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WEEK 101 APRIL 9, 1997

Week 101

April 9, 1997

Darwinian evolution through natural selection is an incredibly powerful way to explain
the emergence of complex organized structures. However, it is not the only important
process that naturally gives rise to complex structures. Maybe when we study biology
we should also look for other ways that order can spontaneously arise.

After all, there are plenty of complex structures in the nonbiological world. When
it snows, we see lots of beautiful snowflakes with similar but different hexagonal struc-
tures. Do we conclude that snowflakes evolved to be hexagonal through natural selec-
tion? No.

But wait! Maybe in some sense a hexagonal snowflake is “more fit” in certain weather
conditions. Perhaps this shape is more efficient at getting water molecules to adhere to
it than other shapes. We can think of different snowflakes as engaged in “competition”
for water molecules, and the ones that grow fastest as the “winners”. In fact, the exact
shapes of snowflakes in a snowstorm depend crucially on the temperature, humidity and
so on. . . so who the “winners” are depends on the environment, just as in Darwinian
evolution!

A biologist will reply: fine, but this is still not “Darwinian evolution”. For Darwinian
evolution in the strict sense, we require that there be a “lineage”. Darwinian evolution
applies only to entities that reproduce and pass some of their traits down to descendants.
The idea is that over the course of many generations, traits that aid reproduction will
accumulate, while traits that hinder it will be weeded out. Snowflakes don’t have kids.
A one-shot competition for resources, followed by melting into oblivion the next day, is
not what Darwinian evolution is about.

Okay, okay, so it’s not Darwinian evolution. But it’s still interesting. It’s showing us
that Darwinian evolution is just one of various ways that order can arise. So we shouldn’t
study Darwinian evolution in isolation. We should study all the ways that systems spon-
taneously generated complex patterns, and see how they relate. If we do that, perhaps
we’ll see a bunch of interesting relationships between physics and chemistry and biology.
Also, maybe we’ll get a better handle on how life arose in the first place. . . that curious
transition from chemistry to biology.

If I wasn’t so hooked on quantum gravity I would love to work on this stuff. It’s
obviously cool, and obviously a lot more practical than quantum gravity. The origin
of complexity a very hot topic these days. But alas, I am just an old-fashioned guy in
love with simplicity. Whenever I see a new journal come out with a title like “Complex
Systems” or “Journal of Complexity” or “Santa Fe Institute Studies in the Science of
Complexity”, I heave a wistful sigh and dream of starting a journal entitled “Simplicity”.

Actually, the fun lies in the interplay between complexity and simplicity: how com-
plex phenomena can arise from simple laws, and sometimes obey new simple laws of
their own. I like to hang out on the simple end of things, but that doesn’t stop me from
enjoying the new work on complexity. At one point I got a big kick out of Manfred
Eigen’s work on “hypercycles” — systems of chemicals that catalyze each others forma-
tion. (You may remember Eigen as the discoverer of the “Eigenvalue”. . . in which case I
pity you.) Presumably life started as some sort of hypercycle, so the mathematical study
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WEEK 101 APRIL 9, 1997

of the competition between hypercycles may shed some light on why there is only one
genetic code. There is a lot of nice math of this type in:

1) Manfred Eigen, The Hypercycle, a Principle of Natural Self-Organization, Springer-
Verlag, Berlin, 1979.

Another name that comes up in this context is Ilya Prigogine, mainly for his work on
non-equilibrium thermodynamics and the spontaneous formation of patterns in dissipa-
tive systems. The following are just a few of his many books:

2) G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems: from Dis-
sipative Structures to Order Through Fluctuations, Wiley, New York, 1977.

Ilya Prigogine, From Being to Becoming: Time and Complexity in the Physical Sci-
ences, W. H. Freeman, San Francisco, 1980.

Ilya Prigogine, Introduction to Thermodynamics of Irreversible Processes, 3d ed., In-
terscience Publishers, New York, 1967.

A bit more recently, the work of Stuart Kauffman has dominated the subject. It’s really
him who has pushed for the unified study of the whole gamut of methods of spontaneous
generation of order, particularly in the context of biological systems. He’s written two
books. The latter, in particular, includes a lot of math problems just waiting to be tackled
by good mathematicians and physicists.

3) Stuart A. Kauffman, At Home in the Universe: the Search for Laws of Self-Organization
and Complexity, Oxford University Press, New York, 1995.

Stuart A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolu-
tion, Oxford University Press, New York, 1993.

If non-Darwinian forms of spontaneous pattern-formation can be important in biol-
ogy, can Darwinian evolution be important in non-biological contexts? Well, as I men-
tioned in “Week 31” and “Week 33”, the physicist Lee Smolin has an interesting hypoth-
esis about how the laws of nature may have evolved to their present point by natural
selection. The idea is that black holes beget new “baby universes” with laws similar but
not necessarily quite the same as their ancestors. Now this is extremely speculative, but
it has the saving virtue of making a lot of testable predictions: it predicts that all the
constants of nature are tuned so as to maximize black hole production. Smolin has just
come out with a book on this, which also happens to be a good place to learn about his
work on quantum gravity:

4) Lee Smolin, The Life of the Cosmos, Crown Press, 1997.

Interestingly, Stuart Kauffman and Lee Smolin have teamed up to write a paper on
the problem of time in quantum gravity:

5) Stuart Kauffman and Lee Smolin, “A possible solution to the problem of time in
quantum cosmology”, preprint available as gr-qc/9703026.
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Right now you can also read this paper on John Brockman’s website called “Edge”.
This website features all sorts of fun interviews and discussions. For example, if you
look now you’ll find an intelligent interview with my favorite living musician, Brian Eno.
More to the point, a discussion of Kauffman and Smolin’s paper is happening there now.
As a long-time fan of USENET newsgroups and other electronic forms of chitchat, I’m
really pleased to see how Brockman has set up a kind of modern-day version of the
French salon.

6) Edge: http://www.edge.org

Okay. Now. . . what’s even more fashionable, trendy, and close to the cutting edge
than complexity theory? You guessed it: homotopy theory! Currently known only to
hippest of the hip, this is bound to hit the bigtime as soon as they figure out how to
make flashy color graphics illustrating the Adams spectral sequence.

Last week I went to the Workshop on Higher Category Theory and Physics at North-
western University, and also, before that, part of a conference on homotopy theory they
had there. Actually these two subjects are closely related: homotopy theory is a highly
algebraic way of studying the topology of spaces of various dimensions, and lots of what
we understand about “higher dimensional algebra” comes from homotopy theory. So it
was a nice combination.

Lots of the homotopy theory was over my head, alas, but what I understood I enjoyed.
It may seem sort of odd, but the main thing I got out of the homotopy theory conference
was an explanation of why the number 24 is so important in string theory! In bosonic
string theory spacetime needs to be 26-dimensional, but subtracting 2 dimensions for the
surface of the string itself we get 24, and it turns out that it’s really the special properties
of the number 24 that make all the magic happen.

I began to delve into these mysteries in “Week 95”. There, however, I was mainly
reporting on very fancy stuff that I barely understand, stuff that seems like a pile of
complicated coincidences. Now, I am glad to report, I am beginning to understand the
real essence of this 24 business. It turns out that the significance of the number 24 is
woven very deeply into the basic fabric of mathematics. To put it rather mysteriously,
it turns out that every integer has some subtle “hidden symmetries”. These symmetries
have symmetries of their own, and in turn THESE symmetries have symmetries of THEIR
own - of which there are exactly 24.

Hmm, mysterious. Let me put it another way. It probably won’t be obvious why
this is another way of saying the same thing, but it has the advantage of being more
concrete. Suppose that the integer n is sufficiently large - 4 or more will do. Then
there are 24 essentially different ways to wrap an (n+3)-dimensional sphere around
an n-dimensional sphere. More precisely still, given two continuous functions from an
(n+3)-sphere to an n-sphere, let’s say that they lie in the same “homotopy class” if you
can continuously deform one into another. Then when n is 4 or more, it turns out that
there are exactly 24 such homotopy classes.

Now that I have all the ordinary mortals confused and all the homotopy theorists
snickering at me for making such a big deal out of something everyone knows, I should
probably go back and explain what the heck I’m getting at, and why it has to do with
string theory. But I’m getting worn out, and your attention is probably flagging, so I’ll do
this next time. I’ll say a bit about homotopy theory, stable homotopy theory, the sphere
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spectrum, and why Andre Joyal says we should call the sphere spectrum the “integers”
(thus explaining my mysterious remark above).

Deep, deep infinity! Quietness. To dream away from the tensions of daily living; to
sail over a calm sea at the prow of a ship, toward a horizon that always recedes; to stare
at the passing waves and listen to their monotonous soft murmur; to dream away into
unconsciousness. . . . — Maurits Escher
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Week 102

April 21, 1997

In “Week 101” I claimed to have figured out the real reason for the importance of the
number 24 in string theory. Now I’m not so sure — some pieces of the puzzle that I
thought would fit together don’t seem to be fitting. Maybe if I explain what I know so
far, some experts will hand me some of the missing pieces, or tell me where the ones I
have go.

Most of the puzzle pieces came from a talk at a conference on homotopy theory that
I went to:

1) Ulrike Tillmann, “The moduli space of Riemann surfaces — a homotopy theory
approach”, talk at Northwestern University Algebraic Topology Conference, March
27, 1997

However, some conversations with Andre Joyal during this conference really helped
turn my attention towards what might be going on here.

Let’s start by recalling some stuff about homotopy groups of spheres. There are
often lots of topologically different ways of wrapping an m-dimensional sphere around
a k-dimensional sphere. For example, if m = k = 1, we’re talking about the ways of
wrapping a circle around a circle. These are classified by an integer called the “winding
number”. We can make this concrete by thinking of the circle as the unit circle in the
complex plane. Take your favorite integer and call it n. Then the function

f(z) = zn

maps the unit circle (the complex numbers with |z| = 1) to itself. If n is positive, this
function wraps the unit circle around itself n times in the counterclockwise direction. If
n is negative, the circle gets wrapped around in the other direction. If n is zero, f(z) = 1,
so we have a constant function — no “wrapping around” at all!

It turns out that any continuous function from the circle to itself can be continuously
deformed to exactly one of these functions f(z) = zn. Homotopy theory is all about such
continuous deformations. In the jargon of homotopy theory, we say two functions from
some space to some other space are “homotopic” if we can continuously deform the first
function to the second. Another way of putting it is that the two functions lie in the same
“homotopy class”. Speaking of jargon, real topologists never say “continuous function”:
instead, they say “map”. So, using this jargon: we know the homotopy class of a map
from the circle to itself if we know its winding number.

Now: what happens if we go to higher dimensions? What are all the homotopy
classes of maps from the m-dimensional sphere to the k-dimensional sphere? Spheres
are pretty simple spaces, so one might at first guess there is some simple answer to this
question for all m and k.

Unfortunately, it’s far from simple. In fact, nobody knows the answer for all m and k!
People do know the answer for zillions of particular values of m and k. But there is no
simple pattern to it: instead, there is an incredibly complicated and beautiful weave of
subtle patterns, which we have not gotten to the bottom of. . . and perhaps never will.
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To get a little feel for this, let’s bring in some standard notation: folks use πm(X) to
denote the set of homotopy classes of maps from an m-dimensional sphere to the space
X. When m > 0, this set is actually a group, called the “mth homotopy group” of X.
These groups are of major importance in algebraic topology.

So, what we are talking about is πm(Sk): the set of all homotopy classes of ways of
wrapping an m-sphere around an k-sphere. I already implicitly said that

π1(S1) = Z

where Z stands for the integers, since the winding number is an integer. The same thing
happens if we go up a dimension:

π2(S2) = Z

In other words: you can wrap a 2-sphere (an ordinary sphere) n times around itself for
any integer n. How? Well, say we use spherical coordinates and describe a point on the
sphere using its angle ϕ from the north pole, together with the angle θ saying how far
east it is from Greenwich. Then the map

f(ϕ, θ) = (ϕ, nθ)

does the job. Any map from S2 to itself is homotopic to exactly one of these.
The same basic idea works in any higher dimension, too:

πk(Sk) = Z for any k > 1

In other words, there is always an integer n that plays the role of the “winding num-
ber” of a map from the k-sphere to itself — though only uncouth physicists call it the
“winding number”; mathematicians call it the “degree”.

So far, so good. Now, what about mapping a sphere to another sphere of higher
dimension? This is nice and simple:

πm(Sk) = {0} whenever m < k

The {0} there is just a standard way to write a set with only one element, which we
call “zero”. So what we mean is that there’s only one homotopy class of ways to map
a sphere to a sphere of higher dimension. There is always enough “room” to wiggle
around one map until it looks like another.

What about mapping a sphere to another sphere of lower dimension? Here is where
the trouble starts! — or the fun, depending on your attitude towards complexity. For
example, there is only one homotopy class of maps from a 2-sphere to a circle:

π2(S1) = {0}

There is just no way a 2-sphere can get interestingly “stuck” on the “hole” of the circle.
This may seem obvious. But it’s not really quite as obvious at it seems, because if we
move up one dimension, we have:

π3(S2) = Z
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This came as a big shock when Heinz Hopf first discovered it in the 1930’s; before then,
people had no idea how sneaky homotopy groups were!

There is a beautiful way to compute an integer called the “Hopf invariant” that keeps
track of the homotopy class of a map from the 3-sphere to the 2-sphere. There are lots
of nice ways to compute it, but alas, I only have time to briefly sketch one! Suppose
that the map f : S3 → S2 is smooth (otherwise we can always smooth it up). Then most
points p in S2 have the property that the points x in S3 with f(x) = p form a “link”: a
bunch of knots in S3. If we take two different points in S2 with this property, we get
two links. From these two links we can compute an integer called the “linking number”:
for example, we can just draw these two links and count the times one crosses over or
under the other (with appropriate plus or minus signs for each crossing). This number
turns out not to depend on how we picked the two points! Moreover, it only depends on
the homotopy class of f . It’s called the Hopf invariant of f .

Moving up one dimension, it turns out that

π4(S3) = Z/2

Here Z/2 is the group with two elements, usually written 0 and 1, with addition mod 2.
Why only two homotopy classes of maps from S4 to S3? Well, you can compute some-
thing like the Hopf invariant for these maps, exactly as we did before, but the thing is,
links in 4 dimensions are easy to unlink. You can unlink something like

and make it look like

so the linking number in 4 dimensions is only defined mod 2. Thus the “Hopf invariant”
is only defined mod 2.

The exact same thing happens in higher dimensions, too, so in fact we have:

πk+1(Sk) = Z/2 for any k > 3.

This illustrates an important general fact: when the dimensions get high enough, there’s
more room to wiggle things around, and as we keep jacking up the dimension, homotopy
groups simplify a bit and settle down after a while. This is the idea behind “stable
homotopy theory”.

Let’s look at some more examples. We have
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• π3(S1) = {0}

• π4(S2) = Z/2

• π5(S3) = Z/2

• π6(S4) = Z/2

and so on:

πk+2(Sk) = Z/2 for any k > 2

Sadly, I do not understand why this is true. How do you wrap a 4-sphere around a
2-sphere in an interesting way? Dunno.

(Thanks to Dan Christensen, an answer appears at the end of this post.)
Plunging on undeterred, we have:

• π4(S1) = {0}

• π5(S2) = Z/2

• π6(S3) = Z/12

• π7(S4) = Z⊕ Z/12

• π8(S5) = Z/24

• π9(S6) = Z/24

and so on:

πk+3(Sk) = Z/24 for any k > 5.

Here is where the magic number 24 comes in! What the above says is that if k is large
enough, there are exactly 24 different homotopy class of maps from an (k+ 3)-sphere to
an k-sphere!

Now I should explain what this has to do with string theory. But first I should say
more about the homotopy groups of spheres. There are some simple patterns worth
knowing about. First,

πm(S1) = {0} for any m > 2.

Second, there is a nice formula for when the homotopy groups settle down as we jack
up the dimension:

πk+n(Sk) is independent of k as long as k > n+ 2.

The homotopy groups can stabilize sooner, as we saw for n = 2, but never later, and
often they stabilize right at k = n + 2. There is a simple reason for this. We saw that
πk+1(Sk) stabilized at k = 3 because it’s easy to unlink links in 4 or more dimensions.
Similarly, πk+n(Sk) must stabilize by the time k = n+2, because it’s easy to untie knotted
n-dimensional surfaces in 2n+ 2 or more dimensions!

For more on stable homotopy groups of spheres, try:
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2) Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Aca-
demic Press, Orlando, 1986.

Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Princeton
University Press, Princeton, 1992.

Ravenel also spoke at this conference and is a real expert on stable homotopy groups
of spheres. Unfortunately his talk was too high-powered for me. The 2nd book above
is a bit more forgiving to the amateur, but the first one has lots of nice tables of stable
homotopy groups of spheres.

The relationship between homotopy groups of spheres and higher- dimensional knot
theory is a wonderful thing. James Dolan and I are learning a lot about n-categories by
pondering it. When I spoke to him at the conference at Northwestern, it became clear
that Andre Joyal had also thought about it very deeply. Joyal is famous for his work
relating category theory, combinatorics and topology, and his way of thinking about the
homotopy groups of spheres reflects these interests. He said a very fascinating thing;
he said “really we should call the sphere spectrum the ‘true integers’ ”. I would like to
explain this. . . but here things get a bit technical, and I am afraid they will get a lot
more technical when I get around to the string theory stuff.

What’s the “sphere spectrum”? Well, roughly it’s just the list of spheres S0, S1, S2,
. . . , but the word “spectrum” refers to the way all these spaces are all related, all aspects
of one big thing.

Here’s a nice way to think of it. Start with the integers. Normally we think of these
as just a set, or actually a group, since we can add them. But if we avoid the sin of
mistaking isomorphism for equality we can think of them as a category.

I already began to explain this in my parable about the shepherd in “Week 99”. The
shepherd started with the category of finite sets and “decategorified” it to obtain the set
of natural numbers, associating to each finite set a natural number, its number of ele-
ments. Taking disjoint unions of sets corresponds to addition, the empty set corresponds
to zero, and so on.

Okay. What are the integers the decategorification of?
Well, we can imagine finite sets that have both “positive” and “negative” elements.

The “number of elements” of such a set will be the number of positive elements minus
the number of negative elements. This is a bit weird if we’re talking about sheep, but
perhaps not so weird if we talk about positrons and electrons, which can annihilate each
other. (In “Week 92” I explain what I’m hinting at here: the relation between antiparticles
and adjunctions.)

Topologists prefer to speak of “positively and negatively oriented points”. We can
draw a set of positively and negatively oriented points like this:

− + + + + − −

We can add them by setting them side by side. But how do the positively and negatively
oriented points cancel? Well, remember, we’re trying to get a category! If finite lists of
positively and negatively oriented points are our objects, what are our morphisms? How

10
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about tangles, like this:

− + + + + − −

+ − +

These let us cancel or create positive and negative points in pairs. Voila! The categorified
integers! Just as the integers form a monoid under addition, these form a monoidal
category (see “Week 89” for these concepts). The monoidal structure here is disjoint
union, which we can denote with a plus sign if we like. Similarly, we can write the
empty set as 0.

Above it looks like I’m drawing a 1-dimensional tangle in 2-dimensional space. To
understand the “commutativity” of the categorified integers we should work with 1-
dimensional tangles in higher-dimensional space. If we consider them in 3-dimensional
space, we have room to switch things around:

+ +

+ +

This gets us commutativity, as I explained in “Week 100”. Technically speaking, we get
a “braided” monoidal category. However, there are two different ways to switch things
around; for example, in addition to the above way there is

+ +

+ +

To get rid of this problem (if you consider it a problem) we can work with 1-dimensional
tangles in 4-dimensional space, where we can deform the first way of switching things
to the second. We get a “symmetric” monoidal category. Working in higher dimensions
doesn’t change anything: things have stabilized.

11
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If we impose the extra condition that the morphisms

+ −

and
+ −

are inverses, as are

− +

and
− +

then all morphisms become invertible, so we have not just a monoidal category but a
monoidal groupoid — a groupoid being a category with all morphisms invertible (see
“Week 74”). In fact, not only are morphisms invertible, so are all objects! By this I mean
that every object x has an object −x such that x + −x and −x + x are isomorphic to 0.
For example, if x is the positively oriented point, −x is the negatively oriented point, and
vice versa. So we have not just a monoidal groupoid but a “groupal groupoid”. (I have
adopted this charming terminology from James Dolan.)

Very nice. We seem to have avoided the sin of decategorification, and are no longer
treating the integers as a mere set (or group, or commutative group). We are treating
them as a category (or groupal groupoid, or braided groupal groupoid, or symmetric
groupal groupoid).

On the other hand, it’s a bit odd to say that

+ −

and
+ −

are inverses. This amounts to saying that the morphism:

+ −

12
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is equal to the identity morphism from 0 to 0, which corresponds to the empty picture:

Hmm. They sure don’t look equal. We must be doing something wrong.
What are we doing wrong? We’re committing the sin of decategorification: treating

isomorphisms as equations! We should treat the integers not as a mere category, but as a
2-category! See “Week 80” for the precise definition of this concept; for now, it’s enough
to say that a 2-category has things called 2-morphisms going between morphisms. If we
treat the integers as a 2-category, we can say there is a 2-morphism going from

+ −

to the identity morphism. This 2-morphism has a nice geometrical description in terms
of a 2-dimensional surface: the surface in 3d space that’s traced out as the above picture
shrinks down to the empty picture. It’s hard to draw, but let me try:

+ − =⇒ + − =⇒ + − =⇒

Okay, say we do this: treat the integers as a 2-category. We again are faced with a
question: do we make all the 2-morphisms invertible? If we do, we get a “2-groupoid”,
or actually a “groupal 2-groupoid”. But again, to do so amounts to committing the sin of
decategorification. To avoid this sin, we should tread the integers as a 3-category. Etc,
etc!

You may have noted how worlds of ever higher-dimensional topology are automat-
ically unfolding from our attempt to avoid the sin of decategorification. This is what’s
so neat about n-categories. I haven’t told you how it all works, but let me summarize
what’s actually happening here. Normally we treat the integers as the free group on one
generator, or else the free commutative group on one generator. But groups and com-
mutative groups are just the tip of the iceberg! The following picture is similar to that in
“Week 74”:

Table 1: k-tuply groupal n-groupoids

n = 0 n = 1 n = 2

k = 0 sets groupoids 2-groupoids

k = 1 groups groupal groupoids groupal
2-groupoids

k = 2 commutative
groups

braided groupal
groupoids

braided groupal
2-groupoids

13
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n = 0 n = 1 n = 2

k = 3 ” ” symmetric
groupal groupoids

weakly involutory
groupal
2-groupoids

k = 4 ” ” ” ” strongly
involutory
groupal
2-groupoids

k = 5 ” ” ” ” ” ”

What are all these things? Well, an n-groupoid is an n-category with all morphisms
invertible, at least up to equivalence. An (k+ n)-groupoid with only trivial j-morphisms
for j < k can be seen as a special sort of n-groupoid, which we call a “k-tuply groupal
n-groupoid”.

Part of Joyal’s point was that we should really think of the integers as the “free k-tuply
monoidal n-groupoid on one object”. Here the idea is not to fix n and k once and for all
— this would only prevent us from understanding the subtleties that show up when we
increase n and k! Instead, we should think of them as variable, or perhaps consider the
limit as they become large.

The other part of his point was that there’s a correspondence between n-groupoids
and the information left in topological spaces when we ignore all homotopy groups above
dimension n — so-called “homotopy n-types”. Using this correspondence, the “free k-
tuply monoidal n-groupoid on one object” corresponds to the homotopy (k + n)-type of
the k-sphere. Moreover, if we keep jacking up k, this stabilizes when k > n+ 2. Actually,
as the dittos in the above chart suggest, it’s a quite general fact that the notion of k-tuply
monoidal n-groupoid stabilizes for k > n+ 2.

Yet another point is that the pictures above explain the relation between higher-
dimensional knot theory and the homotopy groups of spheres in a very vivid, direct way.

Okay. What about string theory and the magic number 24? Well, notice that the
pictures above started looking a bit like strings! Hmm. . . .

Here’s the idea, as far as I understand it. Presumably all but the hardy have stopped
reading this article by now, so I will pull out all the stops. The string worldsheet is a
Riemann surface so we’ll need some stuff about Riemann surfaces from “Week 28”. Let
M(g, n) be the moduli space of Riemann surfaces with genus g and n punctures, and
let G(g, n) be the corresponding mapping class group. Since M(g, n) is the quotient of
Teichmueller space by G(g, n) and Teichmueller space is contractible, we have

M(g, n) = BG(g, n)

where “B” means “classifying space”. There’s a natural inclusion

G(g, n) ↪→ G(g + 1, n)

defined by sewing an torus with two punctures onto your genus-g surface with n punc-
tures, which increases the genus by 1. Let’s define G(∞, n) to be direct limit as g → ∞,

14



WEEK 102 APRIL 21, 1997

and let
M(∞, n) = BG(∞, n).

Now it turns out M(∞, 1) has a kind of product on it. The reason is that there are
products

M(g, 1)×M(h, 1)→M(g + h, 1)

given sewing two surfaces together with a 3-punctured sphere. Using this product we
can define the group completion

M(∞, 1)+

and the result Tillmann stated which got me so excited was that

π3(M(∞, 1)+) = Z/24⊕H

for some unknown group H. Since this is really a result about the mapping class groups
of surfaces, it must have something to do with how conformal field theories always give
projective representations of these mapping class groups, with the “phase ambiguity”
being of the form exp(2πci/24), where c is the “central charge”. No? I just don’t quite
see why. Maybe someone will enlighten me.

Anyway, the way she proved this definitely ties right into the stuff about stable ho-
motopy groups of spheres. She used explicit maps between the third stable homotopy
group of spheres

πk+3(Sk) = Z/24 for k > 5

and π3(M(∞, 1)+)! And the way she got the map from the latter to the former amounts
to working with pictures I was drawing above. To put it more precisely, in

3) “Higher-dimensional algebra and topological quantum field theory”, by John Baez
and James Dolan, Jour. Math. Phys. 36 (1995), 6073–6105.

we argue that framed n-dimensional surfaces embedded in (n+k)-dimensions should
be described by the free k-tuply monoidal n-category with duals on one object. This
should map down to the free k-tuply groupal n-groupoid on one object, by the usual yoga
of “freeness”. Taking n = 3 and k sufficiently large, we should obtain a homomorphism
from the mapping class group of any Riemann surface to the third stable homotopy group
of spheres! Presumably the idea is that in the limit of large genus this homomorphism is
onto!

Of course, Tillmann doesn’t prove her result using the still-nascent formalism of n-
categories, but I think it will eventually be possible. (Also, my rough argument applies
to Riemann surfaces with no punctures, while she considers those with one puncture,
but various things she said make me think this might not be such a big deal.) The real
puzzle is this: what does

π3(M(∞, n)+)

have to do with central extensions of G(g, n) for finite g? If I could figure this out I’d be
very happy.
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Addendum: Dan Christensen answered a puzzle above. Here’s how to get a nontriv-
ial element of

π4(S2).

Take the map f : S3 → S2 generating

π3(S2)

and compose it with the map g : S4 → S3 generating

π4(S3)

(which, by the way, is obtained from f by “suspension”) to obtain the desired map from
S4 to S2. This is an instance of a very general trick: composing elements of homotopy
groups of spheres to get new ones!

Think of one and minus one. Together they add up to zero, nothing, nada, niente,
right? Picture them together, then picture them separating, peeling part. . . . Now you have
something, you have two somethings, where you once had nothing. - John Updike, Roger’s
Version

+ −
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Week 103

April 26, 1997

As I segue over from the homotopy theory conference at Northwestern University to the
conference on higher-dimensional algebra and physics that took place right after that,
it’s a good time to mention Ronnie Brown’s web page:

1) Ronald Brown, Higher-dimensional group theory, http://www.bangor.ac.uk/~mas010/
home.html

Brown is the one who coined the phrase “higher-dimensional algebra”, and for many
years he has been developing this subject, primarily as a tool for doing homotopy the-
ory. I wrote a bit about his ideas two years ago, in “Week 53”. A lot has happened in
higher-dimensional algebra since then, and the web page above is a good place to get an
overview of it. It includes a nice bibliography on the subject. Also, if you find the math
a bit strenuous, you can rest your brain and delight your eyes at the related site:

2) Symbolic sculptures and mathematics, http://www.bangor.ac.uk/SculMath/

which opens with a striking image of rotating linked tori, and includes pictures of the
mathematical sculpture of John Robinson.

The Workshop on Higher Category Theory and Physics was exciting because it pulled
together a lot of people working on the interface between these two subjects, many of
whom had never before met. It was organized by Ezra Getzler and Mikhail Kapranov.
Getzler is probably most well-known for his proof of the Atiyah-Singer index theorem.
This wonderful theorem captured the imagination of mathematical physicists for many
years starting in the 1960s. The reason is that it relates the topology of manifolds to
the the solutions of partial differential equations on these manifolds, and thus ushered
in a new age of applications of topology to physics. In the 1980s, working with ideas
that Witten came up with, Getzler found a nice “supersymmetric proof” of the Atiyah-
Singer theorem. Later Getzler turned to other things, such as the use of “operads” (see
“Week 42”) to study conformal field theory (which shows up naturally in string theory).
Kapranov has also done a lot of work with operads and conformal field theory, and many
other things, but I first learned about him through his paper with Voevodsky on “braided
monoidal 2-categories” (see “Week 4”). This got me very excited since it turned me on
to many of the main themes of n-category theory.

Alas, my description of this fascinating conference will be terse and dry in the ex-
treme, since I am flying to Warsaw in 3 hours for a quantum gravity workshop. I’ll just
mention a few papers that cover some of the themes of this conference. Ross Street gave
two talks on Batanin’s definition of weak n-categories (and even weak ω-categories),
which one can get as follows:

3) Ross Street, The role of Michael Batanin’s monoidal globular categories. “Lecture I:
Globular categories and trees”. “Lecture II: Higher operads and weak ω-categories”.
Available in gzipped Postscript form at http://www.math.mq.edu.au/~street/

Publications.html
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Subsequently Batanin has written a more thorough paper on his definition:

4) Michael Batanin, “Monoidal globular categories as a natural environment for the
theory of weak n-categories”, Adv. Math 136 (1998), 39–103, preprint available at
http://www-math.mpce.mq.edu.au/~mbatanin/papers.html

I gave a talk on Dolan’s and my definition of weak n-categories, which one can get as
follows:

5) John Baez, “An introduction to n-categories”, to appear in the proceedings of Cat-
egory Theory and Computer Science ’97, preprint available as q-alg/9705009 or in
Postscript form at http://math.ucr.edu/home/baez/ncat.ps

Unfortunately Tamsamani was not there to present his definition of weak n-categories,
but at least I have learned how to get his papers electronically:

6) Zouhair Tamsamani, “Sur des notions de∞-categorie et∞-groupoide non-strictes
via des ensembles multi-simpliciaux”, preprint available as alg-geom/9512006.

Zouhair Tamsamani, “Equivalence de la theorie homotopique des n-groupoides
et celle des espaces topologiques n-tronques”, preprint available as alg-geom/

9607010.

Also, Carlos Simpson has written an interesting paper using Tamsamani’s definition:

7) Carlos Simpson, “A closed model structure for n-categories, internal Hom, n-stacks
and generalized Seifert-Van Kampen”, preprint available as alg-geom/9704006.

In a different but related direction, Masahico Saito discussed a paper with Scott
Carter and Joachim Rieger in which they come up with a nice purely combinatorial
description of all the ways to embed 2-dimensional surfaces in 4-dimensional space:

8) J. Scott Carter, Joachim H. Rieger and Masahico Saito, “A combinatorial description
of knotted surfaces and their isotopies”, to appear in Adv. Math., preprint available
at http://www.math.usf.edu/~saito/home.html

My student Laurel Langford has translated their work into n-category theory and
shown that “unframed unoriented 2-tangles form the free braided monoidal 2-category
on one unframed self-dual object”:

9) John Baez and Laurel Langford, “2-Tangles”, preprint available as q-alg/9703033
and in Postscript form at http://math.ucr.edu/home/baez/2tang.ps

This paper summarizes the results; the proofs will appear later.
While I was there, Carter also gave me a very nice paper he’d done with Saito and

Louis Kauffman. This paper discusses 4-manifolds and also 2-dimensional surfaces in
3-dimensional space, again getting a purely combinatorial description which is begging
to be translated into n-category theory:

10) J. Scott Carter, Louis H. Kauffman and Masahico Saito, “Diagrammatics, singular-
ities, and their algebraic interpretations”, preprint available at http://www.math.
usf.edu/~saito/home.html
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I am sorry not to describe these papers in more detail, but I’ve been painfully busy
lately. (In fact, I am trying to figure out how to reform my life to give myself more spare
time. I think the key is to say “no” more often.)

Thanks to Justin Roberts for pointing out an error in “Week 102”. The phase ambi-
guity in conformal field theories is not necessarily a 24th root of unity; it’s exp(2πic/24)
where c is the central charge of the associated Virasoro representation. This is a big hint
as far as my puzzle goes.

Also I thank Dan Christensen for helping me understand π4(S2) in a simpler way, and
Scott Carter for a fascinating letter on the themes of “Week 102”. Alas, I have been too
busy to reply adequately to these nice emails!

Gotta run. . . .
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Week 104

June 8, 1997

A couple of months ago I flew up to Corvallis, Oregon to an AMS meeting. The AMS, in
case you’re unfamiliar with it, is the American Mathematical Society. They have lots of
regional meetings with special sessions on various topics. One reason I went to this one
is that there was a special session on octonions, organized by Tevian Dray and Corinne
Manogue.

After the real numbers come the complex numbers, and after the complex numbers
come the quaternions, and after the quaternions come the octonions, the most mysteri-
ous of all. The real numbers, complex numbers, and quaternions have lots of applications
to physics. What about the octonions? Aren’t they good for something too? This question
has been bugging me for a while now.

In fact, it bugs me so much that I decided to go to Corvallis to look for clues. After
all, in addition to Tevian Dray and Corinne Manogue — the former a mathematician,
the latter a physicist, both deeply interested in octonions — a bunch of other octonion
experts were going to be there. One was my friend Geoffrey Dixon. I told you about him
in “Week 59”. He wrote a book on the complex numbers, quaternions and octonions and
their role in physics. He has a theory of physics in which these are related to electromag-
netism, the weak force, and the strong force, respectively. It’s a bit far out, but far from
crazy! In fact, it’s fascinating.

After writing about his book I got in touch with him in Cambridge, Massachusetts. I
found out that his other main interest in life, besides the octonions, is the game Myst.
This is probably not a coincidence. In both the main question is “What the heck is really
going on here?” He has Myst all figured out, but he loves watching people play it, so he
got me to play it for a while. Someday I will buy a CD-ROM drive and waste a few weeks
on that game. Anyway, I got to know him back in the summer of 1995, so it was nice to
see him again in Corvallis.

Another octonion expert is Tony Smith. He too has a far-out but fascinating theory of
physics involving octonions! I wrote about his stuff in “Week 91”. I had never met him
before the Corvallis conference, but I instantly recognized him when I met him, because
there’s a picture of him wearing a cowboy hat on his homepage. It turns out he always
wears that hat. He is a wonderful repository of information concerning octonions and
other interesting things. He is also a very friendly and laid-back sort of guy. He lives in
Atlanta, Georgia.

I also met another octonion expert I hadn’t known about, Tony Sudbery, from York.
(The original York, not the “new” one.) He gave a talk on “The Exceptions that Prove
the Rule”. The octonions are related to a host of other mathematical structures in a
very spooky way. In all sorts of contexts, you can classify algebraic structures and get a
nice systematic infinite list together with a finite number of exceptions. What’s spooky
is how the exceptions in one context turn out to be related to the exceptions in some
other context. These relationships are complicated and mysterious in themselves. It’s
as if there were a hand underneath the water and all we see is the fingers poking out
here and there. There seems to be some “unified theory of exceptions” waiting to be
discovered, and the octonions must have something to do with it. I figure that to really
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understand what the octonions are good for, we need to understand this “unified theory
of exceptions”.

Let’s start by recalling what the octonions are!
I presume you know the real numbers. The complex numbers are things like

a+ bi

where a and b are real. We can multiply them using the rule

i2 = −1

They may seem mysterious when you first meet them, but they lose their mystery when
you see they are just a nice way of keeping track of rotations in the plane.

Similarly, the quaternions are guys like

a+ bi+ cj + dk

which we can multiply using the rules

i2 = j2 = k2 = −1

and
ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j

They aren’t commutative, but they are still associative. Again they may seem mysteri-
ous at first, but they lose their mystery when you see that they are just a nice way of
keeping track of rotations in 3 and 4 dimensions. Rotations in more than 2 dimensions
don’t commute in general, so the quaternions had better not commute. In fact, Hamil-
ton didn’t invent the quaternions to study rotations — his goal was merely to cook up
a “division algebra”, where you could divide by any nonzero element (see “Week 82”).
However, after he discovered the quaternions, he used them to study rotations and an-
gular momentum. Nowadays people tend instead to use the vector cross product, which
was invented later by Gibbs. The reason is that in the late 1800s there was a big battle
between the fans of quaternions and the fans of vectors, and the quaternion crowd lost.
For more on the history of this stuff, see:

1) Michael J. Crowe, A History of Vector Analysis, University of Notre Dame, Notre
Dame, 1967.

Octonions were invented by Cayley later on in the 1800s. For these, we start with
seven square roots of−1, say e1 up to e7. To learn how multiply these, draw the following
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diagram:

Draw a triangle, draw a line from each vertex to the midpoint of the opposite edge, and
inscribe a circle in the triangle. Label the 7 points shown with e1 through e7 — it doesn’t
matter how, I’ve just drawn my favorite way. Draw arrows on the edges of the triangle
going around clockwise, draw arrows on the circle also going around clockwise, and
draw arrows on the three lines pointing from each vertex of the triangle to the midpoint
of the opposite edge. Come on, DO it! I’m doing all this work for you. . . you should do
some, too.

Okay. Now you have your very own octonion multiplication table. Notice that there
are six lines and a circle in your picture. Each one of these gives us a copy of the
quaternions inside the octonions. For example, say you want to multiply e6 and e7. You
notice that the the vertical line says “e6, e7, e2” on it as we follow the arrow down. Thus,
just as for i, j, and k in the quaternions, we have

e6e7 = e2, e7e2 = e6, e2e6 = e7

e7e6 = −e2, e2e7 = −e6, e6e2 = −e7

So in particular we have e6e7 = e2.
In case you lose your octonion table, don’t worry: you don’t really need to remember

the names of those 7 square roots of $-1 $and their positions on the chart. You just
need to remember the geometry of the chart itself. Names are arbitrary and don’t really
matter, unless you’re talking to someone else, in which case you have to agree on them.

If you want to see spiffy high-tech octonion multiplication tables, check out the fol-
lowing websites:

2) Tony Smith, http://galaxy.cau.edu/tsmith/TShome.html

3) Geoffrey Dixon, http://www.7stones.com (Warning: to really get into this you
need to have at least Netscape 3.0 with Java and Shockwave stuff.)
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What’s so great about the octonions? They are not commutative, and worse, they
are not even associative. What’s great about them is that they form a division algebra,
meaning you can divide by any nonzero octonion. Better still, they form a “normed”
division algebra. Just as with the reals, complexes, and quaternions, we can define the
norm of the octonion

x = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7

to be
|x| =

√
a20 + a21 + a22 + a23 + a24 + a25 + a26 + a27.

What makes them a “normed division algebra” is that

|xy| = |x||y|.

It’s a wonderful fact about the world that the reals, complexes, quaternions and octo-
nions are the only normed division algebras. That’s it!

However, the octonions remain mysterious, at least to me. They are related to rota-
tions in 7 and 8 dimensions, but not as simply as one might hope. After all, rotations
in any number of dimensions are still associative. Where is this nonassociative business
coming from? I don’t really know. This question really bugs me.

A while ago, in “Week 95”, I summarized a paper by John Schwarz on supersymmetric
Yang-Mills theory and why it works best in dimensions 3, 4, 6, and 10. Basically, only in
these dimensions can you cook up spin-1/2 particles that have as many physical degrees
of freedom as massless spin-1 particles. I sort of explained why. This in turn allows a
symmetry between fermions and gauge bosons. I didn’t explain how this works. . . it
seems pretty tricky to me. . . but anyway, it works.

So far, so good. But Schwarz wondered: is it a coincidence that the numbers 3, 4, 6,
and 10 are just two more than the numbers 1, 2, 4, and 8 — the dimensions of the reals,
complexes, quaternions, and octonions?

Apparently not! The following papers explain what’s going on:

4) Corinne A. Manogue and Joerg Schray, “Finite Lorentz transformations automor-
phisms, and division algebras”, Jour. Math. Phys. 34 (1993), 3746–3767.

Corinne A. Manogue and Joerg Schray, “Octonionic representations of Clifford al-
gebras and triality”, preprint available as hep-th/9407179.

5) Anthony Sudbery, “Division algebras, (pseudo)orthogonal groups and spinors”,
Jour. Phys. A 17 (1984), 939–955.

Anthony Sudbery, “Seven types of incongruity”, handwritten notes.

Here’s the basic idea. Let

• R be the real numbers

• C be the complex numbers

• H be the quaternions

• O be the octonions
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Let SO(n, 1) denote the Lorentz group in n + 1 dimensions. Roughly speaking, this
is the symmetry group of (n + 1)-dimensional Minkowski spacetime. Let so(n, 1) be the
corresponding Lie algebra (see “Week 63” for a lightning introduction to Lie algebras).
Then it turns out that:

• sl(2,R) = so(2, 1)

• sl(2,C) = so(3, 1)

• sl(2,H) = so(5, 1)

• sl(2,O) = so(9, 1)

This relates reals, complexes, quaternions and octonions to the Lorentz group in di-
mensions 3, 4, 6, and 10, and explains the “coincidence” noted by Schwarz! But it
requires some explanation. Roughly speaking, if SL(2,K) is the group of 2 × 2 matri-
ces with determinant 1 whose entries lie in the division algebra K = R,C,H,O, then
sl(2,K) is defined to be the Lie algebra of this group. This is simple enough for R or C.
However, one needs to be careful when defining the determinant of a 2× 2 quaternionic
matrix, since quaternions don’t commute. One needs to be even more careful in the
octonionic case. Since octonions aren’t even associative, it’s far from obvious what the
group SL(2,O) would be, so defining the Lie algebra “sl(2,O)” requires a certain amount
of finesse. For the details, read the papers.

As Corinne Manogue explained to me, this relation between the octonions and Lorentz
transformations in 10 dimensions suggests some interesting ways to use octonions in 10-
dimensional physics. As we all know, the 10th dimension is where string theorists live.
There is also a nice relation to Geoffrey Dixon’s theory. This theory relates the elec-
tromagnetic force to the complex numbers, the weak force to the quaternions, and the
strong force to octonions. How? Well, the gauge group of electromagnetism is U(1), the
unit complex numbers. The gauge group of the weak force is SU(2), the unit quaternions.
The gauge group of the strong force is SU(3). . . .

Alas, the group SU(3) is not the unit octonions. The unit octonions do not form a
group since they aren’t associative. SU(3) is related to the octonions more indirectly.
The group of symmetries (or technically, “automorphisms”) of the octonions is the ex-
ceptional group G2, which contains SU(3). To get SU(3), we can take the subgroup of
G2 that preserves a given unit imaginary octonion. . . say e1. This is how Dixon relates
SU(3) to the octonions.

However, why should one unit imaginary octonion be different from the rest? Some
sort of “symmetry breaking”, presumably? It seems a bit ad hoc. However, as Manogue
explained, there is a nice way to kill two birds with one stone. If we pick a particular unit
imaginary octonion, we get a copy of the complex numbers sitting inside the octonions,
so we get a copy of sl(2,C) sitting inside sl(2,O), so we get a copy of so(3, 1) sitting
inside so(9, 1)! In other words, we get a particular copy of the good old 4-dimensional
Lorentz group sitting inside the 10-dimensional Lorentz group. So fixing a unit imaginary
octonion not only breaks the octonion symmetry group G2 down to the strong force
symmetry group SU(3), it might also get us from 10-dimensional physics down to 4-
dimensional physics.

Cool, no? There are obviously a lot of major issues involved in turning this into a
full-fledged theory, and they might not work out. The whole idea could be completely
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misguided! But it takes guts to do physics, so it’s good that Tevian Dray and Corinne
Manogue are bravely pursuing this idea.

Upon learning that there is a deep relation between R, C, H, O and the Lorentz
group in dimensions 3, 4, 6, 10, one is naturally emboldened to take seriously a few
more “coincidences”. For example, in “Week 82” I described the Clifford algebras Cn
— i.e., the algebras generated by n anticommuting square roots of −1. These Clifford
algebras are relevant to n-dimensional Euclidean geometry, as opposed to the Clifford
algebras relevant to n-dimensional Lorentzian geometry, which appeared in “Week 93”.
They go like this:

• C0 = R

• C1 = C

• C2 = H

• C3 = H⊕H

• C4 = H(2)

• C5 = C(4)

• C6 = R(8)

• C7 = R(8)⊕ R(8)

• C8 = R(16)

where K(n) stands for n × n matrices with entries taken from K = R,C,H, and “⊕”
stands for “direct sum”. Note that C8 is the same as 16× 16 matrices with entries taken
from C0. That’s part of a general pattern called “Bott periodicity”: in general, Cn+8 is
the same as 16× 16 matrices with entries taken from Cn.

Now consider the dimension of the smallest real representation of Cn. It’s easy to
work this out if you keep in mind that the smallest representation of K(n) or K(n)⊕K(n)
is on Kn — the vector space consisting of n-tuples of elements of K. We get

The dimension of the smallest real representation:

• of C0 is 1

• of C1 is 2

• of C2 is 4

• of C3 is 4

• of C4 is 8

• of C5 is 8

• of C6 is 8

• of C7 is 8
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• of C8 is 16

Note that it increases at n = 1, 2, 4, 8. These are the dimensions of R, C, H, and O.
Coincidence?

No! Indeed, Cn has a representation on a k-dimensional real vector space if and
only if the unit sphere in that vector space, Sk−1, admits n linearly independent smooth
vector fields. So the above table implies that:

• The sphere S0 admits 0 linearly independent vector fields.

• The sphere S1 admits 1 linearly independent vector fields.

• The sphere S3 admits 3 linearly independent vector fields.

• The sphere S7 admits 7 linearly independent vector fields.

These spheres are the unit real numbers, the unit complex numbers, the unit quater-
nions, and the unit octonions, respectively! If you know about normed division algebras,
it’s obvious that these sphere admit the maximum possible number of linear independent
vector fields: you can just take a basis of vectors at one point and “left translate” it to get
a bunch of linearly independent vector fields.

Now — Bott periodicity has period 8, and the octonions have dimension 8. And
as we’ve seen, both have a lot to do with Clifford algebras. So maybe there is a deep
relation between the octonions and Bott periodicity. Could this be true? If so, it would
be good news, because while octonions are often seen as weird exceptional creatures,
Bott periodicity is bigtime, mainstream stuff!

And in fact it is true. More on Bott periodicity and the octonions coming up next
Week.

Addendum: Robert Helling provided some interesting further comments on super-
symmetric gauge theories and the division algebras, which I quote below. He recom-
mends the following reference:

6) J. M. Evans, “Supersymmetric Yang-Mills theories and division algebras”, Nucl.
Phys. B298 (1988), 92–108.

and he writes:

Let me add a technical remark that I extract from Green, Schwarz, and Witten,
Vol 1, Appendix 4A.

The appearance of dimensions 3,4,6, and 10 can most easily been seen when
one tries to write down a supersymmetric gauge theory in arbitrary dimension.
This means we’re looking for a way to throw in some spinors to the Lagrangian
of a pure gauge theory:

−1/4F 2
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in a way that the new Lagrangian is invariant (up to a total derivative) un-
der some infinitesimal variations. These describe supersymmetry if their com-
mutator is a derivative (a generator of spacetime translations). As usual, we
parameterize this variation by a parameter ε, but now ε is a spinor.

From people that have been doing this for their whole life we learn that the
following Ansatz is common:

δAm = i/2ε†Γmψ

δψ = −1/4FmnΓmnε

Here A is the connection, F its field strength and ψ a spinor of a type to be
determined. I suppressed group indices on all these fields. They are all in the
adjoint representation. Γ are the generators of the Clifford algebra described by
John Baez before.

[Also, ε† is my feeble subsitute for an ε with a bar over it. — JB]

For the Lagrangian we try the usual Yang-Mills term and add a minimally cou-
pled kinetic term for the fermions:

−1/4F 2 + ig/2ψ†ΓmDmψ

Here Dm is the gauge covariant derivative and g is some number that we can
tune to to make this vanish under the above variations. When we vary the first
term we find g = 1. In fact everything cancels without considering a special
dimension except for the term that is trilinear in ψ that comes from varying
the connection in the covariant derivative in the fermionic term. This reads
something like

fabcε
†Γmψ

aψbΓmψc

where I put in the group indices and the structure constants fabc. This has to
vanish for other reasons since there is no other trilinear term in the fermions
available. And indeed, after you’ve written out the antisymmetry of f explicitly
and take out the spinors since this should vanish for all choices of ψ and ε.
We are left with an expression that is only made of gammas. And in fact, this
expression exactly vanishes in dimensions 3, 4, 6, and 10 due to a Fierz identity.
(Sorry, I don’t have time to work this out more explicitly.)

This is related to the division algebra as follows (as explained in the papers
pointed out by John Baez): Take for concreteness d = 10. Here we go to a
light-cone frame by using coordinates

x+ = x0 + x9 and x− = x0 − x1.

Then we write the Γm as block matrices where Γ+ and Γ− have the +/− unit
matrix as blocks and the others have γi as blocks where γi are the SO(8) Dirac
matrices (i = 1, ..., 9). But they are intimately related to the octonions. Remem-
ber there is triality in SO(8) which means that we can treat left-handed spinors,
right-handed spinors and vectors on an equal basis (see “Week 61”, “Week 90”,
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“Week 91”). Now I write out all three indices of γi. Because of triality I can use
i,j,k for spinor, dotted spinor and vector indices. Then it is known that

γijk =


cijk for i, j, k < 8;
δij for k = 8 (and ijk permuted);
0 for more than two of ijk equal to 8.

is a representation of Cliff(8) if cijk are the structure constants of the octonions
(i.e. eiej = cijkek for the 7 roots of −1 in the octonions).

When you plug this representation of the Γ’s in the above mentioned γ expression
you will will find that it vanishes due to the antisymmetry of the associator

[a, b, c] = a(bc)− (ab)c

in the division algebras. This is my understanding of the relation of supersym-
metry to the divison algebras.

Robert
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Week 105

June 21, 1997

There are some spooky facts in mathematics that you’d never guess in a million years. . .
only when someone carefully works them out do they become clear. One of them is
called “Bott periodicity”.

A 0-dimensional manifold is pretty dull: just a bunch of points. 1-dimensional man-
ifolds are not much more varied: the only possibilities are the circle and the line, and
things you get by taking a union of a bunch of circles and lines. 2-dimensional manifolds
are more interesting, but still pretty tame: you’ve got your n-holed tori, your projective
plane, your Klein bottle, variations on these with extra handles, and some more related
things if you allow your manifold to go on forever, like the plane, or the plane with a
bunch of handles added (possibly infinitely many!), and so on. . . . You can classify all
these things. 3-dimensional manifolds are a lot more complicated: nobody knows how
to classify them. 4-dimensional manifolds are a lot more complicated: you can prove that
it’s impossible to classify them — that’s called Markov’s Theorem.

Now, you probably wouldn’t have guessed that a lot of things start getting simpler
when you get up around dimension 5. Not everything, just some things. You still can’t
classify manifolds in these high dimensions, but if you make a bunch of simplifying
assumptions you sort of can, in ways that don’t work in lower dimensions. Weird, huh?
But that’s another story. Bott periodicity is different. It says that when you get up to 8
dimensions, a bunch of things are a whole lot like in 0 dimensions! And when you get
up to dimension 9, a bunch of things are a lot like they were in dimension 1. And so on
- a bunch of stuff keeps repeating with period 8 as you climb the ladder of dimensions.

(Actually, I have this kooky theory that perhaps part of the reason topology reaches
a certain peak of complexity in dimension 4 is that the number 4 is halfway between 0
and 8, topology being simplest in dimension 0. Maybe this is even why physics likes to
be in 4 dimensions! But this is a whole other crazy digression and I will restrain myself
here.)

Bott periodicity takes many guises, and I already described one in “Week 104”. Let’s
start with the real numbers, and then throw in n square roots of −1, say e1, . . . , en. Let’s
make them “anticommute”, so

eiej = −ejei
when i is different from j. What we get is called the “Clifford algebra” Cn. For example,
when n = 1 we get the complex numbers, which we call C. When n = 2 we get the
quaternions, which we call H, for Hamilton. When n = 3 we get. . . the octonions?? No,
not the octonions, since we always demand that multiplication be associative! We get
the algebra consisting of pairs of quaternions! We call that H ⊕ H. When n = 4 we get
the algebra consisting of 2 × 2 matrices of quaternions! We call that H(2). And it goes
on, like this:

• C0 = R

• C1 = C

• C2 = H
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• C3 = H⊕H

• C4 = H(2)

• C5 = C(4)

• C6 = R(8)

• C7 = R(8)⊕ R(8)

• C8 = R(16)

Note that by the time we get to n = 8 we just have 16× 16 matrices of real numbers.
And that’s how it keeps going: Cn+8 is just 16 × 16 matrices of guys in Cn! That’s Bott
periodicity in its simplest form.

Actually right now I’m in Vienna, at the Schroedinger Institute, and one of the other
people visiting is Andrzej Trautman, who gave a talk the other day on “Complex Struc-
tures in Physics”, where he mentioned a nice way to remember the above table. Imagine
the day is only 8 hours long, and draw a clock with 8 hours. Then label it like this:

0
R 1

C

2H

3
H⊕H

4
H5

C

6 R

7
R⊕ R

The idea here is that as the dimension of space goes up, you go around the clock. One
nice thing about the clock is that it has a reflection symmetry about the axis from 3
o’clock to 7 o’clock. To use the clock, you need to know that the dimension of the
Clifford algebra doubles each time you go up a dimension. This lets you figure out, for
example, that the Clifford algebra in 4 dimensions is not really H, but H(2), since the
latter has dimension 16 = 24.

Now let’s completely change the subject and talk about rotations in infinite-dimensional
space! What’s a rotation in infinite-dimensional space like? Well, let’s start from the
bottom and work our way up. You can’t really rotate in 0-dimensional space. In 1-
dimensional space you can’t really rotate, you can only reflect things. . . but we will
count reflections together with rotations, and say that the operations of multiplying by
1 or −1 count as “rotations” in 1-dimensional space. In 2-dimensional space we describe
rotations by 2× 2 matrices like (

cos t − sin t
sin t cos t

)
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and since we’re generously including reflections, also matrices like(
cos t sin t
sin t − cos t

)
These are just the matrices whose columns are orthonormal vectors. In 3-dimensional
space we describe rotations by 3 × 3 matrices whose columns are orthonormal, and so
on. In n-dimensional space we call the set of n × n matrices with orthonormal columns
the “orthogonal group” O(n).

Note that we can think of a rotation in 2 dimensions(
cos t − sin t
sin t cos t

)
as being a rotation in 3 dimensions if we just stick one more row and one column like
this:  cos t − sin t 0

sin t cos t 0
0 0 1


This is just a rotation around the z axis. Using the same trick we can think of any rotation
in n dimensions as a rotation in n + 1 dimensions. So we can think of O(0) as sitting
inside O(1), which sits inside O(2), which sits inside O(3), which sits inside O(4), and so
on! Let’s do that. Then let’s just take the union of all these guys, and we get. . . O(∞)!
This is the group of rotations, together with reflections, in infinite dimensions.

(Now if you know your math, or you read “Week 82”, you’ll realize that I didn’t really
change the subject, since the Clifford algebra Cn is really just a handy way to study
rotations in n dimensions. But never mind.)

Now O(∞) is a very big group, but it elegantly summarizes a lot of information about
rotations in all dimensions, so it’s not surprising that topologists have studied it. One of
the thing topologists do when studying a space is to work out its “homotopy groups”. If
you hand them a space X, and choose a point x in this space, they will work out all the
topologically distinct ways you can stick an n-dimensional sphere in this space, where
we require that the north pole of the sphere be at x. This is what they are paid to do. We
call the set of all such ways the homotopy group πn(X). For a more precise description,
try “Week 102” — but this will do for now.

So, what are the homotopy groups of O(∞)? Well, they start out looking like this:

n πn(O(∞))

0 Z/2
1 Z/2
2 0
3 Z
4 0
5 0
6 0
7 Z
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And then they repeat, modulo 8. Bott periodicity strikes again!
But what do they mean?
Well, luckily Jim Dolan has thought about this a lot. Discussing it repeatedly in the

little cafe we tend to hang out at, we came up with the following story. Most of it is
known to various people already, but it came as sort of a revelation to us.

The zeroth entry in the table is easy to understand. π0 keeps track of how many
connected components your space has. The rotation group O(∞) has two connected
components: the guys that are rotations, and the guys that are rotations followed by a
reflection. So π0 of O(∞) is Z/2, the group with two elements. Actually this is also true
for O(n) whenever n is high enough, namely 1 or more. So the zeroth entry is all about
“reflecting”.

The first entry is a bit subtler but very important in physics. It means that there is a
loop in O(∞) that you can’t pull tight, but if you go around that loop twice, you trace out
a loop that you can pull tight. In fact this is true for O(n) whenever n is 3 or more. This
is how there can be spin-1/2 particles when space is 3-dimensional or higher. There are
lots of nice tricks for seeing that this is true, which I hope the reader already knows and
loves. In short, the first entry is all about “rotating 360 degrees and not getting back to
where you started”.

The second entry is zero.
The third entry is even subtler but also very important in modern physics. It means

that the ways to stick a 3-sphere into O(∞) are classified by the integers, Z. Actually
this is true for O(n) whenever n is 5 or more. It’s even true for all sorts of other groups,
like all “compact simple groups”. But can I summarize this entry in a snappy phrase
like the previous nonzero entries? Not really. Actually a lot of applications of topology
to quantum field theory rely on this π3 business. For example, it’s the key to stuff like
“instantons” in Yang-Mills theory, which are in turn crucial for understanding how the
pion gets its mass. It’s also the basis of stuff like “Chern-Simons theory” and “BF theory”.
Alas, all this takes a while to explain, but let’s just say the third entry is about “topological
field theory in 4 dimensions”.

The fourth entry is zero.
The fifth entry is zero.
The sixth entry is zero.
The seventh entry is probably the most mysterious of all. From one point of view it

is the subtlest, but from another point of view it is perfectly trivial. If we think of it as
being about π7 it’s very subtle: it says that the ways to stick a 7-sphere into O(∞) are
classified by the integers. (Actually this is true for O(n) whenever n is 7 or more.) But if
we keep Bott periodicity in mind, there is another way to think of it: we can think of it
as being about π−1, since 7 = −1 mod 8.

But wait a minute! Since when can we talk about πn when n is negative?! What’s a
-1-dimensional sphere, for example?

Well, the idea here is to use a trick. There is a space very related to O(∞), called kO.
As with O(∞), the homotopy groups of this space repeat modulo 8. Moreover we have:

πn(O(∞)) = πn+1(kO)

Combining these facts, we see that the very subtle π7 of O(∞) is nothing but the very
unsubtle π0 of kO, which just keeps track of how many connected components kO has.

32



WEEK 105 JUNE 21, 1997

But what is kO?
Hmm. The answer is very important and interesting, but it would take a while to

explain, and I want to postpone doing it for a while, so I can get to the punchline. Let
me just say that when we work it all out, we wind up seeing that the seventh entry in
the table is all about dimension.

To summarize:

• π0(O(∞)) = Z/2 is about REFLECTING

• π1(O(∞)) = Z/2 is about ROTATING 360 DEGREES

• π3(O(∞)) = Z is about TOPOLOGICAL FIELD THEORY IN 4 DIMENSIONS

• π7(O(∞)) = Z is about DIMENSION

But wait! What do those numbers 0, 1, 3, and 7 remind you of?
Well, after I stared at them for a few weeks, they started to remind me of the numbers

1, 2, 4, and 8. And that immediately reminded me of the reals, the complexes, the
quaternions, and the octonions!

And indeed, there is an obvious relationship. Let n be 1, 2, 4, or 8, and correspond-
ingly let A stand for either the reals R, the complex numbers C, the quaternions H, or
the octonions O. These guys are precisely all the “normed division algebras”, meaning
that the obvious sort of absolute value satisfies

|xy| = |x||y|.

Thus if we take any guy x in A with |x| = 1, the operation of multiplying by x is length-
preserving, so it’s a reflection or rotation in A. This gives us a function from the unit
sphere in A to O(n), or in other words from the (n− 1)-sphere to O(n). We thus get nice
elements of

π0(O(1)), π1(O(2)), π3(O(4)), π7(O(8))

which turn out to be precisely why these particular homotopy groups of O(∞) are non-
trivial.

So now we have the following fancier chart:

• π0(O(∞)) is about REFLECTING and the REAL NUMBERS

• π1(O(∞)) is about ROTATING 360 DEGREES and the COMPLEX NUMBERS

• π3(O(∞)) is about TOPOLOGICAL FIELD THEORY IN 4 DIMENSIONS and the
QUATERNIONS

• π7(O(∞)) is about DIMENSION and the OCTONIONS

Now this is pretty weird. It’s not so surprising that reflections and the real numbers
are related: after all, the only “rotations” in the real line are the reflections. That’s sort
of what 1 and −1 are all about. It’s also not so surprising that rotations by 360 degrees
are related to the complex numbers. That’s sort of what the unit circle is all about. While
far more subtle, it’s also not so surprising that topological field theory in 4 dimensions
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is related to the quaternions. The shocking part is that something so basic-sounding as
“dimension” should be related to something so erudite-sounding as the “octonions”!

But this is what Bott periodicity does, somehow: it wraps things around so the most
complicated thing is also the least complicated.

That’s more or less the end of what I have to say, except for some references and
some remarks of a more technical nature.

Bott periodicity for O(∞) was first proved by Raoul Bott in 1959. Bott is a wonder-
ful explainer of mathematics and one of the main driving forces behind applications of
topology to physics, and a lot of his papers have now been collected in book form:

1) The Collected Papers of Raoul Bott, ed. R. D. MacPherson. Vol. 1: Topology and Lie
Groups (the 1950s). Vol. 2: Differential Operators (the 1960s). Vol. 3: Foliations
(the 1970s). Vol. 4: Mathematics Related to Physics (the 1980s). Birkhauser, Boston,
1994, 2355 pages total.

A good paper on the relation between O(∞) and Clifford algebras is:

2) M. F. Atiyah, R. Bott, and A. Shapiro, “Clifford modules”, Topology 3 (1964), 3-38.

For more stuff on division algebras and Bott periodicity try Dave Rusin’s web page,
especially his answer to “Q5. What’s the question with the answer n = 1, 2, 4, or 8?”

3) Dave Rusin, “Binary products, algebras, and division rings”, http://www.math.
niu.edu/\~rusin/known-math/95/division.alg

Let me briefly explain this kO business. The space kO is related to a simpler space
called BO(∞) by means of the equation

kO = BO(∞)× Z,

so let me first describe BO(∞). For any topological group G you can cook up a space
BG whose loop space is homotopy equivalent to G. In other words, the space of (base-
point-preserving) maps from S1 to BG is homotopy equivalent to G. It follows that

πn(G) = πn+1(BG).

This space BG is called the classifying space of G because it has a principal G-bundle
over it, and given any decent topological space X (say a CW complex) you can get all
principal G-bundles over X (up to isomorphism) by taking a map f : X → BG and
pulling back this principal G-bundle over BG. Moreover, homotopic maps to BG give
isomorphic G-bundles over X this way.

Now a principal O(n)-bundle is basically the same thing as an n-dimensional real
vector bundle — there are obvious ways to go back and forth between these concepts. A
principal O(∞)-bundle is thus very much like a real vector bundle of arbitrary dimension,
but where we don’t care about adding on arbitrarily many 1-dimensional trivial bundles.
If we take the collection of isomorphism classes of real vector bundles over X and decree
two to be equivalent if they become isomorphic after adding on trivial bundles, we get
something called KX, the “real K-theory of X”. It’s not hard to see that this is a group.
Taking what I’ve said and working a bit, it follows that

KX = [X,BO(∞)]
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where the right-hand side means “homotopy classes of maps from X to BO(∞)”. If we
take X to be Sn+1, we see

KSn+1 = πn+1(BO(∞)) = πn(O(∞))

It follows that we can get all elements of πn of O(∞) from real vector bundles over Sn+1.
Of course, the above equations are true only for nonnegative n, since it doesn’t make

sense to talk about π−1 of a space. However, to make Bott periodicity work out smoothly,
it would be nice if we could pretend that

KS−1 = π0(BO(∞)) = π−1(O(∞)) = π7(O(∞)) = Z

Alas, the equations don’t make sense, and BO(∞) is connected, so we don’t have π0(BO(∞)) =
Z. However, we can cook up a slightly improved space kO, which has

πn(kO) = πn(BO(∞))

when n > 0, but also has
π0(kO) = Z

as desired. It’s easy — we just let

kO = BO(∞)× Z.

So, let’s use this instead of BO(∞) from now on.
Taking n = 0, we can think of S1 as RP1, the real projective line, i.e. the space of

1-dimensional real subspaces of R2. This has a “canonical line bundle” over it, that is, a
1-dimensional real vector bundle which to each point of RP1 assigns the 1-dimensional
subspace of R2 that is that point. This vector bundle over S1 gives the generator of KS1,
or in other words, π0(O(∞)).

Taking n = 1, we can think of S2 as the “Riemann sphere”, or in other words CP1, the
space of 1-dimensional complex subspaces of C2. This too has a “canonical line bundle”
over it, which is a 1-dimensional complex vector bundle, or 2-dimensional real vector
bundle. This bundle over S2 gives the generator of KS2, or in other words, π1(O(∞)).

Taking n = 3, we can think of S4 as HP1, the space of 1-dimensional quaternionic
subspaces of H2. The “canonical line bundle” over this gives the generator of KS4, or in
other words, π3(O(∞)).

Taking n = 7, we can think of S8 as OP1, the space of 1-dimensional octonionic
subspaces of O2. The “canonical line bundle” over this gives the generator of KS8, or in
other words, π7(O(∞)).

By Bott periodicity,
π7(O(∞)) = π8(kO) = π0(kO)

so the canonical line bundle over OP1 also defines an element of π0(kO). But

π0(kO) = [S0, kO] = KS0

and KS0 simply records the difference in dimension between the two fibers of a vector
bundle over S0, which can be any integer. This is why the octonions are related to
dimension.
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If for any pointed space we define

Kn(X) = K(Sn ∧X)

we get a cohomology theory called K-theory, and it turns out that

Kn+8(X) = K(X)

which is another way of stating Bott periodicity. Now if {∗} denotes a single point,
K({∗}) is a ring (this is quite common for cohomology theories), and it is generated by
elements of degrees 1, 2, 4, and 8. The generator of degree 8 is just the canonical line
bundle over OP1 and multiplication by this generator gives a map

Kn({∗})→ Kn+8({∗})

which is an isomorphism of groups — namely, Bott periodicity! In this sense the octo-
nions are responsible for Bott periodicity.

Addendum: The Clifford algebra clock is even better than I described above, because
it lets you work out the fancier Clifford algebras Cp,q, which are generated by p square
roots of −1 and q square roots of 1, which all anticommute with each other. These
Clifford algebras are good when you have p dimensions of “space” and q dimensions of
“time”, and I described the physically important case where q = 1 in “Week 93”. To
figure them out, you just work out p − q mod 8, look at what the clock says for that
hour, and then take N × N matrices of what you see, with N chosen so that Cp,q gets
the right dimension, namely 2p+q. So say you’re a string theorist and you think there
are 9 space dimensions and 1 time dimension. You say: “Okay, 9 − 1 = 8, so I look and
see what’s at 8 o’clock. Okay, that’s R, the real numbers. But my Clifford algebra C9,1 is
supposed to have dimension 29+1 = 1024 = 322, so my Clifford algebra must consist of
32× 32 matrices with real entries.”

By the way, it’s not so easy to see that the canonical line bundle over OP1 is the
generator of KS8 — or equivalently, that left multiplication by unit octonions defines
a map from S7 into SO(8) corresponding to the generator of π7(O(∞)). I claimed it’s
true above, but when someone asked me why this was true, I realized I couldn’t prove
it! That made me nervous. So I asked on sci.math.research if it was really true, and I
got this reply:

From: Linus Kramer Newsgroups: sci.math.research Subject: π7(O) and octo-
nions Date: Tue, 09 Nov 1999 12:44:33 +0100

John Baez asked if π7(O) is generated by the (multiplication by) unit octonions.

View this as a question in KO-theory: the claim is that H8 generates the reduced
real K-theory K̃O(S8) of the 8-sphere; the bundle H8 over S8 is obtained by the
standard glueing process along the equator S7, using the octonion multiplica-
tion. So H8 is the octonion Hopf bundle. Its Thom space is the projective Cayley
plane OP2. Using this and Hirzebruch’s signature theorem, one sees that the
Pontrjagin class of H8 is p8(H8) = 6x, for a generator x of the 8-dimensional
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integral cohomology of S8 [a reference for this calulation is my paper “The
topology of smooth projective planes”, Arch. Math 63 (1994)]. We have a
diagram

KO(S8)
cplx−−→ K(S8)

ch−→ H(S8)

the left arrow is complexification, the second arrow is the Chern character. In
dimension 8, these maps form an isomorphism. Now ch(cplx(H8)) = 8 +
x (see the formula in the last paragraph in Husemoller’s “Fibre bundles”, the
chapter on “Bott periodicity and integrality theorems”. The constant factor is
unimportant, so the answer is yes, π7(O) is generated by the map S7 → O
which sends a unit octonion A to the map lA : x 7→ Ax in SO(8).

Linus Kramer

More recently I got an email from Todd Trimble which cites another reference to this
fact:

From: Todd Trimble Subject: Hopf bundles To: John Baez Date: Fri, 25 Mar
2005 16:37:11 -0500

John,

In the book Numbers (GTM 123), there is an article by Hirzebruch where the
Bott periodicity result is formulated as saying that the generators of K̃O(Sn)
in the cases n = 1, 2, 4, 8 are given by [η]− 1 where η is the Hopf bundle corre-
sponding to R, C, H, O and 1 is the trivial line bundle over these scalar “fields”
(of real dimension 1, 2, 4, 8), and is 0 for n = 3, 5, 6, 7 [p. 294]. Also that the
Bott periodicity isomorphism

K̃O(Sn)→ K̃O(Sn+8)

is induced by [η(O)] − 1 [p. 295]. I know you are aware of this already (cour-
tesy of the response of Linus Kramers to your sci.math.research query),
but I thought you might find a published reference, on the authority of no less
than Hirzebruch, handier (should you need it) than referring to a sci.math.

research exchange.

Unfortunately no proof is given. Hirzebruch says (p. 295),

Remark. Our formulation of the Bott periodicity theorem will be
found, in essentials, in [reference to Bott’s Lectures on K(X), without
proofs]. A detailed proof within the framework of K-theory is given in
the textbook [reference to Karoubi’s K-theory]. The reader will have
a certain amount of difficulty, however, in extracting the results used
here from Karoubi’s formulation.

Todd

. . . for geometry, you know, is the gate of science, and the gate is so low and small that
one can only enter it as a little child. — William Clifford
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Week 106

July 23, 1997

Well, it seems I want to talk one more time about octonions before moving on to other
stuff. I’m a bit afraid this obsession with octonions will mislead the nonexperts, fooling
them into thinking octonions are more central to mainstream mathematical physics than
they actually are. I’m also worried that the experts will think I’m spend all my time
brooding about octonions when I should be working on practical stuff like quantum
gravity. But darn it, this is summer vacation! The only way I’m going to keep on cranking
out “This Week’s Finds” is if I write about whatever I feel like, no matter how frivolous.
So here goes.

First of all, let’s make sure everyone here knows what projective space is. If you don’t,
I’d better explain it. This is honest mainstream stuff that everyone should know, good
nutritious mathematics, so I won’t need to feel too guilty about serving the extravagant
octonionic dessert which follows.

Start with Rn, good old n-dimensional Euclidean space. We can imagine wanting to
“compactify” this so that if you go sailing off to infinity in some direction you’ll come
sailing back from the other side like Magellan. There are different ways to do this. A
well-known one is to take Rn and add on one extra “point at infinity”, obtaining the
n-dimensional sphere Sn. Here the idea is that start anywhere in Rn and start sailing in
any direction, you are sailing towards this “point at infinity”.

But there is a sneakier way to compactify Rn, which gives us not the n-dimensional
sphere but “projective n-space”. Here we add on a lot of points, one for each line through
the origin. Now there are lots of points at infinity, one for every direction! The idea here
is that if you start at the origin and start sailing along any straight line, you are sailing
towards the point at infinity corresponding to that line. Sailing along any parallel line
takes you twoards the same point at infinity. It’s a bit like a perspective picture where
different families of parallel lines converge to different points on the horizon — the
points on the horizon being points at infinity.

Projective n-space is also called RPn. The R is for “real”, since this is actually “real
projective n-space”. Later we’ll see what happens if we replace the real numbers by the
complex numbers, quaternions, or octonions.

There are some other ways to think about RPn that are useful either for visualizing
it or doing calculations. First a nice way to visualize it. First take Rn and squash it down
so it’s just the ball of radius 1, or more precisely, the “open ball” consisting of all vectors
of length less than 1. We can do this using a coordinate transformation like:

x 7→ x′ =
x√

1 + |x|2

Here x stands for a vector in Rn and |x| is its length. Dividing the vector x by
√

1 + |x|2
gives us a vector x′ whose length never quite gets to 1, though it can get as close at it
likes. So we have squashed Rn down to the open ball of radius 1.

Now say you start at the origin in this squashed version of Rn and sail off in any
direction in a straight line. Then you are secretly heading towards the boundary of the
open ball. So the points an the boundary of the open ball are like “points at infinity”.
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We can now compactify Rn by including these points at infinity. In other words, we
can work not with the open ball but with the “closed ball” consisting of all vectors x’
whose length is less than or equal to 1.

However, to get projective n-space we also have to decree that antipodal points x′

and −x′ with |x′| = 1 are to be regarded as the same. In other words, we need to
“identify each point on the boundary of the closed ball with its antipodal point”. The
reason is that we said that when you sail off to infinity along a particular straight line,
you are approaching a particular point in projective n-space. Implicit in this is that it
doesn’t matter which way you sail along that straight line. Either direction takes you
towards the same point in projective n-space!

This may seem weird: in this world, when the cowboy says “he went thataway” and
points at a particular point on the horizon, you gotta remember that his finger points both
ways, and the villian could equally well have gone in the opposite direction. The reason
this is good is that it makes projective space into a kind of geometer’s paradise: any two
lines in projective space intersect in a single point. No more annoying exceptions: even
“parallel” lines intersect in a single point, which just happens to be a point at infinity.
This simplifies life enormously.

Okay, so RPn is the space formed by taking a closed n-dimensional ball and identify-
ing pairs of antipodal points on its boundary.

A more abstract way to think of RPn, which is incredibly useful in computations, is
as the set of all lines through the origin in Rn+1. Why is this the same thing? Well, let
me illustrate it in an example. What’s the space of lines through the origin in R3? To
keep track of these lines, draw a sphere around the origin. Each line through the origin
intersects this sphere in two points. Either one point is in the northern hemisphere and
the other is in the southern hemisphere, or both are on the equator. So we can keep track
of all our lines using points on the northern hemisphere and the equator, but identifying
antipodal points on the equator. This is just the same as taking the closed 2-dimensional
ball and identifying antipodal points on the boundary! QED. The same argument works
in higher dimensions too.

Now that we know a point in RPn is just a line through the origin in Rn+1, it’s easy to
put coordinates on RPn. There’s one line through the origin passing through any point
in Rn+1, but if we multiply the coordinates (x1, . . . , xn+1) of this point by any nonzero
number we get the same line. Thus we can use a list of n + 1 real numbers to describe
a point in RPn, with the proviso that we get the same point in RPn if someone comes
along and multiplies them all by some nonzero number! These are called “homogeneous
coordinates”.

If you don’t like the ambiguity of homogeneous coordinates, you can go right ahead
and divide all the coordinates by the real number x1, getting

(1, x2/x1, . . . , xn+1/x1)

which lets us describe a point in RPn by n real numbers, as befits an n-dimensional real
manifold. Of course, this won’t work if x1 happens to be zero! But we can divide by x2
if x2 is nonzero, and so on. One of them has to be nonzero, so we can cover RPn with
n + 1 different coordinate patches corresponding to the regions where different xi’s are
nonzero. It’s easy to change coordinates, too.

This makes everything very algebraic, which makes it easy to generalize RPn by
replacing the real numbers with other number systems. For example, to define “complex
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projective n-space” or CPn, just replace the word “real” by the word “complex” in the
last two paragraphs, and replace “R” by “C”. CPn is even more of a geometer’s paradise
than RPn, because when you work with complex numbers you can solve all polynomial
equations. Also, now there’s no big difference between an ellipse and a hyperbola! This
sort of thing is why CPn is so widely used as a context for “algebraic geometry”.

We can go even further and replace the real numbers by the quaternions, H, defining
the “quaternionic projective n-space” HPn. If we are careful about writing things in the
right order, it’s no problem that the quaternions are noncommutative. . . we can still
divide by any nonzero quaternion, so we can cover HPn with n+1 different coordinate
charts and freely change coordinates as desired.

We can try to go even further and use the octonions, O. Can we define “octonionic
projective n-space”, OPn? Well, now things get tricky! Remember, the octonions are
nonassociative. There’s no problem defining

OP1

; we can cover it with two coordinate charts, corresponding to homogeneous coordinates
of the form

(x, 1)

and
(1, y),

and we can change coordinates back and forth with no problem. This amounts to taking
O and adding a single point at infinity, getting the 8-dimensional sphere S8. This is part
of a pattern:

• RP1 = S1

• CP1 = S2

• HP1 = S4

• OP1 = S8

I discussed the implications of this pattern for Bott periodicity in “Week 105”.
We can also define OP2. Here we have 3 coordinate charts corresponding to homo-

geneous coordinates of the form
(1, y, z),

(x, 1, z),

and
(x, y, 1).

We can change back and forth between coordinate systems, but now we have to check
that if we start with the first coordinate system, change to the second coordinate system,
and then change back to the first, we wind up where we started! This is not obvious,
since multiplication is not associative. But it works, thanks to a couple of identities that
are not automatic in the nonassociative context, but hold for the octonions:

(xy)−1 = y−1x−1
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and
(xy)y−1 = x.

Checking these equations is a good exercise for anyone who wants to understand the
octonions.

Now for the cool part: OP2 is where it ends!
We can’t define OPn for n greater than 2, because the nonassociativity keeps us from

being able to change coordinates a bunch of times and get back where we started! You
might hope that we could weasel out of this somehow, but it seems that there is a real
sense in which the higher-dimensional octonionic projective spaces don’t exist.

So we have a fascinating situation: an infinite tower of RPˆn’s, an infinite tower of
CPn’s, an infinite tower of HPn’s, but an abortive tower of OPn’s going only up to n = 2
and then fizzling out. This means that while all sorts of geometry and group theory
relating to the reals, complexes and quaternions fits into infinite systematic patterns, the
geometry and group theory relating to the octonions is quirky and mysterious.

We often associate mathematics with “classical” beauty, patterns continuing ad in-
finitum with the ineluctable logic of a composition by some divine Bach. But when we
study OP2 and its implications, we see that mathematics also has room for “exceptional”
beauty, beauty that flares into being and quickly subsides into silence like a piece by
Webern. Are the fundamental laws of physics based on “classical” mathematics or “ex-
ceptional” mathematics? Since our universe seems unique and special — don’t ask me
how would we know if it weren’t — Witten has suggested the latter. Indeed, it crops
up a lot in string theory. This is why I’m trying to learn about the octonions: a lot of
exceptional objects in mathematics are tied to them.

I already discussed this a bit in “Week 64”, where I sketched how there are 3 infinite
sequences of “classical” simple Lie groups corresponding to rotations in Rn, Cn, and Hn,
and 5 “exceptional” simple Lie groups related to the octonions. After studying it all a bit
more, I can now go into some more detail.

In order of increasing dimension, the 5 exceptional Lie groups are called G2, F4, E6,
E7, and E8. The smallest, G2, is easy to understand in terms of the octonions: it’s just
the group of symmetries of the octonions as an algebra. It’s a marvelous fact that all the
bigger ones are related to OP2. This was discovered by people like Freudenthal and Tits
and Vinberg, but a great place to read about it is the following fascinating book:

1) Boris Rosenfeld, Geometry of Lie Groups, Kluwer Academic Publishers, 1997.

The space OP2 has a natural metric on it, which allows us to measure distances
between points. This allows us to define a certain symmetry group OP2, the group of all
its “isometries”, which are transformations preserving the metric. This symmetry group
is F4!

However, there is another bigger symmetry group of OP2. As in real projective n-
space, the notion of a “line” makes sense in OP2. One has to be careful: these are
octonionic “lines”, which have 8 real dimensions. Nonetheless, this lets us define the
group of all “collineations” of OP2, that is, transformations that take lines to lines. This
symmetry group is E6! (Technically speaking, this is a “noncompact real form” of E6; the
rest of the time I’ll be talking about compact real forms.)

To get up to E7 and E8, we need to take a different viewpoint, which also gives us
another way to get E6. The key here is that the tensor product of two algebras is an
algebra, so we can tensor the octonions with R, C, H, or O and get various algebras:
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• The algebra (R⊗O) is just the octonions.

• The algebra (C⊗O) is called the “bioctonions”.

• The algebra (H⊗O) is called the “quateroctonions”.

• The algebra (O⊗O) is called the “octooctonions”.

I’m not making this up: it’s all in Rosenfeld’s book! The poet Lisa Raphals suggested
calling the octooctonions the “high-octane octonions”, which I sort of like. But com-
pared to Rosenfeld, I’m a model of restraint: I won’t even mention the dyoctonions,
duoctonions, split octonions, semioctonions, split semioctonions, 1/4-octonions or 1/8-
octonions — for the definitions of these, you’ll have to read his book.

Apparently one can define projective planes for all of these algebras, and all these
projective planes have natural metrics on them, all of them same general form. So each
of these projective planes has a group of isometries. And, lo and behold:

• The group of isometries of the octonionic projective plane is F4.

• The group of isometries of the bioctonionic projective plane is E6.

• The group of isometries of the quateroctonionic projective plane is E7.

• The group of isometries of the octooctonionic projective plane is E8.

Now I still don’t understand this as well as I’d like to — I’m not sure how to define
projective planes for all these algebras (though I have my guesses), and Rosenfeld is
unfortunately a tad reticent on this issue. But it looks like a cool way to systematize the
study of the expectional groups! That’s what I want: a systematic theory of exceptions.

I want to say a bit more about the above, but first let me note that there are lots of
other ways of thinking about the exceptional groups. A great source of information about
them is the following posthumously published book by the great topologist Adams:

2) John Frank Adams, Lectures on Exceptional Lie Groups, eds. Zafer Mahmud and
Mamoru Mimura, University of Chicago Press, Chicago, 1996.

He has a bit about octonionic constructions of G2 and F4, but mostly he concentrates
on constructions of the exceptional groups using classical groups and spinors.

In “Week 90” I explained Kostant’s constructions of F4 and E8 using spinors in 8
dimensions and triality — which, as noted in “Week 61”, is just another way of talking
about the octonions. Unfortunately I don’t yet see quite how this relates to the above
stuff, nor do I see how to get E6 and E7 in a beautiful way using Kostant’s setup.

There’s also a neat construction of E8 using spinors in 16 dimensions! Adams gives a
nice explanation of this, and it’s also discussed in the classic tome on string theory:

3) Michael B. Green, John H. Schwarz, and Edward Witten, Superstring Theory, two
volumes, Cambridge U. Press, Cambridge, 1987.
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The idea here is to take the direct sum of the Lie algebra so(16) and its 16-dimensional
left-handed spinor representation S+ to get the Lie algebra of E8. The bracket of two
guys in so(16) is defined as usual, the bracket of a guy in so(16) and a guy in S+ is
defined to be the result of acting on the latter by the former, and the bracket of two guys
in S+ is defined to be a guy in S+ by dualizing the map

so(16)⊗ S+ → S+

to get a map
S+ ⊗ S+ → so(16).

This is a complete description of the Lie algebra of E8!
Anyway, there are lots of different ways of thinking about exceptional groups, and a

challenge for the octonionic approach is to systematize all these ways.
Now I want to wrap up by saying a bit about how the exceptional Jordan algebra fits

into the above story. Jordan algebras were invented as a way to study the self-adjoint
operators on a Hilbert space, which represent observables in quantum mechanics. If you
multiply two self-adjoint operators A and B the result needn’t be self-adjoint, but the
“Jordan product”

A ◦B = (AB +BA)/2

is self-adjoint. This suggests seeing what identities the Jordan product satisfies, cooking
up a general notion of “Jordan algebra”, seeing how much quantum mechanics you can
do with an arbitrary Jordan algebra of observables, and classifying Jordan algebras if
possible.

We can define a “projection” in a Jordan algebra to be an element A with A ◦A = A.
If our Jordan algebra consists of self-adjoint operators on the complex Hilbert space Cn,
a projection is a self-adjoint operator whose only eigenvalues are zero and one. Phys-
ically speaking, this corresponds to a “yes-or-no question” about our quantum system.
Geometrically speaking, such an operator is a projection onto some subspace of our
Hilbert space. All this stuff also works if we start with the real Hilbert space Rn or the
quaternionic Hilbert space Hn.

In these special cases, one can define a “minimal projection” to be a projection on a
1-dimensional subspace of our Hilbert space. Physically, minimal projections correspond
to “pure states” — states of affairs in which the answer to some maximally informative
question is “yes”, like “is the z component of the angular momentum of this spin-1/2
particle equal to 1/2?” Geometrically, the space of minimal projections is just the space
of “lines” in our Hilbert space. This is either RPn−1, or CPn−1, or HPn−1, depending
on whether we’re working with the reals, complexes or quaternions. So: the space of
pure states of this sort of quantum system is also a projective space! The relation between
quantum theory and “projective geometry” has been intensively explored for many years.
You can read about it in:

4) V. S. Varadarajan, Geometry of Quantum Theory, Springer-Verlag, Berlin, 2nd ed.,
1985.

Most people do quantum mechanics with complex Hilbert spaces. Real Hilbert spaces
are apparently too boring, but some people have considered the quaternionic case:
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5) Stephen L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, Oxford U.
Press, Oxford, 1995.

If our Hilbert space is the complex Hilbert space Cn, its group of symmetries is usually
thought of as U(n) — the group of n × n unitary matrices. This group also acts as
symmetries on the Jordan algebra of self-adjoint n×n complex matrices, and also on the
space CPn−1.

Similarly, if we start with Rn, we get the group of orthogonal n × n matrices O(n),
which acts on the Jordan algebra of real self-adjoint n× n matrices and on RPn−1.

Likewise, if we start with Hn, we get the group Sp(n), which acts on the Jordan
algebra of quaternionic self-adjoint n× n matrices and on HPn−1.

This pretty much explains how the classical groups are related to different flavors of
quantum mechanics.

Now what about the octonions? Well, here we can only go up to n = 3, basically
for the reasons explained before: the same stuff that keeps us from defining octonionic
projective spaces past a certain point keeps us from getting Jordan algebras! The inter-
esting case is the Jordan algebra of 3 × 3 self-adjoint octonionic matrices. This is called
the “exceptional Jordan algebra”, J . The group of symmetries of this is — you guessed
it, F4. One can also define a “minimal projection” in J and the space of these is OP2.

Is it possible that octonionic quantum mechanics plays some role in physics?
I don’t know.
Anyway, here is my hunch about the bioctonionic, quateroctonionic, and octoocto-

nionic projective planes. I think to define them you should probably tensor the excep-
tional Jordan algebra with C, H, and O, respectively, and take the space of minimal
projections in the resulting algebra. Rosenfeld seems to suggest this is the way to go.
However, I’m vague about some important details, and it bugs me, because the special
identities I needed above to define OP2 are related to O being an alternative algebra,
but C⊗O, H⊗O and O⊗O are not alternative.

I should add that in addition to octonionic projective geometry, one can do octonionic
hyperbolic geometry. One can read about this in Rosenfeld and also in the following:

6) Daniel Allcock, “Reflection groups on the octave hyperbolic plane”, University of
Utah Mathematics Department preprint.

Addenda: Here’s an email from David Broadhurst, followed by various remarks.

John:

Shortly before his death I spent a charming afternoon with Paul Dirac. Contrary
to his reputation, he was most forthcoming.

Among many things, I recall this: Dirac explained that while trained as an
engineer and known as a physicist, his aesthetics were mathematical. He said
(as I can best recall, nearly 20 years on): At a young age, I fell in love with
projective geometry. I always wanted to use to use it in physics, but never found
a place for it.
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Then someone told him that the difference between complex and quaternionic
QM had been characterized as the failure of theorem in classical projective ge-
ometry.

Dirac’s face beamed a lovely smile: Ah he said, it was just such a thing that I
hoped to do.

I was reminded of this when bactracking to your “Week 106”, today.

Best, David

The theorem that fails for quaternions but holds for R and C is the “Pappus theorem”,
discussed in “Week 145”.

Next, a bit about OPn. There are different senses in which we can’t define OPn for
n greater than 2. One is that if we try to define coordinates on OPn in a similar way to
how we did it for OP2, nonassociativity keeps us from being able to change coordinates a
bunch of times and get back where we started! It’s definitely enlightening to see how the
desired transition functions gij fail to satisfy the necessary cocycle condition gijgjk = gik
when we get up to OP3, which would require 4 charts.

But, a deeper way to think about this emerged in conversations I’ve had with James
Dolan. Stasheff invented a notion of “A∞ space”, which is a pointed topological space
with a product that is associative up to homotopy which satisfies the pentagon identity
up to. . . etc. Any A∞ space G has a classifying space BG such that

Ω(BG) ' G.

In other words, BG is a pointed space such that the space of loops based at this point
is homotopy equivalent to G. One can form this space BG by the Milnor construction:
sticking in one 0-simplex, one 1-simplex for every point of G, one 2-simplex for every
triple (g, h, k) with gh = k, one 3-simplex for every associator, and so on. If we do this
where G is the group of length-one elements of R (i.e. Z/2) we get RP∞, as we expect,
since

RP∞ = B(Z/2).

Even better, at the nth stage of the Milnor construction we get a space homeomorphic to
RPn. Similarly, if we do this where G is the group of length-one elements of C or H we
get CP∞ or HP∞. But if we take G to be the units of O, which has a product but is not
even homotopy-associative, we get OP1 = S7 at the first step, OP2 at the second step,
. . . but there’s no way to perform the third step!

Next: here’s a little more information on the octonionic, bioctonionic, quaterocto-
nionic and octooctonionic projective planes. Rosenfeld claims that the groups of isome-
tries of these planes are F4, E6, E7, and E8, respectively. The problem is, I can’t quite
understand how he constructs these spaces, except for the plain octonionic case.

It appears that these spaces can also be constructed using the ideas in Adams’ book.
Here’s how it goes.

• The Lie algebra F4 has a subalgebra of maximal rank isomorphic to so(9). The
quotient space is 16-dimensional — twice the dimension of the octonions. It follows
that the Lie group F4 mod the subgroup generated by this subalgebra is a 16-
dimensional Riemannian manifold on which F4 acts by isometries.
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• The Lie algebra E6 has a subalgebra of maximal rank isomorphic to so(10)⊕ u(1).
The quotient space is 32-dimensional — twice the dimension of the bioctonions. It
follows that the Lie group E6 mod the subgroup generated by this subalgebra is a
32-dimensional Riemannian manifold on which E6 acts by isometries.

• The Lie algebra E7 has a subalgebra of maximal rank isomorphic to so(12)⊕ su(2).
The quotient space is 64-dimensional — twice the dimension of the quaterocto-
nions. It follows that the Lie group E6 mod the subgroup generated by this subal-
gebra is a 64-dimensional Riemannian manifold on which E7 acts by isometries.

• The Lie algebra E8 has a subalgebra of maximal rank isomorphic to so(16). The
quotient space is 128-dimensional — twice the dimension of the octooctonions. It
follows that the Lie group E6 mod the subgroup generated by this subalgebra is a
128-dimensional Riemannian manifold on which E8 acts by isometries.

According to:

6) Arthur L. Besse, Einstein Manifolds, Springer, Berlin, 1987, pp. 313–316.

the above spaces are the octonionic, bioctonionic, quateroctonionic and octoocto-
nionic projective planes, respectively. However, I don’t yet fully understand the connec-
tion.

I thank Tony Smith for pointing out the reference to Besse (who, by the way, is ap-
parently a cousin of the famous Bourbaki). Thanks also go to Allen Knutson for showing
me a trick for finding the maximal rank subalgebras of a simple Lie algebra.

Next, here’s some more stuff about the biquaternions, bioctonions, quaterquater-
nions, quateroctonions and octooctonions! I wrote this extra stuff as part of a post to
sci.physics.research on November 8, 1999. . . .

One reason people like these algebras is that some of them — the associative
ones — are also Clifford algebras. I talked a bit about Clifford algebras in
“Week 105”, but just remember that we define the Clifford algebra Cp,q to be
the associative algebra you get by taking the real numbers and throwing in p
square roots of −1 and q square roots of 1, all of which anticommute with each
other. This algebra is very important for understanding spinors in spacetimes
with p space and q time dimensions. (It’s also good for studying things in other
dimensions, so things can get a bit tricky, but I don’t want to talk about that
now.)

For example: if you just thrown in one square root of −1 and no square roots of
1, you get C1,0 — the complex numbers!

Similarly, one reason people like the quaternions is because they are C2,0. Start
with the real numbers, throw in two square roots of −1 called I and J , make
sure they anticommute (IJ = −JI) and voila — you’ve got the quaternions!

Similarly, one reason people like the biquaternions is because they are C2,1. You
take the quaternions and complexify them — this amounts to throwing in an
extra number i that’s a square root of −1 and commutes with the quaternionic
I and J — and you get an algebra which is also generated by I, J , and K = iI.
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Note that I, J , and K all anticommute, and K is a square root of 1. Thus the
biquaternions are C2,1!

Similarly, one reason people like the quaterquaternions is because they are C2,2.
You take the quaternions and quaternionify them — this amounts to throwing
in two square roots of −1, say i and j, which anticommute but which commute
with the quaternionic I and J — and you get an algebra which is also generated
by I, J , K = iI, and L = jI. Note that I, J , K, and L all anticommute, and
K and L are square roots of 1. Thus the quaterquaternions are C2,2!

Now, as soon as we thrown the octonions into the mix we don’t get Clifford
algebras anymore, since octonions aren’t associative, while Clifford algebras are.
However, there are still relationships to Clifford algebras. For example, suppose
we look at all the linear transformations of the octonions generated by the left
multiplication operations

x 7→ ax

This is an associative algebra, and it turns out to be all linear transformations
of the octonions, regarded as an 8-dimensional real vector space. In short, it’s
just the algebra of 8× 8 real matrices. And this is C6,0.

If you do the same trick for the bioctonions, quateroctonions and octooctonions,
you get other Clifford algebras. . . but I’ll leave the question of which ones as
a puzzle for the reader. If you need some help, look at the “Footnote” in “Week
105”.

Perhaps the fanciest example of this trick concerns the biquateroctonions. Now
actually, I’ve never heard anyone use this term for the algebra C⊗H⊗O! The
main person interested in this algebra is Geoffrey Dixon, and he just calls it T .
But anyway, if we look at the algebra of linear transformations of C ⊗ H ⊗ O
generated by left multiplications, we get something isomorphic to the algebra of
16× 16 complex matrices. And this in turn is isomorphic to C9,0.

The biquateroctonions play an important role in Dixon’s grand unified theory of
the electromagnetic, weak and strong forces. There are lots of nice things about
this theory — for example, it gets the right relationships between weak isospin
and hypercharge for the fermions in any one generation of the Standard Model
(though, as in the Standard Model, the existence of 3 generations needs to be
put in “by hand”). It may or may not be right, but at least it comes within
shooting distance!

You can read a bit more about his work in “Week 59”.

“Mainstream mathematics” is a name given to mathematics that more fit-
tingly belongs on Sunset Boulevard

— Gian-Carlo Rota, Indiscrete Thoughts
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Week 107

August 19, 1997

This summer I’ve been hanging out in Cambridge Massachusetts, working on quantum
gravity and also having some fun. Not so long ago I gave a talk on cellular automata
at Boston University, thanks to a kind invitation from Bruce Boghosian, who is using
cellular automata to model cool stuff like emulsions:

1) Florian W. J. Weig, Peter V. Coveney, and Bruce M. Boghosian, “Lattice-gas sim-
ulations of minority-phase domain growth in binary immiscible and ternary am-
phiphilic fluid”, preprint available as cond-mat/9705248.

As you add more and more of an amphiphilic molecule (e.g. soap) to a binary immis-
cible fluid (e.g. oil and water), the boundary layer likes to grow in area. This is why you
wash your hands with soap. There are various phases depending on the concentrations
of the three substances — a “spongy” phase, a “droplet phase”, and so on — and it is
very hard to figure out what is going on quantitatively using analytical methods.

Luckily, one can simulate this stuff using a cellular automaton! Standard numerical
methods for solving the Navier-Stokes equation tend to outrun cellular automata when
it comes to plain old hydrodynamics, but with these fancy “ternary amphiphilic fluids”,
cellular automata really seem to be the most practical way to study things - apart from
experiments, of course. This is very heartwarming to me, since like many people I’ve
been fond of cellular automata ever after learning of John Conway’s game of Life, and
I’ve always hoped they could serve some practical purpose.

I spoke about the thesis of my student James Gilliam and a paper we wrote together:

2) James Gilliam, Lagrangian and Symplectic Techniques in Discrete Mechanics, Ph.D. the-
sis, Department of Mathematics, University of Riverside, 1996.

John Baez and James Gilliam, An algebraic approach to discrete mechanics, Lett.
Math. Phys. 31 (1994), 205–212. Also available in LaTeX form as http://math.
ucr.edu./home/baez/ca.tex

Here the idea was to set up as much as possible of the machinery of classical me-
chanics in a purely discrete context, where time proceeds in integer steps and the space
of states is also discrete. The most famous examples of this “discrete mechanics” are
cellular automata, which are the discrete analogs of classical field theories, but there are
also simpler systems more reminiscent of elementary classical mechanics, like a particle
moving on a line — where in this case the “line” is the integers rather than the real
numbers. It turns out that with a little skullduggery one can apply the techniques of
calculus to some of these situations, and do all sorts of stuff like prove a discrete ver-
sion of Noether’s theorem — the famous theorem which gives conserved quantities from
symmetries.

After giving this talk, I visited my friend Robert Kotiuga in the Functorial Electro-
magnetic Analysis Lab in the Photonics Building at Boston University. “Photonics” is the
currently fashionable term for certain aspects of optics, particularly quantum optics. As
befits its flashy name, the Photonics Building is brand new and full of gadgets like a
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device that displays Maxwell’s equations in moving lights when you speak the words
“Maxwell’s equations” into an inconspicuous microphone. (It also knows other tricks.)
Robert told me about what he’s been doing lately with topology and finite-element meth-
ods for solving magnetostatics problems - this blend of higbrow math and practical engi-
neering being the reason for the somewhat tongue-in-cheek name of his office, inscribed
soberly on a plaque outside the door.

Like the topologist Raoul Bott, Kotiuga started in electrical engineering at McGill
University, and gradually realized how much topology there is lurking in electrical circuit
theory and Maxwell’s equations. Apparently a paper of his was the first to cite Witten’s
famous work on Chern-Simons theory - though presumably this is merely a testament to
the superiority of engineers over mathematicians and physicists when it comes to rapid
publication. In fluid dynamics, the integral of the following quantity

v · curl(v)

(where v is the velocity vector field) is known as the “helicity functional”. Kotiuga been
studying applications of the same mathematical object in the context of magnetostatics,
namely

A · curl(A)

where A is the magnetic vector potential. It shows up in impedance tomography, for
example. But in quantum field theory, a generalization of this quantity to other forces is
known as the “Chern-Simons functional”, and Witten’s work on the 3-dimensional field
theory having this as its Lagrangian turned out to revolutionize knot theory. Personally,
I’m mainly interested in the applications to quantum gravity — see “Week 56” for a bit
about this. Here are some papers Kotiuga has written on the helicity functional, or what
we mathematicians would call “U(1) Chern-Simons theory”:

3) P. R. Kotiuga, “Metric dependent aspects of inverse problems and functionals based
helicity”, Journal of Applied Physics, 70 (1993), 5437–5439.

“Analysis of finite element matrices arising from discretizations of helicity function-
als”, Journal of Applied Physics, 67 (1990), 5815–5817.

“Helicity functionals and metric invariance in three dimensions”, IEEE Transactions
on Magnetics, MAG-25 (1989), 2813–2815.

“Variational principles for three-dimensional magnetostatics based on helicity”,
Journal of Applied Physics, 63 (1988), 3360–3362.

Later Jon Doyle, a computer scientist at M.I.T. who had been to my talk, invited me to
a seminar at M.I.T. where I met Gerald Sussman, who with Jack Wisdom has run the best
long-term simulations of the solar system, trying to settle the old question of whether the
darn thing is stable! It turns out that the system is afflicted with chaos and can only be
predicted with any certainty for about 4 million years. . . though their simulation went
out to 100 million.

Here are some fun facts:

1) They need to take general relativity into account even for the orbit of Jupiter, which
precesses about one radian per billion years.
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2) They take the asteroid belt into account only as modification of the sun’s quadrupole
moment (which they also use to model its oblateness).

3) The most worrisome thing about the whole simulation — the most complicated
and unpredictable aspect of the whole solar system in terms of its gravitational
effects on everything else — is the Earth-Moon system, with its big tidal effects. 4)
The sun loses one Earth mass per 100 million years due to radiation, and another
quarter Earth mass due to solar wind. 5) The first planet to go is Mercury! In their
simulations, it eventually picks up energy through a resonance and drifts away.

For more, try:

4) Gerald Jay Sussman and Jack Wisdom, “Chaotic evolution of the solar system”,
Science, 257, 3 July 1992.

Gerald Jay Sussman and Jack Wisdom, “Numerical evidence that the motion of
Pluto is chaotic”, Science, 241, 22 July 1988.

James Applegate, M. Douglas, Y. Gursel, Gerald Jay Sussman, Jack Wisdom, “The
outer solar system for 200 million years”, Astronomical Journal, 92, pp 176–194,
July 1986, reprinted in Lecture Notes in Physics #267 – Use of Supercomputers in
Stellar Dynamics, Springer Verlag, 1986.

James Applegate, M. Douglas, Y. Gursel, P Hunter, C. Seitz, Gerald Jay Sussman,
“A digital orrery”, in IEEE Transactions on Computers, C-34, No. 9, pp. 822–831,
September 1985, reprinted in Lecture Notes in Physics #267, Springer Verlag,
1986.

Meanwhile, I’ve also been trying to keep up with recent developments in n-category
theory. Some readers of “This Week’s Finds” have expressed frustration with how I keep
tantalizing all of you with the concept of n-category without ever quite defining it. The
reason is that it’s a lot of work to write a nice exposition of this concept!

However, I eventually got around to taking a shot at it, so now you can read this:

5) John Baez, “Introduction to n-categories”, to appear in 7th Conference on Category
Theory and Computer Science, eds. E. Moggi and G. Rosolini, Springer Lecture Notes
in Computer Science vol. 1290, Springer, Berlin. Preprint available as q-alg/

9705009 or at http://math.ucr.edu/home/baez/ncat.ps

There are different definitions of “weak n-category” out there now and it will take
a while of sorting through them to show a bunch are equivalent and get the whole
machinery running smoothly. In the above paper I mainly talk about the definition that
James Dolan and I came up with. Here are some other new papers on this sort of thing. . .
I’ll just list them with abstracts.

6) Claudio Hermida, Michael Makkai and John Power, “On weak higher dimensional
categories”, 104 pages, preprint available at http://hypatia.dcs.qmw.ac.uk/

authors/M/MakkaiM/papers/multitopicsets/

Inspired by the concept of opetopic set introduced in a recent paper by John C.
Baez and James Dolan, we give a modified notion called multitopic set. The
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name reflects the fact that, whereas the Baez/Dolan concept is based on oper-
ads, the one in this paper is based on multicategories. The concept of multicate-
gory used here is a mild generalization of the same-named notion introduced by
Joachim Lambek in 1969. Opetopic sets and multitopic sets are both intended
as vehicles for concepts of weak higher dimensional category. Baez and Dolan
define weak n-categories as (n+ 1)-dimensional opetopic sets satisfying certain
properties. The version intended here, multitopic n-category, is similarly related
to multitopic sets. Multitopic n-categories are not described in the present pa-
per; they are to follow in a sequel. The present paper gives complete details of
the definitions and basic properties of the concepts involved with multitopic sets.
The category of multitopes, analogs of the opetopes of Baez and Dolan, is pre-
sented in full, and it is shown that the category of multitopic sets is equivalent
to the category of set- valued functors on the category of multitopes.

7) Michael Batanin, Finitary monads on globular sets and notions of computad they
generate, available as postscript files at http://www-math.mpce.mq.edu.au/~mbatanin/
papers.html

Consider a finitary monad on the category of globular sets. We prove that the
category of its algebras is isomorphic to the category of algebras of an appro-
priate monad on the special category (of computads) constructed from the data
of the initial monad. In the case of the free n-category monad this definition
coincides with R. Street’s definition of n-computad. In the case of a monad
generated by a higher operad this allows us to define a pasting operation in a
weak n-category. It may be also considered as the first step toward the proof of
equivalence of the different definitions of weak n-categories.

7) Carlos Simpson, Limits in n-categories, approximately 90 pages, preprint available
as alg-geom/9708010.

We define notions of direct and inverse limits in an n-category. We prove that
the (n + 1)-category nCAT′ of fibrant n-categories admits direct and inverse
limits. At the end we speculate (without proofs) on some applications of the no-
tion of limit, including homotopy fiber product and homotopy coproduct for
n-categories, the notion of n-stack, representable functors, and finally on a
somewhat different note, a notion of relative Malcev completion of the higher
homotopy at a representation of the fundamental group.

8) Sjoerd Crans, “Generalized centers of braided and sylleptic monoidal 2-categories”,
Adv. Math. 136 (1998), 183–223.

Recent developments in higher-dimensional algebra due to Kapranov and Vo-
evodsky, Day and Street, and Baez and Neuchl include definitions of braided,
sylleptic and symmetric monoidal 2-categories, and a center construction for
monoidal 2-categories which gives a braided monoidal 2-category. I give gener-
alized center constructions for braided and sylleptic monoidal 2-categories which
give sylleptic and symmetric monoidal 2-categories respectively, and I correct
some errors in the original center construction for monoidal 2-categories.
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Time definitely repeats itself: that’s its only job. — Edward Dorn, Sirius in
January
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Week 108

September 22, 1997

In the Weeks to come I want to talk about quantum gravity, and especially the relation
between general relativity and spinors, since Barrett and Crane and I have some new
papers out about how you can describe “quantum 4-geometries” — geometries of space-
time which have a kind of quantum discreteness at the Planck scale — starting from the
mathematics of spinors.

But first I want to say a bit about CTCS ’97 — a conference on category theory and
computer science organized by Eugenio Moggi and Giuseppe Rosolini. It was so well-
organized that they handed us the conference proceedings when we arrived:

1) Eugenio Moggi and Giuseppe Rosolini, eds., Category Theory and Computer Science,
Lecture Notes in Computer Science 1290, Springer Verlag, Berlin, 1997.

It was held in Santa Margherita Ligure, a picturesque little Italian beach town near
Genoa - the perfect place to spend all day in the basement of a hotel listening to highly
technical lectures. It’s near Portofino, famous for its big yachts full of rich tourists, but
I didn’t get that far. The food was great, though, and it was nice to see the lazy waves
of the Mediterranean, so different from the oceans I know and love. The vegetation was
surprisingly similar to that in Riverside: lots of palm trees and cacti.

I spoke about n-categories, with only the barest mention of their possible relevance
to computer science. But I was just the token mathematical physicist in the crowd; most
of the other participants were pretty heavily into “theoretical computer science” — a
subject that covers a lot of new-fangled aspects of what used to be called “logic”. What’s
neat is that I almost understood some of these talks, thanks to the fact that category
theory provides a highly general language for talking about processes.

What’s a computer, after all, but a physical process that simulates fairly arbitrary
processes — including other physical processes? As we simulate more and more physics
with better and better computers based on more and more physics, it seems almost
inevitable that physics and computer science will come to be seen as two ends of a more
general theory of processes. No?

A nice example of an analogy between theoretical computer science and mathemati-
cal physics was provided by Gordon Plotkin (in the plane, on the way back, when I forced
him to explain his talk to me). Computer scientists like to define functions recursively.
For example, we can define a function from the natural numbers to the natural numbers:

f : N→ N

by its value at 0 together with a rule to get its value at n+ 1 from its value at n:

f(0) = c

f(n+ 1) = g(f(n))

Similarly, physicists like to define functions by differential equations. For example,
we can define a function from the real numbers to the real numbers:

f : R→ R
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by its value at 0 together with a rule to get its derivative from its value:

f(0) = c

f ′(t) = g(f(t))

In both cases a question arises: how do we know we’ve really defined a function? And
in both cases, the answer involves a “fixed-point theorem”. In both cases, the equations
above define the function f in terms of itself. We can write this using an equation of the
form:

f = F (f)

where F is some operator that takes functions to functions. We say f is a “fixed point
for F ” if this holds. A fixed-point theorem is something that says there exists a solution,
preferably unique, of this sort of equation.

But how do we describe this operator F more precisely in these examples? In the
case of the definition by recursion, here’s how: for any function f : N → N, we define
the function F (f) : N→ N by

F (f)(0) = c

F (f)(n+ 1) = g(f(n))

The principle of mathematical induction says that any operator F of this sort has a
unique fixed point.

Similarly, we can formulate the differential equation above as a fixed point problem
by integrating both sides, obtaining:

f(t) = c+

∫ t

0

g(f(s))ds

which is an example of an “integral equation”. If we call the function on the right hand
side F (f), then this integral equation says

f = F (f)

In this case, “Picard’s theorem on the local existence and uniqueness of solutions of
ordinary differential equations” is what comes to our rescue and asserts the existence of
a unique fixed point.

You might wonder how Picard’s theorem is proved. The basic idea of the proof is
very beautiful, because it takes advantage of the frightening circularity implicit in the
equation f = F (f). I’ll sketch this idea, leaving out all the details.

So, how do we solve this equation? Let’s see what we can do with it. There’s not
much to do, actually, except substitute the left side into the right side and get:

f = F (F (f)).

Hmm. Now what? Well, we can do it again:

f = F (F (F (f)))

and again:
f = F (F (F (f)))).
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Are we having fun yet? It look like we’re getting nowhere fast. . . or even worse, getting
nowhere slowly! Can we repeat this process so much that the f on the right-hand side
goes away, leaving us with the solution we’re after:

f = F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F (F . . . ?

Well, actually, yes, if we’re smart. What we do is this. We start by guessing the
solution to our equation. How do we guess? Well, our solution f should have f(0) = 0,
so just start with any function with this property. Call it f1. Then we improve this initial
guess repeatedly by letting

f2 = F (f1)

f3 = F (f2)

f4 = F (f3)

and so on. Now for the fun part: we show that these guesses get closer and closer to
each other. . . so that they converge to some function f with f = F (f)! Voila! With a
little more work we can show that no matter what our initial guess was, our subsequent
guesses approach the same function f , so that the solution f is unique.

I’m glossing over some details, of course. To prove Picard’s theorem we need to as-
sume the function g is reasonably nice (continuous isn’t nice enough, we need something
like “Lipschitz continuous”), and our initial guess should be reasonably nice (continuous
will do here). Also, Picard’s theorem only shows that there’s a solution defined on some
finite time interval, not the whole real line. (This little twist is distressing to Plotkin since
it complicates the analogy with mathematical induction. But there must be some slick
way to save the analogy; it’s too cute not to be important!)

You can read about Picard’s theorem and other related fixed-point theorems in any
decent book on analysis. Personally I’m fond of:

2) Michael Reed and Barry Simon, Methods of Modern Mathematical Physics. Vol. 1:
Functional Analysis. Vol. 2: Fourier Analysis, Self-Adjointness. Vol. 3: Scattering
Theory. Vol. 4: Analysis of Operators. Academic Press, New York, 1980.

which is sort of the bible of analysis for mathematical physicists.
Now, it may seem a bit over-elaborate to reformulate the principle of mathematical

induction as a fixed point theorem. However, this way of looking at recursion is the
basis of a lot of theoretical computer science. It applies not only to recursive definitions
of functions but also recursive definitions of “types” like those given in “Backus- Naur
form” — a staple of computer science.

Let me take a simple example that Jim Dolan told me about. Suppose we have some
set of “letters” and we want to define the set of all nonempty “words” built from these
letters. For example, if our set of letters was L = {a, b, c} then we would get an infinite
set W of words like a, ca, bb, bca, cbabba, and on.

In Backus-Naur form we might express this as follows:

letter ::= a | b | c

word ::= <letter> | <word> <letter>
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In English the first line says “a letter is either a, b, or c”, while the second says “a
word is either a letter or a word followed by a letter”. The second one is the interesting
part because it’s recursive.

In the language of category theory we could say the same thing as follows. Let L be
our set of letters. Given any set S, let

F (S) = L+ S × L

where + means disjoint union and × means Cartesian product. Then the set of “words”
built from the letters in L satisfies W = F (W ), or in other words,

W = L+W × L.

This says “a word is either a letter or an ordered pair consisting of a word followed by a
letter.” In short, we have a fixed point on our hands!

How do we solve this equation? Well, now I’m going to show you something they
never showed you when you first learned set theory. We just use the usual rules of
algebra:

W = L+WxL

W −WxL = L

Wx(1− L) = L

W = L/(1− L)

and then expand the answer out as a Taylor series, getting

W = L+ L× L+ L× L× L+ . . .

This says “a word is either a letter or an ordered pair of letters or an ordered triple of
letters or. . . ” Black magic, but it works!

Now, you may wonder exactly what’s going on — when we’re allowed to subtract and
divide sets and expand functions of sets in Taylor series and all that. I’m not an expert
on this, but one place to look is in Joyal’s work on “analytic functors” (functors that you
can expand in Taylor series):

3) Andre Joyal, ‘Une thorie combinatoire des sries formelles’, Advances in Mathematics
42 (1981), 1–82.

Before I explain a little of the idea behind this black magic, let me do another exam-
ple. I already said that the principle of mathematical induction could be thought of as
guaranteeing the existence of certain fixed points. But underlying this is something still
more basic: the set of natural numbers is also defined by a fixed point property! Suppose
we take our set of letters above to be set {0} which has only one element. Then our set
of words is {0, 00, 000, 0000, 0000, . . .}. We can think of this as a funny way of writing
the set of natural numbers, so let’s call it N. Also, let’s follow von Neumann and define

1 = 0,

which is sensible since it’s a set with one element. Then our fixed point equation says:

N = N+ 1

56



WEEK 108 SEPTEMBER 22, 1997

This is the basic fixed point property of the natural numbers.
At this point some of you may be squirming. . . this stuff looks a bit weird when you

first see it. To make it more rigorous I need to bring in some category theory, so I’ll
assume you’ve read “Week 73” and “Week 76” where I explained categories and functors
and isomorphisms.

If you’ve got a function F : S → S from some set to itself, a fixed point of F is just an
element x for which F (x) is equal to x. But now suppose we have a functor F : C → C
from some category to itself. What’s a fixed point of this?

Well, we could define it as an object x of C for which F (x) = x. But if you know
a little category theory you’ll know that this sort of “strict” fixed point is very boring
compared to a “weak” fixed point: an object x of C equipped with an isomorphism

f : F (x)→ x.

Equality is dull, isomorphism is interesting. It’s also very interesting to consider a more
general notion: a “lax” fixed point, meaning an object x equipped with just a morphism

f : F (x)→ x.

Let’s consider an example. Take our category C to be the category of sets. And take our
functor F to be the functor

F (x) = x+ 1

by which we mean “disjoint union of the set x with the one-element set” — I leave it to
you to check that this is a functor. A lax fixed point of F is thus a set x equipped with a
function

f : x+ 1→ x

so the natural numbers N = {0, 00, 000, . . .} is a lax fixed point in an obvious way. . . in
fact a weak fixed point. So when I wrote N = N+1 above, I was lying: they’re not equal,
they’re just isomorphic. Similarly with those other equations involving sets.

Now, just as any function from a set to itself has a set of fixed points, any functor F
from a category C to itself has a category of lax fixed points. An object in this category is
just an object x of C equipped with a morphism f : F (x)→ x, and a morphism from this
object to some other object g : F (y)→ y is just a commutative square:

F (x) x

F (y) y

f

F (h) h

g

In our example, the natural numbers is actually the “initial” lax fixed point, meaning that
in the category of lax fixed points there is exactly one morphism from this object to any
other.

So that’s the real meaning of these funny recursive definitions in Backus-Naur form:
we have a functor F from some category like Set to itself, and we are defining an object
by saying that it’s the initial lax fixed point of this functor. It’s a souped-up version of
defining an element of a set as the unique fixed point of a function!
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I should warn you that category theorists and theoretical computer scientists usually
say “algebra” of a functor instead of “lax fixed point” of a functor. Anyway, this gives a
bit of a flavor of what those folks talk about.

Addendum: Here’s an interesting email that Doug Merritt sent me after reading the
above stuff:

A little web searching and discussion with Andras Kornai yields the following
info.

The original work on representing grammars as power series is

4) N. Chomsky and M. P. Schutzenberger, “The algebraic theory of context-
free languages”, in Computer Programming and Formal Systems, North-
Holland Publishing Company, 1963.

. . . where Schutzenberger supplied the formal power series aspect, basically just
as the usual generating function trick.

The algebraic connection was developed through the 60’s and 70’s, culminating
in the work of Samuel Eilenberg, founder of category theory, such as in

5) Samuel Eilenberg, Automata, Languages and Machines, Academic Press,
NY, 1974.

A lot of the work in the area comes under the heading “syntactic semigroups”,
which is fairly self-explanatory (and yields a lot of hits when web surfing).

The question of expanding a grammar via synthetic division as usual comes
down to the question of whether it is represented as a complete division algebra
or not. Grammars are typically nonabelian, however in order to use more pow-
erful mathematical machinery, frequently commutativity is often nonetheless
assumed, and the grammar forced into that Procrustean bed.

I happened across an interesting recent paper (actually a ’94 PhD thesis) that
brings all the modern machinery to bear on this sort of thing (e.g. explaining
how to represent grammars by power series via the Langrange Inversion For-
mula, and multi-non-terminal (multivariable) grammars via the Generalized
LIF), and that is even quite readable:

6) Ole Vilhelm Larsen, Computing order-independent statistical character-
istics of stochastic context-free languages, available as http://cwis.

auc.dk/phd/fulltext/larsen/html/index.html or acrobat format in:
http://cwis.auc.dk/phd/fulltext/larsen/pdf/larsen.pdf

The html and acrobat thesis is in English, but the web pages are in Danish,
which is why I explicitly give both URLs. The abstract is too long to quote here.

You probably know all this better than I, but: As for fixed points, the original
theorem by Banach applies only to contractive mappings, but beginning in ’68
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a flood of new theorems applying to various different non-contractive situations
began to appear, and research continues hot and heavy. One danger of simply
assuming fixed points is that there may be orbits rather than attractive basins,
which I alluded to briefly in my sci.math FAQ entry (which has become some-
what mangled over the years) concerning the numeric solution of f(x) = xx

via direct fixed point recurrence (F (F (F (F (F...(guess)..)))). The orbits cause
oscillatory instability in some regions such that it becomes appropriate to switch
to a different technique.

Anyway that’s merely to say that there are indeed spaces where one can’t just
assume a fixed point theorem and that this can have practical implications.

Hope that’s of some interest.

Doug

Doug Merritt doug@netcom.com

Professional Wild-eyed Visionary Member, Crusaders for a Better Tomorrow

Unicode Novis Cypherpunks Gutenberg Wavelets Conlang Logli Alife Anthro

Computational linguistics Fundamental physics Cogsci Egyptology GA TLAs
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Week 109

September 27, 1997

In the Weeks to come I want to talk about quantum gravity. A lot of cool things have
been happening in this subject lately. But I want to start near the beginning. . . .

In the 1960’s, John Wheeler came up with the notion of “spacetime foam”. The idea
was that at very short distance scales, quantum fluctuations of the geometry of spacetime
are so violent that the usual picture of a smooth spacetime with a metric on it breaks
down. Instead, one should visualize spacetime as a “foam”, something roughly like a
superposition of all possible topologies which only looks smooth and placid on large
enough length scales. His arguments for this were far from rigorous; they were based on
physical intuition. Electromagnetism and all other fields exhibit quantum fluctuations -
so gravity should too. A wee bit of dimensional analysis suggests that these fluctuations
become significant on a length scale around the Planck length, which is about 10-35

meters. This is very small, much smaller than what we can probe now. Around this
length scale, there’s no reason to suspect that “perturbative quantum gravity” should
apply, where you treat gravitational waves as tiny ripples on flat spacetime, quantize
these, and get a theory of “gravitons”. Indeed, the nonrenormalizability of quantum
gravity suggests otherwise.

Wheeler didn’t know what formalism to use to describe “spacetime foam”, but he was
more concerned with building up a rough picture of it. Since he is so eloquent, especially
when he’s giving handwaving arguments, let me quote him here:

“No point is more central than this, that empty space is not empty. It is the seat of the
most violent physics. The electromagnetic field fluctuates. Virtual pairs of positive and
negative electrons, in effect, are constantly being created and annihilated, and likewise
pairs of µ mesons, pairs of baryons, and pairs of other particles. All these fluctuations
coexist with the quantum fluctuations in the geometry and topology of space. Are they
additional to those geometrodynamic zero-point disturbances, or are they, in some sense
not now well-understood, mere manifestations of them?”

That’s from:

1) Charles Misner, Kip Thorne and John Wheeler, Gravitation, Freeman Press, 1973.

It’s in the famous last chapter called “Beyond the end of time”. Strong stuff! This is
what got me interested in quantum gravity in college. Later I came to prefer less florid
writing, and realized how hard it was to turn gripping prose into actual theories. . . but
back then I ate it up uncritically.

Part of Wheeler’s vision was that ultimately physics is all about geometry, and that
particles might be manifestations of this geometry. For example, electron-positron pairs
might be ends of wormholes threaded by electric field lines:

“In conclusion, the vision of Riemann, Clifford and Einstein, of a purely geometric
basis for physics, today has come to a higher state of development, and offers richer
prospects — and presents deeper problems, than ever before. The quantum of action
adds to this geometrodynamics new features, of which the most striking is the presence
of fluctuations of the wormhole type throughout all space. If there is any correspon-
dence between this virtual foam-like structure and the physical vacuum as it has come
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to be known through quantum electrodynamics, then there seems to be no escape from
identifying these wormholes with ‘undressed electrons’. Completely different from these
‘undressed electrons’, according to all available evidence, are the electrons and other
particles of experimental physics. For these particles the geometrodynamic picture sug-
gests the model of collective disturbances in a virtual foam-like vacuum, analogous to
different kinds of phonons or excitons in a solid.”

That quote is from:

2) John Wheeler, Geometrodynamics, Academic Press, New York, 1962.

There were many problems with getting this wormhole picture of particles to work.
First, there was — and is! — no experimental evidence that wormholes exist, virtual
or otherwise. The main reason for believing in virtual wormholes was the quantum-
mechanical idea that “whatever is not forbidden is required”. . . an idea which must
be taken with a grain of salt. Second, there was no mathematical model of “spacetime
foam” or “virtual wormholes”. It was just a vague notion.

However, Wheeler was mainly worried about two other problems. First, how can we
relate a space with a wormhole to one without? Since the two have different topologies,
there can’t be any continuous way of going from one to the other. In response to this
problem, he suggested that the description of spacetime in terms of a smooth manifold
was not fundamental, and that we really need some more other description, some sort
of “pregeometry”. Second, what about the fact that electrons have spin 1/2? This means
that when you turn one around 360 degrees it doesn’t come back to the same state: it
picks up a phase of -1. Only when you turn it around twice does it come back to its
original state! This is nicely described using the mathematics of “spinors”, but not so
nicely described in terms of wormholes.

In his freewheeling, intuitive manner, Wheeler fastened on this second problem as a
crucial clue to the nature of “pregeometry”:

“It is impossible to accept any description of elementary particles that does not have a
place for spin 1/2. What, then, has any purely geometric description to offer in explana-
tion of spin 1/2 in general? More particularly and more importantly, what place is there
in quantum geometrodynamics for the neutrino - the only entity of half-integral spin that
is a pure field in its own right, in the sense that it has zero rest mass and moves at the
speed of light? No clear or satisfactory answer is known to this question today. Unless
and until an answer is forthcoming, pure geometrodynamics must be judged deficient as a
basis of elementary particle physics.”

Physics moves in indirect ways. Though Wheeler’s words inspired many students
of relativity, progress on “spacetime foam” was quite slow. It’s not surprising, given the
thorny problems and the lack of a precise mathematical model. Quite a bit later, Hawking
and others figured out how to do calculations involving virtual wormholes, virtual black
holes and such using a technique called “Euclidean quantum gravity”. Pushed to its
extremes, this leads to a theory of spacetime foam, though not yet a rigorous one (see
“Week 67”).

But long before that, Newman, Penrose, and others started finding interesting rela-
tionships between general relativity and the mathematics of spin-1/2 particles. . . rela-
tionships that much later would yield a theory of spacetime foam in which spinors play
a crucial part!

The best place to read about spinorial techniques in general relativity is probably:
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3) Roger Penrose and Wolfgang Rindler, Spinors and Space-Time. Vol. 1: Two-Spinor
Calculus and Relativistic Fields. Vol. 2: Spinor and Twistor Methods in Space-Time
Geometry. Cambridge University Press, Cambridge, 1985–1986.

There are roughly 3 main aspects to Penrose’s work on spinors and general relativity.
The first is the “spinor calculus”, described in volume 1 of these books. By now this is
a standard tool in relativity, and you can find introductions to it in many textbooks, like
“Gravitation” or Wald’s more recent text:

4) Robert M. Wald, General Relativity, University of Chicago Press, Chicago, 1984.

The second is “twistor theory”, described in volume 2. This is mathematically more
elaborate, and it includes an ambitious program to reformulate the laws of physics in
such a way that massless spin-1/2 particles, rather than points of spacetime, play the
basic role.

The third is the theory of “spin networks”, which was a very radical, purely combi-
natorial approach to describing the geometry of space. Penrose’s inability to extend it to
spacetime is what made him turn later to twistor theory. Probably the best explanation
of Penrose’s original spin network ideas can be found in the thesis of one of his students:

5) John Moussouris, Quantum models of space-time based on recoupling theory, Ph.D. the-
sis, Department of Mathematics, Oxford University, 1983.

Here I want to talk about the spinor calculus, which is the most widely used of these
ideas. It’s all about the rotation group in 3 dimensions and the Lorentz group in 3+1
dimensions (by which we mean 3 space dimensions and 1 time dimension). A lot of
physics is based on these groups. For general stuff about rotation groups and spinors in
any dimension, see “Week 61” and “Week 93”. Here I’ll be concentrating on stuff that
only works when we start with *3* space dimensions.

Now I will turn up the math level a notch. . . .
In the quantum mechanics of angular momentum, what matters is not the represen-

tations of the rotation group SO(3), but of its double cover SU(2). This group has one
irreducible unitary representation of each dimension d = 1, 2, 3, . . .. Physicists prefer to
call these the “spin-j” representations, where j = 0, 1/2, 1, . . .. The relation is of course
that 2j + 1 = d.

The spin-0 representation is the trivial representation. Physicists call vectors in this
representation “scalars”, since they are just complex numbers. Particles transforming in
the spin-0 representation of SU(2) are also called scalars. Examples include pions and
other mesons. The only fundamental scalar particle in the Standard Model is the Higgs
boson — hypothesized but still not seen.

The spin-1/2 representation is the fundamental representation, in which SU(2) acts
on C2 in the obvious way. Physicists call vectors in this representation “spinors”. Ex-
amples of spin-1/2 particles include electrons, protons, neutrons, and neutrinos. The
fundamental spin-1/2 particles in the Standard Model are the leptons (electron, muon,
tau and their corresponding neutrinos) and quarks.

The spin-1 representation comes from turning elements of SU(2) into 3× 3 matrices
using the double cover SU(2) → SO(3). This is therefore also called the “vector” repre-
sentation. The spin-1 particles in the Standard Model are the gauge fields: the photon,
the W and Z, and the gluons.
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Though you can certainly make composite particles of higher spin, like hadrons and
atomic nuclei, there are no fundamental particles of spin greater than 1 in the Standard
Model. But the Standard Model doesn’t cover gravity. In gravity, the spin-2 representa-
tion is very important. This comes from letting SO(3), and thus SU(2), act on symmetric
traceless 3 × 3 matrices in the obvious way (by conjugation). In perturbative quantum
gravity, gravitons are expected to be spin-2 particles. Why is this? Well, a cheap answer
is that the metric on space is given by a symmetric 3 × 3 matrix. But this is not very
satisfying. . . I’ll give a better answer later.

Now, the systematic way to get all these representations is to build them out of the
spin-1/2 representation. SU(2) acts on C2 in an obvious way, and thus acts on the space
of polynomials on C2. The space of homogeneous polynomials of degree 2j is thus a
representation of SU(2) in its own right, called the spin-j representation. Since multipli-
cation of polynomials is commutative, in math lingo we say the spin-j representation is
the “symmetrized tensor product” of 2j copies of the spin-1/2 representation. This is the
mathematical sense in which spin-1/2 is fundamental!

(In some sense, this means we can think of a spin-j particle as built from 2j indis-
tinguishable spin-1/2 bosons. But there is something odd about this, since in physics we
usually treat spin-1/2 particles as fermions and form antisymmetrized tensor products of
them!)

Now let’s go from space to spacetime, and consider the Lorentz group, SO(3, 1).
Again it’s not really this group but its double cover that matters in physics; its double
cover is SL(2,C). Note that SL(2,C) has SU(2) as a subgroup just as SO(3, 1) has SO(3)
as a subgroup; everything fits together here, in a very pretty way.

Now, while SU(2) has only one 2-dimensional irreducible representation, SL(2,C) has
two, called the left-handed and right-handed spinor representations. The “left-handed”
one is the fundamental representation, in which SL(2,C) acts on C2 in the obvious way.
The “right-handed” one is the conjugate of this, in which we take the complex conjugate
of the entries of our matrix before letting it act on C2 in the obvious way. These two
representations become equivalent when we restrict to SU(2). . . but for SL(2,C) they’re
not! For example, when we study particles as representations of SL(2,C), it turns out
that neutrinos are left-handed, while antineutrinos are right-handed.

All the irreducible representations of SL(2,C) on complex vector spaces can be built
up from the left-handed and right-handed spinor representations. Here’s how: take
the symmetrized tensor product of 2j copies of the left-handed spin representation and
tensor it with the symmetrized tensor product of 2k copies of the right-handed one. We
call this the (j, k) representation.

People in general relativity have a notation for all this stuff. They write left-handed
spinors as gadgets with one “unprimed subscript”, like this:

vA

where A = 1, 2. Right-handed spinors are gadgets with one “primed subscript”, like:

wA′

where A′ = 1, 2. As usual, fancier tensors have more subscripts. For example, guys
in the (j, k) representation have j unprimed subscripts and k primed ones, and don’t
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change when we permute the unprimed subscripts among themselves, or the primed
ones among themselves.

Now SO(3, 1) has an obvious representation on R4, called the “vector” representation
for obvious reasons. If we think of this as a representation of SL(2,C), it’s the (1,1)
representation. So when Penrose writes a vector in 4 dimensions, he can do it either the
old way:

va

where a = 0, 1, 2, 3, or the new spinorial way:

vAA′

where A,A′ = 1, 2.
Similarly, we can write any tensor using spinors with twice as many indices. This

may not seem like a great step forward, but it actually was. . . because it lets us slice and
dice concepts from general relativity in interesting new ways.

For example, the Riemann curvature tensor describing the curvature of spacetime
is really important in relativity. It has 20 independent components but it can split up
into two parts, the Ricci tensor and Weyl tensor, each of which have 10 independent
components. Thanks to Einstein’s equation, the Ricci tensor at any point of spacetime is
determined by the matter there (or more precisely, by the flow of energy and momentum
through that point). In particular, the Ricci tensor is zero in the vacuum. The Weyl tensor

Cabcd

describes aspects of curvature like gravitational waves or tidal forces which can be
nonzero even in the vacuum. In spinorial notation this is written

CAA′BB′CC ′DD′

but we can also write it as

CAA′BB′CC′DD′ = ΦABCDεA′B′εC′D′ + ΦABCDεA′B′εC′D′

where ε is the matrix (
0 1
−1 0

)
and Φ is the “Weyl spinor”. The Weyl spinor is symmetric in all its 4 indices so it lives
in the (2,0) representation of SL(2,C). Note that this is a 5-dimensional complex repre-
sentation, so the Weyl spinor has 10 real degrees of freedom, just like the Weyl tensor —
but these degrees of freedom have been encoded in a very efficient way! Even better, we
see here why, in perturbative quantum gravity, the graviton is a spin-2 particle!

I’m only scratching the surface here, but the point is that spinorial techniques are
really handy all over general relativity. A great example is Witten’s spinorial proof of the
positive energy theorem:

6) Edward Witten, “A new proof of the positive energy theorem”, Commun. Math.
Phys. 80 (1981), 381–402.
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This says that for any spacetime that looks like flat Minkowski space off at spatial
infinity, but possibly has gravitational radiation and matter in the middle, the “ADM
mass” is greater than or equal to zero as long as the matter satisfies the “dominant
energy condition”, which says that the speed of energy flow is less than the speed of
light. What’s the ADM mass? Well, basically the idea is this: if we go off towards spatial
infinity, where spacetime is almost flat and general relativity effects aren’t too big, we
can imagine measuring the mass of the stuff in the middle by seeing how fast a satellite
would orbit it. That’s the ADM mass. If the satellite is attracted by the stuff in the
middle, the ADM mass is positive. The proof of the positive energy theorem was really
complicated before Witten used spinors, which let you write the ADM mass as an integral
of an obviously nonnegative quantity.

Next time I’ll talk about spin networks and how they show up in recent work on
quantum gravity. We’ll see that the idea of building up everything from the spin-1/2
representation of SU(2) assumes grandiose proportions: in this setup, space itself is built
from spinors!

The universe is full of magical things, patiently waiting for our wits to grow sharper. —
Eden Philpotts
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Week 110

October 4, 1997

Last time I sketched Wheeler’s vision of “spacetime foam”, and his intuition that a good
theory of this would require taking spin-1/2 particles very seriously. Now I want to talk
about Penrose’s “spin networks”. These were an attempt to build a purely combinatorial
description of spacetime starting from the mathematics of spin-1/2 particles. He didn’t
get too far with this, which is why he moved on to invent twistor theory. The problem
was that spin networks gave an interesting theory of space, but not of spacetime. But
recent work on quantum gravity shows that you can get pretty far with spin network
technology. For example, you can compute the entropy of quantum black holes. So spin
networks are quite a flourishing business.

Okay. Building space from spin! How does it work?
Penrose’s original spin networks were purely combinatorial gadgets: graphs with

edges labelled by numbers j = 0, 1/2, 1, 3/2, . . . These numbers stand for total angular
momentum or “spin”. He required that three edges meet at each vertex, with the corre-
sponding spins j1, j2, j3 adding up to an integer and satisfying the triangle inequalities

|j1 − j2| 6 j3 6 j1 + j2.

These rules are motivated by the quantum mechanics of angular momentum: if we
combine a system with spin j1 and a system with spin j2, the spin j3 of the combined
system satisfies exactly these constraints.

In Penrose’s setup, a spin network represents a quantum state of the geometry of
space. To justify this interpretation he did a lot of computations using a special rule for
computing a number from any spin network, which is now called the “Penrose evalua-
tion” or “chromatic evaluation”. In “Week 22” I said how this works when all the edges
have spin 1, and described how this case is related to the four-color theorem. The gen-
eral case isn’t much harder, but it’s a real pain to describe without lots of pictures, so I’ll
just refer you to the original papers:

1) Roger Penrose, “Angular momentum: an approach to combinatorial space-time”, in
Quantum Theory and Beyond, ed. T. Bastin, Cambridge U. Press, Cambridge, 1971,
pp. 151–180. Also available at http://math.ucr.edu/home/baez/penrose/

Roger Penrose, “Applications of negative dimensional tensors”, in Combinatorial
Mathematics and its Applications, ed. D. Welsh, Academic Press, New York, 1971,
pp. 221–244.

Roger Penrose, “On the nature of quantum geometry”, in Magic Without Magic,
ed. J. Klauder, Freeman, San Francisco, 1972, pp. 333–354.

R. Penrose, “Combinatorial quantum theory and quantized directions”, in Advances
in Twistor Theory, eds. L. Hughston and R. Ward, Pitman Advanced Publishing
Program, San Francisco, 1979, pp. 301–317.

It’s easier to explain the physical meaning of the Penrose evaluation. Basically, the
idea is this. In classical general relativity, space is described by a 3-dimensional manifold
with a Riemannian metric: a recipe for measuring distances and angles. In the spin
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network approach to quantum gravity, the geometry of space is instead described as a
superposition of “spin network states”. In other words, spin networks form a basis of the
Hilbert space of states of quantum gravity, so we can write any state ψ as

ψ =
∑

ciψi

where ψi ranges over all spin networks and the coefficients ci are complex numbers. The
simplest state is the one corresponding to good old flat Euclidean space. In this state,
each coefficient ci is just the Penrose evaluation of the corresponding spin network ψi.

Actually, this interpretation wasn’t fully understood until later, when Rovelli and
Smolin showed how spin networks arise naturally in the so-called “loop representation”
of quantum gravity. They also came up with a clearer picture of the way a spin network
state corresponds to a possible geometry of space. The basic picture is that spin net-
work edges represent flux tubes of area: an edge labelled with spin j contributes an area
proportional to

√
j(j + 1) to any surface it pierces.

The cool thing is that Rovelli and Smolin didn’t postulate this, they derived it. Re-
member, in quantum theory, observables are given by operators on the Hilbert space of
states of the physical system in question. You typically get these by “quantizing” the for-
mulas for the corresponding classical observables. So Rovelli and Smolin took the usual
formula for the area of a surface in a 3-dimensional manifold with a Riemannian metric
and quantized it. Applying this operator to a spin network state, they found the picture
I just described: the area of a surface is a sum of terms proportional to

√
j(j + 1), one

for each spin network edge poking through it.
Of course, I’m oversimplifying both the physics and the history here. The tale of spin

networks and loop quantum gravity is rather long. I’ve discussed it already in “Week 55”
and “Week 99”, but only sketchily. If you want more details, try:

2) Carlo Rovelli, “Loop quantum gravity”, preprint available as gr-qc/9710008, also
available as a webpage on Living Reviews in Relativity at http://www.livingreviews.
org/Articles/Volume1/1998-1rovelli/

The abstract gives a taste of what it’s all about:

The problem of finding the quantum theory of the gravitational field, and thus
understanding what is quantum spacetime, is still open. One of the most ac-
tive of the current approaches is loop quantum gravity. Loop quantum gravity
is a mathematically well-defined, non-perturbative and background indepen-
dent quantization of general relativity, with its conventional matter couplings.
The research in loop quantum gravity forms today a vast area, ranging from
mathematical foundations to physical applications. Among the most significant
results obtained are: (i) The computation of the physical spectra of geometri-
cal quantities such as area and volume; which yields quantitative predictions
on Planck-scale physics. (ii) A derivation of the Bekenstein-Hawking black hole
entropy formula. (iii) An intriguing physical picture of the microstructure of
quantum physical space, characterized by a polymer-like Planck scale discrete-
ness. This discreteness emerges naturally from the quantum theory and provides
a mathematically well-defined realization of Wheeler’s intuition of a spacetime
“foam”. Longstanding open problems within the approach (lack of a scalar
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product, overcompleteness of the loop basis, implementation of reality condi-
tions) have been fully solved. The weak part of the approach is the treatment
of the dynamics: at present there exist several proposals, which are intensely
debated. Here, I provide a general overview of ideas, techniques, results and
open problems of this candidate theory of quantum gravity, and a guide to the
relevant literature.

For a nice picture of Rovelli standing in front of some spin networks, check out:

3) Carlo Rovelli’s homepage, http://www.phyast.pitt.edu/\~rovelli/

which also has links to many of his papers.
You’ll note from this abstract that the biggest problem in loop quantum gravity is

finding an adequate description of dynamics. This is partially because spin networks are
better suited for describing space than spacetime. For this reason, Rovelli, Reisenberger
and I have been trying to describe spacetime using “spin foams” — sort of like soap suds
with all the bubbles having faces labelled by spins. Every slice of a spin foam is a spin
network.

But I’m getting ahead of myself! I should note that the spin networks appearing in
the loop representation are different from those Penrose considered, in two important
ways.

First, they can have more than 3 edges meeting at a vertex, and the vertices must
be labelled by “intertwining operators”, or “intertwiners” for short. This is a concept
coming from group representation theory; as described in “Week 109”, what we’ve been
calling “spins” are really irreducible representations of SU(2). If we orient the edges of a
spin network, we should label each vertex with an intertwiner from the tensor product
of representations on the “incoming” edges to the tensor product of representations la-
belling the “outgoing” edges. When 3 edges labelled by spins j1, j2, j3 meet at a vertex,
there is at most one intertwiner

f : j1 ⊗ j2 → j3,

at least up to a scalar multiple. The conditions I wrote down — the triangle inequality
and so on — are just the conditions for a nonzero intertwiner of this sort to exist. That’s
why Penrose didn’t label his vertices with intertwiners: he considered the case where
there’s essentially just one way to do it! When more edges meet at a vertex, there are
more intertwiners, and this extra information is physically very important. One sees
this when one works out the “volume operators” in quantum gravity. Just as the spins
on edges contribute area to surfaces they pierce, the intertwiners at vertices contribute
volume to regions containing them!

Second, in loop quantum gravity the spin networks are embedded in some 3-dimensional
manifold representing space. Penrose was being very radical and considering “abstract”
spin networks as a purely combinatorial replacement for space, but in loop quantum
gravity, one traditionally starts with general relativity on some fixed spacetime and quan-
tizes that. Penrose’s more radical approach may ultimately be the right one in this re-
spect. The approach where we take classical physics and quantize it is very important,
because we understand classical physics better, and we have to start somewhere. Ul-
timately, however, the world is quantum-mechanical, so it would be nice to have an
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approach to space based purely on quantum-mechanical concepts. Also, treating spin
networks as fundamental seems like a better way to understand the “quantum fluctua-
tions in topology” which I mentioned in “Week 109”. However, right now it’s probably
best to hedge ones bets and work hard on both approaches.

Lately I’ve been very excited by a third, hybrid approach:

4) Andrea Barbieri, “Quantum tetrahedra and simplicial spin networks”, preprint
available as gr-qc/9707010.

Barbieri considers “simplicial spin networks”: spin networks living in a fixed 3-
dimensional manifold chopped up into tetrahedra. He only considers spin networks
dual to the triangulation, that is, spin networks having one vertex in the middle of each
tetrahedron and one edge intersecting each triangular face.

In such a spin network there are 4 edges meeting at each vertex, and the vertex is
labelled with an intertwiner of the form

f : j1 ⊗ j2 → j3 ⊗ j4

where j1, . . . , j4 are the spins on these edges. If you know about the representation
theory of SU(2), you know that j1⊗j2 is a direct sum of representations of spin j5, where
j5 goes from |j1 − j2| up to j1 + j2 in integer steps. So we get a basis of intertwining
operators:

f : j1 ⊗ j2 → j3 ⊗ j4
by picking one factoring through each representation j5:

j1 ⊗ j2 → j5 → j3 ⊗ j4

where:

a) j1 + j2 + j5 is an integer and |j1 − j2| 6 j5 6 j1 + j2,

b) j3 + j4 + j5 is an integer and |j3 − j4| 6 j5 6 j3 + j4.

Using this, we get a basis of simplicial spin networks by labelling all the edges and
vertices by spins satisfying the above conditions. Dually, this amounts to labelling each
tetrahedron and each triangle in our manifold with a spin! Let’s think of it this way.

Now focus on a particular simplicial spin network and a particular tetrahedron. What
do the spins j1, . . . , j5 say about the geometry of the tetrahedron? By what I said earlier,
the spins j1, . . . , j4 describe the areas of the triangular faces: face number 1 has area
proportional to

√
j1(j1 + 1), and so on. What about j5? It also describes an area. Take

the tetrahedron and hold it so that faces 1 and 2 are in front, while faces 3 and 4 are in
back. Viewed this way, the outline of the tetrahedron is a figure with four edges. The
midpoints of these four edges are the corners of a parallelogram, and the area of this
parallelogram is proportional to

√
j5(j5 + 1). In other words, there is an area operator

corresponding to this parallelogram, and our spin network state is an eigenvector with
eigenvalue proportional to

√
j5(j5 + 1). Finally, there is also a volume operator corre-

sponding to the tetrahedron, whose action on our spin network state is given by a more
complicated formula involving the spins j1, . . . , j5.
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Well, that either made sense or it didn’t. . . and I don’t think either of us want to
stick around to find out which! What’s the bottom line, you ask? First, we’re seeing how
an ordinary tetrahedron is the classical limit of a “quantum tetrahedron” whose faces
have quantized areas and whose volume is also quantized. Second, we’re seeing how
to put together a bunch of these quantum tetrahedra to form a 3-dimensional manifold
equipped with a “quantum geometry” — which can dually be seen as a spin network.
Third, all this stuff fits together in a truly elegant way, which suggests there is something
good about it. The relationship between spin networks and tetrahedra connects the
theory of spin networks with approaches to quantum gravity where one chops up space
into tetrahedra — like the “Regge calculus” and “dynamical triangulations” approaches.

Next week I’ll say a bit about using spin networks to study quantum black holes.
Later I’ll talk about dynamics and spin foams.

Meanwhile, I’ve been really lagging behind in describing new papers as they show
up. . . so here are a few interesting ones:

5) C. Nash, “Topology and physics — a historical essay”, to appear in A History
of Topology, edited by Ioan James, Elsevier-North Holland, preprint available as
hep-th/9709135.

6) Luis Alvarez-Gaume and Frederic Zamora, “Duality in quantum field theory (and
string theory)”, available as hep-th/9709180.

Quoting the abstract:

“These lectures give an introduction to duality in Quantum Field Theory. We
discuss the phases of gauge theories and the implications of the electric-magnetic
duality transformation to describe the mechanism of confinement. We review
the exact results of N=1 supersymmetric QCD and the Seiberg-Witten solution
of N=2 super Yang-Mills. Some of its extensions to String Theory are also briefly
discussed.”

7) Richard E. Borcherds, “What is a vertex algebra?”, available as q-alg/9709033.

“These are the notes of an informal talk in Bonn describing how to define an
analogue of vertex algebras in higher dimensions.”

8) J. M. F. Labastida and Carlos Lozano, “Lectures in topological quantum field the-
ory”, 62 pages in LaTeX with 5 figures in encapsulated Postscript, available as
hep-th/9709192.

“In these lectures we present a general introduction to topological quantum field
theories. These theories are discussed in the framework of the Mathai-Quillen
formalism and in the context of twisted N=2 supersymmetric theories. We dis-
cuss in detail the recent developments in Donaldson-Witten theory obtained from
the application of results based on duality for N=2 supersymmetric Yang-Mills
theories. This involves a description of the computation of Donaldson invariants
in terms of Seiberg-Witten invariants. Generalizations of Donaldson-Witten the-
ory are reviewed, and the structure of the vacuum expectation values of their
observables is analyzed in the context of duality for the simplest case.”
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9) Martin Markl, “Simplex, associahedron, and cyclohedron”, preprint available as
alg-geom/9707009.

“The aim of the paper is to give an ‘elementary’ introduction to the theory of
modules over operads and discuss three prominent examples of these objects —
simplex, associahedron (= the Stasheff polyhedron) and cyclohedron (= the
compactification of the space of configurations of points on the circle).”
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Week 111

October 24, 1997

This week I’ll say a bit about black hole entropy, and next week I’ll say a bit about
attempts to compute it using spin networks, as promised. Be forewarned: all of this stuff
should be taken with a grain of salt, since there is no experimental evidence backing it
up. Also, my little “history” of the subject is very amateur. (In particular, when I say
someone did something in such-and-such year, all I mean is that it was published in that
year.)

Why is the entropy of black holes so interesting? Mainly because it serves as a testing
ground for our understanding of quantum gravity. In classical general relativity, any ob-
ject that falls into a black hole is, in some sense, lost and gone forever. Once it passes the
“event horizon”, it can never get out again. This leads to a potential paradox regarding
the second law of thermodynamics, which claims that the total entropy of the universe
can never decrease. My office desk constantly increases in entropy as it becomes more
cluttered and dusty. I could reduce its entropy with some work, dusting it and neatly
stacking up the papers and books, but in the process I would sweat and metabolize,
increasing my own entropy even more — so I don’t bother. If, however, I could simply
dump my desk into a black hole, perhaps I could weasel around the second law. True,
the black hole would be more massive, but nobody could tell if I’d dumped a clean desk
or a dirty desk into it, so in a sense, the entropy would be gone!

Of course there are lots of potential objections to this method of violating the second
law. Anything involving the second law of thermodynamics is controversial, and the idea
of violating it by throwing entropy down black holes is especially so. The whole subject
might have remained a mere curiosity if it hadn’t been for the work of Hawking and
Penrose.

In 1969, Penrose showed that, in principle, one could extract energy from a rotating
black hole:

1) Roger Penrose, “Gravitational collapse: the role of general relativity”, Rev. del
Nuovo Cimento 1, (1969) 272–276.

Basically, one can use the rotation of the black hole to speed up a rock one throws past
it, as long as the rock splits and one piece falls in while the rock is in the “ergosphere”
— the region of spacetime where the “frame dragging” is so strong that any object inside
is forced to rotate along with it. This result led to a wave of thought experiments and
theorems involving black holes and thermodynamics.

In 1971, Hawking proved the “black hole area theorem”:

2) Stephen Hawking, “Gravitational radiation from colliding black holes”, Phys. Rev. Lett.
26 (1971), 1344–1346.

The precise statement of this theorem is a bit technical, but loosely, it says that under
reasonable conditions — e.g., no “exotic matter” with negative energy density or the
like — the total area of the event horizons of any collection of black holes must always
increase. This result sets an upper limit on how much energy one can extract from a
rotating black hole, how much energy can be released in a black hole collision, etc.
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Now, this sounds curiously similar to the second law of thermodynamics, with the
area of the black hole playing the role of entropy! It turned out to be just the beginning
of an extensive analogy between black hole physics and thermodynamics. I have a long
way to go, so I will just summarize this analogy in one cryptic chart:

Black holes Thermodynamics

black hole mass M energy E
event horizon area A entropy S
surface gravity K temperature T

First law: dM = KdA/8π + work dE = TdS + work
Second law: A increases S increases

Third law: can’t get K = 0 can’t get T = 0

For a more thorough review by someone who really knows this stuff, try:

3) Robert M. Wald, “Black holes and thermodynamics”, in Symposium on Black Holes
and Relativistic Stars (in honor of S. Chandrasekhar), December 14-15, 1996, preprint
available as gr-qc/9702022.

In 1973, Jacob Bekenstein suggested that we take this analogy really seriously. In
particular, he argued that black holes really do have entropy proportional to their surface
area. In other words, the total entropy of the world is the entropy of all the matter plus
some constant times the area of all the black holes:

4) Jacob Bekenstein, “Black holes and entropy”, Phys. Rev. D7 (1973), 2333–2346.

This raises an obvious question — what’s the constant?? Also, in the context of
classical general relativity, there are serious problems with this idea: you can cook up
thought experiments where the total entropy defined this way goes down, no matter
what you say the constant is.

However, in 1975, Hawking showed that black holes aren’t quite black!

5) Stephen Hawking, “Particle creation by black holes”, Commun. Math. Phys. 43
(1975), 199–220.

More precisely, using quantum field theory on curved spacetime, he showed that a
black hole should radiate photons thermally, with a temperature T proportional to the
surface gravity K at the event horizon. It’s important to note that this isn’t a “quantum
gravity” calculation; it’s a semiclassical approximation. Gravity is treated classically!
One simply assumes spacetime has the “Schwarzschild metric” corresponding to a black
hole. Quantum mechanics enters only in treating the electromagnetic field. The goal of
everyone ever since has been to reproduce Hawking’s result using a full-fledged quantum
gravity calculation. The problem, of course, is to get a theory of quantum gravity.

Anyway, here is Hawking’s magic formula:

T = K/2π.
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Here I’m working in units where ~ = c = k = G = 1, but it’s important to note that there
is secretly an ~ (Planck’s constant) hiding in this formula, so that it only makes sense
quantum-mechanically. This is why Bekenstein’s proposal was problematic at the purely
classical level.

This formula means we can take really seriously the analogy between T and K. We
even know how to convert between the two! Of course, we also know how to convert
between the black hole mass M and energy E:

E = M.

Thus, using the first law (shown in the chart above), we can convert between entropy
and area as well:

S = A/4.

How could we hope to get such a formula using a full-fledged quantum gravity calcu-
lation? Well, in statistical mechanics, the entropy of any macrostate of a system is the
logarithm of the microstates corresponding to that macrostate. A microstate is a com-
plete precise description of the system’s state, while a macrostate is a rough description.
For example, if I tell you “my desk is dusty and covered with papers”, I’m specifying a
macrostate. If there are N ways my desk could meet this description (i.e., N microstates
corresponding to that macrostate), the entropy of my desk is ln(N).

We expect, or at least hope, that a working quantum theory of gravity will provide a
statistical-mechanical way to calculate the entropy of a black hole. In other words, we
hope that specifying the area A of the black hole horizon specifies the macrostate, and
that there are about N = exp(A/4) microstates corresponding to this macrostate.

What are these microstates? Much ink has been spilt over this thorny question, but
one reasonable possibility is that they are states of the geometry of the event horizon. If
we know its area, there are still lots of geometries that the event horizon could have. . .
and perhaps, for some reason, there are about exp(A/4) of them! For this to be true, we
presumably need some theory of “quantum geometry”, so that the number of geometries
is finite.

I presume you see what I’m leading up to: the idea of computing black hole entropy
using spin networks, which are designed precisely to describe “quantum geometries”, as
sketched in “Week 55”, “Week 99”, and “Week 110”. I’ll talk about this next week.

To be fair to other approaches, I should emphasize that string theorists have their
own rather different ideas about computing black hole entropy using their approach to
quantum gravity. A nice review article about this approach is:

6) Gary Horowitz, “Quantum states of black holes”, preprint available as gr-qc/

9704072.

Next time, however, I will only talk about the spin network (also known as “loop
representation”) approach, because that’s the one I understand.

Okay, let me wrap up by listing a few interesting papers here and there which are
contributing to the entropy of my desk. It’s 1:30 am and I’m getting tired, so I’ll just
cop out and quote the abstracts. The first one is a short readable essay explaining the
limitations of quantum field theory. The others are more technical.

7) Roman Jackiw, “What is quantum field theory and why have some physicists aban-
doned it?”, 4 pages, preprint available as hep-th/9709212.
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“The present-day crisis in quantum field theory is described.”

8) Adel Bilal, “M(atrix) theory: a pedagogical introduction”, preprint available as
hep-th/9710136.

“I attempt to give a pedagogical introduction to the matrix model of M-theory as
developed by Banks, Fischler, Shenker and Susskind (BFSS). In the first lecture, I
introduce and review the relevant aspects of D-branes with the emergence of the
matrix model action. The second lecture deals with the appearance of eleven-
dimensional supergravity and M-theory in strongly coupled type IIA superstring
theory. The third lecture combines the material of the two previous ones to arrive
at the BFSS conjecture and explains the evidence presented by these authors. The
emphasis is not on most recent developments but on a hopefully pedagogical
presentation.”

Here’s one on glueballs (for more on glueballs, see “Week 68”):

9) Gregory Gabadadze, “Modeling the glueball spectrum by a closed bosonic mem-
brane”, 43 pages, preprint available as hep-ph/9710402.

“We use an analogy between the Yang-Mills theory Hamiltonian and the matrix
model description of the closed bosonic membrane theory to calculate the spec-
trum of glueballs in the large Nc limit. Some features of the Yang-Mills theory
vacuum, such as the screening of the topological charge and vacuum topologi-
cal susceptibility are discussed. We show that the topological susceptibility has
different properties depending on whether it is calculated in the weak coupling
or strong coupling regimes of the theory. A mechanism of the formation of the
pseudoscalar glueball state within pure Yang-Mills theory is proposed and stud-
ied.”

Fans of quaternions and octonions might like the following paper:

10) Jose M. Figueroa-O’Farrill, “Gauge theory and the division algebras”, preprint avail-
able as hep-th/9710168.

“We present a novel formulation of the instanton equations in 8-dimensional
Yang-Mills theory. This formulation reveals these equations as the last mem-
ber of a series of gauge-theoretical equations associated with the real division
algebras, including flatness in dimension 2 and (anti-)self-duality in 4. Using
this formulation we prove that (in flat space) these equations can be under-
stood in terms of moment maps on the space of connections and the moduli
space of solutions is obtained via a generalised symplectic quotient: a Kaehler
quotient in dimension 2, a hyperkaehler quotient in dimension 4 and an oc-
tonionic Kaehler quotient in dimension 8. One can extend these equations to
curved space: whereas the 2-dimensional equations make sense on any surface,
and the 4-dimensional equations make sense on an arbitrary oriented manifold,
the 8-dimensional equations only make sense for manifolds whose holonomy is
contained in Spin(7). The interpretation of the equations in terms of moment
maps further constraints the manifolds: the surface must be orientable, the 4-
manifold must be hyperkaehler and the 8-manifold must be flat.”
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Week 112

November 3, 1997

This week I will talk about attempts to compute the entropy of a black hole by counting
its quantum states, using the spin network approach to quantum gravity.

But first, before the going gets tough and readers start dropping like flies, I should
mention the following science fiction novel:

1) Greg Egan, Distress, HarperCollins, 1995.

I haven’t been keeping up with science fiction too carefully lately, so I’m not really
the best judge. But as far as I can tell, Egan is one of the few practitioners these days
who bites off serious chunks of reality — who really tries to face up to the universe and
its possibilies in their full strangeness. Reality is outpacing our imagination so fast that
most attempts to imagine the future come across as miserably unambitious. Many have
a deliberately “retro” feel to them - space operas set in Galactic empires suspiciously
similar to ancient Rome, cyberpunk stories set in dark urban environments borrowed
straight from film noire, complete with cynical voiceovers. . . is science fiction doomed
to be an essentially nostalgic form of literature?

Perhaps we are becoming too wise, having seen how our wildest imaginations of
the future always fall short of the reality, blindly extrapolating the current trends while
missing out on the really interesting twists. But still, science fiction writers have to try
to imagine the unimaginable, right? If they don’t, who will?

But how do we dare imagine what things will be like in, say, a century, or a millenium?
Vernor Vinge gave apt expression to this problem in his novel featuring the marooned
survivors of a “singularity” at which the rate of technological advance became, momen-
tarily, infinite, and most of civilization inexplicably. . . disappeared. Those who failed to
catch the bus were left wondering just where it went. Somewhere unimaginable, that’s
all they know.

“Distress” doesn’t look too far ahead, just to 2053. Asexuality is catching on big-
time. . . as are the “ultramale” and “ultrafemale” options, for those who don’t like this
gender ambiguity business. Voluntary Autists are playing around with eliminating em-
pathy. And some scary radical secessionists are redoing their genetic code entirely, re-
placing good old ATCG by base pairs of their own devising. Fundamental physics, thank
god, has little new to offer in the way of new technology. For decades, it’s drifted off
introspectively into more and more abstract and mathematical theories, with few new
experiments to guide it. But this is the year of the Einstein Centenary Conference! Nobel
laureate Violet Masala will unveil her new work on a Theory of Everything. And rumors
have it that she may have finally cracked the problem, and found — yes, that’s right —
the final, correct and true theory of physics.

As science reporter Andrew Worth tries to bone up for his interviews with Masala, he
finds it’s not so easy to follow the details of the various “All-Topology Models” that have
been proposed to explain the 10-dimensionality of spacetime in the Standard Unified
Field Theory. In one of the most realistic passages of imagined mathematical prose I’ve
ever seen in science fiction, he reads “At least two conflicting generalized measures can
be applied to T, the space of all topological spaces with countable basis. Perrini’s mea-
sure [Perrini, 2012] and Saupe’s measure [Saupe, 2017] are both defined for all bounded
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subsets of T, and are equivalent when restricted to M - the space of n-dimensional para-
compact Hausdorff manifolds - but they yield contradictory results for sets of more ex-
otic spaces. However, the physical significance (if any) of this discrepancy remains ob-
scure. . . .”

But, being a hardy soul and a good reporter, Worth is eventually able to explain to
us readers what’s at stake here, and why Masala’s new work has everyone abuzz. But
that’s really just the beginning. For in addition to this respectable work on All-Topology
Models, there is a lot of somewhat cranky stuff going on in “anthrocosmology”, involving
sophisticated and twisted offshoots of the anthropic principle. Some argue that when the
correct Theory of Everything is found, a kind of cosmic self-referential feedback loop will
be closed. And then there’s no telling what will happen!

Well, I won’t give away any more. It’s fun: it made me want to run out and do a lot
more mathematical physics. And it raises a lot of deep issues. At the end it gets a bit too
“action-packed” for my taste, but then, my idea of excitement is lying in bed thinking
about n-categories.

Now for the black holes.
In “Week 111”, I left off with a puzzle. In a quantum theory of gravity, the entropy

of a black hole should be the logarithm of the number of its microstates. This should
be proportional to the area of the event horizon. But what are the microstates? String
theory has one answer to this, but I’ll focus on the loop representation of quantum
gravity. This approach to quantum gravity is very geometrical, which suggests thinking
of the black hole microstates as “quantum geometries” of the black hole event horizon.
But how are these related to the description of the geometry of the surrounding space in
terms of spin networks?

Starting in 1995, Smolin, Krasnov, and Rovelli proposed some answers to these puz-
zles, which I have already mentioned in “Week 56”, “Week 57”, and “Week 87”. The
ideas I’m going to talk about now are a further development of this earlier work, but
instead of presenting everything historically, I’ll just present the picture as I see it now.
For more details, try the following paper:

2) Abhay Ashtekar, John Baez, Alejandro Corichi and Kirill Krasnov, “Quantum geom-
etry and black hole entropy”, to appear in Phys. Rev. Lett., preprint available as
gr-qc/9710007.

This is a summary of what will eventually be a longer paper with two parts, one on
the “black hole sector” of classical general relativity, and one on the quantization of this
sector. Let me first say a bit about the classical aspects, and then the quantum aspects.

One way to get a quantum theory of a black hole is to figure out what a black hole is
classically, get some phase space of classical states, and then quantize that. For this, we
need some way of saying which solutions of general relativity correspond to black holes.
This is actually not so easy. The characteristic property of a black hole is the presence of
an event horizon — a surface such that once you pass it you can never get back out with-
out going faster than light. This makes it tempting to find “boundary conditions” which
say “this surface is an event horizon”, and use those to pick out solutions corresponding
to black holes.

But the event horizon is not a local concept. That is, you can’t tell just by looking at a
small patch of spacetime if it has an event horizon in it, since your ability to “eventually
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get back out” after crossing a surface depends on what happens to the geometry of
spacetime in the future. This is bad, technically speaking. It’s a royal pain to deal with
nonlocal boundary conditions, especially boundary conditions that depend on solving the
equations of motion to see what’s going to happen in the future just to see if the boundary
conditions hold.

Luckily, there is a purely local concept which is a reasonable substitute for the concept
of event horizon, namely the concept of “outer marginally trapped surface”. This is a bit
technical - and my speciality is not this classical general relativity stuff, just the quantum
side of things, so I’m no expert on it! - but basically it works like this.

First consider an ordinary sphere in ordinary flat space. Imagine light being emitted
outwards, the rays coming out normal to the surface of the sphere. Clearly the cross-
section of each little imagined circular ray will expand as it emanates outwards. This
is measured quantitatively in general relativity by a quantity called. . . the expansion
parameter!

Now suppose your sphere surrounds a spherically symmetric black hole. If the sphere
is huge compared to the size of the black hole, the above picture is still pretty accurate,
since the light leaving the sphere is very far from the black hole, and gravitational effects
are small. But now imagine shrinking the sphere, making its radius closer and closer to
the Schwarzschild radius (the radius of the event horizon). When the sphere is just a
little bigger than the Schwarzschild radius, the expansion of light rays going out from
the sphere is very small. This might seem paradoxical - how can the outgoing light rays
not expand? But remember, spacetime is seriously warped near the event horizon, so
your usual flat spacetime intuitions no longer apply. As we approach the event horizon
itself, the expansion parameter goes to zero!

That’s roughly the definition of an “outer marginally trapped surface”. A more math-
ematical but still rough definition is: “an outer marginally trapped surface is the bound-
ary S of some region of space such that the expansion of the outgoing family of null
geodesics normal to S is everywhere less than or equal to zero.”

We require that our space have some sphere S in it which is an outer marginally
trapped surface. We also require other boundary conditions to hold on this surface. I
won’t explain them in detail. Instead, I’ll say two important extra features they have:
they say the black hole is nonrotating, and they disallow gravitational waves falling into
S. The first condition here is a simplifying assumption: we are only studying black holes
of zero angular momentum in this paper! The second condition is only meant to hold for
the time during which we are studying the black hole. It does not rule out gravitational
waves far from the black hole, waves that might eventually hit the black hole. These
should not affect the entropy calculation.

Now, in addition to their physical significance, the boundary conditions we use also
have an interesting mathematical meaning. Like most other field theories, general rela-
tivity is defined by an action principle, meaning roughly that one integrates some quan-
tity called the Lagrangian over spacetime to get an “action”, and finds solutions of the
field equations by looking for minima of this action. But when one studies field theories
on a region with boundary, and imposes boundary conditions, one often needs to “add
an extra boundary term to the action” — some sort of integral over the boundary —
to get things to work out right. There is a whole yoga of finding the right boundary
term to go along with the boundary conditions. . . an arcane little art. . . just one of
those things theoretical physicists do, that for some reason never find their way into the

79



WEEK 112 NOVEMBER 3, 1997

popular press.
But in this case the boundary term is all-important, because it’s. . .

THE CHERN-SIMONS ACTION!

(Yes, I can see people world-wide, peering into their screens, thinking “Eh? Am I
supposed to remember what that is? What’s he getting so excited about now?” And a few
cognoscenti thinking “Oh, now I get it. All this fussing about boundary conditions was
just an elaborate ruse to get a topological quantum field theory on the event horizon!”)

So far we’ve been studying general relativity in honest 4-dimensional spacetime.
Chern-Simons theory is a closely related field theory one dimension down, in 3-dimensional
spacetime. As time passes, the surface of the black hole traces out a 3-dimensional sub-
manifold of our 4-dimensional spacetime. When we quantize our classical theory of
gravity with our chosen boundary conditions, the Chern-Simons term will give rise to
a “Chern-Simons field theory” living on the surface of the black hole. This field theory
will describe the geometry of the surface of the black hole, and how it changes as time
passes.

Well, let’s not just talk about it, let’s do it! We quantize our theory using standard
spin network techniques outside the black hole, and Chern-Simons theory on the event
horizon, and here is what we get. States look like this. Outside the black hole, they are
described by spin networks (see “Week 110”). The spin network edges are labelled by
spins j = 0, 1/2, 1, . . .. Spin network edges can puncture the black hole surface, giving it
area. Each spin-j edge contributes an area proportional to

√
j(j + 1). The total area is

the sum of these contributions.
Any choice of punctures labelled by spins determines a Hilbert space of states for

Chern-Simons theory. States in this space describe the intrinsic curvature of the black
hole surface. The curvature is zero except at the punctures, so that classically, near
any puncture, you can visualize the surface as a cone with its tip at the puncture. The
curvature is concentrated at the tip. At the quantum level, where the puncture is labelled
with a spin j, the curvature at the puncture is described by a number jz ranging from
−j to j in integer steps.

Now we ask the following question: “given a black hole whose area is within ε of
A, what is the logarithm of the number of microstates compatible with this area?” This
should be the entropy of the black hole. To figure it out, first we work out all the ways
to label punctures by spins j so that the total area comes within ε of A. For any way
to do this, we then count the allowed ways to pick numbers jz describing the intrinsic
curvature of the black hole surface. Then we sum these up and take the logarithm.

That’s roughly what we do, anyway, and for black holes much bigger than the Planck
scale we find that the entropy is proportional to the area. How does this compare with
the result of Bekenstein and Hawking, described in “Week 111”? Remember, they com-
puted that

S = A/4

where S is the entropy and A is the area, measured in units where c = ~ = G = k = 1.
What we get is

S =
ln 2

4πγ
√

3
A
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To compare these results, you need to know what that mysterious “γ” factor is in the
second equation! It’s often called the Immirzi parameter, because many people learned
of it from the following paper:

3) Giorgio Immirzi, “Quantum gravity and Regge calculus”, in Nucl. Phys. Proc. Suppl.
57 (1997) 65–72, preprint available as gr-qc/9701052.

However, it was first discovered by Barbero:

4) Fernando Barbero, “Real Ashtekar variables for Lorentzian signature space-times”,
Phys. Rev. D51 (1995), 5507–5510, preprint available as gr-qc/9410014.

It’s an annoying unavoidable arbitrary dimensionless parameter that appears in the
loop representation, which nobody had noticed before Barbero. It’s still rather mysteri-
ous. But it works a bit like this. In ordinary quantum mechanics we turn the position
q into an operator, namely multiplication by x, and also turn the momentum p into an
operator, namely −i(d/dx). The important thing is the canonical commutation relations:
pq − qp = −i. But we could also get the canonical commutation relations to hold by
defining

p = −iγ d

dx

q =
x

γ

since the gammas cancel out! In this case, putting in a γ factor doesn’t affect the physics.
One gets “equivalent representations of the canonical commutation relations”. In the
loop representation, however, the analogous trick does affect the physics — different
choices of the Immirzi parameter give different physics! For more details try:

4) Carlo Rovelli and Thomas Thiemann, “The Immirzi parameter in quantum general
relativity”, preprint available as gr-qc/9705059.

How does the Immirzi parameter affect the physics? It determines the quantization of
area. You may notice how I keep saying “each spin-j edge of a spin network contributes
an area proportional to

√
j(j + 1) to any surface it punctures”. . . without ever saying

what the constant of proportionality is! Well, the constant is

8πγ

Until recently, everyone went around saying the constant was 1. (As for the factor of
8π, I’m no good at these things, but apparently at least some people were getting that
wrong, too!) Now Krasnov claims to have gotten these damned factors straightened out
once and for all:

5) Kirill Krasnov, “On the constant that fixes the area spectrum in canonical quantum
gravity”, preprint available as gr-qc/9709058.

So: it seems we can’t determine the constant of proportionality in the entropy-area
relation, because of this arbitrariness in the Immirzi parameter. But we can, of course,
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use the Bekenstein-Hawking formula together with our formula for black hole entropy
to determine γ, obtaining

γ =
ln(2)√

3π

This may seem like cheating, but right now it’s the best we can do. All we can say
is this: we have a theory of the microstates of a black hole, which predicts that en-
tropy is proportional to area for largish black holes, and which taken together with the
Bekenstein-Hawking calculation allows us to determine the Immirzi parameter.

What do the funny constants in the formula

S =
ln 2

4πγ
√

3
A

mean? It’s actually simple. The states that contribute most to the entropy of a black hole
are those where nearly all spin network edges puncturing its surface are labelled by spin
1/2. Each spin-1/2 puncture can have either jz = 1/2 or jz = −1/2, so it contributes
ln(2) to the entropy. On the other hand, each spin-1/2 edge contributes 4πγ

√
3 to the

area of the black hole. Just to be dramatic, we can call ln 2 the “quantum of entropy”
since it’s the entropy (or information) contained in a single bit. Similarly, we can call
4πγ
√

3 the “quantum of area” since it’s the area contributed by a spin-1/2 edge. These
terms are a bit misleading since neither entropy nor area need come in integral multiples
of this minimal amount. But anyway, we have

S =
quantum of entropy

quantum of area
)A

What next? Well, one thing is to try to use these ideas to study Hawking radiation.
That’s hard, because we don’t understand Hamiltonians very well in quantum gravity,
but Krasnov has made some progress. . . .

6) Kirill Krasnov, “Quantum geometry and thermal radiation from black holes”, preprint
available as gr-qc/9710006.

Let me just quote the abstract:

“A quantum mechanical description of black hole states proposed recently within
the approach known as loop quantum gravity is used to study the radiation spec-
trum of a Schwarzschild black hole. We assume the existence of a Hamiltonian
operator causing transitions between different quantum states of the black hole
and use Fermi’s golden rule to find the emission line intensities. Under certain
assumptions on the Hamiltonian we find that, although the emission spectrum
consists of distinct lines, the curve enveloping the spectrum is close to the Planck
thermal distribution with temperature given by the thermodynamical tempera-
ture of the black hole as defined by the derivative of the entropy with respect to
the black hole mass. We discuss possible implications of this result for the issue
of the Immirzi γ-ambiguity in loop quantum gravity.”

This is interesting, because Bekenstein and Mukhanov have recently noted that if
the area of a quantum black hole is quantized in evenly spaced steps, there will be large
deviations from the Planck distribution of thermal radiation:
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7) Jacob D. Bekenstein and V. F. Mukhanov, “Spectroscopy of the quantum black
hole”, preprint available as gr-qc/9505012.

However, in the loop representation the area is not quantized in evenly spaced steps:
the area A can be any sum of quantities like 8πγ

√
j(j + 1), and such sums become very

densely packed for large A.
Let me conclude with a few technical comments about how Chern-Simons theory

shows up here. For a long time I’ve been studying the “ladder of dimensions” relating
field theories in dimensions 2, 3, and 4, in part because this gives some clues as to
how n-categories are related to topological quantum field theory, and in part because it
relates quantum gravity in spacetime dimension 4, which is mysterious, to Chern-Simons
theory in spacetime dimension 3, which is well-understood. It’s neat that one can now
use this ladder to study black hole entropy. It’s worth comparing Carlip’s calculation
of black hole entropy in spacetime dimension 3 using a 2-dimensional field theory (the
Wess-Zumino-Witten model) on the surface traced out by the black hole event horizon
— see “Week 41”. Both the theories we use and those Carlip uses, are all part of the
same big ladder of theories! Something interesting is going on here.

But there’s a twist in our calculation which really took me by surprise. We do not
use SU(2) Chern-Simons theory on the black hole surface, we use U(1) Chern-Simons
theory! The reason is simple. The boundary conditions we use, which say the black
hole surface is “marginally outer trapped”, also say that its extrinsic curvature is zero.
Thus the curvature tensor reduces, at the black hole surface, to the intrinsic curvature.
Curvature on a 3-dimensional space is so(3)-valued, but the intrinsic curvature on the
surface S is so(2)-valued. Since so(3) = su(2), general relativity has a lot to do with
SU(2) gauge theory. But since so(2) = u(1), the field theory on the black hole surface
can be thought of as a U(1) gauge theory.

(Experts will know that U(1) is a subgroup of SU(2) and this is why we look at all
values of jz going from −j to j: we are decomposing representations of SU(2) into
representations of this U(1) subgroup.)

Now U(1) Chern-Simons theory is a lot less exciting than SU(2) Chern-Simons theory
so mathematically this is a bit of a disappointment. But U(1) Chern-Simons theory is not
utterly boring. When we are studying U(1) Chern-Simons theory on a punctured surface,
we are studying flat U(1) connections modulo gauge transformations. The space of
these is called a “Jacobian variety”. When we quantize U(1) Chern-Simons theory using
geometric quantization, we are looking for holomorphic sections of a certain line bundle
on this Jacobian variety. These are called “theta functions”. Theta functions have been
intensively studied by string theorists and number theorists, who use them do all sorts
of wonderful things beyond my ken. All I know about theta functions can be found in
the beginning of the following two books:

8) Jun-ichi Igusa, Theta Functions, Springer-Verlag, Berlin, 1972.

9) David Mumford, Tata Lectures on Theta, 3 volumes, Birkhauser, Boston, 1983–
1991.

Theta functions are nice, so it’s fun to see them describing states of a quantum black
hole!
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Week 113

November 26, 1997

This week I’d like to talk about “spin foams”. People have already thought a lot about
using spin networks to describe the quantum geometry of 3-dimensional space at a given
time. This is great for kinematical aspects of quantum gravity, but not so good for dy-
namics. For dynamics, it would be nice to have a description of the quantum geometry
of 4-dimensional spacetime. That’s where spin foams come in.

If we use spin networks to describe the geometry of space at the Planck scale, how
might we describe spacetime? Well, space is supposed to be a kind of slice of spacetime,
so let’s recall what a spin network is, and see what it could be a slice of.

First of all, spin network is a graph: a bunch of vertices connected by edges. What
gives a graph when you slice it? Foam! Consider the soap suds you get while washing
the dishes. If we idealize it as a bunch of 2-dimensional surfaces meeting along edges,
and imagine intersecting it with a plane, we see that the result is typically a graph.

Topologists call this sort of space a “2-dimensional complex”. It’s a generalization
of a graph because we can form it by starting with a bunch of “vertices”, then con-
necting these with a bunch of “edges” to obtain a graph, and then taking a bunch of
2-dimensional discs or “faces” and attaching them along their boundaries to this graph.
Mathematically, there’s no reason to stop in dimension 2. Topologists are interested in
complexes of all dimensions. However, 2-dimensional complexes have been given spe-
cial attention, thanks to a number of famous unsolved problems involving them. A great
place to learn about them is:

1) C. Hog-Angeloni, W. Metzler, and A. Sieradski, Two-dimensional Homotopy and
Combinatorial Group Theory, London Mathematical Society Lecture Note Series
197, Cambridge U. Press, Cambridge, 1993.

However, a spin network is not merely a graph: it’s a graph with edges labelled by
irreducible representations of some symmetry group and vertices labelled by intertwin-
ers. If you don’t know what this means, don’t panic! If we take our symmetry group to
be SU(2), things simplify tremendously. If we take our graph to have 4 edges meeting
at every vertex, things simplify even more. In this case, all we need to do is label each
vertex and each edge with a number j = 0, 1/2, 1, 3/2, . . . called a “spin”.

In this special case, we can get our spin network as a slice of a 2-dimensional complex
with faces and edges labelled by spins. Such a thing looks a bit like a foam of soap
bubbles with edges and faces labelled by spins — hence the term “spin foam”! More
generally, a spin foam is a 2-dimensional complex with faces labelled by irreducible
representations of some group and edges labelled by intertwining operators. When we
slice a spin foam, each of its faces gives a spin network edge, and each of its edges gives
a spin network vertex.

Actually, if you’ve ever looked carefully at soap suds, you’ll know that generically 3
faces meet along each edge. Spin foams like this are important for quantum gravity in 3
spacetime dimensions. In 4 spacetime dimensions it seems especially interesting to use
spin foams of a different sort, with 4 faces meeting along each edge. When we slice one
of these, we get a spin network with 4 edges meeting at each vertex.
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What’s so interesting about spin foams with 4 faces meeting along each edge? Well,
suppose we take a 4-dimensional manifold representing spacetime and triangulate it —
that is, chop it up into 4-simplices, the 4-dimensional analogs of tetrahedra. We get
a mess of 4-simplices, which have tetrahedra as faces, which in turn have triangles as
faces.

Now we can form a spin foam with one vertex in the middle of each 4-simplex,
one edge intersecting each tetrahedron, and one face intersecting each triangle. This
trick is called “Poincare duality”: each d-dimensional piece of our spin foam intersects a
(4−d)-dimensional piece of our triangulation. Since each tetrahedron in our triangulated
manifold has 4 triangular faces, our spin foam will dually have 4 faces meeting at each
edge. Since each 4-simplex has 5 tetrahedra and 10 triangles, each spin foam vertex will
have 5 edges and 10 faces meeting at it.

This seems to be a particularly interesting sort of spin foam for quantum gravity in
4 dimensions: a spin foam dual to a triangulation of spacetime. If we slice such a spin
foam, we generically get a spin network dual to a triangulation of space!

I discussed Barbieri’s work on such spin networks in “Week 110”. A spin network
like this has a nice interpretation as a “3-dimensional quantum geometry”, that is, a
quantum state of the geometry of space. Each spin network edge labelled by spin j gives
an area proportional to

√
j(j + 1) to the triangle it intersects. There’s also a formula for

the volume of each tetrahedron, involving the spin on the corresponding spin network
vertex, together with the spins on the 4 spin network edges that meet there.

It would be nice to have a similar geometrical interpretation of spin foams dual to
triangulations of spacetime. Some recent steps towards this can be found in the following
papers:

2) John Barrett and Louis Crane, “Relativistic spin networks and quantum gravity”, 9
pages, preprint available as gr-qc/9709028.

3) John Baez, “Spin foam models”, 39 pages, preprint available as gr-qc/9709052 or
in Postscript form as http://math.ucr.edu/home/baez/foam.ps

Perhaps I can be forgiven some personal history here. Michael Reisenberger has been
pushing the idea of spin foams (though not the terminology) for quite a while. . . see for
example his paper:

4) Michael Reisenberger, “Worldsheet formulations of gauge theories and gravity”,
preprint available as gr-qc/9412035.

More recently, Carlo Rovelli and he gave a heuristic derivation of a spin foam ap-
proach to quantum gravity starting with the so-called canonical quantization approach:

5) Michael Reisenberger and Carlo Rovelli, ‘ “Sum over surfaces” form of loop quan-
tum gravity’, Phys. Rev. D56 (1997), 3490—3508, preprint available as gr-qc/

9612035.

I started giving talks about spin foams in the spring of this year. Following the ideas
of Reisenberger and Rovelli, I was trying to persuade everyone to think of spin foams as
higher-dimensional analogs of Feynman diagrams.
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Mathematically, a Feynman diagram is just a graph with edges labelled by represen-
tations of some group. But physically, a Feynman diagram describes a process in which
a bunch of particles interact. Its edges correspond to the worldlines traced out by some
particles as time passes, while its vertices represent interactions. Different quantum field
theories use Feynman diagrams with different kinds of vertices. For any Feynman dia-
gram in our theory, we want to compute a number called an “amplitude”. The absolute
value squared of this amplitude gives the probability that the process in question will
occur.

We calculate this amplitude by computing a number for each for each edge and each
vertex and multiplying all these numbers together. The numbers for edges are called
“propagators” — they describe the amplitude for a particle to go from here to there. The
numbers for vertices are called “vertex amplitudes” — they describe the amplitude for
various interactions to occur.

Similarly, a spin foam is a 2-dimensional complex with faces labelled by representa-
tions and edges labelled by intertwiners. Each spin foam face corresponds to the “world-
sheet” traced out by a spin network edge as time passes. So, in addition to thinking
of a spin foam as a “4-dimensional quantum geometry”, we can think of it as a kind of
process. The goal of the spin foam approach to quantum gravity is to compute an am-
plitude for each spin foam. Following what we know about Feynman diagrams, it seems
reasonable to do it by computing a number for each spin foam face, edge, and vertex,
and then multiplying them all together.

Quantum gravity is related to a simpler theory called BF theory, which has a spin
foam formulation known as the Crane-Yetter model — see “Week 36”, “Week 58”, and
“Week 98”. There are various clues suggesting that that the numbers for faces and
edges — the “propagators” — should be computed in quantum gravity just as in the
Crane-Yetter model. The problem is the vertex amplitudes! The vertices are crucial
because these represent the interactions: the places where something really “happens”.
The number we compute for a vertex represents the amplitude for the corresponding
interaction to occur. Until we know this, we don’t know the dynamics of our theory!

The “spin foam vertex amplitudes for quantum gravity” became my holy grail. When-
ever I gave a talk on this stuff I would go around afterwards asking everyone if they could
help me figure them out. I would lay out all the clues I had and beg for assistance. . . or
at least a spark of inspiration. In March I gave a talk a talk at Penn State proposing a
candidate for these vertex amplitudes — a candidate I no longer believe in. Afterwards
Carlo Rovelli told me about his attempts to work out something similar with Louis Crane
and Lee Smolin. . . attempts that never quite got anywhere. We had a crack at it to-
gether but it didn’t quite gel. In May I asked John Barrett about the vertex amplitudes at
a conference in Warsaw. He said he couldn’t guess them. I couldn’t get anyone to guess
an answer. In June, at a quantum gravity workshop in Vienna, I asked Roger Penrose a
bunch of questions about spinors, hoping that this might be the key - see “Week 109”. I
learned a lot of interesting stuff, but I didn’t find the holy grail.

I kept on thinking. I started getting some promising ideas, and by the summer I was
hard at work on the problem, calculating furiously. I was also writing a big fat paper
about spin foams: the general formalism, the relation to triangulations, the relationships
to category theory, and so on. I was very happy with it — but I didn’t want to finish it
until I knew the spin foam vertex amplitudes. That would be the icing on the cake, I
thought.
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Then one weekend Louis Crane sent me email saying he and John Barrett had written
a paper proposing a model of quantum gravity. Aaargh! Had they beat me to the holy
grail? I frantically wrote up everything I had while waiting for Monday, when their paper
would appear on the preprint server gr-qc. On Monday I downloaded it and yes, they
had beaten me. It was a skinny little paper and I absorbed it more or less instantly. They
didn’t say a word about spin foams — they were working dually with triangulations —
but from my viewpoint, what they had done was to give a formula for the spin foam
vertex amplitudes.

Oh well. When you can’t beat ’em, join ’em! I finished up my paper, explaining how
their formula fit in with what I’d written already, and put it on the the preprint server
the following weekend.

What did they do to get their formula? Well, the key trick was not to use SU(2) as
the symmetry group, but instead use SU(2) × SU(2). This is the double cover of SO(4),
the rotation group in 4 dimensions. Following the idea behind Ashtekar’s new variables
for general relativity, I was only using the “left-handed half” of this group, that is, one of
the SU(2) factors. But the geometry of the 4-simplex, and its relation to quantum theory,
is in some ways more easily understood using the full SU(2)× SU(2) symmetry group.

Not surprisingly, an irreducible representation of SU(2) × SU(2) is described by a
pair of spins (j, k). The reason is that we can take the spin-j representation of the “left-
handed” SU(2) and the spin-k representation of the “right-handed” SU(2) and tensor
them to get an irreducible representation of SU(2) × SU(2). If we use SU(2) × SU(2)
as our group, our spin foams dual to triangulations will thus have every face and every
edge labelled by a pair of spins. However, Barrett and Crane’s work suggests that the
only spin foams with nonzero amplitudes are those for which both spins labelling a face
or edge are equal! Thus in a way we are back down to SU(2) — but we think of it all a
bit differently.

I’m tempted to go into detail and explain exactly how the model works, because it
involves a lot of beautiful geometry. But it takes a while, so I won’t. First you need to
really grok the phase space of all possible geometries of the 4-simplex. Then you need to
quantize this phase space, obtaining the “Hilbert space of a quantum 4-simplex”. Then
you need to note that there’s a special linear functional on this Hilbert space, called
the “Penrose evaluation” - see “Week 110”. Putting all this together gives the vertex
amplitudes for quantum gravity. . . we hope.

Anyway, back to my little personal story. . . .
Though I’d been working on my paper before Barrett and Crane started, and they

finished before me, Michael Reisenberger started one even earlier and finished even
later! Indeed, he has been working on a spin foam model of quantum gravity for several
years now — see “Week 86”. He took a purely left-handed SU(2) approach, a bit different
what I’d been trying, but closely related. He told lots of people about it, but unfortunately
he’s very slow to publish.

When I heard Barrett and Crane were about to come out with their paper, I emailed
Reisenberger warning him of this. He doesn’t like being scooped any more than I do.
Unfortunately I only had his old email address in Canada, and now he’s down in Uruguay,
so he never got that email. Thus Barrett and Crane’s paper, followed by mine, came as a
a big shock to him! Luckily, this motivated him to hurry and come out with a version of
his paper:
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6) Michael Reisenberger, “A lattice worldsheet sum for 4-d Euclidean general relativ-
ity”, 50 pages, preprint available as gr-qc/9711052.

Let me quote the abstract:

“A lattice model for four dimensional Euclidean quantum general relativity is
proposed for a simplicial spacetime. It is shown how this model can be expressed
in terms of a sum over worldsheets of spin networks, and an interpretation of
these worldsheets as spacetime geometries is given, based on the geometry de-
fined by spin networks in canonical loop quantized GR. The spacetime geometry
has a Planck scale discreteness which arises”naturally” from the discrete spec-
trum of spins of SU(2) representations (and not from the use of a spacetime
lattice). The lattice model of the dynamics is a formal quantization of the classi-
cal lattice model of [Reisenberger’s paper ‘A left-handed simplicial action for eu-
clidean general relativity’], which reproduces, in a continuum limit, Euclidean
general relativity.”

To wrap up my little history, let me say what’s been happening lately. There is still a
lot of puzzlement and mystery concerning these spin foam models. . . it’s far from clear
that they really work as hoped for. We may be doing things a little bit wrong, or we may
be on a completely wrong track. The phase space of the 4-simplex involves some tricky
constraint equations which could kill us if we’re not dealing with them right. Barbieri
has suggested a modified version of Barrett and Crane’s approach which may overcome
some problems with the constraints:

7) Andrea Barbieri, “Space of the vertices of relativistic spin networks”, 2 pages,
preprint available as gr-qc/9709076.

John Barrett visited me last week and we made some progress on this issue, but it’s
still very touchy.

Also, all the work cited above deals with so-called “Euclidean” quantum gravity —
that’s why it uses the double cover of the rotation group SO(4). For “Lorentzian” quan-
tum gravity we’d need instead to use the double cover of the Lorentz group SO(3, 1). This
group is isomorphic to SL(2,C). As explained in “Week 109”, the finite-dimensional irre-
ducible representations of SL(2,C) are also described by pairs of spins, so the Lorentzian
theory should be similar to the Euclidean theory. However, most work so far has dealt
with the Euclidean case; this needs to be addressed.

Finally, Crane has written a bit more about the geometrical significance of his work
with Barrett:

8) Louis Crane, “On the interpretation of relativistic spin networks and the balanced
state sum”, 4 pages, preprint available as gr-qc/9710108.

Next week I’ll talk about other developments in the loop representation of quantum
gravity, some arising from Thiemann’s work on the Hamiltonian constraint. After that, I
think I want to talk about something completely different, like homotopy theory. Lately
I’ve been trying to make “This Week’s Finds” very elementary and readable — relatively
speaking, I mean — but I’m getting in the mood for writing in a more technical and in-
comprehensible manner, and homotopy theory is an ideal subject for that sort of writing.
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Week 114

January 12, 1998

Classes have started! But I just flew back yesterday from the Joint Mathematics Meetings
in Baltimore — the big annual conference organized by the AMS, the MAA, SIAM, and
other societies. Over 4000 mathematicians could be seen wandering in clumps about
the glitzy harbor area and surrounding crime-ridden slums, arguing about abstractions,
largely oblivious to the world around them. Everyone ate the obligatory crab cakes for
which Baltimore is justly famous. Some of us drank a bit too much beer, too.

Witten gave a plenary talk on “M-theory”, which was great fun even though he didn’t
actually say what M-theory is. Steve Sawin and I ran a session on quantum gravity and
low-dimensional topology, so I’ll say a bit about what went on there. There was also a
nice session on homotopy theory in honor of J. Michael Boardman. I’ll talk about that
and various other things next week.

A lot of the buzz in our session concerned the new “spin foam” approach to quantum
gravity which I discussed in “Week 113”. The big questions are: how do you test this
approach without impractical computer simulations? Lee Smolin’s paper below suggests
one way. Should you only sum over spin foams that are dual to a particular triangulation
of spacetime, or should you sum over all spin foams that fit in a particular 4-dimensional
spacetime manifold, or should you sum over all spin foams? There was a lot of argument
about this. In addition to the question of what is physically appropriate, there’s the
mathematical problem of avoiding divergent infinite sums. Perhaps the sum required
to answer any truly physical question only involves finitely many spin foams — that’s
what I hope. Finally, should the time evolution operators constructed using spin foams
be thought of as describing true time evolution, or merely the projection onto the kernel
of the Hamiltonian constraint? While it sounds a bit technical, this question is crucial for
the interpretation of the theory; it’s part of what they call “the problem of time”.

Carlo Rovelli spoke about how spin foams arise in canonical quantum gravity, while
John Barrett and Louis Crane discussed them in the context of discretized path integrals
for quantum gravity, also known as state sum models. As in the more traditional “Regge
calculus” approach, these models start by chopping spacetime into simplices. The biggest
difference is that now areas of triangles play a more important role than lengths of edges.
But Barrett, Crane and others are starting to explore the relationships:

1) John W. Barrett, Martin Rocek, Ruth M. Williams, “A note on area variables in
Regge calculus”, preprint available as gr-qc/9710056.

2) Jarmo Makela, “Variation of area variables in Regge calculus”, preprint available
as gr-qc/9801022.

Also, there’s been some progress on extracting Einstein’s equation for general relativ-
ity as a classical limit of the Barrett-Crane state sum model. Let me quote the abstract of
this paper:

3) Louis Crane and David N. Yetter, “On the classical limit of the balanced state sum”,
preprint available as gr-qc/9712087.
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“The purpose of this note is to make several advances in the interpretation of
the balanced state sum model by Barrett and Crane in gr-qc/9709028 as a
quantum theory of gravity. First, we outline a shortcoming of the definition of
the model pointed out to us by Barrett and Baez in private communication, and
explain how to correct it. Second, we show that the classical limit of our state
sum reproduces the Einstein-Hilbert lagrangian whenever the term in the state
sum to which it is applied has a geometrical interpretation. Next we outline
a program to demonstrate that the classical limit of the state sum is in fact
dominated by terms with geometrical meaning. This uses in an essential way the
alteration we have made to the model in order to fix the shortcoming discussed in
the first section. Finally, we make a brief discussion of the Minkowski signature
version of the model.”

Lee Smolin talked about his ideas for relating spin foam models to string theory. He
has a new paper on this, so I’ll just quote the abstract:

4) Lee Smolin, “Strings as perturbations of evolving spin-networks”, preprint available
as hep-th/9801022.

“A connection between non-perturbative formulations of quantum gravity and
perturbative string theory is exhibited, based on a formulation of the non-
perturbative dynamics due to Markopoulou. In this formulation the dynamics
of spin network states and their generalizations is described in terms of histories
which have discrete analogues of the causal structure and many fingered time of
Lorentzian spacetimes. Perturbations of these histories turn out to be described
in terms of spin systems defined on 2-dimensional timelike surfaces embedded in
the discrete spacetime. When the history has a classical limit which is Minkowski
spacetime, the action of the perturbation theory is given to leading order by the
spacetime area of the surface, as in bosonic string theory. This map between a
non-perturbative formulation of quantum gravity and a 1+1 dimensional the-
ory generalizes to a large class of theories in which the group SU(2) is extended
to any quantum group or supergroup. It is argued that a necessary condition
for the non-perturbative theory to have a good classical limit is that the result-
ing 1+1 dimensional theory defines a consistent and stable perturbative string
theory.”

Fotini Markopolou spoke about her recent work with Smolin on formulating spin
foam models in a manifestly local, causal way.

5) Fotini Markopoulou and Lee Smolin, “Quantum geometry with intrinsic local causal-
ity”, preprint available as gr-qc/9712067.

“The space of states and operators for a large class of background independent
theories of quantum spacetime dynamics is defined. The SU(2) spin networks
of quantum general relativity are replaced by labelled compact two-dimensional
surfaces. The space of states of the theory is the direct sum of the spaces of in-
variant tensors of a quantum group Gq over all compact (finite genus) oriented
2-surfaces. The dynamics is background independent and locally causal. The
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dynamics constructs histories with discrete features of spacetime geometry such
as causal structure and multifingered time. For SU(2) the theory satisfies the
Bekenstein bound and the holographic hypothesis is recast in this formalism.”

The main technical idea in this paper is to work with “thickened” or “framed” spin
networks, which amounts to replacing graphs by solid handlebodies. One expects this
“framing” business to be important for quantum gravity with nonzero cosmological con-
stant. This framing business also appears in the q-deformed version of Barrett and
Crane’s model and in my “abstract” version of their model, which assumes no back-
ground spacetime manifold. Markopoulou and Smolin don’t specify a choice of dynam-
ics; instead, they describe a class of theories which has my model as a special case,
though their approach to causality is better suited to Lorentzian theories, while mine is
Euclidean.

As I’ve often noted, spin foams are about spacetime geometry, or dynamics, while
spin networks are a way of describing the geometry of space, or kinematics. Kinematics
is always easier than dynamics, so the spin network approach to the quantum geometry
of space has been much better worked out than the new spin foam stuff. Abhay Ashtekar
gave an overview of these kinematical issues in his talk on “quantum Riemannian geom-
etry”, and Kirill Krasnov described how our understanding of these already allows us to
compute the entropy of black holes (see “Week 112”). Here it’s worth mentioning that
the second part of Ashtekar’s paper with Jerzy Lewandowski is finally out:

6) Abhay Ashtekar and Jerzy Lewandowski, “Quantum theory of geometry II: volume
operators”, preprint available as gr-qc/9711031.

“A functional calculus on the space of (generalized) connections was recently in-
troduced without any reference to a background metric. It is used to continue
the exploration of the quantum Riemannian geometry. Operators corresponding
to volume of three-dimensional regions are regularized rigorously. It is shown
that there are two natural regularization schemes, each of which leads to a
well-defined operator. Both operators can be completely specified by giving their
action on states labelled by graphs. The two final results are closely related but
differ from one another in that one of the operators is sensitive to the differential
structure of graphs at their vertices while the second is sensitive only to the topo-
logical characteristics. (The second operator was first introduced by Rovelli and
Smolin and De Pietri and Rovelli using a somewhat different framework.) The
difference between the two operators can be attributed directly to the standard
quantization ambiguity. Underlying assumptions and subtleties of regulariza-
tion procedures are discussed in detail in both cases because volume operators
play an important role in the current discussions of quantum dynamics.”

Before spin foam ideas came along, the basic strategy in the loop representation of
quantum gravity was to start with general relativity on a smooth manifold and try to
quantize it using the “canonical quantization” approach. Here the most important and
difficult thing is to implement the “Hamiltonian constraint” as an operator on the Hilbert
space of kinematical states, so you can write down the Wheeler-deWitt equation, which
is, quite roughly speaking, the quantum gravity analog of Schrodinger’s equation. (For a
summary of this approach, try “Week 43”.)

The most careful attempt to do this so far is the work of Thiemann:
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7) Thomas Thiemann, “Quantum spin dynamics (QSD)”, preprint available as gr-qc/
9606089.

“Quantum spin dynamics (QSD) II”, preprint available as gr-qc/9606090.

“QSD III: Quantum constraint algebra and physical scalar product in quantum gen-
eral relativity”, preprint available as gr-qc/9705017.

“QSD IV: 2+1 Euclidean quantum gravity as a model to test 3+1 Lorentzian quan-
tum gravity”, preprint available as gr-qc/9705018.

“QSD V: Quantum gravity as the natural regulator of matter quantum field theo-
ries”, preprint available as gr-qc/9705019.

“QSD VI: Quantum Poincare algebra and a quantum positivity of energy theorem
for canonical quantum gravity”, preprint available as gr-qc/9705020

“Kinematical Hilbert spaces for fermionic and Higgs quantum field theories”, gr-qc/
9705021

If everything worked as smoothly as possible, the Hamiltonian constraint would sat-
isfy nice commutation relations with the other constraints of the theory, giving a repre-
sentation of something called the “Dirac algebra”. However, as Don Marolf explained
in his talk, this doesn’t really happen, at least in a large class of approaches including
Thiemann’s:

8) Jerzy Lewandowski and Donald Marolf, “Loop constraints: A habitat and their
algebra”, preprint available as gr-qc/9710016.

9) Rodolfo Gambini, Jerzy Lewandowski, Donald Marolf, and Jorge Pullin, “On the
consistency of the constraint algebra in spin network quantum gravity”, preprint
available as gr-qc/9710018.

This is very worrisome. . . as everything concerning quantum gravity always is. Per-
sonally these results make me want to spend less time on the Hamiltonian constraint, es-
pecially to the extent that it assumes a the old picture of spacetime as a smooth manifold,
and more time on approaches that start with a discrete picture of spacetime. However,
the only way to make serious progress is for different people to push on different fronts
simultaneously.

There were a lot of other interesting talks, but since I’m concentrating on quantum
gravity here I won’t describe the ones that were mainly about topology. I’ll wrap up by
mentioning Steve Carlip’s talk on spacetime foam. He gave a nice illustration to how
hard it is to “sum over topologies” by arguing that this sum diverges for negative values
of the cosmological constant. He has a paper out on this:

10) Steven Carlip, “Spacetime foam and the cosmological constant”, Phys. Rev. Lett. 79
(1997) 4071–4074, preprint available as gr-qc/9708026.

Again, I’ll quote the abstract:

“In the saddle point approximation, the Euclidean path integral for quantum
gravity closely resembles a thermodynamic partition function, with the cosmo-
logical constant Λ playing the role of temperature and the ‘density of topologies’
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acting as an effective density of states. For Λ < 0, the density of topologies
grows superexponentially, and the sum over topologies diverges. In thermody-
namics, such a divergence can signal the existence of a maximum temperature.
The same may be true in quantum gravity: the effective cosmological constant
may be driven to zero by a rapid rise in the density of topologies.”
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Week 115

February 1, 1998

These days I’ve been trying to learn more homotopy theory. James Dolan got me inter-
ested in it by explaining how it offers many important clues to n-category theory. Ever
since, we’ve been trying to understand what the homotopy theorists have been up to for
the last few decades. Since trying to explain something is often the best way to learn it,
I’ll talk about this stuff for several Weeks to come.

Before plunging in, though, I’d like mention yet another novel by Greg Egan:

1) Greg Egan, Diaspora, Orion Books, 1997.

The main character of this book, Yatima, is a piece of software. . . and a mathemati-
cian. The tale begins in 2975 with ver birth as an “orphan”, a citizen of the polis born of
no parents, its mind seed chosen randomly by the conceptory. Yatima learns mathematics
in a virtual landscape called the Truth Mines. To quote (with a few small modifications):

The luminous object buried in the cavern floor broadcast the definition of a
topological space: a set of points, grouped into ‘open subsets’ which specified
how the points were connected to one another — without appealing to notions
like ‘distance’ or ‘dimension’. Short of a raw set with no structure at all, this was
about as basic as you could get: the common ancestor of virtually every entity
worth of the name ‘space’, however exotic. A single tunnel led into the cavern,
providing the link to the necessary prior concepts, and half a dozen tunnels led
out, slanting gently ‘down’ into the bedrock, pursuing various implications of
the definition. Suppose T is a topological space. . . then what follows? These
routes were paved with small gemstones, each one broadcasting an intermediate
result on the way to a theorem.

Every tunnel in the Mines was built from the steps of a watertight proof; every
theorem, however deeply buried, could be traced back to every one of its as-
sumptions. And to pin down exactly what was meant by a ‘proof ’, every field
of mathematics used its own collection of formal systems: sets of axioms, defi-
nitions, and rules of deduction, along with the specialised vocabulary needed to
state theorems and conjectures precisely.

[. . . .]

The library was full of the ways past miners had fleshed out the theorems, and
Yatima could have had those details grafted in alongside the raw data, granting
ver the archived understanding of thousands of Konishi citizens who’d travelled
this route before. The right mind-grafts would have enabled ver effortlessly to
catch up with all the living miners who were pushing the coal face ever deeper
in their own inspired directions. . . at the cost of making ver, mathematically
speaking, little more than a patchwork clone of them, capable only of following
in their shadow.

If ve ever wanted to be a miner in vis own right — making and testing vis
own conjectures at the coal face, like Gauss and Euler, Riemann and Levi-Civita,
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deRham and Cartan, Radiya and Blanca - then Yatima knew there were no
shortcuts, no alternatives to exploring the Mines first hand. Ve couldn’t hope to
strike out in a fresh direction, a route no one had ever chosen before, without
a new take on the old results. Only once ve’d constructed vis own map of the
Mines — idiosyncratically crumpled and stained, adorned and annotated like
no one else’s — could ve begin to guess where the next rich vein of undiscovered
truths lay buried.

The tale ends in a universe 267,904,176,383,054 duality transformations away from
ours, at the end of a long quest. What does Yatima do then? Keep studying math!
“It would be a long, hard journey to the coal face, but this time there would be no
distractions.”

I won’t give away any more of the plot. Suffice it to say that this is hard science
fiction — readers in search of carefully drawn characters may be disappointed, but those
who enjoy virtual reality, wormholes, and philosophy should have a rollicking good ride.
I must admit to being biased in its favor, since it refers to a textbook I wrote. A sci-
ence fiction writer who actually knows the Gauss-Bonnet theorem! We should be very
grateful.

Okay, enough fun — it’s time for homotopy theory. Actually homotopy theory is
tremendously fun, but it takes quite a bit of persistence to come anywhere close to the
coal face. The original problems motivating the subject are easy to state. Let’s call a
topological space simply a “space”, and call a continuous function between these simply
a “map”. Two maps f, g : X → Y are “homotopic” if one can be continuously deformed
to the other, or in other words, if there is a “homotopy” between them: a continuous
function F : [0, 1]×X → Y with

F (0, x) = f(x)

and
F (1, x) = g(x).

Also, two spaces X and Y are “homotopy equivalent” if there are functions f : X → Y
and g : Y → X for which fg and gf are homotopic to the identity. Thus, for example, a
circle, an annulus, and a solid torus are all homotopy equivalent.

Homotopy theorists want to classify spaces up to homotopy equivalence. And given
two spaces X and Y , they want to understand the set [X,Y ] of homotopy classes of
maps from X to Y . However, these are very hard problems! To solve them, one needs
high-powered machinery.

There are two roughly two sides to homotopy theory: building machines, and using
them to do computations. Of course these are fundamentally inseparable, but people
usually tend to prefer either one or the other activity. Since I am a mathematical physi-
cist, always on the lookout for more tools for my own work, I’m more interested in the
nice shiny machines homotopy theorists have built than in the terrifying uses to which
they are put.

What follows will strongly reflect this bias: I’ll concentrate on a bunch of elegant
concepts lying on the interface between homotopy theory and category theory. This
realm could be called “homotopical algebra”. Ideas from this realm can be applied, not
only to topology, but to many other realms. Indeed, two of its most famous practitioners,
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James Stasheff and Graeme Segal, have spent the last decade or so using it in string
theory! I’ll eventually try to say a bit about how that works, too.

Okay. . . . now I’ll start listing concepts and tools, starting with the more fundamental
ones and then working my way up. This will probably only make sense if you’ve got
plenty of that commodity known as “mathematical sophistication”. So put on some
Coltrane, make yourself a cafe macchiato, kick back, and read on. If at any point you
feel a certain lack of sophistication, you might want to reread “The Tale of n-Categories”,
starting with “Week 73”, where a bunch of the basic terms are defined.

A. Presheaf Categories. Given a category C, a “presheaf” on C is a contravariant func-
tor F : C → Set. The original example of this is where C is the category whose objects
are open subsets of a topological space X, with a single morphism f : U → V whenever
the open set U is contained in the open set V . For example, there is the presheaf of con-
tinuous real-valued functions, for which F (U) is the set of all continuous real functions
on U , and for any inclusion f : U → V , F (f) : F (V ) → F (U) is the “restriction” map
which assigns to any continuous function on V its restriction to U . This is a great way of
studying functions in all neighborhoods of X at once.

However, I’m bringing up this subject for a different reason, related to a different kind
of example. Suppose that C is a category whose objects are “shapes” of some kind, with
morphisms f : x→ y corresponding to ways the shape x can be included as a “piece” of
the shape y. Then a presheaf on C can be thought of as a geometrical structure built by
gluing together these shapes along their common pieces.

For example, suppose we want to describe directed graphs as presheaves. A directed
graph is a bunch of vertices and edges, where the edges have a direction specified. Since
they are made of two “shapes”, the vertex and the edge, we’ll cook up a little category C
with two object, V and E. There are two ways a vertex can be included as a piece of an
edge, either as its “source” or its “target”. Our category C, therefore, has two morphisms,
S : V → E and T : V → E. These are the only morphisms except for identity morphisms
— which correspond to how the edge is part of itself, and the vertex is part of itself!
Omitting identity morphisms, our little category C looks like this:

V E

S

T

Now let’s work out what a presheaf on C is. It’s a contravariant functor F : C → Set.
What does this amount to? Well, it amounts to a set F (V ) called the “set of vertices”,
a set F (E) called the “set of edges”, a function F (S) : F (E) → F (V ) assigning to each
edge its source, and a function F (T ) : F (E) → F (V ) assigning to each edge its target.
That’s just a directed graph!

Note the role played by contravariance here: if a little shape V is included as a piece
of a big shape E, our category gets a morphism S : V → E, and then in our presheaf we
get a function F (S) : F (E) → F (V ) going the other way, which describes how each big
shape has a bunch of little shapes as pieces.

Given any category C there is actually a category of presheaves on C. Given presheaves
F,G : C → Set, a morphism M from F to G is just a natural transformation M : F ⇒ G.
This is beautifully efficient way of saying quite a lot. For example, if C is the little
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category described above, so that F and G are directed graphs, a natural transformation
M : F ⇒ G is the same as:

• a map M(V ) sending each vertex of the graph F to a vertex of the graph G,

and

• a map M(E) sending each edge of the graph F to a edge of the graph G,

such that

• M(V ) of the source of any edge e of F equals the source of M(E) of e,

and

• M(V ) of the target of any edge e of F equals the target of M(E) of e.

Whew! Easier just to say M is a natural transformation between functors!
For more on presheaves, try:

2) Saunders Mac Lane and Ieke Moerdijk, Sheaves in Geometry and Logic: a First
Introduction to Topos Theory, Springer-Verlag, New York, 1992.

B. The Category of Simplices. This is a very important example of a category whose
objects are shapes — namely, simplices — and whose morphisms correspond to the ways
one shape is a piece of another. The objects of ∆ are called 1, 2, 3, . . ., corresponding
to the simplex with 1 vertex (the point), the simplex with 2 vertices (the interval), the
simplex with 3 vertices (the triangle), and so on. There are a bunch of ways for an lower-
dimensional simplex to be a face of a higher- dimensional simplex, which give morphisms
in ∆. More subtly, there are also a bunch of ways to map a higher-dimensional simplex
down into a lower-dimensional simplex, called “degeneracies”. For example, we can
map a tetrahedron down into a triangle in a way that carries the vertices {0, 1, 2, 3} of
the tetrahedron into the vertices {0, 1, 2} of the triangle as follows:

0 7→ 0

1 7→ 0

2 7→ 1

3 7→ 2

These degeneracies also give morphisms in ∆.
We could list all the morphisms and the rules for composing them explicitly, but

there is a much slicker way to describe them. Let’s use the old trick of thinking of
the natural number n as being the totally ordered n-element set {0, 1, 2, . . . , n − 1} of
all natural numbers less than n. Thus for example we think of the object 4 in ∆, the
tetrahedron, as the totally ordered set {0, 1, 2, 3}. These correspond to the 4 vertices of
the tetrahedron. Then the morphisms in ∆ are just all order-preserving maps between
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these totally ordered sets. So for example there is a morphism f : {0, 1, 2, 3} → {0, 1, 2}
given by the order-preserving map with

f(0) = 0

f(1) = 0

f(2) = 1

f(3) = 2

The rule for composing morphisms is obvious: just compose the maps! Slick, eh?
We can be slicker if we are willing to work with a category equivalent to ∆ (in the

technical sense described in “Week 76”), namely, the category of all nonempty totally
ordered sets, with order-preserving maps as morphisms. This has a lot more objects
than just {0}, {0, 1}, {0, 1, 2}, etc., but all of its objects are isomorphic to one of these.
In category theory, equivalent categories are the same for all practical purposes — so
we brazenly call this category ∆, too. If we do so, we have following incredibly slick
description of the category of simplices: it’s just the category of finite nonempty totally
ordered sets!

If you are a true mathematician, you will wonder “why not use the empty set, too?”
Generally it’s bad to leave out the empty set. It may seem like “nothing”, but “nothing”
is usually very important. Here it corresponds to the “empty simplex”, with no vertices!
Topologists often leave this one out, but sometimes regret it later and put it back in
(the buzzword is “augmentation”). True category theorists, like Mac Lane, never leave
it out. They define ∆ to be the category of all totally ordered finite sets. For a beautiful
introduction to this approach, try:

3) Saunders Mac Lane, Categories for the Working Mathematician, Springer, Berlin,
1988.

C. Simplicial Sets. Now we put together the previous two ideas: a “simplicial set”
is a presheaf on the category of simplices! In other words, it’s a contravariant functor
F : ∆ → Set. Geometrically, it’s basically just a bunch of simplices stuck together along
their faces in an arbitrary way. We can think of it as a kind of purely combinatorial
version of a “space”. That’s one reason simplicial sets are so popular in topology: they
let us study spaces in a truly elegant algebraic context. We can define all the things
topologists love — homology groups, homotopy groups (see “Week 102”), and so on —
while never soiling our hands with open sets, continuous functions and the like. To see
how it’s done, try:

4) J. Peter May, Simplicial Objects in Algebraic Topology, Van Nostrand, Princeton,
1968.

Of course, not everyone prefers the austere joys of algebra to the earthy pleasures of
geometry. Algebraic topologists thrill to categories, functors and natural transformations,
while geometric topologists like drawing pictures of hideously deformed multi-holed
doughnuts in 4 dimensional space. It’s all a matter of taste. Personally, I like both!
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D. Simplicial Objects. We can generalize the heck out of the notion of “simplicial set”
by replacing the category Set with any other category C. A “simplical object in C” is
defined to be a contravariant functor F : ∆ → C. There’s a category whose objects are
such functors and whose morphisms are natural transformations between them.

So, for example, a “simplicial abelian group” is a simplicial object in the category of
abelian groups. Just as we may associate to any set X the free abelian group on X, we
may associate to any simplicial set X the free simplicial abelian group on X. In fact, it’s
more than analogy: the latter construction is a spinoff of the former! There is a functor

L : Set→ Ab

assigning to any set the free abelian group on that set (see “Week 77”). Given a simplicial
set

X : ∆→ Set

we may compose with L to obtain a simplicial abelian group

XL : ∆→ Ab

(where I’m writing composition in the funny order that I like to use). This is the free
simplicial abelian group on the simplicial set X!

Later I’ll talk about how to compute the homology groups of a simplicial abelian
group. Combined with the above trick, this will give a very elegant way to define the ho-
mology groups of a simplicial set. Homology groups are a very popular sort of invariant
in algebraic topology; we will get them with an absolute minimum of sweat.

Just as a good firework show ends with lots of explosions going off simultaneously,
leaving the audience stunned, deafened, and content, I should end with a blast of ab-
straction, just for the hell of it. Those of you who remember my discussion of “theories”
in “Week 53” can easily check that there is a category called the “theory of abelian
groups”. This allows us to define an “abelian group object” in any category with finite
limits. In particular, since the category of simplicial sets has finite limits (any presheaf
category has all limits), we can define an abelian group object in the category of sim-
plicial sets. And now for a very pretty result: abelian group objects in the category
of simplicial sets are the same as simplicial abelian groups! In other words, an abstract
“abelian group” living in the world of simplicial sets is the same as an abstract “simplicial
set” living in the world of abelian groups. I’m very fond of this kind of “commutativity
of abstraction”.

Finally, I should emphasize that all of this stuff was first explained to me by James
Dolan. I just want to make these explanations available to everyone.
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Week 116

February 7, 1998

While general relativity and the Standard Model of particle physics are very different
in many ways, they have one important thing in common: both are gauge theories. I
will not attempt to explain what a gauge theory is here. I just want to recommend the
following nice book on the early history of this subject:

1) Lochlainn O’Raifeartaigh, The Dawning of Gauge Theory, Princeton U. Press, Prince-
ton, 1997.

This contains the most important early papers on the subject, translated into English,
together with detailed and extremely intelligent commentary. It starts with Hermann
Weyl’s 1918 paper “Gravitation and Electricity”, in which he proposed a unification of
gravity and electromagnetism. This theory was proven wrong by Einstein in a one-
paragraph remark which appears at the end of Weyl’s paper — Einstein noticed it would
predict atoms of variable size! — but it highlighted the common features of general
relativity and Maxwell’s equations, which were later generalized to obtain the modern
concept of gauge theory.

It also contains Theodor Kaluza’s 1921 paper “On the Unification Problem of Physics”
and Oskar Klein’s 1926 paper “Quantum Theory and Five-Dimensional Relativity”. These
began the trend, currently very popular in string theory, of trying to unify forces by
postulating additional dimensions of spacetime. It’s interesting how gauge theory has
historical roots in this seemingly more exotic notion. The original Kaluza-Klein theory
assumed a 5-dimensional spacetime, with the extra dimension curled into a small circle.
Starting with 5-dimensional general relativity, and using the U(1) symmetry of the cir-
cle, they recovered 4-dimensional general relativity coupled to a U(1) gauge theory —
namely, Maxwell’s equations. Unfortunately, their theory also predicted an unobserved
spin-0 particle, which was especially problematic back in the days before mesons were
discovered.

I wasn’t familiar with another item in this book, Wolfgang Pauli’s letter to Abraham
Pais entitled “Meson-Nucleon Interactions and Differential Geometry”. This theory, “writ-
ten down July 22–25 1953 in order to see how it looks”, postulated 2 extra dimensions
in the shape of a small sphere. The letter begins, “Split a 6-dimensional space into a
(4 + 2)-dimensional one.” At the time, meson-nucleon interactions were believe to have
an SU(2) symmetry corresponding to conservation of “isospin”. Pauli obtained a theory
with this symmetry group using the SU(2) symmetry of the sphere.

Apparently Pauli got a lot of his inspiration from Weyl’s 1929 paper “Electron and
Gravitation”, also reprinted in this volume. This masterpiece did all the following things:
it introduced the concept of 2-component spinors (see “Week 109”), considered the pos-
sibility that the laws of physics violate parity and time reversal symmetry, introduced the
tetrad formulation of general relativity, introduced the notion of a spinor connection,
and explicitly derived electromagnetism from the gauge principle! A famously critical
fellow, Pauli lambasted Weyl’s ideas on parity and time reversal violation — which are
now known to be correct. But even he conceded the importance of deriving Maxwell’s
equations from the gauge principle, saying “Here I must admit your ability in Physics”.
And he incorporated many of the ideas into his 1953 letter.
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An all-around good read for anyone seriously interested in the history of physics! It’s
best if you already know some gauge theory.

Now let me continue the tour of homotopy theory I began last week. I was talking
about simplices. Simplices are amphibious creatures, easily capable of living in two
different worlds. On the one hand, we can think of them as topological spaces, and
on the other hand, as purely algebraic gadgets: objects in the category of finite totally
ordered sets, which we call ∆. This gives simplices a special role as a bridge between
topology and algebra.

This week I’ll begin describing how this works. Next time we’ll get into some of the
cool spinoffs. I’ll keep up the format of listing tools one by one:

E. Geometric realization. In “Week 115” I talked about simplicial sets. A simplicial set
is a presheaf on the category ∆. Intuitively, it’s a purely combinatorial way of describing
a bunch of abstract simplices glued together along their faces. We want a process that
turns such things into actual topological spaces, and also a process that turns topological
spaces back into simplicial sets.

Let’s start with the first one. Given a simplicial set X, we can form a space |X|
called the “geometric realization” of X by gluing spaces shaped like simplices together
in the pattern given by X. Given a morphism between simplicial sets there’s an obvious
continuous map between their geometric realizations, so geometric realization is actually
a functor

| · | : SimpSet→ Top

from the category of simplicial sets, SimpSet, to the category of topological spaces, Top.
It’s straightforward to fill in the details. But if we want to be slick, we can define

geometric realization using the magic of adjoint functors — see below.

F. Singular Simplicial Set. The basic idea here is that given a topological space X, its
“singular simplicial set” Sing(X) consists of all possible ways of mapping simplices into
X. This gives a functor

Sing : Top→ SimpSet.

We make this precise as follows.
By thinking of simplices as spaces in the obvious way, we can associate a space to any

object of ∆, and also a continuous map to any morphism in ∆. Thus there’s a functor

i : ∆→ Top.

For any space X we define
Sing(X) : ∆→ Set

by
Sing(X)(−) = Hom(i(−), X)

where the blank slot indicates how Sing(X) is waiting to eat a simplex and spit out the
set of all ways of mapping it — thought of as a space! — into the space X. The blank
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slot also indicates how Sing(X) is waiting to eat a morphism between simplices and spit
out a function between sets.

Having said what Sing does to spaces, what does it do to maps? The same formula
works: for any map f : X → Y between topological spaces, we define

Sing(f)(−) = Hom(i(−), f).

It may take some head scratching to understand this, but if you work it out, you’ll see
it works out fine. If you feel like you are drowning under a tidal wave of objects, mor-
phisms, categories, and functors, don’t worry! Medical research has determined that
people actually grown new neurons when learning category theory.

In fact, even though it might not seem like it, I’m being incredibly pedagogical and
nurturing. If I were really trying to show off, I would have compressed the last couple of
paragraphs into the following one line:

Sing(−−)(−) = Hom(i(−),−−).

where Sing becomes a functor using the fact that for any category C there’s a functor

Hom: Cop × C → Set

where Cop denotes the opposite of C, that is, C with all its arrows turned around. (See
“Week 78” for an explanation of this.)

Or I could have said this: form the composite

∆op × Top
i×1−−→ Topop × Top

Hom−−−→ Set

and dualize this to obtain
Sing : Top→ SimpSet.

These are all different ways of saying the same thing. Forming the singular simplical set
of a space is not really an “inverse” to geometric realization, since if we take a simplicial
set X, form its geometric realization, and then form the singular simplicial set of that,
we get something much bigger than X. However, if you think about it, there’s an obvious
map from X into Sing(|X|). Similarly, if we start with a topological space X, there’s an
obvious map from |Sing(X)| down to X.

What this means is that Sing is the right adjoint of | · |, or in other words, | · | is the left
adjoint of Sing. Thus if we want to be slick, we can just define geometric realization to be
the left adjoint of Sing. (See “Week 77”-“Week 79” for an exposition of adjoint functors.)

G. Chain Complexes. Now gird yourself for some utterly unmotivated definitions! If
you’ve taken a basic course in algebraic topology, you have probably learned about chain
complexes already, and if you haven’t, you probably aren’t reading this anymore — so
I’ll just plunge in.

A “chain complex” C• is a sequence of abelian groups and “boundary” homomor-
phisms like this:

C0
d1←− C1

d2←− C2
d3←− C3 ← . . .
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satisfying the magic equation
didi+1x = 0.

This equation says that the image of di+1 is contained in the kernel of di, so we may
define the “homology groups” to be the quotients

Hi(C•) = ker(di)/im(di+1).

The study of this stuff is called “homological algebra”. You can read about it in such
magisterial tomes as:

2) Henri Cartan and Samuel Eilenberg, Homological Algebra, Princeton University
Press, 1956.

or

3) Saunders Mac Lane, Homology, Springer-Verlag, Berlin, 1995.

But it you want something a bit more user-friendly, try:

4) Joseph J. Rotman, An Introduction to Homological Algebra, Academic Press, New
York, 1979.

The main reason chain complexes are interesting is that they are similar to topological
spaces, but simpler. In “singular homology theory”, we use a certain functor to convert
topological spaces into chain complexes, thus reducing topology problems to simpler
algebra problems. This is usually one of the first things people study when they study
algebraic topology. In sections G. and H. below, I’ll remind you how this goes.

Though singular homology is very useful, not everybody gets around to learning the
deep reason why! In fact, chain complexes are really just another way of talking about
a certain especially simple class of topological spaces, called “products of Eilenberg-
MacLane spaces of abelian groups”. In such spaces, topological phenomena in different
dimensions interact in a particularly trivial way. Singular homology thus amounts to
neglecting the subtler interactions between topology in different dimensions. This is
what makes it so easy to work with — yet ultimately so limited.

Before I keep rambling on I should describe the category of chain complexes, which
I’ll call Chain. The objects are just chain complexes, and given two of them, say C and
C ′, a morphism f : C → C ′ is a sequence of group homomorphisms

fi : Ci → C ′i

making the following big diagram commute:

C0 C1 C2 C3 . . .

C ′0 C ′1 C ′2 C ′3 . . .

f0

d1

f1

d2

f2

d3

f3

d′1 d′2 d′3

The reason Chain gets to be so much like the category Top of topological spaces is
that we can define homotopies between morphisms of chain complexes by copying the
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definition of homotopies between continuous maps. First, there is a chain complex called
I that’s analogous to the unit interval. It looks like this:

Z⊕ Z d1←− Z d2←− 0
d3←− 0

d4←− . . .

The only nonzero boundary homomorphism is d1, which is given by

d1(x) = (x,−x)

(Why? We take I1 = Z and I0 = Z ⊕ Z because the interval is built out of one 1-
dimensional thing, namely itself, and two 0-dimensional things, namely its endpoints.
We define d1 the way we do since the boundary of an oriented interval consists of two
points: its initial endpoint, which is positively oriented, and its final endpoint, which is
negatively oriented. This remark is bound to be obscure to anyone who hasn’t already
mastered the mystical analogies between algebra and topology that underlie homology
theory!)

There is a way to define a “tensor product” C ⊗ C ′ of chain complexes C and C ′,
which is analogous to the product of topological spaces. And there are morphisms

i, j : C → I ⊗ C

analogous to the two maps from a space into its product with the unit interval:

i, j : X → [0, 1]×X
i(x) = (0, x), j(x) = (1, x).

Using these analogies we can define a “chain homotopy” between chain complex mor-
phisms f, g : C → C ′ in a way that’s completely analogous to a homotopy between maps.
Namely, it’s a morphism F : I ⊗ C → C ′ for which the composite

C
i−→ I ⊗ C F−→ C ′

equals f , and the composite
C

j−→ I ⊗ C F−→ C ′

equals g. Here we are using the basic principle of category theory: when you’ve got a
good idea, write it out using commutative diagrams and then generalize the bejeezus
out of it!

The nice thing about all this is that a morphism of chain complexes f : C → C ′ gives
rise to homomorphisms of homology groups,

Hn(f) : Hn(C)→ Hn(C ′).

In fact, we’ve got a functor
Hn : Chain→ Ab.

And even better, if f : C → C ′ and g : C → C ′ are chain homotopic, then Hn(f) and
Hn(g) are equal. So we say: “homology is homotopy-invariant”.
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H. The Chain Complex of a Simplicial Abelian Group. Now let me explain a cool way of
getting chain complexes, which goes a long way towards explaining why they’re impor-
tant. Recall from item D. in “Week 115” that a simplicial abelian group is a contravariant
functor C : ∆→ Ab. In particular, it gives us an abelian group Cn for each object n of ∆,
and also “face” homomorphisms

∂0, . . . ∂n−1 : Cn → Cn−1

coming from all the ways the simplex with (n − 1) vertices can be a face of the simplex
with n vertices. We can thus can make C into a chain complex by defining dn : Cn →
Cn−1 as follows:

dn =
∑
i

(−1)i∂i.

The thing to check is that
dndn+1x = 0.

The alternating signs make everything cancel out! In the immortal words of the physicist
John Wheeler, “the boundary of a boundary is zero”.

Unsurprisingly, this gives a functor from simplicial abelian groups to chain complexes.
Let’s call it

Ch: SimpAb→ Chain

More surprisingly, this is an equivalence of categories! I leave you to show this — if
you give up, look at May’s book cited in section C. of “Week 115”. What this means is
that simplicial abelian groups are just another way of thinking about chain complexes. . .
or vice versa. Thus, if I were being ultra-sophisticated, I could have skipped the chain
complexes and talked only about simplicial abelian groups! This would have saved time,
but more people know about chain complexes, so I wanted to mention them.

I. Singular Homology. Okay, now that we have lots of nice shiny machines, let’s hook
them up and see what happens! Take the “singular simplicial set” functor:

Sing : Top→ SimpSet,

the “free simplicial abelian group on a simplicial set” functor:

L : SimpSet→ SimpAb,

and the “chain complex of a simplicial abelian group” functor:

Ch: SimpAb→ Chain,

and compose them! We get the “singular chain complex” functor

C : Top→ Chain

that takes a topological space and distills a chain complex out of it. We can then take the
homology groups of our chain complex and get the “singular homology” of our space.
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Better yet, the functor C : Top → Chain takes homotopies between maps and sends
them to homotopies between morphisms of chain complexes! It follows that homotopic
maps between spaces give the same homomorphisms between the singular homology
groups of these spaces. Thus homotopy-equivalent spaces will have isomorphic homol-
ogy groups. . . so we have gotten our hands on a nice tool for studying spaces up to
homotopy equivalence.

Now that we’ve got our hands on singular homology, we could easily spend a long
time using it to solve all sorts of interesting problems. I won’t go into that here; you can
read about it in all sorts of textbooks, like:

5) Marvin J. Greenberg, John R. Harper, Algebraic Topology: A First Course, Ben-
jamin/Cummings, Reading, Massachusetts, 1981.

or

6) William S. Massey, Singular Homology Theory, Springer-Verlag, New York, 1980.

which uses cubes rather than simplices.
What I’m trying to emphasize here is that singular homology is a composite of func-

tors that are interesting in their own right. I’ll explore their uses a bit more deeply next
time.

At a very early age, I made an assumption that a successful physicist only needs to know
elementary mathematics. At a later time, to my great regret, I realized that this assumption
of mine was completely wrong. — Albert Einstein
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Week 117

February 14, 1998

A true physicist loves matter in all its states. The phases we all learned about in school
- solid, liquid, and gas - are just the beginning of the story! There lots of others: liquid
crystal, plasma, superfluid, and neutronium, for example. Today I want to say a little
about two more phases that people are trying to create: quark-gluon plasma and strange
quark matter. The first almost certainly exists; the second is a matter of much discussion.

1) The E864 Collaboration, “Search for charged strange quark matter produced in
11.5 A GeV/c Au + Pb collisions”, Phys. Rev. Lett. 79 (1997) 3612–3616, preprint
available as nucl-ex/9706004.

Last week I went to a talk on the search for strange quark matter by one of these col-
laborators, Kenneth Barish. This talk was based on Barish’s work at the E864 experiment
at the “AGS”, the alternating gradient synchrotron at Brookhaven National Laboratory in
Long Island, New York.

What’s “strange quark matter”? Well, first remember from “Week 93” that in the
Standard Model there are bosonic particles that carry forces:

Electromagnetic force Weak force Strong force

photon W+, W-, Z 8 gluons

and fermionic particles that constitute matter:

Leptons Quarks

electron electron neutrino down quark up quark
muon muon neutrino strange quark charm quark
tauon tauon neutrino bottom quark top quark

(There is also the mysterious Higgs boson, which has not yet been seen.)
The quarks and leptons come in 3 generations each. The only quarks in ordinary

matter are the lightest two, those from the first generation: the up and down. These
are the constituents of protons and neutrons, which are the only stable particles made
of quarks. A proton consists of two ups and a down held together by the strong force,
while a neutron consists of two downs and a up. The up has electric charge +2/3, while
the down has electric charge −1/3. They also interact via the strong and weak forces.

The other quarks are more massive and decay via the weak interaction into up and
down quarks. Apart from that, however, they are quite similar. There are lots of short-
lived particles made of various combinations of quarks. All the combinations we’ve
seen so far are of two basic sorts. There are “baryons”, which consist of 3 quarks, and
“mesons”, which consist of a quark and an antiquark. Both of these should be visualized
roughly as a sort of bag with the quarks and a bunch of gluons confined inside.

Why are they confined? Well, I sketched an explanation in “Week 94”, so you should
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read that for more details. For now let’s just say the strong force likes to “stick together”,
so that energy is minimized if it stays concentrated in small regions, rather than spread-
ing all over the place, like the electromagnetic field does. Indeed, the strong force may
even do something like this in the absence of quarks, forming short-lived “glueballs”
consisting solely of gluons and virtual quark-antiquark pairs. (For more on glueballs, see
“Week 68”.)

For reasons I don’t really understand, the protons and neutrons in the nucleus do not
coalesce into one big bag of quarks. Even in a neutron star, the quarks stay confined
in their individual little bags. But calculations suggest that at sufficiently high tempera-
tures or pressures, “deconfinement” should occur. Basically, under these conditions the
baryons and mesons either smash into each other so hard, or get so severely squashed,
that they burst open. The result should be a soup of free quarks and gluons: a “quark-
gluon plasma”.

To get deconfinement to happen is not easy — at low pressures, it’s expected to
occur at a temperature of 2 trillion Kelvin! According to the conventional wisdom in
cosmology, the last time deconfinement was prevalent was about 1 microsecond after
the big bang! In the E864 experiment, they are accelerating gold nuclei to energies
of 11.5 GeV per nucleon and colliding them with a fixed target made of lead, which
is apparently not enough energy to fully achieve deconfinement — they believe they
are reaching temperatures of about 1 trillion Kelvin. At CERN they are accelerating
lead nuclei to 160 GeV per nuclei and colliding them with a lead target. They may be
getting signs of deconfinement, but as Jim Carr explained in a recent post to sci.physics,
they’re being very cautious about coming out and saying so. By mid-1999, the folks at
Brookhaven hope to get higher energies with the Relativistic Heavy Ion Collider, which
will collide two beams of gold nuclei head-on at 100 GeV per nucleon. . . see “Week 76”
for more on this.

One of the hoped-for signs of deconfinement is “strangeness enhancement”. The
lightest quark besides the up and down is the strange quark, and in the high energies
present in a quark gluon plasma, strange quarks should be formed. Moreover, since Pauli
exclusion principle prevents two identical fermions from being in the same state, it can
be energetically favorable to have strange quarks around, since they can occupy lower-
energy states which are already packed with ups and downs. They seem to be seeing
strangeness enhancement at CERN:

2) Juergen Eschke, NA35 Collaboration, “Strangeness enhancement in sulphur- nu-
cleus collisions at 200 GeV/N”, preprint available as hep-ph/9609242.

As far as I can tell, people are just about as sure that deconfinement occurs at high
temperatures as they would be that tungsten boils at high temperatures, even if they’ve
never actually seen it happen. A more speculative possibility is that as quark-gluon
plasma cools down it forms “strange quark matter” in the form of “strangelets”: big
bags of up, down, and strange quarks. This is what they’re looking for at E864. Their
experiment would only detect strangelets that live long enough to get to the detector.
When their experiment is running they get 106 collisions per second. So far they’ve set an
upper bound of 10−7 charged strangelets per collision, neutral strangelets being harder
to detect and rule out. For more on strangelets, try this:

3) E. P. Gilson and R. L. Jaffe, “Very small strangelets”, Phys. Rev. Lett. 71 (1993)
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332–335, preprint available as hep-ph/9302270.

Strange quark matter is also of interest in astrophysics. In 1984 Witten wrote a paper
proposing that in the limit of large quark number, strange quark matter could be more
stable than ordinary nuclear matter!

4) Edward Witten, “Cosmic separation of phases”, Phys. Rev. D30 (1984) 272–285.

More recently, a calculation of Farhi and Jaffe estimates that in the limit of large quark
number, the energy of strange quark matter is 301 MeV per quark, as compared with 310
Mev/quark for iron-56, which is the most stable nucleus. This raises the possibility that
under suitable conditions, a neutron star could collapse to become a “quark star” or
“strange star”. Let me quote the abstract of the following paper:

5) Dany Page, “Strange stars: Which is the ground state of QCD at finite baryon
number?”, in High Energy Phenomenology eds. M. A. Perez & R. Huerta (World
Scientific), 1992, pp. 347–356, preprint available as astro-ph/9602043.

Witten’s conjecture about strange quark matter (‘Strange Matter’) being the
ground state of QCD at finite baryon number is presented and stars made of
strange matter (‘Strange Stars’) are compared to neutron stars. The only ob-
servable way in which a strange star differs from a neutron star is in its early
thermal history and a detailed study of strange star cooling is reported and com-
pared to neutron star cooling. One concludes that future detection of thermal
radiation from the compact object produced in the core collapse of SN 1987A
could present the first evidence for strange matter.

Here are a couple of books on the subject, which unfortunately I’ve not been able to
get ahold of:

6) Strange Quark Matter in Physics and Astrophysics: Proceedings of the International
Workshop on Strange Quark Matter in Physics and Astrophysics, ed. Jes Madsen,
North-Holland, Amsterdam, 1991.

7) International Symposium on Strangeness and Quark Matter, eds. Georges Vassiliadis
et al, World Scientific, Singapore, 1995.

If anyone out there knows more about the latest theories of strange quark matter,
and can explain them in simple terms, I’d love to hear about it.

Okay, enough of that.
Now, on with my tour of homotopy theory!
So far I’ve mainly been talking about simplicial sets. I described a functor called

“geometric realization” that turns a simplicial set into a topological space, and another
functor that turns a space into a simplicial set called its “singular simplicial set”. I also
showed how to turn a simplicial set into a simplicial abelian group, and how to turn one
of those into a chain complex. . . or vice versa.

As you can see, the key is to have lots of functors at your disposal, so you can take a
problem in any given context — or more precisely, any given category! — and move it
to other contexts where it may be easier to solve. Eventually I want to talk about what

109

https://arxiv.org/abs/hep-ph/9302270
https://arxiv.org/abs/astro-ph/9602043


WEEK 117 FEBRUARY 14, 1998

all these categories we’re using have in common: they are all “model categories”. Once
we understand that, we’ll be able to see more deeply what’s going on in all the games
we’ve been playing.

But first I want to describe a few more important tricks for turning this into that. Re-
call from “Week 115” that there’s a category ∆ whose objects 0, 1, 2, . . . are the simplices,
with n corresponding to the simplex with n vertices — the simplex with 0 vertices being
the “empty simplex”. We can also define ∆ in a purely algebraic way as the category of fi-
nite totally ordered sets, with n corresponding to the totally ordered set {0, 1, . . . , n−1}.
The morphisms in ∆ are then the order-preserving maps. Using this algebraic definition
we can do some cool stuff:

J. The Nerve of a Category. This is a trick to turn a category into a simplicial set.
Given a category C, we cook up the simplicial set Nerve(C) as follows. The 0-dimensional
simplices of Nerve(C) are just the objects of C, which look like this:

x

The 1-simplices of Nerve(C) are just the morphisms, which look like this:

x
f−→ y

The 2-simplices of Nerve(C) are just the commutative diagrams that look like this:

x

y

z

f

h

g

where f : x → y, g : y → z, and h : x → z. And so on. In general, the n-simplices of
Nerve(C) are just the commutative diagrams in C that look like n-simplices!

When I first heard of this idea I cracked up. It seemed like an insane sort of joke.
Turning a category into a kind of geometrical object built of simplices? What nerve!
What use could this possibly be?

Well, for an application of this idea to computer science, see “Week 70”. We’ll soon
see lots of applications within topology. But first, let me give a slick abstract description
of this “nerve” process that turns categories into simplicial sets. It’s really a functor

Nerve: Cat→ SimpSet

going from the category of categories to the category of simplicial sets.
First, a remark on Cat. This has categories as objects and functors as morphisms.

Since the “category of all categories” is a bit creepy, we really want the objects of Cat
to be all the “small” categories, i.e., those having a mere set of objects. This prevents
Russell’s paradox from raising its ugly head and disturbing our fun and games.

Next, note that any partially ordered set can be thought of as a category whose objects
are just the elements of our set, and where we say there’s a single morphism from x to
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y if x 6 y. Composition of morphisms works out automatically, thanks to the transitivity
of “less than or equal to”. We thus obtain a functor

i : ∆→ Cat

taking each finite totally ordered set to its corresponding category, and each order-
preserving map to its corresponding functor.

Now we can copy the trick we played in section F of “Week 116”. For any category C
we define the simplicial set Nerve(C) by

Nerve(C)(−) = Hom(i(−), C)

Think about it! If you put the simplex n in the blank slot, we get Hom(i(n), C), which is
the set of all functors from that simplex, regarded as a category, to the category C. This
is just the set of all diagrams in C shaped like the simplex n, as desired!

We can say all this even more slickly as follows: take

∆op × Cat
i×1−−→ Catop × Cat

Hom−−−→ Set

and dualize it to obtain
Nerve: Cat→ SimpSet.

I should also point out that topologists usually do this stuff with the topologist’s
version of ∆, which does not include the “empty simplex”.

K. The Classifying Space of Category. If compose our new functor

Nerve: Cat→ SimpSet

with the “geometric realization” functor

| · | : SimpSet→ Top

defined in section E, we get a way to turn a category into a space, called its “classifying
space”. This trick was first used by Graeme Segal, the homotopy theorist who later
became the guru of conformal field theory. He invented this trick in the following paper:

8) Graeme B. Segal, “Classifying spaces and spectral sequences”, Publ. Math. Inst. des
Haut. Etudes Scient. 34 (1968), 105–112.

As it turns out, every reasonable space is the classifying space of some category! More
precisely, every space that’s the geometric realization of some simplicial set is homeomor-
phic to the classifying space of some category. To see this, suppose the space X is the
geometric realization of the simplicial set S. Take the set of all simplices in S and par-
tially order them by saying x 6 y if x is a face of y. Here by “face” I don’t mean just
mean a face of one dimension less than that of y; I’m allowing faces of any dimension
less than or equal to that of y. We obtain a partially ordered set. Now think of this as
a category, C. Then Nerve(C) is the “barycentric subdivision” of S. In other words, it’s
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a new simplicial set formed by chopping up the simplices of S into smaller pieces by
putting a new vertex in the center of each one. It follows that the geometric realization
of Nerve(C) is homeomorphic to that of S.

There are lots of interesting special sorts of categories, like groupoids, or monoids, or
groups (see “Week 74”). These give special cases of the “classifying space” construction,
some of which were actually discovered before the general case. I’ll talk about some of
these more next week, since they are very important in topology.

Also sometimes people take categories that they happen to be interested in, which
may have no obvious relation to topology, and study them by studying their classifying
spaces. This gives surprising ways to apply topology to all sorts of subjects. A good
example is “algebraic K-theory”, where we start with some sort of category of modules
over a ring.

L. ∆ as the Free Monoidal Category on a Monoid Object. Recall that a “monoid” is a set
with a product and a unit element satisfying associativity and the left and right unit laws.
Categorifying this notion, we obtain the concept of a “monoidal category”: a category C
with a product and a unit object satisfying the same laws. A nice example of a monoidal
category is the category Set with its usual cartesian product, or the category Vect with
its usual tensor product. We usually call the product in a monoidal category the “tensor
product”.

Now, the “microcosm principle” says that algebraic gadgets often like to live inside
categorified versions of themselves. It’s a bit like the “homunculus theory”, where I have
a little copy of myself sitting in my head who looks out through my eyes and thinks all
my thoughts for me. But unlike that theory, it’s true!

For example, we can define a “monoid object” in any monoidal category. Given a
monoidal category A with tensor product ⊗ and unit object 1, we define a monoid object
a in A to be an object equipped with a “product”

m : a⊗ a→ a

and a “unit”
i : 1→ a

which satisfy associativity and the left and right unit laws (written out as commutative
diagrams). A monoid object in Set is just a monoid, but a monoid object in Vect is an
algebra, and I gave some very different examples of monoid objects in “Week 89”.

Now let’s consider the “free monoidal category on a monoid object”. In other words,
consider a monoidal category A with a monoid object a in it, and assume that A has no
objects and no morphisms, and satisfies no equations, other than those required by the
definitions of “monoidal category” and “monoid object”.

Thus the only objects of A are the unit object together with a and its tensor powers.
Similarly, all the morphism of A are built up by composing and tensoring the morphisms

112



WEEK 117 FEBRUARY 14, 1998

m and i. So A looks like this:

1 a a⊗ a a⊗ a⊗ a . . .i

1⊗i

i⊗1

m

1⊗1⊗i

1⊗i⊗1

i⊗1⊗1

m⊗1

1⊗m

Here I haven’t drawn all the morphisms, just enough so that every morphism in A is a
composite of morphisms of this sort.

What is this category? It’s just ∆! The nth tensor power of a corresponds to the
simplex with n vertices. The morphisms going to the right describe the ways the simplex
with n vertices can be a face of the simplex with n+ 1 vertices. The morphisms going to
the left correspond to “degeneracies” — ways of squashing a simplex with n+ 1 vertices
down into one with n vertices.

So: in addition to its other descriptions, we can define ∆ as the free monoidal cat-
egory on a monoid object! Next time we’ll see how this is fundamental to homological
algebra.
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Week 118

March 14, 1998

Like many people of a certain age, as a youth my interest in mathematics and physics
was fed by the Scientific American, especially Martin Gardner’s wonderful column. Since
then the magazine seems to have gone downhill. For me, the last straw was a silly article
on the “death of proof” in mathematics, written by someone wholly unfamiliar with the
subject. The author of that article later wrote a book proclaiming the “end of science”,
and went on to manage a successful chain of funeral homes.

Recently, however, I was pleased to find a terse rebuttal of this fin-de-siecle pessimism
in an article appearing in — none other than Scientific American!

1) Michael J. Duff, “The theory formerly known as strings”, Scientific American 278
(February 1998), 64–69.

The article begins:

At a time when certain pundits are predicting the End of Science on the grounds
that all the important discoveries have already been made, it is worth emphasiz-
ing that the two main pillars of 20th-century physics, quantum mechanics and
Einstein’s general theory of relativity, are mutually incompatible.

To declare the end of science at this point, or even of particle physics (the two are
not the same!) would thus be ridiculously premature. It’s true that the quest for a
unified theory of all the forces and particles in nature is experiencing difficulties. On
the one hand, particle accelerators have become very expensive. On the other hand,
it’s truly difficult to envision a consistent and elegant formalism subsuming both general
relativity and the Standard Model of particle physics - much less one that makes new
testable predictions. But hey, the course of true love never did run smooth.

Duff’s own vision certainly has its charms. He has long been advocating the gen-
eralization of string theory to a theory of higher-dimensional “membranes”. Nowadays
people call these “p-branes” to keep track of the dimension of the membrane: a 0-brane
is a point particle, a 1-brane is a string, a 2-brane is a 2-dimensional surface, and so on.

For a long time, higher-dimensional membrane theories were unpopular, even among
string theorists, because the special tricks that eliminate infinities in string theory don’t
seem to work for higher-dimensional membranes. But lately membranes are all the rage:
it seems they show up in string theory whether or not you put them in from the start!
In fact, they seem to be the key to showing that the 5 different supersymmetric string
theories are really aspects of a single deeper theory — sometimes called “M-theory”.

Now, I don’t really understand this stuff at all, but I’ve been trying to learn about it
lately, so I’ll say a bit anyway, in hopes that some real experts will correct my mistakes.
Much of what I’ll say comes from the following nice review article:

2) M. J. Duff, “Supermembranes”, preprint available as hep-th/9611203

and also the bible of string theory:
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3) Michael B. Green, John H. Schwarz, and Edward Witten, Superstring Theory, two
volumes, Cambridge U. Press, Cambridge, 1987.

Let’s start with superstring theory. Here the “super” refers to the fact that instead
of just strings whose vibrational modes correspond to bosonic particles, we have strings
with extra degrees of freedom corresponding to fermionic particles. We can actually
think of the superstring as a string wiggling around in a “superspace”: a kind of space
with extra “fermionic” dimensions in addition to the usual “bosonic” ones. These extra
dimensions are described by coordinates that anticommute with each other, and com-
mute with the usual bosonic coordinates (which of course commute with each other).
This amounts to taking the boson/fermion distinction so seriously that we build it into
our description of spacetime from the very start! For more details on the mathematics of
superspace, try:

4) Bryce DeWitt, Supermanifolds, Cambridge U. Press, Cambridge, 2nd edition, 1992.

More deeply, “super” refers to “supersymmetry”, a special kind of symmetry trans-
formation that mixes the bosonic and fermionic coordinates. We speak of “N = 1 su-
persymmetry” if there is one fermionic coordinate for each bosonic coordinate, “N = 2
supersymmetry” if there are two, and so on.

Like all nice physical theories, we can in principle derive everything about our theory
of superstrings once we know the formula for the action. For bosonic strings, the action
is very simple. As time passes, a string traces out a 2-dimensional surface in spacetime
called the “string worldsheet”. The action is just the area of this worldsheet.

For superstring theory, we thus want a formula for the “super-area” of a surface
in superspace. And we need this to be invariant under supersymmetry transformations.
Suprisingly, this is only possible if spacetime has dimension 3, 4, 6, or 10. More precisely,
these are the dimensions where N = 1 supersymmetric string theory makes sense as a
classical theory.

Note: these dimensions are just 2 more than the dimensions of the four normed divi-
sion algebras: the reals, complexes, quaternions and octonions! This is no coincidence.
Robert Helling recently posted a nice article about this on sci.physics.resarch, which
I have appended to “Week 104”. The basic idea is that we can describe the vibrations
of a string in n-dimensional spacetime by a field on the string worldsheet with n − 2
components corresponding to the n − 2 directions transverse to the worldsheet. To get
an action that’s invariant under supersymmetry, we need some magical cancellations to
occur. It only works when we can think of this field as taking values in one of the normed
division algebras!

This is one of the curious things about superstring theory: the basic idea is simple,
but when you try to get it to work, you run into lots of obstacles which only disappear in
certain special circumstances — thanks to a mysterious conspiracy of beautiful mathe-
matical facts. These “conspiracies” are probably just indications that we don’t understand
the theory as deeply as we should. Right now I’m most interested in the algebraic as-
pects of superstring theory — and especially its relationships to “exceptional algebraic
structures” like the octonions, the Lie group E8, and so on. As I learn superstring theory,
I like keeping track of the various ways these structures show up, like remembering the
clues in a mystery novel.
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Interestingly, the quantum version of superstring theory is more delicate than the
classical version. When I last checked, it only makes sense in dimension 10. Thus there’s
something inherently octonionic about it! For more on this angle, see:

5) E. Corrigan and T. J. Hollowood, “The exceptional Jordan algebra and the super-
string”, Commun. Math. Phys. 122 (1989), 393.

6) E. Corrigan and T. J. Hollowood, “A string construction of a commutative nonasso-
ciative algebra related to the exceptional Jordan algebra”, Phys. Lett. B203 (1988),
47.

and some more references I’ll give later.
There are actually 5 variants of superstring theory in dimension 10, as I explained in

“Week 72”:

1. type I superstrings — these are open strings, not closed loops.

2. type IIA superstrings — closed strings where the left- and right-moving fermionic
modes have opposite chiralities.

3. type IIB superstrings — closed strings where the left- and right-moving fermionic
modes have the same chirality.

4. E8 heterotic superstrings — closed strings where the left-moving modes are purely
bosonic, with symmetry group E8 × E8.

5. Spin(32)/Z2 heterotic superstrings — closed strings where the left-moving modes
are purely bosonic, with symmetry group Spin(32)/Z2

To get 4-dimensional physics out of any of these, we need to think of our 10-dimensional
spacetime as a bundle with a little 6-dimensional “Calabi-Yau manifold” sitting over each
point of good old 4-dimensional spacetime. But there’s another step that’s very useful
when trying to understand the implications of superstring theory for ordinary particle
physics. This is to look at the low-energy limit. In this limit, only the lowest-energy
vibrational modes of the string contribute, each mode acting like a different kind of
massless particle. Thus in this limit superstring theory acts like an ordinary quantum
field theory.

What field theory do we get? This is a very important question. The field theory
looks simplest in 10-dimensional Minkowski spacetime; it gets more complicated when
we curl up 6 of the dimensions and think of it as a 4-dimensional field theory, so let’s just
talk about the simple situation.

No matter what superstring theory we start with, the low-energy limit looks like some
form of “supergravity coupled to super-Yang-Mills fields”. What’s this? Well, supergravity
is basically what we get when we generalize Einstein’s equations for general relativity
to superspace. Similarly, super-Yang-Mills theory is the supersymmetric version of the
Yang-Mills equations - which are important in particle physics because they describe all
the forces except gravity. So superstring theory has in it the seeds of general relativity
and also the other forces of nature — or at least their supersymmetric analogues.

Like superstring theory, super-Yang-Mills theory only works in spacetime dimensions
3, 4, 6, and 10. (See “Week 93” for more on this.) Different forms of supergravity make
sense in different dimensions, as explained in:
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7) Y. Tanii, “Introduction to supergravities in diverse dimensions”, preprint available
as hep-th/9802138.

In particular highest dimension in which supergravity makes sense is 11 dimensions
(where one only has N = 1 supergravity). Note that this is one more than the favored
dimension of superstring theory! This puzzled people for a long time. Now it seems
that M-theory is beginning to resolve these puzzles. Another interesting discovery is that
11-dimensional supergravity is related to the exceptional Lie group E8:

8) Stephan Melosch and Hermann Nicolai, “New canonical variables for d = 11 su-
pergravity”, preprint available as hep-th/9709277.

But I’m getting ahead of myself here! Right now I’m talking about the low-energy
limit of 10-dimensional superstring theory. I said it amounts to “supergravity coupled to
super-Yang-Mills fields”, and now I’m attempting to flesh that out a bit. So: starting from
N = 1 supergravity in 11 dimensions we can get a theory of supergravity in 10 dimen-
sions simply by requiring that all the fields be constant in one direction — a trick called
“dimensional reduction”. This is called “type IIA supergravity”, because it appears in the
low-energy limit of type IIA superstrings. There are also two other forms of supergravity
in 10 dimensions: “type IIB supergravity”, which appears in the low-energy limit of type
IIB superstrings, and a third form which appears in the low-energy limit of the type I and
heterotic superstrings. These other two forms of supergravity are chiral — that is, they
have a built-in “handedness”.

Now let’s turn to higher-dimensional supersymmetric membranes, or “supermem-
branes”. Duff summarizes this subject in a chart he calls the “brane scan”. This chart
lists the known classical theories of supersymetric p-branes. Of course, a p-brane traces
out a (p+1)-dimensional surface as time passes, so from a spacetime point of view it’s
p+1 which is more interesting. But anyway, here’s Duff’s chart of which supersymmetric
p-brane theories are possible in which dimensions d of spacetime:

d�p 0 1 2 3 4 5 6 7 8 9 10

11 X X ?
10 X X X X X X X X X X
9 X X
8 X
7 X X
6 X X X X X X
5 X X
4 X X X X
3 X X X
2 X
1

We immediately notice some patterns. First, we see horizontal stripes in dimensions
3, 4, 6, and 10: all the conceivable p-brane theories exist in these dimensions. I don’t
know why this is true, but it must be related to the fact that superstring and super-Yang-
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Mills theories make sense in these dimensions. Second, there are four special p-brane
theories:

• the 2-brane in dimension 4

• the 3-brane in dimension 6

• the 5-brane in dimension 10

• the 2-brane in dimension 11

which are related to the real numbers, the complex numbers, the quaternions and
the octonions, respectively. Duff refers us to the following papers for more information
on this:

9) G. Sierra, “An application of the theories of Jordan algebras and Freudenthal triple
systems to particles and strings”, Class. Quant. Grav. 4 (1987), 227.

10) J. M. Evans, “Supersymmetric Yang-Mills theories and division algebras”, Nucl.
Phys. B298 (1988), 92–108.

From these four “fundamental” theories of p-branes in d dimensions we can get theo-
ries of (p−k)-branes in d−k dimensions by dimensional reduction of both the spacetime
and the p-brane. Thus we see diagonal lines slanting down and to the left starting from
these “fundamental” theories. Note that these diagonal lines include the superstring
theories in dimensions 3, 4, 6, and 10!

I’ll wrap up by saying a bit about how M-theory, superstrings and supergravity fit
together. I’ve already said that:

1) type IIA supergravity in 10 dimensions is the dimensional reduction of 11-dimensional
supergravity; and

2) the type IIA superstring has typeIIA supergravity coupled to super-Yang-Mills fields
as a low-energy limit.

This suggests the presence of a theory in 11 dimensions that fills in the question mark
below:

?
11-dimensional

supergravity

type IIA
superstrings

type IIA
supergravity in
10 dimensions

low-energy limit

low-energy limit

dimensional

reduction

dimensional

reduction

This conjectured theory is called “M-theory”. The actual details of this theory are still
rather mysterious, but not surprisingly, it’s related to the theory of supersymmetric 2-
branes in 11 dimensions — since upon dimensional reduction these give superstrings
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in 10 dimensions. More surprisingly, it’s also related to the theory of 5-branes in 11
dimensions. The reason is that supergravity in 11 dimensions admits “soliton” solutions
— solutions that hold their shape and don’t disperse — which are shaped like 5-branes.
These are now believed to be yet another shadow of M-theory.

While the picture I’m sketching may seem baroque, it’s really just a small part of a
much more elaborate picture that relates all 5 superstring theories to M-theory. But I
think I’ll stop here! Maybe later when I know more I can fill in some more details. By
the way, I thank Dan Piponi for pointing out that Scientific American article.

For more on this business, check out the following review articles:

11) W. Lerche, “Recent developments in string theory”, preprint available as hep-th/
9710246.

12) John Schwarz, “The status of string theory”, preprint available as hep-th/9711029.

13) M. J. Duff, “M-theory (the theory formerly known as strings)”, preprint available
as hep-th/9608117.

The first one is especially nice if you’re interested in a nontechnical survey; the other
two are more detailed.

Okay. Now, back to my tour of homotopy theory! I had promised to talk about
classifying spaces of groups and monoids, but this post is getting pretty long, so I’ll
only talk about something else I promised: the foundations of homological algebra. So,
remember:

As soon as we can squeeze a simplicial set out of something, we have all sorts of
methods for studying it. We can turn the simplicial set into a space and then use all
the methods of topology to study this space. Or we can turn it into a chain complex
and apply homology theory. So it’s very important to have tricks for turning all sorts
of gadgets into simplicial sets: groups, rings, algebras, Lie algebras, you name it! And
here’s how. . . .

N. Simplicial objects from adjunctions. Remember from section D of “Week 115” that
a “simplicial object” in some category is a contravariant functor from ∆ to that category.
In what follows, I’ll take ∆ to be the version of the category of simplices that contains
the empty simplex. Topologists don’t usually do this, so what I’m calling a “simplicial
object”, they would call an “augmented simplicial object”. Oh well.

Concretely, a simplicial object in a category amounts to a bunch of objects x0, x1, x2, . . .
together with morphisms like this:

x0 x1 x2 x3 . . .

i0

d0

i1

i0

d0

d1

d0

d1

d2

The morphisms dj are called “face maps” and the morphisms ij are called “degeneracies”.
They are required to satisfy some equations which I won’t bother writing down here,
since you can figure them out yourself if you read section B of “Week 114”.
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Now, suppose we have an adjunction, that is, a pair of adjoint functors:

C D
L

R

This means we have natural transformations

e : LR⇒ 1D

i : 1C ⇒ RL

satisfying a couple of equations, which I again won’t write down, since I explained them
in “Week 79” and “Week 83”.

Then an object d in the category D automatically gives a simplicial object as follows:

d LR(d) LRLR(d) LRLRLR(d)

L·i·R

e

LRL·i·R

L·i·RLR

e·LR

LR·e

e·LRLR

LR·e·LR

LRLR·e

where · denotes horizontal composition of functors and natural transformations.
For example, if Gp is the category of abelian groups, we have an adjunction

Set AbGp

L

R

where L assigns to each set the free group on that set, and R assigns to each group its
underlying set. Thus given a group, the above trick gives us a simplicial object in Gp —
or in other words, a simplicial group. This has an underlying simplicial set, and from
this we can cook up a chain complex as in section H of “Week 116”. This lets us study
groups using homology theory! One can define the homology (and cohomology) of lots
other algebraic gadgets in exactly the same way.

Note: I didn’t explain why the equations in the definition of adjoint functors — which
I didn’t write down — imply the equations in the definition of a simplicial object — which
I also didn’t write down!

The point is, there’s a more conceptual approach to understanding why this stuff
works. Remember from section K of last week that ∆ is “the free monoidal category on
a monoid object”. This implies that whenever we have a monoid object in a monoidal
categoryM, we get a monoidal functor

F : ∆→M.

This gives a functor
G : ∆op →Mop

So: a monoid object inM gives a simplicial object inMop.
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Actually, if M is a monoidal category, Mop becomes one too, with the same tensor
product and unit object. So it’s also true that a monoid object inMop gives a simplicial
object inM!

Another name for a monoid object inMop is a “comonoid object inM”. Remember,
Mop is just like M but with all the arrows turned around. So if we’ve got a monoid
object inMop, it gives us a similar gadget inM, but with all the arrows turned around.
More precisely, a comonoid object inM is an object, say m, with “coproduct”

c : m→ m⊗m

and “counit”
e : m→ 1

morphisms, satisfying “coassociativity” and the left and right “counit laws”. You get these
laws by taking associativity and the left/right unit laws, writing them out as commutative
diagrams, and turning all the arrows around.

So: a comonoid object in a monoidal categoryM gives a simplicial object inM. Now
let’s see how this is related to adjoint functors. Suppose we have an adjunction, so we
have some functors

C D
L

R

and natural transformations
e : LR⇒ 1D

i : 1C ⇒ RL

satisfying the same equations I didn’t write before.
Let Hom(C, C) be the category whose objects are functors from C to itself and whose

morphisms are natural transformations between such functors. This is a monoidal cat-
egory, since we can compose functors from C to itself. In “Week 92” I showed that
Hom(C, C) has a monoid object in it, namely RL. The product for this monoid object is

R · e · L : RLRL⇒ RL

and the unit is
i : 1C ⇒ RL

Folks often call this sort of thing a “monad”.
Similarly, Hom(D,D) is a monoidal category containing a comonoid object, namely

LR. The coproduct for this comonoid object is

L · i ·R : LR⇒ LRLR

and the counit is
e : LR⇒ 1D

People call this thing a “comonad”. But what matters here is that we’ve seen this
comonoid object automatically gives us a simplicial object in Hom(D,D)! If we pick
any object d of D, we get a functor

Hom(D,D)→ D
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by taking
Hom(D,D)×D → D

and plugging in d in the second argument. This functor lets us push our simplicial object
in Hom(D,D) forwards to a simplicial object in D. Voila!
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Week 119

April 13, 1998

I’ve been slacking off on This Week’s Finds lately because I was busy getting stuff done
at Riverside so that I could visit the Center for Gravitational Physics and Geometry here
at Penn State with a fairly clean slate. Indeed, sometimes my whole life seems like an
endless series of distractions designed to prevent me from writing This Week’s Finds.
However, now I’m here and ready to have some fun. . . .

Recently I’ve been trying to learn about grand unified theories, or “GUTs”. These
were popular in the late 1970s and early 1980s, when the Standard Model of particle
interactions had fully come into its own and people were looking around for a better
theory that would unify all the forces and particles present in that model - in short,
everything except gravity.

The Standard Model works well but it’s fairly baroque, so it’s natural to hope for
some more elegant theory underlying it. Remember how it goes:

Table 7: Gauge bosons

Electromagnetic force Weak force Strong force

photon W+, W-, Z 8 gluons

Table 8: Fermions

Leptons Quarks

electron electron neutrino down quark up quark
muon muon neutrino strange quark charm quark
tauon tauon neutrino bottom quark top quark

Table 9: Higgs boson (not yet seen)

?

The strong, electromagnetic and weak forces are all described by Yang-Mills fields,
with the gauge group SU(3) × SU(2) × U(1). In what follows I’ll assume you know the
rudiments of gauge theory, or at least that you can fake it.

SU(3) is the gauge group of the strong force, and its 8 generators correspond to the
gluons. SU(2)×U(1) is the gauge group of the electroweak force, which unifies electro-
magnetism and the weak force. It’s not true that the generators of SU(2) corresponds to
the W+, W- and Z while the generator of U(1) corresponds to the photon. Instead, the
photon corresponds to the generator of a sneakier U(1) subgroup sitting slantwise inside
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SU(2)×U(1); the basic formula to remember here is:

Q = I3 + Y/2

where Q is ordinary electric charge, I3 is the 3rd component of “weak isospin”, i.e. the
generator of SU(2) corresponding to the matrix(

1
2 0
0 − 1

2

)
and Y , “hypercharge”, is the generator of the U(1) factor. The role of the Higgs particle
is to spontaneously break the SU(2) × U(1) symmetry, and also to give all the massive
particles their mass. However, I don’t want to talk about that here; I want to focus on the
fermions and how they form representations of the gauge group SU(3)× SU(2)× U(1),
because I want to talk about how grand unified theories attempt to simplify this picture
— at the expense of postulating more Higgs bosons.

The fermions come in 3 generations, as indicated in the chart above. I want to explain
how the fermions in a given generation are grouped into irreducible representations of
SU(3) × SU(2) × U(1). All the generations work the same way, so I’ll just talk about
the first generation. Also, every fermion has a corresponding antiparticle, but this just
transforms according to the dual representation, so I will ignore the antiparticles here.

Before I tell you how it works, I should remind you that all the fermions are, in
addition to being representations of SU(3) × SU(2) × U(1), also spin-1/2 particles. The
massive fermions — the quarks and the electron, muon and tauon — are Dirac spinors,
meaning that they can spin either way along any axis. The massless fermions — the
neutrinos — are Weyl spinors, meaning that they always spin counterclockwise along
their axis of motion. This makes sense because, being massless, they move at the speed
of light, so everyone can agree on their axis of motion! So the massive fermions have
two helicity states, which we’ll refer to as “left-handed” and “right-handed”, while the
neutrinos only come in a “left-handed” form.

(Here I am discussing the Standard Model in its classic form. I’m ignoring any mod-
ifications needed to deal with a possible nonzero neutrino mass. For more on Standard
Model, neutrino mass and different kinds of spinors, see “Week 93”.)

Okay. The Standard Model lumps the left-handed neutrino and the left-handed elec-
tron into a single irreducible representation of SU(3)× SU(2)×U(1):

(νL, eL) (1, 2,−1)

This 2-dimensional representation is called (1, 2,−1), meaning that it’s the tensor prod-
uct of the 1-dimensional trivial rep of SU(3), the 2-dimensional fundamental rep of
SU(2), and the 1-dimensional rep of U(1) with hypercharge −1.

Similarly, the left-handed up and down quarks fit together as:

(uL,uL,uL,dL,dL,dL) (3, 2, 1/3)

Here I’m writing both quarks 3 times since they also come in 3 color states. In other
words, this 6-dimensional representation is the tensor product of the 3-dimensional
fundamental rep of SU(3), the 2-dimensional fundamental rep of SU(2), and the 1-
dimensional rep of U(1) with hypercharge 1/3. That’s why we call this rep (3, 2, 1/3).
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(If you are familiar with the irreducible representations of U(1) you will know that
they are usually parametrized by integers. Here we are using integers divided by 3. The
reason is that people defined the charge of the electron to be −1 before quarks were
discovered, at which point it turned out that the smallest unit of charge was 1/3 as big
as had been previously believed.)

The right-handed electron stands alone in a 1-dimensional rep, since there is no right-
handed neutrino:

eR (1, 1,−2).

Similarly, the right-handed up quark stands alone in a 3-dimensional rep, as does the
right-handed down quark:

(uR,uR,uR) (3, 1, 4/3)

(dR,dR,dR) (3, 1,−2/3)

That’s it. If you want to study this stuff, try using the formula

Q = I3 + Y/2

to figure out the charges of all these particles. For example, since the right-handed
electron transforms in the trivial rep of SU(2), it has I3 = 0, and if you look up there
you’ll see that it has Y = −2. This means that its electric charge isQ = −1, as we already
knew.

Anyway, we obviously have a bit of a mess on our hands! The Standard Model is full
of tantalizing patterns, but annoyingly complicated. The idea of grand unified theories
is to find a pattern lurking in all this data by fitting the group SU(3) × SU(2) × U(1)
into a larger group. The smallest-dimensional “simple” Lie group that works is SU(5).
Here “simple” is a technical term that eliminates, for example, groups that are products
of other groups — these aren’t very “unified”. Georgi and Glashow came up with their
“minimal” SU(5) grand unified theory in 1975. The idea is to stick SU(3) × SU(2) into
SU(5) in the obvious diagonal way, leaving just enough room to cram in the U(1) if you
are clever.

Now if you add up the dimensions of all the representations above you get 2 + 6 +
1 + 3 + 3 = 15. This means we need to find a 15-dimensional representation of SU(5) to
fit all these particles. There are various choices, but only one that really works when you
take all the physics into account. For a nice simple account of the detective work needed
to figure this out, see:

1) Edward Witten, “Grand unification with and without supersymmetry”, in Intro-
duction to supersymmetry in particle and nuclear physics, edited by O. Castanos, A.
Frank, L. Urrutia, Plenum Press, 1984.

I’ll just give the answer. First we take the 5-dimensional fundamental representation
of SU(5) and pack fermions in as follows:

(dR,dR,dR, e
+
R, ν̄R) 5 = (3, 1,−2/3) + (1, 2,−1)

Here e+R is the right-handed positron and ν̄R is the right-handed antineutrino —
curiously, we need to pack some antiparticles in with particles to get things to work out
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right. Note that the first 3 particles in the above list, the 3 states of the right-handed
down quark, transform according to the fundamental rep of SU(3) and the trivial rep of
SU(2), while the remaining two transform according to the trivial rep of SU(3) and the
fundamental rep of SU(2). That’s how it has to be, given how we stuffed SU(3)× SU(2)
into SU(5).

Note also that the charges of the 5 particles on this list add up to zero. That’s also
how it has to be, since the generators of SU(5) are traceless. Note that the down quark
must have charge −1/3 for this to work! In a sense, the SU(5) model says that quarks
must have charges in units of 1/3, because they come in 3 different colors! This is pretty
cool.

Then we take the 10-dimensional representation of SU(5) given by the 2nd exterior
power of the fundamental representation — i.e., antisymmetric 5×5 matrices - and pack
the rest of the fermions in like this:

0 ūL ūL uL dL
−ūL 0 ūL uL dL
−ūL −ūL 0 uL dL
−uL −uL −uL 0 e+L
−dL −uL −dL e+L 0

 10 = (3, 2, 1/3) + (1, 1, 2) + (3, 1,−4/3)

Here the ū is the antiparticle of the up quark — again we’ve needed to use some antipar-
ticles. However, you can easily check that these two representations of SU(5) together
with their duals account for all the fermions and their antiparticles.

The SU(5) theory has lots of nice features. As I already noted, it explains why the up
and down quarks have charges 2/3 and −1/3, respectively. It also gives a pretty good
prediction of something called the Weinberg angle, which is related to the ratio of the
masses of the W and Z bosons. It also makes testable new predictions! Most notably,
since it allows quarks to turn into leptons, it predicts that protons can decay — with a
halflife of somewhere around 1029 or 1030 years. So people set off to look for proton
decay. . . .

However, even when the SU(5) model was first proposed, it was regarded as slightly
inelegant, because it didn’t unify all the fermions of a given generation in a single ir-
reducible representation (together with its dual, for antiparticles). This is one reason
why people began exploring still larger gauge groups. In 1975 Georgi, and indepen-
dently Fritzsch and Minkowski, proposed a model with gauge group SO(10). You can
stuff SU(5) into SO(10) as a subgroup in such a way that the 5- and 10-dimensional
representations of SU(5) listed above both fit into a single 16-dimensional rep of SO(10),
namely the chiral spinor rep. Yes, 16, not 15 — that wasn’t a typo! The SO(10) theory
predicts that in addition to the 15 states listed above there is a 16th, corresponding to a
right-handed neutrino! I’m not sure yet how the recent experiments indicating a nonzero
neutrino mass fit into this business, but it’s interesting.

Somewhere around this time, people noticed something interesting about these groups
we’ve been playing with. They all fit into the “E series”!

I don’t have the energy to explain Dynkin diagrams and the ABCDEFG classification
of simple Lie groups here, but luckily I’ve already done that, so you can just look at
“Week 62” — “Week 65” to learn about that. The point is, there is an infinite series of
simple Lie groups associated to rotations in real vector spaces — the SO(n) groups, also
called the B and D series. There is an infinite series of them associated to rotations in
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complex vector spaces — the SU(n) groups, also called the A series. And there is infintie
series of them associated to rotations in quaternionic vector spaces — the Sp(n) groups,
also called the C series. And there is a ragged band of 5 exceptions which are related to
the octonions, called mathrmG2, F4, E6, E7, and E8. I’m sort of fascinated by these —
see “Week 90”, “Week 91”, and “Week 106” for more — so I was extremely delighted to
find that the E series plays a special role in grand unified theories.

Now, people usually only talk about E6, E7, and E8, but one can work backwards
using Dynkin diagrams to define E5, E4, E3, E2, and E1. Let’s do it! Thanks go to Allan
Adler and Robin Chapman for helping me understand how this works. . . .

E8 is a big fat Lie group whose Dynkin diagram looks like this:

• • • • • • •

•

If we remove the rightmost root, we obtain the Dynkin diagram of a subgroup called E7:

• • • • • •

•

If we again remove the rightmost root, we obtain the Dynkin diagram of a subgroup of
E7, namely E6:

• • • • •

•

This was popular as a gauge group for grand unified models, and the reason why be-
comes clear if we again remove the rightmost root, obtaining the Dynkin diagram of a
subgroup we could call E5:

• • • •

•

But this is really just good old SO(10), which we were just discussing! And if we yet
again remove the rightmost root, we get the Dynkin diagram of a subgroup we could
call E4:

• • •

•

o

|

o--o--o
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This is just SU(5)! Let’s again remove the rightmost root, obtaining the Dynkin dia-
gram for E3. Well, it may not be clear what counts as the rightmost root, but here’s what
I want to get when I remove it:

• •

•

This is just SU(3)×SU(2), sitting inside SU(5) in the way we just discussed! So for some
mysterious reason, the Standard Model and grand unified theories seem to be related to
the E series!

We could march on and define E2:

•

•

which is just SU(2)× SU(2), and E1:
•

which is just SU(2). . . but I’m not sure what’s so great about these groups.
By the way, you might wonder what’s the real reason for removing the roots in the

order I did — apart from getting the answers I wanted to get — and the answer is, I
don’t really know! If anyone knows, please tell me. This could be an important clue.

Now, this stuff about grand unified theories and the E series is one of the reasons
why people like string theory, because heterotic string theory is closely related to E8 (see
“Week 95”). However, I must now tell you the bad news about grand unified theories.
And it is very bad.

The bad news is that those people who went off to detect proton decay never found
it! It became clear in the mid-1980s that the proton lifetime was at least 1032 years or so,
much larger than what the SU(5) theory most naturally predicts. Of course, if one is des-
perate to save a beautiful theory from an ugly fact, one can resort to desperate measures.
For example, one can get the SU(5) model to predict very slow proton decay by making
the grand unification mass scale large. Unfortunately, then the coupling constants of
the strong and electroweak forces don’t match at the grand unification mass scale. This
became painfully clear as better measurements of the strong coupling constant came in.

Theoretical particle physics never really recovered from this crushing blow. In a
sense, particle physics gradually retreated from the goal of making testable predictions,
drifting into the wonderland of pure mathematics. . . first supersymmetry, then super-
gravity, and then superstrings. . . ever more elegant theories, but never yet a verified
experimental prediction. Perhaps we should be doing something different, something
better? Easy to say, hard to do! If we see a superpartner at CERN, a lot of this “su-
perthinking” will be vindicated — so I guess most particle physicists are crossing their
fingers and praying for this to happen.

The following textbook on grand unified theories is very nice, especially since it be-
gins with a review of the Standard Model:

2) Graham G. Ross, Grand Unified Theories, Benjamin-Cummings, 1984.
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This one is a bit more idiosyncratic, but also good — Mohapatra is especially inter-
ested in theories where CP violation arises via spontaneous symmetry breaking:

3) Ranindra N. Mohapatra, Unification and Supersymmetry: The Frontiers of Quark-
Lepton Physics, Springer-Verlag, 1992.

I also found the following articles interesting:

4) D. V. Nanopoulos, “Tales of the GUT age”, in Grand Unified Theories and Related
Topics, proceedings of the 4th Kyoto Summer Institute, World Scientific, Singapore,
1981.

5) P. Ramond, “Grand unification”, in Grand Unified Theories and Related Topics, pro-
ceedings of the 4th Kyoto Summer Institute, World Scientific, Singapore, 1981.

Okay, now for some homotopy theory! I don’t think I’m ever gonna get to the really
cool stuff. . . in my attempt to explain everything systematically, I’m getting worn out
doing the preliminaries. Oh well, on with it. . . now it’s time to start talking about loop
spaces! These are really important, because they tie everything together. However, it
takes a while to deeply understand their importance.

O. The loop space of a topological space. Suppose we have a “pointed space” X, that
is, a topological space with a distinguished point called the “basepoint”. Then we can
form the space LX of all “based loops” in X — loops that start and end at the basepoint.

One reason why LX is so nice is that its homotopy groups are the same as those of
X, but shifted:

πi(LX) = πi+1(X).

Another reason LX is nice is that it’s almost a topological group, since one can compose
based loops, and every loop has an “inverse”. However, one must be careful here! Unless
one takes special care, composition will only be associative up to homotopy, and the
“inverse” of a loop will only be the inverse up to homotopy.

Actually we can make composition strictly associative if we work with “Moore paths”.
A Moore path in X is a continuous map

f : [0, T ]→ X

where T is an arbitrary nonnegative real number. Given a Moore path f as above and
another Moore path

g : [0, S]→ X

which starts where f ends, we can compose them in an obvious way to get a Moore path

fg : [0, T + S]→ X

Note that this operation is associative “on the nose”, not just up to homotopy. If we define
LX using Moore paths that start and end at the basepoint, we can easily make LX into a
topological monoid — that is, a topological space with a continuous associative product
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and a unit element. (If you’ve read section L, you’ll know this is just a monoid object in
Top!) In particular, the unit element of LX is the path i : [0, 0] → X that just sits there
at the basepoint of X.

LX is not a topological group, because even Moore paths don’t have strict inverses.
But LX is close to being a group. We can make this fact precise in various ways, some
more detailed than others. I’m pretty sure one way to say it is this: the natural map from
LX to its “group completion” is a homotopy equivalence.

P. The group completion of a topological monoid. Let TopMon be the category of
topological monoids and let TopGp be the category of topological groups. There is a
forgetful functor

F : TopGp→ TopMon

and this has a left adjoint
G : TopMon→ TopGp

which takes a topological monoid and converts it into a topological group by throwing
in formal inverses of all the elements and giving the resulting group a nice topology.
This functor G is called “group completion” and was first discussed by Quillen (in the
simplicial context, in an unpublished paper), and independently by Barratt and Priddy:

6) M. G. Barratt and S. Priddy, “On the homology of non-connected monoids and their
associated groups”, Comm. Math. Helv. 47 (1972), 1–14.

For any topological monoid M , there is a natural map from M to F (G(M)), thanks to
the miracle of adjoint functors. This is the natural map I’m talking about in the previous
section!
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Week 120

May 6, 1998

Now that I’m hanging out with the gravity crowd at Penn State, I might as well describe
what’s been going on here lately.

First of all, Ashtekar and Krasnov have written an expository account of their work
on the entropy of quantum black holes:

1) Abhay Ashtekar and Kirill Krasnov, “Quantum geometry and black holes”, preprint
available as gr-qc/9804039.

But if you prefer to see a picture of a quantum black hole without any equations, try:

2) Kirill Krasnov’s research webpage, http://shiva.nirvana.phys.psu.edu/~krasnov/
research.html.

You’ll see a bunch of spin networks poking the horizon, giving it area and curvature.
Of course, this is just a theory.

Second, there’s been a burst of new work studying quantum gravity in terms of spin
foams. A spin foam looks a bit like a bunch of soap suds — with the faces of the bubbles
and the edges where the bubbles meet labelled by spins j = 0, 1/2, 1, 3/2, . . .. Spin foams
are an attempt at a quantum description of the geometry of spacetime. If you slice a spin
foam with a hyperplane representing “t = 0” you get a spin network: a graph with its
edges and vertices labelled by spins. Spin networks have been used in quantum gravity
for a while now to describe the geometry of space at a given time, so it’s natural to hope
that they’re a slice of something that describes the geometry of spacetime.

As usual in quantum gravity, it’s too early to tell if this approach will work. As usual,
it has lots of serious problems. But before going into the problems, let me remind you
how spin foams are supposed to work.

To relate spin foams to more traditional ideas about spacetime, one can consider
spin foams living in a triangulated 4-manifold: one spin foam vertex sitting in each
4-simplex, one spin foam edge poking through each tetrahedron, and one spin foam
face intersecting each triangle. Labelling the spin foam edges and faces with spins is
supposed to endow the triangulated 4-manifold with a “quantum 4-geometry”. In other
words, it should let us compute things like the areas of the triangles, the volumes of the
tetrahedra, and the 4-volumes of the 4-simplices. There are some arguments going on
now about the right way to do this, but it’s far from an arbitrary business: the interplay
between group representation theory and geometry says a lot about how it should go.
In the simplified case of 3-dimensional spacetime, it’s fairly well understood — the hard
part, and the fun part, is getting it to work in 4 dimensions.

Assuming we can do this, the next trick is to compute an amplitude for each spin
foam vertex in a nice way, much as one computes amplitudes for vertices of Feynman
diagrams. A spin foam vertex is supposed to represent an “event” — if we slice the
spin foam by a hyperplane we get a spin network, and as we slide this slice “forwards
in time”, the spin network changes its topology whenever we pass a spin foam vertex.
The amplitude for a vertex tells us how likely it is for this event to happen. As usual in
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quantum theory, we need to take the absolute value of an amplitude and square it to get
a probability.

We also need to compute amplitudes for spin foam edges and faces, called “propa-
gators”, in analogy to the amplitudes one computes for the edges of Feynman diagrams.
Multiplying all the vertex amplitudes and propagators for a given spin foam, one gets
the amplitude for the whole spin foam. This tells us how likely it is for the whole spin
foam to happen.

Barrett and Crane came up with a specific way to do all this stuff, Reisenberger came
up with a different way, I came up with a general formalism for understanding this stuff,
and now people are busy arguing about the merits of different approaches. Here are
some papers on the subject — I’ll pick up where I left off in “Week 113”.

3) Louis Crane, David N. Yetter, “On the classical limit of the balanced state sum”,
preprint available as gr-qc/9712087.

The goal here is to show that in the limit of large spins, the amplitude given by Barrett
and Crane’s formula approaches

exp(iS)

where S is the action for classical general relativity — suitably discretized, and in signa-
ture + + ++. The key trick is to use an idea invented by Regge in 1961.

Regge came up with a discrete analog of the usual formula for the action in classical
general relativity. His formula applies to a triangulated 4-manifold whose edges have
specified lengths. In this situation, each triangle has an “angle deficit” associated to it.
It’s easier to visualize this two dimensions down, where each vertex in a triangulated
2-manifold has an angle deficit given by adding up angles for all the triangles having it
as a corner, and then subtracting 2π. No angle deficit means no curvature: the triangles
sit flat in a plane. The idea works similarly in 4 dimensions. Here’s Regge’s formula for
the action: take each triangle in your triangulated 4-manifold, take its area, multiply it
by its angle deficit, and then sum over all the triangles.

Simple, huh? In the continuum limit, Regge’s action approaches the integral of the
Ricci scalar curvature — the usual action in general relativity. For more see:

4) T. Regge, “General relativity without coordinates”, Nuovo Cimento 19 (1961), 558–
571.

So, Crane and Yetter try to show that in the limit of large spins, the Barrett-Crane
spin foam amplitude approaches exp(iS) where S is the Regge action. There argument
is interesting but rather sketchy. Someone should try to fill in the details!

However, it’s not clear to me that the large spin limit is physically revelant. If space-
time is really made of lots of 4-simplices labelled by spins, the 4-simplices have got to be
quite small, so the spins labelling them should be fairly small. It seems to me that the
right limit to study is the limit where you triangulate your 4-manifold with a huge num-
ber of 4-simplices labelled by fairly small spins. After all, in the spin network picture of
the quantum black hole, it seems that spin network edges labelled by spin 1/2 contribute
most of the states (see “Week 112”).

When you take a spin foam living in a triangulated 4-manifold and slice it in a way
that’s compatible with the triangulation, the spin network you get is a 4-valent graph.
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Thus it’s not surprising that Barrett and Crane’s formula for vertex amplitudes is related
to an invariant of 4-valent graphs with edges labelled by spins. There’s already a branch
of math relating such invariants to representations of groups and quantum groups, and
their formula fits right in. Yetter has figured out how to generalize this graph invariant
to n-valent graphs with edges labelled by spins, and he’s also studied more carefully
what happens when one “q-deforms” the whole business — replacing the group by the
corresponding quantum group. This should be related to quantum gravity with nonzero
cosmological constant, if all the mathematical clues aren’t lying to us. See:

5) David N. Yetter, “Generalized Barrett-Crane vertices and invariants of embedded
graphs”, preprint available as math.QA/9801131.

Barrett has also given a nice formula in terms of integrals for the invariant of 4-valent
graphs labelled by spins. This is motivated by the physics and illuminates it nicely:

6) John W. Barrett, “The classical evaluation of relativistic spin networks”, preprint
available as math.QA/9803063.

Let me quote the abstract:

The evaluation of a relativistic spin network for the classical case of the Lie
group SU(2) is given by an integral formula over copies of SU(2). For the graph
determined by a 4-simplex this gives the evaluation as an integral over a space
of geometries for a 4-simplex.

Okay, so much for the good news. What about the bad news? To explain this I need
to get a bit more specific about Barrett and Crane’s approach.

Their approach is based on a certain way to describe the geometry of a 4-simplex.
Instead of specifying lengths of edges as in the old Regge approach, we specify bivectors
for all its faces. Geometrically, a bivector is just an “oriented area element”; technically,
the space of bivectors is the dual of the space of 2-forms. If we have a 4-simplex in Rˆ4
and we choose orientations for its triangular faces, there’s an obvious way to associate a
bivector to each face. We get 10 bivectors this way.

What constraints do these 10 bivectors satisfy? They can’t be arbitrary! First, for any
four triangles that are all the faces of the same tetrahedron, the corresponding bivectors
must sum to zero. Second, every bivector must be “simple” — it must be the wedge prod-
uct of two vectors. Third, whenever two triangles are the faces of the same tetrahedron,
the sum of the corresponding bivectors must be simple.

It turns out that these constraints are almost but not quite enough to imply that 10
bivectors come from a 4-simplex. Generically, it there are four possibilities: our bivectors
come from a 4-simplex, the negatives of our bivectors come from a 4-simplex, their Hodge
duals come from a 4-simplex, or the negatives of their Hodge duals come from a 4-simplex.

If we ignore this and describe the 4-simplex using bivectors satisfying the three con-
straints above, and then quantize this description, we get the picture of a “quantum
4-simplex” that is the starting-point for the Barrett-Crane model. But clearly it’s danger-
ous to ignore this problem.

Actually, I learned about this problem from Robert Bryant over on sci.math.research,
and I discussed it in my paper on spin foam models, citing Bryant of course. Barrett and
Crane overlooked this problem in the first version of their paper, but now they recognize
its importance. Two papers have recently appeared which investigate it further:
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7) Michael P. Reisenberger, “Classical Euclidean general relativity from ‘left-handed
area = right-handed area””, preprint available as gr-qc/9804061.

8) Roberto De Pietri and Laurent Freidel, “so(4) Plebanski Action and relativistic spin
foam model”, preprint available as gr-qc/9804071.

These papers study classical general relativity formulated as a constrained SO(4) BF
theory. The constraints needed here are mathematically just the same as the constraints
needed to ensure that 10 bivectors come from the faces of an actual 4-simplex! This is
part of the magic of this approach. But again, if one only imposes the three constraints
I listed above, it’s not quite enough: one gets fields that are either solutions of general
relativity or solutions of three other theories! This raises the worry that the Barrett-Crane
model is a quantization, not exactly of general relativity, but of general relativity mixed
in with these extra theories.

Here’s another recent product of the Center for Classical and Quantum Gravity here
at Penn State:

9) Laurent Freidel and Kirill Krasnov, “Discrete space-time volume for 3-dimensional
BF theory and quantum gravity”, preprint available as hep-th/9804185.

Freidel and Krasnov study the volume of a single 3-simplex as an observable in the
context of the Turaev-Viro model — a topological quantum field theory which is closely
related to quantum gravity in spacetime dimension 3.

And here are some other recent papers on quantum gravity written by folks who
either work here at the CGPG or at least occasionally drift through. I’ll just quote the
abstracts of these:

10) Ted Jacobson, “Black hole thermodynamics today”, to appear in Proceedings of the
Eighth Marcel Grossmann Meeting, World Scientific, 1998, preprint available as
gr-qc/9801015.

A brief survey of the major themes and developments of black hole thermody-
namics in the 1990’s is given, followed by summaries of the talks on this subject
at MG8 together with a bit of commentary, and closing with a look towards the
future.

11) Rodolfo Gambini, Jorge Pullin, “Does loop quantum gravity imply Λ = 0?”, preprint
available as gr-qc/9803097.

We suggest that in a recently proposed framework for quantum gravity, where
Vassiliev invariants span the the space of states, the latter is dramatically re-
duced if one has a non-vanishing cosmological constant. This naturally suggests
that the initial state of the universe should have been one with Λ = 0.

11) R. Gambini, O. Obregon, and J. Pullin, “Yang-Mills analogues of the Immirzi ambi-
guity”, preprint available as gr-qc/9801055.

We draw parallels between the recently introduced ‘Immirzi ambiguity” of the
Ashtekar-like formulation of canonical quantum gravity and other ambiguities
that appear in Yang-Mills theories, like the θ ambiguity. We also discuss ambi-
guities in the Maxwell case, and implication for the loop quantization of these
theories.
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12) John Baez and Stephen Sawin, “Diffeomorphism-invariant spin network states”, to
appear in Jour. Funct. Analysis, preprint available as q-alg/9708005 or at http:/
/math.ucr.edu/home/baez/int2.ps

We extend the theory of diffeomorphism-invariant spin network states from the
real-analytic category to the smooth category. Suppose that G is a compact
connected semisimple Lie group and P → M is a smooth principal G-bundle.
A ‘cylinder function’ on the space of smooth connections on P is a continuous
complex function of the holonomies along finitely many piecewise smoothly im-
mersed curves in M . We construct diffeomorphism-invariant functionals on the
space of cylinder functions from ‘spin networks’: graphs in M with edges labeled
by representations of G and vertices labeled by intertwining operators. Using
the ‘group averaging’ technique of Ashtekar, Marolf, Mourao and Thiemann, we
equip the space spanned by these ‘diffeomorphism-invariant spin network states’
with a natural inner product.

Finally, here are two recent reviews of string theory and supersymmetry:

13) John H. Schwarz and Nathan Seiberg, “String theory, supersymmetry, unification,
and all that”, to appear in the American Physical Society Centenary issue of Reviews
of Modern Physics, March 1999, preprint available as hep-th/9803179.

14) Keith R. Dienes and Christopher Kolda, “Twenty open questions in supersymmetric
particle physics”, 64 pages, preprint available as hep-ph/9712322.

I’m afraid I’ll slack off on my “tour of homotopy theory” this week. I want to get to
fun stuff like model categories and E∞ spaces, but it’s turning out to be a fair amount
of work to reach that goal! That’s what always happens with This Week’s Finds: I start
learning about something and think “oh boy, this stuff is great; I’ll write it up really
carefully so that everyone can understand it,” but then this turns out to be so much work
that by the time I’m halfway through I’m off on some other kick.
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Week 121

May 15, 1998

This time I want to talk about higher-dimensional algebra and its applications to topol-
ogy. Marco Mackaay has just come out with a fascinating paper that gives a construction
of 4-dimensional TQFTs from certain “monoidal 2-categories”.

1) Marco Mackaay, “Spherical 2-categories and 4-manifold invariants”, preprint avail-
able as math.QA/9805030

Beautifully, this construction is just a categorified version of Barrett and Westbury’s
construction of 3-dimensional topological quantum field theories from “monoidal cate-
gories”. Categorification — the process of replacing equations by isomorphisms — is
supposed to take you up the ladder of dimensions. Here we are seeing it in action!

To prepare you understand Mackaay’s paper, maybe I should explain the idea of
categorification. Since I recently wrote something about this, I think I’ll just paraphrase
a bit of that. Some of this is already familiar to long-time customers, so if you know it
all already, just skip it.

2) John Baez and James Dolan, “Categorification”, to appear in the Proceedings of
the Workshop on Higher Category Theory and Mathematical Physics at Northwestern
University, Evanston, Illinois, March 1997, eds. Ezra Getzler and Mikhail Kapranov.
Preprint available as math.QA/9802029 or at http://math.ucr.edu/home/baez/
cat.ps.

So, what’s categorification? This tongue-twisting term, invented by Louis Crane,
refers to the process of finding category-theoretic analogs of ideas phrased in the lan-
guage of set theory, using the following analogy between set theory and category theory:

:- | :- |
elements | objects |
equations between elements | isomorphisms between objects |
sets | categories |
functions | functors |
equations between functions | natural isomorphisms between functors |

Just as sets have elements, categories have objects. Just as there are functions be-
tween sets, there are functors between categories. Interestingly, the proper analog of
an equation between elements is not an equation between objects, but an isomorphism.
More generally, the analog of an equation between functions is a natural isomorphism
between functors.

For example, the category FinSet, whose objects are finite sets and whose morphisms
are functions, is a categorification of the set N of natural numbers. The disjoint union
and Cartesian product of finite sets correspond to the sum and product in N, respectively.
Note that while addition and multiplication in N satisfy various equational laws such as
commutativity, associativity and distributivity, disjoint union and Cartesian product sat-
isfy such laws only up to natural isomorphism. This is a good example of how equations
between functions get replaced by natural isomorphisms when we categorify.
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If one studies categorification one soon discovers an amazing fact: many deep-
sounding results in mathematics are just categorifications of facts we learned in high
school! There is a good reason for this. All along, we have been unwittingly “decate-
gorifying” mathematics by pretending that categories are just sets. We “decategorify” a
category by forgetting about the morphisms and pretending that isomorphic objects are
equal. We are left with a mere set: the set of isomorphism classes of objects.

To understand this, the following parable may be useful. Long ago, when shepherds
wanted to see if two herds of sheep were isomorphic, they would look for an explicit
isomorphism. In other words, they would line up both herds and try to match each
sheep in one herd with a sheep in the other. But one day, along came a shepherd who
invented decategorification. She realized one could take each herd and “count” it, setting
up an isomorphism between it and some set of “numbers”, which were nonsense words
like “one, two, three,. . . ” specially designed for this purpose. By comparing the resulting
numbers, she could show that two herds were isomorphic without explicitly establishing
an isomorphism! In short, by decategorifying the category of finite sets, the set of natural
numbers was invented.

According to this parable, decategorification started out as a stroke of mathematical
genius. Only later did it become a matter of dumb habit, which we are now struggling
to overcome by means of categorification. While the historical reality is far more compli-
cated, categorification really has led to tremendous progress in mathematics during the
20th century. For example, Noether revolutionized algebraic topology by emphasizing
the importance of homology groups. Previous work had focused on Betti numbers, which
are just the dimensions of the rational homology groups. As with taking the cardinality
of a set, taking the dimension of a vector space is a process of decategorification, since
two vector spaces are isomorphic if and only if they have the same dimension. Noether
noted that if we work with homology groups rather than Betti numbers, we can solve
more problems, because we obtain invariants not only of spaces, but also of maps.

In modern lingo, the nth rational homology is a functor defined on the category of
topological spaces, while the nth Betti number is a mere function, defined on the set
of isomorphism classes of topological spaces. Of course, this way of stating Noether’s
insight is anachronistic, since it came before category theory. Indeed, it was in Eilenberg
and Mac Lane’s subsequent work on homology that category theory was born!

Decategorification is a straightforward process which typically destroys information
about the situation at hand. Categorification, being an attempt to recover this lost in-
formation, is inevitably fraught with difficulties. One reason is that when categorifying,
one does not merely replace equations by isomorphisms. One also demands that these
isomorphisms satisfy some new equations of their own, called “coherence laws”. Finding
the right coherence laws for a given situation is perhaps the trickiest aspect of categori-
fication.

For example, a monoid is a set with a product satisfying the associative law and a
unit element satisfying the left and right unit laws. The categorified version of a monoid
is a “monoidal category”. This is a category C with a product

⊗ : C × C → C

and unit object 1. If we naively impose associativity and the left and right unit laws as
equational laws, we obtain the definition of a “strict” monoidal category. However, the
philosophy of categorification suggests instead that we impose them only up to natural
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isomorphism. Thus, as part of the structure of a “weak” monoidal category, we specify a
natural isomorphism

ax,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z)

called the “associator”, together with natural isomorphisms

lx : 1⊗ x→ x,

rx : x⊗ 1→ x.

Using the associator one can construct isomorphisms between any two parenthesized
versions of the tensor product of several objects. However, we really want a unique
isomorphism. For example, there are 5 ways to parenthesize the tensor product of 4
objects, which are related by the associator as follows:

(x⊗ (y ⊗ z))⊗ w

((x⊗ y)⊗ z)⊗ w

(x⊗ y)⊗ (z ⊗ w)

x⊗ (y ⊗ (z ⊗ w)) x⊗ ((y ⊗ z)⊗ w)

In the definition of a weak monoidal category we impose a coherence law, called the
“pentagon identity”, saying that this diagram commutes. Similarly, we impose a coher-
ence law saying that the following diagram built using a, l and r commutes:

1⊗ (x⊗ 1)(1⊗ x)⊗ 1

x⊗ 1

x

1⊗ x

This definition raises an obvious question: how do we know we have found all the
right coherence laws? Indeed, what does “right” even mean in this context? Mac Lane’s
coherence theorem gives one answer to this question: the above coherence laws imply
that any two isomorphisms built using a, l and r and having the same source and target
must be equal.

Further work along these lines allow us to make more precise the sense in whichN is a
decategorification of FinSet. For example, just as N forms a monoid under either addition
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or multiplication, FinSet becomes a monoidal category under either disjoint union or
Cartesian product if we choose the isomorphisms a, l, and r sensibly. In fact, just as N
is a “rig”, satisfying all the ring axioms except those involving additive inverses, FinSet
is what one might call a “rig category”. In other words, it satisfies the rig axioms up
to natural isomorphisms satisfying the coherence laws discovered by Kelly and Laplaza,
who proved a coherence theorem in this context.

Just as the decategorification of a monoidal category is a monoid, the decategorifi-
cation of any rig category is a rig. In particular, decategorifying the rig category FinSet
gives the rig N. This idea is especially important in combinatorics, where the best proof
of an identity involving natural numbers is often a “bijective proof”: one that actually
establishes an isomorphism between finite sets.

While coherence laws can sometimes be justified retrospectively by coherence the-
orems, certain puzzles point to the need for a deeper understanding of the origin of
coherence laws. For example, suppose we want to categorify the notion of “commuta-
tive monoid”. The strictest possible approach, where we take a strict monoidal category
and impose an equational law of the form x ⊗ y = y ⊗ x, is almost completely uninter-
esting. It is much better to start with a weak monoidal category equipped with a natural
isomorphism

Bx,y : x⊗ y → y ⊗ x
called the “braiding” and then impose coherence laws called “hexagon identities” saying
that the following two diagrams built from the braiding and the associator commute:

x⊗ (y ⊗ z) (y ⊗ z)⊗ x

(x⊗ y)⊗ z y ⊗ (z ⊗ x)

(y ⊗ x)⊗ z y ⊗ (x⊗ z)

(x⊗ y)⊗ z z ⊗ (x⊗ y)

x⊗ (y ⊗ z) (z ⊗ x)⊗ y

y ⊗ (z ⊗ y) (x⊗ z)⊗ y

This gives the definition of a weak “braided monoidal category”. If we impose an addi-
tional coherence law saying that Bx,y is the inverse of By,x, we obtain the definition of
a “symmetric monoidal category”. Both of these concepts are very important; which one
is “right” depends on the context. However, neither implies that every pair of parallel
morphisms built using the braiding are equal. A good theory of coherence laws must
naturally account for these facts.

The deepest insights into such puzzles have traditionally come from topology. In
homotopy theory it causes problems to work with spaces equipped with algebraic struc-
tures satisfying equational laws, because one cannot transport such structures along
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homotopy equivalences. It is better to impose laws only up to homotopy, with these ho-
motopies satisfying certain coherence laws, but again only up to homotopy, with these
higher homotopies satisfying their own higher coherence laws, and so on. Coherence
laws thus arise naturally in infinite sequences. For example, Stasheff discovered the pen-
tagon identity and a sequence of higher coherence laws for associativity when studying
the algebraic structure possessed by a space that is homotopy equivalent to a loop space.
Similarly, the hexagon identities arise as part of a sequence of coherence laws for spaces
homotopy equivalent to double loop spaces, while the extra coherence law for symmet-
ric monoidal categories arises as part of a sequence for spaces homotopy equivalent to
triple loop spaces. The higher coherence laws in these sequences turn out to be crucial
when we try to iterate the process of categorification.

To iterate the process of categorification, we need a concept of “n-category” — roughly,
an algebraic structure consisting of a collection of objects (or “0-morphisms”), mor-
phisms between objects (or “1-morphisms”), 2-morphisms between morphisms, and so
on up to n-morphisms. There are various ways of making this precise, and right now
there is a lot of work going on devoted to relating these different approaches. But the
basic thing to keep in mind is that the concept of “(n+ 1)-category” is a categorification
of the concept of “n-category”. What were equational laws between n-morphisms in an
n-category are replaced by natural (n + 1)-isomorphisms, which need to satisfy certain
coherence laws of their own.

To get a feeling for how these coherence laws are related to homotopy theory, it’s
good to think about certain special kinds of n-category. If we have an (n + k)-category
that’s trivial up to but not including the k-morphism level, we can turn it into an n-
category by a simple reindexing trick: just think of its j-morphisms as (j−k)-morphisms!
We call the n-categories we get this way “k-tuply monoidal n-categories”. Here is a little
chart of what they amount to for various low values of n and k:

Table 10: k-tuply monoidal n-categories

n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal
categories

monoidal
2-categories

k = 2 commutative
monoids

braided monoidal
categories

braided monoidal
2-categories

k = 3 ” ” symmetric
monoidal
categories

weakly involutory
monoidal
2-categories

k = 4 ” ” ” ” strongly
involutory
monoidal
2-categories
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n = 0 n = 1 n = 2

k = 5 ” ” ” ” ” ”

One reason James Dolan and I got so interested in this chart is the “tangle hypoth-
esis”. Roughly speaking, this says that n-dimensional surfaces embedded in (n + k)-
dimensional space can be described purely algebraically using the a certain special “k-
tuply monoidal n-category with duals”. If true, this reduces lots of differential topology
to pure algebra! It also helps you understand the parameters n and k: you should think
of n as “dimension” and k as “codimension”.

For example, take n = 1 and k = 2. Knots, links and tangles in 3-dimensional space
can be described algebraically using a certain “braided monoidal categories with duals”.
This was the first interesting piece of evidence for the tangle hypothesis. It has spawned a
whole branch of math called “quantum topology”, which people are trying to generalize
to higher dimensions.

More recently, Laurel Langford tackled the case n = 2, k = 2. She proved that
2-dimensional knotted surfaces in 4-dimensional space can be described algebraically
using a certain “braided monoidal 2-category with duals”. These so-called “2-tangles” are
particularly interesting to me because of their relation to spin foam models of quantum
gravity, which are also all about surfaces in 4-space. For references, see “Week 103”. But
if you want to learn about more about this, you couldn’t do better than to start with:

3) J. S. Carter and M. Saito, Knotted Surfaces and Their Diagrams, American Mathe-
matical Society, Providence, 1998.

This is a magnificently illustrated book which will really get you able to see 2-dimensional
surfaces knotted in 4d space. At the end it sketches the statement of Langford’s result.

Another interesting thing about the above chart is that k-tuply monoidal n-categories
keep getting “more commutative” as k increases, until one reaches k = n + 2, at which
point things stabilize. There is a lot of evidence suggesting that this “stabilization hy-
pothesis” is true for all n. Assuming it’s true, it makes sense to call a k-tuply monoidal
n-category with k > n+ 2 a “stable n-category”.

Now, where does homotopy theory come in? Well, here you need to look at n-
categories where all the j-morphisms are invertible for all j. These are called “n-
groupoids”. Using these, one can develop a translation dictionary between n-category
theory and homotopy theory, which looks like this:

:- | :- |
ω-groupoids | homotopy types |
n-groupoids | homotopy n-types |
k-tuply groupal ω-groupoids | homotopy types of k-fold loop spaces |
k-tuply groupal n-groupoids | homotopy n-types of k-fold loop spaces |
k-tuply monoidal ω-groupoids | homotopy types of Ek spaces |
k-tuply monoidal n-groupoids | homotopy n-types of Ek spaces
stable ω-groupoids | homotopy types of infinite loop spaces |
stable n-groupoids | homotopy n-types of infinite loop spaces |
Z-groupoids | homotopy types of spectra |
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The entries on the left-hand side are very natural from an algebraic viewpoint; the
entries on the right-hand side are things topologists already study. We explain what all
these terms mean in the paper, but maybe I should say something about the first two
rows, which are the most basic in a way. A homotopy type is roughly a topological
space “up to homotopy equivalence”, and an ω-groupoid is a kind of limiting case of an
n-groupoid as n goes to infinity. If infinity is too scary, you can work with homotopy n-
types, which are basically homotopy types with no interesting topology above dimension
n. These should correspond to n-groupoids.

Using these basic correspondences we can then relate various special kinds of ho-
motopy types to various special kinds of ω-groupoids, giving the rest of the rows of the
chart. Homotopy theorists know a lot about the right-hand column, so we can use this
to get a lot of information about the left-hand column. In particular, we can work out
the coherence laws for n-groupoids, and — this is the best part, but the least understood
— we can then guess a lot of stuff about the coherence laws for general n-categories. In
short, we are using homotopy theory to get our foot in the door of n-category theory.

I should emphasize, though, that this translation dictionary is partially conjectural.
It gets pretty technical to say what exactly is and is not known, especially since there’s
pretty rapid progress going on. Even in the last few months there have been some
interesting developments. For example, Breen has come out with a paper relating k-
tuply monoidal n-categories to Postnikov towers and various far-out kinds of homological
algebra:

4) Lawrence Breen, “Braided n-categories and Σ-structures”, Prepublications Matem-
atiques de l’Universite Paris 13, 98-06, January 1998, to appear in the Proceedings
of the Workshop on Higher Category Theory and Mathematical Physics at North-
western University, Evanston, Illinois, March 1997, eds. Ezra Getzler and Mikhail
Kapranov.

Also, the following folks have also developed a notion of “iterated monoidal category”
whose nerve gives the homotopy type of a k-fold loop space, just as the nerve of a
category gives an arbitrary homotopy type:

5) C. Balteanu, Z. Fiedorowicz, R. Schwaenzl, and R. Vogt, “Iterated monoidal cate-
gories”, available at math.AT/9808082.

Anyway, in addition to explaining the relationship between n-category theory and ho-
motopy theory, Dolan’s and my paper discusses iterated categorifications of the very sim-
plest algebraic structures: the natural numbers and the integers. The natural numbers
are the free monoid on one generator; the integers are the free group on one generator.
We believe this is just the tip of the following iceberg:

:- | :- |
sets | the one-element set |
monoids | the natural numbers |
groups | the integers |
k-tuply monoidal n-categories | the braid n-groupoid in codimension k |
k-tuply monoidal ω-categories | the braid ω-groupoid in codimension k |
stable n-categories | the braid n-groupoid in infinite codimension |
stable ω-categories | the braid ω-groupoid in infinite codimension |
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k-tuply monoidal n-categories with duals | the n-category of framed n-tangles in n + k
dimensions |
stable n-categories with duals | the framed cobordism n-category |
k-tuply groupal n-groupoids | the homotopy n-tpye of the kth loop space of Sk |
k-tuply groupal ω-groupoids | the homotopy type of the kth loop space of Sk |
stable ω-groupoids | the homotopy type of the infinite loop space S∞ |
Z-groupoids | the sphere spectrum |

:algebraic strutures and the free such structure on one generator
You may or may not know the guys on the right-hand side, but some of them are

very interesting and complicated, so it’s really exciting that they are all in some sense
categorified and/or stabilized versions of the integers and natural numbers.

Whew! There is more to say, but I’ll just mention a few related papers and then quit.
If you’re interested in n-categories you could also check out “the tale of n-categories”,
starting in “Week 73”.

6) Representation theory of Hopf categories, Martin Neuchl, Ph.D. dissertation, Depart-
ment of Mathematics, University of Munich, 1997. Available at http://math.ucr.
edu/home/baez/neuchl.ps

Just as the category of representations of a Hopf algebra gives a nice monoidal cat-
egory, the 2-category of representations of a Hopf category gives a nice monoidal 2-
category! Categorification strikes again — and this is perhaps our best hopes for getting
our hands on the data needed to stick into Mackaay’s machine and get concrete examples
of a 4d topological quantum field theories!

7) Jim Stasheff, “Grafting Boardman’s cherry trees to quantum field theory”, preprint
available as math.AT/9803156.

Starting with Boardman and Vogt’s work, and shortly thereafter that of May, operads
have become really important in homotopy theory, string theory, and now n-category
theory; this review article sketches some of the connections.

8) Masoud Khalkhali, “On cyclic homology of A∞ algebras”, preprint available as
math.QA/9805051.

Masoud Khalkhali, Homology of L∞ algebras and cyclic homology, preprint avail-
able as math.QA/9805052.

An A∞ algebra is an algebra that is associative up to an associator which satisfies
the pentagon identity up to a pentagonator which satisfies it’s own coherence law up to
something, ad infinitum. The concept goes back to Stasheff’s work on A∞ spaces —
spaces with a homotopy equivalence to a space equipped with an associative product.
(These are the same thing as what I called E1 spaces in the translation dictionary be-
tween n-groupoid theory and homotopy theory.) But here it’s been transported from Top
over to Vect. Similarly, an L∞ algebra is a Lie algebra “up to an infinity of higher coher-
ence laws”. Loday-Quillen and Tsygan showed that that the Lie algebra homology of the
algebra of stable matrices over an associative algebra is isomorphic, as a Hopf algebra,
to the exterior algebra of the cyclic homology of the algebra. In the second paper above,
Khalkali gets the tools set up to extend this result to the category of L∞ algebras.
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Week 122

June 24, 1998

In summertime, academics leave the roost and fly hither and thither, seeking conferences
and conversations in far-flung corners of the world. At the end of May, everyone started
leaving the Center for Gravitational Physics and Geometry: Lee Smolin for the Santa
Fe Institute, Abhay Ashtekar for Uruguay and Argentina, Kirill Krasnov for his native
Ukraine, and so on. It got so quiet that I could actually get some work done, were it
not for the fact that I, too, flew the coop: first for Chicago, then Portugal, and then to
one of the most isolated, technologically backwards areas on earth: my parents’ house.
Connected to cyberspace by only the thinnest of threads, writing new issues of This
Week’s Finds became almost impossible. . . .

I did, however, read some newsgroups, and by this means Jim Carr informed me that
an article on spin foam models of quantum gravity had appeared in Science News. I can’t
resist mentioning it, since it quotes me:

1) Ivars Peterson, “Loops of gravity: calculating a foamy quantum space-time”, Science
News, June 13, 1998, Vol. 153, No. 24, 376–377.

It gives a little history of loop quantum gravity, spin networks, and the new burst of
interest in spin foams. Nothing very technical — but good if you’re just getting started.
If you want something more detailed, but still user-friendly, try Rovelli’s new paper:

2) Carlo Rovelli and Peush Upadhya, “Loop quantum gravity and quanta of space: a
primer”, preprint available as gr-qc/9806079.

I haven’t read it yet, since I’m still in a rather low-tech portion of the globe, but it
gives simplified derivations of some of the basic results of loop quantum gravity, like the
formula for the eigenvalues of the area operator. As explained in “Week 110”, one of
the main predictions of loop quantum gravity is that geometrical observables such as the
area of any surface take on a discrete spectrum of values, much like the energy levels of
a hydrogen atom. At first the calculation of the eigenvalues of the area operator seemed
rather complicated, but by now it’s well-understood, so Rovelli and Upadhya are able to
give a simpler treatment.

While I’m talking about the area operator, I should mention another paper by Rovelli,
in which he shows that its spectrum is not affected by the presence of matter (or more
precisely, fermions):

3) Carlo Rovelli and Merced Montesinos, “The fermionic contribution to the spectrum
of the area operator in nonperturbative quantum gravity”, preprint available as
gr-qc/9806120.

This is especially interesting because it fits in with other pieces of evidence that
fermions could simply be the ends of wormholes — an old idea of John Wheeler (see
“Week 109”).

I should also mention some other good review articles that have turned up recently.
Rovelli has written a survey comparing string theory, the loop representation, and other
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approaches to quantum gravity, which is very good because it points out the flaws in all
these approaches, which their proponents are usually all too willing to keep quiet about:

4) Carlo Rovelli, “Strings, loops and others: a critical survey of the present approaches
to quantum gravity”. Plenary lecture on quantum gravity at the GR15 conference,
Pune, India, preprint available as gr-qc/9803024.

Also, Loll has written a review of approaches to quantum gravity that assume space-
time is discrete. It does not discuss the spin foam approach, which is too new; instead
it mainly talks about lattice quantum gravity, the Regge calculus, and the dynamical tri-
angulations approach. In lattice quantum gravity you treat spacetime as a fixed lattice,
usually a hypercubical one, and work with discrete versions of the usual fields appearing
in general relativity. In the Regge calculus you triangulate your 4-dimensional spacetime
— i.e., chop it into a bunch of 4-dimensional simplices — and use the lengths of the
edges of these simplices as your basic variables. (For more details see “Week 120”.) In
the dynamical triangulations approach you also triangulate spacetime, but not in a fixed
way — you consider all possible triangulations. However, you assume all the edges of
all the simplices have the same length — the Planck length, say. Thus all the informa-
tion about the geometry of spacetime is in the triangulation itself — hence the name
“dynamical triangulations”. Everything becomes purely combinatorial - there are no real
numbers in our description of spacetime geometry anymore. This makes the dynam-
ical triangulations approach great for computer simulations. Computer simulations of
quantum gravity! Loll reports on the results of a lot of these:

5) Renate Loll, “Discrete approaches to quantum gravity in four dimensions”, preprint
available as gr-qc/9805049, also available as a webpage on Living Reviews in Rel-
ativity at http://www.livingreviews.org/Articles/Volume1/1998-13loll/

By the way, “Living Reviews in Relativity” is a cool website run by the AEI, the Albert
Einstein Institute for gravitational physics, located in Potsdam, Germany. The idea is
that experts will write review articles on various subjects and keep them up to date as
new developments occur. You can find this as follows:

6) Living Reviews in Relativity, http://www.livingreviews.org

Here are some other good places to learn about the dynamical triangulations ap-
proach to quantum gravity:

7) J. Ambjorn, “Quantum gravity represented as dynamical triangulations”, Class.
Quant. Grav. 12 (1995) 2079–2134.

8) J. Ambjorn, M. Carfora, and A. Marzuoli, The Geometry of Dynamical Triangu-
lations, Springer-Verlag, Berlin, 1998. Also available electronically as hep-th/

9612069 — watch out, this is 166 pages long!

I can’t resist pointing out an amusing relationship between dynamical triangulations
and mathematical logic, which Ambjorn mentions in his review article. In computer
simulations using the dynamical triangulations approach, one wants to compute the
average of certain quantities over all triangulations of a fixed compact manifold — e.g.,

145

https://arxiv.org/abs/gr-qc/9803024
https://arxiv.org/abs/gr-qc/9805049
https://arxiv.org/abs/hep-th/9612069
https://arxiv.org/abs/hep-th/9612069


WEEK 122 JUNE 24, 1998

the 4-dimensional sphere, S4. The typical way to do this is to start with a particular
triangulation and then keep changing it using various operations — “Pachner moves”
— that are guaranteed to eventually take you from any triangulation of a compact 4-
dimensional manifold to any other.

Now here’s where the mathematical logic comes in. Markov’s theorem says there is
no algorithm that can decide whether or not two triangulations are triangulations of the
same compact 4-dimensional manifold. (Technically, by “the same” I mean “piecewise
linearly homeomorphic”, but don’t worry about that!) If they are triangulations of the
same manifold, blundering about using the Pachner moves will eventually get you from
one to the other, but if they are not, you may never know for sure.

On the other hand, S4 may be special. It’s an open question whether or not S4 is
“algorithmically detectable”. In other words, it’s an open question whether or not there’s
an algorithm that can decide whether or not a triangulation is a triangulation of the
4-dimensional sphere.

Now, suppose S4 is not algorithmically detectable. Then the maximum number of
Pachner moves it takes to get between two triangulations of the 4-sphere must grow
really fast: faster than any computable function! After all, if it didn’t, we could use this
upper bound to know when to give up when using Pachner moves to try to reduce our
triangulation to a known triangulation of S4. So there must be “bottlenecks” that make
it hard to efficiently explore the set of all triangulations of S4 using Pachner moves. For
example, there must be pairs of triangulations such that getting from one to other via
Pachner moves requires going through triangulations with a lot more 4-simplices.

However, computer simulations using triangulations with up to 65,536 4-simplices
have not yet detected such “bottlenecks”. What’s going on? Well, maybe Sˆ4 actually
is algorithmically detectable. Or perhaps it’s not, but the bottlenecks only occur for
triangulations that have more than 65,536 4-simplices to begin with. Interestingly, one
dimension up, it’s known that the 5-dimensional sphere is not algorithmically detectable,
so in this case bottlenecks must exist — but computer simulations still haven’t seen them.

I should emphasize that in addition to this funny computability stuff, there is also a
whole lot of interesting physics coming out of the dynamical triangulations approach to
quantum gravity. Unfortunately I don’t have the energy to explain this now — so read
those review articles, and check out that nice book by Ambjorn, Carfora and Marzuoli!

On another front. . . Ambjorn and Loll, who are both hanging out at the AEI these
days, have recently teamed up to study causality in a lattice model of 2-dimensional
Lorentzian quantum gravity:

9) J. Ambjorn and R. Loll, “Non-perturbative Lorentzian quantum gravity, causality
and topology change”, preprint available as hep-th/9805108.

I’ll just quote the abstract:

We formulate a non-perturbative lattice model of two-dimensional Lorentzian
quantum gravity by performing the path integral over geometries with a causal
structure. The model can be solved exactly at the discretized level. Its continuum
limit coincides with the theory obtained by quantizing 2d continuum gravity in
proper-time gauge, but it disagrees with 2d gravity defined via matrix models
or Liouville theory. By allowing topology change of the compact spatial slices
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(i.e. baby universe creation), one obtains agreement with the matrix models
and Liouville theory.

And now for something completely different. . .
I’ve been hearing rumbles off in the distance about some interesting work by Kreimer

relating renormalization, Feynman diagrams, and Hopf algebras. A friendly student of
Kreimer named Mathias Mertens handed me a couple of the basic papers when I was in
Portugal:

10) Dirk Kreimer, “Renormalization and knot theory”, Journal of Knot Theory and its
Ramifications, 6 (1997), 479–581. Preprint available as q-alg/9607022 — beware,
this is 103 pages long!

Dirk Kreimer, “On the Hopf algebra structure of perturbative quantum field theo-
ries”, preprint available as q-alg/9707029.

I’m looking through them but I don’t really understand them yet. The basic idea
seems to be something like this. In quantum field theory you compute the probability
for some reaction among particles by doing integrals which correspond in a certain way
to pictures called Feynman diagrams. Often these integrals give infinite answers, which
forces you to do a trick called renormalization to cancel the infinities and get finite
answers. Part of why this trick works is that while your integrals diverge, they usually
diverge at a well-defined rate. For example, you might get something asymptotic to a
constant times 1/dk, where d is the spatial cutoff you put in to get a finite answer. And
the constant you get here can be explicitly computed. For example, it often involves
numbers like ζ(n), where ζ is the Riemann zeta function, much beloved by number
theorists:

ζ(n) =
1

1n
+

1

2n
+

1

3n
+ . . .

Kreimer noticed that if you take the Feynman diagram and do some tricks to turn it into
a drawing of a knot or link, the constant you get is related in interesting ways to the
topology of this knot or link! More complicated knots or links give fancier constants,
and there are all sorts of suggestive patterns. He worked out a bunch of examples in the
first paper cited above, and since then people have worked out lots more, which you can
find in the references.

Apparently the secret underlying reason for these patterns comes from the combina-
torics of renormalization, which Kreimer was able to summarize in a certain algebraic
structure called a Hopf algebra. Hopf algebras are important in both combinatorics and
physics, so perhaps this shouldn’t be surprising. But there is still a lot of mysterious stuff
going on, at least as far as I can tell.

What’s really intriguing about all this is which quantum field theories Kreimer was
studying when he discovered this stuff: not topological quantum field theories like
Chern-Simons theory, which already have well-understood relationship to knot theory,
but instead, field theories that ordinary particle physicists have been thinking about for
decades, like quantum electrodynamics, ϕ4 theory in 4 dimensions, and ϕ3 theory in 6
dimensions — field theories where renormalization is a deadly serious business, thanks
to nasty problems like “overlapping divergences”.

The idea that knot theory is relevant to these field theories is exciting but also some-
what puzzling, since they don’t live in 3-dimensional spacetime the way Chern-Simons
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theory does. People familiar with Chern-Simons theory have already been seeing fasci-
nating patterns relating knot theory, quantum field theory and number theory. Is this
new stuff related? Or is it something completely different? Kreimer seems to think it’s
related.

According to Kirill Krasnov, the famous mathematician Alain Connes is going around
telling people to learn about this stuff. Apparently Connes is now writing a paper on
it with Kreimer, and it was Connes who got the authors of this paper interested in the
subject:

11) Thomas Krajewski and Raimar Wulkenhaar, “On Kreimer’s Hopf algebra structure
of Feynman graphs”, preprint available as hep-th/9805098.

Since I haven’t plunged in yet, I’ll just quote the abstract:

We reinvestigate Kreimer’s Hopf algebra structure of perturbative quantum field
theories. In Kreimer’s original work, overlapping divergences were first disen-
tangled into a linear combination of disjoint and nested ones using the Schwinger-
Dyson equation. The linear combination then was tackled by the Hopf algebra
operations. We present a formulation where the coproduct itself produces the
linear combination, without reference to external input.

With any luck, mathematicians will study this stuff and finally understand renormal-
ization!
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Week 123

September 19, 1998

It all started out as a joke. Argument for argument’s sake. Alison and her
infuriating heresies.

“A mathematical theorem,” she’d proclaimed, ”only becomes true when a physi-
cal system tests it out: when the system’s behaviour depends in some way on the
theorem being true or false.

It was June 1994. We were sitting in a small paved courtyard, having just
emerged from the final lecture in a one-semester course on the philosophy of
mathematics — a bit of light relief from the hard grind of the real stuff. We had
fifteen minutes to to kill before meeting some friends for lunch. It was a social
conversation — verging on mild flirtation — nothing more. Maybe there were
demented academics, lurking in dark crypts somewhere, who held views on the
nature of mathematical truth which they were willing to die for. But were were
twenty years old, and we knew it was all angels on the head of a pin.

I said, “Physical systems don’t create mathematics. Nothing creates mathemat-
ics — it’s timeless. All of number theory would still be exactly the same, even if
the universe contained nothing but a single electron.”

Alison snorted. “Yes, because even one electron, plus a space-time to put it in,
needs all of quantum mechanics and all of general relativity — and all the math-
ematical infrastructure they entail. One particle floating in a quantum vacuum
needs half the major results of group theory, functional analysis, differential
geometry —”

“OK, OK! I get the point. But if that’s the case. . . the events in the first picosec-
ond after the Big Bang would have ‘constructed’ every last mathematical truth
required by any physical system, all the way to the Big Cruch. Once you’ve got
the mathematics which underpins the Theory of Everything. . . that’s it, that’s
all you ever need. End of story.”

“But it’s not. To apply the Theory of Everything to a particular system, you still
need all the mathematics for dealing with that system — which could include
results far beyond the mathematics the TOE itself requires. I mean, fifteen bil-
lion years after the Big Bang, someone can still come along and prove, say. . .
Fermat’s Last Theorem.” Andrew Wiles at Princeton had recently announced a
proof of the famous conjecture, although his work was still being scrutinised by
his colleagues, and the final verdict wasn’t yet in. “Physics never needed that
before.”

I protested, “What do you mean, ‘before’? Fermat’s Last Theorem never has —
and never will — have anything to do with any branch of physics.”

Alison smiled sneakily. “No branch, no. But only because the class of physical
systems whose behaviour depend on it is so ludicrously specific: the brains of
mathematicians who are trying to validate the Wiles proof.”
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“Think about it. Once you start trying to prove a theorem, then even if the
mathematics is so ‘pure’ that it has no relevance to any other object in the
universe. . . you’ve just made it relevant to yourself. You have to choose some
physical process to test the theorem — whether you use a computer, or a pen
and paper. . . or just close your eyes and shuffle neurotransmitters. There’s no
such thing as a proof which doesn’t rely on physical events, and whether they’re
inside or outside your skull doesn’t make them any less real.”

And this is just the beginning. . . the beginning of Greg Egan’s tale of an inconsistency
in the axioms of arithmetic — a “topological defect” left over in the fabric of mathemat-
ics, much like the cosmic strings or monopoles hypothesized by certain physicists think-
ing about the early universe — and the mathematicians who discover it and struggle to
prevent a large corporation from exploiting it for their own nefarious purposes. This is
the title story of his new collection, “Luminous”.

I should also mention his earlier collection of stories, named after a sophisticated
class of mind-altering nanotechnologies, the “axiomatics”, that affect specific beliefs of
anyone who uses them:

1) Greg Egan, Axiomatic, Orion Books, 1995.

Greg Egan, Luminous, Orion Books, 1998.

Some of the stories in these volumes concern math and physics, such as “The Planck
Dive”, about some far-future explorers who send copies of themselves into a black hole
to study quantum gravity firsthand. One nice thing about this story, from a pedant’s
perspective, is that Egan actually works out a plausible scenario for meeting the technical
challenges involved — with the help of a little 23rd-century technology. Another nice
thing is the further exploration of a world in which everyone has long been uploaded
to virtual “scapes” and can easily modify and copy themselves — a world familiar to
readers of his novel “Diaspora” (see “Week 115”). But what I really like is that it’s not
just a hard-science extravaganza; it’s a meditation on mortality. You can never really
know what it’s like to cross an event horizon unless you do it. . . .

Other stories focus on biotechnology and philosophical problems of identity. The
latter sort will especially appeal to everyone who liked this book:

2) Daniel C. Dennett and Douglas R. Hofstadter, The Mind’s I: Fantasies and Reflections
on Self and Soul, Bantam Books, 1982.

Among these, one of my favorite is called “Closer”. How close can you be to someone
without actually being them? Would temporarily merging identities with someone you
loved help you understand them better? Luckily for you penny-pinchers out there, this
particular story is available free at the following website:

3) Greg Egan, Closer, http://www.eidolon.net/old site/issue 09/09 closr.htm

Whoops! I’m drifting pretty far from mathematical physics, aren’t I? Self-reference
has a lot to do with mathematical logic, but. . . . To gently drift back, let me point out
that Egan has a website in which he explains special and general relativity in a nice,
nontechnical way:
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4) Greg Egan, Foundations, http://www.netspace.net.au/~gregegan/FOUNDATIONS/
index.html

Also, here are some interesting papers:

5) Gordon L. Kane, “Experimental evidence for more dimensions reported”, Physics
Today, May 1998, 13–16.

Paul M. Grant, “Researchers find extraordinarily high temperature superconductiv-
ity in bio-inspired nanopolymer”, Physics Today, May 1998, 17–19.

Jack Watrous, “Ribosomal robotics approaches critical experiments; government
agencies watch with mixed interest”, Physics Today, May 1998, 21–23.

What these papers have in common is that they are all works of science fiction, not
science. They read superficially like straight science reporting, but they are actually the
winners of Physics Today’s “Physics Tomorrow” essay contest!

For example, Grant writes:

“Little’s concept involved replacing the phonons — characterized by the Debye
temperature — with excitons, whose much higher characteristic energies are on
the order of 2 eV, or 23,000 K. If excitons were to become the electron-pairing
‘glue’, superconductors with Tc’s as high as 500 K might be possible, even under
weak coupling conditions. Little even proposed a possible realization of the
idea: a structure composed of a conjugated polymer chain (polyene) dressed
with highly polarizable molecule (aromatics) as side groups. Simply stated, the
polyene chain would be a normal metal with a single mobile electron per C-H
molecular unit; electrons on separate units would be paired by interacting with
the exciton field on the polarizable side groups.”

Actually, I think this part is perfectly true — William A. Little suggested this way
to achieve high-temperature superconductivity back in the 1960s. The science fiction
part is just the description, later on in Grant’s article, of how Little’s dream is actually
achieved.

Okay, enough science fiction! Time for some real science! Quantum gravity, that is.
(Stop snickering, you skeptics. . . .)

6) Laurent Freidel and Kirill Krasnov, “Spin foam models and the classical action prin-
ciple”, preprint available as hep-th/9807092.

I described the spin foam approach to quantum gravity in “Week 113”. But let me
remind you how the basic idea goes. A good way to get a handle on this idea is by
analogy with Feynman diagrams. In ordinary quantum field theory there is a Hilbert
space of states called “Fock space”. This space has a basis of states in which there are
a specific number of particles at specific positions. We can visualize such a state simply
by imagining a bunch of points in space, with labels to say which particles are which
kinds: electrons, quarks, and so on. One of the main jobs of quantum field theory is to
let us compute the amplitude for one such state to evolve into another as time passes.
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Feynman showed that we can do it by computing a sum over graphs in spacetime. These
graphs are called Feynman diagrams, and they represent “histories”. For example,

Nu

N
d

W
N

e

N
ν

would represent a history in which an up quark emits a W boson and turns into a down
quark, with the W being absorbed by an electron, turning it into a neutrino. Time passes
as you march down the page. Quantum field theory gives you rules for computing am-
plitudes for any Feyman diagram. You sum these amplitudes over all Feynman diagrams
starting at one state and ending at another to get the total amplitude for the given tran-
sition to occur.

Now, where do these rules for computing Feynman diagram amplitudes come from?
They are not simply postulated. They come from perturbation theory. There is a general
abstract formula for computing amplitudes in quantum field theory, but it’s not so easy
to use this formula in concrete calculations, except for certain very simple field theories
called “free theories”. These theories describe particles that don’t interact at all. They are
mathematically tractable but physically uninteresting. Uninteresting, that is, except as a
starting-point for studying the theories we are interested in — the so-called “interacting
theories”.

The trick is to think of an interacting theory as containing parameters, called “cou-
pling constants”, which when set to zero make it reduce to a free theory. Then we can
try to expand the transition amplitudes we want to know as a Taylor series in these pa-
rameters. As usual, computing the coefficients of the Taylor series only requires us to to
compute a bunch of derivatives. And we can compute these derivatives using the free
theory! Typically, computing the nth derivative of some transition amplitude gives us a
bunch of integrals which correspond to Feynman diagrams with n vertices.

By the way, this means you have to take the particles you see in Feynman diagrams
with a grain of salt. They don’t arise purely from the mathematics of the interacting
theory. They arise when we approximate that theory by a free theory. This is not an idle
point, because we can take the same interacting theory and approximate it by different
free theories. Depending on what free theory we use, we may say different things about
which particles our interacting theory describes! In condensed matter physics, people
sometimes use the term “quasiparticle” to describe a particle that appears in a free the-
ory that happens to be handy for some problem or other. For example, it can be helpful
to describe vibrations in a crystal using “phonons”, or waves of tilted electron spins using
“spinons”. Condensed matter theorists rarely worry about whether these particles “really
exist”. The question of whether they “really exist” is less interesting than the question of
whether the particular free theory they inhabit provides a good approximation for deal-
ing with a certain problem. Particle physicists, too, have increasingly come to recognize
that we shouldn’t worry too much about which elementary particles “really exist”.

But I digress! My point was simply to say that Feynman diagrams arise from approx-
imating interacting theories by free theories. The details are complicated and in most
cases nobody has ever succeeded in making them mathematically rigorous, but I don’t
want to go into that here. Instead, I want to turn to spin foams.
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Everything I said about Feynman diagrams has an analogy in this approach to quan-
tum gravity. The big difference is that ordinary “free theories” are formulated on a
spacetime with a fixed metric - usually Minkowski spacetime, with its usual flat metric.
Attempts to approximate quantum gravity by this sort of free theory failed dismally. Per-
haps the fundamental reason is that general relativity doesn’t presume that spacetime
has a fixed metric — au contraire, it’s a theory in which the metric is the main variable!

So the idea of Freidel and Krasnov is to approximate quantum graivty with a very
different sort of “free theory”, one in which the metric is a variable. The theory they use
is called “BF theory”. I said a lot about BF theory in “Week 36”, but here the main point
is simply that it’s a topological quantum field theory, or TQFT. A TQFT is a quantum field
theory that does not presume a fixed metric, but of a very simple sort, because it has no
local degrees of freedom. I very much like the idea that a TQFT might serve as a novel
sort of “free theory” for the purposes of studying quantum gravity.

Everything that Freidel and Krasnov do is reminscent of familiar quantum field theory,
but also very different, because their starting-point isBF theory rather than a free theory
of a traditional sort. For example, just as ordinary quantum field theory starts out with
Fock space, in the spin network approach to quantum gravity we start with a nice simple
Hilbert space of states. But this space has a basis consisting, not of collections of 0-
dimensional particles sitting in space at specified positions, but of 1-dimensional “spin
networks” sitting in space. (For more on spin networks, see “Week 55” and “Week 110”.)
And instead of using 1-dimensional Feynman diagrams to compute transition amplitudes,
the idea is now to use 2-dimensional gadgets called “spin foams”. The amplitudes for
spin foams are easy to compute in BF theory, because there are a lot of explicit formulas
using the so-called “Kauffman bracket”, which is an easily computable invariant of spin
networks. So then the trick is to use this technology to compute spin foam amplitudes
for quantum gravity.

Now, I shouldn’t give you the wrong impression here. There are lots of serious prob-
lems and really basic open questions in this work, and the whole thing could turn out to
be fatally flawed somehow. Nonetheless, something seems right about it, so I find it very
interesting.

Anyway, on to some other papers. I’m afraid I don’t have enough energy for detailed
descriptions, because I’m busy moving into a new house, so I’ll basically just point you
at them. . . .

7) Abhay Ashtekar, Alejandro Corichi and Jose A. Zapata, “Quantum theory of ge-
ometry III: Non-commutativity of Riemannian structures”, preprint available as
gr-qc/9806041.

This is the long-awaited third part of a series giving a mathematically rigorous for-
malism for interpreting spin network states as “quantum 3-geometries”, that is, quantum
states describing the metric on 3-dimensional space together with its extrinsic curvature
(as it sits inside 4-dimensional spacetime). Here’s the abstract:

“The basic framework for a systematic construction of a quantum theory of
Riemannian geometry was introduced recently. The quantum versions of Rie-
mannian structures — such as triad and area operators — exhibit a non-
commutativity. At first sight, this feature is surprising because it implies that
the framework does not admit a triad representation. To better understand this
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property and to reconcile it with intuition, we analyze its origin in detail. In
particular, a careful study of the underlying phase space is made and the fea-
ture is traced back to the classical theory; there is no anomaly associated with
quantization. We also indicate why the uncertainties associated with this non-
commutativity become negligible in the semi-classical regime.”

In case you’re wondering, the “triad” field is more or less what mathematicians would
call a “frame field” or “soldering form” — and it’s the same as the “B” field in BF the-
ory. It encodes the information about the metric in Ashtekar’s formulation to general
relativity.

Moving on to matters n-categorical, we have:

8) Andre Hirschowitz, Carlos Simpson, “Descente pour les n-champs” (Descent for
n-stacks), approximately 240 pages, in French, preprint available as math.AG/

9807049.

Apparently this provides a theory of “n-stacks”, which are the n-categorical gener-
alization of sheaves. Ever since Grothendieck’s 600-page letter to Quillen (see “Week
35”), this has been the holy grail of n-category theory. Unfortunately I haven’t mustered
sufficient courage to force my way through 240 pages of French, so I don’t really know
the details!

For the following two n-category papers, exploring some themes close to my heart,
I’ll just quote the abstracts:

9) Michael Batanin, “Computads for finitary monads on globular sets”, preprint avail-
able at http://www.ics.mq.edu.au/~mbatanin/papers.html

”This work arose as a reflection on the foundation of higher dimensional cate-
gory theory. One of the main ingredients of any proposed definition of weak n-
category is the shape of diagrams (pasting scheme) we accept to be composable.
In a globular approach [due to Batanin] each k-cell has a source and target
(k − 1)-cell. In the opetopic approach of Baez and Dolan and the multitopic
approach of Hermida, Makkai and Power each k-cell has a unique (k − 1)-cell
as target and a whole (k − 1)-dimensional pasting diagram as source. In the
theory of strict n-categories both source and target may be a general pasting
diagram.

The globular approach being the simplest one seems too restrictive to describe the
combinatorics of higher dimensional compositions. Yet, we argue that this is a false
impression. Moreover, we prove that this approach is a basic one from which the other
type of composable diagrams may be derived. One theorem proved here asserts that the
category of algebras of a finitary monad on the category of n-globular sets is equivalent to
the category of algebras of an appropriate monad on the special category (of computads)
constructed from the data of the original monad. In the case of the monad derived from
the universal contractible operad this result may be interpreted as the equivalence of the
definitions of weak n-categories (in the sense of Batanin) based on the ‘globular’ and
general pasting diagrams. It may be also considered as the first step toward the proof of
equivalence of the different definitions of weak n-category.
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We also develop a general theory of computads and investigate some properties of the
category of generalized computads. It turned out, that in a good situation this category
is a topos (and even a presheaf topos under some not very restrictive conditions, the
property firstly observed by S. Schanuel and reproved by A. Carboni and P. Johnstone
for 2-computads in the sense of Street).”

10) Tom Leinster, “Structures in higher-dimensional category theory”, preprint avail-
able at http://www.dpmms.cam.ac.uk/~leinster

“This is an exposition of some of the constructions which have arisen in higher-
dimensional category theory. We start with a review of the general theory of
operads and multicategories. Using this we give an account of Batanin’s def-
inition of n-category; we also give an informal definition in pictures. Next
we discuss Gray-categories and their place in coherence problems. Finally, we
present various constructions relevant to the opetopic definitions of n-category.
New material includes a suggestion for a definition of lax cubical n-category; a
characterization of small Gray-categories as the small substructures of 2-Cat; a
conjecture on coherence theorems in higher dimensions; a construction of the
category of trees and, more generally, of n-pasting diagrams; and an analogue
of the Baez-Dolan slicing process in the general theory of operads.”

Okay — now for something completely different. In “Week 122” I said how Kreimer
and Connes have teamed up to write a paper relating Hopf algebras, renormalization,
and noncommutative geometry. Now it’s out:

11) Alain Connes and Dirk Kreimer, “Hopf algebras, renormalization and noncommu-
tative geometry”, preprint available as hep-th/9808042.

Also, here’s an introduction to Kreimer’s work:

12) Dirk Kreimer, “How useful can knot and number theory be for loop calculations?”,
Talk given at the workshop Loops and Legs in Gauge Theories, preprint available as
hep-th/9807125.

Switching over to homotopy theory and its offshoots. . . when I visited Dan Chris-
tensen at Johns Hopkins this spring, he introduced me to all the homotopy theorists
there, and Jack Morava gave me a paper which really indicates the extent to which new-
fangled “quantum topology” has interbred with good old-fashioned homotopy theory:

12) Jack Morava, “Quantum generalized cohomology”, preprint available as math.QA/
9807058 and http://hopf.math.purdue.edu/

Again, I’ll just quote the abstract rather than venturing my own summary:

“We construct a ring structure on complex cobordism tensored with the ratio-
nals, which is related to the usual ring structure as quantum cohomology is
related to ordinary cohomology. The resulting object defines a generalized two-
dimensional topological field theory taking values in a category of spectra.”
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Finally, Morava has a student who gave me an interesting paper on operads and
moduli spaces:

13) Satyan L. Devadoss, “Tessellations of moduli spaces and the mosaic operad”, preprint
available as math.QA/9807010.

“We construct a new (cyclic) operad of ‘mosaics’ defined by polygons with marked
diagonals. Its underlying (aspherical) spaces are the sets M0,n(R) of real points
of the moduli space of punctured Riemann spheres, which are naturally tiled by
Stasheff associahedra. We (combinatorially) describe them as iterated blow-ups
and show that their fundamental groups form an operad with similarities to the
operad of braid groups.”

Some things are so serious that one can only jest about them. — Niels Bohr.
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Week 124

October 23, 1998

I’m just back from Tucson, where I talked a lot with my friend Minhyong Kim, who
teaches at the math department of the University of Arizona. I met Minhyong in 1986
when I was a postdoc and he was a grad student at Yale. At the time, strings were all
the rage. Having recently found 5 consistent superstring theories, many physicists were
giddy with optimism, some even suggesting that the Theory of Everything would be
completed before the turn of the century. A lot of mathematicians were going along for
the ride, delighted by the beautiful and intricate mathematical infrastructure: conformal
field theory, vertex operator algebras, and so on. Minhyong was considering doing his
thesis on one of these topics, so we spent a lot of time talking about mathematical
physics.

However, he eventually decided to work with Serge Lang on arithmetic geometry.
This is a branch of algebraic geometry where you work over the integers instead of
a field — especially important for Diophantine equations. Personally, I was a bit disap-
pointed. Perhaps it was because I thought physics was more important than the decadent
pleasures of pure mathematics — or perhaps it was because it made it much less likely
that we’d ever collaborate on a paper.

However, a lot of the math Minhyong learned when studying string theory is also
important in arithmetic geometry. An example is the theory of elliptic curves. Roughly
speaking, an elliptic curve is a torus formed taking a parallelogram in the complex plane
and identifying opposite edges.

You might wonder why something basically doughnut-shaped is called an elliptic
curve! Let’s clear that up right away. The “elliptic” part comes from a relationship to
elliptic functions, which generalize the familiar trig functions from circles to ellipses.
The “curve” part comes from the fact that it takes one complex number z = x + iy to
describe your location on a surface with two real coordinates (x, y), so showoffs like
to say that a torus is one-dimensional — one complex dimension, that is! — hence a
“curve”. In short, you have to already understand elliptic curves to know why the heck
they’re called elliptic curves.

Anyway, why are elliptic curves important? On the one hand, they show up all over
number theory, like in Wiles’ proof of Fermat’s last theorem. On the other hand, in string
theory, a string traces out a surface in spacetime called the string worldsheet, and points
on this surface are conveniently described using a single complex number, so it’s what
those showoffs call a “curve” — and among the simplest examples are elliptic curves!

If you’re interested to see how Fermat’s last theorem was reduced to a problem about
elliptic curves — the so-called Shimura-Taniyama-Weil conjecture — you can look at the
textbooks on elliptic curves listed in “Week 13”. But I won’t say anything about this,
since I don’t understand it. Instead, I want to talk about how elliptic curves show up in
string theory. For more on how these two applications fit together, try:

1) Yuri I. Manin, “Reflections on arithmetical physics”, in Conformal Invariance and
String Theory, eds. Petre Dita and Vladimir Georgescu, Academic Press, 1989.

Let me just quote the beginning:
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The development of theoretical physics in the last quarter of the twentieth cen-
tury is guided by a very romantic system of values. Aspiring to describe fun-
damental processes at the Planck scale, physicists are bound to lose any direct
connection with the observable world. In this social context the sophisticated
mathematics emerging in string theory ceases to be only a technical tool needed
to calculate some measurable effects and becomes a matter of principle.

Today at least some of us are again nurturing an ancient Platonic feeling that
mathematical ideas are somehow predestined to describe the physical world,
however remote from reality their origins seem to be.

From this viewpoint one should perversely expect number theory to become the
most applicable branch of mathematics.”

I think this remark wisely summarizes both the charm and the dangers of physics that
relies more heavily on criteria of mathematical elegance than of experimental verifica-
tion.

Anyway, I don’t want to get too deep into the theory of elliptic curves; just enough
so we see why the number 24 is so important in string theory. You may remember that
bosonic string theory works best in 26 dimensions (while the physically more important
superstring theory, which includes spin-1/2 particles, works best in 10). Why is this true?
Well, there are various answers, but one is that if you think of the string as wiggling in
the 24 directions perpendicular to its own 2-dimensional surface — two real dimensions,
that is! — various magical properties of the number 24 conspire to make things work
out.

What are these magical properties of the number 24? Well,

12 + 22 + 32 + . . .+ 242

is itself a perfect square, and 24 is the only integer with this property besides silly ones
like 0 and 1. As described in “Week 95”, this has some very profound relationships to
string theory. Unfortunately, I don’t know any way to deduce from this that bosonic
string theory works best in 26 dimensions.

One reason bosonic string theory works best in 26 dimensions is that

1 + 2 + 3 + . . . = − 1

12

and 2× 12 = 24. Of course, this explanation is unsatisfactory in many ways. First of all,
you might wonder what the above equation means! Doesn’t the sum diverge???

Actually this is the least unsatisfactory feature of the explanation. Although the sum
diverges, you can still make sense of it. The Riemann zeta function is defined by

ζ(s) = 1−s + 2−s + 3−s + . . .

whenever the real part of s is greater than 1, which makes the sum converge. But you
can analytically continue it to the whole complex plane, except for a pole at 1. If you do
this, you find that

ζ(−1) = − 1

12
.
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Thus we may jokingly say that 1 + 2 + 3 + . . . = −1/12. But the real point is how the zeta
function shows up in string theory, and quantum field theory in general. (It’s also big in
number theory.)

Unfortunately, the details quickly get rather technical; one has to do some calcula-
tions and so on. That’s the really unsatisfactory part. I want something that clearly
relates strings and the number 24, something so simple even a child could understand
it, and which, when you work out all the implications, implies that bosonic string theory
only makes sense in 26 dimensions. I don’t expect a child to be able to figure out all the
implications. . . but I want the essence to be childishly simple.

Here it is. Suppose the string worldsheet is an elliptic curve. Then we can make it by
taking a “lattice” of parallelograms in the complex plane:
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and identifying each point in each parallelogram with the corresponding points on all
the others. This rolls the plane up into a torus. Now, two lattices are more symmetrical
than the rest. One of them is the square lattice:
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which has 4-fold rotational symmetry. The other is the lattice with lots of equilateral
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triangles in it:
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which has 6-fold rotational symmetry. The magic property of the number 24, which
makes string theory work so well in 26 dimensions, is that

4× 6 = 24

Okay, great. But if you’re anything like me, at this point you’re wondering how the
heck this actually helps. Why should string theory care about these specially symmetrical
lattices? And why should we multiply 4 and 6? So far everything I’ve said has been flashy
but insubstantial. Next week I’ll fill in some of the details. Of course, I’ll need to turn up
the sophistication level a notch or two.

In the meantime, you can read a bit more about this stuff in the following article on
Richard Borcherds, who won the Fields medal for his work relating bosonic string theory,
the Leech lattice in 24 dimensions, and the Monster group:

2) W. Wayt Gibbs, “Monstrous moonshine is true”, Scientific American, November
1998, 40–41. Also available at http://www.sciam.com/1998/1198issue/1198profile.
html.

Gibbs asked me to come up with a simple explanation of the j invariant for elliptic
curves; you can judge how well I succeeded. For a more detailed attempt to do the
same thing, see “Week 66”, which also has more references on the Monster group. By
the way, John McKay didn’t actually make his famous discovery relating the j invariant
and Monster while reading a 19th-century book on elliptic modular functions; he says
“It was du Val’s Elliptic Functions book in which j is expanded incorrectly as a q-series
— very much a 20th century book.” Apart from that, the article seems accurate, as far
as I can tell.

If you really want to understand how elliptic curves are related to strings, you need
to learn some conformal field theory. For that, try:

3) Phillippe Di Francesco, Pierre Mathieu, and David Senechal, Conformal Field The-
ory, Springer, 1997.

This is a truly wonderful tour of the subject. It’s 890 pages long, but it’s designed to
be readable by both mathematicians and physicists, so you can look at the bits you want.
It starts out with a 60-page introduction to quantum field theory and a 30-page intro-
duction to statistical mechanics. The reason is that when we perform the substitution
called the “Wick transform”:

it/~ 7→ k/T,
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quantum field theory turns into statistical mechanics, and a nice Lorentzian manifold
may turn into a Riemannian manifold — in other words, “spacetime” turns into “space”.
And this gives conformal field theory a double personality.

First, conformal field theory studies quantum field theories in 2 dimensions that are
invariant under all conformal transformations — transformations that preserve angles
but not necessarily lengths. These are important in string theory because we can think
of them as transformations of the string worldsheet that preserve its complex structure.

Secondly, if we do a Wick transform, these quantum field theories become 2-dimensional
statistical mechanics problems that are invariant under all conformal transformations.
This may seem an esoteric concern, but thin films of material can often be treated as
2-dimensional for all practical purposes, and conformal invariance is typical at “critical
points” — boundaries between two or more phases for which there is no latent heat,
such as the boundary between the magnetized and unmagnetized phases of a ferromag-
net. In 2 dimensions, one can use conformal field theory to thoroughly understand these
critical points.

After this warmup, the book covers the fundamentals of conformal field theory proper,
including:

• the idea of conformal invariance (which is especially powerful in 2 dimensions
because then the group of conformal transformations is infinite-dimensional),

• the free boson and fermion fields,

• operator product expansions,

• the Virasoro algebra (which is closely related to the Lie algebra of the group of
conformal transformations, and has a representation on the Hilbert space of states
of any conformal field theory),

• minimal models (roughly, conformal field theories whose Hilbert space is built from
finitely many irreducible representations of the Virasoro algebra),

• the Coulomb-gas formalism (a way to describe minimal models in terms of the free
boson and fermion fields),

• modular invariance (the study of conformal field theory on tori — this is where the
elliptic curves start sneaking into the picture, dragging along with them the won-
derful machinery of elliptic functions, theta functions, the Dedekind eta function,
and so forth),

• critical percolation (applying conformal field theory to systems where a substance
is trying to ooze through a porous medium, with special attention paid to the
critical point when the holes are just big enough to let it ooze all the way through),

• the 2-dimensional Ising model (applying conformal field theory to ferromagnets,
with special attention paid to the critical point when the temperature is just low
enough for ferromagnetism to set in)

By now we’re at page 486. I’m getting tired just summarizing this thing!
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Anyway, the book then turns to conformal field theories having Lie group symmetries:
in particular, the so-called Wess-Zumino-Witten or “WZW” models. Pure mathematicians
are free to join here, even amateurs, because we are now treated to a wonderful 78-page
introduction to simple Lie algebras, starting from scratch and working rapidly through
all sorts of fun stuff, skipping all the yucky proofs. Then we get a 54-page introduction
to affine Lie algebras, which are infinite- dimensional generalizations of the simple Lie
algebras, and play a crucial role in string theory. Finally, we get a detailed 143-page
course on WZW models — which are basically conformal field theories where your field
takes values in a Lie group — and coset models — where your field takes values in a Lie
group modulo a subgroup. It sounds like all minimal models can be described as coset
models, though I’m not quite sure.

Whew! Believe it or not, the authors plan a second volume! Anyway, this is a won-
derful book to have around. I was just about to buy a copy in Chicago last spring — on
sale for a mere $50 — when I discovered I’d lost my credit card. Sigh. The big ones
always get away. . . .

There are various formalisms for doing conformal field theory that aren’t covered
in the above text. For example, the theory of “vertex operator algebras”, or “vertex
algebras” is really popular among mathematicians studying conformal field theory and
the Monster group.

The standard definition of a vertex operator algebra is long and complicated: it sum-
marizes a lot of what you’d want a conformal field theory to be like, but it’s hard to learn
to love it unless you already know some other approaches to conformal field theory.
There’s another definition using operads that’s much nicer, which will eventually catch
on — some people complain that operads are too abstract, but that’s just hogwash. But
anyway, there is a definite need for more elementary texts on the subject. Here’s one:

4) Victor Kac, Vertex Algebras for Beginners, American Mathematical Society, Univer-
sity Lecture Series vol. 10, 1997.

And then of course there is string theory proper. How do you learn that? There’s
always the bible by Green, Schwarz and Witten (see “Week 118”), but a lot of stuff has
happened since that was written. Luckily, Joseph Polchinski has come out with a “new
testament”; I haven’t seen it yet but physicists say it’s very good:

5) Joseph Polchinski, String Theory, 2 volumes, Cambridge U. Press, 1998.

There are also other textbooks, of course. Here’s one that’s free if you print it out
yourself:

6) E. Kiritsis, Introduction to Superstring Theory, 244 pages, to be published by Leuven
University Press, preprint available as hep-th/9709062.

For a more mathematical approach, you might want to try this when it comes out:

7) Quantum Fields and Strings: A Course for Mathematicians, eds. P. Deligne, P. Et-
inghof, D. Freed, L. Jeffrey, D. Kazhdan, D. Morrison and E. Witten, American
Mathematical Society, to appear.
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Finally, when you get sick of all this new-fangled stuff and want to read about the
good old days when physicists predicted new particles that actually wound up being
observed, you can turn to this book about Dirac and his work:

8) Abraham Pais, Maurice Jacob, David I. Olive, and Michael F. Atiyah, Review of Paul
Dirac: The Man and His Work, Cambridge U. Press, 1998.

Also try this:

9) Michael Berry, “Paul Dirac: the purest soul in physics”, Physics World, February
1998, pp. 36–40.

First, and above all for Dirac, the logic that led to the theory was, although deeply
sophisticated, in a sense beautifully simple. Much later, when someone asked him (as many
must have done before) “How did you find the Dirac equation?” he is said to have replied
“I found it beautiful.” — Michael Berry
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Week 125

November 3, 1998

Last week I promised to explain some mysterious connections between elliptic curves,
string theory, and the number 24. I claimed that it all boils down to the fact that there
are two especially symmetric lattices in the plane, namely the square lattice:
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with 4-fold symmetry, and the hexagonal lattice:
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with 6-fold symmetry. Now it’s time for me to start backing up those claims.
First I need to talk a bit about lattices and SL(2,Z). As I explained in “Week 66”, a

lattice in the complex plane consists of all points that are integer linear combinations of
two complex numbers, say ω1 and ω2. However, we can change these numbers without
changing the lattice by letting

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

where (
a b
c d

)
is a 2 × 2 invertible matrix of integers whose inverse again consists of integers. Usually
it’s good to require that our transformation preserve the handedness of the basis (ω1, ω2),
which means that this matrix should have determinant 1. Such matrices form a group
called SL(2,Z). In the context of elliptic curves it’s also called the “modular group”.
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Now associated to the square lattice is a special element of SL(2,Z) that corresponds
to a 90 degree rotation. Everyone calls it S:

S =

(
0 −1
1 0

)
Associated to the hexagonal lattice is a special element of SL(2,Z) that corresponds to a
60 degree rotation. Everyone calls it ST :

ST =

(
0 −1
1 1

)
(See, there’s a matrix they already call T , and ST is the product of S and that one.)
Now, you may complain that the matrix ST doesn’t look like a rotation, but you have to
be careful! What I mean is, if you take the hexagonal lattice and pick a basis for it like
this:

<(z)

=(z)

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•
0

•
ω1

•
ω2

then in this basis the matrix ST represents a 60 degree rotation.
So far this is pretty straightforward, but now come some surprises. First, it turns

out that SL(2,Z) is generated by S and ST . In other words, every 2 × 2 integer matrix
with determinant 1 can be written as a product of a bunch of copies of S, ST , and their
inverses. Second, all the relations satisfied by S and ST follow from these obvious ones:

S4 = 1

(ST )6 = 1

together with
S2 = (ST )3

which holds because both sides describe a 180 degree rotation.
Right away this implies that SL(2,Z) has a certain inherent “12-ness” to it. Let me

explain. SL(2,Z) is a nonabelian group — this is how someone with a Ph.D. says that
matrix multiplication doesn’t commute — but suppose we abelianize it by imposing extra
relations forcing commutativity. Then we get a group generated by S and ST , satisfying
the above relations together with an extra one saying that S and ST commute. This is
the group Z/12, which has 12 elements!

This “12-ness” has a lot to do with the magic properties of the number 24 in string
theory. But to see how this “12-ness” affects string theory, we need to talk about elliptic
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curves a bit more. It will take forever unless I raise the mathematical sophistication level
a little. So. . . .

We can define an elliptic curve to be a torus C/L formed by taking the complex plane
C and modding out by a lattice L. Since C is an abelian group and L is a subgroup,
this torus is an abelian group, but in the theory of elliptic curves we consider it not just
as a group but also as a complex manifold. Thus two elliptic curves C/L and C/L′ are
considered isomorphic if there is a complex-analytic function from one to the other that’s
also an isomorphism of groups. This happens precisely when there is a nonzero number
z such that zL = L′, or in other words, whenever L′ is a rotated and/or dilated version
of L.

There’s a wonderful space called the “moduli space” of elliptic curves: each point on
it corresponds to an isomorphism class of elliptic curves. In physics, we think of each
point in it as describing the geometry of a torus-shaped string worldsheet. Thus in the
path-integral approach to string theory we need to integrate over this space, together
with a bunch of other moduli spaces corresponding to string worldsheets with different
topologies. All these moduli spaces are important and interesting, but the moduli space
of elliptic curves is a nice simple example when you’re first trying to learn this stuff.
What does this space look like?

Well, suppose we have an elliptic curve C/L. We can take our lattice L and describe
it in terms of a right-handed basis (ω1, ω2). For the purposes of classifying the describing
the elliptic curve up to isomorphism, it doesn’t matter if we multiply these basis elements
by some number z, so all that really matters is the ratio

τ = ω1/ω2.

Since our basis was right-handed, τ lives in the upper half-plane, which people like to
call H.

Okay, so now we have described our elliptic curve in terms of a complex number τ
lying in H. But the problem is, we could have chosen a different right-handed basis for
our lattice L and gotten a different number τ . We’ve got to think about that. Luckily,
we’ve already seen how we can change bases without changing the lattice: we just apply
a matrix in SL(2,Z), getting a new basis

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

This has the effect of changing τ to

τ ′ =
aτ + b

cτ + d
.

If you don’t see why, figure it out — you’ve gotta understand this to understand elliptic
curves!

Anyway, two numbers τ and τ ′ describe isomorphic elliptic curves if and only if they
differ by the above sort of transformation. So we’ve figured out the moduli space of
elliptic curves: it’s the quotient space H/SL(2,Z), where SL(2,Z) acts on H as above!

Now, the quotient space H/SL(2,Z) is not a smooth manifold, because while the
upper halfplane H is a manifold and the group SL(2,Z) is discrete, the action of SL(2,Z)
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on H is not free: i.e., certain points in H don’t move when you hit them with certain
elements of SL(2,Z).

If you don’t see why this causes trouble, think about a simpler example, like the
group G = Z/n acting as rotations of the complex plane, C. Most points in the plane
move when you rotate them, but the origin doesn’t. The quotient space C/G is a cone
with its tip corresponding to the origin. It’s smooth everywhere except the tip, where it
has a “conical singularity”. The moral of the story is that when we mod out a manifold
by a group of symmetries, we get a space with singularities corresponding to especially
symmetrical points in the original manifold.

So we expect that H/SL(2,Z) has singularities corresponding to points in H corre-
sponding to especially symmetrical lattices. These, of course, are our friends the square
and hexagonal lattices!

But let’s be a bit more careful. First of all, nothing in H moves when you hit it with
the matrix −1. But that’s no big deal: we can just replace the group SL(2,Z) by

PSL(2,Z) = SL(2,Z)/{±1}

Since −1 doesn’t move any points of H, the action of SL(2,Z) on H gives an action of
PSL(2,Z), and the moduli space of elliptic curves is H/PSL(2,Z).

Now most points inH aren’t preserved by any element of PSL(2,Z). However, certain
points are! The point

τ = i

corresponding to the square lattice, is preserved by S and all its powers. And the point

τ = exp(2πi/3)

corresponding to the hexagonal lattice, is preserved by ST and all its powers. These give
rise to two conical singularities in the moduli space of elliptic curves. Away from these
points, the moduli space is smooth.

Lest you get the wrong impression, I should hasten to reassure you that the moduli
space is not all that complicated: it looks almost like the complex plane! There’s a
famous one-to-one and onto function from the moduli space to the complex plane: it’s
called the “modular function” and denoted by j. So the moduli space is topologically just
like the complex plane; the only difference is that it fails to be smooth at two points,
where there are conical singularities.

This may seem a bit hard to visualize, but it’s actually not too hard. Here’s one way.
Start with the region in the upper half-plane outside the unit circle and between the
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vertical lines x = −1/2 and x = 1/2. It looks sort of like this:

<(z)

=(z)

•

B′

•

B

•
A

Then glue the vertical line starting at B to the one starting at B′, and glue the arc AB
to the arc AB′. We get a space that’s smooth everywhere except at the points A and
B = B′, where there are conical singularities. The total angle around the point A is just
180 degrees — half what it would be if the moduli space were smooth there. The total
angle around B is just 120 degrees — one third what it would be if the moduli space
were smooth there.

The reason this works is that the region shown above is a “fundamental domain” for
the action of PSL(2,Z) on H. In other words, every elliptic curve is isomorphic to one
where the parameter τ lies in this region. The point A is where τ = i, and the point B is
where τ = exp(2πi/3).

Now let’s see where the “12-ness” comes into this picture. Minhyong Kim explained
this to me in a very nice way, but to tell you what he said, I’ll have to turn up the level of
mathematical sophistication another notch. (Needless to say, all the errors will be mine.)

So, I’ll assume you know what a “complex line bundle” is — this is just another name
for a 1-dimensional complex vector bundle. Locally a section of a complex line bundle
looks a lot like a complex-valued function, but this isn’t true globally unless your line
bundle is trivial. If you aren’t careful, sometimes you may think you have a function
defined on a space, only to discover later that it’s actually a section of a line bundle. This
sort of thing happens all the time in physics. In string theory, when you’re doing path
integrals on moduli space, you have to make sure that what you’re integrating is really a
function! So it’s important to understand all the line bundles on moduli space.

Now, given any sort of space, we can form the set of all isomorphism classes of line
bundles over this space. This is actually an abelian group, since when we tensor two
line bundles we get another line bundle, and when you tensor any line bundle with its
dual, you get the trivial line bundle, which plays the role of the multiplicative identity
for tensor products. This group is called the “Picard group” of your space.

What’s the Picard group of the moduli space of elliptic curves? Well, when I said
“any sort of space” I was hinting that there are all sorts of spaces — topological spaces,
smooth manifolds, algebraic varieties, and so on — each one of which comes with its
own particular notion of line bundle. Thus, before studying the Picard group of moduli
space we need to decide what context we’re going to work in! As a mere topological
space, we’ve seen that the moduli space of elliptic curves is indistinguishable from the
plane, and every topological line bundle over the plane is trivial, so in this context the
Picard group is the trivial group — boring!
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But the moduli space is actually much more than a mere topological space. It’s not
a smooth manifold, but it’s awfully close: it’s the quotient of the smooth manifold H by
the discrete group SL(2,Z), and its singularities are pretty mild in nature.

Somehow we should take advantage of this when defining the Picard group of the
moduli space. One way to do so involves the theory of “stacks”. Without getting into
the details of this theory, let me just vaguely sketch what it does for us here. For a much
more careful treatment, with more of an algebraic geometry flavor, try:

1) David Mumford, “Picard groups of moduli problems”, in Arithmetical Algebraic Ge-
ometry, ed. O. F. G. Schilling, Harper and Row, New York, 1965.

Suppose a discrete group G acts on a smooth manifold X. A “G-equivariant” line
bundle on X is a line bundle equipped with an action of G that gets along with the
action of G on X. If G acts freely on X, a line bundle on X/G is the same as a G-
equivariant line bundle on X. This isn’t true when the action of G on X isn’t free. But
we can still go ahead and define the Picard group of X/G to be the group of isomorphism
classes of G-equivariant line bundles on X. Of course we should say something to let
people know that we’re using this funny definition. In our example, people call it the
Picard group of the moduli stack of elliptic curves.

So what’s this group, anyway?
Well, it turns out that you can get any SL(2,Z)-equivariant line bundle on H, up

to isomorphism, by taking the trivial line bundle on H and using a 1-dimensional rep-
resentation of SL(2,Z) to say how it acts on the fiber. So we just need to understand
1-dimensional representations of SL(2,Z). The set of isomorphism classes of these forms
a group under tensor product, and this is the group we’re after.

Well, a 1-dimensional representation of a group always factors through the abelian-
ization of that group. We saw the abelianization of SL(2,Z) was Z/12. But everyone
knows that the group of 1-dimensional representations of Z/n is again Z/n - this is
called Pontryagin duality. So: the Picard group of the moduli stack of elliptic curves is
Z/12.

So we see again an inherent “12-ness” built into the theory of elliptic curves! You may
be wondering how this makes the number 24 so important in string theory. In particular,
where does that extra factor of 2 come from? I’ll say a little more about this next Week.
I may or may not manage to tie together the loose ends!

You may also be wondering about “stacks”. In this you’re not alone. There’s an
amusing passage about stacks in the following book:

2) Joe Harris and Ian Morrison, Moduli of Curves, Springer-Verlag, New York, 1998.

They write:

“Of course, here I’m working with the moduli stack rather than with the moduli
space. For those of you who aren’t familiar with stacks, don’t worry: basically,
all it means is that I’m allowed to pretend that the moduli space is smooth and
that there’s a universal family over it.”

Who hasn’t heard these words, or their equivalent, spoken in a talk? And who
hasn’t fantasized about grabbing the speaker by the lapels and shaking him
until he says what — exactly — he means by them? But perhaps you’re now
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thinking that all that is in the past, and that at long last you’re going to learn
what a stack is and what they do.

Fat chance.

Actually Mumford’s paper cited above gives a nice introduction to the theory of stacks
without mentioning the dreaded word “stack”. Alternatively, you can wait and read this
book when it comes out:

3) K. Behrend, L. Fantechi, W. Fulton, L. Goettsche and A. Kresch, An Introduction to
Stacks, in preparation.

But let me just briefly say a bit about stacks and the moduli stack of elliptic curves in
particular. A stack is a weak sheaf of categories. For this to make sense you must already
know what a sheaf is! In the simplest case, a sheaf over a topological space, the sheaf S
gives you a set S(U) for each open set U, and gives you a function S(U, V ) : S(U)→ S(V )
whenever the open set U is contained in the open set V . These functions must satisfy
some laws. The notion of “stack” is just a categorification of this idea. That is, a stack S
over a topological space gives you a category S(U) for each open set U , and gives you a
functor S(U, V ) : S(U)→ S(V ). These functors satisfy the same laws as before, but only
up to specified natural isomorphism. And these natural isomorphisms must in turn satisfy
some new laws of their own, so-called coherence laws.

In the case at hand there’s a stack over the moduli space of elliptic curves. For
any open set U in the moduli space, an object of S(U) is a family of elliptic curves
over U , such that each elliptic curve in the family sits over the point in moduli space
corresponding to its isomorphism class. Similarly, a morphism in S(U) is a family of
isomorphisms of elliptic curves. This allows us to keep track of the fact that some elliptic
curves have more automorphisms than others! And it takes care of the funny stuff that
happens at the singular points in the moduli space.

By the way, this watered-down summary leaves out a lot of the algebraic geometry
that you usually see when people talk about stacks.

Finally, one more thing — it looks like Kreimer and company are making great
progress on understanding renormalization in a truly elegant way.

4) D. J. Broadhurst and D. Kreimer, “Renormalization automated by Hopf algebra”,
preprint available as hep-th/9810087.

Let me quote the abstract:

It was recently shown that the renormalization of quantum field theory is orga-
nized by the Hopf algebra of decorated rooted trees, whose coproduct identifies
the divergences requiring subtraction and whose antipode achieves this. We au-
tomate this process in a few lines of recursive symbolic code, which deliver a
finite renormalized expression for any Feynman diagram. We thus verify a rep-
resentation of the operator product expansion, which generalizes Chen’s lemma
for iterated integrals. The subset of diagrams whose forest structure entails a
unique primitive subdivergence provides a representation of the Hopf algebra
HR of undecorated rooted trees. Our undecorated Hopf algebra program is de-
signed to process the 24,213,878 BPHZ contributions to the renormalization of
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7,813 diagrams, with up to 12 loops. We consider 10 models, each in 9 renor-
malization schemes. The two simplest models reveal a notable feature of the
subalgebra of Connes and Moscovici, corresponding to the commutative part of
the Hopf algebra HT of the diffeomorphism group: it assigns to Feynman dia-
grams those weights which remove ζ values from the counterterms of the min-
imal subtraction scheme. We devise a fast algorithm for these weights, whose
squares are summed with a permutation factor, to give rational counterterms.
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Week 126

November 17, 1998

To round off some things I said in the previous two weeks, let me say a bit more about
string theory and Euler’s mysterious equation

1 + 2 + 3 + . . . = − 1

12
.

For this I’ll need to assume a nodding acquaintance with quantum field theory.
There are two complementary ways to attack almost any problem in quantum field

theory: the Lagrangian approach, also known as “path-integral quantization”, and the
Hamiltonian approach, also called “canonical quantization”. Let me describe string the-
ory from both viewpoints. I’ll only talk about bosonic string theory, because my goal is
to sketch why it works best in 26-dimensional spacetime, and because it’s simpler than
superstring theory. Also, I’ll only talk about closed strings.

Classically, such a string is simply a map from a closed surface into spacetime. In the
Lagrangian approach to quantization, we start by choosing a formula for the action. We
use the simplest possibility, namely the area of the surface. Of course, to define the area
of a surface in spacetime, we need the spacetime to have a metric. The simplest thing is
to work with n-dimensional Minkowski spacetime, so let’s do that.

We find the equations of motion of the string by extremizing the action. These equa-
tions imply that if we watch the string in space as time passes, it acts like collection
of loops made of perfectly elastic material. These loops vibrate, split and join as time
passes.

It’s perhaps a bit easier to see how the strings vibrate if we go over to the Hamiltonian
approach. This is a bit subtle, because string theory has an enormous amount of “gauge
symmetry” — by which physicists mean any symmetry that arises from the ability to
switch between different mathematical descriptions of what counts as the same physical
situation. There’s a recipe to figure out the gauge symmetries of any theory starting from
the action. Applying this to string theory, it turns out that two maps from a surface into
spacetime count as “physically the same” if they differ only by a reparametrization of the
surface that’s being mapped into spacetime.

When going over to the Hamiltonian approach, we have to deal with this gauge
symmetry. There are different ways to deal with it — but we can’t just ignore it. Sup-
pose we use the approach called “lightcone gauge-fixing”. This amounts to choosing a
parametrization of our surface so that the 2 coordinates on it are related in a simple way
to 2 of the coordinates on n-dimensional Minkowski space. We can do this because of
the reparametrization gauge symmetry. But once we’ve done it, we no longer have any
more freedom to reparametrize our surface. In short, we’ve squeezed all the juice out of
our gauge symmetry: this is what “gauge-fixing” is all about.

We started by studying a map from a surface S into n-dimensional spacetime, which
we can think of as field on S with n components. However, in lightcone gauge, 2 com-
ponents of this field are given by simple formulas in terms of the rest. This lets us think
of our string as a field X with only n− 2 components. And when we do this, it satisfies
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the simplest equation you could imagine! Namely, the wave equation(
d2

dt2
− d2

dx2

)
X(t, x) = 0.

This is same equation that describes an idealized violin string. The only difference is that
now, instead of a segment of violin string, we have a bunch of closed loops of string. The
energy, or Hamiltonian, is also given by the usual wave equation Hamiltonian:

H =
1

2

∫ [(
dX

dt

)2

+

(
dX

dx

)2
]
dx.

The first term represents the kinetic energy of the string, while the second represents its
potential energy — the energy it has due to being stretched.

Henceforth I’ll ignore the fact that loops of string can split or join, and only talk about
the vibrations of a single loop of string. Using the linearity of the wave equation, we can
decompose any solution of the wave equation into sine waves moving in either direction
— so-called “left-movers” and “right-movers” — together with a solution of the form

X(t, x) = A+Bt

which describes the motion of the string’s center of mass. The left-movers and right-
movers don’t interact with each other or with the center-of-mass motion, so we can
learn a lot just by studying the right-movers.

For starters, suppose the field X has just one component. Then the right-moving
vibrational modes look like

X(t, x) = A sin(ik(t− x)) +B cos(ik(t− x))

with frequencies k = 1, 2, 3, . . .. Abstractly, each of these vibrational modes is just like
a harmonic oscillator of frequency k, so we can think of the string as a big collection of
harmonic oscillators.

Now suppose we quantize our string — or more precisely, the right-moving modes.
By what we’ve said, this just amounts to quantizing a bunch of harmonic oscillators, one
of frequency k for each natural number k. This is great, since the harmonic oscillator is
one of the easiest physical systems to quantize!

As you may know, the quantum harmonic oscillator has discrete energy levels with
energies k/2, 3k/2, 5k/2, . . .. (Here I’m working in units where ~ = 1; otherwise I’d need
a factor of ~.) In particular, the energy of the lowest-energy state is called the “zero-
point energy” or “vacuum energy”. It usually doesn’t hurt much to subtract this off by
redefining the Hamiltonian, but sometimes it’s important.

Now, what’s the total zero-point energy of all the right-moving modes? To figure this
out, we add up the zero-point energy k/2 for all frequencies k = 1, 2, 3, . . ., obtaining

1 + 2 + 3 + . . .

2
.

Of course this is divergent, but there are lots of sneaky tricks for assigning values to
divergent series, so let’s not be disheartened! Euler figured out such a trick for calculating
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the sum 1 + 2 + 3 + . . . , and he got the value −1/12. If we momentarily assume this
makes sense, then the total zero-point energy works out to be − 1

24 More generally, if we
have a string in n-dimensional Minkowski spacetime, the field X has n− 2 components,
so the total zero-point energy is

−n− 2

24

Now, for other reasons, it turns out that string theory works best when this zero-point
energy is −1. This is a bit tricky to explain, but it has to do with the subtleties of gauge-
fixing in quantum field theory. Things that work nicely at the classical level can easily
screw up at the quantum level; in particular, symmetries of a classical theory can be
lost when you quantize. One has to really check that the light-cone gauge fixing doesn’t
screw up the Lorentz-invariance of string theory. It turns out that it does screw it up
unless the zero-point energy of the right-movers is −1. So bosonic string theory works
best when

n− 2

24
= 1

or in other words, when n = 26.
You really shouldn’t take my word for this stuff! You can find more details around

pages 95–96 in volume 1 of the following book:

1) Michael B. Green, John H. Schwarz and Edward Witten, Superstring Theory, 2
volumes, Cambridge University Press.

There’s a lot I should say to fill in the details, but the most urgent matter is to explain
Euler’s mysterious formula

1 + 2 + 3 + . . . = − 1

12

As I said in “Week 124”, this is an example of zeta function regularization. The Riemann
zeta function is defined by

ζ(s) =
1

1s
+

1

2s
+

1

3s
+ . . .

when the sum converges, but it analytically continues to values of s where the sum
doesn’t converge. If we do the analytic continuation, we get

ζ(−1) = − 1

12
.

Proving this rigorously is a bit of work. One way is to use the “functional equation” for
the Riemann zeta function, which says that

F (s) = F (1− s)

where
F (s) = π−

s
2 Γ
(s

2

)
ζ(s)

and Γ is the famous function with Γ(n) = (n−1)! for n = 1, 2, 3, . . . and Γ(s+1) = sΓ(s)
for all s. Using

Γ

(
1

2

)
=
√
π
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and

ζ(2) =
π2

6
,

the functional equation implies ζ(−1) = −1/12. But of course you have to prove the
functional equation! A nice exposition of this can be found in:

2) Neal Koblitz, Introduction to Elliptic Curves and Modular Forms, 2nd edition, Springer-
Verlag, 1993.

I don’t know Euler’s original argument that ζ(−1) = −1/12. However, Dan Piponi re-
cently gave the following “physicist’s proof” on the newsgroup sci.physics.research.
Let D be the differentiation operator:

D =
d

dx

Then Taylor’s formula says that translating a function to the left by a distance c is the
same as applying the operator ecD to it, since

ecDf = f + cf ′ +

(
c2

2!

)
f ′′ + . . .

Using some formal manipulations we obtain

f(0) + f(1) + f(2) + . . . = ((1 + eD + e2D + . . .)f)(0)

=

((
1

1− eD

)
f

)
(0)

or if F is an integral of f , so that DF = f ,

f(0) + f(1) + f(2) + . . . =

((
D

1− eD

)
F

)
(0)

This formula can be made rigorous in certain contexts, but now we’ll throw rigor to the
winds and apply it to the function f(x) = x, obtaining

0 + 1 + 2 + 3 + . . . =

((
D

1− eD

)
F

)
(0)

where

F (x) =
x2

2

To finish the job, we work out the beginning of the Taylor series for D/(1 − eD). The
coefficients of this are closely related to the Bernoulli numbers, and this could easily lead
us into further interesting digressions, but all we need to know is

D

1− eD
= −1 +

D

2
− D2

12
+ . . .
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Applying this operator to F (x) = x2/2 and evaluating the result at x = 0, the only
nonzero term comes from the D2 term in the power series, so we get

1 + 2 + 3 + . . . =

((
−D

2

12

)
F

)
(0) = − 1

12

Voil!
By the way, after he came up with this proof, Dan Piponi found an almost identical

proof in the following book:

3) G. H. Hardy, Divergent Series, Chelsea Pub. Co., New York, 1991.

Now let me change gears. Besides the Riemann zeta function, there are a lot of other
special functions that show up in the study of elliptic curves. Unsurprisingly, many of
them are also important in string theory. For example, consider the partition function of
bosonic string theory. What do I mean by a “partition function” here? Well, whenever
we have a quantum system with a Hamiltonian H, its partition function is defined to be

Z(β) = tr(exp(−βH))

where β > 0 is the inverse temperature. This function is fundamental to statistical
mechanics, for reasons that I’m too lazy to explain here.

Before tackling the bosonic string, let’s work out the partition function for a quan-
tum harmonic oscillator. To keep life simple, let’s subtract off the zero-point energy so
the energy levels are 0, k, 2k, and so on. Mathematically, these energy levels are just
the eigenvalues of the harmonic oscillator Hamiltonian, H. Thus the eigenvalues of
exp(−βH) are 1, exp(−βk), exp(−2βk), etc. The trace of this operator is just the sum of
its eigenvalues, so we get

Z(β) = 1 + exp(−βk) + exp(−2βk) + . . . =
1

1− exp(−βk)

This was first worked out by Planck, who assumed the harmonic oscillator had discrete,
evenly spaced energy levels and computed its partition function as part of his struggle to
understand the thermodynamics of the electromagnetic field.

Okay, now let’s do the bosonic string. To keep life simple we again subtract off the
zero-point energy. Also, we’ll consider only the right-moving modes, and we’ll start by
assuming the field X describing the vibrations of the string has only one component. As
we saw before, the string then becomes the same as a collection of quantum harmonic
oscillators with frequencies k = 1, 2, 3, . . .. We’ve seen that the oscillator with frequency
k has partition function 1/(1 − exp(−βk)). To get the partition function of a quantum
system built from a bunch of noninteracting parts, you multiply the partition functions of
the parts (since the trace of a tensor product of operators is the product of their traces).
So the partition function of our string is∏

k∈N

1

1− exp(−βk)

So far, so good. But now suppose we take the zero-point energy into account. We
do this by subtracting 1/24 from the Hamiltonian of the string, which has the effect of
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multiplying its partition function by exp(β/24). Thus we get

Z(β) = exp(β/24)
∏ 1

1− exp(−βk)

Lo and behold: the reciprocal of the Dedekind eta function!
What’s that, you ask? It’s a very important function in the theory of elliptic curves.

People usually write it as a function of q = exp(−β), like this:

η(q) = q
1
24

∏
(1− qk)

But to see the relation to elliptic curves we should switch variables yet again and write
q = exp(2πiτ). I already talked about this variable τ in “Week 125”, where we were
studying the elliptic curve formed by curling up a parallelogram like this in the complex
plane:
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In physics, this elliptic curve is just one possibility for the shape of a surface traced out
by a string. The number 1 says how far the surface goes in the space direction before it
loops around, and the number τ says how far it goes in the time direction before it loops
around!

(The idea of “looping around in time” may seem bizarre, but it’s very important in
physics. It turns out that studying the statistical mechanics of a system at a given inverse
temperature is the same as studying Euclidean quantum field theory on a spacetime
where time is periodic with a given period. This idea is what relates the variables β and
τ .)

Now as I explained in “Week 13”, the above elliptic curve is not just an abstract torus-
shaped thingie. We can also think of it as the set of complex solutions of the following
cubic equation in two variables:

y2 = 4x3 − g2x− g3

where the numbers g2 and g3 are certain functions of τ . Moreover, this equation defines
an elliptic curve whenever the polynomial on the right-hand side doesn’t have repeated
roots. So among other things, elliptic curves are really just a way of studying cubic
equations!

But when does 4x3−g2x−g3 have repeated roots? Precisely when the “discriminant”

∆ = g32 − 27g23
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equals zero. This is just the analog for cubics of the more familiar discriminant for
quadratic equations.

Now for the cool part: there’s an explicit formula for the discriminant in terms of the
variable τ . And it involves the 24th power of the Dedekind eta function! Here it is:

∆ = (2π)12η24

If you haven’t seen this before, it should seem amazing that the discriminant of a cubic
equation can be computed using the 24th power of a partition function that shows up in
string theory. Of course that’s not how it went historically: Dedekind discovered his eta
function long before strings came along. What’s really happening is that string theory is
exploiting special features of complex curves, and thus acquires some of the “24-ness” of
elliptic curves.

If I have the energy, next time I’ll give you a better explanation of why bosonic string
theory works best in 26 dimensions, using some special properties of the Dedekind eta
function.

Meanwhile, if you want to see pictures of the Dedekind eta function, together with
some cool formulas it satisfies, try these:

4) Mathworld, “Dedekind eta function”, http://mathworld.wolfram.com/DedekindEtaFunction.
html

5) Wikipedia, “Dedekind eta function”, http://en.wikipedia.org/wiki/Dedekind eta function

”Dear Sir,

I am very much gratified on perusing your letter of the 8th February 1913. I was
expecting a reply from you similar to the one which a Mathematics Professor at
London wrote asking me to study carefully Bromwich’s Infinite Series and not
fall into the pitfall of divergent series. I have found a friend in you who views my
labors sympathetically. This is already some encouragement to me to proceed
with an onward course. I find in many a place in your letter rigourous proofs
are required and so on and you ask me to communicate the method of proof.
If I had given you my methods of proof I am sure you will follow the London
Professor. But as a fact I did not give him any proof but made some assertions
as the following under my new theory. I told him that the sum of an infinite
number of terms in the series 1 + 2 + 3 + 4 + . . . = −1/12 under my theory. If I
tell you this you will at once point out to me the lunatic asylum as my goal.” —
Srinivasa Ramanujan, second letter to G. H. Hardy
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Week 127

November 30, 1998

If you like π, take a look at this book:

1) Lennart Berggren, Jonathan Borwein and Peter Borwein, π: A Source Book, Springer-
Verlag, New York, 1997.

It’s full of reprints of original papers about π, from the Rhind Papyrus right on up to
the 1996 paper by Bailey, Borwein and Plouffe in which they figured out how to compute
a given hexadecimal digit of π without computing the previous digits — see “Week 66”
for more about that. By the way, Colin Percival has recently used this technique to
compute the 5 trillionth binary digit of π! (It’s either zero or one, I forget which.)
Percival is a 17-year old math major at Simon Fraser University, and now he’s leading a
distributed computation project to calculate the quadrillionth binary digit of π. Anyone
with a Pentium or faster computer using Windows 95, 98, or NT can join. For more
information, see:

2) PiHex project, http://www.cecm.sfu.ca/projects/pihex/pihex.html

Anyway, the above book is full of fun stuff, like a one-page proof of the irrationality of
π which uses only elementary calculus, due to Niven, and the following weirdly beautiful
formula due to Euler, which unfortunately is not explained:

π

2
=

3

2
· 5

6
· 7

6
· 11

10
· 13

14
· 17

18
· 19

18
· . . .

Here the numerators are the odd primes, and the denominators are the closest numbers
of the form 4n+ 2.

Since I’ve been learning about elliptic curves and the like lately, I was also interested
to see a lot of relations between π and modular functions. For example, the book has a
reprint of Ramanujan’s paper “Modular equations and approximations to π”, in which he
derives a bunch of bizarre formulas for π, some exact but others approximate, like this:

π ∼ 12√
190

ln((2
√

2 +
√

10)(3 +
√

10))

which is good to 18 decimal places. The strange uses to which genius can be put know
no bounds!

Okay, now I’d like to wrap up my little story about why bosonic string theory works
best in 26 dimensions. This time I want to explain how you do the path integral in string
theory. Most of what I’m about to say comes from some papers that my friend Minhyong
Kim recommended to me when I started pestering him about this stuff:

3) Jean-Benoit Bost, “Fibres determinants, determinants regularises, et mesures sur
les espaces de modules des courbes complexes”, Asterisque 152–153 (1987), 113–
149.
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4) A. A. Beilinson and Y. I. Manin, “The Mumford form and the Polyakov measure in
string theory”, Comm. Math. Phys. 107 (1986), 359–376.

For a more elementary approach, try chapters IX and X.4 in this book:

5) Charles Nash, Differential Topology and Quantum Field Theory, Academic Press,
New York, 1991.

As I explained in “Week 126”, a string traces out a surface in spacetime called the
“string worldsheet”. Let’s keep life simple and assume the string worldsheet is a torus
and that spacetime is Euclidean Rn. Then to figure out the expectation value of any
physical observable, we need to calculate its integral over the space of all maps from a
torus to Rn.

To make this precise, let’s use X to denote a map from the torus to Rn. Then a
physical observable will be some function f(X), and its expectation value will be

1

Z

∫
f(X) exp(−S(X))dX

Here S(X) is the action for string theory, which is just the area of the string worldsheet.
The number Z is a normalizing factor called the partition function:

Z =

∫
exp(−S(X))dX

But there’s a big problem here! As usual in quantum field thoery, the space we’re trying
to integrate over is infinite-dimensional, so the above integrals have no obvious mean-
ing. Technically speaking, the problem is that there’s no Lebesgue measure “dX” on an
infinite-dimensional manifold.

Mathematicians might throw up our hands in despair and give up at this point. But
physicists take a more pragmatic attitude: they just keep massaging the problem, break-
ing rules here and there if necessary, until they get something manageable. Physicists
call this “calculating the path integral”, but from a certain viewpoint what they’re really
doing is defining the path integral, since it only has a precise meaning after they’re done.

In the case at hand, it was Polyakov who figured out the right massage:

6) A. M. Polyakov, “Quantum geometry of bosonic strings”, Phys. Lett. B103 (1981),
207.

He rewrote the above integral as a double integral: first an integral over the space of
metrics g on the torus, and then inside, for each metric, an integral over maps X from
the torus into spacetime. Of course, any such map gives a metric on the torus, so this
double integral is sort of redundant. However, introducing this redundancy turns out
not to hurt. In fact, it helps!

To keep life simple, let’s just talk about the partition function

Z =

∫
exp(−S(X))dX
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If we can handle this, surely we can handle the integral with the observable f(X) in it.
Polyakov’s trick turns the partition function into a double integral:

Z =

∫
(

∫
exp(−〈X,∆X〉)dX)dg

where ∆ is the Laplacian on the torus and the angle brackets stand for the usual inner
product of Rn-valued functions, both defined using the metric g.

At first glance Polyakov’s trick may seem like a step backwards: now we have two
ill-defined integrals instead of one! However, it’s actually a step forward. Now we can
do the inside integral by copying the formula for the integral of a Gaussian of finitely
many variables — a standard trick in quantum field theory. Ignoring an infinite constant
that would cancel later anyway, the inside integral works out to be:

(det ∆)−
1
2

But wait! The Laplacian here is a linear operator on the vector space of Rn-valued
functions on the torus. This is an infinite-dimensional vector space, so we can’t blithely
talk about determinants the way we can in finite dimensions. In finite dimensions, the
determinant of a self-adjoint matrix is the product of its eigenvalues. But the Laplacian
has infinitely many eigenvalues, which keep getting bigger and bigger. How do we define
the product of all its eigenvalues?

Of course the lowest eigenvalue of the Laplacian is zero, and you might think that
would settle it: the product of them all must be zero! But that would make the above
expression meaningless, and we are not going to give up so easily. Instead, we will
simply ignore the zero eigenvalue! That way, we only have to face the product of all the
rest.

(Actually there’s something one can do which is slightly more careful than simply
ignoring the zero eigenvalue, but I’ll talk about that later.)

Okay, so now we have a divergent product to deal with. Well, in “Week 126” I used
a trick called zeta function regularization to make sense of a divergent sum, and we can
use that trick here to make sense of our divergent product. Suppose we have a self-
adjoint operator A with a discrete spectrum consisting of positive eigenvalues. Then the
“zeta function” of A is defined by:

ζ(s) = tr(A−s)

To compute ζ(s) we just take all the eigenvalues of A, raise them to the −s power, and
add them up. For example, if A has eigenvalues 1, 2, 3, . . ., then ζ(s) is just the usual
Riemann zeta function, which we already talked about in “Week 126”.

This stuff doesn’t quite apply if A is the Laplacian on a compact manifold, since one
of its eigenvalues is zero. But we have already agreed to throw out the zero eigenvalue,
so let’s do that when defining ζ(s) as a sum over eigenvalues. Then it turns out that
the sum converges when the real part of s is positive and large. Even better, there’s a
theorem saying that ζ(s) can be analytically continued to s = 0. Thus we can use the
following trick to define the determinant of the Laplacian.

Suppose that A is a self-adjoint matrix with positive eigenvalues. Then

ζ(s) = tr(exp(−s lnA))
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Differentiating gives
ζ ′(s) = − tr(lnA exp(−s lnA))

and setting s to zero we get
ζ ′(0) = − tr(lnA).

But there’s a nice little formula saying that

det(A) = exp(tr(lnA))

so we get
det(A) = exp(−ζ ′(0)).

Now we can use this formula to define the determinant of the Laplacian on a compact
manifold! Sometimes this is called a “regularized determinant”.

So — where are we? We used Polyakov’s trick to write the partition function of our
torus-shaped string as

Z =

∫
(

∫
exp(−〈X,∆X〉)dX)dg,

then we did the inside integral and got this:

Z =

∫
(det ∆)−

1
2 dg

and then we figured out a meaning for the determinant here.
What next? Well, since the Laplacian on Rn-valued functions is the direct sum of n

copies of the Laplacian on real-valued functions, we expect that

(det ∆)−
1
2 = (det laplacian)−

n
2

where “laplacian” stands for the Laplacian on ordinary real-valued functions on the torus.
One can actually check this rigorously using the definition in terms of zeta functions.
That’s reassuring: at least one step of our calculation is rigorous! So we get

Z =

∫
(det laplacian)−

n
2 dg

Great. But we are not out of the woods yet. We still have an integral over the space of
metrics to do — another nasty infinite-dimensional integral.

Time for another massage!
Look at this formula again:

Z =

∫
(

∫
exp(−〈X,∆X〉)dX)dg

The Laplacian depends on the metric g, and so does the inner product. However,
the combination 〈X,∆X〉 depends only on the “conformal structure” — i.e., it doesn’t
change if we multiply the metric by a position-dependent scale factor. It also doesn’t
change under diffeomorphisms.

Now the space of conformal structures on a torus modulo diffeomorphisms is some-
thing familiar: it’s just the moduli space of elliptic curves! We figured out what this space
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looks like in “Week 125”. It’s finite-dimensional and there’s a nice way to integrate over
it, called the Weil-Petersson measure. So we can hope to replace the outside integral —
the integral over metrics — by an integral over this moduli space.

Indeed, we could hope that

Z
we hope!

=

∫
(

∫
exp(−〈X,∆X〉)dX)d[g]

where now the outside integral is over moduli space and d[g] is the Weil-Petersson mea-
sure. The hope, of course, is that the stuff on the inside is well-defined as a function on
moduli space.

Actually this hope is a bit naive. Even though 〈X,∆X〉 doesn’t change if we rescale
the metric, the whole inside integral∫

exp(−〈X,∆X〉)dX

does change. This may seem odd, but remember, we did a lot of hair-raising manipula-
tions before we even got this integral to mean anything! We basically wound up defining
it to be

(det ∆)−
1
2 ,

and one can check that this does change when we rescale the metric. This problem is
called the “conformal anomaly”.

Are we stuck? No! Luckily, there is another problem, which cancels this one when
n = 26. They say two wrongs don’t make a right, but with anomalies that’s often the
only way to get things to work. . . .

So what’s this other problem? It’s that we shouldn’t just replace the measure dg by
the measure d[g] as I did in my naive formula for the partition function. We need to
actually figure out the relation between them. Of course this is hard to do, because the
measure dg doesn’t exist, rigorously speaking! Still, if we do a bunch more hair-raising
heuristic manipulations, which I will spare you, we can get a formula relating dg and
and d[g], and using this we get

Z =

∫
(

∫
exp(−〈X,∆X〉)dX)f(g)d[g]

where f(g) is some function of the metric. There’s a perfectly explicit formula for this
function, but your eyeballs would fall out if I showed it to you. Anyway, the real point is
that IN 26 DIMENSIONS AND ONLY IN 26 DIMENSIONS, the integrand

(

∫
exp(−〈X,∆X〉)dX)f(g)

is invariant under rescalings of the metric (as well as diffeomorphisms). In other words,
the conformal anomaly in ∫

exp(−〈X,∆X〉)dX

is precisely canceled by a similar conformal anomaly in f(g), so their product is a well-
defined function on moduli space, so it makes sense to integrate it against d[g]. We can
then go ahead and figure out the partition function quite explicitly.
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By now, if you’re a rigorous sort of pure mathematician, you must be suffering from
grave doubts about the sanity of this whole procedure. But physicists regard this chain
of reasoning, especially the miraculous cancellation of anomalies at the end, as a real
triumph. And indeed, it’s far better than most of what happens in quantum field theory!

I’ve heard publishers of science popularizations say that each equation in a book
diminishes its readership by a factor of 2. I don’t know if this applies to This Week’s
Finds, but normally I try very hard to keep the equations to a minimum. This week,
however, I’ve been very bad, and if my calculations are correct, by this point I am the
only one reading this. So I might as well drop all pretenses of expository prose and write
in a way that only I can follow! The real reason I’m writing this, after all, is to see if I
understand this stuff.

Okay, so now I’d like to see if I understand how one explicitly calculates this integral:∫
exp(−〈X, laplacianX〉)dX

Since we’re eventually going to integrate this (times some stuff) over moduli space,
we might as well assume the metric on our torus is gotten by curling up the following
parallelogram in the complex plane:
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There are at least two ways to do the calculation. One is to actually work out the
eigenvalues of the Laplacian on this torus and then do the zeta function regularization
to compute its determinant. Di Francesco, Mathieu, and Senechal do this in the textbook
I talked about in “Week 124”. They get∫

exp(−〈X, laplacianX〉)dX =
1√

=(τ)|η(τ)|2

where “η” is the Dedekind eta function, regarded as function of τ . But the calculation
is pretty brutal, and it seems to me that there should be a much easier way to get the
answer. The left-hand side is just the partition function for an massless scalar field on
the torus, and we basically did that back in “Week 126”. More precisely, we considered
just the right-moving modes and we got the following partition function:

1

η(τ)
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How about the left-moving modes? Well, I’d guess that their partition function is just the
complex conjugate,

1

η(τ)∗

since right-movers correspond to holomorphic functions and left-movers correspond to
antiholomorphic functions in this Euclidean picture. It’s just a guess! And finally, what
about the zero-frequency mode? I have no idea. But we should presumably multiply
all three partition functions together to get the partition function of the whole system
— that’s how it usually works. And as you can see, we almost get the answer that
Di Francesco, Mathieu, and Senechal got. It would work out perfectly if the partition
function of the zero-frequency mode were 1/

√
=(τ). By the way, =(τ) is just the area of

the torus.
As evidence that something like this might work, consider this: the zero-frequency

mode is presumably related to the zero eigenvalue of the Laplacian. We threw that out
when we defined the regularized determinant of the Laplacian, but as I hinted, more
careful calculations of ∫

exp(−〈X, laplacianX〉)dX

don’t just ignore the zero eigenvalue. Instead, they somehow use it to get an extra
factor of 1/

√
=(τ). Admittedly, the calculations are not particularly convincing: a more

obvious guess would be that it gives a factor of infinity. Di Francesco, Mathieu, and
Senechal practically admit that they need this factor just to get modular invariance, and
that they’ll do whatever it takes to get it. Nash just sticks in the factor of 1/

√
=(τ),

mutters something vague, and hurriedly moves on.
Clearly the reason people want this factor is because of how the eta function trans-

forms under modular transformations. In “Week 125” I said that the group PSL(2,Z) is
generated by two elements S and T , and if you look at the formulas there you’ll see they
act in the following way on τ :

S : τ 7→ −1

τ
T : τ 7→ τ + 1

The Dedekind eta function satisfies

η

(
−1

τ

)
=
(τ
i

) 1
2

η(τ)

η(τ + 1) = exp

(
2πi

24

)
ητ

The second one is really easy to see from the definition; the first one is harder. Anyway,
using these facts it’s easy to see that

1√
=(τ)|η(τ)|2

is invariant under PSL(2,Z), so it’s really a function on moduli space — but only if that
factor of 1/

√
=(τ) is in there!
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Finally, I’d like to say something about why the conformal anomalies cancel in 26
dimensions. When I began thinking about this stuff I was hoping it’d be obvious from the
transformation properties of the eta function — since they have that promising number
“24” in them — but right now I do not see anything like this going on. Instead, it seems
to be something like this: in the partition function

Z =

∫
(

∫
exp(−〈X,∆X〉)dX)f(g)d[g]

the mysterious function f is basically just the determinant of the Laplacian on vector
fields on the torus. So ignoring those darn zero eigenvalues the whole integrand here is

det(laplacian)
n
2 det(laplacian′)

where “laplacian” is the Laplacian on real-valued functions and ” laplacian′” is the Lapla-
cian on vector fields. Now these determinants aren’t well-defined functions on the space
of conformal structures; they’re really sections of certain “determinant bundles”. But in
this situation, the determinant bundle for the Laplacian on vector fields just so happens
to be the 13th tensor power of the determinant bundle for the Laplacian on functions
— so the whole expression above is a well-defined function on the space of conformal
structures, and thence on moduli space, precisely when n = 26!!!

Now this “just so happens” cannot really be a coincidence. There are no coincidences
in mathematics. That’s why it pays to be paranoid when you’re a mathematician: nothing
is random, everything fits into a grand pattern, it’s all just staring you in the face if you’d
only notice it. (Chaitin has convincingly argued otherwise using Goedel’s theorem, and
certainly some patterns in mathematics seem “purely accidental”, but right now I’m just
waxing rhapsodic, expressing a feeling one sometimes gets. . . .)

Indeed, look at the proof in Nash’s book that one of these determinant bundles is the
13th tensor power of the other — I think this result is due to Mumford, but Nash’s proof
is easy to read. What does he do? He works out the first Chern class of both bundles
using the index theorem for families, and he gets something involving the Todd genus
— and the Todd genus, as we all know, is defined using the same function

x

1− ex
= −1 +

x

2
− x2

12
+ . . .

that we talked about in “Week 126” when computing the zero-point energy of the bosonic
string! And yet again, it’s that darn −1/12 in the power series expansion that makes
everything tick. That’s where the 13 comes from! It’s all an elaborate conspiracy!

But of course the conspiracy is far grander than I’ve even begun to let on. If we keep
digging away at it, we’re eventually led to nothing other than. . . .

MONSTROUS MOONSHINE!!!

But I don’t have the energy to talk about that now. For more, try:

7) Richard E. Borcherds, “What is moonshine?”, talk given upon winning the Fields
medal, preprint available as math.QA/9809110.

8) Peter Goddard, “The work of R. E. Borcherds”, preprint available as math.QA/

9808136.
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Okay, if you’ve actually read this far, you deserve a treat. First, try this cartoon, which
you’ll see is quite relevant:

9) Cartoon by J. F. Cartier, http://www.physik.uni-frankfurt.de/~jr/gif/cartoon/
cart0785.gif

Second, let’s calculate the determinant of an operator A whose eigenvalues are the
numbers 1, 2, 3, . . .. You can think of this operator as the Hamiltonian for the wave
equation on the circle, where we only keep the right-moving modes. As I already said,
the zeta function of this operator is the Riemann zeta function. This function has ζ ′(0) =
−ln(2π)/2, so using our cute formula relating determinants and zeta functions, we get

det(A) = exp(−ζ ′(0)) = (2π)
1
2 .

Just for laughs, if we pretend that the determinant of A is the product of its eigenvalues
as in the finite-dimensional case, we get:

1 · 2 · 3 · . . . = (2π)
1
2

or if you really want to ham it up,

∞! = (2π)
1
2 .

Cute, eh? Dan Piponi told me this, as well as some of the other things I’ve been talking
about. You can also find it in Bost’s paper.

Notes and digressions:

• In all of the above, I put a minus sign into my Laplacian, so that it has nonnegative
eigenvalues. This is common among erudite mathematical physics types, who like
“positive elliptic operators”.

• The zeta function trick for defining the determinant of the Laplacian works for any
positive elliptic operator on a compact manifold. A huge amount has been written
about this trick. It’s all based on the fact that the zeta function of a positive elliptic
operator analytically continues to s = 0. This fact was proved by Seeley:

10) R. T. Seeley, “Complex powers of an elliptic operator”, Proc. Symp. Pure Math.
10 (1967), 288–307.

• Why is the Polyakov action 〈X,∆X〉 conformally invariant? Because the Laplacian
has dimensions of 1/length2, while the integral used to define the inner product
has dimensions of length2, since the torus is 2-dimensional. This is the magic of
2 dimensions! The path integral for higher-dimensional “branes” has not yet been
made precise, because this magic doesn’t happen there.

• About Euler’s weirdly beautiful formula for π, Robin Chapman writes:
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π

2
=

3

2
· 5

6
· 7

6
· 11

10
· 13

14
· 17

18
· 19

18
· . . . (1)

Using the Euler product for ζ(2) gives

π2

6
= ζ(2) = 1 +

1

22
+

1

32
+ . . . =

(
4

3

)(
9

8

)(
25

24

)
· · ·
(

p2

p2 − 1

)
· · ·

and dropping the p = 2 term and dividing by (1) we see that (1) is equiva-
lent to

π

4
=

(
3

4

)(
5

4

)(
7

8

)
· · ·
(

p

p− χ(p)

)
· · · (2)

where the numerators are odd primes and the denominators are their ad-
jacent multiples of 4. Also χ is the modulo 4 Dirichlet character. Now

p

p− χ(p)
= 1 +

χ(p)

p
+
χ(p2)

p2
+ . . .

and if we multiply these formally the RHS of (2) becomes

1− 1

3
+

1

5
− 1

7
+

1

9
− . . .

i.e., Gregory’s series for π/4. Admittedly it’s not apparent that this formal
manipulation is valid. However for Dirichlet L-functions the Euler product
is valid at s = 1. This requires some delicate analysis: for details see
Landau’s book on prime numbers or Davenport’s Multiplicative Number
Theory.
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Week 128

January 4, 1999

This week I’d like to catch you up on the latest developments in quantum gravity. First,
a book that everyone can enjoy:

1) John Archibald Wheeler and Kenneth Ford, Geons, Black Holes, and Quantum Foam:
A Life in Physics, Norton, New York, 1998.

This is John Wheeler’s autobiography. If Wheeler’s only contribution to physics was
being Bohr’s student and Feynman’s thesis advisor, that in itself would have been enough.
But he did much more. He played a crucial role in the Manhattan project and the subse-
quent development of the hydrogen bomb. He worked on nuclear physics, cosmic rays,
muons and other elementary particles. And he was also one of the earlier people to get
really excited about the more outlandish implications of general relativity. For example,
he found solutions of Einstein’s equation that correspond to regions of gravitational field
held together only by their own gravity, which he called “geons”. He was not the first
to study black holes, but he was one of the first people to take them seriously, and he
invented the term “black hole”. And the reason he is my hero is that he took seriously the
challenge of reconciling general relativity and quantum theory. Moreover, he recognized
how radical the ideas needed to accomplish this would be — for example, the idea that
spacetime might not be truly be a continuum at short distance scales, but instead some
sort of “quantum foam”.

Anyone interested in the amazing developments in physics during the 20th century
should read this book! Here is the story of how he first met Feynman:

Dick Feynman, who had earned his bachelor’s degree at MIT, showed up at my
office door as a brash and appealing twenty-one-year-old in the fall of 1939
because, as a new student with a teaching assistantship, he had been assigned
to grade papers for me in my mechanics course. As we sat down to talk about
the course and his duties, I pulled out and placed on the table between us a
pocket watch. Inspired by my father’s keenness for time-and-motion studies, I
was keeping track of how much time I spent on teaching and teaching-related
activities, how much on research, and how much on departmental or university
chores. This meeting was in the category of teaching-related. Feynman may have
been a little taken aback by the watch but he was not one to be intimidated. He
went out and bought a dollar watch (as I learned later), so he would be ready
for our next meeting. When we got together again, I pulled out my watch and
put it on the table between us. Without cracking a smile, Feynman pulled out
his watch and put it on the table next to mine. His theatrical sense was perfect.
I broke down laughing, and soon he was laughing as hard as I, until both of us
had tears in our eyes. It took quite a while for us to sober up and get on with
our discussion. This set the tone for a wonderful friendship that endured for the
rest of his life.

Next for something a wee bit more technical:
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2) Steven Carlip, Quantum Gravity in 2+1 Dimensions, Cambridge University Press,
1998.

If you want to learn about quantum gravity in 2+1 dimensions this is the place
to start, because Carlip is the world’s expert on this subject, and he’s pretty good at
explaining things.

(By the way, physicists write “2+1 dimensions”, not because they can’t add, but to
emphasize that they are talking about 2 dimensions of space and 1 dimension of time.)

Quantum gravity in 2+1 dimensions is just a warmup for what physicists are really
interested in — quantum gravity in 3+1 dimensions. Going down a dimension really
simplifies things, because Einstein’s equations in 2+1 dimensions say that the energy
and momentum flowing through a given point of spacetime completely determine the
curvature there, unlike in higher dimensions. In particular, spacetime is flat in the vac-
uum in 2+1 dimensions, so there’s no gravitational radiation. Nonetheless, quantum
gravity in 2+1 dimensions is very interesting, for a number of reasons. Most impor-
tantly, we can solve the equations exactly, so we can use it as a nice testing-ground for
all sorts of ideas people have about quantum gravity in 3+1 dimensions.

Quantum gravity is hard for various reasons, but most of all it’s hard because, unlike
traditional quantum field theory, it’s a “background-free” theory. What I mean by this is
that there’s no fixed way of measuring times and distances. Instead, times and distances
must be measured with the help of the geometry of spacetime, and this geometry un-
dergoes quantum fluctuations. That throws most of our usual methods for doing physics
right out the window! Quantum gravity in 2+1 dimensions gives us, for the first time,
an example of a background-free theory where we can work out everything in detail.

Here’s the table of contents of Carlip’s book:

1. Why (2+1)-dimensional gravity?
2. Classical general relativity in 2+1 dimensions
3. A field guide to the (2+1)-dimensional spacetimes
4. Geometric structures and Chern-Simons theory
5. Canonical quantization in reduced phase space
6. The connection representation
7. Operator algebras and loops
8. The Wheeler-DeWitt equation
9. Lorentzian path integrals

10. Euclidean path integrals and quantum cosmology
11. Lattice methods
12. The (2+1)-dimensional black hole
13. Next steps A. Appendix: The topology of manifolds B. Appendix: Lorentzian

metrics and causal structure C. Appendix: Differential geometry and fiber
bundles

And now for some stuff that’s available online. First of all, anyone who wants to keep
up with research on gravity should remember to read “Matters of Gravity”. I’ve talked
about it before, but here’s the latest edition:
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3) Jorge Pullin, editor, Matters of Gravity, vol. 12, available at gr-qc/9809031 and at
http://vishnu.nirvana.phys.psu.edu/mog.html

There’s a lot of good stuff in here. Quantum gravity buffs will especially be interested
in Gary Horowitz’s article “A nonperturbative formulation of string theory?” and Lee
Smolin’s “Neohistorical approaches to quantum gravity”. The curious title of Smolin’s
article refers to new work on quantum gravity involving a sum over histories — or in
other words, spin foam models.

Even if you can’t go to a physics talk, these days you can sometimes find it on the
world-wide web. Here’s one by John Barrett:

4) John W. Barrett, “State sum models for quantum gravity”, Penn State relativity
seminar, August 27, 1998, audio and text of transparencies available at http://
vishnu.nirvana.phys.psu.edu/online/Html/Seminars/Fall1998/Barrett/

Barrett and Crane have a theory of quantum gravity, which I’ve also worked on; I
discussed it last in “Week 113” and “Week 120”. Before I describe it I should warn the
experts that this theory deals with Riemannian rather than Lorentzian quantum gravity
(though Barrett and Crane are working on a Lorentzian version, and I hear Friedel and
Krasnov are also working on this). Also, it only deals with vacuum quantum gravity —
empty spacetime, no matter.

In this theory, spacetime is chopped up into 4-simplices. A 4-simplex is the 4-dimensional
analog of a tetrahedron. To understand what I’m going to say next, you really need to
understand 4-simplices, so let’s start with them.

It’s easy to draw a 4-simplex. Just draw 5 dots in a kind of circle and connect them all
to each other! You get a pentagon with a pentagram inscribed in it. This is a perspective
picture of a 4-simplex projected down onto your 2-dimensional paper. If you stare at this
picture you will see the 4-simplex has 5 tetrahedra, 10 triangles, 10 edges and 5 vertices
in it.

The shape of a 4-simplex is determined by 10 numbers. You can take these numbers
to be the lengths of its edges, but if you want to be sneaky you can also use the areas
of its triangles. Of course, there are some constraints on what areas you can choose for
there to exist a 4-simplex having triangles with those areas. Also, there are some choices
of areas that fail to make the shape unique: for one of these bad choices, the 4-simplex
can flop around while keeping the areas of all its triangles fixed. But generically, this
non-uniqueness doesn’t happen.

In Barrett and Crane’s theory, we chop spacetime into 4-simplices and describe the
geometry of spacetime by specifying the area of each triangle. But the geometry is
“quantized”, meaning that the area takes a discrete spectrum of possible values, given
by √

j(j + 1)

where the “spin” j is a number of the form 0, 1/2, 1, 3/2, . . .. This formula will be familiar
to you if you’ve studied the quantum mechanics of angular momentum. And that’s no
coincidence! The cool thing about this theory of quantum gravity is that you can discover
it just by thinking a long time about general relativity and the quantum mechanics of
angular momentum, as long as you also make the assumption that spacetime is chopped
into 4-simplices.
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So: in Barrett and Crane’s theory the geometry of spacetime is described by chop-
ping spacetime into 4-simplices and labelling each triangle with a spin. Let’s call such
a labelling a “quantum 4-geometry”. Similarly, the geometry of space is described by
chopping space up into tetrahedra and labelling each triangle with a spin. Let’s call this
a “quantum 3-geometry”.

The meat of the theory is a formula for computing a complex number called an “am-
plitude” for any quantum 4-geometry. This number plays the usual role that amplitudes
do in quantum theory. In quantum theory, if you want to compute the probability that
the world starts in some state ψ and ends up in some state ψ′, you just look at all the
ways the world can get from ψ to ψ′, compute an amplitude for each way, add them all
up, and take the square of the absolute value of the result. In the special case of quan-
tum gravity, the states are quantum 3-geometries, and the ways to get from one state to
another are quantum 4-geometries.

So, what’s the formula for the amplitude of a quantum 4-geometry? It takes a bit of
work to explain this, so I’ll just vaguely sketch how it goes. First we compute amplitudes
for each 4-simplex and multiply all these together. Then we compute amplitudes for each
triangle and multiply all these together. Then we multiply these two numbers.

(This is analogous to how we compute amplitudes for Feynman diagrams in ordinary
quantum field theory. A Feynman diagram is a graph whose edges have certain labellings.
To compute its amplitude, first we compute amplitudes for each edge and multiply them
all together. Then we compute amplitudes for each vertex and multiply them all together.
Then we multiply these two numbers. One goal of work on “spin foam models” is to more
deeply understand this analogy with Feynman diagrams.)

Anyway, to convince oneself that this formula is “good”, one would like to relate
it to other approaches to quantum gravity that also involve 4-simplices. For example,
there is the Regge calculus, which is a discretized version of classical general relativity.
In this approach you chop spacetime into 4-simplices and describe the shape of each 4-
simplex by specifying the lengths of its edges. Regge invented a formula for the “action”
of such a geometry which approaches the usual action for classical general relativity in
the continuum limit. I explained the formula for this “Regge action” in “Week 120”.

Now if everything were working perfectly, the amplitude for a 4-simplex in the Barrett-
Crane model would be close to exp(iS), where S is the Regge action of that 4-simplex.
This would mean that the Barrett-Crane model was really a lot like a path integral in
quantum gravity. Of course, in the Barrett-Crane model all we know is the areas of the
triangles in each 4-simplex, while in the Regge calculus we know the lengths of its edges.
But we can translate between the two, at least generically, so this is no big deal.

Recently, Barrett and Williams came up with a nice argument saying that in the limit
where the triangles have large areas, the amplitude for a 4-simplex in the Barrett-Crane
theory is proportional, not to exp(iS), but to cos(S):

5) John W. Barrett and Ruth M. Williams, “The asymptotics of an amplitude for the
4-simplex”, preprint available as gr-qc/9809032.

This argument is not rigorous — it uses a stationary phase approximation that re-
quires further justification. But Regge and Ponzano used a similar argument to show the
same sort of thing for quantum gravity in 3 dimensions, and their argument was recently
made rigorous by Justin Roberts, with a lot of help from Barrett:
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6) Justin Roberts, “Classical 6j-symbols and the tetrahedron”, preprint available as
math-ph/9812013.

So one expects that with work, one can make Barrett and Williams’ argument rigor-
ous.

But what does it mean? Why does he get cos(S) instead of exp(iS)? Well, as I said,
the same thing happens one dimension down in the so-called Ponzano-Regge model of 3-
dimensional Riemannian quantum gravity, and people have been scratching their heads
for decades trying to figure out why. And by now they know the answer, and the same
answer applies to the Barrett-Crane model.

The problem is that if you describe 4-simplex using the areas of its triangles, you
don’t completely know its shape. (See, I lied to you before — that’s why you gotta read
the whole thing.) You only know it up to reflection. You can’t tell the difference between
a 4-simplex and its mirror-image twin using only the areas of its triangles! When one
of these has Regge action S, the other has action −S. The Barrett- Crane model, not
knowing any better, simply averages over both of them, getting

1

2
(exp(iS) + exp(−iS)) = cos(S)

So it’s not really all that bad; it’s doing the best it can under the circumstances. Whether
this is good enough remains to be seen.

(Actually I didn’t really lie to you before; I just didn’t tell you my definition of “shape”,
so you couldn’t tell whether mirror-image 4-simplices should count as having the same
shape. Expository prose darts between the Scylla of overwhelming detail and the Charyb-
dis of vagueness.)

Okay, on to a related issue. In the Barrett-Crane model one describes a quantum
4-geometry by labelling all the triangles with spins. This sounds reasonable if you think
about how the shape of a 4-simplex is almost determined by the areas of its triangles.
But if you actually examine the derivation of the model, it starts looking more odd.
What you really do is take the space of geometries of a tetrahedron embedded in R4, and
use a trick called geometric quantization to get something called the “Hilbert space of
a quantum tetrahedron in 4 dimensions”. You then build your 4-simplices out of these
quantum tetrahedra.

Now the Hilbert space of a quantum tetrahedron has a basis labelled by the eigenval-
ues of operators corresponding to the areas of its 4 triangular faces. In physics lingo, it
takes 4 “quantum numbers” to describe the shape of a quantum tetrahedron in 4 dimen-
sions.

But classically, the shape of a tetrahedron is not determined by the areas of its tri-
angles: it takes 6 numbers to specify its shape, not just 4. So there is something funny
going on.

At first some people thought there might be more states of the quantum tetrahedron
than the ones Barrett and Crane found. But Barbieri came up with a nice argument
suggesting that Barrett and Crane had really found all of them:

7) Andrea Barbieri, “Space of the vertices of relativistic spin networks”, preprint avail-
able as gr-qc/9709076.
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While convincing, this argument was not definitive, since it assumed something plau-
sible but not yet proven — namely, that the “6j symbols don’t have too many exceptional
zeros”. Later, Mike Reisenberger came up with a completely rigorous argument:

8) Michael P. Reisenberger, “On relativistic spin network vertices”, preprint available
as gr-qc/9809067.

But while this settled the facts of the matter, it left open the question of “why” — why
does it take 6 numbers to describe the shape of classical tetrahedron in 4 dimensions but
only 4 numbers to describe the shape of a quantum one? John Barrett and I have almost
finished a paper on this, so I’ll give away the answer.

Not surprisingly, the key is that in quantum mechanics, not all observables commute.
You only use the eigenvalues of commuting observables to label a basis of states. The
areas of the quantum tetrahedron’s faces commute, and there aren’t any other indepen-
dent commuting observables. It’s a bit like how in classical mechanics you can specify
both the position and momentum of a particle, but in quantum mechanics you can only
specify one.

This isn’t news, of course. And indeed, people knew perfectly well that for this reason,
it takes only 5 numbers to describe the shape of a quantum tetrahedron in 3 dimensions.
The real puzzle was why it takes even fewer numbers when your quantum tetrahedron
lives in 4 dimensions! It seemed bizarre that adding an extra dimension would reduce
the number of degrees of freedom! But it’s true, and it’s just a spinoff of the uncertainty
principle. Crudely speaking, in 4 dimensions the fact that you know your tetrahedron
lies in some hyperplane makes you unable to know as much about its shape.

Here are some other talks available on the web:

9) Abhay Ashtekar, Chris Beetle and Steve Fairhurst, “Mazatlan lectures on black
holes”, slides available at http://vishnu.nirvana.phys.psu.edu/online/Html/
Conferences/Mazatlan/

These explain a new concept of “nonrotating isolated horizon” which allow one to
formulate and prove the zeroth and first laws of black hole mechanics in a way that only
refers to the geometry of spacetime near the horizon. For more details try:

10) Abhay Ashtekar, Chris Beetle and S. Fairhurst, “Isolated horizons: a generalization
of black hole mechanics”, preprint available as gr-qc/9812065.

This concept also serves as the basis for a forthcoming 2-part paper where Ashtekar,
Corichi, Krasnov and I compute the entropy of a quantum black hole (see “Week 112”
for more on this).

Finally, here are a couple more papers. I don’t have time to say much about them,
but they’re both pretty neat:

11) Matthias Arnsdorf and R. S. Garcia, “Existence of spinorial states in pure loop
quantum gravity”, preprint available as gr-qc/9812006.

I’ll just quote the abstract:
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We demonstrate the existence of spinorial states in a theory of canonical quan-
tum gravity without matter. This should be regarded as evidence towards the
conjecture that bound states with particle properties appear in association with
spatial regions of non-trivial topology. In asymptotically trivial general relativ-
ity the momentum constraint generates only a subgroup of the spatial diffeomor-
phisms. The remaining diffeomorphisms give rise to the mapping class group,
which acts as a symmetry group on the phase space. This action induces a uni-
tary representation on the loop state space of the Ashtekar formalism. Certain
elements of the diffeomorphism group can be regarded as asymptotic rotations
of space relative to its surroundings. We construct states that transform non-
trivially under a 2π rotation: gravitational quantum states with fractional spin.

14) Steve Carlip, “Black hole entropy from conformal field theory in any dimension”,
preprint available as hep-th/9812013.

Again, here’s the abstract:

When restricted to the horizon of a black hole, the ‘gauge’ algebra of surface
deformations in general relativity contains a physically important Virasoro sub-
algebra with a calculable central charge. The fields in any quantum theory of
gravity must transform under this algebra; that is, they must admit a confor-
mal field theory description. With the aid of Cardy’s formula for the asymptotic
density of states in a conformal field theory, I use this description to derive the
Bekenstein-Hawking entropy. This method is universal - it holds for any black
hole, in any dimension, and requires no details of quantum gravity — but it
is also explicitly statistical mechanical, based on the counting of microscopic
states.

On Thursday I’m flying to Schladming, Austria to attend a workshop on geometry
and physics organized by Harald Grosse and Helmut Gausterer. Some cool physicists
will be there, like Daniel Kastler and Julius Wess. If I understand what they’re talking
about I’ll try to explain it here. Happy new year!

Addendum: Above I wrote:

Recently, Barrett and Williams came up with a nice argument saying that in the
limit where the triangles have large areas, the amplitude for a 4-simplex in the
Barrett-Crane theory is proportional, not to exp(iS), but to cos(S). . . .

This argument is not rigorous — it uses a stationary phase approximation that
requires further justification. But similar argument to show the same sort of
thing for quantum gravity in 3 dimensions, and their argument was recently
made rigorous by Justin Roberts, with a lot of help from Barrett. . . .

So one expects that with work, one can make Barrett and Williams’ argument
rigorous.
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In fact one can’t make it rigorous: it’s wrong! In the limit of large areas the amplitude
for a 4-simplex in the Barrett-Crane model is wildly different from cos(S), or exp(iS),
or anything like that. Dan Christensen, Greg Egan and I showed this in a couple of
papers that I discuss in “Week 170” and “Week 198”. Our results were confirmed by
John Barrett, Chris Steel, Laurent Friedel and David Louapre.

By now — I’m writing this in 2009 — it’s generally agreed that the Barrett-Crane
model is wrong and another model is better. To read about this new model, see “Week
280”.
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Week 129

February 15, 1999

For the last 38 years the Austrians have been having winter workshops on nuclear and
particle physics in a little Alpine ski resort town called Schladming. This year it was
organized by Helmut Gausterer and Hermann Grosse, and the theme was “Geometry
and Quantum Physics”:

1) Geometry and Quantum Physics lectures, 38th Internationale Universitaetswochen
fuer Kern- und Teilchenphysik, http://physik.kfunigraz.ac.at/utp/iukt/iukt 99/

iukt99-lect.html

I was invited to give some talks about spin foam models, and the other talks looked
interesting, so I decided to leave my warm and sunny home for the chilly north. I flew
out to Salzburg in early January and took a train to Schladming from there. Jet-lagged
and exhausted, I almost slept through my train stop, but I made it and soon collapsed
into my hotel bed.

The next day I alternately slept and prepared my talks. The workshop began that
evening with a speech by Helmut Grosse, a speech by the town mayor, and a reception
featuring music by a brass band. The last two struck me as a bit unusual — there’s
something peculiarly Austrian about drinking beer and discussing quantum gravity over
loud oompah music! This was also the first conference I’ve been to that featured skiing
and bowling competitions.

Anyway, there were a number of 4-hour minicourses on different subjects, which
should eventually appear as articles in this book:

2) Geometry and Quantum Physics, proceedings of the 38th Int. Universitaetswochen
fuer Kern- und Teilchenphysik, Schladming, Austria, Jan. 9-16, 1999, eds. H. Gaus-
terer, H. Grosse and L. Pittner, to appear in Lecture Notes in Physics, Springer-
Verlag, Berlin.

Right now they exist in the form of lecture notes:

• Anton Alekseev: “Symplectic and noncommutative geometry of systems with sym-
metry”

• John Baez: “Spin foam models of quantum gravity”

• Cesar Gomez: “Duality and D-branes”

• Daniel Kastler: “Noncommutative geometry and fundamental physical interac-
tions”

• John Madore: “An introduction to noncommutative geometry”

• Rudi Seiler: “Geometric properties of transport in quantum Hall systems”

• Julius Wess: “Physics on noncommutative spacetime structures”
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All these talks were about different ways of combining quantum theory and geom-
etry. Quantum theory is so strange that ever since its invention there has been a huge
struggle to come to terms with it at all levels. It took a while for it to make its full impact
in pure mathematics, but now you can see it happening all over: there are lots of pa-
pers on quantum topology, quantum geometry, quantum cohomology, quantum groups,
quantum logic. . . even quantum set theory! There are even some fascinating attempts
to apply quantum mechanics to unsolved problems in number theory like the Riemann
hypothesis. . . will they bear fruit? And if so, what does this mean about the world?
Nobody really knows yet; we’re in a period of experimentation - a bit of a muddle.

I don’t have the energy to summarize all these talks so I’ll concentrate on part of
Alekseev’s — just a tiny smidgen of it, actually! But first, let me just quickly say a word
about each speaker’s topic.

Alekseev talked about some ideas related to the stationary phase approximation. This
is one of the main tools linking classical mechanics to quantum mechanics. It’s a trick
for approximately computing the integral of a function of the form exp(iS(x)) knowing
only S(x) and its 2nd derivative at points where its first derivative vanishes. In physics,
people use it to compute path integrals in the semiclassical limit where what matters
most is paths near the classical trajectories. Alekseev discussed problems where the
stationary phase approximation gives the exact answer. There’s a wonderful thing called
the Duistermaat-Heckman formula which says that this happens in certain situations
with circular symmetry. There are also generalizations to more complicated symmetry
groups. These are related to ‘equivariant cohomology’ — more on that later.

I talked about the spin foam approach to quantum gravity. I’ve already discussed this
in “Week 113”, “Week 114”, “Week 120”, and “Week 128”, so there’s no need to say more
here.

Cesar Gomez gave a wonderful introduction to string theory, starting from scratch
and rapidly working up to T-duality and D-branes. The idea behind T-duality is very sim-
ple and pretty. Basically, if you have closed strings living in a space with one dimension
curled up into a circle of radius R, there is a symmetry that involves replacing R by 1/R
and switching two degrees of freedom of the string, namely the number of times it winds
around the curled-up direction and its momentum in the curled-up direction. Both these
numbers are integers. D-branes are something that shows up when you consider the
consequences of this symmetry for open strings.

String theory is rather conservative in that, at least until recently, it usually treated
spacetime as a manifold with a fixed geometry and only applied quantum mechanics to
the description of the strings wiggling around in spacetime. In spin foam models, by con-
trast, spacetime itself is modelled quantum-mechanically as a kind of higher-dimensional
version of a Feynman diagram. There are also other ideas about how to treat spacetime
quantum-mechanically. One of them is to treat the coordinates on spacetime as noncom-
muting variables. In this approach, called noncommutative geometry, the uncertainty
principle limits our ability to simultaneously know all the coordinates of a particle’s
position, giving spacetime a kind of quantum “fuzziness”. Personally I don’t find non-
commutative geometry convincing as a theory of physical spacetime, because there are
no clues that spacetime actually has this sort of fuzziness. But I find it quite interesting
as mathematics.

Daniel Kastler talked about Alain Connes’ theories of physics based on noncommu-
tative geometry. He discussed both the original Connes-Lott version of the Standard
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Model and newer theories that include gravity. Kastler is a real character! As usual, his
talks lauded Connes to the heavens and digressed all over the map in a frustrating but
entertaining manner. Throughout the conference, he kept us well-fed with anecdotes,
bringing back the aura of heroic bygone days. A random example: Pauli liked to work
long into the night — so when a student asked “Could I meet you at your office at 9
a.m.?” he replied “No, I can’t possibly stay that late”.

One nice idea mentioned by Kastler came from this paper:

3) Alain Connes, “Noncommutative geometry and reality”, J. Math. Phys. 36 (1995),
6194.

The idea is to equip spacetime with extra curled-up dimensions shaped like the
quantum group SUq(2) where q is a 3rd root of unity. A quantum group is actually
a kind of noncommutative algebra, but using Connes’ ideas you can think of it as a
kind of “space”. If you mod out this particular algebra by its nilradical, you get the
algebra M1(C)⊕M2(C)⊕M3(C), where Mn(C) is the algebra of n× n complex matri-
ces. This has a tantalizing relation to the gauge group of the Standard Model, namely
U(1)× SU(2)× SU(3).

John Madore also spoke about noncommutative geometry, but more on the general
theory and less on the applications to physics. He concentrated on the notion of a “dif-
ferential calculus” — a structure you can equip an algebra with in order to do differential
geometry thinking of it as a kind of “space”.

Julius Wess also spoke on noncommutative geometry, focussing on a q-deformed ver-
sion of quantum mechanics. The process of “q-deformation” is something you can do
not only to groups like SU(2) but also other spaces. You get noncommutative algebras,
and these often have nice differential calculi that let you go ahead and do noncommu-
tative geometry. Wess had a nice humorous way of defusing tense situations. When one
questioner pointedly asked him whether the material he was presenting was useful in
physics or merely a pleasant game, he replied “That’s a very good question. I will try
to answer that later. For now you’re just like students in calculus: you don’t know why
you’re learning all this stuff. . . .” And when Kastler and other mathematicians kept has-
sling him over whether an operator was self-adjoint or merely hermitian, he begged for
mercy by saying “I would like to be a physicist. That was my dream from the beginning.”

Anyway, I hope that from these vague descriptions you get some sense of the ferment
going on in mathematical physics these days. Everyone agrees that quantum theory
should change our ideas about geometry. Nobody agrees on how.

Now let me turn to Alekseev’s talk. In addition to describing his own work, he ex-
plained many things I’d already heard about. But he did it so well that I finally under-
stood them! Let me talk about one of these things: equivariant deRham cohomology.
For this, I’ll assume you know about deRham cohomology, principal bundles, connec-
tions and curvature. So I assume you know that given a manifold M , we can learn a lot
about its topology by looking at differential forms on M and figuring out the space of
closed p-forms modulo exact ones — the so-called pth deRham cohomology of M . But
now suppose that some Lie group G acts on M in a smooth way. What can differential
forms tell us about the topology of this group action?

All sorts of things! First suppose that G acts freely on M — meaning that gx is
different from x for any point x of M and any element g of G other than the identity.
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Then the quotient space M/G is a manifold. Even better, the map M →M/G gives us a
principal G-bundle with total space M and base space M/G.

Can we figure out the deRham cohomology of M/G? Of course if we were smart
enough we could do it by working out M/G and then computing its cohomology. But
there’s a sneakier way to do it using the differential forms on M . The map M → M/G
lets us pull back any form on M/G to get a form on M . This lets us think of forms on
M/G as forms on M satisfying certain equations — people call them “basic” differential
forms because they come from the base space M/G.

What are these equations? Well, note that each element v of the Lie algebra ofG gives
a vector field on M , which I’ll also call v. This give two operations on the differential
forms on M : the Lie derivative Lv and the interior product iv. It’s easy to see that any
basic differential form is annihilated by these operations for all v. The converse is true
too! So we have some nice equations describing the basic forms.

If we now take the space of closed basic p-forms modulo the exact basic p-forms, we
get the deRham cohomology of M/G! This lets us study the topology of M/G using
differential forms on M . It’s very convenient.

If the action of G on M isn’t free, the quotient space M/G might not be a manifold.
This doesn’t stop us from defining “basic” differential forms on M just as before. We can
also define some cohomology groups by taking the closed basic p-forms modulo the exact
ones. But topologists know from long experience that another approach is often more
useful. Group actions that aren’t free are touchy, sensitive creatures — a real nuisance
to work with. Luckily, when you have an action that’s not free, you can tweak it slightly
to make it free. This involves “puffing up” the space that the group acts on — replacing
it by a bigger space that the group acts on freely.

For example, suppose you have a group G acting on a one-point space. Unless G is
trivial, this action isn’t free. In fact, it’s about as far from free as you can get! But we
can “puff it up” and get a space called EG. Like the one-point space, EG is contractible,
but G acts freely on it. Actually there are various spaces with these two properties, and
it doesn’t much matter which one we use — people call them all EG. People call the
quotient space EG/G the “classifying space” of G, and they denote it by BG.

More generally, suppose we have any action of G on a manifold M . How can we
puff up M to get a space on which G acts freely? Simple: just take its product with EG.
Since G acts on M and EG, it acts on the product M × EG in an obvious way. Since G
acts freely on EG, its action on M ×EG is free. And since EG is contractible, the space
M × EG is a lot like M , at least as far as topology goes. More precisely, it has the same
homotopy type!

Actually the last 2 paragraphs can be massively generalized at no extra cost. There’s
no need for G to be a Lie group or for M to be a manifold. G can be any topological
group and M can be any topological space! But since I want to talk about deRham
cohomology, I don’t need this extra generality here.

Anyway, now we know the right substitute for the quotient space M/G when the
action of G on M isn’t free: it’s the quotient space (M × EG)/G.

So now let’s figure out how to compute the pth deRham cohomology of (M×EG)/G.
Since G acts freely on M ×EG, this should be just the closed basic p-forms on M ×EG
modulo the exact ones, where “basic” is defined as before. In fact this is true. We call
the resulting space the pth “equivariant deRham cohomology” of the space M . It’s a kind
of well-behaved substitute for the deRham cohomology of M/G in the case when M/G
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isn’t a manifold.
There’s only one slight problem: the space EG is very big, so it’s not easy to deal with

differential forms on M × EG!
You’ll note that I didn’t say much about what EG looks like. All I said is that it’s

some contractible space on which G acts freely. I didn’t even say it was a manifold, so
it’s not even obvious that “differential forms on EG” makes sense! If you are smart you
can choose your space EG so that it’s a manifold. However, you’ll usually need it to be
infinite-dimensional.

Differential forms make perfect sense on infinite-dimensional manifolds, but they can
be a bit tiresome when we’re trying to do explicit calculations. Luckily there is a small
subalgebra of the differential forms on EG that’s sufficient for the purpose of computing
equivariant cohomology! This is called the “Weil algebra”, WG.

To guess what this algebra is, let’s just list all the obvious differential forms on EG
that we can think of. Well, I guess none of them are obvious unless we know a few more
facts! First of all, since the action of G on EG is free, the quotient map EG→ BG gives
us a principal G-bundle with total space EG and base space BG. This bundle is very
interesting. It’s called the “universal” principal G-bundle. The reason is that any other
principal G-bundle is a pullback of this one.

(I guess I’m upping the sophistication level again here: I’m assuming you know how
to pull back bundles!)

Even better, if we choose our space EG so that it’s a manifold, then there is a god-
given connection on the bundle EG → BG, and any other principal G-bundle with
connection is a pullback of this one.

(And now I’m assuming you know how to pull back connections! However, this
pullback stuff is not necessary in what follows, so just ignore it if you like.)

Okay, so how can we get a bunch of differential forms on EG just using the fact that
it’s the total space of a G-bundle equipped with a connection?

Well, whenever we have a G-bundle E → B, we can think of a connection on it as a
1-form on E taking values in the Lie algebra of G. Let’s see what differential forms on
E this gives us! Let’s call the connection A. If we pick a basis of the Lie algebra, we can
take the components of A in this basis, and we get a bunch of 1-forms Ai on E. We also
get a bunch of 2-forms dAi. We also get a bunch of 2-forms Ai ∧Aj . And so on.

In general, we can form all possible linear combinations of wedge products of the
Ai’s and the dAi’s. We get a big fat algebra. In the case when our bundle is EG→ BG,
equipped with its god-given connection, we define this algebra to be the Weil algebra,
WG!

Great. But let’s try to define WG in a purely algebraic way, so we can do compu-
tations with it more easily. We’re starting out with the 1-forms Ai and taking all linear
combinations of wedge products of them and their exterior derivatives. There are in
fact no relations except the obvious ones, so WG is just “the supercommutative differ-
ential graded algebra freely generated by the variables Ai”. Note: all the mumbo-jumbo
about supercommutative differential graded algebras is a way of mentioning the obvious
relations.

Warning: people don’t usually describe the Weil algebra quite this way. They usually
seem describe it in terms of the connection 1-forms and curvature 2-forms. However, the
curvature is related to the connection by the formula F = dA + A ∧ A, and if you use
this you can go from the usual description of the Weil algebra to mine — I think.
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(Actually, people often describe the Weil algebra as an algebra generated by a bunch
of things of degree 1 and a bunch of things of degree 2, without telling you that the
things of degree 1 are secretly components of a connection 1-form and the things of
degree 2 are secretly components of a curvature 2-form! That’s why I’m telling you all
this stuff — so that if you ever study this stuff you’ll have a better chance of seeing what’s
going on behind all the murk.)

Okay, so here is the upshot. Say we want to compute the equivariant deRham co-
homology of some manifold M on which G acts. In other words, we want to compute
the deRham cohomology of (M × EG)/G. On the one hand, we can start with the dif-
ferential forms on M × EG, figure out the “basic” p-forms, and take the space of closed
basic p-forms modulo exact ones. But remember: up to details of analysis, the algebra
of differential forms on M ×EG is just the tensor product of the algebra of forms on M
and the algebra of forms on EG. And we have this nice small “substitute” for the algebra
of forms on EG, namely the Weil algebra WG. So let’s take the algebra of differential
forms on M and just tensor it with WG. We get a differential graded algebra with Lie
derivative operations Lv and interior product operations iv defined on it. We then pro-
ceed as before: we take the space of closed basic elements of degree p modulo exact
ones. Voila! This is something one can actually compute, with sufficient persistence.
And it gives the same answer, at least when G is connected and simply connected.

There are all sorts of other things to say. For example, if we take the simplest poss-
sible case, namely when M is a single point, this gives a nice trick for computing the
deRham cohomology of EG/G = BG. Guys in this cohomology ring are called “charac-
teristic classes”, and they’re really important in physics. Since any principal G-bundle is
a pullback of EG → BG, and cohomology classes pull back, these characteristic classes
give us cohomology classes in the base space of any principal G-bundle — thus helping
us classify G-bundles. But if I started explaining this now, we’d be here all night.

Also sometime I should say more about how to construct EG.
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Week 130

February 27, 1999

All sorts of cool stuff is happening in physics — and I don’t mean mathematical physics,
I mean real live experimental physics! I feel slightly guilty for not mentioning it on This
Week’s Finds. Let me atone.

Here’s the big news in a nutshell: we may have been wrong about four fundamental
constants of nature. We thought they were zero, but maybe they’re not! I’m talking
about the masses of the neutrinos and the cosmological constant.

Let’s start with neutrinos.
There are three kinds of neutrinos: electron, muon, and τ neutrinos. They are closely

akin to the charged particles whose names they borrow — the electron, muon and τ —
but unlike those particles they are electrically neutral and very light. They are rather
elusive, since they interact only via the weak force and gravity. I’m sure you’ve all heard
how a neutrino can easily make it through hundreds of light years of lead without being
absorbed.

But despite their ghostly nature, neutrinos play a very real role in physics, since ra-
dioactive decay often involves a neutron turning into a proton while releasing an electron
and an electron antineutrino. (In fact, Pauli proposed the existence of neutrinos in 1930
to account for a little energy that went missing in this process. They were only directly
observed in 1956.) Similarly, in nuclear fusion, a proton may become a neutron while
releasing a positron and an electron neutrino. For example, when a type II supernova
goes off, it emits so many neutrinos that if you’re anywhere nearby, they’ll kill you before
anything else gets to you! Indeed, in 1987 a supernova in the Large Magellanic Cloud,
about 100,000 light years away, was detected by four separate neutrino detectors.

I said neutrinos were “very light”, but just how light? So far most work has only
given upper bounds. In the 1980s, the Russian ITEP group claimed to have found a
nonzero mass for the electron neutrino, but this was subsequently blamed on problems
with their apparatus. As of now, laboratory experiments give upper bounds of 4.4 eV
for the electron neutrino mass, 0.17 MeV for the muon neutrino, and 18 MeV for the τ
neutrino. By contrast, the electron’s mass is 0.511 MeV, the muon’s is 106 MeV, and the
τ ’s is a whopping 1771 MeV.

For this reason, the conventional wisdom used to be that neutrinos were massless.
After all, the electron neutrino is definitely far lighter than any known particle except the
photon — which is massless. The larger upper bounds on the other neutrino’s masses
are mainly due to the greater difficulty in doing the experiments.

Having neutrinos be massless would also nicely explain their most stunning charac-
teristic, namely that they’re only found in a left-handed form. What I mean by this is that
they spin counterclockwise when viewed head-on as they come towards you. It turns out
that this violation of left-right symmetry comes fairly easily to massless particles, but only
with more difficulty to massive ones. The reason is simple: massless particles move at
the speed of light, so you can’t outrun them. Thus everyone, regardless of their velocity,
agrees on what it means for such a particle to be spinning one way or another as it comes
towards them. This is not the case for a massive particle!

There was, however, a fly in the ointment. Since the sun is powered by fusion,
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it should emit lots of neutrinos. In fact, the standard solar model predicts that here
on earth we are bombarded by 60 billion solar neutrinos per square centimeter per
second! So in the late 1960s, a team led by Ray Davis set out to detect these neutrinos
by putting a tank of 100,000 gallons of perchloroethylene down into a gold mine in
Homestake, South Dakota. Lots of different nuclear reactions are going on in the sun,
producing neutrinos of different energies. The Homestake experiment can only detect
the most energetic ones — those produced when boron-8 decays into beryllium-8. These
neutrinos have enough energy to turn chlorine-37 in the tank into argon-37. Being a
noble gas, the argon can be separated out and measured. This is not easy — one only
expects about 4 atoms of argon a day! So the experiment required extreme care and
went on for decades.

They only saw about a quarter as many neutrinos as expected.
Of course, with an experiment as delicate as this, there are always many possibilities

for error, including errors in the standard solar model. So a Japanese group decided to
use a tank of 2,000 tons of water in a mine in Kamioka to look for solar neutrinos. This
“Kamiokande” experiment used photomultiplier tubes to detect the Cherenkov radiation
formed by electrons that happen to be hit by neutrinos. Again it was sensitive only to
high-energy neutrinos.

After 5 years, they started seeing signs of a correlation between sunspot activity and
their neutrino count. Interesting. But more interesting still, they didn’t see as many
neutrinos as expected. Only about half as many, in fact.

Starting in the 1990s, various people began to build detectors that could detect lower-
energy neutrinos — including those produced in the dominant fusion reactions powering
the sun. For this it’s good to use gallium-71, which turns to germanium-71 when bom-
barded by neutrinos. The GALLEX detector in Italy uses 30 tons of gallium in the form
of gallium chloride dissolved in water. The SAGE detector, located in a tunnel in the
Caucasus mountains, uses 60 tons of molten metallic gallium. This isn’t quite as scary
as it sounds, because gallium has a very low melting point — it melts in your hand! But
still, of course, these experiments are very difficult.

Again, these experiments didn’t see as many neutrinos as expected.
By this point, the theorists had worked themselves into a full head of steam trying to

account for the missing neutrinos. Currently the most popular theory is that some of the
electron neutrinos have turned into muon and τ neutrinos by the time they reach earth.
These other neutrinos would be not be registered by our detectors.

Folks call this hypothetical process “neutrino oscillation”. For it to happen, the neu-
trinos need to have a nonzero mass. After all, a massless particle moves at the speed
of light, so it doesn’t experience any passage of time — thanks to relativistic time dila-
tion. Only particles with mass can become something else while they are whizzing along
minding their own business.

If in fact you posit a small mass for the neutrinos, oscillations happen automatically
as long as the “mass eigenstates” are different from the “flavor eigenstates”. By “fla-
vor” we mean whether the neutrino is an electron, muon or τ neutrino. For simplicity,
imagine that the state of a neutrino at rest is given by a vector whose 3 components
are the amplitudes for it to be one of the three different flavors. If all but one of these
components are zero we have a neutrino with a definite flavor — a “flavor eigenstate”.
On the other hand, the energy of a particle at rest is basically just its mass. Thus in the
present context the energy of the neutrino is described by a 3× 3 self-adjoint matrix H,
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the “Hamiltonian”, whose eigenvectors are called “mass eigenstates”. These may or may
not be the same as the flavor eigenstates! Schroedinger’s equation says that any state ψ
of the neutrino evolves as follows:

dψ

dt
= −iHψ.

Thus if ψ starts out being a mass eigenstate it stays a mass eigenstate. But if it starts out
being a flavor eigenstate, it won’t stay a flavor eigenstate — unless the mass and flavor
eigenstates coincide! Instead, it will oscillate.

I bet you were wondering when the math would start. Don’t worry, there won’t be
much this time.

Anyway, for other particles, like quarks, it’s well-known that the mass and flavor
eigenstates don’t coincide. So we shouldn’t be surprised at neutrino oscillations, at least
if neutrinos actually have nonzero mass.

Actually things are more complicated than I’m letting on. In addition to oscillating in
empty space, it’s possible that neutrinos oscillate more as they are passing through the
sun itself, thanks to something called the MSW effect — named after Mikheyev, Smirnov
and Wolfenstein. And there are two different ways for neutrinos to have mass, depending
on whether they are Dirac spinors or Majorana spinors (see “Week 93”).

But I don’t want to get caught up in theoretical nuances here! I want to talk about
experiments, and I haven’t even gotten to the new stuff yet — the stuff that’s getting
everybody really confused!

First of all, there’s now some laboratory evidence for neutrino oscillations coming
from the Liquid Scintillator Neutrino Detector at Los Alamos. What these folks do is let
positively charged pions decay into antimuons and muon neutrinos. Then they check to
see if any muon neutrinos become electron neutrinos. They claim that they do! They
also claim to see evidence of muon antineutrinos becoming electron antineutrinos.

Secondly, and more intriguing still, there are a bunch of experiments involving at-
mospheric neutrinos: Super-Kamiokande, Soudan 2, IMB, and MACRO. You see, when
cosmic rays smack into the upper atmosphere, they produce all sorts of particles, in-
cluding electron and muon neutrinos and their corresponding antineutrinos. Cosmic ray
experts think they know how many of each sort of neutrino should be produced. But the
experimenters down on the ground are seeing different numbers!

Again, this could be due to neutrino oscillations. But what’s REALLY cool is that the
numbers seem to depend on where the neutrinos are coming from: from the sky right
above the detector, from right below the detector — in which case they must have come
all the way through the earth — or whatever. Neutrinos coming from different directions
take different amounts of time to get from the upper atmosphere to the detector. Thus
an obvious explanation for the experimental results is that we’re actually seeing the
oscillation process AS IT TAKES PLACE.

If this is true, we can try to get detailed information about the neutrino mass matrix
from the numbers these experiments are measuring!

And this is exactly what people have been doing. But they’re finding something very
strange. If all the experiments are right, and nobody is making any mistakes, it seems
that NO choice of neutrino mass matrix really fits all the data! To fit all the data, folks
need to do something drastic — like posit a 4th kind of neutrino!
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Now, it’s no light matter to posit another neutrino. The known neutrinos couple to
the weak force in almost identical ways. This allows one to create equal amounts of
neutrino-antineutrino pairs of all 3 flavors by letting Z bosons decay — the Z being the
neutral carrier of the weak force. When a Z boson seemingly decays into “nothing”, we
can safely bet that it has decayed into a neutrino- antineutrino pair. In 1989, an elegant
and famous experiment at CERN showed that Z bosons decay into “nothing” at exactly
the rate one would expect if there were 3 flavors of neutrino. Thus there can only be
extra flavors of neutrino if they are very massive, if they couple very differently to the
weak force, or if some other funny business is going on.

Now, electron or muon neutrinos are unlikely to oscillate into a very massive sort of
neutrino — basically because of energy conservation. So if we want an extra neutrino
to explain the experimental results we find ourselves stuck with, it’ll have to be one
that couples to the weak force very differently from the ones we know. A simple, but
drastic, possibility is that it not interact via the weak force at all! Folks call this a “sterile”
neutrino.

Now, sterile neutrinos would blow a big hole in the Standard Model, much more so
than plain old massive neutrinos. So things are getting very interesting.

Wilczek recently wrote a nice easy-to-read paper describing arguments that massive
neutrinos fit in quite nicely with the possibility that the Standard Model is just part of
a bigger, better theory — a “Grand Unified Theory”. I sketched the basic ideas of the
SU(5) and SO(10) grand unified theories in “Week 119”. Recall that in the SU(5) theory,
the left-handed parts of all fermions of a given generation fit into two irreducible repre-
sentations of SU(5) — a 5-dimensional rep and a 10-dimensional rep. For example, for
the first generation, the 5-dimensional rep consists of the left-handed down antiquark
(which comes in 3 colors), the left-handed electron, and the left-handed electron neu-
trino. The 10-dimensional rep consists of the left-handed up quark, down quark, and up
antiquark (which come in 3 colors each), together with the left-handed positron.

In the SO(10) theory, all these particles AND ONE MORE fit into a single 16-dimensional
irreducible representation of SO(10). What could this extra particle be?

Well, since this extra particle transforms trivially under SU(5), it must not feel the
electromagnetic, weak or strong force! Thus it’s tempting to take this missing particle
to be the left-handed electron antineutrino. Of course, we don’t see such a particle —
we only see antineutrinos that spin clockwise. But if neutrinos are massive Dirac spinors
there must be such a particle, and having it not feel the electromagnetic, weak or strong
force would nicely explain why we don’t see it.

Grotz and Klapdor consider this possibility in their book on the weak interaction (see
below), but unfortunately, it seems this theory would make the electron neutrino have
a mass of about 5 MeV — much too big! Sigh. So Wilczek, following the conventional
wisdom, assumes the missing particle is very massive — he calls it the “N”. And he
summarizes some arguments that this massive particle could help give the neutrinos
very small masses, via something called the “seesaw mechanism”. Unfortunately I don’t
have the energy to describe this now, so for more you should look at his paper (referred
to below).

To wrap up, let me just say one final thing about the cosmic significance of the neu-
trino. Massive neutrinos could account for some of the “missing mass” that cosmologists
are worrying about. So there’s an indirect connection between the neutrino mass and
the cosmological constant! The cosmological constant is essentially the energy density
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of the vacuum. It was long assumed to be zero, but now there are some glimmerings of
evidence that it’s not. In fact, some people are quite convinced that it’s not. The fate of
the universe hangs in the balance. . . .

Unfortunately I am too tired now to say much more about this. So let me just give
you a nice easy starting-point:

1) Special Report: Revolution in Cosmology, Scientific American, January 1999. In-
cludes the articles “Surveying space-time with supernovae” by Craig J. Horgan,
Robert P. Kirschner and Nicholoas B. Suntzeff, “Cosmological antigravity” by Lawrence
M. Krauss, and “Inflation in a low-density universe” by Martin A. Bucher and David
N. Spergel.

How can you learn more about neutrinos? It can’t hurt to start here:

2) Nikolas Solomey, The Elusive Neutrino, Scientific American Library, 1997.

If you want to dig in deeper, you need to learn about the weak force, since we’ve only
seen neutrinos via their weak interaction with other particles. The following book is a
great place to start:

3) K. Grotz and H. V. Klapdor, The Weak Interaction in Nuclear, Particle and Astro-
physics, Adam Hilger, Bristol, 1990.

Then you’ll be ready for this book, which examines every aspect of neutrinos in detail
— complete with copies of historical papers:

4) Klaus Winter, ed., Neutrino Physics, Cambridge U. Press, Cambridge, 1991.

And then, if you want to study the possibility of massive neutrinos, you should try
this:

5) Felix Boehm and Petr Vogel, Physics of Massive Neutrinos, Cambridge U. Press, Cam-
bridge, 1987.

But neutrino physics is moving fast, and lots of the new stuff hasn’t made its way
into books yet, so you should also look at other stuff. For links to lots of great neutrino
websites, including websites for most of the experiments I mentioned, try:

6) “The neutrino oscillation industry”, http://www.hep.anl.gov/NDK/hypertext/

nu industry.html

For some recent general overviews, try these:

7) Paul Langacker, “Implications of neutrino mass”, http://dept.physics.upenn.
edu/neutrino/jhu/jhu.html

8) Boris Kayser, “Neutrino mass: where do we stand, and where are we going?”,
preprint available as hep-ph/9810513.

For information on various experiments, try these:
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9) GALLEX collaboration, “GALLEX solar neutrino observations: complete results for
GALLEX II”, Phys. Lett. B357 (1995), 237–247.

“Final results of the CR-51 neutrino source experiments in GALLEX”, Phys. Lett.
B420 (1998), 114–126.

“GALLEX solar neutrino observations: results for GALLEX IV”, Phys. Lett. B447
(1999), 127–133.

10) SAGE collaboration, “Results from SAGE”, Phys. Lett. B328 (1994), 234–248.

“The Russian-American gallium experiment (SAGE) CR neutrino source measure-
ment”, Phys. Rev. Lett. 77 (1996), 4708–4711.

11) LSND collaboration, “Evidence for neutrino oscillations from muon decay at rest”,
Phys. Rev. C54 (1996) 2685–2708, preprint available as nucl-ex/9605001.

“Evidence for anti-muon-neutrino → anti-electron-neutrino oscillations from the
LSND experiment at LAMPF”, Phys. Rev. Lett. 77 (1996), 3082–3085, preprint
available as nucl-ex/9605003.

“Evidence for muon-neutrino → electron-neutrino oscillations from LSND”, Phys.
Rev. Lett. 81 (1998), 1774–1777, preprint available as nucl-ex/9709006.

“Results on muon-neutrino → electron-neutrino oscillations from pion decay in
flight”, Phys. Rev. C58 (1998), 2489–2511.

12) Super-Kamiokande collaboration, “Evidence for oscillation of atmospheric neu-
trinos”, Phys. Rev. Lett. 81 (1998), 1562–1567, preprint available as hep-ex/

9807003.

13) MACRO collaboration, “Measurement of the atmospheric neutrino-induced upgo-
ing muon flux”, Phys. Lett. B434 (1998), 451–457, preprint available as hep-ex/
9807005.

14) IMB collaboration, “A search for muon-neutrino oscillations with the IMB detector”,
Phys. Rev. Lett. 69 (1992), 1010–1013.

For a fairly model-independent attempt to figure out something about neutrino masses
from the latest crop of experiments, see:

16) V. Barger, T. J. Weiler, and K. Whisnant, “Inferred 4.4 eV upper limits on the muon-
and tau-neutrino masses”, preprint available as hep-ph/9808367.

For a nice summary of the data, and an argument that it’s evidence for the existence
of a sterile neutrino, see:

17) David O. Caldwell, “The status of neutrino mass”, preprint available as hep-ph/

9804367.

For a very readable argument that massive neutrinos are evidence for a supersym-
metric SO(10) grand unified theory, see

18) Frank Wilczek, “Beyond the Standard Model: this time for real”, preprint available
as hep-ph/9809509.
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Finally, with all these cracks developing in the Standard Model, it’s nice to think
again about the rise of the Standard Model. The following book is packed with the rem-
iniscences of many theorists and experimentalists involved in developing this wonderful
theory of particles and forces, including Bjorken, ’t Hooft, Veltman, Susskind, Polyakov,
Richter, Iliopoulos, Gell-Mann, Weinberg, Lederman, Goldhaber, Cronin, and Kobayashi:

19) Lilian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden, eds., The Rise
of the Standard Model: Particle Physics in the 1960s and 1970s.

It’s a must for anyone with an interest in the history of physics!

By the way, here’s a cool picture of the sun, taken using neutrinos rather than light:

20) LSU Super-Kamiokande group homepage, http://beavis.phys.lsu.edu/~superk/

Thanks go to Jim Carr for pointing this out.
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Week 131

March 7, 1999

I’ve been thinking more about neutrinos and their significance for grand unified theories.
The term “grand unified theory” sounds rather pompous, but in its technical meaning it
refers to something with limited goals: a quantum field theory that attempts to unify all
the forces except gravity. This limitation lets you pretend spacetime is flat.

The heyday of grand unified theories began in the mid-1970s, shortly after the tri-
umph of the Standard Model. As you probably know, the Standard Model is a quantum
field theory describing all known particles and all the known forces except gravity: the
electromagnetic, weak and strong forces. The Standard Model treats the electromagnetic
and weak forces in a unified way — so one speaks of the “electroweak” force — but it
treats the strong force seperately.

In 1975, Georgi and Glashow invented a theory which fit all the known particles of
each generation into two irreducible representations of SU(5). Their theory had some
very nice features: for example, it unified the strong force with the electroweak force,
and it explained why quark charges come in multiples of 1/3. It also made some new
predictions, most notably that protons decay with a halflife of something like 1029 or 1030

years. Of course, it’s slightly inelegant that one needs two irreducible representations of
SU(5) to account for all the particles of each generation. Luckily SU(5) fits inside SO(10)
in a nice way, and Georgi used this to concoct a slightly bigger theory where all 15
particles of each generation, AND ONE MORE, fit into a single irreducible representation
of SO(10). I described the mathematics of all this in “Week 119”, so I won’t do so again
here.

What’s the extra particle? Well, when you look at the math, one obvious possibility
is a right-handed neutrino. As I explained last week, the existence of a right-handed
neutrino would make it easier for neutrinos to have mass. And this in turn would al-
low “oscillations” between neutrinos of different generations — possibly explaining the
mysterious shortage of electron neutrinos that we see coming from the sun.

This “solar neutrino deficit” had already been seen by 1975, so everyone got very
excited about grand unified theories. The order of the day was: look for neutrino oscil-
lations and proton decay!

A nice illustration of the mood of the time can be found in a talk Glashow gave in
1980:

1) Sheldon Lee Glashow, “The new frontier”, in First Workshop on Grand Unification,
eds. Paul H. Frampton, Sheldon L. Glashow and Asim Yildiz, Math Sci Press, Brook-
line Massachusetts, 1980, pp. 3–8.

I’d like to quote some of his remarks because it’s interesting to reflect on what has
happened in the intervening two decades:

Pions, muons, positrons, neutrons and strange particles were found without the
use of accelerators. More recently, most developments in elementary particle
physics depended upon these expensive artificial aids. Science changes quickly.
A time may come when accelerators no longer dominate our field: not yet, but
perhaps sooner than some may think.
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Important discoveries await the next generation of accelerators. QCD and the
electroweak theory need further confirmation. We need know how b quarks
decay. The weak interaction intermediaries must be seen to be believed. The top
quark (or perversions needed by topless theories) lurks just out of range. Higgs
may wait to be found. There could well be a fourth family of quarks and leptons.
There may even be unanticipated surprises. We need the new machines.

Of course we now know how the b (or “bottom”) quark decays, we’ve seen the t (or
“top”) quark, we’ve seen the weak interaction intermediaries, and we’re quite sure there
is not a fourth generation of quarks and leptons. There have been no unanticipated sur-
prises. Accelerators grew ever more expensive until the U.S. Congress withdrew funding
for the Superconducting Supercollider in 1993. The Higgs is still waiting to be found or
proved nonexistent. Experiments at CERN should settle that issue by 2003 or so.

On the other hand, we have for the first time an apparently correct theory of el-
ementary particle physics. It may be, in a sense, phenomenologically complete.
It suggests the possibility that there are no more surprises at higher energies,
at least for energies that are remotely accessible. Indeed, PETRA and ISR have
produced no surprises. The same may be true for PEP, ISABELLE, and the TEVA-
TRON. Theorists do expect novel higher-energy phenomena, but only at absurdly
inacessible energies. Proton decay, if it is found, will reinforce the belief in the
great desert extending from 100 GeV to the unification mass of 1014 GeV. Per-
haps the desert is a blessing in disguise. Ever larger and more costly machines
conflict with dwindling finances and energy reserves. All frontiers come to an
end.

You may like this scenario or not; it may be true or false. But, it is neither impos-
sible, implausible, or unlikely. And, do not despair nor prematurely lament the
death of particle physics. We have a ways to go to reach the desert, with exotic
fauna along the way, and even the desolation of a desert can be interesting. The
end of the high-energy frontier in no ways implies the end of particle physics.
There are many ways to skin a cat. In this talk I will indicate several exciting
lines of research that are well away from the high-energy frontier. Important
results, perhaps even extraordinary surprises, await us. But, there is danger on
the way.

The passive frontier of which I shall speak has suffered years of benign neglect.
It needs money and manpower, and it must compete for this with the accelerator
establishment. There is no labor union of physicists who work at accelerators,
but sometimes it seems there is. It has been argued that plans for accelerator
construction must depend on the “needs” of the working force: several thousands
of dedicated high-energy experimenters. This is nonsense. Future accelerators
must be built in accordance with scientific, not demographic, prioriries. The
new machines are not labor-intensive, must not be forced to be so. Not all high
energy physicsts can be accomodated at the new machines. The high-energy
physicist has no guaranteed right to work at an accelerator, he has not that
kind of job security. He must respond to the challenge of the passive frontier .

Of course, the collapse of the high-energy physics job market and the death of the
Superconducting Supercollider give these words a certain poignancy. But what is this
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“passive frontier” Glashow mentions? It means particle physics that doesn’t depend on
very high energy particle accelerators. He lists a number of options:

A) CP phenomenology. The Standard Model is not symmetrical under switching par-
ticles and their antiparticles — called “charge conjugation”, or “C”. Nor is it sym-
metrical under switching left and right — called “parity”, or “P”. It’s almost, but
not quite, symmetrical under the combination of both operations, called “CP”. Vi-
olation of CP symmetry is evident in the behavior of the neutral kaon. Glashow
suggests looking for CP violation in the form of a nonzero magnetic dipole moment
for the neutron. As far as I know, this has still not been seen.

B) New kinds of stable matter. Glashow proposes the search for new stable particles
as “an ambitious and risky field of scientific endeavor”. People have looked and
haven’t found anything.

C) Neutrino masses and neutrino oscilllations. Glashow claims that “neutrinos should
have masses, and should mix”. He now appears to be right. It took almost 20 years
for the trickle of experimental results to become the lively stream we see today, but
it happened. He urges “Let us not miss the next nearby supernova!” Luckily we did
not.

D) Astrophysical neutrino physics. In addition to solar neutrinos and neutrinos from
supernovae, there are other interesting connections between neutrinos and astro-
physics. The background radiation from the big bang should contain neutrinos
as well as the easier-to-see photons. More precisely, there should be about 100
neutrinos of each generation per cubic centimeter of space, thanks to this effect.
These “relic neutrinos” have not been seen, but that’s okay: by now they would
be too low in energy to be easily detected. Glashow notes that if neutrinos had a
nonzero mass, relic neutrinos could contribute substantially to the total density of
the universe. The heaviest generation weighing 30 eV or so might be enough to
make the universe eventually recollapse! On the other hand, for neutrinos to be
gravitationally bound to galaxies, they’d need to be at least 20 eV or so.

E) Magnetic monopoles. Most grand unified theories predict the existence of magnetic
monopoles due to “topological defects” in the Higgs fields. Glashow urges people
to look for these. This has been done, and they haven’t been seen.

F) Proton decay. As Glashow notes, proton decay would be the “king of the new fron-
tier”. Reflecting the optimism of 1980, he notes that “to some, it is a foregone
conclusion that proton decay is about to be seen by experiments now abuilding”.
But alas, people looked very hard and did not find it! This killed the SU(5) the-
ory. Many people switched to supersymmetric theories, which are more compatible
with very slow proton decay. But with the continuing lack of new experiments to
explain, enthusiasm for grand unified theories gradually evaporated, and theoreti-
cal particle physics took refuge in the elegant abstractions of string theory.

But now, 20 years later, interest in grand unified theories seems to be coming back.
We have a rich body of mysterious experimental results about neutrino oscillations.
Somebody should explain them!
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On a slightly different note, one of my little side hobbies is to study the octonions
and dream about how they might be useful in physics. One place they show up is in the
E6 grand unified theory — the next theory up from the SO(10) theory. I said a bit about
this in “Week 119”, but I just bumped into another paper on it in the same conference
proceedings that Glashow’s paper appears is:

2) Feza Gursey, “Symmetry breaking patterns in E6”, in First Workshop on Grand Uni-
fication, eds. Paul H. Frampton, Sheldon L. Glashow and Asim Yildiz, Math Sci
Press, Brookline Massachusetts, 1980, pp. 39–55.

He says something interesting that I want to understand someday — maybe someone
can explain why it’s true. He says that E6 is a “complex” group, E7 is a “pseudoreal”
group, and E8 is a “real” group. This use of terminology may be nonstandard, but what
he means is that E6 admits complex representations that are not their own conjugates,
E7 admits complex reps that are their own conjugates, and that all complex reps of E8

are complexifications of real ones (and hence their own conjugates). This should have
something to do with the symmetry of the Dynkin diagram of E6.

Octonions are also prominent in string theory and in the grand unified theories pro-
posed by my friends Geoffrey Dixon and Tony Smith — see “Week 59”, “Week 91”, and
“Week 104”. I’ll probably say more about this someday. . . .

The reason I’m interested in neutrinos is that I want to learn what evidence there
is for laws of physics going beyond the Standard Model and general relativity. This
is also why I’m trying to learn a bit of astrophysics. The new hints of evidence for a
nonzero cosmological constant, the missing mass problem, the large-scale structure of
the universe, and even the puzzling γ-ray bursters — they’re all food for thought along
these lines.

The following book caught my eye since it looked like just what I need — an easy
tutorial in the latest developments in cosmology:

3) Greg Bothun, Modern Cosmological Observations and Problems, Taylor & Francis,
London, 1998.

On reading it, some of the remarks about particle physics made me unhappy. For
example, Bothun says “the observed entropy S of the universe, as measured by the
ratio of baryons to photons, is ∼ 5 × 10−10.” But as Ted Bunn explained to me, the
entropy is actually correlated to the ratio of photons to baryons — the reciprocal of this
number. Bothun also calls the kinetic energy density of the field postulated in inflationary
cosmology, “essentially an entropy field that currently drives the uniform expansion and
cooling of the universe”. This makes no sense to me. There are also a large number of
typos, the most embarrassing being “virilizing” for “virializing”.

But there’s a lot of good stuff in this book! The author’s specialty is large-scale struc-
ture, and I learned a lot about that. Just to set the stage, recall that the Milky Way has a
disc about 30 kiloparsecs in diameter and contains roughly 100 or 200 billion stars. But
our galaxy is one of a cluster of about 20 galaxies, called the Local Group. In addition to
our galaxy and the Large and Small Magellanic Clouds which orbit it, this contains the
Andromeda Galaxy (also known as M31), another spiral galaxy called M33, and a bunch
of dwarf irregular galaxies. The Local Group is about a megaparsec in radius.
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This is typical. Galaxies often lie in clusters which are a few megaparsecs in radius,
containing from a handful to hundreds of big galaxies. Some famous nearby clusters
include the Virgo cluster (about 20 megaparsecs away) and the Coma cluster (about 120
megaparsecs away). Thousands of clusters have been cataloged by Abell and collabora-
tors.

And then there are superclusters, each typically containing 3–10 clusters in an elon-
gated “filament” about 50 megaparsecs in diameter. I don’t mean to make this sound
more neat than it actually is, because nobody is very sure about intergalactic distances,
and the structures themselves are rather messy. But there are various discernible pat-
terns. For example, superclusters tend to occur at the edges of larger roundish “voids”
which have few galaxies in them. These voids are very large, about 100 or 200 mega-
parsecs across. In general, galaxies tend to be falling into denser regions and moving
away from the voids. For example, the Milky Way is falling towards the center of the Lo-
cal Supercluster at about 300 kilometers per second, and the Local Supercluster is also
falling towards the next nearest one — the Hydra-Centaurus Supercluster — at about
300 kilometers per second.

Now, if the big bang theory is right, all this stuff was once very small, and the universe
was much more homogeneous. Obviously gravity tends to amplify inhomogeneities. The
problem is to understand in a quantitative way how these inhomogeneities formed as
the universe grew.

Here are a couple of other books that I’m finding useful — they’re a bit more mathe-
matical than Bothun’s. I’m trying to stick to new books because this subject is evolving
so rapidly:

4) Jayant V. Narlikar, Introduction to Cosmology, Cambridge U. Press, Cambridge,
1993.

5) Peter Coles and Francesco Lucchin, Cosmology: The Origin and Evolution of Cosmic
Structure, Wiley, New York, 1995.

While I was looking around, I also bumped into the following book on black holes:

6) Sandip K. Chakrabarti, ed., “Observational Evidence for Black Holes in the Uni-
verse”, Kluwer, Dordrecht, 1998.

It mentioned some objects I’d never heard of before. I want to tell you about them,
just because they’re so cool!

• X-ray novae: First, what’s a nova? Well, remember that a white dwarf is a small,
dense, mostly burnt-out star. When one member of a binary star is a white dwarf,
and the other dumps some of its gas on this white dwarf, the gas can undergo
fusion and emit a huge burst of energy — as much as 10,000 times what the sun
emits in a year. To astronomers it may look like a new star is suddenly born —
hence the term “nova”. But not all novae emit mostly visible light — some emit
X-rays or even γ-rays. A “X-ray nova” is an X-ray source that suddenly appears in
a few days and then gradually fades away in a year or less. Many of these are
probably neutron stars rather than white dwarfs. But a bunch are probably black
holes!
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• Blazars: A “blazar” is a galactic nucleus that’s shooting out a jet of hot plasma
almost directly towards us, exhibiting rapid variations in power. Like quasars and
other active galactic nuclei, these are probably black holes sucking in stars and
other stuff and forming big accretion disks that shoot out jets of plasma from both
poles.

• Mega masers: A laser is a source of coherent light caused by stimulated emission
— a very quantum-mechanical gadget. A maser is the same sort of thing but with
microwaves. In fact, masers were invented before lasers — they are easier to make
because the wavelength is longer. In galaxies, clouds of water vapor, hydroxyl, sili-
con monoxide, methanol and other molecules can form enormous natural masers.
In our galaxy the most powerful such maser is W49N, which has a power equal to
that of the Sun. But recently, still more powerful masers have been bound in other
galaxies, usually associated with active galactic nuclei. These are called “mega
masers” and they are probably powered by black holes. The first mega maser was
discovered in 1982; it is a hydroxyl ion maser in the galaxy IC4553, with a lumi-
nosity about 1000 times that of our sun. Subsequently people have found a bunch
of water mega masers. The most powerful so far is in TXFS2226-184 — it has a
luminosity of about 6100 times that of the Sun!

Addendum: Here is something from Allen Knutson in response to my remark that E6

has complex representations that aren’t their own conjugates. I hoped that this is related
to the symmetry of the Dynkin diagram of E6, and Allen replied:

It does. The automorphism G → G that exchanges representations with their
duals, the Cartan involution, may or may not be an inner automorphism. The
group of outer automorphisms of G (G simple) is iso to the diagram automor-
phism group. So no diagram auts, means the Cartan involution is inner, means
all reps are iso to their duals, i.e. possess invariant bilinear forms.

(Unfortunately it’s not iff — the Dn’s alternate between whether the Cartan
involution is inner, much as their centers alternate between Z4 and Z2

2.)

Any rep either has complex trace sometimes, or a real, or a quaternionic struc-
ture, morally because of Artin-Wedderburn applied to the real group algebra of
G. Given a rep one can find out which by looking at the integral over G of
Tr(g2), which comes out 0, 1, or −1 (respectively). This is the “Schur indicator”
and can be found in Serre’s LinReps of Finite Groups.

Allen K.
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Week 132

April 2, 1999

Today I want to talk about n-categories and quantum gravity again. For starters let me
quote from a paper of mine about this stuff:

1) John Baez, “Higher-dimensional algebra and Planck-scale physics”, to appear in
Physics Meets Philosophy at the Planck Scale, eds. Craig Callender and Nick Huggett,
Cambridge U. Press. Preprint available as gr-qc/9902017.

By the way, this book should be pretty fun to read — it’ll contain papers by both
philosophers and physicists, including a bunch who have already graced the pages of
This Week’s Finds, like Barbour, Isham, Rovelli, Unruh, and Witten. I’ll say more about
it when it comes out.

Okay, here are some snippets from this paper. It starts out talking about the meaning
of the Planck length, why it may be important in quantum gravity, and what a theory of
quantum gravity should be like:

Two constants appear throughout general relativity: the speed of light c and
Newton’s gravitational constant G. This should be no surprise, since Einstein
created general relativity to reconcile the success of Newton’s theory of gravity,
based on instantaneous action at a distance, with his new theory of special
relativity, in which no influence travels faster than light. The constant c also
appears in quantum field theory, but paired with a different partner: Planck’s
constant ~. The reason is that quantum field theory takes into account special
relativity and quantum theory, in which ~ sets the scale at which the uncertainty
principle becomes important.

It is reasonable to suspect that any theory reconciling general relativity and
quantum theory will involve all three constants c, G, and ~. Planck noted that
apart from numerical factors there is a unique way to use these constants to
define units of length, time, and mass. For example, we can define the unit of
length now called the ‘Planck length’ as follows:

L =

√
~G
c3

This is extremely small: about 1.6×10−35 meters. Physicists have long suspected
that quantum gravity will become important for understanding physics at about
this scale. The reason is very simple: any calculation that predicts a length using
only the constants c, G and ~ must give the Planck length, possibly multiplied
by an unimportant numerical factor like 2π.

For example, quantum field theory says that associated to any mass m there is
a length called its Compton wavelength, LC , such that determining the posi-
tion of a particle of mass m to within one Compton wavelength requires enough
energy to create another particle of that mass. Particle creation is a quintessen-
tially quantum-field-theoretic phenomenon. Thus we may say that the Compton
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wavelength sets the distance scale at which quantum field theory becomes crucial
for understanding the behavior of a particle of a given mass. On the other hand,
general relativity says that associated to any mass m there is a length called the
Schwarzschild radius, LS , such that compressing an object of mass m to a size
smaller than this results in the formation of a black hole. The Schwarzschild
radius is roughly the distance scale at which general relativity becomes crucial
for understanding the behavior of an object of a given mass. Now, ignoring some
numerical factors, we have

LC =
~
mc

and
LS =

Gm

c2
.

These two lengths become equal when m is the Planck mass. And when this
happens, they both equal the Planck length!

At least naively, we thus expect that both general relativity and quantum field
theory would be needed to understand the behavior of an object whose mass
is about the Planck mass and whose radius is about the Planck length. This
not only explains some of the importance of the Planck scale, but also some of
the difficulties in obtaining experimental evidence about physics at this scale.
Most of our information about general relativity comes from observing heavy
objects like planets and stars, for which LS � LC . Most of our information
about quantum field theory comes from observing light objects like electrons
and protons, for which LC � LS . The Planck mass is intermediate between
these: about the mass of a largish cell. But the Planck length is about 10−20

times the radius of a proton! To study a situation where both general relativity
and quantum field theory are important, we could try to compress a cell to a
size 10−20 times that of a proton. We know no reason why this is impossible in
principle. But we have no idea how to actually accomplish such a feat.

There are some well-known loopholes in the above argument. The ‘unimportant
numerical factor’ I mentioned above might actually be very large, or very small.
A theory of quantum gravity might make testable predictions of dimensionless
quantities like the ratio of the muon and electron masses. For that matter, a
theory of quantum gravity might involve physical constants other than c, G,
and ~. The latter two alternatives are especially plausible if we study quantum
gravity as part of a larger theory describing other forces and particles. However,
even though we cannot prove that the Planck length is significant for quantum
gravity, I think we can glean some wisdom from pondering the constants c, G,
and ~ — and more importantly, the physical insights that lead us to regard
these constants as important.

What is the importance of the constant c? In special relativity, what matters is
the appearance of this constant in the Minkowski metric

ds2 = c2dt2 − dx2 − dy2 − dz2

which defines the geometry of spacetime, and in particular the lightcone through
each point. Stepping back from the specific formalism here, we can see several
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ideas at work. First, space and time form a unified whole which can be thought
of geometrically. Second, the quantities whose values we seek to predict are lo-
calized. That is, we can measure them in small regions of spacetime (sometimes
idealized as points). Physicists call such quantities ‘local degrees of freedom’.
And third, to predict the value of a quantity that can be measured in some re-
gion R, we only need to use values of quantities measured in regions that stand
in a certain geometrical relation to R. This relation is called the ‘causal struc-
ture’ of spacetime. For example, in a relativistic field theory, to predict the value
of the fields in some region R, it suffices to use their values in any other region
that intersects every timelike path passing through R. The common way of sum-
marizing this idea is to say that nothing travels faster than light. I prefer to say
that a good theory of physics should have local degrees of freedom propagating
causally.

In Newtonian gravity, G is simply the strength of the gravitational field. It
takes on a deeper significance in general relativity, where the gravitational field
is described in terms of the curvature of the spacetime metric. Unlike in special
relativity, where the Minkowski metric is a ‘background structure’ given a priori,
in general relativity the metric is treated as a field which not only affects, but
also is affected by, the other fields present. In other words, the geometry of
spacetime becomes a local degree of freedom of the theory. Quantitatively, the
interaction of the metric and other fields is described by Einstein’s equation

Gab = 8πGTab

where the Einstein tensor Gab depends on the curvature of the metric, while the
stress-energy tensor Tab describes the flow of energy and momentum due to all
the other fields. The role of the constant G is thus simply to quantify how much
the geometry of spacetime is affected by other fields. Over the years, people
have realized that the great lesson of general relativity is that a good theory
of physics should contain no geometrical structures that affect local degrees of
freedom while remaining unaffected by them. Instead, all geometrical structures
— and in particular the causal structure — should themselves be local degrees
of freedom. For short, one says that the theory should be background-free.

The struggle to free ourselves from background structures began long before Ein-
stein developed general relativity, and is still not complete. The conflict between
Ptolemaic and Copernican cosmologies, the dispute between Newton and Leibniz
concerning absolute and relative motion, and the modern arguments concern-
ing the ‘problem of time’ in quantum gravity — all are but chapters in the story
of this struggle. I do not have room to sketch this story here, nor even to make
more precise the all-important notion of ‘geometrical structure’. I can only point
the reader towards the literature, starting perhaps with the books by Barbour
and Earman, various papers by Rovelli, and the many references therein.

Finally, what of ~? In quantum theory, this appears most prominently in the
commutation relation between the momentum p and position q of a particle:

pq − qp = −i~,
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together with similar commutation relations involving other pairs of measur-
able quantities. Because our ability to measure two quantities simultaneously
with complete precision is limited by their failure to commute, ~ quantifies our
inability to simultaneously know everything one might choose to know about
the world. But there is far more to quantum theory than the uncertainty prin-
ciple. In practice, ~ comes along with the whole formalism of complex Hilbert
spaces and linear operators.

There is a widespread sense that the principles behind quantum theory are
poorly understood compared to those of general relativity. This has led to many
discussions about interpretational issues. However, I do not think that quantum
theory will lose its mystery through such discussions. I believe the real challenge
is to better understand why the mathematical formalism of quantum theory is
precisely what it is. Research in quantum logic has done a wonderful job of
understanding the field of candidates from which the particular formalism we
use has been chosen. But what is so special about this particular choice? Why,
for example, do we use complex Hilbert spaces rather than real or quaternionic
ones? Is this decision made solely to fit the experimental data, or is there a
deeper reason? Since questions like this do not yet have clear answers, I shall
summarize the physical insight behind ~ by saying simply that a good theory of
the physical universe should be a quantum theory — leaving open the possibility
of eventually saying something more illuminating.

Having attempted to extract the ideas lying behind the constants c, G, and
~, we are in a better position to understand the task of constructing a theory
of quantum gravity. General relativity acknowledges the importance of c and
G but idealizes reality by treating ~ as negligibly small. From our discussion
above, we see that this is because general relativity is a background-free classical
theory with local degrees of freedom propagating causally. On the other hand,
quantum field theory as normally practiced acknowledges c and ~ but treats G
as negligible, because it is a background-dependent quantum theory with local
degrees of freedom propagating causally.

The most conservative approach to quantum gravity is to seek a theory that
combines the best features of general relativity and quantum field theory. To
do this, we must try to find a background-free quantum theory with local de-
grees of freedom propagating causally. While this approach may not succeed,
it is definitely worth pursuing. Given the lack of experimental evidence that
would point us towards fundamentally new principles, we should do our best to
understand the full implications of the principles we already have!

From my description of the goal one can perhaps see some of the difficulties.
Since quantum gravity should be background-free, the geometrical structures
defining the causal structure of spacetime should themselves be local degrees of
freedom propagating causally. This much is already true in general relativity.
But because quantum gravity should be a quantum theory, these degrees of free-
dom should be treated quantum-mechanically. So at the very least, we should
develop a quantum theory of some sort of geometrical structure that can define
a causal structure on spacetime.
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Then I talk about topological quantum field theories, which are background-free
quantum theories without local degrees of freedom, and what we have learned from
them. Basically what we’ve learned is that there’s a deep analogy between the mathe-
matics of spacetime (e.g. differential topology) and the mathematics of quantum theory.
This is interesting because in background-free quantum theories we expect that space-
time, instead of serving as a “stage” on which events play out, actually becomes part of
the play of events itself — and must itself be described using quantum theory. So it’s
very interesting to try to connect the concepts of spacetime and quantum theory. The
analogy goes like this:

Differential topology Quantum theory

(n− 1)-dimensional manifold (space) Hilbert space (states)
cobordism between (n− 1)-dimensional
manifolds (spacetime)

operator (process)

composition of cobordisms composition of operators
identity cobordism identity operator

And if you know a little category theory, you’ll see what we have here are two cat-
egories: the category of cobordisms and the category of Hilbert spaces. A topological
quantum field theory is a functor from the first to the second. . . .

Okay, now for some other papers:

2) Geraldine Brady and Todd H. Trimble, “A string diagram calculus for predicate
logic”, and C. S. Peirce’s system Beta, available at http://people.cs.uchicago.
edu/~brady

Geraldine Brady and Todd H. Trimble, “A categorical interpretation of Peirce’s
propositional logic Alpha”, Jour. Pure and Appl. Alg. 149 (2000), 213–239.

Geraldine Brady and Todd H. Trimble, “The topology of relational calculus”.

Charles Peirce is a famously underappreciated American philosopher who worked
in the late 1800s. Among other things, like being the father of pragmatism, he is also
one of the fathers of higher-dimensional algebra. As you surely know if you’ve read me
often enough, part of the point of higher-dimensional algebra is to break out of “linear
thinking”. By “linear thinking” I mean the tendency to do mathematics in ways that are
easily expressed in terms of 1-dimensional strings of symbols. In his work on logic, Peirce
burst free into higher dimensions. He developed a way of reasoning using diagrams that
he called “existential graphs”. Unfortunately this work by Peirce was never published!
One reason is that existential graphs were difficult and expensive to print. As a result,
his ideas languished in obscurity.

By now it’s clear that higher-dimensional algebra is useful in physics: examples in-
clude Feynman diagrams and the spin networks of Penrose. The theory of n-categories
is beginning to provide a systematic language for all these techniques. So it’s worth
re-evaluating Peirce’s work and seeing how it fits into the picture. And this is what the
papers by Brady and Trimble do!
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3) J. Scott Carter, Louis H. Kauffman, and Masahico Saito, “Structures and diagram-
matics of four dimensional topological lattice field theories”, to appear in Adv.
Math., preprint available as math.GT/9806023.

We can get 3-dimensional topological quantum field theories from certain Hopf al-
gebras. As I described in “Week 38”, Crane and Frenkel made the suggestion that by
categorifying this construction we should get 4-dimensional TQFTs from certain Hopf
categories. This paper makes the suggestion precise in a certain class of examples! Basi-
cally these are categorified versions of the Dijkgraaf-Witten theory.

4) J. Scott Carter, Daniel Jelsovsky, Selichi Kamada, Laurel Langford and Masahico
Saito, “Quandle cohomology and state-sum invariants of knotted curves and sur-
faces”, preprint available as math.GT/9903135.

Yet another attack on higher dimensions! This one gets invariants of 2-links — sur-
faces embedded in R4 — from the cohomology groups of “quandles”. I don’t really un-
derstand how this fits into the overall scheme of higher-dimensional algebra yet. They
show their invariant distinguishes between the 2-twist spun trefoil (a certain sphere
knotted in Rˆ4) and the same sphere with the reversed orientation.

5) Tom Leinster, “Structures in higher-dimensional category theory”, preprint avail-
able at http://www.dpmms.cam.ac.uk/~leinster

This is a nice tour of ideas in higher-dimensional algebra. Right now one big problem
with the subject is that there are lots of approaches and not a clear enough picture of how
they fit together. Leinster’s paper is an attempt to start seeing how things fit together.

6) Claudio Hermida, “Higher-dimensional multicategories”, slides of a lecture given
in 1997, available at http://www.math.mcgill.ca/~hermida

This talk presents some of the work by Makkai, Power and Hermida on their definition
of n-categories. For more on their work see “Week 107”.

7) Carlos Simpson, “On the Breen-Baez-Dolan stabilization hypothesis for Tamsamani’s
weak n-categories”, preprint available as math.CT/9810058.

For quite a while now James Dolan and I have been talking about something we call
the “stabilization hypothesis”. I gave an explanation of this in “Week 121”, but briefly,
it says that the nth column of the following chart (which extends to infinity in both
directions) stabilizes after 2n+ 2 rows:

Table 12: k-tuply monoidal n-categories

n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal
categories

monoidal
2-categories
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n = 0 n = 1 n = 2

k = 2 commutative
monoids

braided monoidal
categories

braided monoidal
2-categories

k = 3 ” ” symmetric
monoidal
categories

weakly involutory
monoidal
2-categories

k = 4 ” ” ” ” strongly
involutory
monoidal
2-categories

k = 5 ” ” ” ” ” ”

Carlos Simpson has now made this hypothesis precise and proved it using Tam-
samani’s definition of n-categories! And he did it using the same techniques that Graeme
Segal used to study k-fold loop spaces. . . exploiting the relation between n-categories
and homotopy theory. This makes me really happy.

8) Mark Hovey, Model Categories, American Mathematical Society Mathematical Sur-
veys and Monographs, vol. 63, Providence, Rhode Island, 1999. Preprint available
as http://www.math.uiuc.edu/K-theory/0278/index.html

Speaking of that kind of thing, the technique of model categories is really important
for homotopy theory and n-categories, and this book is a really great place to learn about
it.

9) Frank Quinn, Group-categories, preprint available as math.GT/9811047.

This one is about the algebra behind certain topological quantum field theories. I’ll
just quote the abstract:

A group-category is an additively semisimple category with a monoidal product
structure in which the simple objects are invertible. For example in the category
of representations of a group, 1-dimensional representations are the invertible
simple objects. This paper gives a detailed exploration of “topological quantum
field theories” for group-categories, in hopes of finding clues to a better under-
standing of the general situation. Group-categories are classified in several ways
extending results of Frohlich and Kerler. Topological field theories based on ho-
mology and cohomology are constructed, and these are shown to include theories
obtained from group-categories by Reshetikhin-Turaev constructions. Braided-
commutative categories most naturally give theories on 4-manifold thickenings
of 2-complexes; the usual 3-manifold theories are obtained from these by nor-
malizing them (using results of Kirby) to depend mostly on the boundary of
the thickening. This is worked out for group-categories, and in particular we
determine when the normalization is possible and when it is not.
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10) Sjoerd Crans, “A tensor product for Gray-categories”, Theory and Applications of
Categories, Vol. 5, 1999, No. 2, pp 12–69, available at http://www.tac.mta.ca/
tac/volumes/1999/n2/abstract.html

A Gray-category is what some people call a semistrict 3-category: not as general
as a weak 3-category, but general enough. Technically, Gray-categories are defined as
categories enriched over the category of 2-categories equipped with a tensor product
invented by John Gray. To define semistrict 4-categories one might similarly try to equip
Gray-categories with a suitable tensor product. And this is what Crans is studying. Let
me quote the abstract:

In this paper I extend Gray’s tensor product of 2-categories to a new tensor
product of Gray-categories. I give a description in terms of generators and re-
lations, one of the relations being an ‘’interchange” relation, and a description
similar to Gray’s description of his tensor product of 2-categories. I show that
this tensor product of Gray-categories satisfies a universal property with respect
to quasi-functors of two variables, which are defined in terms of lax-natural
transformations between Gray-categories. The main result is that this tensor
product is part of a monoidal structure on Gray-Cat, the proof requiring inter-
change in an essential way. However, this does not give a monoidal {(bi)closed}
structure, precisely because of interchange And although I define composition of
lax-natural transformations, this composite need not be a lax-natural transfor-
mation again, making Gray-Cat only a partial Gray-Cat-cateegory.
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Week 133

April 23, 1999

I’d like to start with a long quote from a paper by Ashtekar:

1) Abhay Ashtekar, “Quantum Mechanics of Geometry”, preprint available as gr-qc/
9901023.

During his Goettingen inaugural address in 1854, Riemann suggested that the
geometry of space may be more than just a fiducial, mathematical entity serving
as a passive stage for physical phenomena, and may in fact have direct physical
meaning in its own right. General relativity provided a brilliant confirmation
of this vision: curvature of space now encodes the physical gravitational field.
This shift is profound. To bring out the contrast, let me recall the situation in
Newtonian physics. There, space forms an inert arena on which the dynamics
of physical systems — such as the solar system — unfolds. It is like a stage, an
unchanging backdrop for all of physics. In general relativity, by contrast, the
situation is very different. Einstein’s equations tell us that matter curves space.
Geometry is no longer immune to change. It reacts to matter. It is dynamical.
It has “physical degrees of freedom” in its own right. In general relativity, the
stage disappears and joins the troupe of actors! Geometry is a physical entity,
very much like matter.

Now, the physics of this century has shown us that matter has constituents and
the 3-dimensional objects we perceive as solids are in fact made of atoms. The
continuum description of matter is an approximation which succeeds brilliantly
in the macroscopic regime but fails hopelessly at the atomic scale. It is therefore
natural to ask: Is the same true of geometry? If so, what is the analog of the
‘atomic scale?’ We know that a quantum theory of geometry should contain
three fundamental constants of Nature, c, G, ~, the speed of light, Newton’s
gravitational constant and Planck’s constant. Now, as Planck pointed out in
his celebrated paper that marks the beginning of quantum mechanics, there is a
unique combination,

L =

√
~G
c3
,

of these constants which has dimension of length. (L ∼ 10−33 cm.) It is now
called the Planck length. Experience has taught us that the presence of a dis-
tinguished scale in a physical theory often marks a potential transition; physics
below the scale can be very different from that above the scale. Now, all of our
well-tested physics occurs at length scales much bigger than L. In this regime,
the continuum picture works well. A key question then is: Will it break down
at the Planck length? Does geometry have constituents at this scale? If so, what
are its atoms? Its elementary excitations? Is the space-time continuum only
a ‘coarse-grained’ approximation? Is geometry quantized? If so, what is the
nature of its quanta?

To probe such issues, it is natural to look for hints in the procedures that have
been successful in describing matter. Let us begin by asking what we mean by
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quantization of physical quantities. Take a simple example — the hydrogen
atom. In this case, the answer is clear: while the basic observables — energy
and angular momentum — take on a continuous range of values classically, in
quantum mechanics their eigenvalues are discrete; they are quantized. So, we
can ask if the same is true of geometry. Classical geometrical quantities such as
lengths, areas and volumes can take on continuous values on the phase space
of general relativity. Are the eigenvalues of corresponding quantum operators
discrete? If so, we would say that geometry is quantized and the precise eigenval-
ues and eigenvectors of geometric operators would reveal its detailed microscopic
properties.

Thus, it is rather easy to pose the basic questions in a precise fashion. Indeed,
they could have been formulated soon after the advent of quantum mechanics.
Answering them, on the other hand, has proved to be surprisingly difficult. The
main reason, I believe, is the inadequacy of standard techniques. More precisely,
to examine the microscopic structure of geometry, we must treat Einstein gravity
quantum mechanically, i.e., construct at least the basics of a quantum theory
of the gravitational field. Now, in the traditional approaches to quantum field
theory, one begins with a continuum, background geometry. To probe the nature
of quantum geometry, on the other hand, we should not begin by assuming the
validity of this picture. We must let quantum gravity decide whether this picture
is adequate; the theory itself should lead us to the correct microscopic model of
geometry.

With this general philosophy, in this article I will summarize the picture of quan-
tum geometry that has emerged from a specific approach to quantum gravity.
This approach is non-perturbative. In perturbative approaches, one generally
begins by assuming that space-time geometry is flat and incorporates gravity —
and hence curvature — step by step by adding up small corrections. Discreteness
is then hard to unravel.

[Footnote: The situation can be illustrated by a harmonic oscillator: While the
exact energy levels of the oscillator are discrete, it would be very difficult to
“see” this discreteness if one began with a free particle whose energy levels are
continuous and then tried to incorporate the effects of the oscillator potential
step by step via perturbation theory.]

In the non-perturbative approach, by contrast, there is no background metric
at all. All we have is a bare manifold to start with. All fields — matter as
well as gravity/geometry — are treated as dynamical from the beginning. Con-
sequently, the description can not refer to a background metric. Technically
this means that the full diffeomorphism group of the manifold is respected; the
theory is generally covariant.

As we will see, this fact leads one to Hilbert spaces of quantum states which are
quite different from the familiar Fock spaces of particle physics. Now gravitons
— the three dimensional wavy undulations on a flat metric — do not represent
fundamental excitations. Rather, the fundamental excitations are one dimen-
sional. Microscopically, geometry is rather like a polymer. Recall that, although
polymers are intrinsically one dimensional, when densely packed in suitable con-
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figurations they can exhibit properties of a three dimensional system. Similarly,
the familiar continuum picture of geometry arises as an approximation: one
can regard the fundamental excitations as ‘quantum threads’ with which one
can ‘weave’ continuum geometries. That is, the continuum picture arises upon
coarse-graining of the semi-classical ‘weave states’. Gravitons are no longer the
fundamental mediators of the gravitational interaction. They now arise only
as approximate notions. They represent perturbations of weave states and me-
diate the gravitational force only in the semi-classical approximation. Because
the non-perturbative states are polymer-like, geometrical observables turn out
to have discrete spectra. They provide a rather detailed picture of quantum
geometry from which physical predictions can be made.

The article is divided into two parts. In the first, I will indicate how one can
reformulate general relativity so that it resembles gauge theories. This formu-
lation provides the starting point for the quantum theory. In particular, the
one-dimensional excitations of geometry arise as the analogs of “Wilson loops”
which are themselves analogs of the line integrals exp(i ∫ A · dl) of electromag-
netism. In the second part, I will indicate how this description leads us to a
quantum theory of geometry. I will focus on area operators and show how
the detailed information about the eigenvalues of these operators has interest-
ing physical consequences, e.g., to the process of Hawking evaporation of black
holes.

I feel like quoting more, but I’ll resist. It’s a nice semi-technical introduction to loop
quantum gravity — a very good place to start if you know some math and physics but
are just getting started on the quantum gravity business.

Next, here are some papers by younger folks working on loop quantum gravity:

2) Fotini Markopoulou, “The internal description of a causal set: What the universe
looks like from the inside”, preprint available as gr-qc/9811053.

Fotini Markopoulou, “Quantum causal histories”, preprint available as hep-th/

9904009.

Fotini Markopoulou is perhaps the first person to take the issue of causality really
seriously in loop quantum gravity. In her earlier work with Lee Smolin (see “Week 99”
and “Week 114”) she proposed a way to equip an evolving spin network (or what I’d call
a spin foam) with a partial order on its vertices, representing a causal structure. In these
papers she is further developing these ideas. The first one uses topos theory! It’s good
to see brave young physicists who aren’t scared of using a little category theory here
and there to make their ideas precise. Personally I feel confused about causality in loop
quantum gravity — I think we’ll have to muck around and try different things before
we find out what works. But Markopoulou’s work is the main reason I’m even daring to
think about these issues. . . .

3) Seth A. Major, “Embedded graph invariants in Chern-Simons theory”, preprint
available as hep-th/9810071.

In This Week’s Finds I’ve already mentioned Seth Major has worked with Lee Smolin
on q-deformed spin networks in quantum gravity (see “Week 72”). There is a fair amount
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of evidence, though as yet no firm proof, that q-deforming your spin networks corre-
sponds to introducing a nonzero cosmological constant. The main technical problem
with q-deformed spin networks is that they require a “framing” of the underlying graph.
Here Major tackles that problem. . . .

And now for something completely different, arising from a thread on sci.physics.research
started by Garrett Lisi. What’s the gauge group of the Standard Model? Everyone will
tell you it’s U(1)×SU(2)×SU(3), but as Marc Bellon pointed out, this is perhaps not the
most accurate answer. Let me explain why and figure out a better answer.

Every particle in the Standard Model transforms according to some representation
of U(1) × SU(2) × SU(3), but some elements of this group act trivially on all these
representations. Thus we can find a smaller group which can equally well be used as
the gauge group of the Standard Model: the quotient of U(1) × SU(2) × SU(3) by the
subgroup of elements that act trivially.

Let’s figure out this subgroup! To do so we need to go through all the particles and
figure out which elements of U(1)× SU(2)× SU(3) act trivially on all of them.

Start with the gauge bosons. In any gauge theory, the gauge bosons transform in the
adjoint representation, so the elements of the gauge group that act trivially are precisely
those in the center of the group. U(1) is abelian so its center is all of U(1). Elements of
SU(n) that lie in the center must be diagonal. The n× n diagonal unitary matrices with
determinant 1 are all of the form exp(2πi/n), and these form a subgroup isomorphic to
Z/n. It follows that the center of U(1)× SU(2)× SU(3) is U(1)× Z/2× Z/3.

Next let’s look at the other particles. If you forget how these work, see “Week 119”.
For the fermions, it suffices to look at those of the first generation, since the other two
generations transform exactly the same way. First of all, we have the left-handed electron
and neutrino:

(νL, eL)

These form a 2-dimensional representation. This representation is the tensor product of
the irreducible rep of U(1) with hypercharge −1, the isospin-1/2 rep of SU(2), and the
trivial rep of SU(3).

A word about notation! People usually describe irreducible reps of U(1) by integers.
For historical reasons, hypercharge comes in integral multiples of 1/3. Thus to get the
appropriate integer we need to multiply the hypercharge by 3. Also, the group SU(2)
here is associated, not to spin in the sense of angular momentum, but to something called
“weak isospin”. That’s why we say “isospin-1/2 rep” above. Mathematically, though, this
is just the usual spin-1/2 representation of SU(2).

Next we have the left-handed up and down quarks, which come in 3 colors each:

(uL,uL,uL,dL,dL,dL)

This 6-dimensional representation is the tensor product of the irreducible rep of U(1)
with hypercharge 1/3, the isospin-1/2 rep of SU(2), and the fundamental rep of SU(3).

That’s all the left-handed fermions. Note that they all transform transform according
to the isospin-1/2 rep of SU(2) — we call them “isospin doublets”. The right-handed
fermions all transform according to the isospin-0 rep of SU(2) — they’re “isospin sin-
glets”. First we have the right-handed electron:

eR
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This is the tensor product of the irreducible rep of U(1) with hypercharge−2, the isospin-
0 rep of SU(2), and the trivial rep of SU(3). Then there are the right-handed up quarks:

(uR,uR,uR)

which form the tensor product of the irreducible rep of U(1) with hypercharge 4/3, the
isospin-0 rep of SU(2), and the fundamental rep of SU(3). And then there are the right-
handed down quarks:

(dR,dR,dR)

which form the tensor product of the irreducible rep of U(1) with hypercharge 2/3, the
isospin-0 rep of SU(2), and the 3-dimensional fundamental rep of SU(3).

Finally, besides the fermions, there is the — so far unseen — Higgs boson:

(H+,H0)

This transforms according to the tensor product of the irreducible rep of U(1) with hy-
percharge 1, the isospin-1/2 rep of SU(2), and the 1-dimensional trivial rep of SU(3).

Okay, let’s see which elements of U(1) × Z/2 × Z/3 act trivially on all these repre-
sentations! Note first that the generator of Z/2 acts as multiplication by 1 on the isospin
singlets and −1 on the isospin doublets. Similarly, the generator of Z/3 acts as multipli-
cation by 1 on the leptons and exp(2πi/3) on the quarks. Thus everything in Z/2× Z/3
acts as multiplication by some sixth root of unity. So to find elements of U(1)×Z/2×Z/3
that act trivially, we only need to consider guys in U(1) that are sixth roots of unity.

To see what’s going on, we make a little table using the information I’ve described:

Action of exp(πi/3) in
U(1)

Action of −1 in
SU(2)

Action of exp(2πi/3) in
SU(3)

eL −1 −1 1
νL −1 −1 1
uL exp(πi/3) −1 exp(2πi/3)
dL exp(πi/3) −1 exp(2πi/3)
eR 1 1 1
uR exp(4πi/3) 1 exp(2πi/3)
dR exp(4πi/3) 1 exp(2πi/3)
H −1 −1 1

And we look for patterns!
See any?
The most important one for our purposes is that if we multiply all three numbers in

each row, we get 1.
This means that the element (exp(πi/3),−1, exp(2πi/3)) in U(1) × SU(2) × SU(3)

acts trivially on all particles. This element generates a subgroup isomorphic to Z/6. If
you think a bit harder you’ll see there are no other patterns that would make any more
elements of U(1)×SU(2)×SU(3) act trivially. And if you think about the relation between
charge and hypercharge, you’ll see this pattern has a lot to do with the fact that quark
charges in multiples of 1/3, while leptons have integral charge. There’s more to it than
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that, though. . . .
Anyway, the “true” gauge group of the Standard Model — i.e., the smallest possible

one — is not U(1)×SU(2)×SU(3), but the quotient of this by the particular Z/6 subgroup
we’ve just found. Let’s call this group G.

There are two reasons why this might be important. First, Marc Bellon pointed out a
nice way to think about G: it’s the subgroup of U(2)×U(3) consisting of elements (g, h)
with

(det g)(deth) = 1.

If we embed U(2) × U(3) in U(5) in the obvious way, then this subgroup G actually lies
in SU(5), thanks to the above equation. And this is what people do in the SU(5) grand
unified theory. They don’t actually stuff all of U(1)× SU(2)× SU(3) into SU(5), just the
group G! For more details, see “Week 119”. Better yet, try this book that Brett McInnes
recommended to me:

4) Lochlainn O’Raifeartaigh, Group structure of gauge theories, Cambridge University
Press, Cambridge, 1986.

Second, this magical groupG has a nice action on a 7-dimensional manifold which we
can use as the fiber for a 11-dimensional Kaluza-Klein theory that mimics the Standard
Model in the low-energy limit. The way to get this manifold is to take S3 × S5 sitting
inside C2 × C3 and mod out by the action of U(1) as multiplication by phases. The
group G acts on C2 ×C3 in an obvious way, and using this it’s easy to see that it acts on
(C2 × C3)/U(1).

I’m not sure where to read more about this, but you might try:

5) Edward Witten, “Search for a realistic Kaluza-Klein theory”, Nucl. Phys. B186
(1981), 412–428.

Edward Witten, “Fermion quantum numbers in Kaluza-Klein theory”, in Shelter Is-
land II, Proceedings: Quantum Field Theory and the Fundamental Problems of Physics,
ed. T. Appelquist et al, MIT Press, 1985, pp. 227–277.

6) Thomas Appelquist, Alan Chodos and Peter G.O. Freund, editors, Modern Kaluza-
Klein Theories, Addison-Wesley, Menlo Park, California, 1987.
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Week 134

June 8, 1999

My production of “This Week’s Finds” has slowed to a trickle as I’ve been struggling to
write up a bunch of papers. Deadlines, deadlines! I hate deadlines, but when you write
things for other people, or with other people, that’s what you get into. I’ll do my best to
avoid them in the future. Now I’m done with my chores and I want to have some fun.

I spent last weekend with a bunch of people talking about quantum gravity in a
hunting lodge by a lake in Minnowbrook, New York:

1) Minnowbrook Symposium on Space-Time Structure, program and transparencies of
talks available at http://www.phy.syr.edu/research/he theory/minnowbrook/

#PROGRAM

The idea of this get-together, organized by Kameshwar Wali and some other physi-
cists at Syracuse University, was to bring together people working on string theory, loop
quantum gravity, noncommutative geometry, and various discrete approaches to space-
time. People from these different schools of thought don’t talk to each other as much as
they should, so this was a good idea. People gave lots of talks, asked lots of tough ques-
tions, argued, and learned what each other were doing. But I came away with a sense
that we’re quite far from understanding quantum gravity: every approach has obvious
flaws.

One big problem with string theory is that people only know how to study it on a
spacetime with a fixed background metric. Even worse, things are poorly understood
except when the metric is static — that is, roughly speaking, when geometry of space
does not change with the passage of time.

For example, people understand a lot about string theory on spacetimes that are
the product of Minkowski spacetime and a fixed Calabi-Yau manifold. There are lots of
Calabi-Yau manifolds, organized in continuous multi-parameter families called moduli
spaces. This suggests the idea that the geometry of the Calabi-Yau manifold could change
with time. This idea is lurking behind a lot of interesting work. For example, Brian
Greene gave a nice talk on “mirror symmetry”. Different Calabi-Yau manifolds sometimes
give the same physics; these are called “mirror manifolds”. Because of this, a curve in
one moduli space of Calabi-Yau manifolds can be physically equivalent to a curve in some
other moduli space, which sometimes lets you continue the curve beyond a singularity in
the first moduli space. Physicists like to think of these curves as representing spacetime
geometries where the Calabi-Yau manifold changes with time. The problem is, there’s
no fully worked out version of string theory that allows for a time-dependent Calabi-Yau
manifold!

There’s a good reason for this: one shouldn’t expect anything so simple to make sense,
except in the “adiabatic approximation” where things change very slowly with time. The
product of Minkowski spacetime with a fixed Calabi-Yau manifold is a solution of the
10-dimensional Einstein equations, and this is part of why this kind of spacetime serves
as a good background for string theory. But we do not get a solution if the geometry of
the Calabi-Yau manifold varies from point to point in Minkowski spacetime — except in
the adiabatic approximation.
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There are also problems with “unitarity” in string theory when the geometry of space
changes with time. This is already familiar from ordinary quantum field theory on curved
spacetime. In quantum field theory, people usually like to describe time evolution using
unitary operators on a Hilbert space of states. But this approach breaks down when the
geometry of space changes with time. People have studied this problem in detail, and
there seems to be no completely satisfactory way to get around it. No way, that is, except
the radical step of ceasing to treat the geometry of spacetime as a fixed “background”.
In other words: stop doing quantum field theory on spacetime with a pre-established
metric, and invent a background-free theory of quantum gravity! But this is not so easy
— see “Week 132” for more on what it would entail.

Apparently this issue is coming to the attention of string theorists now that they
are trying to study their theory on non-static background metrics, such as anti-de Sitter
spacetime. Indeed, someone at the conference said that a bunch of top string theorists
recently got together to hammer out a strategy for where string theory should go next,
but they got completely stuck due to this problem. I think this is good: it means string
theorists are starting to take the foundational issues of quantum gravity more seriously.
These issues are deep and difficult.

However, lest I seem to be picking on string theory unduly, I should immediately add
that all the other approaches have equally serious flaws. For example, loop quantum
gravity is wonderfully background-free, but so far it is almost solely a theory of kinemat-
ics, rather than dynamics. In other words, it provides a description of the geometry of
space at the quantum level, but says little about spacetime. Recently people have begun
to study dynamics with the help of “spin foams”, but we still can’t compute anything
well enough to be sure we’re on the right track. So, pessimistically speaking, it’s possi-
ble that the background-free quality of loop quantum gravity has only been achieved by
simplifying assumptions that will later prevent us from understanding dynamics.

Alain Connes expressed this worry during Abhay Ashtekar’s talk, as did Arthur Jaffe
afterwards. Technically speaking, the main issue is that loop quantum gravity assumes
that unsmeared Wilson loops are sensible observables at the kinematical level, while in
other theories, like Yang-Mills theory, one always needs to smear the Wilson loops. Of
course these other theories aren’t background-free, so loop quantum gravity probably
should be different. But until we know that loop quantum gravity really gives gravity (or
some fancier theory like supergravity) in the large-scale limit, we can’t be sure it should
be different in this particular way. It’s a legitimate worry. . . but only time will tell!

I could continue listing approaches and their flaws, including Connes’ own approach
using noncommutative geometry, but let me stop here. The only really good news is that
different approaches have different flaws. Thus, by comparing them, one might learn
something!

Some more papers have come out recently which delve into the philosophical aspects
of this muddle:

2) Carlo Rovelli, “Quantum spacetime: what do we know?”, to appear in Physics Meets
Philosophy at the Planck Scale, eds. Craig Callender and Nick Huggett, Cambridge
U. Press. Preprint available as gr-qc/9903045.

3) J. Butterfield and C. J. Isham, “Spacetime and the philosophical challenge of quan-
tum gravity”, to appear in Physics Meets Philosophy at the Planck Scale, eds. Craig
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Callender and Nick Huggett, Cambridge U. Press. Preprint available as gr-qc/

9903072.

Rovelli’s paper is a bit sketchy, but it outlines ideas which I find very appealing — I
always find him to be very clear-headed about the conceptual issues of quantum gravity.
I found the latter paper a bit frustrating, because it lays out a wide variety of possible
positions regarding quantum gravity, but doesn’t make a commitment to any one of them.
However, this is probably good when one is writing to an audience of philosophers:
one should explain the problems instead of trying to sell them on a particular claimed
solution, because the proposed solutions come and go rather rapidly, while the problems
remain. Let me quote the abstract:

We survey some philosophical aspects of the search for a quantum theory of
gravity, emphasising how quantum gravity throws into doubt the treatment of
spacetime common to the two ‘ingredient theories’ (quantum theory and general
relativity), as a 4-dimensional manifold equipped with a Lorentzian metric. Af-
ter an introduction, we briefly review the conceptual problems of the ingredient
theories and introduce the enterprise of quantum gravity. We then describe
how three main research programmes in quantum gravity treat four topics of
particular importance: the scope of standard quantum theory; the nature of
spacetime; spacetime diffeomorphisms, and the so-called problem of time. By
and large, these programmes accept most of the ingredient theories’ treatment
of spacetime, albeit with a metric with some type of quantum nature; but they
also suggest that the treatment has fundamental limitations. This prompts the
idea of going further: either by quantizing structures other than the metric,
such as the topology; or by regarding such structures as phenomenological. We
discuss this in Section 5.

Now let me mention a few more technical papers that have come out in the last few
months:

4) John Baez and John Barrett, “The quantum tetrahedron in 3 and 4 dimensions”,
preprint available as gr-qc/9903060.

The idea here is to form a classical phase whose points represent geometries of a
tetrahedron in 3 or 4 dimensions, and then apply geometric quantization to obtain a
Hilbert space of states. These Hilbert spaces play an important role in spin foam models
of quantum gravity. The main goal of the paper is to explain why the quantum tetrahe-
dron has fewer degrees of freedom in 4 dimensions than in 3 dimensions. Let me quote
from the introduction:

State sum models for quantum field theories are constructed by giving ampli-
tudes for the simplexes in a triangulated manifold. The simplexes are labelled
with data from some discrete set, and the amplitudes depend on this labelling.
The amplitudes are then summed over this set of labellings, to give a discrete ver-
sion of a path integral. When the discrete set is a finite set, then the sum always
exists, so this procedure provides a bona fide definition of the path integral.

State sum models for quantum gravity have been proposed based on the Lie al-
gebra so(3) and its q-deformation. Part of the labelling scheme is then to assign
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irreducible representations of this Lie algebra to simplexes of the appropriate di-
mension. Using the q-deformation, the set of irreducible representations becomes
finite. However, we will consider the undeformed case here as the geometry is
more elementary.

Irreducible representations of so(3) are indexed by a non-negative half-integers
j called spins. The spins have different interpretations in different models. In the
Ponzano-Regge model of 3-dimensional quantum gravity, spins label the edges
of a triangulated 3-manifold, and are interpreted as the quantized lengths of
these edges. In the Ooguri-Crane-Yetter state sum model, spins label triangles
of a triangulated 4-manifold, and the spin is interpreted as the norm of a com-
ponent of the B-field in a BF Lagrangian. There is also a state sum model of
4-dimensional quantum gravity in which spins label triangles. Here the spins
are interpreted as areas.

Many of these constructions have a topologically dual formulation. The dual
1-skeleton of a triangulated surface is a trivalent graph, each of whose edges
intersect exactly one edge in the original triangulation. The spin labels can be
thought of as labelling the edges of this graph, thus defining a spin network.
In the Ponzano-Regge model, transition amplitudes between spin networks can
be computed as a sum over labellings of faces of the dual 2-skeleton of a tri-
angulated 3-manifold. Formulated this way, we call the theory a ‘spin foam
model’.

A similar dual picture exists for 4-dimensional quantum gravity. The dual 1-
skeleton of a triangulated 3-manifold is a 4-valent graph each of whose edges
intersect one triangle in the original triangulation. The labels on the triangles
in the 3-manifold can thus be thought of as labelling the edges of this graph.
The graph is then called a ‘relativistic spin network’. Transition amplitudes be-
tween relativistic spin networks can be computed using a spin foam model. The
path integral is then a sum over labellings of faces of a 2-complex interpolating
between two relativistic spin networks.

In this paper we consider the nature of the quantized geometry of a tetrahedron
which occurs in some of these models, and its relation to the phase space of
geometries of a classical tetrahedron in 3 or 4 dimensions. Our main goal
is to solve the following puzzle: why does the quantum tetrahedron have fewer
degrees of freedom in 4 dimensions than in 3 dimensions? This seeming paradox
turns out to have a simple explanation in terms of geometric quantization. The
picture we develop is that the four face areas of a quantum tetrahedron in four
dimensions can be freely specified, but that the remaining parameters cannot,
due to the uncertainty principle.

Naively one would expect the quantum tetrahedron to have the same number of
degrees of freedom in 3 and 4 dimensions (since one is considering tetrahedra mod
rotations). However, quantum mechanics is funny about these things! For example,
the Hilbert space of two spin-1/2 particles whose angular momenta point in opposite
directions is smaller than the Hilbert space of a single spin-1/2 particle, even though
classically you might think both systems have the same number of degrees of freedom.
In fact a very similar thing happens for the quantum tetrahedron in 3 and 4 dimensions.
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5) Abhay Ashtekar, Alejandro Corichi and Kirill Krasnov, “Isolated horizons: the clas-
sical phase space”, preprint available as gr-qc/9905089.

This paper explains in more detail the classical aspects of the calculation of the en-
tropy of a black hole in loop quantum gravity (see “Week 112” for a description of this
calculation). Let me quote the abstract:

A Hamiltonian framework is introduced to encompass non-rotating (but pos-
sibly charged) black holes that are “isolated” near future time-like infinity or
for a finite time interval. The underlying space-times need not admit a sta-
tionary Killing field even in a neighborhood of the horizon; rather, the physical
assumption is that neither matter fields nor gravitational radiation fall across
the portion of the horizon under consideration. A precise notion of non-rotating
isolated horizons is formulated to capture these ideas. With these boundary con-
ditions, the gravitational action fails to be differentiable unless a boundary term
is added at the horizon. The required term turns out to be precisely the Chern-
Simons action for the self-dual connection. The resulting symplectic structure
also acquires, in addition to the usual volume piece, a surface term which is the
Chern-Simons symplectic structure. We show that these modifications affect in
subtle but important ways the standard discussion of constraints, gauge and dy-
namics. In companion papers, this framework serves as the point of departure
for quantization, a statistical mechanical calculation of black hole entropy and
a derivation of laws of black hole mechanics, generalized to isolated horizons.
It may also have applications in classical general relativity, particularly in the
investigation of analytic issues that arise in the numerical studies of black hole
collisions.

The following are some review articles on spin networks, spin foams and the like:

6) Roberto De Pietri, ‘Canonical “loop” quantum gravity and spin foam models’, to
appear in the proceedings of the XXIIIth Congress of the Italian Society for General
Relativity and Gravitational Physics (SIGRAV), 1998, preprint available as gr-qc/

9903076.

7) Seth Major, “A spin network primer”, to appear in Amer. Jour. Phys., preprint
available as gr-qc/9905020.

8) Seth Major, “Operators for quantized directions”, preprint available as gr-qc/

9905019.

9) John Baez, “An introduction to spin foam models of BF theory and quantum grav-
ity”, in Geometry and Quantum Physics, eds. Helmut Gausterer and Harald Grosse,
Lecture Notes in Physics, Springer-Verlag, Berlin, 2000, pp. 25–93. Preprint avail-
able as gr-qc/9905087.

By the way, Barrett and Crane have come out with a paper sketching a spin foam
model for Lorentzian (as opposed to Riemannian) quantum gravity:

10) John Barrett and Louis Crane, “A Lorentzian signature model for quantum general
relativity”, preprint available as gr-qc/9904025.
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However, this model is so far purely formal, because it involves infinite sums that
probably diverge. We need to keep working on this! Now that I’m getting a bit of free
time, I want to tackle this issue. Meanwhile, Iwasaki has come out with an alternative
spin foam model of Riemannian quantum gravity:

11) Junichi Iwasaki, “A surface theoretic model of quantum gravity”, preprint available
as gr-qc/9903112.

Alas, I don’t really understand this model yet. Finally, to wrap things up, something
completely different:

12) Richard E. Borcherds, “Quantum vertex algebras”, preprint available as math.QA/
9903038.

I like how the abstract of this paper starts: “The purpose of this paper is to make
the theory of vertex algebras trivial”. Good! Trivial is not bad, it’s good. Anything one
understands is automatically trivial.
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Week 135

July 31, 1999

Well, darn it, now I’m too busy running around to conferences to write This Week’s Finds!
First I went to Vancouver, then to Santa Barbara, and for almost a month now I’ve been
in Portugal, bouncing between Lisbon and Coimbra. But let me try to catch up. . . .

From June 16th to 19th, Steve Savitt and Steve Weinstein of the University of British
Columbia held a workshop designed to get philosophers and physicists talking about the
conceptual problems of quantum gravity:

1) Toward a New Understanding of Space, Time and Matter, workshop home page at
http://axion.physics.ubc.ca/Workshop/

After a day of lectures by Chris Isham, John Earman, Lee Smolin and myself, we spent
the rest of the workshop sitting around in a big room with a beautiful view of Vancouver
Bay, discussing various issues in a fairly organized way. For example, Chris Isham led
a discussion on “What is a quantum theory?” in which he got people to question the
assumptions underlying quantum physics, and Simon Saunders led one on “Quantum
gravity: physics, metaphysics or mathematics?” in which we pondered the scientific and
sociological implications of the fact that work on quantum gravity is motivated more
by desire for consistency, clarity and mathematical elegance than the need to fit new
experimental data.

It’s pretty clear that understanding quantum gravity will make us rethink some fun-
damental concepts — the question is, which ones? By the end of the conference, almost
every basic belief or concept relevant to physics had been held up for careful scrutiny
and found questionable. Space, time, causality, the real numbers, set theory — you
name it! It was a bit unnerving — but it’s good to do this sort of thing now and then, to
prevent hardening of the mental arteries, and it’s especially fun to do it with a big bunch
of physicists and philosophers. However, I must admit that I left wanting nothing more
than to do lots of grungy calculations in order to bring myself back down to earth —
relatively speaking, of course.

I particularly enjoyed Chris Isham’s talk about topos theory because it helped me
understand one way that topos theory could be applied to quantum theory. I’ve tended
to regard topoi as “too classical” for quantum theory, because while the internal logic
of a topos is intuitionistic (the principle of exclude middle may fail), it’s still not very
quantum. For example, in a topos the operation “and” still distributes over “or”, and vice
versa, while failure of this sort of distributivity is a hallmark of quantum logic. If you
don’t know what I mean, try these books, in rough order of increasing difficulty:

2) David W. Cohen, An Introduction to Hilbert Space and Quantum Logic, Springer-
Verlag, New York, 1989.

3) C. Piron, Foundations of Quantum Physics, W. A. Benjamin, Reading, Massachusetts,
1976.

4) C. A. Hooker, editor, The Logico-algebraic Approach to Quantum Mechanics, two
volumes, D. Reidel, Boston, 1975-1979.
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Perhaps even more importantly, topoi are Cartesian! What does this mean? Well, it
means that we can define a “product” of any two objects in a topos. That is, given objects
a and b, there’s an object a× b equipped with morphisms

p : a× b→ a

and
q : a× b→ b

called “projections”, satisfying the following property: given morphisms from some ob-
ject c into a and b, say

f : c→ a

and
g : c→ b

there’s a unique morphism f × g : c → a × b such that if we follow it by p we get f ,
and if we follow it by q we get g. This is just an abstraction of the properties of the
usual Cartesian product of sets, which is why we call a category “Cartesian” if any pair
of objects has a product.

Now, it’s a fun exercise to check that in a Cartesian category, every object has a
morphism

∆: a→ a× a

called the “diagonal”, which when composed with either of the two projections from
a× a to a gives the identity. For example, in the topos of sets, the diagonal morphism is
given by

∆(x) = (x, x)

We can think of the diagonal morphism as allowing “duplication of information”. This is
not generally possible in quantum mechanics:

5) William Wooters and Wocjciech Zurek, “A single quantum cannot be cloned”, Na-
ture 299 (1982), 802–803.

The reason is that in the category of Hilbert spaces, the tensor product is not a product
in the above sense! In particular, given a Hilbert space H, there isn’t a natural diagonal
operator

∆: H → HtensorH

and there aren’t even natural projection operators from H ⊗H to H. As pointed out to
me by James Dolan, this non-Cartesianness of the tensor product gives quantum theory
much of its special flavor. Besides making it impossible to “clone a quantum”, it’s closely
related to how quantum theory violates Bell’s inequality, because it means we can’t think
of an arbitrary state of a two-part quantum system as built by tensoring states of both
parts.

Anyway, this has made me feel for a while that topos theory isn’t sufficiently “quan-
tum” to be useful in understanding the peculiar special features of quantum physics.
However, after Isham and I gave our talks, someone pointed out to me that one can
think of a topological quantum field theory as a presheaf of Hilbert spaces over the cat-
egory nCob whose morphisms are n-dimensional cobordisms. Now, presheaves over any
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category form a topos, so this means we should be able to think of a topological quan-
tum field theory as a “Hilbert space object” in the topos of presheaves over nCob. From
this point of view, the peculiar “quantumness” of topological quantum field theory comes
from it being a Hilbert space object, while its peculiar “variability” — i.e., the fact that
it assigns a different Hilbert space to each (n − 1)-dimensional manifold representing
space — comes from the fact that it’s an object in a topos. (Topoi are known for being
very good at handling things like “variable sets”.) I’m not sure how useful this is, but it’s
worth keeping in mind.

While I’m talking about quantum logic, let me raise a puzzle concerning the Kochen-
Specker theorem. Remember what this says: if you have a Hilbert space H with dimen-
sion more than 2, there’s no map F from self-adjoint operators on H to real numbers
with the following properties:

a) For any self-adjoint operator A, F (A) lies in the spectrum of A,

and

b) For any continuous f : R→ R, f(F (A)) = F (f(A)).

This means there’s no sensible consistent way of thinking of all observables as simul-
taneously having values in a quantum system!

Okay, the puzzle is: what happens if the dimension of H equals 2? I don’t actually
know the answer, so I’d be glad to hear it if someone can figure it out!

By the way, I once wanted to do an undergraduate research project on mathematical
physics with Kochen. He asked me if I knew the spectral theorem, I said “no”, and he
said that in that case there was no point in me trying to work with him. I spent the
next summer reading Reed and Simon’s book on Functional Analysis and learning lots
of different versions of the spectral theorem. I shudder to think that perhaps this is why
I spent years studying analysis before eventually drifting towards topology and algebra.
But no: now that I think about it, I was already interested in analysis at the time, since
I’d had a wonderful real analysis class with Robin Graham.

Okay, now let me say a bit about the next conference I went to. From June 22nd to
26th there was a conference on “Strong Gravitational Fields” at the Institute for Theoret-
ical Physics at U. C. Santa Barbara. This finished up a wonderful semester-long program
by Abhay Ashtekar, Gary Horowitz and Jim Isenberg:

6) Classical and Quantum Physics of Strong Gravitational Fields, program homepage
with transparencies and audio files of talks at http://www.itp.ucsb.edu/~patrick/
gravity99/

Like the whole program, the conference covered a wide range of topics related to
gravity: string theory and loop quantum gravity, observational and computational black
hole physics, and γ-ray bursters. I can’t summarize all this stuff; since I usually spend a
lot of talking about quantum gravity here, let me say a bit about other things instead.

John Friedman gave an interesting talk on gravitational waves from unstable neutron
stars. When a pulsar is young, like about 5000 years old, it typically rotates about its
axis once every 16 milliseconds or so. A good example is N157B, a pulsar in the Large
Magellanic Cloud. Using the current spindown rate one can extrapolate and guess that
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pulsars have about a 5-millisecond period at birth. It’s interesting to think about what
makes a newly formed neutron star slow down. Theorists have recently come up with
a new possible mechanism: namely, a new sort of gravitational-wave-driven instability
of relativistic stars that could force newly formed slow down to a 10-millisecond period.
It’s very clever: the basic idea is that if a star is rotating very fast, a rotational mode that
rotates slower than the star will gravitationally radiate positive angular momentum, but
such modes carry negative angular momentum, since they rotate slower than the star. If
you think about it carefully, you’ll see this means that gravitational radiation should tend
to amplify such modes! I asked for a lowbrow analog of this mechanism and it turns out
that a similar sort of thing is at work in the formation of water waves by the wind —
with linear momentum taking the place of angular momentum. Anyway, it’s not clear
that this process really ever has a chance to happen, because it only works when the
neutron star is not too hot and not too cold, but it’s pretty cool.

Richard Price gave a nice talk on computer simulation of black hole collisions. Quan-
titatively understanding the gravitational radiation emitted in black hole and neutron
star collisions is a big business these days — it’s one of the NSF’s “grand challenge” prob-
lems. The reason is that folks are spending a lot of money building gravitational wave
detectors like LIGO:

7) LIGO project home page, http://www.ligo.caltech.edu/

8) Other gravitational wave detection projects, http://www.ligo.caltech.edu/LIGO web/

other gw/gw projects.html

and they need to know exactly what to look for. Now, head-on collisions are the
easiest to understand, since one can simplify the calculation using axial symmetry. Un-
fortunately, it’s not very likely that two black holes are going to crash into each other
head-on. One really wants to understand what happens when two black holes spiral into
each other. There are two extreme cases: the case of black holes of equal mass, and the
case of a very light black hole of mass falling into a heavy one.

The latter case is 95% understood, since we can think of the light black hole as a
“test particle” — ignoring its effect on the heavy one. The light one slowly spirals into
the heavy one until it reaches the innermost stable orbit, and then falls in. We can use
the theory of a relativistic test particle falling into a black hole to understand the early
stages of this process, and use black hole perturbation theory to study the “ringdown” of
the resulting single black hole in the late stages of the process. (By “ringdown” I mean
the process whereby an oscillating black hole settles down while emitting gravitational
radiation.) Even the intermediate stages are manageable, because the radiation of the
small black hole doesn’t have much effect on the big one.

By contrast, the case of two black holes of equal mass is less well understood. We
can treat the early stages, where relativistic effects are small, using a post-Newtonian
approximation, and again we can treat the late stages using black hole perturbation
theory. But things get complicated in the intermediate stage, because the radiation of
each hole greatly effects the other, and there is no real concept of “innermost stable
orbit” in this case. To make matters worse, the intermediate stage of the process is
exactly the one we really want to understand, because this is probably when most of the
gravitational waves are emitted!
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People have spent a lot of work trying to understand black hole collisions through
number-crunching computer calculation, but it’s not easy: when you get down to brass
tacks, general relativity consists of some truly scary nonlinear partial differential equa-
tions. Current work is bedeviled by numerical instability and also the problem of simu-
lating enough of a region of spacetime to understand the gravitational radiation being
emitted. Fans of mathematical physics will also realize that gauge-fixing is a major
problem. There is a lot of interest in simplifying the calculations through “black hole ex-
cision”: anything going on inside the event horizon can’t affect what happens outside, so
if one can get the computer to find the horizon, one can forget about simulating what’s
going on inside! But nobody is very good at doing this yet. . . even using the simpler
concept of “apparent horizon”, which can be defined locally. So there is some serious
work left to be done!

(For more details on both these talks, go to the conference website and look at the
transparencies.)

I also had some interesting talks with people about black hole entropy, some of which
concerned a new paper by Steve Carlip. I’m not really able to do justice to the details,
but it seems important. . . .

9) Steve Carlip, “Entropy from conformal field theory at Killing horizons”, preprint
available at gr-qc/9906126.

Let me just quote the abstract:

On a manifold with boundary, the constraint algebra of general relativity may
acquire a central extension, which can be computed using covariant phase space
techniques. When the boundary is a (local) Killing horizon, a natural set of
boundary conditions leads to a Virasoro subalgebra with a calculable central
charge. Conformal field theory methods may then be used to determine the
density of states at the boundary. I consider a number of cases — black holes,
Rindler space, de Sitter space, Taub-NUT and Taub-Bolt spaces, and dilaton
gravity — and show that the resulting density of states yields the expected
Bekenstein-Hawking entropy. The statistical mechanics of black hole entropy
may thus be fixed by symmetry arguments, independent of details of quantum
gravity.

There was also a lot of talk about “isolated horizons”, a concept that plays a funda-
mental role in certain treatments of black holes in loop quantum gravity:

10) Abhay Ashtekar, Christopher Beetle, and Stephen Fairhurst, “Mechanics of isolated
horizons”, preprint available as gr-qc/9907068.

11) Jerzy Lewandowski, “Spacetimes admitting isolated horizons”, preprint available
as gr-qc/9907058.

For more on isolated horizons try the references in “Week 128”.
Finally, on a completely different note, I’ve recently seen some new papers related to

the McKay correspondence — see “Week 65” if you don’t know what that is! I haven’t
read them yet, but I just want to remind myself that I should, so I’ll list them here:
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12) John McKay, “Semi-affine Coxeter-Dynkin graphs and G ⊆ SU2(C)”, preprint avail-
able as math.QA/9907089.

13) Igor Frenkel, Naihuan Jing and Weiqiang Wang, “Vertex representations via finite
groups and the McKay correspondence”, preprint available as math.QA/9907166.

“Quantum vertex representations via finite groups and the McKay correspondence”,
preprint available as math.QA/9907175.

Next time I want to talk about the big category theory conference in honor of MacLane’s
90th birthday! Then I’ll be pretty much caught up on the conferences. . . .

Robert Israel’s answer to my puzzle about the Kochen-Specker theorem:

It’s not true in dimension 2. Note that for a self-adjoint 2 × 2 matrix A, any
f(A) is of the form aA + bI for some real scalars a and b (this is easy to see if
you diagonalize A). The self-adjoint matrices that are not multiples of I split
into equivalence classes, where A and B are equivalent if B = aA + bI for
some scalars a, b (a <> 0). Pick a representative A from each equivalence class,
choose F (A) as one of the eigenvalues of $A, and then F (aA+bI) = aF (A)+b.
Of course, F (bI) = b. Then F satisfies the two conditions.

The reason this doesn’t work in higher dimensions is that in higher dimensions
you can have two self-adjoint matrices A and B which don’t commute, F (A) =
G(B) for some functions F and G, and F (A) is not a multiple of I.

Robert Israel israel@math.ubc.ca Department of Mathematics http://www.math.ubc.ca/˜israel
University of British Columbia Vancouver, BC, Canada V6T 1Z2
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Week 136

August 21, 1999

I spent most of last month in Portugal, spending time with Roger Picken at the Instituto
Superior Tecnico in Lisbon and attending the category theory school and conference in
Coimbra, which was organized by Manuela Sobral:

1) Category Theory 99 website, with abstracts of talks, http://www.mat.uc.pt/~ct99/

The conference was a big deal this year, because it celebrated the 90th birthday of
Saunders Mac Lane, who with Samuel Eilenberg invented category theory in 1945. Mac
Lane was there and in fine fettle. He gave a nice talk about working with Eilenberg, and
after the banquet in his honor, he even sang a song about Riemann while wrapped in a
black cloak!

(In case you’re wondering, the cloak was contributed by some musicians. In Coimbra,
the folks who play fado music tend to wear black cloaks. A few days ago we’d seen them
serenade a tearful old man and then wrap him in a cloak, so one of our number suggested
that they try this trick on Mac Lane. Far from breaking into tears, he burst into song.)

The conference was exquisitely well-organized, packed with top category theorists,
and stuffed with so many cool talks I scarcely know where to begin describing them. . .
I’ll probably say a bit about a random sampling of them next time, and the proceedings
will appear in a special issue of the Journal of Pure and Applied Algebra honoring Mac
Lane’s 90th birthday, so keep your eye out for that if you’re interested. The school
featured courses by Cristina Pedicchio, Vaughan Pratt, and some crazy mathematical
physicist who thinks the laws of physics are based on n-categories. The notes can be
found in the following book:

2) School on Category Theory and Applications, Coimbra, July 13-17, 199, Textos
de Matematica Serie B No. 21, Departamento De Matematica da Universidade
de Coimbra. Contains: “n-Categories” by John Baez, “Algebraic theories” by M.
Cristina Pedicchio, and “Chu Spaces: duality as a common foundation for compu-
tation and mathematics” by Vaughan Pratt.

Pedicchio’s course covered various generalizations of Lawvere’s wonderful concept of
an algebraic theory. Recall from “Week 53” that we can think of a category C with extra
properties or structure as a kind of “theory”, and functors F : C → Set preserving this
structure as “models” of the theory. For example, a “finite products theory” C is just a
category with finite products. In this case, a model is a functor F : C → Set preserving
finite products, and a morphism of models is a natural transformation between such
functors. This gives us a category Mod(C) of models of C.

To understand what this really means, let’s restrict attention the simplest case, when
all the objects in C are products of a given object x. In this case Pedicchio calls C an
“algebraic theory”. A model F is then really just a set F (x) together with a bunch of
n-ary operations coming from the morphisms in C, satisfying equational laws coming
from the equations between morphisms in C. Any sort of algebraic gadget that’s just a
set with a bunch of n-ary operations satisfying equations can be described using a theory
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of this sort. For example: monoids, groups, abelian groups, rings. . . and so on. We can
describe any of these using a suitable algebraic theory, and in each case, the category
Mod(C) will be the category of these algebraic gadgets.

Now, what I didn’t explain last time I discussed this was the notion of theory-model
duality. Fans of “duality” in all its forms are sure to like this! There’s a functor

R : Mod(C)→ Set

which carries each model F to the set F (x). We can think of this as a functor which
forgets all the operations of our algebraic gadget and remembers only the underlying
set. Now, if you know about adjoint functors (see “Week 77”–“Week 79”), this should
immediately make you want to find a left adjoint for R, namely a functor

L : Set→ Mod(C)

sending each set to the “free” algebraic gadget on this set. Indeed, such a left adjoint
exists!

Given this pair of adjoint functors we can do all sorts of fun stuff. In particular, we
can talk about the category of “finitely generated free models” of our theory. The objects
here are objects of Mod(C) of the form L(S) where S is a finite set, and the morphisms
are the usual morphisms in Mod(C). Let me call this category fgFree-Mod(C).

Now for the marvelous duality theorem: fgFree-Mod(C) is equivalent to the opposite
of the category C. In other words, you can reconstruct an algebraic theory from its cate-
gory of finitely generated free algebras in the simplest manner imaginable: just reversing
the direction of all the morphisms! This is so nice I won’t explain why it’s true. . . I don’t
want to deprive you of the pleasure of looking at some simple examples and seeing for
yourself how it works. For example, take the theory of groups, and figure out how ev-
ery operation appearing in the definition of “group” corresponds to a homomorphism
between finitely generated free groups.

There are lots of other interesting questions related to theory-model duality. For ex-
ample: what kinds of categories arise as categories of models of an algebraic theory?
Pedicchio calls these “algebraic categories”, and she told us some nice theorems char-
acterizing them. Or: given the category of free models of an algebraic theory, can you
fatten it up to get the category of all models? Pedicchio mentioned a process called
“exact completion” that does the job. Or: starting from just the category of models of a
theory, can you tell which are the free models? Alas, I don’t know the answer to this. . .
but I’m sure people do.

Even better, all of this can be generalized immensely, to theories of a more flexible
sort than the “algebraic theories” I’ve been talking about so far. For example, we can
study “essentially algebraic theories”, which are just categories with finite limits. Given
one of these, say C, we define a model to be a functor F : C → Set preserving finite limits.
This allows one to study algebraic structures with partially defined operations. I already
gave an example in “Week 53” — there’s a category with finite limits called “the theory
of categories”, whose models are categories! One can work out theory-model duality in
this bigger context, where it’s called Gabriel-Ulmer duality:

3) P. Gabriel and F. Ulmer, Lokal praesentierbare Kategorien, Springer Lecture Notes
in Mathematics, Berlin, 1971.
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But this stuff goes far beyond that, and Pedicchio led us at a rapid pace all the way
up to the latest work. A lot of the basic ideas here came from Lawvere’s famous thesis on
algebraic semantics, so it was nice to see him attending these lectures, and even nicer to
hear that 26 years after he wrote it, his thesis is about to be published:

4) William Lawvere, Functorial Semantics of Algebraic Theories, Ph.D. Dissertation,
University of Columbia, 1963. Summary appears under same title in: Proceedings
of the National Academy of Sciences of the USA 50 (1963), 869–872.

(Unfortunately I forget who is publishing it!) It was also nice to find out that Lawvere
and Schanuel are writing a book on “objective number theory”. . . which will presumably
be more difficult, but hopefully not less delightful, than their wonderful introduction to
category theory for people who know nothing about fancy mathematics:

5) William Lawvere and Steve Schanuel, Conceptual Mathematics: A First Introduction
to Categories, Cambridge U. Press, Cambridge 1997.

This is the book to give to all your friends who are wondering what category theory
is about and want to learn a bit without too much pain. If you’ve read this far and un-
derstood what I was talking about, you must have such friends! If you didn’t understand
what I was talking about, read this book!

By the way, Lawvere told me that he started out wanting to do physics, and wound
up doing his thesis on algebraic semantics when he started to trying to formalize what
a physical theory was. It’s interesting that the modern notion of “topological quantum
field theory” is very much modelled after Lawvere’s ideas, but with symmetric monoidal
categories with duals replacing the categories with finite products which Lawvere con-
sidered! I guess he was just ahead of his time. In fact, he has returned to physics in more
recent years - but that’s another story.

Okay, let me change gears now. . . .
Some n-category gossip. Ross Street has a student who has defined a notion of

semistrict n-category up to n = 5, and Sjoerd Crans has defined semistrict n-categories
(which he calls “teisi”) for n up to 6. However, the notion still seems to resist definition
for general n, which prompted my pal Lisa Raphals to compose the following limerick:

A theoretician of “n” Considered conditions on when Some mathematicians
Could find definitions For n even greater than ten.

Interestingly, work on weak n-categories seems to be proceeding at a slightly faster
clip — they’ve gotten to n = ∞ already. In fact, during the conference Michael Batanin
came up to me and said that a fellow named Penon had published a really terse definition
of weak ω-categories that seems equivalent to Batanin’s own (see “Week 103”) — at least
after some minor tweaking. Batanin was quite enthusiastic and said he plans to write a
paper about this stuff.

Later, when I went to Cambridge England, Tom Leinster gave a talk summarizing
Penon’s definition:

6) Jacques Penon, “Approache polygraphique des∞-categories non strictes”, in Cahiers
Top. Geom. Diff. 40 (1999), 31–79.
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It seems pretty cool, so I’d like to tell you what Leinster said — using his terminology
rather than Penon’s (which of course is in French). To keep this short I’m going to assume
you know a reasonable amount of category theory.

First of all, a “reflexive globular set” is a collection of sets and functions like this:

X0 X1 X2 . . .i

s

t

i

s

t

i

s

t

going on to infinity, satisfying these equations:

s(s(x)) = s(t(x))

t(s(x)) = t(t(x))

s(i(x)) = t(i(x)) = x.

We call the elements of Xn “n-cells”, and call s(x) and t(x) the “source” and “target” of
the n-cell x, respectively. Ifs(x) = a and t(x) = b, we think of x as going from a to b,
and write x : a→ b.

If we left out all the stuff about the maps i we would simply have a “globular set”.
These are important in n-category theory because strict ω-categories, and also Batanin’s
weak ω-categories, are globular sets with extra structure. This also true of Penon’s def-
inition, but he starts right away with “reflexive” globular sets, which have these maps i
that are a bit like the degeneracies in the definition of a simplicial set (see “Week 115”).
In Penon’s definition i(x) plays the role of an “identity n-morphism”, so we also write
i(x) as 1x : x→ x.

Let RGlob be the category of reflexive globular sets, where morphisms are defined in
the obvious way. (In other words, RGlob is a presheaf category — see “Week 115” for an
explanation of this notion.)

In this setup, the usual sort of strict ω-category may be defined as a reflexive globular
set X together with various “composition” operations that allow us to compose n-cells x
and y whenever tj(x) = sj(x), obtaining an n-cell

x ◦j y

We get one such composition operation for each n and each j such that 1 6 j 6 n. We
impose some obvious axioms of two sorts:

A) axioms determining the source and target of a composite; and

B) strict associativity, unit and interchange laws.

I’ll assume you know these axioms or can fake it. (If you read the definition of strict 2-
category in “Week 80”, perhaps you can get an idea for what kinds of axioms I’m talking
about.)

Now, strict ω-categories are great, but we need to weaken this notion. So, first Penon
defines an “ω-magma” to be something exactly like a strict ω-category but without the
axioms of type B. You may recall that a “magma” is defined by Bourbaki to be a set with
a binary operation satisyfing no laws whatsoever — the primeval algebraic object! An
ω-magma is just as lawless, and a lot bigger and meaner.
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Strict ω-categories are too strict: all laws hold as equations. ω-magmas are too weak:
no laws hold at all! How do we get what we want?

We define a category Q whose objects are quadruples (M,p, C, [·, ·]) where:

• M is an ω-magma

• C is a strict ω-category

• p : M → C is a morphism of ω-magmas (i.e. a morphism of reflexive globular sets
strictly preserving all the ω-magma operations)

• [·, ·] is a way of lifting equations between n-morphisms in the image of the projec-
tion p to (n+ 1)-morphisms in M . More precisely: given n-cells

f, g : a→ b

in M such that p(f) = p(g), we have an (n+ 1)-cell

[f, g] : f → g

in M such that p([f, g]) = 1p(f) = 1p(g). We require that [f, f ] = 1f .

A morphism in Q is defined to be the obvious thing: a morphism f : M → M ′ of
ω-magmas and a morphism f : C → C′ of strict ω-categories, strictly preserving all the
structure in sight.

Okay, now we define a functor

U : Q→ RGlob

by
U(M,p,C, [·, ·]) = M

where we think of M as just a reflexive globular set. Penon proves that U has a left
adjoint

F : RGlob→ Q

This adjunction defines a monad

T : RGlob→ RGlob

and Penon defines a “weak ω-category” to be an algebra of this monad.
(See “Week 92” and “Week 118” for how you get monads from adjunctions. Alas, I

think I haven’t gotten around to explaining the concept of an algebra of a monad! So
much to explain, so little time!)

Now, if you know some category theory and think a while about this, you will see
that in a weak ω-category defined this way, all the laws like associativity hold up to
equivalence, with the equivalences satisfying the necessary coherence laws up to equiva-
lence, and so ad infinitum. Crudely speaking, the lifting [·, ·] is what turns equations into
n-morphisms. To get a feeling for how this work, you have to figure out what the left
adjoint F looks like. Penon works this out in detail in the second half of his paper.
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Week 137

September 4, 1999

Now I’m in Cambridge England, chilling out with the category theorists, so it makes
sense for me to keep talking about category theory. I’ll start with some things people
discussed at the conference in Coimbra (see last week).

1) Michael Mueger, “Galois theory for braided tensor categories and the modular clo-
sure”, preprint available as math.CT/9812040.

A braided monoidal category is simple algebraic gadget that captures a bit of the
essence of 3-dimensionality in its rawest form. It has a bunch of “objects” which we can
draw a labelled dots like this:

•
x

So far this is just 0-dimensional. Next, given a bunch of objects we get a new object, their
“tensor product”, which we can draw by setting the dots side by side. So, for example,
we can draw x⊗ y like this:

•
x

•
y

This is 1-dimensional. But in addition we have, for any pair of objects x and y, a bunch
of “morphisms” f : x→ y. We can draw a morphism from a tensor product of objects to
some other tensor product of objects as a picture like this:

•
x

•
y

•
z

f

•
u

•
v

This picture is 2-dimensional. In addition, we require that for any pair of objects x and
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y there is a “braiding”, a special morphism from x⊗ y to y ⊗ x. We draw it like this:

•
x

•
y

•
y

•
x

With this crossing of strands, the picture has become 3-dimensional!
We also require that we can “compose” a morphism f : x→ y and a morphism g : y →

z and get a morphism fg : x → z. We draw this by sticking one picture on top of
each other like this. . . I’ll draw a fancy example where all the objects in question are
themselves tensor products of other objects:

•
x

•
y

•
z

f

g

•
a
•
b

•
c
•
d

Finally, we require that the tensor product, braiding and composition satisfy a bunch
of axioms. I won’t write these down because I already did so in “Week 121”, but the
point is that they all make geometrical sense — or more precisely, topological sense —
in terms of the above pictures.

The pictures I’ve drawn should make you think about knots and tangles and circuit
diagrams and Feynman diagrams and all sorts of things like that — and it’s true, you
can understand all these things very elegantly in terms of braided monoidal categories!

248



WEEK 137 SEPTEMBER 4, 1999

Sometimes it’s nice to throw in another rule:

•
x

•
y

•
y

•
x

=

•
x

•
y

•
y

•
x

where we cook up the second picture using the inverse of the braiding. This rule is good
when you don’t care about the difference between overcrossings and undercrossings.
If this rule holds we say our braided monoidal category is “symmetric”. Topologically,
this rule makes sense when we study 4-dimensional or higher-dimensional situations,
where we have enough room to untie all knots. For example, the traditional theory
of Feynman diagrams is based on symmetric monoidal categories (like the category of
representations of the Poincare group), and it works very smoothly in 4-dimensional
spacetime.

But 3-dimensional spacetime is a bit different. For example, when we interchange
two identical particles, it really makes a difference whether we do it like this:

•
x

•
y

•
y

•
x

or like this:

•
x

•
y

•
y

•
x

Thus in 3d spacetime, besides bosons and fermions, we have other sorts of particles that
act differently when we interchange them — sometimes people call them “anyons”, and
sometimes people talk about “exotic statistics”.

Now let me dig into some more technical aspects of the picture.
Starting with Reshetikhin and Turaev, people have figured out how to use braided

monoidal categories to construct topological quantum field theories in 3-dimensional
spacetime. But they can’t do it starting from any old braided monoidal category, because
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quantum field theory has a lot to do with Hilbert spaces. So usually they start from a
special sort called a “modular tensor category”. This is a kind of hybrid of a braided
monoidal category and a Hilbert space.

In fact, apart from one technical condition — which is at the heart of Mueger’s work
— we can get the definition of a modular tensor category by taking the definition of
“Hilbert space”, categorifying it once to get the definition of “2-Hilbert space”, and then
throwing in a tensor product and braiding that are compatible with this structure.

It’s amazing that by such abstract conceptual methods we come up with almost pre-
cisely what’s needed to construct topological quantum field theories in 3 dimensions! It’s
a great illustration of the power of category theory. It’s almost like getting something for
nothing! But I’ll resist the temptation to tell you the details, since “Week 99” explains a
bunch of it, and the rest is in here:

2) John Baez, “Higher-dimensional algebra II: 2-Hilbert spaces”, Adv. Math. 127
(1997), 125–189. Also available as q-alg/9609018.

In this paper I call a 2-Hilbert space with a compatible tensor product a “2-H-algebra”,
and if it also has a compatible braiding, I call it a ”braided 2-H-algebra”. This terminology
is bit clunky, but for consistency I’ll use it again here.

Okay, great: we almost get the definition of modular tensor category by elegant con-
ceptual methods. But there is one niggling but crucial technical condition that remains!
There are lots of different ways to state this condition, but Mueger proves they’re equiv-
alent to the following very elegant one.

Let’s define the “center” of a braided monoidal category to be the category consisting
of all objects x such that

•
x

•
y

•
y

•
x

=

•
x

•
y

•
y

•
x

for all y, and all morphisms between such objects. The center of a braided monoidal
category is obviously a symmetric monoidal category. The term “center” is supposed to
remind you of the usual center of a monoid — the elements that commute with all the
others. And indeed, both kinds of center are special cases of a general construction that
pushes you down the columns of the “periodic table”:

Table 14: k-tuply monoidal n-categories

n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal
categories

monoidal
2-categories
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n = 0 n = 1 n = 2

k = 2 commutative
monoids

braided monoidal
categories

braided monoidal
2-categories

k = 3 ” ” symmetric
monoidal
categories

weakly involutory
monoidal
2-categories

k = 4 ” ” ” ” strongly
involutory
monoidal
2-categories

k = 5 ” ” ” ” ” ”

I described this in “Week 74” and “Week 121”, so I won’t do so again. My point here is
really just that lots of this 3-dimensional stuff is part of a bigger picture that applies to all
different dimensions. For more details, including a description of the center construction,
try:

3) John Baez and James Dolan, “Categorification”, in Higher Category Theory, eds. Ezra
Getzler and Mikhail Kapranov, Contemporary Mathematics vol. 230, AMS, Provi-
dence, 1998, pp. 1–36. Also available at math.QA/9802029.

Anyway, Mueger’s elegant characterization of a modular tensor category amounts to
this: it’s a braided 2-H*-algebra whose center is “trivial”. This means that every object
in the center is a direct sum of copies of the object 1 — the unit for the tensor product.

Mueger does a lot more in his paper that I won’t describe here, and he also said a
lot of interesting things in his talk about the general concept of center. For example, the
center of a monoidal category is a braided monoidal category. In particular, if you take
the center of a 2-H-algebra you get a braided 2-H-algebra. But what if you then take this
braided 2-H-algebra and look at its* center? Well, it turns out to be “trivial” in the above
sense!

There’s a bit of overlap between Mueger’s paper and this one:

4) A. Bruguieres, “Categories premodulaires, modularisations et invariants des vari-
etes de dimension 3”, preprint.

One especially important issue they both touch upon is this: if you have a braided
2-H-algebra, is there any way to mess with it slightly to get a modular tensor category? The
answer is yes. Thus we can really get a topological quantum field theory from any braided
2-H-algebra. But this raises another question: can we describe this topological quantum
field theory directly, without using the modular tensor category? The answer is again
yes! For details see:

5) Stephen Sawin, “Jones-Witten invariants for nonsimply-connected Lie groups and
the geometry of the Weyl alcove”, preprint available as math.QA/9905010.
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This paper uses this machinery to get topological quantum field theories related to
Chern-Simons theory. People have thought about this a lot, ever since Reshetikhin and
Turaev, but the really great thing about this paper is that it handles the case when the
gauge group isn’t simply-connected. This introduces a lot of subtleties which previous
papers touched upon only superficially. Sawin works it out much more thoroughly by
an analysis of subsets of the Weyl alcove that are closed under tensor product. It’s very
pretty, and reading it is very good exercise if you want to learn more about representa-
tions of quantum groups.

Now, I said that a lot of this is part of a bigger picture that works in higher dimensions.
However, a lot of this higher-dimensional stuff remains very mysterious. Here are two
cool papers that make some progress in unlocking these mysteries:

6) Marco Mackaay, “Finite groups, spherical 2-categories, and 4-manifold invariants”,
preprint available as math.QA/9903003.

7) Mikhail Khovanov, “A categorification of the Jones polynomial”, preprint available
as math.QA/9908171.

Marco Mackaay spoke about his work in Coimbra, and I had grilled him about it in
Lisbon beforehand, so I think I understand it pretty well. Basically what he’s doing is
categorifying the 3-dimensional topological quantum field theories studied by Dijkgraaf
and Witten to get 4-dimensional theories. It fits in very nicely with his earlier work
described in “Week 121”.

People have been trying to categorify the magic of quantum groups for quite some
time now, and Khovanov appears to have made a good step in that direction by describing
the Jones polynomial of a link as the “graded Euler characteristic” of a chain complex
of graded vector spaces. Since graded Euler characteristic is a generalization of the
dimension of a vector space, and taking the dimension is a process of decategorification
(i.e. vector spaces are isomorphic iff they have the same dimension), Khovanov’s chain
complex can be thought of as a categorified version of the Jones polynomial.

I would like to understand better the relation between Khovanov’s work and the work
of Crane and Frenkel on categorifying quantum groups (see “Week 58”). For this, I guess
I should read the following papers:

8) J. Bernstein, I. Frenkel and M. Khovanov, “A categorification of the Temperley-Lieb
algebra and Schur quotients of U(sl2) by projective and Zuckerman functors”, to
appear in Selecta Mathematica.

9) Mikhail Khovanov, Graphical calculus, canonical bases and Kazhdan-Lusztig theory,
Ph.D. thesis, Yale, 1997.
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Week 138

September 12, 1999

I haven’t been going to the Newton Institute much during my stay in Cambridge, even
though it’s right around the corner from where I live. There’s always interesting math
and physics going on at the Newton Institute, and this summer they had some con-
ferences on cosmology, but I’ve been trying to get away from it all for a while. Still, I
couldn’t couldn’t resist the opportunity to go to James Hartle’s 60th birthday party, which
was held there on September 2nd.

Hartle is famous for his work on quantum gravity and the foundations of quantum
mechanics, so some physics bigshots came and gave talks. First Chris Isham spoke on ap-
plications of topos theory to quantum mechanics, particularly in relation to Hartle’s work
on the so-called “decoherent histories” approach to quantum mechanics, which he devel-
oped with Murray Gell-Mann. Then Roger Penrose spoke on his ideas of gravitationally
induced collapse of the wavefunction. Then Gary Gibbons spoke on the geometry of
quantum mechanics. All very nice talks!

Finally, Stephen Hawking spoke on his work with Hartle. This talk was the most per-
sonal in nature: Hawking interspersed technical descriptions of the papers they wrote
together with humorous reminiscences of their get-togethers in Santa Barbara and else-
where, including a long trip in a Volkswagen beetle with Hawking’s wheelchair crammed
into the back seat.

I think Hawking said he wrote 4 papers with Hartle. The first really important one
was this:

1) James Hartle and Stephen Hawking, “Path integral derivation of black hole radi-
ance”, Phys. Rev. D13 (1976), 2188.

As I explained in “Week 111”, Hawking wrote a paper in 1975 establishing a re-
markable link between black hole physics and thermodynamics. He showed that a black
hole emits radiation just as if it had a temperature inversely proportional to its mass.
However, this paper was regarded with some suspicion at the time, not only because the
result was so amazing, but because the calculation involved modes of the electromag-
netic field of extremely short wavelengths near the event horizon — much shorter than
the Planck length.

For this reason, Hartle and Hawking decided to redo the calculation using path inte-
grals — a widely accepted technique in particle physics. Hawking’s background was in
general relativity, so he wasn’t too good at path integrals; Hartle had more experience
with particle physics and knew how to do that kind of stuff.

(By now, of course, Hawking can do path integrals quicker than most folks can bal-
ance their checkbook. This was a while ago.)

This wasn’t straightforward. In particle physics people usually do calculations as-
suming spacetime is flat, so Hartle and Hawking needed to adapt the usual path-integral
techniques to the case when spacetime contains a black hole. The usual trick in path in-
tegrals is to replace the time variable t by an imaginary number, then do the calculation,
and then analytically continue the answer back to real times. This isn’t so easy when
there’s a black hole around!
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For starters, you have to analytically continue the Schwarzschild solution (the usual
metric for a nonrotating black hole) to imaginary values of the time variable. When you
do this, something curious happens: you find that the Schwarzschild solution is periodic
in the imaginary time direction. And the period is proportional to the black hole’s mass.

Now, if you are good at physics, you know that doing quantum field theory calcula-
tions where imaginary time is periodic with period 1/T is the same as doing statistical
mechanics calculations where the temperature is T . So right away, you see that a black
hole acts like it has a temperature inversely proportional to its mass!

(In case you’re worried, I’m using units where ~, c, G, and k are equal to 1.)
Anyway, that’s how people think about the Hartle-Hawking paper these days. I

haven’t actually read it, so my description may be a bit anachronistic. Things usually
look simpler and clearer in retrospect.

The other really important paper by Hartle and Hawking is this one:

2) James Hartle and Stephen Hawking, “Wavefunction of the universe”, Phys. Rev.
D28 (1983), 2960.

In quantum mechanics, we often describe the state of a physical system by a wave-
function — a complex-valued function on the classical configuration space. If quantum
mechanics applies to the whole universe, this naturally leads to the question: what’s
the wavefunction of the universe? In the above paper, Hartle and Hawking propose an
answer.

Now, it might seem a bit overly ambitious to guess the wavefunction of the entire
universe, since we haven’t even seen the whole thing yet. And indeed, if someone claims
to know the wavefunction of the whole universe, you might think they were claiming to
know everything that has happened or will happen. Which naturally led Gell-Mann to
ask Hartle: “If you know the wavefunction of the universe, why aren’t you rich yet?”

But the funny thing about quantum theory is that, thanks to the uncertainty principle,
you can know the wavefunction of the universe, and still be completely clueless as to
which horse will win at the races tomorrow, or even how many planets orbit the sun.

That will either make sense to you, or it won’t, and I’m not sure anything short I
might write will help you understand it if you don’t already. A full explanation of this
business would lead me down paths I don’t want to tread just now — right into that
morass they call “the interpretation of quantum mechanics”.

So instead of worrying too much about what it would mean to know the wavefunction
of the universe, let me just explain Hartle and Hawking’s formula for it. Mind you, this
formula may or may not be correct, or even rigorously well-defined — there’s been a lot
of argument about it in the physics literature. However, it’s pretty cool, and definitely
worth knowing.

Here things get a wee bit more technical. Suppose that space is a 3-sphere, say X.
The classical configuration space of general relativity is the space of metrics on X. The
wavefunction of the universe should be some complex-valued function on this classical
configuration space. And here’s Hartle and Hawking’s formula for it:

ψ(q) =

∫
g|X=q

exp(−S(g)/~)dg.

Now you can wow your friends by writing down this formula and saying “Here’s the
wavefunction of the universe!”
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But, what does it mean?
Well, the integral is taken over Riemannian metrics g on a 4-ball whose boundary is

X, but we only integrate over metrics that restrict to a given metric q on X — that’s
what I mean by writing g|X = q. The quantity S(g) is the Einstein-Hilbert action of the
metric g — in other words, the integral of the Ricci scalar curvature of g over the 4-ball.
Finally, of course, ~ is Planck’s constant.

The idea is that, formally at least, this wavefunction is a solution of the Wheeler-
DeWitt equation, which is the basic equation of quantum gravity (see “Week 43”).

The measure “dg” is, unfortunately, ill-defined! In other words, one needs to use lots
of clever tricks to extract physics from this formula, as usual for path integrals. But one
can do it, and Hawking and others have spent a lot of time ever since 1983 doing exactly
this. This led to a subject called “quantum cosmology”.

I should add that there are lots of ways to soup up the basic Hartle-Hawking formula.
If we have other fields around besides gravity, we just throw them into the action in the
action in the obvious way and integrate over them too. If our manifold X representing
space is not a 3-sphere, we can pick some other 4-manifold having it as boundary. If we
can’t make up our mind which 4-manifold to use, we can try a “sum over topologies”,
summing over all 4-manifolds with X as boundary. We can do this even when X is a
3-sphere, actually — but it’s a bit controversial whether we should, and also whether the
sum converges.

Well, there’s a lot more to say, like what the physical interpretation of the Hartle-
Hawking formula is, and what predicts. It’s actually quite cool — in a sense, it says that
the universe tunnelled into being out of nothingness! But that sounds like a bunch of
nonsense — the sort of fluff they write on the front of science magazines to sell copies.
To really explain it takes quite a bit more work. And unfortunately, it’s just about dinner-
time, so I want to stop now.

Anyway, it was an interesting birthday party.
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Week 139

September 19, 1999

Last time I described some of the talks at James Hartle’s 60th birthday celebration at the
Newton Institute. But I also met some people at that party that I’d been wanting to talk
to. There’s a long story behind this, so if you don’t mind, I’ll start at the beginning. . . .

A while ago, Phillip Helbig, one of the two moderators of sci.physics.research
who do astrophysics, drew my attention to an interesting paper:

1) Vipul Periwal, “Cosmological and astrophysical tests of quantum gravity”, preprint
available at astro-ph/9906253

The basic idea behind this is that quantum gravity effects could cause deviations
from Newton’s inverse square law at large distance scales, and that these deviations
might explain various puzzles in astrophysics, like the “missing mass problem” and the
possibly accelerating expansion of the universe.

This would be great, because it might not only help us understand these astrophysics
puzzles, but also help solve the big problem with quantum gravity, namely the shortage
of relevant experimental data.

But of course one needs to read the fine print before getting too excited about ideas
like this!

Following the argument in Periwal’s paper requires some familiarity with the renor-
malization group, since that’s what people use to study how “constants” like the charge
of the electron or Newton’s gravitational constant depend on the distance scale at which
you measure them — due to quantum effects. Reading the paper, I immediately became
frustrated with my poor understanding of the renormalization group. It’s really impor-
tant, so I decided to read more about it and explain it in the simplest possible terms on
sci.physics.research — since to understand stuff, I like to try to explain it.

In the process, I found this book very helpful:

1) Michael E. Peskin and Daniel V. Schroeder, An Introduction to Quantum Field The-
ory, Addison-Wesley, Reading, Massachusetts 1995.

The books I’d originally learned quantum field theory from didn’t incorporate the
modern attitude towards renormalization, due to Kenneth Wilson — the idea that quan-
tum field theory may not ultimately be true at very short distance scales, but that’s okay,
because if we assume it’s a good approximation at pretty short distance scales, it becomes
a better approximation at larger distance scales. This is especially important when you’re
thinking about quantum gravity, where godawful strange stuff may be happening at the
Planck length. Peskin and Schroeder explain this idea quite well. For my own sketchy
summary, try this:

2) John Baez, Renormalization made easy, http://math.ucr.edu/home/baez/renormalization.
html

I deliberately left out as much math as possible, to concentrate on the basic intuition.
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Thus fortified, I returned to Periwal’s paper, and it made a bit more sense. Let me
describe the main idea: how we might expect Newton’s gravitational constant to change
with distance.

So, suppose we have any old quantum field theory with a coupling constant G in it.
In fact, G will depend on the length scale at which we measure it. But using Planck’s
constant and the speed of light we can translate length into 1/momentum. This allows us
to think of G as a function of momentum. Roughly speaking, when you shoot particles
at each other at higher momenta, they come closer together before bouncing off, so
measuring a coupling constant at a higher momentum amounts to measuring at a shorter
distance scale.

The equation describing how G depends on the momentum p is called the “Callan-
Symanzik equation”. In general it looks like this:

dG

d(ln p)
= β(G)

But all the fun starts when we use our quantum field theory to calculate the right hand
side, which is called — surprise! — the “beta function” of our theory. Typically we get
something like this:

dG

d(ln p)
= (n− d)G+ aG2 + bG3 + . . .

Here n is the dimension of spacetime and d is a number called the “upper critical dimen-
sion”. You see, it’s fun when possible to think of our quantum field theory as defined in a
spacetime of arbitrary dimension, and then specialize to the case at hand. I’ll show you
how work out d in a minute. It’s harder to work out the numbers a, b, and so on — for
this, you need to do some computations using the quantum field theory in question.

What does the Callan-Symanzik equation really mean? Well, for starters let’s neglect
the higher-order terms and suppose that

dG(p)

d(ln p)
= (n− d)G

This says G is proportional to pn−d. There are 3 cases:

A) When n < d, our coupling constant gets smaller at higher momentum scales, and
we say our theory is “superrenormalizable”. Roughly, this means that at larger and
larger momentum scales, our theory looks more and more like a “free field theory”
— one where particles don’t interact at all. This makes superrenormalizable theo-
ries easy to study by treating them as a free field theory plus a small perturbation.

B) When n > d, our coupling constant gets larger at higher momentum scales, and
we say our theory is “nonrenormalizable”. Such theories are hard to study using
perturbative calculations in free field theory.

C) When n = d, we are right on the brink between the two cases above. We say
our theory is “renormalizable”, but we really have to work out the next term in
the beta function to see if the coupling constant grows or shrinks with increasing
momentum.
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Consider the example of general relativity. We can figure out the upper critical di-
mension using a bit of dimensional analysis and handwaving. Let’s work in units where
Planck’s constant and the speed of light are 1. The Lagrangian is the Ricci scalar cur-
vature divided by 8πG, where G is Newton’s gravitational constant. We need to get
something dimensionless when we integrate the Lagrangian over spacetime to get the
action, since we exponentiate the action when doing path integrals in quantum field
theory. Curvature has dimensions of 1/length2, so when spacetime has dimension n, G
must have dimensions of lengthn−2.

This means that if you are a tiny little person with a ruler X times smaller than mine,
Newton’s constant will seemXn−2 times bigger to you. But measuring Newton’s constant
at a length scale that’s X times smaller is the same as measuring it at a momentum scale
that’s X times bigger. We already solved the Callan-Symanzik equation and saw that
when we measure G at the momentum scale p, we get an answer proportional to pn−d.
We thus conclude that d = 2.

(If you’re a physicist, you might enjoy finding the holes in the above argument, and
then plugging them.)

This means that quantum gravity is nonrenormalizable in 4 dimensions. Apparently
gravity just keeps looking stronger and stronger at shorter and shorter distance scales.
That’s why quantum gravity has traditionally been regarded as hard — verging on hope-
less.

However, there is a subtlety. We’ve been ignoring the higher-order terms in the beta
function, and we really shouldn’t!

This is obvious for renormalizable theories, since when n = d, the beta function looks
like

dG

d(ln p)
= aG2 + bG3 + . . .

so if we ignore the higher-order terms, we are ignoring the whole right-hand side! To
see the effect of these higher-order terms let’s just consider the simple case where

dG

d(ln p)
= aG2

If you solve this you get
G =

c

1− ac ln p

where c is a positive constant. What does this mean? Well, if a < 0, it’s obvious even
before solving the equation that G slowly decreases with increasing momentum. In this
case we say our theory is “asymptotically free”. For example, this is true for the strong
force in the Standard Model, so in collisions at high momentum quarks and gluons act a
lot like free particles. (For more on this, try “Week 94”.)

On the other hand, if a > 0, the coupling constant G increases with increasing mo-
mentum. To make matters worse, it becomes INFINITE at a sufficiently high momentum!
In this case we say our theory has a “Landau pole”, and we cluck our tongues disapprov-
ingly, because it’s not a good thing. For example, this is what happens in quantum
electrodynamics when we don’t include the weak force. Of course, one should really
consider the effect of even higher-order terms in the beta function before jumping to
conclusions. However, particle physicists generally feel that among renormalizable field
theories, the ones with a < 0 are good, and the ones with a > 0 are bad.
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Okay, now for the really fun part. Perturbative quantum gravity in 2 dimensions is not
only renormalizable (because this is the upper critical dimension), it’s also asympotically
free! Thus in n dimensions, we have

dG

d(ln p) = (n− 2)G+ aG2 + . . .

where a < 0. If we ignore the higher-order terms which I have written as “. . .”, this
implies something very interesting for quantum gravity in 4 dimensions. Suppose that at
low momenta G is small. Then the right-hand side is dominated by the first term, which
is positive. This means that as we crank up the momentum scale, G keeps getting bigger.
This is what we already saw about nonrenormalizable theories. But after a while, when
G gets big, the second term starts mattering more — and it’s negative. So the growth of
G starts slowing!

In fact, it’s easy to see that as we keep cranking up the momentum, G will approach
the value for which

dG

d(ln p)
= 0.

We call this value an “ultraviolet stable fixed point” for the gravitational constant. Math-
ematically, what we’ve got is a flow in the space of coupling constants, and an ultravi-
olet stable fixed point is one that attracts nearby points as we flow in the direction of
higher momenta. This particular kind of ultraviolet stable fixed point — coming from an
asymptotically free theory in dimensions above its upper critical dimension — is called
a “Wilson-Fisher fixed point”.

So: perhaps quantum gravity is saved from an ever-growing Newton’s constant at
small distance scales by a Wilson-Fisher fixed point! But before we break out the cham-
pagne, note that we neglected the higher-order terms in the beta function in our last bit
of reasoning. They can still screw things up. For example, if

dG

d(ln p)
= (n− 2)G+ aG2 + bG3

and b is positive, there will not be a Wilson-Fisher fixed point when the dimension n gets
too far above 2. Is 4 too far above 2? Nobody knows for sure. We can’t really work out
the beta function exactly. So, as usual in quantum gravity, things are a bit iffy.

However, Periwal cites the following paper as giving numerical evidence for a Wilson-
Fisher fixed point in quantum gravity:

3) Herbert W. Hamber and Ruth M. Williams, “Newtonian potential in quantum Regge
gravity”, Nucl. Phys. B435 (1995), 361–397.

And he draws some startling conclusions from the existence of this fixed point. He
says it should have consequences for the missing mass problem and the value of the
cosmological constant! However, I found it hard to follow his reasoning, so I decided to
track down some of the references — starting with the above paper.

Now, Ruth Williams works at Cambridge University, so I was not surprised to find her
at Hartle’s party. She was busy talking to John Barrett, who also does quantum gravity,
up at Nottingham University. I arranged to stop by her office, get a copy of her paper,
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and have her explain it to me. I also arranged to visit John in Nottingham and have him
explain his work with Louis Crane on Lorentzian spin foam models — but more about
that next week!

Anyway, here’s how the Hamber-Williams paper goes, very roughly. They simulate
quantum gravity by chopping up a 4-dimensional torus into 16×16×16×16 hypercubes,
chopping each hypercube into 24 4-simplices in the obvious way, and then doing a Monte
Carlo calculation of the path integral using the Regge calculus, which is a discretized
version of general relativity suited to triangulated manifolds (see “Week 119” for details).
Their goal was to work out how Newton’s constant varies with distance. They did it by
calculating correlations between Wilson loops that wrap around the torus. They explain
how you can deduce Newton’s constant from this information, but I don’t have the energy
to describe that here. Anyway, they claim that Newton’s constant varies with distance as
one would expect if there was a Wilson-Fisher fixed point!

(It’s actually more complicated that this because besides Newton’s constant, there is
also another coupling constant in their theory: the cosmological constant. And of course
this is very important for potential applications to astrophysics.)

Unfortunately, I’m still mystified about a large number of things. Let me just mention
two. First, Hamber and Williams consider values of G which are greater than the Wilson-
Fisher fixed point. Since this is an ultraviolet stable fixed point, such values of G flow
down to the fixed point as we crank up the momentum scale. Or in other words, in this
regime Newton’s constant gets bigger with increasing distances. At least to my naive
brain, this sounds nice for explaining the missing mass problem. But the funny thing
is, this regime is utterly different from the regime where G is close to zero — namely,
less than the Wilson-Fisher fixed point. I thought all the usual perturbative quantum
gravity calculations were based on the assumption that at macroscopic distance scales G
is small, and flows up to the fixed point as we crank up the momentum scale! Are these
folks claiming this picture is completely wrong? I’m confused.

Another puzzle is that Periwal thinks Newton’s constant will start to grow at distance
scales roughly comparable to the radius of the universe (or more precisely, the Hubble
length). But it looks like Hamber and Williams say their formula for G as a function of
momentum holds at short distance scales.

I guess I need to read more stuff, starting perhaps with Weinberg’s old paper on
quantum gravity and the renormalization group:

4) Steven Weinberg, “Ultraviolet divergences in quantum theories of gravitation”, in
General Relativity: an Einstein Centenary Survey, eds. Stephen Hawking and Werner
Israel, Cambridge U. Press, Cambridge (1979).

and then perhaps turning to his paper on the cosmological constant:

5) Steven Weinberg, “The cosmological constant problem”, Rev. Mod. Phys. 61 (1989),
1.

and some books on the renormalization group and quantum gravity:

6) Claude Itzykson and Jean-Michel Drouffe, Statistical Field Theory, 2 volumes, Cam-
bridge U. Press, 1989.

260



WEEK 139 SEPTEMBER 19, 1999

7) Jean Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford U. Press,
Oxford, 1993.

8) Jan Ambjorn, Bergfinnur Durhuus, and Thordur Jonsson, Quantum Geometry: A
Statistical Field Theory Approach, Cambridge U. Press, Cambridge, 1997.

I should also think more about this recent paper, which claims to find a phase transi-
tion in a toy model of quantum gravity where one does the path integral over a special
class of metrics — namely those with 2 Killing vector fields.

9) Viqar Husain and Sebastian Jaimungal, “Phase transition in quantum gravity”,
preprint available as gr-qc/9908056.

But if anyone can help me clear up these issues, please let me know!
Okay, enough of that. Another person I met at the party was Roger Penrose! Later

I visited him in Oxford. Though recently retired, he still holds monthly meetings at his
house in the country, attended by a bunch of young mathematicians and physicists. At
the one I went to, the discussion centered around Penrose’s forthcoming book. The goal
of this book is to explain modern physics to people who know only a little math, but are
willing to learn more. A nice thing about it is that it treats various modern physics fads
without the uncritical adulation that mars many popularizations. In particular, when I
visited, he was busy writing a chapter on inflationary cosmology, so he talked about a
bunch of problems with that theory, and cosmology in general.

I’ve never been sold on inflation, since it relies on fairly speculative aspects of grand
unified theories (or GUTs), so most of these problems merely amused me. Theorists take
a certain wicked glee in seeing someone else’s theory in trouble. However, one of these
problems concerned the Standard Model, and this hit closer to home. Penrose made the
standard observation that the most distant visible galaxies in opposite directions have not
had time to exchange information — at least not since the time of recombination, when
the initial hot fireball cooled down enough to become transparent. But if the symmetry
between the electromagnetic and weak forces is spontaneously broken only when the
Higgs field cools down enough to line up, as the Standard Model suggests, this raises
the danger that the Higgs field could wind up pointing in different directions in different
patches of the visible universe! — since these different “domains” would not yet have
had time to expand to the point where a single one fills the whole visible universe. But
we don’t see such domains — or more precisely, we don’t see the “domain walls” one
would expect at their boundaries.

Of course, inflation is an attempt to deal with similar problems, but inflation is
posited to happen at GUT scale energies, too soon (it seems) to solve this problem,
which happens when things cool down to the point where the electroweak symmetry
breaks.

Again, if anyone knows anything about this, I’d love to hear about it.
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Week 140

October 16, 1999

Let’s start with something fun: biographies!

1) Norman Macrae, John von Neumann: The Scientific Genius Who Pioneered the Mod-
ern Computer, Game Theory, Nuclear Deterrence and Much More, American Mathe-
matical Society, Providence, Rhode Island, 1999.

2) Steve Batterson, Stephen Smale: The Mathematician Who Broke the Dimension Bar-
rier, American Mathematical Society, Providence, Rhode Island, 2000.

Von Neumann might be my candidate for the best mathematical physicist of the 20th
century. His work ranged from the ultra-pure to the ultra-applied. At one end: his work
on axiomatic set theory. At the other: designing and building some of the first computers
to help design the hydrogen bomb — which was so applied, it got him in trouble at the
Institute for Advanced Studies! But there’s so much stuff in between: the mathematical
foundations of quantum mechanics (von Neumann algebras, the Stone-Von Neumann
theorem and so on), ergodic theory, his work on Hilbert’s fifth problem, the Manhattan
project, game theory, the theory of self-reproducing cellular automata. . . . You may or
may not like him, but you can’t help being awed. Hans Bethe, no dope himself, said
of von Neumann that “I always thought his brain indicated that he belonged to a new
species, an evolution beyond man”. The mathematician Polya said “Johnny was the only
student I was ever afraid of.” Definitely an interesting guy.

While von Neumann is one of those titans that dominated the first half of the 20th
century, Smale is more typical of the latter half — he protested the Vietnam war, and
now he even has his own web page!

3) Stephen Smale’s web page, http://www.math.berkeley.edu/~smale/

He won the Fields medal in 1966 for his work on differential topology. Some of
his work is what you might call “pure”: figuring out how to turn a sphere inside out
without any crinkles, proving the Poincare conjecture in dimensions 5 and above, stuff
like that. But a lot of it concerns dynamical systems: cooking up strange attractors using
the horseshoe map, proving that structural stability is not generic, and so on — long
before the recent hype about chaos theory began! More recently he’s also been working
on economics, game theory, and the relation of computational complexity to algebraic
geometry.

Now for some papers on spin networks and spin foams:

4) Roberto De Pietri, Laurent Freidel, Kirill Krasnov, and Carlo Rovelli, “Barrett-Crane
model from a Boulatov-Ooguri field theory over a homogeneous space”, preprint
available as hep-th/9907154.

The Barrett-Crane model is a very interesting theory of quantum gravity. I’ve de-
scribed it already in “Week 113”, “Week 120” and “Week 128”, so I won’t go into much
detail about it — I’ll just plunge in. . . .
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The original Barrett-Crane model involved a fixed triangulation of spacetime. One
can also cook up versions where you sum over triangulations. In some ways the most
natural is to sum over all ways of taking a bunch of 4-simplices and gluing them face-to-
face until no faces are left free. Some of these ways give you manifolds; others don’t. In
this paper, the authors show that this “sum over triangulations” version of the Barrett-
Crane model can be thought of as a quantum field theory on a product of 4 copies of the
3-sphere. Weird, huh?

But it’s actually not so weird. The space of complex functions on the (n−1)-sphere is
naturally a representation of SO(n). But there’s another way to think of this representa-
tion. Consider an triangle in Rn. We can associate vectors to two of its edges, say v and
w, and form the wedge product of these vectors to get a bivector v ∧ w. This bivector
describes the area element associated to the triangle. If we pick an orientation for the
triangle, this bivector is uniquely determined. Now, a bivector of the form v ∧w is called
“simple”. The space of simple bivectors is naturally a Poisson manifold — i.e., we can
define Poisson brackets of functions on this space — so we can think of it as a “classical
phase space”. Using geometric quantization, we can quantize this classical phase space
and get a Hilbert space. Since rotations act on the classical phase space, they act on
this Hilbert space, so it becomes a representation of SO(n). And this representation is
isomorphic to the space of complex functions on the (n− 1)-sphere!

Thus, we can think of a complex function on the (n − 1)-sphere as a “quantum tri-
angle” in Rn, as long as we really just care about the area element associated to the
triangle. One can develop this analogy in detail and make it really precise. In particular,
one can describe a “quantum tetrahedron” in Rn as a collection of 4 quantum triangles
satisfying some constraints that say the fit together into a tetrahedron. These quantum
tetrahedra act almost like ordinary tetrahedra when they are large, but when the areas
of their faces becomes small compared to the square of the Planck length, the uncer-
tainty principle becomes important: you can’t simultaneously know everything about
their geometry with perfect precision.

Let me digress for a minute and sketch the history of this stuff. The quantum tetra-
hedron in 3 dimensions was invented by Barbieri — see “Week 110”. It quickly became
important in the study of spin foam models. Then Barrett and I systematically worked
out how to construct the quantum tetrahedron in 3 and 4 dimensions using geometric
quantization — see “Week 134”. Subsequently, Freidel and Krasnov figured out how to
generalize this stuff to higher dimensions:

5) Laurent Freidel, Kirill Krasnov and Raymond Puzio, “BF description of higher-
dimensional gravity”, preprint available as hep-th/9901069.

6) Laurent Freidel and Kirill Krasnov, “Simple spin networks as Feynman graphs”,
preprint available as hep-th/9903192.

So much for history — now back to business. So far I’ve told you that the state of
a “quantum triangle” in 4 dimensions is given by a complex function on the 3-sphere.
And I’ve told you that a “quantum tetrahedron” is a collection of 4 quantum triangles
satisfying some constraints. More precisely, let

H = L2(S3)
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be the Hilbert space for a quantum triangle in 4 dimensions. Then the Hilbert space for
a quantum tetrahedron is a certain subspace T of H ⊗H ⊗H ⊗H, where “⊗” denotes
the tensor product of Hilbert spaces. Concretely, we can think of states in T as complex
functions on the product of 4 copies of S3. These complex functions need to satisfy some
constraints, but let’s not worry about those. . . .

Now let’s “second quantize” the Hilbert space T . This is physics jargon for making a
Hilbert space out of the algebra of polynomials on T — usually called the “Fock space”
on T . As usual, there are two pictures of states in this Fock space: the “field” picture
and the “particle” picture. On the one hand, they are states of a quantum field theory
on the product of 4 copies of S3. But on the other hand, they are states of an arbitrary
collection of quantum tetrahedra in 4 dimensions. In other words, we’ve got ourselves a
quantum field theory whose “elementary particles” are quantum tetrahedra!

The idea of the de Pietri-Freidel-Krasnov-Rovelli paper is to play these two pictures off
each other and develop a new way of thinking about the Barrett-Crane model. The main
thing these guys do is write down a Lagrangian with some nice properties. Throughout
quantum field theory, one of the big ideas is to start with a Lagrangian and use it to
compute the amplitudes of Feynman diagrams. A Feynman diagram is a graph with
edges corresponding to “particles” and vertices corresponding to “interactions” where a
bunch of particles turns into another bunch of particles.

But in the present context, the so-called “particles” are really quantum tetrahedra!
Thus the trick is to write down a Lagrangian giving Feynman diagrams with 5-valent
vertices. If you do it right, these 5-valent vertices correspond exactly to ways that 5
quantum tetrahedra can fit together as the 5 faces of a 4-simplex! Let’s call such a thing
a “quantum 4-simplex”. Then your Feynman diagrams correspond exactly to ways of
gluing together a bunch of quantum 4-simplices face-to-face. Better yet, if you set things
up right, the amplitude for such a Feynman diagram exactly matches the amplitude that
you’d compute for a triangulated manifold using the Barrett-Crane model!

In short, what we’ve got here is a quantum field theory whose Feynman diagrams
describe “quantum geometries of spacetime” — where spacetime is not just a fixed tri-
angulated manifold, but any possible way of gluing together a bunch of 4-simplices face-
to-face.

Sounds great, eh? So what are the problems? I’ll just list three. First, we don’t know
that the “sum over Feynman diagrams” converges in this theory. In fact, it probably does
not — but there are probably ways to deal with this. Second, the model is Riemannian
rather than Lorentzian: we are using the rotation group when we should be using the
Lorentz group. Luckily this is addressed in a new paper by Barrett and Crane. Third, we
aren’t very good at computing things with this sort of model — short of massive computer
simulations, it’s tough to see what it actually says about physics. In my opinion this is the
most serious problem: we should either start doing computer simulations of spin foam
models, or develop new analytical techniques for handling them — or both!

Now, this “new paper by Barrett and Crane” is actually not brand new. It’s a revised
version of something they’d already put on the net:

7) John Barrett and Louis Crane, “A Lorentzian signature model for quantum general
relativity”, preprint available as gr-qc/9904025.

However, it’s much improved. When I went up to Nottingham at the end of the sum-
mer, I had Barrett explain it to me. I learned all sorts of cool stuff about representations
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of the Lorentz group. Unfortunately, I don’t now have the energy to explain all that stuff.
I’ll just say this: everything I said above generalizes to the Lorentzian case. The main
difference is that we use the 3-dimensional hyperboloid

H3 = {t2 − x2 − y2 − z2 = 1}

wherever we’d been using the 3-sphere

S3 = {t2 + x2 + y2 + z2 = 1}.

It’s sort of obvious in retrospect, but it’s nice that it works out so neatly!
Okay, here are some more papers on spin networks and spin foams. Since I’m getting

lazy, I’ll just quote the abstracts:

8) Sameer Gupta, “Causality in spin foam models”, preprint available as gr-qc/9908018.

We compute Teitelboim’s causal propagator in the context of canonical loop
quantum gravity. For the Lorentzian signature, we find that the resultant power
series can be expressed as a sum over branched, colored two-surfaces with an in-
trinsic causal structure. This leads us to define a general structure which we call
a “causal spin foam”. We also demonstrate that the causal evolution models for
spin networks fall in the general class of causal spin foams.

9) Matthias Arnsdorf and Sameer Gupta, “Loop quantum gravity on non-compact
spaces”, preprint available as gr-qc/9909053.

We present a general procedure for constructing new Hilbert spaces for loop
quantum gravity on non-compact spatial manifolds. Given any fixed back-
ground state representing a non-compact spatial geometry, we use the Gel’fand-
Naimark-Segal construction to obtain a representation of the algebra of observ-
ables. The resulting Hilbert space can be interpreted as describing fluctuation of
compact support around this background state. We also give an example of a
state which approximates classical flat space and can be used as a background
state for our construction.

10) Seth A. Major, “Quasilocal energy for spin-net gravity”, preprint available as gr-qc/
9906052.

The Hamiltonian of a gravitational system defined in a region with boundary is
quantized. The classical Hamiltonian, and starting point for the regularization,
is required by functional differentiablity of the Hamiltonian constraint. The
boundary term is the quasilocal energy of the system and becomes the ADM
mass in asymptopia. The quantization is carried out within the framework of
canonical quantization using spin networks. The result is a gauge invariant,
well-defined operator on the Hilbert space induced from the state space on the
whole spatial manifold. The spectrum is computed. An alternate form of the
operator, with the correct naive classical limit, but requiring a restriction on
the Hilbert space, is also defined. Comparison with earlier work and several
consequences are briefly explored.
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11) C. Di Bartolo, R. Gambini, J. Griego, J. Pullin, “Consistent canonical quantization
of general relativity in the space of Vassiliev knot invariants”, preprint available as
gr-qc/9909063.

We present a quantization of the Hamiltonian and diffeomorphism constraint
of canonical quantum gravity in the spin network representation. The novelty
consists in considering a space of wavefunctions based on the Vassiliev knot
invariants. The constraints are finite, well defined, and reproduce at the level of
quantum commutators the Poisson algebra of constraints of the classical theory.
A similar construction can be carried out in 2+1 dimensions leading to the
correct quantum theory.

12) John Baez, “Spin foam perturbation theory”, preprint available as gr-qc/9910050
or at http://math.ucr.edu/home/baez/foam3.ps

We study perturbation theory for spin foam models on triangulated manifolds.
Starting with any model of this sort, we consider an arbitrary perturbation of
the vertex amplitudes, and write the evolution operators of the perturbed model
as convergent power series in the coupling constant governing the perturbation.
The terms in the power series can be efficiently computed when the unperturbed
model is a topological quantum field theory. Moreover, in this case we can explic-
itly sum the whole power series in the limit where the number of top-dimensional
simplices goes to infinity while the coupling constant is suitably renormalized.
This ‘dilute gas limit’ gives spin foam models that are triangulation-independent
but not topological quantum field theories. However, we show that models of
this sort are rather trivial except in dimension 2.
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Week 141

October 26, 1999

How can you resist a book with a title like “Inconsistent Mathematics”?

1) Chris Mortensen, Inconsistent Mathematics, Kluwer, Dordrecht, 1995.

Ever since Goedel showed that all sufficiently strong systems formulated using the
predicate calculus must either be inconsistent or incomplete, most people have chosen
what they perceive as the lesser of two evils: accepting incompleteness to save mathe-
matics from inconsistency. But what about the other option?

This book begins with the startling sentence: “The following idea has recently been
gaining support: that the world is or might be inconsistent.” As we reel in shock,
Mortensen continues:

Let us consider set theory first. The most natural set theory to adopt is undoubt-
edly one which has unrestricted set abstraction (also known as naive compre-
hension). This is the natural principle which declares that to every property
there is a unique set of things having the property. But, as Russell showed, this
leads rapidly to the contradiction that the the Russell set [the set of all sets that
do not contain themselves as a member] both is and is not a member of itself.
The overwhelming majority of logicians took the view that this contradiction re-
quired a weakening of unrestricted abstraction in order to ensure a consistent set
theory, which was in turn seen as necessary to provide a consistent foundation
for mathematics. But all ensuing attempts at weakening set abstraction proved
to be in various ways ad hoc. Da Costa and Routley both suggested instead
that the Russell set might be dealt with more naturally in an inconsistent but
nontrivial set theory (where triviality means that every sentence is provable).

An inconsistent but nontrivial logical system is called paraconsistent. But it’s not so
easy to create such systems. To keep an inconsistency from infecting the whole system
and making it trivial, we need to drop the rule of classical logic which says that “A and
not(A) implies B” for all propositions A and B. Unfortunately, this rule is built into the
propositional calculus from the very start!

So, we need to revise the propositional calculus.
One way to do it is to abandon “material implication” — the form of implication

where you can calculate the truth value of “P implies Q” from those of P and Q using
the following truth table:

P Q P =⇒ Q

T T T
T F F
F T T
F F T
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With material implication, a false statement implies every statement, so any inconsis-
tency is fatal. But in real life, if we discover we have one inconsistent belief, we don’t
conclude we can fly and go jump off a building! Material implication is really just our
best attempt to define implication using truth tables with 2 truth values: true and false.
So it’s not surprising that logicians have investigated other forms of implication.

One obvious approach is to use more truth values, like “true”, “false”, and “don’t
know”. There’s a long history of work on such multi-valued logics.

Another approach, initiated by Anderson and Belnap, is called “relevance logic”. In
relevance logic, “P implies Q” can only be true if there is a conceptual connection be-
tween P and Q. So if B has nothing to do with A, we don’t get “A and not(A) implies
B”.

This book describes a logical system called “RQ” — relevance logic with quantifiers. It
also describes a system called “R#”, which is a version of the Peano axioms of arithmetic
based on RQ instead of the usual predicate calculus. Following the work of Robert
Meyer, it proves that R# is nontrivial in the sense described above. Moreover, this proof
can be carried out R# itself! However, you can carry out the proof of Goedel’s 2nd
incompleteness theorem in R#, so R# cannot prove itself consistent.

To paraphrase Mortensen: “But this is not really a puzzle. The explanation is that
relevant and other paraconsistent logics turn on making a distinction between inconsis-
tency and triviality, the former being weaker than the latter; whereas classical logical
cannot make this distinction. For what the present author’s intuitions are worth, these
do seem to be different concpets. Thus for R#, consistency cannot be proved by finitistic
means by Goedel’s second theorem, whereas nontriviality can be shown. Since Peano
arithmetic collapses this distinction, both kinds of consistency are infected by the same
unprovability.”

Mortensen also mentions another approach to get rid of “A and not(A) implies B”
without getting rid of material implication. This is to get rid of the rule that “A and
not(A)” is false! He calls this “Brazilian logic”. Presumably this is not because your
average Brazilian thinks this way, but because the inventor of this approach, Da Costa, is
Brazilian.

Brazilian logic sounds very bizarre at first, but in fact it’s just the dual of intuitionistic
logic, where you drop the rule that “A or not(A)” is true. Intuitionistic logic is nicely
modeled by open sets in a topological space: “and” is intersection, “or” is union, and
“not” is the interior of the complement. Similarly, Brazilian logic is modeled by closed
sets. In intuitionistic logic we allow a slight gap between A and not(A); in Brazilian logic
we allow a slight overlap.

In short, this book is full of fascinating stuff. Lots of passages are downright amusing
at first, like this:

[. . . ] there have been calls recently for inconsistent calculus, appealing to the
history of calculus in which inconsistent claims abound, especially about in-
finitesimals (Newton, Leibniz, Bernoulli, l’Hospital, even Cauchy). However,
inconsistent calculus has resisted development.

But you always have to remember that the author is interested in theories which,
though inconsistent, are still paraconsistent. And I think he really makes a good case for
his claim that inconsistent mathematics is worth studying — even if our ultimate goal is
to avoid inconsistency!
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Okay, now let me switch gears drastically and say a bit about “exotic spheres” —
smooth manifolds that are homeomorphic but not diffeomorphic to the n-sphere with
its usual smooth structure. People on sci.physics.research have been talking about
this stuff lately, so it seems like a good time for a mini-essay on the subject. Also, my
colleague Fred Wilhelm works on the geometry of exotic spheres, and he just gave a
talk on it here at U. C. Riverside, so I should pass along some of his wisdom while I still
remember it.

First, recall the “Hopf bundle”. It’s easy to describe starting with the complex num-
bers. The unit vectors in C2 form the sphere S3. The unit complex numbers form a group
under multiplication. As a manifold this is just the circle S1, but as a group it’s better
known as U(1). You can multiply a unit vector by a unit complex number and get a new
unit vector, so S1 acts on S3. The quotient space is the complex projective space CP1,
which is just the sphere S2. So what we’ve got here is fiber bundle:

S1 → S3 → S2 = CP1

with fiber S1, total space S3 and base space S2. This is the Hopf bundle. It’s famous
because the map from the total space to the base was the first example of a topologically
nontrivial map from a sphere to a sphere of lower dimension. In the lingo of homotopy
theory, we say it’s the generator of the group π3(S2).

Now in “Week 106” I talked about how we can mimic this construction by replacing
the complex numbers with any other division algebra. If we use the real numbers we get
a fiber bundle

S0 → S1 → RP1 = S1

where S0 is the group of unit real numbers, better known as Z/2. This bundle looks like
the edge of a Moebius strip. If we use the quaternions we get a more interesting fiber
bundle:

S3 → S7 → HP1 = S4

where S3 is the group of unit quaternions, better known as SU(2). We can even do
something like this with the octonions, and we get a fiber bundle

S7 → S15 → OP1 = S8

but now S7, the unit octonions, doesn’t form a group — because the octonions aren’t
associative.

Anyway, it’s the quaternionic version of the Hopf bundle that serves as the inspiration
for Milnor’s construction of exotic 7-spheres. These exotic 7-spheres are actually total
spaces of other bundles with fiber S3 and base space S4. The easiest way to get your
hands on these bundles is to take S4, chop it in half along the equator, put a trivial
S3-bundle over each hemisphere, and then glue these together. To glue these bundles
together we need a way to attach the fibers over each point x of the equator. In other
words, for each point x in the equator of S4 we need a map

fx : S3 → S3

which should vary smoothly with x. But the equator of S4 is just S3, and S3 is a group
— the unit quaternions — so we can take

fx(y) = xnyxm

269



WEEK 141 OCTOBER 26, 1999

for any pair of integers (n,m).
This gives us a bunch of S3-bundles over S4. The total space X(n,m) of any one of

these bundles is obviously a smooth 7-dimensional manifold. But when is it homeomor-
phic to the 7-sphere? And when is it diffeomorphic to the 7-sphere with its usual smooth
structure?

Well, first we use some Morse theory. You can learn a lot about the topology of a
smooth manifold if you have a “Morse function” on the manifold: a smooth real-valued
function all of whose critical points are nondegenerate. If you don’t believe me, read this
book:

2) John Milnor, Morse Theory, Princeton U. Press, Princeton, 1960.

When n+m = 1 there’s a Morse function on X(n,m) with only two critical points —
a maximum and a minimum. This implies that X(n,m) is homeomorphic to a sphere!

Once we know that X(n,m) is homeomorphic to S7, we have to decide when it’s
diffeomorphic to S7 with its usual smooth structure. This is the hard part. Notice that
X(n,m) is the unit sphere bundle of a vector bundle over S4 whose fiber is the quater-
nions. We can understand a bunch about X(n,m) using the characteristic classes of
this vector bundle. In particular, we can compute the Euler number and the Pontrja-
gin number of this vector bundle. Using the Euler number we can show that X(n,m)
is homeomorphic to a sphere only if n + m = 1 — you can’t really do this using Morse
theory. But more importantly, using the Pontrjagin number, we can show that in this case
X(n,m) is diffeomorphic to S7 with its usual smooth structure if and only if (n−m)2 = 1
mod 7. Otherwise it’s “exotic”.

For the details of the above argument you can try the following book:

3) B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry — Methods and
Applications, Part III: Introduction to Homology Theory, Springer-Verlag Graduate
Texts 125, Springer, New York, 1990.

or the original paper:

4) John Milnor, “On manifolds homeomorphic to the 7-sphere”, Ann. Math. 64
(1956), 399–405.

Now, with quite a bit more work, you can show that smooth structures on the n-
sphere form an group under connected sum — the operation of chopping out a small
hole in two spheres and gluing them together — and you can show that this group is
Z/28 for n = 7. This means that if we consider two smooth structures on the 7-sphere the
same when they’re related by an orientation-preserving diffeomorphism, we get exactly
28 kinds. Unfortunately we don’t get all of them by the above explicit construction. For
more details, see:

5) M. Kervaire and J. Milnor, “Groups of homotopy spheres I”, Ann. Math. 77 (1963),
504–537.

By the way, part II of the above paper doesn’t exist! Instead, you should read this:
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6) J. Levine, “Lectures on groups of homotopy spheres”, in Algebraic and Geometric
Topology, Springer Lecture Notes in Mathematics number 1126, Springer, Berlin,
1985, pp. 62–95.

Anyway, if you’re wondering why I’m talking so much about exotic 7-spheres, instead
of lower-dimensional examples that are easier to visualize, check out this table of groups
of smooth structures on the n-sphere:

n group of smooth structures on the n-sphere

0 1
1 1
2 1
3 1
4 ?
5 1
6 1
7 Z/28
8 Z/2
9 Z/2× Z/2× Z/2
10 Z/6
11 Z/992
12 1
13 Z/3
14 Z/2
15 Z/8128× Z/2
16 Z/2
17 Z/2× Z/2× Z/2× Z/2
18 Z/8× Z/2

Dimension 7 is the simplest interesting case — except perhaps for dimension 4, where
the answer is unknown! The “smooth Poincare conjecture” says that there’s only one
smooth structure on the 4-sphere, but this remains a conjecture. . . .

As you can see, there are lots of exotic 11-spheres. In fact, this is relevant to
string theory! You can get an n-sphere with any possible smooth structure by taking
two n-dimensional balls and gluing them together along their boundary using some
orientation-preserving diffeomorphism

f : Sn−1 → Sn−1.

Orientation-preserving diffeomorphisms like this form a group called Diff+(Sn−1). Us-
ing the above trick, it turns out that the group of smooth structures on the n-sphere
is isomorphic to the group of connected components of Diff+(Sn−1). So the existence of
exotic 11-spheres means that there are lots of “exotic diffeomorphisms” of the 10-sphere!

Now, string theory lives in 10 dimensions, and one wants certain quantities to be
invariant under orientation-preserving diffeomorphisms of spacetime — otherwise you
say the theory has “gravitational anomalies”. First you have to check this for “small
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diffeomorphisms” of spacetime, that is, those connected to the identity map by a con-
tinuous path. But then you have to check it for “large diffeomorphisms” — those living
in different connected components of the diffeomorphism group. When spacetime is a
10-sphere, this means you need to check diffeomorphism invariance for all 991 compo-
nents of Diff+(Sn−1) besides the component containing the identity. These components
correspond to exotic 11-spheres!

Witten did this in the following paper:

7) Edward Witten, “Global gravitational anomalies”, Commun. Math. Phys. 100
(1985), 197–229.

This may be the first paper about exotic spheres in physics.
There are other interesting things to do with an exotic sphere. One is to put a metric

on it and look at its curvature. The sphere with its usual “round” metric is very sym-
metrical and has positive curvature everywhere. There are various meanings of “positive
curvature”, but the round sphere has positive curvature in all possible ways! One kind
of curvature is “sectional curvature”. In general, it’s hard to find compact manifolds
other than the sphere with its usual smooth structure that have metrics with everywhere
positive sectional curvature. Gromoll and Meyer found an exotic 7-sphere with a metric
having nonnegative sectional curvature:

8) Detlef Gromoll and Wolfgang Meyer, “An exotic sphere with nonnegative sectional
curvature”, Ann. Math. 100 (1974), 401–406.

The construction isn’t terribly hard so let me describe it. First, start with the group
Sp(2), consisting of 2× 2 unitary quaternionic matrices (see “Week 64”). As always with
compact Lie groups, this has a metric that’s invariant under right and left translations,
and this metric is unique up to a constant scale factor. The group of unit quaternions
acts as metric-preserving maps (aka “isometries”) of Sp(2) in the following way: let the
quaternion q map (

a b
c d

)
to (

qaq−1 qb
qcq−1 qd

)
The quotient space is an exotic 7-sphere, and it inherits a metric with nonnegative sec-
tional curvature.

Now, since compact manifolds with positive sectional curvature are tough to find,
you might wonder if this exotic 7-sphere can be given a metric with positive sectional
curvature. And the answer is: almost! It can be given a metric having positive sectional
curvature except on a set of measure zero. This was recently proved by Wilhelm:

9) Frederick Wilhelm, “An exotic sphere with positive curvature almost everywhere”,
preprint, May 12 1999.

It’s also an interesting theorem, due to Hitchin, that for any n > 0 there exist exotic
spheres of dimensions 8n+ 1 and 8n+ 2 having no metric of positive scalar curvature:
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8) Nigel Hitchin, “Harmonic spinors”, Adv. Math. 14 (1974), 1–55.

So some exotic spheres are not so as “round” as you might think! In fact, 3 of the
exotic spheres in 10 dimensions cannot be given a metric such that the connected com-
ponent of the isometry group is bigger than U(1) × U(1), so these are quite “bumpy”.
This follows from results of Reinhard Schultz, who happens to be the department chair
here:

9) Reinhard Schultz, “Circle actions on homotopy spheres bounding plumbing mani-
folds”, Proc. A.M.S. 36 (1972), 297–300.

There’s a lot more to say about exotic spheres, but let me just briefly mention two
things. First, there are cool connections between exotic spheres and higher-dimensional
knot theory. If you want a small taste of this stuff, try:

10) Louis Kauffman, Knots and Physics, World Scientific, Singapore, 1991.

Look in the index under “exotic spheres”.
Second, people have computed the effect of exotic 7-spheres on quantum gravity

path integrals in 7 dimensions:

11) Kristin Schleich and Donald Witt, Exotic spaces in quantum gravity, Class. Quant.
Grav. 16 (1999) 2447–2469, preprint available as gr-qc/9903086.

I’m not sure exotic spheres are really relevant to physics, but it would be cool, so I’m
glad some people are trying to establish connections.

Okay, that’s enough for exotic spheres, at least for now! I’ve got a few more things
here that I just want to mention. . . .

I’ve been learning a bit about Calabi-Yau manifolds and mirror symmetry in string
theory lately. The basic idea is that string theory on different spacetime manifolds can
be physically equivalent. I don’t know enough to want to try to explain this stuff yet, but
here are some place to look in case you’re interested:

12) Claire Voisin, Mirror Symmetry, American Mathematical Society, 1999.

13) David A. Cox and Sheldon Katz, Mirror Symmetry and Algebraic Geometry, Ameri-
can Mathematical Society, Providence, Rhode Island, 1999.

14) Shing-Tung Yau, editor, Mirror Symmetry I, American Mathematical Society, 1998.

Brian Green and Shing-Tung Yau, editors, Mirror Symmetry II, American Mathe-
matical Society, 1997.

Duong H. Phong, Luc Vinet and Shing-Tung Yau, editors, Mirror Symmetry III,
American Mathematical Society, 1999.

So far I’m mainly trying to learn really basic stuff, and for this, the following lectures
are proving handy:

16) P. Candelas, “Lectures on complex manifolds”, in Superstrings ’87, eds. L. Alvarez-
Gaume et al, World Scientific, Singapore, 1988, pp. 1–88.

273

https://arxiv.org/abs/gr-qc/9903086


WEEK 141 OCTOBER 26, 1999

On a different note, the American Mathematical Society has come out with some
good-looking books on surgery theory — the process of making new manifolds from old
by cutting and pasting. I’ve got these on my reading list, so if anyone wants to buy me a
Christmas present, here’s what you should get:

17) Robert E. Gompf and Andras I Stipsicz, 4-Manifolds and Kirby Calculus, Amderican
Mathematical Society, 1999.

18) C. T. C. Wall and A. A. Ranicki, Surgery on Compact Manifolds, 2nd edition, Ameri-
can Mathematical Society, 1999.

Finally, there’s some cool stuff going on with operads that I haven’t been able to keep
up with. Let me quote the abstracts:

19) Alexander A. Voronov, “Homotopy Gerstenhaber algebras”, preprint available as
math.QA/9908040.

The purpose of this paper is to complete Getzler-Jones’ proof of Deligne’s Con-
jecture, thereby establishing an explicit relationship between the geometry of
configurations of points in the plane and the Hochschild complex of an asso-
ciative algebra. More concretely, it is shown that the B∞-operad, which is
generated by multilinear operations known to act on the Hochschild complex,
is a quotient of a certain operad associated to the compactified configuration
spaces. Different notions of homotopy Gerstenhaber algebras are discussed: one
of them is a B∞-algebra, another, called a homotopy G-algebra, is a particular
case of a B∞-algebra, the others, aG∞-algebra, an E1-bar-algebra, and a weak
G∞-algebra, arise from the geometry of configuration spaces. Corrections to the
paper math.QA/9602009 of Kimura, Zuckerman, and the author related to the
use of a nonextant notion of a homotopy Gerstenhaber algebra are made.

20) Maxim Kontsevich, “Operads and motives in deformation quantization”, Lett. Math.
Phys. 48 (1999), 35–72, preprint available as math.QA/9904055.

It became clear during last 5-6 years that the algebraic world of associative
algebras (abelian categories, triangulated categories, etc) has many deep con-
nections with the geometric world of two-dimensional surfaces. One of the man-
ifestations of this is Deligne’s conjecture (1993) which says that on the cohomo-
logical Hochschild complex of any associative algebra naturally acts the operad
of singular chains in the little discs operad. Recently D. Tamarkin discovered
that the operad of chains of the little discs operad is formal, i.e. it is homotopy
equivalent to its cohomology. From this fact and from Deligne’s conjecture fol-
lows almost immediately my formality result in deformation quantization. I
review the situation as it looks now. Also I conjecture that the motivic Galois
group acts on deformation quantizations, and speculate on possible relations of
higher-dimensional algebras and of motives to quantum field theories.

21) James E. McClure and Jeffrey H. Smith, “A solution of Deligne’s conjecture”, preprint
available as math.QA/9910126
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Deligne asked in 1993 whether the Hochschild cochain complex of an associative
ring has a natural action by the singular chains of the little 2-cubes operad. In
this paper we give an affirmative answer to this question. We also show that
the topological Hochschild cohomology spectrum of an associative ring spectrum
has an action of an operad equivalent to the little 2-cubes.

My original table of groups of smooth structures on spheres had some mistakes in
it which were corrected by Linus Kramer, Marco Mackaay, Tony Smith and Frederick
Wilhelm. In fact, the table in the book by Dubrovin, Fomenko and Novikov differs from
the table in Kervaire and Milnor’s paper! The table above comes from Kervaire and
Milnor, taking advantage of some subsequent work in dimension 3 and also some work
of Brumfield which nailed down the groups in dimensions 9 and 17 — see below for
more information.

The paper by Kervaire and Milnor has a cool formula for the order of the group of
smooth structures on the (4n− 1)-sphere for n > 1. It’s:

22n−4(22n−1 − 1)P (4n− 1)B(n)a(n)

n

where:

• P (k) is the order of the kth stable homotopy group of spheres

• B(k) is the kth Bernoulli number, in the sequence 1/6, 1/30, 1/42, 1/30, 5/66, 691/2730, 7/6, . . .

• a(k) is 1 or 2 according to whether k is even or odd.

Here are some remarks by Linus Kramer on exotic spheres in dimensions 9 and 17,
which he posted to sci.math.research in response to a question of mine. Kervaire and
Milnor said the group of exotic spheres in dimension 9 was (Z/2)3 or Z/2×Z/4, and the
group in dimension 17 was (Z/2)4 or (Z/2)2 × Z/4. Linus writes:

The list by Kervaire and Milnor seems to be correct; in dimension 9, the group
is (Z/2)3, and in dimension 17 it’s (Z/2)4. This follows from the results of
Brumfield [Mich. Math. J 17] stated on the first page of his paper, plus the
list of the first stable homotopy groups of spheres, and the properties of Adams’
J-homomorphism J : πn(SO)→ πsn.

There is an exact sequence

0→ bPk → Γk−1 → πsk−1/ im(J)→ 0

provided that k + 3 is not a power of 2 (Γk−1 is the group we are looking for).
Now for k − 1 = 8, 9, 10, 17, we have k + 3 = 12, 13, 14, 21, and these are not
powers of 2. Now bPk = 0,Z/2, 0,Z/θ16 for k = 9, 10, 11, 16. So for k = 9, 11,
the group Γk−1 is the same as πsk−1/ im(J), and for k = 10, 16 use Brumfield’s
result that then the group is Γk−1 = Z/2 + (πsk−1/ im(J)).
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Hope I didn’t make a mistake while chasing through all these exact sequences. . .
Of course, the result relies also on some table, namely the first stable homotopy
groups of spheres.

Linus Kramer
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Week 142

December 5, 1999

I was recently infected by a meme — a self-propagating pattern of human behavior. Now
I want to pass it on to you! I like this particular meme because it’s so simple. It’s even
simpler than the parasites described on my webpage:

1) John Baez, “Subcellular life forms”, http://math.ucr.edu/home/baez/subcellular.
html

I wrote this webpage when I was trying to understand some of the simplest self-
reproducing entities: viruses, viroids, virusoids, plasmids, prions, and various forms
of junk DNA. Viroids are especially simple. Unlike a virus, a viroid doesn’t even have a
protein coat: it’s just a naked RNA molecule! So instead of actively breaking into the host
cell, it must passively wait to be absorbed. Then somehow it hijacks the machinery of
the cell nucleus to reproduce itself. Theodore Diener discovered the first viroid in 1971:
the potato spindle tuber viroid, which makes potatoes abnormally long and sometimes
cracked. At first people doubted the possibility of a life form smaller than a virus. But by
now the complete molecular structure of this viroid has been worked out. It consists of
only 359 nucleotides — or in other words, about 12,000 atoms!

But since a meme relies on the complex apparatus of human culture to reproduce
itself, it can get away with being even simpler than a viroid. It can even be the simplest
sort of thing of all: an abstract mathematical structure defined by a short list of axioms!

A good example is the game of tic-tac-toe. It’s not very interesting, but it’s just in-
teresting enough to keep propagating itself through human children, who are highly
susceptible to the charm of simple games. Most children soon develop an immunity to
tic-tac-toe, just like measles and mumps — but only after passing it on to some other
child.

Unfortunately, the meme that infected me is a lot harder to shake, because it’s a lot
more interesting. I’m talking about the game of Go.

This game is played on a 19 × 19 square grid. Each player starts with a large supply
of stones — black for the first player, white for the second. They take turns putting a
stone on a grid point. A group of stones of one color “dies” and is removed from the
board when it is surrounded by stones of the other color. More precisely, we say a stone
is “dead” when none of its nearest neighbors of the same color have nearest neighbors
of the same color which have nearest neighbors of the same color which. . . have nearest
neighbors that are still vacant grid points.

There are also two subsidary rules, designed to keep silly things from happening.
First, you are not allowed to put a stone someplace where it will immediately die,

unless doing so immediately kills one or more of the other player’s stones — in which
case their stones die, and yours lives.

Second, if putting down your stone kills a stone of the other player, but they could
immediately put that stone back and kill yours, leading to an infinite loop, we say that
“ko” has occurred. In this case, the other player is forbidden from putting their stone
back right away.
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How do you win? Simply put, the goal is to end up with as much “territory” as
possible. Territory includes grid points occupied by stones of your color, and also vacant
grid points that the other player could not occupy without their stones eventually dying.
(In practice, Go players do not fight to the bitter end, so territory also includes stones of
the other color that are “doomed to die”.)

That’s basically it!
The cool part is that starting from these simple rules, a whole world of strategy un-

folds, full of specific tricks — but also quite general philosophical lessons about “power”,
“territory”, and “threat”. In a good game, both players start by efficiently marking out
some territory, putting stones down in a widely separated way that looks random to the
beginner, but in fact is delicately balanced between being too conservative and too am-
bitious. The midgame starts when both players start trying to surround each other and
threaten to kill stones. But be careful: threatening to kill stones can be better than actu-
ally killing them, and the difference between “surrounding” and “being surrounded” is
rather subtle! The endgame comes when territory is almost fully demarcated, with only
a few squabbles around the edges. The endgame game proves unexpectedly difficult for
beginners, since one can snatch defeat from the jaws of victory even at this stage.

A well-developed Go game is said to be like a work of art, with all opposing forces
neatly balanced in a harmonious pattern. As a mathematical physicist, it reminds me of
the Ising model at a phase transition, when there are as many black grid points as white
ones, and arbitrarily large clusters of both colors. Perhaps there’s even a real relation to
the theory of “self-organized criticality”, in which a system spontaneously works its way
to the brink of a phase transition.

People say Go was developed in China between 4 and 6 thousand years ago. Its
early history is obscure, but it is said to have started, not as a game, but as a tool for
divination and the teaching of military strategy. I’m no expert, but to me Go seems like
a nice illustration of yin-yang philosophy — the idea that the dynamic complexity of the
universe arises from the dialectic interplay of binary opposites. For a good introduction
to what I’m talking about, you can’t beat the I Ching — the “Classic of Changes”, a
Chinese divination text compiled in the 9th century B.C., but containing material that
probably dates back at least a few centuries earlier. This book describes the significance
of 64 “hexagrams”, which are patterns built from 6 bits of information, like this:

______

__ __

______

______

__ __

__ __

The idea that complex patterns can be described using bits was borrowed from the
Chinese by Leibniz, who invented the concept of binary arithmetic and dreamt of a purely
mechanical approach to logic based on simple rules. Now, of course, these ideas domi-
nate modern technology! So perhaps it’s not surprising that Go still holds an attraction
for many mathematicians and physicists.

In fact, I bet some you are smirking and wondering why I didn’t learn Go much ear-
lier! The reason is that I’ve always avoided playing games, except for the “great game”
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of mathematical physics. I only tried playing Go the weekend before last, while visiting
my friend Bruce Smith up in San Rafael after giving a talk on quantum tetrahedra at
Stanford. Bruce explained Go to me and showed me how it was philosophically interest-
ing. But most importantly, he showed me a computer program that plays Go. Computers
aren’t great at Go, but they’re good enough to beat an amateur like me, so they’re good
to learn from at first, and for some reason I prefer to play a computer than another
person — perhaps because computers don’t gloat.

The computer program I played against is called “GNU Go”. You can download it free
from the internet, thanks to the Free Software Foundation:

2) GNU Go, http://www.gnu.org/software/gnugo/devel.html

You can adjust the size of the board and also the handicap — the number of stones
you get right away when you start. To use this program in a UNIX environment you need
an interface program called “cgoban”, which is also free:

3) CGoban, http://www.inetarena.com/~wms/comp/cgoban/

On Windows you can use an interface available from the GNU Go webpage.
For more information on Go start here:

4) American Go Association, http://www.usgo.org/resources/

You can find lots of go books listed at this website. Personally I found these books to
be a nice introduction to the game, but they may be hard to find:

5) The Nihon Kiin, Go: The World’s Most Fascinating Game, 2 volumes, Sokosha Print-
ing Co., Tokyo, 1973.

When you get more advanced, there are a lot of books to read, with fun titles like
“Get Strong at Invading”, “Reducing Territorial Frameworks”, and “Utilizing Outward
Influence”. It pays to study “joseki”, or openings:

6) Ishida Yoshio, Dictionary of Basic Joseki, 3 volumes, Ishi Press International, San
Jose, California, 1977.

It’s also good to study “tsume-go”, or “life and death problems”, where you figure
out which player can win in various configurations. A mathematician would call this the
“local” analysis of Go:

7) Cho Chikun, All About Life and Death, 2 volumes, Ishi Press International, San Jose,
California, 1993.

Ishi Press puts out a lot of other books on Go, but I haven’t been able to get ahold of
them yet. I’m sort of fascinated by one that talks about a difficult abstract concept called
“thickness”, since I suspect this is a global rather than local concept:

8) Ishidea Yoshio, All About Thickness: Understanding Moyo and Influence, Ishi Press
International, San Jose, California.
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If you want to get mathematical about Go endgames, try this:

9) Elwyn Berlekamp and David Wolfe, Mathematical Go: Chilling Gets the Last Point,
A. K. Peters, Wellesley Massachusetts, 1994.

If you want to get computational, try this:

10) Markus Enzenberger, The integration of a priori knowledge into a Go playing neu-
ral network, http://www.cgl.ucsf.edu/go/Programs/neurogo-html/NeuroGo.

html

If instead you prefer to curl up with a good novel based on a game of Go, try this:

11) Yasunari Kawabata, The Master of Go, trans. Edward G. Seidensticker, Knopf, New
York, 1972.

On a different note, here are two good editions of the I Ching:

12) The I Ching or Book of Changes, trans. Richard Wilhelm and Cary F. Baynes, Prince-
ton U. Press, Princeton, 1969.

The Classic of Changes: A New Translation of the I Ching as Interpreted by Wang Bi,
trans. Richard John Lynn, Columbia U. Press, 1994.

Okay. Enough culture — time for some math!
I was invited to Stanford University by David Carlton, who works on modular forms,

and I found out from him and his friends that the Shimura-Taniyama-Weil conjecture has
been proved! This might have been a nice scoop for This Week’s Finds, but by now it’s
appeared in the Notices of the AMS, so everyone knows about it:

13) Henri Darmon, “A proof of the full Shimura-Taniyama-Weil conjecture is announced”,
Notices of the American Mathematical Society, 46 no. 11 (December 1999), 1397–
1401.

Andrew Wiles proved part of this conjecture in order to prove Fermat’s Last Theorem,
but the conjecture is actually much more interesting than Fermat’s Last Theorem, and a
proof of the whole thing was announced this summer by Breuil, Conrad, Diamond and
Taylor.

What does the conjecture say?
Well, first you have to know a bit about elliptic curves. An “elliptic curve” is the space

of solutions of an equation like this:

y2 = x3 + ax+ b

They come up naturally in string theory, and I’ve talked about them already in “Week
13” and “Week 124”–“Week 127”. If all the variables in sight are complex numbers, an
elliptic curve looks like a torus, but number theorists like to consider the case where the
coefficients a and b are rational. By a simple change of variables you can then get the
coefficients to be integers. Then it makes sense to work modulo a prime number p: in
other words, to think of all the variables as living in the field of integers mod p, better
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known as Z/p. If you’re smart, you can tell if an elliptic curve mod p is “singular” or
not: being nonsingular is like being a smooth manifold. People say an elliptic curve has
“good reduction at p” if it’s nonsingular mod p. For any given elliptic curve, this is true
except for finitely many primes.

Any elliptic curve E has finitely many points mod p. Let’s call the number of points
N(E, p) and set

a(E, p) = p−N(E, p).

If this list of numbers satisfies a certain condition, which I’ll describe in a minute, we
say our elliptic curve is “modular”. The Shimura-Taniyama-Weil conjecture states that all
elliptic curves are modular.

Okay, so what does “modular” mean? Well, for this we need a little digression on
modular forms. In “Week 125” I described the moduli space of elliptic curves, which is
the space of all different shapes an elliptic curve can have. I showed that this space was
H/SL(2,Z), where H is the upper half of the complex plane and SL(2,Z) is the group of
2×2 integer matrices with determinant 1. A modular form is basically just a holomorphic
section of some line bundle over the moduli space of elliptic curves. But if this sounds
too high-tech, don’t be scared! We can also think of it as an analytic function on the
upper half-plane that transforms in a nice way under the action of SL(2,Z). Remember,
any matrix (

a b
c d

)
in SL(2,Z) acts on the upper half-plane as follows:

τ 7→ aτ + b

cτ + d

For an analytic function f : H → C to be a “modular form of weight k”, it must transform
as follows:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for some integer k. We also require that f satisfy some growth conditions as τ →∞, so
we can expand it as a Taylor series

f(τ) =
∑

anq
n

where
q = exp(2πiτ)

is a variable that equals 0 when τ =∞. The nicest modular forms are the “cusp forms”,
which have a0 = 0, and thus vanish at τ =∞.

Next, we can straightforwardly generalize everything I just said if we replace SL(2,Z)
by various subgroups thereof. (This amounts to studying holomorphic sections of line
bundles over some moduli space of elliptic curves equipped with extra structure.) For
example, we can use the subgroup Γ0(N) consisting of those matrices in SL(2,Z) whose
lower-left entries are divisible by N . If we use this group instead of SL(2,Z), we get
what are called modular forms of “level N”. We define “weight” of such a modular form
just as before, and ditto for “cusp forms”.
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And now we can say what it means for an elliptic curve to be modular! We say an
elliptic curve E is “modular” if for some N there’s a weight 2 level N cusp form

f(τ) =
∑

anq
n

normalized so that a1 = 1, with the property that

ap = a(E, p)

for all primes p at which E has good reduction.
So now you know what the Shimura-Taniyama-Weil conjecture says: all elliptic curves

are modular! It’s not obvious that this implies Fermat’s Last Theorem, but it does, thanks
to a trick invented by Gerhard Frey.

There turn out to be fascinating but mysterious relationships between the Shimura-
Taniyama-Weil conjecture, something called the Langlands program, and topological
quantum field theory:

14) Mikhail Kapranov, “Analogies between the Langlands correspondence and topolog-
ical quantum field theor”y, in Functional Analysis on the Eve of the 21st Century,
Vol. 1, Birkhaueser, Boston, pp. 119–151.

For this reason — and others — it’s not so surprising that David Carlton and some
of his buddies are interested in n-categories. In fact, Carlton caught a small error in the
definition of n-categories due to James Dolan and myself — it turns out that the number
“1” should be the number “2” at one particular place in the definition! Anyone who can
spot a problem like that is friend of mine.

Even better, Carlton is now interested in understanding the (n + 1)-category of all
n-categories, which is crucial for really doing anything with n-categories. Makkai has a
new paper on this subject, and I realize now that I’ve never mentioned this paper on This
Week’s Finds, so let me conclude by quoting the abstract. It’s pretty long and detailed,
and probably only of interest to n-category addicts. . . .

15) M. Makkai, The multitopic ω-category of all multitopic ω-categories, preprint avail-
able at ftp://ftp.math.mcgill.ca/pub/makkai

“The paper gives two definitions: that of”multitopic ω-category” and that of “the
(large) multitopic set of all (small) multitopic ω-categories”. It also announces
the theorem that the latter is a multitopic ω-category. (The proof of the theorem
will be contained in a sequel to this paper.)

The work has two direct sources. One is the paper [H/M/P] (for the references,
see at the end of this abstract) in which, among others, the concept of “multitopic
set” was introduced. The other is the present author’s work on FOLDS, First
Order Logic with Dependent Sorts. The latter was reported on in [M2]. A
detailed account of the work on FOLDS is in [M3]. For the understanding of the
present paper, what is contained in [M2] suffices. In fact, section 1 of the present
paper gives the definitions of all that’s needed in this paper; so, probably, there
won’t be even a need to consult [M2].
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The concept of multitopic set, the main contribution of [H/M/P], was, in turn,
inspired by the work of J. Baez and J. Dolan [B/D]. Multitopic sets are a variant
of opetopic sets of loc. cit. The name “multitopic set” refers to multicategories,
a concept originally due to J. Lambek [L], and given an only moderately gen-
eralized formulation in [H/M/P]. The earlier “opetopic set” of [B/D] is based
on a concept of operad. I should say that the exact relationship of the two con-
cepts (“multitopic set” and “opetopic set”) is still not clarified. The main aspect
in which the theory of multitopic sets is in a more advanced state than that of
opetopic sets is that, in [H/M/P], there is an explicitly defined category Mlt of
multitopes, with the property that the category of multitopic sets is equivalent
to the category of Set-valued functors on Mlt, a result given a detailed proof
in [H/M/P]. The corresponding statement on opetopic sets and opetopes is as-
serted in [B/D], but the category of opetopes is not described. In this paper, the
category of multitopes plays a basic role.

Multitopic sets and multitopes are described in section 2 of this paper; for a
complete treatment, the paper [H/M/P] should be consulted.

The indebtedness of the present work to the work of Baez and Dolan goes fur-
ther than that of [H/M/P]. The second ingredient of the Baez/Dolan definition,
after “opetopic set”, is the concept of “universal cell”. The Baez/Dolan definition
of weak n-category achieves the remarkable feat of specifying the composition
structure by universal properties taking place in an opetopic set. In particular,
a (weak) opetopic (higher-dimensional) category is an opetopic set with addi-
tional properties ( but with no additional data), the main one of the additional
properties being the existence of sufficiently many universal cells. This is closely
analogous to the way concepts like “elementary topos” are specified by universal
properties: in our situation, “multitopic set” plays the “role of the base” played
by “category” in the definition of “elementary topos”. In [H/M/P], no universal
cells are defined, although it was mentioned that their definition could be sup-
plied without much difficulty by imitating [B/D]. In this paper, the “universal
(composition) structure” is supplied by using the concept of FOLDS-equivalence
of [M2].

In [M2], the concepts of “FOLDS-signature” and “FOLDS-equivalence” are intro-
duced. A (FOLDS-) signature is a category with certain special properties. For a
signature L , an L-structure is a Set-valued functor on L. To each signature L,
a particular relation between two variable L-structures, called L-equivalence,
is defined. Two L-structures M, N, are L-equivalent iff there is a so-called L-
equivalence span M ← P → N between them; here, the arrows are ordinary
natural transformations, required to satisfy a certain property called “fiberwise
surjectivity”.

The slogan of the work [M2], [M3] on FOLDS is that all meaningful properties
of L-structures are invariant under L-equivalence. As with all slogans, it is
both a normative statement (“you should not look at properties of L-structures
that are not invariant under L-equivalence”), and a statement of fact, namely
that the “interesting” properties of L-structures are in fact invariant under L-
equivalence. (For some slogans, the “statement of fact” may be false.) The usual
concepts of “equivalence” in category theory, including the higher dimensional
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ones such as “biequivalence”, are special cases of L-equivalence, upon suitable,
and natural, choices of the signature L; [M3] works out several examples of
this. Thus, in these cases, the slogan above becomes a tenet widely held true by
category theorists. I claim its validity in the generality stated above.

The main effort in [M3] goes into specifying a language, First Order Logic with
Dependent Sorts, and showing that the first order properties invariant under
L-equivalence are precisely the ones that can be defined in FOLDS. In this paper,
the language of FOLDS plays no role. The concepts of “FOLDS-signature” and
“FOLDS-equivalence” are fully described in section 1 of this paper.

The definition of multitopic ω-category goes, in outline, as follows. For an
arbitrary multitope Σ of dimension > 2, for a multitopic set S, for a pasting
diagram α in S of shape the domain of Σ and a cell a in S of the shape the
codomain of Σ, such that a and α are parallel, we define what it means to say
that a is a composite of α. First, we define an auxiliary FOLDS signature L〈Σ〉
extending Mlt, the signature of multitopic sets. Next, we define structures S〈a〉
and S〈α〉, both of the signature L〈Σ〉, the first constructed from the data S and
a , the second from S and α, both structures extending S itself. We say that a is
a composite of α if there is a FOLDS-equivalence-span E between S〈a〉 and S〈α〉
that restricts to the identity equivalence-span from S to S. Below, I’ll refer to E
as an equipment for a being a composite of α. A multitopic set is a mulitopic
ω-category iff every pasting diagram α in it has at least one composite.

The analog of the universal arrows in the Baez/Dolan style definition is as fol-
lows. A universal arrow is defined to be an arrow of the form b : α→ a where
a is a composite of α via an equipment E that relates b with the identity arrow
on a: in turn, the identity arrow on a is any composite of the empty pasting
diagram of dimension dim(a) + 1 based on a. Note that the main definition
does not go through first defining “universal arrow”.

A new feature in the present treatment is that it aims directly at weak ω-
categories; the finite dimensional ones are obtained as truncated versions of
the full concept. The treatment in [B/D] concerns finite dimensional weak cat-
egories. It is important to emphasize that a multitopic ω-category is still just a
multitopic set with additional properties, but with no extra data.

The definition of “multitopic ω-category” is given is section 5; it uses sections 1,
2 and 4, but not section 3.

The second main thing done in this paper is the definition of MltOmegaCat. This
is a particular large multitopic set. Its definition is completed only by the end
of the paper. The 0-cells of MltOmegaCat are the samll multitopic ω-categories,
defined in section 5. Its 1-cells, which we call 1-transfors (thereby borrowing,
and altering the meaning of, a term used by Sjoerd Crans [Cr]) are what stand
for “morphisms”, or “functors”, of multitopic ω-categories. For instance, in the
2-dimensional case, multitopic 2-categories correspond to ordinary bicategories
by a certain process of “cleavage”, and the 1-transfors correspond to homomor-
phisms of bicategories [Be]. There are n-dimensional transfors for each n in N.
For each multitope (that is, “shape” of a higher dimensional cell) PI, we have
the PI-transfors, the cells of shape PI in MltOmegaCat.
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For each fixed multitope PI, a PI-transfor is a PI-colored multitopic set
with additional properties. “PI-colored multitopic sets” are defined in section
3; when PI is the unique zero-dimensional multitope, PI-colored multitopic
sets are the same as ordinary multitopic sets. Thus, the definition of a trans-
for of an arbitrary dimension and shape is a generalization of that of “multi-
topic ω-category”; the additional properties are also similar, they being defined
by FOLDS-based universal properties. There is one new element though. For
dim(PI) > 2 , the concept of PI-transfor involves a universal property which
is an ω-dimensional, FOLDS-style generalization of the concept of right Kan-
extension (right lifting in the terminology used by Ross Street). This is a “right-
adjoint” type universal property, in contrast to the “left-adjoint” type involved in
the concept of composite (which is a generalization of the usual tensor product
in modules).

The main theorem, stated but not proved here, is that MltOmegaCat is a multi-
topic ω-category.

The material in this paper has been applied to give formulations of ω-dimensional
versions of various concepts of homotopy theory; details will appear elesewhere.
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Week 143

December 29, 1999

Since this is the last Week of the millennium, I’ll make sure to pack it full of retrospectives
and prognostications. But I’d like to start with an update on something I discussed a
while back.

By the way, please don’t give me flak about how the millennium starts in 2001. I
use the CE or Common Era system, which starts counting at the year zero, not the AD
system, which starts at the year one because it was invented in 526 CE by Dennis the
Diminutive, long before the number zero caught on. In my opinion, the real “millennium
bug” is that anyone is still using the antiquated AD system!

Anyway. . . .
In “Week 73”, I mentioned a theory about why molecules important in biology tend

to come in a consistent chirality, or handedness. For example, there’s lots of dextrose in
nature — this being the right-handed form of the sugar sucrose — but not much of its
left-handed counterpart, levulose. It’s no surprise that one or the other would dominate,
but you might guess that which one was just an accident of history. After all, there’s no
fundamental difference between right and left, right?

Or is there? Actually there is: the weak nuclear force distinguishes between the two!
So some people theorized that very slight differences in energy levels, due to the weak
force, favor the formation of left-handed amino acids and right-handed sugars — which
is what we see in nature.

Recently people have found evidence for a somewhat different version of this theory:

1) Robert F. Service, “Does life’s handedness come from within?”, Science 286 (Novem-
ber 12, 1999), 1282–1283.

When radioactive atoms decay via the weak force, the electrons they shoot off tend
to have a left-handed spin. Could this affect the handedness of molecules or crystals that
happen to be forming in the vicinity? Sodium chlorate is a chemical that can form both
left-handed and right-handed crystals, so researchers took some solutions of the stuff and
let them crystallize while blasting them with electrons formed by the decay of radioactive
strontium. Sure enough, this biased the handedness of the crystals! Blasting the stuff
with right-handed positrons favored formation of crystals of the opposite handedness.
The strangest part was that the effect was even bigger than expected.

I still think the whole business is pretty iffy — after all, the flux of radiation in this
experiment was a lot bigger than what we normally see on earth. But it would sure be
neat if the origin of chirality in biology was related to the deeper mystery of chirality in
particle physics.

Okay, now for a little retrospective. Don’t worry — I won’t list the top ten develop-
ments in mathematical physics of the last millennium! Instead, I just want to recommend
two papers. First, an old paper by Poincare:

2) Henri Poincare, “The present and future of mathematical physics”, Bull. Amer.
Math. Soc. 12 (1906), 240–260. Reprinted as part of a retrospective issue of the
Bull. of the Amer. Math. Soc., 37 (2000), 25–38, available at http://www.ams.
org/bull/
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This article is based on a speech he gave in 1904. After a fascinating review of
the development of mathematical physics, he makes some accurate predictions about
quantum mechanics and special relativity — but closes on a conservative note:

In what direction we are going to expand we are unable to foresee. Perhaps it
is the kinetic theory of gases that will forge ahead and serve as a model for the
others. In that case, the facts that appeared simple to us at first will be nothing
more than the resultants of a very large number of elementary facts which the
laws of probability alone would induce to work toward the same end. A physical
law would then assume an entirely new aspect; it would no longer be merely a
differential equation, it would assume the character of a statistical law.

Perhaps too we shall have to construct an entirely new mechanics, which we can
only just get a glimpse of, where, the inertia increasing with the velocity, the
velocity of light would be a limit beyond which it would be impossible to go. The
ordinary, simpler mechanics would remain a first approximation since it would
be valid for velocities that are not too great, so that the old dynamics would be
found in the new. We should have no reason to regret that we believed in the
older principles, and indeed since the velocities that are too great for the old
formulas will always be exceptional, the safest thing to do in practice would be
to act as though we continued to believe in them. They are so useful that a place
should be saved for them. To wish to banish them altogether would be to deprive
oneself of a valuable weapon. I hasten to say, in closing, that we are not yet at
that pass, and that nothing proves as yet that they will not come out of the fray
victorious and intact.

The same issue of the AMS Bulletin also has a lot of other interesting papers and
book reviews from the last century, by folks like Birkhoff, Einstein and Weyl.

The second paper I recommend is a new one by Rovelli:

3) Carlo Rovelli, “The century of the incomplete revolution: searching for general
relativistic quantum field theory”, to appear in the Journal of Mathematical Physics
2000 Special Issue, preprint available as hep-th/9910131.

Let me just quote the abstract:

In fundamental physics, this has been the century of quantum mechanics and
general relativity. It has also been the century of the long search for a con-
ceptual framework capable of embracing the astonishing features of the world
that have been revealed by these two ‘’first pieces of a conceptual revolution”.
I discuss the general requirements on the mathematics and some specific devel-
opments towards the construction of such a framework. Examples of covari-
ant constructions of (simple) generally relativistic quantum field theories have
been obtained as topological quantum field theories, in nonperturbative zero-
dimensional string theory and its higher dimensional generalizations, and as
spin foam models. A canonical construction of a general relativistic quantum
field theory is provided by loop quantum gravity. Remarkably, all these diverse
approaches have turn out to be related, suggesting an intriguing general picture
of general relativistic quantum physics.
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Now for the prognostications. Since we should never forget that the towering abstrac-
tions of mathematical physics are ultimately tested by experiment, I’d like to talk about
some interesting physics experiments that are coming up in the next millennium. These
days more and more interesting information about physics is coming from astronomy, so
I’ll concentrate on work that lies on this interface.

In “Week 80” I talked about how Gravity Probe B will try to detect an effect of general
relativity called “frame-dragging” caused by the earth’s rotation. I also talked about how
LIGO — the Laser Interferometric Gravitational Wave Observatory — will try to detect
gravitational waves:

4) LIGO homepage, http://www.ligo.caltech.edu/

If all works as planned, LIGO should be great for studying the final death spirals of
binary black holes and/or neutron stars. When it starts taking data sometime around
2002, it should be able to detect the final “chirp” of gravitational radiation produced
a pair of inspiralling neutron stars in the Virgo Cluster, a cluster of galaxies about 15
megaparsecs away. Such an event would distort the spacetime metric here by only about
1 part in 1021. This is why LIGO needs to compare oscillations in the lengths of two arms
of an interferometer, each 4 kilometers long, with an accuracy of 10−16 centimeters:
about one hundred-millionth of the diameter of a hydrogen atom. To do this will require
some very clever tricks to reduce noise.

As the experiment continues, they intend to improve the sensitivity until it can detect
distortions in the metric of only 1 part in 1022, and second-generation detectors should
get to 1 part in 1023. At that point, we should be able to detect neutron star “chirps” from
a distance of 200 megaparsecs. Events of this sort should happen once or twice a year.

Since it’s crucial to rule out spurious signals, LIGO will have two detectors, one in
Livingston, Louisiana and one in Hanford, Washington. This should also allow us to
tell where the gravitational waves are coming from. And there are other gravitational
wave detection projects underway too! France and Germany are collaborating on a laser
interferometer called VIRGO, with arms 3 kilometers long, to be built in Cascina, Italy:

5) VIRGO homepage, http://www.pi.infn.it/virgo/

Germany and Great Britain are collaborating on a 600-meter-long one called GEO
600, to be built south of Hannover:

6) GEO 600 homepage, http://www.geo600.uni-hannover.de/

The Japanese are working on one called TAMA 300, which is a 300- meter-long
warmup for a planned kilometer-long interferometer:

7) TAMA 300 homepage, http://tamago.mtk.nao.ac.jp/

In addition, the Brazilian GRAVITON project is building something called the Ein-
stein Antenna, which uses mechanical resonance rather than interferometry. The basic
principle goes back to Joseph Weber’s original bar detectors, which tried to sense the
vibrations of a 2-meter-long aluminum cylinder induced by gravitational waves. But the
design involves lots of hot new technology: SQUIDS, buckyballs, and the like:
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8) GRAVITON homepage, http://www.das.inpe.br/graviton/project.html

There are also other gravitational wave detectors being built. . . but ultimately, the
really best ones will probably be built in outer space. There are two good reasons for
this. First, outer space is big: when you’re trying to detect very small distortions of the
geometry of spacetime, it helps to measure the distance between quite distant points.
Second, outer space is free of seismic noise and most other sources of vibration. This is
why people are working on the LISA project — the Laser Interferometric Space Antenna:

9) European Space Agency’s homepage on the LISA project, http://www.estec.esa.
nl/spdwww/future/html/lisa.htm

NASA’s homepage on the LISA project: http://lisa.jpl.nasa.gov/
The idea is to orbit 3 satellites in an equilateral triangle with sides 5 million kilome-

ters long, and constantly measure the distance between them to an accuracy of a tenth
of an angstrom — 10−11 meters — using laser interferometry. (A modified version of the
plan would use 6 satellites.) The big distances would make it possible to detect gravita-
tional waves with frequencies of 0.0001 to 0.1 hertz, much lower than the frequencies
for which the ground-based detectors are optimized. The plan involves a really cool tech-
nical trick to keep the satellites from being pushed around by solar wind and the like:
each satellite will have a free-falling metal cube floating inside it, and if the satellite gets
pushed to one side relative to this mass, sensors will detect this and thrusters will push
the satellite back on course.

I don’t think LISA has been funded yet, but if all goes well, it may fly within 10
years or so. Eventually, a project called LISA 2 might be sensitive enough to detect
gravitational waves left over from the early universe — the gravitational analogue of the
cosmic microwave background radiation!

The microwave background radiation tells us about the universe when it was roughly
10ˆ5 years old, since that’s when things cooled down enough for most of the hydrogen to
stop being ionized, making it transparent to electromagnetic radiation. In physics jargon,
that’s when electromagnetic radiation “decoupled”. But the gravitational background
radiation would tell us about the universe when it was roughly 10−38 seconds old, since
that’s when gravitational radiation decoupled. This figure could be way off due to physics
we don’t understand yet, but anyway, we’re talking about a window into the really early
universe.

Actually, Mark Kamionkowski of Caltech has theorized that the European Space
Agency’s “Planck” satellite may detect subtle hints of the gravitational background ra-
diation through its tendency to polarize the microwave background radiation. You prob-
ably heard how COBE, the Cosmic Background Explorer, detected slight anisotropies in
the microwave background radiation. Now people are going to redo this with much
more precision: while COBE had an angular resolution of 7 degrees, Planck will have a
resolution of 4 arcminutes. They hope to launch it in 2007:

10) Planck homepage, http://astro.estec.esa.nl/SA-general/Projects/Planck/
planck.html

What else is coming up? Well, gravity people should be happy about the new satellite-
based X-ray telescopes, since these should be great for looking at black holes. In July
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1999, NASA launched one called “Chandra”. (This is the nickname of Subrahmanyan
Chandrasekhar, who won the Nobel prize in 1983 for his work on stellar evolution,
neutron stars, black holes, and closed-form solutions of general relativity.) The first
pictures from Chandra are already coming out — check out this website:

11) Chandra homepage, http://chandra.harvard.edu/

On December 10th, the Europeans launched XMM, the “X-ray Multi-Mirror Mission”:

12) XMM homepage, http://sci.esa.int/xmm/

This is a set of three X-ray telescopes that will have lower angular resolution than
Chandra, but 5–15 times more sensitivity. It’ll also be able to study X-ray spectra, thanks
to a diffraction grating that spreads the X-rays out by wavelength. And in January, the
Japanese plan to launch Astro-E, designed to look at shorter wavelength X-rays:

13) MIT’s Astro-E homepage, http://acis.mit.edu/syseng/astroe/xis home.html

Taken together, this new generation of X-ray telescopes should tell us a lot about the
dynamics of the rapidly changing accretion disks of black holes, where infalling gas and
dust spirals in and heats up to the point of emitting X-rays. They may also help us better
understand the X-ray afterglow of γ-ray bursters. As you probably have heard, these
rascals make ordinary supernovae look like wet firecrackers! Some folks think they’re
caused when a supernova creates a black hole. But nobody is sure.

Peering further into the future, here’s a nice article about new projects people are
dreaming up to study physics using astronomy:

14) Robert Irion, Space becomes a physics lab, Science 286 (1999), 2060-2062.

In 2005 folks plan to launch GLAST, the Gamma-Ray Large Area Space Telescope,
designed to study γ-ray bursters and the like, and also the Alpha Magnetic Spectrometer,
designed to search for antimatter in space. But there are also a bunch of interesting
projects that are still basically just a twinkle in someone’s eye. . . .

For example: OWL, the Orbiting Wide-Angle Light Collector, a pair of satellites that
would trace the paths of super-high-energy cosmic rays through the earth’s atmosphere.
As I explained in “Week 81”, people have seen cosmic rays with ridiculously high ener-
gies, like 320 Eev — the energy of a 1-kilogram rock moving at 10 meters per second,
all packed into one particle. OWL would orbit the earth, watch these things, and figure
out where the heck they’re coming from.

Or how about this: The Dark Matter Telescope! This would use gravitational lensing
to chart the “dark matter” which seems to account for a good percentage of the mass in
the universe — if, of course, dark matter really exists.

15) Dark Matter Telescope homepage, http://dmtelescope.org

Anyway, there should be a lot of exciting experiments coming up. But as usual, the
really exciting stuff will be the stuff we can’t predict.
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Week 144

January 21, 2000

Since this is the first Week of the new millennium, I’d like to start with a peek into the
future. Not just the next hundred or thousand years, either — I’m sick of short-term
planning. No, I’d like to talk about the next few billion years.

As you’ve probably all heard, if we don’t do anything about it, the Sun will turn into
a red giant in about 5 billion years. If we get our act together, we should have plenty of
time to deal with this problem. But when planning for the far future, it’s dangerous to be
too parochial! Events outside our solar system can also affect us. For example, a nearby
supernova could be a real bummer. It wouldn’t be the first time: it seems that about
340,000 years ago there was one only 180 lightyears away. At this distance it would
have been as bright as a full moon, and its X-rays and γ-rays would have stripped off the
Earth’s ozone layer pretty badly for a while. A closer one could be a lot worse.

How we do know about this supernova? It’s an interesting story. We happen to live
in a region of space called the Local Bubble, about 300 lightyears across, in which the
interstellar gas is hotter and 5 to 10 times less dense than the surrounding stuff. People
wondered about the origin of this bubble until they studied a pulsar called Geminga
about 300 lightyears away from us. Pulsars are rapidly spinning neutron stars formed
by supernovae, and by studying their spin rate and the rate their spin is slowing down,
you can guess when they were formed. Geminga turns out to be about 340,000 years
old. It’s moving away from us at a known rate, so back then it would have been 180
lightyears away — in just about the right place for a supernova to have created a shock
wave forming the Local Bubble.

I don’t know the best place to read about the Local Bubble, but this sounds promising:

1) M. J. Freyberg and J. Trumper, eds., The Local Bubble and Beyond, proceedings of the
IAU Colloquium no. 166, Springer Lecture Notes in Physics 506, Springer-Verlag,
Berlin, 1998.

Looking further afield, we should also watch out for the health of the Milky Way as a
whole:

2) Robert Irion, “A crushing end for our galaxy”, Science 287 (2000), 62–64.

3) Roland Buser, “The formation and early evolution of the Milky Way galaxy”, Science
287 (2000), 69–74.

It now appears that the Milky Way, like most big spiral galaxies, was built up by
a gradual merger of smaller clouds of stars and gas. And it seems this process is not
finished. In 1994 people found a small galaxy orbiting the Milky Way, almost hidden
behind the dense dust clouds in the galactic center. Called the Sagittarius dwarf galaxy,
it is only about 1/1000th the mass of the Milky Way. Its eccentric orbit about our galaxy
is strewn with stars pulled away from it by tidal forces, and it may have already passed
through the outer parts of our galaxy’s disk several times. It may not survive the next
pass, due in about 750 million years.
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But that’s not all. The Large and Small Magellanic Clouds, visible to the naked eye in
the Southern Hemisphere, are also dwarf galaxies orbiting ours. They are considerably
larger than the Sagittarius dwarf galaxy. And they’re not just orbiting the Milky Way:
they are gradually spiralling in and getting torn apart. If nothing interrupts this process,
they’ll crash into our galaxy in about 10 billion years. When when this happens, the
shock waves from colliding gas should create enough new stars to make our galaxy
shine about 25% brighter for the next several hundred million years! This could prove
quite a nuisance in these parts.

But again, we should not make the mistake of parochialism: dangers from afar may
prove more urgent than those in our neighborhood. The dwarf galaxies near us are
nothing compared to Andromeda. This spiral galaxy is twice the size of ours, about 2.5
million light years away, and clearly visible from the Northern Hemisphere. Unfortu-
nately, it’s also heading towards us at a speed of 140 kilometers per second! As it comes
closer, gravitational attraction will speed it up, so it may hit our galaxy — or at least
come close — in only 3 billion years. If this happens, the two galaxies will first whiz
past or through each other, but then their gravitational attraction will pull them back
together, and after 1 or 2 billion more years they should coalesce into a single big ellip-
tical galaxy. Direct hits between individal stars are unlikely, but many existing stars will
be hurled out into intergalactic space, and many new stars will be born as gas clouds
collide.

You may think that I’m joking when I speak of planning ahead for such events, but
I’m not. We have plenty of time, so it’s not very urgent — but it’s not too soon to start
thinking about these things. And if you think it’s hopelessly beyond our powers to deal
with a collision of galaxies, please remember that 3 billion years ago we were single-
celled organisms. With any luck, our abilities 3 billion years from now should compare
to our present abilities as our present abilities compare to those of microorganisms! And
if life on Earth screws up and dies out, well, there are plenty of other planets out there.

By the way, while we’re discussing matters galactic, remember how last Week I said
that the X-ray telescope Chandra has recently started taking data? Well, the interesting
news is already coming in! For a long time people have wondered about the origin of
the “X-ray background radiation”: a diffuse X-ray glow that covers the whole sky. On
Thursday, astronomers using Chandra discovered that most of this radiation actually
comes from about 70 million individual point sources! Apparently, many of these are
supermassive black holes at the center of galaxies. There’s already a lot of evidence for
such black holes — which seem to power quasars and other active galactic nuclei — but
it’s delightful to find them in such large numbers. It might even be taken as evidence for
Smolin’s hypothesis that the universe is optimized for black hole production thanks to a
process of Darwinian evolution (see “Week 31” and “Week 33” for details.)

For more, try this:

4) “Chandra resolves cosmic X-ray glow and finds mysterious new sources”, press
release available online at http://chandra.harvard.edu/press/00 releases/

press 011400bg.html

You should also check out the Chandra website for nice new pictures of the black
holes at the center of the Milky Way and Andromeda.

Okay. . . I’ve been sort of goofing off in the last few Weeks, but now I want to return
to some hardcore mathematics. In particular, I want to talk about n-categories and
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homotopy theory, so I’m going to pick up “The Tale of n-Categories” roughly where I left
off in “Week 100”, and start connecting it to the little introduction to homotopy theory I
gave from “Week 115” to “Week 119”.

As I’ve said many times, the goal of n-category theory is to eliminate equations from
mathematics, or at least to be able to postpone pretending that isomorphisms are equa-
tions for as long as you like. I’ve repeatedly described the practical benefits of this, so I
won’t bother doing so again — I’ll assume you’re convinced of it!

To achieve this goal, an n-category is supposed to be some sort of algebraic structure
with objects, morphisms between objects, 2-morphisms between morphisms, and so on
up to and including n-morphisms, with various ways of composing all these guys. The
idea is then that we should never assert that two j-morphisms are equal except for j = n.
Instead, we should just specify an equivalence between them. An “equivalence” is a bit
like an isomorphism, but it’s defined recursively from the top down. An n-morphism is an
equivalence iff it’s an isomorphism, that is, iff it’s invertible. But for j < n, a j-morphism
is an equivalence if it’s invertible up to equivalence.

There are various competing definitions of n-category at present, but the key idea
behind all the definitions of weak n-category is that the ways of composing j-morphisms
should satisfy associativity and all the other usual laws only up to equivalence. For
example, suppose we have some morphisms a : w → x, b : w → y and c : y → z in a
1-category. Then associativity holds “on the nose”, i.e., as an equation:

a(bc) = (ab)c.

In a 1-category there is no opportunity for “weakening” this law. But in a weak 2-category,
associativity holds only up to equivalence. In other words, we have an invertible 2-
morphism called the “associator”

Aa,b,c : (ab)c⇒ a(bc)

taking the part of the above equation.
But there’s a catch: when we replace equational laws by equivalences this way, the

equivalences need to satisfy laws of their own, or it becomes impossible to work with
them. These laws are called “coherence laws”. For the associator, the necessary coher-
ence law is called the pentagon equation. It says that this diagram commutes:

(a(bc))d

((ab)c)d

(ab)(cd)

a(b(cd)) a((bc)d)

I haven’t labelled the double arrows here, but they are all 2-morphisms built from the
associator in obvious ways. . . obvious if you know about 2-categories, at least. The
pentagon equation says that the two basic ways of going from ((ab)c)d to a(b(cd)) by
rebracketing are equal to each other. But in fact, MacLane’s “coherence theorem” says
that given the pentagon equation, you can rebracket composites of arbitrarily many mor-
phisms using the associator over and over to your heart’s content, and you’ll never get
into trouble: all the ways of going from one bracketing to another are equal.
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In a weak 3-category, the pentagon equation is replaced by a 3-morphism called the
“pentagonator”. This in turn satisfies a new coherence law of its own, which I can’t
easily draw for you, because doing so requires a 3-dimensional diagram in the shape of
a polyhedron with 14 vertices, called the “associahedron”.

As you might fear, this process never stops: there’s an infinite list of “higher coherence
laws” for associativity, which can be represented as higher-dimensional associahedra.
They were discovered by James Stasheff around 1963. Here are the original papers:

5) James Stasheff, “Homotopy associativity of H-spaces I”, Trans. Amer. Math. Soc.
108 (1963), 275–292.

James Stasheff, “Homotopy associativity of H-spaces II”, Trans. Amer. Math. Soc. 108
(1963), 293–312.

Personally, I find his book a lot easier to read:

6) James Stasheff, H-spaces from a Homotopy Point of View, Springer Lecture Notes in
Mathematics 161, Springer-Verlag, New York, 1970.

There’s a wealth of interesting combinatorics lurking in the associahedra. To my
shame, I realize that I’ve never discussed this stuff, so I’d better say a bit about it. Then
next Week I’ll return to my real goal, which is to explain how you can use homotopy
theory to understand coherence laws. With any luck, I’ll get around to telling you all
sorts of wonderful stuff about Postnikov towers, the cohomology of Eilenberg-MacLane
spaces, and so on. We’ll see. So much math, so little time. . . .

Okay, here’s how you build an associahedron.
First I’ll describe the vertices, because they’re very simple: the correspond to all the

ways of bracketing a string of n letters. Well, that’s a bit vague, so I’ll do an example.
Suppose n = 4. Then we get 5 bracketings:

• ((ab)c)d

• (a(bc))d

• (ab)(cd)

• a((bc)d)

• a(b(cd))

These are exactly the vertices of the pentagon I drew earlier! And this how it always
works: the bracketings of n letters are the vertices of the (n− 2)-dimensional associahe-
dron. This should not be surprising, since associativity is all about bracketing.

More precisely, we’re interested in the bracketings of n letters that correspond to
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binary planar trees with n leaves. For example, when n = 4:

a b c d

((ab)c)d

a b c d

(a(bc))d

a b c d

(ab)(cd)

a b c d

a((bc)d)

a b c d

a(b(cd))

We can think of these trees as recording the process of multiplying n things, with time
marching down the page.

How many binary planar trees with n leaves are there, anyway? Well, the answer is
called the (n − 1)st Catalan number. These numbers were first discovered by Euler, but
they’re named after Eugene Catalan, who discovered their relation to binary trees. Here
they are, starting from the 0th one:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, . . .

The nth Catalan number is also the number of ways of taking a regular (n+ 2)-gon and
chopping it into triangles by connecting the vertices by line segments that don’t cross
each other. It’s also the number of ways of getting from a street corner in Manhattan
to another street corner that’s n blocks north and n blocks east, always driving north or
east, but making sure that at no stage have you gone a greater total distance north than
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east. Get it? No? Maybe a picture will help! When n = 3, there are 5 ways:
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I leave it as a puzzle for you to understand why all these things are counted by the
Catalan numbers. If you want to see nicer pictures of all these things, go here:

7) Robert M. Dickau, “Catalan numbers”, http://forum.swarthmore.edu/advanced/
robertd/catalan.html

For more problems whose answer involves the Catalan numbers, try this:

8) Kevin Brown, “The meanings of Catalan numbers”, http://www.seanet.com/~ksbrown/
kmath322.htm

To figure out a formula for the Catalan numbers, we can use the technique of gener-
ating functions:

9) Herbert Wilf, Generatingfunctionology, Academic Press, Boston, 1994. Also avail-
able for free at http://www.cis.upenn.edu/~wilf/
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Briefly, the idea is to make up a power series T (x) where the coefficient of xn is the
number of n-leaved binary trees. Since by some irritating accident of history people call
this the (n− 1)st Catalan number, we have:

T (x) =
∑
n∈N

Cn−1x
n

We can do this trick whenever we’re counting how many structures of some sort we can
put on an n-element set. Nice operations on structures correspond to nice operations on
formal power series. Using this correspondence we can figure out the function T and
then do a Taylor expansion to determine the Catalan numbers. Instead of explaining the
theory of how this all works, I’ll just demonstrate it as a kind of magic trick.

So: what is a binary tree? It’s either a binary tree with one leaf (the degenerate case)
or a pair of binary trees stuck together. Now let’s translate this fact into an equation:

T = x+ T 2

Huh? Well, in this game “plus” corresponds to “or”, “times” corresponds to “and”, and
the power series “x” is the generating function for binary trees with one leaf. So this
equation really just says “a binary tree equals a binary tree with one leaf or a binary tree
and a binary tree”.

Next, let’s solve this equation for T . It’s just a quadratic equation, so any high school
student can solve it:

T =
1−
√

1− 4x

2
.

Now if we do a Taylor expansion we get

T = x+ x2 + 2x3 + 5x4 + 14x5 + 42x6 + . . .

Lo and behold — the Catalan numbers! If we’re a bit smarter and use the binomial
theorem and mess around a bit, we get a closed-form formula for the Catalan numbers:

Cn =

(
2n
n

)
n+ 1

Neat, huh? If you want to understand the category-theoretic foundations of this trick,
read about Joyal’s concept of “species”. This makes precise the notion of a “structure you
can put on a finite set”. For more details, try:

10) Andre Joyal, “Une theorie combinatoire des series formelles”, Adv. Math. 42
(1981), 1–82.

11) F. Bergeron, G. Labelle, and P. Leroux, Combinatorial species and tree-like structures,
Cambridge, Cambridge U. Press, 1998.

Anyway, now we know how many vertices the associahedron has. But what about
all the higher-dimensional faces of the associahedron? There’s a lot to say about this,
but it’s basically pretty simple: all the faces of the (n − 2)-dimensional associahedron
correspond to planar trees with n leaves. It gets a little tricky to draw using ASCII, so
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I’ll just do the case n = 3. The 1-dimensional associahedron is the unit interval, and in
terms of trees it looks like this:

a b c a b c a b c

• •

Over at the left end of the interval we have the binary tree corresponding to first com-
posing a and b, and then composing the result with c. At the right end, we have the
binary tree corresponding to first composing b and c, and then composing the result with
a. In the middle we have a ternary tree that corresponds to simultaneously composing a,
b, and c.

Actually, we can think of any point in the (n − 2)-dimensional associahedron as an
n-leaved tree whose edges have certain specified lengths, so as you slide your finger
across the 1-dimensional associahedron above, you can imagine the left-hand tree con-
tinuously “morphing” into the right-hand one. In this way of thinking, each point of the
associahedron corresponds to a particular n-ary operation: a way of composing n things.
To make this precise one must use the theory of “operads”. The theory of operads is
really the royal road to understanding n-categories, coherence laws, and their relation
to homotopy theory. . . . But here, alas, I must stop.

Footnote — If you want to know more about the deep inner meaning of the Catalan
numbers, try this:

12) Richard P. Stanley, Enumerative Combinatorics, volume 2, Cambridge U. Press,
Cambridge, 1999, pp. 219-229.

It lists 66 different combinatorial interpretations of these numbers! As an exercise,
it urges you to prove that they all work, ideally by finding 4290 “simple and elegant”
bijections between the various sets being counted.

(Thanks go to my pal Bill Schmitt for mentioning this reference.)
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Week 145

February 9, 2000

I know I promised to talk about homotopy theory and n-categories, but I’ve gotten side-
tracked into thinking about projective planes, so I’ll talk about that this Week and go
back to the other stuff later. Sorry, but if I don’t talk about what intrigues me at the
instant I’m writing this stuff, I can’t get up the energy to write it.

So:
There are many kinds of geometry. After Euclidean geometry, one of the first to

become popular was projective geometry. Projective geometry is the geometry of per-
spective. If you draw a picture on a piece of paper and view it from a slant, distances
and angles in the picture will get messed up — but lines will still look like lines. This
kind of transformation is called a “projective transformation”. Projective geometry is the
study of those aspects of geometry that are preserved by projective transformations.

Interestingly, 2-dimensional projective geometry has some curious features that don’t
show up in higher dimensions. To explain this, I need to tell you about projective planes.

I talked a bit about projective planes in “Week 106”. The basic idea is to take the or-
dinary plane and add some points at infinity so that every pair of distinct lines intersects
in exactly one point. Lines that were parallel in the ordinary plane will intersect at one
of the points at infinity. This simplifies the axioms of projective geometry.

But what exactly do I mean by “the ordinary plane”? Well, ever since Descartes, most
people think of the plane as R2, which consists of ordered pairs of real numbers. But
algebraists also like to use C2, consisting of ordered pairs of complex numbers. For that
matter, you could take any field F — like the rational numbers, or the integers modulo a
prime — and use F2. Algebraic geometers call this sort of thing an “affine plane”.

A projective plane is a bit bigger than an affine plane. For this, start with the 3-
dimensional vector space F3. Then define the projective plane over F, denoted FP2, to
be the space of lines through the origin in F3. You can show the projective plane is the
same as the affine plane together with extra points, which play the role of “points at
infinity”.

In fact, you can generalize this a bit — you can make sense of the projective plane
over F whenever F is a division ring! A division ring is a like a field, but where multi-
plication isn’t necessarily commutative. The best example is the quaternions. In “Week
106” I talked about the real, complex and quaternionic projective planes, their symmetry
groups, and their relation to quantum mechanics. Here’s a good book about this stuff,
emphasizing the physics applications:

1) V. S. Varadarajan, Geometry of Quantum Mechanics, Springer-Verlag, Berlin, 2nd
ed., 1985.

So far, so good. But there’s another approach to projective planes that’s even more
general. This approach goes back to Euclidean geometry: it’s based on a list of axioms.
In this approach, a projective plane consists of a set of “points”, a set of “lines”, and a
relation which tells us whether or not a given point “lies on” a given line. I’m putting
quotes around all these words, because in this approach they are undefined terms. All
we get to work with are the following axioms:
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A) Given two distinct points, there exists a unique line that both points lie on.

B) Given two distinct lines, there exists a unique point that lies on both lines.

C) There exist four points, no three of which lie on the same line.

D) There exist four lines, no three of which have the same point lying on them.

Actually we can leave out either axiom C) or axiom D) — the rest of the axioms will
imply the one we leave out. It’s a nice little exercise to convince yourself of this. I put in
both axioms just to make it obvious that this definition of projective plane is “self-dual”.
In other words, if we switch the words “point” and “line” and switch who lies on who,
the definition stays the same!

Duality is one of the great charms of the theory of projective planes: whenever you
prove any theorem, you get another one free of charge with the roles of points and lines
switched, thanks to duality. There are lots of different kinds of “duality” in mathematics,
but this is probably the grand-daddy of them all.

Now, it’s easy to prove that starting from any division ring F, we get a projective
plane FP2 satisfying the above axioms. The fun part is to try to go the other way!
Starting from a structure satisfying the above axioms, can you cook up a division ring
that it comes from?

Well, starting from a projective plane, you can try to recover a division ring as follows.
Pick a line and throw out one point — and call that point “the point at infinity”. What’s
left is an “affine line” - let’s call it L. Let’s try to make L into a division ring. To do this,
we first need to pick two different points in L, which we call 0 and 1. Then we need to
cook up rules for adding and multiplying points on L.

For this, we use some tricks invented by the ancient Greeks!
This should not be surprising. After all, those dudes thought about arithmetic in very

geometrical ways. How can you add points on a line using the geometry of the plane?
Just ask any ancient Greek, and here’s what they’ll say:

First pick a line L′ that’s parallel to L — meaning that L and L′ intersect only at the
point at infinity. Then pick a line M that intersects L at the point 0 and L′ at some point
which we call 0′. We get a picture like this:

•
0

•
0′

M

L

L′
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Then, to add two points x and y on L, draw this picture:

•
0

•
0′

M

L

L′

•
x

N

•

•
y

•
z

M ′

N ′

In other words, draw a line M ′ parallel to M through the point y, draw a line N through
x and 0′, and draw a line N ′ parallel to N and going through the point where M ′ and
L′ intersect. L and N ′ intersect at the point called z. . . and we define this point to be
x+ y!

This is obviously the right thing, because the two triangles in the picture are congru-
ent.

What about multiplication? Well, first draw a line L′ that intersects our line L only
at the point 0. Then draw a line M from the point 1 to some point 1′ that’s on L′ but not
on L:

L

L′

M

•
0

•
1

•
1′

Then, to multiply x and y, draw this picture:

L

L′

M M ′

•

N

•x

N ′

•z•
0

•
1

•
y

•1′

In other words, draw a line N though 1′ and x, draw a line M ′ parallel to M through the
point y, and draw a line N ′ parallel to N through the point where L′ and M ′ intersect.
L and N ′ intersect at the point called z. . . and we define this point to be xy!
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This is obviously the right thing, because the triangle containing the points 1 and x
is similar to the triangle containing y and z.

So, now that we’ve cleverly figured out how to define addition and multiplication
starting from a projective plane, we can ask: do we get a division ring?

And the answer is: not necessarily. It’s only true if our projective plane is “Desargue-
sian”. This is a special property named after an old theorem about the real projective
plane, proved by Desargues. A projective plane is Desarguesian if Desargues’ theorem
holds for this plane.

But wait — there’s an even more basic question we forgot to ask! Namely: was our
ancient Greek method of defining addition and multiplication independent of the choices
we made? We needed to pick some points and lines to get things going. If you think
about it hard, these choices boil down to picking four points, no three of which lie on a
line — exactly what axiom C) guarantees we can do.

Alas, it turns out that in general our recipe for addition and multiplication really
depends on how we chose these four points. But if our projective plane is Desarguesian,
it does not!

In fact, if we stick to Desarguesian projective planes, everything works very smoothly.
For any division ring F the projective plane FP2 is Desarguesian. Conversely, starting
with a Desarguesian projective plane, we can use the ancient Greek method to cook up
a division ring F. Best of all, these two constructions are inverse to each other — at least
up to isomorphism.

At this point you should be pounding your desk and yelling “Great — but what does
‘Desarguesian’ mean? I want the nitty-gritty details!”

Okay. . . .
Given a projective plane, define a “triangle” to be three points that don’t lie on the

same line. Now suppose you have two triangles xyz and x′y′z′. The sides of each triangle
determine three lines, say LMN and L′M ′N ′. If we’re really lucky, the line through x
and x′, the line through y and y′, and the line through z and z′ will all intersect at the
same point. We say that our projective plane is “Desarguesian” if whenever this happens,
something else happens: the intersection of L and L′, the intersection of M and M ′, and
the intersection of N and N ′ all lie on the same line.

If you have trouble visualizing what I just said, take a look at this webpage, which
also gives a proof of Desargues’ theorem for the real projective plane:

2) Roger Mohr and Bill Trigs, “Desargues’ Theorem”, http://spigot.anu.edu.au/
people/samer/Research/Doc/ECV Tut Proj Geom/node25.html

Desargues’ theorem is a bit complicated, but one cool thing is that its converse is its
dual. This is easy to see if you stare at it: “three lines intersecting at the same point”
is dual to “three points lying on the the same line”. Even cooler, Desargues’ theorem
implies its own converse! Thus the property of being Desarguesian is self-dual.

Another nice fact about Desarguesian planes concerns collineations. A “collineation”
is a map from a projective plane to itself that preserves all lines. Collineations form a
group, and this group acts on the set of all “quadrangles” — a quadrangle being a list of
four points, no three of which lie on a line. Axiom C) says that every projective plane has
at least one quadrangle. It turns out that if a projective plane is Desarguesian, the group
of collineations acts transitively on the set of quadrangles: given any two quadrangles,
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there’s a collineation carrying one to the other. This is the reason why the ancient Greek
trick for adding and multiplying doesn’t depend on the choice of quadrangle when our
projective plane is Desarguesian!

An even more beautiful fact about Desarguesian planes concerns their relation to
higher dimensions. Just as we defined projective planes through a list of axioms, we
can also define projective spaces of any dimension n = 1, 2, 3, . . .. The simplest example
is FPn — the space of lines through the origin in Fn+1, where F is some division ring.
The neat part is that when n > 2, this is the only example. Moreover, any projective
plane sittting inside one of these higher-dimensional projective spaces is automatically
Desarguesian! So the non-Desarguesian projective planes are really freaks of dimension
2.

All this is very nice. But there are some obvious further questions, namely: what’s
special about projective planes that actually come from fields, and what can we say about
non-Desarguesian projective planes?

The key to the first question is an old theorem proved by the last of the great Greek
geometers, Pappus, in the 3rd century CE. It turns out that in any projective plane coming
from a field, the Pappus Theorem holds. Conversely, any projective plane satisfying the
Pappus Theorem comes from a unique field. We call such projective planes “Pappian”.

The Pappus theorem will be too scary if I explain it using only words, so I’ll tell you
to look at a picture instead. The fun thing about this picture is that you can move the
red and green points around with your mouse and see how things change:

3) Pappus’ theorem (a JavaSketchPad demo by MathsNet), http://www.anglia.co.
uk/education/mathsnet/dynamic/pappus.html

Now, what about the non-Desarguesian projective planes? If we try to get a division
ring from an arbitrary projective plane, we fail miserably. However, we can still define
addition and multiplication using the tricks described above. These operations depend
crucially our choice of a quadrangle. But if we list all the axioms these operations satisfy,
we get the definition of an algebraic gadget called a “ternary ring”.

They’re called “ternary rings” because they’re usually described in terms of a ternary
operation that generalizes xy+z. But the precise definition is too depressing for me give
here. It’s a classic example of what James Dolan calls “centipede mathematics”, where
you take a mathematical concept and see how many legs you can pull off before it can
no longer walk. A ternary ring is like a division ring that can just barely limp along on
its last legs.

I’m not a big fan of centipede mathematics, but there is one really nice example of a
ternary ring that isn’t a division ring. Namely, the octonions! These are almost a division
ring, but their multiplication isn’t associative.

I already talked about the octonions in “Week 59”, “Week 61”, “Week 104” and “Week
105”. In “Week 106”, I explained how you can define OP2, the projective plane over the
octonions. This is the best example of a non-Desarguesian projective plane. One reason
it’s so great is that that its group of collineations is E6. E6 is one of the five “exceptional
simple Lie groups” — mysterious and exciting things that deserve all the study they can
get!

Next I want to talk about the relation between projective geometry and the other
exceptional Lie groups, but first let me give you some references. To start, here’s a great
book on projective planes and all the curious centipede mathematics they inspire:
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4) Frederick W. Stevenson, Projective Planes, W. H. Freeman and Company, San Fran-
cisco, 1972.

You’ll learn all about nearfields, quasifields, Moufang loops, Cartesian groups, and so
on.

Much of the same material is covered in these lectures by Hall, which are unfortu-
nately a bit hard to find:

5) Marshall Hall, Projective Planes and Other Topics, California Institute of Technology,
Pasadena, 1954.

For a more distilled introduction to the same stuff, try the last chapter of Hall’s book
on group theory:

6) Marshall Hall, The Theory of Groups, Macmillan, New York, 1959.

If you’re only interested in Desarguesian projective planes, try this:

7) Robin Hartshorne, Foundations of Projective Geometry, Benjamin, New York, 1967.

In particular, this book gives a nice account of the collineation group in the Desargue-
sian case. The punchline is simple to state, so I’ll tell you. Suppose F is a division ring.
Then the collineation group of FP2 is generated by two obvious subgroups: PGL(3,F)
and the automorphism group of F. The intersection of these two subgroups is the group
of inner automorphisms of F.

If the above references are too intense, try this leisurely, literate introduction to the
subject first:

8) Daniel Pedoe, An Introduction to Projective Geometry, Macmillan, New York, 1963.

And you’re really interested in the finite projective planes, you can try this reference,
which assumes very little knowledge of algebra:

9) A. Adrian Albert and Reuben Sandler, An Introduction to Finite Projective Planes,
Holt, Rinehart and Winston, New York, 1968.

For a nice online introduction to projective geometry over the real numbers and its
applications to image analysis, try this:

10) Roger Mohr and Bill Triggs, “Projective geometry for image analysis”, http://

spigot.anu.edu.au/people/samer/Research/Doc/ECV Tut Proj Geom/node1.html

Finally, for interesting relations between projective geometry and exceptional Lie
groups, try this:

11) J. M. Landsberg and L. Manivel, “The projective geometry of Freudenthal’s magic
square”, preprint available as math.AG/9908039.
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The Freudenthal-Tits magic square is a strange way of describing most of the ex-
ceptional Lie groups in terms of the real numbers, complex numbers, quaternions and
octonions. In the usual way of describing it, you start with two of these division algebras,
say F and F′. Then let J(F) be the space of 3 × 3 self-adjoint matrices with coefficients
in F. This is a Jordan algebra with the product xy + yx. As mentioned in “Week 106”,
Jordan algebras have a lot to do with projective planes. In particular, the nontrivial pro-
jections in J(F) correspond to the 1- and 2-dimensional subspaces of F3, and thus to the
points and lines in the projective plane FP2.

Next, let J0(F) be the subspace of J(F) consisting of the traceless self-adjoint matrices.
Also, let =(F′) be the space of pure imaginary element of F′. Finally, let the magic Lie
algebra M(F,F′) be given by

M(K,K ′) = Der(J(K))⊕ J0(K)⊗=(K ′)⊕Der(K ′)

Here ⊕ stands for direct sum, ⊗ stands for tensor product, and Der stands for the space
of derivations of the algebra in question. It’s actually sort of tricky to describe how to
make M(F,F′) into a Lie algebra, and I’m sort of tired, so I’ll wimp out and tell you to
read this stuff:

12) Hans Freudenthal, “Lie groups in the foundations of geometry”, Adv. Math. 1
(1964) 143.

13) Jacques Tits, “Algebres alternatives, algebres de Jordan et algebres de Lie excep-
tionelles”, Proc. Colloq. Utrecht, vol. 135, 1962.

14) R. D. Schafer, Introduction to Non-associative Algebras, Academic Press, 1966.

By the way, the paper by Freudenthal is a really mind-bending mix of Lie theory and
axiomatic projective geometry, definitely worth looking at. Anyway, if you do things right
you get the following square of Lie algebras M(F,F′):

F = R F = C F = H F = O

F′ = R A1 A2 C3 F4

F′ = C A2 A2 ⊕A2 A5 E6

F′ = H C3 A5 B6 E7

F′ = O F4 E6 E7 E8

Here R, C, H and O stand for the reals, complexes, quaternions and octonions. If you
don’t know what all the Lie algebras in the square are, check out “Week 64”. (I should
admit that the above square is not very precise, because I don’t say which real forms of
the Lie algebras in question are showing up.)

The first fun thing about this square is that F4, E6, E7 and E8 are four of the five
exceptional simple Lie algebras — and the fifth one, G2, is just Der(O). So all the
exceptional Lie algebras are related to the octonions! And the second fun thing about
this square is that it’s symmetrical along the diagonal, even though this is not at all
obvious from the definition. This is what makes the square truly “magic”.

I don’t really understand the magic square, but it’s on my to-do list. That’s one reason
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I’m glad there’s a new paper out that describes the magic square in a way that makes its
symmetry manifest:

15) C. H. Barton and A. Sudbery, “Magic squares of Lie algebras”, preprint available as
math.RA/0001083.

It also generalizes the magic square in a number of directions. But what I really want
is for the connection between projective planes, division algebras, exceptional Lie groups
and the magic square to becomes truly obvious to me. I’m a long way from that point.

Here’s an interesting email from David Broadhurst about the failure of the Pappus
theorem in quaternionic projective space:

Date: Fri, 3 Mar 2000 20:50:03 GMT

From: D.Broadhurst@open.ac.uk (David Broadhurst)

Subject: Paul Dirac and projective geometry

John:

Shortly before his death I spent a charming afternoon with Paul Dirac.

Contrary to his reputation, he was most forthcoming.

Among many things, I recall this: Dirac explained that while trained

as an engineer and known as a physicist, his aesthetics were mathematical.

He said (as I can best recall, nearly 20 years on): At a young age,

I fell in love with projective geometry. I always wanted to use to use

it in physics, but never found a place for it.

Then someone told him that the difference between complex and quaternionic

QM had been characterized as the failure of theorem in classical projective

geometry.

Dirac’s face beamed a lovely smile: "Ah," he said, "it was just such a thing

that I hoped to do".

I was reminded of this when backtracking to your ["Week 106"](#week106), today.

Best,

David

The reader should not attempt to form a mental picture of a closed straight line. —
Frank Ayres, Jr., Projective Geometry
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Week 146

March 11, 2000

Paper in white the floor of the room, and rule it off in one- foot squares. Down
on one’s hands and knees, write in the first square a set of equations conceived as
able to govern the physics of the universe. Think more overnight. Next day put
a better set of equations into square two. Invite one’s most respected colleagues
to contribue to other squares. At the end of these labors, one has worked oneself
out into the doorway. Stand up, look back on all those equations, some perhaps
more hopeful than others, raise one’s finger commandingly, and give the order
“Fly!” Not one of those equations will put on wings, take off, or fly. Yet the
universe “flies”.

Some principle uniquely right and compelling must, when one knows it, be also
so compelling that it is clear the universe is built, and must be built, in such and
such a way, and that it could not be otherwise. But how can one disover that
principle?

John Wheeler was undoubtedly the author of these words, which appear near the
end of Misner, Thorne and Wheeler’s textbook “Gravitation”, published in 1972. Since
then, more people than ever before in the history of the world have tried their best to
find this uniquely compelling principle. A lot of interesting ideas, but no success yet.

But what if Wheeler was wrong? What if there is not a uniquely compelling prin-
ciple or set of equations that governs our universe? For example, what if all equations
govern universes? In other words, what if all mathematical structures have just as much
“physical existence” (whatever that means!) as those describing our universe do? Many
of them will not contain patterns we could call awareness or intelligence, but some will,
and these would be “seen from within” as “universes” by their inhabitants. In this sce-
nario, there’s nothing special about our universe except that we happen to be in this
one.

In other words: what if there is ultimately no difference between mathematical pos-
sibility and physical existence? This may seem crazy, but personally I believe that most
alternatives, when carefully pondered, turn out to be even more crazy.

Of course, it’s fun to think about such ideas and difficult to get anywhere with them.
But tonight when I was nosing around the web, I found out that someone has already
developed and published this idea:

1) Max Tegmark, ‘Is the “theory of everything” merely the ultimate ensemble theory?’,
Ann. Phys. 270 (1998), 1–51, preprint available as gr-qc/9704009.

Max Tegmark, “Which mathematical structure is isomorphic to the universe?”,
http://www.hep.upenn.edu/~max/toe.html

2) Marcus Chown, “Anything goes”, New Scientist 158 (1998) 26–30, also available at
http://www.hep.upenn.edu/~max/toe press.html

As far as I can tell, most of the time Max Tegmark is a perfectly respectable physi-
cist at the University of Pennsylvania; he works on the cosmic microwave background
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radiation, the large-scale structure of the universe (superclusters and the like), and type
1A supernovae. But he has written a fascinating paper on the above hypothesis, which I
urge you to read. It’s less far-out than you may think.

Okay, now on to quantum gravity. Jan Ambjorn and Renate Loll have teamed up
to work on discrete models of spacetime geometry, with an emphasis on the Lorentzian
geometry of triangulated manifolds. Much more has been done over on the Riemannian
side of things, so it’s high time to focus more energy on the physically realistic Lorentzian
case. Of course, if the metric is fixed you can often use a trick called “Wick rotation”
to turn results about quantum field theory on Riemannian spacetime into results for
Lorentzian spacetime. But it’s never been clear that this works when the geometry of
spacetime is a variable — and quantized, for that matter. So we need both more work
on Wick rotation in this context and also work that goes straight for the jugular: the
Lorentzian context.

Here are some of their papers:

4) J. Ambjorn, J. Correia, C. Kristjansen, and R. Loll, “On the relation between Eu-
clidean and Lorentzian 2d quantum gravity”, preprint avilable as hep-th/9912267.

J. Ambjorn, J. Jurkiewicz and R. Loll, “Lorentzian and Euclidean quantum gravity
— analytical and numerical results”, preprint available as hep-th/0001124.

J. Ambjorn, J. Jurkiewicz and R. Loll, “A non-perturbative Lorentzian path integral
for gravity”, preprint avilable as hep-th/0002050.

The last paper is especially interesting to me, since it tackles the problem of defining
a path integral for 3+1-dimensional Lorentzian quantum gravity. They describe a path
integral where you first slice spacetime like a salami using surfaces of constant time,
and then pack each slice with simplices having edges with specified lengths — the edges
being spacelike within each surface, and timelike when they go from one surface to the
next. They allow the number of simplices in each slice to be variable. Actually they focus
on the 2+1-dimensional case, but they say the 3+1-dimensional case works similarly,
and I actually trust them enough to believe them about this — especially since nothing
they do relies on the fact that 2+1-dimensional gravity lacks local degrees of freedom.
They can Wick-rotate this picture and get a time evolution operator that’s self-adjoint
and positive, just like you’d expect of an operator of the form exp(−tH).

Speaking of Wick rotations in quantum gravity, here’s another paper to think about:

5) Abhay Ashtekar, Donald Marolf, Jose Mourao and Thomas Thiemann, “Osterwalder-
Schrader reconstruction and diffeomorphism invariance”, preprint available as quant-ph/
9904094.

The Osterwalder-Shrader theorem is the result people use when they want to rigor-
ously justify Wick rotations. Here these authors generalize it so that it applies to a large
class of background-free field theories — perhaps even quantum gravity! It turns out not
to be hard, once you go about it properly. Quite a surprise.

I’ve been working with Ashtekar and Krasnov for a couple of years now on computing
the entropy of black holes using loop quantum gravity. I talked about this in “Week
112”, right after we came out with a short paper sketching the calculation. Now we’re
almost done with the detailed paper. In the meantime, Ashtekar has written a couple of
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pedagogical accounts explaining the basic idea. I mentioned one he wrote with Krasnov
in “Week 120”, and here’s another:

6) Abhay Ashtekar, “Interface of general relativity, quantum physics and statistical
mechanics: some recent developments”, to appear in Annalen der Physik, preprint
available as gr-qc/9910101.

Let me just quote the abstract — I can’t bear to talk about this any more until the
actual paper is finished:

The arena normally used in black holes thermodynamics was recently gener-
alized to incorporate a broad class of physically interesting situations. The key
idea is to replace the notion of stationary event horizons by that of ‘isolated hori-
zons.’ Unlike event horizons, isolated horizons can be located in a space-time
quasi-locally. Furthermore, they need not be Killing horizons. In particular, a
space-time representing a black hole which is itself in equilibrium, but whose ex-
terior contains radiation, admits an isolated horizon. In spite of this generality,
the zeroth and first laws of black hole mechanics extend to isolated horizons.
Furthermore, by carrying out a systematic, non-perturbative quantization, one
can explore the quantum geometry of isolated horizons and account for their
entropy from statistical mechanical considerations. After a general introduction
to black hole thermodynamics as a whole, these recent developments are briefly
summarized.

There have also been a number of papers working out the details of the classical
notion of “isolated horizon” — I’ve mentioned some already, but let me just list them all
here:

7) Abhay Ashtekar, Alejandro Corichi, and Kirill Krasnov, “Isolated horizons: the clas-
sical phase space”, preprint available as gr-qc/9905089.

Abhay Ashtekar, Christopher Beetle, and Stephen Fairhurst, “Mechanics of isolated
horizons”, Class. Quant. Grav. 17 (2000) 253–298, preprint available as gr-qc/

9907068.

Abhay Ashtekar and Alejandro Corichi, “Laws governing isolated horizons: inclu-
sion of dilaton couplings”, preprint available as gr-qc/9910068.

Jerzy Lewandowski, “Space-times admitting isolated horizons”, preprint available
as gr-qc/9907058.

Lewandowski’s paper is important because it gets serious about studying rotating
isolated horizons — this makes me feel a lot more optimistic that we’ll eventually be
able to extend the entropy calculation to rotating black holes (so far it’s just done for the
nonrotating case).

Okay, now let me turn my attention to spin foams. Last month, Reisenberger and
Rovelli came out with a couple of papers that push forward the general picture of spin
foams as Feynman diagrams, generalizing the old work of Boulatov and Ooguri, and the
newer work of De Pietri et al. Again, I’ll just quote the abstracts. . . .
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8) Michael Reisenberger and Carlo Rovelli, “Spin foams as Feynman diagrams”, preprint
available as gr-qc/0002083.

It has been recently shown that a certain non-topological spin foam model can
be obtained from the Feynman expansion of a field theory over a group. The
field theory defines a natural “sum over triangulations”, which removes the
cutoff on the number of degrees of freedom and restores full covariance. The
resulting formulation is completely background independent: spacetime emerges
as a Feynman diagram, as it did in the old two-dimensional matrix models. We
show here that any spin foam model can be obtained from a field theory in this
manner. We give the explicit form of the field theory action for an arbitrary spin
foam model. In this way, any model can be naturally extended to a sum over
triangulations. More precisely, it is extended to a sum over 2-complexes.

9) Michael Reisenberger and Carlo Rovelli, “Spacetime as a Feynman diagram: the
connection formulation”, preprint available as gr-qc/0002095.

Spin foam models are the path integral counterparts to loop quantized canoni-
cal theories. In the last few years several spin foam models of gravity have been
proposed, most of which live on finite simplicial lattice spacetime. The lattice
truncates the presumably infinite set of gravitational degrees of freedom down
to a finite set. Models that can accomodate an infinite set of degrees of freedom
and that are independent of any background simplicial structure, or indeed any
a priori spacetime topology, can be obtained from the lattice models by summing
them over all lattice spacetimes. Here we show that this sum can be realized as
the sum over Feynman diagrams of a quantum field theory living on a suit-
able group manifold, with each Feynman diagram defining a particular lattice
spacetime. We give an explicit formula for the action of the field theory corre-
sponding to any given spin foam model in a wide class which includes several
gravity models. Such a field theory was recently found for a particular grav-
ity model [De Pietri et al, hep-th/9907154]. Our work generalizes this result
as well as Boulatov’s and Ooguri’s models of three and four dimensional topo-
logical field theories, and ultimately the old matrix models of two dimensional
systems with dynamical topology. A first version of our result has appeared in a
companion paper [gr-qc/0002083]: here we present a new and more detailed
derivation based on the connection formulation of the spin foam models.

I’m completely biased, but I think this is the way to go in quantum gravity. . . we
need to think more about the Lorentzian side of things, like Barrett and Crane have been
doing, but these spin foam models are so darn simple and elegant I can’t help but think
there’s something right about them — especially when you see the sum over triangula-
tions pop out automatically from the Feynman diagram expansion of the relevant path
integral.

There’s also been some good work on the relation between canonical quantum grav-
ity and Vassiliev invariants. The idea is to use this class of knot invariants as a basis
for a Hilbert space of diffeomorphism- invariant states — a tempting alternative to the
Hilbert space having spin networks as a basis. Maybe everything will start making sense
when we see how these two choices fit together. But anyway, these papers tackle the
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crucial issue of the Hamiltonian constraint using this Vassiliev approach, and get results
startlingly similar to those obtained by Thiemann using the spin network approach:

10) Cayetano Di Bartolo, Rodolfo Gambini, Jorge Griego, and Jorge Pullin, “Consistent
canonical quantization of general relativity in the space of Vassiliev invariants”,
preprint available as gr-qc/9909063.

“Canonical quantum gravity in the Vassiliev invariants arena: I. Kinematical struc-
ture”, preprint available as gr-qc/9911009.

“Canonical quantum gravity in the Vassiliev invariants arena: II. Constraints, habi-
tats and consistency of the constraint algebra”, preprint available as gr-qc/9911010.

Finally, Martin Bojowald has written a couple of papers applying the loop approach
to quantum cosmology. The idea is to apply loop quantization to a “minisuperspace” — a
phase space describing only those solutions of general relativity that have a certain large
symmetry group.

11) Martin Bojowald, “Loop Quantum Cosmology I: Kinematics”, preprint available as
gr-qc/9910103.

Martin Bojowald, “Loop Quantum Cosmology II: Volume Operators”, gr-qc/9910104.
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Week 147

May 20, 2000

Various books are coming out to commemorate the millennium. . . . describing the high-
lights of the math we’ve done so far, and laying out grand dreams for the future. The
American Mathematical Society has come out with one:

1) Mathematics: Frontiers and Perspectives, edited by Vladimir Arnold, Michael Atiyah,
Peter Lax and Barry Mazur, AMS, Providence, Rhode Island, 2000.

This contains 30 articles by bigshots like Chern, Connes, Donaldson, Jones, Lions,
Manin, Mumford, Penrose, Smale, Vafa, Wiles and Witten. I haven’t actually read it yet,
but I want to get ahold of it.

Springer Verlag is coming out with one, too:

2) Mathematics Unlimited: 2001 and Beyond, edited by Bjorn Engquist and Wilfried
Schmid, Springer Verlag, New York, 2000.

It should appear in the fall.
I don’t know what the physicists are doing along these lines. The American Physical

Society has a nice timeline of 20th century physics on their website:

3) The American Physical Society: “A Century of Physics”, available at http://timeline.
aps.org/APS/home HighRes.html

But I don’t see anything about books.
One reason I haven’t been doing many This Week’s Finds lately is that I’ve been

buying and then moving into a new house. Another is that James Dolan and I have been
busily writing our own millennial pontifications, which will appear in the Springer-Verlag
book:

4) John Baez and James Dolan, From finite sets to Feynman diagrams, preprint avail-
able as math.QA/0004133

So let me talk about this stuff a bit. . . .
As usual, the underlying theme of this paper is categorification. I’ve talked about

this a lot already — e.g. in “Week 121” — so I’ll assume you remember that when we
categorify, we use this analogy:

Set theory Category theory

elements objects
equations between elements isomorphisms between objects
sets categories
functions functors
equations between functions natural isomorphisms between functors
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to take interesting equations and see them as shorthand for even more interesting
isomorphisms.

To take a simple example, consider the laws of basic arithmetic, like a+ b = b+ a or
a(b+ c) = ab+ ac. We usually think of these as equations between elements of the set of
natural numbers. But really they arise from isomorphisms between objects of the category
of finite sets.

For example, if we have finite sets a and b, and we use a + b to denote their disjoint
union, then there is a natural isomorphism between a + b and b + a. Moreover, this
isomorphism is even sort of interesting! For example, suppose we use 1 to denote a set
consisting of one dot, and 2 to denote a set of two dots. Then the natural isomorphism
between 1 + 2 and 2 + 1 can be visualized as the process of passing one dot past two, like
this:

• • •

• • •

This may seem like an excessively detailed “picture proof” that 1+2 indeed equals 2+1,
perhaps suitable for not-too-bright kindergarteners. But in fact it’s just a hop, skip and a
jump from here to heavy-duty stuff like the homotopy groups of spheres. I sketched how
this works in “Week 102” so I won’t do so again here. The point is, after we categorify,
elementary math turns out to be pretty powerful!

Now, let me make this idea of “categorifying the natural numbers” a bit more precise.
Let FinSet stand for the category whose objects are finite sets and whose morphisms
are functions between these. If we “decategorify” this category by forming the set of
isomorphism classes of objects, we get N, the natural numbers.

All the basic arithmetic operations on N come from operations on FinSet. I’ve al-
ready noted how addition comes from disjoint union. Disjoint union is a special case
of what category theorists call the “coproduct”, which makes sense for a bunch of cate-
gories — see “Week 99” for the general definition. Similarly, multiplication comes from
the Cartesian product of finite sets, which is a special case of what category theorists
call the “product”. To get the definition of a product, you just take the definition of a
coproduct and turn all the arrows around. There are also nice category-theoretic inter-
pretations of the numbers 0 and 1, and all the basic laws of addition and multiplication.
Exponentiation too!

Combinatorists have lots of fun thinking about how to take equations in N and prove
them using explicit isomorphisms in FinSet — they call such a proof a “bijective proof”.
To read more about this, try:

5) James Propp and David Feldman, “Producing new bijections from old”, Adv. Math.
113 (1995), 1–44. Also available at http://www.math.wisc.edu/~propp/articles.
html
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6) John Conway and Peter Doyle, “Division by three”. Available at http://math.

dartmouth.edu/~doyle/docs/three/

The latter article studies this question: if I give you an isomorphism between 3x and
3y, can you construct a isomorphism between x and y? Here of course x and y are finite
sets, 3 is any 3-element set, and multiplication means Cartesian product. Of course you
can prove an isomorphism exists, but can you construct one in a natural way — i.e.,
without making any random choices? The history of this puzzle turns out to be very
interesting. But I don’t want to give away the answer! See if you can do it or not.

Anyway, having categorified the natural numbers, we might be inclined to go on and
categorify the integers. Can we do it? In other words: can we find something like the
category of finite sets that includes “sets with a negative number of elements”? There
turns out be an interesting literature on this subject:

7) Daniel Loeb, “Sets with a negative number of elements”, Adv. Math. 91 (1992),
64–74.

8) S. Schanuel, Negative sets have Euler characteristic and dimension, Lecture Notes in
Mathematics 1488, Springer Verlag, Berlin, 1991, pp. 379–385.

9) James Propp, “Exponentiation and Euler measure”, available as math.CO/0204009.

10) Andre Joyal, “Regle des signes en algebre combinatoire”, Comptes Rendus Mathe-
matiques de l’Academie des Sciences, La Societe Royale du Canada, VII (1985), 285–
290.

See also “Week 102” for more. . . .
But I don’t want to talk about negative sets right now! Instead, I want to talk about

fractional sets. It may seem odd to tackle division before subtraction, but historically,
the negative numbers were invented quite a bit after the nonnegative rational numbers.
Apparently half an apple is easier to understand than a negative apple! This suggests that
perhaps ‘sets with fractional cardinality’ are simpler than ‘sets with negative cardinality’.

The key is to think carefully about the meaning of division. The usual way to get half
an apple is to chop one into “two equal parts”. Of course, the parts are actually NOT
EQUAL — if they were, there would be only one part! They are merely ISOMORPHIC.
This suggests that categorification will be handy.

Indeed, what we really have is a Z/2 symmetry group acting on the apple which
interchanges the two isomorphic parts. In general, if a group G acts on a set S, we can
“divide” the set by the group by taking the quotient S/G, whose points are the orbits
of the action. If S and G are finite and G acts freely on S, this construction really
corresponds to division, since the cardinality |S/G| is equal to |S|/|G|. However, it is
crucial that the action be free.

For example, why is 6/2 = 3? We can take a set S consisting of six dots in a row:

• • • • • •

let G = Z/2 act freely by reflections, and identify all the elements in each orbit to
obtain 3-element set S/G. Pictorially, this amounts to folding the set S in half, so it is
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not surprising that |S/G| = |S|/|G| in this case. Unfortunately, if we try a similar trick
starting with a 5-element set:

• • • • •
it fails miserably! We don’t obtain a set with 2.5 elements, because the group action is
not free: the point in the middle gets mapped to itself. So to define “sets with fractional
cardinality”, we need a way to count the point in the middle as “half a point”.

To do this, we should first find a better way to define the quotient of S by G when the
action fails to be free. Following the policy of replacing equations by isomorphisms, let
us define the “weak quotient” S//G to be the category with elements of S as its objects,
with a morphism g : s → s′ whenever g(s) = s′, and with composition of morphisms
defined in the obvious way.

Next, let us figure out a good way to define the “cardinality” of a category. Ponder-
ing the examples above leads us to the following recipe: for each isomorphism class of
objects we pick a representative x and compute the reciprocal of the number of auto-
morphisms of this object; then we sum over isomorphism classes.

It is easy to see that with this definition, the point in the middle of the previous
picture gets counted as ‘half a point’ because it has two automorphisms, so we get a
category with cardinality 2.5. In general,

|S//G| = |S|/|G|

whenever G is a finite group acting on a finite set S. This formula is a simplified version
of ‘Burnside’s lemma’, so-called because it is due to Cauchy and Frobenius. Burnside’s
lemma gives the cardinality of the ordinary quotient. But the weak quotient is nicer, so
Burnside’s lemma simplifies when we use weak quotients.

Now, the formula for the cardinality of a category makes sense even for some cate-
gories that have infinitely many objects — all we need is for the sum to make sense. So
let’s try to compute the cardinality of the category of finite sets! Since any n-element set
has n! automorphisms (i.e. permutations), we get following marvelous formula:

|FinSet| = e

This turns out to explain lots of things about the number e.
Now, a category all of whose morphisms are isomorphisms is called a “groupoid”.

Any category C has an underlying groupoid C0 with the same objects but only the iso-
morphisms as morphisms. The cardinality of a category C always equals that of its un-
derlying groupoid C0. This suggests that this notion should really be called ”groupoid
cardinality. If you’re a fan of n-categories, this suggests that we should generalize the
concept of cardinality to n-groupoids, or even ω-groupoids. And luckily, we don’t need
to understand ω-groupoids very well to try our hand at this! ω-groupoids are supposed
to be an algebraic way of thinking about topological spaces up to homotopy. Thus we
just need to invent a concept of the ‘cardinality’ of a topological space which has nice
formal properties and which agrees with the groupoid cardinality in the case of homo-
topy 1-types. In fact, this is not hard to do. We just need to use the homotopy groups
πk(X) of the space X.

So: let’s define the “homotopy cardinality” of a topological space X to be the alter-
nating product

|X| = |π1(X)|−1 · |π2(X)| · |π3(X)|−1 · . . .

315



WEEK 147 MAY 20, 2000

when X is connected and the product converges; if X is not connected, let’s define
its homotopy cardinality to be the sum of the homotopy cardinalities of its connected
components, when the sum converges. We call spaces with well-defined homotopy car-
dinality “tame”. The disjoint union or Cartesian product of tame spaces is again tame,
and we have

|X + Y | = |X|+ |Y |,
|X × Y | = |X| × |Y |

just as you would hope.
Even better, homotopy cardinality gets along well with fibrations, which we can think

of as ‘twisted products’ of spaces. Namely, if

F → X → B

is a fibration and the base space B is connected, we have

|X| = |F | × |B|

whenever two of the three spaces in question are tame (which implies the tameness of
the third).

As a fun application of this fact, recall that any topological group G has a “classifying
space” BG, meaning a space with a principal G-bundle over it

G→ EG→ BG

whose total space EG is contractible. I described how to construct the classifying space
in “Week 117”, at least in the case of a discrete group G, but I didn’t say much about
why it’s so great. The main reason it’s great is that any G-bundle over any space is a
pullback of the bundle EG over BG. But right now, what I want to note is that since EG
is contractible it is tame, and |EG| = 1. Thus G is tame if and only if BG is, and

|BG| = 1/|G|

so we can think of BG as the “reciprocal” of G!
This idea is already lurking behind the usual approach to “equivariant cohomology”.

Suppose X is a space on which the topological group G acts. When the action of G on
X is free, it is fun to calculate cohomology groups (and other invariants) of the quotient
space X/G. When the action is not free, this quotient can be very pathological, so people
usually replace it by the “homotopy quotient” X//G, which is defined as (EG ×X)/G.
This is like the ordinary quotient but with equations replaced by homotopies. And there
is a fibration

X → X//G→ BG,

so when X and G are tame we have

|X//G| = |X| × |BG| = |X|/|G|

just as you would hope!
Now in the paper, Jim and I go on to talk about how all these ideas can be put to use

to give a nice explanation of the combinatorics of Feynman diagrams. But I don’t want
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to explain all that stuff here — then you wouldn’t need to read the paper! Instead, I just
want to point out something mysterious about homotopy cardinality.

Homotopy cardinality is formally very similar to Euler characteristic. The Euler char-
acteristic χ(X) is given by the alternating sum

χ(X) = dim(H0(X))− dim(H1(X)) + dim(H2(X))− . . .

whenever the sum converges, where Hn(X) is a vector space over the rational numbers
called the nth rational homology group of X. Just as for homotopy cardinality, we have

χ(X + Y ) = χ(X) + χ(Y ),

χ(X × Y ) = χ(X)× χ(Y )

and more generally, whenever
F → X → B

is a fibration and the base space B is connected, we have

χ(X) = χ(F )× χ(B)

whenever any two of the spaces have well-defined Euler characteristic, which implies
that the third does too (unless I’m confused).

So Euler characteristic is a lot like homotopy cardinality. But not many spaces have
both well-defined homotopy cardinality and well-defined Euler characteristic. So they’re
like Jekyll and Hyde — you hardly ever see them in the same place at the same time, so
you can’t tell if they’re really the same guy.

But there are some weird ways to try to force the issue and compute both quantities
for certain spaces. For example, suppose G is a finite group. Then we can build BG
starting from a simplicial set with 1 nondegenerate 0-simplex, |G| − 1 nondegenerate
1-simplices, (|G| − 1)2 nondegenerate 2-simplices, and so on. If there were only finitely
many nondegenerate simplices of all dimensions, we could compute the Euler charac-
teristic of this space as the alternating sum of the numbers of such simplices. So let’s try
doing that here! We get:

χ(BG) = 1− (|G| − 1) + (|G| − 1)2 − . . .

Of course the sum diverges, but if we go ahead and use the geometric formula anyway,
we get

χ(BG) = 1/|G|

which matches our previous (rigorous) result that

|BG| = 1/|G|.

So maybe they’re the same after all! There are similar calculations like this in James
Propp’s paper “Exponentiation and Euler characteristic”, referred to above. . . though he
uses a slightly different notion of Euler characteristic, due to Schanuel. Clearly some-
thing interesting is going on with these “divergent Euler characteristics”. For appear-
ances of this sort of thing in physics, see:
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11) Matthias Blau and George Thompson, “N = 2 topological gauge theory, the Euler
characteristic of moduli spaces, and the Casson invariant”, Comm. Math. Phys.
152 (1993), 41–71.

and the references therein. (I discussed this paper a bit in “Week 51”.)
However, there are still challenging tests to the theory that homotopy cardinality and

Euler characteristic are secretly the same. Here’s a puzzle due to James Dolan. Consider
a Riemann surface of genus g > 1. Such a surface has Euler characteristic 2−2g, but such
a surface also has vanishing homotopy groups above the first, which implies that it’s BG
for G equal to its fundamental group. If homotopy cardinality and Euler characteristic
were the same, this would imply

|G| = 1

|BG|
=

1

χ(S)
=

1

2− 2g

But the fundamental group G is infinite! What’s going on?
Well, I’m actually sort of glad that 1/(2−2g) is negative. Sometimes a divergent series

of positive integers can be cleverly summed up to give a negative number. The simplest
example is the geometric series

1 + 2 + 4 + 8 + 16 + . . . =
1

1− 2
= −1

but in “Week 126” I talked about a more sophisticated example that is very important in
string theory:

1 + 2 + 3 + 4 + 5 + . . . = ζ(−1) = − 1

12

So maybe some similar trickery can be used to count the elements of G and get a di-
vergent sum that can be sneakily evaluated to obtain 1/(2 − 2g). Of course, even if we
succeed in doing this, the skeptics will rightly question the significance of such tom-
foolery. But there is sometimes a lot of profound truth lurking in these bizarre formal
manipulations, and sometimes if you examine what’s going on carefully enough, you can
discover cool stuff.

To wrap up, let me mention an interesting paper on the foundations of categorifica-
tion:

12) Claudio Hermida, “From coherent structures to universal properties”, available at
http://www.cs.math.ist.utl.pt/cs/s84/claudio.html

and also two papers about 2-groupoids and topology:

13) K. A. Hardie, K. H. Kamps, R. W. Kieboom, “A homotopy bigroupoid of a topological
space”, in Categorical Methods in Algebra and Topology, pp. 209–222, Mathematik-
Arbeitspapiere 48, Universitaet Bremen, 1997. Appl. Categ. Structures, to appear.

K. A. Hardie, K. H. Kamps, R. W. Kieboom, “A homotopy 2-groupoid of a Hausdorff
space”, preprint.

I would talk about these if I had the energy, but it’s already past my bed-time. Good
night!
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Addenda: Toby Bartels had some interesting things to say about this issue of This
Week’s Finds. Here is my reply, which quotes some of his remarks. . . .

3) The American Physical Society: A Century of Physics,
available at http://timeline.aps.org/APS/home HighRes.html

[TB] I like how they make the famous picture of Buzz Aldrin, the one
that everyone thinks is a picture of Neil Armstrong, into a picture of
Neil Armstrong after all: “Here he is reflected in Buzz Aldrin’s visor.”.

[JB] Heh. Sounds like something a doting grandmother would say!

5) John Conway and Peter Doyle, Division by three.
http://math.dartmouth.edu/˜doyle/docs/three/three/three.html

The latter article studies this question: if I give you an iso-
morphism between 3x and 3y, can you construct a isomor-
phism between x and y?

[TB] The answer must be something that won’t work if 3 is replaced
by an infinite cardinal. That said, I can’t even figure out how to di-
vide by 2! If I take the 3 copies of X or Y and put them on top of
each other, I get a finite, 2coloured, 3valent, nonsimple, undirected
graph. I remember from combinatorics that the 2 colours of a fi-
nite, 2coloured, simple, undirected graph of fixed valency are equipol-
lent, but I can’t remember the bijective proof. (Presumably it can be
adopted to nonsimple graphs.)

[JB] It’s a tricky business. Let me quote from the above article:

History
A proof that it is possible to divide by two was presented by Bernstein
in his Inaugural Dissertation of 1901, which appeared in Mathema-
tische Annallen in 1905; Bernstein also indicated how to extend his
results to division by any finite n, but we are not aware of anyone
other than Bernstein himself who ever claimed to understand this ar-
gument. In 1922 Sierpinski published a simpler proof of division by
two, and he worked hard to extend his method to division by three,
but never succeeded.
In 1927 Lindenbaum and Tarski announced, in an infamous paper
that contained statements (without proof) of 144 theorems of set the-
ory, that Lindenbaum had found a proof of division by three. Their
failure to give any hint of a proof must have frustrated Sierpinski, for
it appears that twenty years later he still did not know how to divide
by three. Finally, in 1949, in a paper ‘dedicated to Professor Waclaw
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Sierpinski in celebration of his forty years as teacher and scholar’,
Tarski published a proof. In this paper, Tarski explained that unfor-
tunately he couldn’t remember how Lindenbaum’s proof had gone,
except that it involved an argument like the one Sierpinski had used
in dividing by two, and another lemma, due to Tarski, which we will
describe below. Instead of Lindenbaum’s proof, he gave another.
Now when we began the investigations reported on here, we were
aware that there was a proof in Tarski’s paper, and Conway had even
pored over it at one time or another without achieving enlightenment.
The problem was closely related to the kind of question John had
looked at in his thesis, and it was also related to work that Doyle
had done in the field of bijective combinatorics. So we decided that
we were going to figure out what the heck was going on. Without
too much trouble we figured out how to divide by two. Our solution
turned out to be substantially equivalent to that of Sierpinski, though
the terms in which we will describe it below will not much resemble
Sierpinski’s. We tried and tried and tried to adapt the method to
the case of dividing by three, but we kept getting stuck at the same
point in the argument. So finally we decided to look at Tarski’s paper,
and we saw that the lemma Tarski said Lindenbaum had used was
precisely what we needed to get past the point we were stuck on! So
now we had a proof of division by three that combined an argument
like that Sierpinski used in dividing by two with an appeal to Tarski’s
lemma, and we figured we must have hit upon an argument very
much like that of Lindenbaum’s. This is the solution we will describe
here: Lindenbaum’s argument, after 62 years.

So: let’s define the “homotopy cardinality” of a topological
spaceX to be the alternating product |X| =

∏
i>0 |πi(X)|(−1)i

when X is connected and the product converges;

[TB] What about divergence to 0? If πi(X) is infinite for some odd i
but no even i, can we say |X| is 0?

[JB] Well, we can, but we might regret it later. In a sense 0 is no better than
∞ when one is doing products, so if you allow 0 as a legitimate value for a
homotopy cardinality, you should allow ∞, but if you allow both, you get in
trouble when you try to multiply them. This dilemma is familiar from the case
of infinite sums (where +∞ and −∞ are the culprits), and the resolution seems
to be either:

• disallow both 0 and∞ as legitimate answers for the above product,

or

• allow both but then be extra careful when stating your theorems so that
you don’t run into problems.
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As a fun application of this fact, recall that any topological
group G has a “classifying space” BG, meaning a space with
a principal G-bundle over it G → EG → BG whose total
space EG is contractible. I described how to construct the
classifying space in “Week 117”, at least in the case of a
discrete group G, but I didn’t say much about why it’s so
great. The main reason it’s great is that any G-bundle over
any space is a pullback of the bundle EG over BG. But right
now, what I want to note is that since EG is contractible it
is tame, and |EG| = 1. Thus G is tame if and only if BG is,
and |BG| = 1/|G|, so we can think of BG as the reciprocal’
of G!

[TB] OTOH, G is already a kind of reciprocal of itself. If G is a
discrete group, it’s a topological space with |G|homotopy = |G|set.
But G is also a groupoid with 1 object, and |G|groupoid = 1/|G|set.
So, |G|homotopy|G|groupoid = 1.

[JB] Believe it or not, you are reinventing BG! A groupoid can be reinterpreted
as a space with vanishing homotopy groups above the first, and if you do this to
the groupoid G, you get BG.

More generally:

Recall that we can take a pointed space X and form a pointed space LX of loops
in X that start and end at the basepoint. This clearly has

πn+1(X) = πn(LX)

so if X is connected and tame we’ll have

|LX| = 1/|X|

Now with a little work you can make LX (or a space homotopy-equivalent to
it!) into a topological group with composition of loops as the product.

And then it turns out that BLX is homotopy equivalent to X when X is con-
nected. Conversely, given a topological group G, LBG is homotopy equivalent
to G.

So what we’re seeing is that topological groups and connected pointed spaces
are secretly the same thing, at least from the viewpoint of homotopy theory. In
topology, few things are as important as this fact.

But what’s really going on here? Well, to go from a topological groupG to a con-
nected pointed space, you have to form BG, which has all the same homotopy
groups but just pushed up one notch:

πn+1(BG) = πn(G)
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And to go from a connected point space X to a topological group, you have to
form LX, which has all the same homotopy groups but just pushed down one
notch:

πn−1(LX) = πn(X)

This is actually the trick you are playing, in slight disguise.

And the real point is that a 1-object ω-groupoid can be reinterpreted as an
ω-groupoid by forgetting about the object and renaming all the j-morphisms
“(j − 1)-morphisms”.

See? When you finally get to the bottom of it, this “BG” business is just a silly
reindexing game!!! Of course no textbook can admit this openly — partially
because they don’t talk about ω-groupoids.

So Euler characteristic is a lot like homotopy cardinality.
But not many spaces have both well-defined homotopy car-
dinality and well-defined Euler characteristic. So they’re like
Jekyll and Hyde — you hardly ever see them in the same
place at the same time, so you can’t tell if they’re really the
same guy.

[TB] So, are they ever both defined but different?

[JB] I don’t recall any examples where they’re both finite, but different. I know
very few cases where they’re both finite! How about the point? How about the
circle? How about the 2-sphere? I leave you to ponder these cases.

However, there are still challenging tests to the theory that
homotopy cardinality and Euler characteristic are secretly
the same. Here’s a puzzle due to James Dolan. Consider a
Riemann surface of genus g > 1. Such a surface has Euler
characteristic 2 − 2g, but such a surface also has vanishing
homotopy groups above the first, which implies that it’s BG
for G equal to its fundamental group. If homotopy cardinal-
ity and Euler characteristic were the same, this would imply

|G| = 1/|BG| = 1/χ(S) = 1/(2− 2g)

.
But the fundamental group G is infinite! What’s going on?

[TB] This doesn’t seem too surprising. 1/(2−2g) is also infinite. Just
use the geometric series in reverse:

1/(2− 2g) = (1/2)
∑
i

gi,

which diverges since g > 1.
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[JB] Well, what I really want is a way of counting elements of the fundamental
group of the surface S which gives me a divergent sum that I can cleverly sum
up to get 1/(2− 2g).

Later, my wish above was granted by Laurent Bartholdi and Danny Ruberman! People
have already figured out how to count the number of elements in the fundamental group
of a Riemann surface, resum, and get 1/(2− 2g) in a nice way. Here are two references:

14) William J. Floyd and Steven P. Plotnick, “Growth functions on Fuchsian groups and
the Euler characteristic”, Invent. Math. 88 (1987), 1–29.

15) R. I. Grigorchuk, “Growth functions, rewriting systems and Euler characteristic”,
Mat. Zametki 58 (1995), 653–668, 798.

You can read more about Euler characteristic and homotopy cardinality here:

16) John Baez, “Euler characteristic versus homotopy cardinality”, lecture at the Fields
Institute Program on Applied Homotopy Theory, September 20, 2003. Available in
PDF form at http://www.math.ucr.edu/home/baez/cardinality/

The imaginary expression
√
−a and the negative expression

√
−b resemble each other in

that each one, when they seem the solution of a problem, they indicate that there is some
inconsistency or nonsense. — Augustus De Morgan, 1831.
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Week 148

June 5, 2000

Last week I talked about some millennium-related books. This week, some millen-
nial math problems! In 1900, at the second International Congress of Mathematicians,
Hilbert posed a famous list of 23 problems. No one individual seems to have the guts
to repeat that sort of challenge now. But the newly-founded Clay Mathematics Institute,
based in Cambridge Massachusetts and run by Arthur Jaffe, has just laid out a nice list
of 7 problems:

1) Clay Mathematics Institute, “Millennium Prize Problems”, http://www.claymath.
org/prizeproblems/index.htm

There is a 1 million dollar prize for each one! Unlike most of Hilbert’s problems,
these weren’t cooked up specially for the occasion: they have already proved their merit
by resisting attack for some time.

Here they are:

1. P = NP?
This is the newest problem on the list and the easiest to explain. An algorithm is

“polynomial-time” if the time it takes to run is bounded by some polynomial in the length
of the input data. This is a crude but easily understood condition to decide whether an
algorithm is fast enough to be worth bothering with. A “nondeterministic polynomial-
time” algorithm is one that can check a purported solution to a problem in an amount of
time bounded by some polynomial in the input data. All algorithms in P are in NP, but
how about the converse? Is P = NP? Stephen Cook posed this problem in 1971 and it’s
still open. It seems unlikely to be true — a good candidate for a counterexample is the
problem of factoring integers — but nobody has proved that it’s false. This is the most
practical question of the lot, because if the answer were “yes”, there’s a chance that one
could use this result to quickly crack all the current best encryption schemes.

2. The Poincar conjecture
Spheres are among the most fundamental topological spaces, but spheres hold many

mysteries. For example: is every 3-dimensional manifold with the same homotopy
type as a 3-sphere actually homeomorphic to a 3-sphere? Or for short: are homo-
topy 3-spheres really 3-spheres? Poincar posed this puzzle in 1904 shortly after he
knocked down an easier conjecture of his by finding 3-manifolds with the same ho-
mology groups as 3-spheres that weren’t really 3-spheres. The higher-dimensional ana-
logues of Poincar’s question have all been settled in the affirmative — Smale, Stallings
and Wallace solved it in dimensions 5 and higher, and Freedman later solved the subtler
4-dimensional case — but the 3-dimensional case is still unsolved. This is an excellent
illustration of a fact that may seem surprising at first: many problems in topology are
toughest in fairly low dimensions! The reason is that there’s less “maneuvering room”.
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The last couple decades have seen a burst of new ideas in low-dimensional topology
— this has been a theme of This Week’s Finds ever since it started — but the Poincar
conjecture remains uncracked.

3. The Birch-Swinnerton-Dyer conjecture
This is a conjecture about elliptic curves, and indirectly, number theory. For a precise

definition of an elliptic curve I’ll refer you to “Week 13” and “Week 125”, but basically,
it’s a torus-shaped surface described by an algebraic equation like this:

y2 = x3 + ax+ b

Any elliptic curve is naturally an abelian group, and the points on it with rational coordi-
nates form a finitely generated subgroup. When are there infinitely many such rational
points? In 1965, Birch and Swinnerton-Dyer conjectured a criterion involving something
called the “L-function” of the elliptic curve. The L-function L(s) is an elegant encoding
of how many solutions there are to the above equation modulo p, where p is any prime.
The Birch-Swinnerton-Dyer conjecture says that L(1) = 0 if and only if the elliptic curve
has infinitely many rational points. More generally, it says that the order of the zero of
L(s) at s = 1 equals the rank of the group of rational points on the elliptic curve (that is,
the rank of the free abelian summand of this group.) A solution to this conjecture would
shed a lot of light on Diophantine equations, one of which goes back to at least the 10th
century — namely, the problem of finding which integers appear as the areas of right
triangles all of whose sides have lengths equal to rational numbers.

4. The Hodge conjecture
This question is about algebraic geometry and topology. A “projective nonsingular

complex algebraic variety” is basically a compact smooth manifold described by a bunch
of homogeneous complex polynomial equations. Such a variety always has even dimen-
sion, say 2n. We can take the DeRham cohomology of such a variety and break it up
into parts Hp,q labelled by pairs (p, q) of integers between 0 and n, using the fact that
every function is a sum of a holomorphic and an antiholomorphic part. Sitting inside
the DeRham cohomology is the rational cohomology, The rational guys inside Hp,p are
called “Hodge forms”. By Poincar duality any closed analytic subspace of our variety
defines a Hodge form — this sort of Hodge form is called an algebraic cycle. The Hodge
conjecture, posed in 1950 states: every Hodge form is a rational linear linear combina-
tion of algebraic cycles. It’s saying that we can concretely realize a bunch of cohomology
classes using closed analytic subspaces sitting inside our variety.

5. Existence and mass gap for Yang-Mills theory
One of the great open problems of modern mathematical physics is whether the Stan-

dard Model of particle physics is mathematically consistent. It’s not even known whether
“pure” Yang-Mills theory — uncoupled to fermions or the Higgs — is a well-defined quan-
tum field theory with reasonable properties. To make this question precise, people have
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formulated various axioms for a quantum field theory, like the so-called “Haag-Kastler
axioms”. The job of constructive quantum field theory is to mathematically study ques-
tions like whether we can construct Yang-Mills theory in such a way that it satisfies these
axioms. But one really wants to know more: at the very least, existence of Yang-Mills
theory coupled to fermions, together with a “mass gap” — i.e., a nonzero minimum mass
for the particles formed as bound states of the theory (like protons are bound states of
quarks).

6. Existence and smoothness for the Navier-Stokes equations
The Navier-Stokes equations are a set of partial differential equations describing the

flow of a viscous incompressible fluid. If you start out with a nice smooth vector field
describing the flow of some fluid, it will often get complicated and twisty as turbulence
develops. Nobody knows whether the solution exists for all time, or whether it develops
singularities and becomes undefined after a while! In fact, numerical evidence hints
at the contrary. So one would like to know whether solutions exist for all time and
remain smooth — or at least find conditions under which this is the case. Of course,
the Navier-Stokes equations are only an approximation to the actual behavior of fluids,
since it idealizes them as a continuum when they are actually made of molecules. But it’s
important to understand whether and how the continuum approximation breaks down
as turbulence develops.

7. The Riemann hypothesis
For <(s) > 1 the Riemann zeta function is defined by

ζ(s) =
1

1s
+

1

2s
+

1

3s
+ . . .

But we can extend it by analytic continuation to most of the complex plane — it has a
pole at s = 1. The zeta function has a bunch of zeros in the “critical strip” where <(s) is
between 0 and 1. In 1859, Riemann conjectured that all such zeros have real part equal
to 1/2. This conjecture has lots of interesting ramifications for things like the distribution
of prime numbers. By now, more than a billion zeros in the critical strip have been found
to have real part 1/2; it has also been shown that “most” such zeros have this property,
but the Riemann hypothesis remains open.

If you solve one of these conjectures and win a million dollars because you read about
it here on This Week’s Finds, please put me in your will.

Okay, now on to some other stuff.
This week was good for me in two ways. First of all, Ashtekar, Krasnov and I finally

finished a paper on black hole entropy that we’ve been struggling away on for over
3 years. I can’t resist talking about this paper at length, since it’s such a relief to be
done with it. Second, the guru of n-category theory, Ross Street, visited Riverside and
explained a bunch of cool stuff to James Dolan and me. I may talk about this next time.
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2) Abhay Ashtekar, John Baez and Kirill Krasnov, Quantum geometry of isolated hori-
zons and black hole entropy, preprint available at gr-qc/0005126 or at http://
math.ucr.edu/home/baez/black2.ps

I explained an earlier version of this paper in “Week 112”, but now I want to give a
more technical explanation. So:

The goal of this paper is to understand the geometry of black holes in a way that
takes quantum effects into account, using the techniques of loop quantum gravity. We
do not consider the region near the singularity, which is poorly understood. Instead, we
focus on the geometry of the event horizon, since we wish to compute the entropy of a
black hole by counting the microstates of its horizon.

Perhaps I should say a word about why we want to do this. As explained in “Week
111”, Bekenstein and Hawking found a formula relating the entropy S of a black hole to
the area A of its event horizon. It is very simple:

S = A/4

in units where the speed of light, Newton’s constant, Boltzmann’s constant and Planck’s
constant equal 1. Now, in quantum statistical mechanics, the entropy of a system in
thermal equilibrium is roughly the logarithm of the number N of microstates it can
occupy:

S = lnN.

This is exactly right when all the microstates have the same energy. Thus we expect that
a black hole of area A has about

N = exp(A/4)

microstates. For a solar-mass black hole, that’s about exp(1076) microstates! Any good
theory of quantum gravity must explain what these microstates are. Since their number
is related to the event horizon’s area, it is natural to guess that they’re related to the
geometry of the event horizon. But how?

It’s clear that everything will work perfectly if each little patch of the event horizon
with area 4 ln(2) has exactly 2 states. I think Wheeler was the first to take this seriously
enough to propose a toy model where each such patch stores one bit of information,
making the black hole into something sort of like an enormous hard drive:

3) John Wheeler, “It from bit”, in Sakharov Memorial Lecture on Physics, Volume 2,
eds. L. Keldysh and V. Feinberg, Nova Science, New York, 1992.

Of course, this idea sounds a bit nutty. However, the quantum state of a spinor
contains exactly one bit of information, and loop quantum gravity is based on the theory
of spinors, so it’s not as crazy as it might seem. . . . Still, there are some, ahem, details to
be worked out!

So let’s work them out.
The first step is to understand the classical mechanics of a black hole in a way that

allows us to apply the techniques of loop quantum gravity. In other words, we want to
describe a classical phase space for our black hole. This step was done in a companion
paper:
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4) Abhay Ashtekar, Alejandro Corichi and Kirill Krasnov, “Isolated horizons: the classi-
cal phase space”, Advances in Theoretical and Mathematical Physics 3 (2000), 418–
471. Preprint available at gr-qc/9905089.

The idea is to consider the region of spacetime outside the black hole and assume
that its boundary is a cylinder of the form R × S2. We demand that this boundary is an
“isolated horizon” — crudely speaking, a surface that light cannot escape from, with no
matter or gravitational radiation falling in for the stretch of time under consideration. To
make this concept precise we need to impose some boundary conditions on the metric
and other fields at the horizon. These are most elegantly described using Penrose’s
spinor formalism for general relativity, as discussed in “Week 109”. With the help of
these boundary conditions, we can start with the usual Lagrangian for general relativity,
turn the crank, and work out a description of the phase space for an isolated black hole.

If we temporarily ignore the presence of matter, a point in this phase space describes
the metric and extrinsic curvature of space outside the black hole at a given moment of
time. Technically, we do this using an SU(2) connection A together with an su(2)-valued
2-form E. You can think of these as analogous to the vector potential and electric field in
electromagnetism. As usual, they need to satisfy some constraints coming from Einstein’s
equations for general relativity. They also need to satisfy boundary conditions coming
from the definition of an isolated horizon.

Since the black hole is shaped like a ball, the boundary conditions hold on a 2-
sphere that I’ll call the “horizon 2-sphere”. One thing the boundary conditions say is that
on the horizon 2-sphere, the SU(2) connection A is completely determined by a U(1)
connection, say W . This U(1) connection is really important, because it describes the
intrinsic geometry of the horizon 2-sphere. Here’s a good way to think about it: first you
restrict the spacetime metric to the horizon 2-sphere, and then you work out the Levi-
Civita connection of this metric on the 2-sphere. Finally, since loop quantum gravity is
based on the parallel transport of spinors, you work out the corresponding connection
for spinors on the 2-sphere, which is a U(1) connection. That’s W !

The boundary conditions also say that on the horizon 2-sphere, the E field is propor-
tional to the curvature of W . So on the horizon 2-sphere, all the fields are determined
by W . This is even true when we take the presence of matter into account. When we
quantize, it’ll be the microstates of this field W that give rise to the black hole entropy.
Since W is just a technical way of describing the shape of the horizon 2-sphere, this
means that the black hole entropy arises from the many slightly different possible shapes
that the horizon can have.

But I’m getting ahead of myself here! We haven’t quantized yet; we’re just talking
about the classical phase space for an isolated black hole.

The most unusual feature of this phase space is that its symplectic structure is a sum
of two terms. First, there is the usual integral over space at a given time, which makes
the E field canonically conjugate to the A field away from the horizon 2-sphere. But
then there is a boundary term: an integral over the horizon 2-sphere. This gives the
geometry of the horizon a life of its own, which ultimately accounts for the black hole
entropy. Not surprisingly, this boundary term involves the U(1) connection W . In fact,
this boundary term is just the symplectic structure for U(1) Chern-Simons theory on the
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2-sphere! It’s the simplest thing you can write down:

ω(δW, δW ′) =
k

2π

∫
δW ∧ δW ′

Here ω is the U(1) Chern-Simons symplectic structure; we’re evaluating it on two tangent
vectors to the space of U(1) connections on the 2-sphere, which we call δW and δW ′.
These are the same as 1-forms, so we can wedge them and integrate the result over the
2-sphere. The number k is some constant depending on the area of the black hole. . . but
more about that later!

I guess this Chern-Simons stuff needs some background to fully appreciate. I have
been talking about it for a long time here on This Week’s Finds. The quantum version
of Chern-Simons theory is a 3-dimensional quantum field theory that burst into promi-
nence thanks to Witten’s work relating it to the Jones polynomial, which is an invariant
of knots. At least heuristically, you can calculate the Jones polynomial by doing a path
integral in SU(2) Chern-Simons theory. It also turns out that Chern-Simons theory is
deeply related to quantum gravity in 3d spacetime. For quite a while, various people
have hoped that Chern-Simons theory was important for quantum gravity in 4d space-
time, too — see for example “Week 56” and “Week 57”. However, there have been serious
technical problems in most attempts to relate Chern-Simons theory to physically realistic
problems in 4d quantum gravity. I think we may finally be straightening out some of
these problems! But the ironic twist is that we’re using U(1) Chern-Simons theory, which
is really very simple compared to the sexier SU(2) version. For example, U(1) Chern-
Simons theory also gives a knot invariant, but it’s basically just the self-linking number.
And the math of U(1) Chern-Simons theory goes back to the 1800s — it’s really just the
mathematics of “theta functions”.

As a historical note, I should add that the really nice derivation of the Chern-Simons
boundary term in the symplectic structure for isolated black holes was found in a paper
written after the one I mentioned above:

5) Abhay Ashtekar, Chris Beetle and Steve Fairhurst, “Mechanics of isolated horizons”,
Class. and Quant. Gravity 17 (2000), 253–298. Available at gr-qc/9907068.

Originally, everyone thought that to make the action differentiable as a function of
the fields, you had to add a boundary term to the usual action for general relativity,
and that this boundary term was responsible for the boundary term in the symplectic
structure. This seemed a bit ad hoc. Of course, you need to differentiate the action to
get the field equations, so it’s perfectly sensible to add an extra term if that’s what you
need to make the action differentiable, but still you wonder: where did the extra term
COME FROM?

Luckily, Ashtekar and company eventually realized that while you can add an extra
term to the action, you don’t really need to. By cleverly using the “isolated horizon”
boundary conditions, you can show that the usual action for general relativity is already
differentiable without any extra term, and that it yields the Chern-Simons boundary term
in the symplectic structure.

Okay: we’ve got a phase space for an isolated black hole, and we’ve got the symplectic
structure on this phase space. Now what?

Well, now we should quantize this phase space! It’s a bit complicated, but thanks to
the two-part form of the symplectic structure, it basically breaks up into two separate
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problems: quantizing the A field and its canonical conjugate E outside the horizon 2-
sphere, and quantizing the W field on this 2-sphere. The first problem is basically just
the usual problem of loop quantum gravity — people know a lot about that. The second
problem is basically just quantizing U(1) Chern-Simons theory — people know even more
about that! But then you have to go back and put the two pieces together. For that, it’s
crucial that on the horizon, the E field is proportional to the curvature of the connection
W .

So: what do quantum states in the resulting theory look like? I’ll describe a basis of
states for you. . . .

Outside the black hole, they are described by spin networks. I’ve discussed these in
“Week 110” and elsewhere, but let me just recall the basics. A spin network is a graph
whose edges are labelled by irreducible representations of SU(2), or in other words spins
j = 0, 1/2, 1, . . .. Their vertices are labelled as well, but that doesn’t concern us much
here. What matters more is that the spin network edges can puncture the horizon 2-
sphere. And it turns out that each puncture must be labelled with a number m chosen
from the set

{−j,−j + 1, . . . , j − 1, j}
These numbers m determine the state of the geometry of the horizon 2-sphere.

What do these numbers j and m really MEAN? Well, they should be vaguely familiar
if you’ve studied the quantum mechanics of angular momentum. The same math is
at work here, but with a rather different interpretation. Spin network edges represent
quantized flux lines of the gravitational E field. When a spin network edge punctures
the horizon 2-sphere, it contributes area to the 2-sphere: a spin-j edge contributes an
area equal to

8πγ
√
j(j + 1)

for some constant γ.
But due to the boundary conditions relating the E field to the curvature of the con-

nectionW , each spin network edge also contributes curvature to the horizon 2-sphere. In
fact, this 2-sphere is flat except where a spin network edge punctures it; at the punctures
it has cone-shaped singularities. You can form a cone by cutting out a wedge-shaped
slice from a piece of paper and reattaching the two new edges, and the shape of this
cone is described by the “deficit angle” — the angle of the wedge you removed. In this
black hole business, a puncture labelled by the number m gives a conical singularity with
a deficit angle equal to

4πm

k

where k is the same constant appearing in the formula for the Chern- Simons symplectic
structure.

I guess now it’s time to explain these mysterious constants! First of all, γ is an
undetermined dimensionless constant, usually called the “Immirzi parameter” because it
was first discovered by Fernando Barbero. This parameter sets the scale at which area is
quantized! Of course, the formula for the area contributed by a spin-j edge:

8πγ
√
j(j + 1)

also has a factor of the Planck area lurking in it, which you can’t see because I’ve set
c, G, and ~ to 1. That’s not surprising. What’s surprising is the appearance of the
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Barbero-Immirzi parameter. So far, loop quantum gravity cannot predict the value of
this parameter from first principles.

Secondly, the number k, called the “level” in Chern-Simons theory, is given by

k =
A

4πγ

Okay, that’s all for my quick description of what we get when we quantize the phase
space for an isolated black hole. I didn’t explain how the quantization procedure actually
works — it involves all sorts of fun stuff about theta functions and so on. I just told the
final result.

Now for the entropy calculation. Here we ask the following question: “given a black
hole whose area is within ε of A, what is the logarithm of the number of microstates
compatible with this area?” This should be the entropy of the black hole — and it won’t
depend much on the number ε, so long as its on the Planck scale.

To calculate the entropy, first we work out all the ways to label punctures by spins
j so that the total area comes within ε of A. For any way to do this, we then count
the allowed ways to pick numbers m describing the intrinsic curvature of the black hole
surface. Then we sum these up and take the logarithm.

What’s the answer? Well, I’ll do the calculation for you now in a really sloppy way,
just to sketch how it goes. To get as many ways to pick the numbers m as possible, we
should concentrate on states where most of the spins j labelling punctures equal 1/2. If
all these spins equal 1/2, each puncture contributes an area

8πγ
√
j(j + 1) = 4πγ

√
3

to the horizon 2-sphere. Since the total area is close to A, this means that there are about
A/(4πγ

√
3) punctures. Then for each puncture we can pick m = −1/2 or m = 1/2. This

gives
N = 2A/4 π γ

√
3

ways to choose the m values. If this were exactly right, the entropy of the black hole
would be

S = lnN =

(
ln 2

4πγ
√

3

)
A

Believe it or not, this crude estimate asymptotically approaches the correct answer as
A approaches infinity. In other words, when the black hole is in its maximum-entropy
state, the vast majority of the spin network edges poking through the horizon are spin-
1/2 edges.

So, what have we seen? Well, we’ve seen that the black hole entropy is (asymptoti-
cally!) proportional to the area, just like Bekenstein and Hawking said. That’s good. But
we don’t get the Bekenstein-Hawking formula

S = A/4

because there is an undetermined parameter in our formula — the Barbero-Immirzi
parameter. That’s bad. However, our answer will match the Bekenstein-Hawking formula
if we take

γ =
ln 2

π
√

3
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If we do this, we no longer have that annoying undetermined constant floating around
in loop quantum gravity. In fact, we can say that we’ve determined the “quantum of
area” — the smallest possible unit of area. That’s good. And then it’s almost true that in
our model, each little patch of the black hole horizon with area 4 ln(2) contains a single
bit of information — since a spin-1/2 puncture has area 4 ln(2), and the angle deficit at
a puncture labelled with spin 1/2 can take only 2 values, corresponding to m = −1/2
and m = 1/2. Of course, there are also punctures labelled by higher values of j, but the
j = 1/2 punctures dominate the count of the microstates.

Of course, one might object to this procedure on the following grounds: “You’ve been
ignoring matter thus far. What if you include, say, electromagnetic fields in the game?
This will change the calculation, and now you’ll probably need a different value of γ to
match the Bekenstein-Hawking result!”

However, this is not true: we can redo the calculation including electromagnetism,
and the same γ works. That’s sort of nice.

There are a lot of interesting comparisons between our way of computing black hole
entropy and the ways its done in string theory, and a lot of other things to say, too but
for that, you’ll have to read the paper. . . I’m worn out now!

Addenda: I thank Herman Rubin and Lieven Marchand for some corrections of errors
I made while describing the Riemann hypothesis and P = NP conjecture. I also thank J.
Maurice Rojas for pointing out that Steve Smale was an individual who did have the guts
to pose a list of math problems for the 21st century, back in 1998. This appears in:

6) Stephen Smale, “Mathematical problems for the next century”, Mathematical In-
telligencer 20 (1998), 7–15. Also available in Postscript and PDF as item 104 on
Smale’s webpage, http://www.cityu.edu.hk/ma/staff/smale/bibliography.html

I believe this also appears in the book edited by Arnold mentioned at the beginning
of “Week 147”.

. . . for beginners engaging in research, a most difficult feature to grasp is that of quality
— that is, the depth of a problem. Sometimes authors work courageously and at length to
arrive at results which they believe to be significant and which experts believe to be shallow.
This can be explained by the analogy of playing chess. A master player can dispose of a
beginner with ease no matter how hard the latter tries. The reason is that, even though the
beginner may have planned a good number of moves ahead, by playing often the master
has met many similar and deeper problems; he has read standard works on various aspects
of the game so that he can recall many deeply analyzed positions. This is the same in
mathematical research. We have to play often with the masters (that is, try to improve on
the results of famous mathematicians); we must learn the standard works of the game (that
is, the “well-known” results). If we continue like this our progress becomes inevitable. —
Hua Loo-Keng, Introduction to Number Theory
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Week 149

June 12, 2000

Elliptic cohomology sits at the intersection of several well-travelled mathematical roads.
It boasts fascinating connections with homotopy theory, string theory, elliptic curves,
modular forms, and the mysterious ubiquity of the number 24. This makes it very fas-
cinating, but also a bit intimidating to anyone who is not already an expert on all these
subjects.

Is anyone actually an expert on all these subjects? Perhaps Graeme Segal is! After all,
he became famous for his work on homotopy theory, he invented the axioms of conformal
field theory — borrowing lots of ideas from string theory, of course — and I’m sure he
mastered the theory of elliptic curves one weekend when he was a kid. So to learn about
elliptic cohomology, one should really start here:

1) Graeme Segal, “Elliptic cohomology”, Asterisque 161–162 (1988), 187–201.

Another good reference is this proceedings of a conference held at Princeton in 1986:

2) Peter S. Landweber, editor, Elliptic Curves and Modular Forms in Algebraic Topology,
Springer-Verlag Lecture Notes in Mathematics 1326, Springer, Berlin, 1988.

This book is also helpful:

3) Charles B. Thomas, Elliptic Cohomology, Kluwer, Dordrecht, 1999.

though I’m afraid it’s a bit long on details and short on the big picture and physics
intuition. For that, you might have to try this:

4) Edward Witten, “Elliptic genera and quantum field theory”, Comm. Math. Phys.
109 (1987), 525–536.

Also try this book, if you can get ahold of it:

5) Friedrich Hirzebruch, Thomas Berger and Rainer Jung, Manifolds and modular
forms, translated by Peter S. Landweber, Vieweg, Braunschweig (a publication of
the Max Planck Institute for Mathematics in Bonn), 1992.

Now to have a snowball’s chance in hell of understanding elliptic cohomology, you
need to understand complex oriented cohomology theories. So I have to start by telling
you what those are. This will be sort of a crash course in algebraic topology. By the time
I’m done with that, I’ll probably be too worn out to talk about elliptic cohomology — but
at least I’ll have laid the groundwork.

So: what’s a “generalized cohomology theory”?
This is a gadget that eats a topological space X and spits out a sequence of abelian

groups hn(X). To be a generalized cohomology theory, this gadget must satisfy a bunch
of axioms called the Eilenberg-Steenrod axioms. The most basic example is so-called
ordinary cohomology, so when you’re first learning this stuff the main motivation for
the Eilenberg-Steenrod axioms is that they’re all satisfied by ordinary cohomology. But
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there are lots of other examples: various flavors of K-theory, cobordism theory, and so
on. Eventually, you learn that underlying any generalized cohomology theory there is a
list of spaces E(n) such that

hn(X) = [X,E(n)]

where the right-hand side is the set of homotopy classes of maps from X to E(n). We
say this list of spaces E(n) “represents” the generalized cohomology theory. Moreover,
these spaces fit together to form a “spectrum”, meaning that the space of based loops in
E(n) is E(n − 1). It follows that each space E(n) is an infinite loop space: a space of
loops in a space of loops in a space of loops in. . . where you can go on as far as you like.

Conversely, given an infinite loop space E(0), we can use it to cook up a spectrum
and thus a generalized cohomology theory. So generalized cohomology theories, spectra
and infinite loop spaces are almost the same thing.

But what’s so important about them?
Well, secretly an infinite loop space is nothing but a homotopy theorist’s version of

an abelian group. A bit more technically, we could call it a “homotopy coherent abelian
group”. By this I mean a space with a continuous binary operation satisfying all the
usual laws for an abelian group up to homotopy, where these homotopies satisfy all the
nice laws you can imagine up to homotopy, and so on ad infinitum. In the context of
homotopy theory, this is almost as good as an abelian group. Pretty much anything a
normal mathematician can do with an abelian group, a homotopy theorist can do with
an infinite loop space!

For example, normal mathematicians often like to take an abelian group and equip it
with an extra operation called “multiplication” that makes it into a ring. Homotopy the-
orists like to do the same for infinite loop spaces. But of course, the homotopy theorists
only demand that the ring axioms hold up to homotopy, where the homotopies satisfy
a bunch of nice laws up to homotopy, and so on. Usually they do this in the context of
spectra rather than infinite loop spaces — a distinction too technical for me to worry
about here! — so they call this sort of thing a “ring spectrum”. Similarly, corresponding
to a commutative ring, the homotopy theorists have a notion called an “E∞ ring spec-
trum”. The word “E∞” is just a funny way of saying that the commutative law holds up
to homotopy, with the homotopies satisfying a bunch of laws up to homotopy, etcetera.

If you start with a ring spectrum, the corresponding cohomology theory will have
products. In other words, the cohomology groups hn(X) of any space X will fit together
to form a graded ring called h∗(X) — the star stands for a little blank where you can
stick in any number “n”. And if your ring spectrum is an E∞ ring spectrum, h∗(X)
will be graded-commutative. This is what happens in most of really famous generalized
cohomology theories. For example, the ordinary cohomology of a space is actually a
graded-commutative ring with a product called the “cap product”, and similar things are
true for the most popular flavors of K-theory and cobordism theory.

Of course, it’s quite a bit of work to make all this stuff precise: people spent a lot of
energy on it back in the 1970’s. But it’s very beautiful, so everybody should learn it. For
the details, try:

6) J. Adams, Infinite Loop Spaces, Princeton U. Press, Princeton, 1978.

7) J. Adams, Stable Homotopy and Generalized Homology, Chicago Lectures in Mathe-
matics, U. Chicago Press, Chicago, 1974.
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8) J. P. May, The Geometry of Iterated Loop Spaces, Lecture Notes in Mathematics 271,
Springer Verlag, Berlin, 1972.

9) J. P. May, F. Quinn, N. Ray and J. Tornehave, E∞ Ring Spaces and E∞ Ring Spectra,
Lecture Notes in Mathematics 577, Springer Verlag, Berlin, 1977.

10) G. Carlsson and R. Milgram, “Stable homotopy and iterated loop spaces”, in Hand-
book of Algebraic Topology, ed. I. M. James, North-Holland, 1995.

Now, there’s a particularly nice class of generalized cohomology theories called “com-
plex oriented cohomology theories”. Elliptic cohomology is one of these, so to under-
stand elliptic cohomology you first have to study these guys a bit. Instead of just giving
you the definition, I’ll lead up to it rather gradually. . . .

Let’s start with the integers, Z. These form an abelian group under addition, so by
what I said above they are a pitifully simple special case of an infinite loop space. So
there’s some space with a basepoint called K(Z, 1) such that the space of all based loops
in K(Z, 1) is Z.

Be careful here: I’m now using the word “is” the way homotopy theorists do! I really
mean the space of based loops in K(Z, 1) is homotopy equivalent to Z. But since we’re
doing homotopy theory, that’s good enough.

Okay: so there’s a space K(Z, 1) such that the space of all based loops in K(Z, 1) is
Z. Similarly, there’s a space K(Z, 2) such that the space of all based loops in K(Z, 2) is
K(Z, 1). And so on. . . that’s what it means to say that Z is an infinite loop space.

These spaces K(Z, n) are called “Eilenberg-MacLane spaces”, and they fit together
to form a spectrum called the Eilenberg-MacLane spectrum. Since it’s built using only
the integers, this is the simplest, nicest spectrum in the world. Thus the generalized
cohomology theory it represents has got to be something simple and nice. And it is: it’s
just ordinary cohomology!

But what do the spaces K(Z, n) actually look like?
Well, for starters, K(Z, 0) is just Z, by definition.
K(Z, 1) is just the circle, S1. You can check that the space of based loops in S1 is

homotopy equivalent to Z — the key is that such loops are classified up to homotopy by
an integer called the winding number. In quantum physics, K(Z, 1) usually goes by the
name U(1) — the group of unit complex numbers, or “phases”.

K(Z, 2) is a bit more complicated: it’s infinite-dimensional complex projective space,
CP∞! I talked a bunch about projective spaces in “Week 106”. There I only talked about
finite-dimensional ones like CPn, but you can define CP∞ as a “direct limit” of these as n
approaches∞, using the fact that CPn sits inside CPn+1 as a subspace. Alternatively, you
can take your favorite complex Hilbert space H with countably infinite dimension and
form the space of all 1-dimensional subspaces in H. This gives a slightly fatter version
of CP∞, but it’s homotopy equivalent, and it’s a very natural thing to study if you’re a
physicist: it’s just the space of all “pure states” of the quantum system whose Hilbert
space is H.

How about K(Z, 3)? Well, I don’t know a nice geometrical description of this one.
And this really pisses me off! There should be some nice way to think of K(Z, 3) as some
sort of infinite-dimensional manifold. What is it? Does anyone know? Jean-Luc Brylinski
raised this question at the Conference on Higher Category Theory and Physics in 1997,
and it’s been bugging me ever since. From the work of Brylinski which I summarized in
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“Week 25”, it’s clear that a good answer should shed light on stuff like quantum theory
and string theory. Basically, the point is that the integers, the group U(1), and infinite-
dimensional complex projective space are all really important in quantum theory. This is
perhaps more obvious for the latter two spaces — the integers are so basic that it’s hard
to see what’s so “quantum-mechanical” about them. However, since each of these spaces
is just the loop space of the next, they’re all part of tightly linked sequence. . . and I want
to know what comes next!

But I’m digressing. I really want to focus on K(Z, 2), or in other words, infinite-
dimensional complex projective space. Note that there’s an obvious complex line bundle
over this space. Remember, each point in CP∞ is really a 1-dimensional subspace in
some Hilbert space H. So we can use these 1-dimensional subspaces as the fibers of a
complex line bundle over CP∞, called the “canonical bundle”. I’ll call this line bundle L.

The complex line bundle L is important because it’s “universal”: all the rest can be
obtained from this one! More precisely, suppose we have any topological space X and
any map

f : X → CP∞

Then we can form a complex line bundle over X whose fiber over any point x is just the
fiber of L over the point f(x). This bundle is called the “pullback” of L by the map f .
And the really cool part is that any complex line bundle over any space X is isomorphic
to the pullback of L by some map! Even better, two such line bundles are isomorphic if
and only if the maps f defining them are homotopic! This reduces the study of many
questions about complex line bundles to the study of this guy L.

For example, suppose we want to classify complex line bundles over any space X.
From what I just said, this task is equivalent to the task of classifying homotopy classes
of maps

f : X → CP∞.

But remember, CP∞ is the Eilenberg-Maclane space K(Z, 2), and the Eilenberg-Maclane
spectrum represents ordinary cohomology! So

[X,CP∞] = [X,K(Z, 2)] = H2(X)

where Hˆ2(X) stands for the 2nd ordinary cohomology group of X. So the following
things are really the same:

• isomorphism classes of complex line bundles over X

• homotopy classes of maps from X to CP∞

• elements of the ordinary cohomology group H2(X).

This is great, because it gives us three different viewpoints to play with. In particular,
H2(X) is easy to compute — anyone who has taken a basic course on algebraic topology
can do it. But the other two viewpoints are nice and geometrical, so they let us do things
with H2(X) that we might not have thought of otherwise.

So now you know this: if you hand me a complex line bundle over X, I can cook up
an element of H2(X). People call this the “first Chern class” of the line bundle. If you
hand me two complex line bundles, I can tell if they’re isomorphic by seeing if their first
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Chern classes are equal. Conversely, if you hand me any element of H2(X), I can cook
up a complex line bundle over X whose first Chern class is that element.

Of course, I haven’t really explained how I cook up all these things. To learn that, you
need to study this stuff a bit more.

But let’s consider a couple of examples. Suppose X is the 2-sphere S2. Since

H2(S2) = Z

this means that first Chern class of a line bundle over S2 is secretly just an integer.
People call this the “first Chern number” of the line bundle. The first physicist to get
excited about this was Dirac, who bumped into this idea when thinking about magnetic
monopoles and charge quantization. Dirac didn’t know about complex line bundles and
Chern classes — he was just studying the change of phase of an electrically charged
particle as you move it around in the magnetic field produced by a monopole! But later,
the physicist Yang met the mathematician Chern and translated Dirac’s work into the
language of line bundles. See

11) C. N. Yang, “Magnetic monopoles, fiber bundles and gauge field”, in Selected Papers,
1945–1980, with Commentary, W. H. Freeman and Company, San Francisco, 1983.

for the full story.
Next let’s try a curiously self-referential example. It should be fun to classify complex

line bundles on CP∞, since this is where the universal one lives! So let’s take X = CP∞.
Since CP∞ is K(Z, 2), a little abstract nonsense shows that it’s ordinary 2nd cohomology
group is Z:

H2(CP∞) = [CP∞,CP∞] = Z.

This means that the first Chern class of a complex line bundle over CP∞ is secretly just
an integer. But what’s the first Chern class of the universal complex line bundle, L? Well,
this bundle is the pullback of itself via the identity map

1: CP∞ → CP∞

and this map corresponds to the element 1 in [CP∞,CP∞] = Z. So the first Chern class
of L is 1. See how tautologous this argument is? It sounds like it’s saying something
profound, but once you understand it, it’s really just saying 1 = 1.

The first Chern class of the universal bundle L is really important, so let’s call it c. It’s
important because it’s universal: it gives us a nice way to think of the first Chern class of
any complex line bundle. Up to isomorphism, any complex line bundle over any space
X comes from some map

f : X → CP∞

so to compute the first Chern class of this line bundle, we can just work out f∗(c), where

f∗ : H2(CP∞)→ H2(X)

is the map induced by f. If you don’t see why this is true, think about it a while — it’s
just a big fat tautology!

The ideas we’ve been discussing raise some obvious questions. For example, H2(X)
isn’t just a set: it’s an abelian group. We already knew this from our basic course in
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algebraic topology, and now we also know another explanation: CP∞ is an infinite loop
space, so it’s like an abelian group for the purposes of homotopy theory. In fact, this
particular infinite loop space actually is an abelian group. Maps from anything into an
abelian group form an abelian group, which makes

H2(X) = [X,CP∞]

into an abelian group. But now you’re dying to know: what exactly do the product map

m : CP∞ × CP∞ → CP∞

and the inverse map
i : CP∞ → CP∞

look like? And what does all this mean for the set of isomorphism classes of complex
line bundles on X? It’s an abelian group — but what are products and inverses like in
this abelian group?

Well, I won’t answer the first question here: there’s a very nice explicit answer, and
you can describe it in terms of particles and antiparticles running around on the Riemann
sphere, but it would be too much of a digression to talk about it here. To learn more,
study the “Thom-Dold theorem” and also some stuff about “configuration spaces” in
topology:

12) Dusa McDuff, “Configuration spaces of positive and negative particles”, Topology
14 (1975), 91–107.

The second question is much easier: the set of isomorphism classes of complex line
bundles on a space X becomes an abelian group with tensor product of line bundles as
the product. Taking the dual of a line bundle gives the inverse in this group.

Putting these ideas together, we get a nice description of tensoring line bundles in
terms of the product

m : CP∞ × CP∞ → CP∞

which I can explain even without saying what the product looks like. Suppose I have two
line bundles on X and I want to tensor them. I might as well assume they are pullbacks
of the universal bundle L by some maps

f : X → CP∞,

g : X → CP∞.

It follows from what we’ve seen that to tensor these bundles, I can just form the map

fg : X → CP∞

given as the composite

X
(f,g)−−−→ CP∞ × CP∞ m−→ CP∞

and then take the pullback of L by fg.
In other words: since the canonical line bundle on CP∞ is universal, CP∞ knows ev-

erything there is to know about complex line bundles. In particular, it knows everything
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there is to know about tensoring complex line bundles: the operation of tensoring is en-
coded in the product on CP∞. Similarly, the operation of taking the dual of a complex
line bundle is encoded in the inverse operation

i : CP∞ → CP∞.

Now, if you’ve absorbed everything I just said — or better yet, if you already knew it! —
you are ready for the definition of a “complex oriented cohomology theory”. Basically,
it’s a generalized cohomology theory where all this stuff about line bundles and the first
Chern class works almost like it does in ordinary cohomology.

Suppose we have a generalized cohomology theory; let’s see the conditions under
which it’s “complex oriented”.

For starters, it must come from a ring spectrum, so that h∗(X) is a graded ring for
any space X. Whenever we’re in this situation, it’s interesting to take X to be a single
point: we get a ring R called the “cohomology ring of a point”. This has a god-given
element of degree 0, namely the multiplicative unit 1. In any generalized cohomology
theory we have an isomorphism

hn+k(Sn) = hk(point)

and taking the god-given element 1 in h0(point), this gives gives a special element in
hn(Sn) called the “orientation” of Sn. Now note that S2 is the same thing as CP1, so
that it sits inside CP∞:

S2 → CP∞

This gives a map
h2(CP∞)→ h2(S2)

We say our generalized cohomology is “complex oriented” if there is an element c in
h2(CP∞) that maps to the orientation of S2 under the above map, and changes sign
under the inverse map

i∗ : h2(CP∞)→ h2(CP∞).

For example, ordinary cohomology is complex oriented, where we take c to be the first
Chern class of the universal complex line bundle! This follows from all the stuff I’ve said
so far.

But lots of other generalized cohomology theories are complex oriented, too. The
most famous ones are complex K-theory and complex cobordism theory. In fact, complex
cobordism theory is the “universal” complex oriented cohomology theory — it’s the most
informative of the whole lot. All the rest are like watered-down versions of this one.
Ordinary cohomology is the most watered-down of all. Complex K-theory is a bit less
watered-down. And elliptic cohomology is still less watered-down!

But what is elliptic cohomology?
Well, I might or might not get around to talking about this next Week. I’ve learned the

hard way not to promise to talk about things in future issues: my mind is too scattered to
be able to stick to one subject in a predictable manner. For example, last week I hinted
that I’d talk about Ross Street’s work on n-categories, but now I’ve spent so much time
blabbing about this other stuff that I don’t think I’ll get around to it. Let me just list the
papers he gave me:
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13) Ross H. Street, “The petit topos of globular sets”, Macquarie Mathematics Report
Number 98/232, March 1998.

14) Ross H. Street and Michael Batanin, “The universal property of the multitude of
trees”, Macquarie Mathematics Report Number 98/233, March 1998.

15) Michael Batanin, “Shuffle polytopes, cooperative games and 2-dimensional coher-
ence for higher dimensional categories”.

The folks down in Sydney are making great progress on understanding n-categories
from the globular point of view, and the importance of the category of trees has become
quite clear. You can think of trees as generalized natural numbers, and then Batanin’s
operads are a natural generalization of the usual operads, which have operations taking
a natural number’s worth of arguments. The trees describe ways of glomming a bunch
of globes together to get a new globe. I wish I had time to explain this better! But it
takes a while, and it really requires some pictures.

Footnote:
[1] Almost, but not quite: if I hand you the infinite loop space E(0), you can only

recover one connected component of the infinite loop space E(1), namely the component
containing the basepoint. So there is more information in a spectrum than there is in
an infinite loop space. A spectrum is a sequence of infinite loop spaces where the based
loops in E(n) form the space E(n− 1); starting from a single infinite loop space we can
cook up a spectrum, but it will be a spectrum of a special sort, called a “connective”
spectrum, where the spaces E(n) are connected for n > 0.

Given a spectrum we can define the generalized cohomology groups Hn(X) even
when n is negative, via:

Hn(X) = limk→∞[Σk(X), E(n+ k)]

where Σk(X) denotes the k-fold suspension of X. If the spectrum is connective, these
groups will vanish when n is negative. A good example of a connective spectrum is the
spectrum for ordinary cohomology (the Eilenberg-MacLane spectrum). A good example
of a nonconnective spectrum is the spectrum for real or complex K-theory.

This therefore, is mathematics: she reminds you of the invisible forms of the soul; she
gives light to her own discoveries; she awakens the mind and purifies the intellect; she brings
light to our intrinsic ideas; she abolishes oblivion and ignorance which are ours by birth. —
Proclus
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Week 150

June 18, 2000

First I’d like to say some stuff about Lagrange points. Then I’ll continue talking about
complex oriented cohomology theories.

Euler and Lagrange won the Paris Academy Prize in 1722 for their work on the orbit
of the moon. The essay that Lagrange submitted for this prize, “Essai sur le probleme
des trois corps”, contained some interesting results on the 3-body problem. Among other
things, he studied the case where a lighter body was revolving about a heavier one in
a circular orbit, and found all the places where a third much lighter body could sit
“motionless” with respect to the other two. There are 5 such places, and they’re now
called the “Lagrange points” L1 – L5.

For example: imagine the moon going around the earth in a circular orbit. Then there
are 5 Lagrange points where we can put a satellite. 3 of these are unstable equilibria.
They lie on the line through the earth and moon. L1 is between the earth and moon, L2
is in the same direction as the moon but a bit further out, and L3 is opposite the moon.
The other 2 Lagrange points are stable equilibria. L4 lies in the moon’s orbit 60 degrees
ahead of the moon, while L5 lies 60 degrees behind the moon.

Here’s a nice picture of the Lagrange points:

1) “Lagrange points”, http://map.gsfc.nasa.gov/m mm/ob techorbit1.html

In general, the points L4 and L5 will be stable equilibria as long as the heavy body
(e.g. the earth in the above example) is more than 25 times as massive as the intermediate-
sized one (e.g. the moon). And in case you’re wondering, this magic number is just an
approximation to the exact figure, which is

25

2

(
1 +

√
1− 4

625

)
= 24.95993579437711227887 . . .

Here’s a proof that the Lagrange points work as advertised, including a derivation of the
above number:

2) Neil J. Cornish, “The Lagrange points”, available at http://www.astro.princeton.
edu/~njc/lagrange.ps.gz

Now, Lagrange did his calculation as a mathematical exercise and didn’t believe it was
relevant to the actual solar system. But he was wrong about that! The stable Lagrange
points L4 and L5 are quite interesting, because stuff tends to accumulate there.

For example, people have found over six hundred asteroids called “Trojans” at the
stable Lagrange points of Jupiter’s orbit around the sun. The first to be discovered was
588 Achilles, back in 1906 — the number here meaning that it was the 588th asteroid
found. In general, the Trojans at L4 are named after Greek soldiers in the Trojan war,
while those at L5 are named after actual Trojans — soldiers from the city of Troy! You
can see the Trojans quite clearly in this picture of the asteroid belt:

3) Asteroid belt, http://www-groups.dcs.st-and.ac.uk/~history//Diagrams/Asteroids.
gif
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The asteroid 5261 Eureka is a “Martian Trojan”, occupying the L5 point of Mars’ orbit
around the sun. A second Martian Trojan was discovered at L5 in 1998, but it doesn’t
have a name yet. For more information, try:

4) Minor Planet Center, Trojan minor planets, http://cfa-www.harvard.edu/cfa/
ps/lists/Trojans.html

There may also be a few small asteroids at the Lagrange points of Venus and Earth’s
orbits around the sun. Does anyone know more about this? My brief search revealed
only some information about the curious asteroid 3753 Cruithne, which is a companion
asteroid of the Earth. But 3753 Cruithne is not at a Lagrange point! Instead, it moves in a
very complicated spiralling horse-shoe shaped orbit relative to the earth. For a beautiful
explanation with pictures by the discoverers of this phenomenon, see:

5) Paul Wiegert, Kimmo Innanen and Seppo Mikkola, Near-earth asteroid 3753 Cruithne
— Earth’s curious companion, http://www.astro.queensu.ca/~wiegert/

For over 150 years, astronomers have been searching for other satellites of the Earth
besides the big one I see out my window right now. There have been a lot of false
alarms, with people even giving names to the satellites they thought they discovered,
like “Kleinchen” and “Lilith”. For the fascinating story of these “second moons” and
other hypothetical planets, see:

6) Paul Schlyter, “Hypothetical planets”, http://seds.lpl.arizona.edu/nineplanets/
nineplanets/hypo.html

Unfortunately, none of these second moons were real. But in the 1960s, people
discovered dust clouds at the stable Lagrange points of the Moon’s orbit around the
Earth! They are about 4 times as big as the Moon, but they are not very substantial.

What else lurks at Lagrange points?
Well, Saturn has a moon called Dione, and 60 degrees ahead of Dione, right at the

Lagrange point L4, there is a tiny moon called Helene. Here’s a picture of Helene:

7) Astronomy picture of the day: “Dione’s Lagrange moon Helene”, http://antwrp.
gsfc.nasa.gov/apod/ap951010.html

Isn’t she cute? There’s also a small moon called Telesto at the L4 point of Saturn’s
moon Tethys, and one called Calypso at the L5 point of Tethys:

8) Bill Arnett, Introduction to the nine planets: Tethys, Telesto and Calypso, http://
seds.lpl.arizona.edu/nineplanets/nineplanets/tethys.html

Does anyone know other natural occupants of Lagrange points?
For a long time crackpots and science fiction writers have talked about a “Counter-

Earth”, complete with its own civilization, located at the L3 point of the Earth’s orbit
around the Sun — exactly where we can never see it! I think satellite explorations have
ruled out this possibility by now, but since L3 is an unstable Lagrange point, it was never
very likely to begin with.
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On the other hand, fans of space exploration have long dreamt of setting up a colony
at the stable Lagrange points of the Moon’s orbit around the earth — right in those dust
clouds, I guess. But now people are putting artificial satellites at the Lagrange points of
the Earth’s orbit around the Sun! For example, L1 is the home of “SOHO”: the Solar and
Heliospheric Observatory. Sitting between the Earth and Sun gives SOHO a nice clear
view of sunspots, solar flares, and the solar wind. It’s not stable, but it can exert a bit of
thrust now and then to stay put. For more information and some pretty pictures, try:

9) SOHO website, http://sohowww.nascom.nasa.gov/

In April 2001, NASA plans to put a satellite called “MAP” at the Lagrange point L2.
MAP is the Microwave Anisotropy Probe, which will study anisotropies in the cosmic
microwave background. These are starting to be a really interesting window into the
early history of the universe. For more, see:

10) MAP website, http://map.gsfc.nasa.gov/

Finally, for quantum analogues of the Lagrange points, see:

11) T. Uzer, Ernestine A. Lee, David Farrelly, and Andrea F. Brunello, Synthesis of a
classical atom: wavepacket analogues of the Trojan asteroids, Contemp. Phys.
41 (2000), 1-14. Abstract available at http://www.catchword.co.uk/titles/

tandf/00107514/v41n1/contp1-1.htm

Okay, enough about Lagrange points! Now I want to talk a bit more about complex
oriented cohomology theories. Last time I left off at the definition. So let me start with
a little review, and then plunge ahead.

A generalized cohomology theory assigns to each space X a bunch of groups hn(X),
one for each integer n. We impose some axioms that make them work very much like
ordinary cohomology. However, when X is a point, we no longer require that hn(X) is
trivial for nonzero n. It may not seem like much, but it turns out to make a big difference!
There are all sorts of very interesting examples.

Like what?
Well, there’s K-theory, which lets us study a space by looking at vector bundles over

that space and its iterated suspensions. We get various flavors of K-theory from various
kinds of vector bundle: real K-theory, complex K-theory, quaternionic K-theory, and so
on. There’s even a sort of K-theory invented by Atiyah that’s based on Clifford algebras,
called “KR theory”. For more about all these, try:

12) Dale Husemoller, Fibre Bundles, Springer-Verlag, New York, 1975.

13) H. Blaine Lawson, Jr. and Marie-Louise Michelsohn, Spin Geometry, Princeton Uni-
versity Press, Princeton, 1989.

Then there’s cobordism theory, which lets us study a space by looking at manifolds
mapped into that space and its iterated suspensions. To be honest, this is actually how
bordism theory works — this being a generalized homology theory. But every generalized
homology theory goes hand-in-hand with a generalized cohomology theory, and if you
understand one you understand the other, at least in principle. . . . Anyway, there are
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various flavors of cobordism theory corresponding to various kinds of extra structure
you can put on a manifold: piecewise-linear cobordism theory, smooth cobordism theory,
oriented cobordism theory, spin cobordism theory, complex cobordism theory, symplectic
cobordism theory, stable homotopy theory, and so on. For more about these, try:

14) Robert E. Stong, Notes on Cobordism Theory, Princeton University Press, Princeton,
1968.

Finally, there are generalized cohomology theories inspired more by algebra than
by geometry, which only hardcore homotopy theorists seem to understand, like Morava
K-theory and Brown-Peterson theory.

To round off this little tour, I guess I should add that there are lots of maps going
between different generalized cohomology theories! As I explained in “Week 149”, each
generalized cohomology hn corresponds to a “spectrum”: a list of spaces, each being the
loop space of the next. Spectra form a category, and given a map between spectra we get
a map between their generalized cohomology theories. So we shouldn’t study these one
of at a time: it’s better to play around with lots at once! For some important examples
of the stuff you can do this way, try:

15) P. E. Conner and E. E. Floyd, The Relation of Cobordism to K-theories, Lecture Notes
in Mathematics 28, Springer-Verlag, New York, 1966.

16) Douglas C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres,
Academic Press, 1986.

and also the books on generalized cohomology listed in “Week 149”.
Anyway, to bring order to this zoo, it’s nice to pick out some of the special features of

ordinary cohomology theory and study the generalized cohomology theories that share
these features.

For example, in ordinary cohomology, the cohomology groups of a space fit together
to form a graded ring. If a generalized cohomology theory is like this, we call it “multi-
plicative”. Whenever this is the case, we get a graded ring R called the “coefficient ring”
of our theory, which is simply the cohomology ring of the one-point space. For ordinary
cohomology theory the coefficient ring is just Z, but for other theories it can be very in-
teresting and complicated. By easy abstract nonsense, the cohomology ring of any space
is an algebra over the coefficient ring.

Another nice feature of ordinary cohomology is the first Chern class. Whenever you
have a complex line bundle over a space X, you get an invariant called its “first Chern
class” which lives in H2(X), and this invariant is sufficiently powerful to completely
classify such line bundles. Last week I described the universal line bundle over infinite-
dimensional complex projective space:

L→ CP∞

and showed how the first Chern class of any line bundle comes from the first Chern class
of this one, which I called c.

If a generalized cohomology theory is multiplicative and there’s an element c of
h2(CP∞) that acts like the first Chern class of the universal line bundle, we call the
theory “complex oriented”. Of course, to make this precise we need to isolate the key
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features of the first Chern class and abstract them. I did this in “Week 149”, so I won’t
do it again here. Instead, I’ll just say a bit about what we can do with a complex oriented
cohomology theory.

For starters, we can use the element c to get an invariant of complex line bundles —
a kind of generalized version of the first Chern class. To do this, just remember from
“Week 149” that CP∞ is the classifying space for complex line bundles. In other words,
any line bundle over any space X is isomorphic to a pullback of the universal line bundle
by some map

f : X → CP∞.
Thus, given a line bundle we can find such a map f and use it to pull back the element
c to get an element of h2(X). This is exactly like the usual first Chern class of our line
bundle, except now we’re using a generalized cohomology theory instead of ordinary
cohomology.

Can we get any other invariants of complex line bundles from other elements of
the cohomology of CP∞? Not really: in any complex oriented cohomology theory, the
cohomology ring of CP∞ is just the algebra of formal power series in the element c:

h∗(CP∞) = R[[c]]

where R is the coefficient ring.
However, we can get other invariants of complex vector bundles, which are analogous

to the higher Chern classes. In fact, we can mimic a huge amount of the usual theory of
characteristic classes in the context of a complex oriented cohomology theory. I’d love to
talk about this, but it would be a digression from my main goal, which is to make elliptic
cohomology at least halfway comprehensible to the amateur.

So: last time I mentioned that CP∞ is an abelian topological group, with a multipli-
cation map

m : CP∞ × CP∞ → CP∞

and an inverse map
i : CP∞ → CP∞.

And I explained how these represent the operations of tensoring two line bundles and
taking the dual of a line bundle, respectively. Now let’s see what we can do with these
maps when we have a complex oriented cohomology theory. First of all, since cohomol-
ogy is contravariant we get homomorphisms

m∗ : h∗(CP∞)→ h∗(CP∞ × CP∞)

and
i∗ : h∗(CP∞)→ h∗(CP∞)

But as I already said, we have
h∗(CP∞) = R[[c]]

and similarly we have
h∗(CP∞ × CP∞) = R[[c]]⊗R[[c]]

where the product “⊗” on the right side is a slightly fattened-up version of the usual
tensor product of algebras over R. So we really have homomorphisms

m∗ : R[[c]]→ R[[c]]⊗R[[c]]
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i∗ : R[[c]]→ R[[c]]

which satisfy all the usual axioms for the product and inverse in an abelian group — but
turned around backwards.

Folks who like Hopf algebras will immediately note that R[[c]] is like a Hopf algebra.
A nice way to form a Hopf algebra is to take the algebra of functions on a group and
use the product and inverse in the group to give this algebra extra operations called the
“coproduct” and “antipode”. We’re doing the same thing here, except that we’re using
formal power series in one variable c instead of functions of one variable. So folks call
R[[c]] a “formal group law”.

In short: complex oriented cohomology theories give formal group laws!
Lest this seem overly abstract and unmotivated, remember that it’s just a way of

talking about what happens to the generalized “first Chern class” when we tensor line
bundles. In a vague but useful way, we can visualize guys in R[[c]] as formal power series
on the line, where the line has been equipped with some abelian group structure, at least
right near the origin. This group structure is what yields the coproduct

m∗ : R[[c]]→ R[[c]]⊗R[[c]]

and antipode
i∗ : R[[c]]→ R[[c]]

But the real point is that this group structure tells us how to compute the generalized
“first Chern class” of a tensor product of line bundles starting from both of their gener-
alized first Chern classes.

Some examples may help. In ordinary cohomology theory, when we tensor two line
bundles, we just add their first Chern classes. So in this case, we’ve got the line made
into a group using addition, and R[[c]] becomes a formal group law called the “additive
formal group law”.

Another famous example is complex K-theory. In this theory, when we tensor two
line bundles, we basically just multiply their generalized first Chern classes. That’s be-
cause cohomology classes in K-theory are just equivalence classes of vector bundles, and
multiplying them just means tensoring them. So in this case, R[[c]] becomes the “mul-
tiplicative” formal group law. Of course, some fiddling around is required, because we
don’t usually think of the multiplicative unit 1 as the origin of the line. . . but we can if
we want.

What are some other examples? Well, complex cobordism theory is one. This cor-
responds to the “universal” formal group law: a formal group law that has a unique
homomorphism to any other one! In this case R is quite big: it’s called the “Lazard ring”.
And this universal aspect of complex cobordism theory makes it the king of all com-
plex oriented generalized cohomology theories. I really should spend about 10 pages
explaining it to you in detail, but I won’t. . . .

. . . because I want to finally say a word about elliptic cohomology!
I’ve talked a lot about elliptic curves in “Week 13”, “Week 125” and “Week 126”,

so I get to assume you know about them: an elliptic curve is a 1-dimensional compact
complex manifold which is also an abelian group. As such, any elliptic curve gives a
formal group law. And thus we can wonder if this formal group law comes from a
complex oriented cohomology theory. . . and it does! And this is elliptic cohomology!
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Now this is just the beginning of a long story: there’s much more to say, and I don’t
have the energy to say it here. . . but I’ll just tantalize you with some of the high points.
Since elliptic curves can be thought of as the worldsheets of strings, there are a bunch of
interesting relationships between string theory and elliptic cohomology. In addition to
the references I’ve gave you in “Week 149”, see for example:

17) Hirotaka Tamanoi, Elliptic Genera and Vertex Operator Super-Algebras, Springer Lec-
ture Notes in Mathematics 1704, Springer, Berlin, 1999.

We also get lots of nice relationships to the theory of modular forms. But the one
thing we apparently don’t have yet is a very neat geometrical description of elliptic coho-
mology! There’s got to be one, since so much nice geometry is involved. . . but what is
it?

(For an answer to this question, see “Week 197”.)

Addendum: For the proof that the complex cobordism theory corresponds to the
universal formal group law, read Quillen’s original paper on the subject:

18) Daniel Quillen, “On the formal group laws of unoriented and complex cobordism
theory”, Bull. Amer. Math. Soc. 75 (1969), 1293–1298. Also available as http://
projecteuclid.org/euclid.bams/1183530915

In any field, find the strangest thing and then explore it. — John Wheeler

347


	April 9, 1997
	April 21, 1997
	April 26, 1997
	June 8, 1997
	June 21, 1997
	July 23, 1997
	August 19, 1997
	September 22, 1997
	September 27, 1997
	October 4, 1997
	October 24, 1997
	November 3, 1997
	November 26, 1997
	January 12, 1998
	February 1, 1998
	February 7, 1998
	February 14, 1998
	March 14, 1998
	April 13, 1998
	May 6, 1998
	May 15, 1998
	June 24, 1998
	September 19, 1998
	October 23, 1998
	November 3, 1998
	November 17, 1998
	November 30, 1998
	January 4, 1999
	February 15, 1999
	February 27, 1999
	March 7, 1999
	April 2, 1999
	April 23, 1999
	June 8, 1999
	July 31, 1999
	August 21, 1999
	September 4, 1999
	September 12, 1999
	September 19, 1999
	October 16, 1999
	October 26, 1999
	December 5, 1999
	December 29, 1999
	January 21, 2000
	February 9, 2000
	March 11, 2000
	May 20, 2000
	June 5, 2000
	June 12, 2000
	June 18, 2000


\documentclass{article}

\usepackage{longtable}
\usepackage{booktabs}
\def\tightlist{}

\usepackage{charter}
\usepackage{fancyhdr}
\pagestyle{fancy}

\usepackage[margin=1.6in]{geometry}

\usepackage{amsmath,amssymb}
\usepackage[colorlinks=true]{hyperref}
\usepackage{color}
\definecolor{myurlcolor}{rgb}{0.6,0,0}
\definecolor{mycitecolor}{rgb}{0,0,0.8}
\definecolor{myrefcolor}{rgb}{0,0,0.8}
\hypersetup{linkcolor=myrefcolor,citecolor=mycitecolor,urlcolor=myurlcolor}

\renewcommand{\texttt}[1]{%
  \begingroup
  \ttfamily
  \begingroup\lccode`~=`/\lowercase{\endgroup\def~}{/\discretionary{}{}{}}%
  \begingroup\lccode`~=`[\lowercase{\endgroup\def~}{[\discretionary{}{}{}}%
  \begingroup\lccode`~=`.\lowercase{\endgroup\def~}{.\discretionary{}{}{}}%
  \catcode`/=\active\catcode`[=\active\catcode`.=\active
  \scantokens{#1\noexpand}%
  \endgroup
}

\usepackage{titlesec}
\newcommand{\sectionbreak}{\clearpage}
\renewcommand{\thesection}{Week~\arabic{section}}
\titleformat{\section}[display]{\normalfont}{\Large\bfseries\thesection}{1em}{\large\normalfont}

\usepackage{titletoc}
\titlecontents{section}[0em]{\normalfont}{\bfseries\thecontentslabel\hspace{1em}\normalfont\small}{}{\titlerule*[0.3pc]{.}\small\itshape\thecontentspage}[\vspace{0.5em}]

\usepackage[toc]{multitoc}
\renewcommand*{\multicolumntoc}{2}
\setlength{\columnseprule}{0.5pt}

\title{This Week's Finds in Mathematical Physics (101--150)}
\author{John Baez}
\date{April 9, 1997 to June 18, 2000}

\usepackage{tikz}
\usetikzlibrary{knots}
\usetikzlibrary{arrows}
\usetikzlibrary{decorations.pathmorphing}

\usepackage{etoolbox}
\AtBeginEnvironment{quote}{\itshape}

\usepackage{tikz-cd}

\usepackage{graphicx}
\usepackage[export]{adjustbox}

\setcounter{section}{100}


\usepackage[main]{embedall}

\begin{document}

\begin{titlepage}
  \begin{center}
    {\Huge\textbf{This Week's Finds in}}
  \\[0.7em]{\Huge\textbf{Mathematical Physics}}
  \\[1em]{\huge\textit{Weeks 101 to 150}}
  \\[4em]{\LARGE \textit{April 9, 1997} to \textit{June 18, 2000}}
  \\[4em]{\huge by John Baez}
  \\[0.5em]{\Large{Typeset by Tim Hosgood}}
  \end{center}
\end{titlepage}

\tableofcontents

\hypertarget{week101}{%
\section{April 9, 1997}\label{week101}}

Darwinian evolution through natural selection is an incredibly powerful
way to explain the emergence of complex organized structures. However,
it is not the \emph{only} important process that naturally gives rise to
complex structures. Maybe when we study biology we should also look for
other ways that order can spontaneously arise.

After all, there are plenty of complex structures in the nonbiological
world. When it snows, we see lots of beautiful snowflakes with similar
but different hexagonal structures. Do we conclude that snowflakes
\emph{evolved} to be hexagonal through natural selection? No.

But wait! Maybe in some sense a hexagonal snowflake is ``more fit'' in
certain weather conditions. Perhaps this shape is more efficient at
getting water molecules to adhere to it than other shapes. We can think
of different snowflakes as engaged in ``competition'' for water
molecules, and the ones that grow fastest as the ``winners''. In fact,
the exact shapes of snowflakes in a snowstorm depend crucially on the
temperature, humidity and so on\ldots{} so who the ``winners'' are
depends on the environment, just as in Darwinian evolution!

A biologist will reply: fine, but this is still not ``Darwinian
evolution''. For Darwinian evolution in the strict sense, we require
that there be a ``lineage''. Darwinian evolution applies only to
entities that reproduce and pass some of their traits down to
descendants. The idea is that over the course of many generations,
traits that aid reproduction will accumulate, while traits that hinder
it will be weeded out. Snowflakes don't have kids. A one-shot
competition for resources, followed by melting into oblivion the next
day, is not what Darwinian evolution is about.

Okay, okay, so it's not Darwinian evolution. But it's still interesting.
It's showing us that Darwinian evolution is just \emph{one} of various
ways that order can arise. So we shouldn't study Darwinian evolution in
isolation. We should study \emph{all} the ways that systems
spontaneously generated complex patterns, and see how they relate. If we
do that, perhaps we'll see a bunch of interesting relationships between
physics and chemistry and biology. Also, maybe we'll get a better handle
on how life arose in the first place\ldots{} that curious transition
from chemistry to biology.

If I wasn't so hooked on quantum gravity I would love to work on this
stuff. It's obviously cool, and obviously a lot more \emph{practical}
than quantum gravity. The origin of complexity a very hot topic these
days. But alas, I am just an old-fashioned guy in love with simplicity.
Whenever I see a new journal come out with a title like ``Complex
Systems'' or ``Journal of Complexity'' or ``Santa Fe Institute Studies
in the Science of Complexity'', I heave a wistful sigh and dream of
starting a journal entitled ``Simplicity''.

Actually, the fun lies in the interplay between complexity and
simplicity: how complex phenomena can arise from simple laws, and
sometimes obey new simple laws of their own. I like to hang out on the
simple end of things, but that doesn't stop me from enjoying the new
work on complexity. At one point I got a big kick out of Manfred Eigen's
work on ``hypercycles'' --- systems of chemicals that catalyze each
others formation. (You may remember Eigen as the discoverer of the
``Eigenvalue''\ldots{} in which case I pity you.) Presumably life
started as some sort of hypercycle, so the mathematical study of the
competition between hypercycles may shed some light on why there is only
one genetic code. There is a lot of nice math of this type in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Manfred Eigen, \emph{The Hypercycle, a Principle of Natural
  Self-Organization}, Springer-Verlag, Berlin, 1979.
\end{enumerate}

Another name that comes up in this context is Ilya Prigogine, mainly for
his work on non-equilibrium thermodynamics and the spontaneous formation
of patterns in dissipative systems. The following are just a few of his
many books:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  G. Nicolis and I. Prigogine, \emph{Self-Organization in Nonequilibrium
  Systems: from Dissipative Structures to Order Through Fluctuations},
  Wiley, New York, 1977.

  Ilya Prigogine, \emph{From Being to Becoming: Time and Complexity in
  the Physical Sciences}, W. H. Freeman, San Francisco, 1980.

  Ilya Prigogine, \emph{Introduction to Thermodynamics of Irreversible
  Processes}, 3d ed., Interscience Publishers, New York, 1967.
\end{enumerate}

A bit more recently, the work of Stuart Kauffman has dominated the
subject. It's really him who has pushed for the unified study of the
whole gamut of methods of spontaneous generation of order, particularly
in the context of biological systems. He's written two books. The
latter, in particular, includes a lot of math problems just
\emph{waiting} to be tackled by good mathematicians and physicists.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Stuart A. Kauffman, \emph{At Home in the Universe: the Search for Laws
  of Self-Organization and Complexity}, Oxford University Press, New
  York, 1995.

  Stuart A. Kauffman, \emph{The Origins of Order: Self-Organization and
  Selection in Evolution}, Oxford University Press, New York, 1993.
\end{enumerate}

If non-Darwinian forms of spontaneous pattern-formation can be important
in biology, can Darwinian evolution be important in non-biological
contexts? Well, as I mentioned in \protect\hyperlink{week31}{``Week
31''} and \protect\hyperlink{week33}{``Week 33''}, the physicist Lee
Smolin has an interesting hypothesis about how the laws of nature may
have evolved to their present point by natural selection. The idea is
that black holes beget new ``baby universes'' with laws similar but not
necessarily quite the same as their ancestors. Now this is extremely
speculative, but it has the saving virtue of making a lot of testable
predictions: it predicts that all the constants of nature are tuned so
as to maximize black hole production. Smolin has just come out with a
book on this, which also happens to be a good place to learn about his
work on quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Lee Smolin, \emph{The Life of the Cosmos}, Crown Press, 1997.
\end{enumerate}

Interestingly, Stuart Kauffman and Lee Smolin have teamed up to write a
paper on the problem of time in quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Stuart Kauffman and Lee Smolin, ``A possible solution to the problem
  of time in quantum cosmology'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9703026}{\texttt{gr-qc/9703026}}.
\end{enumerate}

Right now you can also read this paper on John Brockman's website called
``Edge''. This website features all sorts of fun interviews and
discussions. For example, if you look now you'll find an intelligent
interview with my favorite living musician, Brian Eno. More to the
point, a discussion of Kauffman and Smolin's paper is happening there
now. As a long-time fan of USENET newsgroups and other electronic forms
of chitchat, I'm really pleased to see how Brockman has set up a kind of
modern-day version of the French salon.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Edge: \texttt{http://www.edge.org}
\end{enumerate}

Okay. Now\ldots{} what's even more fashionable, trendy, and close to the
cutting edge than complexity theory? You guessed it: homotopy theory!
Currently known only to hippest of the hip, this is bound to hit the
bigtime as soon as they figure out how to make flashy color graphics
illustrating the Adams spectral sequence.

Last week I went to the Workshop on Higher Category Theory and Physics
at Northwestern University, and also, before that, part of a conference
on homotopy theory they had there. Actually these two subjects are
closely related: homotopy theory is a highly algebraic way of studying
the topology of spaces of various dimensions, and lots of what we
understand about ``higher dimensional algebra'' comes from homotopy
theory. So it was a nice combination.

Lots of the homotopy theory was over my head, alas, but what I
understood I enjoyed. It may seem sort of odd, but the main thing I got
out of the homotopy theory conference was an explanation of why the
number 24 is so important in string theory! In bosonic string theory
spacetime needs to be \(26\)-dimensional, but subtracting 2 dimensions
for the surface of the string itself we get 24, and it turns out that
it's really the special properties of the number 24 that make all the
magic happen.

I began to delve into these mysteries in
\protect\hyperlink{week95}{``Week 95''}. There, however, I was mainly
reporting on very fancy stuff that I barely understand, stuff that seems
like a pile of complicated coincidences. Now, I am glad to report, I am
beginning to understand the real essence of this 24 business. It turns
out that the significance of the number 24 is woven very deeply into the
basic fabric of mathematics. To put it rather mysteriously, it turns out
that every integer has some subtle ``hidden symmetries''. These
symmetries have symmetries of their own, and in turn THESE symmetries
have symmetries of THEIR own - of which there are exactly 24.

Hmm, mysterious. Let me put it another way. It probably won't be obvious
why this is another way of saying the same thing, but it has the
advantage of being more concrete. Suppose that the integer n is
sufficiently large - 4 or more will do. Then there are 24 essentially
different ways to wrap an (n+3)-dimensional sphere around an
n-dimensional sphere. More precisely still, given two continuous
functions from an (n+3)-sphere to an n-sphere, let's say that they lie
in the same ``homotopy class'' if you can continuously deform one into
another. Then when n is 4 or more, it turns out that there are exactly
24 such homotopy classes.

Now that I have all the ordinary mortals confused and all the homotopy
theorists snickering at me for making such a big deal out of something
everyone knows, I should probably go back and explain what the heck I'm
getting at, and why it has to do with string theory. But I'm getting
worn out, and your attention is probably flagging, so I'll do this next
time. I'll say a bit about homotopy theory, stable homotopy theory, the
sphere spectrum, and why Andre Joyal says we should call the sphere
spectrum the ``integers'' (thus explaining my mysterious remark above).

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{Deep, deep infinity! Quietness. To dream away from the tensions of
daily living; to sail over a calm sea at the prow of a ship, toward a
horizon that always recedes; to stare at the passing waves and listen to
their monotonous soft murmur; to dream away into unconsciousness\ldots.}
--- Maurits Escher



\hypertarget{week102}{%
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In \protect\hyperlink{week101}{``Week 101''} I claimed to have figured
out the real reason for the importance of the number 24 in string
theory. Now I'm not so sure --- some pieces of the puzzle that I thought
would fit together don't seem to be fitting. Maybe if I explain what I
know so far, some experts will hand me some of the missing pieces, or
tell me where the ones I have go.

Most of the puzzle pieces came from a talk at a conference on homotopy
theory that I went to:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Ulrike Tillmann, ``The moduli space of Riemann surfaces --- a homotopy
  theory approach'', talk at Northwestern University Algebraic Topology
  Conference, March 27, 1997
\end{enumerate}

However, some conversations with Andre Joyal during this conference
really helped turn my attention towards what might be going on here.

Let's start by recalling some stuff about homotopy groups of spheres.
There are often lots of topologically different ways of wrapping an
\(m\)-dimensional sphere around a \(k\)-dimensional sphere. For example,
if \(m = k = 1\), we're talking about the ways of wrapping a circle
around a circle. These are classified by an integer called the ``winding
number''. We can make this concrete by thinking of the circle as the
unit circle in the complex plane. Take your favorite integer and call it
\(n\). Then the function \[f(z) = z^n\] maps the unit circle (the
complex numbers with \(|z| = 1\)) to itself. If \(n\) is positive, this
function wraps the unit circle around itself \(n\) times in the
counterclockwise direction. If \(n\) is negative, the circle gets
wrapped around in the other direction. If \(n\) is zero, \(f(z) = 1\),
so we have a constant function --- no ``wrapping around'' at all!

It turns out that any continuous function from the circle to itself can
be continuously deformed to exactly one of these functions
\(f(z) = z^n\). Homotopy theory is all about such continuous
deformations. In the jargon of homotopy theory, we say two functions
from some space to some other space are ``homotopic'' if we can
continuously deform the first function to the second. Another way of
putting it is that the two functions lie in the same ``homotopy class''.
Speaking of jargon, real topologists never say ``continuous function'':
instead, they say ``map''. So, using this jargon: we know the homotopy
class of a map from the circle to itself if we know its winding number.

Now: what happens if we go to higher dimensions? What are all the
homotopy classes of maps from the \(m\)-dimensional sphere to the
\(k\)-dimensional sphere? Spheres are pretty simple spaces, so one might
at first guess there is some simple answer to this question for all
\(m\) and \(k\).

Unfortunately, it's far from simple. In fact, nobody knows the answer
for all \(m\) and \(k\)! People \emph{do} know the answer for zillions
of particular values of \(m\) and \(k\). But there is no simple pattern
to it: instead, there is an incredibly complicated and beautiful weave
of subtle patterns, which we have not gotten to the bottom of\ldots{}
and perhaps never will.

To get a little feel for this, let's bring in some standard notation:
folks use \(\pi_m(X)\) to denote the set of homotopy classes of maps
from an \(m\)-dimensional sphere to the space \(X\). When \(m > 0\),
this set is actually a group, called the ``\(m\)th homotopy group'' of
\(X\). These groups are of major importance in algebraic topology.

So, what we are talking about is \(\pi_m(S^k)\): the set of all homotopy
classes of ways of wrapping an \(m\)-sphere around an \(k\)-sphere. I
already implicitly said that \[\pi_1(S^1) = \mathbb{Z}\] where
\(\mathbb{Z}\) stands for the integers, since the winding number is an
integer. The same thing happens if we go up a dimension:
\[\pi_2(S^2) = \mathbb{Z}\] In other words: you can wrap a 2-sphere (an
ordinary sphere) \(n\) times around itself for any integer \(n\). How?
Well, say we use spherical coordinates and describe a point on the
sphere using its angle \(\varphi\) from the north pole, together with
the angle \(\theta\) saying how far east it is from Greenwich. Then the
map \[f(\varphi,\theta) = (\varphi, n\theta)\] does the job. Any map
from \(S^2\) to itself is homotopic to exactly one of these.

The same basic idea works in any higher dimension, too:
\[\pi_k(S^k) = \mathbb{Z} \quad\text{for any}\quad k\geqslant 1\]

In other words, there is always an integer \(n\) that plays the role of
the ``winding number'' of a map from the \(k\)-sphere to itself ---
though only uncouth physicists call it the ``winding number'';
mathematicians call it the ``degree''.

So far, so good. Now, what about mapping a sphere to another sphere of
\emph{higher} dimension? This is nice and simple:
\[\pi_m(S^k) =\{0\} \quad\text{whenever}\quad m < k\]

The \(\{0\}\) there is just a standard way to write a set with only one
element, which we call ``zero''. So what we mean is that there's only
\emph{one} homotopy class of ways to map a sphere to a sphere of higher
dimension. There is always enough ``room'' to wiggle around one map
until it looks like another.

What about mapping a sphere to another sphere of \emph{lower} dimension?
Here is where the trouble starts! --- or the fun, depending on your
attitude towards complexity. For example, there is only one homotopy
class of maps from a 2-sphere to a circle: \[\pi_2(S^1) = \{0\}\] There
is just no way a 2-sphere can get interestingly ``stuck'' on the
``hole'' of the circle. This may seem obvious. But it's not really quite
as obvious at it seems, because if we move up one dimension, we have:
\[\pi_3(S^2) = \mathbb{Z}\] This came as a big shock when Heinz Hopf
first discovered it in the 1930's; before then, people had no idea how
sneaky homotopy groups were!

There is a beautiful way to compute an integer called the ``Hopf
invariant'' that keeps track of the homotopy class of a map from the
3-sphere to the 2-sphere. There are lots of nice ways to compute it, but
alas, I only have time to briefly sketch one! Suppose that the map
\(f\colon S^3\to S^2\) is smooth (otherwise we can always smooth it up).
Then most points \(p\) in \(S^2\) have the property that the points
\(x\) in \(S^3\) with \(f(x) = p\) form a ``link'': a bunch of knots in
\(S^3\). If we take two different points in \(S^2\) with this property,
we get two links. From these two links we can compute an integer called
the ``linking number'': for example, we can just draw these two links
and count the times one crosses over or under the other (with
appropriate plus or minus signs for each crossing). This number turns
out not to depend on how we picked the two points! Moreover, it only
depends on the homotopy class of \(f\). It's called the Hopf invariant
of \(f\).

Moving up one dimension, it turns out that \[\pi_4(S^3) = \mathbb{Z}/2\]
Here \(\mathbb{Z}/2\) is the group with two elements, usually written
\(0\) and \(1\), with addition \(\mod 2\). Why only two homotopy classes
of maps from \(S^4\) to \(S^3\)? Well, you can compute something like
the Hopf invariant for these maps, exactly as we did before, but the
thing is, links in 4 dimensions are easy to unlink. You can unlink
something like \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=up] (0.75,-1.5)
        to [out=down,in=up] (0,-3);
      \strand[thick] (0.75,0)
        to [out=down,in=up] (0,-1.5)
        to [out=down,in=up] (0.75,-3);
      \flipcrossings{2}
    \end{knot}
  \end{tikzpicture}
\] and make it look like \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to (0,-3);
      \strand[thick] (0.75,0)
        to (0.75,-3);
    \end{knot}
  \end{tikzpicture}
\] so the linking number in 4 dimensions is only defined \(\mod 2\).
Thus the ``Hopf invariant'' is only defined \(\mod 2\).

The exact same thing happens in higher dimensions, too, so in fact we
have:
\[\pi_{k+1}(S^k) = \mathbb{Z}/2 \quad\text{for any}\quad k \geqslant 3.\]
This illustrates an important general fact: when the dimensions get high
enough, there's more room to wiggle things around, and as we keep
jacking up the dimension, homotopy groups simplify a bit and settle down
after a while. This is the idea behind ``stable homotopy theory''.

Let's look at some more examples. We have

\begin{itemize}
\tightlist
\item
  \(\pi_3(S^1) = \{0\}\)
\item
  \(\pi_4(S^2) = \mathbb{Z}/2\)
\item
  \(\pi_5(S^3) = \mathbb{Z}/2\)
\item
  \(\pi_6(S^4) = \mathbb{Z}/2\)
\end{itemize}

and so on:

\[\pi_{k+2}(S^k) = \mathbb{Z}/2 \quad\text{for any}\quad k\geqslant 2\]

Sadly, I do \emph{not} understand why this is true. How do you wrap a
4-sphere around a 2-sphere in an interesting way? Dunno.

(Thanks to Dan Christensen, an answer appears at the end of this post.)

Plunging on undeterred, we have:

\begin{itemize}
\tightlist
\item
  \(\pi_4(S^1) = \{0\}\)
\item
  \(\pi_5(S^2) = \mathbb{Z}/2\)
\item
  \(\pi_6(S^3) = \mathbb{Z}/12\)
\item
  \(\pi_7(S^4) = \mathbb{Z}\oplus\mathbb{Z}/12\)
\item
  \(\pi_8(S^5) = \mathbb{Z}/24\)
\item
  \(\pi_9(S^6) = \mathbb{Z}/24\)
\end{itemize}

and so on:

\[\pi_{k+3}(S^k) = \mathbb{Z}/24 \quad\text{for any}\quad k\geqslant 5.\]

Here is where the magic number 24 comes in! What the above says is that
if \(k\) is large enough, there are exactly 24 different homotopy class
of maps from an \((k+3)\)-sphere to an \(k\)-sphere!

Now I should explain what this has to do with string theory. But first I
should say more about the homotopy groups of spheres. There are some
simple patterns worth knowing about. First,
\[\pi_m(S^1) = \{0\} \quad\text{for any}\quad m\geqslant 2.\] Second,
there is a nice formula for when the homotopy groups settle down as we
jack up the dimension:
\[\mbox{$\pi_{k+n}(S^k)$ is independent of $k$ as long as $k\geqslant n+2$.}\]
The homotopy groups can stabilize sooner, as we saw for \(n = 2\), but
never later, and often they stabilize right at \(k = n+2\). There is a
simple reason for this. We saw that \(\pi_{k+1}(S^k)\) stabilized at
\(k = 3\) because it's easy to unlink links in 4 or more dimensions.
Similarly, \(\pi_{k+n}(S^k)\) must stabilize by the time \(k = n+2\),
because it's easy to untie knotted \(n\)-dimensional surfaces in
\(2n+2\) or more dimensions!

For more on stable homotopy groups of spheres, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Douglas C. Ravenel, \emph{Complex cobordism and stable homotopy groups
  of spheres}, Academic Press, Orlando, 1986.

  Douglas C. Ravenel, \emph{Nilpotence and periodicity in stable
  homotopy theory}, Princeton University Press, Princeton, 1992.
\end{enumerate}

Ravenel also spoke at this conference and is a real expert on stable
homotopy groups of spheres. Unfortunately his talk was too high-powered
for me. The 2nd book above is a bit more forgiving to the amateur, but
the first one has lots of nice tables of stable homotopy groups of
spheres.

The relationship between homotopy groups of spheres and higher-
dimensional knot theory is a wonderful thing. James Dolan and I are
learning a lot about \(n\)-categories by pondering it. When I spoke to
him at the conference at Northwestern, it became clear that Andre Joyal
had also thought about it very deeply. Joyal is famous for his work
relating category theory, combinatorics and topology, and his way of
thinking about the homotopy groups of spheres reflects these interests.
He said a very fascinating thing; he said ``really we should call the
sphere spectrum the `true integers'\,''. I would like to explain
this\ldots{} but here things get a bit technical, and I am afraid they
will get a lot more technical when I get around to the string theory
stuff.

What's the ``sphere spectrum''? Well, roughly it's just the list of
spheres \(S^0\), \(S^1\), \(S^2\), \ldots, but the word ``spectrum''
refers to the way all these spaces are all related, all aspects of one
big thing.

Here's a nice way to think of it. Start with the integers. Normally we
think of these as just a set, or actually a group, since we can add
them. But if we avoid the sin of mistaking isomorphism for equality we
can think of them as a category.

I already began to explain this in my parable about the shepherd in
\protect\hyperlink{week99}{``Week 99''}. The shepherd started with the
category of finite sets and ``decategorified'' it to obtain the set of
natural numbers, associating to each finite set a natural number, its
number of elements. Taking disjoint unions of sets corresponds to
addition, the empty set corresponds to zero, and so on.

Okay. What are the \emph{integers} the decategorification of?

Well, we can imagine finite sets that have both ``positive'' and
``negative'' elements. The ``number of elements'' of such a set will be
the number of positive elements minus the number of negative elements.
This is a bit weird if we're talking about sheep, but perhaps not so
weird if we talk about positrons and electrons, which can annihilate
each other. (In \protect\hyperlink{week92}{``Week 92''} I explain what
I'm hinting at here: the relation between antiparticles and
adjunctions.)

Topologists prefer to speak of ``positively and negatively oriented
points''. We can draw a set of positively and negatively oriented points
like this: \[
  \begin{tikzpicture}
    \node at (0,0) {$-$};
    \node at (1,0) {$+$};
    \node at (2,0) {$+$};
    \node at (3,0) {$+$};
    \node at (4,0) {$+$};
    \node at (5,0) {$-$};
    \node at (6,0) {$-$};
  \end{tikzpicture}
\] We can add them by setting them side by side. But how do the
positively and negatively oriented points cancel? Well, remember, we're
trying to get a category! If finite lists of positively and negatively
oriented points are our objects, what are our morphisms? How about
tangles, like this: \[
  \begin{tikzpicture}
    \node[label=above:{$-$}] at (0,0) {};
    \node[label=above:{$+$}] at (1,0) {};
    \node[label=above:{$+$}] at (2,0) {};
    \node[label=above:{$+$}] at (3,0) {};
    \node[label=above:{$+$}] at (4,0) {};
    \node[label=above:{$-$}] at (5,0) {};
    \node[label=above:{$-$}] at (6,0) {};
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
      \strand[thick] (0,-3)
        to [out=up,in=up,looseness=2] (1,-3);
      \strand[thick] (2,0) to (2,-3);
      \strand[thick] (3,0)
        to [out=down,in=down,looseness=2] (6,0);
      \strand[thick] (4,0)
        to [out=down,in=down,looseness=2] (5,0);
    \end{knot}
    \node[label=below:{$+$}] at (0,-3) {};
    \node[label=below:{$-$}] at (1,-3) {};
    \node[label=below:{$+$}] at (2,-3) {};
  \end{tikzpicture}
\] These let us cancel or create positive and negative points in pairs.
Voila! The categorified integers! Just as the integers form a monoid
under addition, these form a monoidal category (see
\protect\hyperlink{week89}{``Week 89''} for these concepts). The
monoidal structure here is disjoint union, which we can denote with a
plus sign if we like. Similarly, we can write the empty set as 0.

Above it looks like I'm drawing a \(1\)-dimensional tangle in
\(2\)-dimensional space. To understand the ``commutativity'' of the
categorified integers we should work with \(1\)-dimensional tangles in
higher-dimensional space. If we consider them in \(3\)-dimensional
space, we have room to switch things around: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \node[label=above:{$+$}] at (0,0) {};
      \node[label=above:{$+$}] at (1,0) {};
      \begin{knot}
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-2);
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-2);
      \end{knot}
      \node[label=below:{$+$}] at (0,-2) {};
      \node[label=below:{$+$}] at (1,-2) {};
    \end{knot}
  \end{tikzpicture}
\] This gets us commutativity, as I explained in
\protect\hyperlink{week100}{``Week 100''}. Technically speaking, we get
a ``braided'' monoidal category. However, there are two different ways
to switch things around; for example, in addition to the above way there
is \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \node[label=above:{$+$}] at (0,0) {};
      \node[label=above:{$+$}] at (1,0) {};
      \begin{knot}
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-2);
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-2);
      \end{knot}
      \node[label=below:{$+$}] at (0,-2) {};
      \node[label=below:{$+$}] at (1,-2) {};
    \end{knot}
  \end{tikzpicture}
\] To get rid of this problem (if you consider it a problem) we can work
with \(1\)-dimensional tangles in \(4\)-dimensional space, where we can
deform the first way of switching things to the second. We get a
``symmetric'' monoidal category. Working in higher dimensions doesn't
change anything: things have stabilized.

If we impose the extra condition that the morphisms \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1,0);
    \end{knot}
    \node[label=below:{$+$}] at (0,0) {};
    \node[label=below:{$-$}] at (1,0) {};
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
    \node[label=above:{$+$}] at (0,0) {};
    \node[label=above:{$-$}] at (1,0) {};
  \end{tikzpicture}
\] are inverses, as are \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1,0);
    \end{knot}
    \node[label=below:{$-$}] at (0,0) {};
    \node[label=below:{$+$}] at (1,0) {};
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
    \node[label=above:{$-$}] at (0,0) {};
    \node[label=above:{$+$}] at (1,0) {};
  \end{tikzpicture}
\] then all morphisms become invertible, so we have not just a monoidal
category but a monoidal groupoid --- a groupoid being a category with
all morphisms invertible (see \protect\hyperlink{week74}{``Week 74''}).
In fact, not only are morphisms invertible, so are all objects! By this
I mean that every object \(x\) has an object \(-x\) such that \(x + -x\)
and \(-x + x\) are isomorphic to \(0\). For example, if \(x\) is the
positively oriented point, \(-x\) is the negatively oriented point, and
vice versa. So we have not just a monoidal groupoid but a ``groupal
groupoid''. (I have adopted this charming terminology from James Dolan.)

Very nice. We seem to have avoided the sin of decategorification, and
are no longer treating the integers as a mere \emph{set} (or group, or
commutative group). We are treating them as a \emph{category} (or
groupal groupoid, or braided groupal groupoid, or symmetric groupal
groupoid).

On the other hand, it's a bit odd to say that \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1,0);
    \end{knot}
    \node[label=below:{$+$}] at (0,0) {};
    \node[label=below:{$-$}] at (1,0) {};
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
    \node[label=above:{$+$}] at (0,0) {};
    \node[label=above:{$-$}] at (1,0) {};
  \end{tikzpicture}
\] are inverses. This amounts to saying that the morphism: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1,0);
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
    \node[fill=white] at (0,0) {$+$};
    \node[fill=white] at (1,0) {$-$};
  \end{tikzpicture}
\] is equal to the identity morphism from 0 to 0, which corresponds to
the empty picture: \[\phantom{.}\] Hmm. They sure don't \emph{look}
equal. We must be doing something wrong.

What are we doing wrong? We're committing the sin of decategorification:
treating isomorphisms as equations! We should treat the integers not as
a mere category, but as a \(2\)-category! See
\protect\hyperlink{week80}{``Week 80''} for the precise definition of
this concept; for now, it's enough to say that a \(2\)-category has
things called 2-morphisms going between morphisms. If we treat the
integers as a \(2\)-category, we can say there is a \(2\)-morphism going
from \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1,0);
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
    \node[fill=white] at (0,0) {$+$};
    \node[fill=white] at (1,0) {$-$};
  \end{tikzpicture}
\] to the identity morphism. This \(2\)-morphism has a nice geometrical
description in terms of a \(2\)-dimensional surface: the surface in 3d
space that's traced out as the above picture shrinks down to the empty
picture. It's hard to draw, but let me try: \[
  \begin{tikzpicture}
    \begin{scope}
      \begin{knot}
        \strand[thick] (0,0)
          to [out=up,in=up,looseness=2] (1,0);
        \strand[thick] (0,0)
          to [out=down,in=down,looseness=2] (1,0);
      \end{knot}
      \node[fill=white] at (0,0) {$+$};
      \node[fill=white] at (1,0) {$-$};
    \end{scope}
    \node at (1.75,0) {$\Longrightarrow$};
    \begin{scope}[shift={(2.5,0)},scale=0.8]
      \begin{knot}
        \strand[thick] (0,0)
          to [out=up,in=up,looseness=2] (1,0);
        \strand[thick] (0,0)
          to [out=down,in=down,looseness=2] (1,0);
      \end{knot}
      \node[fill=white] at (0,0) {\mbox{\scriptsize$+$}};
      \node[fill=white] at (1,0) {\mbox{\scriptsize$-$}};
    \end{scope}
    \node at (4,0) {$\Longrightarrow$};
    \begin{scope}[shift={(4.65,0)},scale=0.5]
      \begin{knot}
        \strand[thick] (0,0)
          to [out=up,in=up,looseness=2] (1,0);
        \strand[thick] (0,0)
          to [out=down,in=down,looseness=2] (1,0);
      \end{knot}
      \node[fill=white] at (0,0) {\mbox{\tiny$+$}};
      \node[fill=white] at (1,0) {\mbox{\tiny$-$}};
    \end{scope}
    \node at (5.75,0) {$\Longrightarrow$};
  \end{tikzpicture}
\] Okay, say we do this: treat the integers as a \(2\)-category. We
again are faced with a question: do we make all the \(2\)-morphisms
invertible? If we do, we get a ``2-groupoid'', or actually a ``groupal
2-groupoid''. But again, to do so amounts to committing the sin of
decategorification. To avoid this sin, we should tread the integers as a
\(3\)-category. Etc, etc!

You may have noted how worlds of ever higher-dimensional topology are
automatically unfolding from our attempt to avoid the sin of
decategorification. This is what's so neat about \(n\)-categories. I
haven't told you how it all works, but let me summarize what's actually
happening here. Normally we treat the integers as the free group on one
generator, or else the free commutative group on one generator. But
groups and commutative groups are just the tip of the iceberg! The
following picture is similar to that in
\protect\hyperlink{week74}{``Week 74''}:

\begin{longtable}[]{@{}llll@{}}
\caption{\(k\)-tuply groupal \(n\)-groupoids}\tabularnewline
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endfirsthead
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=0\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
sets\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
groupoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
2-groupoids\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=1\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
groups\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
groupal groupoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
groupal 2-groupoids\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=2\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
commutative groups\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided groupal groupoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided groupal 2-groupoids\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=3\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
symmetric groupal groupoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
weakly involutory groupal 2-groupoids\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=4\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
strongly involutory groupal 2-groupoids\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=5\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

What are all these things? Well, an \(n\)-groupoid is an \(n\)-category
with all morphisms invertible, at least up to equivalence. An
\((k+n)\)-groupoid with only trivial \(j\)-morphisms for \(j < k\) can
be seen as a special sort of \(n\)-groupoid, which we call a
``\(k\)-tuply groupal \(n\)-groupoid''.

Part of Joyal's point was that we should really think of the integers as
the ``free \(k\)-tuply monoidal \(n\)-groupoid on one object''. Here the
idea is not to fix \(n\) and \(k\) once and for all --- this would only
prevent us from understanding the subtleties that show up when we
increase \(n\) and \(k\)! Instead, we should think of them as variable,
or perhaps consider the limit as they become large.

The other part of his point was that there's a correspondence between
\(n\)-groupoids and the information left in topological spaces when we
ignore all homotopy groups above dimension \(n\) --- so-called
``homotopy \(n\)-types''. Using this correspondence, the ``free
\(k\)-tuply monoidal \(n\)-groupoid on one object'' corresponds to the
homotopy \((k+n)\)-type of the \(k\)-sphere. Moreover, if we keep
jacking up \(k\), this stabilizes when \(k\geqslant n+2\). Actually, as
the dittos in the above chart suggest, it's a quite general fact that
the notion of \(k\)-tuply monoidal \(n\)-groupoid stabilizes for
\(k\geqslant n+2\).

Yet another point is that the pictures above explain the relation
between higher-dimensional knot theory and the homotopy groups of
spheres in a very vivid, direct way.

Okay. What about string theory and the magic number 24? Well, notice
that the pictures above started looking a bit like strings! Hmm\ldots.

Here's the idea, as far as I understand it. Presumably all but the hardy
have stopped reading this article by now, so I will pull out all the
stops. The string worldsheet is a Riemann surface so we'll need some
stuff about Riemann surfaces from \protect\hyperlink{week28}{``Week
28''}. Let \(M(g,n)\) be the moduli space of Riemann surfaces with genus
\(g\) and \(n\) punctures, and let \(G(g,n)\) be the corresponding
mapping class group. Since \(M(g,n)\) is the quotient of Teichmueller
space by \(G(g,n)\) and Teichmueller space is contractible, we have
\[M(g,n) = BG(g,n)\] where ``\(\mathcal{B}\)'' means ``classifying
space''. There's a natural inclusion \[G(g,n)\hookrightarrow G(g+1,n)\]
defined by sewing an torus with two punctures onto your genus-\(g\)
surface with \(n\) punctures, which increases the genus by 1. Let's
define \(G(\infty,n)\) to be direct limit as \(g\to\infty\), and let
\[M(\infty,n) = BG(\infty,n).\] Now it turns out \(M(\infty,1)\) has a
kind of product on it. The reason is that there are products
\[M(g,1)\times M(h,1)\to M(g+h,1)\] given sewing two surfaces together
with a 3-punctured sphere. Using this product we can define the group
completion \[M(\infty,1)^+\] and the result Tillmann stated which got me
so excited was that \[\pi_3(M(\infty,1)^+) = \mathbb{Z}/24 \oplus H\]
for some unknown group \(H\). Since this is really a result about the
mapping class groups of surfaces, it \emph{must} have something to do
with how conformal field theories always give projective representations
of these mapping class groups, with the ``phase ambiguity'' being of the
form \(\exp(2\pi ci/24)\), where \(c\) is the ``central charge''. No? I
just don't quite see why. Maybe someone will enlighten me.

Anyway, the way she proved this definitely ties right into the stuff
about stable homotopy groups of spheres. She used explicit maps between
the third stable homotopy group of spheres
\[\pi_{k+3}(S^k) = \mathbb{Z}/24 \quad\text{for}\quad k \geqslant 5\]
and \(\pi_3(M(\infty,1)^+)\)! And the way she got the map from the
latter to the former amounts to working with pictures I was drawing
above. To put it more precisely, in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  ``Higher-dimensional algebra and topological quantum field theory'',
  by John Baez and James Dolan, \emph{Jour. Math. Phys.} \textbf{36}
  (1995), 6073--6105.
\end{enumerate}

we argue that framed \(n\)-dimensional surfaces embedded in
\((n+k)\)-dimensions should be described by the free \(k\)-tuply
monoidal \(n\)-category with duals on one object. This should map down
to the free \(k\)-tuply groupal \(n\)-groupoid on one object, by the
usual yoga of ``freeness''. Taking \(n = 3\) and \(k\) sufficiently
large, we should obtain a homomorphism from the mapping class group of
any Riemann surface to the third stable homotopy group of spheres!
Presumably the idea is that in the limit of large genus this
homomorphism is onto!

Of course, Tillmann doesn't prove her result using the still-nascent
formalism of \(n\)-categories, but I think it will eventually be
possible. (Also, my rough argument applies to Riemann surfaces with no
punctures, while she considers those with one puncture, but various
things she said make me think this might not be such a big deal.) The
real puzzle is this: what does \[\pi_3(M(\infty,n)^+)\] have to do with
central extensions of \(G(g,n)\) for finite \(g\)? If I could figure
this out I'd be very happy.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Dan Christensen answered a puzzle above. Here's how
to get a nontrivial element of \[\pi_4(S^2).\] Take the map
\(f\colon S^3\to S^2\) generating \[\pi_3(S^2)\] and compose it with the
map \(g\colon S^4\to S^3\) generating \[\pi_4(S^3)\] (which, by the way,
is obtained from \(f\) by ``suspension'') to obtain the desired map from
\(S^4\) to \(S^2\). This is an instance of a very general trick:
composing elements of homotopy groups of spheres to get new ones!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{Think of one and minus one. Together they add up to zero, nothing,
nada, niente, right? Picture them together, then picture them
separating, peeling part\ldots. Now you have something, you have two
somethings, where you once had nothing.} - John Updike, Roger's Version

\[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1,0);
    \end{knot}
    \node[label=below:{$+$}] at (0,0) {};
    \node[label=below:{$-$}] at (1,0) {};
  \end{tikzpicture}
\]
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As I segue over from the homotopy theory conference at Northwestern
University to the conference on higher-dimensional algebra and physics
that took place right after that, it's a good time to mention Ronnie
Brown's web page:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Ronald Brown, Higher-dimensional group theory,
  \texttt{http://www.bangor.ac.uk/\textasciitilde{}mas010/home.html}
\end{enumerate}

Brown is the one who coined the phrase ``higher-dimensional algebra'',
and for many years he has been developing this subject, primarily as a
tool for doing homotopy theory. I wrote a bit about his ideas two years
ago, in \protect\hyperlink{week53}{``Week 53''}. A lot has happened in
higher-dimensional algebra since then, and the web page above is a good
place to get an overview of it. It includes a nice bibliography on the
subject. Also, if you find the math a bit strenuous, you can rest your
brain and delight your eyes at the related site:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Symbolic sculptures and mathematics,
  \texttt{http://www.bangor.ac.uk/SculMath/}
\end{enumerate}

which opens with a striking image of rotating linked tori, and includes
pictures of the mathematical sculpture of John Robinson.

The Workshop on Higher Category Theory and Physics was exciting because
it pulled together a lot of people working on the interface between
these two subjects, many of whom had never before met. It was organized
by Ezra Getzler and Mikhail Kapranov. Getzler is probably most
well-known for his proof of the Atiyah-Singer index theorem. This
wonderful theorem captured the imagination of mathematical physicists
for many years starting in the 1960s. The reason is that it relates the
topology of manifolds to the the solutions of partial differential
equations on these manifolds, and thus ushered in a new age of
applications of topology to physics. In the 1980s, working with ideas
that Witten came up with, Getzler found a nice ``supersymmetric proof''
of the Atiyah-Singer theorem. Later Getzler turned to other things, such
as the use of ``operads'' (see \protect\hyperlink{week42}{``Week 42''})
to study conformal field theory (which shows up naturally in string
theory). Kapranov has also done a lot of work with operads and conformal
field theory, and many other things, but I first learned about him
through his paper with Voevodsky on ``braided monoidal
\(2\)-categories'' (see \protect\hyperlink{week4}{``Week 4''}). This got
me very excited since it turned me on to many of the main themes of
\(n\)-category theory.

Alas, my description of this fascinating conference will be terse and
dry in the extreme, since I am flying to Warsaw in 3 hours for a quantum
gravity workshop. I'll just mention a few papers that cover some of the
themes of this conference. Ross Street gave two talks on Batanin's
definition of weak \(n\)-categories (and even weak
\(\omega\)-categories), which one can get as follows:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Ross Street, \emph{The role of Michael Batanin's monoidal globular
  categories.} ``Lecture I: Globular categories and trees''. ``Lecture
  II: Higher operads and weak \(\omega\)-categories''. Available in
  gzipped Postscript form at
  \texttt{http://www.math.mq.edu.au/\textasciitilde{}street/Publications.html}
\end{enumerate}

Subsequently Batanin has written a more thorough paper on his
definition:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Michael Batanin, ``Monoidal globular categories as a natural
  environment for the theory of weak \(n\)-categories'', \emph{Adv.
  Math} \textbf{136} (1998), 39--103, preprint available at
  \texttt{http://www-math.mpce.mq.edu.au/\textasciitilde{}mbatanin/papers.html}
\end{enumerate}

I gave a talk on Dolan's and my definition of weak \(n\)-categories,
which one can get as follows:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Baez, ``An introduction to \(n\)-categories'', to appear in the
  proceedings of \emph{Category Theory and Computer Science '97},
  preprint available as
  \href{https://arxiv.org/abs/q-alg/9705009}{\texttt{q-alg/9705009}} or
  in Postscript form at \texttt{http://math.ucr.edu/home/baez/ncat.ps}
\end{enumerate}

Unfortunately Tamsamani was not there to present \emph{his} definition
of weak \(n\)-categories, but at least I have learned how to get his
papers electronically:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Zouhair Tamsamani, ``Sur des notions de \(\infty\)-categorie et
  \(\infty\)-groupoide non-strictes via des ensembles
  multi-simpliciaux'', preprint available as
  \href{https://arxiv.org/abs/alg-geom/9512006}{\texttt{alg-geom/9512006}}.

  Zouhair Tamsamani, ``Equivalence de la theorie homotopique des
  \(n\)-groupoides et celle des espaces topologiques \(n\)-tronques'',
  preprint available as
  \href{https://arxiv.org/abs/alg-geom/9607010}{\texttt{alg-geom/9607010}}.
\end{enumerate}

Also, Carlos Simpson has written an interesting paper using Tamsamani's
definition:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Carlos Simpson, ``A closed model structure for \(n\)-categories,
  internal Hom, \(n\)-stacks and generalized Seifert-Van Kampen'',
  preprint available as
  \href{https://arxiv.org/abs/alg-geom/9704006}{\texttt{alg-geom/9704006}}.
\end{enumerate}

In a different but related direction, Masahico Saito discussed a paper
with Scott Carter and Joachim Rieger in which they come up with a nice
purely combinatorial description of all the ways to embed
\(2\)-dimensional surfaces in \(4\)-dimensional space:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  J. Scott Carter, Joachim H. Rieger and Masahico Saito, ``A
  combinatorial description of knotted surfaces and their isotopies'',
  to appear in \emph{Adv. Math.}, preprint available at
  \texttt{http://www.math.usf.edu/\textasciitilde{}saito/home.html}
\end{enumerate}

My student Laurel Langford has translated their work into \(n\)-category
theory and shown that ``unframed unoriented 2-tangles form the free
braided monoidal \(2\)-category on one unframed self-dual object'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  John Baez and Laurel Langford, ``2-Tangles'', preprint available as
  \href{https://arxiv.org/abs/q-alg/9703033}{\texttt{q-alg/9703033}} and
  in Postscript form at \texttt{http://math.ucr.edu/home/baez/2tang.ps}
\end{enumerate}

This paper summarizes the results; the proofs will appear later.

While I was there, Carter also gave me a very nice paper he'd done with
Saito and Louis Kauffman. This paper discusses 4-manifolds and also
2-dimensional surfaces in \(3\)-dimensional space, again getting a
purely combinatorial description which is begging to be translated into
\(n\)-category theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  J. Scott Carter, Louis H. Kauffman and Masahico Saito,
  ``Diagrammatics, singularities, and their algebraic interpretations'',
  preprint available at
  \texttt{http://www.math.usf.edu/\textasciitilde{}saito/home.html}
\end{enumerate}

I am sorry not to describe these papers in more detail, but I've been
painfully busy lately. (In fact, I am trying to figure out how to reform
my life to give myself more spare time. I think the key is to say ``no''
more often.)

Thanks to Justin Roberts for pointing out an error in
\protect\hyperlink{week102}{``Week 102''}. The phase ambiguity in
conformal field theories is not necessarily a 24th root of unity; it's
\(\exp(2\pi ic/24)\) where \(c\) is the central charge of the associated
Virasoro representation. This is a big hint as far as my puzzle goes.

Also I thank Dan Christensen for helping me understand \(\pi_4(S^2)\) in
a simpler way, and Scott Carter for a fascinating letter on the themes
of \protect\hyperlink{week102}{``Week 102''}. Alas, I have been too busy
to reply adequately to these nice emails!

Gotta run\ldots.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week104}{%
\section{June 8, 1997}\label{week104}}

A couple of months ago I flew up to Corvallis, Oregon to an AMS meeting.
The AMS, in case you're unfamiliar with it, is the American Mathematical
Society. They have lots of regional meetings with special sessions on
various topics. One reason I went to this one is that there was a
special session on octonions, organized by Tevian Dray and Corinne
Manogue.

After the real numbers come the complex numbers, and after the complex
numbers come the quaternions, and after the quaternions come the
octonions, the most mysterious of all. The real numbers, complex
numbers, and quaternions have lots of applications to physics. What
about the octonions? Aren't they good for something too? This question
has been bugging me for a while now.

In fact, it bugs me so much that I decided to go to Corvallis to look
for clues. After all, in addition to Tevian Dray and Corinne Manogue ---
the former a mathematician, the latter a physicist, both deeply
interested in octonions --- a bunch of other octonion experts were going
to be there. One was my friend Geoffrey Dixon. I told you about him in
\protect\hyperlink{week59}{``Week 59''}. He wrote a book on the complex
numbers, quaternions and octonions and their role in physics. He has a
theory of physics in which these are related to electromagnetism, the
weak force, and the strong force, respectively. It's a bit far out, but
far from crazy! In fact, it's fascinating.

After writing about his book I got in touch with him in Cambridge,
Massachusetts. I found out that his other main interest in life, besides
the octonions, is the game Myst. This is probably not a coincidence. In
both the main question is ``What the heck is really going on here?'' He
has Myst all figured out, but he loves watching people play it, so he
got me to play it for a while. Someday I will buy a CD-ROM drive and
waste a few weeks on that game. Anyway, I got to know him back in the
summer of 1995, so it was nice to see him again in Corvallis.

Another octonion expert is Tony Smith. He too has a far-out but
fascinating theory of physics involving octonions! I wrote about his
stuff in \protect\hyperlink{week91}{``Week 91''}. I had never met him
before the Corvallis conference, but I instantly recognized him when I
met him, because there's a picture of him wearing a cowboy hat on his
homepage. It turns out he always wears that hat. He is a wonderful
repository of information concerning octonions and other interesting
things. He is also a very friendly and laid-back sort of guy. He lives
in Atlanta, Georgia.

I also met another octonion expert I hadn't known about, Tony Sudbery,
from York. (The original York, not the ``new'' one.) He gave a talk on
``The Exceptions that Prove the Rule''. The octonions are related to a
host of other mathematical structures in a very spooky way. In all sorts
of contexts, you can classify algebraic structures and get a nice
systematic infinite list together with a finite number of exceptions.
What's spooky is how the exceptions in one context turn out to be
related to the exceptions in some other context. These relationships are
complicated and mysterious in themselves. It's as if there were a hand
underneath the water and all we see is the fingers poking out here and
there. There seems to be some ``unified theory of exceptions'' waiting
to be discovered, and the octonions must have something to do with it. I
figure that to really understand what the octonions are good for, we
need to understand this ``unified theory of exceptions''.

Let's start by recalling what the octonions are!

I presume you know the real numbers. The complex numbers are things like
\[a + bi\] where \(a\) and \(b\) are real. We can multiply them using
the rule \[i^2 = -1\] They may seem mysterious when you first meet them,
but they lose their mystery when you see they are just a nice way of
keeping track of rotations in the plane.

Similarly, the quaternions are guys like \[a + bi + cj + dk\] which we
can multiply using the rules \[i^2 = j^2 = k^2 = -1\] and \[
  \begin{gathered}
    ij = k, jk = i, ki = j,
  \\ji = -k, kj = -i, ik = -j
  \end{gathered}
\] They aren't commutative, but they are still associative. Again they
may seem mysterious at first, but they lose their mystery when you see
that they are just a nice way of keeping track of rotations in 3 and 4
dimensions. Rotations in more than 2 dimensions don't commute in
general, so the quaternions had \emph{better} not commute. In fact,
Hamilton didn't invent the quaternions to study rotations --- his goal
was merely to cook up a ``division algebra'', where you could divide by
any nonzero element (see \protect\hyperlink{week82}{``Week 82''}).
However, after he discovered the quaternions, he used them to study
rotations and angular momentum. Nowadays people tend instead to use the
vector cross product, which was invented later by Gibbs. The reason is
that in the late 1800s there was a big battle between the fans of
quaternions and the fans of vectors, and the quaternion crowd lost. For
more on the history of this stuff, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Michael J. Crowe, \emph{A History of Vector Analysis}, University of
  Notre Dame, Notre Dame, 1967.
\end{enumerate}

Octonions were invented by Cayley later on in the 1800s. For these, we
start with \emph{seven} square roots of \(-1\), say \(e_1\) up to
\(e_7\). To learn how multiply these, draw the following diagram:
\[\includegraphics[max width=0.65\linewidth]{../images/fano.jpg}\] Draw
a triangle, draw a line from each vertex to the midpoint of the opposite
edge, and inscribe a circle in the triangle. Label the 7 points shown
with \(e_1\) through \(e_7\) --- it doesn't matter how, I've just drawn
my favorite way. Draw arrows on the edges of the triangle going around
clockwise, draw arrows on the circle also going around clockwise, and
draw arrows on the three lines pointing from each vertex of the triangle
to the midpoint of the opposite edge. Come on, DO it! I'm doing all this
work for you\ldots{} you should do some, too.

Okay. Now you have your very own octonion multiplication table. Notice
that there are six lines and a circle in your picture. Each one of these
gives us a copy of the quaternions inside the octonions. For example,
say you want to multiply \(e_6\) and \(e_7\). You notice that the the
vertical line says ``\(e_6\), \(e_7\), \(e_2\)'' on it as we follow the
arrow down. Thus, just as for \(i\), \(j\), and \(k\) in the
quaternions, we have \[
  \begin{gathered}
    e6 e7 =  e2,   e7 e2 =  e6,   e2 e6 =  e7
  \\e7 e6 = -e2,   e2 e7 = -e6,   e6 e2 = -e7
  \end{gathered}
\] So in particular we have \(e_6 e_7 = e_2\).

In case you lose your octonion table, don't worry: you don't really need
to remember the \emph{names} of those 7 square roots of \$-1 \$and their
positions on the chart. You just need to remember the geometry of the
chart itself. Names are arbitrary and don't really matter, unless you're
talking to someone else, in which case you have to agree on them.

If you want to see spiffy high-tech octonion multiplication tables,
check out the following websites:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Tony Smith, \texttt{http://galaxy.cau.edu/tsmith/TShome.html}
\item
  Geoffrey Dixon, \texttt{http://www.7stones.com} (Warning: to really
  get into this you need to have at least Netscape 3.0 with Java and
  Shockwave stuff.)
\end{enumerate}

What's so great about the octonions? They are not commutative, and
worse, they are not even \emph{associative}. What's great about them is
that they form a division algebra, meaning you can divide by any nonzero
octonion. Better still, they form a ``normed'' division algebra. Just as
with the reals, complexes, and quaternions, we can define the norm of
the octonion
\[x = a_0 + a_1 e_1 + a_2 e_2 + a_3 e_3 + a_4 e_4 + a_5 e_5 + a_6 e_6 + a_7 e_7\]
to be
\[|x| = \sqrt{a_0^2 + a_1^2 + a_2^2 + a_3^2 + a_4^2 + a_5^2 + a_6^2 + a_7^2}.\]

What makes them a ``normed division algebra'' is that \[|xy| = |x||y|.\]
It's a wonderful fact about the world that the reals, complexes,
quaternions and octonions are the \emph{only} normed division algebras.
That's it!

However, the octonions remain mysterious, at least to me. They are
related to rotations in 7 and 8 dimensions, but not as simply as one
might hope. After all, rotations in \emph{any} number of dimensions are
still associative. Where is this nonassociative business coming from? I
don't really know. This question really bugs me.

A while ago, in \protect\hyperlink{week95}{``Week 95''}, I summarized a
paper by John Schwarz on supersymmetric Yang-Mills theory and why it
works best in dimensions 3, 4, 6, and 10. Basically, only in these
dimensions can you cook up spin-\(1/2\) particles that have as many
physical degrees of freedom as massless spin-\(1\) particles. I sort of
explained why. This in turn allows a symmetry between fermions and gauge
bosons. I didn't explain how \emph{this} works\ldots{} it seems pretty
tricky to me\ldots{} but anyway, it works.

So far, so good. But Schwarz wondered: is it a coincidence that the
numbers 3, 4, 6, and 10 are just two more than the numbers 1, 2, 4, and
8 --- the dimensions of the reals, complexes, quaternions, and
octonions?

Apparently not! The following papers explain what's going on:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Corinne A. Manogue and Joerg Schray, ``Finite Lorentz transformations
  automorphisms, and division algebras'', \emph{Jour. Math. Phys.}
  \textbf{34} (1993), 3746--3767.

  Corinne A. Manogue and Joerg Schray, ``Octonionic representations of
  Clifford algebras and triality'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9407179}{\texttt{hep-th/9407179}}.
\item
  Anthony Sudbery, ``Division algebras, (pseudo)orthogonal groups and
  spinors'', \emph{Jour. Phys. A} \textbf{17} (1984), 939--955.

  Anthony Sudbery, ``Seven types of incongruity'', handwritten notes.
\end{enumerate}

Here's the basic idea. Let

\begin{itemize}
\tightlist
\item
  \(\mathbb{R}\) be the real numbers
\item
  \(\mathbb{C}\) be the complex numbers
\item
  \(\mathbb{H}\) be the quaternions
\item
  \(\mathbb{O}\) be the octonions
\end{itemize}

Let \(\mathrm{SO}(n,1)\) denote the Lorentz group in \(n+1\) dimensions.
Roughly speaking, this is the symmetry group of \((n+1)\)-dimensional
Minkowski spacetime. Let \(\mathfrak{so}(n,1)\) be the corresponding Lie
algebra (see \protect\hyperlink{week63}{``Week 63''} for a lightning
introduction to Lie algebras). Then it turns out that:

\begin{itemize}
\tightlist
\item
  \(\mathfrak{sl}(2,\mathbb{R}) = \mathfrak{so}(2,1)\)
\item
  \(\mathfrak{sl}(2,\mathbb{C}) = \mathfrak{so}(3,1)\)
\item
  \(\mathfrak{sl}(2,\mathbb{H}) = \mathfrak{so}(5,1)\)
\item
  \(\mathfrak{sl}(2,\mathbb{O}) = \mathfrak{so}(9,1)\)
\end{itemize}

This relates reals, complexes, quaternions and octonions to the Lorentz
group in dimensions 3, 4, 6, and 10, and explains the ``coincidence''
noted by Schwarz! But it requires some explanation. Roughly speaking, if
\(\mathrm{SL}(2,\mathbb{K})\) is the group of \(2\times2\) matrices with
determinant \(1\) whose entries lie in the division algebra
\(\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}\), then
\(\mathfrak{sl}(2,\mathbb{K})\) is defined to be the Lie algebra of this
group. This is simple enough for \(\mathbb{R}\) or \(\mathbb{C}\).
However, one needs to be careful when defining the determinant of a
\(2\times2\) quaternionic matrix, since quaternions don't commute. One
needs to be even more careful in the octonionic case. Since octonions
aren't even associative, it's far from obvious what the group
\(\mathrm{SL}(2,\mathbb{O})\) would be, so defining the Lie algebra
``\(\mathfrak{sl}(2,\mathbb{O})\)'' requires a certain amount of
finesse. For the details, read the papers.

As Corinne Manogue explained to me, this relation between the octonions
and Lorentz transformations in 10 dimensions suggests some interesting
ways to use octonions in \(10\)-dimensional physics. As we all know, the
10th dimension is where string theorists live. There is also a nice
relation to Geoffrey Dixon's theory. This theory relates the
electromagnetic force to the complex numbers, the weak force to the
quaternions, and the strong force to octonions. How? Well, the gauge
group of electromagnetism is \(\mathrm{U}(1)\), the unit complex
numbers. The gauge group of the weak force is \(\mathrm{SU}(2)\), the
unit quaternions. The gauge group of the strong force is
\(\mathrm{SU}(3)\)\ldots.

Alas, the group \(\mathrm{SU}(3)\) is \emph{not} the unit octonions. The
unit octonions do not form a group since they aren't associative.
\(\mathrm{SU}(3)\) is related to the octonions more indirectly. The
group of symmetries (or technically, ``automorphisms'') of the octonions
is the exceptional group \(\mathrm{G}_2\), which contains
\(\mathrm{SU}(3)\). To get \(\mathrm{SU}(3)\), we can take the subgroup
of \(\mathrm{G}_2\) that preserves a given unit imaginary
octonion\ldots{} say \(e_1\). This is how Dixon relates
\(\mathrm{SU}(3)\) to the octonions.

However, why should one unit imaginary octonion be different from the
rest? Some sort of ``symmetry breaking'', presumably? It seems a bit ad
hoc. However, as Manogue explained, there is a nice way to kill two
birds with one stone. If we pick a particular unit imaginary octonion,
we get a copy of the complex numbers sitting inside the octonions, so we
get a copy of \(\mathfrak{sl}(2,\mathbb{C})\) sitting inside
\(\mathfrak{sl}(2,\mathbb{O})\), so we get a copy of
\(\mathfrak{so}(3,1)\) sitting inside \(\mathfrak{so}(9,1)\)! In other
words, we get a particular copy of the good old \(4\)-dimensional
Lorentz group sitting inside the 10-dimensional Lorentz group. So fixing
a unit imaginary octonion not only breaks the octonion symmetry group
\(\mathrm{G}_2\) down to the strong force symmetry group
\(\mathrm{SU}(3)\), it might also get us from \(10\)-dimensional physics
down to \(4\)-dimensional physics.

Cool, no? There are obviously a lot of major issues involved in turning
this into a full-fledged theory, and they might not work out. The whole
idea could be completely misguided! But it takes guts to do physics, so
it's good that Tevian Dray and Corinne Manogue are bravely pursuing this
idea.

Upon learning that there is a deep relation between \(\mathbb{R}\),
\(\mathbb{C}\), \(\mathbb{H}\), \(\mathbb{O}\) and the Lorentz group in
dimensions 3, 4, 6, 10, one is naturally emboldened to take seriously a
few more ``coincidences''. For example, in
\protect\hyperlink{week82}{``Week 82''} I described the Clifford
algebras \(C_n\) --- i.e., the algebras generated by \(n\) anticommuting
square roots of \(-1\). These Clifford algebras are relevant to
\(n\)-dimensional \emph{Euclidean} geometry, as opposed to the Clifford
algebras relevant to \(n\)-dimensional \emph{Lorentzian} geometry, which
appeared in \protect\hyperlink{week93}{``Week 93''}. They go like this:

\begin{itemize}
\tightlist
\item
  \(C_0 = \mathbb{R}\)
\item
  \(C_1 = \mathbb{C}\)
\item
  \(C_2 = \mathbb{H}\)
\item
  \(C_3 = \mathbb{H}\oplus\mathbb{H}\)
\item
  \(C_4 = \mathbb{H}(2)\)
\item
  \(C_5 = \mathbb{C}(4)\)
\item
  \(C_6 = \mathbb{R}(8)\)
\item
  \(C_7 = \mathbb{R}(8)\oplus\mathbb{R}(8)\)
\item
  \(C_8 = \mathbb{R}(16)\)
\end{itemize}

where \(\mathbb{K}(n)\) stands for \(n\times n\) matrices with entries
taken from \(\mathbb{K} = \mathbb{R}, \mathbb{C}, \mathbb{H}\), and
``\(\oplus\)'' stands for ``direct sum''. Note that \(C_8\) is the same
as \(16\times16\) matrices with entries taken from \(C_0\). That's part
of a general pattern called ``Bott periodicity'': in general,
\(C_{n+8}\) is the same as \(16\times16\) matrices with entries taken
from \(C_n\).

Now consider the dimension of the smallest real representation of
\(C_n\). It's easy to work this out if you keep in mind that the
smallest representation of \(\mathbb{K}(n)\) or
\(\mathbb{K}(n)\oplus \mathbb{K}(n)\) is on \(\mathbb{K}^n\) --- the
vector space consisting of \(n\)-tuples of elements of \(\mathbb{K}\).
We get

The dimension of the smallest real representation:

\begin{itemize}
\tightlist
\item
  of \(C_0\) is 1
\item
  of \(C_1\) is 2
\item
  of \(C_2\) is 4
\item
  of \(C_3\) is 4
\item
  of \(C_4\) is 8
\item
  of \(C_5\) is 8
\item
  of \(C_6\) is 8
\item
  of \(C_7\) is 8
\item
  of \(C_8\) is 16
\end{itemize}

Note that it increases at \(n = 1, 2, 4, 8\). These are the dimensions
of \(\mathbb{R}\), \(\mathbb{C}\), \(\mathbb{H}\), and \(\mathbb{O}\).
Coincidence?

No! Indeed, \(C_n\) has a representation on a \(k\)-dimensional real
vector space if and only if the unit sphere in that vector space,
\(S^{k-1}\), admits \(n\) linearly independent smooth vector fields. So
the above table implies that:

\begin{itemize}
\tightlist
\item
  The sphere \(S^0\) admits 0 linearly independent vector fields.
\item
  The sphere \(S^1\) admits 1 linearly independent vector fields.
\item
  The sphere \(S^3\) admits 3 linearly independent vector fields.
\item
  The sphere \(S^7\) admits 7 linearly independent vector fields.
\end{itemize}

These spheres are the unit real numbers, the unit complex numbers, the
unit quaternions, and the unit octonions, respectively! If you know
about normed division algebras, it's obvious that these sphere admit the
maximum possible number of linear independent vector fields: you can
just take a basis of vectors at one point and ``left translate'' it to
get a bunch of linearly independent vector fields.

Now --- Bott periodicity has period 8, and the octonions have dimension
8. And as we've seen, both have a lot to do with Clifford algebras. So
maybe there is a deep relation between the octonions and Bott
periodicity. Could this be true? If so, it would be good news, because
while octonions are often seen as weird exceptional creatures, Bott
periodicity is bigtime, mainstream stuff!

And in fact it \emph{is} true. More on Bott periodicity and the
octonions coming up next Week.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Robert Helling provided some interesting further
comments on supersymmetric gauge theories and the division algebras,
which I quote below. He recommends the following reference:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  J. M. Evans, ``Supersymmetric Yang-Mills theories and division
  algebras'', \emph{Nucl. Phys.} \textbf{B298} (1988), 92--108.
\end{enumerate}

and he writes:

\begin{quote}
Let me add a technical remark that I extract from Green, Schwarz, and
Witten, Vol 1, Appendix 4A.

The appearance of dimensions 3,4,6, and 10 can most easily been seen
when one tries to write down a supersymmetric gauge theory in arbitrary
dimension. This means we're looking for a way to throw in some spinors
to the Lagrangian of a pure gauge theory: \[-1/4 F^2\] in a way that the
new Lagrangian is invariant (up to a total derivative) under some
infinitesimal variations. These describe supersymmetry if their
commutator is a derivative (a generator of spacetime translations). As
usual, we parameterize this variation by a parameter \(\varepsilon\),
but now \(\varepsilon\) is a spinor.

From people that have been doing this for their whole life we learn that
the following Ansatz is common:
\[\delta A_m = i/2 \varepsilon^\dagger \Gamma_m \psi\]
\[\delta \psi = -1/4 F_{mn} \Gamma^{mn} \varepsilon\] Here \(A\) is the
connection, \(F\) its field strength and \(\psi\) a spinor of a type to
be determined. I suppressed group indices on all these fields. They are
all in the adjoint representation. \(\Gamma\) are the generators of the
Clifford algebra described by John Baez before.

{[}Also, \(\varepsilon^\dagger\) is my feeble subsitute for an
\(\varepsilon\) with a bar over it. --- JB{]}

For the Lagrangian we try the usual Yang-Mills term and add a minimally
coupled kinetic term for the fermions:
\[-1/4 F^2 + ig/2 \psi^\dagger \Gamma^m D_m \psi\] Here \(D_m\) is the
gauge covariant derivative and \(g\) is some number that we can tune to
to make this vanish under the above variations. When we vary the first
term we find \(g = 1\). In fact everything cancels without considering a
special dimension except for the term that is trilinear in \(\psi\) that
comes from varying the connection in the covariant derivative in the
fermionic term. This reads something like
\[f_{abc} \varepsilon^\dagger \Gamma_m \psi^a \psi^b \Gamma^m \psi^c\]
where I put in the group indices and the structure constants
\(f_{abc}\). This has to vanish for other reasons since there is no
other trilinear term in the fermions available. And indeed, after you've
written out the antisymmetry of \(f\) explicitly and take out the
spinors since this should vanish for all choices of \(\psi\) and
\(\varepsilon\). We are left with an expression that is only made of
gammas. And in fact, this expression exactly vanishes in dimensions 3,
4, 6, and 10 due to a Fierz identity. (Sorry, I don't have time to work
this out more explicitly.)

This is related to the division algebra as follows (as explained in the
papers pointed out by John Baez): Take for concreteness \(d = 10\). Here
we go to a light-cone frame by using coordinates
\[x^+ = x^0 + x^9 \quad\text{and}\quad x^- = x^0 - x^1.\] Then we write
the \(\Gamma_m\) as block matrices where \(\Gamma_+\) and \(\Gamma_-\)
have the \(+\)/\(-\) unit matrix as blocks and the others have
\(\gamma_i\) as blocks where \(\gamma_i\) are the \(\mathrm{SO}(8)\)
Dirac matrices (\(i=1,...,9\)). But they are intimately related to the
octonions. Remember there is triality in \(\mathrm{SO}(8)\) which means
that we can treat left-handed spinors, right-handed spinors and vectors
on an equal basis (see \protect\hyperlink{week61}{``Week 61''},
\protect\hyperlink{week90}{``Week 90''},
\protect\hyperlink{week91}{``Week 91''}). Now I write out all three
indices of \(\gamma_i\). Because of triality I can use \(i\),\(j\),\(k\)
for spinor, dotted spinor and vector indices. Then it is known that \[
  \gamma_{ijk} =
  \begin{cases}
    c_{ijk} &\mbox{for $i,j,k<8$;}
  \\\delta_{ij} &\mbox{for $k=8$ (and $ijk$ permuted);}
  \\0 &\mbox{for more than two of $ijk$ equal to $8$.}
  \end{cases}
\] is a representation of \(\mathrm{Cliff}(8)\) if \(c_{ijk}\) are the
structure constants of the octonions (i.e.~\(e_i e_j = c_{ijk} e_k\) for
the 7 roots of \(-1\) in the octonions).

When you plug this representation of the \(\Gamma\)'s in the above
mentioned \(\gamma\) expression you will will find that it vanishes due
to the antisymmetry of the associator \[[a,b,c] = a(bc) - (ab)c\]

in the division algebras. This is my understanding of the relation of
supersymmetry to the divison algebras.

Robert
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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There are some spooky facts in mathematics that you'd never guess in a
million years\ldots{} only when someone carefully works them out do they
become clear. One of them is called ``Bott periodicity''.

A 0-dimensional manifold is pretty dull: just a bunch of points.
1-dimensional manifolds are not much more varied: the only possibilities
are the circle and the line, and things you get by taking a union of a
bunch of circles and lines. \(2\)-dimensional manifolds are more
interesting, but still pretty tame: you've got your n-holed tori, your
projective plane, your Klein bottle, variations on these with extra
handles, and some more related things if you allow your manifold to go
on forever, like the plane, or the plane with a bunch of handles added
(possibly infinitely many!), and so on\ldots. You can classify all these
things. \(3\)-dimensional manifolds are a lot more complicated: nobody
knows how to classify them. \(4\)-dimensional manifolds are a \emph{lot}
more complicated: you can \emph{prove} that it's \emph{impossible} to
classify them --- that's called Markov's Theorem.

Now, you probably wouldn't have guessed that a lot of things start
getting simpler when you get up around dimension 5. Not everything, just
some things. You still can't classify manifolds in these high
dimensions, but if you make a bunch of simplifying assumptions you sort
of can, in ways that don't work in lower dimensions. Weird, huh? But
that's another story. Bott periodicity is different. It says that when
you get up to 8 dimensions, a bunch of things are a whole lot like in 0
dimensions! And when you get up to dimension 9, a bunch of things are a
lot like they were in dimension 1. And so on - a bunch of stuff keeps
repeating with period 8 as you climb the ladder of dimensions.

(Actually, I have this kooky theory that perhaps part of the reason
topology reaches a certain peak of complexity in dimension 4 is that the
number 4 is halfway between 0 and 8, topology being simplest in
dimension 0. Maybe this is even why physics likes to be in 4 dimensions!
But this is a whole other crazy digression and I will restrain myself
here.)

Bott periodicity takes many guises, and I already described one in
\protect\hyperlink{week104}{``Week 104''}. Let's start with the real
numbers, and then throw in \(n\) square roots of \(-1\), say
\(e_1,\ldots,e_n\). Let's make them ``anticommute'', so
\[e_i e_j = - e_j e_i\] when \(i\) is different from \(j\). What we get
is called the ``Clifford algebra'' \(C_n\). For example, when \(n = 1\)
we get the complex numbers, which we call C. When \(n = 2\) we get the
quaternions, which we call H, for Hamilton. When \(n = 3\) we
get\ldots{} the octonions?? No, not the octonions, since we always
demand that multiplication be associative! We get the algebra consisting
of \emph{pairs} of quaternions! We call that
\(\mathbb{H}\oplus\mathbb{H}\). When \(n = 4\) we get the algebra
consisting of \(2\times2\) \emph{matrices} of quaternions! We call that
\(\mathbb{H}(2)\). And it goes on, like this:

\begin{itemize}
\tightlist
\item
  \(C_0 = \mathbb{R}\)
\item
  \(C_1 = \mathbb{C}\)
\item
  \(C_2 = \mathbb{H}\)
\item
  \(C_3 = \mathbb{H}\oplus\mathbb{H}\)
\item
  \(C_4 = \mathbb{H}(2)\)
\item
  \(C_5 = \mathbb{C}(4)\)
\item
  \(C_6 = \mathbb{R}(8)\)
\item
  \(C_7 = \mathbb{R}(8)\oplus\mathbb{R}(8)\)
\item
  \(C_8 = \mathbb{R}(16)\)
\end{itemize}

Note that by the time we get to \(n = 8\) we just have \(16\times16\)
matrices of real numbers. And that's how it keeps going: \(C_{n+8}\) is
just \(16\times16\) matrices of guys in \(C_n\)! That's Bott periodicity
in its simplest form.

Actually right now I'm in Vienna, at the Schroedinger Institute, and one
of the other people visiting is Andrzej Trautman, who gave a talk the
other day on ``Complex Structures in Physics'', where he mentioned a
nice way to remember the above table. Imagine the day is only 8 hours
long, and draw a clock with 8 hours. Then label it like this: \[
  \begin{tikzpicture}
    \draw (0,0) circle[radius=2.65cm];
    \node[label=below:{$\mathbb{R}$}] at (90:2.3) {0};
    \node[label=below left:{$\mathbb{C}$}] at (45:2.3) {1};
    \node[label=left:{$\mathbb{H}$}] at (0:2.3) {2};
    \node[label={[label distance=-2mm]above left:{$\mathbb{H}\oplus\mathbb{H}$}}] at (-45:2.3) {3};
    \node[label=above:{$\mathbb{H}$}] at (-90:2.3) {4};
    \node[label=above right:{$\mathbb{C}$}] at (-135:2.3) {5};
    \node[label=right:{$\mathbb{R}$}] at (180:2.3) {6};
    \node[label={[label distance=-2mm]below right:{$\mathbb{R}\oplus\mathbb{R}$}}] at (135:2.3) {7};
    \foreach \a in {0,45,90,135,180,-135,-90,-45}
      \draw (\a:2.5) to (\a:2.65);
  \end{tikzpicture}
\] The idea here is that as the dimension of space goes up, you go
around the clock. One nice thing about the clock is that it has a
reflection symmetry about the axis from 3 o'clock to 7 o'clock. To use
the clock, you need to know that the dimension of the Clifford algebra
doubles each time you go up a dimension. This lets you figure out, for
example, that the Clifford algebra in 4 dimensions is not really
\(\mathbb{H}\), but \(\mathbb{H}(2)\), since the latter has dimension
\(16 = 2^4\).

Now let's completely change the subject and talk about rotations in
infinite-dimensional space! What's a rotation in infinite-dimensional
space like? Well, let's start from the bottom and work our way up. You
can't really rotate in 0-dimensional space. In \(1\)-dimensional space
you can't really rotate, you can only \emph{reflect} things\ldots{} but
we will count reflections together with rotations, and say that the
operations of multiplying by \(1\) or \(-1\) count as ``rotations'' in
\(1\)-dimensional space. In \(2\)-dimensional space we describe
rotations by \(2\times2\) matrices like \[
  \left(
    \begin{array}{cc}
      \cos t & -\sin t
    \\\sin t & \cos t
    \end{array}
  \right)
\] and since we're generously including reflections, also matrices like
\[
  \left(
    \begin{array}{cc}
      \cos t & \sin t
    \\\sin t & -\cos t
    \end{array}
  \right)
\] These are just the matrices whose columns are orthonormal vectors. In
3-dimensional space we describe rotations by \(3\times3\) matrices whose
columns are orthonormal, and so on. In n-dimensional space we call the
set of \(n\times n\) matrices with orthonormal columns the ``orthogonal
group'' \(\mathrm{O}(n)\).

Note that we can think of a rotation in 2 dimensions \[
  \left(
    \begin{array}{cc}
      \cos t & -\sin t
    \\\sin t & \cos t
    \end{array}
  \right)
\] as being a rotation in 3 dimensions if we just stick one more row and
one column like this: \[
  \left(
    \begin{array}{ccc}
      \cos t & -\sin t & 0
    \\\sin t & \cos t & 0
    \\ 0 & 0 & 1
    \end{array}
  \right)
\] This is just a rotation around the z axis. Using the same trick we
can think of any rotation in \(n\) dimensions as a rotation in \(n+1\)
dimensions. So we can think of \(\mathrm{O}(0)\) as sitting inside
\(\mathrm{O}(1)\), which sits inside \(\mathrm{O}(2)\), which sits
inside \(\mathrm{O}(3)\), which sits inside \(\mathrm{O}(4)\), and so
on! Let's do that. Then let's just take the \emph{union} of all these
guys, and we get\ldots{} \(\mathrm{O}(\infty)\)! This is the group of
rotations, together with reflections, in infinite dimensions.

(Now if you know your math, or you read
\protect\hyperlink{week82}{``Week 82''}, you'll realize that I didn't
really change the subject, since the Clifford algebra \(C_n\) is really
just a handy way to study rotations in \(n\) dimensions. But never
mind.)

Now \(\mathrm{O}(\infty)\) is a very big group, but it elegantly
summarizes a lot of information about rotations in all dimensions, so
it's not surprising that topologists have studied it. One of the thing
topologists do when studying a space is to work out its ``homotopy
groups''. If you hand them a space \(X\), and choose a point \(x\) in
this space, they will work out all the topologically distinct ways you
can stick an \(n\)-dimensional sphere in this space, where we require
that the north pole of the sphere be at \(x\). This is what they are
paid to do. We call the set of all such ways the homotopy group
\(\pi_n(X)\). For a more precise description, try
\protect\hyperlink{week102}{``Week 102''} --- but this will do for now.

So, what are the homotopy groups of \(\mathrm{O}(\infty)\)? Well, they
start out looking like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
\(n\) & \(\pi_n(\mathrm{O}(\infty))\)\tabularnewline
\midrule
\endhead
\(0\) & \(\mathbb{Z}/2\)\tabularnewline
\(1\) & \(\mathbb{Z}/2\)\tabularnewline
\(2\) & \(0\)\tabularnewline
\(3\) & \(\mathbb{Z}\)\tabularnewline
\(4\) & \(0\)\tabularnewline
\(5\) & \(0\)\tabularnewline
\(6\) & \(0\)\tabularnewline
\(7\) & \(\mathbb{Z}\)\tabularnewline
\bottomrule
\end{longtable}

And then they repeat, modulo 8. Bott periodicity strikes again!

But what do they mean?

Well, luckily Jim Dolan has thought about this a lot. Discussing it
repeatedly in the little cafe we tend to hang out at, we came up with
the following story. Most of it is known to various people already, but
it came as sort of a revelation to us.

The zeroth entry in the table is easy to understand. \(\pi_0\) keeps
track of how many connected components your space has. The rotation
group \(\mathrm{O}(\infty)\) has two connected components: the guys that
are rotations, and the guys that are rotations followed by a reflection.
So \(\pi_0\) of \(\mathrm{O}(\infty)\) is \(\mathbb{Z}/2\), the group
with two elements. Actually this is also true for \(\mathrm{O}(n)\)
whenever \(n\) is high enough, namely \(1\) or more. So the zeroth entry
is all about ``reflecting''.

The first entry is a bit subtler but very important in physics. It means
that there is a loop in \(\mathrm{O}(\infty)\) that you can't pull
tight, but if you go around that loop \emph{twice}, you trace out a loop
that you \emph{can} pull tight. In fact this is true for
\(\mathrm{O}(n)\) whenever \(n\) is \(3\) or more. This is how there can
be spin-\(1/2\) particles when space is \(3\)-dimensional or higher.
There are lots of nice tricks for seeing that this is true, which I hope
the reader already knows and loves. In short, the first entry is all
about ``rotating 360 degrees and not getting back to where you
started''.

The second entry is zero.

The third entry is even subtler but also very important in modern
physics. It means that the ways to stick a 3-sphere into
\(\mathrm{O}(\infty)\) are classified by the integers, \(\mathbb{Z}\).
Actually this is true for \(\mathrm{O}(n)\) whenever \(n\) is \(5\) or
more. It's even true for all sorts of other groups, like all ``compact
simple groups''. But can I summarize this entry in a snappy phrase like
the previous nonzero entries? Not really. Actually a lot of applications
of topology to quantum field theory rely on this \(\pi_3\) business. For
example, it's the key to stuff like ``instantons'' in Yang-Mills theory,
which are in turn crucial for understanding how the pion gets its mass.
It's also the basis of stuff like ``Chern-Simons theory'' and ``\(BF\)
theory''. Alas, all this takes a while to explain, but let's just say
the third entry is about ``topological field theory in 4 dimensions''.

The fourth entry is zero.

The fifth entry is zero.

The sixth entry is zero.

The seventh entry is probably the most mysterious of all. From one point
of view it is the subtlest, but from another point of view it is
perfectly trivial. If we think of it as being about \(\pi_7\) it's very
subtle: it says that the ways to stick a 7-sphere into
\(\mathrm{O}(\infty)\) are classified by the integers. (Actually this is
true for \(\mathrm{O}(n)\) whenever \(n\) is \(7\) or more.) But if we
keep Bott periodicity in mind, there is another way to think of it: we
can think of it as being about \(\pi_{-1}\), since \(7 = -1 \mod 8\).

But wait a minute! Since when can we talk about \(\pi_n\) when \(n\) is
\emph{negative?!} What's a -1-dimensional sphere, for example?

Well, the idea here is to use a trick. There is a space very related to
\(\mathrm{O}(\infty)\), called \(k\mathrm{O}\). As with
\(\mathrm{O}(\infty)\), the homotopy groups of this space repeat modulo
8. Moreover we have:
\[\pi_n(\mathrm{O}(\infty)) = \pi_{n+1}(k\mathrm{O})\] Combining these
facts, we see that the very subtle \(\pi_7\) of \(\mathrm{O}(\infty)\)
is nothing but the very unsubtle \(\pi_0\) of \(k\mathrm{O}\), which
just keeps track of how many connected components \(k\mathrm{O}\) has.

But what \emph{is} \(k\mathrm{O}\)?

Hmm. The answer is very important and interesting, but it would take a
while to explain, and I want to postpone doing it for a while, so I can
get to the punchline. Let me just say that when we work it all out, we
wind up seeing that the seventh entry in the table is all about
\emph{dimension}.

To summarize:

\begin{itemize}
\tightlist
\item
  \(\pi_0(\mathrm{O}(\infty)) = \mathbb{Z}/2\) is about REFLECTING
\item
  \(\pi_1(\mathrm{O}(\infty)) = \mathbb{Z}/2\) is about ROTATING 360
  DEGREES
\item
  \(\pi_3(\mathrm{O}(\infty)) = \mathbb{Z}\) is about TOPOLOGICAL FIELD
  THEORY IN 4 DIMENSIONS
\item
  \(\pi_7(\mathrm{O}(\infty)) = \mathbb{Z}\) is about DIMENSION
\end{itemize}

But wait! What do those numbers 0, 1, 3, and 7 remind you of?

Well, after I stared at them for a few weeks, they started to remind me
of the numbers 1, 2, 4, and 8. And \emph{that} immediately reminded me
of the reals, the complexes, the quaternions, and the octonions!

And indeed, there is an obvious relationship. Let \(n\) be 1, 2, 4, or
8, and correspondingly let \(\mathbb{A}\) stand for either the reals
\(\mathbb{R}\), the complex numbers \(\mathbb{C}\), the quaternions
\(\mathbb{H}\), or the octonions \(\mathbb{O}\). These guys are
precisely all the ``normed division algebras'', meaning that the obvious
sort of absolute value satisfies \[|xy| = |x||y|.\] Thus if we take any
guy \(x\) in \(\mathbb{A}\) with \(|x| = 1\), the operation of
multiplying by \(x\) is length-preserving, so it's a reflection or
rotation in \(\mathbb{A}\). This gives us a function from the unit
sphere in \(\mathbb{A}\) to \(\mathrm{O}(n)\), or in other words from
the \((n-1)\)-sphere to \(\mathrm{O}(n)\). We thus get nice elements of
\[\pi_0(\mathrm{O}(1)), \quad\pi_1(\mathrm{O}(2)), \quad\pi_3(\mathrm{O}(4)), \quad\pi_7(\mathrm{O}(8))
\] which turn out to be precisely why these particular homotopy groups
of \(\mathrm{O}(\infty)\) are nontrivial.

So now we have the following fancier chart:

\begin{itemize}
\tightlist
\item
  \(\pi_0(\mathrm{O}(\infty))\) is about REFLECTING and the REAL NUMBERS
\item
  \(\pi_1(\mathrm{O}(\infty))\) is about ROTATING 360 DEGREES and the
  COMPLEX NUMBERS
\item
  \(\pi_3(\mathrm{O}(\infty))\) is about TOPOLOGICAL FIELD THEORY IN 4
  DIMENSIONS and the QUATERNIONS
\item
  \(\pi_7(\mathrm{O}(\infty))\) is about DIMENSION and the OCTONIONS
\end{itemize}

Now this is pretty weird. It's not so surprising that reflections and
the real numbers are related: after all, the only ``rotations'' in the
real line are the reflections. That's sort of what \(1\) and \(-1\) are
all about. It's also not so surprising that rotations by 360 degrees are
related to the complex numbers. That's sort of what the unit circle is
all about. While far more subtle, it's also not so surprising that
topological field theory in 4 dimensions is related to the quaternions.
The shocking part is that something so basic-sounding as ``dimension''
should be related to something so erudite-sounding as the ``octonions''!

But this is what Bott periodicity does, somehow: it wraps things around
so the most complicated thing is also the least complicated.

That's more or less the end of what I have to say, except for some
references and some remarks of a more technical nature.

Bott periodicity for \(\mathrm{O}(\infty)\) was first proved by Raoul
Bott in 1959. Bott is a wonderful explainer of mathematics and one of
the main driving forces behind applications of topology to physics, and
a lot of his papers have now been collected in book form:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{The Collected Papers of Raoul Bott}, ed.~R. D. MacPherson. Vol.
  1: \emph{Topology and Lie Groups (the 1950s)}. Vol. 2:
  \emph{Differential Operators (the 1960s)}. Vol. 3: \emph{Foliations
  (the 1970s)}. Vol. 4: \emph{Mathematics Related to Physics (the
  1980s)}. Birkhauser, Boston, 1994, 2355 pages total.
\end{enumerate}

A good paper on the relation between \(\mathrm{O}(\infty)\) and Clifford
algebras is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  M. F. Atiyah, R. Bott, and A. Shapiro, ``Clifford modules'',
  \emph{Topology} \textbf{3} (1964), 3-38.
\end{enumerate}

For more stuff on division algebras and Bott periodicity try Dave
Rusin's web page, especially his answer to ``Q5. What's the question
with the answer \(n = 1\), \(2\), \(4\), or \(8\)?''

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Dave Rusin, ``Binary products, algebras, and division rings'',
  \texttt{http://www.math.niu.edu/\textbackslash{}\textasciitilde{}rusin/known-math/95/division.alg}
\end{enumerate}

Let me briefly explain this \(k\mathrm{O}\) business. The space
\(k\mathrm{O}\) is related to a simpler space called
\(\mathcal{B}\mathrm{O}(\infty)\) by means of the equation
\[k\mathrm{O} = \mathcal{B}\mathrm{O}(\infty)\times\mathbb{Z},\] so let
me first describe \(\mathcal{B}\mathrm{O}(\infty)\). For any topological
group \(G\) you can cook up a space \(BG\) whose loop space is homotopy
equivalent to \(G\). In other words, the space of
(base-point-preserving) maps from \(S^1\) to \(BG\) is homotopy
equivalent to \(G\). It follows that \[\pi_n(G) = \pi_{n+1}(BG).\] This
space \(BG\) is called the classifying space of \(G\) because it has a
principal \(G\)-bundle over it, and given \emph{any} decent topological
space \(X\) (say a CW complex) you can get all principal \(G\)-bundles
over \(X\) (up to isomorphism) by taking a map \(f\colon X\to BG\) and
pulling back this principal \(G\)-bundle over \(BG\). Moreover,
homotopic maps to \(BG\) give isomorphic \(G\)-bundles over \(X\) this
way.

Now a principal \(\mathrm{O}(n)\)-bundle is basically the same thing as
an \(n\)-dimensional real vector bundle --- there are obvious ways to go
back and forth between these concepts. A principal
\(\mathrm{O}(\infty)\)-bundle is thus very much like a real vector
bundle of \emph{arbitrary} dimension, but where we don't care about
adding on arbitrarily many \(1\)-dimensional trivial bundles. If we take
the collection of isomorphism classes of real vector bundles over \(X\)
and decree two to be equivalent if they become isomorphic after adding
on trivial bundles, we get something called \(KX\), the ``real K-theory
of X''. It's not hard to see that this is a group. Taking what I've said
and working a bit, it follows that
\[KX = [X, \mathcal{B}\mathrm{O}(\infty)]\] where the right-hand side
means ``homotopy classes of maps from \(X\) to
\(\mathcal{B}\mathrm{O}(\infty)\)''. If we take \(X\) to be \(S^{n+1}\),
we see
\[KS^{n+1} = \pi_{n+1}(\mathcal{B}\mathrm{O}(\infty)) = \pi_n(\mathrm{O}(\infty))\]
It follows that we can get all elements of \(\pi_n\) of
\(\mathrm{O}(\infty)\) from real vector bundles over \(S^{n+1}\).

Of course, the above equations are true only for nonnegative \(n\),
since it doesn't make sense to talk about \(\pi_{-1}\) of a space.
However, to make Bott periodicity work out smoothly, it would be nice if
we could pretend that
\[KS^{-1} = \pi_0(\mathcal{B}\mathrm{O}(\infty)) = \pi_{-1}(\mathrm{O}(\infty)) = \pi_7(\mathrm{O}(\infty)) = \mathbb{Z}\]
Alas, the equations don't make sense, and
\(\mathcal{B}\mathrm{O}(\infty)\) is connected, so we don't have
\(\pi_0(\mathcal{B}\mathrm{O}(\infty)) = \mathbb{Z}\). However, we can
cook up a slightly improved space \(k\mathrm{O}\), which has
\[\pi_n(k\mathrm{O}) = \pi_n(\mathcal{B}\mathrm{O}(\infty))\] when
\(n > 0\), but also has \[\pi_0(k\mathrm{O}) = \mathbb{Z}\] as desired.
It's easy --- we just let
\[k\mathrm{O} = \mathcal{B}\mathrm{O}(\infty)\times\mathbb{Z}.\] So,
let's use this instead of \(\mathcal{B}\mathrm{O}(\infty)\) from now on.

Taking \(n = 0\), we can think of \(S^1\) as \(\mathbb{RP}^1\), the real
projective line, i.e.~the space of \(1\)-dimensional real subspaces of
\(\mathbb{R}^2\). This has a ``canonical line bundle'' over it, that is,
a \(1\)-dimensional real vector bundle which to each point of
\(\mathbb{RP}^1\) assigns the \(1\)-dimensional subspace of
\(\mathbb{R}^2\) that \emph{is} that point. This vector bundle over
\(S^1\) gives the generator of \(KS^1\), or in other words,
\(\pi_0(\mathrm{O}(\infty))\).

Taking \(n = 1\), we can think of \(S^2\) as the ``Riemann sphere'', or
in other words \(\mathbb{CP}^1\), the space of \(1\)-dimensional complex
subspaces of \(\mathbb{C}^2\). This too has a ``canonical line bundle''
over it, which is a 1-dimensional complex vector bundle, or
\(2\)-dimensional real vector bundle. This bundle over \(S^2\) gives the
generator of \(KS^2\), or in other words, \(\pi_1(\mathrm{O}(\infty))\).

Taking \(n = 3\), we can think of \(S^4\) as \(\mathbb{HP}^1\), the
space of \(1\)-dimensional quaternionic subspaces of \(\mathbb{H}^2\).
The ``canonical line bundle'' over this gives the generator of \(KS^4\),
or in other words, \(\pi_3(\mathrm{O}(\infty))\).

Taking \(n = 7\), we can think of \(S^8\) as \(\mathbb{OP}^1\), the
space of \(1\)-dimensional octonionic subspaces of \(\mathbb{O}^2\). The
``canonical line bundle'' over this gives the generator of \(KS^8\), or
in other words, \(\pi_7(\mathrm{O}(\infty))\).

By Bott periodicity,
\[\pi_7(\mathrm{O}(\infty)) = \pi_8(k\mathrm{O}) = \pi_0(k\mathrm{O})\]
so the canonical line bundle over \(\mathbb{OP}^1\) also defines an
element of \(\pi_0(k\mathrm{O})\). But
\[\pi_0(k\mathrm{O}) = [S^0,k\mathrm{O}] = KS^0\] and \(KS^0\) simply
records the \emph{difference in dimension} between the two fibers of a
vector bundle over \(S^0\), which can be any integer. This is why the
octonions are related to dimension.

If for any pointed space we define \[K^n(X) = K(S^n\wedge X)\] we get a
cohomology theory called K-theory, and it turns out that
\[K^{n+8}(X) = K(X)\] which is another way of stating Bott periodicity.
Now if \(\{*\}\) denotes a single point, \(K(\{*\})\) is a ring (this is
quite common for cohomology theories), and it is generated by elements
of degrees 1, 2, 4, and 8. The generator of degree 8 is just the
canonical line bundle over \(\mathbb{OP}^1\) and multiplication by this
generator gives a map \[K^n(\{*\})\to K^{n+8}(\{*\})\] which is an
isomorphism of groups --- namely, Bott periodicity! In this sense the
octonions are responsible for Bott periodicity.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum}: The Clifford algebra clock is even better than I
described above, because it lets you work out the fancier Clifford
algebras \(C_{p,q}\), which are generated by \(p\) square roots of
\(-1\) and \(q\) square roots of \(1\), which all anticommute with each
other. These Clifford algebras are good when you have \(p\) dimensions
of ``space'' and \(q\) dimensions of ``time'', and I described the
physically important case where \(q = 1\) in
\protect\hyperlink{week93}{``Week 93''}. To figure them out, you just
work out \(p - q \mod 8\), look at what the clock says for that hour,
and then take \(N\times N\) matrices of what you see, with \(N\) chosen
so that \(C_{p,q}\) gets the right dimension, namely \(2^{p+q}\). So say
you're a string theorist and you think there are 9 space dimensions and
1 time dimension. You say: ``Okay, \(9-1 = 8\), so I look and see what's
at 8 o'clock. Okay, that's \(\mathbb{R}\), the real numbers. But my
Clifford algebra \(C_{9,1}\) is supposed to have dimension
\(2^{9+1}=1024=32^2\), so my Clifford algebra must consist of
\(32\times32\) \emph{matrices} with real entries.''

By the way, it's not so easy to see that the canonical line bundle over
\(\mathbb{OP}^1\) is the generator of \(KS^8\) --- or equivalently, that
left multiplication by unit octonions defines a map from \(S^7\) into
\(\mathrm{SO}(8)\) corresponding to the generator of
\(\pi_7(\mathrm{O}(\infty))\). I claimed it's true above, but when
someone asked me why this was true, I realized I couldn't prove it! That
made me nervous. So I asked on \texttt{sci.math.research} if it was
really true, and I got this reply:

\begin{quote}
From: Linus Kramer Newsgroups: sci.math.research Subject: \(\pi_7(O)\)
and octonions Date: Tue, 09 Nov 1999 12:44:33 +0100

John Baez asked if \(\pi_7(O)\) is generated by the (multiplication by)
unit octonions.

View this as a question in KO-theory: the claim is that \(H^8\)
generates the reduced real K-theory \(\tilde{K}\mathrm{O}(S^8)\) of the
8-sphere; the bundle \(H^8\) over \(S^8\) is obtained by the standard
glueing process along the equator \(S^7\), using the octonion
multiplication. So \(H^8\) is the octonion Hopf bundle. Its Thom space
is the projective Cayley plane \(\mathbb{OP}^2\). Using this and
Hirzebruch's signature theorem, one sees that the Pontrjagin class of
\(H^8\) is \(p_8(H^8)=6x\), for a generator \(x\) of the
\(8\)-dimensional integral cohomology of \(S^8\) {[}a reference for this
calulation is my paper ``The topology of smooth projective planes'',
\emph{Arch. Math} \textbf{63} (1994){]}. We have a diagram
\[K\mathrm{O}(S^8) \xrightarrow{\mathrm{cplx}} K(S^8) \xrightarrow{\mathrm{ch}} H(S^8)\]
the left arrow is complexification, the second arrow is the Chern
character. In dimension 8, these maps form an isomorphism. Now
\(\mathrm{ch}(\mathrm{cplx}(H^8))=8+x\) (see the formula in the last
paragraph in Husemoller's ``Fibre bundles'', the chapter on ``Bott
periodicity and integrality theorems''. The constant factor is
unimportant, so the answer is yes, \(\pi_7(O)\) is generated by the map
\(S^7\to\mathbb{O}\) which sends a unit octonion \(A\) to the map
\(l_A\colon x\mapsto Ax\) in \(\mathrm{SO}(8)\).

Linus Kramer
\end{quote}

More recently I got an email from Todd Trimble which cites another
reference to this fact:

\begin{quote}
From: Todd Trimble Subject: Hopf bundles To: John Baez Date: Fri, 25 Mar
2005 16:37:11 -0500

John,

In the book \emph{Numbers} (GTM \textbf{123}), there is an article by
Hirzebruch where the Bott periodicity result is formulated as saying
that the generators of \(\tilde{K}\mathrm{O}(S^n)\) in the cases
\(n = 1, 2, 4, 8\) are given by \([\eta]-1\) where \(\eta\) is the Hopf
bundle corresponding to \(\mathbb{R}\), \(\mathbb{C}\), \(\mathbb{H}\),
\(\mathbb{O}\) and 1 is the trivial line bundle over these scalar
``fields'' (of real dimension 1, 2, 4, 8), and is 0 for
\(n = 3, 5, 6, 7\) {[}p.~294{]}. Also that the Bott periodicity
isomorphism\\
\[\tilde{K}\mathrm{O}(S^n) \to \tilde{K}\mathrm{O}(S^{n+8})\] is induced
by \([\eta(\mathbb{O})]-1\) {[}p.~295{]}. I know you are aware of this
already (courtesy of the response of Linus Kramers to your
\texttt{sci.math.research\ query}), but I thought you might find a
published reference, on the authority of no less than Hirzebruch,
handier (should you need it) than referring to a
\texttt{sci.math.research} exchange.

Unfortunately no proof is given. Hirzebruch says (p.~295),

\begin{quote}
Remark. Our formulation of the Bott periodicity theorem will be found,
in essentials, in {[}reference to Bott's Lectures on \(K(X)\), without
proofs{]}. A detailed proof within the framework of K-theory is given in
the textbook {[}reference to Karoubi's K-theory{]}. The reader will have
a certain amount of difficulty, however, in extracting the results used
here from Karoubi's formulation.
\end{quote}

Todd
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{\ldots{} for geometry, you know, is the gate of science, and the
gate is so low and small that one can only enter it as a little child.}
--- William Clifford
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Well, it seems I want to talk one more time about octonions before
moving on to other stuff. I'm a bit afraid this obsession with octonions
will mislead the nonexperts, fooling them into thinking octonions are
more central to mainstream mathematical physics than they actually are.
I'm also worried that the experts will think I'm spend all my time
brooding about octonions when I should be working on practical stuff
like quantum gravity. But darn it, this is summer vacation! The only way
I'm going to keep on cranking out ``This Week's Finds'' is if I write
about whatever I feel like, no matter how frivolous. So here goes.

First of all, let's make sure everyone here knows what projective space
is. If you don't, I'd better explain it. This is honest mainstream stuff
that everyone should know, good nutritious mathematics, so I won't need
to feel too guilty about serving the extravagant octonionic dessert
which follows.

Start with \(\mathbb{R}^n\), good old \(n\)-dimensional Euclidean space.
We can imagine wanting to ``compactify'' this so that if you go sailing
off to infinity in some direction you'll come sailing back from the
other side like Magellan. There are different ways to do this. A
well-known one is to take \(\mathbb{R}^n\) and add on one extra ``point
at infinity'', obtaining the \(n\)-dimensional sphere \(S^n\). Here the
idea is that start anywhere in \(\mathbb{R}^n\) and start sailing in any
direction, you are sailing towards this ``point at infinity''.

But there is a sneakier way to compactify \(\mathbb{R}^n\), which gives
us not the \(n\)-dimensional sphere but ``projective \(n\)-space''. Here
we add on a lot of points, one for each line through the origin. Now
there are \emph{lots} of points at infinity, one for every direction!
The idea here is that if you start at the origin and start sailing along
any straight line, you are sailing towards the point at infinity
corresponding to that line. Sailing along any parallel line takes you
twoards the same point at infinity. It's a bit like a perspective
picture where different families of parallel lines converge to different
points on the horizon --- the points on the horizon being points at
infinity.

Projective \(n\)-space is also called \(\mathbb{RP}^n\). The
\(\mathbb{R}\) is for ``real'', since this is actually ``real projective
\(n\)-space''. Later we'll see what happens if we replace the real
numbers by the complex numbers, quaternions, or octonions.

There are some other ways to think about \(\mathbb{RP}^n\) that are
useful either for visualizing it or doing calculations. First a nice way
to visualize it. First take \(\mathbb{R}^n\) and squash it down so it's
just the ball of radius \(1\), or more precisely, the ``open ball''
consisting of all vectors of length less than \(1\). We can do this
using a coordinate transformation like:
\[x \mapsto x' =  \frac{x}{\sqrt{1+|x|^2}}\] Here \(x\) stands for a
vector in \(\mathbb{R}^n\) and \(|x|\) is its length. Dividing the
vector \(x\) by \(\sqrt{1 + |x|^2}\) gives us a vector \(x'\) whose
length never quite gets to \(1\), though it can get as close at it
likes. So we have squashed \(\mathbb{R}^n\) down to the open ball of
radius \(1\).

Now say you start at the origin in this squashed version of
\(\mathbb{R}^n\) and sail off in any direction in a straight line. Then
you are secretly heading towards the boundary of the open ball. So the
points an the boundary of the open ball are like ``points at infinity''.

We can now compactify \(\mathbb{R}^n\) by including these points at
infinity. In other words, we can work not with the open ball but with
the ``closed ball'' consisting of all vectors \(x\)' whose length is
less than or equal to \(1\).

However, to get projective \(n\)-space we also have to decree that
antipodal points \(x'\) and \(-x'\) with \(|x'| = 1\) are to be regarded
as the same. In other words, we need to ``identify each point on the
boundary of the closed ball with its antipodal point''. The reason is
that we said that when you sail off to infinity along a particular
straight line, you are approaching a particular point in projective
\(n\)-space. Implicit in this is that it doesn't matter which \emph{way}
you sail along that straight line. Either direction takes you towards
the same point in projective \(n\)-space!

This may seem weird: in this world, when the cowboy says ``he went
thataway'' and points at a particular point on the horizon, you gotta
remember that his finger points both ways, and the villian could equally
well have gone in the opposite direction. The reason this is good is
that it makes projective space into a kind of geometer's paradise: any
two lines in projective space intersect in a \emph{single} point. No
more annoying exceptions: even ``parallel'' lines intersect in a single
point, which just happens to be a point at infinity. This simplifies
life enormously.

Okay, so \(\mathbb{RP}^n\) is the space formed by taking a closed
\(n\)-dimensional ball and identifying pairs of antipodal points on its
boundary.

A more abstract way to think of \(\mathbb{RP}^n\), which is incredibly
useful in computations, is as the set of all lines through the origin in
\(\mathbb{R}^{n+1}\). Why is this the same thing? Well, let me
illustrate it in an example. What's the space of lines through the
origin in \(\mathbb{R}^3\)? To keep track of these lines, draw a sphere
around the origin. Each line through the origin intersects this sphere
in two points. Either one point is in the northern hemisphere and the
other is in the southern hemisphere, or both are on the equator. So we
can keep track of all our lines using points on the northern hemisphere
and the equator, but identifying antipodal points on the equator. This
is just the same as taking the closed 2-dimensional ball and identifying
antipodal points on the boundary! QED. The same argument works in higher
dimensions too.

Now that we know a point in \(\mathbb{RP}^n\) is just a line through the
origin in \(\mathbb{R}^{n+1}\), it's easy to put coordinates on
\(\mathbb{RP}^n\). There's one line through the origin passing through
any point in \(\mathbb{R}^{n+1}\), but if we multiply the coordinates
\((x_1,\ldots,x_{n+1})\) of this point by any nonzero number we get the
same line. Thus we can use a list of \(n+1\) real numbers to describe a
point in \(\mathbb{RP}^n\), with the proviso that we get the same point
in \(\mathbb{RP}^n\) if someone comes along and multiplies them all by
some nonzero number! These are called ``homogeneous coordinates''.

If you don't like the ambiguity of homogeneous coordinates, you can go
right ahead and divide all the coordinates by the real number \(x_1\),
getting \[(1, x_2/x_1, \ldots , x_{n+1}/x_1)\] which lets us describe a
point in \(\mathbb{RP}^n\) by n real numbers, as befits an
\(n\)-dimensional real manifold. Of course, this won't work if \(x_1\)
happens to be zero! But we can divide by \(x_2\) if \(x_2\) is nonzero,
and so on. \emph{One} of them has to be nonzero, so we can cover
\(\mathbb{RP}^n\) with \(n+1\) different coordinate patches
corresponding to the regions where different \(x_i\)'s are nonzero. It's
easy to change coordinates, too.

This makes everything very algebraic, which makes it easy to generalize
\(\mathbb{RP}^n\) by replacing the real numbers with other number
systems. For example, to define ``complex projective \(n\)-space'' or
\(\mathbb{CP}^n\), just replace the word ``real'' by the word
``complex'' in the last two paragraphs, and replace ``\(\mathbb{R}\)''
by ``\(\mathbb{C}\)''. \(\mathbb{CP}^n\) is even more of a geometer's
paradise than \(\mathbb{RP}^n\), because when you work with complex
numbers you can solve all polynomial equations. Also, now there's no big
difference between an ellipse and a hyperbola! This sort of thing is why
\(\mathbb{CP}^n\) is so widely used as a context for ``algebraic
geometry''.

We can go even further and replace the real numbers by the quaternions,
\(\mathbb{H}\), defining the ``quaternionic projective \(n\)-space''
\(\mathbb{HP}^n\). If we are careful about writing things in the right
order, it's no problem that the quaternions are noncommutative\ldots{}
we can still divide by any nonzero quaternion, so we can cover
\(\mathbb{HP}^n\) with n+1 different coordinate charts and freely change
coordinates as desired.

We can try to go even further and use the octonions, O. Can we define
``octonionic projective \(n\)-space'', \(\mathbb{OP}^n\)? Well, now
things get tricky! Remember, the octonions are nonassociative. There's
no problem defining \[\mathbb{OP}^1\]; we can cover it with two
coordinate charts, corresponding to homogeneous coordinates of the form
\[(x, 1)\] and \[(1, y),\] and we can change coordinates back and forth
with no problem. This amounts to taking \(\mathbb{O}\) and adding a
single point at infinity, getting the 8-dimensional sphere \(S^8\). This
is part of a pattern:

\begin{itemize}
\tightlist
\item
  \(\mathbb{RP}^1 = S^1\)
\item
  \(\mathbb{CP}^1 = S^2\)
\item
  \(\mathbb{HP}^1 = S^4\)
\item
  \(\mathbb{OP}^1 = S^8\)
\end{itemize}

I discussed the implications of this pattern for Bott periodicity in
\protect\hyperlink{week105}{``Week 105''}.

We can also define \(\mathbb{OP}^2\). Here we have 3 coordinate charts
corresponding to homogeneous coordinates of the form \[(1, y, z),\]
\[(x, 1, z),\] and \[(x, y, 1).\] We can change back and forth between
coordinate systems, but now we have to \emph{check} that if we start
with the first coordinate system, change to the second coordinate
system, and then change back to the first, we wind up where we started!
This is not obvious, since multiplication is not associative. But it
works, thanks to a couple of identities that are not automatic in the
nonassociative context, but hold for the octonions:
\[(xy)^{-1} = y^{-1} x^{-1}\] and \[(xy)y^{-1} = x.\] Checking these
equations is a good exercise for anyone who wants to understand the
octonions.

Now for the cool part: \(\mathbb{OP}^2\) is where it ends!

We can't define \(\mathbb{OP}^n\) for \(n\) greater than 2, because the
nonassociativity keeps us from being able to change coordinates a bunch
of times and get back where we started! You might hope that we could
weasel out of this somehow, but it seems that there is a real sense in
which the higher-dimensional octonionic projective spaces don't exist.

So we have a fascinating situation: an infinite tower of
\(\mathbb{RP}\)\^{}n's, an infinite tower of \(\mathbb{CP}^n\)'s, an
infinite tower of \(\mathbb{HP}^n\)'s, but an abortive tower of
\(\mathbb{OP}^n\)'s going only up to \(n = 2\) and then fizzling out.
This means that while all sorts of geometry and group theory relating to
the reals, complexes and quaternions fits into infinite systematic
patterns, the geometry and group theory relating to the octonions is
quirky and mysterious.

We often associate mathematics with ``classical'' beauty, patterns
continuing ad infinitum with the ineluctable logic of a composition by
some divine Bach. But when we study \(\mathbb{OP}^2\) and its
implications, we see that mathematics also has room for ``exceptional''
beauty, beauty that flares into being and quickly subsides into silence
like a piece by Webern. Are the fundamental laws of physics based on
``classical'' mathematics or ``exceptional'' mathematics? Since our
universe seems unique and special --- don't ask me how would we know if
it weren't --- Witten has suggested the latter. Indeed, it crops up a
lot in string theory. This is why I'm trying to learn about the
octonions: a lot of exceptional objects in mathematics are tied to them.

I already discussed this a bit in \protect\hyperlink{week64}{``Week
64''}, where I sketched how there are 3 infinite sequences of
``classical'' simple Lie groups corresponding to rotations in
\(\mathbb{R}^n\), \(\mathbb{C}^n\), and \(\mathbb{H}^n\), and 5
``exceptional'' simple Lie groups related to the octonions. After
studying it all a bit more, I can now go into some more detail.

In order of increasing dimension, the 5 exceptional Lie groups are
called \(\mathrm{G}_2\), \(\mathrm{F}_4\), \(\mathrm{E}_6\),
\(\mathrm{E}_7\), and \(\mathrm{E}_8\). The smallest, \(\mathrm{G}_2\),
is easy to understand in terms of the octonions: it's just the group of
symmetries of the octonions as an algebra. It's a marvelous fact that
all the bigger ones are related to \(\mathbb{OP}^2\). This was
discovered by people like Freudenthal and Tits and Vinberg, but a great
place to read about it is the following fascinating book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Boris Rosenfeld, \emph{Geometry of Lie Groups}, Kluwer Academic
  Publishers, 1997.
\end{enumerate}

The space \(\mathbb{OP}^2\) has a natural metric on it, which allows us
to measure distances between points. This allows us to define a certain
symmetry group \(\mathbb{OP}^2\), the group of all its ``isometries'',
which are transformations preserving the metric. This symmetry group is
\(\mathrm{F}_4\)!

However, there is another bigger symmetry group of \(\mathbb{OP}^2\). As
in real projective \(n\)-space, the notion of a ``line'' makes sense in
\(\mathbb{OP}^2\). One has to be careful: these are octonionic
``lines'', which have 8 real dimensions. Nonetheless, this lets us
define the group of all ``collineations'' of \(\mathbb{OP}^2\), that is,
transformations that take lines to lines. This symmetry group is
\(\mathrm{E}_6\)! (Technically speaking, this is a ``noncompact real
form'' of \(\mathrm{E}_6\); the rest of the time I'll be talking about
compact real forms.)

To get up to \(\mathrm{E}_7\) and \(\mathrm{E}_8\), we need to take a
different viewpoint, which also gives us another way to get
\(\mathrm{E}_6\). The key here is that the tensor product of two
algebras is an algebra, so we can tensor the octonions with
\(\mathbb{R}\), \(\mathbb{C}\), \(\mathbb{H}\), or \(\mathbb{O}\) and
get various algebras:

\begin{itemize}
\tightlist
\item
  The algebra \((\mathbb{R}\otimes\mathbb{O})\) is just the octonions.
\item
  The algebra \((\mathbb{C}\otimes\mathbb{O})\) is called the
  ``bioctonions''.
\item
  The algebra \((\mathbb{H}\otimes\mathbb{O})\) is called the
  ``quateroctonions''.
\item
  The algebra \((\mathbb{O}\otimes\mathbb{O})\) is called the
  ``octooctonions''.
\end{itemize}

I'm not making this up: it's all in Rosenfeld's book! The poet Lisa
Raphals suggested calling the octooctonions the ``high-octane
octonions'', which I sort of like. But compared to Rosenfeld, I'm a
model of restraint: I won't even mention the dyoctonions, duoctonions,
split octonions, semioctonions, split semioctonions, \(1/4\)-octonions
or \(1/8\)-octonions --- for the definitions of these, you'll have to
read his book.

Apparently one can define projective planes for all of these algebras,
and all these projective planes have natural metrics on them, all of
them same general form. So each of these projective planes has a group
of isometries. And, lo and behold:

\begin{itemize}
\tightlist
\item
  The group of isometries of the octonionic projective plane is
  \(\mathrm{F}_4\).
\item
  The group of isometries of the bioctonionic projective plane is
  \(\mathrm{E}_6\).
\item
  The group of isometries of the quateroctonionic projective plane is
  \(\mathrm{E}_7\).
\item
  The group of isometries of the octooctonionic projective plane is
  \(\mathrm{E}_8\).
\end{itemize}

Now I still don't understand this as well as I'd like to --- I'm not
sure how to define projective planes for all these algebras (though I
have my guesses), and Rosenfeld is unfortunately a tad reticent on this
issue. But it looks like a cool way to systematize the study of the
expectional groups! That's what I want: a systematic theory of
exceptions.

I want to say a bit more about the above, but first let me note that
there are lots of other ways of thinking about the exceptional groups. A
great source of information about them is the following posthumously
published book by the great topologist Adams:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Frank Adams, \emph{Lectures on Exceptional Lie Groups},
  eds.~Zafer Mahmud and Mamoru Mimura, University of Chicago Press,
  Chicago, 1996.
\end{enumerate}

He has a bit about octonionic constructions of \(\mathrm{G}_2\) and
\(\mathrm{F}_4\), but mostly he concentrates on constructions of the
exceptional groups using classical groups and spinors.

In \protect\hyperlink{week90}{``Week 90''} I explained Kostant's
constructions of \(\mathrm{F}_4\) and \(\mathrm{E}_8\) using spinors in
8 dimensions and triality --- which, as noted in
\protect\hyperlink{week61}{``Week 61''}, is just another way of talking
about the octonions. Unfortunately I don't yet see quite how this
relates to the above stuff, nor do I see how to get \(\mathrm{E}_6\) and
\(\mathrm{E}_7\) in a beautiful way using Kostant's setup.

There's also a neat construction of \(\mathrm{E}_8\) using spinors in 16
dimensions! Adams gives a nice explanation of this, and it's also
discussed in the classic tome on string theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Michael B. Green, John H. Schwarz, and Edward Witten,
  \emph{Superstring Theory}, two volumes, Cambridge U. Press, Cambridge,
  1987.
\end{enumerate}

The idea here is to take the direct sum of the Lie algebra
\(\mathfrak{so}(16)\) and its \(16\)-dimensional left-handed spinor
representation \(S_+\) to get the Lie algebra of \(\mathrm{E}_8\). The
bracket of two guys in \(\mathfrak{so}(16)\) is defined as usual, the
bracket of a guy in \(\mathfrak{so}(16)\) and a guy in \(S_+\) is
defined to be the result of acting on the latter by the former, and the
bracket of two guys in \(S_+\) is defined to be a guy in \(S_+\) by
dualizing the map \[\mathfrak{so}(16) \otimes S_+\to S_+\] to get a map
\[S_+ \otimes S_+\to \mathfrak{so}(16).\] This is a complete description
of the Lie algebra of \(\mathrm{E}_8\)!

Anyway, there are lots of different ways of thinking about exceptional
groups, and a challenge for the octonionic approach is to systematize
all these ways.

Now I want to wrap up by saying a bit about how the exceptional Jordan
algebra fits into the above story. Jordan algebras were invented as a
way to study the self-adjoint operators on a Hilbert space, which
represent observables in quantum mechanics. If you multiply two
self-adjoint operators \(A\) and \(B\) the result needn't be
self-adjoint, but the ``Jordan product'' \[A \circ B = (AB + BA)/2\] is
self-adjoint. This suggests seeing what identities the Jordan product
satisfies, cooking up a general notion of ``Jordan algebra'', seeing how
much quantum mechanics you can do with an arbitrary Jordan algebra of
observables, and classifying Jordan algebras if possible.

We can define a ``projection'' in a Jordan algebra to be an element
\(A\) with \(A \circ A = A\). If our Jordan algebra consists of
self-adjoint operators on the complex Hilbert space \(\mathbb{C}^n\), a
projection is a self-adjoint operator whose only eigenvalues are zero
and one. Physically speaking, this corresponds to a ``yes-or-no
question'' about our quantum system. Geometrically speaking, such an
operator is a projection onto some subspace of our Hilbert space. All
this stuff also works if we start with the real Hilbert space
\(\mathbb{R}^n\) or the quaternionic Hilbert space \(\mathbb{H}^n\).

In these special cases, one can define a ``minimal projection'' to be a
projection on a \(1\)-dimensional subspace of our Hilbert space.
Physically, minimal projections correspond to ``pure states'' --- states
of affairs in which the answer to some maximally informative question is
``yes'', like ``is the \(z\) component of the angular momentum of this
spin-\(1/2\) particle equal to \(1/2\)?'' Geometrically, the space of
minimal projections is just the space of ``lines'' in our Hilbert space.
This is either \(\mathbb{RP}^{n-1}\), or \(\mathbb{CP}^{n-1}\), or
\(\mathbb{HP}^{n-1}\), depending on whether we're working with the
reals, complexes or quaternions. So: the space of pure states of this
sort of quantum system is also a projective space! The relation between
quantum theory and ``projective geometry'' has been intensively explored
for many years. You can read about it in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  V. S. Varadarajan, \emph{Geometry of Quantum Theory}, Springer-Verlag,
  Berlin, 2nd ed., 1985.
\end{enumerate}

Most people do quantum mechanics with complex Hilbert spaces. Real
Hilbert spaces are apparently too boring, but some people have
considered the quaternionic case:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Stephen L. Adler, \emph{Quaternionic Quantum Mechanics and Quantum
  Fields}, Oxford U. Press, Oxford, 1995.
\end{enumerate}

If our Hilbert space is the complex Hilbert space \(\mathbb{C}^n\), its
group of symmetries is usually thought of as \(\mathrm{U}(n)\) --- the
group of \(n\times n\) unitary matrices. This group also acts as
symmetries on the Jordan algebra of self-adjoint \(n\times n\) complex
matrices, and also on the space \(\mathbb{CP}^{n-1}\).

Similarly, if we start with \(\mathbb{R}^n\), we get the group of
orthogonal \(n\times n\) matrices \(\mathrm{O}(n)\), which acts on the
Jordan algebra of real self-adjoint \(n\times n\) matrices and on
\(\mathbb{RP}^{n-1}\).

Likewise, if we start with \(\mathbb{H}^n\), we get the group
\(\mathrm{Sp}(n)\), which acts on the Jordan algebra of quaternionic
self-adjoint \(n\times n\) matrices and on \(\mathbb{HP}^{n-1}\).

This pretty much explains how the classical groups are related to
different flavors of quantum mechanics.

Now what about the octonions? Well, here we can only go up to \(n = 3\),
basically for the reasons explained before: the same stuff that keeps us
from defining octonionic projective spaces past a certain point keeps us
from getting Jordan algebras! The interesting case is the Jordan algebra
of \(3\times3\) self-adjoint octonionic matrices. This is called the
``exceptional Jordan algebra'', \(J\). The group of symmetries of this
is --- you guessed it, \(\mathrm{F}_4\). One can also define a ``minimal
projection'' in \(J\) and the space of these is \(\mathbb{OP}^2\).

Is it possible that octonionic quantum mechanics plays some role in
physics?

I don't know.

Anyway, here is my hunch about the bioctonionic, quateroctonionic, and
octooctonionic projective planes. I think to define them you should
probably tensor the exceptional Jordan algebra with \(\mathbb{C}\),
\(\mathbb{H}\), and \(\mathbb{O}\), respectively, and take the space of
minimal projections in the resulting algebra. Rosenfeld seems to suggest
this is the way to go. However, I'm vague about some important details,
and it bugs me, because the special identities I needed above to define
\(\mathbb{OP}^2\) are related to \(\mathbb{O}\) being an alternative
algebra, but \(\mathbb{C}\otimes\mathbb{O}\),
\(\mathbb{H}\otimes\mathbb{O}\) and \(\mathbb{O}\otimes\mathbb{O}\) are
not alternative.

I should add that in addition to octonionic projective geometry, one can
do octonionic hyperbolic geometry. One can read about this in Rosenfeld
and also in the following:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Daniel Allcock, ``Reflection groups on the octave hyperbolic plane'',
  University of Utah Mathematics Department preprint.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Here's an email from David Broadhurst, followed by
various remarks.

\begin{quote}
John:

Shortly before his death I spent a charming afternoon with Paul Dirac.
Contrary to his reputation, he was most forthcoming.

Among many things, I recall this: Dirac explained that while trained as
an engineer and known as a physicist, his aesthetics were mathematical.
He said (as I can best recall, nearly 20 years on): At a young age, I
fell in love with projective geometry. I always wanted to use to use it
in physics, but never found a place for it.

Then someone told him that the difference between complex and
quaternionic QM had been characterized as the failure of theorem in
classical projective geometry.

Dirac's face beamed a lovely smile: Ah he said, it was just such a thing
that I hoped to do.

I was reminded of this when bactracking to your
\protect\hyperlink{week106}{``Week 106''}, today.

Best, David
\end{quote}

The theorem that fails for quaternions but holds for \(\mathbb{R}\) and
\(\mathbb{C}\) is the ``Pappus theorem'', discussed in
\protect\hyperlink{week145}{``Week 145''}.

Next, a bit about \(\mathbb{OP}^n\). There are different senses in which
we can't define \(\mathbb{OP}^n\) for \(n\) greater than 2. One is that
if we try to define coordinates on \(\mathbb{OP}^n\) in a similar way to
how we did it for \(\mathbb{OP}^2\), nonassociativity keeps us from
being able to change coordinates a bunch of times and get back where we
started! It's definitely enlightening to see how the desired transition
functions \(g_{ij}\) fail to satisfy the necessary cocycle condition
\(g_{ij} g_{jk} = g_{ik}\) when we get up to \(\mathbb{OP}^3\), which
would require 4 charts.

But, a deeper way to think about this emerged in conversations I've had
with James Dolan. Stasheff invented a notion of ``\(A_\infty\) space'',
which is a pointed topological space with a product that is associative
up to homotopy which satisfies the pentagon identity up to\ldots{} etc.
Any \(A_\infty\) space \(G\) has a classifying space \(BG\) such that
\[\Omega(BG) \simeq G.\] In other words, \(BG\) is a pointed space such
that the space of loops based at this point is homotopy equivalent to
\(G\). One can form this space \(BG\) by the Milnor construction:
sticking in one 0-simplex, one \(1\)-simplex for every point of \(G\),
one \(2\)-simplex for every triple \((g,h,k)\) with \(gh = k\), one
\(3\)-simplex for every associator, and so on. If we do this where \(G\)
is the group of length-one elements of \(\mathbb{R}\)
(i.e.~\(\mathbb{Z}/2\)) we get \(\mathbb{RP}^\infty\), as we expect,
since \[\mathbb{RP}^\infty = B(\mathbb{Z}/2).\] Even better, at the
\(n\)th stage of the Milnor construction we get a space homeomorphic to
\(\mathbb{RP}^n\). Similarly, if we do this where \(G\) is the group of
length-one elements of \(\mathbb{C}\) or \(\mathbb{H}\) we get
\(\mathbb{CP}^\infty\) or \(\mathbb{HP}^\infty\). But if we take \(G\)
to be the units of \(\mathbb{O}\), which has a product but is not even
homotopy-associative, we get \(\mathbb{OP}^1 = S^7\) at the first step,
\(\mathbb{OP}^2\) at the second step, \ldots{} but there's no way to
perform the third step!

Next: here's a little more information on the octonionic, bioctonionic,
quateroctonionic and octooctonionic projective planes. Rosenfeld claims
that the groups of isometries of these planes are \(\mathrm{F}_4\),
\(\mathrm{E}_6\), \(\mathrm{E}_7\), and \(\mathrm{E}_8\), respectively.
The problem is, I can't quite understand how he constructs these spaces,
except for the plain octonionic case.

It appears that these spaces can also be constructed using the ideas in
Adams' book. Here's how it goes.

\begin{itemize}
\tightlist
\item
  The Lie algebra \(\mathrm{F}_4\) has a subalgebra of maximal rank
  isomorphic to \(\mathfrak{so}(9)\). The quotient space is
  \(16\)-dimensional --- twice the dimension of the octonions. It
  follows that the Lie group \(\mathrm{F}_4\) mod the subgroup generated
  by this subalgebra is a \(16\)-dimensional Riemannian manifold on
  which \(\mathrm{F}_4\) acts by isometries.
\item
  The Lie algebra \(\mathrm{E}_6\) has a subalgebra of maximal rank
  isomorphic to \(\mathfrak{so}(10)\oplus\mathfrak{u}(1)\). The quotient
  space is \(32\)-dimensional --- twice the dimension of the
  bioctonions. It follows that the Lie group \(\mathrm{E}_6\) mod the
  subgroup generated by this subalgebra is a \(32\)-dimensional
  Riemannian manifold on which \(\mathrm{E}_6\) acts by isometries.
\item
  The Lie algebra \(\mathrm{E}_7\) has a subalgebra of maximal rank
  isomorphic to \(\mathfrak{so}(12)\oplus\mathfrak{su}(2)\). The
  quotient space is 64-dimensional --- twice the dimension of the
  quateroctonions. It follows that the Lie group \(\mathrm{E}_6\) mod
  the subgroup generated by this subalgebra is a 64-dimensional
  Riemannian manifold on which \(\mathrm{E}_7\) acts by isometries.
\item
  The Lie algebra \(\mathrm{E}_8\) has a subalgebra of maximal rank
  isomorphic to \(\mathfrak{so}(16)\). The quotient space is
  128-dimensional --- twice the dimension of the octooctonions. It
  follows that the Lie group \(\mathrm{E}_6\) mod the subgroup generated
  by this subalgebra is a 128-dimensional Riemannian manifold on which
  \(\mathrm{E}_8\) acts by isometries.
\end{itemize}

According to:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Arthur L. Besse, \emph{Einstein Manifolds}, Springer, Berlin, 1987,
  pp.~313--316.
\end{enumerate}

the above spaces are the octonionic, bioctonionic, quateroctonionic and
octooctonionic projective planes, respectively. However, I don't yet
fully understand the connection.

I thank Tony Smith for pointing out the reference to Besse (who, by the
way, is apparently a cousin of the famous Bourbaki). Thanks also go to
Allen Knutson for showing me a trick for finding the maximal rank
subalgebras of a simple Lie algebra.

Next, here's some more stuff about the biquaternions, bioctonions,
quaterquaternions, quateroctonions and octooctonions! I wrote this extra
stuff as part of a post to \texttt{sci.physics.research} on November 8,
1999\ldots.

\begin{quote}
One reason people like these algebras is that some of them --- the
associative ones --- are also Clifford algebras. I talked a bit about
Clifford algebras in \protect\hyperlink{week105}{``Week 105''}, but just
remember that we define the Clifford algebra \(C_{p,q}\) to be the
associative algebra you get by taking the real numbers and throwing in
\(p\) square roots of \(-1\) and \(q\) square roots of \(1\), all of
which anticommute with each other. This algebra is very important for
understanding spinors in spacetimes with \(p\) space and \(q\) time
dimensions. (It's also good for studying things in other dimensions, so
things can get a bit tricky, but I don't want to talk about that now.)

For example: if you just thrown in one square root of \(-1\) and no
square roots of \(1\), you get \(C_{1,0}\) --- the complex numbers!

Similarly, one reason people like the quaternions is because they are
\(C_{2,0}\). Start with the real numbers, throw in two square roots of
\(-1\) called \(I\) and \(J\), make sure they anticommute (\(IJ = -JI\))
and voila --- you've got the quaternions!

Similarly, one reason people like the biquaternions is because they are
\(C_{2,1}\). You take the quaternions and complexify them --- this
amounts to throwing in an extra number \(i\) that's a square root of
\(-1\) and \emph{commutes} with the quaternionic \(I\) and \(J\) --- and
you get an algebra which is also generated by \(I\), \(J\), and
\(K = iI\). Note that \(I\), \(J\), and \(K\) all anticommute, and \(K\)
is a square root of \(1\). Thus the biquaternions are \(C_{2,1}\)!

Similarly, one reason people like the quaterquaternions is because they
are \(C_{2,2}\). You take the quaternions and quaternionify them ---
this amounts to throwing in two square roots of \(-1\), say \(i\) and
\(j\), which anticommute but which \emph{commute} with the quaternionic
\(I\) and \(J\) --- and you get an algebra which is also generated by
\(I\), \(J\), \(K = iI\), and \(L = jI\). Note that \(I\), \(J\), \(K\),
and \(L\) all anticommute, and \(K\) and \(L\) are square roots of
\(1\). Thus the quaterquaternions are \(C_{2,2}\)!

Now, as soon as we thrown the octonions into the mix we don't get
Clifford algebras anymore, since octonions aren't associative, while
Clifford algebras are. However, there are still relationships to
Clifford algebras. For example, suppose we look at all the linear
transformations of the octonions generated by the left multiplication
operations \[x \mapsto ax\] This is an associative algebra, and it turns
out to be \emph{all} linear transformations of the octonions, regarded
as an \(8\)-dimensional real vector space. In short, it's just the
algebra of \(8\times8\) real matrices. And this is \(C_{6,0}\).

If you do the same trick for the bioctonions, quateroctonions and
octooctonions, you get other Clifford algebras\ldots{} but I'll leave
the question of \emph{which ones} as a puzzle for the reader. If you
need some help, look at the ``Footnote'' in
\protect\hyperlink{week105}{``Week 105''}.

Perhaps the fanciest example of this trick concerns the
biquateroctonions. Now actually, I've never heard anyone use this term
for the algebra \(\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\)! The
main person interested in this algebra is Geoffrey Dixon, and he just
calls it \(T\). But anyway, if we look at the algebra of linear
transformations of \(\mathbb{C}\otimes\mathbb{H}\otimes\mathbb{O}\)
generated by left multiplications, we get something isomorphic to the
algebra of \(16\times16\) complex matrices. And this in turn is
isomorphic to \(C_{9,0}\).

The biquateroctonions play an important role in Dixon's grand unified
theory of the electromagnetic, weak and strong forces. There are lots of
nice things about this theory --- for example, it gets the right
relationships between weak isospin and hypercharge for the fermions in
any one generation of the Standard Model (though, as in the Standard
Model, the existence of 3 generations needs to be put in ``by hand'').
It may or may not be right, but at least it comes within shooting
distance!

You can read a bit more about his work in
\protect\hyperlink{week59}{``Week 59''}.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{``Mainstream mathematics'' is a name given to mathematics that
more fittingly belongs on Sunset Boulevard}

--- Gian-Carlo Rota, Indiscrete Thoughts
\end{quote}



\hypertarget{week107}{%
\section{August 19, 1997}\label{week107}}

This summer I've been hanging out in Cambridge Massachusetts, working on
quantum gravity and also having some fun. Not so long ago I gave a talk
on cellular automata at Boston University, thanks to a kind invitation
from Bruce Boghosian, who is using cellular automata to model cool stuff
like emulsions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Florian W. J. Weig, Peter V. Coveney, and Bruce M. Boghosian,
  ``Lattice-gas simulations of minority-phase domain growth in binary
  immiscible and ternary amphiphilic fluid'', preprint available as
  \href{https://arxiv.org/abs/cond-mat/9705248}{\texttt{cond-mat/9705248}}.
\end{enumerate}

As you add more and more of an amphiphilic molecule (e.g.~soap) to a
binary immiscible fluid (e.g.~oil and water), the boundary layer likes
to grow in area. This is why you wash your hands with soap. There are
various phases depending on the concentrations of the three substances
--- a ``spongy'' phase, a ``droplet phase'', and so on --- and it is
very hard to figure out what is going on quantitatively using analytical
methods.

Luckily, one can simulate this stuff using a cellular automaton!
Standard numerical methods for solving the Navier-Stokes equation tend
to outrun cellular automata when it comes to plain old hydrodynamics,
but with these fancy ``ternary amphiphilic fluids'', cellular automata
really seem to be the most practical way to study things - apart from
experiments, of course. This is very heartwarming to me, since like many
people I've been fond of cellular automata ever after learning of John
Conway's game of Life, and I've always hoped they could serve some
practical purpose.

I spoke about the thesis of my student James Gilliam and a paper we
wrote together:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  James Gilliam, \emph{Lagrangian and Symplectic Techniques in Discrete
  Mechanics}, Ph.D.~thesis, Department of Mathematics, University of
  Riverside, 1996.

  John Baez and James Gilliam, An algebraic approach to discrete
  mechanics, \emph{Lett. Math. Phys.} \textbf{31} (1994), 205--212. Also
  available in LaTeX form as
  \texttt{http://math.ucr.edu./home/baez/ca.tex}
\end{enumerate}

Here the idea was to set up as much as possible of the machinery of
classical mechanics in a purely discrete context, where time proceeds in
integer steps and the space of states is also discrete. The most famous
examples of this ``discrete mechanics'' are cellular automata, which are
the discrete analogs of classical field theories, but there are also
simpler systems more reminiscent of elementary classical mechanics, like
a particle moving on a line --- where in this case the ``line'' is the
integers rather than the real numbers. It turns out that with a little
skullduggery one can apply the techniques of calculus to some of these
situations, and do all sorts of stuff like prove a discrete version of
Noether's theorem --- the famous theorem which gives conserved
quantities from symmetries.

After giving this talk, I visited my friend Robert Kotiuga in the
Functorial Electromagnetic Analysis Lab in the Photonics Building at
Boston University. ``Photonics'' is the currently fashionable term for
certain aspects of optics, particularly quantum optics. As befits its
flashy name, the Photonics Building is brand new and full of gadgets
like a device that displays Maxwell's equations in moving lights when
you speak the words ``Maxwell's equations'' into an inconspicuous
microphone. (It also knows other tricks.) Robert told me about what he's
been doing lately with topology and finite-element methods for solving
magnetostatics problems - this blend of higbrow math and practical
engineering being the reason for the somewhat tongue-in-cheek name of
his office, inscribed soberly on a plaque outside the door.

Like the topologist Raoul Bott, Kotiuga started in electrical
engineering at McGill University, and gradually realized how much
topology there is lurking in electrical circuit theory and Maxwell's
equations. Apparently a paper of his was the first to cite Witten's
famous work on Chern-Simons theory - though presumably this is merely a
testament to the superiority of engineers over mathematicians and
physicists when it comes to rapid publication. In fluid dynamics, the
integral of the following quantity \[v\cdot\operatorname{curl}(v)\]
(where \(v\) is the velocity vector field) is known as the ``helicity
functional''. Kotiuga been studying applications of the same
mathematical object in the context of magnetostatics, namely
\[A\cdot\operatorname{curl}(A)\] where \(A\) is the magnetic vector
potential. It shows up in impedance tomography, for example. But in
quantum field theory, a generalization of this quantity to other forces
is known as the ``Chern-Simons functional'', and Witten's work on the
\(3\)-dimensional field theory having this as its Lagrangian turned out
to revolutionize knot theory. Personally, I'm mainly interested in the
applications to quantum gravity --- see
\protect\hyperlink{week56}{``Week 56''} for a bit about this. Here are
some papers Kotiuga has written on the helicity functional, or what we
mathematicians would call ``\(\mathrm{U}(1)\) Chern-Simons theory'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  P. R. Kotiuga, ``Metric dependent aspects of inverse problems and
  functionals based helicity'', \emph{Journal of Applied Physics},
  \textbf{70} (1993), 5437--5439.

  ``Analysis of finite element matrices arising from discretizations of
  helicity functionals'', \emph{Journal of Applied Physics}, \textbf{67}
  (1990), 5815--5817.

  ``Helicity functionals and metric invariance in three dimensions'',
  \emph{IEEE Transactions on Magnetics}, MAG-\textbf{25} (1989),
  2813--2815.

  ``Variational principles for three-dimensional magnetostatics based on
  helicity'', \emph{Journal of Applied Physics}, \textbf{63} (1988),
  3360--3362.
\end{enumerate}

Later Jon Doyle, a computer scientist at M.I.T. who had been to my talk,
invited me to a seminar at M.I.T. where I met Gerald Sussman, who with
Jack Wisdom has run the best long-term simulations of the solar system,
trying to settle the old question of whether the darn thing is stable!
It turns out that the system is afflicted with chaos and can only be
predicted with any certainty for about 4 million years\ldots{} though
their simulation went out to 100 million.

Here are some fun facts:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  They need to take general relativity into account even for the orbit
  of Jupiter, which precesses about one radian per billion years.
\item
  They take the asteroid belt into account only as modification of the
  sun's quadrupole moment (which they also use to model its oblateness).
\item
  The most worrisome thing about the whole simulation --- the most
  complicated and unpredictable aspect of the whole solar system in
  terms of its gravitational effects on everything else --- is the
  Earth-Moon system, with its big tidal effects. 4) The sun loses one
  Earth mass per 100 million years due to radiation, and another quarter
  Earth mass due to solar wind. 5) The first planet to go is Mercury! In
  their simulations, it eventually picks up energy through a resonance
  and drifts away.
\end{enumerate}

For more, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Gerald Jay Sussman and Jack Wisdom, ``Chaotic evolution of the solar
  system'', \emph{Science}, \textbf{257}, 3 July 1992.

  Gerald Jay Sussman and Jack Wisdom, ``Numerical evidence that the
  motion of Pluto is chaotic'', \emph{Science}, \textbf{241}, 22 July
  1988.

  James Applegate, M. Douglas, Y. Gursel, Gerald Jay Sussman, Jack
  Wisdom, ``The outer solar system for 200 million years'',
  \emph{Astronomical Journal}, \textbf{92}, pp 176--194, July 1986,
  reprinted in Lecture Notes in Physics \#\textbf{267} -- \emph{Use of
  Supercomputers in Stellar Dynamics}, Springer Verlag, 1986.

  James Applegate, M. Douglas, Y. Gursel, P Hunter, C. Seitz, Gerald Jay
  Sussman, ``A digital orrery'', in \emph{IEEE Transactions on
  Computers}, C-\textbf{34}, No.~9, pp.~822--831, September 1985,
  reprinted in Lecture Notes in Physics \#\textbf{267}, Springer Verlag,
  1986.
\end{enumerate}

Meanwhile, I've also been trying to keep up with recent developments in
\(n\)-category theory. Some readers of ``This Week's Finds'' have
expressed frustration with how I keep tantalizing all of you with the
concept of \(n\)-category without ever quite defining it. The reason is
that it's a lot of work to write a nice exposition of this concept!

However, I eventually got around to taking a shot at it, so now you can
read this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Baez, ``Introduction to \(n\)-categories'', to appear in
  \emph{7th Conference on Category Theory and Computer Science}, eds.~E.
  Moggi and G. Rosolini, Springer Lecture Notes in Computer Science
  vol.~\textbf{1290}, Springer, Berlin. Preprint available as
  \href{https://arxiv.org/abs/q-alg/9705009}{\texttt{q-alg/9705009}} or
  at \texttt{http://math.ucr.edu/home/baez/ncat.ps}
\end{enumerate}

There are different definitions of ``weak \(n\)-category'' out there now
and it will take a while of sorting through them to show a bunch are
equivalent and get the whole machinery running smoothly. In the above
paper I mainly talk about the definition that James Dolan and I came up
with. Here are some other new papers on this sort of thing\ldots{} I'll
just list them with abstracts.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Claudio Hermida, Michael Makkai and John Power, ``On weak higher
  dimensional categories'', 104 pages, preprint available at
  \texttt{http://hypatia.dcs.qmw.ac.uk/authors/M/MakkaiM/papers/multitopicsets/}
\end{enumerate}

\begin{quote}
Inspired by the concept of opetopic set introduced in a recent paper by
John C. Baez and James Dolan, we give a modified notion called
multitopic set. The name reflects the fact that, whereas the Baez/Dolan
concept is based on operads, the one in this paper is based on
multicategories. The concept of multicategory used here is a mild
generalization of the same-named notion introduced by Joachim Lambek in
1969. Opetopic sets and multitopic sets are both intended as vehicles
for concepts of weak higher dimensional category. Baez and Dolan define
weak \(n\)-categories as \((n+1)\)-dimensional opetopic sets satisfying
certain properties. The version intended here, multitopic
\(n\)-category, is similarly related to multitopic sets. Multitopic
\(n\)-categories are not described in the present paper; they are to
follow in a sequel. The present paper gives complete details of the
definitions and basic properties of the concepts involved with
multitopic sets. The category of multitopes, analogs of the opetopes of
Baez and Dolan, is presented in full, and it is shown that the category
of multitopic sets is equivalent to the category of set- valued functors
on the category of multitopes.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Michael Batanin, Finitary monads on globular sets and notions of
  computad they generate, available as postscript files at
  \texttt{http://www-math.mpce.mq.edu.au/\textasciitilde{}mbatanin/papers.html}
\end{enumerate}

\begin{quote}
Consider a finitary monad on the category of globular sets. We prove
that the category of its algebras is isomorphic to the category of
algebras of an appropriate monad on the special category (of computads)
constructed from the data of the initial monad. In the case of the free
\(n\)-category monad this definition coincides with \({R}\). Street's
definition of \(n\)-computad. In the case of a monad generated by a
higher operad this allows us to define a pasting operation in a weak
\(n\)-category. It may be also considered as the first step toward the
proof of equivalence of the different definitions of weak
\(n\)-categories.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Carlos Simpson, Limits in \(n\)-categories, approximately 90 pages,
  preprint available as
  \href{https://arxiv.org/abs/alg-geom/9708010}{\texttt{alg-geom/9708010}}.
\end{enumerate}

\begin{quote}
We define notions of direct and inverse limits in an \(n\)-category. We
prove that the \((n+1)\)-category \(n\mathsf{CAT}'\) of fibrant
\(n\)-categories admits direct and inverse limits. At the end we
speculate (without proofs) on some applications of the notion of limit,
including homotopy fiber product and homotopy coproduct for
\(n\)-categories, the notion of n-stack, representable functors, and
finally on a somewhat different note, a notion of relative Malcev
completion of the higher homotopy at a representation of the fundamental
group.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Sjoerd Crans, ``Generalized centers of braided and sylleptic monoidal
  \(2\)-categories'', \emph{Adv. Math.} \textbf{136} (1998), 183--223.
\end{enumerate}

\begin{quote}
Recent developments in higher-dimensional algebra due to Kapranov and
Voevodsky, Day and Street, and Baez and Neuchl include definitions of
braided, sylleptic and symmetric monoidal \(2\)-categories, and a center
construction for monoidal \(2\)-categories which gives a braided
monoidal \(2\)-category. I give generalized center constructions for
braided and sylleptic monoidal \(2\)-categories which give sylleptic and
symmetric monoidal \(2\)-categories respectively, and I correct some
errors in the original center construction for monoidal
\(2\)-categories.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{Time definitely repeats itself: that's its only job. } --- Edward
Dorn, Sirius in January
\end{quote}
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In the Weeks to come I want to talk about quantum gravity, and
especially the relation between general relativity and spinors, since
Barrett and Crane and I have some new papers out about how you can
describe ``quantum 4-geometries'' --- geometries of spacetime which have
a kind of quantum discreteness at the Planck scale --- starting from the
mathematics of spinors.

But first I want to say a bit about CTCS '97 --- a conference on
category theory and computer science organized by Eugenio Moggi and
Giuseppe Rosolini. It was so well-organized that they handed us the
conference proceedings when we arrived:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Eugenio Moggi and Giuseppe Rosolini, eds., \emph{Category Theory and
  Computer Science}, Lecture Notes in Computer Science \textbf{1290},
  Springer Verlag, Berlin, 1997.
\end{enumerate}

It was held in Santa Margherita Ligure, a picturesque little Italian
beach town near Genoa - the perfect place to spend all day in the
basement of a hotel listening to highly technical lectures. It's near
Portofino, famous for its big yachts full of rich tourists, but I didn't
get that far. The food was great, though, and it was nice to see the
lazy waves of the Mediterranean, so different from the oceans I know and
love. The vegetation was surprisingly similar to that in Riverside: lots
of palm trees and cacti.

I spoke about \(n\)-categories, with only the barest mention of their
possible relevance to computer science. But I was just the token
mathematical physicist in the crowd; most of the other participants were
pretty heavily into ``theoretical computer science'' --- a subject that
covers a lot of new-fangled aspects of what used to be called ``logic''.
What's neat is that I almost understood some of these talks, thanks to
the fact that category theory provides a highly general language for
talking about processes.

What's a computer, after all, but a physical process that simulates
fairly arbitrary processes --- including other physical processes? As we
simulate more and more physics with better and better computers based on
more and more physics, it seems almost inevitable that physics and
computer science will come to be seen as two ends of a more general
theory of processes. No?

A nice example of an analogy between theoretical computer science and
mathematical physics was provided by Gordon Plotkin (in the plane, on
the way back, when I forced him to explain his talk to me). Computer
scientists like to define functions recursively. For example, we can
define a function from the natural numbers to the natural numbers:
\[f\colon\mathbb{N}\to\mathbb{N}\] by its value at \(0\) together with a
rule to get its value at \(n+1\) from its value at \(n\): \[
  \begin{aligned}
    f(0) &= c
  \\f(n+1) &= g(f(n))
  \end{aligned}
\]

Similarly, physicists like to define functions by differential
equations. For example, we can define a function from the real numbers
to the real numbers: \[f\colon\mathbb{R}\to\mathbb{R}\] by its value at
\(0\) together with a rule to get its derivative from its value: \[
  \begin{aligned}
    f(0) &= c
  \\f'(t) &= g(f(t))
  \end{aligned}
\]

In both cases a question arises: how do we know we've really defined a
function? And in both cases, the answer involves a ``fixed-point
theorem''. In both cases, the equations above define the function \(f\)
\emph{in terms of itself}. We can write this using an equation of the
form: \[f = F(f)\] where \(F\) is some operator that takes functions to
functions. We say \(f\) is a ``fixed point for \(F\)'' if this holds. A
fixed-point theorem is something that says there exists a solution,
preferably unique, of this sort of equation.

But how do we describe this operator \(F\) more precisely in these
examples? In the case of the definition by recursion, here's how: for
any function \(f\colon\mathbb{N}\to\mathbb{N}\), we define the function
\(F(f)\colon\mathbb{N}\to\mathbb{N}\) by \[
  \begin{aligned}
    F(f)(0) &= c
  \\F(f)(n+1) &= g(f(n))
  \end{aligned}
\] The principle of mathematical induction says that any operator \(F\)
of this sort has a unique fixed point.

Similarly, we can formulate the differential equation above as a fixed
point problem by integrating both sides, obtaining:
\[f(t) = c + \int_0^t g(f(s)) ds\] which is an example of an ``integral
equation''. If we call the function on the right hand side \(F(f)\),
then this integral equation says \[f = F(f)\] In this case, ``Picard's
theorem on the local existence and uniqueness of solutions of ordinary
differential equations'' is what comes to our rescue and asserts the
existence of a unique fixed point.

You might wonder how Picard's theorem is proved. The basic idea of the
proof is very beautiful, because it \emph{takes advantage} of the
frightening circularity implicit in the equation \(f = F(f)\). I'll
sketch this idea, leaving out all the details.

So, how do we solve this equation? Let's see what we can do with it.
There's not much to do, actually, except substitute the left side into
the right side and get: \[f = F(F(f)).\] Hmm. Now what? Well, we can do
it again: \[f = F(F(F(f)))\] and again: \[f = F(F(F(f)))).\] Are we
having fun yet? It look like we're getting nowhere fast\ldots{} or even
worse, getting nowhere \emph{slowly}! Can we repeat this process so much
that the \(f\) on the right-hand side goes away, leaving us with the
solution we're after:
\[f = F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F(F\ldots \quad\text{?}\]

Well, actually, yes, if we're smart. What we do is this. We start by
\emph{guessing} the solution to our equation. How do we guess? Well, our
solution \(f\) should have \(f(0) = 0\), so just start with any function
with this property. Call it \(f_1\). Then we improve this initial guess
repeatedly by letting \[
  \begin{aligned}
    f_2 &= F(f_1)
  \\f_3 &= F(f_2)
  \\f_4 &= F(f_3)
  \end{aligned}
\] and so on. Now for the fun part: we show that these guesses get
closer and closer to each other\ldots{} so that they converge to some
function \(f\) with \(f = F(f)\)! Voila! With a little more work we can
show that no matter what our initial guess was, our subsequent guesses
approach the same function \(f\), so that the solution \(f\) is unique.

I'm glossing over some details, of course. To prove Picard's theorem we
need to assume the function \(g\) is reasonably nice (continuous isn't
nice enough, we need something like ``Lipschitz continuous''), and our
initial guess should be reasonably nice (continuous will do here). Also,
Picard's theorem only shows that there's a solution defined on some
finite time interval, not the whole real line. (This little twist is
distressing to Plotkin since it complicates the analogy with
mathematical induction. But there must be some slick way to save the
analogy; it's too cute not to be important!)

You can read about Picard's theorem and other related fixed-point
theorems in any decent book on analysis. Personally I'm fond of:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Michael Reed and Barry Simon, \emph{Methods of Modern Mathematical
  Physics}. Vol. 1: \emph{Functional Analysis}. Vol. 2: \emph{Fourier
  Analysis, Self-Adjointness}. Vol. 3: \emph{Scattering Theory}. Vol. 4:
  \emph{Analysis of Operators}. Academic Press, New York, 1980.
\end{enumerate}

which is sort of the bible of analysis for mathematical physicists.

Now, it may seem a bit over-elaborate to reformulate the principle of
mathematical induction as a fixed point theorem. However, this way of
looking at recursion is the basis of a lot of theoretical computer
science. It applies not only to recursive definitions of functions but
also recursive definitions of ``types'' like those given in ``Backus-
Naur form'' --- a staple of computer science.

Let me take a simple example that Jim Dolan told me about. Suppose we
have some set of ``letters'' and we want to define the set of all
nonempty ``words'' built from these letters. For example, if our set of
letters was \(L = \{a,b,c\}\) then we would get an infinite set \(W\) of
words like \(a\), \(ca\), \(bb\), \(bca\), \(cbabba\), and on.

In Backus-Naur form we might express this as follows:

\begin{verbatim}
letter ::= a | b | c

word ::= <letter> | <word> <letter>
\end{verbatim}

In English the first line says ``a letter is either a, b, or c'', while
the second says ``a word is either a letter or a word followed by a
letter''. The second one is the interesting part because it's recursive.

In the language of category theory we could say the same thing as
follows. Let \(L\) be our set of letters. Given any set \(S\), let
\[F(S) = L + S \times L\] where \(+\) means disjoint union and
\(\times\) means Cartesian product. Then the set of ``words'' built from
the letters in \(L\) satisfies \(W = F(W)\), or in other words,
\[W = L + W \times L.\] This says ``a word is either a letter or an
ordered pair consisting of a word followed by a letter.'' In short, we
have a fixed point on our hands!

How do we solve this equation? Well, now I'm going to show you something
they never showed you when you first learned set theory. We just use the
usual rules of algebra: \[
  \begin{aligned}
    W &= L + W x L
  \\W - W x L &= L
  \\W x (1 - L) &= L
  \\W &= L/(1 - L)
  \end{aligned}
\] and then expand the answer out as a Taylor series, getting
\[W = L + L\times L + L\times L\times L + \ldots\] This says ``a word is
either a letter or an ordered pair of letters or an ordered triple of
letters or\ldots{}'' Black magic, but it works!

Now, you may wonder exactly what's going on --- when we're allowed to
subtract and divide sets and expand functions of sets in Taylor series
and all that. I'm not an expert on this, but one place to look is in
Joyal's work on ``analytic functors'' (functors that you can expand in
Taylor series):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Andre Joyal, `Une thÃ©orie combinatoire des sÃ©ries formelles',
  \emph{Advances in Mathematics} \textbf{42} (1981), 1--82.
\end{enumerate}

Before I explain a little of the idea behind this black magic, let me do
another example. I already said that the principle of mathematical
induction could be thought of as guaranteeing the existence of certain
fixed points. But underlying this is something still more basic: the set
of natural numbers is also defined by a fixed point property! Suppose we
take our set of letters above to be set \(\{0\}\) which has only one
element. Then our set of words is \(\{0,00,000,0000,0000,\ldots\}\). We
can think of this as a funny way of writing the set of natural numbers,
so let's call it \(\mathbb{N}\). Also, let's follow von Neumann and
define \[1 = {0},\] which is sensible since it's a set with one element.
Then our fixed point equation says: \[\mathbb{N} = \mathbb{N} + 1\] This
is the basic fixed point property of the natural numbers.

At this point some of you may be squirming\ldots{} this stuff looks a
bit weird when you first see it. To make it more rigorous I need to
bring in some category theory, so I'll assume you've read
\protect\hyperlink{week73}{``Week 73''} and
\protect\hyperlink{week76}{``Week 76''} where I explained categories and
functors and isomorphisms.

If you've got a function \(F\colon S\to S\) from some set to itself, a
fixed point of \(F\) is just an element \(x\) for which \(F(x)\) is
\emph{equal} to \(x\). But now suppose we have a functor
\(F\colon \mathcal{C}\to\mathcal{C}\) from some category to itself.
What's a fixed point of this?

Well, we could define it as an object \(x\) of \(\mathcal{C}\) for which
\(F(x) = x\). But if you know a little category theory you'll know that
this sort of ``strict'' fixed point is very boring compared to a
``weak'' fixed point: an object \(x\) of \(\mathcal{C}\) equipped with
an \emph{isomorphism} \[f\colon F(x)\to x.\] Equality is dull,
isomorphism is interesting. It's also very interesting to consider a
more general notion: a ``lax'' fixed point, meaning an object x equipped
with just a \emph{morphism} \[f\colon F(x)\to x.\] Let's consider an
example. Take our category \(\mathcal{C}\) to be the category of sets.
And take our functor \(F\) to be the functor \[F(x) = x + 1\] by which
we mean ``disjoint union of the set \(x\) with the one-element set'' ---
I leave it to you to check that this is a functor. A lax fixed point of
\(F\) is thus a set \(x\) equipped with a function
\[f\colon x + 1\to x\] so the natural numbers
\(\mathbb{N} = \{0,00,000,\ldots\}\) is a lax fixed point in an obvious
way\ldots{} in fact a weak fixed point. So when I wrote
\(\mathbb{N} = \mathbb{N} + 1\) above, I was lying: they're not equal,
they're just isomorphic. Similarly with those other equations involving
sets.

Now, just as any function from a set to itself has a \emph{set} of fixed
points, any functor \(F\) from a category \(\mathcal{C}\) to itself has
a \emph{category} of lax fixed points. An object in this category is
just an object \(x\) of \(\mathcal{C}\) equipped with a morphism
\(f\colon F(x)\to x\), and a morphism from this object to some other
object \(g\colon F(y)\to y\) is just a commutative square: \[
  \begin{tikzcd}
    F(x) \rar["f"] \dar[swap,"F(h)"]
    & x \dar["h"]
  \\F(y) \rar[swap,"g"]
    & y
  \end{tikzcd}
\] In our example, the natural numbers is actually the ``initial'' lax
fixed point, meaning that in the category of lax fixed points there is
exactly one morphism from this object to any other.

So that's the real meaning of these funny recursive definitions in
Backus-Naur form: we have a functor \(F\) from some category like
\(\mathsf{Set}\) to itself, and we are defining an object by saying that
it's the initial lax fixed point of this functor. It's a souped-up
version of defining an element of a set as the unique fixed point of a
function!

I should warn you that category theorists and theoretical computer
scientists usually say ``algebra'' of a functor instead of ``lax fixed
point'' of a functor. Anyway, this gives a bit of a flavor of what those
folks talk about.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Here's an interesting email that Doug Merritt sent me
after reading the above stuff:

\begin{quote}
A little web searching and discussion with Andras Kornai yields the
following info.

The original work on representing grammars as power series is

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  N. Chomsky and M. P. Schutzenberger, ``The algebraic theory of
  context-free languages'', in \emph{Computer Programming and Formal
  Systems}, North-Holland Publishing Company, 1963.
\end{enumerate}

\ldots where Schutzenberger supplied the formal power series aspect,
basically just as the usual generating function trick.

The algebraic connection was developed through the 60's and 70's,
culminating in the work of Samuel Eilenberg, founder of category theory,
such as in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Samuel Eilenberg, Automata, \emph{Languages and Machines}, Academic
  Press, NY, 1974.
\end{enumerate}

A lot of the work in the area comes under the heading ``syntactic
semigroups'', which is fairly self-explanatory (and yields a lot of hits
when web surfing).

The question of expanding a grammar via synthetic division as usual
comes down to the question of whether it is represented as a complete
division algebra or not. Grammars are typically nonabelian, however in
order to use more powerful mathematical machinery, frequently
commutativity is often nonetheless assumed, and the grammar forced into
that Procrustean bed.

I happened across an interesting recent paper (actually a '94 PhD
thesis) that brings all the modern machinery to bear on this sort of
thing (e.g.~explaining how to represent grammars by power series via the
Langrange Inversion Formula, and multi-non-terminal (multivariable)
grammars via the Generalized LIF), and that is even quite readable:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Ole Vilhelm Larsen, \emph{Computing order-independent statistical
  characteristics of stochastic context-free languages}, available as
  \texttt{http://cwis.auc.dk/phd/fulltext/larsen/html/index.html} or
  acrobat format in:
  \texttt{http://cwis.auc.dk/phd/fulltext/larsen/pdf/larsen.pdf}
\end{enumerate}

The html and acrobat thesis is in English, but the web pages are in
Danish, which is why I explicitly give both URLs. The abstract is too
long to quote here.

You probably know all this better than I, but: As for fixed points, the
original theorem by Banach applies only to contractive mappings, but
beginning in '68 a flood of new theorems applying to various different
non-contractive situations began to appear, and research continues hot
and heavy. One danger of simply assuming fixed points is that there may
be orbits rather than attractive basins, which I alluded to briefly in
my \texttt{sci.math} FAQ entry (which has become somewhat mangled over
the years) concerning the numeric solution of \(f(x) = x^x\) via direct
fixed point recurrence \((F(F(F(F(F...(\text{guess})..))))\). The orbits
cause oscillatory instability in some regions such that it becomes
appropriate to switch to a different technique.

Anyway that's merely to say that there are indeed spaces where one can't
just assume a fixed point theorem and that this can have practical
implications.

Hope that's of some interest.

Doug

\begin{verbatim}
Doug Merritt                       doug@netcom.com
Professional Wild-eyed Visionary   Member, Crusaders for a Better Tomorrow

Unicode Novis Cypherpunks Gutenberg Wavelets Conlang Logli Alife Anthro
Computational linguistics Fundamental physics Cogsci Egyptology GA TLAs
\end{verbatim}
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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In the Weeks to come I want to talk about quantum gravity. A lot of cool
things have been happening in this subject lately. But I want to start
near the beginning\ldots.

In the 1960's, John Wheeler came up with the notion of ``spacetime
foam''. The idea was that at very short distance scales, quantum
fluctuations of the geometry of spacetime are so violent that the usual
picture of a smooth spacetime with a metric on it breaks down. Instead,
one should visualize spacetime as a ``foam'', something roughly like a
superposition of all possible topologies which only looks smooth and
placid on large enough length scales. His arguments for this were far
from rigorous; they were based on physical intuition. Electromagnetism
and all other fields exhibit quantum fluctuations - so gravity should
too. A wee bit of dimensional analysis suggests that these fluctuations
become significant on a length scale around the Planck length, which is
about 10\textsuperscript{-35} meters. This is very small, much smaller
than what we can probe now. Around this length scale, there's no reason
to suspect that ``perturbative quantum gravity'' should apply, where you
treat gravitational waves as tiny ripples on flat spacetime, quantize
these, and get a theory of ``gravitons''. Indeed, the
nonrenormalizability of quantum gravity suggests otherwise.

Wheeler didn't know what formalism to use to describe ``spacetime
foam'', but he was more concerned with building up a rough picture of
it. Since he is so eloquent, especially when he's giving handwaving
arguments, let me quote him here:

``No point is more central than this, that empty space is not empty. It
is the seat of the most violent physics. The electromagnetic field
fluctuates. Virtual pairs of positive and negative electrons, in effect,
are constantly being created and annihilated, and likewise pairs of
\(\mu\) mesons, pairs of baryons, and pairs of other particles. All
these fluctuations coexist with the quantum fluctuations in the geometry
and topology of space. Are they additional to those geometrodynamic
zero-point disturbances, or are they, in some sense not now
well-understood, mere manifestations of them?''

That's from:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Charles Misner, Kip Thorne and John Wheeler, \emph{Gravitation},
  Freeman Press, 1973.
\end{enumerate}

It's in the famous last chapter called ``Beyond the end of time''.
Strong stuff! This is what got me interested in quantum gravity in
college. Later I came to prefer less florid writing, and realized how
hard it was to turn gripping prose into actual theories\ldots{} but back
then I ate it up uncritically.

Part of Wheeler's vision was that ultimately physics is all about
geometry, and that particles might be manifestations of this geometry.
For example, electron-positron pairs might be ends of wormholes threaded
by electric field lines:

``In conclusion, the vision of Riemann, Clifford and Einstein, of a
purely geometric basis for physics, today has come to a higher state of
development, and offers richer prospects --- and presents deeper
problems, than ever before. The quantum of action adds to this
geometrodynamics new features, of which the most striking is the
presence of fluctuations of the wormhole type throughout all space. If
there is any correspondence between this virtual foam-like structure and
the physical vacuum as it has come to be known through quantum
electrodynamics, then there seems to be no escape from identifying these
wormholes with `undressed electrons'. Completely different from these
`undressed electrons', according to all available evidence, are the
electrons and other particles of experimental physics. For these
particles the geometrodynamic picture suggests the model of collective
disturbances in a virtual foam-like vacuum, analogous to different kinds
of phonons or excitons in a solid.''

That quote is from:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Wheeler, \emph{Geometrodynamics}, Academic Press, New York, 1962.
\end{enumerate}

There were many problems with getting this wormhole picture of particles
to work. First, there was --- and is! --- no experimental evidence that
wormholes exist, virtual or otherwise. The main reason for believing in
virtual wormholes was the quantum-mechanical idea that ``whatever is not
forbidden is required''\ldots{} an idea which must be taken with a grain
of salt. Second, there was no mathematical model of ``spacetime foam''
or ``virtual wormholes''. It was just a vague notion.

However, Wheeler was mainly worried about two other problems. First, how
can we relate a space with a wormhole to one without? Since the two have
different topologies, there can't be any continuous way of going from
one to the other. In response to this problem, he suggested that the
description of spacetime in terms of a smooth manifold was not
fundamental, and that we really need some more other description, some
sort of ``pregeometry''. Second, what about the fact that electrons have
spin 1/2? This means that when you turn one around 360 degrees it
doesn't come back to the same state: it picks up a phase of -1. Only
when you turn it around twice does it come back to its original state!
This is nicely described using the mathematics of ``spinors'', but
\emph{not} so nicely described in terms of wormholes.

In his freewheeling, intuitive manner, Wheeler fastened on this second
problem as a crucial clue to the nature of ``pregeometry'':

``It is impossible to accept any description of elementary particles
that does not have a place for spin 1/2. What, then, has any purely
geometric description to offer in explanation of spin 1/2 in general?
More particularly and more importantly, what place is there in quantum
geometrodynamics for the neutrino - the only entity of half-integral
spin that is a pure field in its own right, in the sense that it has
zero rest mass and moves at the speed of light? No clear or satisfactory
answer is known to this question today. Unless and until an answer is
forthcoming, \emph{pure geometrodynamics must be judged deficient as a
basis of elementary particle physics}.''

Physics moves in indirect ways. Though Wheeler's words inspired many
students of relativity, progress on ``spacetime foam'' was quite slow.
It's not surprising, given the thorny problems and the lack of a precise
mathematical model. Quite a bit later, Hawking and others figured out
how to do calculations involving virtual wormholes, virtual black holes
and such using a technique called ``Euclidean quantum gravity''. Pushed
to its extremes, this leads to a theory of spacetime foam, though not
yet a rigorous one (see \protect\hyperlink{week67}{``Week 67''}).

But long before that, Newman, Penrose, and others started finding
interesting relationships between general relativity and the mathematics
of spin-\(1/2\) particles\ldots{} relationships that much later would
yield a theory of spacetime foam in which spinors play a crucial part!

The best place to read about spinorial techniques in general relativity
is probably:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Roger Penrose and Wolfgang Rindler, \emph{Spinors and Space-Time}.
  Vol. 1: \emph{Two-Spinor Calculus and Relativistic Fields}. Vol. 2:
  \emph{Spinor and Twistor Methods in Space-Time Geometry}. Cambridge
  University Press, Cambridge, 1985--1986.
\end{enumerate}

There are roughly 3 main aspects to Penrose's work on spinors and
general relativity. The first is the ``spinor calculus'', described in
volume 1 of these books. By now this is a standard tool in relativity,
and you can find introductions to it in many textbooks, like
``Gravitation'' or Wald's more recent text:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Robert M. Wald, \emph{General Relativity}, University of Chicago
  Press, Chicago, 1984.
\end{enumerate}

The second is ``twistor theory'', described in volume 2. This is
mathematically more elaborate, and it includes an ambitious program to
reformulate the laws of physics in such a way that massless spin-\(1/2\)
particles, rather than points of spacetime, play the basic role.

The third is the theory of ``spin networks'', which was a very radical,
purely combinatorial approach to describing the geometry of space.
Penrose's inability to extend it to \emph{spacetime} is what made him
turn later to twistor theory. Probably the best explanation of Penrose's
original spin network ideas can be found in the thesis of one of his
students:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Moussouris, \emph{Quantum models of space-time based on
  recoupling theory}, Ph.D.~thesis, Department of Mathematics, Oxford
  University, 1983.
\end{enumerate}

Here I want to talk about the spinor calculus, which is the most widely
used of these ideas. It's all about the rotation group in 3 dimensions
and the Lorentz group in 3+1 dimensions (by which we mean 3 space
dimensions and 1 time dimension). A lot of physics is based on these
groups. For general stuff about rotation groups and spinors in
\emph{any} dimension, see \protect\hyperlink{week61}{``Week 61''} and
\protect\hyperlink{week93}{``Week 93''}. Here I'll be concentrating on
stuff that only works when we start with *3* space dimensions.

Now I will turn up the math level a notch\ldots.

In the quantum mechanics of angular momentum, what matters is not the
representations of the rotation group \(\mathrm{SO}(3)\), but of its
double cover \(\mathrm{SU}(2)\). This group has one irreducible unitary
representation of each dimension \(d = 1, 2, 3,\ldots\). Physicists
prefer to call these the ``spin-\(j\)'' representations, where
\(j = 0, 1/2, 1, \ldots\). The relation is of course that
\(2j + 1 = d\).

The spin-\(0\) representation is the trivial representation. Physicists
call vectors in this representation ``scalars'', since they are just
complex numbers. Particles transforming in the spin-\(0\) representation
of \(\mathrm{SU}(2)\) are also called scalars. Examples include pions
and other mesons. The only \emph{fundamental} scalar particle in the
Standard Model is the Higgs boson --- hypothesized but still not seen.

The spin-\(1/2\) representation is the fundamental representation, in
which \(\mathrm{SU}(2)\) acts on \(\mathbb{C}^2\) in the obvious way.
Physicists call vectors in this representation ``spinors''. Examples of
spin-\(1/2\) particles include electrons, protons, neutrons, and
neutrinos. The fundamental spin-\(1/2\) particles in the Standard Model
are the leptons (electron, muon, tau and their corresponding neutrinos)
and quarks.

The spin-\(1\) representation comes from turning elements of
\(\mathrm{SU}(2)\) into \(3\times3\) matrices using the double cover
\(\mathrm{SU}(2)\to\mathrm{SO}(3)\). This is therefore also called the
``vector'' representation. The spin-\(1\) particles in the Standard
Model are the gauge fields: the photon, the W and Z, and the gluons.

Though you can certainly make composite particles of higher spin, like
hadrons and atomic nuclei, there are no fundamental particles of spin
greater than \(1\) in the Standard Model. But the Standard Model doesn't
cover gravity. In gravity, the spin-\(2\) representation is very
important. This comes from letting \(\mathrm{SO}(3)\), and thus
\(\mathrm{SU}(2)\), act on symmetric traceless \(3\times3\) matrices in
the obvious way (by conjugation). In perturbative quantum gravity,
gravitons are expected to be spin-\(2\) particles. Why is this? Well, a
cheap answer is that the metric on space is given by a symmetric
\(3\times3\) matrix. But this is not very satisfying\ldots{} I'll give a
better answer later.

Now, the systematic way to get all these representations is to build
them out of the spin-\(1/2\) representation. \(\mathrm{SU}(2)\) acts on
\(\mathbb{C}^2\) in an obvious way, and thus acts on the space of
polynomials on \(\mathbb{C}^2\). The space of homogeneous polynomials of
degree \(2j\) is thus a representation of \(\mathrm{SU}(2)\) in its own
right, called the spin-\(j\) representation. Since multiplication of
polynomials is commutative, in math lingo we say the spin-j
representation is the ``symmetrized tensor product'' of 2j copies of the
spin-\(1/2\) representation. This is the mathematical sense in which
spin-\(1/2\) is fundamental!

(In some sense, this means we can think of a spin-\(j\) particle as
built from \(2j\) indistinguishable spin-\(1/2\) bosons. But there is
something odd about this, since in physics we usually treat spin-\(1/2\)
particles as fermions and form \emph{antisymmetrized} tensor products of
them!)

Now let's go from space to spacetime, and consider the Lorentz group,
\(\mathrm{SO}(3,1)\). Again it's not really this group but its double
cover that matters in physics; its double cover is
\(\mathrm{SL}(2,\mathbb{C})\). Note that \(\mathrm{SL}(2,\mathbb{C})\)
has \(\mathrm{SU}(2)\) as a subgroup just as \(\mathrm{SO}(3,1)\) has
\(\mathrm{SO}(3)\) as a subgroup; everything fits together here, in a
very pretty way.

Now, while \(\mathrm{SU}(2)\) has only one \(2\)-dimensional irreducible
representation, \(\mathrm{SL}(2,\mathbb{C})\) has two, called the
left-handed and right-handed spinor representations. The ``left-handed''
one is the fundamental representation, in which
\(\mathrm{SL}(2,\mathbb{C})\) acts on \(\mathbb{C}^2\) in the obvious
way. The ``right-handed'' one is the conjugate of this, in which we take
the complex conjugate of the entries of our matrix before letting it act
on \(\mathbb{C}^2\) in the obvious way. These two representations become
equivalent when we restrict to \(\mathrm{SU}(2)\)\ldots{} but for
\(\mathrm{SL}(2,\mathbb{C})\) they're not! For example, when we study
particles as representations of \(\mathrm{SL}(2,\mathbb{C})\), it turns
out that neutrinos are left-handed, while antineutrinos are
right-handed.

All the irreducible representations of \(\mathrm{SL}(2,\mathbb{C})\) on
complex vector spaces can be built up from the left-handed and
right-handed spinor representations. Here's how: take the symmetrized
tensor product of \(2j\) copies of the left-handed spin representation
and tensor it with the symmetrized tensor product of \(2k\) copies of
the right-handed one. We call this the \((j,k)\) representation.

People in general relativity have a notation for all this stuff. They
write left-handed spinors as gadgets with one ``unprimed subscript'',
like this: \[v_A\] where \(A = 1,2\). Right-handed spinors are gadgets
with one ``primed subscript'', like: \[w_{A'}\]

where \(A' = 1,2\). As usual, fancier tensors have more subscripts. For
example, guys in the \((j,k)\) representation have \(j\) unprimed
subscripts and \(k\) primed ones, and don't change when we permute the
unprimed subscripts among themselves, or the primed ones among
themselves.

Now \(\mathrm{SO}(3,1)\) has an obvious representation on
\(\mathbb{R}^4\), called the ``vector'' representation for obvious
reasons. If we think of this as a representation of
\(\mathrm{SL}(2,\mathbb{C})\), it's the (1,1) representation. So when
Penrose writes a vector in 4 dimensions, he can do it either the old
way: \[v_a\] where \(a = 0,1,2,3\), or the new spinorial way:
\[v_{AA'}\] where \(A,A' = 1,2\).

Similarly, we can write \emph{any} tensor using spinors with twice as
many indices. This may not seem like a great step forward, but it
actually was\ldots{} because it lets us slice and dice concepts from
general relativity in interesting new ways.

For example, the Riemann curvature tensor describing the curvature of
spacetime is really important in relativity. It has 20 independent
components but it can split up into two parts, the Ricci tensor and Weyl
tensor, each of which have 10 independent components. Thanks to
Einstein's equation, the Ricci tensor at any point of spacetime is
determined by the matter there (or more precisely, by the flow of energy
and momentum through that point). In particular, the Ricci tensor is
zero in the vacuum. The Weyl tensor \[C_{abcd}\] describes aspects of
curvature like gravitational waves or tidal forces which can be nonzero
even in the vacuum. In spinorial notation this is written
\[C{AA'BB'CC'DD'}\] but we can also write it as
\[C_{AA'BB'CC'DD'} = \Phi_{ABCD} \varepsilon_{A'B'}\varepsilon_{C'D'} + \overline{\Phi_{ABCD} \varepsilon_{A'B'}\varepsilon_{C'D'}}\]
where \(\varepsilon\) is the matrix \[
  \left(
    \begin{array}{cc}
      0&1\\-1&0
    \end{array}
  \right)
\] and \(\Phi\) is the ``Weyl spinor''. The Weyl spinor is symmetric in
all its 4 indices so it lives in the (2,0) representation of
\(\mathrm{SL}(2,\mathbb{C})\). Note that this is a \(5\)-dimensional
complex representation, so the Weyl spinor has 10 real degrees of
freedom, just like the Weyl tensor --- but these degrees of freedom have
been encoded in a very efficient way! Even better, we see here why, in
perturbative quantum gravity, the graviton is a spin-\(2\) particle!

I'm only scratching the surface here, but the point is that spinorial
techniques are really handy all over general relativity. A great example
is Witten's spinorial proof of the positive energy theorem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Edward Witten, ``A new proof of the positive energy theorem'',
  \emph{Commun. Math. Phys.} \textbf{80} (1981), 381--402.
\end{enumerate}

This says that for any spacetime that looks like flat Minkowski space
off at spatial infinity, but possibly has gravitational radiation and
matter in the middle, the ``ADM mass'' is greater than or equal to zero
as long as the matter satisfies the ``dominant energy condition'', which
says that the speed of energy flow is less than the speed of light.
What's the ADM mass? Well, basically the idea is this: if we go off
towards spatial infinity, where spacetime is almost flat and general
relativity effects aren't too big, we can imagine measuring the mass of
the stuff in the middle by seeing how fast a satellite would orbit it.
That's the ADM mass. If the satellite is \emph{attracted} by the stuff
in the middle, the ADM mass is positive. The proof of the positive
energy theorem was really complicated before Witten used spinors, which
let you write the ADM mass as an integral of an obviously nonnegative
quantity.

Next time I'll talk about spin networks and how they show up in recent
work on quantum gravity. We'll see that the idea of building up
everything from the spin-\(1/2\) representation of \(\mathrm{SU}(2)\)
assumes grandiose proportions: in this setup, \emph{space itself} is
built from spinors!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{The universe is full of magical things, patiently waiting for our
wits to grow sharper.} --- Eden Philpotts
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Last time I sketched Wheeler's vision of ``spacetime foam'', and his
intuition that a good theory of this would require taking spin-\(1/2\)
particles very seriously. Now I want to talk about Penrose's ``spin
networks''. These were an attempt to build a purely combinatorial
description of spacetime starting from the mathematics of spin-\(1/2\)
particles. He didn't get too far with this, which is why he moved on to
invent twistor theory. The problem was that spin networks gave an
interesting theory of \emph{space}, but not of spacetime. But recent
work on quantum gravity shows that you can get pretty far with spin
network technology. For example, you can compute the entropy of quantum
black holes. So spin networks are quite a flourishing business.

Okay. Building space from spin! How does it work?

Penrose's original spin networks were purely combinatorial gadgets:
graphs with edges labelled by numbers \(j = 0, 1/2, 1, 3/2,\ldots\)
These numbers stand for total angular momentum or ``spin''. He required
that three edges meet at each vertex, with the corresponding spins
\(j_1, j_2, j_3\) adding up to an integer and satisfying the triangle
inequalities \[|j_1 - j_2| \leqslant j_3 \leqslant j_1 + j_2.\] These
rules are motivated by the quantum mechanics of angular momentum: if we
combine a system with spin \(j_1\) and a system with spin \(j_2\), the
spin \(j_3\) of the combined system satisfies exactly these constraints.

In Penrose's setup, a spin network represents a quantum state of the
geometry of space. To justify this interpretation he did a lot of
computations using a special rule for computing a number from any spin
network, which is now called the ``Penrose evaluation'' or ``chromatic
evaluation''. In \protect\hyperlink{week22}{``Week 22''} I said how this
works when all the edges have spin 1, and described how this case is
related to the four-color theorem. The general case isn't much harder,
but it's a real pain to describe without lots of pictures, so I'll just
refer you to the original papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Roger Penrose, ``Angular momentum: an approach to combinatorial
  space-time'', in \emph{Quantum Theory and Beyond}, ed.~T. Bastin,
  Cambridge U. Press, Cambridge, 1971, pp.~151--180. Also available at
  \texttt{http://math.ucr.edu/home/baez/penrose/}

  Roger Penrose, ``Applications of negative dimensional tensors'', in
  \emph{Combinatorial Mathematics and its Applications}, ed.~D. Welsh,
  Academic Press, New York, 1971, pp.~221--244.

  Roger Penrose, ``On the nature of quantum geometry'', in \emph{Magic
  Without Magic}, ed.~J. Klauder, Freeman, San Francisco, 1972,
  pp.~333--354.

  R. Penrose, ``Combinatorial quantum theory and quantized directions'',
  in \emph{Advances in Twistor Theory}, eds.~L. Hughston and R. Ward,
  Pitman Advanced Publishing Program, San Francisco, 1979, pp.~301--317.
\end{enumerate}

It's easier to explain the \emph{physical meaning} of the Penrose
evaluation. Basically, the idea is this. In classical general
relativity, space is described by a \(3\)-dimensional manifold with a
Riemannian metric: a recipe for measuring distances and angles. In the
spin network approach to quantum gravity, the geometry of space is
instead described as a superposition of ``spin network states''. In
other words, spin networks form a basis of the Hilbert space of states
of quantum gravity, so we can write any state \(\psi\) as
\[\psi = \sum c_i \psi_i\] where \(\psi_i\) ranges over all spin
networks and the coefficients \(c_i\) are complex numbers. The simplest
state is the one corresponding to good old flat Euclidean space. In this
state, each coefficient \(c_i\) is just the Penrose evaluation of the
corresponding spin network \(\psi_i\).

Actually, this interpretation wasn't fully understood until later, when
Rovelli and Smolin showed how spin networks arise naturally in the
so-called ``loop representation'' of quantum gravity. They also came up
with a clearer picture of the way a spin network state corresponds to a
possible geometry of space. The basic picture is that spin network edges
represent flux tubes of area: an edge labelled with spin \(j\)
contributes an area proportional to \(\sqrt{j(j+1)}\) to any surface it
pierces.

The cool thing is that Rovelli and Smolin didn't postulate this, they
\emph{derived} it. Remember, in quantum theory, observables are given by
operators on the Hilbert space of states of the physical system in
question. You typically get these by ``quantizing'' the formulas for the
corresponding classical observables. So Rovelli and Smolin took the
usual formula for the area of a surface in a \(3\)-dimensional manifold
with a Riemannian metric and quantized it. Applying this operator to a
spin network state, they found the picture I just described: the area of
a surface is a sum of terms proportional to \(\sqrt{j(j+1)}\), one for
each spin network edge poking through it.

Of course, I'm oversimplifying both the physics and the history here.
The tale of spin networks and loop quantum gravity is rather long. I've
discussed it already in \protect\hyperlink{week55}{``Week 55''} and
\protect\hyperlink{week99}{``Week 99''}, but only sketchily. If you want
more details, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Carlo Rovelli, ``Loop quantum gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9710008}{\texttt{gr-qc/9710008}},
  also available as a webpage on \emph{Living Reviews in Relativity} at
  \texttt{http://www.livingreviews.org/Articles/Volume1/1998-1rovelli/}
\end{enumerate}

The abstract gives a taste of what it's all about:

\begin{quote}
The problem of finding the quantum theory of the gravitational field,
and thus understanding what is quantum spacetime, is still open. One of
the most active of the current approaches is loop quantum gravity. Loop
quantum gravity is a mathematically well-defined, non-perturbative and
background independent quantization of general relativity, with its
conventional matter couplings. The research in loop quantum gravity
forms today a vast area, ranging from mathematical foundations to
physical applications. Among the most significant results obtained are:
(i) The computation of the physical spectra of geometrical quantities
such as area and volume; which yields quantitative predictions on
Planck-scale physics. (ii) A derivation of the Bekenstein-Hawking black
hole entropy formula. (iii) An intriguing physical picture of the
microstructure of quantum physical space, characterized by a
polymer-like Planck scale discreteness. This discreteness emerges
naturally from the quantum theory and provides a mathematically
well-defined realization of Wheeler's intuition of a spacetime ``foam''.
Longstanding open problems within the approach (lack of a scalar
product, overcompleteness of the loop basis, implementation of reality
conditions) have been fully solved. The weak part of the approach is the
treatment of the dynamics: at present there exist several proposals,
which are intensely debated. Here, I provide a general overview of
ideas, techniques, results and open problems of this candidate theory of
quantum gravity, and a guide to the relevant literature.
\end{quote}

For a nice picture of Rovelli standing in front of some spin networks,
check out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Carlo Rovelli's homepage,
  \texttt{http://www.phyast.pitt.edu/\textbackslash{}\textasciitilde{}rovelli/}
\end{enumerate}

which also has links to many of his papers.

You'll note from this abstract that the biggest problem in loop quantum
gravity is finding an adequate description of \emph{dynamics}. This is
partially because spin networks are better suited for describing space
than spacetime. For this reason, Rovelli, Reisenberger and I have been
trying to describe spacetime using ``spin foams'' --- sort of like soap
suds with all the bubbles having faces labelled by spins. Every slice of
a spin foam is a spin network.

But I'm getting ahead of myself! I should note that the spin networks
appearing in the loop representation are different from those Penrose
considered, in two important ways.

First, they can have more than 3 edges meeting at a vertex, and the
vertices must be labelled by ``intertwining operators'', or
``intertwiners'' for short. This is a concept coming from group
representation theory; as described in
\protect\hyperlink{week109}{``Week 109''}, what we've been calling
``spins'' are really irreducible representations of \(\mathrm{SU}(2)\).
If we orient the edges of a spin network, we should label each vertex
with an intertwiner from the tensor product of representations on the
``incoming'' edges to the tensor product of representations labelling
the ``outgoing'' edges. When 3 edges labelled by spins \(j_1, j_2, j_3\)
meet at a vertex, there is at most one intertwiner
\[f\colon j_1 \otimes j_2\to j_3,\] at least up to a scalar multiple.
The conditions I wrote down --- the triangle inequality and so on ---
are just the conditions for a nonzero intertwiner of this sort to exist.
That's why Penrose didn't label his vertices with intertwiners: he
considered the case where there's essentially just one way to do it!
When more edges meet at a vertex, there are more intertwiners, and this
extra information is physically very important. One sees this when one
works out the ``volume operators'' in quantum gravity. Just as the spins
on edges contribute \emph{area} to surfaces they pierce, the
intertwiners at vertices contribute \emph{volume} to regions containing
them!

Second, in loop quantum gravity the spin networks are \emph{embedded} in
some 3-dimensional manifold representing space. Penrose was being very
radical and considering ``abstract'' spin networks as a purely
combinatorial replacement for space, but in loop quantum gravity, one
traditionally starts with general relativity on some fixed spacetime and
quantizes that. Penrose's more radical approach may ultimately be the
right one in this respect. The approach where we take classical physics
and quantize it is very important, because we understand classical
physics better, and we have to start somewhere. Ultimately, however, the
world is quantum-mechanical, so it would be nice to have an approach to
space based purely on quantum-mechanical concepts. Also, treating spin
networks as fundamental seems like a better way to understand the
``quantum fluctuations in topology'' which I mentioned in
\protect\hyperlink{week109}{``Week 109''}. However, right now it's
probably best to hedge ones bets and work hard on both approaches.

Lately I've been very excited by a third, hybrid approach:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Andrea Barbieri, ``Quantum tetrahedra and simplicial spin networks'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9707010}{\texttt{gr-qc/9707010}}.
\end{enumerate}

Barbieri considers ``simplicial spin networks'': spin networks living in
a fixed \(3\)-dimensional manifold chopped up into tetrahedra. He only
considers spin networks dual to the triangulation, that is, spin
networks having one vertex in the middle of each tetrahedron and one
edge intersecting each triangular face.

In such a spin network there are 4 edges meeting at each vertex, and the
vertex is labelled with an intertwiner of the form
\[f\colon j_1 \otimes j_2\to j_3 \otimes j_4\] where \(j_1,\ldots,j_4\)
are the spins on these edges. If you know about the representation
theory of \(\mathrm{SU}(2)\), you know that \(j_1 \otimes j_2\) is a
direct sum of representations of spin \(j_5\), where \(j_5\) goes from
\(|j_1 - j_2|\) up to \(j_1 + j_2\) in integer steps. So we get a basis
of intertwining operators:
\[f\colon j_1 \otimes j_2\to j_3 \otimes j_4\] by picking one factoring
through each representation \(j_5\):
\[j_1 \otimes j_2\to j_5\to j_3 \otimes j_4\] where:

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\item
  \(j_1 + j_2 + j_5\) is an integer and
  \(|j_1 - j_2| \leqslant j_5 \leqslant j_1 + j_2\),
\item
  \(j_3 + j_4 + j_5\) is an integer and
  \(|j_3 - j_4| \leqslant j_5 \leqslant j_3 + j_4\).
\end{enumerate}

Using this, we get a basis of simplicial spin networks by labelling all
the edges \emph{and vertices} by spins satisfying the above conditions.
Dually, this amounts to labelling each tetrahedron and each triangle in
our manifold with a spin! Let's think of it this way.

Now focus on a particular simplicial spin network and a particular
tetrahedron. What do the spins \(j_1,\ldots,j_5\) say about the geometry
of the tetrahedron? By what I said earlier, the spins \(j_1,\ldots,j_4\)
describe the areas of the triangular faces: face number 1 has area
proportional to \(\sqrt{j_1(j_1+1)}\), and so on. What about \(j_5\)? It
also describes an area. Take the tetrahedron and hold it so that faces 1
and 2 are in front, while faces 3 and 4 are in back. Viewed this way,
the outline of the tetrahedron is a figure with four edges. The
midpoints of these four edges are the corners of a parallelogram, and
the area of this parallelogram is proportional to \(\sqrt{j_5(j_5+1)}\).
In other words, there is an area operator corresponding to this
parallelogram, and our spin network state is an eigenvector with
eigenvalue proportional to \(\sqrt{j_5(j_5+1)}\). Finally, there is also
a \emph{volume operator} corresponding to the tetrahedron, whose action
on our spin network state is given by a more complicated formula
involving the spins \(j_1,\ldots,j_5\).

Well, that either made sense or it didn't\ldots{} and I don't think
either of us want to stick around to find out which! What's the bottom
line, you ask? First, we're seeing how an ordinary tetrahedron is the
classical limit of a ``quantum tetrahedron'' whose faces have quantized
areas and whose volume is also quantized. Second, we're seeing how to
put together a bunch of these quantum tetrahedra to form a
\(3\)-dimensional manifold equipped with a ``quantum geometry'' ---
which can dually be seen as a spin network. Third, all this stuff fits
together in a truly elegant way, which suggests there is something good
about it. The relationship between spin networks and tetrahedra connects
the theory of spin networks with approaches to quantum gravity where one
chops up space into tetrahedra --- like the ``Regge calculus'' and
``dynamical triangulations'' approaches.

Next week I'll say a bit about using spin networks to study quantum
black holes. Later I'll talk about \emph{dynamics} and spin foams.

Meanwhile, I've been really lagging behind in describing new papers as
they show up\ldots{} so here are a few interesting ones:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  C. Nash, ``Topology and physics --- a historical essay'', to appear in
  \emph{A History of Topology}, edited by Ioan James, Elsevier-North
  Holland, preprint available as
  \href{https://arxiv.org/abs/hep-th/9709135}{\texttt{hep-th/9709135}}.
\item
  Luis Alvarez-Gaume and Frederic Zamora, ``Duality in quantum field
  theory (and string theory)'', available as
  \href{https://arxiv.org/abs/hep-th/9709180}{\texttt{hep-th/9709180}}.
\end{enumerate}

Quoting the abstract:

\begin{quote}
``These lectures give an introduction to duality in Quantum Field
Theory. We discuss the phases of gauge theories and the implications of
the electric-magnetic duality transformation to describe the mechanism
of confinement. We review the exact results of N=1 supersymmetric QCD
and the Seiberg-Witten solution of N=2 super Yang-Mills. Some of its
extensions to String Theory are also briefly discussed.''
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Richard E. Borcherds, ``What is a vertex algebra?'', available as
  \href{https://arxiv.org/abs/q-alg/9709033}{\texttt{q-alg/9709033}}.
\end{enumerate}

\begin{quote}
``These are the notes of an informal talk in Bonn describing how to
define an analogue of vertex algebras in higher dimensions.''
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  J. M. F. Labastida and Carlos Lozano, ``Lectures in topological
  quantum field theory'', 62 pages in LaTeX with 5 figures in
  encapsulated Postscript, available as
  \href{https://arxiv.org/abs/hep-th/9709192}{\texttt{hep-th/9709192}}.
\end{enumerate}

\begin{quote}
``In these lectures we present a general introduction to topological
quantum field theories. These theories are discussed in the framework of
the Mathai-Quillen formalism and in the context of twisted N=2
supersymmetric theories. We discuss in detail the recent developments in
Donaldson-Witten theory obtained from the application of results based
on duality for N=2 supersymmetric Yang-Mills theories. This involves a
description of the computation of Donaldson invariants in terms of
Seiberg-Witten invariants. Generalizations of Donaldson-Witten theory
are reviewed, and the structure of the vacuum expectation values of
their observables is analyzed in the context of duality for the simplest
case.''
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Martin Markl, ``Simplex, associahedron, and cyclohedron'', preprint
  available as
  \href{https://arxiv.org/abs/alg-geom/9707009}{\texttt{alg-geom/9707009}}.
\end{enumerate}

\begin{quote}
``The aim of the paper is to give an `elementary' introduction to the
theory of modules over operads and discuss three prominent examples of
these objects --- simplex, associahedron (= the Stasheff polyhedron) and
cyclohedron (= the compactification of the space of configurations of
points on the circle).''
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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This week I'll say a bit about black hole entropy, and next week I'll
say a bit about attempts to compute it using spin networks, as promised.
Be forewarned: all of this stuff should be taken with a grain of salt,
since there is no experimental evidence backing it up. Also, my little
``history'' of the subject is very amateur. (In particular, when I say
someone did something in such-and-such year, all I mean is that it was
published in that year.)

Why is the entropy of black holes so interesting? Mainly because it
serves as a testing ground for our understanding of quantum gravity. In
classical general relativity, any object that falls into a black hole
is, in some sense, lost and gone forever. Once it passes the ``event
horizon'', it can never get out again. This leads to a potential paradox
regarding the second law of thermodynamics, which claims that the total
entropy of the universe can never decrease. My office desk constantly
increases in entropy as it becomes more cluttered and dusty. I could
reduce its entropy with some work, dusting it and neatly stacking up the
papers and books, but in the process I would sweat and metabolize,
increasing my \emph{own} entropy even more --- so I don't bother. If,
however, I could simply dump my desk into a black hole, perhaps I could
weasel around the second law. True, the black hole would be more
massive, but nobody could tell if I'd dumped a clean desk or a dirty
desk into it, so in a sense, the entropy would be \emph{gone}!

Of course there are lots of potential objections to this method of
violating the second law. \emph{Anything} involving the second law of
thermodynamics is controversial, and the idea of violating it by
throwing entropy down black holes is especially so. The whole subject
might have remained a mere curiosity if it hadn't been for the work of
Hawking and Penrose.

In 1969, Penrose showed that, in principle, one could extract energy
from a rotating black hole:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Roger Penrose, ``Gravitational collapse: the role of general
  relativity'', \emph{Rev.~del Nuovo Cimento} \textbf{1}, (1969)
  272--276.
\end{enumerate}

Basically, one can use the rotation of the black hole to speed up a rock
one throws past it, as long as the rock splits and one piece falls in
while the rock is in the ``ergosphere'' --- the region of spacetime
where the ``frame dragging'' is so strong that any object inside is
\emph{forced} to rotate along with it. This result led to a wave of
thought experiments and theorems involving black holes and
thermodynamics.

In 1971, Hawking proved the ``black hole area theorem'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Stephen Hawking, ``Gravitational radiation from colliding black
  holes'', \emph{Phys. Rev.~Lett.} \textbf{26} (1971), 1344--1346.
\end{enumerate}

The precise statement of this theorem is a bit technical, but loosely,
it says that under reasonable conditions --- e.g., no ``exotic matter''
with negative energy density or the like --- the total area of the event
horizons of any collection of black holes must always increase. This
result sets an upper limit on how much energy one can extract from a
rotating black hole, how much energy can be released in a black hole
collision, etc.

Now, this sounds curiously similar to the second law of thermodynamics,
with the area of the black hole playing the role of entropy! It turned
out to be just the beginning of an extensive analogy between black hole
physics and thermodynamics. I have a long way to go, so I will just
summarize this analogy in one cryptic chart:

\begin{longtable}[]{@{}rll@{}}
\toprule
& Black holes & Thermodynamics\tabularnewline
\midrule
\endhead
& black hole mass \(M\) & energy \(E\)\tabularnewline
& event horizon area \(A\) & entropy \(S\)\tabularnewline
& surface gravity \(K\) & temperature \(T\)\tabularnewline
\emph{First law:} & \(dM=KdA/8\pi+\mathrm{work}\) &
\(dE=TdS+\mathrm{work}\)\tabularnewline
\emph{Second law:} & \(A\) increases & \(S\) increases\tabularnewline
\emph{Third law:} & can't get \(K=0\) & can't get \(T=0\)\tabularnewline
\bottomrule
\end{longtable}

For a more thorough review by someone who really knows this stuff, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Robert M. Wald, ``Black holes and thermodynamics'', in \emph{Symposium
  on Black Holes and Relativistic Stars (in honor of S. Chandrasekhar)},
  December 14-15, 1996, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9702022}{\texttt{gr-qc/9702022}}.
\end{enumerate}

In 1973, Jacob Bekenstein suggested that we take this analogy really
seriously. In particular, he argued that black holes really do have
entropy proportional to their surface area. In other words, the total
entropy of the world is the entropy of all the matter \emph{plus} some
constant times the area of all the black holes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Jacob Bekenstein, ``Black holes and entropy'', \emph{Phys. Rev.}
  \textbf{D7} (1973), 2333--2346.
\end{enumerate}

This raises an obvious question --- what's the constant?? Also, in the
context of classical general relativity, there are serious problems with
this idea: you can cook up thought experiments where the total entropy
defined this way goes down, no matter what you say the constant is.

However, in 1975, Hawking showed that black holes aren't quite black!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Stephen Hawking, ``Particle creation by black holes'', \emph{Commun.
  Math. Phys.} \textbf{43} (1975), 199--220.
\end{enumerate}

More precisely, using quantum field theory on curved spacetime, he
showed that a black hole should radiate photons thermally, with a
temperature \(T\) proportional to the surface gravity \(K\) at the event
horizon. It's important to note that this isn't a ``quantum gravity''
calculation; it's a semiclassical approximation. Gravity is treated
classically! One simply assumes spacetime has the ``Schwarzschild
metric'' corresponding to a black hole. Quantum mechanics enters only in
treating the electromagnetic field. The goal of everyone ever since has
been to reproduce Hawking's result using a full-fledged quantum gravity
calculation. The problem, of course, is to get a theory of quantum
gravity.

Anyway, here is Hawking's magic formula: \[T = K / 2\pi.\] Here I'm
working in units where \(\hbar = c = k = G = 1\), but it's important to
note that there is secretly an \(\hbar\) (Planck's constant) hiding in
this formula, so that it \emph{only makes sense quantum-mechanically}.
This is why Bekenstein's proposal was problematic at the purely
classical level.

This formula means we can take really seriously the analogy between
\(T\) and \(K\). We even know how to convert between the two! Of course,
we also know how to convert between the black hole mass \(M\) and energy
\(E\): \[E = M.\] Thus, using the first law (shown in the chart above),
we can convert between entropy and area as well: \[S = A/4.\] How could
we hope to get such a formula using a full-fledged quantum gravity
calculation? Well, in statistical mechanics, the entropy of any
macrostate of a system is the logarithm of the microstates corresponding
to that macrostate. A microstate is a complete precise description of
the system's state, while a macrostate is a rough description. For
example, if I tell you ``my desk is dusty and covered with papers'', I'm
specifying a macrostate. If there are \(N\) ways my desk could meet this
description (i.e., \(N\) microstates corresponding to that macrostate),
the entropy of my desk is \(\ln(N)\).

We expect, or at least hope, that a working quantum theory of gravity
will provide a statistical-mechanical way to calculate the entropy of a
black hole. In other words, we hope that specifying the area \(A\) of
the black hole horizon specifies the macrostate, and that there are
about \(N = \exp(A/4)\) microstates corresponding to this macrostate.

What are these microstates? Much ink has been spilt over this thorny
question, but one reasonable possibility is that they are \emph{states
of the geometry of the event horizon}. If we know its area, there are
still lots of geometries that the event horizon could have\ldots{} and
perhaps, for some reason, there are about \(\exp(A/4)\) of them! For
this to be true, we presumably need some theory of ``quantum geometry'',
so that the number of geometries is finite.

I presume you see what I'm leading up to: the idea of computing black
hole entropy using spin networks, which are designed precisely to
describe ``quantum geometries'', as sketched in
\protect\hyperlink{week55}{``Week 55''},
\protect\hyperlink{week99}{``Week 99''}, and
\protect\hyperlink{week110}{``Week 110''}. I'll talk about this next
week.

To be fair to other approaches, I should emphasize that string theorists
have their own rather different ideas about computing black hole entropy
using \emph{their} approach to quantum gravity. A nice review article
about this approach is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Gary Horowitz, ``Quantum states of black holes'', preprint available
  as \href{https://arxiv.org/abs/gr-qc/9704072}{\texttt{gr-qc/9704072}}.
\end{enumerate}

Next time, however, I will only talk about the spin network (also known
as ``loop representation'') approach, because that's the one I
understand.

Okay, let me wrap up by listing a few interesting papers here and there
which are contributing to the entropy of my desk. It's 1:30 am and I'm
getting tired, so I'll just cop out and quote the abstracts. The first
one is a short readable essay explaining the limitations of quantum
field theory. The others are more technical.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Roman Jackiw, ``What is quantum field theory and why have some
  physicists abandoned it?'', 4 pages, preprint available as
  \href{https://arxiv.org/abs/hep-th/9709212}{\texttt{hep-th/9709212}}.
\end{enumerate}

\begin{quote}
``The present-day crisis in quantum field theory is described.''
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Adel Bilal, ``M(atrix) theory: a pedagogical introduction'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9710136}{\texttt{hep-th/9710136}}.
\end{enumerate}

\begin{quote}
``I attempt to give a pedagogical introduction to the matrix model of
M-theory as developed by Banks, Fischler, Shenker and Susskind (BFSS).
In the first lecture, I introduce and review the relevant aspects of
D-branes with the emergence of the matrix model action. The second
lecture deals with the appearance of eleven-dimensional supergravity and
M-theory in strongly coupled type IIA superstring theory. The third
lecture combines the material of the two previous ones to arrive at the
BFSS conjecture and explains the evidence presented by these authors.
The emphasis is not on most recent developments but on a hopefully
pedagogical presentation.''
\end{quote}

Here's one on glueballs (for more on glueballs, see
\protect\hyperlink{week68}{``Week 68''}):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Gregory Gabadadze, ``Modeling the glueball spectrum by a closed
  bosonic membrane'', 43 pages, preprint available as
  \href{https://arxiv.org/abs/hep-ph/9710402}{\texttt{hep-ph/9710402}}.
\end{enumerate}

\begin{quote}
``We use an analogy between the Yang-Mills theory Hamiltonian and the
matrix model description of the closed bosonic membrane theory to
calculate the spectrum of glueballs in the large \(N_c\) limit. Some
features of the Yang-Mills theory vacuum, such as the screening of the
topological charge and vacuum topological susceptibility are discussed.
We show that the topological susceptibility has different properties
depending on whether it is calculated in the weak coupling or strong
coupling regimes of the theory. A mechanism of the formation of the
pseudoscalar glueball state within pure Yang-Mills theory is proposed
and studied.''
\end{quote}

Fans of quaternions and octonions might like the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Jose M. Figueroa-O'Farrill, ``Gauge theory and the division
  algebras'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9710168}{\texttt{hep-th/9710168}}.
\end{enumerate}

\begin{quote}
``We present a novel formulation of the instanton equations in
8-dimensional Yang-Mills theory. This formulation reveals these
equations as the last member of a series of gauge-theoretical equations
associated with the real division algebras, including flatness in
dimension 2 and (anti-)self-duality in 4. Using this formulation we
prove that (in flat space) these equations can be understood in terms of
moment maps on the space of connections and the moduli space of
solutions is obtained via a generalised symplectic quotient: a Kaehler
quotient in dimension 2, a hyperkaehler quotient in dimension 4 and an
octonionic Kaehler quotient in dimension 8. One can extend these
equations to curved space: whereas the \(2\)-dimensional equations make
sense on any surface, and the \(4\)-dimensional equations make sense on
an arbitrary oriented manifold, the \(8\)-dimensional equations only
make sense for manifolds whose holonomy is contained in
\(\mathrm{Spin}(7)\). The interpretation of the equations in terms of
moment maps further constraints the manifolds: the surface must be
orientable, the 4-manifold must be hyperkaehler and the 8-manifold must
be flat.''
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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This week I will talk about attempts to compute the entropy of a black
hole by counting its quantum states, using the spin network approach to
quantum gravity.

But first, before the going gets tough and readers start dropping like
flies, I should mention the following science fiction novel:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Greg Egan, \emph{Distress}, HarperCollins, 1995.
\end{enumerate}

I haven't been keeping up with science fiction too carefully lately, so
I'm not really the best judge. But as far as I can tell, Egan is one of
the few practitioners these days who bites off serious chunks of reality
--- who really tries to face up to the universe and its possibilies in
their full strangeness. Reality is outpacing our imagination so fast
that most attempts to imagine the future come across as miserably
unambitious. Many have a deliberately ``retro'' feel to them - space
operas set in Galactic empires suspiciously similar to ancient Rome,
cyberpunk stories set in dark urban environments borrowed straight from
film noire, complete with cynical voiceovers\ldots{} is science fiction
doomed to be an essentially \emph{nostalgic} form of literature?

Perhaps we are becoming too wise, having seen how our wildest
imaginations of the future always fall short of the reality, blindly
extrapolating the current trends while missing out on the really
interesting twists. But still, science fiction writers have to try to
imagine the unimaginable, right? If they don't, who will?

But how do we \emph{dare} imagine what things will be like in, say, a
century, or a millenium? Vernor Vinge gave apt expression to this
problem in his novel featuring the marooned survivors of a
``singularity'' at which the rate of technological advance became,
momentarily, \emph{infinite}, and most of civilization
inexplicably\ldots{} disappeared. Those who failed to catch the bus were
left wondering just where it went. Somewhere unimaginable, that's all
they know.

``Distress'' doesn't look too far ahead, just to 2053. Asexuality is
catching on bigtime\ldots{} as are the ``ultramale'' and ``ultrafemale''
options, for those who don't like this gender ambiguity business.
Voluntary Autists are playing around with eliminating empathy. And some
scary radical secessionists are redoing their genetic code entirely,
replacing good old ATCG by base pairs of their own devising. Fundamental
physics, thank god, has little new to offer in the way of new
technology. For decades, it's drifted off introspectively into more and
more abstract and mathematical theories, with few new experiments to
guide it. But this is the year of the Einstein Centenary Conference!
Nobel laureate Violet Masala will unveil her new work on a Theory of
Everything. And rumors have it that she may have finally cracked the
problem, and found --- yes, that's right --- the final, correct and true
theory of physics.

As science reporter Andrew Worth tries to bone up for his interviews
with Masala, he finds it's not so easy to follow the details of the
various ``All-Topology Models'' that have been proposed to explain the
10-dimensionality of spacetime in the Standard Unified Field Theory. In
one of the most realistic passages of imagined mathematical prose I've
ever seen in science fiction, he reads ``At least two conflicting
generalized measures can be applied to T, the space of all topological
spaces with countable basis. Perrini's measure {[}Perrini, 2012{]} and
Saupe's measure {[}Saupe, 2017{]} are both defined for all bounded
subsets of T, and are equivalent when restricted to M - the space of
n-dimensional paracompact Hausdorff manifolds - but they yield
contradictory results for sets of more exotic spaces. However, the
physical significance (if any) of this discrepancy remains
obscure\ldots.''

But, being a hardy soul and a good reporter, Worth is eventually able to
explain to us readers what's at stake here, and \emph{why} Masala's new
work has everyone abuzz. But that's really just the beginning. For in
addition to this respectable work on All-Topology Models, there is a lot
of somewhat cranky stuff going on in ``anthrocosmology'', involving
sophisticated and twisted offshoots of the anthropic principle. Some
argue that when the correct Theory of Everything is found, a kind of
cosmic self-referential feedback loop will be closed. And then there's
no telling \emph{what} will happen!

Well, I won't give away any more. It's fun: it made me want to run out
and do a lot more mathematical physics. And it raises a lot of deep
issues. At the end it gets a bit too ``action-packed'' for my taste, but
then, my idea of excitement is lying in bed thinking about
\(n\)-categories.

Now for the black holes.

In \protect\hyperlink{week111}{``Week 111''}, I left off with a puzzle.
In a quantum theory of gravity, the entropy of a black hole should be
the logarithm of the number of its microstates. This should be
proportional to the area of the event horizon. But what \emph{are} the
microstates? String theory has one answer to this, but I'll focus on the
loop representation of quantum gravity. This approach to quantum gravity
is very geometrical, which suggests thinking of the black hole
microstates as ``quantum geometries'' of the black hole event horizon.
But how are these related to the description of the geometry of the
surrounding space in terms of spin networks?

Starting in 1995, Smolin, Krasnov, and Rovelli proposed some answers to
these puzzles, which I have already mentioned in
\protect\hyperlink{week56}{``Week 56''},
\protect\hyperlink{week57}{``Week 57''}, and
\protect\hyperlink{week87}{``Week 87''}. The ideas I'm going to talk
about now are a further development of this earlier work, but instead of
presenting everything historically, I'll just present the picture as I
see it now. For more details, try the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Abhay Ashtekar, John Baez, Alejandro Corichi and Kirill Krasnov,
  ``Quantum geometry and black hole entropy'', to appear in \emph{Phys.
  Rev.~Lett.}, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9710007}{\texttt{gr-qc/9710007}}.
\end{enumerate}

This is a summary of what will eventually be a longer paper with two
parts, one on the ``black hole sector'' of classical general relativity,
and one on the quantization of this sector. Let me first say a bit about
the classical aspects, and then the quantum aspects.

One way to get a quantum theory of a black hole is to figure out what a
black hole is classically, get some phase space of classical states, and
then quantize \emph{that}. For this, we need some way of saying which
solutions of general relativity correspond to black holes. This is
actually not so easy. The characteristic property of a black hole is the
presence of an event horizon --- a surface such that once you pass it
you can never get back out without going faster than light. This makes
it tempting to find ``boundary conditions'' which say ``this surface is
an event horizon'', and use those to pick out solutions corresponding to
black holes.

But the event horizon is not a local concept. That is, you can't tell
just by looking at a small patch of spacetime if it has an event horizon
in it, since your ability to ``eventually get back out'' after crossing
a surface depends on what happens to the geometry of spacetime in the
future. This is bad, technically speaking. It's a royal pain to deal
with nonlocal boundary conditions, especially boundary conditions that
depend on \emph{solving the equations of motion to see what's going to
happen in the future just to see if the boundary conditions hold}.

Luckily, there is a purely local concept which is a reasonable
substitute for the concept of event horizon, namely the concept of
``outer marginally trapped surface''. This is a bit technical - and my
speciality is not this classical general relativity stuff, just the
quantum side of things, so I'm no expert on it! - but basically it works
like this.

First consider an ordinary sphere in ordinary flat space. Imagine light
being emitted outwards, the rays coming out normal to the surface of the
sphere. Clearly the cross-section of each little imagined circular ray
will \emph{expand} as it emanates outwards. This is measured
quantitatively in general relativity by a quantity called\ldots{} the
expansion parameter!

Now suppose your sphere surrounds a spherically symmetric black hole. If
the sphere is huge compared to the size of the black hole, the above
picture is still pretty accurate, since the light leaving the sphere is
very far from the black hole, and gravitational effects are small. But
now imagine shrinking the sphere, making its radius closer and closer to
the Schwarzschild radius (the radius of the event horizon). When the
sphere is just a little bigger than the Schwarzschild radius, the
expansion of light rays going out from the sphere is very small. This
might seem paradoxical - how can the outgoing light rays not expand? But
remember, spacetime is seriously warped near the event horizon, so your
usual flat spacetime intuitions no longer apply. As we approach the
event horizon itself, the expansion parameter goes to zero!

That's roughly the definition of an ``outer marginally trapped
surface''. A more mathematical but still rough definition is: ``an outer
marginally trapped surface is the boundary \(S\) of some region of space
such that the expansion of the outgoing family of null geodesics normal
to \(S\) is everywhere less than or equal to zero.''

We require that our space have some sphere \(S\) in it which is an outer
marginally trapped surface. We also require other boundary conditions to
hold on this surface. I won't explain them in detail. Instead, I'll say
two important extra features they have: they say the black hole is
nonrotating, and they disallow gravitational waves falling into \(S\).
The first condition here is a simplifying assumption: we are only
studying black holes of zero angular momentum in this paper! The second
condition is only meant to hold for the time during which we are
studying the black hole. It does not rule out gravitational waves far
from the black hole, waves that might \emph{eventually} hit the black
hole. These should not affect the entropy calculation.

Now, in addition to their physical significance, the boundary conditions
we use also have an interesting \emph{mathematical} meaning. Like most
other field theories, general relativity is defined by an action
principle, meaning roughly that one integrates some quantity called the
Lagrangian over spacetime to get an ``action'', and finds solutions of
the field equations by looking for minima of this action. But when one
studies field theories on a region with boundary, and imposes boundary
conditions, one often needs to ``add an extra boundary term to the
action'' --- some sort of integral over the boundary --- to get things
to work out right. There is a whole yoga of finding the right boundary
term to go along with the boundary conditions\ldots{} an arcane little
art\ldots{} just one of those things theoretical physicists do, that for
some reason never find their way into the popular press.

But in this case the boundary term is all-important, because
it's\ldots{}

\begin{verbatim}
                      THE CHERN-SIMONS ACTION!
\end{verbatim}

(Yes, I can see people world-wide, peering into their screens, thinking
``Eh? Am I supposed to remember what that is? What's he getting so
excited about now?'' And a few cognoscenti thinking ``Oh, \emph{now} I
get it. All this fussing about boundary conditions was just an elaborate
ruse to get a topological quantum field theory on the event horizon!'')

So far we've been studying general relativity in honest
\(4\)-dimensional spacetime. Chern-Simons theory is a closely related
field theory one dimension down, in \(3\)-dimensional spacetime. As time
passes, the surface of the black hole traces out a \(3\)-dimensional
submanifold of our 4-dimensional spacetime. When we quantize our
classical theory of gravity with our chosen boundary conditions, the
Chern-Simons term will give rise to a ``Chern-Simons field theory''
living on the surface of the black hole. This field theory will describe
the geometry of the surface of the black hole, and how it changes as
time passes.

Well, let's not just talk about it, let's do it! We quantize our theory
using standard spin network techniques \emph{outside} the black hole,
and Chern-Simons theory \emph{on the event horizon}, and here is what we
get. States look like this. Outside the black hole, they are described
by spin networks (see \protect\hyperlink{week110}{``Week 110''}). The
spin network edges are labelled by spins \(j = 0, 1/2, 1,\ldots\). Spin
network edges can puncture the black hole surface, giving it area. Each
spin-\(j\) edge contributes an area proportional to \(\sqrt{j(j+1)}\).
The total area is the sum of these contributions.

Any choice of punctures labelled by spins determines a Hilbert space of
states for Chern-Simons theory. States in this space describe the
intrinsic curvature of the black hole surface. The curvature is zero
except at the punctures, so that \emph{classically}, near any puncture,
you can visualize the surface as a cone with its tip at the puncture.
The curvature is concentrated at the tip. At the \emph{quantum} level,
where the puncture is labelled with a spin \(j\), the curvature at the
puncture is described by a number \(j_z\) ranging from \(-j\) to \(j\)
in integer steps.

Now we ask the following question: ``given a black hole whose area is
within \(\varepsilon\) of \(A\), what is the logarithm of the number of
microstates compatible with this area?'' This should be the entropy of
the black hole. To figure it out, first we work out all the ways to
label punctures by spins \(j\) so that the total area comes within
\(\varepsilon\) of \(A\). For any way to do this, we then count the
allowed ways to pick numbers \(j_z\) describing the intrinsic curvature
of the black hole surface. Then we sum these up and take the logarithm.

That's roughly what we do, anyway, and for black holes much bigger than
the Planck scale we find that the entropy is proportional to the area.
How does this compare with the result of Bekenstein and Hawking,
described in \protect\hyperlink{week111}{``Week 111''}? Remember, they
computed that \[S = A/4\] where \(S\) is the entropy and \(A\) is the
area, measured in units where \(c = \hbar = G = k = 1\). What we get is
\[S = \frac{\ln 2}{4\pi\gamma\sqrt{3}} A\] To compare these results, you
need to know what that mysterious ``\(\gamma\)'' factor is in the second
equation! It's often called the Immirzi parameter, because many people
learned of it from the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Giorgio Immirzi, ``Quantum gravity and Regge calculus'', in
  \emph{Nucl. Phys. Proc. Suppl.} \textbf{57} (1997) 65--72, preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9701052}{\texttt{gr-qc/9701052}}.
\end{enumerate}

However, it was first discovered by Barbero:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Fernando Barbero, ``Real Ashtekar variables for Lorentzian signature
  space-times'', \emph{Phys. Rev.} \textbf{D51} (1995), 5507--5510,
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9410014}{\texttt{gr-qc/9410014}}.
\end{enumerate}

It's an annoying unavoidable arbitrary dimensionless parameter that
appears in the loop representation, which nobody had noticed before
Barbero. It's still rather mysterious. But it works a bit like this. In
ordinary quantum mechanics we turn the position \(q\) into an operator,
namely multiplication by \(x\), and also turn the momentum \(p\) into an
operator, namely \(-i(d/dx)\). The important thing is the canonical
commutation relations: \(pq-qp=-i\). But we could also get the canonical
commutation relations to hold by defining \[
  \begin{aligned}
    p &= -i \gamma \frac{d}{dx}
  \\q &= \frac{x}{\gamma}
  \end{aligned}
\] since the gammas cancel out! In this case, putting in a \(\gamma\)
factor doesn't affect the physics. One gets ``equivalent representations
of the canonical commutation relations''. In the loop representation,
however, the analogous trick \emph{does} affect the physics ---
different choices of the Immirzi parameter give different physics! For
more details try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Carlo Rovelli and Thomas Thiemann, ``The Immirzi parameter in quantum
  general relativity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9705059}{\texttt{gr-qc/9705059}}.
\end{enumerate}

How does the Immirzi parameter affect the physics? It \emph{determines
the quantization of area}. You may notice how I keep saying ``each
spin-\(j\) edge of a spin network contributes an area proportional to
\(\sqrt{j(j+1)}\) to any surface it punctures''\ldots{} without ever
saying what the constant of proportionality is! Well, the constant is
\[8 \pi \gamma\] Until recently, everyone went around saying the
constant was \(1\). (As for the factor of \(8\pi\), I'm no good at these
things, but apparently at least some people were getting that wrong,
too!) Now Krasnov claims to have gotten these damned factors
straightened out once and for all:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Kirill Krasnov, ``On the constant that fixes the area spectrum in
  canonical quantum gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9709058}{\texttt{gr-qc/9709058}}.
\end{enumerate}

So: it seems we can't determine the constant of proportionality in the
entropy-area relation, because of this arbitrariness in the Immirzi
parameter. But we can, of course, use the Bekenstein-Hawking formula
together with our formula for black hole entropy to determine
\(\gamma\), obtaining \[\gamma = \frac{\ln(2)}{\sqrt{3}\pi}\] This may
seem like cheating, but right now it's the best we can do. All we can
say is this: we have a theory of the microstates of a black hole, which
predicts that entropy is proportional to area for largish black holes,
and which taken together with the Bekenstein-Hawking calculation allows
us to determine the Immirzi parameter.

What do the funny constants in the formula
\[S = \frac{\ln 2}{4\pi\gamma\sqrt{3}} A\] mean? It's actually simple.
The states that contribute most to the entropy of a black hole are those
where nearly all spin network edges puncturing its surface are labelled
by spin \(1/2\). Each spin-\(1/2\) puncture can have either
\(j_z = 1/2\) or \(j_z = -1/2\), so it contributes \(\ln(2)\) to the
entropy. On the other hand, each spin-\(1/2\) edge contributes
\(4\pi\gamma\sqrt{3}\) to the area of the black hole. Just to be
dramatic, we can call \(\ln 2\) the ``quantum of entropy'' since it's
the entropy (or information) contained in a single bit. Similarly, we
can call \(4\pi\gamma\sqrt{3}\) the ``quantum of area'' since it's the
area contributed by a spin-\(1/2\) edge. These terms are a bit
misleading since neither entropy nor area need come in \emph{integral}
multiples of this minimal amount. But anyway, we have
\[S = \frac{\text{quantum of entropy}}{\text{quantum of area}}) A\] What
next? Well, one thing is to try to use these ideas to study Hawking
radiation. That's hard, because we don't understand \emph{Hamiltonians}
very well in quantum gravity, but Krasnov has made some progress\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Kirill Krasnov, ``Quantum geometry and thermal radiation from black
  holes'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9710006}{\texttt{gr-qc/9710006}}.
\end{enumerate}

Let me just quote the abstract:

\begin{quote}
``A quantum mechanical description of black hole states proposed
recently within the approach known as loop quantum gravity is used to
study the radiation spectrum of a Schwarzschild black hole. We assume
the existence of a Hamiltonian operator causing transitions between
different quantum states of the black hole and use Fermi's golden rule
to find the emission line intensities. Under certain assumptions on the
Hamiltonian we find that, although the emission spectrum consists of
distinct lines, the curve enveloping the spectrum is close to the Planck
thermal distribution with temperature given by the thermodynamical
temperature of the black hole as defined by the derivative of the
entropy with respect to the black hole mass. We discuss possible
implications of this result for the issue of the Immirzi
\(\gamma\)-ambiguity in loop quantum gravity.''
\end{quote}

This is interesting, because Bekenstein and Mukhanov have recently noted
that if the area of a quantum black hole is quantized in \emph{evenly
spaced steps}, there will be large deviations from the Planck
distribution of thermal radiation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Jacob D. Bekenstein and V. F. Mukhanov, ``Spectroscopy of the quantum
  black hole'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9505012}{\texttt{gr-qc/9505012}}.
\end{enumerate}

However, in the loop representation the area is not quantized in evenly
spaced steps: the area \(A\) can be any sum of quantities like
\(8\pi\gamma\sqrt{j(j+1)}\), and such sums become very densely packed
for large \(A\).

Let me conclude with a few technical comments about how Chern-Simons
theory shows up here. For a long time I've been studying the ``ladder of
dimensions'' relating field theories in dimensions 2, 3, and 4, in part
because this gives some clues as to how \(n\)-categories are related to
topological quantum field theory, and in part because it relates quantum
gravity in spacetime dimension 4, which is mysterious, to Chern-Simons
theory in spacetime dimension 3, which is well-understood. It's neat
that one can now use this ladder to study black hole entropy. It's worth
comparing Carlip's calculation of black hole entropy in spacetime
dimension 3 using a \(2\)-dimensional field theory (the
Wess-Zumino-Witten model) on the surface traced out by the black hole
event horizon --- see \protect\hyperlink{week41}{``Week 41''}. Both the
theories we use and those Carlip uses, are all part of the same big
ladder of theories! Something interesting is going on here.

But there's a twist in our calculation which really took me by surprise.
We do not use \(\mathrm{SU}(2)\) Chern-Simons theory on the black hole
surface, we use \(\mathrm{U}(1)\) Chern-Simons theory! The reason is
simple. The boundary conditions we use, which say the black hole surface
is ``marginally outer trapped'', also say that its extrinsic curvature
is zero. Thus the curvature tensor reduces, at the black hole surface,
to the intrinsic curvature. Curvature on a \(3\)-dimensional space is
\(\mathfrak{so}(3)\)-valued, but the intrinsic curvature on the surface
S is \(\mathfrak{so}(2)\)-valued. Since
\(\mathfrak{so}(3) = \mathfrak{su}(2)\), general relativity has a lot to
do with \(\mathrm{SU}(2)\) gauge theory. But since
\(\mathfrak{so}(2) = \mathfrak{u}(1)\), the field theory on the black
hole surface can be thought of as a \(\mathrm{U}(1)\) gauge theory.

(Experts will know that \(\mathrm{U}(1)\) is a subgroup of
\(\mathrm{SU}(2)\) and this is why we look at all values of \(j_z\)
going from \(-j\) to \(j\): we are decomposing representations of
\(\mathrm{SU}(2)\) into representations of this \(\mathrm{U}(1)\)
subgroup.)

Now \(\mathrm{U}(1)\) Chern-Simons theory is a lot less exciting than
\(\mathrm{SU}(2)\) Chern-Simons theory so mathematically this is a bit
of a disappointment. But \(\mathrm{U}(1)\) Chern-Simons theory is not
utterly boring. When we are studying \(\mathrm{U}(1)\) Chern-Simons
theory on a punctured surface, we are studying flat \(\mathrm{U}(1)\)
connections modulo gauge transformations. The space of these is called a
``Jacobian variety''. When we quantize \(\mathrm{U}(1)\) Chern-Simons
theory using geometric quantization, we are looking for holomorphic
sections of a certain line bundle on this Jacobian variety. These are
called ``theta functions''. Theta functions have been intensively
studied by string theorists and number theorists, who use them do all
sorts of wonderful things beyond my ken. All I know about theta
functions can be found in the beginning of the following two books:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Jun-ichi Igusa, \emph{Theta Functions}, Springer-Verlag, Berlin, 1972.
\item
  David Mumford, \emph{Tata Lectures on Theta}, 3 volumes, Birkhauser,
  Boston, 1983--1991.
\end{enumerate}

Theta functions are nice, so it's fun to see them describing states of a
quantum black hole!
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This week I'd like to talk about ``spin foams''. People have already
thought a lot about using spin networks to describe the quantum geometry
of \(3\)-dimensional space at a given time. This is great for
kinematical aspects of quantum gravity, but not so good for dynamics.
For dynamics, it would be nice to have a description of the quantum
geometry of 4-dimensional \emph{spacetime}. That's where spin foams come
in.

If we use spin networks to describe the geometry of space at the Planck
scale, how might we describe spacetime? Well, space is supposed to be a
kind of slice of spacetime, so let's recall what a spin network is, and
see what it could be a slice of.

First of all, spin network is a graph: a bunch of vertices connected by
edges. What gives a graph when you slice it? Foam! Consider the soap
suds you get while washing the dishes. If we idealize it as a bunch of
2-dimensional surfaces meeting along edges, and imagine intersecting it
with a plane, we see that the result is typically a graph.

Topologists call this sort of space a ``2-dimensional complex''. It's a
generalization of a graph because we can form it by starting with a
bunch of ``vertices'', then connecting these with a bunch of ``edges''
to obtain a graph, and then taking a bunch of \(2\)-dimensional discs or
``faces'' and attaching them along their boundaries to this graph.
Mathematically, there's no reason to stop in dimension 2. Topologists
are interested in complexes of all dimensions. However,
\(2\)-dimensional complexes have been given special attention, thanks to
a number of famous unsolved problems involving them. A great place to
learn about them is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  C. Hog-Angeloni, W. Metzler, and A. Sieradski, \emph{Two-dimensional
  Homotopy and Combinatorial Group Theory}, London Mathematical Society
  Lecture Note Series \textbf{197}, Cambridge U. Press, Cambridge, 1993.
\end{enumerate}

However, a spin network is not \emph{merely} a graph: it's a graph with
edges labelled by irreducible representations of some symmetry group and
vertices labelled by intertwiners. If you don't know what this means,
don't panic! If we take our symmetry group to be \(\mathrm{SU}(2)\),
things simplify tremendously. If we take our graph to have 4 edges
meeting at every vertex, things simplify even more. In this case, all we
need to do is label each vertex and each edge with a number
\(j = 0, 1/2, 1, 3/2,\ldots\) called a ``spin''.

In this special case, we can get our spin network as a slice of a
2-dimensional complex with faces and edges labelled by spins. Such a
thing looks a bit like a foam of soap bubbles with edges and faces
labelled by spins --- hence the term ``spin foam''! More generally, a
spin foam is a \(2\)-dimensional complex with faces labelled by
irreducible representations of some group and edges labelled by
intertwining operators. When we slice a spin foam, each of its faces
gives a spin network edge, and each of its edges gives a spin network
vertex.

Actually, if you've ever looked carefully at soap suds, you'll know that
generically 3 faces meet along each edge. Spin foams like this are
important for quantum gravity in 3 spacetime dimensions. In 4 spacetime
dimensions it seems especially interesting to use spin foams of a
different sort, with 4 faces meeting along each edge. When we slice one
of these, we get a spin network with 4 edges meeting at each vertex.

What's so interesting about spin foams with 4 faces meeting along each
edge? Well, suppose we take a \(4\)-dimensional manifold representing
spacetime and triangulate it --- that is, chop it up into
\(4\)-simplices, the 4-dimensional analogs of tetrahedra. We get a mess
of \(4\)-simplices, which have tetrahedra as faces, which in turn have
triangles as faces.

Now we can form a spin foam with one vertex in the middle of each
4-simplex, one edge intersecting each tetrahedron, and one face
intersecting each triangle. This trick is called ``Poincare duality'':
each \(d\)-dimensional piece of our spin foam intersects a
\((4-d)\)-dimensional piece of our triangulation. Since each tetrahedron
in our triangulated manifold has 4 triangular faces, our spin foam will
dually have 4 faces meeting at each edge. Since each \(4\)-simplex has 5
tetrahedra and 10 triangles, each spin foam vertex will have 5 edges and
10 faces meeting at it.

This seems to be a particularly interesting sort of spin foam for
quantum gravity in 4 dimensions: a spin foam dual to a triangulation of
spacetime. If we slice such a spin foam, we generically get a spin
network dual to a triangulation of space!

I discussed Barbieri's work on such spin networks in
\protect\hyperlink{week110}{``Week 110''}. A spin network like this has
a nice interpretation as a ``3-dimensional quantum geometry'', that is,
a quantum state of the geometry of space. Each spin network edge
labelled by spin \(j\) gives an area proportional to \(\sqrt{j(j+1)}\)
to the triangle it intersects. There's also a formula for the volume of
each tetrahedron, involving the spin on the corresponding spin network
vertex, together with the spins on the 4 spin network edges that meet
there.

It would be nice to have a similar geometrical interpretation of spin
foams dual to triangulations of spacetime. Some recent steps towards
this can be found in the following papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  John Barrett and Louis Crane, ``Relativistic spin networks and quantum
  gravity'', 9 pages, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9709028}{\texttt{gr-qc/9709028}}.
\item
  John Baez, ``Spin foam models'', 39 pages, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9709052}{\texttt{gr-qc/9709052}} or
  in Postscript form as \texttt{http://math.ucr.edu/home/baez/foam.ps}
\end{enumerate}

Perhaps I can be forgiven some personal history here. Michael
Reisenberger has been pushing the idea of spin foams (though not the
terminology) for quite a while\ldots{} see for example his paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Michael Reisenberger, ``Worldsheet formulations of gauge theories and
  gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9412035}{\texttt{gr-qc/9412035}}.
\end{enumerate}

More recently, Carlo Rovelli and he gave a heuristic derivation of a
spin foam approach to quantum gravity starting with the so-called
canonical quantization approach:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Michael Reisenberger and Carlo Rovelli, `\,``Sum over surfaces'' form
  of loop quantum gravity', \emph{Phys. Rev.} \textbf{D56} (1997),
  3490---3508, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9612035}{\texttt{gr-qc/9612035}}.
\end{enumerate}

I started giving talks about spin foams in the spring of this year.
Following the ideas of Reisenberger and Rovelli, I was trying to
persuade everyone to think of spin foams as higher-dimensional analogs
of Feynman diagrams.

Mathematically, a Feynman diagram is just a graph with edges labelled by
representations of some group. But physically, a Feynman diagram
describes a \emph{process} in which a bunch of particles interact. Its
edges correspond to the worldlines traced out by some particles as time
passes, while its vertices represent interactions. Different quantum
field theories use Feynman diagrams with different kinds of vertices.
For any Feynman diagram in our theory, we want to compute a number
called an ``amplitude''. The absolute value squared of this amplitude
gives the probability that the process in question will occur.

We calculate this amplitude by computing a number for each for each edge
and each vertex and multiplying all these numbers together. The numbers
for edges are called ``propagators'' --- they describe the amplitude for
a particle to go from here to there. The numbers for vertices are called
``vertex amplitudes'' --- they describe the amplitude for various
interactions to occur.

Similarly, a spin foam is a \(2\)-dimensional complex with faces
labelled by representations and edges labelled by intertwiners. Each
spin foam face corresponds to the ``worldsheet'' traced out by a spin
network edge as time passes. So, in addition to thinking of a spin foam
as a ``4-dimensional quantum geometry'', we can think of it as a kind of
\emph{process}. The goal of the spin foam approach to quantum gravity is
to compute an amplitude for each spin foam. Following what we know about
Feynman diagrams, it seems reasonable to do it by computing a number for
each spin foam face, edge, and vertex, and then multiplying them all
together.

Quantum gravity is related to a simpler theory called \(BF\) theory,
which has a spin foam formulation known as the Crane-Yetter model ---
see \protect\hyperlink{week36}{``Week 36''},
\protect\hyperlink{week58}{``Week 58''}, and
\protect\hyperlink{week98}{``Week 98''}. There are various clues
suggesting that that the numbers for faces and edges --- the
``propagators'' --- should be computed in quantum gravity just as in the
Crane-Yetter model. The problem is the vertex amplitudes! The vertices
are crucial because these represent the interactions: the places where
something really ``happens''. The number we compute for a vertex
represents the amplitude for the corresponding interaction to occur.
Until we know this, we don't know the dynamics of our theory!

The ``spin foam vertex amplitudes for quantum gravity'' became my holy
grail. Whenever I gave a talk on this stuff I would go around afterwards
asking everyone if they could help me figure them out. I would lay out
all the clues I had and beg for assistance\ldots{} or at least a spark
of inspiration. In March I gave a talk a talk at Penn State proposing a
candidate for these vertex amplitudes --- a candidate I no longer
believe in. Afterwards Carlo Rovelli told me about his attempts to work
out something similar with Louis Crane and Lee Smolin\ldots{} attempts
that never quite got anywhere. We had a crack at it together but it
didn't quite gel. In May I asked John Barrett about the vertex
amplitudes at a conference in Warsaw. He said he couldn't guess them. I
couldn't get \emph{anyone} to guess an answer. In June, at a quantum
gravity workshop in Vienna, I asked Roger Penrose a bunch of questions
about spinors, hoping that this might be the key - see
\protect\hyperlink{week109}{``Week 109''}. I learned a lot of
interesting stuff, but I didn't find the holy grail.

I kept on thinking. I started getting some promising ideas, and by the
summer I was hard at work on the problem, calculating furiously. I was
also writing a big fat paper about spin foams: the general formalism,
the relation to triangulations, the relationships to category theory,
and so on. I was very happy with it --- but I didn't want to finish it
until I knew the spin foam vertex amplitudes. That would be the icing on
the cake, I thought.

Then one weekend Louis Crane sent me email saying he and John Barrett
had written a paper proposing a model of quantum gravity. Aaargh! Had
they beat me to the holy grail? I frantically wrote up everything I had
while waiting for Monday, when their paper would appear on the preprint
server \texttt{gr-qc}. On Monday I downloaded it and yes, they had
beaten me. It was a skinny little paper and I absorbed it more or less
instantly. They didn't say a word about spin foams --- they were working
dually with triangulations --- but from my viewpoint, what they had done
was to give a formula for the spin foam vertex amplitudes.

Oh well. When you can't beat 'em, join 'em! I finished up my paper,
explaining how their formula fit in with what I'd written already, and
put it on the the preprint server the following weekend.

What did they do to get their formula? Well, the key trick was not to
use \(\mathrm{SU}(2)\) as the symmetry group, but instead use
\(\mathrm{SU}(2)\times\mathrm{SU}(2)\). This is the double cover of
\(\mathrm{SO}(4)\), the rotation group in 4 dimensions. Following the
idea behind Ashtekar's new variables for general relativity, I was only
using the ``left-handed half'' of this group, that is, one of the
\(\mathrm{SU}(2)\) factors. But the geometry of the \(4\)-simplex, and
its relation to quantum theory, is in some ways more easily understood
using the full \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) symmetry group.

Not surprisingly, an irreducible representation of
\(\mathrm{SU}(2)\times\mathrm{SU}(2)\) is described by a pair of spins
\((j,k)\). The reason is that we can take the spin-\(j\) representation
of the ``left-handed'' \(\mathrm{SU}(2)\) and the spin-\(k\)
representation of the ``right-handed'' \(\mathrm{SU}(2)\) and tensor
them to get an irreducible representation of
\(\mathrm{SU}(2)\times\mathrm{SU}(2)\). If we use
\(\mathrm{SU}(2)\times\mathrm{SU}(2)\) as our group, our spin foams dual
to triangulations will thus have every face and every edge labelled by a
\emph{pair} of spins. However, Barrett and Crane's work suggests that
the only spin foams with nonzero amplitudes are those for which both
spins labelling a face or edge are equal! Thus in a way we are back down
to \(\mathrm{SU}(2)\) --- but we think of it all a bit differently.

I'm tempted to go into detail and explain exactly how the model works,
because it involves a lot of beautiful geometry. But it takes a while,
so I won't. First you need to really grok the phase space of all
possible geometries of the \(4\)-simplex. Then you need to quantize this
phase space, obtaining the ``Hilbert space of a quantum \(4\)-simplex''.
Then you need to note that there's a special linear functional on this
Hilbert space, called the ``Penrose evaluation'' - see
\protect\hyperlink{week110}{``Week 110''}. Putting all this together
gives the vertex amplitudes for quantum gravity\ldots{} we hope.

Anyway, back to my little personal story\ldots.

Though I'd been working on my paper before Barrett and Crane started,
and they finished before me, Michael Reisenberger started one even
earlier and finished even later! Indeed, he has been working on a spin
foam model of quantum gravity for several years now --- see
\protect\hyperlink{week86}{``Week 86''}. He took a purely left-handed
\(\mathrm{SU}(2)\) approach, a bit different what I'd been trying, but
closely related. He told lots of people about it, but unfortunately he's
very slow to publish.

When I heard Barrett and Crane were about to come out with their paper,
I emailed Reisenberger warning him of this. He doesn't like being
scooped any more than I do. Unfortunately I only had his old email
address in Canada, and now he's down in Uruguay, so he never got that
email. Thus Barrett and Crane's paper, followed by mine, came as a a big
shock to him! Luckily, this motivated him to hurry and come out with a
version of his paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Michael Reisenberger, ``A lattice worldsheet sum for 4-d Euclidean
  general relativity'', 50 pages, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9711052}{\texttt{gr-qc/9711052}}.
\end{enumerate}

Let me quote the abstract:

\begin{quote}
``A lattice model for four dimensional Euclidean quantum general
relativity is proposed for a simplicial spacetime. It is shown how this
model can be expressed in terms of a sum over worldsheets of spin
networks, and an interpretation of these worldsheets as spacetime
geometries is given, based on the geometry defined by spin networks in
canonical loop quantized GR. The spacetime geometry has a Planck scale
discreteness which arises''naturally" from the discrete spectrum of
spins of \(\mathrm{SU}(2)\) representations (and not from the use of a
spacetime lattice). The lattice model of the dynamics is a formal
quantization of the classical lattice model of {[}Reisenberger's paper
`A left-handed simplicial action for euclidean general relativity'{]},
which reproduces, in a continuum limit, Euclidean general relativity."
\end{quote}

To wrap up my little history, let me say what's been happening lately.
There is still a lot of puzzlement and mystery concerning these spin
foam models\ldots{} it's far from clear that they really work as hoped
for. We may be doing things a little bit wrong, or we may be on a
completely wrong track. The phase space of the \(4\)-simplex involves
some tricky constraint equations which could kill us if we're not
dealing with them right. Barbieri has suggested a modified version of
Barrett and Crane's approach which may overcome some problems with the
constraints:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Andrea Barbieri, ``Space of the vertices of relativistic spin
  networks'', 2 pages, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9709076}{\texttt{gr-qc/9709076}}.
\end{enumerate}

John Barrett visited me last week and we made some progress on this
issue, but it's still very touchy.

Also, all the work cited above deals with so-called ``Euclidean''
quantum gravity --- that's why it uses the double cover of the rotation
group \(\mathrm{SO}(4)\). For ``Lorentzian'' quantum gravity we'd need
instead to use the double cover of the Lorentz group
\(\mathrm{SO}(3,1)\). This group is isomorphic to
\(\mathrm{SL}(2,\mathbb{C})\). As explained in
\protect\hyperlink{week109}{``Week 109''}, the finite-dimensional
irreducible representations of \(\mathrm{SL}(2,\mathbb{C})\) are also
described by pairs of spins, so the Lorentzian theory should be similar
to the Euclidean theory. However, most work so far has dealt with the
Euclidean case; this needs to be addressed.

Finally, Crane has written a bit more about the geometrical significance
of his work with Barrett:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Louis Crane, ``On the interpretation of relativistic spin networks and
  the balanced state sum'', 4 pages, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9710108}{\texttt{gr-qc/9710108}}.
\end{enumerate}

Next week I'll talk about other developments in the loop representation
of quantum gravity, some arising from Thiemann's work on the Hamiltonian
constraint. After that, I think I want to talk about something
completely different, like homotopy theory. Lately I've been trying to
make ``This Week's Finds'' very elementary and readable --- relatively
speaking, I mean --- but I'm getting in the mood for writing in a more
technical and incomprehensible manner, and homotopy theory is an ideal
subject for that sort of writing.
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Classes have started! But I just flew back yesterday from the Joint
Mathematics Meetings in Baltimore --- the big annual conference
organized by the AMS, the MAA, SIAM, and other societies. Over 4000
mathematicians could be seen wandering in clumps about the glitzy harbor
area and surrounding crime-ridden slums, arguing about abstractions,
largely oblivious to the world around them. Everyone ate the obligatory
crab cakes for which Baltimore is justly famous. Some of us drank a bit
too much beer, too.

Witten gave a plenary talk on ``M-theory'', which was great fun even
though he didn't actually say what M-theory is. Steve Sawin and I ran a
session on quantum gravity and low-dimensional topology, so I'll say a
bit about what went on there. There was also a nice session on homotopy
theory in honor of J. Michael Boardman. I'll talk about that and various
other things next week.

A lot of the buzz in our session concerned the new ``spin foam''
approach to quantum gravity which I discussed in
\protect\hyperlink{week113}{``Week 113''}. The big questions are: how do
you test this approach without impractical computer simulations? Lee
Smolin's paper below suggests one way. Should you only sum over spin
foams that are dual to a particular triangulation of spacetime, or
should you sum over all spin foams that fit in a particular
\(4\)-dimensional spacetime manifold, or should you sum over \emph{all}
spin foams? There was a lot of argument about this. In addition to the
question of what is physically appropriate, there's the mathematical
problem of avoiding divergent infinite sums. Perhaps the sum required to
answer any truly physical question only involves finitely many spin
foams --- that's what I hope. Finally, should the time evolution
operators constructed using spin foams be thought of as describing true
time evolution, or merely the projection onto the kernel of the
Hamiltonian constraint? While it sounds a bit technical, this question
is crucial for the interpretation of the theory; it's part of what they
call ``the problem of time''.

Carlo Rovelli spoke about how spin foams arise in canonical quantum
gravity, while John Barrett and Louis Crane discussed them in the
context of discretized path integrals for quantum gravity, also known as
state sum models. As in the more traditional ``Regge calculus''
approach, these models start by chopping spacetime into simplices. The
biggest difference is that now \emph{areas of triangles} play a more
important role than lengths of edges. But Barrett, Crane and others are
starting to explore the relationships:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  John W. Barrett, Martin Rocek, Ruth M. Williams, ``A note on area
  variables in Regge calculus'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9710056}{\texttt{gr-qc/9710056}}.
\item
  Jarmo Makela, ``Variation of area variables in Regge calculus'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9801022}{\texttt{gr-qc/9801022}}.
\end{enumerate}

Also, there's been some progress on extracting Einstein's equation for
general relativity as a classical limit of the Barrett-Crane state sum
model. Let me quote the abstract of this paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Louis Crane and David N. Yetter, ``On the classical limit of the
  balanced state sum'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9712087}{\texttt{gr-qc/9712087}}.
\end{enumerate}

\begin{quote}
``The purpose of this note is to make several advances in the
interpretation of the balanced state sum model by Barrett and Crane in
\href{https://arxiv.org/abs/gr-qc/9709028}{\texttt{gr-qc/9709028}} as a
quantum theory of gravity. First, we outline a shortcoming of the
definition of the model pointed out to us by Barrett and Baez in private
communication, and explain how to correct it. Second, we show that the
classical limit of our state sum reproduces the Einstein-Hilbert
lagrangian whenever the term in the state sum to which it is applied has
a geometrical interpretation. Next we outline a program to demonstrate
that the classical limit of the state sum is in fact dominated by terms
with geometrical meaning. This uses in an essential way the alteration
we have made to the model in order to fix the shortcoming discussed in
the first section. Finally, we make a brief discussion of the Minkowski
signature version of the model.''
\end{quote}

Lee Smolin talked about his ideas for relating spin foam models to
string theory. He has a new paper on this, so I'll just quote the
abstract:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Lee Smolin, ``Strings as perturbations of evolving spin-networks'',
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9801022}{\texttt{hep-th/9801022}}.
\end{enumerate}

\begin{quote}
``A connection between non-perturbative formulations of quantum gravity
and perturbative string theory is exhibited, based on a formulation of
the non-perturbative dynamics due to Markopoulou. In this formulation
the dynamics of spin network states and their generalizations is
described in terms of histories which have discrete analogues of the
causal structure and many fingered time of Lorentzian spacetimes.
Perturbations of these histories turn out to be described in terms of
spin systems defined on \(2\)-dimensional timelike surfaces embedded in
the discrete spacetime. When the history has a classical limit which is
Minkowski spacetime, the action of the perturbation theory is given to
leading order by the spacetime area of the surface, as in bosonic string
theory. This map between a non-perturbative formulation of quantum
gravity and a 1+1 dimensional theory generalizes to a large class of
theories in which the group \(\mathrm{SU}(2)\) is extended to any
quantum group or supergroup. It is argued that a necessary condition for
the non-perturbative theory to have a good classical limit is that the
resulting 1+1 dimensional theory defines a consistent and stable
perturbative string theory.''
\end{quote}

Fotini Markopolou spoke about her recent work with Smolin on formulating
spin foam models in a manifestly local, causal way.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Fotini Markopoulou and Lee Smolin, ``Quantum geometry with intrinsic
  local causality'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9712067}{\texttt{gr-qc/9712067}}.
\end{enumerate}

\begin{quote}
``The space of states and operators for a large class of background
independent theories of quantum spacetime dynamics is defined. The
\(\mathrm{SU}(2)\) spin networks of quantum general relativity are
replaced by labelled compact two-dimensional surfaces. The space of
states of the theory is the direct sum of the spaces of invariant
tensors of a quantum group \(G_q\) over all compact (finite genus)
oriented 2-surfaces. The dynamics is background independent and locally
causal. The dynamics constructs histories with discrete features of
spacetime geometry such as causal structure and multifingered time. For
\(\mathrm{SU}(2)\) the theory satisfies the Bekenstein bound and the
holographic hypothesis is recast in this formalism.''
\end{quote}

The main technical idea in this paper is to work with ``thickened'' or
``framed'' spin networks, which amounts to replacing graphs by solid
handlebodies. One expects this ``framing'' business to be important for
quantum gravity with nonzero cosmological constant. This framing
business also appears in the \(q\)-deformed version of Barrett and
Crane's model and in my ``abstract'' version of their model, which
assumes no background spacetime manifold. Markopoulou and Smolin don't
specify a choice of dynamics; instead, they describe a \emph{class} of
theories which has my model as a special case, though their approach to
causality is better suited to Lorentzian theories, while mine is
Euclidean.

As I've often noted, spin foams are about spacetime geometry, or
dynamics, while spin networks are a way of describing the geometry of
space, or kinematics. Kinematics is always easier than dynamics, so the
spin network approach to the quantum geometry of space has been much
better worked out than the new spin foam stuff. Abhay Ashtekar gave an
overview of these kinematical issues in his talk on ``quantum Riemannian
geometry'', and Kirill Krasnov described how our understanding of these
already allows us to compute the entropy of black holes (see
\protect\hyperlink{week112}{``Week 112''}). Here it's worth mentioning
that the second part of Ashtekar's paper with Jerzy Lewandowski is
finally out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Abhay Ashtekar and Jerzy Lewandowski, ``Quantum theory of geometry II:
  volume operators'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9711031}{\texttt{gr-qc/9711031}}.
\end{enumerate}

\begin{quote}
``A functional calculus on the space of (generalized) connections was
recently introduced without any reference to a background metric. It is
used to continue the exploration of the quantum Riemannian geometry.
Operators corresponding to volume of three-dimensional regions are
regularized rigorously. It is shown that there are two natural
regularization schemes, each of which leads to a well-defined operator.
Both operators can be completely specified by giving their action on
states labelled by graphs. The two final results are closely related but
differ from one another in that one of the operators is sensitive to the
differential structure of graphs at their vertices while the second is
sensitive only to the topological characteristics. (The second operator
was first introduced by Rovelli and Smolin and De Pietri and Rovelli
using a somewhat different framework.) The difference between the two
operators can be attributed directly to the standard quantization
ambiguity. Underlying assumptions and subtleties of regularization
procedures are discussed in detail in both cases because volume
operators play an important role in the current discussions of quantum
dynamics.''
\end{quote}

Before spin foam ideas came along, the basic strategy in the loop
representation of quantum gravity was to start with general relativity
on a smooth manifold and try to quantize it using the ``canonical
quantization'' approach. Here the most important and difficult thing is
to implement the ``Hamiltonian constraint'' as an operator on the
Hilbert space of kinematical states, so you can write down the
Wheeler-deWitt equation, which is, quite roughly speaking, the quantum
gravity analog of Schrodinger's equation. (For a summary of this
approach, try \protect\hyperlink{week43}{``Week 43''}.)

The most careful attempt to do this so far is the work of Thiemann:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Thomas Thiemann, ``Quantum spin dynamics (QSD)'', preprint available
  as \href{https://arxiv.org/abs/gr-qc/9606089}{\texttt{gr-qc/9606089}}.

  ``Quantum spin dynamics (QSD) II'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9606090}{\texttt{gr-qc/9606090}}.

  ``QSD III: Quantum constraint algebra and physical scalar product in
  quantum general relativity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9705017}{\texttt{gr-qc/9705017}}.

  ``QSD IV: 2+1 Euclidean quantum gravity as a model to test 3+1
  Lorentzian quantum gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9705018}{\texttt{gr-qc/9705018}}.

  ``QSD V: Quantum gravity as the natural regulator of matter quantum
  field theories'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9705019}{\texttt{gr-qc/9705019}}.

  ``QSD VI: Quantum Poincare algebra and a quantum positivity of energy
  theorem for canonical quantum gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9705020}{\texttt{gr-qc/9705020}}

  ``Kinematical Hilbert spaces for fermionic and Higgs quantum field
  theories'',
  \href{https://arxiv.org/abs/gr-qc/9705021}{\texttt{gr-qc/9705021}}
\end{enumerate}

If everything worked as smoothly as possible, the Hamiltonian constraint
would satisfy nice commutation relations with the other constraints of
the theory, giving a representation of something called the ``Dirac
algebra''. However, as Don Marolf explained in his talk, this doesn't
really happen, at least in a large class of approaches including
Thiemann's:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Jerzy Lewandowski and Donald Marolf, ``Loop constraints: A habitat and
  their algebra'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9710016}{\texttt{gr-qc/9710016}}.
\item
  Rodolfo Gambini, Jerzy Lewandowski, Donald Marolf, and Jorge Pullin,
  ``On the consistency of the constraint algebra in spin network quantum
  gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9710018}{\texttt{gr-qc/9710018}}.
\end{enumerate}

This is very worrisome\ldots{} as everything concerning quantum gravity
always is. Personally these results make me want to spend less time on
the Hamiltonian constraint, especially to the extent that it assumes a
the old picture of spacetime as a smooth manifold, and more time on
approaches that start with a discrete picture of spacetime. However, the
only way to make serious progress is for different people to push on
different fronts simultaneously.

There were a lot of other interesting talks, but since I'm concentrating
on quantum gravity here I won't describe the ones that were mainly about
topology. I'll wrap up by mentioning Steve Carlip's talk on spacetime
foam. He gave a nice illustration to how hard it is to ``sum over
topologies'' by arguing that this sum diverges for negative values of
the cosmological constant. He has a paper out on this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Steven Carlip, ``Spacetime foam and the cosmological constant'',
  \emph{Phys. Rev.~Lett.} \textbf{79} (1997) 4071--4074, preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9708026}{\texttt{gr-qc/9708026}}.
\end{enumerate}

Again, I'll quote the abstract:

\begin{quote}
``In the saddle point approximation, the Euclidean path integral for
quantum gravity closely resembles a thermodynamic partition function,
with the cosmological constant \(\Lambda\) playing the role of
temperature and the `density of topologies' acting as an effective
density of states. For \(\Lambda < 0\), the density of topologies grows
superexponentially, and the sum over topologies diverges. In
thermodynamics, such a divergence can signal the existence of a maximum
temperature. The same may be true in quantum gravity: the effective
cosmological constant may be driven to zero by a rapid rise in the
density of topologies.''
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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These days I've been trying to learn more homotopy theory. James Dolan
got me interested in it by explaining how it offers many important clues
to \(n\)-category theory. Ever since, we've been trying to understand
what the homotopy theorists have been up to for the last few decades.
Since trying to explain something is often the best way to learn it,
I'll talk about this stuff for several Weeks to come.

Before plunging in, though, I'd like mention yet another novel by Greg
Egan:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Greg Egan, \emph{Diaspora}, Orion Books, 1997.
\end{enumerate}

The main character of this book, Yatima, is a piece of software\ldots{}
and a mathematician. The tale begins in 2975 with ver birth as an
``orphan'', a citizen of the polis born of no parents, its mind seed
chosen randomly by the conceptory. Yatima learns mathematics in a
virtual landscape called the Truth Mines. To quote (with a few small
modifications):

\begin{quote}
The luminous object buried in the cavern floor broadcast the definition
of a topological space: a set of points, grouped into `open subsets'
which specified how the points were connected to one another --- without
appealing to notions like `distance' or `dimension'. Short of a raw set
with no structure at all, this was about as basic as you could get: the
common ancestor of virtually every entity worth of the name `space',
however exotic. A single tunnel led into the cavern, providing the link
to the necessary prior concepts, and half a dozen tunnels led out,
slanting gently `down' into the bedrock, pursuing various implications
of the definition. Suppose \(T\) is a topological space\ldots{} then
what follows? These routes were paved with small gemstones, each one
broadcasting an intermediate result on the way to a theorem.

Every tunnel in the Mines was built from the steps of a watertight
proof; every theorem, however deeply buried, could be traced back to
every one of its assumptions. And to pin down exactly what was meant by
a `proof', every field of mathematics used its own collection of formal
systems: sets of axioms, definitions, and rules of deduction, along with
the specialised vocabulary needed to state theorems and conjectures
precisely.

{[}\ldots.{]}

The library was full of the ways past miners had fleshed out the
theorems, and Yatima could have had those details grafted in alongside
the raw data, granting ver the archived understanding of thousands of
Konishi citizens who'd travelled this route before. The right
mind-grafts would have enabled ver effortlessly to catch up with all the
living miners who were pushing the coal face ever deeper in their own
inspired directions\ldots{} at the cost of making ver, mathematically
speaking, little more than a patchwork clone of them, capable only of
following in their shadow.

If ve ever wanted to be a miner in vis own right --- making and testing
vis own conjectures at the coal face, like Gauss and Euler, Riemann and
Levi-Civita, deRham and Cartan, Radiya and Blanca - then Yatima knew
there were no shortcuts, no alternatives to exploring the Mines first
hand. Ve couldn't hope to strike out in a fresh direction, a route no
one had ever chosen before, without a new take on the old results. Only
once ve'd constructed vis own map of the Mines --- idiosyncratically
crumpled and stained, adorned and annotated like no one else's --- could
ve begin to guess where the next rich vein of undiscovered truths lay
buried.
\end{quote}

The tale ends in a universe 267,904,176,383,054 duality transformations
away from ours, at the end of a long quest. What does Yatima do then?
Keep studying math! ``It would be a long, hard journey to the coal face,
but this time there would be no distractions.''

I won't give away any more of the plot. Suffice it to say that this is
hard science fiction --- readers in search of carefully drawn characters
may be disappointed, but those who enjoy virtual reality, wormholes, and
philosophy should have a rollicking good ride. I must admit to being
biased in its favor, since it refers to a textbook I wrote. A science
fiction writer who actually knows the Gauss-Bonnet theorem! We should be
very grateful.

Okay, enough fun --- it's time for homotopy theory. Actually homotopy
theory is \emph{tremendously} fun, but it takes quite a bit of
persistence to come anywhere close to the coal face. The original
problems motivating the subject are easy to state. Let's call a
topological space simply a ``space'', and call a continuous function
between these simply a ``map''. Two maps \(f,g\colon X\to Y\) are
``homotopic'' if one can be continuously deformed to the other, or in
other words, if there is a ``homotopy'' between them: a continuous
function \(F\colon[0,1]\times X\to Y\) with \[F(0,x) = f(x)\] and
\[F(1,x) = g(x).\] Also, two spaces \(X\) and \(Y\) are ``homotopy
equivalent'' if there are functions \(f\colon X\to Y\) and
\(g\colon Y\to X\) for which \(fg\) and \(gf\) are homotopic to the
identity. Thus, for example, a circle, an annulus, and a solid torus are
all homotopy equivalent.

Homotopy theorists want to classify spaces up to homotopy equivalence.
And given two spaces \(X\) and \(Y\), they want to understand the set
\([X,Y]\) of homotopy classes of maps from \(X\) to \(Y\). However,
these are very hard problems! To solve them, one needs high-powered
machinery.

There are two roughly two sides to homotopy theory: building machines,
and using them to do computations. Of course these are fundamentally
inseparable, but people usually tend to prefer either one or the other
activity. Since I am a mathematical physicist, always on the lookout for
more tools for my own work, I'm more interested in the nice shiny
machines homotopy theorists have built than in the terrifying uses to
which they are put.

What follows will strongly reflect this bias: I'll concentrate on a
bunch of elegant concepts lying on the interface between homotopy theory
and category theory. This realm could be called ``homotopical algebra''.
Ideas from this realm can be applied, not only to topology, but to many
other realms. Indeed, two of its most famous practitioners, James
Stasheff and Graeme Segal, have spent the last decade or so using it in
string theory! I'll eventually try to say a bit about how that works,
too.

Okay\ldots. now I'll start listing concepts and tools, starting with the
more fundamental ones and then working my way up. This will probably
only make sense if you've got plenty of that commodity known as
``mathematical sophistication''. So put on some Coltrane, make yourself
a cafe macchiato, kick back, and read on. If at any point you feel a
certain lack of sophistication, you might want to reread ``The Tale of
\(n\)-Categories'', starting with \protect\hyperlink{week73}{``Week
73''}, where a bunch of the basic terms are defined.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{A.} \emph{Presheaf Categories.} Given a category
\(\mathcal{C}\), a ``presheaf'' on \(\mathcal{C}\) is a contravariant
functor \(F\colon\mathcal{C}\to\mathsf{Set}\). The original example of
this is where \(\mathcal{C}\) is the category whose objects are open
subsets of a topological space \(X\), with a single morphism
\(f\colon U\to V\) whenever the open set \(U\) is contained in the open
set \(V\). For example, there is the presheaf of continuous real-valued
functions, for which \(F(U)\) is the set of all continuous real
functions on \(U\), and for any inclusion \(f\colon U\to V\),
\(F(f)\colon F(V)\to F(U)\) is the ``restriction'' map which assigns to
any continuous function on \(V\) its restriction to \(U\). This is a
great way of studying functions in all neighborhoods of \(X\) at once.

However, I'm bringing up this subject for a different reason, related to
a different kind of example. Suppose that \(\mathcal{C}\) is a category
whose objects are ``shapes'' of some kind, with morphisms
\(f\colon x\to y\) corresponding to ways the shape \(x\) can be included
as a ``piece'' of the shape \(y\). Then a presheaf on \(\mathcal{C}\)
can be thought of as a geometrical structure built by gluing together
these shapes along their common pieces.

For example, suppose we want to describe directed graphs as presheaves.
A directed graph is a bunch of vertices and edges, where the edges have
a direction specified. Since they are made of two ``shapes'', the vertex
and the edge, we'll cook up a little category \(\mathcal{C}\) with two
object, \(V\) and \(E\). There are two ways a vertex can be included as
a piece of an edge, either as its ``source'' or its ``target''. Our
category \(\mathcal{C}\), therefore, has two morphisms,
\(S\colon V\to E\) and \(T\colon V\to E\). These are the only morphisms
except for identity morphisms --- which correspond to how the edge is
part of itself, and the vertex is part of itself! Omitting identity
morphisms, our little category \(\mathcal{C}\) looks like this: \[
  \begin{tikzcd}
    V \rar[bend left=30,"S"] \rar[bend right=30,"T"]
    & E
  \end{tikzcd}
\] Now let's work out what a presheaf on \(\mathcal{C}\) is. It's a
contravariant functor \(F\colon\mathcal{C}\to\mathsf{Set}\). What does
this amount to? Well, it amounts to a set \(F(V)\) called the ``set of
vertices'', a set \(F(E)\) called the ``set of edges'', a function
\(F(S)\colon F(E)\to F(V)\) assigning to each edge its source, and a
function \(F(T)\colon F(E)\to F(V)\) assigning to each edge its target.
That's just a directed graph!

Note the role played by contravariance here: if a little shape \(V\) is
included as a piece of a big shape \(E\), our category gets a morphism
\(S\colon V\to E\), and then in our presheaf we get a function
\(F(S)\colon F(E)\to F(V)\) going the \emph{other way}, which describes
how each big shape has a bunch of little shapes as pieces.

Given any category \(\mathcal{C}\) there is actually a \emph{category}
of presheaves on \(\mathcal{C}\). Given presheaves
\(F,G\colon\mathcal{C}\to\mathsf{Set}\), a morphism \(M\) from \(F\) to
\(G\) is just a natural transformation \(M\colon F\Rightarrow G\). This
is beautifully efficient way of saying quite a lot. For example, if
\(\mathcal{C}\) is the little category described above, so that \(F\)
and \(G\) are directed graphs, a natural transformation
\(M\colon F\Rightarrow G\) is the same as:

\begin{itemize}
\tightlist
\item
  a map \(M(V)\) sending each vertex of the graph F to a vertex of the
  graph \(G\),
\end{itemize}

and

\begin{itemize}
\tightlist
\item
  a map \(M(E)\) sending each edge of the graph \(F\) to a edge of the
  graph \(G\),
\end{itemize}

such that

\begin{itemize}
\tightlist
\item
  \(M(V)\) of the source of any edge \(e\) of \(F\) equals the source of
  \(M(E)\) of \(e\),
\end{itemize}

and

\begin{itemize}
\tightlist
\item
  \(M(V)\) of the target of any edge \(e\) of \(F\) equals the target of
  \(M(E)\) of \(e\).
\end{itemize}

Whew! Easier just to say \(M\) is a natural transformation between
functors!

For more on presheaves, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Saunders Mac Lane and Ieke Moerdijk, \emph{Sheaves in Geometry and
  Logic: a First Introduction to Topos Theory}, Springer-Verlag, New
  York, 1992.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{B.} \emph{The Category of Simplices.} This is a very important
example of a category whose objects are shapes --- namely, simplices ---
and whose morphisms correspond to the ways one shape is a piece of
another. The objects of \(\Delta\) are called \(1, 2, 3, \ldots\),
corresponding to the simplex with 1 vertex (the point), the simplex with
2 vertices (the interval), the simplex with 3 vertices (the triangle),
and so on. There are a bunch of ways for an lower-dimensional simplex to
be a face of a higher- dimensional simplex, which give morphisms in
\(\Delta\). More subtly, there are also a bunch of ways to map a
higher-dimensional simplex down into a lower-dimensional simplex, called
``degeneracies''. For example, we can map a tetrahedron down into a
triangle in a way that carries the vertices \(\{0,1,2,3\}\) of the
tetrahedron into the vertices \(\{0,1,2\}\) of the triangle as follows:
\[
  \begin{aligned}
    0&\mapsto0
  \\1&\mapsto0
  \\2&\mapsto1
  \\3&\mapsto2
  \end{aligned}
\] These degeneracies also give morphisms in \(\Delta\).

We could list all the morphisms and the rules for composing them
explicitly, but there is a much slicker way to describe them. Let's use
the old trick of thinking of the natural number \(n\) as being the
totally ordered \(n\)-element set \(\{0,1,2,\ldots,n-1\}\) of all
natural numbers less than \(n\). Thus for example we think of the object
\(4\) in \(\Delta\), the tetrahedron, as the totally ordered set
\(\{0,1,2,3\}\). These correspond to the 4 vertices of the tetrahedron.
Then the morphisms in \(\Delta\) are just all order-preserving maps
between these totally ordered sets. So for example there is a morphism
\(f\colon\{0,1,2,3\}\to\{0,1,2\}\) given by the order-preserving map
with \[
  \begin{aligned}
    f(0)&=0
  \\f(1)&=0
  \\f(2)&=1
  \\f(3)&=2
  \end{aligned}
\] The rule for composing morphisms is obvious: just compose the maps!
Slick, eh?

We can be slicker if we are willing to work with a category
\emph{equivalent} to \(\Delta\) (in the technical sense described in
\protect\hyperlink{week76}{``Week 76''}), namely, the category of
\emph{all} nonempty totally ordered sets, with order-preserving maps as
morphisms. This has a lot more objects than just \(\{0\}\), \(\{0,1\}\),
\(\{0,1,2\}\), etc., but all of its objects are isomorphic to one of
these. In category theory, equivalent categories are the same for all
practical purposes --- so we brazenly call this category \(\Delta\),
too. If we do so, we have following \emph{incredibly} slick description
of the category of simplices: it's just the category of finite nonempty
totally ordered sets!

If you are a true mathematician, you will wonder ``why not use the empty
set, too?'' Generally it's bad to leave out the empty set. It may seem
like ``nothing'', but ``nothing'' is usually very important. Here it
corresponds to the ``empty simplex'', with no vertices! Topologists
often leave this one out, but sometimes regret it later and put it back
in (the buzzword is ``augmentation''). True category theorists, like Mac
Lane, never leave it out. They define \(\Delta\) to be the category of
\emph{all} totally ordered finite sets. For a beautiful introduction to
this approach, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Saunders Mac Lane, \emph{Categories for the Working Mathematician},
  Springer, Berlin, 1988.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{C.} \emph{Simplicial Sets.} Now we put together the previous two
ideas: a ``simplicial set'' is a presheaf on the category of simplices!
In other words, it's a contravariant functor
\(F\colon\Delta\to\mathsf{Set}\). Geometrically, it's basically just a
bunch of simplices stuck together along their faces in an arbitrary way.
We can think of it as a kind of purely combinatorial version of a
``space''. That's one reason simplicial sets are so popular in topology:
they let us study spaces in a truly elegant algebraic context. We can
define all the things topologists love --- homology groups, homotopy
groups (see \protect\hyperlink{week102}{``Week 102''}), and so on ---
while never soiling our hands with open sets, continuous functions and
the like. To see how it's done, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  J. Peter May, \emph{Simplicial Objects in Algebraic Topology}, Van
  Nostrand, Princeton, 1968.
\end{enumerate}

Of course, not everyone prefers the austere joys of algebra to the
earthy pleasures of geometry. Algebraic topologists thrill to
categories, functors and natural transformations, while geometric
topologists like drawing pictures of hideously deformed multi-holed
doughnuts in 4 dimensional space. It's all a matter of taste.
Personally, I like both!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{D.} \emph{Simplicial Objects.} We can generalize the heck out of
the notion of ``simplicial set'' by replacing the category
\(\mathsf{Set}\) with any other category \(\mathcal{C}\). A ``simplical
object in \(\mathcal{C}\)'' is defined to be a contravariant functor
\(F\colon\Delta\to\mathcal{C}\). There's a category whose objects are
such functors and whose morphisms are natural transformations between
them.

So, for example, a ``simplicial abelian group'' is a simplicial object
in the category of abelian groups. Just as we may associate to any set
\(X\) the free abelian group on \(X\), we may associate to any
simplicial set \(X\) the free simplicial abelian group on \(X\). In
fact, it's more than analogy: the latter construction is a spinoff of
the former! There is a functor \[L\colon\mathsf{Set}\to\mathsf{Ab}\]
assigning to any set the free abelian group on that set (see
\protect\hyperlink{week77}{``Week 77''}). Given a simplicial set
\[X\colon\Delta\to\mathsf{Set}\] we may compose with \(L\) to obtain a
simplicial abelian group \[XL\colon\Delta\to\mathsf{Ab}\] (where I'm
writing composition in the funny order that I like to use). This is the
free simplicial abelian group on the simplicial set \(X\)!

Later I'll talk about how to compute the homology groups of a simplicial
abelian group. Combined with the above trick, this will give a very
elegant way to define the homology groups of a simplicial set. Homology
groups are a very popular sort of invariant in algebraic topology; we
will get them with an absolute minimum of sweat.

Just as a good firework show ends with lots of explosions going off
simultaneously, leaving the audience stunned, deafened, and content, I
should end with a blast of abstraction, just for the hell of it. Those
of you who remember my discussion of ``theories'' in
\protect\hyperlink{week53}{``Week 53''} can easily check that there is a
category called the ``theory of abelian groups''. This allows us to
define an ``abelian group object'' in any category with finite limits.
In particular, since the category of simplicial sets has finite limits
(any presheaf category has all limits), we can define an abelian group
object in the category of simplicial sets. And now for a very pretty
result: abelian group objects in the category of simplicial sets are the
same as simplicial abelian groups! In other words, an abstract ``abelian
group'' living in the world of simplicial sets is the same as an
abstract ``simplicial set'' living in the world of abelian groups. I'm
very fond of this kind of ``commutativity of abstraction''.

Finally, I should emphasize that all of this stuff was first explained
to me by James Dolan. I just want to make these explanations available
to everyone.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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While general relativity and the Standard Model of particle physics are
very different in many ways, they have one important thing in common:
both are gauge theories. I will not attempt to explain what a gauge
theory is here. I just want to recommend the following nice book on the
early history of this subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Lochlainn O'Raifeartaigh, \emph{The Dawning of Gauge Theory},
  Princeton U. Press, Princeton, 1997.
\end{enumerate}

This contains the most important early papers on the subject, translated
into English, together with detailed and extremely intelligent
commentary. It starts with Hermann Weyl's 1918 paper ``Gravitation and
Electricity'', in which he proposed a unification of gravity and
electromagnetism. This theory was proven wrong by Einstein in a
one-paragraph remark which appears at the end of Weyl's paper ---
Einstein noticed it would predict atoms of variable size! --- but it
highlighted the common features of general relativity and Maxwell's
equations, which were later generalized to obtain the modern concept of
gauge theory.

It also contains Theodor Kaluza's 1921 paper ``On the Unification
Problem of Physics'' and Oskar Klein's 1926 paper ``Quantum Theory and
Five-Dimensional Relativity''. These began the trend, currently very
popular in string theory, of trying to unify forces by postulating
additional dimensions of spacetime. It's interesting how gauge theory
has historical roots in this seemingly more exotic notion. The original
Kaluza-Klein theory assumed a \(5\)-dimensional spacetime, with the
extra dimension curled into a small circle. Starting with
\(5\)-dimensional general relativity, and using the \(\mathrm{U}(1)\)
symmetry of the circle, they recovered \(4\)-dimensional general
relativity coupled to a \(\mathrm{U}(1)\) gauge theory --- namely,
Maxwell's equations. Unfortunately, their theory also predicted an
unobserved spin-0 particle, which was especially problematic back in the
days before mesons were discovered.

I wasn't familiar with another item in this book, Wolfgang Pauli's
letter to Abraham Pais entitled ``Meson-Nucleon Interactions and
Differential Geometry''. This theory, ``written down July 22--25 1953 in
order to see how it looks'', postulated 2 extra dimensions in the shape
of a small sphere. The letter begins, ``Split a \(6\)-dimensional space
into a \((4+2)\)-dimensional one.'' At the time, meson-nucleon
interactions were believe to have an \(\mathrm{SU}(2)\) symmetry
corresponding to conservation of ``isospin''. Pauli obtained a theory
with this symmetry group using the \(\mathrm{SU}(2)\) symmetry of the
sphere.

Apparently Pauli got a lot of his inspiration from Weyl's 1929 paper
``Electron and Gravitation'', also reprinted in this volume. This
masterpiece did all the following things: it introduced the concept of
2-component spinors (see \protect\hyperlink{week109}{``Week 109''}),
considered the possibility that the laws of physics violate parity and
time reversal symmetry, introduced the tetrad formulation of general
relativity, introduced the notion of a spinor connection, and explicitly
derived electromagnetism from the gauge principle! A famously critical
fellow, Pauli lambasted Weyl's ideas on parity and time reversal
violation --- which are now known to be correct. But even he conceded
the importance of deriving Maxwell's equations from the gauge principle,
saying ``Here I must admit your ability in Physics''. And he
incorporated many of the ideas into his 1953 letter.

An all-around good read for anyone seriously interested in the history
of physics! It's best if you already know some gauge theory.

Now let me continue the tour of homotopy theory I began last week. I was
talking about simplices. Simplices are amphibious creatures, easily
capable of living in two different worlds. On the one hand, we can think
of them as topological spaces, and on the other hand, as purely
algebraic gadgets: objects in the category of finite totally ordered
sets, which we call \(\Delta\). This gives simplices a special role as a
bridge between topology and algebra.

This week I'll begin describing how this works. Next time we'll get into
some of the cool spinoffs. I'll keep up the format of listing tools one
by one:

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{E.} \emph{Geometric realization.} In
\protect\hyperlink{week115}{``Week 115''} I talked about simplicial
sets. A simplicial set is a presheaf on the category \(\Delta\).
Intuitively, it's a purely combinatorial way of describing a bunch of
abstract simplices glued together along their faces. We want a process
that turns such things into actual topological spaces, and also a
process that turns topological spaces back into simplicial sets.

Let's start with the first one. Given a simplicial set \(X\), we can
form a space \(|X|\) called the ``geometric realization'' of \(X\) by
gluing spaces shaped like simplices together in the pattern given by
\(X\). Given a morphism between simplicial sets there's an obvious
continuous map between their geometric realizations, so geometric
realization is actually a functor
\[|\cdot|\colon\mathsf{SimpSet}\to\mathsf{Top}\] from the category of
simplicial sets, \(\mathsf{SimpSet}\), to the category of topological
spaces, \(\mathsf{Top}\).

It's straightforward to fill in the details. But if we want to be slick,
we can define geometric realization using the magic of adjoint functors
--- see below.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{F.} \emph{Singular Simplicial Set.} The basic idea here is that
given a topological space \(X\), its ``singular simplicial set''
\(\mathrm{Sing}(X)\) consists of all possible ways of mapping simplices
into \(X\). This gives a functor
\[\mathsf{Sing}\colon\mathsf{Top}\to\mathsf{SimpSet}.\] We make this
precise as follows.

By thinking of simplices as spaces in the obvious way, we can associate
a space to any object of \(\Delta\), and also a continuous map to any
morphism in \(\Delta\). Thus there's a functor
\[i\colon\Delta\to\mathsf{Top}.\] For any space \(X\) we define
\[\mathrm{Sing}(X)\colon\Delta\to\mathsf{Set}\] by
\[\mathrm{Sing}(X)(-) = \operatorname{Hom}(i(-),X)\] where the blank
slot indicates how \(\mathrm{Sing}(X)\) is waiting to eat a simplex and
spit out the set of all ways of mapping it --- thought of as a space!
--- into the space \(X\). The blank slot also indicates how
\(\mathrm{Sing}(X)\) is waiting to eat a \emph{morphism} between
simplices and spit out a \emph{function} between sets.

Having said what Sing does to \emph{spaces}, what does it do to
\emph{maps}? The same formula works: for any map \(f\colon X\to Y\)
between topological spaces, we define
\[\mathrm{Sing}(f)(-) = \operatorname{Hom}(i(-),f).\] It may take some
head scratching to understand this, but if you work it out, you'll see
it works out fine. If you feel like you are drowning under a tidal wave
of objects, morphisms, categories, and functors, don't worry! Medical
research has determined that people actually grown new neurons when
learning category theory.

In fact, even though it might not seem like it, I'm being incredibly
pedagogical and nurturing. If I were really trying to show off, I would
have compressed the last couple of paragraphs into the following one
line: \[\mathrm{Sing}(--)(-) = \operatorname{Hom}(i(-),--).\] where Sing
becomes a functor using the fact that for any category \(\mathcal{C}\)
there's a functor
\[\operatorname{Hom}\colon\mathcal{C}^{\mathrm{op}}\times\mathcal{C}\to\mathsf{Set}\]
where \(\mathcal{C}^{\mathrm{op}}\) denotes the opposite of
\(\mathcal{C}\), that is, \(\mathcal{C}\) with all its arrows turned
around. (See \protect\hyperlink{week78}{``Week 78''} for an explanation
of this.)

Or I could have said this: form the composite
\[\Delta^{\mathrm{op}}\times\mathsf{Top} \xrightarrow{i\times1} \mathsf{Top}^{\mathrm{op}}\times\mathsf{Top} \xrightarrow{\operatorname{Hom}} \mathsf{Set}\]
and dualize this to obtain
\[\mathrm{Sing}\colon\mathsf{Top}\to\mathsf{SimpSet}.\] These are all
different ways of saying the same thing. Forming the singular simplical
set of a space is not really an ``inverse'' to geometric realization,
since if we take a simplicial set \(X\), form its geometric realization,
and then form the singular simplicial set of that, we get something much
bigger than \(X\). However, if you think about it, there's an obvious
map from \(X\) into \(\mathrm{Sing}(|X|)\). Similarly, if we start with
a topological space \(X\), there's an obvious map from
\(|\mathrm{Sing}(X)|\) down to \(X\).

What this means is that \(\mathrm{Sing}\) is the right adjoint of
\(|\cdot|\), or in other words, \(|\cdot|\) is the left adjoint of
\(\mathrm{Sing}\). Thus if we want to be slick, we can just
\emph{define} geometric realization to be the left adjoint of
\(\mathrm{Sing}\). (See \protect\hyperlink{week77}{``Week
77''}-\protect\hyperlink{week79}{``Week 79''} for an exposition of
adjoint functors.)

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{G.} \emph{Chain Complexes.} Now gird yourself for some utterly
unmotivated definitions! If you've taken a basic course in algebraic
topology, you have probably learned about chain complexes already, and
if you haven't, you probably aren't reading this anymore --- so I'll
just plunge in.

A ``chain complex'' \(C_\bullet\) is a sequence of abelian groups and
``boundary'' homomorphisms like this:
\[C_0 \xleftarrow{d_1} C_1 \xleftarrow{d_2} C_2 \xleftarrow{d_3} C_3 \leftarrow \ldots\]
satisfying the magic equation \[d_i d_{i+1}x=0.\] This equation says
that the image of \(d_{i+1}\) is contained in the kernel of \(d_i\), so
we may define the ``homology groups'' to be the quotients
\[H_i(C_\bullet) = \mathrm{ker}(d_i)/\mathrm{im}(d_{i+1}).\] The study
of this stuff is called ``homological algebra''. You can read about it
in such magisterial tomes as:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Henri Cartan and Samuel Eilenberg, \emph{Homological Algebra},
  Princeton University Press, 1956.
\end{enumerate}

or

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Saunders Mac Lane, \emph{Homology}, Springer-Verlag, Berlin, 1995.
\end{enumerate}

But it you want something a bit more user-friendly, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Joseph J. Rotman, \emph{An Introduction to Homological Algebra},
  Academic Press, New York, 1979.
\end{enumerate}

The main reason chain complexes are interesting is that they are similar
to topological spaces, but simpler. In ``singular homology theory'', we
use a certain functor to convert topological spaces into chain
complexes, thus reducing topology problems to simpler algebra problems.
This is usually one of the first things people study when they study
algebraic topology. In sections G. and H. below, I'll remind you how
this goes.

Though singular homology is very useful, not everybody gets around to
learning the deep reason why! In fact, chain complexes are really just
another way of talking about a certain especially simple class of
topological spaces, called ``products of Eilenberg-MacLane spaces of
abelian groups''. In such spaces, topological phenomena in different
dimensions interact in a particularly trivial way. Singular homology
thus amounts to neglecting the subtler interactions between topology in
different dimensions. This is what makes it so easy to work with --- yet
ultimately so limited.

Before I keep rambling on I should describe the category of chain
complexes, which I'll call \(\mathsf{Chain}\). The objects are just
chain complexes, and given two of them, say \(C\) and \(C'\), a morphism
\(f\colon C\to C'\) is a sequence of group homomorphisms
\[f_i\colon C_i\to C'_i\] making the following big diagram commute: \[
  \begin{tikzcd}
    C_0 \dar[swap,"f_0"]
    & C_1 \lar[swap,"d_1"] \dar[swap,"f_1"]
    & C_2 \lar[swap,"d_2"] \dar[swap,"f_2"]
    & C_3 \lar[swap,"d_3"] \dar[swap,"f_3"]
    & \ldots \lar
  \\C'_0
    & C'_1 \lar[swap,"d'_1"]
    & C'_2 \lar[swap,"d'_2"]
    & C'_3 \lar[swap,"d'_3"]
    & \ldots \lar
  \end{tikzcd}
\]

The reason \(\mathsf{Chain}\) gets to be so much like the category
\(\mathsf{Top}\) of topological spaces is that we can define homotopies
between morphisms of chain complexes by copying the definition of
homotopies between continuous maps. First, there is a chain complex
called I that's analogous to the unit interval. It looks like this:
\[\mathbb{Z}\oplus\mathbb{Z} \xleftarrow{d_1} \mathbb{Z} \xleftarrow{d_2} 0 \xleftarrow{d_3} 0 \xleftarrow{d_4} \ldots\]
The only nonzero boundary homomorphism is \(d_1\), which is given by
\[d_1(x) = (x,-x)\] (Why? We take \(I_1 = \mathbb{Z}\) and
\(I_0 = \mathbb{Z}\oplus\mathbb{Z}\) because the interval is built out
of one \(1\)-dimensional thing, namely itself, and two 0-dimensional
things, namely its endpoints. We define \(d_1\) the way we do since the
boundary of an oriented interval consists of two points: its initial
endpoint, which is positively oriented, and its final endpoint, which is
negatively oriented. This remark is bound to be obscure to anyone who
hasn't already mastered the mystical analogies between algebra and
topology that underlie homology theory!)

There is a way to define a ``tensor product'' \(C\otimes C'\) of chain
complexes \(C\) and \(C'\), which is analogous to the product of
topological spaces. And there are morphisms
\[i,j\colon C\to I\otimes C\] analogous to the two maps from a space
into its product with the unit interval: \[
  \begin{gathered}
    i,j\colon X\to[0,1]\times X
  \\i(x) = (0,x), \quad j(x)=(1,x).
  \end{gathered}
\] Using these analogies we can define a ``chain homotopy'' between
chain complex morphisms \(f,g\colon C\to C'\) in a way that's completely
analogous to a homotopy between maps. Namely, it's a morphism
\(F\colon I\otimes C\to C'\) for which the composite
\[C\xrightarrow{i}I\otimes C\xrightarrow{F}C'\] equals \(f\), and the
composite \[C\xrightarrow{j}I\otimes C\xrightarrow{F}C'\] equals \(g\).
Here we are using the basic principle of category theory: when you've
got a good idea, write it out using commutative diagrams and then
generalize the bejeezus out of it!

The nice thing about all this is that a morphism of chain complexes
\(f\colon C\to C'\) gives rise to homomorphisms of homology groups,
\[H_n(f)\colon H_n(C)\to H_n(C').\] In fact, we've got a functor
\[H_n\colon\mathsf{Chain}\to\mathsf{Ab}.\]

And even better, if \(f\colon C\to C'\) and \(g\colon C\to C'\) are
chain homotopic, then \(H_n(f)\) and \(H_n(g)\) are equal. So we say:
``homology is homotopy-invariant''.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{H.} \emph{The Chain Complex of a Simplicial Abelian Group}. Now
let me explain a cool way of getting chain complexes, which goes a long
way towards explaining why they're important. Recall from item D. in
\protect\hyperlink{week115}{``Week 115''} that a simplicial abelian
group is a contravariant functor \(C\colon\Delta\to\mathsf{Ab}\). In
particular, it gives us an abelian group \(C_n\) for each object \(n\)
of \(\Delta\), and also ``face'' homomorphisms
\[\partial_0,\ldots\partial_{n-1}\colon C_n\to C_{n-1}\] coming from all
the ways the simplex with \((n-1)\) vertices can be a face of the
simplex with \(n\) vertices. We can thus can make \(C\) into a chain
complex by defining \(d_n\colon C_n\to C_{n-1}\) as follows:
\[d_n = \sum_i (-1)^i \partial_i.\] The thing to check is that
\[d_n d_{n+1} x = 0.\] The alternating signs make everything cancel out!
In the immortal words of the physicist John Wheeler, ``the boundary of a
boundary is zero''.

Unsurprisingly, this gives a functor from simplicial abelian groups to
chain complexes. Let's call it
\[\mathrm{Ch}\colon\mathsf{SimpAb}\to\mathsf{Chain}\] More surprisingly,
this is an equivalence of categories! I leave you to show this --- if
you give up, look at May's book cited in section C. of
\protect\hyperlink{week115}{``Week 115''}. What this means is that
simplicial abelian groups are just another way of thinking about chain
complexes\ldots{} or vice versa. Thus, if I were being
ultra-sophisticated, I could have skipped the chain complexes and talked
only about simplicial abelian groups! This would have saved time, but
more people know about chain complexes, so I wanted to mention them.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{I.} \emph{Singular Homology.} Okay, now that we have lots of
nice shiny machines, let's hook them up and see what happens! Take the
``singular simplicial set'' functor:
\[\mathrm{Sing}\colon\mathsf{Top}\to\mathsf{SimpSet},\] the ``free
simplicial abelian group on a simplicial set'' functor:
\[L\colon\mathsf{SimpSet}\to\mathsf{SimpAb},\] and the ``chain complex
of a simplicial abelian group'' functor:
\[\mathrm{Ch}\colon\mathsf{SimpAb}\to\mathsf{Chain},\] and compose them!
We get the ``singular chain complex'' functor
\[C\colon\mathsf{Top}\to\mathsf{Chain}\] that takes a topological space
and distills a chain complex out of it. We can then take the homology
groups of our chain complex and get the ``singular homology'' of our
space. Better yet, the functor \(C\colon\mathsf{Top}\to\mathsf{Chain}\)
takes homotopies between maps and sends them to homotopies between
morphisms of chain complexes! It follows that homotopic maps between
spaces give the same homomorphisms between the singular homology groups
of these spaces. Thus homotopy-equivalent spaces will have isomorphic
homology groups\ldots{} so we have gotten our hands on a nice tool for
studying spaces up to homotopy equivalence.

Now that we've got our hands on singular homology, we could easily spend
a long time using it to solve all sorts of interesting problems. I won't
go into that here; you can read about it in all sorts of textbooks,
like:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Marvin J. Greenberg, John R. Harper, \emph{Algebraic Topology: A First
  Course}, Benjamin/Cummings, Reading, Massachusetts, 1981.
\end{enumerate}

or

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  William S. Massey, \emph{Singular Homology Theory}, Springer-Verlag,
  New York, 1980.
\end{enumerate}

which uses cubes rather than simplices.

What I'm trying to emphasize here is that singular homology is a
composite of functors that are interesting in their own right. I'll
explore their uses a bit more deeply next time.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{At a very early age, I made an assumption that a successful
physicist only needs to know elementary mathematics. At a later time, to
my great regret, I realized that this assumption of mine was completely
wrong.} --- Albert Einstein

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week117}{%
\section{February 14, 1998}\label{week117}}

A true physicist loves matter in all its states. The phases we all
learned about in school - solid, liquid, and gas - are just the
beginning of the story! There lots of others: liquid crystal, plasma,
superfluid, and neutronium, for example. Today I want to say a little
about two more phases that people are trying to create: quark-gluon
plasma and strange quark matter. The first almost certainly exists; the
second is a matter of much discussion.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  The E864 Collaboration, ``Search for charged strange quark matter
  produced in 11.5 A GeV/c Au + Pb collisions'', \emph{Phys. Rev.~Lett.}
  \textbf{79} (1997) 3612--3616, preprint available as
  \href{https://arxiv.org/abs/nucl-ex/9706004}{\texttt{nucl-ex/9706004}}.
\end{enumerate}

Last week I went to a talk on the search for strange quark matter by one
of these collaborators, Kenneth Barish. This talk was based on Barish's
work at the E864 experiment at the ``AGS'', the alternating gradient
synchrotron at Brookhaven National Laboratory in Long Island, New York.

What's ``strange quark matter''? Well, first remember from
\protect\hyperlink{week93}{``Week 93''} that in the Standard Model there
are bosonic particles that carry forces:

\begin{longtable}[]{@{}lll@{}}
\toprule
Electromagnetic force & Weak force & Strong force\tabularnewline
\midrule
\endhead
photon & W\textsubscript{+}, W\textsubscript{-}, Z & 8
gluons\tabularnewline
\bottomrule
\end{longtable}

and fermionic particles that constitute matter:

\begin{longtable}[]{@{}llll@{}}
\toprule
\textbf{Leptons} & & \textbf{Quarks} &\tabularnewline
\midrule
\endhead
electron & electron neutrino & down quark & up quark\tabularnewline
muon & muon neutrino & strange quark & charm quark\tabularnewline
tauon & tauon neutrino & bottom quark & top quark\tabularnewline
\bottomrule
\end{longtable}

(There is also the mysterious Higgs boson, which has not yet been seen.)

The quarks and leptons come in 3 generations each. The only quarks in
ordinary matter are the lightest two, those from the first generation:
the up and down. These are the constituents of protons and neutrons,
which are the only stable particles made of quarks. A proton consists of
two ups and a down held together by the strong force, while a neutron
consists of two downs and a up. The up has electric charge \(+2/3\),
while the down has electric charge \(-1/3\). They also interact via the
strong and weak forces.

The other quarks are more massive and decay via the weak interaction
into up and down quarks. Apart from that, however, they are quite
similar. There are lots of short-lived particles made of various
combinations of quarks. All the combinations we've seen so far are of
two basic sorts. There are ``baryons'', which consist of 3 quarks, and
``mesons'', which consist of a quark and an antiquark. Both of these
should be visualized roughly as a sort of bag with the quarks and a
bunch of gluons confined inside.

Why are they confined? Well, I sketched an explanation in
\protect\hyperlink{week94}{``Week 94''}, so you should read that for
more details. For now let's just say the strong force likes to ``stick
together'', so that energy is minimized if it stays concentrated in
small regions, rather than spreading all over the place, like the
electromagnetic field does. Indeed, the strong force may even do
something like this in the absence of quarks, forming short-lived
``glueballs'' consisting solely of gluons and virtual quark-antiquark
pairs. (For more on glueballs, see \protect\hyperlink{week68}{``Week
68''}.)

For reasons I don't really understand, the protons and neutrons in the
nucleus do not coalesce into one big bag of quarks. Even in a neutron
star, the quarks stay confined in their individual little bags. But
calculations suggest that at sufficiently high temperatures or
pressures, ``deconfinement'' should occur. Basically, under these
conditions the baryons and mesons either smash into each other so hard,
or get so severely squashed, that they burst open. The result should be
a soup of free quarks and gluons: a ``quark-gluon plasma''.

To get deconfinement to happen is not easy --- at low pressures, it's
expected to occur at a temperature of 2 trillion Kelvin! According to
the conventional wisdom in cosmology, the last time deconfinement was
prevalent was about 1 microsecond after the big bang! In the E864
experiment, they are accelerating gold nuclei to energies of 11.5 GeV
per nucleon and colliding them with a fixed target made of lead, which
is apparently \emph{not} enough energy to fully achieve deconfinement
--- they believe they are reaching temperatures of about 1 trillion
Kelvin. At CERN they are accelerating lead nuclei to 160 GeV per nuclei
and colliding them with a lead target. They may be getting signs of
deconfinement, but as Jim Carr explained in a recent post to
sci.physics, they're being very cautious about coming out and saying so.
By mid-1999, the folks at Brookhaven hope to get higher energies with
the Relativistic Heavy Ion Collider, which will collide two beams of
gold nuclei head-on at 100 GeV per nucleon\ldots{} see
\protect\hyperlink{week76}{``Week 76''} for more on this.

One of the hoped-for signs of deconfinement is ``strangeness
enhancement''. The lightest quark besides the up and down is the strange
quark, and in the high energies present in a quark gluon plasma, strange
quarks should be formed. Moreover, since Pauli exclusion principle
prevents two identical fermions from being in the same state, it can be
energetically favorable to have strange quarks around, since they can
occupy lower-energy states which are already packed with ups and downs.
They seem to be seeing strangeness enhancement at CERN:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Juergen Eschke, NA35 Collaboration, ``Strangeness enhancement in
  sulphur- nucleus collisions at 200 GeV/N'', preprint available as
  \href{https://arxiv.org/abs/hep-ph/9609242}{\texttt{hep-ph/9609242}}.
\end{enumerate}

As far as I can tell, people are just about as sure that deconfinement
occurs at high temperatures as they would be that tungsten boils at high
temperatures, even if they've never actually seen it happen. A more
speculative possibility is that as quark-gluon plasma cools down it
forms ``strange quark matter'' in the form of ``strangelets'': big bags
of up, down, and strange quarks. This is what they're looking for at
E864. Their experiment would only detect strangelets that live long
enough to get to the detector. When their experiment is running they get
\(10^6\) collisions per second. So far they've set an upper bound of
\(10^{-7}\) charged strangelets per collision, neutral strangelets being
harder to detect and rule out. For more on strangelets, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  E. P. Gilson and R. L. Jaffe, ``Very small strangelets'', \emph{Phys.
  Rev.~Lett.} \textbf{71} (1993) 332--335, preprint available as
  \href{https://arxiv.org/abs/hep-ph/9302270}{\texttt{hep-ph/9302270}}.
\end{enumerate}

Strange quark matter is also of interest in astrophysics. In 1984 Witten
wrote a paper proposing that in the limit of large quark number, strange
quark matter could be more stable than ordinary nuclear matter!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Edward Witten, ``Cosmic separation of phases'', \emph{Phys. Rev.}
  \textbf{D30} (1984) 272--285.
\end{enumerate}

More recently, a calculation of Farhi and Jaffe estimates that in the
limit of large quark number, the energy of strange quark matter is 301
MeV per quark, as compared with 310 Mev/quark for iron-56, which is the
most stable nucleus. This raises the possibility that under suitable
conditions, a neutron star could collapse to become a ``quark star'' or
``strange star''. Let me quote the abstract of the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Dany Page, ``Strange stars: Which is the ground state of QCD at finite
  baryon number?'', in \emph{High Energy Phenomenology} eds.~M. A. Perez
  \& R. Huerta (World Scientific), 1992, pp.~347--356, preprint
  available as
  \href{https://arxiv.org/abs/astro-ph/9602043}{\texttt{astro-ph/9602043}}.
\end{enumerate}

\begin{quote}
Witten's conjecture about strange quark matter (`Strange Matter') being
the ground state of QCD at finite baryon number is presented and stars
made of strange matter (`Strange Stars') are compared to neutron stars.
The only observable way in which a strange star differs from a neutron
star is in its early thermal history and a detailed study of strange
star cooling is reported and compared to neutron star cooling. One
concludes that future detection of thermal radiation from the compact
object produced in the core collapse of SN 1987A could present the first
evidence for strange matter.
\end{quote}

Here are a couple of books on the subject, which unfortunately I've not
been able to get ahold of:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  \emph{Strange Quark Matter in Physics and Astrophysics: Proceedings of
  the International Workshop on Strange Quark Matter in Physics and
  Astrophysics}, ed.~Jes Madsen, North-Holland, Amsterdam, 1991.
\item
  \emph{International Symposium on Strangeness and Quark Matter},
  eds.~Georges Vassiliadis et al, World Scientific, Singapore, 1995.
\end{enumerate}

If anyone out there knows more about the latest theories of strange
quark matter, and can explain them in simple terms, I'd love to hear
about it.

Okay, enough of that.

Now, on with my tour of homotopy theory!

So far I've mainly been talking about simplicial sets. I described a
functor called ``geometric realization'' that turns a simplicial set
into a topological space, and another functor that turns a space into a
simplicial set called its ``singular simplicial set''. I also showed how
to turn a simplicial set into a simplicial abelian group, and how to
turn one of \emph{those} into a chain complex\ldots{} or vice versa.

As you can see, the key is to have lots of functors at your disposal, so
you can take a problem in any given context --- or more precisely, any
given category! --- and move it to other contexts where it may be easier
to solve. Eventually I want to talk about what all these categories
we're using have in common: they are all ``model categories''. Once we
understand that, we'll be able to see more deeply what's going on in all
the games we've been playing.

But first I want to describe a few more important tricks for turning
this into that. Recall from \protect\hyperlink{week115}{``Week 115''}
that there's a category \(\Delta\) whose objects \(0,1,2,\ldots\) are
the simplices, with \(n\) corresponding to the simplex with \(n\)
vertices --- the simplex with \(0\) vertices being the ``empty
simplex''. We can also define \(\Delta\) in a purely algebraic way as
the category of finite totally ordered sets, with \(n\) corresponding to
the totally ordered set \(\{0,1,\ldots,n-1\}\). The morphisms in
\(\Delta\) are then the order-preserving maps. Using this algebraic
definition we can do some cool stuff:

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{J.} \emph{The Nerve of a Category.} This is a trick to turn a
category into a simplicial set. Given a category \(\mathcal{C}\), we
cook up the simplicial set \(\mathrm{Nerve}(\mathcal{C})\) as follows.
The 0-dimensional simplices of \(\mathrm{Nerve}(\mathcal{C})\) are just
the objects of \(\mathcal{C}\), which look like this: \[x\] The
\(1\)-simplices of \(\mathrm{Nerve}(\mathcal{C})\) are just the
morphisms, which look like this: \[x\xrightarrow{f}y\] The
\(2\)-simplices of \(\mathrm{Nerve}(\mathcal{C})\) are just the
commutative diagrams that look like this: \[
  \begin{tikzpicture}
    \node (x) at (0,0) {$x$};
    \node (y) at (1,1.7) {$y$};
    \node (z) at (2,0) {$z$};
    \draw[thick] (x) to node[fill=white]{$f$} (y);
    \draw[thick] (x) to node[fill=white]{$h$} (z);
    \draw[thick] (y) to node[fill=white]{$g$} (z);
  \end{tikzpicture}
\] where \(f\colon x\to y\), \(g\colon y\to z\), and \(h\colon x\to z\).
And so on. In general, the \(n\)-simplices of
\(\mathrm{Nerve}(\mathcal{C})\) are just the commutative diagrams in
\(\mathcal{C}\) that look like \(n\)-simplices!

When I first heard of this idea I cracked up. It seemed like an insane
sort of joke. Turning a category into a kind of geometrical object built
of simplices? What nerve! What use could this possibly be?

Well, for an application of this idea to computer science, see
\protect\hyperlink{week70}{``Week 70''}. We'll soon see lots of
applications within topology. But first, let me give a slick abstract
description of this ``nerve'' process that turns categories into
simplicial sets. It's really a functor
\[\mathrm{Nerve}\colon\mathsf{Cat}\to\mathsf{SimpSet}\] going from the
category of categories to the category of simplicial sets.

First, a remark on \(\mathsf{Cat}\). This has categories as objects and
functors as morphisms. Since the ``category of all categories'' is a bit
creepy, we really want the objects of \(\mathsf{Cat}\) to be all the
``small'' categories, i.e., those having a mere \emph{set} of objects.
This prevents Russell's paradox from raising its ugly head and
disturbing our fun and games.

Next, note that any partially ordered set can be thought of as a
category whose objects are just the elements of our set, and where we
say there's a single morphism from \(x\) to \(y\) if \(x\leqslant y\).
Composition of morphisms works out automatically, thanks to the
transitivity of ``less than or equal to''. We thus obtain a functor
\[i\colon\Delta\to\mathsf{Cat}\] taking each finite totally ordered set
to its corresponding category, and each order-preserving map to its
corresponding functor.

Now we can copy the trick we played in section F of
\protect\hyperlink{week116}{``Week 116''}. For any category
\(\mathcal{C}\) we define the simplicial set
\(\mathrm{Nerve}(\mathcal{C})\) by
\[\mathrm{Nerve}(\mathcal{C})(-) = \operatorname{Hom}(i(-),\mathcal{C})\]
Think about it! If you put the simplex \(n\) in the blank slot, we get
\(\operatorname{Hom}(i(n),\mathcal{C})\), which is the set of all
functors from that simplex, \emph{regarded as a category}, to the
category \(\mathcal{C}\). This is just the set of all diagrams in
\(\mathcal{C}\) shaped like the simplex \(n\), as desired!

We can say all this even more slickly as follows: take
\[\Delta^{\mathrm{op}}\times\mathsf{Cat} \xrightarrow{i\times1} \mathsf{Cat}^{\mathrm{op}}\times\mathsf{Cat} \xrightarrow{\operatorname{Hom}} \mathsf{Set}\]
and dualize it to obtain
\[\mathrm{Nerve}\colon\mathsf{Cat}\to\mathsf{SimpSet}.\]

I should also point out that topologists usually do this stuff with the
topologist's version of \(\Delta\), which does not include the ``empty
simplex''.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{K.} \emph{The Classifying Space of Category.} If compose our new
functor \[\mathrm{Nerve}\colon\mathsf{Cat}\to\mathsf{SimpSet}\] with the
``geometric realization'' functor
\[|\cdot|\colon\mathsf{SimpSet}\to\mathsf{Top}\] defined in section E,
we get a way to turn a category into a space, called its ``classifying
space''. This trick was first used by Graeme Segal, the homotopy
theorist who later became the guru of conformal field theory. He
invented this trick in the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Graeme B. Segal, ``Classifying spaces and spectral sequences'',
  \emph{Publ. Math. Inst. des Haut. Etudes Scient.} \textbf{34} (1968),
  105--112.
\end{enumerate}

As it turns out, every reasonable space is the classifying space of some
category! More precisely, every space that's the geometric realization
of some simplicial set is homeomorphic to the classifying space of some
category. To see this, suppose the space \(X\) is the geometric
realization of the simplicial set \(S\). Take the set of all simplices
in \(S\) and partially order them by saying \(x\leqslant y\) if \(x\) is
a face of \(y\). Here by ``face'' I don't mean just mean a face of one
dimension less than that of \(y\); I'm allowing faces of any dimension
less than or equal to that of \(y\). We obtain a partially ordered set.
Now think of this as a category, \(\mathcal{C}\). Then
\(\mathrm{Nerve}(\mathcal{C})\) is the ``barycentric subdivision'' of
\(S\). In other words, it's a new simplicial set formed by chopping up
the simplices of \(S\) into smaller pieces by putting a new vertex in
the center of each one. It follows that the geometric realization of
\(\mathrm{Nerve}(\mathcal{C})\) is homeomorphic to that of \(S\).

There are lots of interesting special sorts of categories, like
groupoids, or monoids, or groups (see \protect\hyperlink{week74}{``Week
74''}). These give special cases of the ``classifying space''
construction, some of which were actually discovered before the general
case. I'll talk about some of these more next week, since they are very
important in topology.

Also sometimes people take categories that they happen to be interested
in, which may have no obvious relation to topology, and study them by
studying their classifying spaces. This gives surprising ways to apply
topology to all sorts of subjects. A good example is ``algebraic
K-theory'', where we start with some sort of category of modules over a
ring.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{L.} \emph{\(\Delta\) as the Free Monoidal Category on a Monoid
Object.} Recall that a ``monoid'' is a set with a product and a unit
element satisfying associativity and the left and right unit laws.
Categorifying this notion, we obtain the concept of a ``monoidal
category'': a category \(\mathcal{C}\) with a product and a unit object
satisfying the same laws. A nice example of a monoidal category is the
category \(\mathsf{Set}\) with its usual cartesian product, or the
category \(\mathsf{Vect}\) with its usual tensor product. We usually
call the product in a monoidal category the ``tensor product''.

Now, the ``microcosm principle'' says that algebraic gadgets often like
to live inside categorified versions of themselves. It's a bit like the
``homunculus theory'', where I have a little copy of myself sitting in
my head who looks out through my eyes and thinks all my thoughts for me.
But unlike that theory, it's true!

For example, we can define a ``monoid object'' in any monoidal category.
Given a monoidal category \(A\) with tensor product \(\otimes\) and unit
object \(1\), we define a monoid object \(a\) in \(A\) to be an object
equipped with a ``product'' \[m\colon a\otimes a\to a\] and a ``unit''
\[i\colon 1\to a\] which satisfy associativity and the left and right
unit laws (written out as commutative diagrams). A monoid object in
\(\mathsf{Set}\) is just a monoid, but a monoid object in
\(\mathsf{Vect}\) is an algebra, and I gave some very different examples
of monoid objects in \protect\hyperlink{week89}{``Week 89''}.

Now let's consider the ``free monoidal category on a monoid object''. In
other words, consider a monoidal category \(A\) with a monoid object
\(a\) in it, and assume that \(A\) has no objects and no morphisms, and
satisfies no equations, other than those required by the definitions of
``monoidal category'' and ``monoid object''.

Thus the only objects of \(A\) are the unit object together with \(a\)
and its tensor powers. Similarly, all the morphism of \(A\) are built up
by composing and tensoring the morphisms \(m\) and \(i\). So \(A\) looks
like this: \[
  \begin{tikzcd}[column sep=large]
    1
      \rar["i" description]
    & a
      \rar[shift left=5,"1\otimes i" description]
      \rar["i\otimes1" description]
    & a\otimes a
      \lar[shift left=5,"m" description]
      \rar[shift left=10,"1\otimes1\otimes i" description]
      \rar[shift left=5,"1\otimes i\otimes1" description]
      \rar["i\otimes1\otimes1" description]
    & a\otimes a\otimes a \quad \ldots
      \lar[shift left=5,"m\otimes1" description]
      \lar[shift left=10,"1\otimes m" description]
  \end{tikzcd}
\] Here I haven't drawn all the morphisms, just enough so that every
morphism in \(A\) is a composite of morphisms of this sort.

What is this category? It's just \(\Delta\)! The \(n\)th tensor power of
a corresponds to the simplex with \(n\) vertices. The morphisms going to
the right describe the ways the simplex with n vertices can be a face of
the simplex with \(n+1\) vertices. The morphisms going to the left
correspond to ``degeneracies'' --- ways of squashing a simplex with
\(n+1\) vertices down into one with \(n\) vertices.

So: in addition to its other descriptions, we can define \(\Delta\) as
the free monoidal category on a monoid object! Next time we'll see how
this is fundamental to homological algebra.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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Like many people of a certain age, as a youth my interest in mathematics
and physics was fed by the Scientific American, especially Martin
Gardner's wonderful column. Since then the magazine seems to have gone
downhill. For me, the last straw was a silly article on the ``death of
proof'' in mathematics, written by someone wholly unfamiliar with the
subject. The author of that article later wrote a book proclaiming the
``end of science'', and went on to manage a successful chain of funeral
homes.

Recently, however, I was pleased to find a terse rebuttal of this
fin-de-siecle pessimism in an article appearing in --- none other than
Scientific American!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Michael J. Duff, ``The theory formerly known as strings'',
  \emph{Scientific American} \textbf{278} (February 1998), 64--69.
\end{enumerate}

The article begins:

\begin{quote}
At a time when certain pundits are predicting the End of Science on the
grounds that all the important discoveries have already been made, it is
worth emphasizing that the two main pillars of 20th-century physics,
quantum mechanics and Einstein's general theory of relativity, are
mutually incompatible.
\end{quote}

To declare the end of science at this point, or even of particle physics
(the two are not the same!) would thus be ridiculously premature. It's
true that the quest for a unified theory of all the forces and particles
in nature is experiencing difficulties. On the one hand, particle
accelerators have become very expensive. On the other hand, it's truly
difficult to envision a consistent and elegant formalism subsuming both
general relativity and the Standard Model of particle physics - much
less one that makes new testable predictions. But hey, the course of
true love never did run smooth.

Duff's own vision certainly has its charms. He has long been advocating
the generalization of string theory to a theory of higher-dimensional
``membranes''. Nowadays people call these ``\(p\)-branes'' to keep track
of the dimension of the membrane: a \(0\)-brane is a point particle, a
\(1\)-brane is a string, a \(2\)-brane is a \(2\)-dimensional surface,
and so on.

For a long time, higher-dimensional membrane theories were unpopular,
even among string theorists, because the special tricks that eliminate
infinities in string theory don't seem to work for higher-dimensional
membranes. But lately membranes are all the rage: it seems they show up
in string theory whether or not you put them in from the start! In fact,
they seem to be the key to showing that the 5 different supersymmetric
string theories are really aspects of a single deeper theory ---
sometimes called ``M-theory''.

Now, I don't really understand this stuff at all, but I've been trying
to learn about it lately, so I'll say a bit anyway, in hopes that some
real experts will correct my mistakes. Much of what I'll say comes from
the following nice review article:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  M. J. Duff, ``Supermembranes'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9611203}{\texttt{hep-th/9611203}}
\end{enumerate}

and also the bible of string theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Michael B. Green, John H. Schwarz, and Edward Witten,
  \emph{Superstring Theory}, two volumes, Cambridge U. Press, Cambridge,
  1987.
\end{enumerate}

Let's start with superstring theory. Here the ``super'' refers to the
fact that instead of just strings whose vibrational modes correspond to
bosonic particles, we have strings with extra degrees of freedom
corresponding to fermionic particles. We can actually think of the
superstring as a string wiggling around in a ``superspace'': a kind of
space with extra ``fermionic'' dimensions in addition to the usual
``bosonic'' ones. These extra dimensions are described by coordinates
that anticommute with each other, and commute with the usual bosonic
coordinates (which of course commute with each other). This amounts to
taking the boson/fermion distinction so seriously that we build it into
our description of spacetime from the very start! For more details on
the mathematics of superspace, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Bryce DeWitt, \emph{Supermanifolds}, Cambridge U. Press, Cambridge,
  2nd edition, 1992.
\end{enumerate}

More deeply, ``super'' refers to ``supersymmetry'', a special kind of
symmetry transformation that mixes the bosonic and fermionic
coordinates. We speak of ``\(N = 1\) supersymmetry'' if there is one
fermionic coordinate for each bosonic coordinate, ``\(N = 2\)
supersymmetry'' if there are two, and so on.

Like all nice physical theories, we can in principle derive everything
about our theory of superstrings once we know the formula for the
\emph{action}. For bosonic strings, the action is very simple. As time
passes, a string traces out a \(2\)-dimensional surface in spacetime
called the ``string worldsheet''. The action is just the \emph{area} of
this worldsheet.

For superstring theory, we thus want a formula for the ``super-area'' of
a surface in superspace. And we need this to be invariant under
supersymmetry transformations. Suprisingly, this is only possible if
spacetime has dimension 3, 4, 6, or 10. More precisely, these are the
dimensions where \(N = 1\) supersymmetric string theory makes sense as a
\emph{classical} theory.

Note: these dimensions are just \(2\) more than the dimensions of the
four normed division algebras: the reals, complexes, quaternions and
octonions! This is no coincidence. Robert Helling recently posted a nice
article about this on \texttt{sci.physics.resarch}, which I have
appended to \protect\hyperlink{week104}{``Week 104''}. The basic idea is
that we can describe the vibrations of a string in \(n\)-dimensional
spacetime by a field on the string worldsheet with \(n-2\) components
corresponding to the \(n-2\) directions transverse to the worldsheet. To
get an action that's invariant under supersymmetry, we need some magical
cancellations to occur. It only works when we can think of this field as
taking values in one of the normed division algebras!

This is one of the curious things about superstring theory: the basic
idea is simple, but when you try to get it to work, you run into lots of
obstacles which only disappear in certain special circumstances ---
thanks to a mysterious conspiracy of beautiful mathematical facts. These
``conspiracies'' are probably just indications that we don't understand
the theory as deeply as we should. Right now I'm most interested in the
algebraic aspects of superstring theory --- and especially its
relationships to ``exceptional algebraic structures'' like the
octonions, the Lie group \(\mathrm{E}_8\), and so on. As I learn
superstring theory, I like keeping track of the various ways these
structures show up, like remembering the clues in a mystery novel.

Interestingly, the \emph{quantum} version of superstring theory is more
delicate than the classical version. When I last checked, it only makes
sense in dimension 10. Thus there's something inherently octonionic
about it! For more on this angle, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  E. Corrigan and T. J. Hollowood, ``The exceptional Jordan algebra and
  the superstring'', \emph{Commun. Math. Phys.} \textbf{122} (1989),
  393.
\item
  E. Corrigan and T. J. Hollowood, ``A string construction of a
  commutative nonassociative algebra related to the exceptional Jordan
  algebra'', \emph{Phys. Lett.} \textbf{B203} (1988), 47.
\end{enumerate}

and some more references I'll give later.

There are actually 5 variants of superstring theory in dimension 10, as
I explained in \protect\hyperlink{week72}{``Week 72''}:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  type I superstrings --- these are open strings, not closed loops.
\item
  type IIA superstrings --- closed strings where the left- and
  right-moving fermionic modes have opposite chiralities.
\item
  type IIB superstrings --- closed strings where the left- and
  right-moving fermionic modes have the same chirality.
\item
  \(\mathrm{E}_8\) heterotic superstrings --- closed strings where the
  left-moving modes are purely bosonic, with symmetry group
  \(\mathrm{E}_8\times\mathrm{E}_8\).
\item
  \(\mathrm{Spin}(32)/\mathbb{Z}_2\) heterotic superstrings --- closed
  strings where the left-moving modes are purely bosonic, with symmetry
  group \(\mathrm{Spin}(32)/\mathbb{Z}_2\)
\end{enumerate}

To get \(4\)-dimensional physics out of any of these, we need to think
of our \(10\)-dimensional spacetime as a bundle with a little
\(6\)-dimensional ``Calabi-Yau manifold'' sitting over each point of
good old 4-dimensional spacetime. But there's another step that's very
useful when trying to understand the implications of superstring theory
for ordinary particle physics. This is to look at the low-energy limit.
In this limit, only the lowest-energy vibrational modes of the string
contribute, each mode acting like a different kind of massless particle.
Thus in this limit superstring theory acts like an ordinary quantum
field theory.

What field theory do we get? This is a very important question. The
field theory looks simplest in \(10\)-dimensional Minkowski spacetime;
it gets more complicated when we curl up 6 of the dimensions and think
of it as a \(4\)-dimensional field theory, so let's just talk about the
simple situation.

No matter what superstring theory we start with, the low-energy limit
looks like some form of ``supergravity coupled to super-Yang-Mills
fields''. What's this? Well, supergravity is basically what we get when
we generalize Einstein's equations for general relativity to superspace.
Similarly, super-Yang-Mills theory is the supersymmetric version of the
Yang-Mills equations - which are important in particle physics because
they describe all the forces \emph{except} gravity. So superstring
theory has in it the seeds of general relativity and also the other
forces of nature --- or at least their supersymmetric analogues.

Like superstring theory, super-Yang-Mills theory only works in spacetime
dimensions 3, 4, 6, and 10. (See \protect\hyperlink{week93}{``Week 93''}
for more on this.) Different forms of supergravity make sense in
different dimensions, as explained in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Y. Tanii, ``Introduction to supergravities in diverse dimensions'',
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9802138}{\texttt{hep-th/9802138}}.
\end{enumerate}

In particular highest dimension in which supergravity makes sense is 11
dimensions (where one only has \(N = 1\) supergravity). Note that this
is one more than the favored dimension of superstring theory! This
puzzled people for a long time. Now it seems that M-theory is beginning
to resolve these puzzles. Another interesting discovery is that
11-dimensional supergravity is related to the exceptional Lie group
\(\mathrm{E}_8\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Stephan Melosch and Hermann Nicolai, ``New canonical variables for
  \(d = 11\) supergravity'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9709277}{\texttt{hep-th/9709277}}.
\end{enumerate}

But I'm getting ahead of myself here! Right now I'm talking about the
low-energy limit of \(10\)-dimensional superstring theory. I said it
amounts to ``supergravity coupled to super-Yang-Mills fields'', and now
I'm attempting to flesh that out a bit. So: starting from \(N = 1\)
supergravity in 11 dimensions we can get a theory of supergravity in 10
dimensions simply by requiring that all the fields be constant in one
direction --- a trick called ``dimensional reduction''. This is called
``type IIA supergravity'', because it appears in the low-energy limit of
type IIA superstrings. There are also two other forms of supergravity in
10 dimensions: ``type IIB supergravity'', which appears in the
low-energy limit of type IIB superstrings, and a third form which
appears in the low-energy limit of the type I and heterotic
superstrings. These other two forms of supergravity are chiral --- that
is, they have a built-in ``handedness''.

Now let's turn to higher-dimensional supersymmetric membranes, or
``supermembranes''. Duff summarizes this subject in a chart he calls the
``brane scan''. This chart lists the known \emph{classical} theories of
supersymetric \(p\)-branes. Of course, a \(p\)-brane traces out a
(p+1)-dimensional surface as time passes, so from a spacetime point of
view it's p+1 which is more interesting. But anyway, here's Duff's chart
of which supersymmetric \(p\)-brane theories are possible in which
dimensions d of spacetime:

\begin{longtable}[]{@{}rccccccccccc@{}}
\toprule
\({}_d\diagdown^p\) & \(0\) & \(1\) & \(2\) & \(3\) & \(4\) & \(5\) &
\(6\) & \(7\) & \(8\) & \(9\) & \(10\)\tabularnewline
\midrule
\endhead
\(11\) & & & \checkmark & & & \checkmark & & & & ? &\tabularnewline
\(10\) & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark
& \checkmark & \checkmark & \checkmark & \checkmark & \checkmark
&\tabularnewline
\(9\) & \checkmark & & & & \checkmark & & & & & &\tabularnewline
\(8\) & & & & \checkmark & & & & & & &\tabularnewline
\(7\) & & & \checkmark & & & \checkmark & & & & &\tabularnewline
\(6\) & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark &
\checkmark & & & & &\tabularnewline
\(5\) & \checkmark & & \checkmark & & & & & & & &\tabularnewline
\(4\) & \checkmark & \checkmark & \checkmark & \checkmark & & & & & &
&\tabularnewline
\(3\) & \checkmark & \checkmark & \checkmark & & & & & & &
&\tabularnewline
\(2\) & \checkmark & & & & & & & & & &\tabularnewline
\(1\) & & & & & & & & & & &\tabularnewline
\bottomrule
\end{longtable}

We immediately notice some patterns. First, we see horizontal stripes in
dimensions 3, 4, 6, and 10: all the conceivable \(p\)-brane theories
exist in these dimensions. I don't know why this is true, but it must be
related to the fact that superstring and super-Yang-Mills theories make
sense in these dimensions. Second, there are four special \(p\)-brane
theories:

\begin{itemize}
\tightlist
\item
  the \(2\)-brane in dimension 4
\item
  the \(3\)-brane in dimension 6
\item
  the \(5\)-brane in dimension 10
\item
  the \(2\)-brane in dimension 11
\end{itemize}

which are related to the real numbers, the complex numbers, the
quaternions and the octonions, respectively. Duff refers us to the
following papers for more information on this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  G. Sierra, ``An application of the theories of Jordan algebras and
  Freudenthal triple systems to particles and strings'', \emph{Class.
  Quant. Grav.} \textbf{4} (1987), 227.
\item
  J. M. Evans, ``Supersymmetric Yang-Mills theories and division
  algebras'', \emph{Nucl. Phys.} \textbf{B298} (1988), 92--108.
\end{enumerate}

From these four ``fundamental'' theories of \(p\)-branes in \(d\)
dimensions we can get theories of \((p-k)\)-branes in \(d-k\) dimensions
by dimensional reduction of both the spacetime and the \(p\)-brane. Thus
we see diagonal lines slanting down and to the left starting from these
``fundamental'' theories. Note that these diagonal lines include the
superstring theories in dimensions 3, 4, 6, and 10!

I'll wrap up by saying a bit about how M-theory, superstrings and
supergravity fit together. I've already said that:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  type IIA supergravity in 10 dimensions is the dimensional reduction of
  11-dimensional supergravity; and
\item
  the type IIA superstring has typeIIA supergravity coupled to
  super-Yang-Mills fields as a low-energy limit.
\end{enumerate}

This suggests the presence of a theory in 11 dimensions that fills in
the question mark below: \[
  \begin{tikzpicture}
    \node (tl) at (0,0) {?};
    \node[text width=7em,align=center] (tr) at (5,0) {11-dimensional supergravity};
    \node[text width=7em,align=center] (bl) at (0,-3) {type IIA superstrings};
    \node[text width=7em,align=center] (br) at (5,-3) {type IIA supergravity in 10 dimensions};
    \draw[->] (tl) to node[label=above:{\scriptsize low-energy limit}]{} (tr);
    \draw[->] (bl) to node[label=above:{\scriptsize low-energy limit}]{} (br);
    \draw[->] (tl) to node[text width=4.2em,align=center,fill=white]{\scriptsize dimensional reduction} (bl);
    \draw[->] (tr) to node[text width=4.2em,align=center,fill=white]{\scriptsize dimensional reduction} (br);
  \end{tikzpicture}
\] This conjectured theory is called ``M-theory''. The actual details of
this theory are still rather mysterious, but not surprisingly, it's
related to the theory of supersymmetric \(2\)-branes in 11 dimensions
--- since upon dimensional reduction these give superstrings in 10
dimensions. More surprisingly, it's \emph{also} related to the theory of
\emph{5-branes} in 11 dimensions. The reason is that supergravity in 11
dimensions admits ``soliton'' solutions --- solutions that hold their
shape and don't disperse --- which are shaped like \(5\)-branes. These
are now believed to be yet another shadow of M-theory.

While the picture I'm sketching may seem baroque, it's really just a
small part of a much more elaborate picture that relates all 5
superstring theories to M-theory. But I think I'll stop here! Maybe
later when I know more I can fill in some more details. By the way, I
thank Dan Piponi for pointing out that Scientific American article.

For more on this business, check out the following review articles:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\item
  W. Lerche, ``Recent developments in string theory'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9710246}{\texttt{hep-th/9710246}}.
\item
  John Schwarz, ``The status of string theory'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9711029}{\texttt{hep-th/9711029}}.
\item
  M. J. Duff, ``M-theory (the theory formerly known as strings)'',
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9608117}{\texttt{hep-th/9608117}}.
\end{enumerate}

The first one is especially nice if you're interested in a nontechnical
survey; the other two are more detailed.

Okay. Now, back to my tour of homotopy theory! I had promised to talk
about classifying spaces of groups and monoids, but this post is getting
pretty long, so I'll only talk about something else I promised: the
foundations of homological algebra. So, remember:

As soon as we can squeeze a simplicial set out of something, we have all
sorts of methods for studying it. We can turn the simplicial set into a
space and then use all the methods of topology to study this space. Or
we can turn it into a chain complex and apply homology theory. So it's
very important to have tricks for turning all sorts of gadgets into
simplicial sets: groups, rings, algebras, Lie algebras, you name it! And
here's how\ldots.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{N.} \emph{Simplicial objects from adjunctions.} Remember from
section D of \protect\hyperlink{week115}{``Week 115''} that a
``simplicial object'' in some category is a contravariant functor from
\(\Delta\) to that category. In what follows, I'll take \(\Delta\) to be
the version of the category of simplices that contains the empty
simplex. Topologists don't usually do this, so what I'm calling a
``simplicial object'', they would call an ``augmented simplicial
object''. Oh well.

Concretely, a simplicial object in a category amounts to a bunch of
objects \(x_0, x_1, x_2,\ldots\) together with morphisms like this: \[
  \begin{tikzcd}[column sep=large]
    x_0
    & x_1
      \rar[shift left=5,"i_0" description]
      \lar["d_0" description]
    & x_2
      \rar[shift left=10,"i_1" description]
      \rar[shift left=5,"i_0" description]
      \lar["d_0" description]
      \lar[shift left=5,"d_1" description]
    & x_3\ldots
      \lar["d_0" description]
      \lar[shift left=5,"d_1" description]
      \lar[shift left=10,"d_2" description]
  \end{tikzcd}
\] The morphisms \(d_j\) are called ``face maps'' and the morphisms
\(i_j\) are called ``degeneracies''. They are required to satisfy some
equations which I won't bother writing down here, since you can figure
them out yourself if you read section B of
\protect\hyperlink{week114}{``Week 114''}.

Now, suppose we have an adjunction, that is, a pair of adjoint functors:
\[
  \begin{tikzcd}
    \mathcal{C} \rar[bend left=30,"L"]
    & \mathcal{D} \lar[bend left=30,"R"]
  \end{tikzcd}
\] This means we have natural transformations \[
  \begin{aligned}
    e&\colon LR\Rightarrow 1_{\mathcal{D}}
  \\i&\colon 1_{\mathcal{C}} \Rightarrow RL
  \end{aligned}
\] satisfying a couple of equations, which I again won't write down,
since I explained them in \protect\hyperlink{week79}{``Week 79''} and
\protect\hyperlink{week83}{``Week 83''}.

Then an object \(d\) in the category \(\mathcal{D}\) automatically gives
a simplicial object as follows: \[
  \begin{tikzcd}[column sep=huge]
    d
    & LR(d)
      \rar[shift left=5,"L\cdot i\cdot R" description]
      \lar["e" description]
    & LRLR(d)
      \rar[shift left=10,"LRL\cdot i\cdot R" description]
      \rar[shift left=5,"L\cdot i\cdot RLR" description]
      \lar["e\cdot LR" description]
      \lar[shift left=5,"LR\cdot e" description]
    & LRLRLR(d)
      \lar["e\cdot LRLR" description]
      \lar[shift left=5,"LR\cdot e\cdot LR" description]
      \lar[shift left=10,"LRLR\cdot e" description]
  \end{tikzcd}
\] where \(\cdot\) denotes horizontal composition of functors and
natural transformations.

For example, if \(\mathsf{Gp}\) is the category of abelian groups, we
have an adjunction \[
  \begin{tikzcd}
    \mathsf{Set} \rar[bend left=30,"L"]
    & \mathsf{AbGp} \lar[bend left=30,"R"]
  \end{tikzcd}
\] where \(L\) assigns to each set the free group on that set, and \(R\)
assigns to each group its underlying set. Thus given a group, the above
trick gives us a simplicial object in \(\mathsf{Gp}\) --- or in other
words, a simplicial group. This has an underlying simplicial set, and
from this we can cook up a chain complex as in section H of
\protect\hyperlink{week116}{``Week 116''}. This lets us study groups
using homology theory! One can define the homology (and cohomology) of
lots other algebraic gadgets in exactly the same way.

Note: I didn't explain why the equations in the definition of adjoint
functors --- which I didn't write down --- imply the equations in the
definition of a simplicial object --- which I also didn't write down!

The point is, there's a more conceptual approach to understanding why
this stuff works. Remember from section K of last week that \(\Delta\)
is ``the free monoidal category on a monoid object''. This implies that
whenever we have a monoid object in a monoidal category \(\mathcal{M}\),
we get a monoidal functor \[F\colon\Delta\to\mathcal{M}.\] This gives a
functor \[G\colon\Delta^{\mathrm{op}}\to M^{\mathrm{op}}\] So: a monoid
object in \(\mathcal{M}\) gives a simplicial object in
\(\mathcal{M}^{\mathrm{op}}\).

Actually, if \(\mathcal{M}\) is a monoidal category,
\(\mathcal{M}^{\mathrm{op}}\) becomes one too, with the same tensor
product and unit object. So it's also true that a monoid object in
\(\mathcal{M}^{\mathrm{op}}\) gives a simplicial object in
\(\mathcal{M}\)!

Another name for a monoid object in \(\mathcal{M}^{\mathrm{op}}\) is a
``comonoid object in \(\mathcal{M}\)''. Remember,
\(\mathcal{M}^{\mathrm{op}}\) is just like \(\mathcal{M}\) but with all
the arrows turned around. So if we've got a monoid object in
\(\mathcal{M}^{\mathrm{op}}\), it gives us a similar gadget in
\(\mathcal{M}\), but with all the arrows turned around. More precisely,
a comonoid object in \(\mathcal{M}\) is an object, say \(m\), with
``coproduct'' \[c\colon m\to m\otimes m\] and ``counit''
\[e\colon m\to 1\] morphisms, satisfying ``coassociativity'' and the
left and right ``counit laws''. You get these laws by taking
associativity and the left/right unit laws, writing them out as
commutative diagrams, and turning all the arrows around.

So: a comonoid object in a monoidal category \(\mathcal{M}\) gives a
simplicial object in \(\mathcal{M}\). Now let's see how this is related
to adjoint functors. Suppose we have an adjunction, so we have some
functors \[
  \begin{tikzcd}
    \mathcal{C} \rar[bend left=30,"L"]
    & \mathcal{D} \lar[bend left=30,"R"]
  \end{tikzcd}
\] and natural transformations \[
  \begin{aligned}
    e&\colon LR\Rightarrow 1_{\mathcal{D}}
  \\i&\colon 1_{\mathcal{C}} \Rightarrow RL
  \end{aligned}
\] satisfying the same equations I didn't write before.

Let \(\operatorname{Hom}(\mathcal{C},\mathcal{C})\) be the category
whose objects are functors from \(\mathcal{C}\) to itself and whose
morphisms are natural transformations between such functors. This is a
monoidal category, since we can compose functors from \(\mathcal{C}\) to
itself. In \protect\hyperlink{week92}{``Week 92''} I showed that
\(\operatorname{Hom}(\mathcal{C},\mathcal{C})\) has a monoid object in
it, namely \(RL\). The product for this monoid object is
\[R\cdot e\cdot L\colon RLRL \Rightarrow RL\] and the unit is
\[i\colon 1_{\mathcal{C}} \Rightarrow RL\] Folks often call this sort of
thing a ``monad''.

Similarly, \(\operatorname{Hom}(\mathcal{D},\mathcal{D})\) is a monoidal
category containing a comonoid object, namely \(LR\). The coproduct for
this comonoid object is \[L\cdot i\cdot R\colon LR \Rightarrow LRLR\]
and the counit is \[e\colon LR \Rightarrow 1_{\mathcal{D}}\] People call
this thing a ``comonad''. But what matters here is that we've seen this
comonoid object automatically gives us a simplicial object in
\(\operatorname{Hom}(\mathcal{D},\mathcal{D})\)! If we pick any object
\(d\) of \(\mathcal{D}\), we get a functor
\[\operatorname{Hom}(\mathcal{D},\mathcal{D})\to\mathcal{D}\] by taking
\[\operatorname{Hom}(\mathcal{D},\mathcal{D})\times\mathcal{D}\to \mathcal{D}\]
and plugging in \(d\) in the second argument. This functor lets us push
our simplicial object in \(\operatorname{Hom}(\mathcal{D},\mathcal{D})\)
forwards to a simplicial object in \(\mathcal{D}\). Voila!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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I've been slacking off on This Week's Finds lately because I was busy
getting stuff done at Riverside so that I could visit the Center for
Gravitational Physics and Geometry here at Penn State with a fairly
clean slate. Indeed, sometimes my whole life seems like an endless
series of distractions designed to prevent me from writing This Week's
Finds. However, now I'm here and ready to have some fun\ldots.

Recently I've been trying to learn about grand unified theories, or
``GUTs''. These were popular in the late 1970s and early 1980s, when the
Standard Model of particle interactions had fully come into its own and
people were looking around for a better theory that would unify all the
forces and particles present in that model - in short, everything except
gravity.

The Standard Model works well but it's fairly baroque, so it's natural
to hope for some more elegant theory underlying it. Remember how it
goes:

\begin{longtable}[]{@{}lll@{}}
\caption{Gauge bosons}\tabularnewline
\toprule
Electromagnetic force & Weak force & Strong force\tabularnewline
\midrule
\endfirsthead
\toprule
Electromagnetic force & Weak force & Strong force\tabularnewline
\midrule
\endhead
photon & W\textsubscript{+}, W\textsubscript{-}, Z & 8
gluons\tabularnewline
\bottomrule
\end{longtable}

\begin{longtable}[]{@{}llll@{}}
\caption{Fermions}\tabularnewline
\toprule
\textbf{Leptons} & & \textbf{Quarks} &\tabularnewline
\midrule
\endfirsthead
\toprule
\textbf{Leptons} & & \textbf{Quarks} &\tabularnewline
\midrule
\endhead
electron & electron neutrino & down quark & up quark\tabularnewline
muon & muon neutrino & strange quark & charm quark\tabularnewline
tauon & tauon neutrino & bottom quark & top quark\tabularnewline
\bottomrule
\end{longtable}

\begin{longtable}[]{@{}c@{}}
\caption{Higgs boson (not yet seen)}\tabularnewline
\toprule
?\tabularnewline
\midrule
\endfirsthead
\toprule
?\tabularnewline
\midrule
\endhead
\bottomrule
\end{longtable}

The strong, electromagnetic and weak forces are all described by
Yang-Mills fields, with the gauge group
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\times\mathrm{U}(1)\). In what
follows I'll assume you know the rudiments of gauge theory, or at least
that you can fake it.

\(\mathrm{SU}(3)\) is the gauge group of the strong force, and its 8
generators correspond to the gluons.
\(\mathrm{SU}(2)\times\mathrm{U}(1)\) is the gauge group of the
electroweak force, which unifies electromagnetism and the weak force.
It's \emph{not} true that the generators of \(\mathrm{SU}(2)\)
corresponds to the W\textsubscript{+}, W\textsubscript{-} and Z while
the generator of \(\mathrm{U}(1)\) corresponds to the photon. Instead,
the photon corresponds to the generator of a sneakier \(\mathrm{U}(1)\)
subgroup sitting slantwise inside \(\mathrm{SU}(2)\times\mathrm{U}(1)\);
the basic formula to remember here is: \[Q = I_3 + Y/2\] where \(Q\) is
ordinary electric charge, \(I_3\) is the 3rd component of ``weak
isospin'', i.e.~the generator of \(\mathrm{SU}(2)\) corresponding to the
matrix \[
  \left(
    \begin{array}{cc}
      \frac12&0\\0&-\frac12
    \end{array}
  \right)
\] and \(Y\), ``hypercharge'', is the generator of the \(\mathrm{U}(1)\)
factor. The role of the Higgs particle is to spontaneously break the
\(\mathrm{SU}(2)\times\mathrm{U}(1)\) symmetry, and also to give all the
massive particles their mass. However, I don't want to talk about that
here; I want to focus on the fermions and how they form representations
of the gauge group
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\times\mathrm{U}(1)\), because I
want to talk about how grand unified theories attempt to simplify this
picture --- at the expense of postulating more Higgs bosons.

The fermions come in 3 generations, as indicated in the chart above. I
want to explain how the fermions in a given generation are grouped into
irreducible representations of
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\times\mathrm{U}(1)\). All the
generations work the same way, so I'll just talk about the first
generation. Also, every fermion has a corresponding antiparticle, but
this just transforms according to the dual representation, so I will
ignore the antiparticles here.

Before I tell you how it works, I should remind you that all the
fermions are, in addition to being representations of
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\times\mathrm{U}(1)\), also
spin-\(1/2\) particles. The massive fermions --- the quarks and the
electron, muon and tauon --- are Dirac spinors, meaning that they can
spin either way along any axis. The massless fermions --- the neutrinos
--- are Weyl spinors, meaning that they always spin counterclockwise
along their axis of motion. This makes sense because, being massless,
they move at the speed of light, so everyone can agree on their axis of
motion! So the massive fermions have two helicity states, which we'll
refer to as ``left-handed'' and ``right-handed'', while the neutrinos
only come in a ``left-handed'' form.

(Here I am discussing the Standard Model in its classic form. I'm
ignoring any modifications needed to deal with a possible nonzero
neutrino mass. For more on Standard Model, neutrino mass and different
kinds of spinors, see \protect\hyperlink{week93}{``Week 93''}.)

Okay. The Standard Model lumps the left-handed neutrino and the
left-handed electron into a single irreducible representation of
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\times\mathrm{U}(1)\):
\[(\nu_L,\mathrm{e}_L) \qquad\qquad (1,2,-1)\] This \(2\)-dimensional
representation is called \((1,2,-1)\), meaning that it's the tensor
product of the \(1\)-dimensional trivial rep of \(\mathrm{SU}(3)\), the
2-dimensional fundamental rep of \(\mathrm{SU}(2)\), and the
\(1\)-dimensional rep of \(\mathrm{U}(1)\) with hypercharge \(-1\).

Similarly, the left-handed up and down quarks fit together as:
\[(\mathrm{u}_L, \mathrm{u}_L, \mathrm{u}_L, \mathrm{d}_L, \mathrm{d}_L, \mathrm{d}_L) \qquad\qquad (3,2,1/3)\]
Here I'm writing both quarks 3 times since they also come in 3 color
states. In other words, this \(6\)-dimensional representation is the
tensor product of the \(3\)-dimensional fundamental rep of
\(\mathrm{SU}(3)\), the \(2\)-dimensional fundamental rep of
\(\mathrm{SU}(2)\), and the \(1\)-dimensional rep of \(\mathrm{U}(1)\)
with hypercharge \(1/3\). That's why we call this rep \((3,2,1/3)\).

(If you are familiar with the irreducible representations of
\(\mathrm{U}(1)\) you will know that they are usually parametrized by
integers. Here we are using integers divided by \(3\). The reason is
that people defined the charge of the electron to be \(-1\) before
quarks were discovered, at which point it turned out that the smallest
unit of charge was \(1/3\) as big as had been previously believed.)

The right-handed electron stands alone in a \(1\)-dimensional rep, since
there is no right-handed neutrino:
\[\mathrm{e}_R \qquad\qquad (1,1,-2).\] Similarly, the right-handed up
quark stands alone in a \(3\)-dimensional rep, as does the right-handed
down quark:
\[(\mathrm{u}_R,\mathrm{u}_R,\mathrm{u}_R) \qquad\qquad (3,1,4/3)\]
\[(\mathrm{d}_R,\mathrm{d}_R,\mathrm{d}_R) \qquad\qquad (3,1,-2/3)\]
That's it. If you want to study this stuff, try using the formula
\[Q = I_3 + Y/2\] to figure out the charges of all these particles. For
example, since the right-handed electron transforms in the trivial rep
of \(\mathrm{SU}(2)\), it has \(I_3 = 0\), and if you look up there
you'll see that it has \(Y = -2\). This means that its electric charge
is \(Q = -1\), as we already knew.

Anyway, we obviously have a bit of a mess on our hands! The Standard
Model is full of tantalizing patterns, but annoyingly complicated. The
idea of grand unified theories is to find a pattern lurking in all this
data by fitting the group
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\times\mathrm{U}(1)\) into a larger
group. The smallest-dimensional ``simple'' Lie group that works is
\(\mathrm{SU}(5)\). Here ``simple'' is a technical term that eliminates,
for example, groups that are products of other groups --- these aren't
very ``unified''. Georgi and Glashow came up with their ``minimal''
\(\mathrm{SU}(5)\) grand unified theory in 1975. The idea is to stick
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\) into \(\mathrm{SU}(5)\) in the
obvious diagonal way, leaving just enough room to cram in the
\(\mathrm{U}(1)\) if you are clever.

Now if you add up the dimensions of all the representations above you
get \(2 + 6 + 1 + 3 + 3 = 15\). This means we need to find a
\(15\)-dimensional representation of \(\mathrm{SU}(5)\) to fit all these
particles. There are various choices, but only one that really works
when you take all the physics into account. For a nice simple account of
the detective work needed to figure this out, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Edward Witten, ``Grand unification with and without supersymmetry'',
  in \emph{Introduction to supersymmetry in particle and nuclear
  physics}, edited by O. Castanos, A. Frank, L. Urrutia, Plenum Press,
  1984.
\end{enumerate}

I'll just give the answer. First we take the \(5\)-dimensional
fundamental representation of \(\mathrm{SU}(5)\) and pack fermions in as
follows:
\[(\mathrm{d}_R, \mathrm{d}_R, \mathrm{d}_R, \mathrm{e}^+_R, \bar{\nu}_R) \qquad\qquad 5 = (3,1,-2/3) + (1,2,-1)\]

Here \(\mathrm{e}^+_R\) is the right-handed positron and \(\bar{\nu}_R\)
is the right-handed antineutrino --- curiously, we need to pack some
antiparticles in with particles to get things to work out right. Note
that the first 3 particles in the above list, the 3 states of the
right-handed down quark, transform according to the fundamental rep of
\(\mathrm{SU}(3)\) and the trivial rep of \(\mathrm{SU}(2)\), while the
remaining two transform according to the trivial rep of
\(\mathrm{SU}(3)\) and the fundamental rep of \(\mathrm{SU}(2)\). That's
how it has to be, given how we stuffed
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\) into \(\mathrm{SU}(5)\).

Note also that the charges of the 5 particles on this list add up to
zero. That's also how it has to be, since the generators of
\(\mathrm{SU}(5)\) are traceless. Note that the down quark must have
charge \(-1/3\) for this to work! In a sense, the \(\mathrm{SU}(5)\)
model says that quarks \emph{must} have charges in units of \(1/3\),
because they come in 3 different colors! This is pretty cool.

Then we take the \(10\)-dimensional representation of \(\mathrm{SU}(5)\)
given by the 2nd exterior power of the fundamental representation ---
i.e., antisymmetric \(5\times5\) matrices - and pack the rest of the
fermions in like this: \[
  \left(
    \begin{array}{ccccc}
      0 & \bar{\mathrm{u}}_L & \bar{\mathrm{u}}_L & \mathrm{u}_L & \mathrm{d}_L
    \\-\bar{\mathrm{u}_L} & 0 & \bar{\mathrm{u}_L} & \mathrm{u}_L & \mathrm{d}_L
    \\-\bar{\mathrm{u}_L} & -\bar{\mathrm{u}_L} & 0 & \mathrm{u}_L & \mathrm{d}_L
    \\-\mathrm{u}_L & -\mathrm{u}_L & -\mathrm{u}_L & 0 & \mathrm{e}^+_L
    \\-\mathrm{d}_L & -\mathrm{u}_L & -\mathrm{d}_L & \mathrm{e}^+_L & 0
    \end{array}
  \right)
  \qquad\qquad
  10 = (3,2,1/3) + (1,1,2) + (3,1,-4/3)
\] Here the \(\bar{\mathrm{u}}\) is the antiparticle of the up quark ---
again we've needed to use some antiparticles. However, you can easily
check that these two representations of \(\mathrm{SU}(5)\) together with
their duals account for all the fermions and their antiparticles.

The \(\mathrm{SU}(5)\) theory has lots of nice features. As I already
noted, it explains why the up and down quarks have charges \(2/3\) and
\(-1/3\), respectively. It also gives a pretty good prediction of
something called the Weinberg angle, which is related to the ratio of
the masses of the W and Z bosons. It also makes testable new
predictions! Most notably, since it allows quarks to turn into leptons,
it predicts that protons can decay --- with a halflife of somewhere
around \(10^{29}\) or \(10^{30}\) years. So people set off to look for
proton decay\ldots.

However, even when the \(\mathrm{SU}(5)\) model was first proposed, it
was regarded as slightly inelegant, because it didn't unify all the
fermions of a given generation in a \emph{single} irreducible
representation (together with its dual, for antiparticles). This is one
reason why people began exploring still larger gauge groups. In 1975
Georgi, and independently Fritzsch and Minkowski, proposed a model with
gauge group \(\mathrm{SO}(10)\). You can stuff \(\mathrm{SU}(5)\) into
\(\mathrm{SO}(10)\) as a subgroup in such a way that the 5- and
10-dimensional representations of \(\mathrm{SU}(5)\) listed above both
fit into a single \(16\)-dimensional rep of \(\mathrm{SO}(10)\), namely
the chiral spinor rep. Yes, 16, not 15 --- that wasn't a typo! The
\(\mathrm{SO}(10)\) theory predicts that in addition to the 15 states
listed above there is a 16th, corresponding to a right-handed neutrino!
I'm not sure yet how the recent experiments indicating a nonzero
neutrino mass fit into this business, but it's interesting.

Somewhere around this time, people noticed something interesting about
these groups we've been playing with. They all fit into the
``\(\mathrm{E}\) series''!

I don't have the energy to explain Dynkin diagrams and the
\(\mathrm{ABCDEFG}\) classification of simple Lie groups here, but
luckily I've already done that, so you can just look at
\protect\hyperlink{week62}{``Week 62''} ---
\protect\hyperlink{week65}{``Week 65''} to learn about that. The point
is, there is an infinite series of simple Lie groups associated to
rotations in real vector spaces --- the \(\mathrm{SO}(n)\) groups, also
called the \(\mathrm{B}\) and \(\mathrm{D}\) series. There is an
infinite series of them associated to rotations in complex vector spaces
--- the \(\mathrm{SU}(n)\) groups, also called the \(\mathrm{A}\)
series. And there is infintie series of them associated to rotations in
quaternionic vector spaces --- the \(\mathrm{Sp}(n)\) groups, also
called the \(\mathrm{C}\) series. And there is a ragged band of 5
exceptions which are related to the octonions, called \(mathrm{G}_2\),
\(\mathrm{F}_4\), \(\mathrm{E}_6\), \(\mathrm{E}_7\), and
\(\mathrm{E}_8\). I'm sort of fascinated by these --- see
\protect\hyperlink{week90}{``Week 90''},
\protect\hyperlink{week91}{``Week 91''}, and
\protect\hyperlink{week106}{``Week 106''} for more --- so I was
extremely delighted to find that the \(\mathrm{E}\) series plays a
special role in grand unified theories.

Now, people usually only talk about \(\mathrm{E}_6\), \(\mathrm{E}_7\),
and \(\mathrm{E}_8\), but one can work backwards using Dynkin diagrams
to define \(\mathrm{E}_5\), \(\mathrm{E}_4\), \(\mathrm{E}_3\),
\(\mathrm{E}_2\), and \(\mathrm{E}_1\). Let's do it! Thanks go to Allan
Adler and Robin Chapman for helping me understand how this works\ldots.

\(\mathrm{E}_8\) is a big fat Lie group whose Dynkin diagram looks like
this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
    \draw[thick] (2,0) to (2,1) node{$\bullet$};
  \end{tikzpicture}
\] If we remove the rightmost root, we obtain the Dynkin diagram of a
subgroup called \(\mathrm{E}_7\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$};
    \draw[thick] (2,0) to (2,1) node{$\bullet$};
  \end{tikzpicture}
\] If we again remove the rightmost root, we obtain the Dynkin diagram
of a subgroup of \(\mathrm{E}_7\), namely \(\mathrm{E}_6\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
    \draw[thick] (2,0) to (2,1) node{$\bullet$};
  \end{tikzpicture}
\] This was popular as a gauge group for grand unified models, and the
reason why becomes clear if we again remove the rightmost root,
obtaining the Dynkin diagram of a subgroup we could call
\(\mathrm{E}_5\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (2,0) to (2,1) node{$\bullet$};
  \end{tikzpicture}
\] But this is really just good old \(\mathrm{SO}(10)\), which we were
just discussing! And if we yet again remove the rightmost root, we get
the Dynkin diagram of a subgroup we could call \(\mathrm{E}_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$};
    \draw[thick] (2,0) to (2,1) node{$\bullet$};
  \end{tikzpicture}
\]

\begin{verbatim}
      o      
      |      
o--o--o
\end{verbatim}

This is just \(\mathrm{SU}(5)\)! Let's again remove the rightmost root,
obtaining the Dynkin diagram for \(\mathrm{E}_3\). Well, it may not be
clear what counts as the rightmost root, but here's what I want to get
when I remove it: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$};
    \node at (2,1) {$\bullet$};
  \end{tikzpicture}
\] This is just \(\mathrm{SU}(3)\times\mathrm{SU}(2)\), sitting inside
\(\mathrm{SU}(5)\) in the way we just discussed! So for some mysterious
reason, the Standard Model and grand unified theories seem to be related
to the \(\mathrm{E}\) series!

We could march on and define \(\mathrm{E}_2\): \[
  \begin{tikzpicture}
    \node at (0,0) {$\bullet$};
    \node at (2,1) {$\bullet$};
  \end{tikzpicture}
\] which is just \(\mathrm{SU}(2)\times\mathrm{SU}(2)\), and
\(\mathrm{E}_1\): \[
  \begin{tikzpicture}
    \node at (0,0) {$\bullet$};
  \end{tikzpicture}
\] which is just \(\mathrm{SU}(2)\)\ldots{} but I'm not sure what's so
great about these groups.

By the way, you might wonder what's the real reason for removing the
roots in the order I did --- apart from getting the answers I wanted to
get --- and the answer is, I don't really know! If anyone knows, please
tell me. This could be an important clue.

Now, this stuff about grand unified theories and the \(\mathrm{E}\)
series is one of the reasons why people like string theory, because
heterotic string theory is closely related to \(\mathrm{E}_8\) (see
\protect\hyperlink{week95}{``Week 95''}). However, I must now tell you
the \emph{bad} news about grand unified theories. And it is \emph{very}
bad.

The bad news is that those people who went off to detect proton decay
never found it! It became clear in the mid-1980s that the proton
lifetime was at least \(10^{32}\) years or so, much larger than what the
\(\mathrm{SU}(5)\) theory most naturally predicts. Of course, if one is
desperate to save a beautiful theory from an ugly fact, one can resort
to desperate measures. For example, one can get the \(\mathrm{SU}(5)\)
model to predict very slow proton decay by making the grand unification
mass scale large. Unfortunately, then the coupling constants of the
strong and electroweak forces don't match at the grand unification mass
scale. This became painfully clear as better measurements of the strong
coupling constant came in.

Theoretical particle physics never really recovered from this crushing
blow. In a sense, particle physics gradually retreated from the goal of
making testable predictions, drifting into the wonderland of pure
mathematics\ldots{} first supersymmetry, then supergravity, and then
superstrings\ldots{} ever more elegant theories, but never yet a
verified experimental prediction. Perhaps we should be doing something
different, something better? Easy to say, hard to do! If we see a
superpartner at CERN, a lot of this ``superthinking'' will be vindicated
--- so I guess most particle physicists are crossing their fingers and
praying for this to happen.

The following textbook on grand unified theories is very nice,
especially since it begins with a review of the Standard Model:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Graham G. Ross, \emph{Grand Unified Theories}, Benjamin-Cummings,
  1984.
\end{enumerate}

This one is a bit more idiosyncratic, but also good --- Mohapatra is
especially interested in theories where CP violation arises via
spontaneous symmetry breaking:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Ranindra N. Mohapatra, Unification and Supersymmetry: \emph{The
  Frontiers of Quark-Lepton Physics}, Springer-Verlag, 1992.
\end{enumerate}

I also found the following articles interesting:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  D. V. Nanopoulos, ``Tales of the GUT age'', in \emph{Grand Unified
  Theories and Related Topics, proceedings of the 4th Kyoto Summer
  Institute}, World Scientific, Singapore, 1981.
\item
  P. Ramond, ``Grand unification'', in \emph{Grand Unified Theories and
  Related Topics, proceedings of the 4th Kyoto Summer Institute}, World
  Scientific, Singapore, 1981.
\end{enumerate}

Okay, now for some homotopy theory! I don't think I'm ever gonna get to
the really cool stuff\ldots{} in my attempt to explain everything
systematically, I'm getting worn out doing the preliminaries. Oh well,
on with it\ldots{} now it's time to start talking about loop spaces!
These are really important, because they tie everything together.
However, it takes a while to deeply understand their importance.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{O.} \emph{The loop space of a topological space.} Suppose we
have a ``pointed space'' \(X\), that is, a topological space with a
distinguished point called the ``basepoint''. Then we can form the space
\(LX\) of all ``based loops'' in \(X\) --- loops that start and end at
the basepoint.

One reason why \(LX\) is so nice is that its homotopy groups are the
same as those of \(X\), but shifted: \[\pi_i(LX) = \pi_{i+1}(X).\]
Another reason \(LX\) is nice is that it's almost a topological group,
since one can compose based loops, and every loop has an ``inverse''.
However, one must be careful here! Unless one takes special care,
composition will only be associative up to homotopy, and the ``inverse''
of a loop will only be the inverse up to homotopy.

Actually we can make composition strictly associative if we work with
``Moore paths''. A Moore path in \(X\) is a continuous map
\[f\colon[0,T]\to X\] where \(T\) is an arbitrary nonnegative real
number. Given a Moore path \(f\) as above and another Moore path
\[g\colon[0,S]\to X\] which starts where \(f\) ends, we can compose them
in an obvious way to get a Moore path \[fg\colon[0,T+S]\to X\] Note that
this operation is associative ``on the nose'', not just up to homotopy.
If we define \(LX\) using Moore paths that start and end at the
basepoint, we can easily make \(LX\) into a topological monoid --- that
is, a topological space with a continuous associative product and a unit
element. (If you've read section L, you'll know this is just a monoid
object in \(\mathsf{Top}\)!) In particular, the unit element of \(LX\)
is the path \(i\colon[0,0]\to X\) that just sits there at the basepoint
of \(X\).

\(LX\) is not a topological group, because even Moore paths don't have
strict inverses. But \(LX\) is \emph{close} to being a group. We can
make this fact precise in various ways, some more detailed than others.
I'm pretty sure one way to say it is this: the natural map from \(LX\)
to its ``group completion'' is a homotopy equivalence.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{P.} \emph{The group completion of a topological monoid.} Let
\(\mathsf{TopMon}\) be the category of topological monoids and let
\(\mathsf{TopGp}\) be the category of topological groups. There is a
forgetful functor \[F\colon\mathsf{TopGp}\to\mathsf{TopMon}\] and this
has a left adjoint \[G\colon\mathsf{TopMon}\to\mathsf{TopGp}\] which
takes a topological monoid and converts it into a topological group by
throwing in formal inverses of all the elements and giving the resulting
group a nice topology. This functor \(G\) is called ``group completion''
and was first discussed by Quillen (in the simplicial context, in an
unpublished paper), and independently by Barratt and Priddy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  M. G. Barratt and S. Priddy, ``On the homology of non-connected
  monoids and their associated groups'', \emph{Comm. Math. Helv.}
  \textbf{47} (1972), 1--14.
\end{enumerate}

For any topological monoid \(M\), there is a natural map from \(M\) to
\(F(G(M))\), thanks to the miracle of adjoint functors. This is the
natural map I'm talking about in the previous section!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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Now that I'm hanging out with the gravity crowd at Penn State, I might
as well describe what's been going on here lately.

First of all, Ashtekar and Krasnov have written an expository account of
their work on the entropy of quantum black holes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Abhay Ashtekar and Kirill Krasnov, ``Quantum geometry and black
  holes'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9804039}{\texttt{gr-qc/9804039}}.
\end{enumerate}

But if you prefer to see a picture of a quantum black hole without any
equations, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Kirill Krasnov's research webpage,
  \texttt{http://shiva.nirvana.phys.psu.edu/\textasciitilde{}krasnov/research.html}.
\end{enumerate}

You'll see a bunch of spin networks poking the horizon, giving it area
and curvature. Of course, this is just a theory.

Second, there's been a burst of new work studying quantum gravity in
terms of spin foams. A spin foam looks a bit like a bunch of soap suds
--- with the faces of the bubbles and the edges where the bubbles meet
labelled by spins \(j = 0, 1/2, 1, 3/2, \ldots\). Spin foams are an
attempt at a quantum description of the geometry of spacetime. If you
slice a spin foam with a hyperplane representing ``\(t = 0\)'' you get a
spin network: a graph with its edges and vertices labelled by spins.
Spin networks have been used in quantum gravity for a while now to
describe the geometry of space at a given time, so it's natural to hope
that they're a slice of something that describes the geometry of
spacetime.

As usual in quantum gravity, it's too early to tell if this approach
will work. As usual, it has lots of serious problems. But before going
into the problems, let me remind you how spin foams are supposed to
work.

To relate spin foams to more traditional ideas about spacetime, one can
consider spin foams living in a triangulated 4-manifold: one spin foam
vertex sitting in each \(4\)-simplex, one spin foam edge poking through
each tetrahedron, and one spin foam face intersecting each triangle.
Labelling the spin foam edges and faces with spins is supposed to endow
the triangulated 4-manifold with a ``quantum 4-geometry''. In other
words, it should let us compute things like the areas of the triangles,
the volumes of the tetrahedra, and the 4-volumes of the \(4\)-simplices.
There are some arguments going on now about the right way to do this,
but it's far from an arbitrary business: the interplay between group
representation theory and geometry says a lot about how it should go. In
the simplified case of \(3\)-dimensional spacetime, it's fairly well
understood --- the hard part, and the fun part, is getting it to work in
4 dimensions.

Assuming we can do this, the next trick is to compute an amplitude for
each spin foam vertex in a nice way, much as one computes amplitudes for
vertices of Feynman diagrams. A spin foam vertex is supposed to
represent an ``event'' --- if we slice the spin foam by a hyperplane we
get a spin network, and as we slide this slice ``forwards in time'', the
spin network changes its topology whenever we pass a spin foam vertex.
The amplitude for a vertex tells us how likely it is for this event to
happen. As usual in quantum theory, we need to take the absolute value
of an amplitude and square it to get a probability.

We also need to compute amplitudes for spin foam edges and faces, called
``propagators'', in analogy to the amplitudes one computes for the edges
of Feynman diagrams. Multiplying all the vertex amplitudes and
propagators for a given spin foam, one gets the amplitude for the whole
spin foam. This tells us how likely it is for the whole spin foam to
happen.

Barrett and Crane came up with a specific way to do all this stuff,
Reisenberger came up with a different way, I came up with a general
formalism for understanding this stuff, and now people are busy arguing
about the merits of different approaches. Here are some papers on the
subject --- I'll pick up where I left off in
\protect\hyperlink{week113}{``Week 113''}.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Louis Crane, David N. Yetter, ``On the classical limit of the balanced
  state sum'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9712087}{\texttt{gr-qc/9712087}}.
\end{enumerate}

The goal here is to show that in the limit of large spins, the amplitude
given by Barrett and Crane's formula approaches \[\exp(iS)\] where \(S\)
is the action for classical general relativity --- suitably discretized,
and in signature \(++++\). The key trick is to use an idea invented by
Regge in 1961.

Regge came up with a discrete analog of the usual formula for the action
in classical general relativity. His formula applies to a triangulated
4-manifold whose edges have specified lengths. In this situation, each
triangle has an ``angle deficit'' associated to it. It's easier to
visualize this two dimensions down, where each vertex in a triangulated
2-manifold has an angle deficit given by adding up angles for all the
triangles having it as a corner, and then subtracting \(2\pi\). No angle
deficit means no curvature: the triangles sit flat in a plane. The idea
works similarly in 4 dimensions. Here's Regge's formula for the action:
take each triangle in your triangulated 4-manifold, take its area,
multiply it by its angle deficit, and then sum over all the triangles.

Simple, huh? In the continuum limit, Regge's action approaches the
integral of the Ricci scalar curvature --- the usual action in general
relativity. For more see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  T. Regge, ``General relativity without coordinates'', \emph{Nuovo
  Cimento} \textbf{19} (1961), 558--571.
\end{enumerate}

So, Crane and Yetter try to show that in the limit of large spins, the
Barrett-Crane spin foam amplitude approaches \(\exp(iS)\) where \(S\) is
the Regge action. There argument is interesting but rather sketchy.
Someone should try to fill in the details!

However, it's not clear to me that the large spin limit is physically
revelant. If spacetime is really made of lots of \(4\)-simplices
labelled by spins, the \(4\)-simplices have got to be quite small, so
the spins labelling them should be fairly small. It seems to me that the
right limit to study is the limit where you triangulate your 4-manifold
with a huge number of \(4\)-simplices labelled by fairly small spins.
After all, in the spin network picture of the quantum black hole, it
seems that spin network edges labelled by spin \(1/2\) contribute most
of the states (see \protect\hyperlink{week112}{``Week 112''}).

When you take a spin foam living in a triangulated 4-manifold and slice
it in a way that's compatible with the triangulation, the spin network
you get is a 4-valent graph. Thus it's not surprising that Barrett and
Crane's formula for vertex amplitudes is related to an invariant of
4-valent graphs with edges labelled by spins. There's already a branch
of math relating such invariants to representations of groups and
quantum groups, and their formula fits right in. Yetter has figured out
how to generalize this graph invariant to \(n\)-valent graphs with edges
labelled by spins, and he's also studied more carefully what happens
when one ``\(q\)-deforms'' the whole business --- replacing the group by
the corresponding quantum group. This should be related to quantum
gravity with nonzero cosmological constant, if all the mathematical
clues aren't lying to us. See:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  David N. Yetter, ``Generalized Barrett-Crane vertices and invariants
  of embedded graphs'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9801131}{\texttt{math.QA/9801131}}.
\end{enumerate}

Barrett has also given a nice formula in terms of integrals for the
invariant of 4-valent graphs labelled by spins. This is motivated by the
physics and illuminates it nicely:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John W. Barrett, ``The classical evaluation of relativistic spin
  networks'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9803063}{\texttt{math.QA/9803063}}.
\end{enumerate}

Let me quote the abstract:

\begin{quote}
The evaluation of a relativistic spin network for the classical case of
the Lie group \(\mathrm{SU}(2)\) is given by an integral formula over
copies of \(\mathrm{SU}(2)\). For the graph determined by a
\(4\)-simplex this gives the evaluation as an integral over a space of
geometries for a \(4\)-simplex.
\end{quote}

Okay, so much for the good news. What about the bad news? To explain
this I need to get a bit more specific about Barrett and Crane's
approach.

Their approach is based on a certain way to describe the geometry of a
4-simplex. Instead of specifying lengths of edges as in the old Regge
approach, we specify bivectors for all its faces. Geometrically, a
bivector is just an ``oriented area element''; technically, the space of
bivectors is the dual of the space of \(2\)-forms. If we have a
\(4\)-simplex in R\^{}4 and we choose orientations for its triangular
faces, there's an obvious way to associate a bivector to each face. We
get 10 bivectors this way.

What constraints do these 10 bivectors satisfy? They can't be arbitrary!
First, for any four triangles that are all the faces of the same
tetrahedron, the corresponding bivectors must sum to zero. Second, every
bivector must be ``simple'' --- it must be the wedge product of two
vectors. Third, whenever two triangles are the faces of the same
tetrahedron, the sum of the corresponding bivectors must be simple.

It turns out that these constraints are almost but \emph{not quite
enough} to imply that 10 bivectors come from a \(4\)-simplex.
Generically, it there are four possibilities: our bivectors come from a
\(4\)-simplex, the \emph{negatives} of our bivectors come from a
\(4\)-simplex, their \emph{Hodge duals} come from a 4-simplex, or
\emph{the negatives of their Hodge duals} come from a 4-simplex.

If we ignore this and describe the \(4\)-simplex using bivectors
satisfying the three constraints above, and then quantize this
description, we get the picture of a ``quantum \(4\)-simplex'' that is
the starting-point for the Barrett-Crane model. But clearly it's
dangerous to ignore this problem.

Actually, I learned about this problem from Robert Bryant over on
sci.math.research, and I discussed it in my paper on spin foam models,
citing Bryant of course. Barrett and Crane overlooked this problem in
the first version of their paper, but now they recognize its importance.
Two papers have recently appeared which investigate it further:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Michael P. Reisenberger, ``Classical Euclidean general relativity from
  `left-handed area = right-handed area'''', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9804061}{\texttt{gr-qc/9804061}}.
\item
  Roberto De Pietri and Laurent Freidel, ``\(\mathfrak{so}(4)\)
  Plebanski Action and relativistic spin foam model'', preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9804071}{\texttt{gr-qc/9804071}}.
\end{enumerate}

These papers study classical general relativity formulated as a
constrained \(\mathrm{SO}(4)\) \(BF\) theory. The constraints needed
here are mathematically just the same as the constraints needed to
ensure that 10 bivectors come from the faces of an actual \(4\)-simplex!
This is part of the magic of this approach. But again, if one only
imposes the three constraints I listed above, it's not quite enough: one
gets fields that are either solutions of general relativity \emph{or}
solutions of three other theories! This raises the worry that the
Barrett-Crane model is a quantization, not exactly of general
relativity, but of general relativity mixed in with these extra
theories.

Here's another recent product of the Center for Classical and Quantum
Gravity here at Penn State:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Laurent Freidel and Kirill Krasnov, ``Discrete space-time volume for
  \(3\)-dimensional \(BF\) theory and quantum gravity'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9804185}{\texttt{hep-th/9804185}}.
\end{enumerate}

Freidel and Krasnov study the volume of a single \(3\)-simplex as an
observable in the context of the Turaev-Viro model --- a topological
quantum field theory which is closely related to quantum gravity in
spacetime dimension 3.

And here are some other recent papers on quantum gravity written by
folks who either work here at the CGPG or at least occasionally drift
through. I'll just quote the abstracts of these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Ted Jacobson, ``Black hole thermodynamics today'', to appear in
  \emph{Proceedings of the Eighth Marcel Grossmann Meeting}, World
  Scientific, 1998, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9801015}{\texttt{gr-qc/9801015}}.
\end{enumerate}

\begin{quote}
A brief survey of the major themes and developments of black hole
thermodynamics in the 1990's is given, followed by summaries of the
talks on this subject at MG8 together with a bit of commentary, and
closing with a look towards the future.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Rodolfo Gambini, Jorge Pullin, ``Does loop quantum gravity imply
  \(\Lambda = 0\)?'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9803097}{\texttt{gr-qc/9803097}}.
\end{enumerate}

\begin{quote}
We suggest that in a recently proposed framework for quantum gravity,
where Vassiliev invariants span the the space of states, the latter is
dramatically reduced if one has a non-vanishing cosmological constant.
This naturally suggests that the initial state of the universe should
have been one with \(\Lambda=0\).
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  R. Gambini, O. Obregon, and J. Pullin, ``Yang-Mills analogues of the
  Immirzi ambiguity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9801055}{\texttt{gr-qc/9801055}}.
\end{enumerate}

\begin{quote}
We draw parallels between the recently introduced `Immirzi ambiguity''
of the Ashtekar-like formulation of canonical quantum gravity and other
ambiguities that appear in Yang-Mills theories, like the \(\theta\)
ambiguity. We also discuss ambiguities in the Maxwell case, and
implication for the loop quantization of these theories.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  John Baez and Stephen Sawin, ``Diffeomorphism-invariant spin network
  states'', to appear in \emph{Jour. Funct. Analysis}, preprint
  available as
  \href{https://arxiv.org/abs/q-alg/9708005}{\texttt{q-alg/9708005}} or
  at \texttt{http://math.ucr.edu/home/baez/int2.ps}
\end{enumerate}

\begin{quote}
We extend the theory of diffeomorphism-invariant spin network states
from the real-analytic category to the smooth category. Suppose that
\(G\) is a compact connected semisimple Lie group and \(P\to M\) is a
smooth principal \(G\)-bundle. A `cylinder function' on the space of
smooth connections on \(P\) is a continuous complex function of the
holonomies along finitely many piecewise smoothly immersed curves in
\(M\). We construct diffeomorphism-invariant functionals on the space of
cylinder functions from `spin networks': graphs in \(M\) with edges
labeled by representations of \(G\) and vertices labeled by intertwining
operators. Using the `group averaging' technique of Ashtekar, Marolf,
Mourao and Thiemann, we equip the space spanned by these
`diffeomorphism-invariant spin network states' with a natural inner
product.
\end{quote}

Finally, here are two recent reviews of string theory and supersymmetry:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\item
  John H. Schwarz and Nathan Seiberg, ``String theory, supersymmetry,
  unification, and all that'', to appear in the \emph{American Physical
  Society Centenary issue of Reviews of Modern Physics}, March 1999,
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9803179}{\texttt{hep-th/9803179}}.
\item
  Keith R. Dienes and Christopher Kolda, ``Twenty open questions in
  supersymmetric particle physics'', 64 pages, preprint available as
  \href{https://arxiv.org/abs/hep-ph/9712322}{\texttt{hep-ph/9712322}}.
\end{enumerate}

I'm afraid I'll slack off on my ``tour of homotopy theory'' this week. I
want to get to fun stuff like model categories and \(E_\infty\) spaces,
but it's turning out to be a fair amount of work to reach that goal!
That's what always happens with This Week's Finds: I start learning
about something and think ``oh boy, this stuff is great; I'll write it
up really carefully so that everyone can understand it,'' but then this
turns out to be so much work that by the time I'm halfway through I'm
off on some other kick.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week121}{%
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This time I want to talk about higher-dimensional algebra and its
applications to topology. Marco Mackaay has just come out with a
fascinating paper that gives a construction of \(4\)-dimensional TQFTs
from certain ``monoidal \(2\)-categories''.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Marco Mackaay, ``Spherical \(2\)-categories and 4-manifold
  invariants'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9805030}{\texttt{math.QA/9805030}}
\end{enumerate}

Beautifully, this construction is just a categorified version of Barrett
and Westbury's construction of \(3\)-dimensional topological quantum
field theories from ``monoidal categories''. Categorification --- the
process of replacing equations by isomorphisms --- is supposed to take
you up the ladder of dimensions. Here we are seeing it in action!

To prepare you understand Mackaay's paper, maybe I should explain the
idea of categorification. Since I recently wrote something about this, I
think I'll just paraphrase a bit of that. Some of this is already
familiar to long-time customers, so if you know it all already, just
skip it.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Baez and James Dolan, ``Categorification'', to appear in the
  \emph{Proceedings of the Workshop on Higher Category Theory and
  Mathematical Physics at Northwestern University, Evanston, Illinois,
  March 1997}, eds. Ezra Getzler and Mikhail Kapranov. Preprint
  available as
  \href{https://arxiv.org/abs/math.QA/9802029}{\texttt{math.QA/9802029}}
  or at \texttt{http://math.ucr.edu/home/baez/cat.ps}.
\end{enumerate}

So, what's categorification? This tongue-twisting term, invented by
Louis Crane, refers to the process of finding category-theoretic analogs
of ideas phrased in the language of set theory, using the following
analogy between set theory and category theory:

:- \textbar{} :- \textbar{}\\
elements \textbar{} objects \textbar{}\\
equations between elements \textbar{} isomorphisms between objects
\textbar{}\\
sets \textbar{} categories \textbar{}\\
functions \textbar{} functors \textbar{}\\
equations between functions \textbar{} natural isomorphisms between
functors \textbar{}

Just as sets have elements, categories have objects. Just as there are
functions between sets, there are functors between categories.
Interestingly, the proper analog of an equation between elements is not
an equation between objects, but an isomorphism. More generally, the
analog of an equation between functions is a natural isomorphism between
functors.

For example, the category \(\mathsf{FinSet}\), whose objects are finite
sets and whose morphisms are functions, is a categorification of the set
\(\mathbb{N}\) of natural numbers. The disjoint union and Cartesian
product of finite sets correspond to the sum and product in
\(\mathbb{N}\), respectively. Note that while addition and
multiplication in \(\mathbb{N}\) satisfy various equational laws such as
commutativity, associativity and distributivity, disjoint union and
Cartesian product satisfy such laws \emph{only up to natural
isomorphism}. This is a good example of how equations between functions
get replaced by natural isomorphisms when we categorify.

If one studies categorification one soon discovers an amazing fact: many
deep-sounding results in mathematics are just categorifications of facts
we learned in high school! There is a good reason for this. All along,
we have been unwittingly ``decategorifying'' mathematics by pretending
that categories are just sets. We ``decategorify'' a category by
forgetting about the morphisms and pretending that isomorphic objects
are equal. We are left with a mere set: the set of isomorphism classes
of objects.

To understand this, the following parable may be useful. Long ago, when
shepherds wanted to see if two herds of sheep were isomorphic, they
would look for an explicit isomorphism. In other words, they would line
up both herds and try to match each sheep in one herd with a sheep in
the other. But one day, along came a shepherd who invented
decategorification. She realized one could take each herd and ``count''
it, setting up an isomorphism between it and some set of ``numbers'',
which were nonsense words like ``one, two, three,\ldots{}'' specially
designed for this purpose. By comparing the resulting numbers, she could
show that two herds were isomorphic without explicitly establishing an
isomorphism! In short, by decategorifying the category of finite sets,
the set of natural numbers was invented.

According to this parable, decategorification started out as a stroke of
mathematical genius. Only later did it become a matter of dumb habit,
which we are now struggling to overcome by means of categorification.
While the historical reality is far more complicated, categorification
really has led to tremendous progress in mathematics during the 20th
century. For example, Noether revolutionized algebraic topology by
emphasizing the importance of homology groups. Previous work had focused
on Betti numbers, which are just the dimensions of the rational homology
groups. As with taking the cardinality of a set, taking the dimension of
a vector space is a process of decategorification, since two vector
spaces are isomorphic if and only if they have the same dimension.
Noether noted that if we work with homology groups rather than Betti
numbers, we can solve more problems, because we obtain invariants not
only of spaces, but also of maps.

In modern lingo, the \(n\)th rational homology is a \emph{functor}
defined on the \emph{category} of topological spaces, while the \(n\)th
Betti number is a mere \emph{function}, defined on the \emph{set} of
isomorphism classes of topological spaces. Of course, this way of
stating Noether's insight is anachronistic, since it came before
category theory. Indeed, it was in Eilenberg and Mac Lane's subsequent
work on homology that category theory was born!

Decategorification is a straightforward process which typically destroys
information about the situation at hand. Categorification, being an
attempt to recover this lost information, is inevitably fraught with
difficulties. One reason is that when categorifying, one does not merely
replace equations by isomorphisms. One also demands that these
isomorphisms satisfy some new equations of their own, called ``coherence
laws''. Finding the right coherence laws for a given situation is
perhaps the trickiest aspect of categorification.

For example, a monoid is a set with a product satisfying the associative
law and a unit element satisfying the left and right unit laws. The
categorified version of a monoid is a ``monoidal category''. This is a
category \(\mathcal{C}\) with a product
\[\otimes\colon\mathcal{C}\times\mathcal{C}\to \mathcal{C}\] and unit
object \(1\). If we naively impose associativity and the left and right
unit laws as equational laws, we obtain the definition of a ``strict''
monoidal category. However, the philosophy of categorification suggests
instead that we impose them only up to natural isomorphism. Thus, as
part of the structure of a ``weak'' monoidal category, we specify a
natural isomorphism
\[a_{x,y,z}\colon (x \otimes y) \otimes z\to x \otimes (y \otimes z)\]
called the ``associator'', together with natural isomorphisms
\[l_x\colon 1 \otimes x\to x,\] \[r_x\colon x \otimes 1\to x.\] Using
the associator one can construct isomorphisms between any two
parenthesized versions of the tensor product of several objects.
However, we really want a \emph{unique} isomorphism. For example, there
are 5 ways to parenthesize the tensor product of 4 objects, which are
related by the associator as follows: \[
  \begin{tikzpicture}
    \node (mr) at (18:3) {$(x \otimes (y \otimes z)) \otimes w$};
    \node (t) at (90:3) {$((x \otimes y) \otimes z) \otimes w$};
    \node (ml) at (162:3) {$(x \otimes y) \otimes (z \otimes w)$};
    \node (bl) at (214:2.5) {$x \otimes (y \otimes (z \otimes w))$};
    \node (br) at (326:2.5) {$x \otimes ((y \otimes z) \otimes w)$};
    \draw[->] (t) to (ml);
    \draw[->] (ml) to (bl);
    \draw[->] (t) to (mr);
    \draw[->] (mr) to (br);
    \draw[->] (br) to (bl);
  \end{tikzpicture}
\] In the definition of a weak monoidal category we impose a coherence
law, called the ``pentagon identity'', saying that this diagram
commutes. Similarly, we impose a coherence law saying that the following
diagram built using \(a\), \(l\) and \(r\) commutes: \[
  \begin{tikzpicture}
    \node (mr) at (44:2) {$1\otimes(x\otimes 1)$};
    \node (t) at (136:2) {$(1\otimes x)\otimes1$};
    \node (ml) at (198:2) {$x\otimes1$};
    \node (bl) at (270:2) {$x$};
    \node (br) at (342:2) {$1\otimes x$};
    \draw[->] (t) to (ml);
    \draw[->] (ml) to (bl);
    \draw[->] (t) to (mr);
    \draw[->] (mr) to (br);
    \draw[->] (br) to (bl);
  \end{tikzpicture}
\] This definition raises an obvious question: how do we know we have
found all the right coherence laws? Indeed, what does ``right'' even
\emph{mean} in this context? Mac Lane's coherence theorem gives one
answer to this question: the above coherence laws imply that any two
isomorphisms built using \(a\), \(l\) and \(r\) and having the same
source and target must be equal.

Further work along these lines allow us to make more precise the sense
in which \(\mathbb{N}\) is a decategorification of \(\mathsf{FinSet}\).
For example, just as \(\mathbb{N}\) forms a monoid under either addition
or multiplication, \(\mathsf{FinSet}\) becomes a monoidal category under
either disjoint union or Cartesian product if we choose the isomorphisms
\(a\), \(l\), and \(r\) sensibly. In fact, just as \(\mathbb{N}\) is a
``rig'', satisfying all the ring axioms except those involving additive
inverses, \(\mathsf{FinSet}\) is what one might call a ``rig category''.
In other words, it satisfies the rig axioms up to natural isomorphisms
satisfying the coherence laws discovered by Kelly and Laplaza, who
proved a coherence theorem in this context.

Just as the decategorification of a monoidal category is a monoid, the
decategorification of any rig category is a rig. In particular,
decategorifying the rig category \(\mathsf{FinSet}\) gives the rig
\(\mathbb{N}\). This idea is especially important in combinatorics,
where the best proof of an identity involving natural numbers is often a
``bijective proof'': one that actually establishes an isomorphism
between finite sets.

While coherence laws can sometimes be justified retrospectively by
coherence theorems, certain puzzles point to the need for a deeper
understanding of the \emph{origin} of coherence laws. For example,
suppose we want to categorify the notion of ``commutative monoid''. The
strictest possible approach, where we take a strict monoidal category
and impose an equational law of the form \(x\otimes y = y\otimes x\), is
almost completely uninteresting. It is much better to start with a weak
monoidal category equipped with a natural isomorphism
\[B_{x,y}\colon x\otimes y\to y\otimes x\] called the ``braiding'' and
then impose coherence laws called ``hexagon identities'' saying that the
following two diagrams built from the braiding and the associator
commute: \[
  \begin{tikzcd}
    x\otimes(y\otimes z) \dar \rar
    & (y\otimes z)\otimes x
  \\(x\otimes y)\otimes z \dar
    & y\otimes (z\otimes x) \uar
  \\(y\otimes x)\otimes z \rar
    & y\otimes (x\otimes z) \uar
  \end{tikzcd}
\] \[
  \begin{tikzcd}
    (x\otimes y)\otimes z \dar \rar
    & z\otimes (x\otimes y)
  \\x\otimes (y\otimes z) \dar
    & (z\otimes x)\otimes y \uar
  \\y\otimes (z\otimes y) \rar
    & (x\otimes z)\otimes y \uar
  \end{tikzcd}
\] This gives the definition of a weak ``braided monoidal category''. If
we impose an additional coherence law saying that \(B_{x,y}\) is the
inverse of \(B_{y,x}\), we obtain the definition of a ``symmetric
monoidal category''. Both of these concepts are very important; which
one is ``right'' depends on the context. However, neither implies that
every pair of parallel morphisms built using the braiding are equal. A
good theory of coherence laws must naturally account for these facts.

The deepest insights into such puzzles have traditionally come from
topology. In homotopy theory it causes problems to work with spaces
equipped with algebraic structures satisfying equational laws, because
one cannot transport such structures along homotopy equivalences. It is
better to impose laws \emph{only up to homotopy}, with these homotopies
satisfying certain coherence laws, but again only up to homotopy, with
these higher homotopies satisfying their own higher coherence laws, and
so on. Coherence laws thus arise naturally in infinite sequences. For
example, Stasheff discovered the pentagon identity and a sequence of
higher coherence laws for associativity when studying the algebraic
structure possessed by a space that is homotopy equivalent to a loop
space. Similarly, the hexagon identities arise as part of a sequence of
coherence laws for spaces homotopy equivalent to double loop spaces,
while the extra coherence law for symmetric monoidal categories arises
as part of a sequence for spaces homotopy equivalent to triple loop
spaces. The higher coherence laws in these sequences turn out to be
crucial when we try to \emph{iterate} the process of categorification.

To \emph{iterate} the process of categorification, we need a concept of
``\(n\)-category'' --- roughly, an algebraic structure consisting of a
collection of objects (or ``0-morphisms''), morphisms between objects
(or ``1-morphisms''), \(2\)-morphisms between morphisms, and so on up to
\(n\)-morphisms. There are various ways of making this precise, and
right now there is a lot of work going on devoted to relating these
different approaches. But the basic thing to keep in mind is that the
concept of ``\((n+1)\)-category'' is a categorification of the concept
of ``\(n\)-category''. What were equational laws between \(n\)-morphisms
in an \(n\)-category are replaced by natural \((n+1)\)-isomorphisms,
which need to satisfy certain coherence laws of their own.

To get a feeling for how these coherence laws are related to homotopy
theory, it's good to think about certain special kinds of
\(n\)-category. If we have an \((n+k)\)-category that's trivial up to
but not including the k-morphism level, we can turn it into an
\(n\)-category by a simple reindexing trick: just think of its
\(j\)-morphisms as \((j-k)\)-morphisms! We call the \(n\)-categories we
get this way ``k-tuply monoidal \(n\)-categories''. Here is a little
chart of what they amount to for various low values of \(n\) and \(k\):

\begin{longtable}[]{@{}llll@{}}
\caption{\(k\)-tuply monoidal \(n\)-categories}\tabularnewline
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endfirsthead
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=0\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
sets\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=1\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=2\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
commutative monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=3\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
symmetric monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
weakly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=4\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
strongly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=5\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

One reason James Dolan and I got so interested in this chart is the
``tangle hypothesis''. Roughly speaking, this says that
\(n\)-dimensional surfaces embedded in \((n+k)\)-dimensional space can
be described purely algebraically using the a certain special
``\(k\)-tuply monoidal \(n\)-category with duals''. If true, this
reduces lots of differential topology to pure algebra! It also helps you
understand the parameters \(n\) and \(k\): you should think of \(n\) as
``dimension'' and \(k\) as ``codimension''.

For example, take \(n = 1\) and \(k = 2\). Knots, links and tangles in
3-dimensional space can be described algebraically using a certain
``braided monoidal categories with duals''. This was the first
interesting piece of evidence for the tangle hypothesis. It has spawned
a whole branch of math called ``quantum topology'', which people are
trying to generalize to higher dimensions.

More recently, Laurel Langford tackled the case \(n = 2\), \(k = 2\).
She proved that \(2\)-dimensional knotted surfaces in \(4\)-dimensional
space can be described algebraically using a certain ``braided monoidal
\(2\)-category with duals''. These so-called ``2-tangles'' are
particularly interesting to me because of their relation to spin foam
models of quantum gravity, which are also all about surfaces in 4-space.
For references, see \protect\hyperlink{week103}{``Week 103''}. But if
you want to learn about more about this, you couldn't do better than to
start with:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  J. S. Carter and M. Saito, \emph{Knotted Surfaces and Their Diagrams},
  American Mathematical Society, Providence, 1998.
\end{enumerate}

This is a magnificently illustrated book which will really get you able
to \emph{see} \(2\)-dimensional surfaces knotted in 4d space. At the end
it sketches the statement of Langford's result.

Another interesting thing about the above chart is that \(k\)-tuply
monoidal \(n\)-categories keep getting ``more commutative'' as \(k\)
increases, until one reaches \(k = n+2\), at which point things
stabilize. There is a lot of evidence suggesting that this
``stabilization hypothesis'' is true for all \(n\). Assuming it's true,
it makes sense to call a \(k\)-tuply monoidal \(n\)-category with
\(k\geqslant n+2\) a ``stable \(n\)-category''.

Now, where does homotopy theory come in? Well, here you need to look at
\(n\)-categories where all the \(j\)-morphisms are invertible for all
\(j\). These are called ``\(n\)-groupoids''. Using these, one can
develop a translation dictionary between \(n\)-category theory and
homotopy theory, which looks like this:

:- \textbar{} :- \textbar{}\\
\(\omega\)-groupoids \textbar{} homotopy types \textbar{}\\
\(n\)-groupoids \textbar{} homotopy \(n\)-types \textbar{}\\
\(k\)-tuply groupal \(\omega\)-groupoids \textbar{} homotopy types of
\(k\)-fold loop spaces \textbar{}\\
\(k\)-tuply groupal \(n\)-groupoids \textbar{} homotopy \(n\)-types of
\(k\)-fold loop spaces \textbar{}\\
\(k\)-tuply monoidal \(\omega\)-groupoids \textbar{} homotopy types of
\(E_k\) spaces \textbar{}\\
\(k\)-tuply monoidal \(n\)-groupoids \textbar{} homotopy \(n\)-types of
\(E_k\) spaces\\
stable \(\omega\)-groupoids \textbar{} homotopy types of infinite loop
spaces \textbar{}\\
stable \(n\)-groupoids \textbar{} homotopy \(n\)-types of infinite loop
spaces \textbar{}\\
\(\mathbb{Z}\)-groupoids \textbar{} homotopy types of spectra \textbar{}

The entries on the left-hand side are very natural from an algebraic
viewpoint; the entries on the right-hand side are things topologists
already study. We explain what all these terms mean in the paper, but
maybe I should say something about the first two rows, which are the
most basic in a way. A homotopy type is roughly a topological space ``up
to homotopy equivalence'', and an \(\omega\)-groupoid is a kind of
limiting case of an \(n\)-groupoid as \(n\) goes to infinity. If
infinity is too scary, you can work with homotopy \(n\)-types, which are
basically homotopy types with no interesting topology above dimension
\(n\). These should correspond to \(n\)-groupoids.

Using these basic correspondences we can then relate various special
kinds of homotopy types to various special kinds of
\(\omega\)-groupoids, giving the rest of the rows of the chart. Homotopy
theorists know a lot about the right-hand column, so we can use this to
get a lot of information about the left-hand column. In particular, we
can work out the coherence laws for \(n\)-groupoids, and --- this is the
best part, but the least understood --- we can then \emph{guess} a lot
of stuff about the coherence laws for \emph{general} \(n\)-categories.
In short, we are using homotopy theory to get our foot in the door of
\(n\)-category theory.

I should emphasize, though, that this translation dictionary is
partially conjectural. It gets pretty technical to say what exactly is
and is not known, especially since there's pretty rapid progress going
on. Even in the last few months there have been some interesting
developments. For example, Breen has come out with a paper relating
\(k\)-tuply monoidal \(n\)-categories to Postnikov towers and various
far-out kinds of homological algebra:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Lawrence Breen, ``Braided \(n\)-categories and
  \(\Sigma\)-structures'', Prepublications Matematiques de l'Universite
  Paris 13, 98-06, January 1998, to appear in the \emph{Proceedings of
  the Workshop on Higher Category Theory and Mathematical Physics at
  Northwestern University, Evanston, Illinois, March 1997}, eds.~Ezra
  Getzler and Mikhail Kapranov.
\end{enumerate}

Also, the following folks have also developed a notion of ``iterated
monoidal category'' whose nerve gives the homotopy type of a \(k\)-fold
loop space, just as the nerve of a category gives an arbitrary homotopy
type:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  C. Balteanu, Z. Fiedorowicz, R. Schwaenzl, and R. Vogt, ``Iterated
  monoidal categories'', available at
  \href{http://arxiv.org/abs/math.AT/9808082}{\texttt{math.AT/9808082}}.
\end{enumerate}

Anyway, in addition to explaining the relationship between
\(n\)-category theory and homotopy theory, Dolan's and my paper
discusses iterated categorifications of the very simplest algebraic
structures: the natural numbers and the integers. The natural numbers
are the free monoid on one generator; the integers are the free group on
one generator. We believe this is just the tip of the following iceberg:

:- \textbar{} :- \textbar{}\\
sets \textbar{} the one-element set \textbar{}\\
monoids \textbar{} the natural numbers \textbar{}\\
groups \textbar{} the integers \textbar{}\\
\(k\)-tuply monoidal \(n\)-categories \textbar{} the braid
\(n\)-groupoid in codimension \(k\) \textbar{}\\
\(k\)-tuply monoidal \(\omega\)-categories \textbar{} the braid
\(\omega\)-groupoid in codimension \(k\) \textbar{}\\
stable \(n\)-categories \textbar{} the braid \(n\)-groupoid in infinite
codimension \textbar{}\\
stable \(\omega\)-categories \textbar{} the braid \(\omega\)-groupoid in
infinite codimension \textbar{}\\
\(k\)-tuply monoidal \(n\)-categories with duals \textbar{} the
\(n\)-category of framed \(n\)-tangles in \(n+k\) dimensions
\textbar{}\\
stable \(n\)-categories with duals \textbar{} the framed cobordism
\(n\)-category \textbar{}\\
\(k\)-tuply groupal \(n\)-groupoids \textbar{} the homotopy \(n\)-tpye
of the \(k\)th loop space of \(S^k\) \textbar{}\\
\(k\)-tuply groupal \(\omega\)-groupoids \textbar{} the homotopy type of
the \(k\)th loop space of \(S^k\) \textbar{}\\
stable \(\omega\)-groupoids \textbar{} the homotopy type of the infinite
loop space \(S^\infty\) \textbar{}\\
\(\mathbb{Z}\)-groupoids \textbar{} the sphere spectrum \textbar{}

:algebraic strutures and the free such structure on one generator

You may or may not know the guys on the right-hand side, but some of
them are very interesting and complicated, so it's really exciting that
they are all in some sense categorified and/or stabilized versions of
the integers and natural numbers.

Whew! There is more to say, but I'll just mention a few related papers
and then quit. If you're interested in \(n\)-categories you could also
check out ``the tale of \(n\)-categories'', starting in
\protect\hyperlink{week73}{``Week 73''}.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  \emph{Representation theory of Hopf categories}, Martin Neuchl,
  Ph.D.~dissertation, Department of Mathematics, University of Munich,
  1997. Available at \texttt{http://math.ucr.edu/home/baez/neuchl.ps}
\end{enumerate}

Just as the category of representations of a Hopf algebra gives a nice
monoidal category, the \(2\)-category of representations of a Hopf
category gives a nice monoidal \(2\)-category! Categorification strikes
again --- and this is perhaps our best hopes for getting our hands on
the data needed to stick into Mackaay's machine and get concrete
examples of a 4d topological quantum field theories!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Jim Stasheff, ``Grafting Boardman's cherry trees to quantum field
  theory'', preprint available as
  \href{https://arxiv.org/abs/math.AT/9803156}{\texttt{math.AT/9803156}}.
\end{enumerate}

Starting with Boardman and Vogt's work, and shortly thereafter that of
May, operads have become really important in homotopy theory, string
theory, and now \(n\)-category theory; this review article sketches some
of the connections.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Masoud Khalkhali, ``On cyclic homology of \(A_\infty\) algebras'',
  preprint available as
  \href{https://arxiv.org/abs/math.QA/9805051}{\texttt{math.QA/9805051}}.

  Masoud Khalkhali, Homology of \(L_\infty\) algebras and cyclic
  homology, preprint available as
  \href{https://arxiv.org/abs/math.QA/9805052}{\texttt{math.QA/9805052}}.
\end{enumerate}

An \(A_\infty\) algebra is an algebra that is associative \emph{up to an
associator} which satisfies the pentagon identity \emph{up to a
pentagonator} which satisfies it's own coherence law up to something, ad
infinitum. The concept goes back to Stasheff's work on \(A_\infty\)
spaces --- spaces with a homotopy equivalence to a space equipped with
an associative product. (These are the same thing as what I called
\(E_1\) spaces in the translation dictionary between \(n\)-groupoid
theory and homotopy theory.) But here it's been transported from Top
over to Vect. Similarly, an \(L_\infty\) algebra is a Lie algebra ``up
to an infinity of higher coherence laws''. Loday-Quillen and Tsygan
showed that that the Lie algebra homology of the algebra of stable
matrices over an associative algebra is isomorphic, as a Hopf algebra,
to the exterior algebra of the cyclic homology of the algebra. In the
second paper above, Khalkali gets the tools set up to extend this result
to the category of \(L_\infty\) algebras.
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\hypertarget{week122}{%
\section{June 24, 1998}\label{week122}}

In summertime, academics leave the roost and fly hither and thither,
seeking conferences and conversations in far-flung corners of the world.
At the end of May, everyone started leaving the Center for Gravitational
Physics and Geometry: Lee Smolin for the Santa Fe Institute, Abhay
Ashtekar for Uruguay and Argentina, Kirill Krasnov for his native
Ukraine, and so on. It got so quiet that I could actually get some work
done, were it not for the fact that I, too, flew the coop: first for
Chicago, then Portugal, and then to one of the most isolated,
technologically backwards areas on earth: my parents' house. Connected
to cyberspace by only the thinnest of threads, writing new issues of
This Week's Finds became almost impossible\ldots.

I did, however, read some newsgroups, and by this means Jim Carr
informed me that an article on spin foam models of quantum gravity had
appeared in Science News. I can't resist mentioning it, since it quotes
me:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Ivars Peterson, ``Loops of gravity: calculating a foamy quantum
  space-time'', \emph{Science News}, June 13, 1998, Vol. \textbf{153},
  No.~24, 376--377.
\end{enumerate}

It gives a little history of loop quantum gravity, spin networks, and
the new burst of interest in spin foams. Nothing very technical --- but
good if you're just getting started. If you want something more
detailed, but still user-friendly, try Rovelli's new paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Carlo Rovelli and Peush Upadhya, ``Loop quantum gravity and quanta of
  space: a primer'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9806079}{\texttt{gr-qc/9806079}}.
\end{enumerate}

I haven't read it yet, since I'm still in a rather low-tech portion of
the globe, but it gives simplified derivations of some of the basic
results of loop quantum gravity, like the formula for the eigenvalues of
the area operator. As explained in \protect\hyperlink{week110}{``Week
110''}, one of the main predictions of loop quantum gravity is that
geometrical observables such as the area of any surface take on a
discrete spectrum of values, much like the energy levels of a hydrogen
atom. At first the calculation of the eigenvalues of the area operator
seemed rather complicated, but by now it's well-understood, so Rovelli
and Upadhya are able to give a simpler treatment.

While I'm talking about the area operator, I should mention another
paper by Rovelli, in which he shows that its spectrum is not affected by
the presence of matter (or more precisely, fermions):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Carlo Rovelli and Merced Montesinos, ``The fermionic contribution to
  the spectrum of the area operator in nonperturbative quantum
  gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9806120}{\texttt{gr-qc/9806120}}.
\end{enumerate}

This is especially interesting because it fits in with other pieces of
evidence that fermions could simply be the ends of wormholes --- an old
idea of John Wheeler (see \protect\hyperlink{week109}{``Week 109''}).

I should also mention some other good review articles that have turned
up recently. Rovelli has written a survey comparing string theory, the
loop representation, and other approaches to quantum gravity, which is
very good because it points out the flaws in all these approaches, which
their proponents are usually all too willing to keep quiet about:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Carlo Rovelli, ``Strings, loops and others: a critical survey of the
  present approaches to quantum gravity''. Plenary lecture on quantum
  gravity at the \emph{GR15 conference, Pune, India}, preprint available
  as \href{https://arxiv.org/abs/gr-qc/9803024}{\texttt{gr-qc/9803024}}.
\end{enumerate}

Also, Loll has written a review of approaches to quantum gravity that
assume spacetime is discrete. It does \emph{not} discuss the spin foam
approach, which is too new; instead it mainly talks about lattice
quantum gravity, the Regge calculus, and the dynamical triangulations
approach. In lattice quantum gravity you treat spacetime as a fixed
lattice, usually a hypercubical one, and work with discrete versions of
the usual fields appearing in general relativity. In the Regge calculus
you triangulate your \(4\)-dimensional spacetime --- i.e., chop it into
a bunch of \(4\)-dimensional simplices --- and use the lengths of the
edges of these simplices as your basic variables. (For more details see
\protect\hyperlink{week120}{``Week 120''}.) In the dynamical
triangulations approach you also triangulate spacetime, but not in a
fixed way --- you consider all possible triangulations. However, you
assume all the edges of all the simplices have the same length --- the
Planck length, say. Thus all the information about the geometry of
spacetime is in the triangulation itself --- hence the name ``dynamical
triangulations''. Everything becomes purely combinatorial - there are no
real numbers in our description of spacetime geometry anymore. This
makes the dynamical triangulations approach great for computer
simulations. Computer simulations of quantum gravity! Loll reports on
the results of a lot of these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Renate Loll, ``Discrete approaches to quantum gravity in four
  dimensions'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9805049}{\texttt{gr-qc/9805049}},
  also available as a webpage on Living Reviews in Relativity at
  \texttt{http://www.livingreviews.org/Articles/Volume1/1998-13loll/}
\end{enumerate}

By the way, ``Living Reviews in Relativity'' is a cool website run by
the AEI, the Albert Einstein Institute for gravitational physics,
located in Potsdam, Germany. The idea is that experts will write review
articles on various subjects and \emph{keep them up to date} as new
developments occur. You can find this as follows:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Living Reviews in Relativity, \texttt{http://www.livingreviews.org}
\end{enumerate}

Here are some other good places to learn about the dynamical
triangulations approach to quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  J. Ambjorn, ``Quantum gravity represented as dynamical
  triangulations'', \emph{Class. Quant. Grav.} \textbf{12} (1995)
  2079--2134.
\item
  J. Ambjorn, M. Carfora, and A. Marzuoli, \emph{The Geometry of
  Dynamical Triangulations}, Springer-Verlag, Berlin, 1998. Also
  available electronically as
  \href{https://arxiv.org/abs/hep-th/9612069}{\texttt{hep-th/9612069}}
  --- watch out, this is 166 pages long!
\end{enumerate}

I can't resist pointing out an amusing relationship between dynamical
triangulations and mathematical logic, which Ambjorn mentions in his
review article. In computer simulations using the dynamical
triangulations approach, one wants to compute the average of certain
quantities over all triangulations of a fixed compact manifold --- e.g.,
the \(4\)-dimensional sphere, \(S^4\). The typical way to do this is to
start with a particular triangulation and then keep changing it using
various operations --- ``Pachner moves'' --- that are guaranteed to
eventually take you from any triangulation of a compact
\(4\)-dimensional manifold to any other.

Now here's where the mathematical logic comes in. Markov's theorem says
there is no algorithm that can decide whether or not two triangulations
are triangulations of the same compact \(4\)-dimensional manifold.
(Technically, by ``the same'' I mean ``piecewise linearly
homeomorphic'', but don't worry about that!) If they \emph{are}
triangulations of the same manifold, blundering about using the Pachner
moves will eventually get you from one to the other, but if they are
\emph{not}, you may never know for sure.

On the other hand, \(S^4\) may be special. It's an open question whether
or not \(S^4\) is ``algorithmically detectable''. In other words, it's
an open question whether or not there's an algorithm that can decide
whether or not a triangulation is a triangulation of the
\(4\)-dimensional sphere.

Now, suppose \(S^4\) is \emph{not} algorithmically detectable. Then the
maximum number of Pachner moves it takes to get between two
triangulations of the 4-sphere must grow really fast: faster than any
computable function! After all, if it didn't, we could use this upper
bound to know when to give up when using Pachner moves to try to reduce
our triangulation to a known triangulation of \(S^4\). So there must be
``bottlenecks'' that make it hard to efficiently explore the set of all
triangulations of \(S^4\) using Pachner moves. For example, there must
be pairs of triangulations such that getting from one to other via
Pachner moves requires going through triangulations with a \emph{lot}
more \(4\)-simplices.

However, computer simulations using triangulations with up to 65,536
4-simplices have not yet detected such ``bottlenecks''. What's going on?
Well, maybe S\^{}4 actually \emph{is} algorithmically detectable. Or
perhaps it's not, but the bottlenecks only occur for triangulations that
have more than 65,536 \(4\)-simplices to begin with. Interestingly, one
dimension up, it's known that the \(5\)-dimensional sphere is \emph{not}
algorithmically detectable, so in this case bottlenecks \emph{must}
exist --- but computer simulations still haven't seen them.

I should emphasize that in addition to this funny computability stuff,
there is also a whole lot of interesting \emph{physics} coming out of
the dynamical triangulations approach to quantum gravity. Unfortunately
I don't have the energy to explain this now --- so read those review
articles, and check out that nice book by Ambjorn, Carfora and Marzuoli!

On another front\ldots{} Ambjorn and Loll, who are both hanging out at
the AEI these days, have recently teamed up to study causality in a
lattice model of \(2\)-dimensional Lorentzian quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  J. Ambjorn and R. Loll, ``Non-perturbative Lorentzian quantum gravity,
  causality and topology change'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9805108}{\texttt{hep-th/9805108}}.
\end{enumerate}

I'll just quote the abstract:

\begin{quote}
We formulate a non-perturbative lattice model of two-dimensional
Lorentzian quantum gravity by performing the path integral over
geometries with a causal structure. The model can be solved exactly at
the discretized level. Its continuum limit coincides with the theory
obtained by quantizing 2d continuum gravity in proper-time gauge, but it
disagrees with 2d gravity defined via matrix models or Liouville theory.
By allowing topology change of the compact spatial slices (i.e.~baby
universe creation), one obtains agreement with the matrix models and
Liouville theory.
\end{quote}

And now for something completely different\ldots{}

I've been hearing rumbles off in the distance about some interesting
work by Kreimer relating renormalization, Feynman diagrams, and Hopf
algebras. A friendly student of Kreimer named Mathias Mertens handed me
a couple of the basic papers when I was in Portugal:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Dirk Kreimer, ``Renormalization and knot theory'', \emph{Journal of
  Knot Theory and its Ramifications}, \textbf{6} (1997), 479--581.
  Preprint available as
  \href{https://arxiv.org/abs/q-alg/9607022}{\texttt{q-alg/9607022}} ---
  beware, this is 103 pages long!

  Dirk Kreimer, ``On the Hopf algebra structure of perturbative quantum
  field theories'', preprint available as
  \href{https://arxiv.org/abs/q-alg/9707029}{\texttt{q-alg/9707029}}.
\end{enumerate}

I'm looking through them but I don't really understand them yet. The
basic idea seems to be something like this. In quantum field theory you
compute the probability for some reaction among particles by doing
integrals which correspond in a certain way to pictures called Feynman
diagrams. Often these integrals give infinite answers, which forces you
to do a trick called renormalization to cancel the infinities and get
finite answers. Part of why this trick works is that while your
integrals diverge, they usually diverge at a well-defined rate. For
example, you might get something asymptotic to a constant times
\(1/d^k\), where \(d\) is the spatial cutoff you put in to get a finite
answer. And the constant you get here can be explicitly computed. For
example, it often involves numbers like \(\zeta(n)\), where \(\zeta\) is
the Riemann zeta function, much beloved by number theorists:
\[\zeta(n) = \frac{1}{1^n} + \frac{1}{2^n} + \frac{1}{3^n} + \ldots\]
Kreimer noticed that if you take the Feynman diagram and do some tricks
to turn it into a drawing of a knot or link, the constant you get is
related in interesting ways to the topology of this knot or link! More
complicated knots or links give fancier constants, and there are all
sorts of suggestive patterns. He worked out a bunch of examples in the
first paper cited above, and since then people have worked out lots
more, which you can find in the references.

Apparently the secret underlying reason for these patterns comes from
the combinatorics of renormalization, which Kreimer was able to
summarize in a certain algebraic structure called a Hopf algebra. Hopf
algebras are important in both combinatorics and physics, so perhaps
this shouldn't be surprising. But there is still a lot of mysterious
stuff going on, at least as far as I can tell.

What's really intriguing about all this is \emph{which} quantum field
theories Kreimer was studying when he discovered this stuff: \emph{not}
topological quantum field theories like Chern-Simons theory, which
already have well-understood relationship to knot theory, but instead,
field theories that ordinary particle physicists have been thinking
about for decades, like quantum electrodynamics, \(\varphi^4\) theory in
4 dimensions, and \(\varphi^3\) theory in 6 dimensions --- field
theories where renormalization is a deadly serious business, thanks to
nasty problems like ``overlapping divergences''.

The idea that knot theory is relevant to \emph{these} field theories is
exciting but also somewhat puzzling, since they don't live in
3-dimensional spacetime the way Chern-Simons theory does. People
familiar with Chern-Simons theory have already been seeing fascinating
patterns relating knot theory, quantum field theory and number theory.
Is this new stuff related? Or is it something completely different?
Kreimer seems to think it's related.

According to Kirill Krasnov, the famous mathematician Alain Connes is
going around telling people to learn about this stuff. Apparently Connes
is now writing a paper on it with Kreimer, and it was Connes who got the
authors of this paper interested in the subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Thomas Krajewski and Raimar Wulkenhaar, ``On Kreimer's Hopf algebra
  structure of Feynman graphs'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9805098}{\texttt{hep-th/9805098}}.
\end{enumerate}

Since I haven't plunged in yet, I'll just quote the abstract:

\begin{quote}
We reinvestigate Kreimer's Hopf algebra structure of perturbative
quantum field theories. In Kreimer's original work, overlapping
divergences were first disentangled into a linear combination of
disjoint and nested ones using the Schwinger-Dyson equation. The linear
combination then was tackled by the Hopf algebra operations. We present
a formulation where the coproduct itself produces the linear
combination, without reference to external input.
\end{quote}

With any luck, mathematicians will study this stuff and finally
understand renormalization!
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\section{September 19, 1998}\label{week123}}

\begin{quote}
It all started out as a joke. Argument for argument's sake. Alison and
her infuriating heresies.

``A mathematical theorem,'' she'd proclaimed, "only becomes true when a
physical system tests it out: when the system's behaviour depends in
some way on the theorem being \emph{true} or \emph{false}.

It was June 1994. We were sitting in a small paved courtyard, having
just emerged from the final lecture in a one-semester course on the
philosophy of mathematics --- a bit of light relief from the hard grind
of the real stuff. We had fifteen minutes to to kill before meeting some
friends for lunch. It was a social conversation --- verging on mild
flirtation --- nothing more. Maybe there were demented academics,
lurking in dark crypts somewhere, who held views on the nature of
mathematical truth which they were willing to die for. But were were
twenty years old, and we \emph{knew} it was all angels on the head of a
pin.

I said, ``Physical systems don't create mathematics. Nothing
\emph{creates} mathematics --- it's timeless. All of number theory would
still be exactly the same, even if the universe contained nothing but a
single electron.''

Alison snorted. ``Yes, because even \emph{one electron}, plus a
space-time to put it in, needs all of quantum mechanics and all of
general relativity --- and all the mathematical infrastructure they
entail. One particle floating in a quantum vacuum needs half the major
results of group theory, functional analysis, differential geometry
---''

``OK, OK! I get the point. But if that's the case\ldots{} the events in
the first picosecond after the Big Bang would have `constructed' every
last mathematical truth required by \emph{any} physical system, all the
way to the Big Cruch. Once you've got the mathematics which underpins
the Theory of Everything\ldots{} that's it, that's all you ever need.
End of story.''

``But it's not. To \emph{apply} the Theory of Everything to a particular
system, you still need all the mathematics for dealing with \emph{that
system} --- which could include results far beyond the mathematics the
TOE itself requires. I mean, fifteen billion years after the Big Bang,
someone can still come along and prove, say\ldots{} Fermat's Last
Theorem.'' Andrew Wiles at Princeton had recently announced a proof of
the famous conjecture, although his work was still being scrutinised by
his colleagues, and the final verdict wasn't yet in. ``Physics never
needed \emph{that} before.''

I protested, ``What do you mean, `before'? Fermat's Last Theorem never
has --- and never will --- have anything to do with any branch of
physics.''

Alison smiled sneakily. ``No \emph{branch}, no. But only because the
class of physical systems whose behaviour depend on it is so ludicrously
specific: the brains of mathematicians who are trying to validate the
Wiles proof.''

``Think about it. Once you start trying to prove a theorem, then even if
the mathematics is so `pure' that it has no relevance to any other
object in the universe\ldots{} you've just made it relevant to
\emph{yourself}. You have to choose \emph{some} physical process to test
the theorem --- whether you use a computer, or a pen and paper\ldots{}
or just close your eyes and shuffle \emph{neurotransmitters}. There's no
such thing as a proof which doesn't rely on physical events, and whether
they're inside or outside your skull doesn't make them any less real.''
\end{quote}

And this is just the beginning\ldots{} the beginning of Greg Egan's tale
of an inconsistency in the axioms of arithmetic --- a ``topological
defect'' left over in the fabric of mathematics, much like the cosmic
strings or monopoles hypothesized by certain physicists thinking about
the early universe --- and the mathematicians who discover it and
struggle to prevent a large corporation from exploiting it for their own
nefarious purposes. This is the title story of his new collection,
``Luminous''.

I should also mention his earlier collection of stories, named after a
sophisticated class of mind-altering nanotechnologies, the
``axiomatics'', that affect specific beliefs of anyone who uses them:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Greg Egan, \emph{Axiomatic}, Orion Books, 1995.

  Greg Egan, \emph{Luminous}, Orion Books, 1998.
\end{enumerate}

Some of the stories in these volumes concern math and physics, such as
``The Planck Dive'', about some far-future explorers who send copies of
themselves into a black hole to study quantum gravity firsthand. One
nice thing about this story, from a pedant's perspective, is that Egan
actually works out a plausible scenario for meeting the technical
challenges involved --- with the help of a little 23rd-century
technology. Another nice thing is the further exploration of a world in
which everyone has long been uploaded to virtual ``scapes'' and can
easily modify and copy themselves --- a world familiar to readers of his
novel ``Diaspora'' (see \protect\hyperlink{week115}{``Week 115''}). But
what I really like is that it's not just a hard-science extravaganza;
it's a meditation on mortality. You can never really know what it's like
to cross an event horizon unless you do it\ldots.

Other stories focus on biotechnology and philosophical problems of
identity. The latter sort will especially appeal to everyone who liked
this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Daniel C. Dennett and Douglas R. Hofstadter, \emph{The Mind's I:
  Fantasies and Reflections on Self and Soul}, Bantam Books, 1982.
\end{enumerate}

Among these, one of my favorite is called ``Closer''. How close can you
be to someone without actually \emph{being them}? Would temporarily
merging identities with someone you loved help you understand them
better? Luckily for you penny-pinchers out there, this particular story
is available free at the following website:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Greg Egan, \emph{Closer},
  \texttt{http://www.eidolon.net/old\_site/issue\_09/09\_closr.htm}
\end{enumerate}

Whoops! I'm drifting pretty far from mathematical physics, aren't I?
Self-reference has a lot to do with mathematical logic, but\ldots. To
gently drift back, let me point out that Egan has a website in which he
explains special and general relativity in a nice, nontechnical way:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Greg Egan, \emph{Foundations},
  \texttt{http://www.netspace.net.au/\textasciitilde{}gregegan/FOUNDATIONS/index.html}
\end{enumerate}

Also, here are some interesting papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Gordon L. Kane, ``Experimental evidence for more dimensions
  reported'', \emph{Physics Today}, May 1998, 13--16.

  Paul M. Grant, ``Researchers find extraordinarily high temperature
  superconductivity in bio-inspired nanopolymer'', \emph{Physics Today},
  May 1998, 17--19.

  Jack Watrous, ``Ribosomal robotics approaches critical experiments;
  government agencies watch with mixed interest'', \emph{Physics Today},
  May 1998, 21--23.
\end{enumerate}

What these papers have in common is that they are all works of science
fiction, not science. They read superficially like straight science
reporting, but they are actually the winners of Physics Today's
``Physics Tomorrow'' essay contest!

For example, Grant writes:

\begin{quote}
``Little's concept involved replacing the phonons --- characterized by
the Debye temperature --- with excitons, whose much higher
characteristic energies are on the order of 2 eV, or 23,000 K. If
excitons were to become the electron-pairing `glue', superconductors
with \(T_c\)'s as high as 500 K might be possible, even under weak
coupling conditions. Little even proposed a possible realization of the
idea: a structure composed of a conjugated polymer chain (polyene)
dressed with highly polarizable molecule (aromatics) as side groups.
Simply stated, the polyene chain would be a normal metal with a single
mobile electron per C-H molecular unit; electrons on separate units
would be paired by interacting with the exciton field on the polarizable
side groups.''
\end{quote}

Actually, I think this part is perfectly true --- William A. Little
suggested this way to achieve high-temperature superconductivity back in
the 1960s. The science fiction part is just the description, later on in
Grant's article, of how Little's dream is actually achieved.

Okay, enough science fiction! Time for some real science! Quantum
gravity, that is. (Stop snickering, you skeptics\ldots.)

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Laurent Freidel and Kirill Krasnov, ``Spin foam models and the
  classical action principle'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9807092}{\texttt{hep-th/9807092}}.
\end{enumerate}

I described the spin foam approach to quantum gravity in
\protect\hyperlink{week113}{``Week 113''}. But let me remind you how the
basic idea goes. A good way to get a handle on this idea is by analogy
with Feynman diagrams. In ordinary quantum field theory there is a
Hilbert space of states called ``Fock space''. This space has a basis of
states in which there are a specific number of particles at specific
positions. We can visualize such a state simply by imagining a bunch of
points in space, with labels to say which particles are which kinds:
electrons, quarks, and so on. One of the main jobs of quantum field
theory is to let us compute the amplitude for one such state to evolve
into another as time passes. Feynman showed that we can do it by
computing a sum over graphs in spacetime. These graphs are called
Feynman diagrams, and they represent ``histories''. For example, \[
  \begin{tikzpicture}[thick]
    \draw (0,0) to node[rotate=225,label={[label distance=-2mm]left:{u}}]{$\blacktriangle$} (1,-1);
    \draw (1,-1) to node[rotate=-225,label={[label distance=-3.2mm]left:{d}}]{$\blacktriangle$} (0,-2);
    \draw [decorate, decoration=snake] (1,-1) to node[label=above:{W}]{} (3,-1);
    \draw (4,0) to node[rotate=-225,label={[label distance=-2mm]right:{e}}]{$\blacktriangle$} (3,-1);
    \draw (3,-1) to node[rotate=225,label={[label distance=-2mm]right:{$\nu$}}]{$\blacktriangle$} (4,-2);
  \end{tikzpicture}
\] would represent a history in which an up quark emits a W boson and
turns into a down quark, with the W being absorbed by an electron,
turning it into a neutrino. Time passes as you march down the page.
Quantum field theory gives you rules for computing amplitudes for any
Feyman diagram. You sum these amplitudes over all Feynman diagrams
starting at one state and ending at another to get the total amplitude
for the given transition to occur.

Now, where do these rules for computing Feynman diagram amplitudes come
from? They are not simply postulated. They come from perturbation
theory. There is a general abstract formula for computing amplitudes in
quantum field theory, but it's not so easy to use this formula in
concrete calculations, except for certain very simple field theories
called ``free theories''. These theories describe particles that don't
interact at all. They are mathematically tractable but physically
uninteresting. Uninteresting, that is, \emph{except} as a starting-point
for studying the theories we \emph{are} interested in --- the so-called
``interacting theories''.

The trick is to think of an interacting theory as containing parameters,
called ``coupling constants'', which when set to zero make it reduce to
a free theory. Then we can try to expand the transition amplitudes we
want to know as a Taylor series in these parameters. As usual, computing
the coefficients of the Taylor series only requires us to to compute a
bunch of derivatives. And we can compute these derivatives using the
free theory! Typically, computing the \(n\)th derivative of some
transition amplitude gives us a bunch of integrals which correspond to
Feynman diagrams with n vertices.

By the way, this means you have to take the particles you see in Feynman
diagrams with a grain of salt. They don't arise purely from the
mathematics of the interacting theory. They arise when we
\emph{approximate} that theory by a free theory. This is not an idle
point, because we can take the same interacting theory and approximate
it by \emph{different} free theories. Depending on what free theory we
use, we may say different things about which particles our interacting
theory describes! In condensed matter physics, people sometimes use the
term ``quasiparticle'' to describe a particle that appears in a free
theory that happens to be handy for some problem or other. For example,
it can be helpful to describe vibrations in a crystal using ``phonons'',
or waves of tilted electron spins using ``spinons''. Condensed matter
theorists rarely worry about whether these particles ``really exist''.
The question of whether they ``really exist'' is less interesting than
the question of whether the particular free theory they inhabit provides
a good approximation for dealing with a certain problem. Particle
physicists, too, have increasingly come to recognize that we shouldn't
worry too much about which elementary particles ``really exist''.

But I digress! My point was simply to say that Feynman diagrams arise
from approximating interacting theories by free theories. The details
are complicated and in most cases nobody has ever succeeded in making
them mathematically rigorous, but I don't want to go into that here.
Instead, I want to turn to spin foams.

Everything I said about Feynman diagrams has an analogy in this approach
to quantum gravity. The big difference is that ordinary ``free
theories'' are formulated on a spacetime with a fixed metric - usually
Minkowski spacetime, with its usual flat metric. Attempts to approximate
quantum gravity by this sort of free theory failed dismally. Perhaps the
fundamental reason is that general relativity doesn't presume that
spacetime has a fixed metric --- au contraire, it's a theory in which
the metric is the main variable!

So the idea of Freidel and Krasnov is to approximate quantum graivty
with a very different sort of ``free theory'', one in which the metric
is a variable. The theory they use is called ``\(BF\) theory''. I said a
lot about \(BF\) theory in \protect\hyperlink{week36}{``Week 36''}, but
here the main point is simply that it's a topological quantum field
theory, or TQFT. A TQFT is a quantum field theory that does not presume
a fixed metric, but of a very simple sort, because it has no local
degrees of freedom. I very much like the idea that a TQFT might serve as
a novel sort of ``free theory'' for the purposes of studying quantum
gravity.

Everything that Freidel and Krasnov do is reminscent of familiar quantum
field theory, but also very different, because their starting-point is
\(BF\) theory rather than a free theory of a traditional sort. For
example, just as ordinary quantum field theory starts out with Fock
space, in the spin network approach to quantum gravity we start with a
nice simple Hilbert space of states. But this space has a basis
consisting, not of collections of 0-dimensional particles sitting in
space at specified positions, but of \(1\)-dimensional ``spin networks''
sitting in space. (For more on spin networks, see
\protect\hyperlink{week55}{``Week 55''} and
\protect\hyperlink{week110}{``Week 110''}.) And instead of using
\(1\)-dimensional Feynman diagrams to compute transition amplitudes, the
idea is now to use 2-dimensional gadgets called ``spin foams''. The
amplitudes for spin foams are easy to compute in \(BF\) theory, because
there are a lot of explicit formulas using the so-called ``Kauffman
bracket'', which is an easily computable invariant of spin networks. So
then the trick is to use this technology to compute spin foam amplitudes
for quantum gravity.

Now, I shouldn't give you the wrong impression here. There are lots of
serious problems and really basic open questions in this work, and the
whole thing could turn out to be fatally flawed somehow. Nonetheless,
something seems right about it, so I find it very interesting.

Anyway, on to some other papers. I'm afraid I don't have enough energy
for detailed descriptions, because I'm busy moving into a new house, so
I'll basically just point you at them\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Abhay Ashtekar, Alejandro Corichi and Jose A. Zapata, ``Quantum theory
  of geometry III: Non-commutativity of Riemannian structures'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9806041}{\texttt{gr-qc/9806041}}.
\end{enumerate}

This is the long-awaited third part of a series giving a mathematically
rigorous formalism for interpreting spin network states as ``quantum
3-geometries'', that is, quantum states describing the metric on
3-dimensional space together with its extrinsic curvature (as it sits
inside \(4\)-dimensional spacetime). Here's the abstract:

\begin{quote}
``The basic framework for a systematic construction of a quantum theory
of Riemannian geometry was introduced recently. The quantum versions of
Riemannian structures --- such as triad and area operators --- exhibit a
non-commutativity. At first sight, this feature is surprising because it
implies that the framework does not admit a triad representation. To
better understand this property and to reconcile it with intuition, we
analyze its origin in detail. In particular, a careful study of the
underlying phase space is made and the feature is traced back to the
classical theory; there is no anomaly associated with quantization. We
also indicate why the uncertainties associated with this
non-commutativity become negligible in the semi-classical regime.''
\end{quote}

In case you're wondering, the ``triad'' field is more or less what
mathematicians would call a ``frame field'' or ``soldering form'' ---
and it's the same as the ``B'' field in \(BF\) theory. It encodes the
information about the metric in Ashtekar's formulation to general
relativity.

Moving on to matters \(n\)-categorical, we have:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Andre Hirschowitz, Carlos Simpson, ``Descente pour les \(n\)-champs''
  (Descent for \(n\)-stacks), approximately 240 pages, in French,
  preprint available as
  \href{https://arxiv.org/abs/math.AG/9807049}{\texttt{math.AG/9807049}}.
\end{enumerate}

Apparently this provides a theory of ``\(n\)-stacks'', which are the
\(n\)-categorical generalization of sheaves. Ever since Grothendieck's
600-page letter to Quillen (see \protect\hyperlink{week35}{``Week
35''}), this has been the holy grail of \(n\)-category theory.
Unfortunately I haven't mustered sufficient courage to force my way
through 240 pages of French, so I don't really know the details!

For the following two \(n\)-category papers, exploring some themes close
to my heart, I'll just quote the abstracts:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Michael Batanin, ``Computads for finitary monads on globular sets'',
  preprint available at
  \texttt{http://www.ics.mq.edu.au/\textasciitilde{}mbatanin/papers.html}
\end{enumerate}

\begin{quote}
"This work arose as a reflection on the foundation of higher dimensional
category theory. One of the main ingredients of any proposed definition
of weak \(n\)-category is the shape of diagrams (pasting scheme) we
accept to be composable. In a globular approach {[}due to Batanin{]}
each \(k\)-cell has a source and target \((k-1)\)-cell. In the opetopic
approach of Baez and Dolan and the multitopic approach of Hermida,
Makkai and Power each \(k\)-cell has a unique \((k-1)\)-cell as target
and a whole \((k-1)\)-dimensional pasting diagram as source. In the
theory of strict \(n\)-categories both source and target may be a
general pasting diagram.
\end{quote}

The globular approach being the simplest one seems too restrictive to
describe the combinatorics of higher dimensional compositions. Yet, we
argue that this is a false impression. Moreover, we prove that this
approach is a basic one from which the other type of composable diagrams
may be derived. One theorem proved here asserts that the category of
algebras of a finitary monad on the category of n-globular sets is
\emph{equivalent} to the category of algebras of an appropriate monad on
the special category (of computads) constructed from the data of the
original monad. In the case of the monad derived from the universal
contractible operad this result may be interpreted as the equivalence of
the definitions of weak \(n\)-categories (in the sense of Batanin) based
on the `globular' and general pasting diagrams. It may be also
considered as the first step toward the proof of equivalence of the
different definitions of weak \(n\)-category.

We also develop a general theory of computads and investigate some
properties of the category of generalized computads. It turned out, that
in a good situation this category is a topos (and even a presheaf topos
under some not very restrictive conditions, the property firstly
observed by S. Schanuel and reproved by A. Carboni and P. Johnstone for
2-computads in the sense of Street)."

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Tom Leinster, ``Structures in higher-dimensional category theory'',
  preprint available at
  \texttt{http://www.dpmms.cam.ac.uk/\textasciitilde{}leinster}
\end{enumerate}

\begin{quote}
``This is an exposition of some of the constructions which have arisen
in higher-dimensional category theory. We start with a review of the
general theory of operads and multicategories. Using this we give an
account of Batanin's definition of \(n\)-category; we also give an
informal definition in pictures. Next we discuss Gray-categories and
their place in coherence problems. Finally, we present various
constructions relevant to the opetopic definitions of \(n\)-category.
New material includes a suggestion for a definition of lax cubical
\(n\)-category; a characterization of small Gray-categories as the small
substructures of \(2\text{-}\mathsf{Cat}\); a conjecture on coherence
theorems in higher dimensions; a construction of the category of trees
and, more generally, of \(n\)-pasting diagrams; and an analogue of the
Baez-Dolan slicing process in the general theory of operads.''
\end{quote}

Okay --- now for something completely different. In
\protect\hyperlink{week122}{``Week 122''} I said how Kreimer and Connes
have teamed up to write a paper relating Hopf algebras, renormalization,
and noncommutative geometry. Now it's out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Alain Connes and Dirk Kreimer, ``Hopf algebras, renormalization and
  noncommutative geometry'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9808042}{\texttt{hep-th/9808042}}.
\end{enumerate}

Also, here's an introduction to Kreimer's work:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Dirk Kreimer, ``How useful can knot and number theory be for loop
  calculations?'', Talk given at the workshop \emph{Loops and Legs in
  Gauge Theories}, preprint available as
  \href{https://arxiv.org/abs/hep-th/9807125}{\texttt{hep-th/9807125}}.
\end{enumerate}

Switching over to homotopy theory and its offshoots\ldots{} when I
visited Dan Christensen at Johns Hopkins this spring, he introduced me
to all the homotopy theorists there, and Jack Morava gave me a paper
which really indicates the extent to which new-fangled ``quantum
topology'' has interbred with good old-fashioned homotopy theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Jack Morava, ``Quantum generalized cohomology'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9807058}{\texttt{math.QA/9807058}}
  and \texttt{http://hopf.math.purdue.edu/}
\end{enumerate}

Again, I'll just quote the abstract rather than venturing my own
summary:

\begin{quote}
``We construct a ring structure on complex cobordism tensored with the
rationals, which is related to the usual ring structure as quantum
cohomology is related to ordinary cohomology. The resulting object
defines a generalized two- dimensional topological field theory taking
values in a category of spectra.''
\end{quote}

Finally, Morava has a student who gave me an interesting paper on
operads and moduli spaces:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Satyan L. Devadoss, ``Tessellations of moduli spaces and the mosaic
  operad'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9807010}{\texttt{math.QA/9807010}}.
\end{enumerate}

\begin{quote}
``We construct a new (cyclic) operad of `mosaics' defined by polygons
with marked diagonals. Its underlying (aspherical) spaces are the sets
\(M_{0,n}(\mathbb{R})\) of real points of the moduli space of punctured
Riemann spheres, which are naturally tiled by Stasheff associahedra. We
(combinatorially) describe them as iterated blow-ups and show that their
fundamental groups form an operad with similarities to the operad of
braid groups.''
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{Some things are so serious that one can only jest about them.} ---
Niels Bohr.
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I'm just back from Tucson, where I talked a lot with my friend Minhyong
Kim, who teaches at the math department of the University of Arizona. I
met Minhyong in 1986 when I was a postdoc and he was a grad student at
Yale. At the time, strings were all the rage. Having recently found 5
consistent superstring theories, many physicists were giddy with
optimism, some even suggesting that the Theory of Everything would be
completed before the turn of the century. A lot of mathematicians were
going along for the ride, delighted by the beautiful and intricate
mathematical infrastructure: conformal field theory, vertex operator
algebras, and so on. Minhyong was considering doing his thesis on one of
these topics, so we spent a lot of time talking about mathematical
physics.

However, he eventually decided to work with Serge Lang on arithmetic
geometry. This is a branch of algebraic geometry where you work over the
integers instead of a field --- especially important for Diophantine
equations. Personally, I was a bit disappointed. Perhaps it was because
I thought physics was more important than the decadent pleasures of pure
mathematics --- or perhaps it was because it made it much less likely
that we'd ever collaborate on a paper.

However, a lot of the math Minhyong learned when studying string theory
is also important in arithmetic geometry. An example is the theory of
elliptic curves. Roughly speaking, an elliptic curve is a torus formed
taking a parallelogram in the complex plane and identifying opposite
edges.

You might wonder why something basically doughnut-shaped is called an
elliptic curve! Let's clear that up right away. The ``elliptic'' part
comes from a relationship to elliptic functions, which generalize the
familiar trig functions from circles to ellipses. The ``curve'' part
comes from the fact that it takes one complex number \(z = x+iy\) to
describe your location on a surface with two real coordinates \((x,y)\),
so showoffs like to say that a torus is one-dimensional --- one
\emph{complex} dimension, that is! --- hence a ``curve''. In short, you
have to already understand elliptic curves to know why the heck they're
called elliptic curves.

Anyway, why are elliptic curves important? On the one hand, they show up
all over number theory, like in Wiles' proof of Fermat's last theorem.
On the other hand, in string theory, a string traces out a surface in
spacetime called the string worldsheet, and points on this surface are
conveniently described using a single complex number, so it's what those
showoffs call a ``curve'' --- and among the simplest examples are
elliptic curves!

If you're interested to see how Fermat's last theorem was reduced to a
problem about elliptic curves --- the so-called Shimura-Taniyama-Weil
conjecture --- you can look at the textbooks on elliptic curves listed
in \protect\hyperlink{week13}{``Week 13''}. But I won't say anything
about this, since I don't understand it. Instead, I want to talk about
how elliptic curves show up in string theory. For more on how these two
applications fit together, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Yuri I. Manin, ``Reflections on arithmetical physics'', in
  \emph{Conformal Invariance and String Theory}, eds.~Petre Dita and
  Vladimir Georgescu, Academic Press, 1989.
\end{enumerate}

Let me just quote the beginning:

\begin{quote}
The development of theoretical physics in the last quarter of the
twentieth century is guided by a very romantic system of values.
Aspiring to describe fundamental processes at the Planck scale,
physicists are bound to lose any direct connection with the observable
world. In this social context the sophisticated mathematics emerging in
string theory ceases to be only a technical tool needed to calculate
some measurable effects and becomes a matter of principle.

Today at least some of us are again nurturing an ancient Platonic
feeling that mathematical ideas are somehow predestined to describe the
physical world, however remote from reality their origins seem to be.

From this viewpoint one should perversely expect number theory to become
the most applicable branch of mathematics."
\end{quote}

I think this remark wisely summarizes both the charm and the dangers of
physics that relies more heavily on criteria of mathematical elegance
than of experimental verification.

Anyway, I don't want to get too deep into the theory of elliptic curves;
just enough so we see why the number 24 is so important in string
theory. You may remember that bosonic string theory works best in 26
dimensions (while the physically more important superstring theory,
which includes spin-\(1/2\) particles, works best in 10). Why is this
true? Well, there are various answers, but one is that if you think of
the string as wiggling in the 24 directions perpendicular to its own
2-dimensional surface --- two \emph{real} dimensions, that is! ---
various magical properties of the number 24 conspire to make things work
out.

What are these magical properties of the number 24? Well,
\[1^2 + 2^2 + 3^2 + \ldots + 24^2\] is itself a perfect square, and 24
is the only integer with this property besides silly ones like 0 and 1.
As described in \protect\hyperlink{week95}{``Week 95''}, this has some
very profound relationships to string theory. Unfortunately, I don't
know any way to deduce from this that bosonic string theory \emph{works
best} in 26 dimensions.

One reason bosonic string theory works best in 26 dimensions is that
\[1 + 2 + 3 + \ldots = -\frac{1}{12}\] and \(2 \times 12 = 24\). Of
course, this explanation is unsatisfactory in many ways. First of all,
you might wonder what the above equation means! Doesn't the sum
diverge???

Actually this is the \emph{least} unsatisfactory feature of the
explanation. Although the sum diverges, you can still make sense of it.
The Riemann zeta function is defined by
\[\zeta(s) = 1^{-s} + 2^{-s} + 3^{-s} + \ldots\] whenever the real part
of \(s\) is greater than \(1\), which makes the sum converge. But you
can analytically continue it to the whole complex plane, except for a
pole at \(1\). If you do this, you find that
\[\zeta(-1) = -\frac{1}{12}.\] Thus we may jokingly say that
\(1 + 2 + 3 + \ldots = -1/12\). But the real point is how the zeta
function shows up in string theory, and quantum field theory in general.
(It's also big in number theory.)

Unfortunately, the details quickly get rather technical; one has to do
some calculations and so on. That's the really unsatisfactory part. I
want something that clearly relates strings and the number 24, something
so simple even a child could understand it, and which, when you work out
all the implications, implies that bosonic string theory only makes
sense in 26 dimensions. I don't expect a child to be able to figure out
all the implications\ldots{} but I want the essence to be childishly
simple.

Here it is. Suppose the string worldsheet is an elliptic curve. Then we
can make it by taking a ``lattice'' of parallelograms in the complex
plane: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-3,0) to (4,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-3) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node at ({\m*1.5-\n/3-0.2},{1.5*\n+\m-0.5}) {$\bullet$};
      }
    }
  \end{tikzpicture}
\] and identifying each point in each parallelogram with the
corresponding points on all the others. This rolls the plane up into a
torus. Now, two lattices are more symmetrical than the rest. One of them
is the square lattice: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-2.5,0) to (4,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-2) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node at ({1.5*\m},{1.6*\n}) {$\bullet$};
      }
    }
  \end{tikzpicture}
\] which has 4-fold rotational symmetry. The other is the lattice with
lots of equilateral triangles in it: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-3,0) to (4.5,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-2) to (0,3.5) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node at ({1.5*\m+0.75*\n},{1.33*\n}) {$\bullet$};
      }
    }
  \end{tikzpicture}
\] which has 6-fold rotational symmetry. The magic property of the
number 24, which makes string theory work so well in 26 dimensions, is
that \[4 \times 6 = 24\]

Okay, great. But if you're anything like me, at this point you're
wondering how the heck this actually helps. Why should string theory
care about these specially symmetrical lattices? And why should we
\emph{multiply} 4 and 6? So far everything I've said has been flashy but
insubstantial. Next week I'll fill in some of the details. Of course,
I'll need to turn up the sophistication level a notch or two.

In the meantime, you can read a bit more about this stuff in the
following article on Richard Borcherds, who won the Fields medal for his
work relating bosonic string theory, the Leech lattice in 24 dimensions,
and the Monster group:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  W. Wayt Gibbs, ``Monstrous moonshine is true'', \emph{Scientific
  American}, November 1998, 40--41. Also available at
  \texttt{http://www.sciam.com/1998/1198issue/1198profile.html}.
\end{enumerate}

Gibbs asked me to come up with a simple explanation of the \(j\)
invariant for elliptic curves; you can \(j\)udge how well I succeeded.
For a more detailed attempt to do the same thing, see
\protect\hyperlink{week66}{``Week 66''}, which also has more references
on the Monster group. By the way, John McKay didn't actually make his
famous discovery relating the \(j\) invariant and Monster while reading
a 19th-century book on elliptic modular functions; he says ``It was du
Val's Elliptic Functions book in which \(j\) is expanded incorrectly as
a \(q\)-series --- very much a 20th century book.'' Apart from that, the
article seems accurate, as far as I can tell.

If you really want to understand how elliptic curves are related to
strings, you need to learn some conformal field theory. For that, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Phillippe Di Francesco, Pierre Mathieu, and David Senechal,
  \emph{Conformal Field Theory}, Springer, 1997.
\end{enumerate}

This is a truly wonderful tour of the subject. It's 890 pages long, but
it's designed to be readable by both mathematicians and physicists, so
you can look at the bits you want. It starts out with a 60-page
introduction to quantum field theory and a 30-page introduction to
statistical mechanics. The reason is that when we perform the
substitution called the ``Wick transform'': \[it/\hbar\mapsto k/T,\]
quantum field theory turns into statistical mechanics, and a nice
Lorentzian manifold may turn into a Riemannian manifold --- in other
words, ``spacetime'' turns into ``space''. And this gives conformal
field theory a double personality.

First, conformal field theory studies quantum field theories in 2
dimensions that are invariant under all conformal transformations ---
transformations that preserve angles but not necessarily lengths. These
are important in string theory because we can think of them as
transformations of the string worldsheet that preserve its complex
structure.

Secondly, if we do a Wick transform, these quantum field theories become
2-dimensional \emph{statistical mechanics} problems that are invariant
under all conformal transformations. This may seem an esoteric concern,
but thin films of material can often be treated as \(2\)-dimensional for
all practical purposes, and conformal invariance is typical at
``critical points'' --- boundaries between two or more phases for which
there is no latent heat, such as the boundary between the magnetized and
unmagnetized phases of a ferromagnet. In 2 dimensions, one can use
conformal field theory to thoroughly understand these critical points.

After this warmup, the book covers the fundamentals of conformal field
theory proper, including:

\begin{itemize}
\tightlist
\item
  the idea of conformal invariance (which is especially powerful in 2
  dimensions because then the group of conformal transformations is
  infinite-dimensional),
\item
  the free boson and fermion fields,
\item
  operator product expansions,
\item
  the Virasoro algebra (which is closely related to the Lie algebra of
  the group of conformal transformations, and has a representation on
  the Hilbert space of states of any conformal field theory),
\item
  minimal models (roughly, conformal field theories whose Hilbert space
  is built from finitely many irreducible representations of the
  Virasoro algebra),
\item
  the Coulomb-gas formalism (a way to describe minimal models in terms
  of the free boson and fermion fields),
\item
  modular invariance (the study of conformal field theory on tori ---
  this is where the elliptic curves start sneaking into the picture,
  dragging along with them the wonderful machinery of elliptic
  functions, theta functions, the Dedekind eta function, and so forth),
\item
  critical percolation (applying conformal field theory to systems where
  a substance is trying to ooze through a porous medium, with special
  attention paid to the critical point when the holes are \emph{just}
  big enough to let it ooze all the way through),
\item
  the \(2\)-dimensional Ising model (applying conformal field theory to
  ferromagnets, with special attention paid to the critical point when
  the temperature is \emph{just} low enough for ferromagnetism to set
  in)
\end{itemize}

By now we're at page 486. I'm getting tired just summarizing this thing!

Anyway, the book then turns to conformal field theories having Lie group
symmetries: in particular, the so-called Wess-Zumino-Witten or ``WZW''
models. Pure mathematicians are free to join here, even amateurs,
because we are now treated to a wonderful 78-page introduction to simple
Lie algebras, starting from scratch and working rapidly through all
sorts of fun stuff, skipping all the yucky proofs. Then we get a 54-page
introduction to affine Lie algebras, which are infinite- dimensional
generalizations of the simple Lie algebras, and play a crucial role in
string theory. Finally, we get a detailed 143-page course on WZW models
--- which are basically conformal field theories where your field takes
values in a Lie group --- and coset models --- where your field takes
values in a Lie group modulo a subgroup. It sounds like all minimal
models can be described as coset models, though I'm not quite sure.

Whew! Believe it or not, the authors plan a second volume! Anyway, this
is a wonderful book to have around. I was just about to buy a copy in
Chicago last spring --- on sale for a mere \$50 --- when I discovered
I'd lost my credit card. Sigh. The big ones always get away\ldots.

There are various formalisms for doing conformal field theory that
aren't covered in the above text. For example, the theory of ``vertex
operator algebras'', or ``vertex algebras'' is really popular among
mathematicians studying conformal field theory and the Monster group.

The standard definition of a vertex operator algebra is long and
complicated: it summarizes a lot of what you'd want a conformal field
theory to be like, but it's hard to learn to love it unless you already
know some \emph{other} approaches to conformal field theory. There's
another definition using operads that's much nicer, which will
eventually catch on --- some people complain that operads are too
abstract, but that's just hogwash. But anyway, there is a definite need
for more elementary texts on the subject. Here's one:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Victor Kac, \emph{Vertex Algebras for Beginners}, American
  Mathematical Society, University Lecture Series vol.~\textbf{10},
  1997.
\end{enumerate}

And then of course there is string theory proper. How do you learn that?
There's always the bible by Green, Schwarz and Witten (see
\protect\hyperlink{week118}{``Week 118''}), but a lot of stuff has
happened since that was written. Luckily, Joseph Polchinski has come out
with a ``new testament''; I haven't seen it yet but physicists say it's
very good:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Joseph Polchinski, \emph{String Theory}, 2 volumes, Cambridge U.
  Press, 1998.
\end{enumerate}

There are also other textbooks, of course. Here's one that's free if you
print it out yourself:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  E. Kiritsis, \emph{Introduction to Superstring Theory}, 244 pages, to
  be published by Leuven University Press, preprint available as
  \href{https://arxiv.org/abs/hep-th/9709062}{\texttt{hep-th/9709062}}.
\end{enumerate}

For a more mathematical approach, you might want to try this when it
comes out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  \emph{Quantum Fields and Strings: A Course for Mathematicians},
  eds.~P. Deligne, P. Etinghof, D. Freed, L. Jeffrey, D. Kazhdan, D.
  Morrison and E. Witten, American Mathematical Society, to appear.
\end{enumerate}

Finally, when you get sick of all this new-fangled stuff and want to
read about the good old days when physicists predicted new particles
that actually wound up being \emph{observed}, you can turn to this book
about Dirac and his work:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Abraham Pais, Maurice Jacob, David I. Olive, and Michael F. Atiyah,
  \emph{Review of Paul Dirac: The Man and His Work}, Cambridge U. Press,
  1998.
\end{enumerate}

Also try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Michael Berry, ``Paul Dirac: the purest soul in physics'',
  \emph{Physics World}, February 1998, pp.~36--40.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{First, and above all for Dirac, the logic that led to the theory
was, although deeply sophisticated, in a sense beautifully simple. Much
later, when someone asked him (as many must have done before)} ``How did
you find the Dirac equation?'' \emph{he is said to have replied} ``I
found it beautiful.'' --- Michael Berry
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Last week I promised to explain some mysterious connections between
elliptic curves, string theory, and the number 24. I claimed that it all
boils down to the fact that there are two especially symmetric lattices
in the plane, namely the square lattice: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-2.5,0) to (4,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-2) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node at ({1.5*\m},{1.6*\n}) {$\bullet$};
      }
    }
  \end{tikzpicture}
\] with 4-fold symmetry, and the hexagonal lattice: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-3,0) to (4.5,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-2) to (0,3.5) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node at ({1.5*\m+0.75*\n},{1.33*\n}) {$\bullet$};
      }
    }
  \end{tikzpicture}
\] with 6-fold symmetry. Now it's time for me to start backing up those
claims.

First I need to talk a bit about lattices and
\(\mathrm{SL}(2,\mathbb{Z})\). As I explained in
\protect\hyperlink{week66}{``Week 66''}, a lattice in the complex plane
consists of all points that are integer linear combinations of two
complex numbers, say \(\omega_1\) and \(\omega_2\). However, we can
change these numbers without changing the lattice by letting \[
  \begin{aligned}
    \omega'_1 &= a\omega_1+b\omega_2
  \\\omega'_2 &= c\omega_1+d\omega_2
  \end{aligned}
\] where \[
  \left(
    \begin{array}{cc}
      a&b\\c&d
    \end{array}
  \right)
\] is a \(2\times2\) invertible matrix of integers whose inverse again
consists of integers. Usually it's good to require that our
transformation preserve the handedness of the basis
\((\omega_1,\omega_2)\), which means that this matrix should have
determinant \(1\). Such matrices form a group called
\(\mathrm{SL}(2,\mathbb{Z})\). In the context of elliptic curves it's
also called the ``modular group''.

Now associated to the square lattice is a special element of
\(\mathrm{SL}(2,\mathbb{Z})\) that corresponds to a 90 degree rotation.
Everyone calls it \(S\): \[
  S = \left(
    \begin{array}{cc}
      0&-1\\1&0
    \end{array}
  \right)
\] Associated to the hexagonal lattice is a special element of
\(\mathrm{SL}(2,\mathbb{Z})\) that corresponds to a 60 degree rotation.
Everyone calls it \(ST\): \[
  ST = \left(
    \begin{array}{cc}
      0&-1\\1&1
    \end{array}
  \right)
\] (See, there's a matrix they already call \(T\), and \(ST\) is the
product of \(S\) and that one.) Now, you may complain that the matrix
\(ST\) doesn't look like a rotation, but you have to be careful! What I
mean is, if you take the hexagonal lattice and pick a basis for it like
this: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-3,0) to (4,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-2) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node (\m\n) at ({1.5*\m+0.75*\n},{1.33*\n}) {$\circ$};
      }
    }
    \node at (00) {$\bullet$};
    \node at (-0.3,-0.33) {\scriptsize$0$};
    \node at (10) {$\bullet$};
    \node at (1.5,-0.4) {\scriptsize$\omega_1$};
    \node at (01) {$\bullet$};
    \node at (0.75,0.9) {\scriptsize$\omega_2$};
  \end{tikzpicture}
\] then in \emph{this} basis the matrix \(ST\) represents a 60 degree
rotation.

So far this is pretty straightforward, but now come some surprises.
First, it turns out that \(\mathrm{SL}(2,\mathbb{Z})\) is
\emph{generated} by \(S\) and \(ST\). In other words, every \(2\times2\)
integer matrix with determinant \(1\) can be written as a product of a
bunch of copies of \(S\), \(ST\), and their inverses. Second, all the
relations satisfied by \(S\) and \(ST\) follow from these obvious ones:
\[
  \begin{aligned}
    S^4 &= 1
  \\(ST)^6 &= 1
  \end{aligned}
\] together with \[S^2 = (ST)^3\] which holds because both sides
describe a 180 degree rotation.

Right away this implies that \(\mathrm{SL}(2,\mathbb{Z})\) has a certain
inherent ``12-ness'' to it. Let me explain.
\(\mathrm{SL}(2,\mathbb{Z})\) is a nonabelian group --- this is how
someone with a Ph.D.~says that matrix multiplication doesn't commute ---
but suppose we abelianize it by imposing extra relations \emph{forcing}
commutativity. Then we get a group generated by \(S\) and \(ST\),
satisfying the above relations together with an extra one saying that
\(S\) and \(ST\) commute. This is the group \(\mathbb{Z}/12\), which has
12 elements!

This ``12-ness'' has a lot to do with the magic properties of the number
24 in string theory. But to see how this ``12-ness'' affects string
theory, we need to talk about elliptic curves a bit more. It will take
forever unless I raise the mathematical sophistication level a little.
So\ldots.

We can define an elliptic curve to be a torus \(\mathbb{C}/L\) formed by
taking the complex plane \(\mathbb{C}\) and modding out by a lattice L.
Since \(\mathbb{C}\) is an abelian group and \(L\) is a subgroup, this
torus is an abelian group, but in the theory of elliptic curves we
consider it not just as a group but also as a complex manifold. Thus two
elliptic curves \(\mathbb{C}/L\) and \(\mathbb{C}/L'\) are considered
isomorphic if there is a complex-analytic function from one to the other
that's also an isomorphism of groups. This happens precisely when there
is a nonzero number \(z\) such that \(zL = L'\), or in other words,
whenever \(L'\) is a rotated and/or dilated version of \(L\).

There's a wonderful space called the ``moduli space'' of elliptic
curves: each point on it corresponds to an isomorphism class of elliptic
curves. In physics, we think of each point in it as describing the
geometry of a torus-shaped string worldsheet. Thus in the path-integral
approach to string theory we need to integrate over this space, together
with a bunch of other moduli spaces corresponding to string worldsheets
with different topologies. All these moduli spaces are important and
interesting, but the moduli space of elliptic curves is a nice simple
example when you're first trying to learn this stuff. What does this
space look like?

Well, suppose we have an elliptic curve \(\mathbb{C}/L\). We can take
our lattice \(L\) and describe it in terms of a right-handed basis
\((\omega_1, \omega_2)\). For the purposes of classifying the describing
the elliptic curve up to isomorphism, it doesn't matter if we multiply
these basis elements by some number \(z\), so all that really matters is
the ratio \[\tau = \omega1/\omega2.\] Since our basis was right-handed,
\(\tau\) lives in the upper half-plane, which people like to call \(H\).

Okay, so now we have described our elliptic curve in terms of a complex
number \(\tau\) lying in \(H\). But the problem is, we could have chosen
a different right-handed basis for our lattice \(L\) and gotten a
different number \(\tau\). We've got to think about that. Luckily, we've
already seen how we can change bases without changing the lattice: we
just apply a matrix in \(\mathrm{SL}(2,\mathbb{Z})\), getting a new
basis \[
  \begin{aligned}
    \omega'_1 &= a\omega_1+b\omega_2
  \\\omega'_2 &= c\omega_1+d\omega_2
  \end{aligned}
\] This has the effect of changing \(\tau\) to
\[\tau' = \frac{a \tau + b}{c \tau + d}.\] If you don't see why, figure
it out --- you've gotta understand this to understand elliptic curves!

Anyway, two numbers \(\tau\) and \(\tau'\) describe isomorphic elliptic
curves if and only if they differ by the above sort of transformation.
So we've figured out the moduli space of elliptic curves: it's the
quotient space \(H/\mathrm{SL}(2,\mathbb{Z})\), where
\(\mathrm{SL}(2,\mathbb{Z})\) acts on \(H\) as above!

Now, the quotient space \(H/\mathrm{SL}(2,\mathbb{Z})\) is not a smooth
manifold, because while the upper halfplane \(H\) is a manifold and the
group \(\mathrm{SL}(2,\mathbb{Z})\) is discrete, the action of
\(\mathrm{SL}(2,\mathbb{Z})\) on \(H\) is not free: i.e., certain points
in \(H\) don't move when you hit them with certain elements of
\(\mathrm{SL}(2,\mathbb{Z})\).

If you don't see why this causes trouble, think about a simpler example,
like the group \(G = \mathbb{Z}/n\) acting as rotations of the complex
plane, \(\mathbb{C}\). Most points in the plane move when you rotate
them, but the origin doesn't. The quotient space \(\mathbb{C}/G\) is a
cone with its tip corresponding to the origin. It's smooth everywhere
except the tip, where it has a ``conical singularity''. The moral of the
story is that when we mod out a manifold by a group of symmetries, we
get a space with singularities corresponding to especially symmetrical
points in the original manifold.

So we expect that \(H/\mathrm{SL}(2,\mathbb{Z})\) has singularities
corresponding to points in \(H\) corresponding to especially symmetrical
lattices. These, of course, are our friends the square and hexagonal
lattices!

But let's be a bit more careful. First of all, \emph{nothing} in \(H\)
moves when you hit it with the matrix \(-1\). But that's no big deal: we
can just replace the group \(\mathrm{SL}(2,\mathbb{Z})\) by
\[\mathrm{PSL}(2,\mathbb{Z}) = \mathrm{SL}(2,\mathbb{Z})/\{\pm1\}\]
Since \(-1\) doesn't move \emph{any} points of \(H\), the action of
\(\mathrm{SL}(2,\mathbb{Z})\) on \(H\) gives an action of
\(\mathrm{PSL}(2,\mathbb{Z})\), and the moduli space of elliptic curves
is \(H/\mathrm{PSL}(2,\mathbb{Z})\).

Now most points in \(H\) aren't preserved by any element of
\(\mathrm{PSL}(2,\mathbb{Z})\). However, certain points are! The point
\[\tau = i\] corresponding to the square lattice, is preserved by \(S\)
and all its powers. And the point \[\tau = \exp(2\pi i/3)\]
corresponding to the hexagonal lattice, is preserved by \(ST\) and all
its powers. These give rise to two conical singularities in the moduli
space of elliptic curves. Away from these points, the moduli space is
smooth.

Lest you get the wrong impression, I should hasten to reassure you that
the moduli space is not all that complicated: it looks almost like the
complex plane! There's a famous one-to-one and onto function from the
moduli space to the complex plane: it's called the ``modular function''
and denoted by \(j\). So the moduli space is \emph{topologically} just
like the complex plane; the only difference is that it fails to be
\emph{smooth} at two points, where there are conical singularities.

This may seem a bit hard to visualize, but it's actually not too hard.
Here's one way. Start with the region in the upper half-plane outside
the unit circle and between the vertical lines \(x = -1/2\) and
\(x = 1/2\). It looks sort of like this: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-2.4,0) to (2.4,0) node[label=right:{$\Re(z)$}]{};
    \draw[->] (0,-1) to (0,5) node[label=left:{$\Im(z)$}]{};
    \node at (1,0) {\scriptsize$\bullet$};
    \node at (1,-0.6) {\scriptsize$B'$};
    \node at (-1,0) {\scriptsize$\bullet$};
    \node at (-1,-0.6) {\scriptsize$B$};
    \node at (0,1) {\scriptsize$\bullet$};
    \node at (-0.2,0.7) {\scriptsize$A$};
    \draw[thick] (1,0) arc(0:180:1);
    \draw[thick] (1,0) to (1,3.5);
    \draw[thick,dashed] (1,3.5) to (1,4.5);
    \draw[thick] (-1,0) to (-1,3.5);
    \draw[thick,dashed] (-1,3.5) to (-1,4.5);
    \draw (0.4,0.9) to (1,1.2);
    \foreach \y in {0.5,1,1.5,2,2.5}
      \draw (-1,{\y+0.2}) to (1,{\y+1.2});
    \draw (-1,3.2) to (0,3.7);
    \draw[dashed] (0,3.7) to (1,4.2);
    \draw[dashed] (-1,3.7) to (0.8,4.6);
    \draw[dashed] (-1,4.2) to (-0.2,4.6);
  \end{tikzpicture}
\] Then glue the vertical line starting at \(B\) to the one starting at
\(B'\), and glue the arc \(AB\) to the arc \(AB'\). We get a space
that's smooth everywhere except at the points \(A\) and \(B = B'\),
where there are conical singularities. The total angle around the point
\(A\) is just 180 degrees --- half what it would be if the moduli space
were smooth there. The total angle around \(B\) is just 120 degrees ---
one third what it would be if the moduli space were smooth there.

The reason this works is that the region shown above is a ``fundamental
domain'' for the action of \(\mathrm{PSL}(2,\mathbb{Z})\) on \(H\). In
other words, every elliptic curve is isomorphic to one where the
parameter \(\tau\) lies in this region. The point \(A\) is where
\(\tau = i\), and the point B is where \(\tau = exp(2\pi i/3)\).

Now let's see where the ``12-ness'' comes into this picture. Minhyong
Kim explained this to me in a very nice way, but to tell you what he
said, I'll have to turn up the level of mathematical sophistication
another notch. (Needless to say, all the errors will be mine.)

So, I'll assume you know what a ``complex line bundle'' is --- this is
just another name for a \(1\)-dimensional complex vector bundle. Locally
a section of a complex line bundle looks a lot like a complex-valued
function, but this isn't true globally unless your line bundle is
trivial. If you aren't careful, sometimes you may \emph{think} you have
a function defined on a space, only to discover later that it's actually
a section of a line bundle. This sort of thing happens all the time in
physics. In string theory, when you're doing path integrals on moduli
space, you have to make sure that what you're integrating is really a
function! So it's important to understand all the line bundles on moduli
space.

Now, given any sort of space, we can form the set of all isomorphism
classes of line bundles over this space. This is actually an abelian
group, since when we tensor two line bundles we get another line bundle,
and when you tensor any line bundle with its dual, you get the trivial
line bundle, which plays the role of the multiplicative identity for
tensor products. This group is called the ``Picard group'' of your
space.

What's the Picard group of the moduli space of elliptic curves? Well,
when I said ``any sort of space'' I was hinting that there are all sorts
of spaces --- topological spaces, smooth manifolds, algebraic varieties,
and so on --- each one of which comes with its own particular notion of
line bundle. Thus, before studying the Picard group of moduli space we
need to decide what context we're going to work in! As a mere
\emph{topological space}, we've seen that the moduli space of elliptic
curves is indistinguishable from the plane, and every \emph{topological}
line bundle over the plane is trivial, so in \emph{this} context the
Picard group is the trivial group --- boring!

But the moduli space is actually much more than a mere topological
space. It's not a smooth manifold, but it's awfully close: it's the
quotient of the smooth manifold \(H\) by the discrete group
\(\mathrm{SL}(2,\mathbb{Z})\), and its singularities are pretty mild in
nature.

Somehow we should take advantage of this when defining the Picard group
of the moduli space. One way to do so involves the theory of ``stacks''.
Without getting into the details of this theory, let me just vaguely
sketch what it does for us here. For a much more careful treatment, with
more of an algebraic geometry flavor, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  David Mumford, ``Picard groups of moduli problems'', in
  \emph{Arithmetical Algebraic Geometry}, ed.~O. F. G. Schilling, Harper
  and Row, New York, 1965.
\end{enumerate}

Suppose a discrete group \(G\) acts on a smooth manifold \(X\). A
``\(G\)-equivariant'' line bundle on \(X\) is a line bundle equipped
with an action of \(G\) that gets along with the action of \(G\) on
\(X\). If \(G\) acts freely on \(X\), a line bundle on \(X/G\) is the
same as a \(G\)-equivariant line bundle on \(X\). This isn't true when
the action of \(G\) on \(X\) isn't free. But we can still go ahead and
\emph{define} the Picard group of \(X/G\) to be the group of isomorphism
classes of \(G\)-equivariant line bundles on \(X\). Of course we should
say something to let people know that we're using this funny definition.
In our example, people call it the Picard group of the moduli
\emph{stack} of elliptic curves.

So what's this group, anyway?

Well, it turns out that you can get any
\(\mathrm{SL}(2,\mathbb{Z})\)-equivariant line bundle on \(H\), up to
isomorphism, by taking the trivial line bundle on \(H\) and using a
\(1\)-dimensional representation of \(\mathrm{SL}(2,\mathbb{Z})\) to say
how it acts on the fiber. So we just need to understand
\(1\)-dimensional representations of \(\mathrm{SL}(2,\mathbb{Z})\). The
set of isomorphism classes of these forms a group under tensor product,
and this is the group we're after.

Well, a \(1\)-dimensional representation of a group always factors
through the abelianization of that group. We saw the abelianization of
\(\mathrm{SL}(2,\mathbb{Z})\) was \(\mathbb{Z}/12\). But everyone knows
that the group of \(1\)-dimensional representations of \(\mathbb{Z}/n\)
is again \(\mathbb{Z}/n\) - this is called Pontryagin duality. So: the
Picard group of the moduli stack of elliptic curves is
\(\mathbb{Z}/12\).

So we see again an inherent ``12-ness'' built into the theory of
elliptic curves! You may be wondering how this makes the number 24 so
important in string theory. In particular, where does that extra factor
of 2 come from? I'll say a little more about this next Week. I may or
may not manage to tie together the loose ends!

You may also be wondering about ``stacks''. In this you're not alone.
There's an amusing passage about stacks in the following book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Joe Harris and Ian Morrison, \emph{Moduli of Curves}, Springer-Verlag,
  New York, 1998.
\end{enumerate}

They write:

\begin{quote}
``Of course, here I'm working with the moduli stack rather than with the
moduli space. For those of you who aren't familiar with stacks, don't
worry: basically, all it means is that I'm allowed to pretend that the
moduli space is smooth and that there's a universal family over it.''

Who hasn't heard these words, or their equivalent, spoken in a talk? And
who hasn't fantasized about grabbing the speaker by the lapels and
shaking him until he says what --- exactly --- he means by them? But
perhaps you're now thinking that all that is in the past, and that at
long last you're going to learn what a stack is and what they do.

Fat chance.
\end{quote}

Actually Mumford's paper cited above gives a nice introduction to the
theory of stacks without mentioning the dreaded word ``stack''.
Alternatively, you can wait and read this book when it comes out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  K. Behrend, L. Fantechi, W. Fulton, L. Goettsche and A. Kresch,
  \emph{An Introduction to Stacks}, in preparation.
\end{enumerate}

But let me just briefly say a bit about stacks and the moduli stack of
elliptic curves in particular. A stack is a weak sheaf of categories.
For this to make sense you must already know what a sheaf is! In the
simplest case, a sheaf over a topological space, the sheaf \(S\) gives
you a set \(S(U)\) for each open set U, and gives you a function
\(S(U,V)\colon S(U)\to S(V)\) whenever the open set \(U\) is contained
in the open set \(V\). These functions must satisfy some laws. The
notion of ``stack'' is just a categorification of this idea. That is, a
stack \(S\) over a topological space gives you a \emph{category}
\(S(U)\) for each open set \(U\), and gives you a \emph{functor}
\(S(U,V)\colon S(U)\to S(V)\). These functors satisfy the same laws as
before, but \emph{only up to specified natural isomorphism}. And these
natural isomorphisms must in turn satisfy some new laws of their own,
so-called coherence laws.

In the case at hand there's a stack over the moduli space of elliptic
curves. For any open set \(U\) in the moduli space, an object of
\(S(U)\) is a family of elliptic curves over \(U\), such that each
elliptic curve in the family sits over the point in moduli space
corresponding to its isomorphism class. Similarly, a morphism in
\(S(U)\) is a family of isomorphisms of elliptic curves. This allows us
to keep track of the fact that some elliptic curves have more
automorphisms than others! And it takes care of the funny stuff that
happens at the singular points in the moduli space.

By the way, this watered-down summary leaves out a lot of the algebraic
geometry that you usually see when people talk about stacks.

Finally, one more thing --- it looks like Kreimer and company are making
great progress on understanding renormalization in a truly elegant way.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  D. J. Broadhurst and D. Kreimer, ``Renormalization automated by Hopf
  algebra'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9810087}{\texttt{hep-th/9810087}}.
\end{enumerate}

Let me quote the abstract:

\begin{quote}
It was recently shown that the renormalization of quantum field theory
is organized by the Hopf algebra of decorated rooted trees, whose
coproduct identifies the divergences requiring subtraction and whose
antipode achieves this. We automate this process in a few lines of
recursive symbolic code, which deliver a finite renormalized expression
for any Feynman diagram. We thus verify a representation of the operator
product expansion, which generalizes Chen's lemma for iterated
integrals. The subset of diagrams whose forest structure entails a
unique primitive subdivergence provides a representation of the Hopf
algebra \(H_R\) of undecorated rooted trees. Our undecorated Hopf
algebra program is designed to process the 24,213,878 BPHZ contributions
to the renormalization of 7,813 diagrams, with up to 12 loops. We
consider 10 models, each in 9 renormalization schemes. The two simplest
models reveal a notable feature of the subalgebra of Connes and
Moscovici, corresponding to the commutative part of the Hopf algebra
\(H_T\) of the diffeomorphism group: it assigns to Feynman diagrams
those weights which remove \(\zeta\) values from the counterterms of the
minimal subtraction scheme. We devise a fast algorithm for these
weights, whose squares are summed with a permutation factor, to give
rational counterterms.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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To round off some things I said in the previous two weeks, let me say a
bit more about string theory and Euler's mysterious equation
\[1 + 2 + 3 + \ldots = -\frac{1}{12}.\] For this I'll need to assume a
nodding acquaintance with quantum field theory.

There are two complementary ways to attack almost any problem in quantum
field theory: the Lagrangian approach, also known as ``path-integral
quantization'', and the Hamiltonian approach, also called ``canonical
quantization''. Let me describe string theory from both viewpoints. I'll
only talk about bosonic string theory, because my goal is to sketch why
it works best in \(26\)-dimensional spacetime, and because it's simpler
than superstring theory. Also, I'll only talk about closed strings.

Classically, such a string is simply a map from a closed surface into
spacetime. In the Lagrangian approach to quantization, we start by
choosing a formula for the action. We use the simplest possibility,
namely the \emph{area} of the surface. Of course, to define the area of
a surface in spacetime, we need the spacetime to have a metric. The
simplest thing is to work with \(n\)-dimensional Minkowski spacetime, so
let's do that.

We find the equations of motion of the string by extremizing the action.
These equations imply that if we watch the string in space as time
passes, it acts like collection of loops made of perfectly elastic
material. These loops vibrate, split and join as time passes.

It's perhaps a bit easier to see how the strings vibrate if we go over
to the Hamiltonian approach. This is a bit subtle, because string theory
has an enormous amount of ``gauge symmetry'' --- by which physicists
mean any symmetry that arises from the ability to switch between
different mathematical descriptions of what counts as the same physical
situation. There's a recipe to figure out the gauge symmetries of any
theory starting from the action. Applying this to string theory, it
turns out that two maps from a surface into spacetime count as
``physically the same'' if they differ only by a reparametrization of
the surface that's being mapped into spacetime.

When going over to the Hamiltonian approach, we have to deal with this
gauge symmetry. There are different ways to deal with it --- but we
can't just ignore it. Suppose we use the approach called ``lightcone
gauge-fixing''. This amounts to choosing a parametrization of our
surface so that the 2 coordinates on it are related in a simple way to 2
of the coordinates on \(n\)-dimensional Minkowski space. We can do this
because of the reparametrization gauge symmetry. But once we've done it,
we no longer have any more freedom to reparametrize our surface. In
short, we've squeezed all the juice out of our gauge symmetry: this is
what ``gauge-fixing'' is all about.

We started by studying a map from a surface \(S\) into \(n\)-dimensional
spacetime, which we can think of as field on \(S\) with \(n\)
components. However, in lightcone gauge, 2 components of this field are
given by simple formulas in terms of the rest. This lets us think of our
string as a field \(X\) with only \(n-2\) components. And when we do
this, it satisfies the simplest equation you could imagine! Namely, the
wave equation
\[\left(\frac{d^2}{dt^2}-\frac{d^2}{dx^2}\right) X(t,x) = 0.\] This is
same equation that describes an idealized violin string. The only
difference is that now, instead of a segment of violin string, we have a
bunch of closed loops of string. The energy, or Hamiltonian, is also
given by the usual wave equation Hamiltonian:
\[H = \frac12\int\left[\left(\frac{dX}{dt}\right)^2+\left(\frac{dX}{dx}\right)^2\right]dx.\]
The first term represents the kinetic energy of the string, while the
second represents its potential energy --- the energy it has due to
being stretched.

Henceforth I'll ignore the fact that loops of string can split or join,
and only talk about the vibrations of a single loop of string. Using the
linearity of the wave equation, we can decompose any solution of the
wave equation into sine waves moving in either direction --- so-called
``left-movers'' and ``right-movers'' --- together with a solution of the
form \[X(t,x) = A + Bt\] which describes the motion of the string's
center of mass. The left-movers and right-movers don't interact with
each other or with the center-of-mass motion, so we can learn a lot just
by studying the right-movers.

For starters, suppose the field \(X\) has just one component. Then the
right-moving vibrational modes look like
\[X(t,x) = A\sin(ik(t-x)) + B\cos(ik(t-x))\] with frequencies
\(k = 1,2,3,\ldots\). Abstractly, each of these vibrational modes is
just like a harmonic oscillator of frequency \(k\), so we can think of
the string as a big collection of harmonic oscillators.

Now suppose we quantize our string --- or more precisely, the
right-moving modes. By what we've said, this just amounts to quantizing
a bunch of harmonic oscillators, one of frequency \(k\) for each natural
number \(k\). This is great, since the harmonic oscillator is one of the
easiest physical systems to quantize!

As you may know, the quantum harmonic oscillator has discrete energy
levels with energies \(k/2, 3k/2, 5k/2,\ldots\). (Here I'm working in
units where \(\hbar = 1\); otherwise I'd need a factor of \(\hbar\).) In
particular, the energy of the lowest-energy state is called the
``zero-point energy'' or ``vacuum energy''. It usually doesn't hurt much
to subtract this off by redefining the Hamiltonian, but sometimes it's
important.

Now, what's the total zero-point energy of all the right-moving modes?
To figure this out, we add up the zero-point energy \(k/2\) for all
frequencies \(k = 1,2,3,\ldots\), obtaining
\[\frac{1 + 2 + 3 + \ldots }{2}.\] Of course this is divergent, but
there are lots of sneaky tricks for assigning values to divergent
series, so let's not be disheartened! Euler figured out such a trick for
calculating the sum \(1 + 2 + 3 +\ldots\) , and he got the value
\(-1/12\). If we momentarily assume this makes sense, then the total
zero-point energy works out to be \(-\frac{1}{24}\) More generally, if
we have a string in \(n\)-dimensional Minkowski spacetime, the field
\(X\) has \(n-2\) components, so the total zero-point energy is
\[-\frac{n-2}{24}\] Now, for other reasons, it turns out that string
theory works best when this zero-point energy is \(-1\). This is a bit
tricky to explain, but it has to do with the subtleties of gauge-fixing
in quantum field theory. Things that work nicely at the classical level
can easily screw up at the quantum level; in particular, symmetries of a
classical theory can be lost when you quantize. One has to really check
that the light-cone gauge fixing doesn't screw up the Lorentz-invariance
of string theory. It turns out that it \emph{does} screw it up unless
the zero-point energy of the right-movers is \(-1\). So bosonic string
theory works best when \[\frac{n-2}{24} = 1\] or in other words, when
\(n = 26\).

You really shouldn't take my word for this stuff! You can find more
details around pages 95--96 in volume 1 of the following book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Michael B. Green, John H. Schwarz and Edward Witten, \emph{Superstring
  Theory}, 2 volumes, Cambridge University Press.
\end{enumerate}

There's a lot I should say to fill in the details, but the most urgent
matter is to explain Euler's mysterious formula
\[1 + 2 + 3 + \ldots = -\frac{1}{12}\] As I said in
\protect\hyperlink{week124}{``Week 124''}, this is an example of zeta
function regularization. The Riemann zeta function is defined by
\[\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \ldots\]
when the sum converges, but it analytically continues to values of s
where the sum doesn't converge. If we do the analytic continuation, we
get \[\zeta(-1) = -\frac{1}{12}.\] Proving this rigorously is a bit of
work. One way is to use the ``functional equation'' for the Riemann zeta
function, which says that \[F(s) = F(1-s)\] where
\[F(s) = \pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)\] and
\(\Gamma\) is the famous function with \(\Gamma(n) = (n-1)!\) for
\(n = 1,2,3,\ldots\) and \(\Gamma(s+1) = s \Gamma(s)\) for all \(s\).
Using \[\Gamma\left(\frac12\right) = \sqrt{\pi}\] and
\[\zeta(2) = \frac{\pi^2}{6},\] the functional equation implies
\(\zeta(-1) = -1/12\). But of course you have to prove the functional
equation! A nice exposition of this can be found in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Neal Koblitz, \emph{Introduction to Elliptic Curves and Modular
  Forms}, 2nd edition, Springer-Verlag, 1993.
\end{enumerate}

I don't know Euler's original argument that \(\zeta(-1) = -1/12\).
However, Dan Piponi recently gave the following ``physicist's proof'' on
the newsgroup \texttt{sci.physics.research}. Let \(D\) be the
differentiation operator: \[D = \frac{d}{dx}\] Then Taylor's formula
says that translating a function to the left by a distance \(c\) is the
same as applying the operator \(e^{cD}\) to it, since
\[e^{cD} f = f + cf' + \left(\frac{c^2}{2!}\right)f'' + \ldots\] Using
some formal manipulations we obtain \[
  \begin{aligned}
    f(0) + f(1) + f(2) + \ldots
    & = ((1+e^D+e^{2D}+\ldots)f)(0)
  \\& = \left(\left(\frac{1}{1-e^D}\right)f\right)(0)
  \end{aligned}
\] or if \(F\) is an integral of \(f\), so that \(DF = f\),
\[f(0) + f(1) + f(2) + \ldots = \left(\left(\frac{D}{1 - e^D}\right) F\right)(0)\]
This formula can be made rigorous in certain contexts, but now we'll
throw rigor to the winds and apply it to the function \(f(x) = x\),
obtaining
\[0+1+2+3+\ldots = \left(\left(\frac{D}{1 - e^D}\right) F\right)(0)\]
where \[F(x) = \frac{x^2}{2}\] To finish the job, we work out the
beginning of the Taylor series for \(D/(1 - e^D)\). The coefficients of
this are closely related to the Bernoulli numbers, and this could easily
lead us into further interesting digressions, but all we need to know is
\[\frac{D}{1 - e^D} = -1 + \frac{D}{2} - \frac{D^2}{12} + \ldots\]
Applying this operator to \(F(x) = x^2/2\) and evaluating the result at
\(x=0\), the only nonzero term comes from the \(D^2\) term in the power
series, so we get
\[1 + 2 + 3 + \ldots = \left(\left(-\frac{D^2}{12}\right)F\right)(0) = -\frac{1}{12}\]
VoilÃ !

By the way, after he came up with this proof, Dan Piponi found an almost
identical proof in the following book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  G. H. Hardy, \emph{Divergent Series}, Chelsea Pub. Co., New York,
  1991.
\end{enumerate}

Now let me change gears. Besides the Riemann zeta function, there are a
lot of other special functions that show up in the study of elliptic
curves. Unsurprisingly, many of them are also important in string
theory. For example, consider the partition function of bosonic string
theory. What do I mean by a ``partition function'' here? Well, whenever
we have a quantum system with a Hamiltonian \(H\), its partition
function is defined to be
\[Z(\beta) = \operatorname{tr}(\exp(-\beta H))\] where \(\beta > 0\) is
the inverse temperature. This function is fundamental to statistical
mechanics, for reasons that I'm too lazy to explain here.

Before tackling the bosonic string, let's work out the partition
function for a quantum harmonic oscillator. To keep life simple, let's
subtract off the zero-point energy so the energy levels are \(0\),
\(k\), \(2k\), and so on. Mathematically, these energy levels are just
the eigenvalues of the harmonic oscillator Hamiltonian, \(H\). Thus the
eigenvalues of \(\exp(-\beta H)\) are \(1\), \(\exp(-\beta k)\),
\(\exp(-2\beta k)\), etc. The trace of this operator is just the sum of
its eigenvalues, so we get
\[Z(\beta) = 1 + \exp(-\beta k) + \exp(-2\beta k) + \ldots = \frac{1}{1 - \exp(-\beta k)}\]
This was first worked out by Planck, who assumed the harmonic oscillator
had discrete, evenly spaced energy levels and computed its partition
function as part of his struggle to understand the thermodynamics of the
electromagnetic field.

Okay, now let's do the bosonic string. To keep life simple we again
subtract off the zero-point energy. Also, we'll consider only the
right-moving modes, and we'll start by assuming the field \(X\)
describing the vibrations of the string has only one component. As we
saw before, the string then becomes the same as a collection of quantum
harmonic oscillators with frequencies \(k = 1, 2, 3, \ldots\). We've
seen that the oscillator with frequency \(k\) has partition function
\(1/(1 - \exp(-\beta k))\). To get the partition function of a quantum
system built from a bunch of noninteracting parts, you multiply the
partition functions of the parts (since the trace of a tensor product of
operators is the product of their traces). So the partition function of
our string is \[\prod_{k\in\mathbb{N}} \frac{1}{1 -\exp(-\beta k)}\] So
far, so good. But now suppose we take the zero-point energy into
account. We do this by subtracting \(1/24\) from the Hamiltonian of the
string, which has the effect of multiplying its partition function by
\(\exp(\beta/24)\). Thus we get
\[Z(\beta) = \exp(\beta/24) \prod \frac{1}{1 - \exp(-\beta k)}\] Lo and
behold: the reciprocal of the Dedekind eta function!

What's that, you ask? It's a very important function in the theory of
elliptic curves. People usually write it as a function of
\(q = \exp(-\beta)\), like this:
\[\eta(q) = q^{\frac{1}{24}} \prod (1 - q^k)\] But to see the relation
to elliptic curves we should switch variables yet again and write
\(q = \exp(2\pi i\tau)\). I already talked about this variable \(\tau\)
in \protect\hyperlink{week125}{``Week 125''}, where we were studying the
elliptic curve formed by curling up a parallelogram like this in the
complex plane: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-2.5,0) to (4,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-2) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node (\m\n) at ({1.5*\m+0.75*\n},{1.33*\n}) {$\circ$};
      }
    }
    \node at (00) {$\bullet$};
    \node at (-0.3,-0.4) {$0$};
    \node at (10) {$\bullet$};
    \node at (1.5,-0.4) {$1$};
    \node at (01) {$\bullet$};
    \node at (0.75,0.9) {$\tau$};
    \node at (11) {$\bullet$};
    \node at (2.25,0.9) {$\tau+1$};
  \end{tikzpicture}
\] In physics, this elliptic curve is just one possibility for the shape
of a surface traced out by a string. The number \(1\) says how far the
surface goes in the \emph{space} direction before it loops around, and
the number \(\tau\) says how far it goes in the \emph{time} direction
before it loops around!

(The idea of ``looping around in time'' may seem bizarre, but it's very
important in physics. It turns out that studying the statistical
mechanics of a system at a given inverse temperature is the same as
studying Euclidean quantum field theory on a spacetime where time is
periodic with a given period. This idea is what relates the variables
\(\beta\) and \(\tau\).)

Now as I explained in \protect\hyperlink{week13}{``Week 13''}, the above
elliptic curve is not just an abstract torus-shaped thingie. We can also
think of it as the set of complex solutions of the following cubic
equation in two variables: \[y^2 = 4x^3 - g_2 x - g_3\] where the
numbers \(g_2\) and \(g_3\) are certain functions of \(\tau\). Moreover,
this equation defines an elliptic curve whenever the polynomial on the
right-hand side doesn't have repeated roots. So among other things,
elliptic curves are really just a way of studying cubic equations!

But when does \(4x^3 - g_2 x - g_3\) have repeated roots? Precisely when
the ``discriminant'' \[\Delta = g_2^3 - 27 g_3^2\] equals zero. This is
just the analog for cubics of the more familiar discriminant for
quadratic equations.

Now for the cool part: there's an explicit formula for the discriminant
in terms of the variable \(\tau\). And it involves the 24th power of the
Dedekind eta function! Here it is: \[\Delta = (2 \pi)^{12}\eta^{24}\] If
you haven't seen this before, it should seem \emph{amazing} that the
discriminant of a cubic equation can be computed using the 24th power of
a partition function that shows up in string theory. Of course that's
not how it went historically: Dedekind discovered his eta function long
before strings came along. What's really happening is that string theory
is exploiting special features of complex curves, and thus acquires some
of the ``24-ness'' of elliptic curves.

If I have the energy, next time I'll give you a better explanation of
why bosonic string theory works best in 26 dimensions, using some
special properties of the Dedekind eta function.

Meanwhile, if you want to see pictures of the Dedekind eta function,
together with some cool formulas it satisfies, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Mathworld, ``Dedekind eta function'',
  \texttt{http://mathworld.wolfram.com/DedekindEtaFunction.html}
\item
  Wikipedia, ``Dedekind eta function'',
  \texttt{http://en.wikipedia.org/wiki/Dedekind\_eta\_function}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
"Dear Sir,

I am very much gratified on perusing your letter of the 8th February
1913. I was expecting a reply from you similar to the one which a
Mathematics Professor at London wrote asking me to study carefully
Bromwich's Infinite Series and not fall into the pitfall of divergent
series. I have found a friend in you who views my labors
sympathetically. This is already some encouragement to me to proceed
with an onward course. I find in many a place in your letter rigourous
proofs are required and so on and you ask me to communicate the method
of proof. If I had given you my methods of proof I am sure you will
follow the London Professor. But as a fact I did not give him any proof
but made some assertions as the following under my new theory. I told
him that the sum of an infinite number of terms in the series
\(1+2+3+4+\ldots=-1/12\) under my theory. If I tell you this you will at
once point out to me the lunatic asylum as my goal." --- Srinivasa
Ramanujan, second letter to G. H. Hardy
\end{quote}
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If you like \(\pi\), take a look at this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Lennart Berggren, Jonathan Borwein and Peter Borwein, \emph{\(\pi\): A
  Source Book}, Springer-Verlag, New York, 1997.
\end{enumerate}

It's full of reprints of original papers about \(\pi\), from the Rhind
Papyrus right on up to the 1996 paper by Bailey, Borwein and Plouffe in
which they figured out how to compute a given hexadecimal digit of
\(\pi\) without computing the previous digits --- see
\protect\hyperlink{week66}{``Week 66''} for more about that. By the way,
Colin Percival has recently used this technique to compute the 5
trillionth binary digit of \(\pi\)! (It's either zero or one, I forget
which.) Percival is a 17-year old math major at Simon Fraser University,
and now he's leading a distributed computation project to calculate the
quadrillionth binary digit of \(\pi\). Anyone with a Pentium or faster
computer using Windows 95, 98, or NT can join. For more information,
see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  PiHex project,
  \texttt{http://www.cecm.sfu.ca/projects/pihex/pihex.html}
\end{enumerate}

Anyway, the above book is \emph{full} of fun stuff, like a one-page
proof of the irrationality of \(\pi\) which uses only elementary
calculus, due to Niven, and the following weirdly beautiful formula due
to Euler, which unfortunately is not explained:
\[\frac{\pi}{2} = \frac32\cdot\frac56\cdot\frac76\cdot\frac{11}{10}\cdot\frac{13}{14}\cdot\frac{17}{18}\cdot\frac{19}{18}\cdot\ldots\]
Here the numerators are the odd primes, and the denominators are the
closest numbers of the form \(4n+2\).

Since I've been learning about elliptic curves and the like lately, I
was also interested to see a lot of relations between \(\pi\) and
modular functions. For example, the book has a reprint of Ramanujan's
paper ``Modular equations and approximations to \(\pi\)'', in which he
derives a bunch of bizarre formulas for \(\pi\), some exact but others
approximate, like this:
\[\pi \sim \frac{12}{\sqrt{190}}\ln((2\sqrt{2}+\sqrt{10})(3+\sqrt{10}))\]
which is good to 18 decimal places. The strange uses to which genius can
be put know no bounds!

Okay, now I'd like to wrap up my little story about why bosonic string
theory works best in 26 dimensions. This time I want to explain how you
do the path integral in string theory. Most of what I'm about to say
comes from some papers that my friend Minhyong Kim recommended to me
when I started pestering him about this stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Jean-Benoit Bost, ``Fibres determinants, determinants regularises, et
  mesures sur les espaces de modules des courbes complexes'',
  \emph{Asterisque} \textbf{152}--\textbf{153} (1987), 113--149.
\item
  A. A. Beilinson and Y. I. Manin, ``The Mumford form and the Polyakov
  measure in string theory'', \emph{Comm. Math. Phys.} \textbf{107}
  (1986), 359--376.
\end{enumerate}

For a more elementary approach, try chapters IX and X.4 in this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Charles Nash, \emph{Differential Topology and Quantum Field Theory},
  Academic Press, New York, 1991.
\end{enumerate}

As I explained in \protect\hyperlink{week126}{``Week 126''}, a string
traces out a surface in spacetime called the ``string worldsheet''.
Let's keep life simple and assume the string worldsheet is a torus and
that spacetime is Euclidean \(\mathbb{R}^n\). Then to figure out the
expectation value of any physical observable, we need to calculate its
integral over the space of all maps from a torus to \(\mathbb{R}^n\).

To make this precise, let's use \(X\) to denote a map from the torus to
\(\mathbb{R}^n\). Then a physical observable will be some function
\(f(X)\), and its expectation value will be
\[\frac{1}{Z} \int f(X) \exp(-S(X)) dX\] Here \(S(X)\) is the action for
string theory, which is just the \emph{area} of the string worldsheet.
The number \(Z\) is a normalizing factor called the partition function:
\[Z = \int \exp(-S(X)) dX\] But there's a big problem here! As usual in
quantum field thoery, the space we're trying to integrate over is
infinite-dimensional, so the above integrals have no obvious meaning.
Technically speaking, the problem is that there's no Lebesgue measure
``\(dX\)'' on an infinite-dimensional manifold.

Mathematicians might throw up our hands in despair and give up at this
point. But physicists take a more pragmatic attitude: they just keep
massaging the problem, breaking rules here and there if necessary, until
they get something manageable. Physicists call this ``calculating the
path integral'', but from a certain viewpoint what they're really doing
is \emph{defining} the path integral, since it only has a precise
meaning after they're done.

In the case at hand, it was Polyakov who figured out the right massage:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  A. M. Polyakov, ``Quantum geometry of bosonic strings'', \emph{Phys.
  Lett.} \textbf{B103} (1981), 207.
\end{enumerate}

He rewrote the above integral as a double integral: first an integral
over the space of metrics \(g\) on the torus, and then inside, for each
metric, an integral over maps \(X\) from the torus into spacetime. Of
course, any such map gives a metric on the torus, so this double
integral is sort of redundant. However, introducing this redundancy
turns out not to hurt. In fact, it helps!

To keep life simple, let's just talk about the partition function
\[Z = \int \exp(-S(X)) dX\] If we can handle this, surely we can handle
the integral with the observable \(f(X)\) in it. Polyakov's trick turns
the partition function into a double integral:
\[Z = \int ( \int \exp(-\langle X, \Delta X \rangle) dX) dg\] where
\(\Delta\) is the Laplacian on the torus and the angle brackets stand
for the usual inner product of \(\mathbb{R}^n\)-valued functions, both
defined using the metric \(g\).

At first glance Polyakov's trick may seem like a step backwards: now we
have two ill-defined integrals instead of one! However, it's actually a
step forward. Now we can do the inside integral by copying the formula
for the integral of a Gaussian of finitely many variables --- a standard
trick in quantum field theory. Ignoring an infinite constant that would
cancel later anyway, the inside integral works out to be:
\[(\operatorname{det}\Delta)^{-\frac12}\] But wait! The Laplacian here
is a linear operator on the vector space of \(\mathbb{R}^n\)-valued
functions on the torus. This is an infinite-dimensional vector space, so
we can't blithely talk about determinants the way we can in finite
dimensions. In finite dimensions, the determinant of a self-adjoint
matrix is the product of its eigenvalues. But the Laplacian has
infinitely many eigenvalues, which keep getting bigger and bigger. How
do we define the product of all its eigenvalues?

Of course the lowest eigenvalue of the Laplacian is zero, and you might
think that would settle it: the product of them all must be zero! But
that would make the above expression meaningless, and we are not going
to give up so easily. Instead, we will simply ignore the zero
eigenvalue! That way, we only have to face the product of all the
\emph{rest}.

(Actually there's something one can do which is slightly more careful
than simply ignoring the zero eigenvalue, but I'll talk about that
later.)

Okay, so now we have a divergent product to deal with. Well, in
\protect\hyperlink{week126}{``Week 126''} I used a trick called zeta
function regularization to make sense of a divergent sum, and we can use
that trick here to make sense of our divergent product. Suppose we have
a self-adjoint operator \(A\) with a discrete spectrum consisting of
positive eigenvalues. Then the ``zeta function'' of \(A\) is defined by:
\[\zeta(s) = \operatorname{tr}(A^{-s})\] To compute \(\zeta(s)\) we just
take all the eigenvalues of \(A\), raise them to the \(-s\) power, and
add them up. For example, if \(A\) has eigenvalues \(1,2,3,\ldots\),
then \(\zeta(s)\) is just the usual Riemann zeta function, which we
already talked about in \protect\hyperlink{week126}{``Week 126''}.

This stuff doesn't quite apply if \(A\) is the Laplacian on a compact
manifold, since one of its eigenvalues is zero. But we have already
agreed to throw out the zero eigenvalue, so let's do that when defining
\(\zeta(s)\) as a sum over eigenvalues. Then it turns out that the sum
converges when the real part of \(s\) is positive and large. Even
better, there's a theorem saying that \(\zeta(s)\) can be analytically
continued to \(s = 0\). Thus we can use the following trick to define
the determinant of the Laplacian.

Suppose that \(A\) is a self-adjoint matrix with positive eigenvalues.
Then \[\zeta(s) = \operatorname{tr}(\exp(-s \ln A))\] Differentiating
gives \[\zeta'(s) = -\operatorname{tr}(\ln A \exp(-s \ln A))\] and
setting \(s\) to zero we get \[\zeta'(0) = -\operatorname{tr}(\ln A).\]

But there's a nice little formula saying that
\[\operatorname{det}(A) = \exp(\operatorname{tr}(\ln A))\] so we get
\[\operatorname{det}(A) = \exp(-\zeta'(0)).\] Now we can use this
formula to \emph{define} the determinant of the Laplacian on a compact
manifold! Sometimes this is called a ``regularized determinant''.

So --- where are we? We used Polyakov's trick to write the partition
function of our torus-shaped string as
\[Z = \int ( \int \exp(-\langle X, \Delta X\rangle) dX) dg,\] then we
did the inside integral and got this:
\[Z = \int (\operatorname{det}\Delta)^{-\frac12} dg\] and then we
figured out a meaning for the determinant here.

What next? Well, since the Laplacian on \(\mathbb{R}^n\)-valued
functions is the direct sum of \(n\) copies of the Laplacian on
real-valued functions, we expect that
\[(\operatorname{det}\Delta)^{-\frac12} = (\operatorname{det}\mathrm{laplacian})^{-\frac{n}{2}}\]
where ``\(\mathrm{laplacian}\)'' stands for the Laplacian on ordinary
real-valued functions on the torus. One can actually check this
rigorously using the definition in terms of zeta functions. That's
reassuring: at least \emph{one} step of our calculation is rigorous! So
we get
\[Z = \int (\operatorname{det}\mathrm{laplacian})^{-\frac{n}{2}} dg\]
Great. But we are not out of the woods yet. We still have an integral
over the space of metrics to do --- another nasty infinite-dimensional
integral.

Time for another massage!

Look at this formula again:
\[Z = \int ( \int \exp(-\langle X, \Delta X\rangle) dX) dg\] The
Laplacian depends on the metric \(g\), and so does the inner product.
However, the combination \(\langle X, \Delta X\rangle\) depends only on
the ``conformal structure'' --- i.e., it doesn't change if we multiply
the metric by a position-dependent scale factor. It also doesn't change
under diffeomorphisms.

Now the space of conformal structures on a torus modulo diffeomorphisms
is something familiar: it's just the moduli space of elliptic curves! We
figured out what this space looks like in
\protect\hyperlink{week125}{``Week 125''}. It's finite-dimensional and
there's a nice way to integrate over it, called the Weil-Petersson
measure. So we can hope to replace the outside integral --- the integral
over metrics --- by an integral over this moduli space.

Indeed, we could hope that
\[Z \overset{\text{we hope!}}{=} \int (\int \exp(-\langle X, \Delta X\rangle) dX) d[g]\]
where now the outside integral is over moduli space and \(d[g]\) is the
Weil-Petersson measure. The hope, of course, is that the stuff on the
inside is well-defined as a function on moduli space.

Actually this hope is a bit naive. Even though
\(\langle X, \Delta X\rangle\) doesn't change if we rescale the metric,
the whole inside integral \[\int \exp(-\langle X, \Delta X\rangle) dX\]
\emph{does} change. This may seem odd, but remember, we did a lot of
hair-raising manipulations before we even got this integral to mean
anything! We basically wound up \emph{defining} it to be
\[(\operatorname{det}\Delta)^{-\frac12},\] and one can check that this
\emph{does} change when we rescale the metric. This problem is called
the ``conformal anomaly''.

Are we stuck? No! Luckily, there is \emph{another} problem, which
cancels this one when \(n = 26\). They say two wrongs don't make a
right, but with anomalies that's often the only way to get things to
work\ldots.

So what's this other problem? It's that we shouldn't just replace the
measure \(dg\) by the measure \(d[g]\) as I did in my naive formula for
the partition function. We need to actually figure out the relation
between them. Of course this is hard to do, because the measure \(dg\)
doesn't exist, rigorously speaking! Still, if we do a bunch more
hair-raising heuristic manipulations, which I will spare you, we can get
a formula relating \(dg\) and and \(d[g]\), and using this we get
\[Z = \int ( \int \exp(-\langle X, \Delta X\rangle) dX) f(g) d[g]\]
where \(f(g)\) is some function of the metric. There's a perfectly
explicit formula for this function, but your eyeballs would fall out if
I showed it to you. Anyway, the real point is that IN 26 DIMENSIONS AND
ONLY IN 26 DIMENSIONS, the integrand
\[( \int \exp(-\langle X, \Delta X\rangle) dX) f(g)\] is invariant under
rescalings of the metric (as well as diffeomorphisms). In other words,
the conformal anomaly in \[\int \exp(-\langle X, \Delta X\rangle) dX\]
is precisely canceled by a similar conformal anomaly in \(f(g)\), so
their product is a well-defined function on moduli space, so it makes
sense to integrate it against \(d[g]\). We can then go ahead and figure
out the partition function quite explicitly.

By now, if you're a rigorous sort of pure mathematician, you must be
suffering from grave doubts about the sanity of this whole procedure.
But physicists regard this chain of reasoning, especially the miraculous
cancellation of anomalies at the end, as a real triumph. And indeed,
it's far \emph{better} than \emph{most} of what happens in quantum field
theory!

I've heard publishers of science popularizations say that each equation
in a book diminishes its readership by a factor of \(2\). I don't know
if this applies to This Week's Finds, but normally I try very hard to
keep the equations to a minimum. This week, however, I've been very bad,
and if my calculations are correct, by this point I am the only one
reading this. So I might as well drop all pretenses of expository prose
and write in a way that only I can follow! The real reason I'm writing
this, after all, is to see if I understand this stuff.

Okay, so now I'd like to see if I understand how one explicitly
calculates this integral:
\[\int \exp(-\langle X, \mathrm{laplacian} X\rangle) dX\] Since we're
eventually going to integrate this (times some stuff) over moduli space,
we might as well assume the metric on our torus is gotten by curling up
the following parallelogram in the complex plane: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-3,0) to (4,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-2) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node (\m\n) at ({1.5*\m+0.75*\n},{1.33*\n}) {$\circ$};
      }
    }
    \node at (00) {$\bullet$};
    \node at (-0.3,-0.4) {$0$};
    \node at (10) {$\bullet$};
    \node at (1.5,-0.4) {$1$};
    \node at (01) {$\bullet$};
    \node at (0.75,0.9) {$\tau$};
    \node at (11) {$\bullet$};
    \node at (2.25,0.9) {$\tau+1$};
  \end{tikzpicture}
\] There are at least two ways to do the calculation. One is to actually
work out the eigenvalues of the Laplacian on this torus and then do the
zeta function regularization to compute its determinant. Di Francesco,
Mathieu, and Senechal do this in the textbook I talked about in
\protect\hyperlink{week124}{``Week 124''}. They get
\[\int \exp(-\langle X, \mathrm{laplacian} X\rangle) dX = \frac{1}{\sqrt{\Im(\tau)} |\eta(\tau)|^2}\]
where ``\(\eta\)'' is the Dedekind eta function, regarded as function of
\(\tau\). But the calculation is pretty brutal, and it seems to me that
there should be a much easier way to get the answer. The left-hand side
is just the partition function for an massless scalar field on the
torus, and we basically did that back in
\protect\hyperlink{week126}{``Week 126''}. More precisely, we considered
just the right-moving modes and we got the following partition function:
\[\frac{1}{\eta(\tau)}\] How about the left-moving modes? Well, I'd
guess that their partition function is just the complex conjugate,
\[\frac{1}{\eta(\tau)^*}\] since right-movers correspond to holomorphic
functions and left-movers correspond to antiholomorphic functions in
this Euclidean picture. It's just a guess! And finally, what about the
zero-frequency mode? I have no idea. But we should presumably multiply
all three partition functions together to get the partition function of
the whole system --- that's how it usually works. And as you can see, we
\emph{almost} get the answer that Di Francesco, Mathieu, and Senechal
got. It would work out \emph{perfectly} if the partition function of the
zero-frequency mode were \(1/\sqrt{\Im(\tau)}\). By the way,
\(\Im(\tau)\) is just the \emph{area} of the torus.

As evidence that something like this might work, consider this: the
zero-frequency mode is presumably related to the zero eigenvalue of the
Laplacian. We threw that out when we defined the regularized determinant
of the Laplacian, but as I hinted, more careful calculations of
\[\int \exp(-\langle X, \mathrm{laplacian} X\rangle) dX\] don't just
ignore the zero eigenvalue. Instead, they somehow use it to get an extra
factor of \(1/\sqrt{\Im(\tau)}\). Admittedly, the calculations are not
particularly convincing: a more obvious guess would be that it gives a
factor of infinity. Di Francesco, Mathieu, and Senechal practically
admit that they \emph{need} this factor just to get modular invariance,
and that they'll do whatever it takes to get it. Nash just sticks in the
factor of \(1/\sqrt{\Im(\tau)}\), mutters something vague, and hurriedly
moves on.

Clearly the reason people want this factor is because of how the eta
function transforms under modular transformations. In
\protect\hyperlink{week125}{``Week 125''} I said that the group
\(\mathrm{PSL}(2,\mathbb{Z})\) is generated by two elements \(S\) and
\(T\), and if you look at the formulas there you'll see they act in the
following way on \(\tau\): \[
  \begin{aligned}
    S &\colon \tau \mapsto -\frac{1}{\tau}
  \\T &\colon \tau \mapsto \tau+1
  \end{aligned}
\] The Dedekind eta function satisfies \[
  \begin{aligned}
    \eta\left(-\frac{1}{\tau}\right) &= \left(\frac{\tau}{i}\right)^{\frac12}\eta(\tau)
  \\\eta(\tau+1) &= \exp\left(\frac{2\pi i}{24}\right)\eta\tau
  \end{aligned}
\] The second one is really easy to see from the definition; the first
one is harder. Anyway, using these facts it's easy to see that
\[\frac{1}{\sqrt{\Im(\tau)} |\eta(\tau)|^2}\] is invariant under
\(\mathrm{PSL}(2,\mathbb{Z})\), so it's really a function on moduli
space --- but only if that factor of \(1/\sqrt{\Im(\tau)}\) is in there!

Finally, I'd like to say something about why the conformal anomalies
cancel in 26 dimensions. When I began thinking about this stuff I was
hoping it'd be obvious from the transformation properties of the eta
function --- since they have that promising number ``24'' in them ---
but right now I do \emph{not} see anything like this going on. Instead,
it seems to be something like this: in the partition function
\[Z = \int (\int \exp(-\langle X, \Delta X\rangle) dX) f(g) d[g]\] the
mysterious function \(f\) is basically just the determinant of the
Laplacian on \emph{vector fields} on the torus. So ignoring those darn
zero eigenvalues the whole integrand here is
\[\operatorname{det}(\mathrm{laplacian})^{\frac{n}{2}} \operatorname{det}(\mathrm{laplacian}')\]
where ``\(\mathrm{laplacian}\)'' is the Laplacian on real-valued
functions and " \(\mathrm{laplacian'}\)" is the Laplacian on vector
fields. Now these determinants aren't well-defined functions on the
space of conformal structures; they're really sections of certain
``determinant bundles''. But in this situation, the determinant bundle
for the Laplacian on vector fields \emph{just so happens} to be the 13th
tensor power of the determinant bundle for the Laplacian on functions
--- so the whole expression above is a well-defined function on the
space of conformal structures, and thence on moduli space, precisely
when \(n = 26\)!!!

Now this ``just so happens'' cannot really be a coincidence. There
\emph{are} no coincidences in mathematics. That's why it pays to be
paranoid when you're a mathematician: nothing is random, everything fits
into a grand pattern, it's all just staring you in the face if you'd
only notice it. (Chaitin has convincingly argued otherwise using
Goedel's theorem, and certainly some patterns in mathematics seem
``purely accidental'', but right now I'm just waxing rhapsodic,
expressing a feeling one sometimes gets\ldots.)

Indeed, look at the proof in Nash's book that one of these determinant
bundles is the 13th tensor power of the other --- I think this result is
due to Mumford, but Nash's proof is easy to read. What does he do? He
works out the first Chern class of both bundles using the index theorem
for families, and he gets something involving the Todd genus --- and the
Todd genus, as we all know, is defined using the same function
\[\frac{x}{1 - e^x} = -1 + \frac{x}{2} - \frac{x^2}{12} + \ldots\] that
we talked about in \protect\hyperlink{week126}{``Week 126''} when
computing the zero-point energy of the bosonic string! And yet again,
it's that darn \(-1/12\) in the power series expansion that makes
everything tick. That's where the \(13\) comes from! It's all an
elaborate conspiracy!

But of course the conspiracy is far grander than I've even begun to let
on. If we keep digging away at it, we're eventually led to nothing other
than\ldots. \[\text{MONSTROUS MOONSHINE!!!}\] But I don't have the
energy to talk about \emph{that} now. For more, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Richard E. Borcherds, ``What is moonshine?'', talk given upon winning
  the Fields medal, preprint available as
  \href{https://arxiv.org/abs/math.QA/9809110}{\texttt{math.QA/9809110}}.
\item
  Peter Goddard, ``The work of R. E. Borcherds'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9808136}{\texttt{math.QA/9808136}}.
\end{enumerate}

Okay, if you've actually read this far, you deserve a treat. First, try
this cartoon, which you'll see is quite relevant:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Cartoon by J. F. Cartier,
  \texttt{http://www.physik.uni-frankfurt.de/\textasciitilde{}jr/gif/cartoon/cart0785.gif}
\end{enumerate}

Second, let's calculate the determinant of an operator \(A\) whose
eigenvalues are the numbers \(1, 2, 3, \ldots\). You can think of this
operator as the Hamiltonian for the wave equation on the circle, where
we only keep the right-moving modes. As I already said, the zeta
function of this operator is the Riemann zeta function. This function
has \(\zeta'(0) = -ln(2 \pi)/2\), so using our cute formula relating
determinants and zeta functions, we get
\[\operatorname{det}(A) = \exp(-\zeta'(0)) = (2\pi)^{\frac12}.\] Just
for laughs, if we pretend that the determinant of \(A\) is the product
of its eigenvalues as in the finite-dimensional case, we get:
\[1\cdot 2\cdot 3\cdot \ldots = (2 \pi)^{\frac12}\] or if you really
want to ham it up, \[\infty! = (2 \pi)^{\frac12}.\] Cute, eh? Dan Piponi
told me this, as well as some of the other things I've been talking
about. You can also find it in Bost's paper.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Notes and digressions:

\begin{itemize}
\item
  In all of the above, I put a minus sign into my Laplacian, so that it
  has nonnegative eigenvalues. This is common among erudite mathematical
  physics types, who like ``positive elliptic operators''.
\item
  The zeta function trick for defining the determinant of the Laplacian
  works for any positive elliptic operator on a compact manifold. A huge
  amount has been written about this trick. It's all based on the fact
  that the zeta function of a positive elliptic operator analytically
  continues to \(s = 0\). This fact was proved by Seeley:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{9}
  \tightlist
  \item
    R. T. Seeley, ``Complex powers of an elliptic operator'',
    \emph{Proc. Symp. Pure Math.} \textbf{10} (1967), 288--307.
  \end{enumerate}
\item
  Why is the Polyakov action \(\langle X, \Delta X\rangle\) conformally
  invariant? Because the Laplacian has dimensions of
  \(1/\mathrm{length}^2\), while the integral used to define the inner
  product has dimensions of \(\mathrm{length}^2\), since the torus is
  \(2\)-dimensional. This is the magic of 2 dimensions! The path
  integral for higher-dimensional ``branes'' has not yet been made
  precise, because this magic doesn't happen there.
\item
  About Euler's weirdly beautiful formula for \(\pi\), Robin Chapman
  writes:

  \begin{quote}
  \[\frac{\pi}{2} = \frac32\cdot\frac56\cdot\frac76\cdot\frac{11}{10}\cdot\frac{13}{14}\cdot\frac{17}{18}\cdot\frac{19}{18}\cdot\ldots\tag{1}\]
  Using the Euler product for \(\zeta(2)\) gives
  \[\frac{\pi^2}{6} = \zeta(2) = 1+\frac{1}{2^2}+\frac{1}{3^2}+\ldots = \left(\frac{4}{3}\right)\left(\frac{9}{8}\right)\left(\frac{25}{24}\right)\cdots\left(\frac{p^2}{p^2-1}\right)\cdots\]
  and dropping the \(p=2\) term and dividing by (\(1\)) we see that
  (\(1\)) is equivalent to
  \[\frac{\pi}{4} = \left(\frac{3}{4}\right)\left(\frac{5}{4}\right)\left(\frac{7}{8}\right)\cdots\left(\frac{p}{p-\chi(p)}\right)\cdots \tag{2}\]
  where the numerators are odd primes and the denominators are their
  adjacent multiples of \(4\). Also \(\chi\) is the modulo \(4\)
  Dirichlet character. Now
  \[\frac{p}{p-\chi(p)} = 1+\frac{\chi(p)}{p}+\frac{\chi(p^2)}{p^2}+\ldots\]
  and if we multiply these formally the RHS of (\(2\)) becomes
  \[1-\frac13+\frac15-\frac17+\frac19-\ldots\] i.e., Gregory's series
  for \(\pi/4\). Admittedly it's not apparent that this formal
  manipulation is valid. However for Dirichlet \(L\)-functions the Euler
  product is valid at \(s = 1\). This requires some delicate analysis:
  for details see Landau's book on prime numbers or Davenport's
  \emph{Multiplicative Number Theory}.
  \end{quote}
\end{itemize}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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This week I'd like to catch you up on the latest developments in quantum
gravity. First, a book that everyone can enjoy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Archibald Wheeler and Kenneth Ford, \emph{Geons, Black Holes, and
  Quantum Foam: A Life in Physics}, Norton, New York, 1998.
\end{enumerate}

This is John Wheeler's autobiography. If Wheeler's only contribution to
physics was being Bohr's student and Feynman's thesis advisor, that in
itself would have been enough. But he did much more. He played a crucial
role in the Manhattan project and the subsequent development of the
hydrogen bomb. He worked on nuclear physics, cosmic rays, muons and
other elementary particles. And he was also one of the earlier people to
get really excited about the more outlandish implications of general
relativity. For example, he found solutions of Einstein's equation that
correspond to regions of gravitational field held together only by their
own gravity, which he called ``geons''. He was not the first to study
black holes, but he was one of the first people to take them seriously,
and he invented the term ``black hole''. And the reason he is \emph{my}
hero is that he took seriously the challenge of reconciling general
relativity and quantum theory. Moreover, he recognized how radical the
ideas needed to accomplish this would be --- for example, the idea that
spacetime might not be truly be a continuum at short distance scales,
but instead some sort of ``quantum foam''.

Anyone interested in the amazing developments in physics during the 20th
century should read this book! Here is the story of how he first met
Feynman:

\begin{quote}
Dick Feynman, who had earned his bachelor's degree at MIT, showed up at
my office door as a brash and appealing twenty-one-year-old in the fall
of 1939 because, as a new student with a teaching assistantship, he had
been assigned to grade papers for me in my mechanics course. As we sat
down to talk about the course and his duties, I pulled out and placed on
the table between us a pocket watch. Inspired by my father's keenness
for time-and-motion studies, I was keeping track of how much time I
spent on teaching and teaching-related activities, how much on research,
and how much on departmental or university chores. This meeting was in
the category of teaching-related. Feynman may have been a little taken
aback by the watch but he was not one to be intimidated. He went out and
bought a dollar watch (as I learned later), so he would be ready for our
next meeting. When we got together again, I pulled out my watch and put
it on the table between us. Without cracking a smile, Feynman pulled out
his watch and put it on the table next to mine. His theatrical sense was
perfect. I broke down laughing, and soon he was laughing as hard as I,
until both of us had tears in our eyes. It took quite a while for us to
sober up and get on with our discussion. This set the tone for a
wonderful friendship that endured for the rest of his life.
\end{quote}

Next for something a wee bit more technical:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Steven Carlip, \emph{Quantum Gravity in 2+1 Dimensions}, Cambridge
  University Press, 1998.
\end{enumerate}

If you want to learn about quantum gravity in 2+1 dimensions this is the
place to start, because Carlip is the world's expert on this subject,
and he's pretty good at explaining things.

(By the way, physicists write ``2+1 dimensions'', not because they can't
add, but to emphasize that they are talking about 2 dimensions of space
and 1 dimension of time.)

Quantum gravity in 2+1 dimensions is just a warmup for what physicists
are really interested in --- quantum gravity in 3+1 dimensions. Going
down a dimension really simplifies things, because Einstein's equations
in 2+1 dimensions say that the energy and momentum flowing through a
given point of spacetime completely determine the curvature there,
unlike in higher dimensions. In particular, spacetime is \emph{flat} in
the vacuum in 2+1 dimensions, so there's no gravitational radiation.
Nonetheless, quantum gravity in 2+1 dimensions is very interesting, for
a number of reasons. Most importantly, we can solve the equations
exactly, so we can use it as a nice testing-ground for all sorts of
ideas people have about quantum gravity in 3+1 dimensions.

Quantum gravity is hard for various reasons, but most of all it's hard
because, unlike traditional quantum field theory, it's a
``background-free'' theory. What I mean by this is that there's no fixed
way of measuring times and distances. Instead, times and distances must
be measured with the help of the geometry of spacetime, and this
geometry undergoes quantum fluctuations. That throws most of our usual
methods for doing physics right out the window! Quantum gravity in 2+1
dimensions gives us, for the first time, an example of a background-free
theory where we can work out everything in detail.

Here's the table of contents of Carlip's book:

\begin{quote}
\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  Why (2+1)-dimensional gravity?
\item
  Classical general relativity in 2+1 dimensions
\item
  A field guide to the (2+1)-dimensional spacetimes
\item
  Geometric structures and Chern-Simons theory
\item
  Canonical quantization in reduced phase space
\item
  The connection representation
\item
  Operator algebras and loops
\item
  The Wheeler-DeWitt equation
\item
  Lorentzian path integrals
\item
  Euclidean path integrals and quantum cosmology
\item
  Lattice methods
\item
  The (2+1)-dimensional black hole
\item
  Next steps A. Appendix: The topology of manifolds B. Appendix:
  Lorentzian metrics and causal structure C. Appendix: Differential
  geometry and fiber bundles
\end{enumerate}
\end{quote}

And now for some stuff that's available online. First of all, anyone who
wants to keep up with research on gravity should remember to read
``Matters of Gravity''. I've talked about it before, but here's the
latest edition:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Jorge Pullin, editor, \emph{Matters of Gravity}, vol.~12, available at
  \href{https://arxiv.org/abs/gr-qc/9809031}{\texttt{gr-qc/9809031}} and
  at \texttt{http://vishnu.nirvana.phys.psu.edu/mog.html}
\end{enumerate}

There's a lot of good stuff in here. Quantum gravity buffs will
especially be interested in Gary Horowitz's article ``A nonperturbative
formulation of string theory?'' and Lee Smolin's ``Neohistorical
approaches to quantum gravity''. The curious title of Smolin's article
refers to \emph{new} work on quantum gravity involving a sum over
\emph{histories} --- or in other words, spin foam models.

Even if you can't go to a physics talk, these days you can sometimes
find it on the world-wide web. Here's one by John Barrett:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John W. Barrett, ``State sum models for quantum gravity'', Penn State
  relativity seminar, August 27, 1998, audio and text of transparencies
  available at
  \texttt{http://vishnu.nirvana.phys.psu.edu/online/Html/Seminars/Fall1998/Barrett/}
\end{enumerate}

Barrett and Crane have a theory of quantum gravity, which I've also
worked on; I discussed it last in \protect\hyperlink{week113}{``Week
113''} and \protect\hyperlink{week120}{``Week 120''}. Before I describe
it I should warn the experts that this theory deals with Riemannian
rather than Lorentzian quantum gravity (though Barrett and Crane are
working on a Lorentzian version, and I hear Friedel and Krasnov are also
working on this). Also, it only deals with vacuum quantum gravity ---
empty spacetime, no matter.

In this theory, spacetime is chopped up into \(4\)-simplices. A
\(4\)-simplex is the \(4\)-dimensional analog of a tetrahedron. To
understand what I'm going to say next, you really need to understand
\(4\)-simplices, so let's start with them.

It's easy to draw a \(4\)-simplex. Just draw 5 dots in a kind of circle
and connect them all to each other! You get a pentagon with a pentagram
inscribed in it. This is a perspective picture of a \(4\)-simplex
projected down onto your \(2\)-dimensional paper. If you stare at this
picture you will see the \(4\)-simplex has 5 tetrahedra, 10 triangles,
10 edges and 5 vertices in it.

The shape of a \(4\)-simplex is determined by 10 numbers. You can take
these numbers to be the lengths of its edges, but if you want to be
sneaky you can also use the areas of its triangles. Of course, there are
some constraints on what areas you can choose for there to \emph{exist}
a 4-simplex having triangles with those areas. Also, there are some
choices of areas that fail to make the shape \emph{unique}: for one of
these bad choices, the \(4\)-simplex can flop around while keeping the
areas of all its triangles fixed. But generically, this non-uniqueness
doesn't happen.

In Barrett and Crane's theory, we chop spacetime into \(4\)-simplices
and describe the geometry of spacetime by specifying the area of each
triangle. But the geometry is ``quantized'', meaning that the area takes
a discrete spectrum of possible values, given by \[\sqrt{j(j+1)}\] where
the ``spin'' \(j\) is a number of the form \(0, 1/2, 1, 3/2, \ldots\).
This formula will be familiar to you if you've studied the quantum
mechanics of angular momentum. And that's no coincidence! The cool thing
about this theory of quantum gravity is that you can discover it just by
thinking a long time about general relativity and the quantum mechanics
of angular momentum, as long as you also make the assumption that
spacetime is chopped into \(4\)-simplices.

So: in Barrett and Crane's theory the geometry of spacetime is described
by chopping spacetime into \(4\)-simplices and labelling each triangle
with a spin. Let's call such a labelling a ``quantum 4-geometry''.
Similarly, the geometry of space is described by chopping space up into
tetrahedra and labelling each triangle with a spin. Let's call this a
``quantum 3-geometry''.

The meat of the theory is a formula for computing a complex number
called an ``amplitude'' for any quantum 4-geometry. This number plays
the usual role that amplitudes do in quantum theory. In quantum theory,
if you want to compute the probability that the world starts in some
state \(\psi\) and ends up in some state \(\psi'\), you just look at all
the ways the world can get from \(\psi\) to \(\psi'\), compute an
amplitude for each way, add them all up, and take the square of the
absolute value of the result. In the special case of quantum gravity,
the states are quantum 3-geometries, and the ways to get from one state
to another are quantum 4-geometries.

So, what's the formula for the amplitude of a quantum 4-geometry? It
takes a bit of work to explain this, so I'll just vaguely sketch how it
goes. First we compute amplitudes for each \(4\)-simplex and multiply
all these together. Then we compute amplitudes for each triangle and
multiply all these together. Then we multiply these two numbers.

(This is analogous to how we compute amplitudes for Feynman diagrams in
ordinary quantum field theory. A Feynman diagram is a graph whose edges
have certain labellings. To compute its amplitude, first we compute
amplitudes for each edge and multiply them all together. Then we compute
amplitudes for each vertex and multiply them all together. Then we
multiply these two numbers. One goal of work on ``spin foam models'' is
to more deeply understand this analogy with Feynman diagrams.)

Anyway, to convince oneself that this formula is ``good'', one would
like to relate it to other approaches to quantum gravity that also
involve \(4\)-simplices. For example, there is the Regge calculus, which
is a discretized version of \emph{classical} general relativity. In this
approach you chop spacetime into \(4\)-simplices and describe the shape
of each \(4\)-simplex by specifying the lengths of its edges. Regge
invented a formula for the ``action'' of such a geometry which
approaches the usual action for classical general relativity in the
continuum limit. I explained the formula for this ``Regge action'' in
\protect\hyperlink{week120}{``Week 120''}.

Now if everything were working perfectly, the amplitude for a
\(4\)-simplex in the Barrett-Crane model would be close to \(\exp(iS)\),
where \(S\) is the Regge action of that \(4\)-simplex. This would mean
that the Barrett-Crane model was really a lot like a path integral in
quantum gravity. Of course, in the Barrett-Crane model all we know is
the areas of the triangles in each \(4\)-simplex, while in the Regge
calculus we know the lengths of its edges. But we can translate between
the two, at least generically, so this is no big deal.

Recently, Barrett and Williams came up with a nice argument saying that
in the limit where the triangles have large areas, the amplitude for a
4-simplex in the Barrett-Crane theory is proportional, not to
\(\exp(iS)\), but to \(\cos(S)\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John W. Barrett and Ruth M. Williams, ``The asymptotics of an
  amplitude for the \(4\)-simplex'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9809032}{\texttt{gr-qc/9809032}}.
\end{enumerate}

This argument is not rigorous --- it uses a stationary phase
approximation that requires further justification. But Regge and Ponzano
used a similar argument to show the same sort of thing for quantum
gravity in 3 dimensions, and their argument was recently made rigorous
by Justin Roberts, with a lot of help from Barrett:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Justin Roberts, ``Classical \(6j\)-symbols and the tetrahedron'',
  preprint available as
  \href{https://arxiv.org/abs/math-ph/9812013}{\texttt{math-ph/9812013}}.
\end{enumerate}

So one expects that with work, one can make Barrett and Williams'
argument rigorous.

But what does it mean? Why does he get \(\cos(S)\) instead of
\(\exp(iS)\)? Well, as I said, the same thing happens one dimension down
in the so-called Ponzano-Regge model of \(3\)-dimensional Riemannian
quantum gravity, and people have been scratching their heads for decades
trying to figure out why. And by now they know the answer, and the same
answer applies to the Barrett-Crane model.

The problem is that if you describe \(4\)-simplex using the areas of its
triangles, you don't \emph{completely} know its shape. (See, I lied to
you before --- that's why you gotta read the whole thing.) You only know
it \emph{up to reflection}. You can't tell the difference between a
\(4\)-simplex and its mirror-image twin using only the areas of its
triangles! When one of these has Regge action \(S\), the other has
action \(-S\). The Barrett- Crane model, not knowing any better, simply
averages over both of them, getting
\[\frac12(\exp(iS) + \exp(-iS)) = \cos(S)\] So it's not really all that
bad; it's doing the best it can under the circumstances. Whether this is
good enough remains to be seen.

(Actually I didn't really \emph{lie} to you before; I just didn't tell
you my definition of ``shape'', so you couldn't tell whether
mirror-image 4-simplices should count as having the same shape.
Expository prose darts between the Scylla of overwhelming detail and the
Charybdis of vagueness.)

Okay, on to a related issue. In the Barrett-Crane model one describes a
quantum 4-geometry by labelling all the triangles with spins. This
sounds reasonable if you think about how the shape of a \(4\)-simplex is
almost determined by the areas of its triangles. But if you actually
examine the derivation of the model, it starts looking more odd. What
you really do is take the space of geometries of a \emph{tetrahedron}
embedded in \(\mathbb{R}^4\), and use a trick called geometric
quantization to get something called the ``Hilbert space of a quantum
tetrahedron in 4 dimensions''. You then build your \(4\)-simplices out
of these quantum tetrahedra.

Now the Hilbert space of a quantum tetrahedron has a basis labelled by
the eigenvalues of operators corresponding to the areas of its 4
triangular faces. In physics lingo, it takes 4 ``quantum numbers'' to
describe the shape of a quantum tetrahedron in 4 dimensions.

But classically, the shape of a tetrahedron is \emph{not} determined by
the areas of its triangles: it takes 6 numbers to specify its shape, not
just 4. So there is something funny going on.

At first some people thought there might be more states of the quantum
tetrahedron than the ones Barrett and Crane found. But Barbieri came up
with a nice argument suggesting that Barrett and Crane had really found
all of them:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Andrea Barbieri, ``Space of the vertices of relativistic spin
  networks'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9709076}{\texttt{gr-qc/9709076}}.
\end{enumerate}

While convincing, this argument was not definitive, since it assumed
something plausible but not yet proven --- namely, that the ``\(6j\)
symbols don't have too many exceptional zeros''. Later, Mike
Reisenberger came up with a completely rigorous argument:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Michael P. Reisenberger, ``On relativistic spin network vertices'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9809067}{\texttt{gr-qc/9809067}}.
\end{enumerate}

But while this settled the facts of the matter, it left open the
question of ``why'' --- why does it take \emph{6} numbers to describe
the shape of classical tetrahedron in 4 dimensions but only \emph{4}
numbers to describe the shape of a quantum one? John Barrett and I have
almost finished a paper on this, so I'll give away the answer.

Not surprisingly, the key is that in quantum mechanics, not all
observables commute. You only use the eigenvalues of \emph{commuting}
observables to label a basis of states. The areas of the quantum
tetrahedron's faces commute, and there aren't any other independent
commuting observables. It's a bit like how in classical mechanics you
can specify both the position and momentum of a particle, but in quantum
mechanics you can only specify one.

This isn't news, of course. And indeed, people knew perfectly well that
for this reason, it takes only \emph{5} numbers to describe the shape of
a quantum tetrahedron in 3 dimensions. The real puzzle was why it takes
even fewer numbers when your quantum tetrahedron lives in 4 dimensions!
It seemed bizarre that adding an extra dimension would reduce the number
of degrees of freedom! But it's true, and it's just a spinoff of the
uncertainty principle. Crudely speaking, in 4 dimensions the fact that
you know your tetrahedron lies in some hyperplane makes you unable to
know as much about its shape.

Here are some other talks available on the web:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Abhay Ashtekar, Chris Beetle and Steve Fairhurst, ``Mazatlan lectures
  on black holes'', slides available at
  \texttt{http://vishnu.nirvana.phys.psu.edu/online/Html/Conferences/Mazatlan/}
\end{enumerate}

These explain a new concept of ``nonrotating isolated horizon'' which
allow one to formulate and prove the zeroth and first laws of black hole
mechanics in a way that only refers to the geometry of spacetime near
the horizon. For more details try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Abhay Ashtekar, Chris Beetle and S. Fairhurst, ``Isolated horizons: a
  generalization of black hole mechanics'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9812065}{\texttt{gr-qc/9812065}}.
\end{enumerate}

This concept also serves as the basis for a forthcoming 2-part paper
where Ashtekar, Corichi, Krasnov and I compute the entropy of a quantum
black hole (see \protect\hyperlink{week112}{``Week 112''} for more on
this).

Finally, here are a couple more papers. I don't have time to say much
about them, but they're both pretty neat:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Matthias Arnsdorf and R. S. Garcia, ``Existence of spinorial states in
  pure loop quantum gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9812006}{\texttt{gr-qc/9812006}}.
\end{enumerate}

I'll just quote the abstract:

\begin{quote}
We demonstrate the existence of spinorial states in a theory of
canonical quantum gravity without matter. This should be regarded as
evidence towards the conjecture that bound states with particle
properties appear in association with spatial regions of non-trivial
topology. In asymptotically trivial general relativity the momentum
constraint generates only a subgroup of the spatial diffeomorphisms. The
remaining diffeomorphisms give rise to the mapping class group, which
acts as a symmetry group on the phase space. This action induces a
unitary representation on the loop state space of the Ashtekar
formalism. Certain elements of the diffeomorphism group can be regarded
as asymptotic rotations of space relative to its surroundings. We
construct states that transform non-trivially under a \(2\pi\) rotation:
gravitational quantum states with fractional spin.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Steve Carlip, ``Black hole entropy from conformal field theory in any
  dimension'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9812013}{\texttt{hep-th/9812013}}.
\end{enumerate}

Again, here's the abstract:

\begin{quote}
When restricted to the horizon of a black hole, the `gauge' algebra of
surface deformations in general relativity contains a physically
important Virasoro subalgebra with a calculable central charge. The
fields in any quantum theory of gravity must transform under this
algebra; that is, they must admit a conformal field theory description.
With the aid of Cardy's formula for the asymptotic density of states in
a conformal field theory, I use this description to derive the
Bekenstein-Hawking entropy. This method is universal - it holds for any
black hole, in any dimension, and requires no details of quantum gravity
--- but it is also explicitly statistical mechanical, based on the
counting of microscopic states.
\end{quote}

On Thursday I'm flying to Schladming, Austria to attend a workshop on
geometry and physics organized by Harald Grosse and Helmut Gausterer.
Some cool physicists will be there, like Daniel Kastler and Julius Wess.
If I understand what they're talking about I'll try to explain it here.
Happy new year!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Above I wrote:

\begin{quote}
Recently, Barrett and Williams came up with a nice argument saying that
in the limit where the triangles have large areas, the amplitude for a
\(4\)-simplex in the Barrett-Crane theory is proportional, not to
\(\exp(iS)\), but to \(\cos(S)\)\ldots.

This argument is not rigorous --- it uses a stationary phase
approximation that requires further justification. But similar argument
to show the same sort of thing for quantum gravity in 3 dimensions, and
their argument was recently made rigorous by Justin Roberts, with a lot
of help from Barrett\ldots.

So one expects that with work, one can make Barrett and Williams'
argument rigorous.
\end{quote}

In fact one can't make it rigorous: it's wrong! In the limit of large
areas the amplitude for a \(4\)-simplex in the Barrett-Crane model is
wildly different from \(\cos(S)\), or \(\exp(iS)\), or anything like
that. Dan Christensen, Greg Egan and I showed this in a couple of papers
that I discuss in \protect\hyperlink{week170}{``Week 170''} and
\protect\hyperlink{week198}{``Week 198''}. Our results were confirmed by
John Barrett, Chris Steel, Laurent Friedel and David Louapre.

By now --- I'm writing this in 2009 --- it's generally agreed that the
Barrett-Crane model is wrong and another model is better. To read about
this new model, see \protect\hyperlink{week280}{``Week 280''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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For the last 38 years the Austrians have been having winter workshops on
nuclear and particle physics in a little Alpine ski resort town called
Schladming. This year it was organized by Helmut Gausterer and Hermann
Grosse, and the theme was ``Geometry and Quantum Physics'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Geometry and Quantum Physics lectures, \emph{38th Internationale
  Universitaetswochen fuer Kern- und Teilchenphysik},
  \texttt{http://physik.kfunigraz.ac.at/utp/iukt/iukt\_99/iukt99-lect.html}
\end{enumerate}

I was invited to give some talks about spin foam models, and the other
talks looked interesting, so I decided to leave my warm and sunny home
for the chilly north. I flew out to Salzburg in early January and took a
train to Schladming from there. Jet-lagged and exhausted, I almost slept
through my train stop, but I made it and soon collapsed into my hotel
bed.

The next day I alternately slept and prepared my talks. The workshop
began that evening with a speech by Helmut Grosse, a speech by the town
mayor, and a reception featuring music by a brass band. The last two
struck me as a bit unusual --- there's something peculiarly Austrian
about drinking beer and discussing quantum gravity over loud oompah
music! This was also the first conference I've been to that featured
skiing and bowling competitions.

Anyway, there were a number of 4-hour minicourses on different subjects,
which should eventually appear as articles in this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  \emph{Geometry and Quantum Physics}, proceedings of the 38th Int.
  Universitaetswochen fuer Kern- und Teilchenphysik, Schladming,
  Austria, Jan.~9-16, 1999, eds.~H. Gausterer, H. Grosse and L. Pittner,
  to appear in Lecture Notes in Physics, Springer-Verlag, Berlin.
\end{enumerate}

Right now they exist in the form of lecture notes:

\begin{itemize}
\tightlist
\item
  Anton Alekseev: ``Symplectic and noncommutative geometry of systems
  with symmetry''
\item
  John Baez: ``Spin foam models of quantum gravity''
\item
  Cesar Gomez: ``Duality and D-branes''
\item
  Daniel Kastler: ``Noncommutative geometry and fundamental physical
  interactions''
\item
  John Madore: ``An introduction to noncommutative geometry''
\item
  Rudi Seiler: ``Geometric properties of transport in quantum Hall
  systems''
\item
  Julius Wess: ``Physics on noncommutative spacetime structures''
\end{itemize}

All these talks were about different ways of combining quantum theory
and geometry. Quantum theory is so strange that ever since its invention
there has been a huge struggle to come to terms with it at all levels.
It took a while for it to make its full impact in pure mathematics, but
now you can see it happening all over: there are lots of papers on
quantum topology, quantum geometry, quantum cohomology, quantum groups,
quantum logic\ldots{} even quantum set theory! There are even some
fascinating attempts to apply quantum mechanics to unsolved problems in
number theory like the Riemann hypothesis\ldots{} will they bear fruit?
And if so, what does this mean about the world? Nobody really knows yet;
we're in a period of experimentation - a bit of a muddle.

I don't have the energy to summarize all these talks so I'll concentrate
on part of Alekseev's --- just a tiny smidgen of it, actually! But
first, let me just quickly say a word about each speaker's topic.

Alekseev talked about some ideas related to the stationary phase
approximation. This is one of the main tools linking classical mechanics
to quantum mechanics. It's a trick for approximately computing the
integral of a function of the form \(\exp(iS(x))\) knowing only \(S(x)\)
and its 2nd derivative at points where its first derivative vanishes. In
physics, people use it to compute path integrals in the semiclassical
limit where what matters most is paths near the classical trajectories.
Alekseev discussed problems where the stationary phase approximation
gives the exact answer. There's a wonderful thing called the
Duistermaat-Heckman formula which says that this happens in certain
situations with circular symmetry. There are also generalizations to
more complicated symmetry groups. These are related to `equivariant
cohomology' --- more on that later.

I talked about the spin foam approach to quantum gravity. I've already
discussed this in \protect\hyperlink{week113}{``Week 113''},
\protect\hyperlink{week114}{``Week 114''},
\protect\hyperlink{week120}{``Week 120''}, and
\protect\hyperlink{week128}{``Week 128''}, so there's no need to say
more here.

Cesar Gomez gave a wonderful introduction to string theory, starting
from scratch and rapidly working up to T-duality and D-branes. The idea
behind T-duality is very simple and pretty. Basically, if you have
closed strings living in a space with one dimension curled up into a
circle of radius \(R\), there is a symmetry that involves replacing
\(R\) by \(1/R\) and switching two degrees of freedom of the string,
namely the number of times it winds around the curled-up direction and
its momentum in the curled-up direction. Both these numbers are
integers. D-branes are something that shows up when you consider the
consequences of this symmetry for \emph{open} strings.

String theory is rather conservative in that, at least until recently,
it usually treated spacetime as a manifold with a fixed geometry and
only applied quantum mechanics to the description of the strings
wiggling around \emph{in} spacetime. In spin foam models, by contrast,
spacetime itself is modelled quantum-mechanically as a kind of
higher-dimensional version of a Feynman diagram. There are also other
ideas about how to treat spacetime quantum-mechanically. One of them is
to treat the coordinates on spacetime as noncommuting variables. In this
approach, called noncommutative geometry, the uncertainty principle
limits our ability to simultaneously know all the coordinates of a
particle's position, giving spacetime a kind of quantum ``fuzziness''.
Personally I don't find noncommutative geometry convincing as a theory
of physical spacetime, because there are no clues that spacetime
actually has this sort of fuzziness. But I find it quite interesting as
mathematics.

Daniel Kastler talked about Alain Connes' theories of physics based on
noncommutative geometry. He discussed both the original Connes-Lott
version of the Standard Model and newer theories that include gravity.
Kastler is a real character! As usual, his talks lauded Connes to the
heavens and digressed all over the map in a frustrating but entertaining
manner. Throughout the conference, he kept us well-fed with anecdotes,
bringing back the aura of heroic bygone days. A random example: Pauli
liked to work long into the night --- so when a student asked ``Could I
meet you at your office at 9 a.m.?'' he replied ``No, I can't possibly
stay that late''.

One nice idea mentioned by Kastler came from this paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Alain Connes, ``Noncommutative geometry and reality'', \emph{J. Math.
  Phys.} \textbf{36} (1995), 6194.
\end{enumerate}

The idea is to equip spacetime with extra curled-up dimensions shaped
like the quantum group \(\mathrm{SU}_q(2)\) where \(q\) is a 3rd root of
unity. A quantum group is actually a kind of noncommutative algebra, but
using Connes' ideas you can think of it as a kind of ``space''. If you
mod out this particular algebra by its nilradical, you get the algebra
\(M_1(\mathbb{C})\oplus M_2(\mathbb{C})\oplus M_3(\mathbb{C})\), where
\(M_n(\mathbb{C})\) is the algebra of \(n\times n\) complex matrices.
This has a tantalizing relation to the gauge group of the Standard
Model, namely \(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\).

John Madore also spoke about noncommutative geometry, but more on the
general theory and less on the applications to physics. He concentrated
on the notion of a ``differential calculus'' --- a structure you can
equip an algebra with in order to do differential geometry thinking of
it as a kind of ``space''.

Julius Wess also spoke on noncommutative geometry, focussing on a
\(q\)-deformed version of quantum mechanics. The process of
``\(q\)-deformation'' is something you can do not only to groups like
\(\mathrm{SU}(2)\) but also other spaces. You get noncommutative
algebras, and these often have nice differential calculi that let you go
ahead and do noncommutative geometry. Wess had a nice humorous way of
defusing tense situations. When one questioner pointedly asked him
whether the material he was presenting was useful in physics or merely a
pleasant game, he replied ``That's a very good question. I will try to
answer that later. For now you're just like students in calculus: you
don't know why you're learning all this stuff\ldots.'' And when Kastler
and other mathematicians kept hassling him over whether an operator was
self-adjoint or merely hermitian, he begged for mercy by saying ``I
would like to be a physicist. That was my dream from the beginning.''

Anyway, I hope that from these vague descriptions you get some sense of
the ferment going on in mathematical physics these days. Everyone agrees
that quantum theory should change our ideas about geometry. Nobody
agrees on how.

Now let me turn to Alekseev's talk. In addition to describing his own
work, he explained many things I'd already heard about. But he did it so
well that I finally understood them! Let me talk about one of these
things: equivariant deRham cohomology. For this, I'll assume you know
about deRham cohomology, principal bundles, connections and curvature.
So I assume you know that given a manifold \(M\), we can learn a lot
about its topology by looking at differential forms on \(M\) and
figuring out the space of closed \(p\)-forms modulo exact ones --- the
so-called \(p\)th deRham cohomology of \(M\). But now suppose that some
Lie group \(G\) acts on \(M\) in a smooth way. What can differential
forms tell us about the topology of this group action?

All sorts of things! First suppose that \(G\) acts freely on \(M\) ---
meaning that \(gx\) is different from \(x\) for any point \(x\) of \(M\)
and any element \(g\) of \(G\) other than the identity. Then the
quotient space \(M/G\) is a manifold. Even better, the map \(M\to M/G\)
gives us a principal \(G\)-bundle with total space \(M\) and base space
\(M/G\).

Can we figure out the deRham cohomology of \(M/G\)? Of course if we were
smart enough we could do it by working out \(M/G\) and then computing
its cohomology. But there's a sneakier way to do it using the
differential forms on \(M\). The map \(M\to M/G\) lets us pull back any
form on \(M/G\) to get a form on \(M\). This lets us think of forms on
\(M/G\) as forms on \(M\) satisfying certain equations --- people call
them ``basic'' differential forms because they come from the base space
\(M/G\).

What are these equations? Well, note that each element \(v\) of the Lie
algebra of \(G\) gives a vector field on \(M\), which I'll also call
\(v\). This give two operations on the differential forms on \(M\): the
Lie derivative \(L_v\) and the interior product \(i_v\). It's easy to
see that any basic differential form is annihilated by these operations
for all \(v\). The converse is true too! So we have some nice equations
describing the basic forms.

If we now take the space of closed basic \(p\)-forms modulo the exact
basic \(p\)-forms, we get the deRham cohomology of \(M/G\)! This lets us
study the topology of \(M/G\) using differential forms on \(M\). It's
very convenient.

If the action of \(G\) on \(M\) isn't free, the quotient space \(M/G\)
might not be a manifold. This doesn't stop us from defining ``basic''
differential forms on \(M\) just as before. We can also define some
cohomology groups by taking the closed basic \(p\)-forms modulo the
exact ones. But topologists know from long experience that another
approach is often more useful. Group actions that aren't free are
touchy, sensitive creatures --- a real nuisance to work with. Luckily,
when you have an action that's not free, you can tweak it slightly to
make it free. This involves ``puffing up'' the space that the group acts
on --- replacing it by a bigger space that the group acts on freely.

For example, suppose you have a group \(G\) acting on a one-point space.
Unless \(G\) is trivial, this action isn't free. In fact, it's about as
far from free as you can get! But we can ``puff it up'' and get a space
called \(EG\). Like the one-point space, \(EG\) is contractible, but
\(G\) acts freely on it. Actually there are various spaces with these
two properties, and it doesn't much matter which one we use --- people
call them all \(EG\). People call the quotient space \(EG/G\) the
``classifying space'' of \(G\), and they denote it by \(BG\).

More generally, suppose we have \emph{any} action of \(G\) on a manifold
\(M\). How can we puff up \(M\) to get a space on which \(G\) acts
freely? Simple: just take its product with \(EG\). Since \(G\) acts on
\(M\) and \(EG\), it acts on the product \(M\times EG\) in an obvious
way. Since \(G\) acts freely on \(EG\), its action on \(M\times EG\) is
free. And since \(EG\) is contractible, the space \(M\times EG\) is a
lot like \(M\), at least as far as topology goes. More precisely, it has
the same homotopy type!

Actually the last 2 paragraphs can be massively generalized at no extra
cost. There's no need for \(G\) to be a Lie group or for \(M\) to be a
manifold. \(G\) can be any topological group and \(M\) can be any
topological space! But since I want to talk about \emph{deRham}
cohomology, I don't need this extra generality here.

Anyway, now we know the right substitute for the quotient space \(M/G\)
when the action of \(G\) on \(M\) isn't free: it's the quotient space
\((M\times EG)/G\).

So now let's figure out how to compute the \(p\)th deRham cohomology of
\((M\times EG)/G\). Since \(G\) acts freely on \(M\times EG\), this
should be just the closed basic \(p\)-forms on \(M\times EG\) modulo the
exact ones, where ``basic'' is defined as before. In fact this is true.
We call the resulting space the \(p\)th ``equivariant deRham
cohomology'' of the space \(M\). It's a kind of well-behaved substitute
for the deRham cohomology of \(M/G\) in the case when \(M/G\) isn't a
manifold.

There's only one slight problem: the space \(EG\) is very big, so it's
not easy to deal with differential forms on \(M\times EG\)!

You'll note that I didn't say much about what \(EG\) looks like. All I
said is that it's some contractible space on which \(G\) acts freely. I
didn't even say it was a manifold, so it's not even obvious that
``differential forms on \(EG\)'' makes sense! If you are smart you can
choose your space \(EG\) so that it's a manifold. However, you'll
usually need it to be infinite-dimensional.

Differential forms make perfect sense on infinite-dimensional manifolds,
but they can be a bit tiresome when we're trying to do explicit
calculations. Luckily there is a small subalgebra of the differential
forms on \(EG\) that's sufficient for the purpose of computing
equivariant cohomology! This is called the ``Weil algebra'', \(WG\).

To guess what this algebra is, let's just list all the obvious
differential forms on \(EG\) that we can think of. Well, I guess none of
them are obvious unless we know a few more facts! First of all, since
the action of \(G\) on \(EG\) is free, the quotient map \(EG\to BG\)
gives us a principal \(G\)-bundle with total space \(EG\) and base space
\(BG\). This bundle is very interesting. It's called the ``universal''
principal \(G\)-bundle. The reason is that any other principal
\(G\)-bundle is a pullback of this one.

(I guess I'm upping the sophistication level again here: I'm assuming
you know how to pull back bundles!)

Even better, if we choose our space \(EG\) so that it's a manifold, then
there is a god-given connection on the bundle \(EG\to BG\), and any
other principal \(G\)-bundle \emph{with connection} is a pullback of
this one.

(And now I'm assuming you know how to pull back connections! However,
this pullback stuff is not necessary in what follows, so just ignore it
if you like.)

Okay, so how can we get a bunch of differential forms on \(EG\) just
using the fact that it's the total space of a \(G\)-bundle equipped with
a connection?

Well, whenever we have a \(G\)-bundle \(E\to B\), we can think of a
connection on it as a \(1\)-form on \(E\) taking values in the Lie
algebra of \(G\). Let's see what differential forms on \(E\) this gives
us! Let's call the connection \(A\). If we pick a basis of the Lie
algebra, we can take the components of \(A\) in this basis, and we get a
bunch of \(1\)-forms \(A_i\) on \(E\). We also get a bunch of
\(2\)-forms \(dA_i\). We also get a bunch of \(2\)-forms
\(A_i\wedge A_j\). And so on.

In general, we can form all possible linear combinations of wedge
products of the \(A_i\)'s and the \(dA_i\)'s. We get a big fat algebra.
In the case when our bundle is \(EG\to BG\), equipped with its god-given
connection, we define this algebra to be the Weil algebra, \(WG\)!

Great. But let's try to define \(WG\) in a purely algebraic way, so we
can do computations with it more easily. We're starting out with the
1-forms \(A_i\) and taking all linear combinations of wedge products of
them and their exterior derivatives. There are in fact no relations
except the obvious ones, so \(WG\) is just ``the supercommutative
differential graded algebra freely generated by the variables \(A_i\)''.
Note: all the mumbo-jumbo about supercommutative differential graded
algebras is a way of mentioning the \emph{obvious} relations.

Warning: people don't usually describe the Weil algebra quite this way.
They usually seem describe it in terms of the connection \(1\)-forms and
curvature \(2\)-forms. However, the curvature is related to the
connection by the formula \(F = dA + A\wedge A\), and if you use this
you can go from the usual description of the Weil algebra to mine --- I
think.

(Actually, people often describe the Weil algebra as an algebra
generated by a bunch of things of degree 1 and a bunch of things of
degree 2, without telling you that the things of degree 1 are secretly
components of a connection \(1\)-form and the things of degree 2 are
secretly components of a curvature \(2\)-form! That's why I'm telling
you all this stuff --- so that if you ever study this stuff you'll have
a better chance of seeing what's going on behind all the murk.)

Okay, so here is the upshot. Say we want to compute the equivariant
deRham cohomology of some manifold \(M\) on which \(G\) acts. In other
words, we want to compute the deRham cohomology of \((M\times EG)/G\).
On the one hand, we can start with the differential forms on
\(M\times EG\), figure out the ``basic'' \(p\)-forms, and take the space
of closed basic \(p\)-forms modulo exact ones. But remember: up to
details of analysis, the algebra of differential forms on \(M\times EG\)
is just the tensor product of the algebra of forms on \(M\) and the
algebra of forms on \(EG\). And we have this nice small ``substitute''
for the algebra of forms on \(EG\), namely the Weil algebra \(WG\). So
let's take the algebra of differential forms on \(M\) and just tensor it
with \(WG\). We get a differential graded algebra with Lie derivative
operations \(L_v\) and interior product operations \(i_v\) defined on
it. We then proceed as before: we take the space of closed basic
elements of degree \(p\) modulo exact ones. Voila! This is something one
can actually compute, with sufficient persistence. And it gives the same
answer, at least when \(G\) is connected and simply connected.

There are all sorts of other things to say. For example, if we take the
simplest posssible case, namely when \(M\) is a single point, this gives
a nice trick for computing the deRham cohomology of \(EG/G = BG\). Guys
in this cohomology ring are called ``characteristic classes'', and
they're really important in physics. Since any principal \(G\)-bundle is
a pullback of \(EG\to BG\), and cohomology classes pull back, these
characteristic classes give us cohomology classes in the base space of
any principal \(G\)-bundle --- thus helping us classify \(G\)-bundles.
But if I started explaining this now, we'd be here all night.

Also sometime I should say more about how to construct \(EG\).
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All sorts of cool stuff is happening in physics --- and I don't mean
mathematical physics, I mean real live experimental physics! I feel
slightly guilty for not mentioning it on This Week's Finds. Let me
atone.

Here's the big news in a nutshell: we may have been wrong about four
fundamental constants of nature. We thought they were zero, but maybe
they're not! I'm talking about the masses of the neutrinos and the
cosmological constant.

Let's start with neutrinos.

There are three kinds of neutrinos: electron, muon, and \(\tau\)
neutrinos. They are closely akin to the charged particles whose names
they borrow --- the electron, muon and \(\tau\) --- but unlike those
particles they are electrically neutral and very light. They are rather
elusive, since they interact only via the weak force and gravity. I'm
sure you've all heard how a neutrino can easily make it through hundreds
of light years of lead without being absorbed.

But despite their ghostly nature, neutrinos play a very real role in
physics, since radioactive decay often involves a neutron turning into a
proton while releasing an electron and an electron antineutrino. (In
fact, Pauli proposed the existence of neutrinos in 1930 to account for a
little energy that went missing in this process. They were only directly
observed in 1956.) Similarly, in nuclear fusion, a proton may become a
neutron while releasing a positron and an electron neutrino. For
example, when a type II supernova goes off, it emits so many neutrinos
that if you're anywhere nearby, they'll kill you before anything else
gets to you! Indeed, in 1987 a supernova in the Large Magellanic Cloud,
about 100,000 light years away, was detected by four separate neutrino
detectors.

I said neutrinos were ``very light'', but just how light? So far most
work has only given upper bounds. In the 1980s, the Russian ITEP group
claimed to have found a nonzero mass for the electron neutrino, but this
was subsequently blamed on problems with their apparatus. As of now,
laboratory experiments give upper bounds of 4.4 eV for the electron
neutrino mass, 0.17 MeV for the muon neutrino, and 18 MeV for the
\(\tau\) neutrino. By contrast, the electron's mass is 0.511 MeV, the
muon's is 106 MeV, and the \(\tau\)'s is a whopping 1771 MeV.

For this reason, the conventional wisdom used to be that neutrinos were
massless. After all, the electron neutrino is definitely far lighter
than any known particle except the photon --- which is massless. The
larger upper bounds on the other neutrino's masses are mainly due to the
greater difficulty in doing the experiments.

Having neutrinos be massless would also nicely explain their most
stunning characteristic, namely that they're only found in a left-handed
form. What I mean by this is that they spin counterclockwise when viewed
head-on as they come towards you. It turns out that this violation of
left-right symmetry comes fairly easily to massless particles, but only
with more difficulty to massive ones. The reason is simple: massless
particles move at the speed of light, so you can't outrun them. Thus
everyone, regardless of their velocity, agrees on what it means for such
a particle to be spinning one way or another as it comes towards them.
This is not the case for a massive particle!

There was, however, a fly in the ointment. Since the sun is powered by
fusion, it should emit lots of neutrinos. In fact, the standard solar
model predicts that here on earth we are bombarded by 60 billion solar
neutrinos per square centimeter per second! So in the late 1960s, a team
led by Ray Davis set out to detect these neutrinos by putting a tank of
100,000 gallons of perchloroethylene down into a gold mine in Homestake,
South Dakota. Lots of different nuclear reactions are going on in the
sun, producing neutrinos of different energies. The Homestake experiment
can only detect the most energetic ones --- those produced when boron-8
decays into beryllium-8. These neutrinos have enough energy to turn
chlorine-37 in the tank into argon-37. Being a noble gas, the argon can
be separated out and measured. This is not easy --- one only expects
about 4 atoms of argon a day! So the experiment required extreme care
and went on for decades.

They only saw about a quarter as many neutrinos as expected.

Of course, with an experiment as delicate as this, there are always many
possibilities for error, including errors in the standard solar model.
So a Japanese group decided to use a tank of 2,000 tons of water in a
mine in Kamioka to look for solar neutrinos. This ``Kamiokande''
experiment used photomultiplier tubes to detect the Cherenkov radiation
formed by electrons that happen to be hit by neutrinos. Again it was
sensitive only to high-energy neutrinos.

After 5 years, they started seeing signs of a correlation between
sunspot activity and their neutrino count. Interesting. But more
interesting still, they didn't see as many neutrinos as expected. Only
about half as many, in fact.

Starting in the 1990s, various people began to build detectors that
could detect lower-energy neutrinos --- including those produced in the
dominant fusion reactions powering the sun. For this it's good to use
gallium-71, which turns to germanium-71 when bombarded by neutrinos. The
GALLEX detector in Italy uses 30 tons of gallium in the form of gallium
chloride dissolved in water. The SAGE detector, located in a tunnel in
the Caucasus mountains, uses 60 tons of molten metallic gallium. This
isn't quite as scary as it sounds, because gallium has a very low
melting point --- it melts in your hand! But still, of course, these
experiments are very difficult.

Again, these experiments didn't see as many neutrinos as expected.

By this point, the theorists had worked themselves into a full head of
steam trying to account for the missing neutrinos. Currently the most
popular theory is that some of the electron neutrinos have turned into
muon and \(\tau\) neutrinos by the time they reach earth. These other
neutrinos would be not be registered by our detectors.

Folks call this hypothetical process ``neutrino oscillation''. For it to
happen, the neutrinos need to have a nonzero mass. After all, a massless
particle moves at the speed of light, so it doesn't experience any
passage of time --- thanks to relativistic time dilation. Only particles
with mass can become something else while they are whizzing along
minding their own business.

If in fact you posit a small mass for the neutrinos, oscillations happen
automatically as long as the ``mass eigenstates'' are different from the
``flavor eigenstates''. By ``flavor'' we mean whether the neutrino is an
electron, muon or \(\tau\) neutrino. For simplicity, imagine that the
state of a neutrino at rest is given by a vector whose 3 components are
the amplitudes for it to be one of the three different flavors. If all
but one of these components are zero we have a neutrino with a definite
flavor --- a ``flavor eigenstate''. On the other hand, the energy of a
particle at rest is basically just its mass. Thus in the present context
the energy of the neutrino is described by a \(3\times3\) self-adjoint
matrix \(H\), the ``Hamiltonian'', whose eigenvectors are called ``mass
eigenstates''. These may or may not be the same as the flavor
eigenstates! Schroedinger's equation says that any state \(\psi\) of the
neutrino evolves as follows: \[\frac{d\psi}{dt} = -iH\psi.\] Thus if
\(\psi\) starts out being a mass eigenstate it stays a mass eigenstate.
But if it starts out being a flavor eigenstate, it won't stay a flavor
eigenstate --- unless the mass and flavor eigenstates coincide! Instead,
it will oscillate.

I bet you were wondering when the math would start. Don't worry, there
won't be much this time.

Anyway, for other particles, like quarks, it's well-known that the mass
and flavor eigenstates \emph{don't} coincide. So we shouldn't be
surprised at neutrino oscillations, at least if neutrinos actually have
nonzero mass.

Actually things are more complicated than I'm letting on. In addition to
oscillating in empty space, it's possible that neutrinos oscillate
\emph{more} as they are passing through the sun itself, thanks to
something called the MSW effect --- named after Mikheyev, Smirnov and
Wolfenstein. And there are two different ways for neutrinos to have
mass, depending on whether they are Dirac spinors or Majorana spinors
(see \protect\hyperlink{week93}{``Week 93''}).

But I don't want to get caught up in theoretical nuances here! I want to
talk about experiments, and I haven't even gotten to the new stuff yet
--- the stuff that's getting everybody \emph{really} confused!

First of all, there's now some laboratory evidence for neutrino
oscillations coming from the Liquid Scintillator Neutrino Detector at
Los Alamos. What these folks do is let positively charged pions decay
into antimuons and muon neutrinos. Then they check to see if any muon
neutrinos become electron neutrinos. They claim that they do! They also
claim to see evidence of muon antineutrinos becoming electron
antineutrinos.

Secondly, and more intriguing still, there are a bunch of experiments
involving atmospheric neutrinos: Super-Kamiokande, Soudan 2, IMB, and
MACRO. You see, when cosmic rays smack into the upper atmosphere, they
produce all sorts of particles, including electron and muon neutrinos
and their corresponding antineutrinos. Cosmic ray experts think they
know how many of each sort of neutrino should be produced. But the
experimenters down on the ground are seeing different numbers!

Again, this could be due to neutrino oscillations. But what's REALLY
cool is that the numbers seem to depend on where the neutrinos are
coming from: from the sky right above the detector, from right below the
detector --- in which case they must have come all the way through the
earth --- or whatever. Neutrinos coming from different directions take
different amounts of time to get from the upper atmosphere to the
detector. Thus an obvious explanation for the experimental results is
that we're actually seeing the oscillation process AS IT TAKES PLACE.

If this is true, we can try to get detailed information about the
neutrino mass matrix from the numbers these experiments are measuring!

And this is exactly what people have been doing. But they're finding
something very strange. If all the experiments are right, and nobody is
making any mistakes, it seems that NO choice of neutrino mass matrix
really fits all the data! To fit all the data, folks need to do
something drastic --- like posit a 4th kind of neutrino!

Now, it's no light matter to posit another neutrino. The known neutrinos
couple to the weak force in almost identical ways. This allows one to
create equal amounts of neutrino-antineutrino pairs of all 3 flavors by
letting Z bosons decay --- the Z being the neutral carrier of the weak
force. When a Z boson seemingly decays into ``nothing'', we can safely
bet that it has decayed into a neutrino- antineutrino pair. In 1989, an
elegant and famous experiment at CERN showed that Z bosons decay into
``nothing'' at exactly the rate one would expect if there were 3 flavors
of neutrino. Thus there can only be extra flavors of neutrino if they
are very massive, if they couple very differently to the weak force, or
if some other funny business is going on.

Now, electron or muon neutrinos are unlikely to oscillate into a
\emph{very massive} sort of neutrino --- basically because of energy
conservation. So if we want an extra neutrino to explain the
experimental results we find ourselves stuck with, it'll have to be one
that couples to the weak force very differently from the ones we know. A
simple, but drastic, possibility is that it not interact via the weak
force at all! Folks call this a ``sterile'' neutrino.

Now, sterile neutrinos would blow a big hole in the Standard Model, much
more so than plain old \emph{massive} neutrinos. So things are getting
very interesting.

Wilczek recently wrote a nice easy-to-read paper describing arguments
that \emph{massive} neutrinos fit in quite nicely with the possibility
that the Standard Model is just part of a bigger, better theory --- a
``Grand Unified Theory''. I sketched the basic ideas of the
\(\mathrm{SU}(5)\) and \(\mathrm{SO}(10)\) grand unified theories in
\protect\hyperlink{week119}{``Week 119''}. Recall that in the
\(\mathrm{SU}(5)\) theory, the left-handed parts of all fermions of a
given generation fit into two irreducible representations of
\(\mathrm{SU}(5)\) --- a 5-dimensional rep and a \(10\)-dimensional rep.
For example, for the first generation, the \(5\)-dimensional rep
consists of the left-handed down antiquark (which comes in 3 colors),
the left-handed electron, and the left-handed electron neutrino. The
\(10\)-dimensional rep consists of the left-handed up quark, down quark,
and up antiquark (which come in 3 colors each), together with the
left-handed positron.

In the \(\mathrm{SO}(10)\) theory, all these particles AND ONE MORE fit
into a single 16-dimensional irreducible representation of
\(\mathrm{SO}(10)\). What could this extra particle be?

Well, since this extra particle transforms trivially under
\(\mathrm{SU}(5)\), it must not feel the electromagnetic, weak or strong
force! Thus it's tempting to take this missing particle to be the
left-handed electron antineutrino. Of course, we don't see such a
particle --- we only see antineutrinos that spin clockwise. But if
neutrinos are massive Dirac spinors there must be such a particle, and
having it not feel the electromagnetic, weak or strong force would
nicely explain \emph{why} we don't see it.

Grotz and Klapdor consider this possibility in their book on the weak
interaction (see below), but unfortunately, it seems this theory would
make the electron neutrino have a mass of about 5 MeV --- much too big!
Sigh. So Wilczek, following the conventional wisdom, assumes the missing
particle is very massive --- he calls it the ``N''. And he summarizes
some arguments that this massive particle could help give the neutrinos
very small masses, via something called the ``seesaw mechanism''.
Unfortunately I don't have the energy to describe this now, so for more
you should look at his paper (referred to below).

To wrap up, let me just say one final thing about the cosmic
significance of the neutrino. Massive neutrinos could account for some
of the ``missing mass'' that cosmologists are worrying about. So there's
an indirect connection between the neutrino mass and the cosmological
constant! The cosmological constant is essentially the energy density of
the vacuum. It was long assumed to be zero, but now there are some
glimmerings of evidence that it's not. In fact, some people are quite
convinced that it's not. The fate of the universe hangs in the
balance\ldots.

Unfortunately I am too tired now to say much more about this. So let me
just give you a nice easy starting-point:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Special Report: Revolution in Cosmology}, Scientific American,
  January 1999. Includes the articles ``Surveying space-time with
  supernovae'' by Craig J. Horgan, Robert P. Kirschner and Nicholoas B.
  Suntzeff, ``Cosmological antigravity'' by Lawrence M. Krauss, and
  ``Inflation in a low-density universe'' by Martin A. Bucher and David
  N. Spergel.
\end{enumerate}

How can you learn more about neutrinos? It can't hurt to start here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Nikolas Solomey, \emph{The Elusive Neutrino}, Scientific American
  Library, 1997.
\end{enumerate}

If you want to dig in deeper, you need to learn about the weak force,
since we've only seen neutrinos via their weak interaction with other
particles. The following book is a great place to start:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  K. Grotz and H. V. Klapdor, \emph{The Weak Interaction in Nuclear,
  Particle and Astrophysics}, Adam Hilger, Bristol, 1990.
\end{enumerate}

Then you'll be ready for this book, which examines every aspect of
neutrinos in detail --- complete with copies of historical papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Klaus Winter, ed., \emph{Neutrino Physics}, Cambridge U. Press,
  Cambridge, 1991.
\end{enumerate}

And then, if you want to study the possibility of \emph{massive}
neutrinos, you should try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Felix Boehm and Petr Vogel, \emph{Physics of Massive Neutrinos},
  Cambridge U. Press, Cambridge, 1987.
\end{enumerate}

But neutrino physics is moving fast, and lots of the new stuff hasn't
made its way into books yet, so you should also look at other stuff. For
links to lots of great neutrino websites, including websites for most of
the experiments I mentioned, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  ``The neutrino oscillation industry'',
  \texttt{http://www.hep.anl.gov/NDK/hypertext/nu\_industry.html}
\end{enumerate}

For some recent general overviews, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Paul Langacker, ``Implications of neutrino mass'',
  \texttt{http://dept.physics.upenn.edu/neutrino/jhu/jhu.html}
\item
  Boris Kayser, ``Neutrino mass: where do we stand, and where are we
  going?'', preprint available as
  \href{https://arxiv.org/abs/hep-ph/9810513}{\texttt{hep-ph/9810513}}.
\end{enumerate}

For information on various experiments, try these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  GALLEX collaboration, ``GALLEX solar neutrino observations: complete
  results for GALLEX II'', \emph{Phys. Lett.} B357 (1995), 237--247.

  ``Final results of the CR-51 neutrino source experiments in GALLEX'',
  \emph{Phys. Lett.} \textbf{B420} (1998), 114--126.

  ``GALLEX solar neutrino observations: results for GALLEX IV'',
  \emph{Phys. Lett.} \textbf{B447} (1999), 127--133.
\item
  SAGE collaboration, ``Results from SAGE'', \emph{Phys. Lett.}
  \textbf{B328} (1994), 234--248.

  ``The Russian-American gallium experiment (SAGE) CR neutrino source
  measurement'', \emph{Phys. Rev.~Lett.} \textbf{77} (1996), 4708--4711.
\item
  LSND collaboration, ``Evidence for neutrino oscillations from muon
  decay at rest'', \emph{Phys. Rev.} \textbf{C54} (1996) 2685--2708,
  preprint available as
  \href{https://arxiv.org/abs/nucl-ex/9605001}{\texttt{nucl-ex/9605001}}.

  ``Evidence for anti-muon-neutrino \(\to\) anti-electron-neutrino
  oscillations from the LSND experiment at LAMPF'', \emph{Phys.
  Rev.~Lett.} \textbf{77} (1996), 3082--3085, preprint available as
  \href{https://arxiv.org/abs/nucl-ex/9605003}{\texttt{nucl-ex/9605003}}.

  ``Evidence for muon-neutrino \(\to\) electron-neutrino oscillations
  from LSND'', \emph{Phys. Rev.~Lett.} \textbf{81} (1998), 1774--1777,
  preprint available as
  \href{https://arxiv.org/abs/nucl-ex/9709006}{\texttt{nucl-ex/9709006}}.

  ``Results on muon-neutrino \(\to\) electron-neutrino oscillations from
  pion decay in flight'', \emph{Phys. Rev.} \textbf{C58} (1998),
  2489--2511.
\item
  Super-Kamiokande collaboration, ``Evidence for oscillation of
  atmospheric neutrinos'', \emph{Phys. Rev.~Lett.} \textbf{81} (1998),
  1562--1567, preprint available as
  \href{https://arxiv.org/abs/hep-ex/9807003}{\texttt{hep-ex/9807003}}.
\item
  MACRO collaboration, ``Measurement of the atmospheric neutrino-induced
  upgoing muon flux'', \emph{Phys. Lett.} \textbf{B434} (1998),
  451--457, preprint available as
  \href{https://arxiv.org/abs/hep-ex/9807005}{\texttt{hep-ex/9807005}}.
\item
  IMB collaboration, ``A search for muon-neutrino oscillations with the
  IMB detector'', \emph{Phys. Rev.~Lett.} \textbf{69} (1992),
  1010--1013.
\end{enumerate}

For a fairly model-independent attempt to figure out something about
neutrino masses from the latest crop of experiments, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  V. Barger, T. J. Weiler, and K. Whisnant, ``Inferred 4.4 eV upper
  limits on the muon- and tau-neutrino masses'', preprint available as
  \href{https://arxiv.org/abs/hep-ph/9808367}{\texttt{hep-ph/9808367}}.
\end{enumerate}

For a nice summary of the data, and an argument that it's evidence for
the existence of a sterile neutrino, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  David O. Caldwell, ``The status of neutrino mass'', preprint available
  as
  \href{https://arxiv.org/abs/hep-ph/9804367}{\texttt{hep-ph/9804367}}.
\end{enumerate}

For a very readable argument that massive neutrinos are evidence for a
supersymmetric \(\mathrm{SO}(10)\) grand unified theory, see

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Frank Wilczek, ``Beyond the Standard Model: this time for real'',
  preprint available as
  \href{https://arxiv.org/abs/hep-ph/9809509}{\texttt{hep-ph/9809509}}.
\end{enumerate}

Finally, with all these cracks developing in the Standard Model, it's
nice to think again about the rise of the Standard Model. The following
book is packed with the reminiscences of many theorists and
experimentalists involved in developing this wonderful theory of
particles and forces, including Bjorken, 't Hooft, Veltman, Susskind,
Polyakov, Richter, Iliopoulos, Gell-Mann, Weinberg, Lederman, Goldhaber,
Cronin, and Kobayashi:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Lilian Hoddeson, Laurie Brown, Michael Riordan and Max Dresden, eds.,
  \emph{The Rise of the Standard Model: Particle Physics in the 1960s
  and 1970s}.
\end{enumerate}

It's a must for anyone with an interest in the history of physics!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

By the way, here's a cool picture of the sun, taken using neutrinos
rather than light:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  LSU Super-Kamiokande group homepage,
  \texttt{http://beavis.phys.lsu.edu/\textasciitilde{}superk/}
\end{enumerate}

Thanks go to Jim Carr for pointing this out.
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I've been thinking more about neutrinos and their significance for grand
unified theories. The term ``grand unified theory'' sounds rather
pompous, but in its technical meaning it refers to something with
limited goals: a quantum field theory that attempts to unify all the
forces \emph{except} gravity. This limitation lets you pretend spacetime
is flat.

The heyday of grand unified theories began in the mid-1970s, shortly
after the triumph of the Standard Model. As you probably know, the
Standard Model is a quantum field theory describing all known particles
and all the known forces except gravity: the electromagnetic, weak and
strong forces. The Standard Model treats the electromagnetic and weak
forces in a unified way --- so one speaks of the ``electroweak'' force
--- but it treats the strong force seperately.

In 1975, Georgi and Glashow invented a theory which fit all the known
particles of each generation into two irreducible representations of
\(\mathrm{SU}(5)\). Their theory had some very nice features: for
example, it unified the strong force with the electroweak force, and it
explained why quark charges come in multiples of \(1/3\). It also made
some new predictions, most notably that protons decay with a halflife of
something like \(10^{29}\) or \(10^{30}\) years. Of course, it's
slightly inelegant that one needs \emph{two} irreducible representations
of \(\mathrm{SU}(5)\) to account for all the particles of each
generation. Luckily \(\mathrm{SU}(5)\) fits inside \(\mathrm{SO}(10)\)
in a nice way, and Georgi used this to concoct a slightly bigger theory
where all 15 particles of each generation, AND ONE MORE, fit into a
single irreducible representation of \(\mathrm{SO}(10)\). I described
the mathematics of all this in \protect\hyperlink{week119}{``Week
119''}, so I won't do so again here.

What's the extra particle? Well, when you look at the math, one obvious
possibility is a right-handed neutrino. As I explained last week, the
existence of a right-handed neutrino would make it easier for neutrinos
to have mass. And this in turn would allow ``oscillations'' between
neutrinos of different generations --- possibly explaining the
mysterious shortage of electron neutrinos that we see coming from the
sun.

This ``solar neutrino deficit'' had already been seen by 1975, so
everyone got very excited about grand unified theories. The order of the
day was: look for neutrino oscillations and proton decay!

A nice illustration of the mood of the time can be found in a talk
Glashow gave in 1980:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Sheldon Lee Glashow, ``The new frontier'', in \emph{First Workshop on
  Grand Unification}, eds.~Paul H. Frampton, Sheldon L. Glashow and Asim
  Yildiz, Math Sci Press, Brookline Massachusetts, 1980, pp.~3--8.
\end{enumerate}

I'd like to quote some of his remarks because it's interesting to
reflect on what has happened in the intervening two decades:

\begin{quote}
Pions, muons, positrons, neutrons and strange particles were found
without the use of accelerators. More recently, most developments in
elementary particle physics depended upon these expensive artificial
aids. Science changes quickly. A time may come when accelerators no
longer dominate our field: not yet, but perhaps sooner than some may
think.

Important discoveries await the next generation of accelerators. QCD and
the electroweak theory need further confirmation. We need know how b
quarks decay. The weak interaction intermediaries must be seen to be
believed. The top quark (or perversions needed by topless theories)
lurks just out of range. Higgs may wait to be found. There could well be
a fourth family of quarks and leptons. There may even be unanticipated
surprises. We need the new machines.
\end{quote}

Of course we now know how the b (or ``bottom'') quark decays, we've seen
the t (or ``top'') quark, we've seen the weak interaction
intermediaries, and we're quite sure there is not a fourth generation of
quarks and leptons. There have been no unanticipated surprises.
Accelerators grew ever more expensive until the U.S. Congress withdrew
funding for the Superconducting Supercollider in 1993. The Higgs is
still waiting to be found or proved nonexistent. Experiments at CERN
should settle that issue by 2003 or so.

\begin{quote}
On the other hand, we have for the first time an apparently correct
\emph{theory} of elementary particle physics. It may be, in a sense,
phenomenologically complete. It suggests the possibility that there are
no more surprises at higher energies, at least for energies that are
remotely accessible. Indeed, PETRA and ISR have produced no surprises.
The same may be true for PEP, ISABELLE, and the TEVATRON. Theorists do
expect novel higher-energy phenomena, but only at absurdly inacessible
energies. Proton decay, if it is found, will reinforce the belief in the
great desert extending from \(100\) GeV to the unification mass of
\(10^{14}\) GeV. Perhaps the desert is a blessing in disguise. Ever
larger and more costly machines conflict with dwindling finances and
energy reserves. All frontiers come to an end.

You may like this scenario or not; it may be true or false. But, it is
neither impossible, implausible, or unlikely. And, do not despair nor
prematurely lament the death of particle physics. We have a ways to go
to reach the desert, with exotic fauna along the way, and even the
desolation of a desert can be interesting. The end of the high-energy
frontier in no ways implies the end of particle physics. There are many
ways to skin a cat. In this talk I will indicate several exciting lines
of research that are well away from the high-energy frontier. Important
results, perhaps even extraordinary surprises, await us. But, there is
danger on the way.

The passive frontier of which I shall speak has suffered years of benign
neglect. It needs money and manpower, and it must compete for this with
the accelerator establishment. There is no labor union of physicists who
work at accelerators, but sometimes it seems there is. It has been
argued that plans for accelerator construction must depend on the
``needs'' of the working force: several thousands of dedicated
high-energy experimenters. This is nonsense. Future accelerators must be
built in accordance with scientific, not demographic, prioriries. The
new machines are not labor-intensive, must not be forced to be so. Not
all high energy physicsts can be accomodated at the new machines. The
high-energy physicist has no guaranteed right to work at an accelerator,
he has not that kind of job security. He must respond to the challenge
of the passive frontier .
\end{quote}

Of course, the collapse of the high-energy physics job market and the
death of the Superconducting Supercollider give these words a certain
poignancy. But what is this ``passive frontier'' Glashow mentions? It
means particle physics that doesn't depend on very high energy particle
accelerators. He lists a number of options:

\begin{enumerate}
\def\labelenumi{\Alph{enumi})}
\item
  CP phenomenology. The Standard Model is not symmetrical under
  switching particles and their antiparticles --- called ``charge
  conjugation'', or ``C''. Nor is it symmetrical under switching left
  and right --- called ``parity'', or ``P''. It's almost, but not quite,
  symmetrical under the combination of both operations, called ``CP''.
  Violation of CP symmetry is evident in the behavior of the neutral
  kaon. Glashow suggests looking for CP violation in the form of a
  nonzero magnetic dipole moment for the neutron. As far as I know, this
  has still not been seen.
\item
  New kinds of stable matter. Glashow proposes the search for new stable
  particles as ``an ambitious and risky field of scientific endeavor''.
  People have looked and haven't found anything.
\item
  Neutrino masses and neutrino oscilllations. Glashow claims that
  ``neutrinos should have masses, and should mix''. He now appears to be
  right. It took almost 20 years for the trickle of experimental results
  to become the lively stream we see today, but it happened. He urges
  ``Let us not miss the next nearby supernova!'' Luckily we did not.
\item
  Astrophysical neutrino physics. In addition to solar neutrinos and
  neutrinos from supernovae, there are other interesting connections
  between neutrinos and astrophysics. The background radiation from the
  big bang should contain neutrinos as well as the easier-to-see
  photons. More precisely, there should be about 100 neutrinos of each
  generation per cubic centimeter of space, thanks to this effect. These
  ``relic neutrinos'' have not been seen, but that's okay: by now they
  would be too low in energy to be easily detected. Glashow notes that
  if neutrinos had a nonzero mass, relic neutrinos could contribute
  substantially to the total density of the universe. The heaviest
  generation weighing 30 eV or so might be enough to make the universe
  eventually recollapse! On the other hand, for neutrinos to be
  gravitationally bound to galaxies, they'd need to be at least 20 eV or
  so.
\item
  Magnetic monopoles. Most grand unified theories predict the existence
  of magnetic monopoles due to ``topological defects'' in the Higgs
  fields. Glashow urges people to look for these. This has been done,
  and they haven't been seen.
\item
  Proton decay. As Glashow notes, proton decay would be the ``king of
  the new frontier''. Reflecting the optimism of 1980, he notes that
  ``to some, it is a foregone conclusion that proton decay is about to
  be seen by experiments now abuilding''. But alas, people looked very
  hard and did not find it! This killed the \(\mathrm{SU}(5)\) theory.
  Many people switched to supersymmetric theories, which are more
  compatible with very slow proton decay. But with the continuing lack
  of new experiments to explain, enthusiasm for grand unified theories
  gradually evaporated, and theoretical particle physics took refuge in
  the elegant abstractions of string theory.
\end{enumerate}

But now, 20 years later, interest in grand unified theories seems to be
coming back. We have a rich body of mysterious experimental results
about neutrino oscillations. Somebody should explain them!

On a slightly different note, one of my little side hobbies is to study
the octonions and dream about how they might be useful in physics. One
place they show up is in the \(\mathrm{E}_6\) grand unified theory ---
the next theory up from the \(\mathrm{SO}(10)\) theory. I said a bit
about this in \protect\hyperlink{week119}{``Week 119''}, but I just
bumped into another paper on it in the same conference proceedings that
Glashow's paper appears is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Feza Gursey, ``Symmetry breaking patterns in \(\mathrm{E}_6\)'', in
  \emph{First Workshop on Grand Unification}, eds.~Paul H. Frampton,
  Sheldon L. Glashow and Asim Yildiz, Math Sci Press, Brookline
  Massachusetts, 1980, pp.~39--55.
\end{enumerate}

He says something interesting that I want to understand someday ---
maybe someone can explain why it's true. He says that \(\mathrm{E}_6\)
is a ``complex'' group, \(\mathrm{E}_7\) is a ``pseudoreal'' group, and
\(\mathrm{E}_8\) is a ``real'' group. This use of terminology may be
nonstandard, but what he means is that \(\mathrm{E}_6\) admits complex
representations that are not their own conjugates, \(\mathrm{E}_7\)
admits complex reps that are their own conjugates, and that all complex
reps of \(\mathrm{E}_8\) are complexifications of real ones (and hence
their own conjugates). This should have something to do with the
symmetry of the Dynkin diagram of \(\mathrm{E}_6\).

Octonions are also prominent in string theory and in the grand unified
theories proposed by my friends Geoffrey Dixon and Tony Smith --- see
\protect\hyperlink{week59}{``Week 59''},
\protect\hyperlink{week91}{``Week 91''}, and
\protect\hyperlink{week104}{``Week 104''}. I'll probably say more about
this someday\ldots.

The reason I'm interested in neutrinos is that I want to learn what
evidence there is for laws of physics going beyond the Standard Model
and general relativity. This is also why I'm trying to learn a bit of
astrophysics. The new hints of evidence for a nonzero cosmological
constant, the missing mass problem, the large-scale structure of the
universe, and even the puzzling \(\gamma\)-ray bursters --- they're all
food for thought along these lines.

The following book caught my eye since it looked like just what I need
--- an easy tutorial in the latest developments in cosmology:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Greg Bothun, \emph{Modern Cosmological Observations and Problems},
  Taylor \& Francis, London, 1998.
\end{enumerate}

On reading it, some of the remarks about particle physics made me
unhappy. For example, Bothun says ``the observed entropy \(S\) of the
universe, as measured by the ratio of baryons to photons, is
\(\sim5\times10^{-10}\).'' But as Ted Bunn explained to me, the entropy
is actually correlated to the ratio of photons to baryons --- the
reciprocal of this number. Bothun also calls the kinetic energy density
of the field postulated in inflationary cosmology, ``essentially an
entropy field that currently drives the uniform expansion and cooling of
the universe''. This makes no sense to me. There are also a large number
of typos, the most embarrassing being ``virilizing'' for
``virializing''.

But there's a lot of good stuff in this book! The author's specialty is
large-scale structure, and I learned a lot about that. Just to set the
stage, recall that the Milky Way has a disc about 30 kiloparsecs in
diameter and contains roughly 100 or 200 billion stars. But our galaxy
is one of a cluster of about 20 galaxies, called the Local Group. In
addition to our galaxy and the Large and Small Magellanic Clouds which
orbit it, this contains the Andromeda Galaxy (also known as M31),
another spiral galaxy called M33, and a bunch of dwarf irregular
galaxies. The Local Group is about a megaparsec in radius.

This is typical. Galaxies often lie in clusters which are a few
megaparsecs in radius, containing from a handful to hundreds of big
galaxies. Some famous nearby clusters include the Virgo cluster (about
20 megaparsecs away) and the Coma cluster (about 120 megaparsecs away).
Thousands of clusters have been cataloged by Abell and collaborators.

And then there are superclusters, each typically containing 3--10
clusters in an elongated ``filament'' about 50 megaparsecs in diameter.
I don't mean to make this sound more neat than it actually is, because
nobody is very sure about intergalactic distances, and the structures
themselves are rather messy. But there are various discernible patterns.
For example, superclusters tend to occur at the edges of larger roundish
``voids'' which have few galaxies in them. These voids are very large,
about 100 or 200 megaparsecs across. In general, galaxies tend to be
falling into denser regions and moving away from the voids. For example,
the Milky Way is falling towards the center of the Local Supercluster at
about 300 kilometers per second, and the Local Supercluster is also
falling towards the next nearest one --- the Hydra-Centaurus
Supercluster --- at about 300 kilometers per second.

Now, if the big bang theory is right, all this stuff was once very
small, and the universe was much more homogeneous. Obviously gravity
tends to amplify inhomogeneities. The problem is to understand in a
quantitative way how these inhomogeneities formed as the universe grew.

Here are a couple of other books that I'm finding useful --- they're a
bit more mathematical than Bothun's. I'm trying to stick to new books
because this subject is evolving so rapidly:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Jayant V. Narlikar, \emph{Introduction to Cosmology}, Cambridge U.
  Press, Cambridge, 1993.
\item
  Peter Coles and Francesco Lucchin, \emph{Cosmology: The Origin and
  Evolution of Cosmic Structure}, Wiley, New York, 1995.
\end{enumerate}

While I was looking around, I also bumped into the following book on
black holes:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Sandip K. Chakrabarti, ed., ``Observational Evidence for Black Holes
  in the Universe'', Kluwer, Dordrecht, 1998.
\end{enumerate}

It mentioned some objects I'd never heard of before. I want to tell you
about them, just because they're so cool!

\begin{itemize}
\item
  \emph{X-ray novae}: First, what's a nova? Well, remember that a white
  dwarf is a small, dense, mostly burnt-out star. When one member of a
  binary star is a white dwarf, and the other dumps some of its gas on
  this white dwarf, the gas can undergo fusion and emit a huge burst of
  energy --- as much as 10,000 times what the sun emits in a year. To
  astronomers it may look like a new star is suddenly born --- hence the
  term ``nova''. But not all novae emit mostly visible light --- some
  emit X-rays or even \(\gamma\)-rays. A ``X-ray nova'' is an X-ray
  source that suddenly appears in a few days and then gradually fades
  away in a year or less. Many of these are probably neutron stars
  rather than white dwarfs. But a bunch are probably black holes!
\item
  \emph{Blazars}: A ``blazar'' is a galactic nucleus that's shooting out
  a jet of hot plasma almost directly towards us, exhibiting rapid
  variations in power. Like quasars and other active galactic nuclei,
  these are probably black holes sucking in stars and other stuff and
  forming big accretion disks that shoot out jets of plasma from both
  poles.
\item
  \emph{Mega masers}: A laser is a source of coherent light caused by
  stimulated emission --- a very quantum-mechanical gadget. A maser is
  the same sort of thing but with microwaves. In fact, masers were
  invented before lasers --- they are easier to make because the
  wavelength is longer. In galaxies, clouds of water vapor, hydroxyl,
  silicon monoxide, methanol and other molecules can form enormous
  natural masers. In our galaxy the most powerful such maser is W49N,
  which has a power equal to that of the Sun. But recently, still more
  powerful masers have been bound in other galaxies, usually associated
  with active galactic nuclei. These are called ``mega masers'' and they
  are probably powered by black holes. The first mega maser was
  discovered in 1982; it is a hydroxyl ion maser in the galaxy IC4553,
  with a luminosity about 1000 times that of our sun. Subsequently
  people have found a bunch of water mega masers. The most powerful so
  far is in TXFS2226-184 --- it has a luminosity of about 6100 times
  that of the Sun!
\end{itemize}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} Here is something from Allen Knutson in response to
my remark that \(\mathrm{E}_6\) has complex representations that aren't
their own conjugates. I hoped that this is related to the symmetry of
the Dynkin diagram of \(\mathrm{E}_6\), and Allen replied:

\begin{quote}
It does. The automorphism \(G\to G\) that exchanges representations with
their duals, the Cartan involution, may or may not be an inner
automorphism. The group of outer automorphisms of \(G\) (\(G\) simple)
is iso to the diagram automorphism group. So no diagram auts, means the
Cartan involution is inner, means all reps are iso to their duals,
i.e.~possess invariant bilinear forms.
\end{quote}

\begin{quote}
(Unfortunately it's not iff --- the \(D_n\)'s alternate between whether
the Cartan involution is inner, much as their centers alternate between
\(\mathbb{Z}_4\) and \(\mathbb{Z}_2^2\).)
\end{quote}

\begin{quote}
Any rep either has complex trace sometimes, or a real, or a quaternionic
structure, morally because of Artin-Wedderburn applied to the real group
algebra of \(G\). Given a rep one can find out which by looking at the
integral over \(G\) of \(\operatorname{Tr}(g^2)\), which comes out
\(0\), \(1\), or \(-1\) (respectively). This is the ``Schur indicator''
and can be found in Serre's LinReps of Finite Groups.

Allen K.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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Today I want to talk about \(n\)-categories and quantum gravity again.
For starters let me quote from a paper of mine about this stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez, ``Higher-dimensional algebra and Planck-scale physics'', to
  appear in \emph{Physics Meets Philosophy at the Planck Scale},
  eds.~Craig Callender and Nick Huggett, Cambridge U. Press. Preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9902017}{\texttt{gr-qc/9902017}}.
\end{enumerate}

By the way, this book should be pretty fun to read --- it'll contain
papers by both philosophers and physicists, including a bunch who have
already graced the pages of This Week's Finds, like Barbour, Isham,
Rovelli, Unruh, and Witten. I'll say more about it when it comes out.

Okay, here are some snippets from this paper. It starts out talking
about the meaning of the Planck length, why it may be important in
quantum gravity, and what a theory of quantum gravity should be like:

\begin{quote}
Two constants appear throughout general relativity: the speed of light
\(c\) and Newton's gravitational constant \(G\). This should be no
surprise, since Einstein created general relativity to reconcile the
success of Newton's theory of gravity, based on instantaneous action at
a distance, with his new theory of special relativity, in which no
influence travels faster than light. The constant \(c\) also appears in
quantum field theory, but paired with a different partner: Planck's
constant \(\hbar\). The reason is that quantum field theory takes into
account special relativity and quantum theory, in which \(\hbar\) sets
the scale at which the uncertainty principle becomes important.

It is reasonable to suspect that any theory reconciling general
relativity and quantum theory will involve all three constants \(c\),
\(G\), and \(\hbar\). Planck noted that apart from numerical factors
there is a unique way to use these constants to define units of length,
time, and mass. For example, we can define the unit of length now called
the `Planck length' as follows: \[L = \sqrt{\frac{\hbar G}{c^3}}\] This
is extremely small: about \(1.6\times 10^{-35}\) meters. Physicists have
long suspected that quantum gravity will become important for
understanding physics at about this scale. The reason is very simple:
any calculation that predicts a length using only the constants \(c\),
\(G\) and \(\hbar\) must give the Planck length, possibly multiplied by
an unimportant numerical factor like \(2\pi\).

For example, quantum field theory says that associated to any mass \(m\)
there is a length called its Compton wavelength, \(L_C\), such that
determining the position of a particle of mass \(m\) to within one
Compton wavelength requires enough energy to create another particle of
that mass. Particle creation is a quintessentially
quantum-field-theoretic phenomenon. Thus we may say that the Compton
wavelength sets the distance scale at which quantum field theory becomes
crucial for understanding the behavior of a particle of a given mass. On
the other hand, general relativity says that associated to any mass
\(m\) there is a length called the Schwarzschild radius, \(L_S\), such
that compressing an object of mass \(m\) to a size smaller than this
results in the formation of a black hole. The Schwarzschild radius is
roughly the distance scale at which general relativity becomes crucial
for understanding the behavior of an object of a given mass. Now,
ignoring some numerical factors, we have \[L_C = \frac{\hbar}{mc}\] and
\[L_S = \frac{Gm}{c^2}.\] These two lengths become equal when \(m\) is
the Planck mass. And when this happens, they both equal the Planck
length!

At least naively, we thus expect that both general relativity and
quantum field theory would be needed to understand the behavior of an
object whose mass is about the Planck mass and whose radius is about the
Planck length. This not only explains some of the importance of the
Planck scale, but also some of the difficulties in obtaining
experimental evidence about physics at this scale. Most of our
information about general relativity comes from observing heavy objects
like planets and stars, for which \(L_S\gg L_C\). Most of our
information about quantum field theory comes from observing light
objects like electrons and protons, for which \(L_C\gg L_S\). The Planck
mass is intermediate between these: about the mass of a largish cell.
But the Planck length is about \(10^{-20}\) times the radius of a
proton! To study a situation where both general relativity and quantum
field theory are important, we could try to compress a cell to a size
\(10^{-20}\) times that of a proton. We know no reason why this is
impossible in principle. But we have no idea how to actually accomplish
such a feat.

There are some well-known loopholes in the above argument. The
`unimportant numerical factor' I mentioned above might actually be very
large, or very small. A theory of quantum gravity might make testable
predictions of dimensionless quantities like the ratio of the muon and
electron masses. For that matter, a theory of quantum gravity might
involve physical constants other than \(c\), \(G\), and \(\hbar\). The
latter two alternatives are especially plausible if we study quantum
gravity as part of a larger theory describing other forces and
particles. However, even though we cannot prove that the Planck length
is significant for quantum gravity, I think we can glean some wisdom
from pondering the constants \(c\), \(G\), and \(\hbar\) --- and more
importantly, the physical insights that lead us to regard these
constants as important.

What is the importance of the constant \(c\)? In special relativity,
what matters is the appearance of this constant in the Minkowski metric
\[ds^2 = c^2 dt^2 - dx^2 - dy^2 - dz^2\] which defines the geometry of
spacetime, and in particular the lightcone through each point. Stepping
back from the specific formalism here, we can see several ideas at work.
First, space and time form a unified whole which can be thought of
geometrically. Second, the quantities whose values we seek to predict
are localized. That is, we can measure them in small regions of
spacetime (sometimes idealized as points). Physicists call such
quantities `local degrees of freedom'. And third, to predict the value
of a quantity that can be measured in some region \(R\), we only need to
use values of quantities measured in regions that stand in a certain
geometrical relation to \(R\). This relation is called the `causal
structure' of spacetime. For example, in a relativistic field theory, to
predict the value of the fields in some region \(R\), it suffices to use
their values in any other region that intersects every timelike path
passing through \(R\). The common way of summarizing this idea is to say
that nothing travels faster than light. I prefer to say that a good
theory of physics should have \emph{local degrees of freedom propagating
causally}.

In Newtonian gravity, \(G\) is simply the strength of the gravitational
field. It takes on a deeper significance in general relativity, where
the gravitational field is described in terms of the curvature of the
spacetime metric. Unlike in special relativity, where the Minkowski
metric is a `background structure' given a priori, in general relativity
the metric is treated as a field which not only affects, but also is
affected by, the other fields present. In other words, the geometry of
spacetime becomes a local degree of freedom of the theory.
Quantitatively, the interaction of the metric and other fields is
described by Einstein's equation \[G_{ab} = 8 \pi G T_{ab}\] where the
Einstein tensor \(G_{ab}\) depends on the curvature of the metric, while
the stress-energy tensor \(T_{ab}\) describes the flow of energy and
momentum due to all the other fields. The role of the constant \(G\) is
thus simply to quantify how much the geometry of spacetime is affected
by other fields. Over the years, people have realized that the great
lesson of general relativity is that a good theory of physics should
contain no geometrical structures that affect local degrees of freedom
while remaining unaffected by them. Instead, all geometrical structures
--- and in particular the causal structure --- should themselves be
local degrees of freedom. For short, one says that the theory should be
background-free.

The struggle to free ourselves from background structures began long
before Einstein developed general relativity, and is still not complete.
The conflict between Ptolemaic and Copernican cosmologies, the dispute
between Newton and Leibniz concerning absolute and relative motion, and
the modern arguments concerning the `problem of time' in quantum gravity
--- all are but chapters in the story of this struggle. I do not have
room to sketch this story here, nor even to make more precise the
all-important notion of `geometrical structure'. I can only point the
reader towards the literature, starting perhaps with the books by
Barbour and Earman, various papers by Rovelli, and the many references
therein.

Finally, what of \(\hbar\)? In quantum theory, this appears most
prominently in the commutation relation between the momentum \(p\) and
position \(q\) of a particle: \[pq - qp = -i \hbar,\] together with
similar commutation relations involving other pairs of measurable
quantities. Because our ability to measure two quantities simultaneously
with complete precision is limited by their failure to commute,
\(\hbar\) quantifies our inability to simultaneously know everything one
might choose to know about the world. But there is far more to quantum
theory than the uncertainty principle. In practice, \(\hbar\) comes
along with the whole formalism of complex Hilbert spaces and linear
operators.

There is a widespread sense that the principles behind quantum theory
are poorly understood compared to those of general relativity. This has
led to many discussions about interpretational issues. However, I do not
think that quantum theory will lose its mystery through such
discussions. I believe the real challenge is to better understand why
the mathematical formalism of quantum theory is precisely what it is.
Research in quantum logic has done a wonderful job of understanding the
field of candidates from which the particular formalism we use has been
chosen. But what is so special about this particular choice? Why, for
example, do we use complex Hilbert spaces rather than real or
quaternionic ones? Is this decision made solely to fit the experimental
data, or is there a deeper reason? Since questions like this do not yet
have clear answers, I shall summarize the physical insight behind
\(\hbar\) by saying simply that a good theory of the physical universe
should be a \emph{quantum theory} --- leaving open the possibility of
eventually saying something more illuminating.

Having attempted to extract the ideas lying behind the constants \(c\),
\(G\), and \(\hbar\), we are in a better position to understand the task
of constructing a theory of quantum gravity. General relativity
acknowledges the importance of \(c\) and \(G\) but idealizes reality by
treating \(\hbar\) as negligibly small. From our discussion above, we
see that this is because general relativity is a background-free
classical theory with local degrees of freedom propagating causally. On
the other hand, quantum field theory as normally practiced acknowledges
\(c\) and \(\hbar\) but treats \(G\) as negligible, because it is a
background-dependent quantum theory with local degrees of freedom
propagating causally.

The most conservative approach to quantum gravity is to seek a theory
that combines the best features of general relativity and quantum field
theory. To do this, we must try to find a \emph{background-free quantum
theory with local degrees of freedom propagating causally}. While this
approach may not succeed, it is definitely worth pursuing. Given the
lack of experimental evidence that would point us towards fundamentally
new principles, we should do our best to understand the full
implications of the principles we already have!

From my description of the goal one can perhaps see some of the
difficulties. Since quantum gravity should be background-free, the
geometrical structures defining the causal structure of spacetime should
themselves be local degrees of freedom propagating causally. This much
is already true in general relativity. But because quantum gravity
should be a quantum theory, these degrees of freedom should be treated
quantum-mechanically. So at the very least, we should develop a quantum
theory of some sort of geometrical structure that can define a causal
structure on spacetime.
\end{quote}

Then I talk about topological quantum field theories, which are
background-free quantum theories \emph{without} local degrees of
freedom, and what we have learned from them. Basically what we've
learned is that there's a deep analogy between the mathematics of
spacetime (e.g. differential topology) and the mathematics of quantum
theory. This is interesting because in background-free quantum theories
we expect that spacetime, instead of serving as a ``stage'' on which
events play out, actually becomes part of the play of events itself ---
and must itself be described using quantum theory. So it's very
interesting to try to connect the concepts of spacetime and quantum
theory. The analogy goes like this:

\begin{longtable}[]{@{}ll@{}}
\toprule
\begin{minipage}[b]{0.56\columnwidth}\raggedright
Differential topology\strut
\end{minipage} & \begin{minipage}[b]{0.38\columnwidth}\raggedright
Quantum theory\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.56\columnwidth}\raggedright
\((n-1)\)-dimensional manifold (space)\strut
\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright
Hilbert space (states)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.56\columnwidth}\raggedright
cobordism between \((n-1)\)-dimensional manifolds (spacetime)\strut
\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright
operator (process)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.56\columnwidth}\raggedright
composition of cobordisms\strut
\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright
composition of operators\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.56\columnwidth}\raggedright
identity cobordism\strut
\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright
identity operator\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

And if you know a little category theory, you'll see what we have here
are two categories: the category of cobordisms and the category of
Hilbert spaces. A topological quantum field theory is a functor from the
first to the second\ldots.

Okay, now for some other papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Geraldine Brady and Todd H. Trimble, ``A string diagram calculus for
  predicate logic'', and C. S. Peirce's system Beta, available at
  \texttt{http://people.cs.uchicago.edu/\textasciitilde{}brady}

  Geraldine Brady and Todd H. Trimble, ``A categorical interpretation of
  Peirce's propositional logic Alpha'', \emph{Jour. Pure and Appl. Alg.}
  \textbf{149} (2000), 213--239.

  Geraldine Brady and Todd H. Trimble, ``The topology of relational
  calculus''.
\end{enumerate}

Charles Peirce is a famously underappreciated American philosopher who
worked in the late 1800s. Among other things, like being the father of
pragmatism, he is also one of the fathers of higher-dimensional algebra.
As you surely know if you've read me often enough, part of the point of
higher-dimensional algebra is to break out of ``linear thinking''. By
``linear thinking'' I mean the tendency to do mathematics in ways that
are easily expressed in terms of \(1\)-dimensional strings of symbols.
In his work on logic, Peirce burst free into higher dimensions. He
developed a way of reasoning using diagrams that he called ``existential
graphs''. Unfortunately this work by Peirce was never published! One
reason is that existential graphs were difficult and expensive to print.
As a result, his ideas languished in obscurity.

By now it's clear that higher-dimensional algebra is useful in physics:
examples include Feynman diagrams and the spin networks of Penrose. The
theory of \(n\)-categories is beginning to provide a systematic language
for all these techniques. So it's worth re-evaluating Peirce's work and
seeing how it fits into the picture. And this is what the papers by
Brady and Trimble do!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  J. Scott Carter, Louis H. Kauffman, and Masahico Saito, ``Structures
  and diagrammatics of four dimensional topological lattice field
  theories'', to appear in \emph{Adv. Math.}, preprint available as
  \href{https://arxiv.org/abs/math.GT/9806023}{\texttt{math.GT/9806023}}.
\end{enumerate}

We can get \(3\)-dimensional topological quantum field theories from
certain Hopf algebras. As I described in
\protect\hyperlink{week38}{``Week 38''}, Crane and Frenkel made the
suggestion that by categorifying this construction we should get
\(4\)-dimensional TQFTs from certain Hopf categories. This paper makes
the suggestion precise in a certain class of examples! Basically these
are categorified versions of the Dijkgraaf-Witten theory.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  J. Scott Carter, Daniel Jelsovsky, Selichi Kamada, Laurel Langford and
  Masahico Saito, ``Quandle cohomology and state-sum invariants of
  knotted curves and surfaces'', preprint available as
  \href{https://arxiv.org/abs/math.GT/9903135}{\texttt{math.GT/9903135}}.
\end{enumerate}

Yet another attack on higher dimensions! This one gets invariants of
2-links --- surfaces embedded in \(\mathbb{R}^4\) --- from the
cohomology groups of ``quandles''. I don't really understand how this
fits into the overall scheme of higher-dimensional algebra yet. They
show their invariant distinguishes between the 2-twist spun trefoil (a
certain sphere knotted in R\^{}4) and the same sphere with the reversed
orientation.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Tom Leinster, ``Structures in higher-dimensional category theory'',
  preprint available at
  \texttt{http://www.dpmms.cam.ac.uk/\textasciitilde{}leinster}
\end{enumerate}

This is a nice tour of ideas in higher-dimensional algebra. Right now
one big problem with the subject is that there are lots of approaches
and not a clear enough picture of how they fit together. Leinster's
paper is an attempt to start seeing how things fit together.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Claudio Hermida, ``Higher-dimensional multicategories'', slides of a
  lecture given in 1997, available at
  \texttt{http://www.math.mcgill.ca/\textasciitilde{}hermida}
\end{enumerate}

This talk presents some of the work by Makkai, Power and Hermida on
their definition of \(n\)-categories. For more on their work see
\protect\hyperlink{week107}{``Week 107''}.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Carlos Simpson, ``On the Breen-Baez-Dolan stabilization hypothesis for
  Tamsamani's weak \(n\)-categories'', preprint available as
  \href{https://arxiv.org/abs/math.CT/9810058}{\texttt{math.CT/9810058}}.
\end{enumerate}

For quite a while now James Dolan and I have been talking about
something we call the ``stabilization hypothesis''. I gave an
explanation of this in \protect\hyperlink{week121}{``Week 121''}, but
briefly, it says that the \(n\)th column of the following chart (which
extends to infinity in both directions) stabilizes after \(2n+2\) rows:

\begin{longtable}[]{@{}llll@{}}
\caption{\(k\)-tuply monoidal \(n\)-categories}\tabularnewline
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endfirsthead
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=0\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
sets\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=1\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=2\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
commutative monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=3\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
symmetric monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
weakly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=4\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
strongly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=5\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

Carlos Simpson has now made this hypothesis precise and proved it using
Tamsamani's definition of \(n\)-categories! And he did it using the same
techniques that Graeme Segal used to study \(k\)-fold loop
spaces\ldots{} exploiting the relation between \(n\)-categories and
homotopy theory. This makes me really happy.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Mark Hovey, \emph{Model Categories}, American Mathematical Society
  Mathematical Surveys and Monographs, vol.~\textbf{63}, Providence,
  Rhode Island, 1999. Preprint available as
  \texttt{http://www.math.uiuc.edu/K-theory/0278/index.html}
\end{enumerate}

Speaking of that kind of thing, the technique of model categories is
really important for homotopy theory and \(n\)-categories, and this book
is a really great place to learn about it.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Frank Quinn, \emph{Group-categories}, preprint available as
  \href{https://arxiv.org/abs/math.GT/9811047}{\texttt{math.GT/9811047}}.
\end{enumerate}

This one is about the algebra behind certain topological quantum field
theories. I'll just quote the abstract:

\begin{quote}
A group-category is an additively semisimple category with a monoidal
product structure in which the simple objects are invertible. For
example in the category of representations of a group, \(1\)-dimensional
representations are the invertible simple objects. This paper gives a
detailed exploration of ``topological quantum field theories'' for
group-categories, in hopes of finding clues to a better understanding of
the general situation. Group-categories are classified in several ways
extending results of Frohlich and Kerler. Topological field theories
based on homology and cohomology are constructed, and these are shown to
include theories obtained from group-categories by Reshetikhin-Turaev
constructions. Braided-commutative categories most naturally give
theories on 4-manifold thickenings of 2-complexes; the usual 3-manifold
theories are obtained from these by normalizing them (using results of
Kirby) to depend mostly on the boundary of the thickening. This is
worked out for group-categories, and in particular we determine when the
normalization is possible and when it is not.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Sjoerd Crans, ``A tensor product for Gray-categories'', \emph{Theory
  and Applications of Categories}, Vol. \textbf{5}, 1999, No.~2, pp
  12--69, available at
  \texttt{http://www.tac.mta.ca/tac/volumes/1999/n2/abstract.html}
\end{enumerate}

A Gray-category is what some people call a semistrict \(3\)-category:
not as general as a weak \(3\)-category, but general enough.
Technically, Gray-categories are defined as categories enriched over the
category of \(2\)-categories equipped with a tensor product invented by
John Gray. To define semistrict \(4\)-categories one might similarly try
to equip Gray-categories with a suitable tensor product. And this is
what Crans is studying. Let me quote the abstract:

\begin{quote}
In this paper I extend Gray's tensor product of \(2\)-categories to a
new tensor product of Gray-categories. I give a description in terms of
generators and relations, one of the relations being an `'interchange''
relation, and a description similar to Gray's description of his tensor
product of \(2\)-categories. I show that this tensor product of
Gray-categories satisfies a universal property with respect to
quasi-functors of two variables, which are defined in terms of
lax-natural transformations between Gray-categories. The main result is
that this tensor product is part of a monoidal structure on Gray-Cat,
the proof requiring interchange in an essential way. However, this does
not give a monoidal \{(bi)closed\} structure, precisely because of
interchange And although I define composition of lax-natural
transformations, this composite need not be a lax-natural transformation
again, making Gray-Cat only a partial Gray-Cat-cateegory.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week133}{%
\section{April 23, 1999}\label{week133}}

I'd like to start with a long quote from a paper by Ashtekar:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Abhay Ashtekar, ``Quantum Mechanics of Geometry'', preprint available
  as \href{https://arxiv.org/abs/gr-qc/9901023}{\texttt{gr-qc/9901023}}.
\end{enumerate}

\begin{quote}
During his Goettingen inaugural address in 1854, Riemann suggested that
the geometry of space may be more than just a fiducial, mathematical
entity serving as a passive stage for physical phenomena, and may in
fact have direct physical meaning in its own right. General relativity
provided a brilliant confirmation of this vision: curvature of space now
encodes the physical gravitational field. This shift is profound. To
bring out the contrast, let me recall the situation in Newtonian
physics. There, space forms an inert arena on which the dynamics of
physical systems --- such as the solar system --- unfolds. It is like a
stage, an unchanging backdrop for all of physics. In general relativity,
by contrast, the situation is very different. Einstein's equations tell
us that matter curves space. Geometry is no longer immune to change. It
reacts to matter. It is dynamical. It has ``physical degrees of
freedom'' in its own right. In general relativity, the stage disappears
and joins the troupe of actors! Geometry is a physical entity, very much
like matter.

Now, the physics of this century has shown us that matter has
constituents and the \(3\)-dimensional objects we perceive as solids are
in fact made of atoms. The continuum description of matter is an
approximation which succeeds brilliantly in the macroscopic regime but
fails hopelessly at the atomic scale. It is therefore natural to ask: Is
the same true of geometry? If so, what is the analog of the `atomic
scale?' We know that a quantum theory of geometry should contain three
fundamental constants of Nature, \(c\), \(G\), \(\hbar\), the speed of
light, Newton's gravitational constant and Planck's constant. Now, as
Planck pointed out in his celebrated paper that marks the beginning of
quantum mechanics, there is a unique combination,
\[L = \sqrt{\frac{\hbar G}{c^3}},\] of these constants which has
dimension of length. (\(L \sim 10^{-33}\,\mathrm{cm}\).) It is now
called the Planck length. Experience has taught us that the presence of
a distinguished scale in a physical theory often marks a potential
transition; physics below the scale can be very different from that
above the scale. Now, all of our well-tested physics occurs at length
scales much bigger than \(L\). In this regime, the continuum picture
works well. A key question then is: Will it break down at the Planck
length? Does geometry have constituents at this scale? If so, what are
its atoms? Its elementary excitations? Is the space-time continuum only
a `coarse-grained' approximation? Is geometry quantized? If so, what is
the nature of its quanta?

To probe such issues, it is natural to look for hints in the procedures
that have been successful in describing matter. Let us begin by asking
what we mean by quantization of physical quantities. Take a simple
example --- the hydrogen atom. In this case, the answer is clear: while
the basic observables --- energy and angular momentum --- take on a
continuous range of values classically, in quantum mechanics their
eigenvalues are discrete; they are quantized. So, we can ask if the same
is true of geometry. Classical geometrical quantities such as lengths,
areas and volumes can take on continuous values on the phase space of
general relativity. Are the eigenvalues of corresponding quantum
operators discrete? If so, we would say that geometry is quantized and
the precise eigenvalues and eigenvectors of geometric operators would
reveal its detailed microscopic properties.

Thus, it is rather easy to pose the basic questions in a precise
fashion. Indeed, they could have been formulated soon after the advent
of quantum mechanics. Answering them, on the other hand, has proved to
be surprisingly difficult. The main reason, I believe, is the inadequacy
of standard techniques. More precisely, to examine the microscopic
structure of geometry, we must treat Einstein gravity quantum
mechanically, i.e., construct at least the basics of a quantum theory of
the gravitational field. Now, in the traditional approaches to quantum
field theory, one \emph{begins} with a continuum, background geometry.
To probe the nature of quantum geometry, on the other hand, we should
\emph{not} begin by assuming the validity of this picture. We must let
quantum gravity decide whether this picture is adequate; the theory
itself should lead us to the correct microscopic model of geometry.

With this general philosophy, in this article I will summarize the
picture of quantum geometry that has emerged from a specific approach to
quantum gravity. This approach is non-perturbative. In perturbative
approaches, one generally begins by assuming that space-time geometry is
flat and incorporates gravity --- and hence curvature --- step by step
by adding up small corrections. Discreteness is then hard to unravel.

{[}Footnote: The situation can be illustrated by a harmonic oscillator:
While the exact energy levels of the oscillator are discrete, it would
be very difficult to ``see'' this discreteness if one began with a free
particle whose energy levels are continuous and then tried to
incorporate the effects of the oscillator potential step by step via
perturbation theory.{]}

In the non-perturbative approach, by contrast, there is no background
metric at all. All we have is a bare manifold to start with. All fields
--- matter as well as gravity/geometry --- are treated as dynamical from
the beginning. Consequently, the description can not refer to a
background metric. Technically this means that the full diffeomorphism
group of the manifold is respected; the theory is generally covariant.

As we will see, this fact leads one to Hilbert spaces of quantum states
which are quite different from the familiar Fock spaces of particle
physics. Now gravitons --- the three dimensional wavy undulations on a
flat metric --- do not represent fundamental excitations. Rather, the
fundamental excitations are \emph{one} dimensional. Microscopically,
geometry is rather like a polymer. Recall that, although polymers are
intrinsically one dimensional, when densely packed in suitable
configurations they can exhibit properties of a three dimensional
system. Similarly, the familiar continuum picture of geometry arises as
an approximation: one can regard the fundamental excitations as `quantum
threads' with which one can `weave' continuum geometries. That is, the
continuum picture arises upon coarse-graining of the semi-classical
`weave states'. Gravitons are no longer the fundamental mediators of the
gravitational interaction. They now arise only as approximate notions.
They represent perturbations of weave states and mediate the
gravitational force only in the semi-classical approximation. Because
the non-perturbative states are polymer-like, geometrical observables
turn out to have discrete spectra. They provide a rather detailed
picture of quantum geometry from which physical predictions can be made.

The article is divided into two parts. In the first, I will indicate how
one can reformulate general relativity so that it resembles gauge
theories. This formulation provides the starting point for the quantum
theory. In particular, the one-dimensional excitations of geometry arise
as the analogs of ``Wilson loops'' which are themselves analogs of the
line integrals \(\exp(i\smallint A\cdot dl)\) of electromagnetism. In
the second part, I will indicate how this description leads us to a
quantum theory of geometry. I will focus on area operators and show how
the detailed information about the eigenvalues of these operators has
interesting physical consequences, e.g., to the process of Hawking
evaporation of black holes.
\end{quote}

I feel like quoting more, but I'll resist. It's a nice semi-technical
introduction to loop quantum gravity --- a very good place to start if
you know some math and physics but are just getting started on the
quantum gravity business.

Next, here are some papers by younger folks working on loop quantum
gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Fotini Markopoulou, ``The internal description of a causal set: What
  the universe looks like from the inside'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9811053}{\texttt{gr-qc/9811053}}.

  Fotini Markopoulou, ``Quantum causal histories'', preprint available
  as
  \href{https://arxiv.org/abs/hep-th/9904009}{\texttt{hep-th/9904009}}.
\end{enumerate}

Fotini Markopoulou is perhaps the first person to take the issue of
causality really seriously in loop quantum gravity. In her earlier work
with Lee Smolin (see \protect\hyperlink{week99}{``Week 99''} and
\protect\hyperlink{week114}{``Week 114''}) she proposed a way to equip
an evolving spin network (or what I'd call a spin foam) with a partial
order on its vertices, representing a causal structure. In these papers
she is further developing these ideas. The first one uses topos theory!
It's good to see brave young physicists who aren't scared of using a
little category theory here and there to make their ideas precise.
Personally I feel confused about causality in loop quantum gravity --- I
think we'll have to muck around and try different things before we find
out what works. But Markopoulou's work is the main reason I'm even
\emph{daring} to think about these issues\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Seth A. Major, ``Embedded graph invariants in Chern-Simons theory'',
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9810071}{\texttt{hep-th/9810071}}.
\end{enumerate}

In This Week's Finds I've already mentioned Seth Major has worked with
Lee Smolin on q-deformed spin networks in quantum gravity (see
\protect\hyperlink{week72}{``Week 72''}). There is a fair amount of
evidence, though as yet no firm proof, that \(q\)-deforming your spin
networks corresponds to introducing a nonzero cosmological constant. The
main technical problem with \(q\)-deformed spin networks is that they
require a ``framing'' of the underlying graph. Here Major tackles that
problem\ldots.

And now for something completely different, arising from a thread on
sci.physics.research started by Garrett Lisi. What's the gauge group of
the Standard Model? Everyone will tell you it's
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\), but as Marc
Bellon pointed out, this is perhaps not the most accurate answer. Let me
explain why and figure out a better answer.

Every particle in the Standard Model transforms according to some
representation of
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\), but some
elements of this group act trivially on all these representations. Thus
we can find a smaller group which can equally well be used as the gauge
group of the Standard Model: the quotient of
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\) by the
subgroup of elements that act trivially.

Let's figure out this subgroup! To do so we need to go through all the
particles and figure out which elements of
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\) act trivially
on all of them.

Start with the gauge bosons. In any gauge theory, the gauge bosons
transform in the adjoint representation, so the elements of the gauge
group that act trivially are precisely those in the \emph{center} of the
group. \(\mathrm{U}(1)\) is abelian so its center is all of
\(\mathrm{U}(1)\). Elements of \(\mathrm{SU}(n)\) that lie in the center
must be diagonal. The \(n\times n\) diagonal unitary matrices with
determinant \(1\) are all of the form \(\exp(2\pi i/n)\), and these form
a subgroup isomorphic to \(\mathbb{Z}/n\). It follows that the center of
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\) is
\(\mathrm{U}(1)\times\mathbb{Z}/2\times\mathbb{Z}/3\).

Next let's look at the other particles. If you forget how these work,
see \protect\hyperlink{week119}{``Week 119''}. For the fermions, it
suffices to look at those of the first generation, since the other two
generations transform exactly the same way. First of all, we have the
left-handed electron and neutrino: \[(\nu_L, \mathrm{e}_L)\] These form
a \(2\)-dimensional representation. This representation is the tensor
product of the irreducible rep of \(\mathrm{U}(1)\) with hypercharge
\(-1\), the isospin-\(1/2\) rep of \(\mathrm{SU}(2)\), and the trivial
rep of \(\mathrm{SU}(3)\).

A word about notation! People usually describe irreducible reps of
\(\mathrm{U}(1)\) by integers. For historical reasons, hypercharge comes
in integral multiples of \(1/3\). Thus to get the appropriate integer we
need to multiply the hypercharge by \(3\). Also, the group
\(\mathrm{SU}(2)\) here is associated, not to spin in the sense of
angular momentum, but to something called ``weak isospin''. That's why
we say ``isospin-\(1/2\) rep'' above. Mathematically, though, this is
just the usual spin-\(1/2\) representation of \(\mathrm{SU}(2)\).

Next we have the left-handed up and down quarks, which come in 3 colors
each:
\[(\mathrm{u}_L, \mathrm{u}_L, \mathrm{u}_L, \mathrm{d}_L, \mathrm{d}_L, \mathrm{d}_L)\]
This \(6\)-dimensional representation is the tensor product of the
irreducible rep of \(\mathrm{U}(1)\) with hypercharge \(1/3\), the
isospin-\(1/2\) rep of \(\mathrm{SU}(2)\), and the fundamental rep of
\(\mathrm{SU}(3)\).

That's all the left-handed fermions. Note that they all transform
transform according to the isospin-\(1/2\) rep of \(\mathrm{SU}(2)\) ---
we call them ``isospin doublets''. The right-handed fermions all
transform according to the isospin-\(0\) rep of \(\mathrm{SU}(2)\) ---
they're ``isospin singlets''. First we have the right-handed electron:
\[\mathrm{e}_R\] This is the tensor product of the irreducible rep of
\(\mathrm{U}(1)\) with hypercharge \(-2\), the isospin-\(0\) rep of
\(\mathrm{SU}(2)\), and the trivial rep of \(\mathrm{SU}(3)\). Then
there are the right-handed up quarks:
\[(\mathrm{u}_R, \mathrm{u}_R, \mathrm{u}_R)\] which form the tensor
product of the irreducible rep of \(\mathrm{U}(1)\) with hypercharge
\(4/3\), the isospin-\(0\) rep of \(\mathrm{SU}(2)\), and the
fundamental rep of \(\mathrm{SU}(3)\). And then there are the
right-handed down quarks: \[(\mathrm{d}_R, \mathrm{d}_R, \mathrm{d}_R)\]
which form the tensor product of the irreducible rep of
\(\mathrm{U}(1)\) with hypercharge \(2/3\), the isospin-\(0\) rep of
\(\mathrm{SU}(2)\), and the \(3\)-dimensional fundamental rep of
\(\mathrm{SU}(3)\).

Finally, besides the fermions, there is the --- so far unseen --- Higgs
boson: \[(\mathrm{H}_+, \mathrm{H}_0)\] This transforms according to the
tensor product of the irreducible rep of \(\mathrm{U}(1)\) with
hypercharge \(1\), the isospin-\(1/2\) rep of \(\mathrm{SU}(2)\), and
the 1-dimensional trivial rep of \(\mathrm{SU}(3)\).

Okay, let's see which elements of
\(\mathrm{U}(1)\times\mathbb{Z}/2\times\mathbb{Z}/3\) act trivially on
all these representations! Note first that the generator of
\(\mathbb{Z}/2\) acts as multiplication by \(1\) on the isospin singlets
and \(-1\) on the isospin doublets. Similarly, the generator of
\(\mathbb{Z}/3\) acts as multiplication by \(1\) on the leptons and
\(\exp(2\pi i/3)\) on the quarks. Thus everything in
\(\mathbb{Z}/2\times\mathbb{Z}/3\) acts as multiplication by some sixth
root of unity. So to find elements of
\(\mathrm{U}(1)\times\mathbb{Z}/2\times\mathbb{Z}/3\) that act
trivially, we only need to consider guys in \(\mathrm{U}(1)\) that are
sixth roots of unity.

To see what's going on, we make a little table using the information
I've described:

\begin{longtable}[]{@{}lccc@{}}
\toprule
\begin{minipage}[b]{0.03\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.30\columnwidth}\centering
Action of \(\exp(\pi i/3)\) in \(\mathrm{U}(1)\)\strut
\end{minipage} & \begin{minipage}[b]{0.23\columnwidth}\centering
Action of \(-1\) in \(\mathrm{SU}(2)\)\strut
\end{minipage} & \begin{minipage}[b]{0.33\columnwidth}\centering
Action of \(\exp(2\pi i/3)\) in \(\mathrm{SU}(3)\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.03\columnwidth}\raggedright
\(\mathrm{e}_L\)\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(1\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.03\columnwidth}\raggedright
\(\nu_L\)\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(1\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.03\columnwidth}\raggedright
\(\mathrm{u}_L\)\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(\exp(\pi i/3)\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(\exp(2\pi i/3)\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.03\columnwidth}\raggedright
\(\mathrm{d}_L\)\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(\exp(\pi i/3)\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(\exp(2\pi i/3)\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.03\columnwidth}\raggedright
\(\mathrm{e}_R\)\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(1\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(1\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.03\columnwidth}\raggedright
\(\mathrm{u}_R\)\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(\exp(4\pi i/3)\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(\exp(2\pi i/3)\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.03\columnwidth}\raggedright
\(\mathrm{d}_R\)\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(\exp(4\pi i/3)\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(\exp(2\pi i/3)\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.03\columnwidth}\raggedright
H\strut
\end{minipage} & \begin{minipage}[t]{0.30\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.23\columnwidth}\centering
\(-1\)\strut
\end{minipage} & \begin{minipage}[t]{0.33\columnwidth}\centering
\(1\)\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

And we look for patterns!

See any?

The most important one for our purposes is that if we multiply all three
numbers in each row, we get \(1\).

This means that the element \((\exp(\pi i/3),-1,\exp(2\pi i/3))\) in
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\) acts trivially
on all particles. This element generates a subgroup isomorphic to
\(\mathbb{Z}/6\). If you think a bit harder you'll see there are no
\emph{other} patterns that would make any \emph{more} elements of
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\) act trivially.
And if you think about the relation between charge and hypercharge,
you'll see this pattern has a lot to do with the fact that quark charges
in multiples of \(1/3\), while leptons have integral charge. There's
more to it than that, though\ldots.

Anyway, the ``true'' gauge group of the Standard Model --- i.e., the
smallest possible one --- is not
\(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\), but the
quotient of this by the particular \(\mathbb{Z}/6\) subgroup we've just
found. Let's call this group \(G\).

There are two reasons why this might be important. First, Marc Bellon
pointed out a nice way to think about \(G\): it's the subgroup of
\(\mathrm{U}(2)\times\mathrm{U}(3)\) consisting of elements \((g,h)\)
with \[(\operatorname{det} g)(\operatorname{det} h) = 1.\] If we embed
\(\mathrm{U}(2)\times\mathrm{U}(3)\) in \(\mathrm{U}(5)\) in the obvious
way, then this subgroup \(G\) actually lies in \(\mathrm{SU}(5)\),
thanks to the above equation. And this is what people do in the
\(\mathrm{SU}(5)\) grand unified theory. They don't actually stuff all
of \(\mathrm{U}(1)\times\mathrm{SU}(2)\times\mathrm{SU}(3)\) into
\(\mathrm{SU}(5)\), just the group \(G\)! For more details, see
\protect\hyperlink{week119}{``Week 119''}. Better yet, try this book
that Brett McInnes recommended to me:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Lochlainn O'Raifeartaigh, \emph{Group structure of gauge theories},
  Cambridge University Press, Cambridge, 1986.
\end{enumerate}

Second, this magical group \(G\) has a nice action on a
\(7\)-dimensional manifold which we can use as the fiber for a
\(11\)-dimensional Kaluza-Klein theory that mimics the Standard Model in
the low-energy limit. The way to get this manifold is to take
\(S^3\times S^5\) sitting inside \(C^2\times C^3\) and mod out by the
action of \(\mathrm{U}(1)\) as multiplication by phases. The group \(G\)
acts on \(C^2\times C^3\) in an obvious way, and using this it's easy to
see that it acts on \((C^2\times C^3)/\mathrm{U}(1)\).

I'm not sure where to read more about this, but you might try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Edward Witten, ``Search for a realistic Kaluza-Klein theory'',
  \emph{Nucl. Phys.} \textbf{B186} (1981), 412--428.

  Edward Witten, ``Fermion quantum numbers in Kaluza-Klein theory'', in
  \emph{Shelter Island II, Proceedings: Quantum Field Theory and the
  Fundamental Problems of Physics}, ed.~T. Appelquist et al, MIT Press,
  1985, pp.~227--277.
\item
  Thomas Appelquist, Alan Chodos and Peter G.O. Freund, editors,
  \emph{Modern Kaluza-Klein Theories}, Addison-Wesley, Menlo Park,
  California, 1987.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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My production of ``This Week's Finds'' has slowed to a trickle as I've
been struggling to write up a bunch of papers. Deadlines, deadlines! I
hate deadlines, but when you write things for other people, or with
other people, that's what you get into. I'll do my best to avoid them in
the future. Now I'm done with my chores and I want to have some fun.

I spent last weekend with a bunch of people talking about quantum
gravity in a hunting lodge by a lake in Minnowbrook, New York:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Minnowbrook Symposium on Space-Time Structure}, program and
  transparencies of talks available at
  \texttt{http://www.phy.syr.edu/research/he\_theory/minnowbrook/\#PROGRAM}
\end{enumerate}

The idea of this get-together, organized by Kameshwar Wali and some
other physicists at Syracuse University, was to bring together people
working on string theory, loop quantum gravity, noncommutative geometry,
and various discrete approaches to spacetime. People from these
different schools of thought don't talk to each other as much as they
should, so this was a good idea. People gave lots of talks, asked lots
of tough questions, argued, and learned what each other were doing. But
I came away with a sense that we're quite far from understanding quantum
gravity: every approach has obvious flaws.

One big problem with string theory is that people only know how to study
it on a spacetime with a fixed background metric. Even worse, things are
poorly understood except when the metric is static --- that is, roughly
speaking, when geometry of space does not change with the passage of
time.

For example, people understand a lot about string theory on spacetimes
that are the product of Minkowski spacetime and a fixed Calabi-Yau
manifold. There are lots of Calabi-Yau manifolds, organized in
continuous multi-parameter families called moduli spaces. This suggests
the idea that the geometry of the Calabi-Yau manifold could change with
time. This idea is lurking behind a lot of interesting work. For
example, Brian Greene gave a nice talk on ``mirror symmetry''. Different
Calabi-Yau manifolds sometimes give the same physics; these are called
``mirror manifolds''. Because of this, a curve in one moduli space of
Calabi-Yau manifolds can be physically equivalent to a curve in some
other moduli space, which sometimes lets you continue the curve beyond a
singularity in the first moduli space. Physicists like to think of these
curves as representing spacetime geometries where the Calabi-Yau
manifold changes with time. The problem is, there's no fully worked out
version of string theory that allows for a time-dependent Calabi-Yau
manifold!

There's a good reason for this: one shouldn't expect anything so simple
to make sense, except in the ``adiabatic approximation'' where things
change very slowly with time. The product of Minkowski spacetime with a
fixed Calabi-Yau manifold is a solution of the \(10\)-dimensional
Einstein equations, and this is part of why this kind of spacetime
serves as a good background for string theory. But we do not get a
solution if the geometry of the Calabi-Yau manifold varies from point to
point in Minkowski spacetime --- except in the adiabatic approximation.

There are also problems with ``unitarity'' in string theory when the
geometry of space changes with time. This is already familiar from
ordinary quantum field theory on curved spacetime. In quantum field
theory, people usually like to describe time evolution using unitary
operators on a Hilbert space of states. But this approach breaks down
when the geometry of space changes with time. People have studied this
problem in detail, and there seems to be no completely satisfactory way
to get around it. No way, that is, except the radical step of ceasing to
treat the geometry of spacetime as a fixed ``background''. In other
words: stop doing quantum field theory on spacetime with a
pre-established metric, and invent a background-free theory of quantum
gravity! But this is not so easy --- see
\protect\hyperlink{week132}{``Week 132''} for more on what it would
entail.

Apparently this issue is coming to the attention of string theorists now
that they are trying to study their theory on non-static background
metrics, such as anti-de Sitter spacetime. Indeed, someone at the
conference said that a bunch of top string theorists recently got
together to hammer out a strategy for where string theory should go
next, but they got completely stuck due to this problem. I think this is
good: it means string theorists are starting to take the foundational
issues of quantum gravity more seriously. These issues are deep and
difficult.

However, lest I seem to be picking on string theory unduly, I should
immediately add that all the other approaches have equally serious
flaws. For example, loop quantum gravity is wonderfully background-free,
but so far it is almost solely a theory of kinematics, rather than
dynamics. In other words, it provides a description of the geometry of
\emph{space} at the quantum level, but says little about
\emph{spacetime}. Recently people have begun to study dynamics with the
help of ``spin foams'', but we still can't compute anything well enough
to be sure we're on the right track. So, pessimistically speaking, it's
possible that the background-free quality of loop quantum gravity has
only been achieved by simplifying assumptions that will later prevent us
from understanding dynamics.

Alain Connes expressed this worry during Abhay Ashtekar's talk, as did
Arthur Jaffe afterwards. Technically speaking, the main issue is that
loop quantum gravity assumes that unsmeared Wilson loops are sensible
observables at the kinematical level, while in other theories, like
Yang-Mills theory, one always needs to smear the Wilson loops. Of course
these other theories aren't background-free, so loop quantum gravity
probably \emph{should} be different. But until we know that loop quantum
gravity really gives gravity (or some fancier theory like supergravity)
in the large-scale limit, we can't be sure it should be different in
this particular way. It's a legitimate worry\ldots{} but only time will
tell!

I could continue listing approaches and their flaws, including Connes'
own approach using noncommutative geometry, but let me stop here. The
only really good news is that different approaches have \emph{different}
flaws. Thus, by comparing them, one might learn something!

Some more papers have come out recently which delve into the
philosophical aspects of this muddle:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Carlo Rovelli, ``Quantum spacetime: what do we know?'', to appear in
  \emph{Physics Meets Philosophy at the Planck Scale}, eds.~Craig
  Callender and Nick Huggett, Cambridge U. Press. Preprint available as
  \href{https://arxiv.org/abs/gr-qc/9903045}{\texttt{gr-qc/9903045}}.
\item
  J. Butterfield and C. J. Isham, ``Spacetime and the philosophical
  challenge of quantum gravity'', to appear in \emph{Physics Meets
  Philosophy at the Planck Scale}, eds.~Craig Callender and Nick
  Huggett, Cambridge U. Press. Preprint available as
  \href{https://arxiv.org/abs/gr-qc/9903072}{\texttt{gr-qc/9903072}}.
\end{enumerate}

Rovelli's paper is a bit sketchy, but it outlines ideas which I find
very appealing --- I always find him to be very clear-headed about the
conceptual issues of quantum gravity. I found the latter paper a bit
frustrating, because it lays out a wide variety of possible positions
regarding quantum gravity, but doesn't make a commitment to any one of
them. However, this is probably good when one is writing to an audience
of philosophers: one should explain the problems instead of trying to
sell them on a particular claimed solution, because the proposed
solutions come and go rather rapidly, while the problems remain. Let me
quote the abstract:

\begin{quote}
We survey some philosophical aspects of the search for a quantum theory
of gravity, emphasising how quantum gravity throws into doubt the
treatment of spacetime common to the two `ingredient theories' (quantum
theory and general relativity), as a \(4\)-dimensional manifold equipped
with a Lorentzian metric. After an introduction, we briefly review the
conceptual problems of the ingredient theories and introduce the
enterprise of quantum gravity. We then describe how three main research
programmes in quantum gravity treat four topics of particular
importance: the scope of standard quantum theory; the nature of
spacetime; spacetime diffeomorphisms, and the so-called problem of time.
By and large, these programmes accept most of the ingredient theories'
treatment of spacetime, albeit with a metric with some type of quantum
nature; but they also suggest that the treatment has fundamental
limitations. This prompts the idea of going further: either by
quantizing structures other than the metric, such as the topology; or by
regarding such structures as phenomenological. We discuss this in
Section 5.
\end{quote}

Now let me mention a few more technical papers that have come out in the
last few months:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez and John Barrett, ``The quantum tetrahedron in 3 and 4
  dimensions'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/gr-qc/9903060}{\texttt{gr-qc/9903060}}.
\end{enumerate}

The idea here is to form a classical phase whose points represent
geometries of a tetrahedron in 3 or 4 dimensions, and then apply
geometric quantization to obtain a Hilbert space of states. These
Hilbert spaces play an important role in spin foam models of quantum
gravity. The main goal of the paper is to explain why the quantum
tetrahedron has fewer degrees of freedom in 4 dimensions than in 3
dimensions. Let me quote from the introduction:

\begin{quote}
State sum models for quantum field theories are constructed by giving
amplitudes for the simplexes in a triangulated manifold. The simplexes
are labelled with data from some discrete set, and the amplitudes depend
on this labelling. The amplitudes are then summed over this set of
labellings, to give a discrete version of a path integral. When the
discrete set is a finite set, then the sum always exists, so this
procedure provides a bona fide definition of the path integral.

State sum models for quantum gravity have been proposed based on the Lie
algebra \(\mathfrak{so}(3)\) and its \(q\)-deformation. Part of the
labelling scheme is then to assign irreducible representations of this
Lie algebra to simplexes of the appropriate dimension. Using the
\(q\)-deformation, the set of irreducible representations becomes
finite. However, we will consider the undeformed case here as the
geometry is more elementary.

Irreducible representations of \(\mathfrak{so}(3)\) are indexed by a
non-negative half-integers \(j\) called spins. The spins have different
interpretations in different models. In the Ponzano-Regge model of
\(3\)-dimensional quantum gravity, spins label the edges of a
triangulated 3-manifold, and are interpreted as the quantized lengths of
these edges. In the Ooguri-Crane-Yetter state sum model, spins label
triangles of a triangulated 4-manifold, and the spin is interpreted as
the norm of a component of the B-field in a BF Lagrangian. There is also
a state sum model of \(4\)-dimensional quantum gravity in which spins
label triangles. Here the spins are interpreted as areas.

Many of these constructions have a topologically dual formulation. The
dual 1-skeleton of a triangulated surface is a trivalent graph, each of
whose edges intersect exactly one edge in the original triangulation.
The spin labels can be thought of as labelling the edges of this graph,
thus defining a spin network. In the Ponzano-Regge model, transition
amplitudes between spin networks can be computed as a sum over
labellings of faces of the dual 2-skeleton of a triangulated 3-manifold.
Formulated this way, we call the theory a `spin foam model'.

A similar dual picture exists for \(4\)-dimensional quantum gravity. The
dual 1-skeleton of a triangulated 3-manifold is a 4-valent graph each of
whose edges intersect one triangle in the original triangulation. The
labels on the triangles in the 3-manifold can thus be thought of as
labelling the edges of this graph. The graph is then called a
`relativistic spin network'. Transition amplitudes between relativistic
spin networks can be computed using a spin foam model. The path integral
is then a sum over labellings of faces of a 2-complex interpolating
between two relativistic spin networks.

In this paper we consider the nature of the quantized geometry of a
tetrahedron which occurs in some of these models, and its relation to
the phase space of geometries of a classical tetrahedron in 3 or 4
dimensions. Our main goal is to solve the following puzzle: why does the
quantum tetrahedron have fewer degrees of freedom in 4 dimensions than
in 3 dimensions? This seeming paradox turns out to have a simple
explanation in terms of geometric quantization. The picture we develop
is that the four face areas of a quantum tetrahedron in four dimensions
can be freely specified, but that the remaining parameters cannot, due
to the uncertainty principle.
\end{quote}

Naively one would expect the quantum tetrahedron to have the same number
of degrees of freedom in 3 and 4 dimensions (since one is considering
tetrahedra mod rotations). However, quantum mechanics is funny about
these things! For example, the Hilbert space of two spin-\(1/2\)
particles whose angular momenta point in opposite directions is smaller
than the Hilbert space of a single spin-\(1/2\) particle, even though
classically you might think both systems have the same number of degrees
of freedom. In fact a very similar thing happens for the quantum
tetrahedron in 3 and 4 dimensions.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Abhay Ashtekar, Alejandro Corichi and Kirill Krasnov, ``Isolated
  horizons: the classical phase space'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9905089}{\texttt{gr-qc/9905089}}.
\end{enumerate}

This paper explains in more detail the classical aspects of the
calculation of the entropy of a black hole in loop quantum gravity (see
\protect\hyperlink{week112}{``Week 112''} for a description of this
calculation). Let me quote the abstract:

\begin{quote}
A Hamiltonian framework is introduced to encompass non-rotating (but
possibly charged) black holes that are ``isolated'' near future
time-like infinity or for a finite time interval. The underlying
space-times need not admit a stationary Killing field even in a
neighborhood of the horizon; rather, the physical assumption is that
neither matter fields nor gravitational radiation fall across the
portion of the horizon under consideration. A precise notion of
non-rotating isolated horizons is formulated to capture these ideas.
With these boundary conditions, the gravitational action fails to be
differentiable unless a boundary term is added at the horizon. The
required term turns out to be precisely the Chern-Simons action for the
self-dual connection. The resulting symplectic structure also acquires,
in addition to the usual volume piece, a surface term which is the
Chern-Simons symplectic structure. We show that these modifications
affect in subtle but important ways the standard discussion of
constraints, gauge and dynamics. In companion papers, this framework
serves as the point of departure for quantization, a statistical
mechanical calculation of black hole entropy and a derivation of laws of
black hole mechanics, generalized to isolated horizons. It may also have
applications in classical general relativity, particularly in the
investigation of analytic issues that arise in the numerical studies of
black hole collisions.
\end{quote}

The following are some review articles on spin networks, spin foams and
the like:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Roberto De Pietri, `Canonical ``loop'' quantum gravity and spin foam
  models', to appear in the proceedings of the \emph{XXIIIth Congress of
  the Italian Society for General Relativity and Gravitational Physics
  (SIGRAV)}, 1998, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9903076}{\texttt{gr-qc/9903076}}.
\item
  Seth Major, ``A spin network primer'', to appear in \emph{Amer. Jour.
  Phys.}, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9905020}{\texttt{gr-qc/9905020}}.
\item
  Seth Major, ``Operators for quantized directions'', preprint available
  as \href{https://arxiv.org/abs/gr-qc/9905019}{\texttt{gr-qc/9905019}}.
\item
  John Baez, ``An introduction to spin foam models of \(BF\) theory and
  quantum gravity'', in \emph{Geometry and Quantum Physics}, eds.~Helmut
  Gausterer and Harald Grosse, Lecture Notes in Physics,
  Springer-Verlag, Berlin, 2000, pp.~25--93. Preprint available as
  \href{https://arxiv.org/abs/gr-qc/9905087}{\texttt{gr-qc/9905087}}.
\end{enumerate}

By the way, Barrett and Crane have come out with a paper sketching a
spin foam model for Lorentzian (as opposed to Riemannian) quantum
gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  John Barrett and Louis Crane, ``A Lorentzian signature model for
  quantum general relativity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9904025}{\texttt{gr-qc/9904025}}.
\end{enumerate}

However, this model is so far purely formal, because it involves
infinite sums that probably diverge. We need to keep working on this!
Now that I'm getting a bit of free time, I want to tackle this issue.
Meanwhile, Iwasaki has come out with an alternative spin foam model of
Riemannian quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Junichi Iwasaki, ``A surface theoretic model of quantum gravity'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9903112}{\texttt{gr-qc/9903112}}.
\end{enumerate}

Alas, I don't really understand this model yet. Finally, to wrap things
up, something completely different:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Richard E. Borcherds, ``Quantum vertex algebras'', preprint available
  as
  \href{https://arxiv.org/abs/math.QA/9903038}{\texttt{math.QA/9903038}}.
\end{enumerate}

I like how the abstract of this paper starts: ``The purpose of this
paper is to make the theory of vertex algebras trivial''. Good! Trivial
is not bad, it's good. Anything one understands is automatically
trivial.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week135}{%
\section{July 31, 1999}\label{week135}}

Well, darn it, now I'm too busy running around to conferences to write
This Week's Finds! First I went to Vancouver, then to Santa Barbara, and
for almost a month now I've been in Portugal, bouncing between Lisbon
and Coimbra. But let me try to catch up\ldots.

From June 16th to 19th, Steve Savitt and Steve Weinstein of the
University of British Columbia held a workshop designed to get
philosophers and physicists talking about the conceptual problems of
quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Toward a New Understanding of Space, Time and Matter}, workshop
  home page at \texttt{http://axion.physics.ubc.ca/Workshop/}
\end{enumerate}

After a day of lectures by Chris Isham, John Earman, Lee Smolin and
myself, we spent the rest of the workshop sitting around in a big room
with a beautiful view of Vancouver Bay, discussing various issues in a
fairly organized way. For example, Chris Isham led a discussion on
``What is a quantum theory?'' in which he got people to question the
assumptions underlying quantum physics, and Simon Saunders led one on
``Quantum gravity: physics, metaphysics or mathematics?'' in which we
pondered the scientific and sociological implications of the fact that
work on quantum gravity is motivated more by desire for consistency,
clarity and mathematical elegance than the need to fit new experimental
data.

It's pretty clear that understanding quantum gravity will make us
rethink some fundamental concepts --- the question is, which ones? By
the end of the conference, almost every basic belief or concept relevant
to physics had been held up for careful scrutiny and found questionable.
Space, time, causality, the real numbers, set theory --- you name it! It
was a bit unnerving --- but it's good to do this sort of thing now and
then, to prevent hardening of the mental arteries, and it's especially
fun to do it with a big bunch of physicists and philosophers. However, I
must admit that I left wanting nothing more than to do lots of grungy
calculations in order to bring myself back down to earth --- relatively
speaking, of course.

I particularly enjoyed Chris Isham's talk about topos theory because it
helped me understand one way that topos theory could be applied to
quantum theory. I've tended to regard topoi as ``too classical'' for
quantum theory, because while the internal logic of a topos is
intuitionistic (the principle of exclude middle may fail), it's still
not very quantum. For example, in a topos the operation ``and'' still
distributes over ``or'', and vice versa, while failure of this sort of
distributivity is a hallmark of quantum logic. If you don't know what I
mean, try these books, in rough order of increasing difficulty:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  David W. Cohen, \emph{An Introduction to Hilbert Space and Quantum
  Logic}, Springer-Verlag, New York, 1989.
\item
  C. Piron, \emph{Foundations of Quantum Physics}, W. A. Benjamin,
  Reading, Massachusetts, 1976.
\item
  C. A. Hooker, editor, \emph{The Logico-algebraic Approach to Quantum
  Mechanics}, two volumes, D. Reidel, Boston, 1975-1979.
\end{enumerate}

Perhaps even more importantly, topoi are Cartesian! What does this mean?
Well, it means that we can define a ``product'' of any two objects in a
topos. That is, given objects \(a\) and \(b\), there's an object
\(a\times b\) equipped with morphisms \[p\colon a\times b\to a\] and
\[q\colon a\times b\to b\] called ``projections'', satisfying the
following property: given morphisms from some object \(c\) into \(a\)
and \(b\), say \[f\colon c\to a\] and \[g\colon c\to b\] there's a
unique morphism \(f\times g\colon c\to a\times b\) such that if we
follow it by \(p\) we get \(f\), and if we follow it by \(q\) we get
\(g\). This is just an abstraction of the properties of the usual
Cartesian product of sets, which is why we call a category ``Cartesian''
if any pair of objects has a product.

Now, it's a fun exercise to check that in a Cartesian category, every
object has a morphism \[\Delta\colon a\to a\times a\] called the
``diagonal'', which when composed with either of the two projections
from \(a\times a\) to a gives the identity. For example, in the topos of
sets, the diagonal morphism is given by \[\Delta(x) = (x,x)\] We can
think of the diagonal morphism as allowing ``duplication of
information''. This is not generally possible in quantum mechanics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  William Wooters and Wocjciech Zurek, ``A single quantum cannot be
  cloned'', \emph{Nature} \textbf{299} (1982), 802--803.
\end{enumerate}

The reason is that in the category of Hilbert spaces, the tensor product
is not a product in the above sense! In particular, given a Hilbert
space \(H\), there isn't a natural diagonal operator
\[\Delta\colon H\to H tensor H\] and there aren't even natural
projection operators from \(H\otimes H\) to \(H\). As pointed out to me
by James Dolan, this non-Cartesianness of the tensor product gives
quantum theory much of its special flavor. Besides making it impossible
to ``clone a quantum'', it's closely related to how quantum theory
violates Bell's inequality, because it means we can't think of an
arbitrary state of a two-part quantum system as built by tensoring
states of both parts.

Anyway, this has made me feel for a while that topos theory isn't
sufficiently ``quantum'' to be useful in understanding the peculiar
special features of quantum physics. However, after Isham and I gave our
talks, someone pointed out to me that one can think of a topological
quantum field theory as a presheaf of Hilbert spaces over the category
\(\mathsf{nCob}\) whose morphisms are \(n\)-dimensional cobordisms. Now,
presheaves over any category form a topos, so this means we should be
able to think of a topological quantum field theory as a ``Hilbert space
object'' in the topos of presheaves over \(\mathsf{nCob}\). From this
point of view, the peculiar ``quantumness'' of topological quantum field
theory comes from it being a Hilbert space object, while its peculiar
``variability'' --- i.e., the fact that it assigns a different Hilbert
space to each \((n-1)\)-dimensional manifold representing space ---
comes from the fact that it's an object in a topos. (Topoi are known for
being very good at handling things like ``variable sets''.) I'm not sure
how useful this is, but it's worth keeping in mind.

While I'm talking about quantum logic, let me raise a puzzle concerning
the Kochen-Specker theorem. Remember what this says: if you have a
Hilbert space \(H\) with dimension more than \(2\), there's no map \(F\)
from self-adjoint operators on \(H\) to real numbers with the following
properties:

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
  For any self-adjoint operator \(A\), \(F(A)\) lies in the spectrum of
  \(A\),
\end{enumerate}

and

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  For any continuous \(f\colon\mathbb{R}\to\mathbb{R}\),
  \(f(F(A)) = F(f(A))\).
\end{enumerate}

This means there's no sensible consistent way of thinking of all
observables as simultaneously having values in a quantum system!

Okay, the puzzle is: what happens if the dimension of \(H\) equals
\(2\)? I don't actually know the answer, so I'd be glad to hear it if
someone can figure it out!

By the way, I once wanted to do an undergraduate research project on
mathematical physics with Kochen. He asked me if I knew the spectral
theorem, I said ``no'', and he said that in that case there was no point
in me trying to work with him. I spent the next summer reading Reed and
Simon's book on Functional Analysis and learning lots of different
versions of the spectral theorem. I shudder to think that perhaps this
is why I spent years studying analysis before eventually drifting
towards topology and algebra. But no: now that I think about it, I was
already interested in analysis at the time, since I'd had a wonderful
real analysis class with Robin Graham.

Okay, now let me say a bit about the next conference I went to. From
June 22nd to 26th there was a conference on ``Strong Gravitational
Fields'' at the Institute for Theoretical Physics at U. C. Santa
Barbara. This finished up a wonderful semester-long program by Abhay
Ashtekar, Gary Horowitz and Jim Isenberg:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  \emph{Classical and Quantum Physics of Strong Gravitational Fields},
  program homepage with transparencies and audio files of talks at
  \texttt{http://www.itp.ucsb.edu/\textasciitilde{}patrick/gravity99/}
\end{enumerate}

Like the whole program, the conference covered a wide range of topics
related to gravity: string theory and loop quantum gravity,
observational and computational black hole physics, and \(\gamma\)-ray
bursters. I can't summarize all this stuff; since I usually spend a lot
of talking about quantum gravity here, let me say a bit about other
things instead.

John Friedman gave an interesting talk on gravitational waves from
unstable neutron stars. When a pulsar is young, like about 5000 years
old, it typically rotates about its axis once every 16 milliseconds or
so. A good example is N157B, a pulsar in the Large Magellanic Cloud.
Using the current spindown rate one can extrapolate and guess that
pulsars have about a 5-millisecond period at birth. It's interesting to
think about what makes a newly formed neutron star slow down. Theorists
have recently come up with a new possible mechanism: namely, a new sort
of gravitational-wave-driven instability of relativistic stars that
could force newly formed slow down to a 10-millisecond period. It's very
clever: the basic idea is that if a star is rotating very fast, a
rotational mode that rotates slower than the star will gravitationally
radiate \emph{positive} angular momentum, but such modes carry
\emph{negative} angular momentum, since they rotate slower than the
star. If you think about it carefully, you'll see this means that
gravitational radiation should tend to amplify such modes! I asked for a
lowbrow analog of this mechanism and it turns out that a similar sort of
thing is at work in the formation of water waves by the wind --- with
linear momentum taking the place of angular momentum. Anyway, it's not
clear that this process really ever has a chance to happen, because it
only works when the neutron star is not too hot and not too cold, but
it's pretty cool.

Richard Price gave a nice talk on computer simulation of black hole
collisions. Quantitatively understanding the gravitational radiation
emitted in black hole and neutron star collisions is a big business
these days --- it's one of the NSF's ``grand challenge'' problems. The
reason is that folks are spending a lot of money building gravitational
wave detectors like LIGO:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  LIGO project home page, \texttt{http://www.ligo.caltech.edu/}
\item
  Other gravitational wave detection projects,
  \texttt{http://www.ligo.caltech.edu/LIGO\_web/other\_gw/gw\_projects.html}
\end{enumerate}

and they need to know exactly what to look for. Now, head-on collisions
are the easiest to understand, since one can simplify the calculation
using axial symmetry. Unfortunately, it's not very likely that two black
holes are going to crash into each other head-on. One really wants to
understand what happens when two black holes spiral into each other.
There are two extreme cases: the case of black holes of equal mass, and
the case of a very light black hole of mass falling into a heavy one.

The latter case is 95\% understood, since we can think of the light
black hole as a ``test particle'' --- ignoring its effect on the heavy
one. The light one slowly spirals into the heavy one until it reaches
the innermost stable orbit, and then falls in. We can use the theory of
a relativistic test particle falling into a black hole to understand the
early stages of this process, and use black hole perturbation theory to
study the ``ringdown'' of the resulting single black hole in the late
stages of the process. (By ``ringdown'' I mean the process whereby an
oscillating black hole settles down while emitting gravitational
radiation.) Even the intermediate stages are manageable, because the
radiation of the small black hole doesn't have much effect on the big
one.

By contrast, the case of two black holes of equal mass is less well
understood. We can treat the early stages, where relativistic effects
are small, using a post-Newtonian approximation, and again we can treat
the late stages using black hole perturbation theory. But things get
complicated in the intermediate stage, because the radiation of each
hole greatly effects the other, and there is no real concept of
``innermost stable orbit'' in this case. To make matters worse, the
intermediate stage of the process is exactly the one we really want to
understand, because this is probably when most of the gravitational
waves are emitted!

People have spent a lot of work trying to understand black hole
collisions through number-crunching computer calculation, but it's not
easy: when you get down to brass tacks, general relativity consists of
some truly scary nonlinear partial differential equations. Current work
is bedeviled by numerical instability and also the problem of simulating
enough of a region of spacetime to understand the gravitational
radiation being emitted. Fans of mathematical physics will also realize
that gauge-fixing is a major problem. There is a lot of interest in
simplifying the calculations through ``black hole excision'': anything
going on inside the event horizon can't affect what happens outside, so
if one can get the computer to \emph{find} the horizon, one can forget
about simulating what's going on inside! But nobody is very good at
doing this yet\ldots{} even using the simpler concept of ``apparent
horizon'', which can be defined locally. So there is some serious work
left to be done!

(For more details on both these talks, go to the conference website and
look at the transparencies.)

I also had some interesting talks with people about black hole entropy,
some of which concerned a new paper by Steve Carlip. I'm not really able
to do justice to the details, but it seems important\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Steve Carlip, ``Entropy from conformal field theory at Killing
  horizons'', preprint available at
  \href{https://arxiv.org/abs/gr-qc/9906126}{\texttt{gr-qc/9906126}}.
\end{enumerate}

Let me just quote the abstract:

\begin{quote}
On a manifold with boundary, the constraint algebra of general
relativity may acquire a central extension, which can be computed using
covariant phase space techniques. When the boundary is a (local) Killing
horizon, a natural set of boundary conditions leads to a Virasoro
subalgebra with a calculable central charge. Conformal field theory
methods may then be used to determine the density of states at the
boundary. I consider a number of cases --- black holes, Rindler space,
de Sitter space, Taub-NUT and Taub-Bolt spaces, and dilaton gravity ---
and show that the resulting density of states yields the expected
Bekenstein-Hawking entropy. The statistical mechanics of black hole
entropy may thus be fixed by symmetry arguments, independent of details
of quantum gravity.
\end{quote}

There was also a lot of talk about ``isolated horizons'', a concept that
plays a fundamental role in certain treatments of black holes in loop
quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Abhay Ashtekar, Christopher Beetle, and Stephen Fairhurst, ``Mechanics
  of isolated horizons'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9907068}{\texttt{gr-qc/9907068}}.
\item
  Jerzy Lewandowski, ``Spacetimes admitting isolated horizons'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9907058}{\texttt{gr-qc/9907058}}.
\end{enumerate}

For more on isolated horizons try the references in
\protect\hyperlink{week128}{``Week 128''}.

Finally, on a completely different note, I've recently seen some new
papers related to the McKay correspondence --- see
\protect\hyperlink{week65}{``Week 65''} if you don't know what
\emph{that} is! I haven't read them yet, but I just want to remind
myself that I should, so I'll list them here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  John McKay, ``Semi-affine Coxeter-Dynkin graphs and
  \(G\subseteq\mathrm{SU}_2(\mathbb{C})\)'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9907089}{\texttt{math.QA/9907089}}.
\item
  Igor Frenkel, Naihuan Jing and Weiqiang Wang, ``Vertex representations
  via finite groups and the McKay correspondence'', preprint available
  as
  \href{https://arxiv.org/abs/math.QA/9907166}{\texttt{math.QA/9907166}}.

  ``Quantum vertex representations via finite groups and the McKay
  correspondence'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9907175}{\texttt{math.QA/9907175}}.
\end{enumerate}

Next time I want to talk about the big category theory conference in
honor of MacLane's 90th birthday! Then I'll be pretty much caught up on
the conferences\ldots.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Robert Israel's answer to my puzzle about the Kochen-Specker theorem:

\begin{quote}
It's not true in dimension \(2\). Note that for a self-adjoint
\(2\times2\) matrix \(A\), any \(f(A)\) is of the form \(a A + b I\) for
some real scalars \(a\) and \(b\) (this is easy to see if you
diagonalize \(A\)). The self-adjoint matrices that are not multiples of
\(I\) split into equivalence classes, where \(A\) and \(B\) are
equivalent if \(B = a A + b I\) for some scalars \(a, b\) (\(a <> 0\)).
Pick a representative \(A\) from each equivalence class, choose \(F(A)\)
as one of the eigenvalues of \$A, and then
\(F(a A + b I) = a F(A) + b.\) Of course, \(F(b I) = b\). Then \(F\)
satisfies the two conditions.
\end{quote}

\begin{quote}
The reason this doesn't work in higher dimensions is that in higher
dimensions you can have two self-adjoint matrices \(A\) and \(B\) which
don't commute, \(F(A) = G(B)\) for some functions \(F\) and \(G\), and
\(F(A)\) is not a multiple of \(I\).
\end{quote}

\begin{quote}
Robert Israel israel@math.ubc.ca Department of Mathematics
http://www.math.ubc.ca/\textasciitilde israel University of British
Columbia Vancouver, BC, Canada V6T 1Z2
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week136}{%
\section{August 21, 1999}\label{week136}}

I spent most of last month in Portugal, spending time with Roger Picken
at the Instituto Superior Tecnico in Lisbon and attending the category
theory school and conference in Coimbra, which was organized by Manuela
Sobral:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Category Theory 99 website, with abstracts of talks,
  \texttt{http://www.mat.uc.pt/\textasciitilde{}ct99/}
\end{enumerate}

The conference was a big deal this year, because it celebrated the 90th
birthday of Saunders Mac Lane, who with Samuel Eilenberg invented
category theory in 1945. Mac Lane was there and in fine fettle. He gave
a nice talk about working with Eilenberg, and after the banquet in his
honor, he even sang a song about Riemann while wrapped in a black cloak!

(In case you're wondering, the cloak was contributed by some musicians.
In Coimbra, the folks who play fado music tend to wear black cloaks. A
few days ago we'd seen them serenade a tearful old man and then wrap him
in a cloak, so one of our number suggested that they try this trick on
Mac Lane. Far from breaking into tears, he burst into song.)

The conference was exquisitely well-organized, packed with top category
theorists, and stuffed with so many cool talks I scarcely know where to
begin describing them\ldots{} I'll probably say a bit about a random
sampling of them next time, and the proceedings will appear in a special
issue of the Journal of Pure and Applied Algebra honoring Mac Lane's
90th birthday, so keep your eye out for that if you're interested. The
school featured courses by Cristina Pedicchio, Vaughan Pratt, and some
crazy mathematical physicist who thinks the laws of physics are based on
\(n\)-categories. The notes can be found in the following book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  \emph{School on Category Theory and Applications}, Coimbra, July
  13-17, 199, Textos de Matematica Serie B No.~\textbf{21}, Departamento
  De Matematica da Universidade de Coimbra. Contains: ``n-Categories''
  by John Baez, ``Algebraic theories'' by M. Cristina Pedicchio, and
  ``Chu Spaces: duality as a common foundation for computation and
  mathematics'' by Vaughan Pratt.
\end{enumerate}

Pedicchio's course covered various generalizations of Lawvere's
wonderful concept of an algebraic theory. Recall from
\protect\hyperlink{week53}{``Week 53''} that we can think of a category
\(\mathcal{C}\) with extra properties or structure as a kind of
``theory'', and functors \(F\colon \mathcal{C}\to\mathsf{Set}\)
preserving this structure as ``models'' of the theory. For example, a
``finite products theory'' \(\mathcal{C}\) is just a category with
finite products. In this case, a model is a functor
\(F\colon\mathcal{C}\to\mathsf{Set}\) preserving finite products, and a
morphism of models is a natural transformation between such functors.
This gives us a category \(\mathsf{Mod}(\mathcal{C})\) of models of
\(\mathcal{C}\).

To understand what this really means, let's restrict attention the
simplest case, when all the objects in \(\mathcal{C}\) are products of a
given object \(x\). In this case Pedicchio calls \(\mathcal{C}\) an
``algebraic theory''. A model \(F\) is then really just a set \(F(x)\)
together with a bunch of \(n\)-ary operations coming from the morphisms
in \(\mathcal{C}\), satisfying equational laws coming from the equations
between morphisms in \(\mathcal{C}\). Any sort of algebraic gadget
that's just a set with a bunch of \(n\)-ary operations satisfying
equations can be described using a theory of this sort. For example:
monoids, groups, abelian groups, rings\ldots{} and so on. We can
describe any of these using a suitable algebraic theory, and in each
case, the category \(\mathsf{Mod}(\mathcal{C})\) will be the category of
these algebraic gadgets.

Now, what I didn't explain last time I discussed this was the notion of
theory-model duality. Fans of ``duality'' in all its forms are sure to
like this! There's a functor
\[R\colon\mathsf{Mod}(\mathcal{C})\to\mathsf{Set}\] which carries each
model \(F\) to the set \(F(x)\). We can think of this as a functor which
forgets all the operations of our algebraic gadget and remembers only
the underlying set. Now, if you know about adjoint functors (see
\protect\hyperlink{week77}{``Week
77''}--\protect\hyperlink{week79}{``Week 79''}), this should immediately
make you want to find a left adjoint for \(R\), namely a functor
\[L\colon\mathsf{Set}\to\mathsf{Mod}(\mathcal{C})\] sending each set to
the ``free'' algebraic gadget on this set. Indeed, such a left adjoint
exists!

Given this pair of adjoint functors we can do all sorts of fun stuff. In
particular, we can talk about the category of ``finitely generated free
models'' of our theory. The objects here are objects of
\(\mathsf{Mod}(\mathcal{C})\) of the form \(L(S)\) where \(S\) is a
finite set, and the morphisms are the usual morphisms in
\(\mathsf{Mod}(\mathcal{C})\). Let me call this category
\(\mathsf{fgFree}\text{-}\mathsf{Mod}(\mathcal{C})\).

Now for the marvelous duality theorem:
\(\mathsf{fgFree}\text{-}\mathsf{Mod}(\mathcal{C})\) is equivalent to
the opposite of the category \(\mathcal{C}\). In other words, you can
reconstruct an algebraic theory from its category of finitely generated
free algebras in the simplest manner imaginable: just reversing the
direction of all the morphisms! This is so nice I won't explain why it's
true\ldots{} I don't want to deprive you of the pleasure of looking at
some simple examples and seeing for yourself how it works. For example,
take the theory of groups, and figure out how every operation appearing
in the definition of ``group'' corresponds to a homomorphism between
finitely generated free groups.

There are lots of other interesting questions related to theory-model
duality. For example: what kinds of categories arise as categories of
models of an algebraic theory? Pedicchio calls these ``algebraic
categories'', and she told us some nice theorems characterizing them.
Or: given the category of free models of an algebraic theory, can you
fatten it up to get the category of \emph{all} models? Pedicchio
mentioned a process called ``exact completion'' that does the job. Or:
starting from just the category of models of a theory, can you tell
which are the free models? Alas, I don't know the answer to this\ldots{}
but I'm sure people do.

Even better, all of this can be generalized immensely, to theories of a
more flexible sort than the ``algebraic theories'' I've been talking
about so far. For example, we can study ``essentially algebraic
theories'', which are just categories with finite limits. Given one of
these, say \(\mathcal{C}\), we define a model to be a functor
\(F\colon\mathcal{C}\to\mathsf{Set}\) preserving finite limits. This
allows one to study algebraic structures with partially defined
operations. I already gave an example in
\protect\hyperlink{week53}{``Week 53''} --- there's a category with
finite limits called ``the theory of categories'', whose models are
categories! One can work out theory-model duality in this bigger
context, where it's called Gabriel-Ulmer duality:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  P. Gabriel and F. Ulmer, \emph{Lokal praesentierbare Kategorien},
  Springer Lecture Notes in Mathematics, Berlin, 1971.
\end{enumerate}

But this stuff goes far beyond that, and Pedicchio led us at a rapid
pace all the way up to the latest work. A lot of the basic ideas here
came from Lawvere's famous thesis on algebraic semantics, so it was nice
to see him attending these lectures, and even nicer to hear that 26
years after he wrote it, his thesis is about to be published:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  William Lawvere, \emph{Functorial Semantics of Algebraic Theories},
  Ph.D.~Dissertation, University of Columbia, 1963. Summary appears
  under same title in: \emph{Proceedings of the National Academy of
  Sciences of the USA} \textbf{50} (1963), 869--872.
\end{enumerate}

(Unfortunately I forget who is publishing it!) It was also nice to find
out that Lawvere and Schanuel are writing a book on ``objective number
theory''\ldots{} which will presumably be more difficult, but hopefully
not less delightful, than their wonderful introduction to category
theory for people who know \emph{nothing} about fancy mathematics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  William Lawvere and Steve Schanuel, \emph{Conceptual Mathematics: A
  First Introduction to Categories}, Cambridge U. Press, Cambridge 1997.
\end{enumerate}

This is the book to give to all your friends who are wondering what
category theory is about and want to learn a bit without too much pain.
If you've read this far and understood what I was talking about, you
must have such friends! If you \emph{didn't} understand what I was
talking about, read this book!

By the way, Lawvere told me that he started out wanting to do physics,
and wound up doing his thesis on algebraic semantics when he started to
trying to formalize what a physical theory was. It's interesting that
the modern notion of ``topological quantum field theory'' is very much
modelled after Lawvere's ideas, but with symmetric monoidal categories
with duals replacing the categories with finite products which Lawvere
considered! I guess he was just ahead of his time. In fact, he has
returned to physics in more recent years - but that's another story.

Okay, let me change gears now\ldots.

Some \(n\)-category gossip. Ross Street has a student who has defined a
notion of semistrict \(n\)-category up to \(n = 5\), and Sjoerd Crans
has defined semistrict \(n\)-categories (which he calls ``teisi'') for
\(n\) up to \(6\). However, the notion still seems to resist definition
for general \(n\), which prompted my pal Lisa Raphals to compose the
following limerick:

\begin{quote}
A theoretician of ``\(n\)'' Considered conditions on when Some
mathematicians Could find definitions For \(n\) even greater than ten.
\end{quote}

Interestingly, work on weak \(n\)-categories seems to be proceeding at a
slightly faster clip --- they've gotten to \(n = \infty\) already. In
fact, during the conference Michael Batanin came up to me and said that
a fellow named Penon had published a really terse definition of weak
\(\omega\)-categories that seems equivalent to Batanin's own (see
\protect\hyperlink{week103}{``Week 103''}) --- at least after some minor
tweaking. Batanin was quite enthusiastic and said he plans to write a
paper about this stuff.

Later, when I went to Cambridge England, Tom Leinster gave a talk
summarizing Penon's definition:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Jacques Penon, ``Approache polygraphique des \(\infty\)-categories non
  strictes'', in \emph{Cahiers Top. Geom. Diff.} \textbf{40} (1999),
  31--79.
\end{enumerate}

It seems pretty cool, so I'd like to tell you what Leinster said ---
using his terminology rather than Penon's (which of course is in
French). To keep this short I'm going to assume you know a reasonable
amount of category theory.

First of all, a ``reflexive globular set'' is a collection of sets and
functions like this: \[
  \begin{tikzcd}
    X_0
        \rar["i" description]
    & X_1
        \lar[shift right=5,"s" description]
        \lar[shift left=5,"t" description]
        \rar["i" description]
    & X_2
        \lar[shift right=5,"s" description]
        \lar[shift left=5,"t" description]
        \rar["i" description]
    & \ldots
        \lar[shift right=5,"s" description]
        \lar[shift left=5,"t" description]
  \end{tikzcd}
\] going on to infinity, satisfying these equations: \[
  \begin{gathered}
    s(s(x)) = s(t(x))
  \\t(s(x)) = t(t(x))
  \\s(i(x)) = t(i(x)) = x.
  \end{gathered}
\] We call the elements of \(X_n\) ``\(n\)-cells'', and call \(s(x)\)
and \(t(x)\) the ``source'' and ``target'' of the \(n\)-cell \(x\),
respectively. \(If s(x) = a\) and \(t(x) = b\), we think of \(x\) as
going from \(a\) to \(b\), and write \(x\colon a\to b\).

If we left out all the stuff about the maps \(i\) we would simply have a
``globular set''. These are important in \(n\)-category theory because
strict \(\omega\)-categories, and also Batanin's weak
\(\omega\)-categories, are globular sets with extra structure. This also
true of Penon's definition, but he starts right away with ``reflexive''
globular sets, which have these maps \(i\) that are a bit like the
degeneracies in the definition of a simplicial set (see
\protect\hyperlink{week115}{``Week 115''}). In Penon's definition
\(i(x)\) plays the role of an ``identity \(n\)-morphism'', so we also
write \(i(x)\) as \(1_x\colon x\to x\).

Let \(\mathsf{RGlob}\) be the category of reflexive globular sets, where
morphisms are defined in the obvious way. (In other words,
\(\mathsf{RGlob}\) is a presheaf category --- see
\protect\hyperlink{week115}{``Week 115''} for an explanation of this
notion.)

In this setup, the usual sort of strict \(\omega\)-category may be
defined as a reflexive globular set \(X\) together with various
``composition'' operations that allow us to compose \(n\)-cells \(x\)
and \(y\) whenever \(t^j(x)=s^j(x)\), obtaining an \(n\)-cell
\[x \circ_j y\] We get one such composition operation for each \(n\) and
each \(j\) such that \(1\leqslant j\leqslant n\). We impose some obvious
axioms of two sorts:

\begin{enumerate}
\def\labelenumi{\Alph{enumi})}
\item
  axioms determining the source and target of a composite; and
\item
  strict associativity, unit and interchange laws.
\end{enumerate}

I'll assume you know these axioms or can fake it. (If you read the
definition of strict \(2\)-category in \protect\hyperlink{week80}{``Week
80''}, perhaps you can get an idea for what kinds of axioms I'm talking
about.)

Now, strict \(\omega\)-categories are great, but we need to weaken this
notion. So, first Penon defines an ``\(\omega\)-magma'' to be something
exactly like a strict \(\omega\)-category but without the axioms of type
B. You may recall that a ``magma'' is defined by Bourbaki to be a set
with a binary operation satisyfing no laws whatsoever --- the primeval
algebraic object! An \(\omega\)-magma is just as lawless, and a lot
bigger and meaner.

Strict \(\omega\)-categories are too strict: all laws hold as equations.
\(\omega\)-magmas are too weak: no laws hold at all! How do we get what
we want?

We define a category \(Q\) whose objects are quadruples
\((M,p,\mathcal{C},[\cdot,\cdot])\) where:

\begin{itemize}
\tightlist
\item
  \(M\) is an \(\omega\)-magma
\item
  \(\mathcal{C}\) is a strict \(\omega\)-category
\item
  \(p\colon M\to\mathcal{C}\) is a morphism of \(\omega\)-magmas (i.e.~a
  morphism of reflexive globular sets strictly preserving all the
  \(\omega\)-magma operations)
\item
  \([\cdot,\cdot]\) is a way of lifting equations between
  \(n\)-morphisms in the image of the projection \(p\) to
  \((n+1)\)-morphisms in \(M\). More precisely: given \(n\)-cells
  \[f,g\colon a\to b\] in \(M\) such that \(p(f) = p(g)\), we have an
  \((n+1)\)-cell \[[f,g]\colon f\to g\] in \(M\) such that
  \(p([f,g]) = 1_{p(f)} = 1_{p(g)}\). We require that \([f,f] = 1_f\).
\end{itemize}

A morphism in \(Q\) is defined to be the obvious thing: a morphism
\(f\colon M\to M'\) of \(\omega\)-magmas and a morphism
\(f\colon\mathcal{C}\to\mathcal{C}'\) of strict \(\omega\)-categories,
strictly preserving all the structure in sight.

Okay, now we define a functor \[U\colon Q\to\mathsf{RGlob}\] by
\[\mathrm{U}(M,p,C,[\cdot,\cdot]) = M\] where we think of \(M\) as just
a reflexive globular set. Penon proves that \(U\) has a left adjoint
\[F\colon\mathsf{RGlob}\to Q\] This adjunction defines a monad
\[T\colon \mathsf{RGlob}\to \mathsf{RGlob}\] and Penon defines a ``weak
\(\omega\)-category'' to be an algebra of this monad.

(See \protect\hyperlink{week92}{``Week 92''} and
\protect\hyperlink{week118}{``Week 118''} for how you get monads from
adjunctions. Alas, I think I haven't gotten around to explaining the
concept of an algebra of a monad! So much to explain, so little time!)

Now, if you know some category theory and think a while about this, you
will see that in a weak \(\omega\)-category defined this way, all the
laws like associativity hold \emph{up to equivalence}, with the
equivalences satisfying the necessary coherence laws \emph{up to
equivalence}, and so ad infinitum. Crudely speaking, the lifting
\([\cdot,\cdot]\) is what turns equations into \(n\)-morphisms. To get a
feeling for how this work, you have to figure out what the left adjoint
\(F\) looks like. Penon works this out in detail in the second half of
his paper.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week137}{%
\section{September 4, 1999}\label{week137}}

Now I'm in Cambridge England, chilling out with the category theorists,
so it makes sense for me to keep talking about category theory. I'll
start with some things people discussed at the conference in Coimbra
(see last week).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Michael Mueger, ``Galois theory for braided tensor categories and the
  modular closure'', preprint available as
  \href{https://arxiv.org/abs/math.CT/9812040}{\texttt{math.CT/9812040}}.
\end{enumerate}

A braided monoidal category is simple algebraic gadget that captures a
bit of the essence of \(3\)-dimensionality in its rawest form. It has a
bunch of ``objects'' which we can draw a labelled dots like this: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
  \end{tikzpicture}
\] So far this is just 0-dimensional. Next, given a bunch of objects we
get a new object, their ``tensor product'', which we can draw by setting
the dots side by side. So, for example, we can draw \(x\otimes y\) like
this: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
  \end{tikzpicture}
\] This is \(1\)-dimensional. But in addition we have, for any pair of
objects \(x\) and \(y\), a bunch of ``morphisms'' \(f\colon x\to y\). We
can draw a morphism from a tensor product of objects to some other
tensor product of objects as a picture like this: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
    \node[label=above:{$z$}] at (2,0) {$\bullet$};
    \draw[thick] (0,0) to (0,-1.5);
    \draw[thick] (1,0) to (1,-1.5);
    \draw[thick] (2,0) to (2,-1.5);
    \draw[rounded corners] (-0.2,-1.5) rectangle ++(2.4,-1);
    \node at (1,-2) {$f$};
    \draw[thick] (0.5,-2.5) to (0.5,-4);
    \draw[thick] (1.5,-2.5) to (1.5,-4);
    \node[label=below:{$u$}] at (0.5,-4) {$\bullet$};
    \node[label=below:{$v$}] at (1.5,-4) {$\bullet$};
  \end{tikzpicture}
\] This picture is \(2\)-dimensional. In addition, we require that for
any pair of objects \(x\) and \(y\) there is a ``braiding'', a special
morphism from \(x\otimes y\) to \(y\otimes x\). We draw it like this: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
    \begin{knot}
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-2);
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-2);
    \end{knot}
    \node[label=below:{$y$}] at (0,-2) {$\bullet$};
    \node[label=below:{$x$}] at (1,-2) {$\bullet$};
  \end{tikzpicture}
\] With this crossing of strands, the picture has become
\(3\)-dimensional!

We also require that we can ``compose'' a morphism \(f\colon x\to y\)
and a morphism \(g\colon y\to z\) and get a morphism
\(fg\colon x\to z\). We draw this by sticking one picture on top of each
other like this\ldots{} I'll draw a fancy example where all the objects
in question are themselves tensor products of other objects: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
    \node[label=above:{$z$}] at (2,0) {$\bullet$};
    \draw[thick] (0,0) to (0,-1);
    \draw[thick] (1,0) to (1,-1);
    \draw[thick] (2,0) to (2,-1);
    \draw[rounded corners] (-0.2,-1) rectangle ++(2.4,-1);
    \node at (1,-1.5) {$f$};
    \draw[thick] (0.5,-2) to (0.5,-3);
    \draw[thick] (1.5,-2) to (1.5,-3);
    \draw[rounded corners] (-0.2,-3) rectangle ++(2.4,-1);
    \node at (1,-3.5) {$g$};
    \draw[thick] (0,-4) to (0,-5);
    \draw[thick] (0.66,-4) to (0.66,-5);
    \draw[thick] (1.33,-4) to (1.33,-5);
    \draw[thick] (2,-4) to (2,-5);
    \node[label=below:{$a$}] at (0,-5) {$\bullet$};
    \node[label=below:{$b$}] at (0.66,-5) {$\bullet$};
    \node[label=below:{$c$}] at (1.33,-5) {$\bullet$};
    \node[label=below:{$d$}] at (2,-5) {$\bullet$};
  \end{tikzpicture}
\]

Finally, we require that the tensor product, braiding and composition
satisfy a bunch of axioms. I won't write these down because I already
did so in \protect\hyperlink{week121}{``Week 121''}, but the point is
that they all make geometrical sense --- or more precisely, topological
sense --- in terms of the above pictures.

The pictures I've drawn should make you think about knots and tangles
and circuit diagrams and Feynman diagrams and all sorts of things like
that --- and it's true, you can understand all these things very
elegantly in terms of braided monoidal categories! Sometimes it's nice
to throw in another rule: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
    \begin{knot}
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-2);
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-2);
    \end{knot}
    \node[label=below:{$y$}] at (0,-2) {$\bullet$};
    \node[label=below:{$x$}] at (1,-2) {$\bullet$};
    \node at (2,-1) {$=$};
    \begin{scope}[shift={(3,0)}]
      \node[label=above:{$x$}] at (0,0) {$\bullet$};
      \node[label=above:{$y$}] at (1,0) {$\bullet$};
      \begin{knot}
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-2);
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-2);
      \end{knot}
      \node[label=below:{$y$}] at (0,-2) {$\bullet$};
      \node[label=below:{$x$}] at (1,-2) {$\bullet$};
    \end{scope}
  \end{tikzpicture}
\] where we cook up the second picture using the inverse of the
braiding. This rule is good when you don't care about the difference
between overcrossings and undercrossings. If this rule holds we say our
braided monoidal category is ``symmetric''. Topologically, this rule
makes sense when we study \(4\)-dimensional or higher-dimensional
situations, where we have enough room to untie all knots. For example,
the traditional theory of Feynman diagrams is based on symmetric
monoidal categories (like the category of representations of the
Poincare group), and it works very smoothly in \(4\)-dimensional
spacetime.

But \(3\)-dimensional spacetime is a bit different. For example, when we
interchange two identical particles, it really makes a difference
whether we do it like this: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
    \begin{knot}
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-2);
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-2);
    \end{knot}
    \node[label=below:{$y$}] at (0,-2) {$\bullet$};
    \node[label=below:{$x$}] at (1,-2) {$\bullet$};
  \end{tikzpicture}
\] or like this: \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-2);
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-2);
    \end{knot}
    \node[label=below:{$y$}] at (0,-2) {$\bullet$};
    \node[label=below:{$x$}] at (1,-2) {$\bullet$};
  \end{tikzpicture}
\] Thus in 3d spacetime, besides bosons and fermions, we have other
sorts of particles that act differently when we interchange them ---
sometimes people call them ``anyons'', and sometimes people talk about
``exotic statistics''.

Now let me dig into some more technical aspects of the picture.

Starting with Reshetikhin and Turaev, people have figured out how to use
braided monoidal categories to construct topological quantum field
theories in \(3\)-dimensional spacetime. But they can't do it starting
from any old braided monoidal category, because quantum field theory has
a lot to do with Hilbert spaces. So usually they start from a special
sort called a ``modular tensor category''. This is a kind of hybrid of a
braided monoidal category and a Hilbert space.

In fact, apart from one technical condition --- which is at the heart of
Mueger's work --- we can get the definition of a modular tensor category
by taking the definition of ``Hilbert space'', categorifying it once to
get the definition of ``2-Hilbert space'', and then throwing in a tensor
product and braiding that are compatible with this structure.

It's amazing that by such abstract conceptual methods we come up with
almost precisely what's needed to construct topological quantum field
theories in 3 dimensions! It's a great illustration of the power of
category theory. It's almost like getting something for nothing! But
I'll resist the temptation to tell you the details, since
\protect\hyperlink{week99}{``Week 99''} explains a bunch of it, and the
rest is in here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Baez, ``Higher-dimensional algebra II: 2-Hilbert spaces'',
  \emph{Adv. Math.} \textbf{127} (1997), 125--189. Also available as
  \href{https://arxiv.org/abs/q-alg/9609018}{\texttt{q-alg/9609018}}.
\end{enumerate}

In this paper I call a 2-Hilbert space with a compatible tensor product
a ``2-H\emph{-algebra", and if it also has a compatible braiding, I call
it a "braided 2-H}-algebra''. This terminology is bit clunky, but for
consistency I'll use it again here.

Okay, great: we \emph{almost} get the definition of modular tensor
category by elegant conceptual methods. But there is one niggling but
crucial technical condition that remains! There are lots of different
ways to state this condition, but Mueger proves they're equivalent to
the following very elegant one.

Let's define the ``center'' of a braided monoidal category to be the
category consisting of all objects \(x\) such that \[
  \begin{tikzpicture}
    \node[label=above:{$x$}] at (0,0) {$\bullet$};
    \node[label=above:{$y$}] at (1,0) {$\bullet$};
    \begin{knot}
      \strand[thick] (1,0)
        to [out=down,in=up] (0,-2);
      \strand[thick] (0,0)
        to [out=down,in=up] (1,-2);
    \end{knot}
    \node[label=below:{$y$}] at (0,-2) {$\bullet$};
    \node[label=below:{$x$}] at (1,-2) {$\bullet$};
    \node at (2,-1) {$=$};
    \begin{scope}[shift={(3,0)}]
      \node[label=above:{$x$}] at (0,0) {$\bullet$};
      \node[label=above:{$y$}] at (1,0) {$\bullet$};
      \begin{knot}
        \strand[thick] (0,0)
          to [out=down,in=up] (1,-2);
        \strand[thick] (1,0)
          to [out=down,in=up] (0,-2);
      \end{knot}
      \node[label=below:{$y$}] at (0,-2) {$\bullet$};
      \node[label=below:{$x$}] at (1,-2) {$\bullet$};
    \end{scope}
  \end{tikzpicture}
\] for all \(y\), and all morphisms between such objects. The center of
a braided monoidal category is obviously a symmetric monoidal category.
The term ``center'' is supposed to remind you of the usual center of a
monoid --- the elements that commute with all the others. And indeed,
both kinds of center are special cases of a general construction that
pushes you down the columns of the ``periodic table'':

\begin{longtable}[]{@{}llll@{}}
\caption{\(k\)-tuply monoidal \(n\)-categories}\tabularnewline
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endfirsthead
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=0\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
sets\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=1\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=2\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
commutative monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=3\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
symmetric monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
weakly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=4\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
strongly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=5\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

I described this in \protect\hyperlink{week74}{``Week 74''} and
\protect\hyperlink{week121}{``Week 121''}, so I won't do so again. My
point here is really just that lots of this \(3\)-dimensional stuff is
part of a bigger picture that applies to all different dimensions. For
more details, including a description of the center construction, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John Baez and James Dolan, ``Categorification'', in \emph{Higher
  Category Theory}, eds.~Ezra Getzler and Mikhail Kapranov, Contemporary
  Mathematics vol.~\textbf{230}, AMS, Providence, 1998, pp.~1--36. Also
  available at
  \href{https://arxiv.org/abs/math.QA/9802029}{\texttt{math.QA/9802029}}.
\end{enumerate}

Anyway, Mueger's elegant characterization of a modular tensor category
amounts to this: it's a braided 2-H*-algebra whose center is
``trivial''. This means that every object in the center is a direct sum
of copies of the object \(1\) --- the unit for the tensor product.

Mueger does a lot more in his paper that I won't describe here, and he
also said a lot of interesting things in his talk about the general
concept of center. For example, the center of a monoidal category is a
braided monoidal category. In particular, if you take the center of a
2-H\emph{-algebra you get a braided 2-H}-algebra. But what if you then
take this braided 2-H\emph{-algebra and look at }its* center? Well, it
turns out to be ``trivial'' in the above sense!

There's a bit of overlap between Mueger's paper and this one:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  A. Bruguieres, ``Categories premodulaires, modularisations et
  invariants des varietes de dimension 3'', preprint.
\end{enumerate}

One especially important issue they both touch upon is this: if you have
a braided 2-H\emph{-algebra, is there any way to mess with it slightly
to get a modular tensor category? The answer is yes. Thus we can really
get a topological quantum field theory from any braided 2-H}-algebra.
But this raises another question: can we describe this topological
quantum field theory directly, without using the modular tensor
category? The answer is again yes! For details see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Stephen Sawin, ``Jones-Witten invariants for nonsimply-connected Lie
  groups and the geometry of the Weyl alcove'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9905010}{\texttt{math.QA/9905010}}.
\end{enumerate}

This paper uses this machinery to get topological quantum field theories
related to Chern-Simons theory. People have thought about this a lot,
ever since Reshetikhin and Turaev, but the really great thing about this
paper is that it handles the case when the gauge group isn't
simply-connected. This introduces a lot of subtleties which previous
papers touched upon only superficially. Sawin works it out much more
thoroughly by an analysis of subsets of the Weyl alcove that are closed
under tensor product. It's very pretty, and reading it is very good
exercise if you want to learn more about representations of quantum
groups.

Now, I said that a lot of this is part of a bigger picture that works in
higher dimensions. However, a lot of this higher-dimensional stuff
remains very mysterious. Here are two cool papers that make some
progress in unlocking these mysteries:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Marco Mackaay, ``Finite groups, spherical \(2\)-categories, and
  4-manifold invariants'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9903003}{\texttt{math.QA/9903003}}.
\item
  Mikhail Khovanov, ``A categorification of the Jones polynomial'',
  preprint available as
  \href{https://arxiv.org/abs/math.QA/9908171}{\texttt{math.QA/9908171}}.
\end{enumerate}

Marco Mackaay spoke about his work in Coimbra, and I had grilled him
about it in Lisbon beforehand, so I think I understand it pretty well.
Basically what he's doing is categorifying the \(3\)-dimensional
topological quantum field theories studied by Dijkgraaf and Witten to
get \(4\)-dimensional theories. It fits in very nicely with his earlier
work described in \protect\hyperlink{week121}{``Week 121''}.

People have been trying to categorify the magic of quantum groups for
quite some time now, and Khovanov appears to have made a good step in
that direction by describing the Jones polynomial of a link as the
``graded Euler characteristic'' of a chain complex of graded vector
spaces. Since graded Euler characteristic is a generalization of the
dimension of a vector space, and taking the dimension is a process of
decategorification (i.e.~vector spaces are isomorphic iff they have the
same dimension), Khovanov's chain complex can be thought of as a
categorified version of the Jones polynomial.

I would like to understand better the relation between Khovanov's work
and the work of Crane and Frenkel on categorifying quantum groups (see
\protect\hyperlink{week58}{``Week 58''}). For this, I guess I should
read the following papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  J. Bernstein, I. Frenkel and M. Khovanov, ``A categorification of the
  Temperley-Lieb algebra and Schur quotients of \(U(\mathfrak{sl}_2)\)
  by projective and Zuckerman functors'', to appear in \emph{Selecta
  Mathematica}.
\item
  Mikhail Khovanov, \emph{Graphical calculus, canonical bases and
  Kazhdan-Lusztig theory}, Ph.D.~thesis, Yale, 1997.
\end{enumerate}
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\hypertarget{week138}{%
\section{September 12, 1999}\label{week138}}

I haven't been going to the Newton Institute much during my stay in
Cambridge, even though it's right around the corner from where I live.
There's always interesting math and physics going on at the Newton
Institute, and this summer they had some conferences on cosmology, but
I've been trying to get away from it all for a while. Still, I couldn't
couldn't resist the opportunity to go to James Hartle's 60th birthday
party, which was held there on September 2nd.

Hartle is famous for his work on quantum gravity and the foundations of
quantum mechanics, so some physics bigshots came and gave talks. First
Chris Isham spoke on applications of topos theory to quantum mechanics,
particularly in relation to Hartle's work on the so-called ``decoherent
histories'' approach to quantum mechanics, which he developed with
Murray Gell-Mann. Then Roger Penrose spoke on his ideas of
gravitationally induced collapse of the wavefunction. Then Gary Gibbons
spoke on the geometry of quantum mechanics. All very nice talks!

Finally, Stephen Hawking spoke on his work with Hartle. This talk was
the most personal in nature: Hawking interspersed technical descriptions
of the papers they wrote together with humorous reminiscences of their
get-togethers in Santa Barbara and elsewhere, including a long trip in a
Volkswagen beetle with Hawking's wheelchair crammed into the back seat.

I think Hawking said he wrote 4 papers with Hartle. The first really
important one was this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  James Hartle and Stephen Hawking, ``Path integral derivation of black
  hole radiance'', \emph{Phys. Rev.} \textbf{D13} (1976), 2188.
\end{enumerate}

As I explained in \protect\hyperlink{week111}{``Week 111''}, Hawking
wrote a paper in 1975 establishing a remarkable link between black hole
physics and thermodynamics. He showed that a black hole emits radiation
just as if it had a temperature inversely proportional to its mass.
However, this paper was regarded with some suspicion at the time, not
only because the result was so amazing, but because the calculation
involved modes of the electromagnetic field of extremely short
wavelengths near the event horizon --- much shorter than the Planck
length.

For this reason, Hartle and Hawking decided to redo the calculation
using path integrals --- a widely accepted technique in particle
physics. Hawking's background was in general relativity, so he wasn't
too good at path integrals; Hartle had more experience with particle
physics and knew how to do that kind of stuff.

(By now, of course, Hawking can do path integrals quicker than most
folks can balance their checkbook. This was a while ago.)

This wasn't straightforward. In particle physics people usually do
calculations assuming spacetime is flat, so Hartle and Hawking needed to
adapt the usual path-integral techniques to the case when spacetime
contains a black hole. The usual trick in path integrals is to replace
the time variable t by an imaginary number, then do the calculation, and
then analytically continue the answer back to real times. This isn't so
easy when there's a black hole around!

For starters, you have to analytically continue the Schwarzschild
solution (the usual metric for a nonrotating black hole) to imaginary
values of the time variable. When you do this, something curious
happens: you find that the Schwarzschild solution is periodic in the
imaginary time direction. And the period is proportional to the black
hole's mass.

Now, if you are good at physics, you know that doing quantum field
theory calculations where imaginary time is periodic with period \(1/T\)
is the same as doing statistical mechanics calculations where the
temperature is \(T\). So right away, you see that a black hole acts like
it has a temperature inversely proportional to its mass!

(In case you're worried, I'm using units where \(\hbar\), \(c\), \(G\),
and \(k\) are equal to \(1\).)

Anyway, that's how people think about the Hartle-Hawking paper these
days. I haven't actually read it, so my description may be a bit
anachronistic. Things usually look simpler and clearer in retrospect.

The other really important paper by Hartle and Hawking is this one:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  James Hartle and Stephen Hawking, ``Wavefunction of the universe'',
  \emph{Phys. Rev.} \textbf{D28} (1983), 2960.
\end{enumerate}

In quantum mechanics, we often describe the state of a physical system
by a wavefunction --- a complex-valued function on the classical
configuration space. If quantum mechanics applies to the whole universe,
this naturally leads to the question: what's the wavefunction of the
universe? In the above paper, Hartle and Hawking propose an answer.

Now, it might seem a bit overly ambitious to guess the wavefunction of
the entire universe, since we haven't even seen the whole thing yet. And
indeed, if someone claims to know the wavefunction of the whole
universe, you might think they were claiming to know everything that has
happened or will happen. Which naturally led Gell-Mann to ask Hartle:
``If you know the wavefunction of the universe, why aren't you rich
yet?''

But the funny thing about quantum theory is that, thanks to the
uncertainty principle, you can know the wavefunction of the universe,
and still be completely clueless as to which horse will win at the races
tomorrow, or even how many planets orbit the sun.

That will either make sense to you, or it won't, and I'm not sure
anything \emph{short} I might write will help you understand it if you
don't already. A full explanation of this business would lead me down
paths I don't want to tread just now --- right into that morass they
call ``the interpretation of quantum mechanics''.

So instead of worrying too much about what it would \emph{mean} to know
the wavefunction of the universe, let me just explain Hartle and
Hawking's formula for it. Mind you, this formula may or may not be
correct, or even rigorously well-defined --- there's been a lot of
argument about it in the physics literature. However, it's pretty cool,
and definitely worth knowing.

Here things get a wee bit more technical. Suppose that space is a
3-sphere, say \(X\). The classical configuration space of general
relativity is the space of metrics on \(X\). The wavefunction of the
universe should be some complex-valued function on this classical
configuration space. And here's Hartle and Hawking's formula for it:
\[\psi(q) = \int_{g|X=q} \exp(-S(g)/\hbar)dg.\] Now you can wow your
friends by writing down this formula and saying ``Here's the
wavefunction of the universe!''

But, what does it mean?

Well, the integral is taken over Riemannian metrics \(g\) on a 4-ball
whose boundary is \(X\), but we only integrate over metrics that
restrict to a given metric \(q\) on \(X\) --- that's what I mean by
writing \(g|X = q\). The quantity \(S(g)\) is the Einstein-Hilbert
action of the metric \(g\) --- in other words, the integral of the Ricci
scalar curvature of \(g\) over the 4-ball. Finally, of course, \(\hbar\)
is Planck's constant.

The idea is that, formally at least, this wavefunction is a solution of
the Wheeler-DeWitt equation, which is the basic equation of quantum
gravity (see \protect\hyperlink{week43}{``Week 43''}).

The measure ``\(dg\)'' is, unfortunately, ill-defined! In other words,
one needs to use lots of clever tricks to extract physics from this
formula, as usual for path integrals. But one can do it, and Hawking and
others have spent a lot of time ever since 1983 doing exactly this. This
led to a subject called ``quantum cosmology''.

I should add that there are lots of ways to soup up the basic
Hartle-Hawking formula. If we have other fields around besides gravity,
we just throw them into the action in the action in the obvious way and
integrate over them too. If our manifold \(X\) representing space is not
a 3-sphere, we can pick some other 4-manifold having it as boundary. If
we can't make up our mind which 4-manifold to use, we can try a ``sum
over topologies'', summing over all 4-manifolds with \(X\) as boundary.
We can do this even when \(X\) is a 3-sphere, actually --- but it's a
bit controversial whether we should, and also whether the sum converges.

Well, there's a lot more to say, like what the physical interpretation
of the Hartle-Hawking formula is, and what predicts. It's actually quite
cool --- in a sense, it says that the universe tunnelled into being out
of nothingness! But that sounds like a bunch of nonsense --- the sort of
fluff they write on the front of science magazines to sell copies. To
really explain it takes quite a bit more work. And unfortunately, it's
just about dinner-time, so I want to stop now.

Anyway, it was an interesting birthday party.
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\section{September 19, 1999}\label{week139}}

Last time I described some of the talks at James Hartle's 60th birthday
celebration at the Newton Institute. But I also met some people at that
party that I'd been wanting to talk to. There's a long story behind
this, so if you don't mind, I'll start at the beginning\ldots.

A while ago, Phillip Helbig, one of the two moderators of
\texttt{sci.physics.research} who do astrophysics, drew my attention to
an interesting paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Vipul Periwal, ``Cosmological and astrophysical tests of quantum
  gravity'', preprint available at
  \href{https://arxiv.org/abs/astro-ph/9906253}{\texttt{astro-ph/9906253}}
\end{enumerate}

The basic idea behind this is that quantum gravity effects could cause
deviations from Newton's inverse square law at large distance scales,
and that these deviations might explain various puzzles in astrophysics,
like the ``missing mass problem'' and the possibly accelerating
expansion of the universe.

This would be great, because it might not only help us understand these
astrophysics puzzles, but also help solve the big problem with quantum
gravity, namely the shortage of relevant experimental data.

But of course one needs to read the fine print before getting too
excited about ideas like this!

Following the argument in Periwal's paper requires some familiarity with
the renormalization group, since that's what people use to study how
``constants'' like the charge of the electron or Newton's gravitational
constant depend on the distance scale at which you measure them --- due
to quantum effects. Reading the paper, I immediately became frustrated
with my poor understanding of the renormalization group. It's really
important, so I decided to read more about it and explain it in the
simplest possible terms on \texttt{sci.physics.research} --- since to
understand stuff, I like to try to explain it.

In the process, I found this book very helpful:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Michael E. Peskin and Daniel V. Schroeder, \emph{An Introduction to
  Quantum Field Theory}, Addison-Wesley, Reading, Massachusetts 1995.
\end{enumerate}

The books I'd originally learned quantum field theory from didn't
incorporate the modern attitude towards renormalization, due to Kenneth
Wilson --- the idea that quantum field theory may not ultimately be true
at very short distance scales, but that's okay, because if we assume
it's a good approximation at pretty short distance scales, it becomes a
\emph{better} approximation at \emph{larger} distance scales. This is
especially important when you're thinking about quantum gravity, where
godawful strange stuff may be happening at the Planck length. Peskin and
Schroeder explain this idea quite well. For my own sketchy summary, try
this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Baez, Renormalization made easy,
  \texttt{http://math.ucr.edu/home/baez/renormalization.html}
\end{enumerate}

I deliberately left out as much math as possible, to concentrate on the
basic intuition.

Thus fortified, I returned to Periwal's paper, and it made a bit more
sense. Let me describe the main idea: how we might expect Newton's
gravitational constant to change with distance.

So, suppose we have any old quantum field theory with a coupling
constant \(G\) in it. In fact, \(G\) will depend on the length scale at
which we measure it. But using Planck's constant and the speed of light
we can translate length into \(1/\mathrm{momentum}\). This allows us to
think of \(G\) as a function of momentum. Roughly speaking, when you
shoot particles at each other at higher momenta, they come closer
together before bouncing off, so measuring a coupling constant at a
higher momentum amounts to measuring at a shorter distance scale.

The equation describing how \(G\) depends on the momentum \(p\) is
called the ``Callan-Symanzik equation''. In general it looks like this:
\[\frac{dG}{d(\ln p)} = \beta(G)\] But all the fun starts when we use
our quantum field theory to calculate the right hand side, which is
called --- surprise! --- the ``beta function'' of our theory. Typically
we get something like this:
\[\frac{dG}{d(\ln p)} = (n-d)G+aG_2+bG_3+\ldots\] Here \(n\) is the
dimension of spacetime and \(d\) is a number called the ``upper critical
dimension''. You see, it's fun when possible to think of our quantum
field theory as defined in a spacetime of arbitrary dimension, and then
specialize to the case at hand. I'll show you how work out \(d\) in a
minute. It's harder to work out the numbers \(a\), \(b\), and so on ---
for this, you need to do some computations using the quantum field
theory in question.

What does the Callan-Symanzik equation really mean? Well, for starters
let's neglect the higher-order terms and suppose that
\[\frac{dG(p)}{d(\ln p)} = (n-d)G\] This says \(G\) is proportional to
\(p^{n-d}\). There are 3 cases:

\begin{enumerate}
\def\labelenumi{\Alph{enumi})}
\item
  When \(n < d\), our coupling constant gets \emph{smaller} at higher
  momentum scales, and we say our theory is ``superrenormalizable''.
  Roughly, this means that at larger and larger momentum scales, our
  theory looks more and more like a ``free field theory'' --- one where
  particles don't interact at all. This makes superrenormalizable
  theories easy to study by treating them as a free field theory plus a
  small perturbation.
\item
  When \(n > d\), our coupling constant gets \emph{larger} at higher
  momentum scales, and we say our theory is ``nonrenormalizable''. Such
  theories are hard to study using perturbative calculations in free
  field theory.
\item
  When \(n = d\), we are right on the brink between the two cases above.
  We say our theory is ``renormalizable'', but we really have to work
  out the next term in the beta function to see if the coupling constant
  grows or shrinks with increasing momentum.
\end{enumerate}

Consider the example of general relativity. We can figure out the upper
critical dimension using a bit of dimensional analysis and handwaving.
Let's work in units where Planck's constant and the speed of light are
\(1\). The Lagrangian is the Ricci scalar curvature divided by
\(8\pi G\), where \(G\) is Newton's gravitational constant. We need to
get something dimensionless when we integrate the Lagrangian over
spacetime to get the action, since we exponentiate the action when doing
path integrals in quantum field theory. Curvature has dimensions of
\(1/\mathrm{length}^2\), so when spacetime has dimension \(n\), \(G\)
must have dimensions of \(\mathrm{length}^{n-2}\).

This means that if you are a tiny little person with a ruler \(X\) times
smaller than mine, Newton's constant will seem \(X^{n-2}\) times bigger
to you. But measuring Newton's constant at a length scale that's \(X\)
times smaller is the same as measuring it at a momentum scale that's
\(X\) times bigger. We already solved the Callan-Symanzik equation and
saw that when we measure \(G\) at the momentum scale \(p\), we get an
answer proportional to \(p^{n-d}\). We thus conclude that \(d = 2\).

(If you're a physicist, you might enjoy finding the holes in the above
argument, and then plugging them.)

This means that quantum gravity is nonrenormalizable in 4 dimensions.
Apparently gravity just keeps looking stronger and stronger at shorter
and shorter distance scales. That's why quantum gravity has
traditionally been regarded as hard --- verging on hopeless.

However, there is a subtlety. We've been ignoring the higher-order terms
in the beta function, and we really shouldn't!

This is obvious for renormalizable theories, since when \(n = d\), the
beta function looks like \[\frac{dG}{d(\ln p)} = aG_2+bG_3+\ldots\] so
if we ignore the higher-order terms, we are ignoring the whole
right-hand side! To see the effect of these higher-order terms let's
just consider the simple case where \[\frac{dG}{d(\ln p)} = aG_2\] If
you solve this you get \[G = \frac{c}{1-ac\ln p}\] where \(c\) is a
positive constant. What does this mean? Well, if \(a < 0\), it's obvious
even before solving the equation that \(G\) slowly \emph{decreases} with
increasing momentum. In this case we say our theory is ``asymptotically
free''. For example, this is true for the strong force in the Standard
Model, so in collisions at high momentum quarks and gluons act a lot
like free particles. (For more on this, try
\protect\hyperlink{week94}{``Week 94''}.)

On the other hand, if \(a > 0\), the coupling constant \(G\)
\emph{increases} with increasing momentum. To make matters worse, it
becomes INFINITE at a sufficiently high momentum! In this case we say
our theory has a ``Landau pole'', and we cluck our tongues
disapprovingly, because it's not a good thing. For example, this is what
happens in quantum electrodynamics when we don't include the weak force.
Of course, one should really consider the effect of even higher-order
terms in the beta function before jumping to conclusions. However,
particle physicists generally feel that among renormalizable field
theories, the ones with \(a < 0\) are good, and the ones with \(a > 0\)
are bad.

Okay, now for the really fun part. Perturbative quantum gravity in 2
dimensions is not only renormalizable (because this is the upper
critical dimension), it's also asympotically free! Thus in \(n\)
dimensions, we have \[\frac{dG}{d(\ln p) = (n-2)G+aG_2+\ldots}\] where
\(a < 0\). If we ignore the higher-order terms which I have written as
``\(\ldots\)'', this implies something very interesting for quantum
gravity in 4 dimensions. Suppose that at low momenta \(G\) is small.
Then the right-hand side is dominated by the first term, which is
positive. This means that as we crank up the momentum scale, \(G\) keeps
getting bigger. This is what we already saw about nonrenormalizable
theories. But after a while, when \(G\) gets big, the second term starts
mattering more --- and it's negative. So the growth of \(G\) starts
slowing!

In fact, it's easy to see that as we keep cranking up the momentum,
\(G\) will approach the value for which \[\frac{dG}{d(\ln p)} = 0.\] We
call this value an ``ultraviolet stable fixed point'' for the
gravitational constant. Mathematically, what we've got is a flow in the
space of coupling constants, and an ultraviolet stable fixed point is
one that attracts nearby points as we flow in the direction of higher
momenta. This particular kind of ultraviolet stable fixed point ---
coming from an asymptotically free theory in dimensions above its upper
critical dimension --- is called a ``Wilson-Fisher fixed point''.

So: perhaps quantum gravity is saved from an ever-growing Newton's
constant at small distance scales by a Wilson-Fisher fixed point! But
before we break out the champagne, note that we neglected the
higher-order terms in the beta function in our last bit of reasoning.
They can still screw things up. For example, if
\[\frac{dG}{d(\ln p)} = (n-2)G+aG_2+bG_3\] and \(b\) is positive, there
will not be a Wilson-Fisher fixed point when the dimension \(n\) gets
too far above \(2\). Is \(4\) too far above \(2\)? Nobody knows for
sure. We can't really work out the beta function exactly. So, as usual
in quantum gravity, things are a bit iffy.

However, Periwal cites the following paper as giving numerical evidence
for a Wilson-Fisher fixed point in quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Herbert W. Hamber and Ruth M. Williams, ``Newtonian potential in
  quantum Regge gravity'', \emph{Nucl. Phys.} \textbf{B435} (1995),
  361--397.
\end{enumerate}

And he draws some startling conclusions from the existence of this fixed
point. He says it should have consequences for the missing mass problem
and the value of the cosmological constant! However, I found it hard to
follow his reasoning, so I decided to track down some of the references
--- starting with the above paper.

Now, Ruth Williams works at Cambridge University, so I was not surprised
to find her at Hartle's party. She was busy talking to John Barrett, who
also does quantum gravity, up at Nottingham University. I arranged to
stop by her office, get a copy of her paper, and have her explain it to
me. I also arranged to visit John in Nottingham and have him explain his
work with Louis Crane on Lorentzian spin foam models --- but more about
that next week!

Anyway, here's how the Hamber-Williams paper goes, very roughly. They
simulate quantum gravity by chopping up a \(4\)-dimensional torus into
\(16\times16\times16\times16\) hypercubes, chopping each hypercube into
24 \(4\)-simplices in the obvious way, and then doing a Monte Carlo
calculation of the path integral using the Regge calculus, which is a
discretized version of general relativity suited to triangulated
manifolds (see \protect\hyperlink{week119}{``Week 119''} for details).
Their goal was to work out how Newton's constant varies with distance.
They did it by calculating correlations between Wilson loops that wrap
around the torus. They explain how you can deduce Newton's constant from
this information, but I don't have the energy to describe that here.
Anyway, they claim that Newton's constant varies with distance as one
would expect if there was a Wilson-Fisher fixed point!

(It's actually more complicated that this because besides Newton's
constant, there is also another coupling constant in their theory: the
cosmological constant. And of course this is very important for
potential applications to astrophysics.)

Unfortunately, I'm still mystified about a large number of things. Let
me just mention two. First, Hamber and Williams consider values of \(G\)
which are \emph{greater} than the Wilson-Fisher fixed point. Since this
is an ultraviolet stable fixed point, such values of \(G\) flow
\emph{down} to the fixed point as we crank up the momentum scale. Or in
other words, in this regime Newton's constant gets \emph{bigger} with
increasing distances. At least to my naive brain, this sounds nice for
explaining the missing mass problem. But the funny thing is, this regime
is utterly different from the regime where \(G\) is close to zero ---
namely, \emph{less} than the Wilson-Fisher fixed point. I thought all
the usual perturbative quantum gravity calculations were based on the
assumption that at macroscopic distance scales \(G\) is small, and flows
up to the fixed point as we crank up the momentum scale! Are these folks
claiming this picture is completely wrong? I'm confused.

Another puzzle is that Periwal thinks Newton's constant will start to
grow at distance scales roughly comparable to the radius of the universe
(or more precisely, the Hubble length). But it looks like Hamber and
Williams say their formula for \(G\) as a function of momentum holds at
\emph{short} distance scales.

I guess I need to read more stuff, starting perhaps with Weinberg's old
paper on quantum gravity and the renormalization group:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Steven Weinberg, ``Ultraviolet divergences in quantum theories of
  gravitation'', in \emph{General Relativity: an Einstein Centenary
  Survey}, eds.~Stephen Hawking and Werner Israel, Cambridge U. Press,
  Cambridge (1979).
\end{enumerate}

and then perhaps turning to his paper on the cosmological constant:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Steven Weinberg, ``The cosmological constant problem'',
  \emph{Rev.~Mod. Phys.} \textbf{61} (1989), 1.
\end{enumerate}

and some books on the renormalization group and quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Claude Itzykson and Jean-Michel Drouffe, \emph{Statistical Field
  Theory}, 2 volumes, Cambridge U. Press, 1989.
\item
  Jean Zinn-Justin, \emph{Quantum Field Theory and Critical Phenomena},
  Oxford U. Press, Oxford, 1993.
\item
  Jan Ambjorn, Bergfinnur Durhuus, and Thordur Jonsson, \emph{Quantum
  Geometry: A Statistical Field Theory Approach}, Cambridge U. Press,
  Cambridge, 1997.
\end{enumerate}

I should also think more about this recent paper, which claims to find a
phase transition in a toy model of quantum gravity where one does the
path integral over a special class of metrics --- namely those with 2
Killing vector fields.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Viqar Husain and Sebastian Jaimungal, ``Phase transition in quantum
  gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9908056}{\texttt{gr-qc/9908056}}.
\end{enumerate}

But if anyone can help me clear up these issues, please let me know!

Okay, enough of that. Another person I met at the party was Roger
Penrose! Later I visited him in Oxford. Though recently retired, he
still holds monthly meetings at his house in the country, attended by a
bunch of young mathematicians and physicists. At the one I went to, the
discussion centered around Penrose's forthcoming book. The goal of this
book is to explain modern physics to people who know only a little math,
but are willing to learn more. A nice thing about it is that it treats
various modern physics fads without the uncritical adulation that mars
many popularizations. In particular, when I visited, he was busy writing
a chapter on inflationary cosmology, so he talked about a bunch of
problems with that theory, and cosmology in general.

I've never been sold on inflation, since it relies on fairly speculative
aspects of grand unified theories (or GUTs), so most of these problems
merely amused me. Theorists take a certain wicked glee in seeing someone
else's theory in trouble. However, one of these problems concerned the
Standard Model, and this hit closer to home. Penrose made the standard
observation that the most distant visible galaxies in opposite
directions have not had time to exchange information --- at least not
since the time of recombination, when the initial hot fireball cooled
down enough to become transparent. But if the symmetry between the
electromagnetic and weak forces is spontaneously broken only when the
Higgs field cools down enough to line up, as the Standard Model
suggests, this raises the danger that the Higgs field could wind up
pointing in different directions in different patches of the visible
universe! --- since these different ``domains'' would not yet have had
time to expand to the point where a single one fills the whole visible
universe. But we don't see such domains --- or more precisely, we don't
see the ``domain walls'' one would expect at their boundaries.

Of course, inflation is an attempt to deal with similar problems, but
inflation is posited to happen at GUT scale energies, too soon (it
seems) to solve \emph{this} problem, which happens when things cool down
to the point where the electroweak symmetry breaks.

Again, if anyone knows anything about this, I'd love to hear about it.
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Let's start with something fun: biographies!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Norman Macrae, \emph{John von Neumann: The Scientific Genius Who
  Pioneered the Modern Computer, Game Theory, Nuclear Deterrence and
  Much More}, American Mathematical Society, Providence, Rhode Island,
  1999.
\item
  Steve Batterson, \emph{Stephen Smale: The Mathematician Who Broke the
  Dimension Barrier}, American Mathematical Society, Providence, Rhode
  Island, 2000.
\end{enumerate}

Von Neumann might be my candidate for the best mathematical physicist of
the 20th century. His work ranged from the ultra-pure to the
ultra-applied. At one end: his work on axiomatic set theory. At the
other: designing and building some of the first computers to help design
the hydrogen bomb --- which was so applied, it got him in trouble at the
Institute for Advanced Studies! But there's so much stuff in between:
the mathematical foundations of quantum mechanics (von Neumann algebras,
the Stone-Von Neumann theorem and so on), ergodic theory, his work on
Hilbert's fifth problem, the Manhattan project, game theory, the theory
of self-reproducing cellular automata\ldots. You may or may not like
him, but you can't help being awed. Hans Bethe, no dope himself, said of
von Neumann that ``I always thought his brain indicated that he belonged
to a new species, an evolution beyond man''. The mathematician Polya
said ``Johnny was the only student I was ever afraid of.'' Definitely an
interesting guy.

While von Neumann is one of those titans that dominated the first half
of the 20th century, Smale is more typical of the latter half --- he
protested the Vietnam war, and now he even has his own web page!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Stephen Smale's web page,
  \texttt{http://www.math.berkeley.edu/\textasciitilde{}smale/}
\end{enumerate}

He won the Fields medal in 1966 for his work on differential topology.
Some of his work is what you might call ``pure'': figuring out how to
turn a sphere inside out without any crinkles, proving the Poincare
conjecture in dimensions 5 and above, stuff like that. But a lot of it
concerns dynamical systems: cooking up strange attractors using the
horseshoe map, proving that structural stability is not generic, and so
on --- long before the recent hype about chaos theory began! More
recently he's also been working on economics, game theory, and the
relation of computational complexity to algebraic geometry.

Now for some papers on spin networks and spin foams:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Roberto De Pietri, Laurent Freidel, Kirill Krasnov, and Carlo Rovelli,
  ``Barrett-Crane model from a Boulatov-Ooguri field theory over a
  homogeneous space'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9907154}{\texttt{hep-th/9907154}}.
\end{enumerate}

The Barrett-Crane model is a very interesting theory of quantum gravity.
I've described it already in \protect\hyperlink{week113}{``Week 113''},
\protect\hyperlink{week120}{``Week 120''} and
\protect\hyperlink{week128}{``Week 128''}, so I won't go into much
detail about it --- I'll just plunge in\ldots.

The original Barrett-Crane model involved a fixed triangulation of
spacetime. One can also cook up versions where you sum over
triangulations. In some ways the most natural is to sum over all ways of
taking a bunch of \(4\)-simplices and gluing them face-to-face until no
faces are left free. Some of these ways give you manifolds; others
don't. In this paper, the authors show that this ``sum over
triangulations'' version of the Barrett-Crane model can be thought of as
a quantum field theory on a product of 4 copies of the 3-sphere. Weird,
huh?

But it's actually not so weird. The space of complex functions on the
\((n-1)\)-sphere is naturally a representation of \(\mathrm{SO}(n)\).
But there's another way to think of this representation. Consider an
triangle in \(\mathbb{R}^n\). We can associate vectors to two of its
edges, say \(v\) and \(w\), and form the wedge product of these vectors
to get a bivector \(v\wedge w\). This bivector describes the area
element associated to the triangle. If we pick an orientation for the
triangle, this bivector is uniquely determined. Now, a bivector of the
form \(v\wedge w\) is called ``simple''. The space of simple bivectors
is naturally a Poisson manifold --- i.e., we can define Poisson brackets
of functions on this space --- so we can think of it as a ``classical
phase space''. Using geometric quantization, we can quantize this
classical phase space and get a Hilbert space. Since rotations act on
the classical phase space, they act on this Hilbert space, so it becomes
a representation of \(\mathrm{SO}(n)\). And this representation is
isomorphic to the space of complex functions on the \((n-1)\)-sphere!

Thus, we can think of a complex function on the \((n-1)\)-sphere as a
``quantum triangle'' in \(\mathbb{R}^n\), as long as we really just care
about the area element associated to the triangle. One can develop this
analogy in detail and make it really precise. In particular, one can
describe a ``quantum tetrahedron'' in \(\mathbb{R}^n\) as a collection
of 4 quantum triangles satisfying some constraints that say the fit
together into a tetrahedron. These quantum tetrahedra act almost like
ordinary tetrahedra when they are large, but when the areas of their
faces becomes small compared to the square of the Planck length, the
uncertainty principle becomes important: you can't simultaneously know
everything about their geometry with perfect precision.

Let me digress for a minute and sketch the history of this stuff. The
quantum tetrahedron in 3 dimensions was invented by Barbieri --- see
\protect\hyperlink{week110}{``Week 110''}. It quickly became important
in the study of spin foam models. Then Barrett and I systematically
worked out how to construct the quantum tetrahedron in 3 and 4
dimensions using geometric quantization --- see
\protect\hyperlink{week134}{``Week 134''}. Subsequently, Freidel and
Krasnov figured out how to generalize this stuff to higher dimensions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Laurent Freidel, Kirill Krasnov and Raymond Puzio, ``BF description of
  higher-dimensional gravity'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9901069}{\texttt{hep-th/9901069}}.
\item
  Laurent Freidel and Kirill Krasnov, ``Simple spin networks as Feynman
  graphs'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9903192}{\texttt{hep-th/9903192}}.
\end{enumerate}

So much for history --- now back to business. So far I've told you that
the state of a ``quantum triangle'' in 4 dimensions is given by a
complex function on the 3-sphere. And I've told you that a ``quantum
tetrahedron'' is a collection of 4 quantum triangles satisfying some
constraints. More precisely, let \[H = L^2(S^3)\] be the Hilbert space
for a quantum triangle in 4 dimensions. Then the Hilbert space for a
quantum tetrahedron is a certain subspace \(T\) of
\(H\otimes H\otimes H\otimes H\), where ``\(\otimes\)'' denotes the
tensor product of Hilbert spaces. Concretely, we can think of states in
\(T\) as complex functions on the product of 4 copies of \(S^3\). These
complex functions need to satisfy some constraints, but let's not worry
about those\ldots.

Now let's ``second quantize'' the Hilbert space \(T\). This is physics
jargon for making a Hilbert space out of the algebra of polynomials on
\(T\) --- usually called the ``Fock space'' on \(T\). As usual, there
are two pictures of states in this Fock space: the ``field'' picture and
the ``particle'' picture. On the one hand, they are states of a quantum
field theory on the product of 4 copies of \(S^3\). But on the other
hand, they are states of an arbitrary collection of quantum tetrahedra
in 4 dimensions. In other words, we've got ourselves a quantum field
theory whose ``elementary particles'' are quantum tetrahedra!

The idea of the de Pietri-Freidel-Krasnov-Rovelli paper is to play these
two pictures off each other and develop a new way of thinking about the
Barrett-Crane model. The main thing these guys do is write down a
Lagrangian with some nice properties. Throughout quantum field theory,
one of the big ideas is to start with a Lagrangian and use it to compute
the amplitudes of Feynman diagrams. A Feynman diagram is a graph with
edges corresponding to ``particles'' and vertices corresponding to
``interactions'' where a bunch of particles turns into another bunch of
particles.

But in the present context, the so-called ``particles'' are really
quantum tetrahedra! Thus the trick is to write down a Lagrangian giving
Feynman diagrams with 5-valent vertices. If you do it right, these
5-valent vertices correspond exactly to ways that 5 quantum tetrahedra
can fit together as the 5 faces of a \(4\)-simplex! Let's call such a
thing a ``quantum \(4\)-simplex''. Then your Feynman diagrams correspond
exactly to ways of gluing together a bunch of quantum \(4\)-simplices
face-to-face. Better yet, if you set things up right, the amplitude for
such a Feynman diagram exactly matches the amplitude that you'd compute
for a triangulated manifold using the Barrett-Crane model!

In short, what we've got here is a quantum field theory whose Feynman
diagrams describe ``quantum geometries of spacetime'' --- where
spacetime is not just a fixed triangulated manifold, but any possible
way of gluing together a bunch of \(4\)-simplices face-to-face.

Sounds great, eh? So what are the problems? I'll just list three. First,
we don't know that the ``sum over Feynman diagrams'' converges in this
theory. In fact, it probably does not --- but there are probably ways to
deal with this. Second, the model is Riemannian rather than Lorentzian:
we are using the rotation group when we should be using the Lorentz
group. Luckily this is addressed in a new paper by Barrett and Crane.
Third, we aren't very good at computing things with this sort of model
--- short of massive computer simulations, it's tough to see what it
actually says about physics. In my opinion this is the most serious
problem: we should either start doing computer simulations of spin foam
models, or develop new analytical techniques for handling them --- or
both!

Now, this ``new paper by Barrett and Crane'' is actually not brand new.
It's a revised version of something they'd already put on the net:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  John Barrett and Louis Crane, ``A Lorentzian signature model for
  quantum general relativity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9904025}{\texttt{gr-qc/9904025}}.
\end{enumerate}

However, it's much improved. When I went up to Nottingham at the end of
the summer, I had Barrett explain it to me. I learned all sorts of cool
stuff about representations of the Lorentz group. Unfortunately, I don't
now have the energy to explain all that stuff. I'll just say this:
everything I said above generalizes to the Lorentzian case. The main
difference is that we use the \(3\)-dimensional hyperboloid
\[H^3 = \{t^2 - x^2 - y^2 - z^2 = 1\}\] wherever we'd been using the
3-sphere \[S^3 = \{t^2 + x^2 + y^2 + z^2 = 1\}.\] It's sort of obvious
in retrospect, but it's nice that it works out so neatly!

Okay, here are some more papers on spin networks and spin foams. Since
I'm getting lazy, I'll just quote the abstracts:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Sameer Gupta, ``Causality in spin foam models'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9908018}{\texttt{gr-qc/9908018}}.
\end{enumerate}

\begin{quote}
We compute Teitelboim's causal propagator in the context of canonical
loop quantum gravity. For the Lorentzian signature, we find that the
resultant power series can be expressed as a sum over branched, colored
two-surfaces with an intrinsic causal structure. This leads us to define
a general structure which we call a ``causal spin foam''. We also
demonstrate that the causal evolution models for spin networks fall in
the general class of causal spin foams.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Matthias Arnsdorf and Sameer Gupta, ``Loop quantum gravity on
  non-compact spaces'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9909053}{\texttt{gr-qc/9909053}}.
\end{enumerate}

\begin{quote}
We present a general procedure for constructing new Hilbert spaces for
loop quantum gravity on non-compact spatial manifolds. Given any fixed
background state representing a non-compact spatial geometry, we use the
Gel'fand-Naimark-Segal construction to obtain a representation of the
algebra of observables. The resulting Hilbert space can be interpreted
as describing fluctuation of compact support around this background
state. We also give an example of a state which approximates classical
flat space and can be used as a background state for our construction.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Seth A. Major, ``Quasilocal energy for spin-net gravity'', preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9906052}{\texttt{gr-qc/9906052}}.
\end{enumerate}

\begin{quote}
The Hamiltonian of a gravitational system defined in a region with
boundary is quantized. The classical Hamiltonian, and starting point for
the regularization, is required by functional differentiablity of the
Hamiltonian constraint. The boundary term is the quasilocal energy of
the system and becomes the ADM mass in asymptopia. The quantization is
carried out within the framework of canonical quantization using spin
networks. The result is a gauge invariant, well-defined operator on the
Hilbert space induced from the state space on the whole spatial
manifold. The spectrum is computed. An alternate form of the operator,
with the correct naive classical limit, but requiring a restriction on
the Hilbert space, is also defined. Comparison with earlier work and
several consequences are briefly explored.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  C. Di Bartolo, R. Gambini, J. Griego, J. Pullin, ``Consistent
  canonical quantization of general relativity in the space of Vassiliev
  knot invariants'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9909063}{\texttt{gr-qc/9909063}}.
\end{enumerate}

\begin{quote}
We present a quantization of the Hamiltonian and diffeomorphism
constraint of canonical quantum gravity in the spin network
representation. The novelty consists in considering a space of
wavefunctions based on the Vassiliev knot invariants. The constraints
are finite, well defined, and reproduce at the level of quantum
commutators the Poisson algebra of constraints of the classical theory.
A similar construction can be carried out in 2+1 dimensions leading to
the correct quantum theory.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  John Baez, ``Spin foam perturbation theory'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9910050}{\texttt{gr-qc/9910050}} or
  at \texttt{http://math.ucr.edu/home/baez/foam3.ps}
\end{enumerate}

\begin{quote}
We study perturbation theory for spin foam models on triangulated
manifolds. Starting with any model of this sort, we consider an
arbitrary perturbation of the vertex amplitudes, and write the evolution
operators of the perturbed model as convergent power series in the
coupling constant governing the perturbation. The terms in the power
series can be efficiently computed when the unperturbed model is a
topological quantum field theory. Moreover, in this case we can
explicitly sum the whole power series in the limit where the number of
top-dimensional simplices goes to infinity while the coupling constant
is suitably renormalized. This `dilute gas limit' gives spin foam models
that are triangulation-independent but not topological quantum field
theories. However, we show that models of this sort are rather trivial
except in dimension 2.
\end{quote}
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How can you resist a book with a title like ``Inconsistent
Mathematics''?

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Chris Mortensen, \emph{Inconsistent Mathematics}, Kluwer, Dordrecht,
  1995.
\end{enumerate}

Ever since Goedel showed that all sufficiently strong systems formulated
using the predicate calculus must either be inconsistent or incomplete,
most people have chosen what they perceive as the lesser of two evils:
accepting incompleteness to save mathematics from inconsistency. But
what about the other option?

This book begins with the startling sentence: ``The following idea has
recently been gaining support: that the world is or might be
inconsistent.'' As we reel in shock, Mortensen continues:

\begin{quote}
Let us consider set theory first. The most natural set theory to adopt
is undoubtedly one which has unrestricted set abstraction (also known as
naive comprehension). This is the natural principle which declares that
to every property there is a unique set of things having the property.
But, as Russell showed, this leads rapidly to the contradiction that the
the Russell set {[}the set of all sets that do not contain themselves as
a member{]} both is and is not a member of itself. The overwhelming
majority of logicians took the view that this contradiction required a
weakening of unrestricted abstraction in order to ensure a consistent
set theory, which was in turn seen as necessary to provide a consistent
foundation for mathematics. But all ensuing attempts at weakening set
abstraction proved to be in various ways ad hoc. Da Costa and Routley
both suggested instead that the Russell set might be dealt with more
naturally in an inconsistent but nontrivial set theory (where triviality
means that every sentence is provable).
\end{quote}

An inconsistent but nontrivial logical system is called
\emph{paraconsistent}. But it's not so easy to create such systems. To
keep an inconsistency from infecting the whole system and making it
trivial, we need to drop the rule of classical logic which says that
``\(A\) and \(\operatorname{not}(A)\) implies \(B\)'' for all
propositions \(A\) and \(B\). Unfortunately, this rule is built into the
propositional calculus from the very start!

So, we need to revise the propositional calculus.

One way to do it is to abandon ``material implication'' --- the form of
implication where you can calculate the truth value of ``\(P\) implies
\(Q\)'' from those of \(P\) and \(Q\) using the following truth table:

\begin{longtable}[]{@{}ccc@{}}
\toprule
\(P\) & \(Q\) & \(P\implies Q\)\tabularnewline
\midrule
\endhead
T & T & T\tabularnewline
T & F & F\tabularnewline
F & T & T\tabularnewline
F & F & T\tabularnewline
\bottomrule
\end{longtable}

With material implication, a false statement implies \emph{every}
statement, so any inconsistency is fatal. But in real life, if we
discover we have one inconsistent belief, we don't conclude we can fly
and go jump off a building! Material implication is really just our best
attempt to define implication using truth tables with 2 truth values:
true and false. So it's not surprising that logicians have investigated
other forms of implication.

One obvious approach is to use more truth values, like ``true'',
``false'', and ``don't know''. There's a long history of work on such
multi-valued logics.

Another approach, initiated by Anderson and Belnap, is called
``relevance logic''. In relevance logic, ``\(P\) implies \(Q\)'' can
only be true if there is a conceptual connection between \(P\) and
\(Q\). So if \(B\) has nothing to do with \(A\), we don't get ``\(A\)
and \(\operatorname{not}(A)\) implies \(B\)''.

This book describes a logical system called ``RQ'' --- relevance logic
with quantifiers. It also describes a system called ``R\#'', which is a
version of the Peano axioms of arithmetic based on RQ instead of the
usual predicate calculus. Following the work of Robert Meyer, it proves
that R\# is nontrivial in the sense described above. Moreover, this
proof can be carried out R\# itself! However, you can carry out the
proof of Goedel's 2nd incompleteness theorem in R\#, so R\# cannot prove
itself consistent.

To paraphrase Mortensen: ``But this is not really a puzzle. The
explanation is that relevant and other paraconsistent logics turn on
making a distinction between inconsistency and triviality, the former
being weaker than the latter; whereas classical logical cannot make this
distinction. For what the present author's intuitions are worth, these
do seem to be different concpets. Thus for R\#, consistency cannot be
proved by finitistic means by Goedel's second theorem, whereas
nontriviality can be shown. Since Peano arithmetic collapses this
distinction, both kinds of consistency are infected by the same
unprovability.''

Mortensen also mentions another approach to get rid of ``\(A\) and
\(\operatorname{not}(A)\) implies \(B\)'' without getting rid of
material implication. This is to get rid of the rule that ``\(A\) and
\(\operatorname{not}(A)\)'' is false! He calls this ``Brazilian logic''.
Presumably this is not because your average Brazilian thinks this way,
but because the inventor of this approach, Da Costa, is Brazilian.

Brazilian logic sounds very bizarre at first, but in fact it's just the
dual of intuitionistic logic, where you drop the rule that ``\(A\) or
\(\operatorname{not}(A)\)'' is true. Intuitionistic logic is nicely
modeled by open sets in a topological space: ``and'' is intersection,
``or'' is union, and ``not'' is the interior of the complement.
Similarly, Brazilian logic is modeled by closed sets. In intuitionistic
logic we allow a slight gap between A and \(\operatorname{not}(A)\); in
Brazilian logic we allow a slight overlap.

In short, this book is full of fascinating stuff. Lots of passages are
downright amusing at first, like this:

\begin{quote}
{[}\ldots{]} there have been calls recently for inconsistent calculus,
appealing to the history of calculus in which inconsistent claims
abound, especially about infinitesimals (Newton, Leibniz, Bernoulli,
l'Hospital, even Cauchy). However, inconsistent calculus has resisted
development.
\end{quote}

But you always have to remember that the author is interested in
theories which, though inconsistent, are still paraconsistent. And I
think he really makes a good case for his claim that inconsistent
mathematics is worth studying --- even if our ultimate goal is to
\emph{avoid} inconsistency!

Okay, now let me switch gears drastically and say a bit about ``exotic
spheres'' --- smooth manifolds that are homeomorphic but not
diffeomorphic to the \(n\)-sphere with its usual smooth structure.
People on \texttt{sci.physics.research} have been talking about this
stuff lately, so it seems like a good time for a mini-essay on the
subject. Also, my colleague Fred Wilhelm works on the geometry of exotic
spheres, and he just gave a talk on it here at U. C. Riverside, so I
should pass along some of his wisdom while I still remember it.

First, recall the ``Hopf bundle''. It's easy to describe starting with
the complex numbers. The unit vectors in \(\mathbb{C}^2\) form the
sphere \(S^3\). The unit complex numbers form a group under
multiplication. As a manifold this is just the circle \(S^1\), but as a
group it's better known as \(\mathrm{U}(1)\). You can multiply a unit
vector by a unit complex number and get a new unit vector, so \(S^1\)
acts on \(S^3\). The quotient space is the complex projective space
\(\mathbb{CP}^1\), which is just the sphere \(S^2\). So what we've got
here is fiber bundle: \[S^1 \to S^3\to S^2 = \mathbb{CP}^1\] with fiber
\(S^1\), total space \(S^3\) and base space \(S^2\). This is the Hopf
bundle. It's famous because the map from the total space to the base was
the first example of a topologically nontrivial map from a sphere to a
sphere of lower dimension. In the lingo of homotopy theory, we say it's
the generator of the group \(\pi_3(S^2)\).

Now in \protect\hyperlink{week106}{``Week 106''} I talked about how we
can mimic this construction by replacing the complex numbers with any
other division algebra. If we use the real numbers we get a fiber bundle
\[S^0\to S^1\to \mathbb{RP}^1 = S^1\] where \(S^0\) is the group of unit
real numbers, better known as \(\mathbb{Z}/2\). This bundle looks like
the edge of a Moebius strip. If we use the quaternions we get a more
interesting fiber bundle: \[S^3\to S^7\to \mathbb{HP}^1 = S^4\] where
\(S^3\) is the group of unit quaternions, better known as
\(\mathrm{SU}(2)\). We can even do something like this with the
octonions, and we get a fiber bundle
\[S^7\to S^{15}\to \mathbb{OP}^1 = S^8\] but now \(S^7\), the unit
octonions, doesn't form a group --- because the octonions aren't
associative.

Anyway, it's the quaternionic version of the Hopf bundle that serves as
the inspiration for Milnor's construction of exotic 7-spheres. These
exotic 7-spheres are actually total spaces of \emph{other} bundles with
fiber \(S^3\) and base space \(S^4\). The easiest way to get your hands
on these bundles is to take \(S^4\), chop it in half along the equator,
put a trivial \(S^3\)-bundle over each hemisphere, and then glue these
together. To glue these bundles together we need a way to attach the
fibers over each point x of the equator. In other words, for each point
\(x\) in the equator of \(S^4\) we need a map \[f_x\colon S^3\to S^3\]
which should vary smoothly with \(x\). But the equator of \(S^4\) is
just \(S^3\), and \(S^3\) is a group --- the unit quaternions --- so we
can take \[f_x(y) = x^n y x^m\] for any pair of integers \((n,m)\).

This gives us a bunch of \(S^3\)-bundles over \(S^4\). The total space
\(X(n,m)\) of any one of these bundles is obviously a smooth
\(7\)-dimensional manifold. But when is it homeomorphic to the 7-sphere?
And when is it \emph{diffeomorphic} to the 7-sphere with its usual
smooth structure?

Well, first we use some Morse theory. You can learn a lot about the
topology of a smooth manifold if you have a ``Morse function'' on the
manifold: a smooth real-valued function all of whose critical points are
nondegenerate. If you don't believe me, read this book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Milnor, \emph{Morse Theory}, Princeton U. Press, Princeton, 1960.
\end{enumerate}

When \(n + m = 1\) there's a Morse function on \(X(n,m)\) with only two
critical points --- a maximum and a minimum. This implies that
\(X(n,m)\) is homeomorphic to a sphere!

Once we know that \(X(n,m)\) is homeomorphic to \(S^7\), we have to
decide when it's diffeomorphic to \(S^7\) with its usual smooth
structure. This is the hard part. Notice that \(X(n,m)\) is the unit
sphere bundle of a vector bundle over \(S^4\) whose fiber is the
quaternions. We can understand a bunch about \(X(n,m)\) using the
characteristic classes of this vector bundle. In particular, we can
compute the Euler number and the Pontrjagin number of this vector
bundle. Using the Euler number we can show that \(X(n,m)\) is
homeomorphic to a sphere \emph{only} if \(n + m = 1\) --- you can't
really do this using Morse theory. But more importantly, using the
Pontrjagin number, we can show that in this case \(X(n,m)\) is
diffeomorphic to \(S^7\) with its usual smooth structure if and only if
\((n-m)^2 = 1 \mod 7\). Otherwise it's ``exotic''.

For the details of the above argument you can try the following book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, \emph{Modern Geometry
  --- Methods and Applications, Part III: Introduction to Homology
  Theory}, Springer-Verlag Graduate Texts \textbf{125}, Springer, New
  York, 1990.
\end{enumerate}

or the original paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Milnor, ``On manifolds homeomorphic to the 7-sphere'', \emph{Ann.
  Math.} \textbf{64} (1956), 399--405.
\end{enumerate}

Now, with quite a bit more work, you can show that smooth structures on
the \(n\)-sphere form an group under connected sum --- the operation of
chopping out a small hole in two spheres and gluing them together ---
and you can show that this group is \(\mathbb{Z}/28\) for \(n = 7\).
This means that if we consider two smooth structures on the 7-sphere the
same when they're related by an \emph{orientation-preserving}
diffeomorphism, we get exactly 28 kinds. Unfortunately we don't get all
of them by the above explicit construction. For more details, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  M. Kervaire and J. Milnor, ``Groups of homotopy spheres I'',
  \emph{Ann. Math.} \textbf{77} (1963), 504--537.
\end{enumerate}

By the way, part II of the above paper doesn't exist! Instead, you
should read this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  J. Levine, ``Lectures on groups of homotopy spheres'', in
  \emph{Algebraic and Geometric Topology}, Springer Lecture Notes in
  Mathematics number \textbf{1126}, Springer, Berlin, 1985, pp.~62--95.
\end{enumerate}

Anyway, if you're wondering why I'm talking so much about exotic
7-spheres, instead of lower-dimensional examples that are easier to
visualize, check out this table of groups of smooth structures on the
\(n\)-sphere:

\begin{longtable}[]{@{}ll@{}}
\toprule
\(n\) & group of smooth structures on the \(n\)-sphere\tabularnewline
\midrule
\endhead
\(0\) & \(1\)\tabularnewline
\(1\) & \(1\)\tabularnewline
\(2\) & \(1\)\tabularnewline
\(3\) & \(1\)\tabularnewline
\(4\) & ?\tabularnewline
\(5\) & \(1\)\tabularnewline
\(6\) & \(1\)\tabularnewline
\(7\) & \(\mathbb{Z}/28\)\tabularnewline
\(8\) & \(\mathbb{Z}/2\)\tabularnewline
\(9\) &
\(\mathbb{Z}/2\times\mathbb{Z}/2\times\mathbb{Z}/2\)\tabularnewline
\(10\) & \(\mathbb{Z}/6\)\tabularnewline
\(11\) & \(\mathbb{Z}/992\)\tabularnewline
\(12\) & \(1\)\tabularnewline
\(13\) & \(\mathbb{Z}/3\)\tabularnewline
\(14\) & \(\mathbb{Z}/2\)\tabularnewline
\(15\) & \(\mathbb{Z}/8128\times\mathbb{Z}/2\)\tabularnewline
\(16\) & \(\mathbb{Z}/2\)\tabularnewline
\(17\) &
\(\mathbb{Z}/2\times\mathbb{Z}/2\times\mathbb{Z}/2\times\mathbb{Z}/2\)\tabularnewline
\(18\) & \(\mathbb{Z}/8\times\mathbb{Z}/2\)\tabularnewline
\bottomrule
\end{longtable}

Dimension 7 is the simplest interesting case --- except perhaps for
dimension 4, where the answer is unknown! The ``smooth Poincare
conjecture'' says that there's only one smooth structure on the
4-sphere, but this remains a conjecture\ldots.

As you can see, there are lots of exotic 11-spheres. In fact, this is
relevant to string theory! You can get an \(n\)-sphere with any possible
smooth structure by taking two \(n\)-dimensional balls and gluing them
together along their boundary using some orientation-preserving
diffeomorphism \[f\colon S^{n-1}\to S^{n-1}.\] Orientation-preserving
diffeomorphisms like this form a group called
\(\mathrm{Diff}_+(S^{n-1})\). Using the above trick, it turns out that
the group of smooth structures on the n-sphere is isomorphic to the
group of \emph{connected components} of \(\mathrm{Diff}_+(S^{n-1})\). So
the existence of exotic 11-spheres means that there are lots of ``exotic
diffeomorphisms'' of the 10-sphere!

Now, string theory lives in 10 dimensions, and one wants certain
quantities to be invariant under orientation-preserving diffeomorphisms
of spacetime --- otherwise you say the theory has ``gravitational
anomalies''. First you have to check this for ``small diffeomorphisms''
of spacetime, that is, those connected to the identity map by a
continuous path. But then you have to check it for ``large
diffeomorphisms'' --- those living in different connected components of
the diffeomorphism group. When spacetime is a 10-sphere, this means you
need to check diffeomorphism invariance for all 991 components of
\(\mathrm{Diff}_+(S^{n-1})\) besides the component containing the
identity. These components correspond to exotic 11-spheres!

Witten did this in the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Edward Witten, ``Global gravitational anomalies'', \emph{Commun. Math.
  Phys.} \textbf{100} (1985), 197--229.
\end{enumerate}

This may be the first paper about exotic spheres in physics.

There are other interesting things to do with an exotic sphere. One is
to put a metric on it and look at its curvature. The sphere with its
usual ``round'' metric is very symmetrical and has positive curvature
everywhere. There are various meanings of ``positive curvature'', but
the round sphere has positive curvature in all possible ways! One kind
of curvature is ``sectional curvature''. In general, it's hard to find
compact manifolds other than the sphere with its usual smooth structure
that have metrics with everywhere positive sectional curvature. Gromoll
and Meyer found an exotic 7-sphere with a metric having
\emph{nonnegative} sectional curvature:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Detlef Gromoll and Wolfgang Meyer, ``An exotic sphere with nonnegative
  sectional curvature'', \emph{Ann. Math.} \textbf{100} (1974),
  401--406.
\end{enumerate}

The construction isn't terribly hard so let me describe it. First, start
with the group \(\mathrm{Sp}(2)\), consisting of \(2\times2\) unitary
quaternionic matrices (see \protect\hyperlink{week64}{``Week 64''}). As
always with compact Lie groups, this has a metric that's invariant under
right and left translations, and this metric is unique up to a constant
scale factor. The group of unit quaternions acts as metric-preserving
maps (aka ``isometries'') of \(\mathrm{Sp}(2)\) in the following way:
let the quaternion \(q\) map \[
  \left(
    \begin{array}{cc}
      a&b\\c&d
    \end{array}
  \right)
\] to \[
  \left(
    \begin{array}{cc}
      qaq^{-1}&qb\\qcq^{-1}&qd
    \end{array}
  \right)
\] The quotient space is an exotic 7-sphere, and it inherits a metric
with nonnegative sectional curvature.

Now, since compact manifolds with positive sectional curvature are tough
to find, you might wonder if this exotic 7-sphere can be given a metric
with \emph{positive} sectional curvature. And the answer is: almost! It
can be given a metric having positive sectional curvature except on a
set of measure zero. This was recently proved by Wilhelm:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Frederick Wilhelm, ``An exotic sphere with positive curvature almost
  everywhere'', preprint, May 12 1999.
\end{enumerate}

It's also an interesting theorem, due to Hitchin, that for any \(n > 0\)
there exist exotic spheres of dimensions \(8n+1\) and \(8n+2\) having no
metric of positive scalar curvature:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Nigel Hitchin, ``Harmonic spinors'', \emph{Adv. Math.} \textbf{14}
  (1974), 1--55.
\end{enumerate}

So some exotic spheres are not so as ``round'' as you might think! In
fact, 3 of the exotic spheres in 10 dimensions cannot be given a metric
such that the connected component of the isometry group is bigger than
\(\mathrm{U}(1)\times\mathrm{U}(1)\), so these are quite ``bumpy''. This
follows from results of Reinhard Schultz, who happens to be the
department chair here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Reinhard Schultz, ``Circle actions on homotopy spheres bounding
  plumbing manifolds'', \emph{Proc. A.M.S.} \textbf{36} (1972),
  297--300.
\end{enumerate}

There's a lot more to say about exotic spheres, but let me just briefly
mention two things. First, there are cool connections between exotic
spheres and higher-dimensional knot theory. If you want a small taste of
this stuff, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Louis Kauffman, \emph{Knots and Physics}, World Scientific, Singapore,
  1991.
\end{enumerate}

Look in the index under ``exotic spheres''.

Second, people have computed the effect of exotic 7-spheres on quantum
gravity path integrals in 7 dimensions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Kristin Schleich and Donald Witt, Exotic spaces in quantum gravity,
  \emph{Class. Quant. Grav.} \textbf{16} (1999) 2447--2469, preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9903086}{\texttt{gr-qc/9903086}}.
\end{enumerate}

I'm not sure exotic spheres are \emph{really} relevant to physics, but
it would be cool, so I'm glad some people are trying to establish
connections.

Okay, that's enough for exotic spheres, at least for now! I've got a few
more things here that I just want to mention\ldots.

I've been learning a bit about Calabi-Yau manifolds and mirror symmetry
in string theory lately. The basic idea is that string theory on
different spacetime manifolds can be physically equivalent. I don't know
enough to want to try to explain this stuff yet, but here are some place
to look in case you're interested:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  Claire Voisin, \emph{Mirror Symmetry}, American Mathematical Society,
  1999.
\item
  David A. Cox and Sheldon Katz, \emph{Mirror Symmetry and Algebraic
  Geometry}, American Mathematical Society, Providence, Rhode Island,
  1999.
\item
  Shing-Tung Yau, editor, \emph{Mirror Symmetry I}, American
  Mathematical Society, 1998.

  Brian Green and Shing-Tung Yau, editors, \emph{Mirror Symmetry II},
  American Mathematical Society, 1997.

  Duong H. Phong, Luc Vinet and Shing-Tung Yau, editors, \emph{Mirror
  Symmetry III}, American Mathematical Society, 1999.
\end{enumerate}

So far I'm mainly trying to learn really basic stuff, and for this, the
following lectures are proving handy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  P. Candelas, ``Lectures on complex manifolds'', in \emph{Superstrings
  '87}, eds.~L. Alvarez-Gaume et al, World Scientific, Singapore, 1988,
  pp.~1--88.
\end{enumerate}

On a different note, the American Mathematical Society has come out with
some good-looking books on surgery theory --- the process of making new
manifolds from old by cutting and pasting. I've got these on my reading
list, so if anyone wants to buy me a Christmas present, here's what you
should get:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\item
  Robert E. Gompf and Andras I Stipsicz, \emph{4-Manifolds and Kirby
  Calculus}, Amderican Mathematical Society, 1999.
\item
  C. T. C. Wall and A. A. Ranicki, \emph{Surgery on Compact Manifolds},
  2nd edition, American Mathematical Society, 1999.
\end{enumerate}

Finally, there's some cool stuff going on with operads that I haven't
been able to keep up with. Let me quote the abstracts:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{18}
\tightlist
\item
  Alexander A. Voronov, ``Homotopy Gerstenhaber algebras'', preprint
  available as
  \href{https://arxiv.org/abs/math.QA/9908040}{\texttt{math.QA/9908040}}.
\end{enumerate}

\begin{quote}
The purpose of this paper is to complete Getzler-Jones' proof of
Deligne's Conjecture, thereby establishing an explicit relationship
between the geometry of configurations of points in the plane and the
Hochschild complex of an associative algebra. More concretely, it is
shown that the \(B_\infty\)-operad, which is generated by multilinear
operations known to act on the Hochschild complex, is a quotient of a
certain operad associated to the compactified configuration spaces.
Different notions of homotopy Gerstenhaber algebras are discussed: one
of them is a \(B_\infty\)-algebra, another, called a homotopy
\(G\)-algebra, is a particular case of a \(B_\infty\)-algebra, the
others, a \(G_\infty\)-algebra, an \(E^1\)-bar-algebra, and a weak
\(G_\infty\)-algebra, arise from the geometry of configuration spaces.
Corrections to the paper math.QA/9602009 of Kimura, Zuckerman, and the
author related to the use of a nonextant notion of a homotopy
Gerstenhaber algebra are made.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{19}
\tightlist
\item
  Maxim Kontsevich, ``Operads and motives in deformation quantization'',
  \emph{Lett. Math. Phys.} \textbf{48} (1999), 35--72, preprint
  available as
  \href{https://arxiv.org/abs/math.QA/9904055}{\texttt{math.QA/9904055}}.
\end{enumerate}

\begin{quote}
It became clear during last 5-6 years that the algebraic world of
associative algebras (abelian categories, triangulated categories, etc)
has many deep connections with the geometric world of two-dimensional
surfaces. One of the manifestations of this is Deligne's conjecture
(1993) which says that on the cohomological Hochschild complex of any
associative algebra naturally acts the operad of singular chains in the
little discs operad. Recently D. Tamarkin discovered that the operad of
chains of the little discs operad is formal, i.e.~it is homotopy
equivalent to its cohomology. From this fact and from Deligne's
conjecture follows almost immediately my formality result in deformation
quantization. I review the situation as it looks now. Also I conjecture
that the motivic Galois group acts on deformation quantizations, and
speculate on possible relations of higher-dimensional algebras and of
motives to quantum field theories.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{20}
\tightlist
\item
  James E. McClure and Jeffrey H. Smith, ``A solution of Deligne's
  conjecture'', preprint available as
  \href{https://arxiv.org/abs/math.QA/9910126}{\texttt{math.QA/9910126}}
\end{enumerate}

\begin{quote}
Deligne asked in 1993 whether the Hochschild cochain complex of an
associative ring has a natural action by the singular chains of the
little 2-cubes operad. In this paper we give an affirmative answer to
this question. We also show that the topological Hochschild cohomology
spectrum of an associative ring spectrum has an action of an operad
equivalent to the little 2-cubes.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

My original table of groups of smooth structures on spheres had some
mistakes in it which were corrected by Linus Kramer, Marco Mackaay, Tony
Smith and Frederick Wilhelm. In fact, the table in the book by Dubrovin,
Fomenko and Novikov differs from the table in Kervaire and Milnor's
paper! The table above comes from Kervaire and Milnor, taking advantage
of some subsequent work in dimension 3 and also some work of Brumfield
which nailed down the groups in dimensions 9 and 17 --- see below for
more information.

The paper by Kervaire and Milnor has a cool formula for the \emph{order}
of the group of smooth structures on the \((4n-1)\)-sphere for
\(n > 1\). It's: \[\frac{2^{2n-4} (2^{2n-1}-1) P(4n-1) B(n) a(n)}{n}\]
where:

\begin{itemize}
\tightlist
\item
  \(P(k)\) is the order of the \(k\)th stable homotopy group of spheres
\item
  \(B(k)\) is the \(k\)th Bernoulli number, in the sequence
  \(1/6, 1/30, 1/42, 1/30, 5/66, 691/2730, 7/6, \ldots\)
\item
  \(a(k)\) is 1 or 2 according to whether k is even or odd.
\end{itemize}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Here are some remarks by Linus Kramer on exotic spheres in dimensions 9
and 17, which he posted to \texttt{sci.math.research} in response to a
question of mine. Kervaire and Milnor said the group of exotic spheres
in dimension 9 was \((\mathbb{Z}/2)^3\) or
\(\mathbb{Z}/2\times\mathbb{Z}/4\), and the group in dimension 17 was
\((\mathbb{Z}/2)^4\) or \((\mathbb{Z}/2)^2\times\mathbb{Z}/4\). Linus
writes:

\begin{quote}
The list by Kervaire and Milnor seems to be correct; in dimension 9, the
group is \((\mathbb{Z}/2)^3\), and in dimension 17 it's
\((\mathbb{Z}/2)^4\). This follows from the results of Brumfield
{[}Mich. Math. J 17{]} stated on the first page of his paper, plus the
list of the first stable homotopy groups of spheres, and the properties
of Adams' J-homomorphism \(J\colon\pi_n(SO)\to\pi^s_n\).

There is an exact sequence
\[0\to bP_k\to\Gamma_{k-1}\to\pi^s_{k-1}/\operatorname{im}(J)\to 0\]
provided that \(k+3\) is not a power of \(2\) (\(\Gamma_{k-1}\) is the
group we are looking for). Now for \(k-1=8,9,10,17\), we have
\(k+3=12,13,14,21\), and these are not powers of \(2\). Now
\(bP_k=0,\mathbb{Z}/2,0,\mathbb{Z}/\theta_{16}\) for \(k=9,10,11,16\).
So for \(k=9,11\), the group \(\Gamma_{k-1}\) is the same as
\(\pi^s_{k-1}/\operatorname{im}(J)\), and for \(k=10,16\) use
Brumfield's result that then the group is
\(\Gamma_{k-1} = \mathbb{Z}/2+(\pi^s_{k-1}/\operatorname{im}(J))\).

Hope I didn't make a mistake while chasing through all these exact
sequences\ldots{} Of course, the result relies also on some table,
namely the first stable homotopy groups of spheres.

Linus Kramer
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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I was recently infected by a meme --- a self-propagating pattern of
human behavior. Now I want to pass it on to you! I like this particular
meme because it's so simple. It's even simpler than the parasites
described on my webpage:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez, ``Subcellular life forms'',
  \texttt{http://math.ucr.edu/home/baez/subcellular.html}
\end{enumerate}

I wrote this webpage when I was trying to understand some of the
simplest self-reproducing entities: viruses, viroids, virusoids,
plasmids, prions, and various forms of junk DNA. Viroids are especially
simple. Unlike a virus, a viroid doesn't even have a protein coat: it's
just a naked RNA molecule! So instead of actively breaking into the host
cell, it must passively wait to be absorbed. Then somehow it hijacks the
machinery of the cell nucleus to reproduce itself. Theodore Diener
discovered the first viroid in 1971: the potato spindle tuber viroid,
which makes potatoes abnormally long and sometimes cracked. At first
people doubted the possibility of a life form smaller than a virus. But
by now the complete molecular structure of this viroid has been worked
out. It consists of only 359 nucleotides --- or in other words, about
12,000 atoms!

But since a meme relies on the complex apparatus of human culture to
reproduce itself, it can get away with being even simpler than a viroid.
It can even be the simplest sort of thing of all: an abstract
mathematical structure defined by a short list of axioms!

A good example is the game of tic-tac-toe. It's not very interesting,
but it's just interesting enough to keep propagating itself through
human children, who are highly susceptible to the charm of simple games.
Most children soon develop an immunity to tic-tac-toe, just like measles
and mumps --- but only after passing it on to some other child.

Unfortunately, the meme that infected me is a lot harder to shake,
because it's a lot more interesting. I'm talking about the game of Go.

This game is played on a \(19\times19\) square grid. Each player starts
with a large supply of stones --- black for the first player, white for
the second. They take turns putting a stone on a grid point. A group of
stones of one color ``dies'' and is removed from the board when it is
surrounded by stones of the other color. More precisely, we say a stone
is ``dead'' when none of its nearest neighbors of the same color have
nearest neighbors of the same color which have nearest neighbors of the
same color which\ldots{} have nearest neighbors that are still vacant
grid points.

There are also two subsidary rules, designed to keep silly things from
happening.

First, you are not allowed to put a stone someplace where it will
immediately die, \emph{unless} doing so immediately kills one or more of
the other player's stones --- in which case their stones die, and yours
lives.

Second, if putting down your stone kills a stone of the other player,
but they could immediately put that stone back and kill yours, leading
to an infinite loop, we say that ``ko'' has occurred. In this case, the
other player is forbidden from putting their stone back right away.

How do you win? Simply put, the goal is to end up with as much
``territory'' as possible. Territory includes grid points occupied by
stones of your color, and also vacant grid points that the other player
could not occupy without their stones eventually dying. (In practice, Go
players do not fight to the bitter end, so territory also includes
stones of the other color that are ``doomed to die''.)

That's basically it!

The cool part is that starting from these simple rules, a whole world of
strategy unfolds, full of specific tricks --- but also quite general
philosophical lessons about ``power'', ``territory'', and ``threat''. In
a good game, both players start by efficiently marking out some
territory, putting stones down in a widely separated way that looks
random to the beginner, but in fact is delicately balanced between being
too conservative and too ambitious. The midgame starts when both players
start trying to surround each other and threaten to kill stones. But be
careful: threatening to kill stones can be better than actually killing
them, and the difference between ``surrounding'' and ``being
surrounded'' is rather subtle! The endgame comes when territory is
almost fully demarcated, with only a few squabbles around the edges. The
endgame game proves unexpectedly difficult for beginners, since one can
snatch defeat from the jaws of victory even at this stage.

A well-developed Go game is said to be like a work of art, with all
opposing forces neatly balanced in a harmonious pattern. As a
mathematical physicist, it reminds me of the Ising model at a phase
transition, when there are as many black grid points as white ones, and
arbitrarily large clusters of both colors. Perhaps there's even a real
relation to the theory of ``self-organized criticality'', in which a
system spontaneously works its way to the brink of a phase transition.

People say Go was developed in China between 4 and 6 thousand years ago.
Its early history is obscure, but it is said to have started, not as a
game, but as a tool for divination and the teaching of military
strategy. I'm no expert, but to me Go seems like a nice illustration of
yin-yang philosophy --- the idea that the dynamic complexity of the
universe arises from the dialectic interplay of binary opposites. For a
good introduction to what I'm talking about, you can't beat the I Ching
--- the ``Classic of Changes'', a Chinese divination text compiled in
the 9th century B.C., but containing material that probably dates back
at least a few centuries earlier. This book describes the significance
of 64 ``hexagrams'', which are patterns built from 6 bits of
information, like this:

\begin{verbatim}
                        ______
                        __  __
                        ______
                        ______
                        __  __
                        __  __
\end{verbatim}

The idea that complex patterns can be described using bits was borrowed
from the Chinese by Leibniz, who invented the concept of binary
arithmetic and dreamt of a purely mechanical approach to logic based on
simple rules. Now, of course, these ideas dominate modern technology! So
perhaps it's not surprising that Go still holds an attraction for many
mathematicians and physicists.

In fact, I bet some you are smirking and wondering why I didn't learn Go
much earlier! The reason is that I've always avoided playing games,
except for the ``great game'' of mathematical physics. I only tried
playing Go the weekend before last, while visiting my friend Bruce Smith
up in San Rafael after giving a talk on quantum tetrahedra at Stanford.
Bruce explained Go to me and showed me how it was philosophically
interesting. But most importantly, he showed me a computer program that
plays Go. Computers aren't great at Go, but they're good enough to beat
an amateur like me, so they're good to learn from at first, and for some
reason I prefer to play a computer than another person --- perhaps
because computers don't gloat.

The computer program I played against is called ``GNU Go''. You can
download it free from the internet, thanks to the Free Software
Foundation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  GNU Go, \texttt{http://www.gnu.org/software/gnugo/devel.html}
\end{enumerate}

You can adjust the size of the board and also the handicap --- the
number of stones you get right away when you start. To use this program
in a UNIX environment you need an interface program called ``cgoban'',
which is also free:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  CGoban,
  \texttt{http://www.inetarena.com/\textasciitilde{}wms/comp/cgoban/}
\end{enumerate}

On Windows you can use an interface available from the GNU Go webpage.

For more information on Go start here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  American Go Association, \texttt{http://www.usgo.org/resources/}
\end{enumerate}

You can find lots of go books listed at this website. Personally I found
these books to be a nice introduction to the game, but they may be hard
to find:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  The Nihon Kiin, \emph{Go: The World's Most Fascinating Game}, 2
  volumes, Sokosha Printing Co., Tokyo, 1973.
\end{enumerate}

When you get more advanced, there are a lot of books to read, with fun
titles like ``Get Strong at Invading'', ``Reducing Territorial
Frameworks'', and ``Utilizing Outward Influence''. It pays to study
``joseki'', or openings:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Ishida Yoshio, \emph{Dictionary of Basic Joseki}, 3 volumes, Ishi
  Press International, San Jose, California, 1977.
\end{enumerate}

It's also good to study ``tsume-go'', or ``life and death problems'',
where you figure out which player can win in various configurations. A
mathematician would call this the ``local'' analysis of Go:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Cho Chikun, \emph{All About Life and Death}, 2 volumes, Ishi Press
  International, San Jose, California, 1993.
\end{enumerate}

Ishi Press puts out a lot of other books on Go, but I haven't been able
to get ahold of them yet. I'm sort of fascinated by one that talks about
a difficult abstract concept called ``thickness'', since I suspect this
is a global rather than local concept:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Ishidea Yoshio, \emph{All About Thickness: Understanding Moyo and
  Influence}, Ishi Press International, San Jose, California.
\end{enumerate}

If you want to get mathematical about Go endgames, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Elwyn Berlekamp and David Wolfe, \emph{Mathematical Go: Chilling Gets
  the Last Point}, A. K. Peters, Wellesley Massachusetts, 1994.
\end{enumerate}

If you want to get computational, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Markus Enzenberger, \emph{The integration of a priori knowledge into a
  Go playing neural network},
  \texttt{http://www.cgl.ucsf.edu/go/Programs/neurogo-html/NeuroGo.html}
\end{enumerate}

If instead you prefer to curl up with a good novel based on a game of
Go, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Yasunari Kawabata, \emph{The Master of Go}, trans. Edward G.
  Seidensticker, Knopf, New York, 1972.
\end{enumerate}

On a different note, here are two good editions of the I Ching:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  \emph{The I Ching or Book of Changes}, trans. Richard Wilhelm and Cary
  F. Baynes, Princeton U. Press, Princeton, 1969.

  \emph{The Classic of Changes: A New Translation of the I Ching as
  Interpreted by Wang Bi}, trans. Richard John Lynn, Columbia U. Press,
  1994.
\end{enumerate}

Okay. Enough culture --- time for some math!

I was invited to Stanford University by David Carlton, who works on
modular forms, and I found out from him and his friends that the
Shimura-Taniyama-Weil conjecture has been proved! This might have been a
nice scoop for This Week's Finds, but by now it's appeared in the
Notices of the AMS, so everyone knows about it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  Henri Darmon, ``A proof of the full Shimura-Taniyama-Weil conjecture
  is announced'', \emph{Notices of the American Mathematical Society},
  \textbf{46} no. 11 (December 1999), 1397--1401.
\end{enumerate}

Andrew Wiles proved part of this conjecture in order to prove Fermat's
Last Theorem, but the conjecture is actually much more interesting than
Fermat's Last Theorem, and a proof of the whole thing was announced this
summer by Breuil, Conrad, Diamond and Taylor.

What does the conjecture say?

Well, first you have to know a bit about elliptic curves. An ``elliptic
curve'' is the space of solutions of an equation like this:
\[y^2 = x^3 + ax + b\] They come up naturally in string theory, and I've
talked about them already in \protect\hyperlink{week13}{``Week 13''} and
\protect\hyperlink{week124}{``Week
124''}--\protect\hyperlink{week127}{``Week 127''}. If all the variables
in sight are complex numbers, an elliptic curve looks like a torus, but
number theorists like to consider the case where the coefficients a and
b are rational. By a simple change of variables you can then get the
coefficients to be integers. Then it makes sense to work modulo a prime
number \(p\): in other words, to think of all the variables as living in
the field of integers \(\mod p\), better known as \(\mathbb{Z}/p\). If
you're smart, you can tell if an elliptic curve \(\mod p\) is
``singular'' or not: being nonsingular is like being a smooth manifold.
People say an elliptic curve has ``good reduction at \(p\)'' if it's
nonsingular \(\mod p\). For any given elliptic curve, this is true
except for finitely many primes.

Any elliptic curve \(E\) has finitely many points \(\mod p\). Let's call
the number of points \(N(E,p)\) and set \[a(E,p) = p - N(E,p).\] If this
list of numbers satisfies a certain condition, which I'll describe in a
minute, we say our elliptic curve is ``modular''. The
Shimura-Taniyama-Weil conjecture states that all elliptic curves are
modular.

Okay, so what does ``modular'' mean? Well, for this we need a little
digression on modular forms. In \protect\hyperlink{week125}{``Week
125''} I described the moduli space of elliptic curves, which is the
space of all different shapes an elliptic curve can have. I showed that
this space was \(H/\mathrm{SL}(2,\mathbb{Z})\), where \(H\) is the upper
half of the complex plane and \(\mathrm{SL}(2,\mathbb{Z})\) is the group
of \(2\times2\) integer matrices with determinant \(1\). A modular form
is basically just a holomorphic section of some line bundle over the
moduli space of elliptic curves. But if this sounds too high-tech, don't
be scared! We can also think of it as an analytic function on the upper
half-plane that transforms in a nice way under the action of
\(\mathrm{SL}(2,\mathbb{Z})\). Remember, any matrix \[
  \left(
    \begin{array}{cc}
      a&b\\c&d
    \end{array}
  \right)
\] in \(\mathrm{SL}(2,\mathbb{Z})\) acts on the upper half-plane as
follows: \[\tau \mapsto \frac{a \tau + b}{c \tau + d}\] For an analytic
function \(f\colon H\to\mathbb{C}\) to be a ``modular form of weight
\(k\)'', it must transform as follows:
\[f\left(\frac{a \tau + b}{c \tau + d}\right) = (c \tau + d)^k f(\tau)\]
for some integer \(k\). We also require that \(f\) satisfy some growth
conditions as \(\tau\to\infty\), so we can expand it as a Taylor series
\[f(\tau) = \sum a_n q^n\] where \[q = \exp(2 \pi i \tau)\] is a
variable that equals \(0\) when \(\tau = \infty\). The nicest modular
forms are the ``cusp forms'', which have \(a_0 = 0\), and thus vanish at
\(\tau = \infty\).

Next, we can straightforwardly generalize everything I just said if we
replace \(\mathrm{SL}(2,\mathbb{Z})\) by various subgroups thereof.
(This amounts to studying holomorphic sections of line bundles over some
moduli space of elliptic curves \emph{equipped with extra structure}.)
For example, we can use the subgroup \(\Gamma_0(N)\) consisting of those
matrices in \(\mathrm{SL}(2,\mathbb{Z})\) whose lower-left entries are
divisible by \(N\). If we use this group instead of
\(\mathrm{SL}(2,\mathbb{Z})\), we get what are called modular forms of
``level \(N\)''. We define ``weight'' of such a modular form just as
before, and ditto for ``cusp forms''.

And now we can say what it means for an elliptic curve to be modular! We
say an elliptic curve \(E\) is ``modular'' if for some \(N\) there's a
weight \(2\) level \(N\) cusp form \[f(\tau) = \sum a_n q^n\] normalized
so that \(a_1 = 1\), with the property that \[a_p = a(E,p)\] for all
primes \(p\) at which \(E\) has good reduction.

So now you know what the Shimura-Taniyama-Weil conjecture says: all
elliptic curves are modular! It's not obvious that this implies Fermat's
Last Theorem, but it does, thanks to a trick invented by Gerhard Frey.

There turn out to be fascinating but mysterious relationships between
the Shimura-Taniyama-Weil conjecture, something called the Langlands
program, and topological quantum field theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Mikhail Kapranov, ``Analogies between the Langlands correspondence and
  topological quantum field theor''y, in \emph{Functional Analysis on
  the Eve of the 21st Century}, Vol. \textbf{1}, Birkhaueser, Boston,
  pp.~119--151.
\end{enumerate}

For this reason --- and others --- it's not so surprising that David
Carlton and some of his buddies are interested in \(n\)-categories. In
fact, Carlton caught a small error in the definition of \(n\)-categories
due to James Dolan and myself --- it turns out that the number ``\(1\)''
should be the number ``\(2\)'' at one particular place in the
definition! Anyone who can spot a problem like that is friend of mine.

Even better, Carlton is now interested in understanding the
\((n+1)\)-category of all \(n\)-categories, which is crucial for really
doing anything with \(n\)-categories. Makkai has a new paper on this
subject, and I realize now that I've never mentioned this paper on This
Week's Finds, so let me conclude by quoting the abstract. It's pretty
long and detailed, and probably only of interest to \(n\)-category
addicts\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  M. Makkai, The multitopic \(\omega\)-category of all multitopic
  \(\omega\)-categories, preprint available at
  \texttt{ftp://ftp.math.mcgill.ca/pub/makkai}
\end{enumerate}

\begin{quote}
``The paper gives two definitions: that of''multitopic
\(\omega\)-category" and that of ``the (large) multitopic set of all
(small) multitopic \(\omega\)-categories''. It also announces the
theorem that the latter is a multitopic \(\omega\)-category. (The proof
of the theorem will be contained in a sequel to this paper.)

The work has two direct sources. One is the paper {[}H/M/P{]} (for the
references, see at the end of this abstract) in which, among others, the
concept of ``multitopic set'' was introduced. The other is the present
author's work on FOLDS, First Order Logic with Dependent Sorts. The
latter was reported on in {[}M2{]}. A detailed account of the work on
FOLDS is in {[}M3{]}. For the understanding of the present paper, what
is contained in {[}M2{]} suffices. In fact, section 1 of the present
paper gives the definitions of all that's needed in this paper; so,
probably, there won't be even a need to consult {[}M2{]}.

The concept of multitopic set, the main contribution of {[}H/M/P{]},
was, in turn, inspired by the work of J. Baez and J. Dolan {[}B/D{]}.
Multitopic sets are a variant of opetopic sets of loc. cit. The name
``multitopic set'' refers to multicategories, a concept originally due
to J. Lambek {[}L{]}, and given an only moderately generalized
formulation in {[}H/M/P{]}. The earlier ``opetopic set'' of {[}B/D{]} is
based on a concept of operad. I should say that the exact relationship
of the two concepts (``multitopic set'' and ``opetopic set'') is still
not clarified. The main aspect in which the theory of multitopic sets is
in a more advanced state than that of opetopic sets is that, in
{[}H/M/P{]}, there is an explicitly defined category \(\mathsf{Mlt}\) of
\textbf{multitopes}, with the property that the category of multitopic
sets is equivalent to the category of \(\mathsf{Set}\)-valued functors
on \(\mathsf{Mlt}\), a result given a detailed proof in {[}H/M/P{]}. The
corresponding statement on opetopic sets and opetopes is asserted in
{[}B/D{]}, but the category of opetopes is not described. In this paper,
the category of multitopes plays a basic role.

Multitopic sets and multitopes are described in section 2 of this paper;
for a complete treatment, the paper {[}H/M/P{]} should be consulted.

The indebtedness of the present work to the work of Baez and Dolan goes
further than that of {[}H/M/P{]}. The second ingredient of the
Baez/Dolan definition, after ``opetopic set'', is the concept of
``universal cell''. The Baez/Dolan definition of weak \(n\)-category
achieves the remarkable feat of specifying the composition structure by
universal properties taking place in an opetopic set. In particular, a
(weak) opetopic (higher-dimensional) category is an opetopic set with
additional properties ( but with no additional data), the main one of
the additional properties being the existence of sufficiently many
universal cells. This is closely analogous to the way concepts like
``elementary topos'' are specified by universal properties: in our
situation, ``multitopic set'' plays the ``role of the base'' played by
``category'' in the definition of ``elementary topos''. In {[}H/M/P{]},
no universal cells are defined, although it was mentioned that their
definition could be supplied without much difficulty by imitating
{[}B/D{]}. In this paper, the ``universal (composition) structure'' is
supplied by using the concept of FOLDS-equivalence of {[}M2{]}.

In {[}M2{]}, the concepts of ``FOLDS-signature'' and
``FOLDS-equivalence'' are introduced. A (FOLDS-) signature is a category
with certain special properties. For a signature \(L\) , an
\textbf{\(L\)-structure} is a \(\mathsf{Set}\)-valued functor on \(L\).
To each signature \(L\), a particular relation between two variable
\(L\)-structures, called \(L\)-equivalence, is defined. Two
\(L\)-structures M, N, are \(L\)-equivalent iff there is a so-called
\(L\)-equivalence span \(M\leftarrow P\rightarrow N\) between them;
here, the arrows are ordinary natural transformations, required to
satisfy a certain property called ``fiberwise surjectivity''.

The slogan of the work {[}M2{]}, {[}M3{]} on FOLDS is that \emph{all
meaningful properties of \(L\)-structures are invariant under
\(L\)-equivalence}. As with all slogans, it is both a normative
statement (``you should not look at properties of \(L\)-structures that
are not invariant under \(L\)-equivalence''), and a statement of fact,
namely that the ``interesting'' properties of \(L\)-structures are in
fact invariant under \(L\)-equivalence. (For some slogans, the
``statement of fact'' may be false.) The usual concepts of
``equivalence'' in category theory, including the higher dimensional
ones such as ``biequivalence'', are special cases of \(L\)-equivalence,
upon suitable, and natural, choices of the signature \(L\); {[}M3{]}
works out several examples of this. Thus, in these cases, the slogan
above becomes a tenet widely held true by category theorists. I claim
its validity in the generality stated above.

The main effort in {[}M3{]} goes into specifying a language, First Order
Logic with Dependent Sorts, and showing that the first order properties
invariant under \(L\)-equivalence are precisely the ones that can be
defined in FOLDS. In this paper, the language of FOLDS plays no role.
The concepts of ``FOLDS-signature'' and ``FOLDS-equivalence'' are fully
described in section 1 of this paper.

The definition of \textbf{multitopic \(\omega\)-category} goes, in
outline, as follows. For an arbitrary multitope \(\Sigma\) of dimension
\(\geqslant2\), for a multitopic set \(S\), for a pasting diagram
\(\alpha\) in \(S\) of shape the domain of \(\Sigma\) and a cell \(a\)
in \(S\) of the shape the codomain of \(\Sigma\), such that \(a\) and
\(\alpha\) are parallel, we define what it means to say that a is a
\textbf{composite} of \(\alpha\). First, we define an auxiliary FOLDS
signature \(L\langle \Sigma\rangle\) extending \(\mathsf{Mlt}\), the
signature of multitopic sets. Next, we define structures
\(S\langle a\rangle\) and \(S\langle \alpha\rangle\), both of the
signature \(L\langle \Sigma\rangle\), the first constructed from the
data \(S\) and \(a\) , the second from \(S\) and \(\alpha\), both
structures extending \(S\) itself. We say that \(a\) is a composite of
\(\alpha\) if there is a FOLDS-equivalence-span \(E\) between
\(S\langle a\rangle\) and \(S\langle \alpha\rangle\) that restricts to
the identity equivalence-span from \(S\) to \(S\). Below, I'll refer to
\(E\) as an \textbf{equipment} for a being a composite of \(\alpha\). A
multitopic set is a \textbf{mulitopic \(\omega\)-category} iff every
pasting diagram \(\alpha\) in it has at least one composite.

The analog of the universal arrows in the Baez/Dolan style definition is
as follows. A \textbf{universal arrow} is defined to be an arrow of the
form \(b\colon\alpha\to a\) where \(a\) is a composite of \(\alpha\) via
an equipment \(E\) that relates \(b\) with the identity arrow on \(a\):
in turn, the identity arrow on \(a\) is any composite of the empty
pasting diagram of dimension \(\dim(a)+1\) based on \(a\). Note that the
main definition does \emph{not} go through first defining ``universal
arrow''.

A new feature in the present treatment is that it aims directly at weak
\(\omega\)-categories; the finite dimensional ones are obtained as
truncated versions of the full concept. The treatment in {[}B/D{]}
concerns finite dimensional weak categories. It is important to
emphasize that a multitopic \(\omega\)-category is still just a
multitopic set with additional properties, but with no extra data.

The definition of ``multitopic \(\omega\)-category'' is given is section
5; it uses sections 1, 2 and 4, but not section 3.

The second main thing done in this paper is the definition of
\(\mathsf{MltOmegaCat}\). This is a particular large multitopic set. Its
definition is completed only by the end of the paper. The 0-cells of
\(\mathsf{MltOmegaCat}\) are the samll multitopic \(\omega\)-categories,
defined in section 5. Its 1-cells, which we call 1-transfors (thereby
borrowing, and altering the meaning of, a term used by Sjoerd Crans
{[}Cr{]}) are what stand for ``morphisms'', or ``functors'', of
multitopic \(\omega\)-categories. For instance, in the \(2\)-dimensional
case, multitopic \(2\)-categories correspond to ordinary bicategories by
a certain process of ``cleavage'', and the 1-transfors correspond to
homomorphisms of bicategories {[}Be{]}. There are \(n\)-dimensional
transfors for each \(n\) in \(\mathbb{N}\). For each multitope (that is,
``shape'' of a higher dimensional cell) \(PI\), we have the
\textbf{\(PI\)-transfors}, the cells of shape \(PI\) in
\(\mathsf{MltOmegaCat}\).

For each fixed multitope \(PI\), a \(PI\)-transfor is a
\emph{\(PI\)-colored multitopic set} with additional properties.
``\(PI\)-colored multitopic sets'' are defined in section 3; when \(PI\)
is the unique zero-dimensional multitope, \(PI\)-colored multitopic sets
are the same as ordinary multitopic sets. Thus, the definition of a
transfor of an arbitrary dimension and shape is a generalization of that
of ``multitopic \(\omega\)-category''; the additional properties are
also similar, they being defined by FOLDS-based universal properties.
There is one new element though. For \(\dim(PI)\geqslant2\) , the
concept of \(PI\)-transfor involves a universal property which is an
\(\omega\)-dimensional, FOLDS-style generalization of the concept of
right Kan-extension (right lifting in the terminology used by Ross
Street). This is a ``right-adjoint'' type universal property, in
contrast to the ``left-adjoint'' type involved in the concept of
composite (which is a generalization of the usual tensor product in
modules).

The main theorem, stated but not proved here, is that
\(\mathsf{MltOmegaCat}\) is a multitopic \(\omega\)-category.

The material in this paper has been applied to give formulations of
\(\omega\)-dimensional versions of various concepts of homotopy theory;
details will appear elesewhere.
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Since this is the last Week of the millennium, I'll make sure to pack it
full of retrospectives and prognostications. But I'd like to start with
an update on something I discussed a while back.

By the way, please don't give me flak about how the millennium starts in
2001. I use the CE or Common Era system, which starts counting at the
year zero, not the AD system, which starts at the year one because it
was invented in 526 CE by Dennis the Diminutive, long before the number
zero caught on. In my opinion, the real ``millennium bug'' is that
anyone is still using the antiquated AD system!

Anyway\ldots.

In \protect\hyperlink{week73}{``Week 73''}, I mentioned a theory about
why molecules important in biology tend to come in a consistent
chirality, or handedness. For example, there's lots of dextrose in
nature --- this being the right-handed form of the sugar sucrose --- but
not much of its left-handed counterpart, levulose. It's no surprise that
\emph{one or the other} would dominate, but you might guess that
\emph{which one} was just an accident of history. After all, there's no
fundamental difference between right and left, right?

Or is there? Actually there is: the weak nuclear force distinguishes
between the two! So some people theorized that very slight differences
in energy levels, due to the weak force, favor the formation of
left-handed amino acids and right-handed sugars --- which is what we see
in nature.

Recently people have found evidence for a somewhat different version of
this theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Robert F. Service, ``Does life's handedness come from within?'',
  \emph{Science} \textbf{286} (November 12, 1999), 1282--1283.
\end{enumerate}

When radioactive atoms decay via the weak force, the electrons they
shoot off tend to have a left-handed spin. Could this affect the
handedness of molecules or crystals that happen to be forming in the
vicinity? Sodium chlorate is a chemical that can form both left-handed
and right-handed crystals, so researchers took some solutions of the
stuff and let them crystallize while blasting them with electrons formed
by the decay of radioactive strontium. Sure enough, this biased the
handedness of the crystals! Blasting the stuff with right-handed
positrons favored formation of crystals of the opposite handedness. The
strangest part was that the effect was even bigger than expected.

I still think the whole business is pretty iffy --- after all, the flux
of radiation in this experiment was a lot bigger than what we normally
see on earth. But it would sure be neat if the origin of chirality in
biology was related to the deeper mystery of chirality in particle
physics.

Okay, now for a little retrospective. Don't worry --- I won't list the
top ten developments in mathematical physics of the last millennium!
Instead, I just want to recommend two papers. First, an old paper by
Poincare:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Henri Poincare, ``The present and future of mathematical physics'',
  \emph{Bull. Amer. Math. Soc.} \textbf{12} (1906), 240--260. Reprinted
  as part of a retrospective issue of the \emph{Bull. of the Amer. Math.
  Soc}., \textbf{37} (2000), 25--38, available at
  \texttt{http://www.ams.org/bull/}
\end{enumerate}

This article is based on a speech he gave in 1904. After a fascinating
review of the development of mathematical physics, he makes some
accurate predictions about quantum mechanics and special relativity ---
but closes on a conservative note:

\begin{quote}
In what direction we are going to expand we are unable to foresee.
Perhaps it is the kinetic theory of gases that will forge ahead and
serve as a model for the others. In that case, the facts that appeared
simple to us at first will be nothing more than the resultants of a very
large number of elementary facts which the laws of probability alone
would induce to work toward the same end. A physical law would then
assume an entirely new aspect; it would no longer be merely a
differential equation, it would assume the character of a statistical
law.

Perhaps too we shall have to construct an entirely new mechanics, which
we can only just get a glimpse of, where, the inertia increasing with
the velocity, the velocity of light would be a limit beyond which it
would be impossible to go. The ordinary, simpler mechanics would remain
a first approximation since it would be valid for velocities that are
not too great, so that the old dynamics would be found in the new. We
should have no reason to regret that we believed in the older
principles, and indeed since the velocities that are too great for the
old formulas will always be exceptional, the safest thing to do in
practice would be to act as though we continued to believe in them. They
are so useful that a place should be saved for them. To wish to banish
them altogether would be to deprive oneself of a valuable weapon. I
hasten to say, in closing, that we are not yet at that pass, and that
nothing proves as yet that they will not come out of the fray victorious
and intact.
\end{quote}

The same issue of the AMS Bulletin also has a lot of other interesting
papers and book reviews from the last century, by folks like Birkhoff,
Einstein and Weyl.

The second paper I recommend is a new one by Rovelli:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Carlo Rovelli, ``The century of the incomplete revolution: searching
  for general relativistic quantum field theory'', to appear in the
  \emph{Journal of Mathematical Physics} 2000 Special Issue, preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9910131}{\texttt{hep-th/9910131}}.
\end{enumerate}

Let me just quote the abstract:

\begin{quote}
In fundamental physics, this has been the century of quantum mechanics
and general relativity. It has also been the century of the long search
for a conceptual framework capable of embracing the astonishing features
of the world that have been revealed by these two `'first pieces of a
conceptual revolution''. I discuss the general requirements on the
mathematics and some specific developments towards the construction of
such a framework. Examples of covariant constructions of (simple)
generally relativistic quantum field theories have been obtained as
topological quantum field theories, in nonperturbative zero-dimensional
string theory and its higher dimensional generalizations, and as spin
foam models. A canonical construction of a general relativistic quantum
field theory is provided by loop quantum gravity. Remarkably, all these
diverse approaches have turn out to be related, suggesting an intriguing
general picture of general relativistic quantum physics.
\end{quote}

Now for the prognostications. Since we should never forget that the
towering abstractions of mathematical physics are ultimately tested by
experiment, I'd like to talk about some interesting physics
\emph{experiments} that are coming up in the next millennium. These days
more and more interesting information about physics is coming from
astronomy, so I'll concentrate on work that lies on this interface.

In \protect\hyperlink{week80}{``Week 80''} I talked about how Gravity
Probe B will try to detect an effect of general relativity called
``frame-dragging'' caused by the earth's rotation. I also talked about
how LIGO --- the Laser Interferometric Gravitational Wave Observatory
--- will try to detect gravitational waves:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  LIGO homepage, \texttt{http://www.ligo.caltech.edu/}
\end{enumerate}

If all works as planned, LIGO should be great for studying the final
death spirals of binary black holes and/or neutron stars. When it starts
taking data sometime around 2002, it should be able to detect the final
``chirp'' of gravitational radiation produced a pair of inspiralling
neutron stars in the Virgo Cluster, a cluster of galaxies about 15
megaparsecs away. Such an event would distort the spacetime metric
\emph{here} by only about \(1\) part in \(10^{21}\). This is why LIGO
needs to compare oscillations in the lengths of two arms of an
interferometer, each \(4\) kilometers long, with an accuracy of
\(10^{-16}\) centimeters: about one hundred-millionth of the diameter of
a hydrogen atom. To do this will require some \emph{very} clever tricks
to reduce noise.

As the experiment continues, they intend to improve the sensitivity
until it can detect distortions in the metric of only \(1\) part in
\(10^{22}\), and second-generation detectors should get to \(1\) part in
\(10^{23}\). At that point, we should be able to detect neutron star
``chirps'' from a distance of \(200\) megaparsecs. Events of this sort
should happen once or twice a year.

Since it's crucial to rule out spurious signals, LIGO will have two
detectors, one in Livingston, Louisiana and one in Hanford, Washington.
This should also allow us to tell where the gravitational waves are
coming from. And there are other gravitational wave detection projects
underway too! France and Germany are collaborating on a laser
interferometer called VIRGO, with arms 3 kilometers long, to be built in
Cascina, Italy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  VIRGO homepage, \texttt{http://www.pi.infn.it/virgo/}
\end{enumerate}

Germany and Great Britain are collaborating on a 600-meter-long one
called GEO 600, to be built south of Hannover:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  GEO 600 homepage, \texttt{http://www.geo600.uni-hannover.de/}
\end{enumerate}

The Japanese are working on one called TAMA 300, which is a 300-
meter-long warmup for a planned kilometer-long interferometer:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  TAMA 300 homepage, \texttt{http://tamago.mtk.nao.ac.jp/}
\end{enumerate}

In addition, the Brazilian GRAVITON project is building something called
the Einstein Antenna, which uses mechanical resonance rather than
interferometry. The basic principle goes back to Joseph Weber's original
bar detectors, which tried to sense the vibrations of a 2-meter-long
aluminum cylinder induced by gravitational waves. But the design
involves lots of hot new technology: SQUIDS, buckyballs, and the like:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  GRAVITON homepage,
  \texttt{http://www.das.inpe.br/graviton/project.html}
\end{enumerate}

There are also other gravitational wave detectors being built\ldots{}
but ultimately, the really best ones will probably be built in outer
space. There are two good reasons for this. First, outer space is big:
when you're trying to detect very small distortions of the geometry of
spacetime, it helps to measure the distance between quite distant
points. Second, outer space is free of seismic noise and most other
sources of vibration. This is why people are working on the LISA project
--- the Laser Interferometric Space Antenna:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  European Space Agency's homepage on the LISA project,
  \texttt{http://www.estec.esa.nl/spdwww/future/html/lisa.htm}
\end{enumerate}

NASA's homepage on the LISA project: \texttt{http://lisa.jpl.nasa.gov/}

The idea is to orbit 3 satellites in an equilateral triangle with sides
5 million kilometers long, and constantly measure the distance between
them to an accuracy of a tenth of an angstrom --- \(10^{-11}\) meters
--- using laser interferometry. (A modified version of the plan would
use 6 satellites.) The big distances would make it possible to detect
gravitational waves with frequencies of 0.0001 to 0.1 hertz, much lower
than the frequencies for which the ground-based detectors are optimized.
The plan involves a really cool technical trick to keep the satellites
from being pushed around by solar wind and the like: each satellite will
have a free-falling metal cube floating inside it, and if the satellite
gets pushed to one side relative to this mass, sensors will detect this
and thrusters will push the satellite back on course.

I don't think LISA has been funded yet, but if all goes well, it may fly
within 10 years or so. Eventually, a project called LISA 2 might be
sensitive enough to detect gravitational waves left over from the early
universe --- the gravitational analogue of the cosmic microwave
background radiation!

The microwave background radiation tells us about the universe when it
was roughly 10\^{}5 years old, since that's when things cooled down
enough for most of the hydrogen to stop being ionized, making it
transparent to electromagnetic radiation. In physics jargon, that's when
electromagnetic radiation ``decoupled''. But the gravitational
background radiation would tell us about the universe when it was
roughly \(10^{-38}\) seconds old, since that's when gravitational
radiation decoupled. This figure could be way off due to physics we
don't understand yet, but anyway, we're talking about a window into the
\emph{really} early universe.

Actually, Mark Kamionkowski of Caltech has theorized that the European
Space Agency's ``Planck'' satellite may detect subtle hints of the
gravitational background radiation through its tendency to polarize the
microwave background radiation. You probably heard how COBE, the Cosmic
Background Explorer, detected slight anisotropies in the microwave
background radiation. Now people are going to redo this with much more
precision: while COBE had an angular resolution of 7 degrees, Planck
will have a resolution of 4 arcminutes. They hope to launch it in 2007:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Planck homepage,
  \texttt{http://astro.estec.esa.nl/SA-general/Projects/Planck/planck.html}
\end{enumerate}

What else is coming up? Well, gravity people should be happy about the
new satellite-based X-ray telescopes, since these should be great for
looking at black holes. In July 1999, NASA launched one called
``Chandra''. (This is the nickname of Subrahmanyan Chandrasekhar, who
won the Nobel prize in 1983 for his work on stellar evolution, neutron
stars, black holes, and closed-form solutions of general relativity.)
The first pictures from Chandra are already coming out --- check out
this website:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Chandra homepage, \texttt{http://chandra.harvard.edu/}
\end{enumerate}

On December 10th, the Europeans launched XMM, the ``X-ray Multi-Mirror
Mission'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  XMM homepage, \texttt{http://sci.esa.int/xmm/}
\end{enumerate}

This is a set of three X-ray telescopes that will have lower angular
resolution than Chandra, but 5--15 times more sensitivity. It'll also be
able to study X-ray spectra, thanks to a diffraction grating that
spreads the X-rays out by wavelength. And in January, the Japanese plan
to launch Astro-E, designed to look at shorter wavelength X-rays:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  MIT's Astro-E homepage,
  \texttt{http://acis.mit.edu/syseng/astroe/xis\_home.html}
\end{enumerate}

Taken together, this new generation of X-ray telescopes should tell us a
lot about the dynamics of the rapidly changing accretion disks of black
holes, where infalling gas and dust spirals in and heats up to the point
of emitting X-rays. They may also help us better understand the X-ray
afterglow of \(\gamma\)-ray bursters. As you probably have heard, these
rascals make ordinary supernovae look like wet firecrackers! Some folks
think they're caused when a supernova creates a black hole. But nobody
is sure.

Peering further into the future, here's a nice article about new
projects people are dreaming up to study physics using astronomy:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Robert Irion, Space becomes a physics lab, Science 286 (1999),
  2060-2062.
\end{enumerate}

In 2005 folks plan to launch GLAST, the Gamma-Ray Large Area Space
Telescope, designed to study \(\gamma\)-ray bursters and the like, and
also the Alpha Magnetic Spectrometer, designed to search for antimatter
in space. But there are also a bunch of interesting projects that are
still basically just a twinkle in someone's eye\ldots.

For example: OWL, the Orbiting Wide-Angle Light Collector, a pair of
satellites that would trace the paths of super-high-energy cosmic rays
through the earth's atmosphere. As I explained in
\protect\hyperlink{week81}{``Week 81''}, people have seen cosmic rays
with ridiculously high energies, like 320 Eev --- the energy of a
1-kilogram rock moving at 10 meters per second, all packed into one
particle. OWL would orbit the earth, watch these things, and figure out
where the heck they're coming from.

Or how about this: The Dark Matter Telescope! This would use
gravitational lensing to chart the ``dark matter'' which seems to
account for a good percentage of the mass in the universe --- if, of
course, dark matter really exists.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  Dark Matter Telescope homepage, \texttt{http://dmtelescope.org}
\end{enumerate}

Anyway, there should be a lot of exciting experiments coming up. But as
usual, the really exciting stuff will be the stuff we can't predict.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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Since this is the first Week of the new millennium, I'd like to start
with a peek into the future. Not just the next hundred or thousand
years, either --- I'm sick of short-term planning. No, I'd like to talk
about the next few \emph{billion} years.

As you've probably all heard, if we don't do anything about it, the Sun
will turn into a red giant in about 5 billion years. If we get our act
together, we should have plenty of time to deal with this problem. But
when planning for the far future, it's dangerous to be too parochial!
Events outside our solar system can also affect us. For example, a
nearby supernova could be a real bummer. It wouldn't be the first time:
it seems that about 340,000 years ago there was one only 180 lightyears
away. At this distance it would have been as bright as a full moon, and
its X-rays and \(\gamma\)-rays would have stripped off the Earth's ozone
layer pretty badly for a while. A closer one could be a lot worse.

How we do know about this supernova? It's an interesting story. We
happen to live in a region of space called the Local Bubble, about 300
lightyears across, in which the interstellar gas is hotter and 5 to 10
times less dense than the surrounding stuff. People wondered about the
origin of this bubble until they studied a pulsar called Geminga about
300 lightyears away from us. Pulsars are rapidly spinning neutron stars
formed by supernovae, and by studying their spin rate and the rate their
spin is slowing down, you can guess when they were formed. Geminga turns
out to be about 340,000 years old. It's moving away from us at a known
rate, so back then it would have been 180 lightyears away --- in just
about the right place for a supernova to have created a shock wave
forming the Local Bubble.

I don't know the best place to read about the Local Bubble, but this
sounds promising:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  M. J. Freyberg and J. Trumper, eds., \emph{The Local Bubble and
  Beyond, proceedings of the IAU Colloquium no. 166}, Springer Lecture
  Notes in Physics \textbf{506}, Springer-Verlag, Berlin, 1998.
\end{enumerate}

Looking further afield, we should also watch out for the health of the
Milky Way as a whole:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Robert Irion, ``A crushing end for our galaxy'', \emph{Science}
  \textbf{287} (2000), 62--64.
\item
  Roland Buser, ``The formation and early evolution of the Milky Way
  galaxy'', \emph{Science} \textbf{287} (2000), 69--74.
\end{enumerate}

It now appears that the Milky Way, like most big spiral galaxies, was
built up by a gradual merger of smaller clouds of stars and gas. And it
seems this process is not finished. In 1994 people found a small galaxy
orbiting the Milky Way, almost hidden behind the dense dust clouds in
the galactic center. Called the Sagittarius dwarf galaxy, it is only
about \(1/1000\)th the mass of the Milky Way. Its eccentric orbit about
our galaxy is strewn with stars pulled away from it by tidal forces, and
it may have already passed through the outer parts of our galaxy's disk
several times. It may not survive the next pass, due in about 750
million years.

But that's not all. The Large and Small Magellanic Clouds, visible to
the naked eye in the Southern Hemisphere, are also dwarf galaxies
orbiting ours. They are considerably larger than the Sagittarius dwarf
galaxy. And they're not just orbiting the Milky Way: they are gradually
spiralling in and getting torn apart. If nothing interrupts this
process, they'll crash into our galaxy in about 10 billion years. When
when this happens, the shock waves from colliding gas should create
enough new stars to make our galaxy shine about 25\% brighter for the
next several hundred million years! This could prove quite a nuisance in
these parts.

But again, we should not make the mistake of parochialism: dangers from
afar may prove more urgent than those in our neighborhood. The dwarf
galaxies near us are nothing compared to Andromeda. This spiral galaxy
is twice the size of ours, about 2.5 million light years away, and
clearly visible from the Northern Hemisphere. Unfortunately, it's also
heading towards us at a speed of 140 kilometers per second! As it comes
closer, gravitational attraction will speed it up, so it may hit our
galaxy --- or at least come close --- in only 3 billion years. If this
happens, the two galaxies will first whiz past or through each other,
but then their gravitational attraction will pull them back together,
and after 1 or 2 billion more years they should coalesce into a single
big elliptical galaxy. Direct hits between individal stars are unlikely,
but many existing stars will be hurled out into intergalactic space, and
many new stars will be born as gas clouds collide.

You may think that I'm joking when I speak of planning ahead for such
events, but I'm not. We have plenty of time, so it's not very urgent ---
but it's not too soon to start thinking about these things. And if you
think it's hopelessly beyond our powers to deal with a collision of
galaxies, please remember that 3 billion years ago we were single-celled
organisms. With any luck, our abilities 3 billion years from now should
compare to our present abilities as our present abilities compare to
those of microorganisms! And if life on Earth screws up and dies out,
well, there are plenty of other planets out there.

By the way, while we're discussing matters galactic, remember how last
Week I said that the X-ray telescope Chandra has recently started taking
data? Well, the interesting news is already coming in! For a long time
people have wondered about the origin of the ``X-ray background
radiation'': a diffuse X-ray glow that covers the whole sky. On
Thursday, astronomers using Chandra discovered that most of this
radiation actually comes from about 70 million individual point sources!
Apparently, many of these are supermassive black holes at the center of
galaxies. There's already a lot of evidence for such black holes ---
which seem to power quasars and other active galactic nuclei --- but
it's delightful to find them in such large numbers. It might even be
taken as evidence for Smolin's hypothesis that the universe is optimized
for black hole production thanks to a process of Darwinian evolution
(see \protect\hyperlink{week31}{``Week 31''} and
\protect\hyperlink{week33}{``Week 33''} for details.)

For more, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  ``Chandra resolves cosmic X-ray glow and finds mysterious new
  sources'', press release available online at
  \texttt{http://chandra.harvard.edu/press/00\_releases/press\_011400bg.html}
\end{enumerate}

You should also check out the Chandra website for nice new pictures of
the black holes at the center of the Milky Way and Andromeda.

Okay\ldots{} I've been sort of goofing off in the last few Weeks, but
now I want to return to some hardcore mathematics. In particular, I want
to talk about \(n\)-categories and homotopy theory, so I'm going to pick
up ``The Tale of \(n\)-Categories'' roughly where I left off in
\protect\hyperlink{week100}{``Week 100''}, and start connecting it to
the little introduction to homotopy theory I gave from
\protect\hyperlink{week115}{``Week 115''} to
\protect\hyperlink{week119}{``Week 119''}.

As I've said many times, the goal of \(n\)-category theory is to
eliminate equations from mathematics, or at least to be able to postpone
pretending that isomorphisms are equations for as long as you like. I've
repeatedly described the practical benefits of this, so I won't bother
doing so again --- I'll assume you're convinced of it!

To achieve this goal, an \(n\)-category is supposed to be some sort of
algebraic structure with objects, morphisms between objects,
\(2\)-morphisms between morphisms, and so on up to and including
\(n\)-morphisms, with various ways of composing all these guys. The idea
is then that we should never assert that two \(j\)-morphisms are
\emph{equal} except for \(j = n\). Instead, we should just specify an
\emph{equivalence} between them. An ``equivalence'' is a bit like an
isomorphism, but it's defined recursively from the top down. An
\(n\)-morphism is an equivalence iff it's an isomorphism, that is, iff
it's invertible. But for \(j < n\), a \(j\)-morphism is an equivalence
if it's invertible \emph{up to equivalence}.

There are various competing definitions of \(n\)-category at present,
but the key idea behind all the definitions of \emph{weak}
\(n\)-category is that the ways of composing \(j\)-morphisms should
satisfy associativity and all the other usual laws only up to
equivalence. For example, suppose we have some morphisms
\(a\colon w\to x\), \(b\colon w\to y\) and \(c\colon y\to z\) in a
\(1\)-category. Then associativity holds ``on the nose'', i.e., as an
equation: \[a(bc) = (ab)c.\] In a \(1\)-category there is no opportunity
for ``weakening'' this law. But in a weak \(2\)-category, associativity
holds only up to equivalence. In other words, we have an invertible
\(2\)-morphism called the ``associator''
\[A_{a,b,c}: (ab)c \Rightarrow a(bc)\] taking the part of the above
equation.

But there's a catch: when we replace equational laws by equivalences
this way, the equivalences need to satisfy laws of their own, or it
becomes impossible to work with them. These laws are called ``coherence
laws''. For the associator, the necessary coherence law is called the
pentagon equation. It says that this diagram commutes: \[
  \begin{tikzpicture}[scale=0.5]
    \node (mr) at (18:3) {$(a (b c)) d$};
    \node (t) at (90:3) {$((a b) c) d$};
    \node (ml) at (162:3) {$(a b) (c d)$};
    \node (bl) at (214:2.5) {$a (b (c d))$};
    \node (br) at (326:2.5) {$a ((b c) d)$};
    \draw[double,double equal sign distance,-implies] (t) to (ml);
    \draw[double,double equal sign distance,-implies] (ml) to (bl);
    \draw[double,double equal sign distance,-implies] (t) to (mr);
    \draw[double,double equal sign distance,-implies] (mr) to (br);
    \draw[double,double equal sign distance,-implies] (br) to (bl);
  \end{tikzpicture}
\] I haven't labelled the double arrows here, but they are all
\(2\)-morphisms built from the associator in obvious ways\ldots{}
obvious if you know about \(2\)-categories, at least. The pentagon
equation says that the two basic ways of going from \(((ab)c)d\) to
\(a(b(cd))\) by rebracketing are equal to each other. But in fact,
MacLane's ``coherence theorem'' says that given the pentagon equation,
you can rebracket composites of arbitrarily many morphisms using the
associator over and over to your heart's content, and you'll never get
into trouble: all the ways of going from one bracketing to another are
equal.

In a weak \(3\)-category, the pentagon equation is replaced by a
\(3\)-morphism called the ``pentagonator''. This in turn satisfies a new
coherence law of its own, which I can't easily draw for you, because
doing so requires a \(3\)-dimensional diagram in the shape of a
polyhedron with 14 vertices, called the ``associahedron''.

As you might fear, this process never stops: there's an infinite list of
``higher coherence laws'' for associativity, which can be represented as
higher-dimensional associahedra. They were discovered by James Stasheff
around 1963. Here are the original papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  James Stasheff, ``Homotopy associativity of H-spaces I'', \emph{Trans.
  Amer. Math. Soc.} \textbf{108} (1963), 275--292.
\end{enumerate}

James Stasheff, ``Homotopy associativity of H-spaces II'', \emph{Trans.
Amer. Math. Soc.} \textbf{108} (1963), 293--312.

Personally, I find his book a lot easier to read:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  James Stasheff, \emph{H-spaces from a Homotopy Point of View},
  Springer Lecture Notes in Mathematics \textbf{161}, Springer-Verlag,
  New York, 1970.
\end{enumerate}

There's a wealth of interesting combinatorics lurking in the
associahedra. To my shame, I realize that I've never discussed this
stuff, so I'd better say a bit about it. Then next Week I'll return to
my real goal, which is to explain how you can use homotopy theory to
understand coherence laws. With any luck, I'll get around to telling you
all sorts of wonderful stuff about Postnikov towers, the cohomology of
Eilenberg-MacLane spaces, and so on. We'll see. So much math, so little
time\ldots.

Okay, here's how you build an associahedron.

First I'll describe the vertices, because they're very simple: the
correspond to all the ways of bracketing a string of \(n\) letters.
Well, that's a bit vague, so I'll do an example. Suppose \(n = 4\). Then
we get 5 bracketings:

\begin{itemize}
\tightlist
\item
  \(((ab)c)d\)
\item
  \((a(bc))d\)
\item
  \((ab)(cd)\)
\item
  \(a((bc)d)\)
\item
  \(a(b(cd))\)
\end{itemize}

These are exactly the vertices of the pentagon I drew earlier! And this
how it always works: the bracketings of \(n\) letters are the vertices
of the \((n-2)\)-dimensional associahedron. This should not be
surprising, since associativity is all about bracketing.

More precisely, we're interested in the bracketings of \(n\) letters
that correspond to binary planar trees with \(n\) leaves. For example,
when \(n = 4\): \[
  \begin{gathered}
    \begin{tikzpicture}[scale=0.7]
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \node[label=above:{$d$}] at (3,0) {};
      \draw[thick] (0,0) to (1.5,-3);
      \draw[thick] (1,0) to (0.5,-1);
      \draw[thick] (2,0) to (1,-2);
      \draw[thick] (3,0) to (1.5,-3);
      \node at (4,-1.5) {$((ab)c)d$};
    \end{tikzpicture}
    \quad
    \begin{tikzpicture}[scale=0.7]
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \node[label=above:{$d$}] at (3,0) {};
      \draw[thick] (0,0) to (1.5,-3);
      \draw[thick] (1,0) to (1.5,-1);
      \draw[thick] (2,0) to (1,-2);
      \draw[thick] (3,0) to (1.5,-3);
      \node at (4,-1.5) {$(a(bc))d$};
    \end{tikzpicture}
  \\\begin{tikzpicture}[scale=0.7]
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \node[label=above:{$d$}] at (3,0) {};
      \draw[thick] (0,0) to (1.5,-3);
      \draw[thick] (1,0) to (0.5,-1);
      \draw[thick] (2,0) to (2.5,-1);
      \draw[thick] (3,0) to (1.5,-3);
      \node at (4,-1.5) {$(ab)(cd)$};
    \end{tikzpicture}
  \\\begin{tikzpicture}[scale=0.7]
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \node[label=above:{$d$}] at (3,0) {};
      \draw[thick] (0,0) to (1.5,-3);
      \draw[thick] (1,0) to (2,-2);
      \draw[thick] (2,0) to (1.5,-1);
      \draw[thick] (3,0) to (1.5,-3);
      \node at (4,-1.5) {$a((bc)d)$};
    \end{tikzpicture}
    \quad
    \begin{tikzpicture}[scale=0.7]
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \node[label=above:{$d$}] at (3,0) {};
      \draw[thick] (0,0) to (1.5,-3);
      \draw[thick] (1,0) to (2,-2);
      \draw[thick] (2,0) to (2.5,-1);
      \draw[thick] (3,0) to (1.5,-3);
      \node at (4,-1.5) {$a(b(cd))$};
    \end{tikzpicture}  
  \end{gathered}
\]

We can think of these trees as recording the \emph{process} of
multiplying \(n\) things, with time marching down the page.

How many binary planar trees with \(n\) leaves are there, anyway? Well,
the answer is called the \((n-1)\)st Catalan number. These numbers were
first discovered by Euler, but they're named after Eugene Catalan, who
discovered their relation to binary trees. Here they are, starting from
the 0th one:
\[1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,
\ldots\] The \(n\)th Catalan number is also the number of ways of taking
a regular \((n+2)\)-gon and chopping it into triangles by connecting the
vertices by line segments that don't cross each other. It's also the
number of ways of getting from a street corner in Manhattan to another
street corner that's \(n\) blocks north and \(n\) blocks east, always
driving north or east, but making sure that at no stage have you gone a
greater total distance north than east. Get it? No? Maybe a picture will
help! When \(n = 3\), there are 5 ways: \[
  \begin{gathered}
    \begin{tikzpicture}
      \foreach \x in {0,1,2,3}
        \foreach \y in {0,1,2,3}
          \node (\x\y) at (\x,\y) {$\bullet$};
      \draw[ultra thick,-latex] (00) edge (10) (10) edge (20) (20) edge (30)
        (30) edge (31) (31) edge (32) (32) edge (33);
    \end{tikzpicture}
    \qquad\qquad
    \begin{tikzpicture}
      \foreach \x in {0,1,2,3}
        \foreach \y in {0,1,2,3}
          \node (\x\y) at (\x,\y) {$\bullet$};
      \draw[ultra thick,-latex] (00) edge (10) (10) edge (20)
        (20) edge (21)
        (21) edge (31)
        (31) edge (32) (32) edge (33);
    \end{tikzpicture}
  \\[2em]
    \begin{tikzpicture}
      \foreach \x in {0,1,2,3}
        \foreach \y in {0,1,2,3}
          \node (\x\y) at (\x,\y) {$\bullet$};
      \draw[ultra thick,-latex] (00) edge (10) (10) edge (20)
        (20) edge (21) (21) edge (22)
        (22) edge (32)
        (32) edge (33);
    \end{tikzpicture}
  \\[2em]
    \begin{tikzpicture}
      \foreach \x in {0,1,2,3}
        \foreach \y in {0,1,2,3}
          \node (\x\y) at (\x,\y) {$\bullet$};
      \draw[ultra thick,-latex] (00) edge (10)
        (10) edge (11)
        (11) edge (21) (21) edge (31)
        (31) edge (32) (32) edge (33);
    \end{tikzpicture}
    \qquad\qquad
    \begin{tikzpicture}
      \foreach \x in {0,1,2,3}
        \foreach \y in {0,1,2,3}
          \node (\x\y) at (\x,\y) {$\bullet$};
      \draw[ultra thick,-latex] (00) edge (10)
        (10) edge (11)
        (11) edge (21)
        (21) edge (22)
        (22) edge (32)
        (32) edge (33);
    \end{tikzpicture}
  \end{gathered}
\]

I leave it as a puzzle for you to understand why all these things are
counted by the Catalan numbers. If you want to see nicer pictures of all
these things, go here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Robert M. Dickau, ``Catalan numbers'',
  \texttt{http://forum.swarthmore.edu/advanced/robertd/catalan.html}
\end{enumerate}

For more problems whose answer involves the Catalan numbers, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Kevin Brown, ``The meanings of Catalan numbers'',
  \texttt{http://www.seanet.com/\textasciitilde{}ksbrown/kmath322.htm}
\end{enumerate}

To figure out a formula for the Catalan numbers, we can use the
technique of generating functions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Herbert Wilf, \emph{Generatingfunctionology}, Academic Press, Boston,
  1994. Also available for free at
  \texttt{http://www.cis.upenn.edu/\textasciitilde{}wilf/}
\end{enumerate}

Briefly, the idea is to make up a power series \(T(x)\) where the
coefficient of \(x^n\) is the number of \(n\)-leaved binary trees. Since
by some irritating accident of history people call this the \((n-1)\)st
Catalan number, we have: \[T(x) = \sum_{n\in\mathbb{N}} C_{n-1} x^n\] We
can do this trick whenever we're counting how many structures of some
sort we can put on an \(n\)-element set. Nice operations on structures
correspond to nice operations on formal power series. Using this
correspondence we can figure out the function \(T\) and then do a Taylor
expansion to determine the Catalan numbers. Instead of explaining the
theory of how this all works, I'll just demonstrate it as a kind of
magic trick.

So: what is a binary tree? It's either a binary tree with one leaf (the
degenerate case) or a pair of binary trees stuck together. Now let's
translate this fact into an equation: \[T = x + T^2\] Huh? Well, in this
game ``plus'' corresponds to ``or'', ``times'' corresponds to ``and'',
and the power series ``\(x\)'' is the generating function for binary
trees with one leaf. So this equation really just says ``a binary tree
equals a binary tree with one leaf or a binary tree and a binary tree''.

Next, let's solve this equation for \(T\). It's just a quadratic
equation, so any high school student can solve it:
\[T = \frac{1-\sqrt{1-4x}}{2}.\] Now if we do a Taylor expansion we get
\[T = x + x^2 + 2x^3 + 5x^4 + 14x^5 + 42x^6 + \ldots\] Lo and behold ---
the Catalan numbers! If we're a bit smarter and use the binomial theorem
and mess around a bit, we get a closed-form formula for the Catalan
numbers: \[C_n = \frac{\binom{2n}{n}}{n + 1}\] Neat, huh? If you want to
understand the category-theoretic foundations of this trick, read about
Joyal's concept of ``species''. This makes precise the notion of a
``structure you can put on a finite set''. For more details, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Andre Joyal, ``Une theorie combinatoire des series formelles'',
  \emph{Adv. Math.} \textbf{42} (1981), 1--82.
\item
  F. Bergeron, G. Labelle, and P. Leroux, \emph{Combinatorial species
  and tree-like structures}, Cambridge, Cambridge U. Press, 1998.
\end{enumerate}

Anyway, now we know how many vertices the associahedron has. But what
about all the higher-dimensional faces of the associahedron? There's a
lot to say about this, but it's basically pretty simple: all the faces
of the \((n-2)\)-dimensional associahedron correspond to planar trees
with \(n\) leaves. It gets a little tricky to draw using ASCII, so I'll
just do the case \(n = 3\). The \(1\)-dimensional associahedron is the
unit interval, and in terms of trees it looks like this: \[
  \begin{tikzpicture}[scale=0.7]
    \begin{scope}
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \draw[thick] (0,0) to (1,-2);
      \draw[thick] (1,0) to (0.5,-1);
      \draw[thick] (2,0) to (1,-2);
    \end{scope}
    \begin{scope}[shift={(3.5,0)}]
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \draw[thick] (0,0) to (1,-2);
      \draw[thick] (1,0) to (1,-2);
      \draw[thick] (2,0) to (1,-2);
    \end{scope}
    \begin{scope}[shift={(7,0)}]
      \node[label=above:{$a$}] at (0,0) {};
      \node[label=above:{$b$}] at (1,0) {};
      \node[label=above:{$c$}] at (2,0) {};
      \draw[thick] (0,0) to (1,-2);
      \draw[thick] (1,0) to (1.5,-1);
      \draw[thick] (2,0) to (1,-2);
    \end{scope}
    \draw[ultra thick] (1,-3) to (8,-3);
    \node at (1,-3) {$\bullet$};
    \node at (8,-3) {$\bullet$};
  \end{tikzpicture}
\] Over at the left end of the interval we have the binary tree
corresponding to first composing \(a\) and \(b\), and then composing the
result with \(c\). At the right end, we have the binary tree
corresponding to first composing \(b\) and \(c\), and then composing the
result with \(a\). In the middle we have a ternary tree that corresponds
to \emph{simultaneously} composing \(a\), \(b\), and \(c\).

Actually, we can think of any point in the \((n-2)\)-dimensional
associahedron as an \(n\)-leaved tree whose edges have certain specified
lengths, so as you slide your finger across the \(1\)-dimensional
associahedron above, you can imagine the left-hand tree continuously
``morphing'' into the right-hand one. In this way of thinking, each
point of the associahedron corresponds to a particular \(n\)-ary
operation: a way of composing \(n\) things. To make this precise one
must use the theory of ``operads''. The theory of operads is really the
royal road to understanding \(n\)-categories, coherence laws, and their
relation to homotopy theory\ldots. But here, alas, I must stop.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Footnote --- If you want to know more about the deep inner meaning of
the Catalan numbers, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Richard P. Stanley, \emph{Enumerative Combinatorics}, volume 2,
  Cambridge U. Press, Cambridge, 1999, pp.~219-229.
\end{enumerate}

It lists 66 different combinatorial interpretations of these numbers! As
an exercise, it urges you to prove that they all work, ideally by
finding 4290 ``simple and elegant'' bijections between the various sets
being counted.

(Thanks go to my pal Bill Schmitt for mentioning this reference.)

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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I know I promised to talk about homotopy theory and \(n\)-categories,
but I've gotten sidetracked into thinking about projective planes, so
I'll talk about that this Week and go back to the other stuff later.
Sorry, but if I don't talk about what intrigues me at the instant I'm
writing this stuff, I can't get up the energy to write it.

So:

There are many kinds of geometry. After Euclidean geometry, one of the
first to become popular was projective geometry. Projective geometry is
the geometry of perspective. If you draw a picture on a piece of paper
and view it from a slant, distances and angles in the picture will get
messed up --- but lines will still look like lines. This kind of
transformation is called a ``projective transformation''. Projective
geometry is the study of those aspects of geometry that are preserved by
projective transformations.

Interestingly, \(2\)-dimensional projective geometry has some curious
features that don't show up in higher dimensions. To explain this, I
need to tell you about projective planes.

I talked a bit about projective planes in
\protect\hyperlink{week106}{``Week 106''}. The basic idea is to take the
ordinary plane and add some points at infinity so that every pair of
distinct lines intersects in exactly one point. Lines that were parallel
in the ordinary plane will intersect at one of the points at infinity.
This simplifies the axioms of projective geometry.

But what exactly do I mean by ``the ordinary plane''? Well, ever since
Descartes, most people think of the plane as \(\mathbb{R}^2\), which
consists of ordered pairs of real numbers. But algebraists also like to
use \(\mathbb{C}^2\), consisting of ordered pairs of complex numbers.
For that matter, you could take any field \(\mathbb{F}\) --- like the
rational numbers, or the integers modulo a prime --- and use
\(\mathbb{F}^2\). Algebraic geometers call this sort of thing an
``affine plane''.

A projective plane is a bit bigger than an affine plane. For this, start
with the \(3\)-dimensional vector space \(\mathbb{F}^3\). Then define
the projective plane over \(\mathbb{F}\), denoted \(\mathbb{FP}^2\), to
be the space of lines through the origin in \(\mathbb{F}^3\). You can
show the projective plane is the same as the affine plane together with
extra points, which play the role of ``points at infinity''.

In fact, you can generalize this a bit --- you can make sense of the
projective plane over \(\mathbb{F}\) whenever \(\mathbb{F}\) is a
division ring! A division ring is a like a field, but where
multiplication isn't necessarily commutative. The best example is the
quaternions. In \protect\hyperlink{week106}{``Week 106''} I talked about
the real, complex and quaternionic projective planes, their symmetry
groups, and their relation to quantum mechanics. Here's a good book
about this stuff, emphasizing the physics applications:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  V. S. Varadarajan, \emph{Geometry of Quantum Mechanics},
  Springer-Verlag, Berlin, 2nd ed., 1985.
\end{enumerate}

So far, so good. But there's another approach to projective planes
that's even more general. This approach goes back to Euclidean geometry:
it's based on a list of axioms. In this approach, a projective plane
consists of a set of ``points'', a set of ``lines'', and a relation
which tells us whether or not a given point ``lies on'' a given line.
I'm putting quotes around all these words, because in this approach they
are undefined terms. All we get to work with are the following axioms:

\begin{enumerate}
\def\labelenumi{\Alph{enumi})}
\tightlist
\item
  Given two distinct points, there exists a unique line that both points
  lie on.
\item
  Given two distinct lines, there exists a unique point that lies on
  both lines.
\item
  There exist four points, no three of which lie on the same line.
\item
  There exist four lines, no three of which have the same point lying on
  them.
\end{enumerate}

Actually we can leave out either axiom C) or axiom D) --- the rest of
the axioms will imply the one we leave out. It's a nice little exercise
to convince yourself of this. I put in both axioms just to make it
obvious that this definition of projective plane is ``self-dual''. In
other words, if we switch the words ``point'' and ``line'' and switch
who lies on who, the definition stays the same!

Duality is one of the great charms of the theory of projective planes:
whenever you prove any theorem, you get another one free of charge with
the roles of points and lines switched, thanks to duality. There are
lots of different kinds of ``duality'' in mathematics, but this is
probably the grand-daddy of them all.

Now, it's easy to prove that starting from any division ring
\(\mathbb{F}\), we get a projective plane \(\mathbb{FP}^2\) satisfying
the above axioms. The fun part is to try to go the other way! Starting
from a structure satisfying the above axioms, can you cook up a division
ring that it comes from?

Well, starting from a projective plane, you can try to recover a
division ring as follows. Pick a line and throw out one point --- and
call that point ``the point at infinity''. What's left is an ``affine
line'' - let's call it \(L\). Let's try to make \(L\) into a division
ring. To do this, we first need to pick two different points in \(L\),
which we call \(0\) and \(1\). Then we need to cook up rules for adding
and multiplying points on \(L\).

For this, we use some tricks invented by the ancient Greeks!

This should not be surprising. After all, those dudes thought about
arithmetic in very geometrical ways. How can you add points on a line
using the geometry of the plane? Just ask any ancient Greek, and here's
what they'll say:

First pick a line \(L'\) that's parallel to \(L\) --- meaning that \(L\)
and \(L'\) intersect only at the point at infinity. Then pick a line
\(M\) that intersects \(L\) at the point \(0\) and \(L'\) at some point
which we call \(0'\). We get a picture like this: \[
  \begin{tikzpicture}[scale=1.3]
    \node[label={[label distance=-2mm]below left:{$0$}}] at (0,0) {$\bullet$};
    \node[label={[label distance=-2mm]below left:{$0'$}}] at (0.5,2) {$\bullet$};
    \draw[thick] (-0.125,-0.5) to node[fill=white]{$M$} (0.625,2.5);
    \draw[thick] (-0.5,0) to node[fill=white]{$L$} (4,0);
    \draw[thick] (0,2) to node[fill=white]{$L'$} (4.5,2);
  \end{tikzpicture}
\] Then, to add two points \(x\) and \(y\) on \(L\), draw this picture:
\[
  \begin{tikzpicture}[scale=1.3]
    \node[label={[label distance=-2mm]below left:{$0$}}] at (0,0) {$\bullet$};
    \node[label={[label distance=-2mm]below left:{$0'$}}] at (0.5,2) {$\bullet$};
    \draw[thick] (-0.125,-0.5) to node[fill=white]{$M$} (0.375,1.5) to (0.625,2.5);
    \draw[thick] (-0.5,0) to (2.5,0) to node[fill=white]{$L$} (4,0);
    \draw[thick] (0,2) to (3,2) to node[fill=white]{$L'$} (4.5,2);
    \node[label={[label distance=-2mm]below left:{$x$}}] at (0.7,0) {$\bullet$};
    \draw[thick] (0.5,2) to node[fill=white]{$N$} (0.75,-0.5);
    \node at (2.5,2) {$\bullet$};
    \node[label={[label distance=-2mm]below left:{$y$}}] at (2,0) {$\bullet$};
    \node[label={[label distance=-2mm]below left:{$z$}}] at (2.7,0) {$\bullet$};
    \draw[thick] (1.875,-0.5) to node[fill=white]{$M'$} (2.625,2.5);
    \draw[thick] (2.5,2) to node[fill=white]{$N'$} (2.75,-0.5);
  \end{tikzpicture}
\] In other words, draw a line \(M'\) parallel to \(M\) through the
point \(y\), draw a line \(N\) through \(x\) and \(0'\), and draw a line
\(N'\) parallel to \(N\) and going through the point where \(M'\) and
\(L'\) intersect. \(L\) and \(N'\) intersect at the point called
\(z\)\ldots{} and we define this point to be \(x + y\)!

This is obviously the right thing, because the two triangles in the
picture are congruent.

What about multiplication? Well, first draw a line \(L'\) that
intersects our line \(L\) only at the point \(0\). Then draw a line
\(M\) from the point \(1\) to some point \(1'\) that's on \(L'\) but not
on \(L\): \[
  \begin{tikzpicture}
    \draw[thick] (-1,0) to (3,0) node[label=right:{$L$}]{};
    \draw[thick] (0,0) to (1.5,2) node[label=right:{$L'$}]{};
    \draw[thick] (1,-1) node[label=right:{$M$}]{} to (1,1.33);
    \node[label={[label distance=-2mm]below left:{$0$}}] at (0,0){$\bullet$};
    \node[label={[label distance=-2mm]below left:{$1$}}] at (1,0){$\bullet$};
    \node[label={[label distance=-2mm]above left:{$1'$}}] at (1,1.33){$\bullet$};
  \end{tikzpicture}
\] Then, to multiply \(x\) and \(y\), draw this picture: \[
  \begin{tikzpicture}
    \draw[thick] (-1,0) to (6,0) node[label={[label distance=-2mm]right:{$L$}}]{};
    \draw[thick] (0,0) to node[label=above:{$L'$}]{} (3,4);
    \draw[thick] (1,-1) node[label={[label distance=-2mm]right:{$M$}}]{} to (1,1.33) to (1,1.75);
    \draw[thick] (2.5,-1) node[label={[label distance=-2mm]right:{$M'$}}]{} to (2.5,3.33) node{$\bullet$} to (2.5,4);
    \draw[thick] (2,-0.66) node[label={[label distance=-2mm]below:{$N$}}]{} to (1.66,0) node[label={[label distance=-3mm]above right:{$x$}}]{$\bullet$} to (1,1.33) to (0.66,2);
    \draw[thick] (4.66,-0.66) node[label={[label distance=-2mm]below:{$N'$}}]{} to (4.33,0) node[label={[label distance=-3mm]above right:{$z$}}]{$\bullet$} to (2.5,3.33) to (2.17,4);
    \node[label={[label distance=-2mm]below left:{$0$}}] at (0,0){$\bullet$};
    \node[label={[label distance=-2mm]below left:{$1$}}] at (1,0){$\bullet$};
    \node[label={[label distance=-3mm]above right:{$y$}}] at (2.5,0){$\bullet$};
    \node[label={[label distance=-2mm]left:{$1'$}}] at (1,1.33){$\bullet$};
  \end{tikzpicture}
\] In other words, draw a line \(N\) though \(1'\) and \(x\), draw a
line \(M'\) parallel to \(M\) through the point \(y\), and draw a line
\(N'\) parallel to \(N\) through the point where \(L'\) and \(M'\)
intersect. \(L\) and \(N'\) intersect at the point called \(z\)\ldots{}
and we define this point to be \(xy\)!

This is obviously the right thing, because the triangle containing the
points \(1\) and \(x\) is similar to the triangle containing \(y\) and
\(z\).

So, now that we've cleverly figured out how to define addition and
multiplication starting from a projective plane, we can ask: do we get a
division ring?

And the answer is: not necessarily. It's only true if our projective
plane is ``Desarguesian''. This is a special property named after an old
theorem about the real projective plane, proved by Desargues. A
projective plane is Desarguesian if Desargues' theorem holds for this
plane.

But wait --- there's an even more basic question we forgot to ask!
Namely: was our ancient Greek method of defining addition and
multiplication independent of the choices we made? We needed to pick
some points and lines to get things going. If you think about it hard,
these choices boil down to picking four points, no three of which lie on
a line --- exactly what axiom C) guarantees we can do.

Alas, it turns out that in general our recipe for addition and
multiplication really depends on \emph{how} we chose these four points.
But if our projective plane is Desarguesian, it does not!

In fact, if we stick to Desarguesian projective planes, everything works
very smoothly. For any division ring \(\mathbb{F}\) the projective plane
\(\mathbb{FP}^2\) is Desarguesian. Conversely, starting with a
Desarguesian projective plane, we can use the ancient Greek method to
cook up a division ring \(\mathbb{F}\). Best of all, these two
constructions are inverse to each other --- at least up to isomorphism.

At this point you should be pounding your desk and yelling ``Great ---
but what does `Desarguesian' mean? I want the nitty-gritty details!''

Okay\ldots.

Given a projective plane, define a ``triangle'' to be three points that
don't lie on the same line. Now suppose you have two triangles \(xyz\)
and \(x'y'z'\). The sides of each triangle determine three lines, say
\(LMN\) and \(L'M'N'\). If we're really lucky, the line through \(x\)
and \(x'\), the line through \(y\) and \(y'\), and the line through
\(z\) and \(z'\) will all intersect at the same point. We say that our
projective plane is ``Desarguesian'' if whenever this happens, something
else happens: the intersection of \(L\) and \(L'\), the intersection of
\(M\) and \(M'\), and the intersection of \(N\) and \(N'\) all lie on
the same line.

If you have trouble visualizing what I just said, take a look at this
webpage, which also gives a proof of Desargues' theorem for the real
projective plane:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Roger Mohr and Bill Trigs, ``Desargues' Theorem'',
  \texttt{http://spigot.anu.edu.au/people/samer/Research/Doc/ECV\_Tut\_Proj\_Geom/node25.html}
\end{enumerate}

Desargues' theorem is a bit complicated, but one cool thing is that its
converse is its dual. This is easy to see if you stare at it: ``three
lines intersecting at the same point'' is dual to ``three points lying
on the the same line''. Even cooler, Desargues' theorem implies its own
converse! Thus the property of being Desarguesian is self-dual.

Another nice fact about Desarguesian planes concerns collineations. A
``collineation'' is a map from a projective plane to itself that
preserves all lines. Collineations form a group, and this group acts on
the set of all ``quadrangles'' --- a quadrangle being a list of four
points, no three of which lie on a line. Axiom C) says that every
projective plane has at least one quadrangle. It turns out that if a
projective plane is Desarguesian, the group of collineations acts
transitively on the set of quadrangles: given any two quadrangles,
there's a collineation carrying one to the other. This is the reason why
the ancient Greek trick for adding and multiplying doesn't depend on the
choice of quadrangle when our projective plane is Desarguesian!

An even more beautiful fact about Desarguesian planes concerns their
relation to higher dimensions. Just as we defined projective planes
through a list of axioms, we can also define projective spaces of any
dimension \(n = 1,2,3,\ldots\). The simplest example is
\(\mathbb{FP}^n\) --- the space of lines through the origin in
\(\mathbb{F}^{n+1}\), where \(\mathbb{F}\) is some division ring. The
neat part is that when \(n > 2\), this is the \emph{only} example.
Moreover, any projective plane sittting inside one of these
higher-dimensional projective spaces is automatically Desarguesian! So
the non-Desarguesian projective planes are really freaks of dimension 2.

All this is very nice. But there are some obvious further questions,
namely: what's special about projective planes that actually come from
\emph{fields}, and what can we say about non-Desarguesian projective
planes?

The key to the first question is an old theorem proved by the last of
the great Greek geometers, Pappus, in the 3rd century CE. It turns out
that in any projective plane coming from a field, the Pappus Theorem
holds. Conversely, any projective plane satisfying the Pappus Theorem
comes from a unique field. We call such projective planes ``Pappian''.

The Pappus theorem will be too scary if I explain it using only words,
so I'll tell you to look at a picture instead. The fun thing about this
picture is that you can move the red and green points around with your
mouse and see how things change:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Pappus' theorem (a JavaSketchPad demo by MathsNet),
  \texttt{http://www.anglia.co.uk/education/mathsnet/dynamic/pappus.html}
\end{enumerate}

Now, what about the non-Desarguesian projective planes? If we try to get
a division ring from an \emph{arbitrary} projective plane, we fail
miserably. However, we can still define addition and multiplication
using the tricks described above. These operations depend crucially our
choice of a quadrangle. But if we list all the axioms these operations
satisfy, we get the definition of an algebraic gadget called a ``ternary
ring''.

They're called ``ternary rings'' because they're usually described in
terms of a ternary operation that generalizes \(xy + z\). But the
precise definition is too depressing for me give here. It's a classic
example of what James Dolan calls ``centipede mathematics'', where you
take a mathematical concept and see how many legs you can pull off
before it can no longer walk. A ternary ring is like a division ring
that can just barely limp along on its last legs.

I'm not a big fan of centipede mathematics, but there is one really nice
example of a ternary ring that isn't a division ring. Namely, the
octonions! These are almost a division ring, but their multiplication
isn't associative.

I already talked about the octonions in
\protect\hyperlink{week59}{``Week 59''},
\protect\hyperlink{week61}{``Week 61''},
\protect\hyperlink{week104}{``Week 104''} and
\protect\hyperlink{week105}{``Week 105''}. In
\protect\hyperlink{week106}{``Week 106''}, I explained how you can
define \(\mathbb{OP}^2\), the projective plane over the octonions. This
is the best example of a non-Desarguesian projective plane. One reason
it's so great is that that its group of collineations is
\(\mathrm{E}_6\). \(\mathrm{E}_6\) is one of the five ``exceptional
simple Lie groups'' --- mysterious and exciting things that deserve all
the study they can get!

Next I want to talk about the relation between projective geometry and
the \emph{other} exceptional Lie groups, but first let me give you some
references. To start, here's a great book on projective planes and all
the curious centipede mathematics they inspire:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Frederick W. Stevenson, \emph{Projective Planes}, W. H. Freeman and
  Company, San Francisco, 1972.
\end{enumerate}

You'll learn all about nearfields, quasifields, Moufang loops, Cartesian
groups, and so on.

Much of the same material is covered in these lectures by Hall, which
are unfortunately a bit hard to find:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Marshall Hall, \emph{Projective Planes and Other Topics}, California
  Institute of Technology, Pasadena, 1954.
\end{enumerate}

For a more distilled introduction to the same stuff, try the last
chapter of Hall's book on group theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Marshall Hall, \emph{The Theory of Groups}, Macmillan, New York, 1959.
\end{enumerate}

If you're only interested in Desarguesian projective planes, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Robin Hartshorne, \emph{Foundations of Projective Geometry}, Benjamin,
  New York, 1967.
\end{enumerate}

In particular, this book gives a nice account of the collineation group
in the Desarguesian case. The punchline is simple to state, so I'll tell
you. Suppose \(\mathbb{F}\) is a division ring. Then the collineation
group of \(\mathbb{FP}^2\) is generated by two obvious subgroups:
\(\mathrm{PGL}(3,\mathbb{F})\) and the automorphism group of
\(\mathbb{F}\). The intersection of these two subgroups is the group of
inner automorphisms of \(\mathbb{F}\).

If the above references are too intense, try this leisurely, literate
introduction to the subject first:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Daniel Pedoe, \emph{An Introduction to Projective Geometry},
  Macmillan, New York, 1963.
\end{enumerate}

And you're really interested in the \emph{finite} projective planes, you
can try this reference, which assumes very little knowledge of algebra:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  A. Adrian Albert and Reuben Sandler, \emph{An Introduction to Finite
  Projective Planes}, Holt, Rinehart and Winston, New York, 1968.
\end{enumerate}

For a nice online introduction to projective geometry over the real
numbers and its applications to image analysis, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Roger Mohr and Bill Triggs, ``Projective geometry for image
  analysis'',
  \texttt{http://spigot.anu.edu.au/people/samer/Research/Doc/ECV\_Tut\_Proj\_Geom/node1.html}
\end{enumerate}

Finally, for interesting relations between projective geometry and
exceptional Lie groups, try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  J. M. Landsberg and L. Manivel, ``The projective geometry of
  Freudenthal's magic square'', preprint available as
  \href{https://arxiv.org/abs/math.AG/9908039}{\texttt{math.AG/9908039}}.
\end{enumerate}

The Freudenthal-Tits magic square is a strange way of describing most of
the exceptional Lie groups in terms of the real numbers, complex
numbers, quaternions and octonions. In the usual way of describing it,
you start with two of these division algebras, say \(\mathbb{F}\) and
\(\mathbb{F}'\). Then let \(J(\mathbb{F})\) be the space of \(3\times3\)
self-adjoint matrices with coefficients in \(\mathbb{F}\). This is a
Jordan algebra with the product \(xy + yx\). As mentioned in
\protect\hyperlink{week106}{``Week 106''}, Jordan algebras have a lot to
do with projective planes. In particular, the nontrivial projections in
\(J(\mathbb{F})\) correspond to the 1- and \(2\)-dimensional subspaces
of \(\mathbb{F}^3\), and thus to the points and lines in the projective
plane \(\mathbb{FP}^2\).

Next, let \(J_0(\mathbb{F})\) be the subspace of \(J(\mathbb{F})\)
consisting of the \emph{traceless} self-adjoint matrices. Also, let
\(\Im(\mathbb{F}')\) be the space of pure imaginary element of
\(\mathbb{F}'\). Finally, let the magic Lie algebra
\(M(\mathbb{F},\mathbb{F}')\) be given by
\[M(K,K') = \operatorname{Der}(J(K)) \oplus J_0(K) \otimes \Im(K') \oplus \operatorname{Der}(K')\]
Here \(\oplus\) stands for direct sum, \(\otimes\) stands for tensor
product, and \(\mathrm{Der}\) stands for the space of derivations of the
algebra in question. It's actually sort of tricky to describe how to
make \(M(\mathbb{F},\mathbb{F}')\) into a Lie algebra, and I'm sort of
tired, so I'll wimp out and tell you to read this stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  Hans Freudenthal, ``Lie groups in the foundations of geometry'',
  \emph{Adv. Math.} \textbf{1} (1964) 143.
\item
  Jacques Tits, ``Algebres alternatives, algebres de Jordan et algebres
  de Lie exceptionelles'', \emph{Proc. Colloq. Utrecht},
  vol.~\textbf{135}, 1962.
\item
  R. D. Schafer, \emph{Introduction to Non-associative Algebras},
  Academic Press, 1966.
\end{enumerate}

By the way, the paper by Freudenthal is a really mind-bending mix of Lie
theory and axiomatic projective geometry, definitely worth looking at.
Anyway, if you do things right you get the following square of Lie
algebras \(M(\mathbb{F},\mathbb{F}')\):

\begin{longtable}[]{@{}lcccc@{}}
\toprule
\begin{minipage}[b]{0.09\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.19\columnwidth}\centering
\(\mathbb{F}=\mathbb{R}\)\strut
\end{minipage} & \begin{minipage}[b]{0.19\columnwidth}\centering
\(\mathbb{F}=\mathbb{C}\)\strut
\end{minipage} & \begin{minipage}[b]{0.19\columnwidth}\centering
\(\mathbb{F}=\mathbb{H}\)\strut
\end{minipage} & \begin{minipage}[b]{0.19\columnwidth}\centering
\(\mathbb{F}=\mathbb{O}\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.09\columnwidth}\raggedright
\(\mathbb{F}'=\mathbb{R}\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{A}_1\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{A}_2\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{C}_3\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{F}_4\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.09\columnwidth}\raggedright
\(\mathbb{F}'=\mathbb{C}\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{A}_2\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{A}_2\oplus\mathrm{A}_2\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{A}_5\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{E}_6\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.09\columnwidth}\raggedright
\(\mathbb{F}'=\mathbb{H}\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{C}_3\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{A}_5\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{B}_6\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{E}_7\)\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.09\columnwidth}\raggedright
\(\mathbb{F}'=\mathbb{O}\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{F}_4\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{E}_6\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{E}_7\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\centering
\(\mathrm{E}_8\)\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

Here \(\mathbb{R}\), \(\mathbb{C}\), \(\mathbb{H}\) and \(\mathbb{O}\)
stand for the reals, complexes, quaternions and octonions. If you don't
know what all the Lie algebras in the square are, check out
\protect\hyperlink{week64}{``Week 64''}. (I should admit that the above
square is not very precise, because I don't say which real forms of the
Lie algebras in question are showing up.)

The first fun thing about this square is that \(\mathrm{F}_4\),
\(\mathrm{E}_6\), \(\mathrm{E}_7\) and \(\mathrm{E}_8\) are four of the
five exceptional simple Lie algebras --- and the fifth one,
\(\mathrm{G}_2\), is just \(\operatorname{Der}(\mathbb{O})\). So all the
exceptional Lie algebras are related to the octonions! And the second
fun thing about this square is that it's symmetrical along the diagonal,
even though this is not at all obvious from the definition. This is what
makes the square truly ``magic''.

I don't really understand the magic square, but it's on my to-do list.
That's one reason I'm glad there's a new paper out that describes the
magic square in a way that makes its symmetry manifest:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\tightlist
\item
  C. H. Barton and A. Sudbery, ``Magic squares of Lie algebras'',
  preprint available as
  \href{https://arxiv.org/abs/math.RA/0001083}{\texttt{math.RA/0001083}}.
\end{enumerate}

It also generalizes the magic square in a number of directions. But what
I really want is for the connection between projective planes, division
algebras, exceptional Lie groups and the magic square to becomes truly
\emph{obvious} to me. I'm a long way from that point.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Here's an interesting email from David Broadhurst about the failure of
the Pappus theorem in quaternionic projective space:

\begin{verbatim}
Date: Fri, 3 Mar 2000 20:50:03 GMT
From: D.Broadhurst@open.ac.uk (David Broadhurst)
Subject: Paul Dirac and projective geometry

John:

Shortly before his death I spent a charming afternoon with Paul Dirac.
Contrary to his reputation, he was most forthcoming.

Among many things, I recall this: Dirac explained that while trained
as an engineer and known as a physicist, his aesthetics were mathematical.
He said (as I can best recall, nearly 20 years on): At a young age,
I fell in love with projective geometry.  I always wanted to use to use 
it in physics, but never found a place for it.

Then someone told him that the difference between complex and quaternionic
QM had been characterized as the failure of theorem in classical projective 
geometry.

Dirac's face beamed a lovely smile: "Ah," he said, "it was just such a thing
that I hoped to do".

I was reminded of this when backtracking to your ["Week 106"](#week106), today.

Best,

David
\end{verbatim}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{The reader should not attempt to form a mental picture of a closed
straight line.} --- Frank Ayres, Jr., Projective Geometry

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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\begin{quote}
Paper in white the floor of the room, and rule it off in one- foot
squares. Down on one's hands and knees, write in the first square a set
of equations conceived as able to govern the physics of the universe.
Think more overnight. Next day put a better set of equations into square
two. Invite one's most respected colleagues to contribue to other
squares. At the end of these labors, one has worked oneself out into the
doorway. Stand up, look back on all those equations, some perhaps more
hopeful than others, raise one's finger commandingly, and give the order
``Fly!'' Not one of those equations will put on wings, take off, or fly.
Yet the universe ``flies''.

Some principle uniquely right and compelling must, when one knows it, be
also so compelling that it is clear the universe is built, and must be
built, in such and such a way, and that it could not be otherwise. But
how can one disover that principle?
\end{quote}

John Wheeler was undoubtedly the author of these words, which appear
near the end of Misner, Thorne and Wheeler's textbook ``Gravitation'',
published in 1972. Since then, more people than ever before in the
history of the world have tried their best to find this uniquely
compelling principle. A lot of interesting ideas, but no success yet.

But what if Wheeler was wrong? What if there is \emph{not} a uniquely
compelling principle or set of equations that governs our universe? For
example, what if \emph{all} equations govern universes? In other words,
what if all mathematical structures have just as much ``physical
existence'' (whatever that means!) as those describing our universe do?
Many of them will not contain patterns we could call awareness or
intelligence, but some will, and these would be ``seen from within'' as
``universes'' by their inhabitants. In this scenario, there's nothing
special about \emph{our} universe except that we happen to be in this
one.

In other words: what if there is ultimately no difference between
mathematical possibility and physical existence? This may seem crazy,
but personally I believe that most alternatives, when carefully
pondered, turn out to be even \emph{more} crazy.

Of course, it's fun to think about such ideas and difficult to get
anywhere with them. But tonight when I was nosing around the web, I
found out that someone has already developed and published this idea:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Max Tegmark, `Is the ``theory of everything'' merely the ultimate
  ensemble theory?', \emph{Ann. Phys.} \textbf{270} (1998), 1--51,
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9704009}{\texttt{gr-qc/9704009}}.

  Max Tegmark, ``Which mathematical structure is isomorphic to the
  universe?'',
  \texttt{http://www.hep.upenn.edu/\textasciitilde{}max/toe.html}
\item
  Marcus Chown, ``Anything goes'', \emph{New Scientist} \textbf{158}
  (1998) 26--30, also available at
  \texttt{http://www.hep.upenn.edu/\textasciitilde{}max/toe\_press.html}
\end{enumerate}

As far as I can tell, most of the time Max Tegmark is a perfectly
respectable physicist at the University of Pennsylvania; he works on the
cosmic microwave background radiation, the large-scale structure of the
universe (superclusters and the like), and type 1A supernovae. But he
has written a fascinating paper on the above hypothesis, which I urge
you to read. It's less far-out than you may think.

Okay, now on to quantum gravity. Jan Ambjorn and Renate Loll have teamed
up to work on discrete models of spacetime geometry, with an emphasis on
the Lorentzian geometry of triangulated manifolds. Much more has been
done over on the Riemannian side of things, so it's high time to focus
more energy on the physically realistic Lorentzian case. Of course, if
the metric is fixed you can often use a trick called ``Wick rotation''
to turn results about quantum field theory on Riemannian spacetime into
results for Lorentzian spacetime. But it's never been clear that this
works when the geometry of spacetime is a variable --- and quantized,
for that matter. So we need both more work on Wick rotation in this
context and also work that goes straight for the jugular: the Lorentzian
context.

Here are some of their papers:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  J. Ambjorn, J. Correia, C. Kristjansen, and R. Loll, ``On the relation
  between Euclidean and Lorentzian 2d quantum gravity'', preprint
  avilable as
  \href{https://arxiv.org/abs/hep-th/9912267}{\texttt{hep-th/9912267}}.

  J. Ambjorn, J. Jurkiewicz and R. Loll, ``Lorentzian and Euclidean
  quantum gravity --- analytical and numerical results'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/0001124}{\texttt{hep-th/0001124}}.

  J. Ambjorn, J. Jurkiewicz and R. Loll, ``A non-perturbative Lorentzian
  path integral for gravity'', preprint avilable as
  \href{https://arxiv.org/abs/hep-th/0002050}{\texttt{hep-th/0002050}}.
\end{enumerate}

The last paper is especially interesting to me, since it tackles the
problem of defining a path integral for 3+1-dimensional Lorentzian
quantum gravity. They describe a path integral where you first slice
spacetime like a salami using surfaces of constant time, and then pack
each slice with simplices having edges with specified lengths --- the
edges being spacelike within each surface, and timelike when they go
from one surface to the next. They allow the number of simplices in each
slice to be variable. Actually they focus on the 2+1-dimensional case,
but they say the 3+1-dimensional case works similarly, and I actually
trust them enough to believe them about this --- especially since
nothing they do relies on the fact that 2+1-dimensional gravity lacks
local degrees of freedom. They can Wick-rotate this picture and get a
time evolution operator that's self-adjoint and positive, just like
you'd expect of an operator of the form \(\exp(-tH)\).

Speaking of Wick rotations in quantum gravity, here's another paper to
think about:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Abhay Ashtekar, Donald Marolf, Jose Mourao and Thomas Thiemann,
  ``Osterwalder-Schrader reconstruction and diffeomorphism invariance'',
  preprint available as
  \href{https://arxiv.org/abs/quant-ph/9904094}{\texttt{quant-ph/9904094}}.
\end{enumerate}

The Osterwalder-Shrader theorem is the result people use when they want
to \emph{rigorously} justify Wick rotations. Here these authors
generalize it so that it applies to a large class of background-free
field theories --- perhaps even quantum gravity! It turns out not to be
hard, once you go about it properly. Quite a surprise.

I've been working with Ashtekar and Krasnov for a couple of years now on
computing the entropy of black holes using loop quantum gravity. I
talked about this in \protect\hyperlink{week112}{``Week 112''}, right
after we came out with a short paper sketching the calculation. Now
we're almost done with the detailed paper. In the meantime, Ashtekar has
written a couple of pedagogical accounts explaining the basic idea. I
mentioned one he wrote with Krasnov in
\protect\hyperlink{week120}{``Week 120''}, and here's another:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Abhay Ashtekar, ``Interface of general relativity, quantum physics and
  statistical mechanics: some recent developments'', to appear in
  \emph{Annalen der Physik}, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9910101}{\texttt{gr-qc/9910101}}.
\end{enumerate}

Let me just quote the abstract --- I can't bear to talk about this any
more until the actual paper is finished:

\begin{quote}
The arena normally used in black holes thermodynamics was recently
generalized to incorporate a broad class of physically interesting
situations. The key idea is to replace the notion of stationary event
horizons by that of `isolated horizons.' Unlike event horizons, isolated
horizons can be located in a space-time quasi-locally. Furthermore, they
need not be Killing horizons. In particular, a space-time representing a
black hole which is itself in equilibrium, but whose exterior contains
radiation, admits an isolated horizon. In spite of this generality, the
zeroth and first laws of black hole mechanics extend to isolated
horizons. Furthermore, by carrying out a systematic, non-perturbative
quantization, one can explore the quantum geometry of isolated horizons
and account for their entropy from statistical mechanical
considerations. After a general introduction to black hole
thermodynamics as a whole, these recent developments are briefly
summarized.
\end{quote}

There have also been a number of papers working out the details of the
classical notion of ``isolated horizon'' --- I've mentioned some
already, but let me just list them all here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Abhay Ashtekar, Alejandro Corichi, and Kirill Krasnov, ``Isolated
  horizons: the classical phase space'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9905089}{\texttt{gr-qc/9905089}}.

  Abhay Ashtekar, Christopher Beetle, and Stephen Fairhurst, ``Mechanics
  of isolated horizons'', \emph{Class. Quant. Grav.} \textbf{17} (2000)
  253--298, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9907068}{\texttt{gr-qc/9907068}}.

  Abhay Ashtekar and Alejandro Corichi, ``Laws governing isolated
  horizons: inclusion of dilaton couplings'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9910068}{\texttt{gr-qc/9910068}}.

  Jerzy Lewandowski, ``Space-times admitting isolated horizons'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9907058}{\texttt{gr-qc/9907058}}.
\end{enumerate}

Lewandowski's paper is important because it gets serious about studying
rotating isolated horizons --- this makes me feel a lot more optimistic
that we'll eventually be able to extend the entropy calculation to
rotating black holes (so far it's just done for the nonrotating case).

Okay, now let me turn my attention to spin foams. Last month,
Reisenberger and Rovelli came out with a couple of papers that push
forward the general picture of spin foams as Feynman diagrams,
generalizing the old work of Boulatov and Ooguri, and the newer work of
De Pietri et al.~Again, I'll just quote the abstracts\ldots.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Michael Reisenberger and Carlo Rovelli, ``Spin foams as Feynman
  diagrams'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/0002083}{\texttt{gr-qc/0002083}}.
\end{enumerate}

\begin{quote}
It has been recently shown that a certain non-topological spin foam
model can be obtained from the Feynman expansion of a field theory over
a group. The field theory defines a natural ``sum over triangulations'',
which removes the cutoff on the number of degrees of freedom and
restores full covariance. The resulting formulation is completely
background independent: spacetime emerges as a Feynman diagram, as it
did in the old two-dimensional matrix models. We show here that any spin
foam model can be obtained from a field theory in this manner. We give
the explicit form of the field theory action for an arbitrary spin foam
model. In this way, any model can be naturally extended to a sum over
triangulations. More precisely, it is extended to a sum over
2-complexes.
\end{quote}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Michael Reisenberger and Carlo Rovelli, ``Spacetime as a Feynman
  diagram: the connection formulation'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/0002095}{\texttt{gr-qc/0002095}}.
\end{enumerate}

\begin{quote}
Spin foam models are the path integral counterparts to loop quantized
canonical theories. In the last few years several spin foam models of
gravity have been proposed, most of which live on finite simplicial
lattice spacetime. The lattice truncates the presumably infinite set of
gravitational degrees of freedom down to a finite set. Models that can
accomodate an infinite set of degrees of freedom and that are
independent of any background simplicial structure, or indeed any a
priori spacetime topology, can be obtained from the lattice models by
summing them over all lattice spacetimes. Here we show that this sum can
be realized as the sum over Feynman diagrams of a quantum field theory
living on a suitable group manifold, with each Feynman diagram defining
a particular lattice spacetime. We give an explicit formula for the
action of the field theory corresponding to any given spin foam model in
a wide class which includes several gravity models. Such a field theory
was recently found for a particular gravity model {[}De Pietri et al,
\href{https://arxiv.org/abs/hep-th/9907154}{\texttt{hep-th/9907154}}{]}.
Our work generalizes this result as well as Boulatov's and Ooguri's
models of three and four dimensional topological field theories, and
ultimately the old matrix models of two dimensional systems with
dynamical topology. A first version of our result has appeared in a
companion paper
{[}\href{https://arxiv.org/abs/gr-qc/0002083}{\texttt{gr-qc/0002083}}{]}:
here we present a new and more detailed derivation based on the
connection formulation of the spin foam models.
\end{quote}

I'm completely biased, but I think this is the way to go in quantum
gravity\ldots{} we need to think more about the Lorentzian side of
things, like Barrett and Crane have been doing, but these spin foam
models are so darn simple and elegant I can't help but think there's
something right about them --- especially when you see the sum over
triangulations pop out automatically from the Feynman diagram expansion
of the relevant path integral.

There's also been some good work on the relation between canonical
quantum gravity and Vassiliev invariants. The idea is to use this class
of knot invariants as a basis for a Hilbert space of diffeomorphism-
invariant states --- a tempting alternative to the Hilbert space having
spin networks as a basis. Maybe everything will start making sense when
we see how these two choices fit together. But anyway, these papers
tackle the crucial issue of the Hamiltonian constraint using this
Vassiliev approach, and get results startlingly similar to those
obtained by Thiemann using the spin network approach:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\item
  Cayetano Di Bartolo, Rodolfo Gambini, Jorge Griego, and Jorge Pullin,
  ``Consistent canonical quantization of general relativity in the space
  of Vassiliev invariants'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9909063}{\texttt{gr-qc/9909063}}.

  ``Canonical quantum gravity in the Vassiliev invariants arena: I.
  Kinematical structure'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9911009}{\texttt{gr-qc/9911009}}.

  ``Canonical quantum gravity in the Vassiliev invariants arena: II.
  Constraints, habitats and consistency of the constraint algebra'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9911010}{\texttt{gr-qc/9911010}}.
\end{enumerate}

Finally, Martin Bojowald has written a couple of papers applying the
loop approach to quantum cosmology. The idea is to apply loop
quantization to a ``minisuperspace'' --- a phase space describing only
those solutions of general relativity that have a certain large symmetry
group.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\item
  Martin Bojowald, ``Loop Quantum Cosmology I: Kinematics'', preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9910103}{\texttt{gr-qc/9910103}}.

  Martin Bojowald, ``Loop Quantum Cosmology II: Volume Operators'',
  \href{https://arxiv.org/abs/gr-qc/9910104}{\texttt{gr-qc/9910104}}.
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week147}{%
\section{May 20, 2000}\label{week147}}

Various books are coming out to commemorate the millennium\ldots.
describing the highlights of the math we've done so far, and laying out
grand dreams for the future. The American Mathematical Society has come
out with one:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Mathematics: Frontiers and Perspectives}, edited by Vladimir
  Arnold, Michael Atiyah, Peter Lax and Barry Mazur, AMS, Providence,
  Rhode Island, 2000.
\end{enumerate}

This contains 30 articles by bigshots like Chern, Connes, Donaldson,
Jones, Lions, Manin, Mumford, Penrose, Smale, Vafa, Wiles and Witten. I
haven't actually read it yet, but I want to get ahold of it.

Springer Verlag is coming out with one, too:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  \emph{Mathematics Unlimited: 2001 and Beyond}, edited by Bjorn
  Engquist and Wilfried Schmid, Springer Verlag, New York, 2000.
\end{enumerate}

It should appear in the fall.

I don't know what the physicists are doing along these lines. The
American Physical Society has a nice timeline of 20th century physics on
their website:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  The American Physical Society: ``A Century of Physics'', available at
  \texttt{http://timeline.aps.org/APS/home\_HighRes.html}
\end{enumerate}

But I don't see anything about books.

One reason I haven't been doing many This Week's Finds lately is that
I've been buying and then moving into a new house. Another is that James
Dolan and I have been busily writing our own millennial pontifications,
which will appear in the Springer-Verlag book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez and James Dolan, \emph{From finite sets to Feynman
  diagrams}, preprint available as
  \href{http://arXiv.org/abs/math.QA/0004133}{\texttt{math.QA/0004133}}
\end{enumerate}

So let me talk about this stuff a bit\ldots.

As usual, the underlying theme of this paper is categorification. I've
talked about this a lot already --- e.g.~in
\protect\hyperlink{week121}{``Week 121''} --- so I'll assume you
remember that when we categorify, we use this analogy:

\begin{longtable}[]{@{}ll@{}}
\toprule
Set theory & Category theory\tabularnewline
\midrule
\endhead
elements & objects\tabularnewline
equations between elements & isomorphisms between objects\tabularnewline
sets & categories\tabularnewline
functions & functors\tabularnewline
equations between functions & natural isomorphisms between
functors\tabularnewline
\bottomrule
\end{longtable}

to take interesting \emph{equations} and see them as shorthand for even
more interesting \emph{isomorphisms}.

To take a simple example, consider the laws of basic arithmetic, like
\(a+b = b+a\) or \(a(b+c) = ab+ac\). We usually think of these as
\emph{equations} between \emph{elements} of the \emph{set} of natural
numbers. But really they arise from \emph{isomorphisms} between
\emph{objects} of the \emph{category} of finite sets.

For example, if we have finite sets \(a\) and \(b\), and we use \(a+b\)
to denote their disjoint union, then there is a natural isomorphism
between \(a+b\) and \(b+a\). Moreover, this isomorphism is even sort of
interesting! For example, suppose we use \(1\) to denote a set
consisting of one dot, and \(2\) to denote a set of two dots. Then the
natural isomorphism between \(1+2\) and \(2+1\) can be visualized as the
process of passing one dot past two, like this: \[
  \begin{tikzpicture}[knot gap=7]
    \draw[knot] (1,0) to (0,-3);
    \draw[knot] (1.5,0) to (0.5,-3);
    \draw[knot] (0,0) to (1.5,-3);
    \node at (0,0) {$\bullet$};
    \node at (1,0) {$\bullet$};
    \node at (1.5,0) {$\bullet$};
    \node at (0,-3) {$\bullet$};
    \node at (0.5,-3) {$\bullet$};
    \node at (1.5,-3) {$\bullet$};
  \end{tikzpicture}
\] This may seem like an excessively detailed ``picture proof'' that 1+2
indeed equals 2+1, perhaps suitable for not-too-bright kindergarteners.
But in fact it's just a hop, skip and a jump from here to heavy-duty
stuff like the homotopy groups of spheres. I sketched how this works in
\protect\hyperlink{week102}{``Week 102''} so I won't do so again here.
The point is, after we categorify, elementary math turns out to be
pretty powerful!

Now, let me make this idea of ``categorifying the natural numbers'' a
bit more precise. Let \(\mathsf{FinSet}\) stand for the category whose
objects are finite sets and whose morphisms are functions between these.
If we ``decategorify'' this category by forming the set of isomorphism
classes of objects, we get \(\mathbb{N}\), the natural numbers.

All the basic arithmetic operations on \(\mathbb{N}\) come from
operations on \(\mathsf{FinSet}\). I've already noted how addition comes
from disjoint union. Disjoint union is a special case of what category
theorists call the ``coproduct'', which makes sense for a bunch of
categories --- see \protect\hyperlink{week99}{``Week 99''} for the
general definition. Similarly, multiplication comes from the Cartesian
product of finite sets, which is a special case of what category
theorists call the ``product''. To get the definition of a product, you
just take the definition of a coproduct and turn all the arrows around.
There are also nice category-theoretic interpretations of the numbers
\(0\) and \(1\), and all the basic laws of addition and multiplication.
Exponentiation too!

Combinatorists have lots of fun thinking about how to take equations in
\(\mathbb{N}\) and prove them using explicit isomorphisms in
\(\mathsf{FinSet}\) --- they call such a proof a ``bijective proof''. To
read more about this, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  James Propp and David Feldman, ``Producing new bijections from old'',
  \emph{Adv. Math.} \textbf{113} (1995), 1--44. Also available at
  \texttt{http://www.math.wisc.edu/\textasciitilde{}propp/articles.html}
\item
  John Conway and Peter Doyle, ``Division by three''. Available at
  \texttt{http://math.dartmouth.edu/\textasciitilde{}doyle/docs/three/}
\end{enumerate}

The latter article studies this question: if I give you an isomorphism
between \(3x\) and \(3y\), can you construct a isomorphism between \(x\)
and \(y\)? Here of course \(x\) and \(y\) are finite sets, \(3\) is any
3-element set, and multiplication means Cartesian product. Of course you
can prove an isomorphism exists, but can you \emph{construct} one in a
natural way --- i.e., without making any random choices? The history of
this puzzle turns out to be very interesting. But I don't want to give
away the answer! See if you can do it or not.

Anyway, having categorified the natural numbers, we might be inclined to
go on and categorify the integers. Can we do it? In other words: can we
find something like the category of finite sets that includes ``sets
with a negative number of elements''? There turns out be an interesting
literature on this subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Daniel Loeb, ``Sets with a negative number of elements'', \emph{Adv.
  Math.} \textbf{91} (1992), 64--74.
\item
  S. Schanuel, \emph{Negative sets have Euler characteristic and
  dimension}, Lecture Notes in Mathematics \textbf{1488}, Springer
  Verlag, Berlin, 1991, pp.~379--385.
\item
  James Propp, ``Exponentiation and Euler measure'', available as
  \href{http://www.arXiv.org/abs/math.CO/0204009}{\texttt{math.CO/0204009}}.
\item
  Andre Joyal, ``Regle des signes en algebre combinatoire'',
  \emph{Comptes Rendus Mathematiques de l'Academie des Sciences, La
  Societe Royale du Canada}, \textbf{VII} (1985), 285--290.
\end{enumerate}

See also \protect\hyperlink{week102}{``Week 102''} for more\ldots.

But I don't want to talk about negative sets right now! Instead, I want
to talk about \emph{fractional} sets. It may seem odd to tackle division
before subtraction, but historically, the negative numbers were invented
quite a bit \emph{after} the nonnegative rational numbers. Apparently
half an apple is easier to understand than a negative apple! This
suggests that perhaps `sets with fractional cardinality' are simpler
than `sets with negative cardinality'.

The key is to think carefully about the meaning of division. The usual
way to get half an apple is to chop one into ``two equal parts''. Of
course, the parts are actually NOT EQUAL --- if they were, there would
be only one part! They are merely ISOMORPHIC. This suggests that
categorification will be handy.

Indeed, what we really have is a \(\mathbb{Z}/2\) symmetry group acting
on the apple which interchanges the two isomorphic parts. In general, if
a group \(G\) acts on a set \(S\), we can ``divide'' the set by the
group by taking the quotient \(S/G\), whose points are the orbits of the
action. If \(S\) and \(G\) are finite and \(G\) acts freely on \(S\),
this construction really corresponds to division, since the cardinality
\(|S/G|\) is equal to \(|S|/|G|\). However, it is crucial that the
action be free.

For example, why is \(6/2 = 3\)? We can take a set \(S\) consisting of
six dots in a row:
\[\bullet\quad\bullet\quad\bullet\quad\bullet\quad\bullet\quad\bullet\]
let \(G = \mathbb{Z}/2\) act freely by reflections, and identify all the
elements in each orbit to obtain 3-element set \(S/G\). Pictorially,
this amounts to folding the set \(S\) in half, so it is not surprising
that \(|S/G| = |S|/|G|\) in this case. Unfortunately, if we try a
similar trick starting with a 5-element set:
\[\bullet\quad\bullet\quad\bullet\quad\bullet\quad\bullet\] it fails
miserably! We don't obtain a set with 2.5 elements, because the group
action is not free: the point in the middle gets mapped to itself. So to
define ``sets with fractional cardinality'', we need a way to count the
point in the middle as ``half a point''.

To do this, we should first find a better way to define the quotient of
\(S\) by \(G\) when the action fails to be free. Following the policy of
replacing equations by isomorphisms, let us define the ``weak quotient''
\(S//G\) to be the category with elements of \(S\) as its objects, with
a morphism \(g\colon s\to s'\) whenever \(g(s) = s'\), and with
composition of morphisms defined in the obvious way.

Next, let us figure out a good way to define the ``cardinality'' of a
category. Pondering the examples above leads us to the following recipe:
for each isomorphism class of objects we pick a representative \(x\) and
compute the reciprocal of the number of automorphisms of this object;
then we sum over isomorphism classes.

It is easy to see that with this definition, the point in the middle of
the previous picture gets counted as `half a point' because it has two
automorphisms, so we get a category with cardinality 2.5. In general,
\[|S//G| = |S|/|G|\] whenever \(G\) is a finite group acting on a finite
set \(S\). This formula is a simplified version of `Burnside's lemma',
so-called because it is due to Cauchy and Frobenius. Burnside's lemma
gives the cardinality of the ordinary quotient. But the weak quotient is
nicer, so Burnside's lemma simplifies when we use weak quotients.

Now, the formula for the cardinality of a category makes sense even for
some categories that have infinitely many objects --- all we need is for
the sum to make sense. So let's try to compute the cardinality of the
category of finite sets! Since any \(n\)-element set has \(n!\)
automorphisms (i.e.~permutations), we get following marvelous formula:
\[|\mathsf{FinSet}| = e\] This turns out to explain lots of things about
the number \(e\).

Now, a category all of whose morphisms are isomorphisms is called a
``groupoid''. Any category \(\mathcal{C}\) has an underlying groupoid
\(\mathcal{C}_0\) with the same objects but only the isomorphisms as
morphisms. The cardinality of a category \(\mathcal{C}\) always equals
that of its underlying groupoid \(\mathcal{C}_0\). This suggests that
this notion should really be called "groupoid cardinality. If you're a
fan of \(n\)-categories, this suggests that we should generalize the
concept of cardinality to n-groupoids, or even \(\omega\)-groupoids. And
luckily, we don't need to understand \(\omega\)-groupoids very well to
try our hand at this! \(\omega\)-groupoids are supposed to be an
algebraic way of thinking about topological spaces up to homotopy. Thus
we just need to invent a concept of the `cardinality' of a topological
space which has nice formal properties and which agrees with the
groupoid cardinality in the case of homotopy 1-types. In fact, this is
not hard to do. We just need to use the homotopy groups \(\pi_k(X)\) of
the space \(X\).

So: let's define the ``homotopy cardinality'' of a topological space
\(X\) to be the alternating product
\[|X| = |\pi_1(X)|^{-1} \cdot |\pi_2(X)| \cdot |\pi_3(X)|^{-1} \cdot \,\, \ldots\]
when \(X\) is connected and the product converges; if \(X\) is not
connected, let's define its homotopy cardinality to be the sum of the
homotopy cardinalities of its connected components, when the sum
converges. We call spaces with well-defined homotopy cardinality
``tame''. The disjoint union or Cartesian product of tame spaces is
again tame, and we have \[
  \begin{aligned}
    |X + Y| &= |X| + |Y| ,
  \\|X \times Y| &= |X| \times |Y|
  \end{aligned}
\] just as you would hope.

Even better, homotopy cardinality gets along well with fibrations, which
we can think of as `twisted products' of spaces. Namely, if
\[F\to X\to B\] is a fibration and the base space B is connected, we
have \[|X| = |F| \times |B|\] whenever two of the three spaces in
question are tame (which implies the tameness of the third).

As a fun application of this fact, recall that any topological group
\(G\) has a ``classifying space'' \(BG\), meaning a space with a
principal G-bundle over it \[G\to EG\to BG\] whose total space \(EG\) is
contractible. I described how to construct the classifying space in
\protect\hyperlink{week117}{``Week 117''}, at least in the case of a
discrete group \(G\), but I didn't say much about why it's so great. The
main reason it's great is that \emph{any} \(G\)-bundle over \emph{any}
space is a pullback of the bundle \(EG\) over \(BG\). But right now,
what I want to note is that since \(EG\) is contractible it is tame, and
\(|EG| = 1\). Thus \(G\) is tame if and only if \(BG\) is, and
\[|BG| = 1 / |G|\] so we can think of \(BG\) as the ``reciprocal'' of
\(G\)!

This idea is already lurking behind the usual approach to ``equivariant
cohomology''. Suppose \(X\) is a space on which the topological group
\(G\) acts. When the action of \(G\) on \(X\) is free, it is fun to
calculate cohomology groups (and other invariants) of the quotient space
\(X/G\). When the action is not free, this quotient can be very
pathological, so people usually replace it by the ``homotopy quotient''
\(X//G\), which is defined as \((EG \times X)/G\). This is like the
ordinary quotient but with equations replaced by homotopies. And there
is a fibration \[X\to X//G\to BG,\] so when \(X\) and \(G\) are tame we
have \[|X//G| = |X| \times |BG| = |X|/|G|\] just as you would hope!

Now in the paper, Jim and I go on to talk about how all these ideas can
be put to use to give a nice explanation of the combinatorics of Feynman
diagrams. But I don't want to explain all that stuff here --- then you
wouldn't need to read the paper! Instead, I just want to point out
something mysterious about homotopy cardinality.

Homotopy cardinality is formally very similar to Euler characteristic.
The Euler characteristic \(\chi(X)\) is given by the alternating sum
\[\chi(X) = \dim(H_0(X)) - \dim(H_1(X)) + \dim(H_2(X)) - \ldots\]
whenever the sum converges, where \(H_n(X)\) is a vector space over the
rational numbers called the \(n\)th rational homology group of \(X\).
Just as for homotopy cardinality, we have \[
  \begin{aligned}
    \chi(X + Y) &= \chi(X) + \chi(Y),
  \\\chi(X \times Y) &= \chi(X) \times \chi(Y)
  \end{aligned}
\] and more generally, whenever \[F\to X\to B\] is a fibration and the
base space \(B\) is connected, we have
\[\chi(X) = \chi(F)\times \chi(B)\] whenever any two of the spaces have
well-defined Euler characteristic, which implies that the third does too
(unless I'm confused).

So Euler characteristic is a lot like homotopy cardinality. But not many
spaces have \emph{both} well-defined homotopy cardinality \emph{and}
well-defined Euler characteristic. So they're like Jekyll and Hyde ---
you hardly ever see them in the same place at the same time, so you
can't tell if they're really the same guy.

But there are some weird ways to try to force the issue and compute both
quantities for certain spaces. For example, suppose \(G\) is a finite
group. Then we can build \(BG\) starting from a simplicial set with 1
nondegenerate 0-simplex, \(|G|-1\) nondegenerate \(1\)-simplices,
\((|G|-1)^2\) nondegenerate 2-simplices, and so on. If there were only
finitely many nondegenerate simplices of all dimensions, we could
compute the Euler characteristic of this space as the alternating sum of
the numbers of such simplices. So let's try doing that here! We get:
\[\chi(BG) = 1 - (|G|-1) + (|G|-1)^2 - \ldots\] Of course the sum
diverges, but if we go ahead and use the geometric formula anyway, we
get \[\chi(BG) = 1/|G|\] which matches our previous (rigorous) result
that \[|BG| = 1/|G|.\] So maybe they're the same after all! There are
similar calculations like this in James Propp's paper ``Exponentiation
and Euler characteristic'', referred to above\ldots{} though he uses a
slightly different notion of Euler characteristic, due to Schanuel.
Clearly something interesting is going on with these ``divergent Euler
characteristics''. For appearances of this sort of thing in physics,
see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  Matthias Blau and George Thompson, ``\(N = 2\) topological gauge
  theory, the Euler characteristic of moduli spaces, and the Casson
  invariant'', \emph{Comm. Math. Phys.} \textbf{152} (1993), 41--71.
\end{enumerate}

and the references therein. (I discussed this paper a bit in
\protect\hyperlink{week51}{``Week 51''}.)

However, there are still challenging tests to the theory that homotopy
cardinality and Euler characteristic are secretly the same. Here's a
puzzle due to James Dolan. Consider a Riemann surface of genus
\(g > 1\). Such a surface has Euler characteristic \(2 - 2g\), but such
a surface also has vanishing homotopy groups above the first, which
implies that it's \(BG\) for \(G\) equal to its fundamental group. If
homotopy cardinality and Euler characteristic were the same, this would
imply \[|G| = \frac{1}{|BG|} = \frac{1}{\chi(S)} = \frac{1}{2 - 2g}\]
But the fundamental group \(G\) is infinite! What's going on?

Well, I'm actually sort of glad that \(1/(2 - 2g)\) is \emph{negative}.
Sometimes a divergent series of positive integers can be cleverly summed
up to give a negative number. The simplest example is the geometric
series \[1 + 2 + 4 + 8 + 16 + \ldots = \frac{1}{1 - 2} = -1\] but in
\protect\hyperlink{week126}{``Week 126''} I talked about a more
sophisticated example that is very important in string theory:
\[1 + 2 + 3 + 4 + 5 + \ldots = \zeta(-1) = -\frac{1}{12}\] So maybe some
similar trickery can be used to count the elements of \(G\) and get a
divergent sum that can be sneakily evaluated to obtain \(1/(2-2g)\). Of
course, even if we succeed in doing this, the skeptics will rightly
question the significance of such tomfoolery. But there is sometimes a
lot of profound truth lurking in these bizarre formal manipulations, and
sometimes if you examine what's going on carefully enough, you can
discover cool stuff.

To wrap up, let me mention an interesting paper on the foundations of
categorification:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Claudio Hermida, ``From coherent structures to universal properties'',
  available at
  \texttt{http://www.cs.math.ist.utl.pt/cs/s84/claudio.html}
\end{enumerate}

and also two papers about 2-groupoids and topology:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\tightlist
\item
  K. A. Hardie, K. H. Kamps, R. W. Kieboom, ``A homotopy bigroupoid of a
  topological space'', in \emph{Categorical Methods in Algebra and
  Topology}, pp.~209--222, Mathematik-Arbeitspapiere \textbf{48},
  Universitaet Bremen, 1997. \emph{Appl. Categ. Structures}, to appear.
\end{enumerate}

K. A. Hardie, K. H. Kamps, R. W. Kieboom, ``A homotopy 2-groupoid of a
Hausdorff space'', preprint.

I would talk about these if I had the energy, but it's already past my
bed-time. Good night!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Toby Bartels had some interesting things to say about
this issue of This Week's Finds. Here is my reply, which quotes some of
his remarks\ldots.

\begin{quote}
\begin{quote}
\begin{quote}
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  The American Physical Society: A Century of Physics, available at
  http://timeline.aps.org/APS/home\_HighRes.html
\end{enumerate}
\end{quote}
\end{quote}

\begin{quote}
{[}TB{]} I like how they make the famous picture of Buzz Aldrin, the one
that everyone thinks is a picture of Neil Armstrong, into a picture of
Neil Armstrong after all: ``Here he is reflected in Buzz Aldrin's
visor.''.
\end{quote}

{[}JB{]} Heh. Sounds like something a doting grandmother would say!
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\begin{quote}
\begin{quote}
\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Conway and Peter Doyle, Division by three.\\
  http://math.dartmouth.edu/\textasciitilde doyle/docs/three/three/three.html
\end{enumerate}
\end{quote}
\end{quote}

\begin{quote}
\begin{quote}
The latter article studies this question: if I give you an isomorphism
between \(3x\) and \(3y\), can you construct a isomorphism between \(x\)
and \(y\)?
\end{quote}
\end{quote}

\begin{quote}
{[}TB{]} The answer must be something that won't work if 3 is replaced
by an infinite cardinal. That said, I can't even figure out how to
divide by 2! If I take the 3 copies of \(X\) or \(Y\) and put them on
top of each other, I get a finite, 2coloured, 3valent, nonsimple,
undirected graph. I remember from combinatorics that the 2 colours of a
finite, 2coloured, simple, undirected graph of fixed valency are
equipollent, but I can't remember the bijective proof. (Presumably it
can be adopted to nonsimple graphs.)
\end{quote}

{[}JB{]} It's a tricky business. Let me quote from the above article:

\begin{quote}
\textbf{History}

A proof that it is possible to divide by two was presented by Bernstein
in his Inaugural Dissertation of 1901, which appeared in Mathematische
Annallen in 1905; Bernstein also indicated how to extend his results to
division by any finite \(n\), but we are not aware of anyone other than
Bernstein himself who ever claimed to understand this argument. In 1922
Sierpinski published a simpler proof of division by two, and he worked
hard to extend his method to division by three, but never succeeded.

In 1927 Lindenbaum and Tarski announced, in an infamous paper that
contained statements (without proof) of 144 theorems of set theory, that
Lindenbaum had found a proof of division by three. Their failure to give
any hint of a proof must have frustrated Sierpinski, for it appears that
twenty years later he still did not know how to divide by three.
Finally, in 1949, in a paper `dedicated to Professor Waclaw Sierpinski
in celebration of his forty years as teacher and scholar', Tarski
published a proof. In this paper, Tarski explained that unfortunately he
couldn't remember how Lindenbaum's proof had gone, except that it
involved an argument like the one Sierpinski had used in dividing by
two, and another lemma, due to Tarski, which we will describe below.
Instead of Lindenbaum's proof, he gave another.

Now when we began the investigations reported on here, we were aware
that there was a proof in Tarski's paper, and Conway had even pored over
it at one time or another without achieving enlightenment. The problem
was closely related to the kind of question John had looked at in his
thesis, and it was also related to work that Doyle had done in the field
of bijective combinatorics. So we decided that we were going to figure
out what the heck was going on. Without too much trouble we figured out
how to divide by two. Our solution turned out to be substantially
equivalent to that of Sierpinski, though the terms in which we will
describe it below will not much resemble Sierpinski's. We tried and
tried and tried to adapt the method to the case of dividing by three,
but we kept getting stuck at the same point in the argument. So finally
we decided to look at Tarski's paper, and we saw that the lemma Tarski
said Lindenbaum had used was precisely what we needed to get past the
point we were stuck on! So now we had a proof of division by three that
combined an argument like that Sierpinski used in dividing by two with
an appeal to Tarski's lemma, and we figured we must have hit upon an
argument very much like that of Lindenbaum's. This is the solution we
will describe here: Lindenbaum's argument, after 62 years.
\end{quote}
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\begin{quote}
\begin{quote}
So: let's define the ``homotopy cardinality'' of a topological space
\(X\) to be the alternating product
\(|X| = \prod_{i>0} |\pi_i(X)|^{(-1)^i}\) when \(X\) is connected and
the product converges;
\end{quote}
\end{quote}

\begin{quote}
{[}TB{]} What about divergence to \(0\)? If \(\pi_i(X)\) is infinite for
some odd \(i\) but no even \(i\), can we say \(|X|\) is \(0\)?
\end{quote}

{[}JB{]} Well, we can, but we might regret it later. In a sense \(0\) is
no better than \(\infty\) when one is doing products, so if you allow
\(0\) as a legitimate value for a homotopy cardinality, you should allow
\(\infty\), but if you allow both, you get in trouble when you try to
multiply them. This dilemma is familiar from the case of infinite sums
(where \(+\infty\) and \(-\infty\) are the culprits), and the resolution
seems to be either:

\begin{itemize}
\tightlist
\item
  disallow both \(0\) and \(\infty\) as legitimate answers for the above
  product,
\end{itemize}

or

\begin{itemize}
\tightlist
\item
  allow both but then be extra careful when stating your theorems so
  that you don't run into problems.
\end{itemize}
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\begin{quote}
\begin{quote}
As a fun application of this fact, recall that any topological group
\(G\) has a ``classifying space'' \(BG\), meaning a space with a
principal \(G\)-bundle over it \(G\to EG\to BG\) whose total space
\(EG\) is contractible. I described how to construct the classifying
space in \protect\hyperlink{week117}{``Week 117''}, at least in the case
of a discrete group \(G\), but I didn't say much about why it's so
great. The main reason it's great is that any \(G\)-bundle over any
space is a pullback of the bundle \(EG\) over \(BG\). But right now,
what I want to note is that since \(EG\) is contractible it is tame, and
\(|EG| = 1\). Thus \(G\) is tame if and only if \(BG\) is, and
\(|BG| = 1 / |G|\), so we can think of \(BG\) as the reciprocal' of
\(G\)!
\end{quote}
\end{quote}

\begin{quote}
{[}TB{]} OTOH, \(G\) is already a kind of reciprocal of itself. If \(G\)
is a discrete group, it's a topological space with
\(|G|\text{homotopy} = |G|\text{set}\). But \(G\) is also a groupoid
with 1 object, and \(|G|\text{groupoid} = 1 / |G|\text{set}\). So,
\(|G|\text{homotopy} |G|\text{groupoid} = 1\).
\end{quote}

{[}JB{]} Believe it or not, you are reinventing \(BG\)! A groupoid can
be reinterpreted as a space with vanishing homotopy groups above the
first, and if you do this to the groupoid \(G\), you get \(BG\).

More generally:

Recall that we can take a pointed space \(X\) and form a pointed space
\(LX\) of loops in \(X\) that start and end at the basepoint. This
clearly has \[\pi_{n+1}(X) = \pi_n(LX)\] so if \(X\) is connected and
tame we'll have \[|LX| = 1/|X|\] Now with a little work you can make
\(LX\) (or a space homotopy-equivalent to it!) into a topological group
with composition of loops as the product.

And then it turns out that \(BLX\) is homotopy equivalent to \(X\) when
\(X\) is connected. Conversely, given a topological group \(G\), \(LBG\)
is homotopy equivalent to \(G\).

So what we're seeing is that topological groups and connected pointed
spaces are secretly the same thing, at least from the viewpoint of
homotopy theory. In topology, few things are as important as this fact.

But what's really going on here? Well, to go from a topological group
\(G\) to a connected pointed space, you have to form \(BG\), which has
all the same homotopy groups but just pushed up one notch:
\[\pi_{n+1}(BG) = \pi_n(G)\] And to go from a connected point space
\(X\) to a topological group, you have to form \(LX\), which has all the
same homotopy groups but just pushed down one notch:
\[\pi_{n-1}(LX) = \pi_n(X)\] This is actually the trick you are playing,
in slight disguise.

And the real point is that a 1-object \(\omega\)-groupoid can be
reinterpreted as an \(\omega\)-groupoid by forgetting about the object
and renaming all the \(j\)-morphisms ``\((j-1)\)-morphisms''.

See? When you finally get to the bottom of it, this ``\(BG\)'' business
is just a silly reindexing game!!! Of course no textbook can admit this
openly --- partially because they don't talk about \(\omega\)-groupoids.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\begin{quote}
\begin{quote}
So Euler characteristic is a lot like homotopy cardinality. But not many
spaces have both well-defined homotopy cardinality and well-defined
Euler characteristic. So they're like Jekyll and Hyde --- you hardly
ever see them in the same place at the same time, so you can't tell if
they're really the same guy.
\end{quote}
\end{quote}

\begin{quote}
{[}TB{]} So, are they ever both defined but different?
\end{quote}

{[}JB{]} I don't recall any examples where they're both finite, but
different. I know very few cases where they're both finite! How about
the point? How about the circle? How about the 2-sphere? I leave you to
ponder these cases.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\begin{quote}
\begin{quote}
However, there are still challenging tests to the theory that homotopy
cardinality and Euler characteristic are secretly the same. Here's a
puzzle due to James Dolan. Consider a Riemann surface of genus
\(g > 1\). Such a surface has Euler characteristic \(2 - 2g\), but such
a surface also has vanishing homotopy groups above the first, which
implies that it's \(BG\) for \(G\) equal to its fundamental group. If
homotopy cardinality and Euler characteristic were the same, this would
imply \[|G| = 1/|BG| = 1/\chi(S) = 1/(2 - 2g)\].

But the fundamental group \(G\) is infinite! What's going on?
\end{quote}
\end{quote}

\begin{quote}
{[}TB{]} This doesn't seem too surprising. \(1/(2 - 2g)\) is also
infinite. Just use the geometric series in reverse:
\[1/(2 - 2g) = (1/2) \sum_i g^i,\]

which diverges since \(g > 1\).
\end{quote}

{[}JB{]} Well, what I really want is a way of counting elements of the
fundamental group of the surface \(S\) which gives me a divergent sum
that I can cleverly sum up to get \(1/(2 - 2g)\).
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Later, my wish above was granted by Laurent Bartholdi and Danny
Ruberman! People have already figured out how to count the number of
elements in the fundamental group of a Riemann surface, resum, and get
\(1/(2 - 2g)\) in a nice way. Here are two references:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\item
  William J. Floyd and Steven P. Plotnick, ``Growth functions on
  Fuchsian groups and the Euler characteristic'', \emph{Invent. Math.}
  \textbf{88} (1987), 1--29.
\item
  R. I. Grigorchuk, ``Growth functions, rewriting systems and Euler
  characteristic'', \emph{Mat. Zametki} \textbf{58} (1995), 653--668,
  798.
\end{enumerate}

You can read more about Euler characteristic and homotopy cardinality
here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{15}
\tightlist
\item
  John Baez, ``Euler characteristic versus homotopy cardinality'',
  lecture at the \emph{Fields Institute Program on Applied Homotopy
  Theory}, September 20, 2003. Available in PDF form at
  \texttt{http://www.math.ucr.edu/home/baez/cardinality/}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{The imaginary expression \(\sqrt{-a}\) and the negative expression
\(\sqrt{-b}\) resemble each other in that each one, when they seem the
solution of a problem, they indicate that there is some inconsistency or
nonsense.} --- Augustus De Morgan, 1831.
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Last week I talked about some millennium-related books. This week, some
millennial math problems! In 1900, at the second International Congress
of Mathematicians, Hilbert posed a famous list of 23 problems. No one
individual seems to have the guts to repeat that sort of challenge now.
But the newly-founded Clay Mathematics Institute, based in Cambridge
Massachusetts and run by Arthur Jaffe, has just laid out a nice list of
7 problems:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Clay Mathematics Institute, ``Millennium Prize Problems'',
  \texttt{http://www.claymath.org/prizeproblems/index.htm}
\end{enumerate}

There is a 1 million dollar prize for each one! Unlike most of Hilbert's
problems, these weren't cooked up specially for the occasion: they have
already proved their merit by resisting attack for some time.

Here they are:

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{1. P = NP?}

This is the newest problem on the list and the easiest to explain. An
algorithm is ``polynomial-time'' if the time it takes to run is bounded
by some polynomial in the length of the input data. This is a crude but
easily understood condition to decide whether an algorithm is fast
enough to be worth bothering with. A ``nondeterministic
polynomial-time'' algorithm is one that can \emph{check} a purported
solution to a problem in an amount of time bounded by some polynomial in
the input data. All algorithms in P are in NP, but how about the
converse? Is P = NP? Stephen Cook posed this problem in 1971 and it's
still open. It seems unlikely to be true --- a good candidate for a
counterexample is the problem of factoring integers --- but nobody has
\emph{proved} that it's false. This is the most practical question of
the lot, because if the answer were ``yes'', there's a chance that one
could use this result to quickly crack all the current best encryption
schemes.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{2. The PoincarÃ© conjecture}

Spheres are among the most fundamental topological spaces, but spheres
hold many mysteries. For example: is every \(3\)-dimensional manifold
with the same homotopy type as a 3-sphere actually homeomorphic to a
3-sphere? Or for short: are homotopy 3-spheres really 3-spheres?
PoincarÃ© posed this puzzle in 1904 shortly after he knocked down an
easier conjecture of his by finding 3-manifolds with the same homology
groups as 3-spheres that weren't really 3-spheres. The
higher-dimensional analogues of PoincarÃ©'s question have all been
settled in the affirmative --- Smale, Stallings and Wallace solved it in
dimensions 5 and higher, and Freedman later solved the subtler
4-dimensional case --- but the \(3\)-dimensional case is still unsolved.
This is an excellent illustration of a fact that may seem surprising at
first: many problems in topology are toughest in fairly low dimensions!
The reason is that there's less ``maneuvering room''. The last couple
decades have seen a burst of new ideas in low-dimensional topology ---
this has been a theme of This Week's Finds ever since it started --- but
the PoincarÃ© conjecture remains uncracked.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{3. The Birch-Swinnerton-Dyer conjecture}

This is a conjecture about elliptic curves, and indirectly, number
theory. For a precise definition of an elliptic curve I'll refer you to
\protect\hyperlink{week13}{``Week 13''} and
\protect\hyperlink{week125}{``Week 125''}, but basically, it's a
torus-shaped surface described by an algebraic equation like this:
\[y^2 = x^3 + ax + b\] Any elliptic curve is naturally an abelian group,
and the points on it with rational coordinates form a finitely generated
subgroup. When are there infinitely many such rational points? In 1965,
Birch and Swinnerton-Dyer conjectured a criterion involving something
called the ``\(L\)-function'' of the elliptic curve. The \(L\)-function
\(L(s)\) is an elegant encoding of how many solutions there are to the
above equation modulo \(p\), where \(p\) is any prime. The
Birch-Swinnerton-Dyer conjecture says that \(L(1) = 0\) if and only if
the elliptic curve has infinitely many rational points. More generally,
it says that the order of the zero of \(L(s)\) at \(s = 1\) equals the
rank of the group of rational points on the elliptic curve (that is, the
rank of the free abelian summand of this group.) A solution to this
conjecture would shed a lot of light on Diophantine equations, one of
which goes back to at least the 10th century --- namely, the problem of
finding which integers appear as the areas of right triangles all of
whose sides have lengths equal to rational numbers.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{4. The Hodge conjecture}

This question is about algebraic geometry and topology. A ``projective
nonsingular complex algebraic variety'' is basically a compact smooth
manifold described by a bunch of homogeneous complex polynomial
equations. Such a variety always has even dimension, say \(2n\). We can
take the DeRham cohomology of such a variety and break it up into parts
\(H^{p,q}\) labelled by pairs \((p,q)\) of integers between \(0\) and
\(n\), using the fact that every function is a sum of a holomorphic and
an antiholomorphic part. Sitting inside the DeRham cohomology is the
rational cohomology, The rational guys inside \(H^{p,p}\) are called
``Hodge forms''. By PoincarÃ© duality any closed analytic subspace of our
variety defines a Hodge form --- this sort of Hodge form is called an
algebraic cycle. The Hodge conjecture, posed in 1950 states: every Hodge
form is a rational linear linear combination of algebraic cycles. It's
saying that we can concretely realize a bunch of cohomology classes
using closed analytic subspaces sitting inside our variety.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{5. Existence and mass gap for Yang-Mills theory}

One of the great open problems of modern mathematical physics is whether
the Standard Model of particle physics is mathematically consistent.
It's not even known whether ``pure'' Yang-Mills theory --- uncoupled to
fermions or the Higgs --- is a well-defined quantum field theory with
reasonable properties. To make this question precise, people have
formulated various axioms for a quantum field theory, like the so-called
``Haag-Kastler axioms''. The job of constructive quantum field theory is
to mathematically study questions like whether we can construct
Yang-Mills theory in such a way that it satisfies these axioms. But one
really wants to know more: at the very least, existence of Yang-Mills
theory coupled to fermions, together with a ``mass gap'' --- i.e., a
nonzero minimum mass for the particles formed as bound states of the
theory (like protons are bound states of quarks).

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{6. Existence and smoothness for the Navier-Stokes equations}

The Navier-Stokes equations are a set of partial differential equations
describing the flow of a viscous incompressible fluid. If you start out
with a nice smooth vector field describing the flow of some fluid, it
will often get complicated and twisty as turbulence develops. Nobody
knows whether the solution exists for all time, or whether it develops
singularities and becomes undefined after a while! In fact, numerical
evidence hints at the contrary. So one would like to know whether
solutions exist for all time and remain smooth --- or at least find
conditions under which this is the case. Of course, the Navier-Stokes
equations are only an approximation to the actual behavior of fluids,
since it idealizes them as a continuum when they are actually made of
molecules. But it's important to understand whether and how the
continuum approximation breaks down as turbulence develops.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{7. The Riemann hypothesis}

For \(\Re(s) > 1\) the Riemann zeta function is defined by
\[\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \ldots\]
But we can extend it by analytic continuation to most of the complex
plane --- it has a pole at \(s = 1\). The zeta function has a bunch of
zeros in the ``critical strip'' where \(\Re(s)\) is between \(0\) and
\(1\). In 1859, Riemann conjectured that all such zeros have real part
equal to \(1/2\). This conjecture has lots of interesting ramifications
for things like the distribution of prime numbers. By now, more than a
billion zeros in the critical strip have been found to have real part
\(1/2\); it has also been shown that ``most'' such zeros have this
property, but the Riemann hypothesis remains open.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

If you solve one of these conjectures and win a million dollars because
you read about it here on This Week's Finds, please put me in your will.

Okay, now on to some other stuff.

This week was good for me in two ways. First of all, Ashtekar, Krasnov
and I finally finished a paper on black hole entropy that we've been
struggling away on for over 3 years. I can't resist talking about this
paper at length, since it's such a relief to be done with it. Second,
the guru of \(n\)-category theory, Ross Street, visited Riverside and
explained a bunch of cool stuff to James Dolan and me. I may talk about
this next time.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Abhay Ashtekar, John Baez and Kirill Krasnov, Quantum geometry of
  isolated horizons and black hole entropy, preprint available at
  \href{https://arxiv.org/abs/gr-qc/0005126}{\texttt{gr-qc/0005126}} or
  at \texttt{http://math.ucr.edu/home/baez/black2.ps}
\end{enumerate}

I explained an earlier version of this paper in
\protect\hyperlink{week112}{``Week 112''}, but now I want to give a more
technical explanation. So:

The goal of this paper is to understand the geometry of black holes in a
way that takes quantum effects into account, using the techniques of
loop quantum gravity. We do not consider the region near the
singularity, which is poorly understood. Instead, we focus on the
geometry of the event horizon, since we wish to compute the entropy of a
black hole by counting the microstates of its horizon.

Perhaps I should say a word about why we want to do this. As explained
in \protect\hyperlink{week111}{``Week 111''}, Bekenstein and Hawking
found a formula relating the entropy \(S\) of a black hole to the area
\(A\) of its event horizon. It is very simple: \[S = A/4\] in units
where the speed of light, Newton's constant, Boltzmann's constant and
Planck's constant equal \(1\). Now, in quantum statistical mechanics,
the entropy of a system in thermal equilibrium is roughly the logarithm
of the number \(N\) of microstates it can occupy: \[S = \ln N.\] This is
exactly right when all the microstates have the same energy. Thus we
expect that a black hole of area \(A\) has about \[N = \exp(A/4)\]
microstates. For a solar-mass black hole, that's about \(\exp(10^{76})\)
microstates! Any good theory of quantum gravity must explain what these
microstates are. Since their number is related to the event horizon's
area, it is natural to guess that they're related to the geometry of the
event horizon. But how?

It's clear that everything will work perfectly if each little patch of
the event horizon with area \(4 \ln(2)\) has exactly 2 states. I think
Wheeler was the first to take this seriously enough to propose a toy
model where each such patch stores one bit of information, making the
black hole into something sort of like an enormous hard drive:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John Wheeler, ``It from bit'', in \emph{Sakharov Memorial Lecture on
  Physics}, Volume 2, eds.~L. Keldysh and V. Feinberg, Nova Science, New
  York, 1992.
\end{enumerate}

Of course, this idea sounds a bit nutty. However, the quantum state of a
spinor contains exactly one bit of information, and loop quantum gravity
is based on the theory of spinors, so it's not as crazy as it might
seem\ldots. Still, there are some, ahem, \emph{details} to be worked
out!

So let's work them out.

The first step is to understand the classical mechanics of a black hole
in a way that allows us to apply the techniques of loop quantum gravity.
In other words, we want to describe a classical phase space for our
black hole. This step was done in a companion paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Abhay Ashtekar, Alejandro Corichi and Kirill Krasnov, ``Isolated
  horizons: the classical phase space'', \emph{Advances in Theoretical
  and Mathematical Physics} \textbf{3} (2000), 418--471. Preprint
  available at
  \href{https://arxiv.org/abs/gr-qc/9905089}{\texttt{gr-qc/9905089}}.
\end{enumerate}

The idea is to consider the region of spacetime outside the black hole
and assume that its boundary is a cylinder of the form
\(\mathbb{R}\times S^2\). We demand that this boundary is an ``isolated
horizon'' --- crudely speaking, a surface that light cannot escape from,
with no matter or gravitational radiation falling in for the stretch of
time under consideration. To make this concept precise we need to impose
some boundary conditions on the metric and other fields at the horizon.
These are most elegantly described using Penrose's spinor formalism for
general relativity, as discussed in \protect\hyperlink{week109}{``Week
109''}. With the help of these boundary conditions, we can start with
the usual Lagrangian for general relativity, turn the crank, and work
out a description of the phase space for an isolated black hole.

If we temporarily ignore the presence of matter, a point in this phase
space describes the metric and extrinsic curvature of space outside the
black hole at a given moment of time. Technically, we do this using an
\(\mathrm{SU}(2)\) connection \(A\) together with an
\(\mathfrak{su}(2)\)-valued \(2\)-form \(E\). You can think of these as
analogous to the vector potential and electric field in
electromagnetism. As usual, they need to satisfy some constraints coming
from Einstein's equations for general relativity. They also need to
satisfy boundary conditions coming from the definition of an isolated
horizon.

Since the black hole is shaped like a ball, the boundary conditions hold
on a 2-sphere that I'll call the ``horizon 2-sphere''. One thing the
boundary conditions say is that on the horizon 2-sphere, the
\(\mathrm{SU}(2)\) connection \(A\) is completely determined by a
\(\mathrm{U}(1)\) connection, say \(W\). This \(\mathrm{U}(1)\)
connection is really important, because it describes the intrinsic
geometry of the horizon 2-sphere. Here's a good way to think about it:
first you restrict the spacetime metric to the horizon 2-sphere, and
then you work out the Levi-Civita connection of this metric on the
2-sphere. Finally, since loop quantum gravity is based on the parallel
transport of spinors, you work out the corresponding connection for
spinors on the 2-sphere, which is a \(\mathrm{U}(1)\) connection. That's
\(W\)!

The boundary conditions also say that on the horizon 2-sphere, the \(E\)
field is proportional to the curvature of \(W\). So on the horizon
2-sphere, \emph{all} the fields are determined by \(W\). This is even
true when we take the presence of matter into account. When we quantize,
it'll be the microstates of this field \(W\) that give rise to the black
hole entropy. Since \(W\) is just a technical way of describing the
shape of the horizon 2-sphere, this means that the black hole entropy
arises from the many slightly different possible shapes that the horizon
can have.

But I'm getting ahead of myself here! We haven't quantized yet; we're
just talking about the classical phase space for an isolated black hole.

The most unusual feature of this phase space is that its symplectic
structure is a sum of two terms. First, there is the usual integral over
space at a given time, which makes the \(E\) field canonically conjugate
to the \(A\) field away from the horizon 2-sphere. But then there is a
boundary term: an integral over the horizon 2-sphere. This gives the
geometry of the horizon a life of its own, which ultimately accounts for
the black hole entropy. Not surprisingly, this boundary term involves
the \(\mathrm{U}(1)\) connection \(W\). In fact, this boundary term is
just the symplectic structure for \(\mathrm{U}(1)\) Chern-Simons theory
on the 2-sphere! It's the simplest thing you can write down:
\[\omega(\delta W, \delta W') = \frac{k}{2\pi} \int \delta W\wedge \delta W'\]
Here \(\omega\) is the \(\mathrm{U}(1)\) Chern-Simons symplectic
structure; we're evaluating it on two tangent vectors to the space of
\(\mathrm{U}(1)\) connections on the 2-sphere, which we call
\(\delta W\) and \(\delta W'\). These are the same as \(1\)-forms, so we
can wedge them and integrate the result over the 2-sphere. The number
\(k\) is some constant depending on the area of the black hole\ldots{}
but more about that later!

I guess this Chern-Simons stuff needs some background to fully
appreciate. I have been talking about it for a long time here on This
Week's Finds. The quantum version of Chern-Simons theory is a
3-dimensional quantum field theory that burst into prominence thanks to
Witten's work relating it to the Jones polynomial, which is an invariant
of knots. At least heuristically, you can calculate the Jones polynomial
by doing a path integral in \(\mathrm{SU}(2)\) Chern-Simons theory. It
also turns out that Chern-Simons theory is deeply related to quantum
gravity in 3d spacetime. For quite a while, various people have hoped
that Chern-Simons theory was important for quantum gravity in 4d
spacetime, too --- see for example \protect\hyperlink{week56}{``Week
56''} and \protect\hyperlink{week57}{``Week 57''}. However, there have
been serious technical problems in most attempts to relate Chern-Simons
theory to physically realistic problems in 4d quantum gravity. I think
we may finally be straightening out some of these problems! But the
ironic twist is that we're using \(\mathrm{U}(1)\) Chern-Simons theory,
which is really very simple compared to the sexier \(\mathrm{SU}(2)\)
version. For example, \(\mathrm{U}(1)\) Chern-Simons theory also gives a
knot invariant, but it's basically just the self-linking number. And the
math of \(\mathrm{U}(1)\) Chern-Simons theory goes back to the 1800s ---
it's really just the mathematics of ``theta functions''.

As a historical note, I should add that the really nice derivation of
the Chern-Simons boundary term in the symplectic structure for isolated
black holes was found in a paper written \emph{after} the one I
mentioned above:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Abhay Ashtekar, Chris Beetle and Steve Fairhurst, ``Mechanics of
  isolated horizons'', \emph{Class. and Quant. Gravity} \textbf{17}
  (2000), 253--298. Available at
  \href{https://arxiv.org/abs/gr-qc/9907068}{\texttt{gr-qc/9907068}}.
\end{enumerate}

Originally, everyone thought that to make the action differentiable as a
function of the fields, you had to add a boundary term to the usual
action for general relativity, and that this boundary term was
responsible for the boundary term in the symplectic structure. This
seemed a bit ad hoc. Of course, you need to differentiate the action to
get the field equations, so it's perfectly sensible to add an extra term
if that's what you need to make the action differentiable, but still you
wonder: where did the extra term COME FROM?

Luckily, Ashtekar and company eventually realized that while you
\emph{can} add an extra term to the action, you don't really \emph{need}
to. By cleverly using the ``isolated horizon'' boundary conditions, you
can show that the usual action for general relativity is already
differentiable without any extra term, and that it yields the
Chern-Simons boundary term in the symplectic structure.

Okay: we've got a phase space for an isolated black hole, and we've got
the symplectic structure on this phase space. Now what?

Well, now we should quantize this phase space! It's a bit complicated,
but thanks to the two-part form of the symplectic structure, it
basically breaks up into two separate problems: quantizing the A field
and its canonical conjugate \(E\) outside the horizon 2-sphere, and
quantizing the \(W\) field on this 2-sphere. The first problem is
basically just the usual problem of loop quantum gravity --- people know
a lot about that. The second problem is basically just quantizing
\(\mathrm{U}(1)\) Chern-Simons theory --- people know even \emph{more}
about that! But then you have to go back and put the two pieces
together. For that, it's crucial that on the horizon, the \(E\) field is
proportional to the curvature of the connection \(W\).

So: what do quantum states in the resulting theory look like? I'll
describe a basis of states for you\ldots.

Outside the black hole, they are described by spin networks. I've
discussed these in \protect\hyperlink{week110}{``Week 110''} and
elsewhere, but let me just recall the basics. A spin network is a graph
whose edges are labelled by irreducible representations of
\(\mathrm{SU}(2)\), or in other words spins \(j = 0, 1/2, 1, \ldots\).
Their vertices are labelled as well, but that doesn't concern us much
here. What matters more is that the spin network edges can puncture the
horizon 2-sphere. And it turns out that each puncture must be labelled
with a number \(m\) chosen from the set \[\{-j, -j+1, \ldots, j-1, j\}\]
These numbers \(m\) determine the state of the geometry of the horizon
2-sphere.

What do these numbers \(j\) and \(m\) really MEAN? Well, they should be
vaguely familiar if you've studied the quantum mechanics of angular
momentum. The same math is at work here, but with a rather different
interpretation. Spin network edges represent quantized flux lines of the
gravitational \(E\) field. When a spin network edge punctures the
horizon 2-sphere, it contributes \emph{area} to the 2-sphere: a
spin-\(j\) edge contributes an area equal to \[8\pi\gamma\sqrt{j(j+1)}\]
for some constant \(\gamma\).

But due to the boundary conditions relating the \(E\) field to the
curvature of the connection \(W\), each spin network edge also
contributes \emph{curvature} to the horizon 2-sphere. In fact, this
2-sphere is flat except where a spin network edge punctures it; at the
punctures it has cone-shaped singularities. You can form a cone by
cutting out a wedge-shaped slice from a piece of paper and reattaching
the two new edges, and the shape of this cone is described by the
``deficit angle'' --- the angle of the wedge you removed. In this black
hole business, a puncture labelled by the number \(m\) gives a conical
singularity with a deficit angle equal to \[\frac{4\pi m}{k}\] where
\(k\) is the same constant appearing in the formula for the Chern-
Simons symplectic structure.

I guess now it's time to explain these mysterious constants! First of
all, \(\gamma\) is an undetermined dimensionless constant, usually
called the ``Immirzi parameter'' because it was first discovered by
Fernando Barbero. This parameter sets the scale at which area is
quantized! Of course, the formula for the area contributed by a
spin-\(j\) edge: \[8\pi\gamma\sqrt{j(j+1)}\] also has a factor of the
Planck area lurking in it, which you can't see because I've set \(c\),
\(G\), and \(\hbar\) to \(1\). That's not surprising. What's surprising
is the appearance of the Barbero-Immirzi parameter. So far, loop quantum
gravity cannot predict the value of this parameter from first
principles.

Secondly, the number \(k\), called the ``level'' in Chern-Simons theory,
is given by \[k = \frac{A}{4\pi\gamma}\] Okay, that's all for my quick
description of what we get when we quantize the phase space for an
isolated black hole. I didn't explain how the quantization procedure
actually \emph{works} --- it involves all sorts of fun stuff about theta
functions and so on. I just told the final result.

Now for the entropy calculation. Here we ask the following question:
``given a black hole whose area is within \(\varepsilon\) of \(A\), what
is the logarithm of the number of microstates compatible with this
area?'' This should be the entropy of the black hole --- and it won't
depend much on the number \(\varepsilon\), so long as its on the Planck
scale.

To calculate the entropy, first we work out all the ways to label
punctures by spins \(j\) so that the total area comes within
\(\varepsilon\) of \(A\). For any way to do this, we then count the
allowed ways to pick numbers \(m\) describing the intrinsic curvature of
the black hole surface. Then we sum these up and take the logarithm.

What's the answer? Well, I'll do the calculation for you now in a really
sloppy way, just to sketch how it goes. To get as many ways to pick the
numbers \(m\) as possible, we should concentrate on states where most of
the spins \(j\) labelling punctures equal \(1/2\). If \emph{all} these
spins equal \(1/2\), each puncture contributes an area
\[8 \pi \gamma \sqrt{j(j+1)} = 4 \pi \gamma \sqrt{3}\] to the horizon
2-sphere. Since the total area is close to \(A\), this means that there
are about \(A/(4 \pi \gamma \sqrt{3})\) punctures. Then for each
puncture we can pick \(m = -1/2\) or \(m = 1/2\). This gives
\[N = 2^{A/4\ \pi\ \gamma\ \sqrt{3}}\] ways to choose the \(m\) values.
If this were \emph{exactly} right, the entropy of the black hole would
be \[S = \ln N = \left(\frac{\ln 2}{4 \pi \gamma \sqrt{3}}\right) A\]
Believe it or not, this crude estimate asymptotically approaches the
correct answer as \(A\) approaches infinity. In other words, when the
black hole is in its maximum-entropy state, the vast majority of the
spin network edges poking through the horizon are spin-\(1/2\) edges.

So, what have we seen? Well, we've seen that the black hole entropy is
(asymptotically!) proportional to the area, just like Bekenstein and
Hawking said. That's good. But we don't get the Bekenstein-Hawking
formula \[S = A/4\] because there is an undetermined parameter in our
formula --- the Barbero-Immirzi parameter. That's bad. However, our
answer will match the Bekenstein-Hawking formula if we take
\[\gamma = \frac{\ln 2}{\pi\sqrt{3}}\] If we do this, we no longer have
that annoying undetermined constant floating around in loop quantum
gravity. In fact, we can say that we've determined the ``quantum of
area'' --- the smallest possible unit of area. That's good. And then
it's almost true that in our model, each little patch of the black hole
horizon with area \(4\ln(2)\) contains a single bit of information ---
since a spin-\(1/2\) puncture has area \(4\ln(2)\), and the angle
deficit at a puncture labelled with spin \(1/2\) can take only 2 values,
corresponding to \(m = -1/2\) and \(m = 1/2\). Of course, there are also
punctures labelled by higher values of \(j\), but the \(j = 1/2\)
punctures dominate the count of the microstates.

Of course, one might object to this procedure on the following grounds:
``You've been ignoring matter thus far. What if you include, say,
electromagnetic fields in the game? This will change the calculation,
and now you'll probably need a different value of \(\gamma\) to match
the Bekenstein-Hawking result!''

However, this is not true: we can redo the calculation including
electromagnetism, and the same \(\gamma\) works. That's sort of nice.

There are a lot of interesting comparisons between our way of computing
black hole entropy and the ways its done in string theory, and a lot of
other things to say, too but for that, you'll have to read the
paper\ldots{} I'm worn out now!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} I thank Herman Rubin and Lieven Marchand for some
corrections of errors I made while describing the Riemann hypothesis and
P = NP conjecture. I also thank J. Maurice Rojas for pointing out that
Steve Smale was an individual who \emph{did} have the guts to pose a
list of math problems for the 21st century, back in 1998. This appears
in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Stephen Smale, ``Mathematical problems for the next century'',
  \emph{Mathematical Intelligencer} \textbf{20} (1998), 7--15. Also
  available in
  \href{http://www.cityu.edu.hk/ma/staff/smale/pap104.ps}{Postscript}
  and \href{http://www.cityu.edu.hk/ma/staff/smale/pap104.pdf}{PDF} as
  item 104 on Smale's webpage,
  \texttt{http://www.cityu.edu.hk/ma/staff/smale/bibliography.html}
\end{enumerate}

I believe this also appears in the book edited by Arnold mentioned at
the beginning of \protect\hyperlink{week147}{``Week 147''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{\ldots{} for beginners engaging in research, a most difficult
feature to grasp is that of quality --- that is, the depth of a problem.
Sometimes authors work courageously and at length to arrive at results
which they believe to be significant and which experts believe to be
shallow. This can be explained by the analogy of playing chess. A master
player can dispose of a beginner with ease no matter how hard the latter
tries. The reason is that, even though the beginner may have planned a
good number of moves ahead, by playing often the master has met many
similar and deeper problems; he has read standard works on various
aspects of the game so that he can recall many deeply analyzed
positions. This is the same in mathematical research. We have to play
often with the masters (that is, try to improve on the results of famous
mathematicians); we must learn the standard works of the game (that is,
the ``well-known'' results). If we continue like this our progress
becomes inevitable.} --- Hua Loo-Keng, Introduction to Number Theory
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Elliptic cohomology sits at the intersection of several well-travelled
mathematical roads. It boasts fascinating connections with homotopy
theory, string theory, elliptic curves, modular forms, and the
mysterious ubiquity of the number 24. This makes it very fascinating,
but also a bit intimidating to anyone who is not already an expert on
all these subjects.

Is \emph{anyone} actually an expert on all these subjects? Perhaps
Graeme Segal is! After all, he became famous for his work on homotopy
theory, he \emph{invented} the axioms of conformal field theory ---
borrowing lots of ideas from string theory, of course --- and I'm sure
he mastered the theory of elliptic curves one weekend when he was a kid.
So to learn about elliptic cohomology, one should really start here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Graeme Segal, ``Elliptic cohomology'', \emph{Asterisque}
  \textbf{161--162} (1988), 187--201.
\end{enumerate}

Another good reference is this proceedings of a conference held at
Princeton in 1986:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Peter S. Landweber, editor, \emph{Elliptic Curves and Modular Forms in
  Algebraic Topology}, Springer-Verlag Lecture Notes in Mathematics
  \textbf{1326}, Springer, Berlin, 1988.
\end{enumerate}

This book is also helpful:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Charles B. Thomas, \emph{Elliptic Cohomology}, Kluwer, Dordrecht,
  1999.
\end{enumerate}

though I'm afraid it's a bit long on details and short on the big
picture and physics intuition. For that, you might have to try this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Edward Witten, ``Elliptic genera and quantum field theory'',
  \emph{Comm. Math. Phys.} \textbf{109} (1987), 525--536.
\end{enumerate}

Also try this book, if you can get ahold of it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Friedrich Hirzebruch, Thomas Berger and Rainer Jung, \emph{Manifolds
  and modular forms}, translated by Peter S. Landweber, Vieweg,
  Braunschweig (a publication of the Max Planck Institute for
  Mathematics in Bonn), 1992.
\end{enumerate}

Now to have a snowball's chance in hell of understanding elliptic
cohomology, you need to understand complex oriented cohomology theories.
So I have to start by telling you what \emph{those} are. This will be
sort of a crash course in algebraic topology. By the time I'm done with
that, I'll probably be too worn out to talk about elliptic cohomology
--- but at least I'll have laid the groundwork.

So: what's a ``generalized cohomology theory''?

This is a gadget that eats a topological space \(X\) and spits out a
sequence of abelian groups \(h^n(X)\). To be a generalized cohomology
theory, this gadget must satisfy a bunch of axioms called the
Eilenberg-Steenrod axioms. The most basic example is so-called ordinary
cohomology, so when you're first learning this stuff the main motivation
for the Eilenberg-Steenrod axioms is that they're all satisfied by
ordinary cohomology. But there are lots of other examples: various
flavors of K-theory, cobordism theory, and so on. Eventually, you learn
that underlying any generalized cohomology theory there is a list of
spaces \(E(n)\) such that \[h^n(X) = [X, E(n)]\] where the right-hand
side is the set of homotopy classes of maps from \(X\) to \(E(n)\). We
say this list of spaces \(E(n)\) ``represents'' the generalized
cohomology theory. Moreover, these spaces fit together to form a
``spectrum'', meaning that the space of based loops in \(E(n)\) is
\(E(n-1)\). It follows that each space \(E(n)\) is an infinite loop
space: a space of loops in a space of loops in a space of loops
in\ldots{} where you can go on as far as you like.

Conversely, given an infinite loop space \(E(0)\), we can use it to cook
up a spectrum and thus a generalized cohomology theory. So generalized
cohomology theories, spectra and infinite loop spaces are almost the
same thing.

But what's so important about them?

Well, secretly an infinite loop space is nothing but a homotopy
theorist's version of an abelian group. A bit more technically, we could
call it a ``homotopy coherent abelian group''. By this I mean a space
with a continuous binary operation satisfying all the usual laws for an
abelian group \emph{up to homotopy}, where these homotopies satisfy all
the nice laws you can imagine \emph{up to homotopy}, and so on ad
infinitum. In the context of homotopy theory, this is almost as good as
an abelian group. Pretty much anything a normal mathematician can do
with an abelian group, a homotopy theorist can do with an infinite loop
space!

For example, normal mathematicians often like to take an abelian group
and equip it with an extra operation called ``multiplication'' that
makes it into a \emph{ring}. Homotopy theorists like to do the same for
infinite loop spaces. But of course, the homotopy theorists only demand
that the ring axioms hold \emph{up to homotopy}, where the homotopies
satisfy a bunch of nice laws \emph{up to homotopy}, and so on. Usually
they do this in the context of spectra rather than infinite loop spaces
--- a distinction too technical for me to worry about here! --- so they
call this sort of thing a ``ring spectrum''. Similarly, corresponding to
a commutative ring, the homotopy theorists have a notion called an
``\(E_\infty\) ring spectrum''. The word ``\(E_\infty\)'' is just a
funny way of saying that the commutative law holds up to homotopy, with
the homotopies satisfying a bunch of laws up to homotopy, etcetera.

If you start with a ring spectrum, the corresponding cohomology theory
will have products. In other words, the cohomology groups \(h^n(X)\) of
any space \(X\) will fit together to form a graded ring called
\(h^*(X)\) --- the star stands for a little blank where you can stick in
any number ``\(n\)''. And if your ring spectrum is an \(E_\infty\) ring
spectrum, \(h^*(X)\) will be graded-commutative. This is what happens in
most of really famous generalized cohomology theories. For example, the
ordinary cohomology of a space is actually a graded-commutative ring
with a product called the ``cap product'', and similar things are true
for the most popular flavors of K-theory and cobordism theory.

Of course, it's quite a bit of work to make all this stuff precise:
people spent a lot of energy on it back in the 1970's. But it's very
beautiful, so everybody should learn it. For the details, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  J. Adams, \emph{Infinite Loop Spaces}, Princeton U. Press, Princeton,
  1978.
\item
  J. Adams, \emph{Stable Homotopy and Generalized Homology}, Chicago
  Lectures in Mathematics, U. Chicago Press, Chicago, 1974.
\item
  J. P. May, \emph{The Geometry of Iterated Loop Spaces}, Lecture Notes
  in Mathematics \textbf{271}, Springer Verlag, Berlin, 1972.
\item
  J. P. May, F. Quinn, N. Ray and J. Tornehave, \emph{\(E_\infty\) Ring
  Spaces and \(E_\infty\) Ring Spectra}, Lecture Notes in Mathematics
  \textbf{577}, Springer Verlag, Berlin, 1977.
\item
  G. Carlsson and R. Milgram, ``Stable homotopy and iterated loop
  spaces'', in \emph{Handbook of Algebraic Topology}, ed.~I. M. James,
  North-Holland, 1995.
\end{enumerate}

Now, there's a particularly nice class of generalized cohomology
theories called ``complex oriented cohomology theories''. Elliptic
cohomology is one of these, so to understand elliptic cohomology you
first have to study these guys a bit. Instead of just giving you the
definition, I'll lead up to it rather gradually\ldots.

Let's start with the integers, \(\mathbb{Z}\). These form an abelian
group under addition, so by what I said above they are a pitifully
simple special case of an infinite loop space. So there's some space
with a basepoint called \(K(\mathbb{Z},1)\) such that the space of all
based loops in \(K(\mathbb{Z},1)\) is \(\mathbb{Z}\).

Be careful here: I'm now using the word ``is'' the way homotopy
theorists do! I really mean the space of based loops in
\(K(\mathbb{Z},1)\) is \emph{homotopy equivalent} to \(\mathbb{Z}\). But
since we're doing homotopy theory, that's good enough.

Okay: so there's a space \(K(\mathbb{Z},1)\) such that the space of all
based loops in \(K(\mathbb{Z},1)\) is \(\mathbb{Z}\). Similarly, there's
a space \(K(\mathbb{Z},2)\) such that the space of all based loops in
\(K(\mathbb{Z},2)\) is \(K(\mathbb{Z},1)\). And so on\ldots{} that's
what it means to say that \(\mathbb{Z}\) is an infinite loop space.

These spaces \(K(\mathbb{Z},n)\) are called ``Eilenberg-MacLane
spaces'', and they fit together to form a spectrum called the
Eilenberg-MacLane spectrum. Since it's built using only the integers,
this is the simplest, nicest spectrum in the world. Thus the generalized
cohomology theory it represents has got to be something simple and nice.
And it is: it's just ordinary cohomology!

But what do the spaces \(K(\mathbb{Z},n)\) actually look like?

Well, for starters, \(K(\mathbb{Z},0)\) is just \(\mathbb{Z}\), by
definition.

\(K(\mathbb{Z},1)\) is just the circle, \(S^1\). You can check that the
space of based loops in \(S^1\) is homotopy equivalent to \(\mathbb{Z}\)
--- the key is that such loops are classified up to homotopy by an
integer called the \emph{winding number}. In quantum physics,
\(K(\mathbb{Z},1)\) usually goes by the name \(\mathrm{U}(1)\) --- the
group of unit complex numbers, or ``phases''.

\(K(\mathbb{Z},2)\) is a bit more complicated: it's infinite-dimensional
complex projective space, \(\mathbb{CP}^\infty\)! I talked a bunch about
projective spaces in \protect\hyperlink{week106}{``Week 106''}. There I
only talked about finite-dimensional ones like \(\mathbb{CP}^n\), but
you can define \(\mathbb{CP}^\infty\) as a ``direct limit'' of these as
\(n\) approaches \(\infty\), using the fact that \(\mathbb{CP}^n\) sits
inside \(\mathbb{CP}^{n+1}\) as a subspace. Alternatively, you can take
your favorite complex Hilbert space \(H\) with countably infinite
dimension and form the space of all \(1\)-dimensional subspaces in
\(H\). This gives a slightly fatter version of \(\mathbb{CP}^\infty\),
but it's homotopy equivalent, and it's a very natural thing to study if
you're a physicist: it's just the space of all ``pure states'' of the
quantum system whose Hilbert space is \(H\).

How about \(K(\mathbb{Z},3)\)? Well, I don't know a nice geometrical
description of this one. And this really pisses me off! There should be
some nice way to think of \(K(\mathbb{Z},3)\) as some sort of
infinite-dimensional manifold. What is it? Does anyone know? Jean-Luc
Brylinski raised this question at the Conference on Higher Category
Theory and Physics in 1997, and it's been bugging me ever since. From
the work of Brylinski which I summarized in
\protect\hyperlink{week25}{``Week 25''}, it's clear that a good answer
should shed light on stuff like quantum theory and string theory.
Basically, the point is that the integers, the group \(\mathrm{U}(1)\),
and infinite-dimensional complex projective space are all really
important in quantum theory. This is perhaps more obvious for the latter
two spaces --- the integers are so basic that it's hard to see what's so
``quantum-mechanical'' about them. However, since each of these spaces
is just the loop space of the next, they're all part of tightly linked
sequence\ldots{} and I want to know what comes next!

But I'm digressing. I really want to focus on \(K(\mathbb{Z},2)\), or in
other words, infinite-dimensional complex projective space. Note that
there's an obvious complex line bundle over this space. Remember, each
point in \(\mathbb{CP}^\infty\) is really a \(1\)-dimensional subspace
in some Hilbert space \(H\). So we can use these \(1\)-dimensional
subspaces as the fibers of a complex line bundle over
\(\mathbb{CP}^\infty\), called the ``canonical bundle''. I'll call this
line bundle \(L\).

The complex line bundle \(L\) is important because it's ``universal'':
all the rest can be obtained from this one! More precisely, suppose we
have any topological space \(X\) and any map
\[f\colon X\to \mathbb{CP}^\infty\] Then we can form a complex line
bundle over \(X\) whose fiber over any point \(x\) is just the fiber of
\(L\) over the point \(f(x)\). This bundle is called the ``pullback'' of
\(L\) by the map \(f\). And the really cool part is that \emph{any}
complex line bundle over \emph{any} space \(X\) is isomorphic to the
pullback of \(L\) by some map! Even better, two such line bundles are
isomorphic if and only if the maps \(f\) defining them are homotopic!
This reduces the study of many questions about complex line bundles to
the study of this guy \(L\).

For example, suppose we want to classify complex line bundles over any
space \(X\). From what I just said, this task is equivalent to the task
of classifying homotopy classes of maps
\[f\colon X\to \mathbb{CP}^\infty.\] But remember,
\(\mathbb{CP}^\infty\) is the Eilenberg-Maclane space
\(K(\mathbb{Z},2)\), and the Eilenberg-Maclane spectrum represents
ordinary cohomology! So
\[[X, \mathbb{CP}^\infty] = [X, K(\mathbb{Z},2)] = H^2(X)\] where
H\^{}2(X) stands for the 2nd ordinary cohomology group of \(X\). So the
following things are really the same:

\begin{itemize}
\tightlist
\item
  isomorphism classes of complex line bundles over \(X\)
\item
  homotopy classes of maps from \(X\) to \(\mathbb{CP}^\infty\)
\item
  elements of the ordinary cohomology group \(H^2(X)\).
\end{itemize}

This is great, because it gives us three different viewpoints to play
with. In particular, \(H^2(X)\) is easy to compute --- anyone who has
taken a basic course on algebraic topology can do it. But the other two
viewpoints are nice and geometrical, so they let us do things with
\(H^2(X)\) that we might not have thought of otherwise.

So now you know this: if you hand me a complex line bundle over \(X\), I
can cook up an element of \(H^2(X)\). People call this the ``first Chern
class'' of the line bundle. If you hand me two complex line bundles, I
can tell if they're isomorphic by seeing if their first Chern classes
are equal. Conversely, if you hand me any element of \(H^2(X)\), I can
cook up a complex line bundle over \(X\) whose first Chern class is that
element.

Of course, I haven't really explained \emph{how} I cook up all these
things. To learn that, you need to study this stuff a bit more.

But let's consider a couple of examples. Suppose \(X\) is the 2-sphere
\(S^2\). Since \[H^2(S^2) = \mathbb{Z}\] this means that first Chern
class of a line bundle over \(S^2\) is secretly just an integer. People
call this the ``first Chern number'' of the line bundle. The first
physicist to get excited about this was Dirac, who bumped into this idea
when thinking about magnetic monopoles and charge quantization. Dirac
didn't know about complex line bundles and Chern classes --- he was just
studying the change of phase of an electrically charged particle as you
move it around in the magnetic field produced by a monopole! But later,
the physicist Yang met the mathematician Chern and translated Dirac's
work into the language of line bundles. See

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  C. N. Yang, ``Magnetic monopoles, fiber bundles and gauge field'', in
  \emph{Selected Papers, 1945--1980, with Commentary}, W. H. Freeman and
  Company, San Francisco, 1983.
\end{enumerate}

for the full story.

Next let's try a curiously self-referential example. It should be fun to
classify complex line bundles on \(\mathbb{CP}^\infty\), since this is
where the universal one lives! So let's take \(X = \mathbb{CP}^\infty\).
Since \(\mathbb{CP}^\infty\) is \(K(\mathbb{Z},2)\), a little abstract
nonsense shows that it's ordinary 2nd cohomology group is
\(\mathbb{Z}\):
\[H^2(\mathbb{CP}^\infty) = [\mathbb{CP}^\infty, \mathbb{CP}^\infty] = \mathbb{Z}.\]
This means that the first Chern class of a complex line bundle over
\(\mathbb{CP}^\infty\) is secretly just an integer. But what's the first
Chern class of the universal complex line bundle, \(L\)? Well, this
bundle is the pullback of itself via the \emph{identity} map
\[1\colon \mathbb{CP}^\infty\to \mathbb{CP}^\infty\] and this map
corresponds to the element \(1\) in
\([\mathbb{CP}^\infty, \mathbb{CP}^\infty] = \mathbb{Z}\). So the first
Chern class of \(L\) is \(1\). See how tautologous this argument is? It
sounds like it's saying something profound, but once you understand it,
it's really just saying \(1 = 1\).

The first Chern class of the universal bundle \(L\) is really important,
so let's call it \(c\). It's important because it's universal: it gives
us a nice way to think of the first Chern class of \emph{any} complex
line bundle. Up to isomorphism, any complex line bundle over any space
\(X\) comes from some map \[f\colon X\to \mathbb{CP}^\infty\] so to
compute the first Chern class of this line bundle, we can just work out
\(f^*(c)\), where \[f^*\colon H^2(\mathbb{CP}^\infty)\to H^2(X)\] is the
map induced by f.~If you don't see why this is true, think about it a
while --- it's just a big fat tautology!

The ideas we've been discussing raise some obvious questions. For
example, \(H^2(X)\) isn't just a set: it's an abelian group. We already
knew this from our basic course in algebraic topology, and now we also
know another explanation: \(\mathbb{CP}^\infty\) is an infinite loop
space, so it's like an abelian group for the purposes of homotopy
theory. In fact, this particular infinite loop space actually \emph{is}
an abelian group. Maps from anything into an abelian group form an
abelian group, which makes \[H^2(X) = [X, \mathbb{CP}^\infty]\] into an
abelian group. But now you're dying to know: what exactly do the product
map
\[m\colon\mathbb{CP}^\infty\times\mathbb{CP}^\infty\to \mathbb{CP}^\infty\]
and the inverse map \[i\colon\mathbb{CP}^\infty\to \mathbb{CP}^\infty\]
look like? And what does all this mean for the set of isomorphism
classes of complex line bundles on \(X\)? It's an abelian group --- but
what are products and inverses like in this abelian group?

Well, I won't answer the first question here: there's a very nice
explicit answer, and you can describe it in terms of particles and
antiparticles running around on the Riemann sphere, but it would be too
much of a digression to talk about it here. To learn more, study the
``Thom-Dold theorem'' and also some stuff about ``configuration spaces''
in topology:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  Dusa McDuff, ``Configuration spaces of positive and negative
  particles'', \emph{Topology} \textbf{14} (1975), 91--107.
\end{enumerate}

The second question is much easier: the set of isomorphism classes of
complex line bundles on a space \(X\) becomes an abelian group with
\emph{tensor product} of line bundles as the product. Taking the
\emph{dual} of a line bundle gives the inverse in this group.

Putting these ideas together, we get a nice description of tensoring
line bundles in terms of the product
\[m\colon \mathbb{CP}^\infty\times\mathbb{CP}^\infty\to \mathbb{CP}^\infty\]
which I can explain even without saying what the product looks like.
Suppose I have two line bundles on \(X\) and I want to tensor them. I
might as well assume they are pullbacks of the universal bundle \(L\) by
some maps \[f\colon X\to \mathbb{CP}^\infty,\]
\[g\colon X\to \mathbb{CP}^\infty.\] It follows from what we've seen
that to tensor these bundles, I can just form the map
\[fg: X\to \mathbb{CP}^\infty\] given as the composite
\[X\xrightarrow{(f,g)}\mathbb{CP}^\infty\times\mathbb{CP}^\infty\xrightarrow{m}\mathbb{CP}^\infty\]
and then take the pullback of \(L\) by \(fg\).

In other words: since the canonical line bundle on
\(\mathbb{CP}^\infty\) is universal, \(\mathbb{CP}^\infty\) knows
everything there is to know about complex line bundles. In particular,
it knows everything there is to know about \emph{tensoring} complex line
bundles: the operation of tensoring is encoded in the \emph{product} on
\(\mathbb{CP}^\infty\). Similarly, the operation of taking the
\emph{dual} of a complex line bundle is encoded in the \emph{inverse}
operation \[i\colon \mathbb{CP}^\infty\to \mathbb{CP}^\infty.\] Now, if
you've absorbed everything I just said --- or better yet, if you already
knew it! --- you are ready for the definition of a ``complex oriented
cohomology theory''. Basically, it's a generalized cohomology theory
where all this stuff about line bundles and the first Chern class works
almost like it does in ordinary cohomology.

Suppose we have a generalized cohomology theory; let's see the
conditions under which it's ``complex oriented''.

For starters, it must come from a ring spectrum, so that \(h^*(X)\) is a
graded ring for any space \(X\). Whenever we're in this situation, it's
interesting to take \(X\) to be a single point: we get a ring \(R\)
called the ``cohomology ring of a point''. This has a god-given element
of degree 0, namely the multiplicative unit \(1\). In any generalized
cohomology theory we have an isomorphism
\[h^{n+k}(S^n) = h^k(\mathrm{point})\] and taking the god-given element
\(1\) in \(h^0(\mathrm{point})\), this gives gives a special element in
\(h^n(S^n)\) called the ``orientation'' of \(S^n\). Now note that
\(S^2\) is the same thing as \(\mathbb{CP}^1\), so that it sits inside
\(\mathbb{CP}^\infty\): \[S^2\to \mathbb{CP}^\infty\] This gives a map
\[h^2(\mathbb{CP}^\infty)\to h^2(S^2)\] We say our generalized
cohomology is ``complex oriented'' if there is an element \(c\) in
\(h^2(\mathbb{CP}^\infty)\) that maps to the orientation of \(S^2\)
under the above map, and changes sign under the inverse map
\[i^*\colon h^2(\mathbb{CP}^\infty)\to h^2(\mathbb{CP}^\infty).\] For
example, ordinary cohomology is complex oriented, where we take \(c\) to
be the first Chern class of the universal complex line bundle! This
follows from all the stuff I've said so far.

But lots of other generalized cohomology theories are complex oriented,
too. The most famous ones are complex K-theory and complex cobordism
theory. In fact, complex cobordism theory is the ``universal'' complex
oriented cohomology theory --- it's the most informative of the whole
lot. All the rest are like watered-down versions of this one. Ordinary
cohomology is the most watered-down of all. Complex K-theory is a bit
less watered-down. And elliptic cohomology is still less watered-down!

But what \emph{is} elliptic cohomology?

Well, I might or might not get around to talking about this next Week.
I've learned the hard way not to \emph{promise} to talk about things in
future issues: my mind is too scattered to be able to stick to one
subject in a predictable manner. For example, last week I hinted that
I'd talk about Ross Street's work on \(n\)-categories, but now I've
spent so much time blabbing about this other stuff that I don't think
I'll get around to it. Let me just list the papers he gave me:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{12}
\item
  Ross H. Street, ``The petit topos of globular sets'', \emph{Macquarie
  Mathematics Report} Number \textbf{98/232}, March 1998.
\item
  Ross H. Street and Michael Batanin, ``The universal property of the
  multitude of trees'', \emph{Macquarie Mathematics Report} Number
  \textbf{98/233}, March 1998.
\item
  Michael Batanin, ``Shuffle polytopes, cooperative games and
  \(2\)-dimensional coherence for higher dimensional categories''.
\end{enumerate}

The folks down in Sydney are making great progress on understanding
\(n\)-categories from the globular point of view, and the importance of
the category of \emph{trees} has become quite clear. You can think of
trees as generalized natural numbers, and then Batanin's operads are a
natural generalization of the usual operads, which have operations
taking a natural number's worth of arguments. The trees describe ways of
glomming a bunch of globes together to get a new globe. I wish I had
time to explain this better! But it takes a while, and it really
requires some pictures.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Footnote:

{[}1{]} Almost, but not quite: if I hand you the infinite loop space
\(E(0)\), you can only recover one connected component of the infinite
loop space \(E(1)\), namely the component containing the basepoint. So
there is more information in a spectrum than there is in an infinite
loop space. A spectrum is a sequence of infinite loop spaces where the
based loops in \(E(n)\) form the space \(E(n-1)\); starting from a
single infinite loop space we can cook up a spectrum, but it will be a
spectrum of a special sort, called a ``connective'' spectrum, where the
spaces \(E(n)\) are connected for \(n > 0\).

Given a spectrum we can define the generalized cohomology groups
\(H^n(X)\) even when \(n\) is negative, via:
\[H^n(X) = lim_{k\to\infty} [\Sigma^k(X), E(n+k)]\] where
\(\Sigma^k(X)\) denotes the \(k\)-fold suspension of \(X\). If the
spectrum is connective, these groups will vanish when \(n\) is negative.
A good example of a connective spectrum is the spectrum for ordinary
cohomology (the Eilenberg-MacLane spectrum). A good example of a
nonconnective spectrum is the spectrum for real or complex K-theory.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{This therefore, is mathematics: she reminds you of the invisible
forms of the soul; she gives light to her own discoveries; she awakens
the mind and purifies the intellect; she brings light to our intrinsic
ideas; she abolishes oblivion and ignorance which are ours by birth.}
--- Proclus

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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First I'd like to say some stuff about Lagrange points. Then I'll
continue talking about complex oriented cohomology theories.

Euler and Lagrange won the Paris Academy Prize in 1722 for their work on
the orbit of the moon. The essay that Lagrange submitted for this prize,
``Essai sur le probleme des trois corps'', contained some interesting
results on the 3-body problem. Among other things, he studied the case
where a lighter body was revolving about a heavier one in a circular
orbit, and found all the places where a third much lighter body could
sit ``motionless'' with respect to the other two. There are 5 such
places, and they're now called the ``Lagrange points'' L1 -- L5.

For example: imagine the moon going around the earth in a circular
orbit. Then there are 5 Lagrange points where we can put a satellite. 3
of these are unstable equilibria. They lie on the line through the earth
and moon. L1 is between the earth and moon, L2 is in the same direction
as the moon but a bit further out, and L3 is opposite the moon. The
other 2 Lagrange points are stable equilibria. L4 lies in the moon's
orbit 60 degrees ahead of the moon, while L5 lies 60 degrees behind the
moon.

Here's a nice picture of the Lagrange points:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Lagrange points'',
  \texttt{http://map.gsfc.nasa.gov/m\_mm/ob\_techorbit1.html}
\end{enumerate}

In general, the points L4 and L5 will be stable equilibria as long as
the heavy body (e.g.~the earth in the above example) is more than 25
times as massive as the intermediate-sized one (e.g.~the moon). And in
case you're wondering, this magic number is just an approximation to the
exact figure, which is
\[\frac{25}{2}\left(1+\sqrt{1-\frac{4}{625}}\right) = 24.95993579437711227887\ldots\]
Here's a proof that the Lagrange points work as advertised, including a
derivation of the above number:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Neil J. Cornish, ``The Lagrange points'', available at
  \texttt{http://www.astro.princeton.edu/\textasciitilde{}njc/lagrange.ps.gz}
\end{enumerate}

Now, Lagrange did his calculation as a mathematical exercise and didn't
believe it was relevant to the actual solar system. But he was wrong
about that! The stable Lagrange points L4 and L5 are quite interesting,
because stuff tends to accumulate there.

For example, people have found over six hundred asteroids called
``Trojans'' at the stable Lagrange points of Jupiter's orbit around the
sun. The first to be discovered was 588 Achilles, back in 1906 --- the
number here meaning that it was the 588th asteroid found. In general,
the Trojans at L4 are named after Greek soldiers in the Trojan war,
while those at L5 are named after actual Trojans --- soldiers from the
city of Troy! You can see the Trojans quite clearly in this picture of
the asteroid belt:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Asteroid belt,
  \texttt{http://www-groups.dcs.st-and.ac.uk/\textasciitilde{}history//Diagrams/Asteroids.gif}
\end{enumerate}

The asteroid 5261 Eureka is a ``Martian Trojan'', occupying the L5 point
of Mars' orbit around the sun. A second Martian Trojan was discovered at
L5 in 1998, but it doesn't have a name yet. For more information, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Minor Planet Center, Trojan minor planets,
  \texttt{http://cfa-www.harvard.edu/cfa/ps/lists/Trojans.html}
\end{enumerate}

There may also be a few small asteroids at the Lagrange points of Venus
and Earth's orbits around the sun. Does anyone know more about this? My
brief search revealed only some information about the curious asteroid
3753 Cruithne, which is a companion asteroid of the Earth. But 3753
Cruithne is not at a Lagrange point! Instead, it moves in a very
complicated spiralling horse-shoe shaped orbit relative to the earth.
For a beautiful explanation with pictures by the discoverers of this
phenomenon, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Paul Wiegert, Kimmo Innanen and Seppo Mikkola, Near-earth asteroid
  3753 Cruithne --- Earth's curious companion,
  \texttt{http://www.astro.queensu.ca/\textasciitilde{}wiegert/}
\end{enumerate}

For over 150 years, astronomers have been searching for other satellites
of the Earth besides the big one I see out my window right now. There
have been a lot of false alarms, with people even giving names to the
satellites they thought they discovered, like ``Kleinchen'' and
``Lilith''. For the fascinating story of these ``second moons'' and
other hypothetical planets, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Paul Schlyter, ``Hypothetical planets'',
  \texttt{http://seds.lpl.arizona.edu/nineplanets/nineplanets/hypo.html}
\end{enumerate}

Unfortunately, none of these second moons were real. But in the 1960s,
people discovered dust clouds at the stable Lagrange points of the
Moon's orbit around the Earth! They are about 4 times as big as the
Moon, but they are not very substantial.

What else lurks at Lagrange points?

Well, Saturn has a moon called Dione, and 60 degrees ahead of Dione,
right at the Lagrange point L4, there is a tiny moon called Helene.
Here's a picture of Helene:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Astronomy picture of the day: ``Dione's Lagrange moon Helene'',
  \texttt{http://antwrp.gsfc.nasa.gov/apod/ap951010.html}
\end{enumerate}

Isn't she cute? There's also a small moon called Telesto at the L4 point
of Saturn's moon Tethys, and one called Calypso at the L5 point of
Tethys:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Bill Arnett, Introduction to the nine planets: Tethys, Telesto and
  Calypso,
  \texttt{http://seds.lpl.arizona.edu/nineplanets/nineplanets/tethys.html}
\end{enumerate}

Does anyone know other natural occupants of Lagrange points?

For a long time crackpots and science fiction writers have talked about
a ``Counter-Earth'', complete with its own civilization, located at the
L3 point of the Earth's orbit around the Sun --- exactly where we can
never see it! I think satellite explorations have ruled out this
possibility by now, but since L3 is an unstable Lagrange point, it was
never very likely to begin with.

On the other hand, fans of space exploration have long dreamt of setting
up a colony at the stable Lagrange points of the Moon's orbit around the
earth --- right in those dust clouds, I guess. But now people are
putting artificial satellites at the Lagrange points of the Earth's
orbit around the Sun! For example, L1 is the home of ``SOHO'': the Solar
and Heliospheric Observatory. Sitting between the Earth and Sun gives
SOHO a nice clear view of sunspots, solar flares, and the solar wind.
It's not stable, but it can exert a bit of thrust now and then to stay
put. For more information and some pretty pictures, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  SOHO website, \texttt{http://sohowww.nascom.nasa.gov/}
\end{enumerate}

In April 2001, NASA plans to put a satellite called ``MAP'' at the
Lagrange point L2. MAP is the Microwave Anisotropy Probe, which will
study anisotropies in the cosmic microwave background. These are
starting to be a really interesting window into the early history of the
universe. For more, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  MAP website, \texttt{http://map.gsfc.nasa.gov/}
\end{enumerate}

Finally, for quantum analogues of the Lagrange points, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\tightlist
\item
  T. Uzer, Ernestine A. Lee, David Farrelly, and Andrea F. Brunello,
  Synthesis of a classical atom: wavepacket analogues of the Trojan
  asteroids, Contemp. Phys. 41 (2000), 1-14. Abstract available at
  \texttt{http://www.catchword.co.uk/titles/tandf/00107514/v41n1/contp1-1.htm}
\end{enumerate}

Okay, enough about Lagrange points! Now I want to talk a bit more about
complex oriented cohomology theories. Last time I left off at the
definition. So let me start with a little review, and then plunge ahead.

A generalized cohomology theory assigns to each space \(X\) a bunch of
groups \(h^n(X)\), one for each integer \(n\). We impose some axioms
that make them work very much like ordinary cohomology. However, when
\(X\) is a point, we no longer require that \(h^n(X)\) is trivial for
nonzero \(n\). It may not seem like much, but it turns out to make a big
difference! There are all sorts of very interesting examples.

Like what?

Well, there's K-theory, which lets us study a space by looking at vector
bundles over that space and its iterated suspensions. We get various
flavors of K-theory from various kinds of vector bundle: real K-theory,
complex K-theory, quaternionic K-theory, and so on. There's even a sort
of K-theory invented by Atiyah that's based on Clifford algebras, called
``KR theory''. For more about all these, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\item
  Dale Husemoller, \emph{Fibre Bundles}, Springer-Verlag, New York,
  1975.
\item
  H. Blaine Lawson, Jr.~and Marie-Louise Michelsohn, \emph{Spin
  Geometry}, Princeton University Press, Princeton, 1989.
\end{enumerate}

Then there's cobordism theory, which lets us study a space by looking at
manifolds mapped into that space and its iterated suspensions. To be
honest, this is actually how \emph{bordism} theory works --- this being
a generalized \emph{homology} theory. But every generalized homology
theory goes hand-in-hand with a generalized cohomology theory, and if
you understand one you understand the other, at least in
principle\ldots. Anyway, there are various flavors of cobordism theory
corresponding to various kinds of extra structure you can put on a
manifold: piecewise-linear cobordism theory, smooth cobordism theory,
oriented cobordism theory, spin cobordism theory, complex cobordism
theory, symplectic cobordism theory, stable homotopy theory, and so on.
For more about these, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{13}
\tightlist
\item
  Robert E. Stong, \emph{Notes on Cobordism Theory}, Princeton
  University Press, Princeton, 1968.
\end{enumerate}

Finally, there are generalized cohomology theories inspired more by
algebra than by geometry, which only hardcore homotopy theorists seem to
understand, like Morava K-theory and Brown-Peterson theory.

To round off this little tour, I guess I should add that there are lots
of maps going between different generalized cohomology theories! As I
explained in \protect\hyperlink{week149}{``Week 149''}, each generalized
cohomology \(h^n\) corresponds to a ``spectrum'': a list of spaces, each
being the loop space of the next. Spectra form a category, and given a
map between spectra we get a map between their generalized cohomology
theories. So we shouldn't study these one of at a time: it's better to
play around with lots at once! For some important examples of the stuff
you can do this way, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{14}
\item
  P. E. Conner and E. E. Floyd, \emph{The Relation of Cobordism to
  K-theories}, Lecture Notes in Mathematics \textbf{28},
  Springer-Verlag, New York, 1966.
\item
  Douglas C. Ravenel, \emph{Complex Cobordism and Stable Homotopy Groups
  of Spheres}, Academic Press, 1986.
\end{enumerate}

and also the books on generalized cohomology listed in
\protect\hyperlink{week149}{``Week 149''}.

Anyway, to bring order to this zoo, it's nice to pick out some of the
special features of \emph{ordinary} cohomology theory and study the
generalized cohomology theories that share these features.

For example, in ordinary cohomology, the cohomology groups of a space
fit together to form a graded ring. If a generalized cohomology theory
is like this, we call it ``multiplicative''. Whenever this is the case,
we get a graded ring \(R\) called the ``coefficient ring'' of our
theory, which is simply the cohomology ring of the one-point space. For
ordinary cohomology theory the coefficient ring is just \(\mathbb{Z}\),
but for other theories it can be very interesting and complicated. By
easy abstract nonsense, the cohomology ring of any space is an algebra
over the coefficient ring.

Another nice feature of ordinary cohomology is the first Chern class.
Whenever you have a complex line bundle over a space \(X\), you get an
invariant called its ``first Chern class'' which lives in \(H^2(X)\),
and this invariant is sufficiently powerful to completely classify such
line bundles. Last week I described the \emph{universal} line bundle
over infinite-dimensional complex projective space:
\[L\to \mathbb{CP}^\infty\] and showed how the first Chern class of
\emph{any} line bundle comes from the first Chern class of this one,
which I called \(c\).

If a generalized cohomology theory is multiplicative and there's an
element \(c\) of \(h^2(\mathbb{CP}^\infty)\) that acts like the first
Chern class of the universal line bundle, we call the theory ``complex
oriented''. Of course, to make this precise we need to isolate the key
features of the first Chern class and abstract them. I did this in
\protect\hyperlink{week149}{``Week 149''}, so I won't do it again here.
Instead, I'll just say a bit about what we can \emph{do} with a complex
oriented cohomology theory.

For starters, we can use the element \(c\) to get an invariant of
complex line bundles --- a kind of generalized version of the first
Chern class. To do this, just remember from
\protect\hyperlink{week149}{``Week 149''} that \(\mathbb{CP}^\infty\) is
the classifying space for complex line bundles. In other words,
\emph{any} line bundle over \emph{any} space \(X\) is isomorphic to a
pullback of the universal line bundle by some map
\[f\colon X\to\mathbb{CP}^\infty.\] Thus, given a line bundle we can
find such a map \(f\) and use it to pull back the element \(c\) to get
an element of \(h^2(X)\). This is exactly like the usual first Chern
class of our line bundle, except now we're using a generalized
cohomology theory instead of ordinary cohomology.

Can we get any \emph{other} invariants of complex line bundles from
\emph{other} elements of the cohomology of \(\mathbb{CP}^\infty\)? Not
really: in any complex oriented cohomology theory, the cohomology ring
of \(\mathbb{CP}^\infty\) is just the algebra of formal power series in
the element \(c\): \[h^*(\mathbb{CP}^\infty) = R[[c]]\] where \(R\) is
the coefficient ring.

However, we can get other invariants of complex \emph{vector} bundles,
which are analogous to the higher Chern classes. In fact, we can mimic a
huge amount of the usual theory of characteristic classes in the context
of a complex oriented cohomology theory. I'd love to talk about this,
but it would be a digression from my main goal, which is to make
elliptic cohomology at least halfway comprehensible to the amateur.

So: last time I mentioned that \(\mathbb{CP}^\infty\) is an abelian
topological group, with a multiplication map
\[m\colon \mathbb{CP}^\infty \times \mathbb{CP}^\infty\to \mathbb{CP}^\infty\]
and an inverse map \[i\colon \mathbb{CP}^\infty\to \mathbb{CP}^\infty.\]
And I explained how these represent the operations of \emph{tensoring}
two line bundles and taking the \emph{dual} of a line bundle,
respectively. Now let's see what we can do with these maps when we have
a complex oriented cohomology theory. First of all, since cohomology is
contravariant we get homomorphisms
\[m^*\colon h^*(\mathbb{CP}^\infty)\to h^*(\mathbb{CP}^\infty \times \mathbb{CP}^\infty)\]
and \[i^*\colon h^*(\mathbb{CP}^\infty)\to h^*(\mathbb{CP}^\infty)\] But
as I already said, we have \[h^*(\mathbb{CP}^\infty) = R[[c]]\] and
similarly we have
\[h^*(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) = R[[c]] \otimes R[[c]]\]
where the product ``\(\otimes\)'' on the right side is a slightly
fattened-up version of the usual tensor product of algebras over \(R\).
So we really have homomorphisms
\[m^*\colon R[[c]]\to R[[c]] \otimes R[[c]]\]
\[i^*\colon R[[c]]\to R[[c]]\] which satisfy all the usual axioms for
the product and inverse in an abelian group --- but turned around
backwards.

Folks who like Hopf algebras will immediately note that \(R[[c]]\) is
like a Hopf algebra. A nice way to form a Hopf algebra is to take the
algebra of functions on a group and use the product and inverse in the
group to give this algebra extra operations called the ``coproduct'' and
``antipode''. We're doing the same thing here, except that we're using
formal power series in one variable \(c\) instead of functions of one
variable. So folks call \(R[[c]]\) a ``formal group law''.

In short: complex oriented cohomology theories give formal group laws!

Lest this seem overly abstract and unmotivated, remember that it's just
a way of talking about what happens to the generalized ``first Chern
class'' when we tensor line bundles. In a vague but useful way, we can
visualize guys in \(R[[c]]\) as formal power series on the line, where
the line has been equipped with some abelian group structure, at least
right near the origin. This group structure is what yields the coproduct
\[m^*\colon R[[c]]\to R[[c]] \otimes R[[c]]\] and antipode
\[i^*\colon R[[c]]\to R[[c]]\] But the real point is that this group
structure tells us how to compute the generalized ``first Chern class''
of a tensor product of line bundles starting from both of their
generalized first Chern classes.

Some examples may help. In ordinary cohomology theory, when we tensor
two line bundles, we just \emph{add} their first Chern classes. So in
this case, we've got the line made into a group using addition, and
\(R[[c]]\) becomes a formal group law called the ``additive formal group
law''.

Another famous example is complex K-theory. In this theory, when we
tensor two line bundles, we basically just \emph{multiply} their
generalized first Chern classes. That's because cohomology classes in
K-theory are just equivalence classes of vector bundles, and multiplying
them just \emph{means} tensoring them. So in this case, \(R[[c]]\)
becomes the ``multiplicative'' formal group law. Of course, some
fiddling around is required, because we don't usually think of the
multiplicative unit \(1\) as the origin of the line\ldots{} but we can
if we want.

What are some other examples? Well, complex cobordism theory is one.
This corresponds to the ``universal'' formal group law: a formal group
law that has a unique homomorphism to any other one! In this case \(R\)
is quite big: it's called the ``Lazard ring''. And this universal aspect
of complex cobordism theory makes it the king of all complex oriented
generalized cohomology theories. I really should spend about 10 pages
explaining it to you in detail, but I won't\ldots.

\ldots{} because I want to finally say a word about elliptic cohomology!

I've talked a lot about elliptic curves in
\protect\hyperlink{week13}{``Week 13''},
\protect\hyperlink{week125}{``Week 125''} and
\protect\hyperlink{week126}{``Week 126''}, so I get to assume you know
about them: an elliptic curve is a \(1\)-dimensional compact complex
manifold which is also an abelian group. As such, any elliptic curve
gives a formal group law. And thus we can wonder if this formal group
law comes from a complex oriented cohomology theory\ldots{} and it does!
And this is elliptic cohomology!

Now this is just the beginning of a long story: there's much more to
say, and I don't have the energy to say it here\ldots{} but I'll just
tantalize you with some of the high points. Since elliptic curves can be
thought of as the worldsheets of strings, there are a bunch of
interesting relationships between string theory and elliptic cohomology.
In addition to the references I've gave you in
\protect\hyperlink{week149}{``Week 149''}, see for example:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{16}
\tightlist
\item
  Hirotaka Tamanoi, \emph{Elliptic Genera and Vertex Operator
  Super-Algebras}, Springer Lecture Notes in Mathematics \textbf{1704},
  Springer, Berlin, 1999.
\end{enumerate}

We also get lots of nice relationships to the theory of modular forms.
But the one thing we apparently don't have \emph{yet} is a very neat
\emph{geometrical} description of elliptic cohomology! There's got to be
one, since so much nice geometry is involved\ldots{} but what is it?

(For an answer to this question, see \protect\hyperlink{week197}{``Week
197''}.)

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} For the proof that the complex cobordism theory
corresponds to the universal formal group law, read Quillen's original
paper on the subject:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{17}
\tightlist
\item
  Daniel Quillen, ``On the formal group laws of unoriented and complex
  cobordism theory'', \emph{Bull. Amer. Math. Soc.} \textbf{75} (1969),
  1293--1298. Also available as
  \texttt{http://projecteuclid.org/euclid.bams/1183530915}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{In any field, find the strangest thing and then explore it.} ---
John Wheeler

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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