linewidth]{../images/solar_flare_hinode.jpg}}\]

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  NASA, ``Hinode: investigating the Sun's magnetic field'',
  \texttt{http://www.nasa.gov/mission\_pages/solar-b/}
\end{enumerate}

In fact, weather on the Sun may be more complex than on the Earth.
There's ``rain'' when plasma from the corona cools and falls back down
to the Sun's surface\ldots{} and sometimes there are even tornados! You
think tornados on Earth are scary? Check out this movie made during an
8-hour period in August 2000, near the height of the solar cycle:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  TRACE, ``Tornados and fountains in a filament on 2 Aug.~2000'', movie
  13, \texttt{http://trace.lmsal.com/POD/}
\end{enumerate}

Besides the tornados, near the end you can see glowing filaments of
plasma following magnetic field lines!

Now for something simpler: the Tale of Groupoidification.

I don't want this to be accessible only to experts, since a bunch of it
is so wonderfully elementary. So, I'm going to proceed rather slowly.
This may make the experts impatient, so near the end I'll zip ahead and
sketch out a bit of the big picture.

Last time I introduced spans of sets. A span of sets is just a set \(S\)
equipped with functions to \(X\) and \(Y\): \[
  \begin{tikzcd}
    &S\drar["F"]\dlar[swap,"G"]&
  \\X&&Y
  \end{tikzcd}
\] Simple! But the important thing is to understand this thing as a
``witnessed relation''.

Have you heard how computer scientists use the term ``witness''? They
say the number 17 is a ``witness'' to the fact that the number 221 isn't
prime, since 17 evenly divides 221.

That's the idea here. Given a span \(S\) as above, we can say an element
\(x\) of \(X\) and an element \(y\) of \(Y\) are ``related'' if there's
an element \(s\) of \(S\) with
\[F(s) = x \quad\mbox{and}\quad G(s) = y\] The element \(s\) is a
``witness'' to the relation.

Last week, I gave an example where a Frenchman \(x\) and an Englishwoman
\(y\) were related if they were both the favorites of some Russian
\(s\).

Note: there's more information in the span than the relation it
determines. The relation either holds or fails to hold. The span does
more: it provides a set of ``witnesses''. The relation holds if this set
of witnesses is nonempty, and fails to hold if it's empty.

At least, that's how mathematicians think. When I got married last
month, I discovered the state of California demands \emph{two} witnesses
attend the ceremony and sign the application for a marriage license.
Here the relation is ``being married'', and the witnesses attest to that
relation --- but for the state, one witness is not enough to prove that
the relation holds! They're using a more cautious form of logic.

To get the really interesting math to show up, we need to look at other
examples of ``witnessed relations'' --- not involving Russians or
marriages, but geometry and symmetry.

For example, suppose we're doing \(3\)-dimensional geometry. There's a
relation ``the point \(x\) and the line \(y\) lie on a plane'', but it's
pretty dull, since it's always true. More interesting is the witnessed
relation ``the point \(x\) and the line \(y\) lie on the plane \(z\)''.
The reason is that sometimes there will be just \emph{one} plane
containing a point and a line, but when the point lies on the line,
there will be \emph{lots}.

To think of this ``witnessed relation'' as a span \[
  \begin{tikzcd}
    &S\drar["F"]\dlar[swap,"G"]&
  \\X&&Y
  \end{tikzcd}
\] we can take \(X\) to be the set of points and \(Y\) to be the set of
lines.

Can we take \(S\) to be the set of planes? No! Then there would be no
way to define the functions \(F\) and \(G\), because the same plane
contains lots of different points and lines. So, we should take \(S\) to
be the set of triples \((x,y,z)\) where \(x\) is a point, \(y\) is a
line, and \(z\) is a plane containing \(x\) and \(y\). Then we can take
\[F(x,y,z) = x\] and \[G(x,y,z) = y\] A ``witness'' to the fact that
\(x\) and \(y\) lie on a plane is not just a plane containing them, but
the entire triple.

(If you're really paying attention, you'll have noticed that we need to
play the same trick in the example of witnesses to a marriage.)

Spans like this play a big role in ``incidence geometry''. There are
lots of flavors of incidence geometry, with ``projective geometry''
being the most famous. But, a common feature is that we always have
various kinds of ``figures'' --- like points, lines, planes, and so on.
And, we have various kinds of ``incidence relations'' involving these
figures. But to really understand incidence geometry, we need to go
beyond relations and use spans of sets.

Actually, we need to go beyond spans of sets and use spans of groupoids!
The reason is that incidence geometries usually have interesting
symmetries, and a groupoid is like a ``set with symmetries''. For
example, consider lines in \(3\)-dimensional space. These form a set,
but there are also symmetries of \(3\)-dimensional space mapping one
line to another. To take these into account we need a richer structure:
a groupoid!

Here's the formal definition: a groupoid consists of a set of
``objects'', and for any objects \(x\) and \(y\), a set of ``morphisms''
\[f\colon x \to y\] which we think of as symmetries taking \(x\) to
\(y\). We can compose a morphism \(f\colon x \to y\) and a morphism
\(g\colon y \to z\) to get a morphism \(fg\colon x \to z\). We think of
\(fg\) as the result of doing first \(f\) and then \(g\). So, we demand
the associative law \[(fg)h = f(gh)\] whenever either side is
well-defined. We also demand that every object \(x\) has an identity
morphism \[1_x\colon x \to x\] We think of this as the symmetry that
doesn't do anything to \(x\). So, given any morphism
\(f\colon x \to y\), we demand that \[f 1_y = f = 1_x f\] So far this is
the definition of a ``category''. What makes it a ``groupoid'' is that
every morphism \(f\colon x \to y\) has an ``inverse''
\[f^{-1}\colon y \to x\] with the property that \[f f^{-1} = 1_x\] and
\[f^{-1} f = 1_y\] In other words, we can ``undo'' any symmetry.

So, in our spans from incidence geometry: \[
  \begin{tikzcd}
    &S\drar["F"]\dlar[swap,"G"]&
  \\X&&Y
  \end{tikzcd}
\] \(X\), \(Y\) and \(S\) will be groupoids, while \(F\) and \(G\) will
be maps between groupoids: that is, ``functors''!

What's a functor? Given groupoids \(A\) and \(B\), clearly a functor
\[F\colon A \to B\] should send any object \(x\) in \(A\) to an object
\(F(x)\) in \(B\). But also, it should send any morphism in \(A\):
\[f\colon x \to y\] to a morphism in \(B\): \[F(f)\colon F(x) \to F(y)\]
And, it should preserve all the structure that a groupoid has, namely
composition: \[F(fg) = F(f) F(g)\] and identities: \[F(1_x) = 1_{F(x)}\]
It then automatically preserves inverses too: \[F(f^{-1}) = F(f)^{-1}\]
Given this, what's the meaning of a span of groupoids? You could say
it's a ``invariant'' witnessed relation --- that is, a relation with
witnesses that's \emph{preserved} by the symmetries at hand. These are
the very essence of incidence geometry. For example, if we have a point
and a line lying on a plane, we can rotate the whole picture and get a
new point and a new line lying on a new plane. Indeed, a ``symmetry'' in
incidence geometry is precisely something that preserves all such
``incidence relations''.

For those of you not comfy with groupoids, let's see how this actually
works. Suppose we have a span of groupoids: \[
  \begin{tikzcd}
    &S\drar["F"]\dlar[swap,"G"]&
  \\X&&Y
  \end{tikzcd}
\] and the object \(s\) is a witness to the fact that \(x\) and \(y\)
are related: \[F(s) = x \quad\mbox{and}\quad G(s) = y\] Also suppose we
have a symmetry sending \(s\) to some other object of \(S\):
\[f\colon s \to s'\] This gives morphisms \[F(f)\colon F(s) \to F(s')\]
in \(X\) and \[G(f)\colon G(s) \to G(s')\] in \(Y\). And if we define
\[F(s') = x' \quad\mbox{and}\quad G(s') = y'\] we see that \(s'\) is a
witness to the fact that \(x'\) and \(y'\) are related.

Let me summarize the Tale so far:

\begin{itemize}
\tightlist
\item
  Spans of groupoids describe ``invariant witnessed relations''.
\item
  Invariant witnessed relations are the essence of incidence geometry.
\item
  There's a way to turn spans of groupoids into matrices of numbers, so
  that multiplying matrices corresponds to some nice way of
  ``composing'' spans of groupoids (which I haven't really explained
  yet).
\end{itemize}

From all this, you should begin to vaguely see that starting from any
sort of incidence geometry, we should be able to get a bunch of
matrices. Facts about incidence geometry will give facts about linear
algebra!

``Groupoidification'' is an attempt to reverse-engineer this process. We
will discover that lots of famous facts about linear algebra are
secretly facts about incidence geometry!

To prepare for what's to come, the maniacally diligent reader might like
to review \protect\hyperlink{week178}{``Week 178''},
\protect\hyperlink{week180}{``Week 180''},
\protect\hyperlink{week181}{``Week 181''},
\protect\hyperlink{week186}{``Week 186''} and
\protect\hyperlink{week187}{``Week 187''}, where I explained how any
Dynkin diagram gives rise to a flavor of incidence geometry. For
example, the simplest-looking Dynkin diagrams, the \(\mathrm{A}_n\)
series, like this for \(n = 3\): \[
  \begin{tikzpicture}
    \node[label=below:{points}] at (0,0) {$\bullet$};
    \node[label=below:{lines}] at (2,0) {$\bullet$};
    \node[label=below:{planes}] at (4,0) {$\bullet$};
    \draw[thick] (0,0) to (4,0);
  \end{tikzpicture}
\] give rise to \(n\)-dimensional projective geometry. I may have to
review this stuff, but first I'll probably say a bit about the theory of
group representations and Hecke algebras.

(There will also be other ways to get spans of groupoids, that don't
quite fit into what's customarily called ``incidence geometry'', but
still fit very nicely into our Tale. For example, Dynkin diagrams become
``quivers'' when we give each edge a direction, and the ``groupoid of
representations of a quiver'' gives rise to linear-algebraic structures
related to a quantum group. In fact, I already mentioned this in item E
of \protect\hyperlink{week230}{``Week 230''}. Eventually this will let
us groupoidify the whole theory of quantum groups! But, I don't want to
rush into that, since it makes more sense when put in the right
context.)

By the way, some of you have already pointed out how unfortunate it is
that \emph{last} Week was devoted to \(\mathrm{E}_8\), instead of
\emph{this} one. Sorry.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} I thank logopetria for catching typos. For more
discussion, go to the
\href{http://golem.ph.utexas.edu/category/2007/03/this_weeks_finds_in_mathematic_9.html}{\(n\)-Category
CafÃ©}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Science is the only news. When you scan through a newspaper or
magazine, all the human interest stuff is the same old he-said-she-said,
the politics and economics the same sorry cyclic dramas, the fashions a
pathetic illusion of newness, and even the technology is predictable if
you know the science.}

--- Stewart Brand
\end{quote}
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As you may recall, I'm telling a long story about symmetry, geometry,
and algebra. Some of this tale is new work done by James Dolan, Todd
Trimble and myself. But a lot of it is old work by famous people which
deserves a modern explanation.

A great example is Felix Klein's ``Erlangen program'' --- a plan for
reducing many sorts of geometry to group theory. Many people tip their
hat to the Erlanger program, but few seem to deeply understand it, and
even fewer seem to have read what Klein actually wrote about it!
\[\href{http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Klein.html}{\includegraphics[max width=0.65\linewidth]{../images/Felix_Klein.jpg}}\]
The problem goes back a long ways. In 1871, while at GÃ¶ttingen, Klein
worked on non-Euclidean geometry, and showed that hyperbolic geometry
was consistent if and only if Euclidean geometry was. In the process, he
must have thought hard about the role of symmetry groups in geometry.
When he was appointed professor at Erlangen in 1872, he wrote a lecture
outlining his ``Erlanger Programm'' for reducing geometry to group
theory.

But, he didn't actually give this lecture as his inaugural speech! He
spoke about something else.

So, nobody ever heard him announce the Erlangen program. And, until
recently, the lecture he wrote was a bit hard to find. Luckily, now you
can get it online:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Felix Klein, ``Vergleichende Betrachtungen ueber neuere geometrische
  Forschungen'', Verlag von Andreas Deichert, Erlangen, 1872. Also
  available at the University of Michigan Historical Mathematics
  Collection,
  \texttt{http://www.hti.umich.edu/cgi/t/text/text-idx?c=umhistmath;idno=ABN7632}
\end{enumerate}

Even better, Johan Ernst Mebius has recently prepared an HTML version,
with links to the above version:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Johan Ernst Mebius, ``Felix Klein's Erlanger Programm'',
  \texttt{http://www.xs4all.nl/\textasciitilde{}jemebius/ErlangerProgramm.htm}
\end{enumerate}

But what if you have the misfortune of only reading English, not German?
Until now the only translation was quite hard to obtain:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Felix Klein, ``A comparative review of recent researches in
  geometry'', trans. M. W. Haskell, \emph{Bull. New York Math. Soc.}
  \textbf{2}, (1892-1893), 215--249.
\end{enumerate}

In case you're wondering, the ``New York Mathematical Society'' no
longer exists! It was founded in 1888, but in 1894 it went national and
became the American Mathematical Society.

Luckily, after Thomas Love pointed out the existence of this old
translation, Chris Hillman was able to get ahold of it and scan it in!
Then Robin Houston created a PDF file of the whole thing, and
Lukas-Fabian Moser created a DjVu file. Then Nitin C. Rughoonauth took
the marvelous step of putting it into LaTeX! So now, you can read
Klein's paper in English here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  ``The Erlangen program'',
  \texttt{http://math.ucr.edu/home/baez/erlangen/}
\end{enumerate}

English-speakers can read more about the Erlangen program here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Felix Klein, \emph{Elementary Mathematics from an Advanced Standpoint:
  Geometry}, part 3: ``Systematic discussion of geometry and its
  foundations'', Dover, New York, 1939.
\end{enumerate}

Luckily Dover keeps its books in print!

For more on the Erlangen program, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Garrett Birkhoff and M. K. Bennett, `Felix Klein and his ``Erlanger
  Programm''\,', in \emph{History and Philosophy of Modern Mathematics},
  eds.~W. Aspray and P. Kitcher, Minnesota Stud. Philos. Sci. XI,
  University of Minnesota Press, Minneapolis, 1988, pp.~145--176.
\item
  Hans A. Kastrup, ``The contributions of Emmy Noether, Felix Klein and
  Sophus Lie to the modern concept of symmetries in physical systems'',
  in \emph{Symmetries in Physics (1600--1980)}, ed.~M. G. Doncel, World
  Scientific, Singapore, 1987, pp.~113--163.
\item
  I. M. Yaglom, \emph{Felix Klein and Sophus Lie: Evolution of the Idea
  of Symmetry in the Nineteenth Century}, trans. S. Sossinsky,
  Birkhauser, Boston, 1988.
\end{enumerate}

For more about Klein, try \protect\hyperlink{week213}{``Week 213''} and
this little biography:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  MacTutor History of Mathematics Archive, ``Felix Klein'',
  \texttt{http://www-history.mcs.st-andrews.ac.uk/Biographies/Klein.html}
\end{enumerate}

But what does the Erlangen program actually amount to, in the language
of modern mathematics? This will take a while to explain, so the best
thing is to dive right in.

Last week in the Tale of Groupoidification I tried to explain two
slogans:

\begin{quote}
\textbf{groupoids are like `sets with symmetries'}\\
and\\
\textbf{spans of groupoids are like `invariant witnessed relations'}
\end{quote}

They're a bit vague; they're mainly designed to give you enough
intuition to follow the next phase of the Tale, which is all about how:

\begin{quote}
\textbf{groupoids give vector spaces}\\
and\\
\textbf{spans of groupoids give linear operators}
\end{quote}

But before the next phase, I need to say a bit about how groupoids and
spans of groupoids fit into Klein's Erlangen program.

Groupoids are a modern way to think about symmetries. A more traditional
approach would use a group acting as symmetries of some set. And the
most traditional approach of all, going back to Galois and Klein, uses a
group acting \emph{transitively} on a set.

So, let me explain the traditional approach, and then relate it to the
modern one.

I hope you know what it means for a group \(G\) to ``act'' on a set
\(X\). It means that for any element \(x\) of \(X\) and any guy \(g\) in
\(G\), we get a new element \(gx\) in \(X\). We demand that \[1x = x\]
and \[g(hx) = (gh)x.\] More precisely, this is a ``left action'' of
\(G\) on \(X\), since we write the group elements to the left of \(x\).
We can also define right actions, and someday we may need those too.

We say an action of a group \(G\) on a set \(X\) is ``transitive'' if
given any two elements of \(X\), there's some guy in \(G\) mapping the
first element to the second. In this case, we have an isomorphism of
sets \[X = G/H\] for some subgroup \(H\) of \(G\).

For example, suppose we're studying a kind of geometry where the
symmetry group is \(G\). Then \(X\) could be the set of figures of some
sort: points, or lines, or something fancier. If \(G\) acts transitively
on \(X\), then all figures of this sort ``look alike'': you can get from
any one to any other using a symmetry. This is often the case in
geometry\ldots{} but not always.

Suppose \(G\) acts transitively on \(X\). Pick any figure \(x\) of type
\(X\) and let \(H\) be its ``stabilizer'': the subgroup consisting of
all guys in \(G\) that map \(x\) to itself. Then we get a one-to-one and
onto map \[f\colon X \to G/H\] sending each figure \(gx\) in \(X\) to
the equivalence class \([g]\) in \(G/H\).

If you haven't seen this fact before, you should definitely prove it ---
it's one of the big ways people use symmetry!

Here's one kind of thing people do with this fact. The 3d rotation group
\(G = \mathrm{SO}(3)\) acts on the sphere \(X = S^2\), and the
stabilizer of the north pole is the 2d rotation group
\(H = \mathrm{SO}(2)\), so the sphere is isomorphic to
\(G/H = \mathrm{SO}(3)/\mathrm{SO}(2)\). The same sort of result holds
in any dimension, and we can use it to derive facts about spheres from
facts about rotation groups, and vice versa.

A grander use of this fact is to set up a correspondence between sets on
which \(G\) acts transitively and subgroups of \(G\). This is one of the
principles lurking behind Galois theory.

Galois applied this principle to number theory --- see
\protect\hyperlink{week201}{``Week 201''} for details. But, it really
has nothing particular to do with number theory! In his Erlangen
program, Klein applied it to geometry.

Klein's goal was to systematize a bunch of different kinds of
non-Euclidean geometry. Each kind of geometry he was interested in had a
different group of symmetries. For example:

\begin{itemize}
\tightlist
\item
  \(n\)-dimensional
  \href{http://en.wikipedia.org/wiki/Spherical_geometry}{spherical
  geometry} has the rotation group \(\mathrm{SO}(n+1)\) as symmetries.
  (Or, if you want to include reflections, the bigger group
  \(\mathrm{O}(n+1)\).)
\item
  \(n\)-dimensional
  \href{http://en.wikipedia.org/wiki/Euclidean_geometry}{Euclidean
  geometry} has the Euclidean group \(\mathrm{ISO}(n)\) as symmetries.
  (This group is built from rotations in \(\mathrm{SO}(n)\) together
  with translations in \(\mathbb{R}^n\).)
\item
  \(n\)-dimensional
  \href{http://en.wikipedia.org/wiki/Hyperbolic_geometry}{hyperbolic
  geometry} has the group \(\mathrm{SO}(n,1)\) as symmetries. (This
  group also shows up in special relativity under the name of the
  ``Lorentz group'': it acts on the ``mass hyperboloid'', and that's how
  hyperbolic geometry shows up in special relativity.)
\item
  \(n\)-dimensional
  \href{http://en.wikipedia.org/wiki/Projective_geometry}{projective
  geometry} has the group \(\mathrm{SL}(n+1)\) as symmetries. (This
  group consists of \((n+1)\times(n+1)\) matrices with determinant
  \(1\). Scalar multiples of the identity act trivially on projective
  space, so it's actually better to use the ``projective general linear
  group'' \(\mathrm{PGL}(n+1)\), consisting of invertible matrices mod
  scalars. But, this has the same Lie algebra as \(\mathrm{SL}(n+1)\),
  so people are often a bit slack about which group they use.)
\end{itemize}

The details here don't matter much yet; the point is that there are lots
of interesting kinds of geometry, with interesting symmetry groups!

Klein realized that in any kind of geometry like this, a ``type of
figure'' corresponds to a set on which \(G\) acts transitively. Here a
``figure'' could be a point, a line, a plane, or something much fancier.
Regardless of the details, the set of all figures of the same type can
be written as \(G/H\), and \(G\) acts transitively on this set.

The really cool part is that we can use Klein's idea to \emph{define} a
geometry for any group \(G\). To do this, we just say that \emph{every}
subgroup \(H\) of \(G\) gives rise to a type of figure. So, we work out
all the subgroups of \(G\). Then, we work out all the incidence
relations --- relations like ``a point lies on a line''. To do this, we
take two sets of figures, say \[X = G/H\] and \[Y = G/K\] and find all
the invariant relations between them: that is, subsets of \(X\times Y\)
preserved by all the symmetries. I'll say more about how to do this next
time --- we can use something called ``double cosets''. In nice cases,
like when \(G\) is a simple Lie group and \(H\) and \(K\) are so-called
``parabolic'' subgroups, these let us express all the invariant
relations in terms of finitely many ``atomic'' ones! So, we can really
carry out Klein's program of thoroughly understanding geometry starting
from groups --- at least in nice cases.

In short, group actions --- especially transitive ones --- are a
traditional and very powerful way of using symmetry to tackle lots of
problems.

So, to bridge the gap between the traditional and the new, I should
explain how group actions give groupoids. I'll show you that:

\begin{quote}
\textbf{a groupoid equipped with certain extra stuff is}\\
\textbf{the same as a group action}
\end{quote}

It's not very hard to get a groupoid from a group action. Say we have a
group \(G\) acting on a set \(X\). Then the objects of our groupoid are
just elements of \(X\), and a morphism \[g\colon x \to y\] is just a
group element \(g\) with \[gx = y.\] Composing morphisms works the
obvious way --- it's basically just multiplication in the group \(G\).

Some people call this groupoid an ``action groupoid''. I often call it
the ``weak quotient'' \(X//G\), since it's like the ordinary quotient
\(X/G\), but instead of declaring that \(x\) and \(y\) are \emph{equal}
when we have a group element \(g\) sending \(x\) to \(y\), we instead
declare they're \emph{isomorphic} via a specified isomorphism
\(g\colon x \to y\).

But for now, let's call \(X//G\) the ``action groupoid''.

So, group actions give action groupoids. But, these groupoids come with
extra stuff!

First of all, the action groupoid \(X//G\) always comes equipped with a
functor \[X//G \xrightarrow{p} G\] sending any object of \(X//G\) to the
one object of \(G\), and any morphism \(g\colon x \to y\) to the
corresponding element of \(G\). Remember, a group is a groupoid with one
object: this is the 21st century!

Second of all, this functor \(p\) is always ``faithful'': given two
morphisms from \(x\) to \(y\), if \(p\) maps them to the same morphism,
then they were equal.

And that's all! Any groupoid with a faithful functor to \(G\) is
equivalent to the action groupoid \(X//G\) for some action of \(G\) on
some set \(X\). This takes a bit of proving\ldots{} let's not do it now.

So: in my slogan

\begin{quote}
\textbf{a groupoid equipped with certain extra stuff is}\\
\textbf{the same as a group action}
\end{quote}

the ``certain extra stuff'' was precisely a faithful functor to \(G\).

What if we have a \emph{transitive} group action? Then something nice
happens.

First of all, saying that \(G\) acts transitively on \(X\) is the same
as saying there's a morphism between any two objects of \(X//G\). In
other words, all objects of \(X//G\) are isomorphic. Or in other words,
there's just one isomorphism class of objects.

Just as a groupoid with one object is a group, a groupoid with one
\emph{isomorphism class} of objects is \emph{equivalent} to a group.
Here I'm using the usual notion of ``equivalence'' of categories, as
explained back in \protect\hyperlink{week76}{``Week 76''}.

So, \(G\) acts transitively on \(X\) precisely when \(X//G\) is
equivalent to a group!

And what group? Well, what could it possibly be? It's just the
stabilizer of some element of \(X\)! So, in the case of a transitive
group action, our functor \[X//G \xrightarrow{p} G\] is secretly
equivalent to the inclusion \[H \xrightarrow{i} G\] of the stabilizer
group of this element.

So, we see how Klein's old idea of geometrical figures as subgroups of
\(G\) is being generalized. We can start with any groupoid \(Y\) of
``figures'' and ``symmetries between figures'', and play with that. It
becomes an action groupoid if we equip it with a faithful functor to
some group \(G\): \[Y\to G\] Then the action is transitive if all the
objects of \(Y\) are isomorphic. In that case, our functor is equivalent
to an inclusion \[H\to G\] and we're back down to Klein's approach to
geometry. But, it's actually good to generalize what Klein did, and
think about arbitrary ``groupoids over \(G\)'' --- that is, groupoids
equipped with functors to \(G\).

So, when we blend our ideas on spans of groupoids with Klein's ideas,
we'll want to use spans of groupoids ``over \(G\)'' --- that is,
commutative diamonds of groupoids and functors, like this: \[
  \begin{tikzcd}
    &S\drar\dlar&
  \\X\drar&&Y\dlar
  \\&G&
  \end{tikzcd}
\] There's much more to say about this, but not today!

I'll say one last thing before quitting. It's a bit more technical, but
I feel an urge to see it in print.

People often talk about ``the'' stabilizer group of a transitive action
of some group \(G\) on some set \(X\). This is a bit dangerous, since
every element of \(X\) has its own stabilizer, and they're not
necessarily all equal!

However, they're all \emph{conjugate}: if the stabilizer of \(x\) is
\(H\), then the stabilizer of \(gx\) is \(gHg^{-1}\).

So, when I say above that \[X//G \xrightarrow{p} G\] is equivalent to
\[H \xrightarrow{i} G\] I could equally well have said it's equivalent
to \[H \xrightarrow{i'} G\] where the inclusion \(i'\) is the inclusion
\(i\) conjugated by \(g\). If you know some category theory, you'll see
that \(i\) and \(i'\) are naturally isomorphic: a natural isomorphism
between functors between groups is just a ``conjugation''. Picking the
specific inclusion \(i\) requires picking a specific element \(x\) of
\(X\).

Of course, I'll try to write later issues in a way that doesn't force
you to have understood all these nuances!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum}: For more discussion, go to the
\href{http://golem.ph.utexas.edu/category/2007/04/this_weeks_finds_in_mathematic_10.html}{\(n\)-Category
CafÃ©}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{There is no benefit today in arithmetic in Roman numerals. There
is also no benefit today in insisting that the group concept is more
fundamental than that of groupoid.}

--- Ronald Brown
\end{quote}



\hypertarget{week250}{%
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Right now I'm in a country estate called Les Treilles in southern
France, at a conference organized by Alexei Grinbaum and Michel Bitbol:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Philosophical and Formal Foundations of Modern Physics'',
  \texttt{http://www-drecam.cea.fr/Phocea/Vie\_des\_labos/Ast/ast\_visu.php?id\_ast=762}
\end{enumerate}

\[\includegraphics[max width=0.65\linewidth]{../images/les_treilles.jpg}\]
It's very beautiful here, but about 20 philosophers, physicists and
mathematicians have agreed to spend six days indoors discussing quantum
gravity, the history of relativity, quantum information theory and the
like. And guess what? Now it's our afternoon off, and I'm spending my
time writing This Week's Finds! Some people just don't know how to enjoy
life.

In fact, I want to continue telling you The Tale of Groupoidification.
But before I do, here's a puzzle that Jeffrey Bub raised the other night
at dinner. It's not hard, but it's still a bit surprising.

You and your friend each flip a fair coin and then look at it. You can't
look at your friend's coin; they can't look at yours. You can't exchange
any information while the game is being played, though you can choose a
strategy beforehand. Each of you must guess whether the other's coin
lands heads up or tails up. Your goal, as a team, is to maximize the
chance that you're both correct.

What's the best strategy, and what's the probability that you both guess
correctly?

Here's an obvious line of thought.

Since you don't have any information about your friend's coin flip, it
doesn't really matter what you guess. So, you might as well guess
``heads''. You'll then have a \(1/2\) chance of being right. Similarly,
your friend might as well guess ``heads'' --- or for that matter,
``tails''. They'll also have a \(1/2\) chance of being right. So, the
chance that you're both right is \(1/2 \times 1/2 = 1/4\).

I hope that sounds persuasive --- but you can actually do much better!

How? I'll give away the answer at the end.

Jeffrey Bub is famous for his work on the philosophy of quantum
mechanics, and in his talk today he mentioned a similar but more
sophisticated game, the Popescu-Rohrlich game. Here you and your friend
each flip coins as before. But now, after looking at your coin, you each
write either ``yes'' or ``no'' on a pad of paper. Your goal, as a team,
is to give the same response when at least one coin lands heads up, but
different responses otherwise.

Classically the best you can do is both say ``yes'' --- or, if you
prefer, both say ``no''. Then you'll have a \(3/4\) chance of winning.
But, if before playing the game you and your friend prepare a pair of
spin-\(1/2\) particles in the Bell state, and you each keep one, you can
use these to boost your chance of winning to about 85\%!

I think the underlying idea first appeared here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  S. Popescu and D. Rohrlich, ``Nonlocality as an axiom'', \emph{Found.
  Phys.} \textbf{24} (1994), 379--385.
\end{enumerate}

For the ``game'' version, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Nicolas Gisin, ``Can relativity be considered complete? From Newtonian
  nonlocality to quantum nonlocality and beyond'', available as
  \href{https://arxiv.org/abs/quant-ph/0512168}{\texttt{quant-ph/0512168}}.
\end{enumerate}

There's a lot more to say about this --- especially about the
``Popescu-Rohrlich box'', a mythical device which would let you win all
the time at this game, but still not allow signalling. The existence of
such a box is logically possible, but forbidden by quantum mechanics. It
can only exist in certain ``supra-quantum theories'' which allow even
weirder correlations than quantum mechanics.

But, I don't understand this stuff, so you should just read this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Valerio Scarani, ``Feats, features and failures of the PR-box'',
  available as
  \href{https://arxiv.org/abs/quant-ph/0603017}{\texttt{quant-ph/0603017}}.
\end{enumerate}

Okay --- now for our Tale. I want to explain double cosets as spans of
groupoids\ldots{} but it's best if I start with some special relativity.

Though Newton seems to have believed in some form of ``absolute space'',
the idea that motion is relative predates Einstein by a long time. In
1632, in his Dialogue Concerning the Two Chief World Systems, Galileo
wrote:

\begin{quote}
Shut yourself up with some friend in the main cabin below decks on some
large ship, and have with you there some flies, butterflies, and other
small flying animals. Have a large bowl of water with some fish in it;
hang up a bottle that empties drop by drop into a wide vessel beneath
it. With the ship standing still, observe carefully how the little
animals fly with equal speed to all sides of the cabin. The fish swim
indifferently in all directions; the drops fall into the vessel beneath;
and, in throwing something to your friend, you need throw it no more
strongly in one direction than another, the distances being equal;
jumping with your feet together, you pass equal spaces in every
direction.

When you have observed all these things carefully (though doubtless when
the ship is standing still everything must happen in this way), have the
ship proceed with any speed you like, so long as the motion is uniform
and not fluctuating this way and that. You will discover not the least
change in all the effects named, nor could you tell from any of them
whether the ship was moving or standing still.
\end{quote}

As a result, the coordinate transformation we use in Newtonian mechanics
to switch from one reference frame to another moving at a constant
velocity relative to the first is called a ``Galilei transformation''.
For example: \[(t, x, y, z) \mapsto (t, x + vt, y, z)\] By the time
Maxwell came up with his equations describing light, the idea of
relativity of motion was well established. In 1876, he wrote:

\begin{quote}
Our whole progress up to this point may be described as a gradual
development of the doctrine of relativity of all physical phenomena.
Position we must evidently acknowledge to be relative, for we cannot
describe the position of a body in any terms which do not express
relation. The ordinary language about motion and rest does not so
completely exclude the notion of their being measured absolutely, but
the reason of this is, that in our ordinary language we tacitly assume
that the earth is at rest\ldots. There are no landmarks in space; one
portion of space is exactly like every other portion, so that we cannot
tell where we are. We are, as it were, on an unruffled sea, without
stars, compass, sounding, wind or tide, and we cannot tell in what
direction we are going. We have no log which we can case out to take a
dead reckoning by; we may compute our rate of motion with respect to the
neighboring bodies, but we do not know how these bodies may be moving in
space.
\end{quote}

So, the big deal about special relativity is \emph{not} that motion is
relative. It's that this is possible while keeping the speed of light
the same for everyone --- as Maxwell's equations insist, and as we
indeed see! This is what forced people to replace Galilei
transformations by ``Lorentz transformations'', which have the new
feature that two coordinate systems moving relative to each other will
disagree not just on where things are, but \emph{when} they are.

As Einstein wrote in 1905:

\begin{quote}
Examples of this sort, together with the unsuccessful attempts to
discover any motion of the earth relative to the ``light medium'',
suggest that the phenomena of electrodynamics as well as mechanics
possess no properties corresponding to the idea of absolute rest. They
suggest rather that, as has already been shown to the first order of
small quantities, the same laws of electrodynamics and optics will be
valid for all frames of reference for which the equations of mechanics
are valid. We will elevate this conjecture (whose content will be called
the ``principle of relativity'') to the status of a postulate, and also
introduce another postulate, which is only apparently irreconcilable
with it, namely, that light is always propagated in empty space with a
definite velocity c which is independent of the state of motion of the
emitting body. These two postulates suffice for attaining a simple and
consistent theory of the electrodynamics of moving bodies based on
Maxwell's theory for stationary bodies.
\end{quote}

So, what really changed with the advent of special relativity? First,
our understanding of precisely which transformations count as symmetries
of spacetime. These transformations form a \emph{group}. Before special
relativity, it seemed the relevant group was a \(10\)-dimensional gadget
consisting of:

\begin{itemize}
\tightlist
\item
  3 dimensions of spatial translations
\item
  1 dimension of time translations
\item
  3 dimensions of rotations
\item
  3 dimensions of Galilei transformations
\end{itemize}

Nowadays this is called the ``Galilei group'':

With special relativity, the relevant group became the ``Poincare
group'':

\begin{itemize}
\tightlist
\item
  3 dimensions of spatial translations
\item
  1 dimension of time translations
\item
  3 dimensions of rotations
\item
  3 dimensions of Lorentz transformations
\end{itemize}

It's still \(10\)-dimensional, not any bigger. But, it acts differently
as transformations of the spacetime coordinates \((t,x,y,z)\).

Another thing that changed was our appreciation of the importance of
symmetry! Before the 20th century, group theory was not in the toolkit
of most theoretical physicists. Now it is.

Okay. Now suppose you're the only thing in the universe, floating in
empty space, not rotating. To make your stay in this thought experiment
a pleasant one, I'll give you a space suit. And for simplicity, suppose
special relativity holds true exactly, with no gravitational fields to
warp the geometry of spacetime.

Would the universe be any different if you were moving at constant
velocity? Or translated 2 feet to the left or right? Or turned around?
Or if it were one day later?

No! Not in any observable way, at least! It would seem exactly the same.

So in this situation, it doesn't really make much sense to say ``where
you are'', or ``which way you're facing'', or ``what time it is''. There
are no ``invariant propositions'' to make about your location or motion.
In other words, there's nothing to say whose truth value remains
unchanged after you apply a symmetry.

Well, \emph{almost} nothing to say! The logicians in the crowd will note
that you can say ``\(T\)'': the tautologously true statement. You can
also say ``\(F\)'': the tautologously false statement. But, these aren't
terribly interesting.

Next, suppose you have a friend also floating through space. Now there
are more interesting invariant propositions. There's nothing much
invariant to say about just you, and nothing to say about just your
friend, but there are invariant \emph{relations}. For example, you can
measure your friend's speed relative to you, or your distance of closest
approach.

Mathematicians study invariant relations using a tool called ``double
cosets''. I want to explain these today, since we'll need them soon in
the Tale of Groupoidification.

``Double cosets'' sound technical, but that's just to keep timid people
from understanding the subject. A double coset is secretly just an
``atomic'' invariant relation: one that can't be expressed as ``\(P\) or
\(Q\)'' where \(P\) and \(Q\) are themselves invariant relations ---
unless precisely one of \(P\) or \(Q\) is tautologously false.

So, atomic invariant relations are like prime numbers: they can't be
broken down into simpler bits. And, as we'll see, every invariant
relation can be built out of atomic ones!

Here's an example in the case we're considering:

\begin{quote}
``My friend's speed relative to me is 50 meters/second, and our distance
of closest approach is 10 meters.''
\end{quote}

This is clearly an invariant relation. It's atomic if we idealize the
situation and assume you and your friends are points --- so we can't ask
which way you're facing, whether you're waving at each other, etc.

To see \emph{why} it's atomic, note that we can always find a frame of
reference where you're at rest and your friend is moving by like this:
\[
  \begin{tikzpicture}
    \draw[->] (0,0) to (3,0);
    \node[fill=white] at (1.5,0.05) {friend};
    \node at (1.5,-1) {you};
  \end{tikzpicture}
\] If you and your friend are points, the situation is \emph{completely
described} (up to symmetries) by the relative speed and distance of
closest approach. So, the invariant relation quoted above can't be
written as ``\(P\) or \(Q\)'' for other invariant relations.

The same analysis shows that in this example, \emph{every} atomic
invariant relation is of this form:

\begin{quote}
``My friend's speed relative to me is \(s\), and our distance of closest
approach is \(d\).''
\end{quote}

for some nonnegative numbers \(s\) and \(d\).

(Quiz: why don't we need to let \(s\) be negative if your friend is
moving to the left?)

From this example, it's clear there are often infinitely many double
cosets. But there are some wonderful examples with just \emph{finitely
many} double cosets --- and these are what I'll focus on in our Tale.

Here's the simplest one. Suppose we're doing projective plane geometry.
This is a bit like Euclidean plane geometry, but there are more
symmetries: every transformation that preserves lines is allowed. So, in
addition to translations and rotations, we also have other symmetries.

For example, imagine taking a blackboard with some points and lines on
it: \[
  \begin{tikzpicture}
    \draw[thick] (-1,0) to (3,0);
    \draw[thick] (-0.5,0.8) to (1.5,-2.4);
    \draw[thick] (2.5,0.8) to (0.5,-2.4);
    \node at (0,0) {$\bullet$};
    \node at (2,0) {$\bullet$};
    \node at (1,-1.6) {$\bullet$};
  \end{tikzpicture}
\] We can translate it and rotate it. But, we can also view it from an
angle: that's another symmetry in projective geometry! This hints at how
projective geometry arose from the study of perspective in painting.

We get even more symmetries if we use a clever trick. Suppose we're
standing on the blackboard, and it extends infinitely like an endless
plain. Points on the horizon aren't really points on the blackboard.
They're called ``points at infinity''. But, it's nice to include them as
part of the so-called ``projective plane''. They make things simpler:
now every pair of lines intersects in a unique point, just as every pair
of points lies on a unique line. You've probably seen how parallel
railroad tracks seem to meet at the horizon --- that's what I'm talking
about here. And, by including these extra points at infinity, we get
extra symmetries that map points at infinity to ordinary points, and
vice versa.

I gave a more formal introduction to projective geometry in
\protect\hyperlink{week106}{``Week 106''} and
\protect\hyperlink{week145}{``Week 145''}, and
\protect\hyperlink{week178}{``Week 178''}. If you read these, you'll
know that points in the projective plane correspond to lines through the
origin in a 3d space. And, you'll know a bit about the group of
symmetries in projective geometry: it's the group
\(G = \mathrm{PGL}(3)\), consisting of \(3\times3\) invertible matrices,
modulo scalars.

(I actually said \(\mathrm{SL}(3)\), but I was being sloppy --- this is
another group with the same Lie algebra.)

For some great examples of double cosets, let \(F\) be the space of
``flags''. A ``flag'' is a very general concept, but in projective plane
geometry a flag is just a point \(x\) on a line \(y\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) to (3,0) node[label=right:{$y$}]{};
    \node[label=above:{$x$}] at (0.8,0) {$\bullet$};
  \end{tikzpicture}
\] An amazing fact is that there are precisely 6 atomic invariant
relations between a pair of flags. You can see them all in this picture:
\[
  \begin{tikzpicture}
    \draw[thick] (-1,0) to (3,0) node[label=right:{$y$}]{};
    \draw[thick] (-0.5,0.8) to (1.5,-2.4) node[label=right:{$y''$}]{};
    \draw[thick] (2.5,0.8) to (0.5,-2.4) node[label=left:{$y'$}]{};
    \node[label={[label distance=-2mm]above right:{$x$}}] at (0,0) {$\bullet$};
    \node[label={[label distance=-2mm]above left:{$x'$}}] at (2,0) {$\bullet$};
    \node[label=right:{$x''$}] at (1,-1.6) {$\bullet$};
  \end{tikzpicture}
\] There are six flags here, and each exemplifies a different atomic
invariant relation to our favorite flag, say \((x,y)\).

For example, the flag \((x',y')\) has the following relation to
\((x,y)\):

\begin{quote}
``The point of \((x',y')\) lies on the line of \((x,y)\), and no more.''
\end{quote}

By ``no more'' I mean that no further incidence relations hold.

There's a lot more to say about this, and we'll need to delve into it
much deeper soon\ldots{} but not yet. For now, I just want to mention
that all this stuff generalizes from \(G = \mathrm{PGL}(3)\) to any
other simple Lie group! And, the picture above is an example of a
general concept, called an ``apartment''. Apartments are a great way to
visualize atomic invariant relations between flags.

This ``apartment'' business is part of a wonderful theory due to Jacques
Tits, called the theory of ``buildings''. The space of \emph{all} flags
is a building; a building has lots of apartments in it. Buildings have a
reputation for being scary, because in his final polished treatment,
Tits started with a few rather unintuitive axioms and derived everything
from these. But, they're actually lots of fun if you draw enough
pictures!

Next, let me explain why people call atomic invariant relations ``double
cosets''.

First of all, what's a relation between two sets \(X\) and \(Y\)? We can
think of it as a subset \(S\) of \(X \times Y\): we say a pair \((x,y)\)
is in \(S\) if the relation holds.

Next, suppose some group \(G\) acts on both \(X\) and \(Y\). What's an
``invariant'' relation? It's a subset \(S\) of \(X \times Y\) such that
whenever \((x,y)\) is in \(S\), so is \((gx,gy)\). In other words, the
relation is preserved by the symmetries.

Now let's take these simple ideas and make them sound more complicated,
to prove we're mathematicians. Some of you may want to take a little nap
right around now --- I'm just trying to make contact with the usual way
experts talk about this stuff.

First, let's use an equivalent but more technical way to think of an
invariant relation: it's a subset of the quotient space
\(G\backslash(X \times Y)\).

Note: often I'd call this quotient space \((X \times Y)/G\). But now I'm
writing it with the \(G\) on the left side, since we had a \emph{left}
action of \(G\) on \(X\) and \(Y\), hence on \(X \times Y\) --- and in a
minute we're gonna need all the sides we can get!

Second, recall from last Week that if \(G\) acts \emph{transitively} on
both \(X\) and \(Y\), we have isomorphisms \[X \cong G/H\] and
\[Y \cong G/K\] for certain subgroups \(H\) and \(K\) of \(G\). Note:
here we're really modding out by the \emph{right} action of \(H\) or
\(K\) on \(G\).

Combining these facts, we see that when \(G\) acts transitively on both
\(X\) and \(Y\), an invariant relation is just a subset of
\[G\backslash(X \times Y) \cong G\backslash(G/H \times G/K)\] Finally,
if you lock yourself in a cellar and think about this for a few minutes
(or months), you'll realize that this weird-looking set is isomorphic to
\[H\backslash G/K\] This notation may freak you out at first --- I know
it scared me! The point is that we can take \(G\), mod out by the right
action of \(K\) to get \(G/K\), and then mod out by the left action of
\(H\) on \(G/K\), obtaining \[H\backslash(G/K).\] Or we can take \(G\),
mod out by the left action of \(H\) to get \(H\backslash G\), and then
mod out by the right action of \(K\) on \(H\backslash G\), obtaining
\[(H\backslash G)/K.\] And, these two things are isomorphic! So, we
relax and write \[H\backslash G/K\] A point in here is called a ``double
coset'': it's an equivalence class consisting of all guys in \(G\) of
the form \[hgk\] for some fixed \(g\), where \(h\) ranges over \(H\) and
\(k\) ranges over \(K\).

Since subsets of \(H\backslash G/K\) are invariant relations, we can
think of a point in \(H\backslash G/K\) as an ``atomic'' invariant
relation. Every invariant relation is the union --- the logical ``or''
--- of a bunch of these.

So, just as any hunk of ordinary matter can be broken down into atoms,
every invariant statement you can make about an entity of type \(X\) and
an entity of type \(Y\) can broken down into ``atomic'' invariant
relations --- also known as double cosets!

So, double cosets are cool. But, it's good to fit them into the ``spans
of groupoids'' perspective. When we do this, we'll see:

\begin{quote}
\textbf{a span of groupoids equipped with certain extra stuff is}\\
\textbf{the same as a double coset.}
\end{quote}

This relies on the simpler slogan I mentioned last time:

\begin{quote}
\textbf{a groupoid equipped with certain extra stuff is}\\
\textbf{the same as a group action.}
\end{quote}

Let's see how it goes. Suppose we have two sets on which \(G\) acts
transitively, say \(X\) and \(Y\). Pick a figure \(x\) of type \(X\),
and a figure \(y\) of type \(Y\). Let \(H\) be the stabilizer of \(x\),
and let \(K\) be the stabilizer of \(y\). Then we get isomorphisms
\[X \cong G/H\] and \[Y \cong G/K\] The subgroup \(H \cap K\) stabilizes
both \(x\) and \(y\), and \[Z = G/(H \cap K)\] is another set on which
\(G\) acts transitively. How can we think of this set? It's the set of
all pairs of figures, one of type \(X\) and one of type \(Y\), which are
obtained by taking the pair \((x,y)\) and applying an element of \(G\).
So, it's a subset of \(X \times Y\) that's invariant under the action of
\(G\). In other words, it's an invariant relation between \(X\) and
\(Y\)!

Furthermore, it's the smallest invariant subset of \(X \times Y\) that
contains the pair \((x,y)\). So, it's an \emph{atomic} invariant
relation --- or in other words, a double coset!

Now, let's see how to get a span of groupoids out of this. We have a
commutative diamond of group inclusions: \[
  \begin{tikzcd}
    &H\cap K\drar\dlar&
  \\H\drar&&K\dlar
  \\&G&
  \end{tikzcd}
\] This gives a commutative diamond of spaces on which \(G\) acts
transitively: \[
  \begin{tikzcd}
    &G/(H\cap K)\drar\dlar&
  \\G/H\drar&&G/K\dlar
  \\&G/G&
  \end{tikzcd}
\] We already have names for three of these spaces --- and \(G/G\) is
just a single point, say \(*\): \[
  \begin{tikzcd}
    &Z\drar\dlar&
  \\X\drar&&Y\dlar
  \\&*&
  \end{tikzcd}
\]

Now, in \protect\hyperlink{week249}{``Week 249''} I explained how you
could form the ``action groupoid'' \(X//G\) given a group \(G\) acting
on a space \(X\). If I were maniacally consistent, I would write it as
\(G\backslash\backslash X\), since \(G\) is acting on the left. But, I'm
not. So, the above commutative diamond gives a commutative diamond of
groupoids: \[
  \begin{tikzcd}
    &Z//G\drar\dlar&
  \\X//G\drar&&Y//G\dlar
  \\&*//G&
  \end{tikzcd}
\] The groupoid on the bottom has one object, and one morphism for each
element of \(G\). So, it's just \(G\)! So we have this: \[
  \begin{tikzcd}
    &Z//G\drar\dlar&
  \\X//G\drar&&Y//G\dlar
  \\&G&
  \end{tikzcd}
\] So --- voila! --- our double coset indeed gives a span of groupoids
\[
  \begin{tikzcd}
    &Z//G\drar\dlar&
  \\X//G&&Y//G
  \end{tikzcd}
\] \(X//G\) is the groupoid of figures just like \(x\) (up to symmetry),
\(Y//G\) is the groupoid of figures just like \(y\), and \(Z//G\) is the
groupoid of \emph{pairs} of figures satisfying the same atomic invariant
relation as the pair \((x,y)\). For example, point-line pairs, where the
point lies on the line! For us, a pair of figures is just a more
complicated sort of figure.

But, this span of groupoids is a span ``over \(G\)'', meaning it's part
of a commutative diamond with \(G\) at the bottom: \[
  \begin{tikzcd}
    &Z//G\drar\dlar&
  \\X//G\drar&&Y//G\dlar
  \\&G&
  \end{tikzcd}
\] If you remember everything in \protect\hyperlink{week249}{``Week
249''} --- and I bet you don't --- you'll notice that this commutative
diamond is equivalent to diamond we started with: \[
  \begin{tikzcd}
    &H\cap K\drar\dlar&
  \\H\drar&&K\dlar
  \\&G&
  \end{tikzcd}
\] We've just gone around in a loop! But that's okay, because we've
learned something en route.

To tersely summarize what we've learned, let's use the fact that a
groupoid is equivalent to a group precisely when it's ``connected'':
that is, all its objects are isomorphic. Furthermore, a functor between
connected groupoids is equivalent to an inclusion of groups precisely
when it's ``faithful'': one-to-one on each homset. So, when I said that:

\begin{quote}
\textbf{a span of groupoids equipped with certain extra stuff is}\\
\textbf{the same as a double coset.}
\end{quote}

what I really meant was:

\begin{quote}
\textbf{a span of connected groupoids faithfully over \(G\)}\\
\textbf{is the same as a double coset.}
\end{quote}

If that's too terse, let me elaborate for you: a ``span of connected
groupoids faithfully over \(G\)'' is a commutative diamond \[
  \begin{tikzcd}
    &C\drar\dlar&
  \\A\drar&&B\dlar
  \\&G&
  \end{tikzcd}
\] where \(A,B,C\) are connected groupoids and the arrows are faithful
functors.

This sounds complicated, but it's mainly because we're trying to toss in
extra conditions to make our concepts match the old-fashioned ``double
coset'' notion. Here's a simpler, more general fact:

\begin{quote}
\textbf{a span of groupoids faithfully over \(g\)}\\
\textbf{is the same as a span of \(g\)-sets.}
\end{quote}

where a ``\(G\)-set'' is a set on which \(G\) acts. This is the natural
partner of the slogan I explained last Week, though not in this
language:

\begin{quote}
\textbf{a groupoid faithfully over \(g\)}\\
\textbf{is the same as a \(g\)-set.}
\end{quote}

Things get even simpler if we drop the ``faithfulness'' assumption, and
simply work with groupoids over \(G\), and spans of these. This takes us
out of the traditional realm of group actions on sets, and into the 21st
century! And that's where we want to go.

Indeed, for the last couple weeks I've just been trying to lay out the
historical context for the Tale of Groupoidification, so experts can see
how the stuff to come relates to stuff that's already known. In some
ways things will get simpler when I stop doing this and march ahead.
But, I'll often be tempted to talk about group actions on sets, and
double cosets, and other traditional gadgets\ldots{} so I feel obliged
to set the stage.

Okay --- here's the answer to the puzzle. Close your eyes if you want to
think about it more.

An optimal strategy is for you and your friend to each look at your own
coin, and then guess that the other coin landed the other way: heads if
yours was tails, and tails if yours was heads. With this strategy, the
chance you're both correct is \(1/2\).

Or, you can both guess that the other coin landed the \emph{same} way.
This works just as well.

The point is: you and your friend can do twice as well at this game if
you each use the result of your own coin toss to guess the result of the
other's coin toss!

It seems paradoxical that using this random and completely uncorrelated
piece of information --- the result of your own coin toss --- helps you
guess what your friend's coin will do, and vice versa.

But of course it \emph{doesn't}. You each still have just a \(1/2\)
chance of guessing the other's coin toss correctly. What the trick
accomplishes is correlating your guesses, so you both guess right or
both guess wrong together. This improves the chance of winning from
\(1/2 \times 1/2\) (the product of two independent probabilities) to
\(1/2\).

By the way, the translation of the passage by Einstein is due to Michael
Friedman, a philosopher at Stanford; he used it in his talk at this
conference. There's a lot more to say about talks at this conference.
Let's see if I get around to it.

Also by the way: if you fix a collection of \(n\) \(G\)-sets, there's
always a Boolean algebra of \(n\)-ary invariant relations. Only the case
\(n = 2\) is related to double cosets, but everything else I said
generalizes easily to higher \(n\) using ``\(n\)-legged spans'' of
groupoids: an obvious generalization of the \(2\)-legged spans I've been
discussing so far. In Boolean algebra people often use the term ``atom''
to stand for an element that can't be written as ``\(P\) or \(Q\)''
unless exactly one of \(P\) or \(Q\) is tautologously false.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Although I am a typical loner in daily life, my consciousness of
belonging to the invisible community of those who strive for truth,
beauty and justice has preserved me from feeling isolated.}

--- Albert Einstein
\end{quote}
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