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Week 251

May 5, 2007

Last week I mentioned the conference on “Philosophical and Formal Foundations of Mod-
ern Physics” in Les Treilles, an estate near Nice. On our last night there, the chef showed
us his telescope. We saw the phase of Venus, mountains on the Moon, and — best of
all — the rings of Saturn! They were beautiful. I was reminded of Galileo, who had to
make do with a much cruder telescope.

Here’s an even better view — a photo taken by the Cassini probe on March 1st, from
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a distance of 1.2 million kilometers:

1) Cassini-Huyghens, “Tourniquet shadows”, http://saturn. jpl.nasa.gov/multimedia/
images/image-details.cfm?imageID=2507

I learned some fun stuff about the foundations of quantum mechanics at Les Treilles,
so I want to mention that before I forget! I'll take a little break from the Tale of Groupoid-
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ification. .. though if you've been following carefully, you may see it lurking beneath the
surface.

Lately people have been developing “foils for quantum mechanics”: theories of physics
that aren’t classical, but aren’t ordinary quantum theory, either. These theories can lack
some of the weird features of quantum theory... or, they may have “supra-quantum”
features, like the Popescu-Rohrlich box I mentioned last week.

The idea is not to take these theories seriously as models of our universe — though
one can always dream. Instead, it’s to explore the logical possibilities, so we can see
quantum mechanics and classical mechanics as just two examples from a larger field of
options, and better understand what’s special about them.

Rob Spekkens is a young guy who used to be at the Perimeter Institute; now he’s
at DAMTP in Cambridge. At Les Treilles he gave a cool talk about a simple theory that
mimics some of features of quantum mechanics:

2) Rob Spekkens, “Evidence for the epistemic view of quantum states: a toy theory”,
Phys. Rev. A 75, 032110 (2007). Also available as quant-ph/0401052.

The idea is to see how far you get using a very simple principle, namely: even when
you know as much as you can, there’s an equal amount you don’t know.

In this setup, the complete description of a physical system involves N bits of infor-
mation, but you can only know N/2 of them. When you do an experiment to learn more
information than that, the system’s state changes in a random way, so something you
knew become obsolete.

The fraction “1/2” here is chosen for simplicity: it’s just a toy theory. But, it leads to
some charming mathematical structures that I'd like to understand better.

In this theory, the simplest nontrivial system is one whose state takes two bits to
describe — but you can know at most one. Two bits of information is enough to describe
four states, say states 1, 2, 3, and 4. But, since you can only know one bit of information,
you can’t pin down the system’s state completely. At most you can halve the possibilities,
and know something like “the system is in state 1 or 3”. You can also be completely
ignorant — meaning you only know “the system is in state 1, 2, 3 or 4”.

Since there are 3 ways to chop a 4-element set in half, there are 3 “axes of knowl-
edge”, namely

Is the system’s state in {1,2} or {3,4}?
Is the system’s state in {1,3} or {2,4}?
Is the system’s state in {1,4} or {2,3}?

You can only answer one of these questions.
This has a cute resemblance to how you can measure the angular momentum of a
spin-1/2 particle along the z, y, or z axis, in each case getting two choices. Spekkens has


https://arxiv.org/abs/quant-ph/0401052
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a nice picture in his paper:

{1,2}
{2,4}

/

{174} - {17233a4} — {273}

/

{1,3}

{3,4}

This octahedron is a discrete version of the “Bloch ball” describing mixed states of a
spin-1/2 particle in honest quantum mechanics. If you don’t know about that, I should
remind you:

A “pure state” of a spin-1/2 particle is a unit vector in C2, modulo phase. The set of
these is just the Riemann sphere!

In a pure state, we know as much as we can know. In a “mixed state”, we know less.
Mathematically, a mixed state of a spin-1/2 particle is a 2 x 2 “density matrix” — a self-
adjoint matrix with nonnegative eigenvalues and trace 1. These form a 3-dimensional
ball, the “Bloch ball”, whose boundary is the Riemann sphere.

The z, y, and z coordinates of a point in the Bloch ball are the expected values of the
three components of angular momentum for a spin-1/2 particle in the given mixed state.
The center of the Bloch ball is the state of complete ignorance.

In honest quantum mechanics, the rotation group SO(3) acts as symmetries of the
Bloch ball. In Spekken’s toy version, this symmetry group is reduced to the 24 permuta-
tions of the set {1, 2, 3,4}. You can think of these permutations as acting on a tetrahedron
whose corners are the 4 states of our system. The 6 corners of the octahedron above are
the midpoints of the edges of this tetrahedron!

Since Spekkens’ toy system resembles a qubit, he calls it a “toy bit”. He goes on
to study systems of several toy bits — and the charming combinatorial geometry I just
described gets even more interesting. Alas, I don’t really understand it well: I feel there
must be some mathematically elegant way to describe it all, but I don’t know what it is.

Just as you can’t duplicate a qubit in honest quantum mechanics — the famous no-
cloning theorem — it turns out you can’t duplicate a toy bit. However, Bell’s theorem
on nonlocality and the Kochen-Specker theorem on contextuality don’t apply to toy bits.
Spekkens also lists other similarities and differences.

All this is fascinating. It would be nice to find the mathematical structure that un-
derlies this toy theory, much as the category of Hilbert spaces underlies honest quantum
mechanics.

In my talk at Les Treilles, I explained how the seeming weirdness of quantum me-
chanics arises from how the category of Hilbert spaces resembles not the category of sets
and functions, but a category with “spaces” as objects and “spacetimes” as morphism.
This is good, because we’re trying to unify quantum mechanics with our best theory of


http://en.wikipedia.org/wiki/No_cloning_theorem
http://en.wikipedia.org/wiki/No_cloning_theorem
http://en.wikipedia.org/wiki/Bell's_theorem
http://plato.stanford.edu/entries/kochen-specker/
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spacetime, namely general relativity. In fact, I think quantum mechanics will make more
sense when it’s part of a theory of quantum gravity! To see why; try this:

3) John Baez, “Quantum quandaries: a category-theoretic perspective”, talk at Les
Treilles, April 24, 2007, http://math.ucr.edu/home/baez/treilles/

For more details, see my paper with the same title (see “Week 247”).
This fun paper by Bob Coecke gives another view of categories and quantum mechan-
ics, coming from work on quantum information theory:

4) Bob Coecke, “Kindergarten quantum mechanics”, available as quant-ph/0510032.
To dig deeper, try these:

5) Samson Abramsky and Bob Coecke, “A categorical semantics of quantum proto-
cols”, quant-ph/0402130.

6) Peter Selinger, “Dagger compact closed categories and completely positive maps”,
available at http://www.mscs.dal.ca/“selinger/papers.html#dagger

Since the category-theoretic viewpoint sheds new light on the no-cloning theorem,
Bell’s theorem, quantum teleportation, and the like, maybe we can use it to classify “foils
for quantum mechanics”. Where would Spekkens’ theory fit into this classification? I
want to know!

Another mathematically interesting talk was by Howard Barnum, who works at Los
Alamos National Laboratory. Barnum works on a general approach to physical theories
using convex sets. The idea is that in any reasonable theory, we can form a mixture or
“convex linear combination”

pr+(1-py

of mixed states z and y, by putting the system in state x with probability p and state y
with probability 1 — p. So, mixed states should form a “convex set”.

The Bloch sphere is a great example of such a convex set. Another example is the
octahedron in Spekken’s theory. Another example is the tetrahedron that describes the
mixed states of a classical system with 4 pure states. Spekken’s octahedron is a subset of
this tetrahedron, reflecting the limitations on knowledge in his setup.

To learn about the convex set approach, try these papers:

7) Howard Barnum, “Quantum information processing, operational quantum logic,
convexity, and the foundations of physics”, available as quant-ph/0304159.

8) Jonathan Barrett, “Information processing in generalized probabilistic theories”,
available as quant-ph/0508211.

9) Howard Barnum, Jonathan Barrett, Matthew Leifer and Alexander Wilce, “Cloning
and broadcasting in generic probabilistic theories”, available as quant-ph/0611295.

Actually I've been lying slightly: these papers also allow mixtures of states

px +qy


https://arxiv.org/abs/quant-ph/0510032
https://arxiv.org/abs/quant-ph/0402130
https://arxiv.org/abs/quant-ph/0304159
https://arxiv.org/abs/quant-ph/0508211
https://arxiv.org/abs/quant-ph/0611295
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where p + ¢ is less than or equal to 1. For example, if you prepare an electron in the “up”
spin state with probability p and the “down” state with probability ¢, but there’s also a
chance that you drop it on the floor and lose it, you might want p + ¢ < 1.

I'm making it sound silly, but it’s technically nice and maybe even conceptually jus-
tified. Mathematically it means that instead of a convex set of states, you have a vector
space equipped with a convex cone and a linear functional P such that the cone is
spanned by the “normalized” states: those with P(x) = 1. This is very natural in both
classical and quantum probability theory.

Quite generally, the normalized states form a convex set. Conversely, starting from
a convex set, you can create a vector space equipped with a convex cone and a linear
functional with the above properties.

So, I was only lying slightly. In fact, a complicated web of related formalisms have
been explored; you can learn about them from Barnum’s paper.

For example, the convex cone formalism seems related to the Jordan algebra ap-
proach described in “Week 162”. Barnum cites a paper by Araki that shows how to get
Jordan algebras from sufficiently nice convex cones:

10) H. Araki, “On a characterization of the state space of quantum mechanics”, Com-
mun. Math. Phys. 75 (1980), 1-24.

It’s a very interesting paper but a wee bit too technical for me to feel like summarizing
here.

Some nice examples of Jordan algebras are the 2 x 2 self-adjoint matrices with real,
complex, quaternionic or octonionic entries. Each of these algebras has a cone consisting
of the nonnegative matrices, and the trace gives a linear functional P. The nonnegative
matrices with trace = 1 are the mixed states of a spin-1/2 particle in 3, 4, 6, and 10-
dimensional spacetime, respectively! In each case these mixed states form a convex
set: a round ball generalizing the Bloch ball. Similarly, the pure states form a sphere
generalizing the Riemann sphere.

Back in “Week 162” I explained how these examples are related to special relativity
and spinors in different dimensions. It’s so cool I can’t resist reminding you.

Our universe seems to like complex quantum mechanics. And, the space of 2 x 2
self-adjoint complex matrices — let’s call it hy(C) — is isomorphic to 4-dimensional
Minkowski spacetime! The cone of positive matrices is isomorphic to the future light-
cone. The set of pure states of a spin-1/2 particle is the Riemann sphere CP*, and this is
isomorphic to the “heavenly sphere”: the set of light rays through a point in Minkowski
spacetime.

This whole wonderful scenario works just as well in other dimensions if we replace
the complex numbers (C) by the real numbers (R), the quaternions (H) or the octonions
(0):

. R) is 3d Minkowski spacetime, and RP' is the heavenly sphere S*.
e hy(C) is 4d Minkowski spacetime, and CP"' is the heavenly sphere S2.

hy (R)
hy (C)

e hy(H) is 6d Minkowski spacetime, and HP' is the heavenly sphere S*.
hy (0)

Q) is 10d Minkowski spacetime, and QP is the heavenly sphere S%.
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So, it’s all very nice — but a bit mysterious. Why did our universe choose the complex
numbers? We're told that scientists shouldn’t ask “why” questions, but that’s not really
true — the main thing is to do it only to the extent that it leads to progress. But,
sometimes you just can’t help it.

String theorists occasionally think about 10d physics using the octonions, but not
much. The strange thing about the octonions is that the self-adjoint nxn octonionic
matrices h, (O) only form a Jordan algebra when n = 1, 2, or 3. So, it seems we can only
describe very small systems in octonionic quantum mechanics! Nobody knows what this
means.

People working on the foundations of quantum mechanics have also thought about
real and quaternionic quantum mechanics. h,,(R), h,,(C) and h,,(H) are Jordan algebras
for all n, so the strange limitation afflicting the octonions doesn’t affect these cases. But,
I wound up sharing a little cottage with Lucien Hardy at Les Treilles, and he turns out to
have thought about this issue. He pointed out that something interesting happens when
we try to combine two quantum systems by tensoring them. The dimensions of h,,(C)
behave quite nicely:

dim(hpm (C)) = dim(hy,(C)) dim(hy, (C))
But, for the real numbers we usually have

dim(hy, (R)) > dim(h, (R)) dim(h,, (R))
and for the quaternions we usually have

dim(hy,, (H)) < dim(h, (H)) dim(h,, (H))

So, it seems that when we combine two systems in real quantum mechanics, they sprout
mysterious new degrees of freedom! More precisely, we can’t get all density matrices
for the combined system as linear combinations of tensor products of density matrices
for the two systems we combined. For the quaternions the opposite effect happens: the
combined system has fewer mixed states than we’d expect.

This observation lurks behind axiom 4 in this paper:

11) Lucien Hardy, “Quantum theory from five reasonable axioms”, available as quant-ph/
0101012.

Another special way in which C is better than H or R is that only for a complex Hilbert
space is there a correspondence between continuous 1-parameter groups of unitary op-
erators and self-adjoint operators. We always get a skew-adjoint operator, but only in the
complex case can we convert this into a self-adjoint operator by dividing by 1.

Here are some more references, kindly provided by Rob Spekkens. The pioneering
quantum field theorist Stckelberg wrote a bunch of papers on real quantum mechanics.
Spekkens recommends this one:

12) E. C. G. Stckelberg, “Quantum theory in real Hilbert space”, Helv. Phys. Acta 33,
727 (1960).

This is a modern review:


https://arxiv.org/abs/quant-ph/0101012
https://arxiv.org/abs/quant-ph/0101012

WEEK 251 MAY 5, 2007

13) Jan Myrheim, “Quantum mechanics on a real Hilbert space”, available quant-ph/
9905037.

What I find most fascinating is the connection between real quantum mechanics and
time reversal symmetry. In ordinary complex quantum mechanics, time reversal sym-
metry is sometimes described by a conjugate-linear (indeed “antiunitary”) operator T'
with 72 = 1. Such an operator is precisely a “real structure” on our complex Hilbert
space: it picks out a real Hilbert subspace of which our complex Hilbert space is the

complexification.
It’s worth adding that in the physics of fermions, another possibility occurs: an antiu-
nitary time reversal operator with 72 = —1. This is precisely a “quaternionic structure”

on our complex Hilbert space: it makes it into a quaternionic Hilbert space!
For more on these ideas try:

14) Freeman J. Dyson, “The threefold way: algebraic structure of symmetry groups
and ensembles in quantum mechanics”, Jour. Math. Phys. 3 (1962), 1199-1215.

15) John Baez, “Symplectic, quaternionic, fermionic”, http://math.ucr.edu/home/
baez/symplectic.html

From all this one can’t help but think that complex, real, and quaternionic quantum
mechanics fit together in a unified structure, with the complex numbers being the most
important, but other two showing up naturally in systems with time reversal symmetry.

Stephen Adler — famous for the Adler-Bell-Jackiw anomaly — spent a long time at
the Institute for Advanced Studies working on quaternionic quantum mechanics:

16) S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford U. Press,
Oxford, 1995.

A problem with this book is that it defines a quaternionic vector space to be a left
module of the quaternions, instead of a bimodule. This means you can’t naturally tensor
two quaternionic vector spaces and get a quaternionic vector space! Adler “solves” this
problem by noting that any left module of the quaternions becomes a right module, and
in fact a bimodule, via

xq = q¢*x
But, when you’re working with a noncommutative ring, you really need to think about
left modules, right modules, and bimodules to understand the theory of tensor products.
And, the quaternions have more bimodules than you might expect: for example, for any
automorphism of the quaternions:

f+H—H

there’s a way to make H into an H-bimodule with the obvious left action and a “twisted”
right action, where ¢ acts on x to give

zf(q)

Since the automorphism group of the quaternions is SO(3), there turn out to be SO(3)’s
worth of nonisomorphic ways to make H into an H-bimodule!
For an attempt to tackle this issue, see:


https://arxiv.org/abs/quant-ph/9905037
https://arxiv.org/abs/quant-ph/9905037
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17) John Baez and Toby Bartels, “Functional analysis with quaternions”, available at
http://toby.bartels.name/papers/#quaternions

However, it’s possible we’ll only see what real and quaternionic quantum mechanics
are good for when we work in the 3-category Alg(R) mentioned in “Week 209", taking R
to be the real numbers. Here:

e there’s one object, the real numbers R.

e the 1-morphisms are algebras A over R.

e the 2-morphisms M: A — B are (A, B)-bimodules.

e the 3-morphisms f: M — N are (A, B)-bimodule morphisms.

This could let us treat real, complex and quaternionic quantum mechanics as part of
a single structure.
Dreams, dreams.. ..

Addenda: In email, Scott Aaronson pointed out this nice webpage:

18) Scott Aaronson, “Lecture 9: Quantum”, http://www.scottaaronson.com/democritus/
lec9.html

He wrote:

I talk all about the known differences between QM over the complex numbers
and QM over the reals and quaternions (including the parameter-counting dif-
ference you mentioned, but also a couple you didn’t), and why the universe
might’ve gone with complex numbers.

His lecture also cites this paper:

19) Carlton M. Caves, Christopher A. Fuchs, and Ruediger Schack, “Unknown quantum
states: the quantum de Finetti representation”, available as quant-ph/0104088.

which Rob Spekkens also pointed out to me.

The quantum de Finetti theorem is a generalization of the classical de Finetti theo-
rem. Both classical quantum de Finetti theorems are about n copies of a system sitting
side by side in an “exchangeable” state: a state that’s not only invariant under permuta-
tions of the copies, but lacking correlations between the different copies!

Here’s the quantum de Finetti theorem. Suppose you have an “exchangeable” density
operator p,, on H®" — that is, one such that for each N > n, there’s a density operator
pn on H®N which 1) is invariant under permutations in Sy and 2) has p as its marginal,
meaning that

Tr(pn) = pn

where Tr is the partial trace map sending operators on H®" to operators on H®". Then,
pr is a mixture of density matrices of the form p ® ... ® p: a tensor product of n copies
of a density matrix on H.

10
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This is completely plausible if you know what all this jargon means.

And now for the punch line: This theorem would fail if we did quantum mechanics
using the real numbers!

Of course, this is related to the fact I mentioned this Week, namely that for real
quantum mechanics, “the whole is more than the product of its parts” in a more severe
way than for complex quantum mechanics.

Bob Coecke wrote:

The standard references on quaternionic QM are:

20) D. Finkelstein, J.M. Jauch, S. Schiminovich and D. Speiser, “Foundations
of quaternion quantum mechanics”, Journal of Mathematical Physics 3,
207 (1962).

21) D. Finkelstein, J.M. Jauch, S. Schiminovich and D. Speiser, “Some physical

consequences of general Q-covariance”, Helvetica Physica Acta 35, 328-
329 (1962).

22) D. Finkelstein, J.M. Jauch, S. Schiminovich and D. Speiser, “Principle of
general Q-covariance”, Journal of Mathematical Physics 4, 788-796 (1963).

A standard structural result in the order-theoretic vein which separates Reals,
Complex Numbers and Quaternions from “non-classical fields” is:

23) M. P. Soler (1995) “Characterization of Hilbert spaces with orthomodular
spaces”, Comm. Algebra 23, pp. 219-243.

It does this relative to the order-theoretic characterization of Hilbert spaces:

24) C. Piron (1964, French) ‘Axiomatique Quantique”, Helv. Phys. Acta 37,
pp. 439-468.

25) I. Amemiya and H. Araki (1966) ‘A Remark on Piron’s Paper”, Publ. Res.
Inst. Math. Sci. Ser. A 2, pp. 423-427.

26) C. Piron (1976) Foundations of Quantum Physics, W. A. Benjamin, Inc.,
Reading.

A nicely written recent survey on this stuff is:

26) Isar Stubbe and B. van Steirteghem (2007) “Propositional systems, Hilbert
lattices and generalized Hilbert spaces”, chapter in: Handbook Quantum
Logic (edited by D. Gabbay, D. Lehmann and K. Engesser), Elsevier, to
appear. Available at http://www.win.ua.ac.be/ istubbe/

It is not clear to me how exactly this order-theoretic stuff relates to the thick
categorical axiomatics for QM John mentioned above. One key difference is that
in the order-theoretic axiomatics one failed to find an abstract counterpart to
the Hilbert space tensor product. (ie without having to say that we are work-
ing in the lattice of closed subspaces of a Hilbert space) On the other hand, the
categorical approach starting from symmetric monoidal categories takes that de-
scription of compound systems as an a priori. Singling out the complex numbers

11
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is done in terms of two involutions on morphisms, one covariant and one con-
travariant, where the covariant one capture complex conjugation ie the unique
non-trivial automorphism characteristic of complex numbers. The contravari-
ant one captures transposition and together they make up the adjoint.

Here “thick” refers to working with categories which nice big hom-sets, instead of
mere posets or preorders, which are categories with at most one morphism from one
object to another.

Rob Spekkens also gives some references on quantum computation in real quantum
mechanics. He writes:

See also:

27) C. M. Caves, C. A. Fuchs, P. Rungta, “Entanglement of formation of an
arbitrary state of two rebits”, available as quant-ph/0009063.

It’s also worth noting that quantum computation and quantum cryptography
do not require the complex field. Have a look at:

28) T. Rudolph and L. Grover, ‘A 2 rebit gate universal for quantum comput-
ing”, quant-ph/0210187.

I actually know of no information-theoretic task whose possibility is contingent
on the nature of the number field.

More discussion (and pictures!) can be found at the n-Category Caf.

12
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Week 252

May 27, 2007

Today I want to tell you about the electromagnetic snake at the center of our Galaxy, and
continue the Tale of Groupoidification.

But first, the long-range weather forecast. There’s a 40% chance of rain on Neptune
in 8 billion years! More precisely, that's the chance these authors give for the formation
of an ocean on Neptune when its interior cools down enough:

1) Sloane J. Wiktorowica and Andrew P. Ingersoll, “Liquid water oceans in ice giants”,
available as astro-ph/0609723.

Right now, even though Neptune is named after the Roman god of seas and has a
nice blue appearance:

it’s mighty dry — at least on top. Spectroscopy detects no water at all in its upper
atmosphere! But that’s consistent with the presence of water down below, since water
vapor is a lot heavier than hydrogen and helium, which make up most of Neptune’s
upper atmosphere, and the pull of gravity there is mighty fierce.

In fact, scientists believe Neptune has a core of molten metal and rock surrounded by
more rock, methane ice, ammonia ice, and water ice — all solid due to high pressures.
The overall density of Neptune makes sense if there’s a lot of water down there. But,
Wiktorowica and Ingersoll argue that the planet can’t have an ocean of liquid water.

Surprisingly, this is because Neptune is too hot — even though its upper atmosphere
is a chilly 50 kelvin! I think their argument goes roughly like this, though I don’t under-
stand it well. If you fell down through the atmosphere of Neptune, you’d find that it gets

13


https://arxiv.org/abs/astro-ph/0609723
http://en.wikipedia.org/wiki/Neptune

WEEK 252 MAY 27, 2007

hotter and hotter as you go down, and moister and moister too — but always too hot,
given the amount of moisture, for liquid water to be more stable than water vapor.
However, they also indulge in some predictions about the far future!
First let’s set the stage:

e In 1.1 billion years the Sun will become 10% brighter than now, and the Earth’s
atmosphere will dry out.

e In 3 billion years the Andromeda Galaxy will collide with our galaxy. Many solar
systems will be destroyed.

e In 3.5 billion years the Sun will become 40% brighter than today. If the Earth is
still orbiting the sun, its oceans will evaporate.

e In 5.4 billion years from now the Sun’s core will run out of hydrogen. It will enter
its first red giant phase, becoming 1.6 times bigger and 2.2 times brighter than
today.

e In 6.5 billion years from now the Sun will become a full-fledged red giant, 170
times bigger and 2400 times brighter than today. The Republican Party will finally
admit the existence of global warming, but point out that it’s not human-caused.

e In 6.7 billion years from now the Sun will start fusing helium and shrink back down
to 10 times bigger and 40 times brighter than today.

e In 6.8 billion years from now the Sun will run out of helium. Being too small to
start fusing carbon and oxygen, it'll enter a second red giant phase, growing 180
times bigger and 3000 times brighter than today.

But then, about 6.9 billion years from now, the Sun will start pulsating, ejecting half
of its mass in the form of solar wind! It'll become what they call a “planetary nebula”.
Eventually only its inner core will be left. In “Week 223” I quoted Bruce Balick’s eloquent
description:

The remnant Sun will rise as a dot of intense light, no larger than Venus, more
brilliant than 100 present Suns, and an intensely hot blue-white color hotter
than any welder’s torch. Light from the fiendish blue “pinprick” will braise the
Earth and tear apart its surface molecules and atoms. A new but very thin
“atmosphere” of free electrons will form as the Earth’s surface turns to dust.

This is where Wiktorovika and Ingersoll begin their story. So far, Neptune will have
warmed up a lot — assuming for the sake of argument that it wasn’t thrown out of
the Solar System when the Milky Way hit Andromeda. But when the Sun loses mass,
Neptune will either collide with Uranus, be ejected from the Solar System, or assume a
stable orbit about twice its current size.

In the latter two scenarios, Neptune will chill out, at least when the remnant Sun
cools down and becomes a white dwarf. When the surface temperature of Neptune
reaches 30 kelvin, they estimate it has a 41.5% plus or minus 4.2% chance of forming
oceans.
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So, they say: “Billions of years from now, after the Sun has gone, Neptune may
therefore become the only object in the Solar system with liquid water oceans”.

This sounds nice — but don’t buy your beachfront property there yet.

First, they don’t study how the atmospheric composition of Neptune may change
when the Sun gets 3000 times brighter than now! Maybe this will help Neptune form
oceans. After all, light gases like molecular hydrogen and helium, which dominate Nep-
tune’s upper atmosphere now, are more likely than water vapor to be driven off into
outer space when it gets hot. But, they don’t even check to see if Neptune will have any
atmosphere left after this era.

Second, the estimate of a “41.5% plus or minus 4.2% chance” seems strangely pre-
cise, given the uncertainties involved. The error bars should probably have big error bars
themselves!

Third, it’s worth admitting that the atmosphere of Neptune is a bit mysterious. For
example, nobody knows why it’s bright blue. It’s probably because of methane — but
Uranus also has methane in its atmosphere, and it’s not as blue:

Also, despite being the coldest planet in our Solar System, Neptune has the fastest winds:
up to 2100 kilometers per hour, almost supersonic! Nobody knows what powers these
winds.

When the Voyager 2 spacecraft flew by Neptune in 1992, it saw a storm system the
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size of Eurasia, which was dubbed “The Great Dark Spot™:

It seemed to resemble the Great Red Spot on Jupiter, which has been around for at least
177 years. But when the Hubble Space Telescope took another good look at Neptune in
1994, the Great Dark Spot was gone! Meanwhile, other storms had formed.

So, the weather on Neptune is dynamic and poorly understood. Doing forecasts for
the next 8 billion years seems pretty risky... though fun.

Of course, liquid water oceans are nice if you’re looking for life. And while there
probably isn’t life on Neptune, there could be life on similar planets in other solar sys-
tems. So far people have found 233 of these “exoplanets”, most of them heavier than
Jupiter but close to their suns — because such planets are the easiest to detect by how
they pull on their sun.

16


http://en.wikipedia.org/wiki/Great_Dark_Spot

WEEK 252 MAY 27, 2007

Here’s a chart showing the masses and orbital radii of known exoplanets as of 2004:
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2) P.R. Lawson, S. C. Unwin, and C. A. Beichman, “Precursor Science for the Terres-
trial Planet Finder”, JPL Pub 04-014, Oct. 2004, page 21, fig. 5. Chart at http:/
/en.wikipedia.org/wiki/Image:Extrasolar Planets_2004-08-31.png. Report
at http://planetquest. jpl.nasa.gov/documents/RdMp272.pdf

For comparison, the letters V, E, M, J, S, U, N, stand for planets in our Solar System,
not counting Mercury or the subsequently dethroned Pluto.

As you'll see, there are lots of “hot Jupiters” — planets as big as Jupiter, or even up
to 200 times heavier, but closer to their sun than we are to ours. Recently a postdoc at
UCLA found evidence for water in the atmosphere of one of these planets:

3) Travis Barman, “Identification of absorption features in an extrasolar planet atmo-
sphere”, available as arxiv:0704.1114.
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This planet is only 7 million kilometers away from its yellow-white Sun, much closer
than Mercury is to ours. Its year is only 3.5 of our days! It’s bigger in size than Jupiter,
but only 0.7 times as heavy. Its surface temperature must be about 1000 kelvin. That’s
one really hot Jupiter.

People have also been finding “hot Neptunes”. In fact, I read about a nice one in the
newspaper while writing this! It’s called Gliese 436 b. It’s the size of Neptune and it’s
orbiting the red dwarf star Gliese 436, which is 33 light-years from Earth. This star is
only 1% as bright as our Sun — but the planet is so close that its year lasts less than
three of our days! So, its surface temperature is high: higher than the melting point of
lead.

However, because this planet is so big, the pressure down below can still make water
into a solid. In fact, its density suggests that it’s mainly made of ice!

I think this is the paper that triggered the newspaper reports:

4) M. Gillon et al, “Detection of transits of the nearby hot Neptune GJ 436 b”, avail-
able as arxiv:0705.2219.

It seems hot Neptunes like this could have started as hot Jupiters and then lost a lot
of their atmosphere:

5) 1. Baraffe, G. Chabrier, T. S. Barman, F. Selsis, F. Allard, and P. H. Hauschildt, “Hot-
Jupiters and hot-Neptunes, a common origin?”, available at astro-ph/0505054.

There could also be cold Neptunes, perhaps with liquid water oceans. We haven’t
seen these yet, but they’d be hard to see. So, while Wiktorowica and Ingersoll’s paper
doesn’t convince me about the future of our Neptune, it raises some interesting possibil-
ities.

Next: the snake at the center of our galaxy!

Gregory Benford is best known for his science fiction, which spans the galaxy, but
he’s also an astrophysicist at U. C. Irvine. Recently he spent a week at my school, U. C.
Riverside, which has one of the world’s best SF libraries: the Eaton Collection. Since
my wife is involved in the SF program at the comparative literature department here, he
had dinner at our place one night. The conversation drifted all over the place, with a
heavy focus on fruit flies that have been bred to live twice as long as usual. But when I
asked him about his research, he said he’d written some papers about enormous glowing
filaments near the center of the Milky Way.

I hadn’t known about these! He said the biggest one could be a million years old,
perhaps formed by some energetic event, maybe a star falling into the central black
hole. Here’s an expository paper he wrote about it:

6) Gregory Benford, “The electromagnetic snake at the galactic center”, http://www.
ps.uci.edu/physics/news3/benford.html

I'll just quote a little:

Five years ago radio astronomy revealed the oddest and longest filament yet
discovered at our galactic center: a uniquely kinked structure about 150 light
years long and two to three light years wide — the Snake. Its large kinks are its
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brightest parts. There is energetic activity at one end and a supernova bubble at
the other; which the Snake appears to penetrate unharmed.

How does nature form stable, long-lived magnetic structures which display con-
siderable polarization (about 60% at 10.55 GHz in the Snake)? In 1988 I had
modeled others of the dozens of filaments seen uniquely at the galactic center
in terms of an electrodynamic view, in which currents set up coherent magnetic
pinches. Such self-organizing filaments can exist in laboratory plasmas for long
times; the galactic ones could be at least a million years old, as estimated by the
time that shear forces would disrupt them.

The electrodynamic view uses pinch forces of currents to form filaments, driven
by the E = v x B of conducting molecular clouds moving across a strong mil-
liGauss ambient, ordered field. A return current must then flow at larger radii,
making a closed loop which has a springy flexibility, able to withstand the turbu-
lent velocity fields known near the galactic center. The picture then anticipates
that aberrant molecular clouds, moving contrary to the general galactic rota-
tion, should accompany each filament. This prediction has held up as more
filaments were found.

I'd like to learn more about these!

Back in “Week 248”, I mentioned some of the complex things that electromagnetic
fields and plasma do in the Sun. The center of the Galaxy is another place where elec-
tromagnetohydrodynamics runs rampant. There’s a black hole there, of course, but also
these filaments, and a fairly strong magnetic field that contains about 4 x 10*7 joules of
energy within about 300 light years of the galactic center. By comparison, a supernova
emits a mere 10** joules. So, there’s a lot of energy around. ...

The big picture here, created by Farhad Yusef-Zadeh and collaborators, shows the
galactic center quite nicely, as viewed in radio frequencies:

Radio Arc

7) National Radio Astronomy Observatory, “Origin of enigmatic galactic-center fila-
ments revealed”, http://www.nrao.edu/pr/2004/filaments/

You can see some supernova remnants (SNRs), the region Sgr A which contains the
black hole at the galactic center, various nonthermal radio filaments (NRFs), and the
Snake. Some of these filaments come from regions where stars are forming... that
could be important.
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But, this article discusses another piece of the puzzle — the possible role of turbu-
lence in winding up the galactic magnetic field:

8) Stanislav Boldyrev and Farhad Yusef-Zadeh, “Turbulent origin of the galactic-center
magnetic field: nonthermal radio filaments”, available as astro-ph/0512373.

It's a complicated stew. I don’t hope to understand it, just admire it.

And finally: the Tale of Groupoidification! In “Week 250” we reached the point
of seeing how spans of groupoids over a fixed group G subsume the theory of G-sets
and invariant relations between these — which are traditionally studied using “double
cosets”.

There is a lot more we could say about this. But, our most urgent goal is to see how
spans of groupoids act like twice categorified matrices — matrices whose entries are not
just numbers, and not just sets, but groupoids! This will expose the secret combinatorial
underpinnings of a lot of fancy linear algebra. Once we’ve categorified linear algebra this
way, we'll be in a great position to tackle fashionable topics like categorified quantum
groups, invariants of higher-dimensional knots, and the like.

But, we should restrain ourselves from charging ahead too fast! Everything will
hang together better if we lay the groundwork properly. For this, it pays to re-examine
the history of mathematics a bit. If we’re trying to understand linear algebra using
groupoids, it pays to ask: how did people connect linear algebra and group theory in the
first place?

This book is very helpful:

9) Charles W. Curtis, Pioneers of Representation Theory: Frobenius, Burnside, Schur
and Brauer, History of Mathematics vol. 15, AMS, Providence, Rhode Island, 1999.

Back in 1897, a mathematician named William Burnside wrote the first book in En-
glish on finite groups. It was called Theory of Groups of Finite Order.
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In the preface, Burnside explained why he studied finite groups by letting them act as
permutations of sets, but not as linear transformations of vector spaces:

Cayley’s dictum that “a group is defined by means of the laws of combination
of its symbols” would imply that, in dealing with the theory of groups, no more
concrete mode of representation should be used than is absolutely necessary. It
may then be asked why, in a book that professes to leave all applications to
one side, a considerable space is devoted to substitution groups [permutation
groups], but other particular modes of representation, such as groups of linear
transformations, are not even referred to. My answer to this question is that
while, in the present state of our knowledge, many results in the pure theory
are arrived at most readily by dealing with properties of substitution groups, it
would be difficult to find a result that could most directly be obtained by the
consideration of groups of linear transformations.

In short, he didn’t see the point of representing groups on vector spaces — at least as
a tool in the “pure” theory of finite groups, as opposed to their applications.

However, within months after this book was published, he discovered the work of
Georg Frobenius, who used linear algebra very effectively to study groups!

So, Burnside started using linear algebra in his own work on finite groups, and by the
time he wrote the second edition of his book in 1911, he’d changed his tune completely:

Very considerable advances in the theory of groups of finite order have been
made since the appearance of the first edition of this book. In particular the
theory of groups of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason given in the original
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preface for omitting any account of it no longer holds good. In fact it is now
more true to say that for further advances in the abstract theory one must look
largely to the representation of a group as a group of linear transformations.

It’s interesting to see exactly how representing finite groups on vector spaces lets us
understand them better. By now almost everyone agrees this is true. But how much of
the detailed machinery of linear algebra is really needed? How much we could do purely
combinatorially, using just spans of groupoids?

I don’t really know the full answer to this question. But, it quickly leads us into
the fascinating theory of “Hecke operators”, which will play a big role in the Tale of
Groupoidification. So, let’s pursue it a bit.

Suppose we have two guys, William and Georg, who are studying a finite group G.

William says, “I'm studying how G acts on sets.”

Georg replies, “I'm studying how it acts on complex vector spaces, as linear transfor-
mations. Mere sets are feeble entities. I can do anything you can do — but I have the
tools of linear algebra to help me!”

William says, “But, you're paying a moral price. You're getting the complex numbers
— a complicated infinite thing — involved in what should be a completely finitary and
combinatorial subject: the study of a finite group. Is this really necessary?”

Georg replies, “I don’t know, but it’s sure nice. For example, suppose I have G acting
on vector space V. Then I can always break down V into a direct sum of subspaces
preserved by GG, which can’t themselves be broken down any further. In technical terms:
every representation of G is a direct sum of irreducible representations. And, this decom-
position is unique! It’s very nice: it’s a lot like how every natural integer has a unique
prime factorization.”

William says, “Yes, it’s always fun when we can break things down into ‘atoms’ that
can’t be further decomposed. It’s very satisfying to our reductionist instincts. But, I can
do even better than you!”

Georg raises an eyebrow. “Oh?”

“Yeah,” William says. “Suppose I have our group G acting on a set S. Then I can
always break down S into a disjoint union of subsets preserved by G, which can’t them-
selves be broken down any further. In technical terms: every action of G is a disjoint
union of transitive actions. And, this decomposition is unique!”

Embarrassed, Georg replies, “Oh, right — we heard that back in "Week 249”. I wasn’t
paying enough attention. But how is what you’re doing better than what I'm doing? It
sounds just the same.”

William hesitates. ”"Well, first of all, a rather minor point, which I can’t resist men-
tioning ... when you said your decomposition of representations into irreducibles was
unique, you were exaggerating a little. It’s just unique up to isomorphism, and not a
canonical isomorphism either.

For example, if you have an irreducible representation of G on V, there are lots of
different ways to slice the direct sum V @ V into two copies of the representation V. It’s
a sort of floppy business. On the other hand, when I have a transitive action of G on S,
there’s exactly one way to chop the disjoint union S LI S into two copies of the G-set S. I
just look at the two orbits.”

Georg says, “Hmm. This is actually a rather delicate point. There’s not really a
canonical isomorphism in your case either, since S may be isomorphic to itself in lots of
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ways, even as a G-set. There’s something in what you say, but it’s a bit hard to make
precise, and it’s certainly not enough to worry me.”

”Okay, but here’s my more serious point. Given that I can break apart any set on
which G acts into ‘atoms’, my job is to classify those atoms: the transitive G-sets. And
there’s a very nice classification! Any subgroup H of G gives a transitive G-set, namely
G/H, and all transitive G-sets look like this. More precisely: isomorphism classes of
transitive G-sets correspond to conjugacy classes of subgroups of G.

Even better, this has a nice meaning in terms of Klein geometry. Any type of figure in
Klein geometry gives a transitive GG-set, with H being the stabilizer of a chosen figure of
that type.

You, on the other hand, need to classify irreducible representations of G. And this is
not so conceptual. What do these irreducible representations mean in terms of the group
G?”

Georg replies, “Well, there’s one irreducible representation for each conjugacy class
inG...”

At this, William pounces. “You mean the number of isomorphism classes of irreducible
representations of G equals the number of conjugacy classes in G! But as you know full
well, there’s no god-given correspondence. You can’t just take a conjugacy class in G and
cook up an irreducible representation, or irrep. So, you've just made my point. You've
shown how mysterious these irreps actually are!”

Georg replies, “Actually in some cases there is a nice way to read off irreps from
conjugacy classes. For example, you can do it for the symmetric groups S,,. But, I admit
you can’t in general... or at least, I don’t know how.”

William laughs, “So, I win!”

“Not at all!” replies Georg. “First, there are lots of theorems about groups that I can
prove using representations, which you can’t prove using actions on sets. For example,
nobody knows how to prove that every group with an odd number of elements is solvable
without using the tools of linear algebra.”

William nods. “I admit that linear algebra is very practical. But just give us time! I
proved back in 1904 that every group of size p®q® is solvable if p and ¢ are prime. To
do it, I broke down and used linear algebra. But then, in 1972, Helmut Bender found a
proof that avoids linear algebra.”

Georg said, "Okay, struggle on then. So far, without using linear algebra, nobody can
even prove my famous theorem on ‘Frobenius groups’. The details don’t matter here:
the point is, this is a result on group actions, which seems to need linear algebra for its
proof.

But if practicality won’t sway you, maybe this conceptual argument will. My atoms
are more fine-grained than yours!”

“What do you mean?” asks William.

“You can decompose any action of G into ‘atoms’, namely transitive G-sets. Similarly,
I can decompose any representation of GG into one of my ‘atoms’, namely irreps. But,
there’s an obvious way to turn G-sets into representations of GG, and if we do this to one
of your atoms, we don’t get one of my atoms! We can usually break it down further! So,
my atoms are smaller than yours.”

“How does this work, exactly?”

“It’s easy,” says Georg, getting a bit cocky. “Say you have a group G acting on a set S.
Then I can form the vector space C[S] whose elements are formal linear combinations
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of elements of S. In other words, it’s the vector space having S as basis. If we're feeling
sloppy we can think of guys in C[S] as functions on S that vanish except at finitely many
points. It’s better to think of them as measures on S. But anyway: since G acts on S, it
acts linearly on C[S]!

So, any G-set gives a representation of G. But, even when G acts transitively on S,
its representation on C[S] is hardly ever irreducible.”

William glowers. “Oh yeah?”

“Yeah. Suppose for example that S is finite. Then the constant functions on S form
a 1-dimensional subspace of C[S] that’s invariant under the action of G. So, at the very
least, we can break C[S] into two pieces.”

“Well,” replies William defensively, “That’s pretty obvious. But it’s also not such a big
deal. So you can break up any my transitive G-sets into two of your irreps, one being
the ‘trivial irrep. So what???”

“It wouldn’t be a big deal if that’s all that ever happened,” says Georg. “In fact,
we can break C[S] into precisely two irreps whenever the action of G on S is ‘doubly
transitive’ — meaning we can send any pair of distinct elements of S to any other using
some element of G. But, there lots of transitive actions aren’t doubly transitive! And
usually, one your atoms breaks down into a bunch of my atoms. In fact I’d like to show
you how this works, in detail, for the symmetric groups.”

“Maybe next week,” says William. “But, I see your point. Your atoms are more atomic
than my atoms.”

Georg seems to have won the argument. But, William wouldn’t have conceded the
point quite so fast, if he’d thought about invariant relations!

The point is this. Suppose we have two G-sets, say X and Y. Any G-set map from
X to Y gives an intertwining operator from C[X] to C[Y]. But, even after taking linear
combinations, there are typically plenty of intertwining operators that don’t arise this
way. It’s these extra intertwining operators that let us chop representations into smaller
atoms.

But where do these extra intertwining operators come from? They come from invari-
ant relations between X and Y'!

And, what are these extra intertwining operators called? In some famous special
cases, like in study of modular forms, they’re called “Hecke operators”. In some other
famous special cases, like in the study of symmetric groups, they form algebras called
“Hecke algebras”.

A lot of people don’t even know that Hecke operators and Hecke algebras are two
faces of the same idea: getting intertwining operators from invariant relations. But,
we’ll see this is true, once we look at some examples.

I think I'll save those for future episodes. But if you've followed the Tale so far, you
can probably stand a few extra hints of where we’re going. Recall from “Week 250” that
invariant relations between G-sets are just spans of groupoids equipped with some extra
stuff. So, invariant relations between G-sets are just a warmup for the more general,
and simpler, theory of spans of groupoids. I said back in “Week 248” that spans of
groupoids give linear operators. What I'm trying to say now is that these linear operators
are a massive generalization — but also a simplification — of what people call “Hecke
operators”.

Finally, for students trying to learn a little basic category theory, I'd like to cast the
argument between William and Georg into the language of categories, just to help you
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practice your vocabulary.
A G-set is the same as a functor

A: G — Set
where we think of G as a 1-object category. There’s a category of G-sets, namely
Hom(G, Set)

This has functors A: G — Set as objects, and natural transformations between these as
morphisms. Usually the objects are called “G-sets”, and the morphisms are called “maps
of G-sets”.

We can also play this whole game with the category of vector spaces replacing the
category of sets. A representation of G is the same as a functor

A: G — Vect
As before, there’s a category of such things, namely
Hom(G, Vect)

This has functors A: G — Vect as objects, and natural transformations between these as
morphisms. Now the objects are called “representations of G” and the morphisms are
called “intertwining operators”.

We could let any groupoid take the place of the group G. We could also let any other
category take the place of Set or Vect.

Part of what William and Georg were debating was: how similar are Hom(G, Set)
and Hom(G, Vect)? How are they related?

First of all, there’s a functor

F: Set — Vect

sending each set S to the vector space C[S] with that set as basis. So, given an action of
G on a set:
A: G — Set

we can compose it with F' and get a representation of G:
FA: G— Vect

This kind of representation is called a “permutation representation”. And, this trick gives
a functor from G-sets to representations of G:

Hom(G, Set) — Hom(G, Vect)
A—FA

If this functor were an equivalence of categories, it would have to be essentially surjec-
tive, full and faithful. But, not every representation of G is isomorphic to a permutation
representation! In other words, the functor

Hom(G, Set) — Hom(G, Vect)
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is not “essentially surjective”.
Moreover, not every intertwining operator between permutation representations comes
from a map between their underlying G-sets! In other words, the functor

Hom(G, Set) — Hom(G, Vect)

is not “full”.

But, given two different maps from one G-set to another, they give different inter-
twining operators. So, at least our functor is “faithful”.

Maps of G-sets are a special case of invariant relations. So, to get a category that more
closely resembles Hom(G, Vect), while remaining purely combinatorial, we can replace
Hom(G, Set) by the category with G-sets as objects and invariant binary relations as
morphisms. This is the basic idea of “Hecke operators”.

Or, even better, we can try a weak 2-category, with

e groupoids over G as objects
e spans of groupoids over GG as morphisms

e maps between spans of groupoids over G as 2-morphisms

This is where groupoidification comes into its own.

Addendum: For more discussion, go to the n-Category Caf.

The present treatise is intended to introduce to the reader the main outlines
of the theory of groups of finite order apart from any applications. The sub-
ject is one which has hitherto attracted but little attention in this country; it
will afford me much satisfaction if, by means of this book, I shall arouse in-
terest among English mathematicians in a branch of pure mathematics which
becomes the more fascinating the more it is studied

— William Burnside
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Week 253

June 27, 2007

Yay! Classes are over! Soon I'm going to Paris for three weeks, to talk with Paul-Andr
Mellis about logic, games and category theory. But right now I'm in a vacation mood. So,
I want to take a break from the Tale of Groupoidification, and mention some thoughts
prompted by the work of Garrett Lisi:

1) Garrett Lisi, Deferential Geometry, http://deferentialgeometry.org.

Garrett is a cool dude who likes to ponder physics while living a low-budget, high-
fun lifestyle: hanging out in Hawaii, surfing, and stuff like that. He recently won a
Foundational Questions Institute award to think about ways to unify particle physics and
gravity. That’s an institute devoted precisely to risky endeavors like this.

Lately he’s been visiting California. So, before giving a talk at Loops 07 — a loop
quantum gravity conference taking place in Mexico this week — he stopped by Riverside
to explain what he’s been up to.

Briefly, he’s been trying to explain the 3 generations of elementary particles using
some math called “triality”, which is related to the octonions and the exceptional Lie
groups. In fact, he’s trying to use the exceptional Lie group Eg to describe all the particles
in the Standard Model, together with gravity.

I'd like to know if these ideas hold water. So, I should try to explain them! But as
usual, in this Week’s Finds I'll wind up explaining not what Garrett actually did, but what
it made me think about.

For a long time, people have been seeking connections between the messy pack of
particles that populate the Standard Model and structures that seem beautiful and “in-
evitable”.

A fascinating step in this direction was the SU(5) grand unified theory proposed in
1975 by Georgi and Glashow. So, I'll start by summarizing that... and then explain how
exceptional Lie groups might get involved in this game.

What people usually call the gauge group of the Standard Model:

SU(3) x SU(2) x U(1)

actually has a bit of flab in it: there’s a normal subgroup that acts trivially on all known
particles. This subgroup is isomorphic to Z/6. If we mod out by this, we get the “true”
gauge group of the Standard Model:

G = (SU(3) x SU(2) x U(1))/(Z/6)

And, this turns out to have a neat description. It's isomorphic to the subgroup of SU(5)
consisting of matrices like this:

g 0

0 h

where g is a 3 x 3 block and A is a 2 x 2 block. For obvious reasons, I call this group

S(U(3) x U(2))
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If you want some intuition for this, think of the 3 x 3 block as related to the strong force,
and the 2 x 2 block as related to the electroweak force. A 3 x 3 matrix can mix up the 3
“colors” that quarks come in — red, green, and blue — and that’s what the strong force
is all about. Similarly, a 2 x 2 matrix can mix up the 2 “isospins” that quarks and leptons
come in — up and down — and that’s part of what the electroweak force is about.

If this isn’t enough to make you happy, go back to “Week 119”, where I reviewed
the Standard Model and its relation to the SU(5) grand unified theory. If even that isn’t
enough to make you happy, try this:

2) John Baez, “Elementary particles”, http://math.ucr.edu/home/baez/qg-spring2003/
elementary/

Okay — I'll assume that one way or another, you’re happy with the idea of S(U(3) x
U(2)) as the true gauge group of the Standard Model! Maybe you understand it, maybe
you're just willing to nod your head and accept it.

Now, the fermions of the Standard Model form a very nice representation of this
group. SU(5) has an obvious representation on C°, via matrix multiplication. So, it gets
a representation on the exterior algebra A(C?). If we restrict this from SU(5) to S(U(3) x
U(2)), we get precisely the representation of the true gauge group of the Standard Model
on one generation of fermions and their antiparticles!

This really seems like a miracle when you first see it. All sorts of weird numbers need
to work out exactly right for this trick to succeed. For example, it’s crucial that quarks
have charges 2/3 and —1/3, while leptons have charges 0 and —1. One gets the feeling,
pondering this stuff, that there really is some truth to the SU(5) grand unified theory.

To give you just a little taste of what’s going on, let me show you how the exterior
algebra A(C®) corresponds to one generation of fermions and their antiparticles. For
simplicity I'll use the first generation, since the other two work just the same:

e A%(C®) = (left-handed antineutrino)

AL(C?) = (right-handed down quark)a®(right-handed positron, right-handed antineutrino)

A?(C®) = (left-handed up antiquark)®(left-handed up quark, left-handed down quark)®
(left-handed positron)

A3(CP) = (right-handed electron)®(right-handed up antiquark, right-handed down antiquark)®
(right-handed up quark)

o A*(CP) = (left-handed up antiquark)@®(left-handed electron, left-handed neutrino)
e A5(CP) = (right-handed neutrino)

All the quarks and antiquarks come in 3 colors, which I haven’t bothered to list here.
Each space AP(CP) is an irreducible representation of SU(5), but most of these break up
into several different irreducible representations of S(U(3) x U(2)), which are listed as
separate rows in the chart above.

If you’re curious how this “breaking up” works, let me explain — it’s sort of pretty.
We just use the splitting

C*=C*oC?

28



WEEK 253 JUNE 27, 2007

to chop the spaces AP(C®) into pieces.
To see how this works, remember that AP(C?) is just the vector space analogue of the

binomial coefficient “ (;) ”. A basis of C® consists of 5 things, and the p-element subsets
give a basis for AP(C?).
In our application to physics, these 5 things consist of 3 “colors” — red, green and

blue — and 2 “isospins” — up and down. This gives various possible options.
For example, suppose we want a basis of A%(C%). Then we need to pick 3 things out
of 5. We can do this in various ways:

e We can pick 3 colors and no isospins — there’s just one way to do that.
e We can pick 2 colors and 1 isospin — there are six ways to do that.

e Or, we can pick 1 color and 2 isospins — there are three ways to do that.
So, in terms of binomial coefficients, we have
5\  [3\ /2 N 3\ (2 n 3\ /2
3)  \3/\0 2)\1 1)\2
=1+6+3
=10

In terms of vector spaces we have:
A3(CP) =2 A3(C?) @ A2(C?) @ AZ(C?) ® AL (CE) @ AL(C?) @ A2(C?)

Taking dimensions of these vector spaces, we get 10 = 1 + 6 + 3. Finally, in terms of the
SU(5) grand unified theory, we get this:

AN3(CP) = (right—handedelectron)@® (right—handedupantiquark, right—handeddownantiquark) @ (right—handedu

If we play this game for all the spaces AP(C?), here’s what we get:

o NO(CP) 2 A%C3) ® AY(C?)

o ALHCP) 2 AHC3) @ AO(C?) @ AO(C3) @ AL(C?)

o N2(CP) 2 A%(C3) @ AY(C?) & AL(C3) @ AL(C?) & AY(C3) ® A2(C?)
o N3(CP) 2 A3(C3) @ AY(C?) & A2(C3) @ AL(C?) & AY(C3) ® A2(C?)
o N4(CP) 2 A3(C3) @ AL(C?) & A%(C?) ® A2(C?)

e A5(CP) 2 A3(C3) @ A2(C?)

If we interpret this in terms of physics, we get back our previous chart:

e A%(CP) = (left-handed antineutrino)

e A(CP) = (right-handed down quark)®(right-handed positron, right-handed antineutrino)
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e A?(C%) = (left-handed up antiquark)(left-handed up quark, left-handed down quark)®
(left-handed positron)

e A\3(CP) = (right-handed electron)@(right-handed up antiquark, right-handed down antiquark)®
(right-handed up quark)

e N%(CP) = (left-handed up antiquark)(left-handed electron, left-handed neutrino)
e A5(CP) = (right-handed neutrino)

Now, all this is really cool — but in fact, even before inventing the SU(5) theory,
Georgi went a bit further, and unified all the left-handed fermions above into one irre-
ducible representation of a somewhat bigger group: Spin(10). This is the double cover
of the group SO(10), which describes rotations in 10 dimensions.

If you look at the chart above, you’ll see the left-handed fermions live in the even
grades of the exterior algebra of C°:

/\even((CS) —_ /\O(CS) o /\Q(CS) o /\4(((:5)

This big space forms something called the left-handed Weyl spinor representation of
Spin(10). It’s an irreducible representation.
Similarly, the right-handed fermions live in the odd grades:

ACH(CP) = AM(CP) @ AP(CP) @ AP(CP)

and this big space forms the right-handed Weyl spinor representation of Spin(10). It’s
also irreducible.

I can’t resist mentioning that there’s also a gadget called the Hodge star operator that
maps A% (C5) to A°44(CP), and vice versa. In terms of physics, this sends left-handed
particles into their right-handed antiparticles, and vice versa!

But if I get into digressions like these, it'll take forever to tackle the main question:
how does this “Weyl spinor” stuff work?

It takes advantage of some very nice general facts. First, C" is just another name for
R?" equipped with the structure of a complex vector space. This makes SU(n) into a
subgroup of SO(2n). So, it makes the Lie algebra su(n) into a Lie subalgebra of so(2n).

The group SU(n) acts on the exterior algebra A(C™). So, its Lie algebra su(n) also
acts on this space. The really cool part is that this action extends to all of so(2n). This
is something you learn about when you study Clifford algebras, spinors and the like. I
don’t know how to explain it without writing down some formulas. So, for now, please
take my word for it!

This business doesn’t give a representation of SO(2n) on A(C™), but it gives a repre-
sentation of the double cover, Spin(2n). This is called the “Dirac spinor” representation.
It breaks up into two irreducible parts:

/\(CTL) _ /\even((cn) o /\odd((cn)

and these are called the left- and right-handed “Weyl spinor” representations.
Perhaps it’s time for an executive summary of what I've said so far:

30



WEEK 253 JUNE 27, 2007

The Dirac spinor representation of Spin(10) neatly encodes everything about
how one generation of fermions interacts with the gauge bosons in the Standard
Model, as long as we remember how S(U(2) x U(3)) sits inside SO(10), which
is double covered by Spin(10).

Of course, there’s more to the Standard Model than this. There’s also the Higgs
boson, which spontaneously breaks electroweak symmetry and gives the fermions their
masses. And, if we want to use this same trick to break the symmetry from Spin(10)
down to S(U(3) x U(2)), we need to introduce more Higgs bosons. This is the ugly part
of the story, it seems. Since I'm on vacation, I'll avoid it for now.

Next: how might exceptional Lie groups get involved in this game?

When Cartan classified compact simple Lie groups, he found 3 infinite families related
to rotations in real, complex and quaternionic vector spaces: the SO(n)’s, SU(n)’s and
Sp(n)’s. He also found 5 exceptions, which have the charming names G, F4, Eq, E7,
and Es. These are all related to the octonions. G is just the automorphism group of the
octonions. The other 4 are closely related to each other — thanks to the “magic square”
of Rosenfeld, Freudenthal and Tits.

I talked about the magic square a bit in “Week 106” and “Week 145”, and much more
here:

3) John Baez, “The magic square”, http://math.ucr.edu/home/baez/octonions/
nodel6.html

Instead of repeating all that, let me just summarize. The magic square gives vector
space isomorphisms as follows:

12 50(Ro0) @ (R®0)?
6 2s0(Ca0)® (C®0)*aI(C)
7= s0(Ho 0) o (He 0)? & I(H)
g 250(090)® (0 0)>2

Here {4, ¢, ¢7 and eg stand for the Lie algebras of the compact real forms of these excep-
tional Lie groups. R, C, H, and O are the usual suspects — the real numbers, complex
numbers, quaternions and octonions. For any real inner product space V, so(V') stands
for the Lie algebra of the rotation group of V. And, for each of the isomorphisms above,
we must equip the vector space on the right side with a cleverly (but not perversely!)
defined Lie bracket to get the Lie algebra on the left side.

Here’s another way to say the same thing, which may ring more bells:

12 50(9) ® Sy

6 = 50(10) @ S1o ®u(l)
7 2s0(12) ® @5u( )
s =2 50(16) @

Here Sy and Sp( are the unique irreducible real spinor representations of so(9) and
50(10), respectively. In the other two cases, the little plus signs mean that there are
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two choices of irreducible real spinor representation, and we’re taking the left-handed
choice.

All this must seem like black magic of the foulest sort if you haven’t wasted months
thinking about the octonions and exceptional groups! Be grateful: I did it so you
wouldn’t have to.

Anyway: the case of Eg should remind you of something! After all, we’ve just been
talking about s0(10) and its left-handed spinor representation. These describe the gauge
bosons and one generation of left-handed fermions in the Spin(10) grand unified theory.
But now we’re seeing this stuff neatly packed into the Lie algebra of Eg!

More precisely, the Lie algebra of Eg can be chopped into 3 pieces in a noncanonical
way:

e 50(10)

e the unique irreducible real spinor representation of so(10), which by now we’ve
given three different names:

S10 = AT(C°) =2 (C® 0)?

e u(l)

The first part contains all the gauge bosons in the SO(10) grand unified theory. The
second contains one generation of left-handed fermions. But what about the third?

Well, Sy, is defined to be a real representation of so(10). But, it just so happens
that the action of so0(10) preserves a complex structure on this space. This is just the
obvious complex structure on (C ® Q)2 or if you prefer, A°v*?(C5). So, there’s an action
of the unit complex numbers, U(1), on S;y which commutes with the action of s0(10).
Differentiating this, we get an action of the Lie algebra u(1):

11(1) ® S10 — S10
And this map gives part of the cleverly defined Lie bracket operation in
¢6 2 50(10) @ S0 D u(l)

All this stuff is mysterious, but suggestive. It could be mere coincidence, or it could be
the tip of an iceberg. It’s more fun to assume the latter. So, let me say some more about
it......

The copy of u(1) in here:

E¢ = 50(10) & S10 @ u(l)

is pretty amusing from a physics viewpoint. It’s if besides the gauge bosons in so(10),
there were one extra gauge boson whose sole role is to describe the fact that the fermions
form a complex representation of so(10). This is funny, since one of the naive ideas you
sometimes hear is that you can take the obvious U(1) symmetry every complex Hilbert
space has and “gauge” it to get electromagnetism.

That’s not really the right way to understand electromagnetism! There are lots of
different irreducible representations of U(1), corresponding to different charges, and in
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physics we should think about all of these, not just the obvious one that we automatically
get from any complex Hilbert space. If we only used the obvious one, all particles would
have charge 1.

But in the Spin(10) grand unified theory, the electromagnetic u(1) Lie algebra is sit-
ting inside s0(10); it’s not the u(1) you see above. The u(1) you see above is the “obvious”
one that the spinor representation Sp( gets merely from being a complex Hilbert space.

The splitting

¢6 = 50(10) @ S10 D u(1)

also hints at a weird unification of bosons and fermions, something different from super-
symmetry. We're seeing ¢ as a Z/2-graded Lie algebra with so(10) ®u(1) as its “bosonic”
part and S as its “fermionic” part. But, this is not a Lie superalgebra, just an ordinary
Lie algebra with a Z/2 grading!

Furthermore, an ordinary Lie algebra with a Z/2 grading is precisely what we need
to build a “symmetric space”. This is really cool, since it explains what I meant by saying
that the split of ¢g into bosonic and fermionic parts is “noncanonical”. We’ll get a space,
and each point in this space will give a different way of splitting ¢ as

eg = 50(10) @ S1p B u(l)

It’s also cool because it gives me an excuse to talk about symmetric spaces... a topic
that deserves a whole week of its own!

Symmetric spaces are the epitome of symmetry. A “homogeneous space” is a manifold
with enough symmetry that any point looks like any other. A symmetric space is a
homogeneous space with an extra property: the view from any point in any direction is
the same as the view in the opposite direction!

Euclidean spaces and spheres are the most famous examples of symmetric spaces. If
an ant decides to set up residence on a sphere, any point is just as good any other. And, if
sits anywhere and looks in any direction, the view is the same as the view in the opposite
direction.

The symmetric space we get from the above Z/2-graded Lie algebra is similar, but
more exotic: it’s the complexified version of the octonionic projective plane!

But let’s start with the basics:

Suppose someone hands you a Lie algebra g with a Lie subalgebra h. Then you can
form the simply-connected Lie group G whose Lie algebra is g. Sitting inside G, there’s
a connected Lie group H whose Lie algebra is . The space

G/H

is called a “homogeneous space”. Such things are studied in Klein geometry, and I've
been talking about them a lot lately.

But now, suppose g is a Z/2-graded Lie algebra. Its even part will be a Lie subal-
gebra; call this h. This gives a specially nice sort of homogeneous space G/H, called a
“symmetric space”. This is better than your average homogeneous space.

Why? Well, first of all, for each point p in G/H there’s a map from G/ H to itself called
“reflection through p”, which fixes the point p and acts as —1 on the tangent space of p.
When our point p comes from the identity element of G, this reflection map corresponds
to the Z/2 grading of the Lie algebra, which fixes the even part and acts as —1 on the
odd part.
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This is what I meant by saying that in a symmetric space, “the view in any direction
is the same as the view in the opposite direction”.

Second, these reflection maps satisfy some nice equations. Write p > ¢ for the the
result of reflecting ¢ through p. Then we have:

p>(p>q) =q

p>p=p
and
p>(@>r)=@p>q¢ >@>r)

A set with an operation satisfying these equations is called an “involutory quandle”.
Quandles are famous in knot theory. Now we’re seeing them in another role.

Let me summarize with a few theorems — I hope they’re all true, because I don’t
know a book containing all this stuff. We can define a “symmetric space” to be an
involutory quandle that’s a manifold, where the operation > is smooth and the reflection
map

T=p>x

has derivative —1 at p. Any Z/2-graded Lie algebra gives a symmetric space. Conversely,
any symmetric space has a universal cover that’s a symmetric space coming from a Z/2-
graded Lie algebra!
Using this correspondence, the Lie algebra e with the Z/2-grading I described gives
a symmetric space, roughly:
Ee/(Spin(10) x U(1))

But, this guy is a lot better than your average symmetric space!
For starters, it’s a “Riemannian symmetric space”. This is a symmetric space with a
Riemannian metric that’s preserved by all the operations of reflection through points.
Compact Riemannian symmetric spaces were classified by Cartan, and you can see
the classification here, in a big chart:

4) “Riemannian symmetric spaces”, Wikipedia, http://en.wikipedia.org/wiki/Riemannian symmetric_spac

As you’ll see, there are 7 infinite families and 12 exceptional cases. The symmetric
space I'm talking about now, namely Eg/(Spin(10) x U(1)), is called EIIl — it’s the third
exceptional case. And, as you can see from the chart in this article, it’s the complexified
version of the octonionic projective plane! For this reason, I sometimes call it

(C®O)P?

In fact, this space is better than your average Riemannian symmetric space. It’s a Khler
manifold, thanks to that copy of U(1), which makes each tangent space complex. More-
over, the Khler structure is preserved by all the operations of reflection through points.
So, it’s a “hermitian symmetric space”.

You're probably drowning under all this terminology unless you already know this
stuff. I guess it’s time for another executive summary:
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Each point in the complexified octonionic projective plane gives a different way
of splitting the Lie algebra of Eg into a bosonic part and a fermionic part. The
fermionic part is just what we need to describe one generation of left-handed
Standard Model fermions. The bosonic part is just what we need for the gauge
bosons of the Spin(10) grand unified theory, together with a copy of u(1), which
describes the complex structure of the left-handed Standard Model fermions.

Another nice fact is that (C ® Q)P? is one of the Grassmannians for Eg. I explained
this general notion of “Grassmannian” back in “Week 181”, and you can see this 16-
dimensional one in the list near the end of that Week.

Even better, if you geometrically quantize this Grassmannian using the smallest pos-
sible symplectic structure, you get the 27-dimensional representation of Eg on the excep-
tional Jordan algebra!

So, there’s a lot of seriously cool math going on here... but since the basic idea
of relating the Standard model to E4 is only half-baked, all the ideas I'm mentioning
now are at best quarter-baked. They’re mathematically correct, but I can’t tell if they're
leading somewhere interesting.

In fact, I would have kept them in the oven longer had not Garrett Lisi brought Eg’s
big brother Eg into the game in a tantalizing way. T'll conclude by summarizing this. ..
and you can look at his website for more details. But first, let me emphasize that this Eg
business is the most recent and most speculative thing Garrett has done. So, if you think
the following idea is nuts, please don’t jump to conclusions and decide everything he’s
doing is nuts!

Briefly, his idea involves taking the description of ¢g I already mentioned:

es =50(0®0) ® (0 0)?

and writing the linear transformations in so(O @ Q) as two 8 x 8 blocks living in s0(Q),
together with an off-diagonal block living in O ® Q. This gives

¢s = 50(0) @ 50(0) © (0 ® 0)*

Then, he wants to use each of the three copies of O ® O to describe one of the three
generations of fermions, while using the so(Q)®so(0) stuff to describe bosons (including
gravity).

For this, he builds on some earlier work where he sought to combine gravity, the
Standard Model gauge bosons, the Higgs and one generation of Standard Model fermions
in an so(7, 1) version of MacDowell-Mansouri gravity.

If T were really being responsible, I would describe and assess this earlier work. But,
it’s summer and I just want to have fun....

In fact, the above alternate description of Eg is the one Bertram Kostant told me
about back in 1996. He said it a different way, which is equivalent:

Es = 50(8) @ s0(8) @ End(Vs) ® End(Sg) @ End(Sg)

Here Vs, Sy and Sy are the vector, left-handed spinor, and right-handed spinor repre-
sentations of Spin(8). All three are 8-dimensional, and all are related by outer automor-
phisms of Spin(8). That’s what “triality” is all about. You can see more details in “Week
90”.
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The idea of relating the three generations to triality is cute. Of course, even if it
worked, you’d need something to give the fermions in different generations different
masses — which is what happens already in the Standard Model, thanks to the Higgs
boson. It’s the bane of all post-Standard Model physics: symmetry looks nice, but the
more symmetry your model has, the more symmetries you need to explain away! As the
White Knight said to Alice:

But I was thinking of a plan
To dye one’s whiskers green,
And always use so large a fan
That they could not be seen.

Someday we may think of a way around this problem. But for now, I’ve got a more
pressing worry. This splitting of Eg:

E¢ = 50(10) & S7 @ u(1)

corresponds to a Z/2-grading where s0(10) ¢ u(1) is the “bosonic” or “even” part and
S, is the “fermionic” or “odd” part. This nicely matches the way so(10) describes gauge
bosons and S}, describes fermions in Georgi’s grand unified theory. But, this splitting of
ES:

Eg = 50(8) @ s0(8) @ End(V3) ® End(Sg) @ End(Sy)
does not correspond to any Z/2-grading where s0(8) & s0(8) is the bosonic part and
End(V) @ End(S™) @ End(S™) is the fermionic part. There is a closely related Z/2-
grading of Eg, but it’s this:

Eg = 50(16) @ S7;

So, right now I don’t feel it's mathematically natural to use this method to combine
bosons and fermions.

But, only time will tell.
Here are some more references. The SU(5) grand unified theory was published here:

5) Howard Georgi and Sheldon Glashow, “Unity of all elementary-particle forces”,
Phys. Rev. Lett. 32 (1974), 438.

For a great introduction to the Spin(10) grand unified theory — which is usually
called the SO(10) GUT — try this:

6) Anthony Zee, Quantum Field Theory in a Nutshell, Chapter VII: “SO(10) unifica-
tion”, Princeton U. Press, Princeton, 2003.

Then, try these more advanced review articles:

7) Jogesh C. Pati, “Proton decay: a must for theory, a challenge for experiment”,
available as hep—ph/0005095.

8) Jogesh C. Pati, “Probing grand unification through neutrino oscillations, leptogen-
esis, and proton decay”, available as hep-ph/0305221.
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The last two also consider the gauge group “G(224)”, meaning SU(2) x SU(2) x SU(4).
By the way, there’s also a cute relation between the SO(10) grand unified theory and
10-dimensional Calabi-Yau manifolds, discussed here:

9) John Baez, “Calabi-Yau manifolds and the Standard Model”, available as hep-th/
0511086

This is an easy consequence of the stuff I've explained this week.
To see what string theorists are doing to understand the Standard Model these days,
see the following papers. Amusingly, they also use Eg — but in a quite different way:

10) Volker Braun, Yang-Hui He, Burt A. Ovrut and Tony Pantev, “A heterotic Standard
Model”, available as hep-th/0501070.

“A Standard Model from the Eg x Eg heterotic superstring”, hep-th/0502155.

“Vector bundle extensions, sheaf cohomology, and the heterotic Standard Model”,
available as hep-th/0505041.

“Heterotic Standard Model moduli”, available as hep-th/0509051.
“The exact MSSM spectrum from string theory”, available as hep-th/0512177.

All this stuff is really cool — but alas, they get the “minimal supersymmetric Standard
Model”, or MSSM, which has a lot more particles than the Standard Model, and a lot
more undetermined parameters. Of course, these flaws could become advantages if the
next big particle accelerator, the Large Hadron Collider, sees signs of supersymmetry.

For more on symmetric spaces, try these:

11) Sigurdur Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, AMS,
Providence, Rhode Island, 2001.

12) Audrey Terras, Harmonic Analysis on Symmetric Spaces and Applications I, Springer,
Berlin, 1985. Harmonic Analysis on Symmetric Spaces and Applications II, Springer,
Berlin, 1988.

13) Arthur Besse, Einstein Manifolds, Springer, Berlin, 1986.

They'’re all classics. Helgason’s book will teach you differential geometry and Lie
groups before doing Cartan’s classification of symmetric spaces. Terras’ books are full of
fun connections to other branches of math. Besse’s book has lots of nice charts, and goes
much deeper into the Riemannian geometry of symmetric spaces.

These dig deeper into the algebraic aspects of symmetric spaces:

14) W. Bertram, The Geometry of Jordan and Lie structures, Lecture Notes in Mathemat-
ics 1754, Springer, Berlin, 2001.

15) Ottmar Loos, ‘Jordan triple systems, R-spaces and bounded symmetric domains”,
Bull. AMS 77 (1971), 558-561.

16) Ottmar Loos, Symmetric Spaces I: General Theory, W. A. Benjamin, New York, 1969.
Symmetric Spaces II: Compact Spaces and Classification, W. A. Benjamin, New York,
1969.
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Finally, an obnoxious little technical note. The complexification of the octonionic
projective plane is not really Eq/(Spin(10) x U(1)); it’s

Eq/((Spin(10) x U(1))/(Z/4))
This is worked out here:

17) John Frank Adams, Lectures on Exceptional Lie Groups, eds. Zafer Mahmud and
Mamoru Mimura, University of Chicago Press, Chicago, 1996.

Addendum: Joseph Hucks points out his paper describing the 13 different groups
with Lie algebra su(3) @ su(2) @ u(1), and their implications for physics:

18) Joseph Hucks, “Global structure of the standard model, anomalies, and charge
quantization”, Phys. Rev. D 43 (1991), 2709-2717.

Using S(U(3) x U(2)) and demanding anomaly cancellation, we automatically get a
lot of the features of the Standard Model fermions.

Toby Bartels wisely points out that my basic examples of symmetric spaces — Eu-
clidean spaces and sphere — are actually a bit misleading. I'd written:

Euclidean spaces and spheres are the most famous examples of symmetric spaces.
If an ant decides to set up residence on a sphere, any point is just as good any
other. And, if sits anywhere and looks in any direction, the view is the same as
the view in the opposite direction.

But in these particular examples, the view in any direction is the same as the view
in any other direction! These spaces are more symmetrical than your average symmetric
space: they’re isotropic.

So, it’s good to see some other examples, like a torus formed as the product of two
circles of different radii. Any product of symmetric spaces is a symmetric space, so this
is definitely a symmetric space. And, if you think about it, the ant’s-eye view in any
direction is just the same as the view in the opposite direction. But, this space is not
isotropic: there are special directions, corresponding to “the short way around the torus”
and “the long way around the torus”.

The octonionic projective plane QP? is not only a symmetric space: it’s isotropic! But
according to Tony Smith, the complexified version (C ® Q)P? is not isotropic:

In Spaces of Constant Curvature, Fifth Edition (Publish or Perish 1984), Joseph
A. Wolf says (pages 293-294):

... M is called isotropic at x if I(M),, is transitive on the unit sphere
in M,; it is isotropic if it is isotropic at every point. ... M is isotropic
if and only if it is two point homogeneous. ... Let M be a riemannian
symmetric space. Then the following conditions are equivalent. (i) M
is two point homogeneous. (ii) Either M is a euclidean space or M is
irreducible and of rank 1.
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Since (C ® Q)P? = Eg/(SO(10) x SO(2)) is rank 2, it is NOT isotropic.

In the quote by Wolf, I can only guess that I (M), is the group of isometries of M that
fix the point x, while M, is the tangent space of M at . Similarly, I guess that “two point
homogeneous” means that for any D > 0, the isometry group of M acts transitively on
the set of pairs of points in M whose distance from each other is D.

I also thank Tony for correcting some errors involving spinors. There’s some quite
subtle stuff going on here. For example, above it says that:

Well, S is defined to be a real representation of s0(10). But, it just so happens
that the action of s0(10) preserves a complex structure on this space. This is
just the obvious complex structure on (C @ Q)2, or if you prefer, A°**(C?). So,
there’s an action of the unit complex numbers, U(1), on S which commutes
with the action of s0(10).

But in fact, s0(10) preserves two complex structures on Sio. This is how it always
works: if some complex structure J is preserved by some group or Lie algebra action,
so is —J. In the case at hand, one of these makes the representation of s0(10) into
a complex representation isomorphic to its left-handed Weyl spinor representation on
A®YeR(CP). The other gives the right-handed Weyl spinor representation on A°49(CP).
Neither one of these is “more correct” than the other. So, whenever I talk about ¢g as
being related to one generation of left-handed Standard Model fermions, I could equally
well say “right-handed Standard Model fermions”. It just depends on which complex
structure we choose!

Furthermore, when we complexify the real Lie algebra ¢g, we get

C® e =50(10,C) ® A(C*) @ C

where A(CP) is the Dirac spinor representation of s0(10,C), describing both left- and
right-handed fermions.
For more discussion, go to the n-Category Caf.

The Big Crunch was her nickname for the mythical result that the Niah had
aspired to reach: a unification of every field of mathematics that they consid-
ered significant.

— Greg Egan, Glory
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Week 254

July 13, 2007

This week I'd like to talk about exceptional Lie algebras and the Standard Model, Witten’s
new paper on the Monster group and black holes in 3d gravity, and Connes and Marcolli’s
new book! Then I want to continue the Tale of Groupoidification.

However, I don’t have the energy to do this all now. And even if I did, you wouldn’t
have the energy to read it.

So, I'll just point you towards Connes and Marcolli’s new book, which you can down-
load for free:

1) Alain Connes and Mathilde Marcolli, Noncommutative Geometry, Quantum Fields
and Motives, available at http://www.alainconnes.org/downloads.html

I hope to discuss it sometime, especially since it tackles a question I’ve been mulling
lately: is there a good “explanation” for the Standard Model of particle physics?
For now, I'll start by discussing Witten’s latest paper:

2) Edward Witten, “Three-dimensional gravity revisited”, available as arXiv:0706.
3359.

This is a bold piece of work, which seeks to relate the entropy of black holes in 3d
quantum gravity to representations of the Monster group — the largest sporadic finite
simple group, with about 10%* elements.

If the main idea is right, this gives a whole new view of “Monstrous Moonshine”
— the bizarre connection between the Monster and fundamental concepts in complex
analysis like the j-function. (See “Week 66” for a quick intro to Monstrous Moonshine.)

As the title hints, Witten had already tackled quantum gravity in 3 spacetime dimen-
sions. In this earlier work, he argued it was an exactly soluble problem: a topological
field theory called Chern-Simons theory. However, this theory is really an extension of
gravity to the case of “degenerate” metrics: roughly speaking, geometries of spacetime
where certain regions get squashed down to zero size. Degenerate metrics are weird.
So, what happens if we try to quantize 3d gravity while insisting that the metric be
nondegenerate?

It’s hard to say. So, Witten takes a few clues and cleverly fits them together to make a
surprising guess. He considers 3d general relativity with negative cosmological constant.
This has 3d anti-DeSitter space as a solution. Anti-DeSitter space has a “boundary at
infinity”: a 2d cylinder with a conformal structure. The “AdS-CFT” idea, also known
as “holography”, suggests that in this sort of situation, 3d quantum gravity should be
completely described by a field theory living on this boundary at infinity — a field theory
theory with all conformal transformations as symmetries.

Which conformal field theory should correspond to 3d quantum gravity with negative
cosmological constant? It depends on the value of the cosmological constant! Some
topological arguments suggest that the Chern-Simons description of 3d quantum gravity
is only gauge-invariant when the cosmological constant A takes certain special values,
namely

1
16k2
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where £ is an integer, known as the “level” in Chern-Simons theory.

By the way: I'm working in Planck units here, and I'm assuming our Chern-Simons
theory is left-right symmetric, just to keep things simple. I may also be making some
small numerical errors.

This quantization of the cosmological constant must seem strange if you've never
seen it before, but it’s not really so weird. What’s weird is that Witten is using Chern-
Simons theory to determine the allowed values of the cosmological constant even though
he wants to study what happens if gravity is not described by Chern-Simons theory!

Witten knows this is weird: later he says “we used the gauge theory approach to get
some hints about the right values of the cosmological constant simply because it was the
only tool available.”

Indeed, the whole paper seems designed to refute the notion that mathematicians
get less daring as they get older. He writes: “We make at each stage the most optimistic
possible assumption.” Perhaps he has some evidence for his guesses that he’s not reveal-
ing yet. Or perhaps he’s decided it takes courage verging on recklessness to track the
Monster to its lair.

Anyway: next Witten relates the level k to something called the “central charge” of
the conformal field theory living at the boundary at infinity.

What’s the “central charge”? This is a standard concept in conformal field theory.
Perhaps the simplest explanation is that in a conformal field theory, the total energy
of the vacuum state is —c¢/24, where c is the central charge. So, naively you'd expect
¢ = 0, but quantum effects make nonzero values of the vacuum energy possible, and
even typical. A closely related cool fact is that the partition function of a conformal field
theory is only a well-defined number up to multiples of

2mic
exp -1

This means the partition function is a well-defined number when ¢ is a multiple of 24.
This happens in certain especially nice conformal field theories which are said to have
“holomorphic factorization”.

The appearance of the magic number 24 here is the first taste of Monstrous Moon-
shine! For more on the importance of this number in string theory, see “Week 124”,
“Week 125” and “Week 126”.

As you can see, there are lots of subtleties here, which I really don’t want to get into,
but feel guilty about glossing over.

Here’s another. There are really two conformal field theories in this game: one that
describes ripples of the gravitational field moving clockwise around the boundary at
infinity, and another for ripples moving counterclockwise. Our simplifying assumption
about left-right symmetry lets us describe these “right-movers” and “left-movers” with
the same theory. So, both have the same central charge.

In this case, the relation between central charge and level is simple:

c = 24k

Next, Witten considers the situation where k takes its smallest interesting value: k£ = 1,
so ¢ = 24. It just so happens that ¢ = 24 conformal field theories with holomorphic
factorization have been classified, at least modulo a certain conjecture:
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2) A. N. Schellekens, “Meromorphic ¢ = 24 conformal field theories”, Comm. Math.
Phys. 153 (1993) 159-196. Also available as hep-th/9205072.

It’s believed there are 71 of them. Which one could describe 3d quantum gravity?

Of these 71, all but one have gauge symmetries! Now, Witten is assuming 3d quantum
gravity is not described by Chern-Simons theory, which is a gauge theory. So, he guesses
that the one exceptional theory is the right one!

And this is a very famous conformal field theory. It’s a theory of a bosonic string
wiggling around in a 26-dimensional spacetime curled up in clever way with the help
of a 24-dimensional lattice called the Leech lattice. Thi