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WEEK 51 APRIL 23, 1995

Week 51

April 23, 1995

For people in theoretical physics, Trieste is a kind of mecca. It’s an Italian town on the
Adriatic quite near the border with Slovenia, and it’s quite charming, especially the cas-
tle of Maximilian near the coast, built when parts of northern Italy were under Hapsburg
rule. Maximilian later took his architect with him to Mexico when he became Emperor
there, who built another castle for him in Mexico City. (The Mexicans, apparently unim-
pressed, overthrew and killed Maximilian.) These days, physicists visit Trieste partially
for the charm of the area, but mainly to go to the ICTP and SISSA, two physics institutes,
the latter of which has grad students, the former of which is purely for research. There
are lots of conferences and workshops at Trieste, and I was lucky enough to be invited
to Trieste while one I found interesting was going on.

As I described to some extent in “Week 44” and “Week 45”, Seiberg and Witten have
recently shaken up the subject of Donaldson theory by using some physical reasoning
to radically simplify the computations involved. Donaldson theory has always had a lot
to do with physics, since it uses the special features of of gauge theory in 4 dimensions
to obtain invariants of 4-dimensional manifolds. So perhaps it is not surprising that
physicists have had a lot to say about Donaldson theory all along, even before the recent
Seiberg-Witten revolution. And indeed, at Trieste lots of mathematicians and physicists
were busy talking to each other about Donaldson theory, trying to catch up with the
latest stuff and trying to see what to do next.

Now I don’t know much about Donaldson theory, but I have a vague interest in it
for various reasons. First, it’s supposed to be a 4-dimensional topological quantum field
theory, or TQFT. Indeed, the very first paper on TQFTs was about Donaldson theory in 4
dimensions:

1) “Topological quantum field theory”, by Edward Witten, Comm. Math. Phys. 117
(1988) 353.

Only later did Witten turn to the comparatively easier case of Chern-Simons theory,
which is a 3-dimensional TQFT:

2) “Quantum field theory and the Jones polynomial”, by Edward Witten, Comm.
Math. Phys. 121 (1989) 351.

However, when mathematicians talk about TQFTs they usually mean something sat-
isfying Atiyah’s axioms for a TQFT (which are nicely presented in his book — see “Week
39”). Now it turns out that Chern-Simons theory can be rigorously constructed as a
TQFT satisfying these axioms most efficiently using braided monoidal categories, which
play a big role in 3d topology. So it makes quite a bit of sense in a general sort of way
that Crane and Frenkel are trying to construct Donaldson theory using braided monoidal
2-categories, which seem to play a comparable role in 4d topology. In the paper which I
cite in “Week 50”, they begin to construct a braided monoidal 2-category related to the
group SU(2), which they conjecture gives a TQFT related to Donaldson theory. That also
makes some general sense, because Donaldson theory, at least “old” Donaldson theory,
is closely related to gauge theory with gauge group SU(2). Still, I’ve always wanted to
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see a more specific reason why Donaldson theory should be related to the Crane-Frenkel
ideas, not necessarily a proof, but at least a good heuristic argument.

Luckily George Thompson, who invited me to Trieste, knows a bunch about TQFTs.
Unluckily he was sick and I never really got to talk to him very much! But luckily his
collaborator Matthias Blau was also there, so I took the opportunity to pester him with
questions. I learned a bit, most of which is in their paper:

3) “N = 2 topological gauge theory, the Euler characteristic of moduli spaces, and the
Casson invariant”, by Matthias Blau and George Thompson, Comm. Math. Phys.
152 (1993), 41–71.

This paper helped me a lot in understanding Crane and Frenkel’s ideas. But so that
this “week” doesn’t get too long, I’ll just focus on one basic aspect of the paper, which is
the importance of supersymmetric quantum theory for TQFTs. Then next week I’ll say a
bit more about the Donaldson theory business.

If you look at Witten’s paper on Donaldson theory above, you’ll see he writes down
the Lagrangian for a “supersymmetric” field theory, which is supposed to be a TQFT,
namely, Donaldson theory. Supersymmetric field theories treat bosons and fermions in
an even-handed way. But why does supersymmetry show up here? The connection with
TQFTs is actually pretty simple and beautiful, at least in essence.

Suppose we are doing quantum field theory, and “space” (as opposed to “spacetime”)
is some manifold M . Then we have some Hilbert space of states Z(M) and some Hamil-
tonian H, which is a self-adjoint operator on Z(M). To evolve a state (a vector in Z(M))
in time, we hit it with the unitary operator exp(−itH), where t is the amount of time we
want to evolve by, and the minus sign is just a convention designed to confuse you.

We can think of this geometrically as follows. We are taking spacetime to be [0, t]×M .
You can visualize spacetime as a kind of pipe, if you want, and then imagine sticking in
the state ψ at one end and having exp(−itH)ψ pop out at the other end.

Now say we bend the pipe around and connect the input end to the output end! Then
we get the spacetime S1×M , where S1 is the circle of circumference t, formed by gluing
the two ends of the interval [0, t] together. For this kind of “closed” spacetime, or compact
manifold, a quantum field theory should give us not an operator like exp(−itH), but a
number, the “partition function”, which in this case is just the trace tr(exp(−itH)).

The deep reason for this is that taking the trace of an operator — remember, that
means taking the sum of the diagonal entries, when you think of it as a matrix — is
really very much like as taking a pipe and bending it around, connecting the input end
to the output end, forming a closed loop. This may seem bizarre, but observe that taking
the sum of the diagonal entries really is just a quantitative measure of how much the
“output constructively interferes with the input”. (And a very nice one, since it winds up
not depending on the basis in which we write the matrix!) This sort of idea is basic in the
Bohm-Aharonov effect, where we take a particle in an electomagnetic field around a loop
and see how much it interferes with itself, and it is also the basic idea of a “Wilson loop”,
where we do the same thing for a particle in a gauge field. In other words, the trace
measures the amount of “positive feedback”. If this still seems bizarre, or just vague,
take a look at:

4) Knots and Physics, by Louis Kauffman, World Scientific Press, Singapore, 1991.
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You will see that the same idea shows up in knot theory, where taking a trace cor-
responds to taking something (like a braid or tangle) and folding it over to connect the
input and output. In a later “week” I’ll talk a bit about a new paper by Joyal, Street and
Verity that studies the notion of “trace”, “feedback” and “folding over” in a really general
context, the context of category theory.

Anyway, the partition function tr(exp(−itH)) typically depends on t, or in other
words, it depends on the circumference of our circle S1, not just on the topology of
the manifold S1 ×M . In a TQFT, the partition function is only supposed to depend on
the topology of spacetime! So, how can we get tr(exp(−itH)) to be independent of t?

There is a banal answer and a clever answer. The banal answer is to take H = 0!
Then tr(exp(−itH)) = tr(1) is just the dimension of the Hilbert space:

tr(exp(−itH)) = dim(Z(M)).

Actually this isn’t quite as banal as it may sound; indeed, the basic equation of quantum
gravity is the Wheeler-DeWitt equation,

Hψ = 0,

which must hold for all physical states. In other words, in quantum gravity there is a
big space of “kinematical states” on which H is an operator, but the really meaningful
“physical states” are just those in the subspace

Z(M) = ψ : Hψ = 0.

Read “Week 11” for more on this.
But there is a clever answer involving supersymmetry! You might hope that there

were some more interesting self-adjoint operators H such that tr(exp(−itH)) is time-
independent, but there aren’t. So we seem stuck. This reminds me of a course I took
from Raoul Bott. He said “so, we think about the problem. . . and still we are stuck, so
what should we do? SUPERTHINK!”

Recall that the Hamiltonian of a free particle in quantum mechanics is — up to boring
constants — just minus the Laplacian on configuration space which is some Riemannian
manifold that the particle roams around on. For this Hamiltonian, tr(exp(−itH)) doesn’t
quite make sense, since the Hilbert space is infinite-dimensional and the sum of the
diagonal matrix entries diverges. But tr(exp(−tH)) often does converge. This is why
folks often replace t by −it in formulas, which is called “going to imaginary time” or
a “Wick transform”; it really amounts to replacing Schrodinger’s equation by the heat
equation: i.e., instead of a quantum particle, we have a particle undergoing Brownian
motion! In any event, tr(exp(−tH)) certainly depends on t in these situations, but there
is something very similar that does NOT.

Namely, let’s replace the Laplacian on functions by the Laplacian on differential forms.
I won’t try to remind you what these are; I’ll simply note that functions are 0-forms, but
there are also 1-forms, 2-forms, and so on — tensor fields of various sorts — and the
Laplacian of a j-form is another j-form. So for each j we get a kind of Hamiltonian Hj ,
which is just minus the Laplacian on j-forms. We can also consider the space of all forms,
never mind the j, and on this space there is a Hamiltonian H, which is just minus the
Laplacian on all forms. Now, we could try to take the trace of exp(−tH), but it’s more
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interesting to take the “supertrace”:

str(exp(−tH)) = tr(exp(−tH0))− tr(exp(−tH1)) + tr(exp(−tH2))− . . .

in other words, the trace of exp(−tH) acting on even forms, minus the trace on odd
forms.

Why?? Well, odd forms are sort of “fermionic” in nature, while even forms are sort
of “bosonic”. The idea of supersymmetry is to throw in minus signs when you’ve got
“odd things”, because they are like fermions, and physicists know that lots formulas for
fermions are just like formulas for bosons, which are “even things”, except for these
signs. That’s the rough idea. It’s all related to how, when you interchange two identical
bosons, their wavefunction remains unchanged, while for fermions it picks up a phase of
−1.

Now the amazing cool thing is that str(exp(−tH)) is independent of t. This follows
from some stuff called Hodge theory, or, if you want to really show off, index theory.
Basically it works like this. If you have an operator A with eigenvalues λi, then

tr(exp(−tA)) =
∑
i

exp(−tλi)

if the sum makes sense. We can use this formula to write out str(exp(−tH)) in terms of
eigenvalues of the LaplaciansHj , and it turns out that all the terms coming from nonzero
eigenvalues exactly cancel! So all that’s left is the part coming from the zero eigenvalues,
which is independent of t. If you believe this for a second, it means we can compute the
supertrace by taking the limit as t → ∞. The eigenvalues are all nonnegative, so all
the quantities exp(−tλi) go to zero except for the zero eigenvalues, and we’re left with
str(exp(−tH)) being equal to the alternating sum of the dimensions of the spaces

{ψ | Hjψ = 0}

Now in fact, Hodge theory tells us that these spaces are really just the “cohomology
groups” of our configuration space, so the answer we get for str(exp(−tH)) is what folks
call the “Euler characteristic” of our configuration space. . . an important topological
invariant.

So, generalizing the heck out of this idea, we can hope to get TQFTs from super-
symmetric quantum field theories as follows. Start with some recipe for associating to
each choice of “space” M a “configuration space” C(M). . . some space of fields on M ,
typically. Let Z(M) be the space of all forms on C(M), and let H be the minus the Lapla-
cian, as an operator on Z(M). Then we expect that the partition function str(exp(−tH))
will be independent of t. This is just what one wants in a TQFT. Moreover, the partition
function will be the Euler characteristic of the configuration space C(M).

But what if we want to get a TQFT out of this trick, and avoid reference to the
Laplacian? Then we can just do the following equivalent thing (at least it’s morally
equivalent: there will usually be things to check). Let Z+(M) be the direct sum of all
the even cohomology groups of C(M), and let Z−(M) be the direct sum of all the odd
ones. Then

str(exp(−tH)) = dim(Z+(M))− dim(Z−(M))

so what we expect is, not quite a TQFT in the Atiyah sense, but a “superTQFT” whose
space of states has an “even” part equal to Z+(M) and an “odd” part equal to Z−(M);
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the right hand side is then the “superdimension” of the space of states this “superTQFT”
assigns to M .

Now actually in real life things get tricky because the configuration space C(M)
might be infinite-dimensional, or a singular variety. If C(M) is too weird, it gets hard to
say what its Euler characteristic should be! But as Blau and Thompson’s paper and the
references in it point out, one can often still make it make sense, with enough work. In
particular, when we are dealing with Donaldson theory, C(M) is just the moduli space
of flat SU(2) connections on M . This means that the partition function of S1×M should
be the Euler characteristic of moduli space, better known as the Casson invariant. And
what is the vector space our superTQFT assigns to M? Well, it’s called Floer homology.
Now actually there are a lot of subtleties here I’m deliberately sloughing over. Read Blau
and Thompson’s paper for some of them — and read the references for more!
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Week 52

May 9, 1995

So, last “week”, I said a bit about how supersymmetry could be handy for constructing
topological quantum field theories, and this week I want to say a bit more about what
that has to do with getting a purely combinatorial description of Donaldson theory.

But first, I want to lighten things up a bit by mentioning a good science fiction novel!

1) Permutation City, by Greg Egan, published in Britain by Millenium (should be avail-
able in the U.S. by autumn).

There is a lot of popular interest these days in the anthropic principle. Roughly, this
claims to explain certain features of the universe by noting that if the universe didn’t
have those features, there would be no intelligent life. So, presumably, the very fact that
we are here and asking certain questions guarantees that the questions will have certain
answers.

Of course, the anthropic principle is controversial. Suppose one could really show
that if the universe didn’t have property X, there would be no intelligent life. Does this
really count as an “explanation” of property X? People like arguing about this. But this
question is much too subtle for a simple-minded soul such as myself. I’m still stuck on
more basic things!

For example, are there any examples where we can really show that if the universe
didn’t have property X, there would be no intelligent life? It seems that to answer this,
we need to have some idea about what we’re counting as “all possible universes”, and
what counts as “intelligent life”. So far we only know ONE example of a universe and
ONE example of intelligent life, so it is difficult to become an expert on these subjects!
It’d be all to easy for us to unthinkingly assume that all intelligent life is carbon-based,
metabolizes using oxidation, and eats pizza, just because folks around here do.

Our unthinking parochialism is probably all the worse as far as different universes
are concerned! What counts as a possible universe, anyway? Rather depressingly, we
must admit we don’t even know the laws of this universe, so we don’t really know what
it takes for a universe to be possible, in the strong sense of capable of actually existing
as a universe. We are a little bit better off if we consider all logically possible universes,
but not a whole lot better. Certainly every axiom system counts as a logically possible
set of laws of a universe - every set of axioms in every possible formal system. But who
is to say that universes must have laws of this form? We don’t even know for sure that
ours does!

So this whole topic will remain a hopeless quagmire until one takes a small, carefully
limited piece of it and studies that. People studying artificial life are addressing one of
these bite-sized pieces, and getting some interesting results. I hope everyone has heard
about Thomas Ray’s program Tierra, for example: he created an artificial ecosystem - one
could call it a “possible universe” - and found, after seeding it with one self-reproducing
program, a rapid evolution of parasites, etc., following many of the patterns of ecology
here. But so far, perhaps merely due to time and memory limitations, no intelligence!

One of the cool things about “Permutation City” is an imagined cellular automaton,
the “Autoverse”, which is complicated enough to allow life. But something much cooler is
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the main theme of the book. Egan calls it the “Dust Theory”. It’s an absolutely outrageous
theory, but if you think about it carefully, you’ll see that it’s rather hard to spot a flaw. It
depends on the tricky puzzles concealed in the issue of “isomorphism”.

Being a mathematician, one thing that always puzzled me about the notions of “in-
telligent life” and “all possible universes” was the question of isomorphisms between
universes. Certainly we all agree that, say, the Heisenberg “matrix mechanics” and
Schrodinger “wave mechanics” formulations of quantum mechanics are isomorphic. In
both of them, the space of states is a Hilbert space, but in one the states are described
as sequences of numbers, while in the other they are described as wavefunctions. At
first they look like quite different theories. But in a while people realized that there was
a unitary operator from Heisenberg’s space of states to Schrodinger’s, and that via this
correspondence all of matrix mechanics is equivalent to wave mechanics.

So does Heisenberg’s universe count as the same one as Schrodinger’s, or a different
one? It seems clear that they’re the same. But say we had two quantum-mechanical
systems whose Hamiltonians have the same eigenvalues (or spectrum); does that mean
they are the “same” system, really? Is that all there is to a physical system, a list of
eigenvalues??? If we are going to go around talking about “all possible universes”, it
would probably pay to think a little about this sort of thing!

Say we had two candidates for “laws of the universe”, written down as axioms in
different formal systems. How would we decide if these were describing different uni-
verses, or were simply different ways of talking about the same universe? Pretty soon
it becomes clear that the issue is not a black-and-white one of “same” versus “different”
universes. Instead, laws of physics, or universes satisfying these laws, can turn out to
be isomorphic or not depending on how much structure you want the isomorphism to
preserve. And even if they are isomorphic, there may not be a “unique” isomorphism
or a “canonical” isomorphism. (Very roughly speaking, a canonical isomorphism is a
“God-given best one”, but one can use some category theory to make this precise.) If you
think about this carefully you’ll see that our universe could be isomorphic to some very
different-seeming ones, or could have some very different-seeming ones ‘embedded’ in
it.

Greg Egan takes this issue and runs with it – in a very interesting direction. Everyone
interested in cellular automata, artificial life, virtual reality, or other issues of simulation
should read this, as well as anyone who likes philosophy or just a good story.

Okay, back to business here. . .

2) Alberto Cattaneo, “Teorie topologiche di tipo BF ed invarianti dei nodi”, doctoral
thesis, department of physics, University of Milan.

Alberto Cattaneo, Paolo Cotta-Ramusino, Juerg Froehlich, and Maurizio Martellini,
“Topological BF theories in 3 and 4 dimensions”, preprint available as hep-th/

9505027.

So, last week I said a wee bit about Blau and Thompson’s paper on supersymmetry
and the Casson invariant. All I said was that suitably concocted supersymmetric field
theories could be used to compute the Euler characteristics of your favorite spaces, and
that Blau and Thompson talked about one which computed the Casson invariant, which
is (in a rather subtle sense) the Euler characteristic of the moduli space of flat connec-
tions on a trivial SU(2) bundle over a 3-manifold. Traditionally one requires that the
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3-manifold be a homology 3-sphere, but Kevin Walker showed how to do it for rational
homology spheres, and Blau and Thompson mention other work in which the Casson
invariant is generalized still further.

But I didn’t say which supersymmetric field theory computes the Casson invariant for
you. The answer is, N = 2 supersymmetric BF theory with gauge group SU(2). So
now I should say a little about BF theory. Actually I have already mentioned it here and
there, especially in “Week 36”. But I should say a bit more. This is going to be pretty
technical, though, so fasten your seatbelts.

The people I know who are the most excited about BF theory are the folks I was
visiting at Milan, namely Cotta-Ramusino, Martellini and his student Cattaneo. They
are working on BF theory in 3 and 4 dimensions. Let me talk about BF theory in 3
dimensions, which is what’s most directly relevant here. Well, in any dimension, say n,
the fields in BF theory are a connection A on a trivial bundle (take your favorite gauge
group G), whose curvature F we’ll think of as a 2-form taking values in the Lie algebra
of G, and Lie-algebra-valued (n− 2)-form B. Then the Lagrangian of the theory is

L(B,F ) = tr(B ∧ F )

where in the “trace” we’re using something like the Killing form to get an honest n-form
which we can integrate over spacetime.

But in 3 dimensions, since B is a 1-form, you can add an extra “cosmological con-
stant” term and take as your Lagrangian

L(B,F, c) = tr(B ∧ F + (c2/3)B ∧B ∧B)

where I have put in “c2/3” as my “cosmological constant” for insidious reasons to become
clear momentarily. Now what the article by Cattaneo, Cotta-Ramusino, Froehlich and
Martellini makes really clear is how BF theory is related to Chern-Simons theory. This
is implicit in Witten’s work on 3d gravity (see “Week 16”), which is just the special case
where G is SO(2, 1) or SO(3), and where the cosmological constant really is the usual
cosmological constant. But I’d never noticed it. Recall that the Chern-Simons action is

L(A) = tr(A ∧ dA+ (2/3)A ∧A ∧A)

Thus if we have 1-form B around as well, we can set

A′ = A+ cB,

A′′ = A− cB

so we get two different Chern-Simons theories with actions L(A′) and L(A′′), respec-
tively. OR, we can form a theory whose action is the difference of these two, and, lo and
behold:

L(A′)− L(A′′) = 4cL(B,F, c).

In other words, BF theory with cosmological constant is just a “difference of two Chern-
Simons theories”. Fans of topological quantum field theory may perhaps be more fa-
miliar with this if I point out that the Turaev-Viro theory is just BF theory with gauge
group SU(2), and the fact that the partition function for this theory is the absolute value
squared of that for Chern-Simons theory is a special case of what I’m talking about. The
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nice thing about all this is that the funny phases coming from framings in Chern-Simons
theory precisely cancel out when you form this “difference of two Chern-Simons theo-
ries”.

Now the Casson invariant is related to BF theory in 3 dimensions without cosmolog-
ical constant, i.e., taking c = 0. We might get worried by the equation above, which we
can’t solve for L(B,F ) when c = 0, but as Cattaneo and company point out,

L(B,F ) = lim
c→0

L(A′)− L(A′′)

4c

so BF theory without cosmological constant is just a limiting case, actually a kind of
derivative of Chern-Simons theory. They use this to make clearer the relation between the
vacuum expectation values of Wilson loops in Chern-Simons theory — which give you
the HOMFLY polynomial for G = SU(N) — and the corresponding vacuum expectation
values in BF theory without cosmological constant — which give you the Alexander
polynomial! Very pretty stuff.

Now back to the Casson invariant and some flagrant speculation on my part concern-
ing Crane and Frenkel’s ideas on Donaldson theory. (I said last week that this is where I
was heading, and now I’m almost there!) Okay: we know how to define Chern-Simons
theory in a purely combinatorial way using quantum groups. I.e., we can compute the
partition function of Chern-Simons theory with gauge group G using the quantum ver-
sion of the group G. . . let me just call it “quantum G”. If we take c to be imaginary
above, one can show that BF theory with cosmological constant can be computed in a
very similar way starting with the quantum group corresponding to the complexification
of G, i.e. “quantum CG”. The point is that A+cB can then be thought of as a connection
on a bundle with gauge group CG. So far this is not flagrant speculation. Slightly more
flagrantly, but not really very much at all, the formulas above hint that BF theory with-
out cosmological constant can be computed in a similar way starting with the quantum
group corresponding to the tangent bundle of G, or “quantum TG”. (The tangent bundle
of a Lie group is again a Lie group, and as we let c→ 0 what we are really doing is taking
a limit in which CG approaches TG; folks call this a “contraction”, and in the SU(2) case
many of the details appear in Witten’s paper on 3d quantum gravity; the tangent bundle
of SO(2, 1) being just the Poincare group in 3 dimensions.) If anyone knows whether
folks have worked out the quantization of these tangent bundle groups, let me know! I
think some examples have been worked out.

Okay, but Blau and Thompson say that to compute the Casson invariant you need to
use, not BF theory with gauge group SU(2), but supersymmetric BF theory with gauge
group SU(2). Well, no problemo — just compute it with “quantum super-T (SU(2))”!
Here I’m getting a bit flagrant; there are theories of quantum supergroups, but I don’t
know much about them, especially “quantum super-TG” for G compact semisimple.
Again, if anybody does, please let me know! (Actually Blau told me to check out a paper
by Saleur and somebody on this, but I never did. . . .)

Okay, but now let’s get seriously flagrant. Recall that the Casson invariant is really
the Euler characteristic of something, just a number, but this number is just the su-
perdimension of a super-vector-space, namely the Floer cohomology. From numbers to
vector spaces: this is a typical sort of “categorification” process that one would expect
as one goes from 3d to 4d TQFTs. And indeed, folks suspect that the Floer cohomology
is the space of states for a 4d TQFT, or something like a 4d TQFT, namely Donaldson
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theory. (“Something like it” because of many quirky twists that one wouldn’t expect of
a full-fledged TQFT satisfying the Atiyah axioms.) So, just as the Casson invariant is
associated to a certain Hopf algebra, namely “quantum super-T (SU(2))”, we’d expect
Donaldson theory to be associated to a certain Hopf category, the “categorification of
quantum super-T (SU(2))”. So all we need to do is figure out how to categorify quantum
super-T (SU(2)) and we’ve got a purely combinatorial definition of Donaldson theory!

Well, that’s not quite so easy, of course. And I may have made, not only the inevitable
errors involved in painting a simplified sketch of what is bound to be a rather big task,
but also other worse errors. Still, this business should clarify, if only a wee bit, what
Crane and Frenkel are up to when they are categorifying SU(2). In fact, it’s likely that
working with SU(2) rather than T (SU(2)) will remove some of the divergences from
the state sum, since, being compact, SU(2) has a discrete set of representations (and
quantum SU(2) has finitely many interesting ones, at roots of unity). So they may get a
theory that’s allied to but not exactly the same as Donaldson theory, yet better-behaved
as far as the TQFT axioms go.

If anyone actually does anything interesting with these ideas I’d very much appreciate
hearing about it.
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Week 53

May 18, 1995

Near the end of April I was invited by Ronnie Brown to Bangor, Wales for a very exciting
get-together. Readers of “This Week’s Finds” will know I’m interested in n-categories
and higher-dimensional algebra these days. Brown is the originator of the term “higher-
dimensional algebra” and has been sort of a prophet of the subject for many years. Tim
Porter at Bangor also works on this subject; I’ll try to say a bit more about his stuff next
week. And visiting Bangor at the time were John Power and Ross Street, two category
theorists who do a lot of work on n-categories. So I had a chance to learn some more
higher-dimensional algebra and category theory and see what these folks thought of my
crazy ideas.

1) Ronald Brown, “Out of line”, Royal Institution Proceedings 64, 207–243.

Brown is very interested in explaining mathematics to the public, and this paper is
based on a talk he gave to a general audience. It is a very accessible introduction to
what mathematics is really all about, and what higher-dimensional algebra is about in
particular. “Out of line” is a pun, of course, because not only does higher-dimensional
algebra seek to burst free of certain habits of “linear thinking” that tend to go along with
symbol string manipulation, it also has been a bit outside the mainstream of mathematics
until recently.

Now, when I speak of “linear thinking” I am not indulging in some vague new-agey
complaint against rationality. I mean something very precise: the tendency to focus ones
energy on operations that are easily modelled by the juxtaposition of symbols in a line.
The primordial example is addition: we have a bunch of sticks in a row:

|||||

and we say there are “5” sticks and write

1 + 1 + 1 + 1 + 1 = 5.

Fine. But when we have a 2-dimensional array of sticks:

||||
||||

||||

||||

we are in a hurry to bring the situation to linear form by making up a new operation,
“multiplication”, and saying we have 2×4 sticks. This isn’t so bad for plenty of purposes;
it’s not as if I’m against times tables! But certain things, particular in topology, can get
obscured by neglecting operations that correspond most naturally to higher-dimensional
forms of juxtaposition, and Brown’s paper explains some of these, and how to deal with
these problems. The point is not to avoid linear notation; it’s to avoid falling into certain
mental traps it can lead you into if you’re not careful!
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2) A. J. Power, “Why tricategories?”, preprint available as ECS-LFCS-94-289 from Lab-
oratory for Foundations of Computer Science, University of Edinburgh. Also avail-
able at http://www.ima.umn.edu/talks/workshops/SP6.7-18.04/power/power.
pdf

When I mentioned this paper to a friend, she puzzledly asked “ ‘Why try categories?’?”
And indeed, one must have tried categories and enjoyed them before moving on to
bicategories, tricategories and that great beckoning terra incognita of mathematics, n-
category theory.

In a sense I already know “why tricategories”. I think they’re great, and in a paper
with James Dolan — summarized in “Week 49” — I did my best to get everyone else
interested in general n-categories. For me, the great thing about n-category theory is
that it strives to formalize the notion of “process” in all its recursive splendor. An n-
category is a mathematical structure containing not only objects, which one might think
of as “things”, and morphisms, which one might think of as “processes leading from one
thing to another”, but also 2-morphisms, which are “processes leading from one process
to another”, and then 3-morphisms, etc., on up to n-morphisms.

In physics and topology applications, the k-morphisms can often be thought of as
k-dimensional geometrical objects, since (as the Greeks knew) the process of motion of
a point traces out a 1-dimensional figure, and similarly the motion of a 1-dimensional
figure traces out a 2-dimensional surface. . . and n-dimensional spacetime is in some
rough sense “traced out” by the motion of (n − 1)-dimensional spacelike slices through
time. If you think this is vague, you’re right — and that’s why one needs n-category
theory, to make it precise! When one understands n-categories (which so far we really
do only up to n = 3) one sees that the possibilities inherent in n-dimensional topol-
ogy match up very nicely with one might have stumbled on not knowing topology at
all, but just playing around with this iterated notion of processes between processes be-
tween processes. . . This “natural correspondence” between purely algebraic concepts
and topological ones is what makes topological quantum field theory tick, and I can’t
help but feel that it will have quite a bit to say about physics eventually.

Power, however, gives a quite different set of reasons for being interested in tricate-
gories. These are drawn from computer science and logic, and they make me realize yet
again how poor and outdated my education in logic was, and how much interesting stuff
there is going on in the subject!

At a completely naive level, one might already expect that relation between “pro-
cesses” and “things” is subtle and interesting in computer science. For after all, we can
think of a program either as a process that turns one thing into another, or as data, a
sort of thing, which other programs can act on. Power does not really emphasize this
issue explicitly, but I can’t help remarking on it, especially because it reminds me of the
curious fact that in mathematical physics, “time is the last dimension”.

That is, in topological quantum field theory, the n-morphisms in an n-category, which
are the processes having no further processes going between them, represent the passage
of time. And indeed, for many practical purposes it appears that n = 4 is where things
leave off, since spacetime appears 4-dimensional. On the other hand, nobody knows
any mathematical reason why one has to stop at any given n. So ultimately we should
try to understand “ω-categories”, having n-morphisms for all n greater than or equal
to zero (0-morphisms being simply objects, and 1-morphisms being morphisms). This
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corresponds philosophically to the notion that every “process” can also be regarded as a
“thing” which other processes can transform. Moreover, we should also try to understand
“Z-categories”, having n-morphisms for all integers n, even negative ones! In this world,
where there is no bottom as well as no top, every “thing” can also be regarded as a
“process”.

But I digress. Power is actually more interested in a different (though perhaps re-
lated) hierarchy. Sometimes people like to say computers just do stuff with bunches of
numbers, but that’s pretty misleading. Of course computers can do things with numbers,
but that’s one of the simpler mathematical things they can do. A number is an element
of a set (the set of real numbers, or some set of more computer-manageable numbers.)
And computers have no problem dealing with elements of sets. But computers can also
deal with sets themselves — and more fancy mathematical objects.

Many mathematical objects are sets, or bunches of sets, equipped with operations
satisfying equational laws. For example, a group is a set equipped with a product and
inverse operation satisfying various laws. Sometimes these operations are only defined
if certain conditions hold, of course. For example, a category is a set of “objects” and a
set of “morphisms”, together with various operations like composition of morphisms, but
one can only compose two morphisms f : x→ y and g : w → z if y = w. Other examples
might include graphs, partially ordered sets. . . and all sorts of things computer scientists
know and love.

We could call all of these “sets with essentially algebraic structure.” Mathematically
sophisticated computer scientists want to be able define data types corresponding to
arbitrary sorts of sets with essentially algebraic structure, and to play around with them
easily. So they need to ponder such things in considerable generality.

Note that in all cases, there is not just a bunch of objects to play with — like “groups”
or “partially ordered sets” — but a category in which the morphisms are structure-
preserving maps between the objects in question. For example, there is a category Grp
whose objects are groups and whose morphisms are group homomorphisms.

The categories one gets this way are of a certain sort. Power calls them “categories of
models of finite limit theories”. To define this requires a bit of know-how, but it’s basically
simple. For example, suppose I were trying to explain the definition of a category to a
computer scientist; I might say, every category has a set ob of objects and a set mor of
morphisms; every morphism has an object called its source (or domain), so there is a
function

source : mor→ ob

and similarly every morphism has an object called its target (or codomain) so there is a
function

target : mor→ ob.

Now, we can compose a morphism f and a morphism g to get fg if target(f) = source(g),
so we have a composition function

composition: C → mor

defined only on the subset C of mor×mor that is the biggest subset making the following
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diagram commute:

C mor

mor ob

p1

p2 target

source

where p1 : (f, g) 7→ f and p2 : (f, g) 7→ g.
Now category theorists have a slick way of dealing with these functions defined only

a subset satisfying equational conditions; instead of talking about the “biggest subset” C
they would say that C is the “limit” of the diagram

mor

mor ob

target

source

If you don’t get this, don’t worry; in a sense it’s just another way of talking about the
same thing, with the advantage of being infinitely more general, since one can talk about
the limit of any diagram, though here we will only need limits of finite diagrams.

Then, after having lined up these ingredients (and I have left some out!), I could go
ahead and say what equational laws they need to satisfy, like associativity of composition;
and if I wanted I could write all these laws out using commutative diagrams, too! Then I
would have laid out the “theory of categories” — a complete description of the operations
in a category and the laws they obey.

The theory of categories is a typical example of a “finite limit theory”, because what
I really did above, in describing the “theory of categories”, is describe a CATEGORY, say
Th, having objects called ob and mor, and morphisms called source, target, composition,
and so on, such that various diagrams commute! Moreover, we should think of Th as a
category with all finite limits, that is, one in which all finite diagrams have limits. That
allows us to deal with things like the object C above, which are defined as limits of finite
diagrams.

So we have this thing Th, the “theory of categories”. And then, any particular cate-
gory is a “model” of this theory Th. A “model” assigns to each object in Th a particular
set — for example, “mor” above gets assigned the set of morphisms in some particular
category C — and assigns to each morphism in Th a particular function — for example,
“composition” above gets assigned the function representing composition in C. More-
over, this assignment satisfies a bunch of utterly obvious consistency conditions which
one summarizes by saying that a “model of the theory Th is a functor from Th to Set that
preserves finite limits”. In logic, you know, a model of a theory is something that assigns
to each thingie in the theory an actual thingie, in such a way that all the stuff the theory
SAYS is true about these thingies, IS true!

Now if you are with me thus far you either know this stuff better than I do, or else
I congratulate you, because the example I picked was deliberately self-referential and
confusing — I was using category theory to describe the theory of categories, and also,
the theory Th itself was a category! But the world of thought does have a funny way of
wrapping back on itself like that. . . so it’s good to get used to it.

In fact there is a big literature on “sets with essentially algebraic structure” and “cat-
egories of models of finite limit theories”. . . this is a branch of logic they never taught
me about in school, but it definitely exists, and Power gives some references to it:
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3) P. Gabriel and F. Ulmer, Lokal praesentierbare Kategorien, in Springer Lecture Notes
in Math 221 (1971).

G. Kelly, Structures defined by finite limits in the enriched context I, Cahiers de Top.
et. Geom. Diff. 23 (1982), 3–41.

Michael Makkai and Robert Pare, “Accessible categories: the foundations of cate-
gorical model theory”, in Contemp. Math. 104 (1989).

But let’s dig in a bit further, since really the fun is just starting. Now, I told you what
a model of one of these finite limit theories Th was, but not what a morphism between
models is! Well, if a model is a sort of functor, a morphism between them should be a
sort of natural transformation between functors; that’s how it usually goes. So there is
really a category Mod(Th) of models of one of these theories Th. If Th were the theory
of categories as above, Mod(Th) would be the category of (small) categories, which is
called Cat. To take a less fiendish example, if Th were the theory of groups, Mod(Th)
would the category Grp.

But now suppose one wanted to build a computer language that could not only deal
with all sorts of data types corresponding to different “sets with essentially algebraic
structure”, but also various “categories with essentially algebraic structure”. For if one
likes category theory well enough to do a lot of computer science using it, it makes sense
to let the computer itself join the fun, by creating a language in which it’s easy to talk
about categories. After all, our eventual goal with computers is to have them completely
replace computer scientists, right?

Well, in a way “categories with essentially algebraic structure” aren’t terribly different
from sets with essentially algebraic structure. Roughly, the idea is that instead of hav-
ing a data type that consists of a bunch of sets with functions between them satisfying
some equational laws, we have a data type consisting of a bunch of categories, functors
between them, and natural transformations between THEM satisfying equational laws.
What this means is that if we try to copy the above stuff, instead of a “theory” we will
have a “2-theory” Th, which is some sort of 2-category, and then a model of this would
be a 2-functor from Th to Cat. We want to wind up getting a 2-category Mod(Th) of
models of Th.

But actually carrying this out is a bit tricky, and much of Power’s paper goes into
the details of various proposed schemes. Of course there is no reason in principle to
stop here, other than our limited understanding of n-categories, sheer bewilderment,
or boredom. Reasoning about n-categories always tends to drag in (n + 1)-categories,
because the collection of all n-categories with some particular structure (such as the
“essentially algebraic structures” I’ve focussed on here, but also other sorts) typically
forms an (n+ 1)-category. This is how Power motivates tricategories. Right now we are
stuck at n = 3, but there are good reasons to expect that pretty soon we’ll go beyond
that. In fact, Power and Street showed me a sketch of their ideas on tetracategories. . . .
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Week 54

June 2, 1995

I just got back from a quantum gravity conference in Warsaw, and I’m dying to talk about
some of the stuff I heard there, but first I should describe some work on topology and
higher-dimensional algebra that I have been meaning to discuss for some time now.

1) Timothy Porter, ‘Abstract homotopy theory: the interaction of category theory and
homotopy theory, lectures from the school on “Categories and Topology” ’, Depart-
ment of Mathematics, Universita di Genova, report #199, March 1992.

Timothy Porter is another expert on higher-dimensional algebra whom I met in Ban-
gor, Wales, where he teaches. As paper 3) below makes clear, he is very interested in
the relationship between traditional themes in topology and the new-fangled topological
quantum field theories (TQFTs) people have been coming up with these days. The above
paper does not mention TQFTs; instead, it is an overview of various approaches that
people have used to study homotopy theory in an algebraic way. But anyone seriously
interested in the intersection of physics and topology would do well to get ahold of it,
since it’s a pleasant way to get acquainted with some of the beautiful techniques alge-
braic topologists have been developing, which many physicists are just starting to catch
up with.

What’s homotopy theory? Well, roughly, it’s the study of the properties of spaces that
are preserved by a wide class of stretchings and squashings, called “homotopies”.

For example, a closed disc D and a one-point set {p} are quite different as topological
spaces, in that there is no continuous map from one to the other having a continuous
inverse. (This is obvious because they have a different number of points!) But there is
clearly something similar about them, because you can squash a disc down to a point
without crushing any holes in the process (since the disc has no holes). To formalize
this, note that we can find continuous functions

f : D → {p}

and
g : {p} → D

that are inverses “up to homotopy”. For example, let f be the only possible function from
D to {p}, taking every point in D to p, and let g be the map that sends p to the point
0, where we think of D as the unit disc in the plane. Now if we first do g and then do
f we are back where we started from, so gf is the identity on {p}. But if we first do f
and then g we are NOT necessarily back where we started from: instead, the function fg
takes every point in D to the point 0 in D. So fg is not the identity. But it is “homotopic”
to the identity, by which I mean that there is a continuously varying family of continuous
functions Ft from D to itself, such that F0 = fg and F1 is the identity on D. Simply let
Ft be scalar multiplication by t! As t goes from 1 to 0, we see that Ft squashes the disc
down to a point.

A bit more precisely, and more generally too, if we have two topological spaces X
and Y we say that two continuous functions f, g : X → Y are homotopic if there is a
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continuous function
F : [0, 1]×X → Y

such that
F (0, x) = f(x)

and
F (1, x) = g(x).

Intuitively, this means that f can be “continuously deformed” into g. Then we say that
two spaces X and Y are homotopic if there are continuous functions f : X → Y , g : Y →
X which are inverse up to homotopy, i.e., such that gf and fg are homotopic to the
identity on X and Y , respectively.

The main goal in homotopy theory is to understand when functions are homotopic
and when spaces are homotopic. This is incredibly hard in general, but in special cases
a huge amount is known. To take a random (but important) example, people know that
all maps from the sphere to the circle are homotopic. Remember that algebraists call
the sphere S2 since its surface is 2-dimensional, and call the circle S1; in general the
unit sphere in Rn+1 is called Sn. So for short, one says that all maps from S2 to S1 are
homotopic. But: there are infinitely many different nonhomotopic maps from $Sˆ3 to
S2! In fact there is a nice way to label all these “homotopy classes” of maps by integers.
And then: there are only two homotopy classes of maps from S4 to S3. There are also
only two homotopy classes of maps from S5 to S4, and from S6 to S5, and so on.

Now, the famous topologist J. H. C. Whitehead put forth an important program in
1950, as follows: “The ultimate aim of algebraic homotopy is to construct a purely alge-
braic theory, which is equivalent to homotopy theory in the same way that ‘analytic’ is
equivalent to ‘pure’ projective geometry.” Since then a lot of people have approached this
program from various angles, and Porter’s paper tours some of the key ideas involved.

Part of the reason for pursuing this program is simply to get good at computing
things, in a manner similar to how analytic geometry helps you solve problems in “pure”
geometry. This is not my main interest; if I want to know how many homotopy classes of
maps there are from S9 to S6, or something, I know where to look it up, or whom to ask
— which is infinitely more efficient than trying to figure it out myself! And indeed, there
is a formidable collection of tools out there for solving various sorts of specific homotopy-
theoretic problems, not all of which rely crucially on a general purely algebraic theory of
homotopy.

I’m more interested in this program for another reason, which is simply to find an
algebraic language for talking about things being true “up to homotopy”. As I’ve tried to
explain in recent “weeks”, there are many situations where equations should be replaced
by some weaker form of equivalence. Taking this seriously leads naturally to the study
of n-categories, in which equations between j-morphisms can be replaced by specified
(j + 1)-morphisms. But Porter describes a host of different (though related) formalisms
set up to handle this sort of issue. A few of the main ones are: simplicial sets, simplicial
objects in more general categories, Kan complexes, Quillen’s “model categories”, Catn

groups, and homotopy coherent diagrams. Understanding how all these formalisms are
related and what they are good for is quite a job, but this paper helps one get started.

So far everything I’ve actually said is quite elementary — I’ve made reference to some
impressive buzzwords without explaining them, but that doesn’t count. So I should put
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in something for the folks who want more! Let me say a word or two about Catn groups.
The definition of these is a typical mind-blowing piece of higher-dimensional algebra,
so I can’t resist explaining it. (After a while these definitions stop seeming so mind-
boggling, and then one is presumably beginning understand the point of the subject!)
In “Week 53” I gave a definition of a category using category theory. This might seem
completely circular and useless, but of course I was illustrating quite generally how one
could define a “model” of a “finite limit theory” using category theory. The idea was that
a category is a set of objects, a set of morphisms, together with various functions like the
source and target functions which assign to any morphism (or “arrow”) its source and
target (or “tail” and “tip”). These sets and functions needed to satisfy various axioms, of
course.

Now sets and functions are the objects and morphisms in the category of sets, which
folks call Set. So in “Week 53” I cooked up a little category Th called “the theory of
categories”, which has objects called “ob” and “mor”, morphisms called “s” and “t”, etc..
These were completely abstract gizmos, not actual sets and functions. But we required
them to satisfy the exact same laws that the sets of objects and morphisms, and the
source and target functions, and so on, satisfy in an actual category. Then a functor from
Th to Set which preserves finite limits is called a “model” of the theory of categories,
because it assigns to the completely abstract gizmos actual sets and functions satisfying
the same laws. In other words, if we have a functor

F : Th→ Set

we have an actual set F (ob) of objects, an actual set F (mor) of morphisms, an actual
function F (s) from F (ob) to F (mor), and so on. In short, we have an actual category!

Now to get this trick to work we didn’t need much to be true about the category Set:
all we needed was that it had finite limits. (Ignore this technical stuff about limits if you
don’t get it; you can still get the basic idea here.) And there are lots of categories with
this property, like the category Grp of groups. So we can also talk about a model of the
theory of categories in the category of groups! What is this? Well, it’s just a functor from
Th to Grp that preserves finite limits. More concretely, it’s exactly like a category, except
everywhere in the definition of category where you see the word “set”, scratch that out
and write in “group”, and everywhere you see the word “function”, scratch that out
and write in “homomorphism”. So you have a group of objects, a group of morphisms,
together with various homomorphisms like the source and target, and so on. . . satisfying
laws perfectly analogous to those in the definition of a category!

Folks call this kind of thing a “categorical group”, a “category object in Grp” or an “in-
ternal category in Grp”. From the point of view of sheer audacity alone, it’s a wonderful
concept: we have taken the definition of a category and transplanted it from the soil in
which it was born, namely the category Set, into new soil, namely the category Grp! But
more remarkably still, the study of these “categorical groups” is equivalent to the study
of “homotopy 2-types” - that is, topological spaces, but where you only care about them
up to homotopy, and even more drastically, where nothing above dimension 2 concerns
you. This result is due (as far as I can tell) to Ronnie Brown and C. B. Spencer, building
on earlier work of Mac Lane and Whitehead.

But why stop here? Consider the category Cat(Grp) of these category objects in Grp.
Take my word for it, such a thing exists and it has finite limits. That means we can look
for models of the theory of categories in Cat(Grp) — i.e., functors from Th to Cat(Grp),
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preserving finite limits. In fact, there things form a category, say Cat2(Grp), and this
category has finite limits, so we can look for models of the theory of categories in this
category, and these form a category Cat3(Grp), which also has finite limits. . . etc. So we
can construct an insanely recursive hierarchy:

• groups

• category objects in the the category of groups

• category objects in the category of (category objects in the category of groups)

• etc. . . .

Now, truly wonderfully, L. Loday showed that the study of Catn(Grp) is equivalent
(in a certain precise sense) to the study of homotopy n-types — i.e., homotopy theory
where you don’t care about phenomena above dimension n:

2) L. Loday, “Spaces with finitely many non-trivial homotopy groups”, Jour. Pure Appl.
Algebra 24 (1982), 179–202.

Subsequently, Ronnie Brown, Loday and others have done some interesting topology
using this fact. But the most remarkable thing, in a way, is how taking a perfectly
basic concept, the concept of GROUP, and then doing category theory “internally” in the
category of groups in an iterated fashion, winds up being very much the same as doing
topology - or at least homotopy theory. This suggests that there is something deeply
algebraic about homotopy theory in the first place.

3) Timothy Porter, “Interpretations of Yetter’s notion of G-coloring: simplicial fibre
bundles and non-abelian cohomology”, available at http://citeseer.ist.psu.
edu/100965.html

Physicists know and love the Dijkgraaf-Witten model, a 2+1-dimensional TQFT that
depends on a finite group G. It’s easy to compute the Hilbert space of states for any
compact oriented 2-manifold in this TQFT. Just triangulate your 2-manifold and let your
Hilbert space have as a basis the set of all possible ways of labelling the edges with
elements of G such that g1g2g3 = 1 whenever we have 3 edges going counterclockwise
around any triangle. Yetter figured out how to generalize this to get an interesting TQFT
from any finite categorical group:

4) David N. Yetter, “Topological quantum field theories associated to finite groups and
crossed G-sets”, Journal of Knot Theory and its Ramifications 1 (1992), 1–20.

“TQFTs from homotopy 2-types”, Journal of Knot Theory and its Ramifications 2
(1993), 113–123.

This should be the beginning of some bigger pattern relating homotopy theory and
TQFTs. Jim Dolan and I have our own theories as to how this pattern should work (see
“Week 49”) but they are still a rather long ways from being theorems. Porter, who is an
expert in simplicial methods, makes the relationship (or ONE of the relationships) very
clear in this special case.
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5) Justin Roberts, “Skein theory and Turaev-Viro invariants”, preprint.

“Refined state-sum invariants of 3- and 4-manifolds”, preprint.

“Skeins and mapping class groups”, Math. Proc. Camb. Phil. Soc. 115 (1994),
53–77.

G. Masbaum and Justin Roberts, “On central extensions of mapping class groups”,
Mathematica Gottingensis, Schriftenreihe des Sonderforschungsbereichs Geometrie und
Analysis, Heft 42 (1993).

The first two papers here might be the most interesting for physicists. They both
deal with 3d and 4d TQFTs constructed using quantum SU(2): in particular, the Turaev-
Viro theory in dimension 3, and the Crane-Yetter-Broda theory in dimension 4. The first
theory is interesting physically because it corresponds to 3d Euclidean quantum gravity
with cosmological constant. The second theory is interesting mainly because it’s one of
the few 4d TQFTs for which the Atiyah axioms have been shown; sometime I will explain
the Lagrangian for this theory, which seems not to be well-known.

In Roberts’ first paper, which was already discussed in “Week 14”, he gave a sim-
ple proof that the partition function for the Turaev-Viro theory was the absolute value
squared of that for Chern-Simons theory, perhaps the most famous of TQFTs. He also
showed that the partition function for the Crane-Yetter-Broda theory was a function of
the signature and Euler characteristic (classical invariants of 4-manifolds). In the second
paper, he considers observables for the TV and CYB theories depending on cohomology
classes in the manifold. I wish I had energy now to explain a bit more about these
observables, since they are very interesting, but I don’t!

6) Lawrence Breen, “On the Classification of 2-Gerbes and 2-Stacks”, Asterisque 225,
1994.

Suffice it to say that if gerbes and stacks — which are, very roughly, sort of like
sheaves of categories — are too simple to interest you, it’s time to read about 2-gerbes
and 2-stacks — which are roughly like sheaves of 2-categories.
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Week 55

June 4, 1995

I recently went to a workshop on canonical quantum gravity in Warsaw, organized by
Jerzy Kijowski and Jerzy Lewandowski, and I learned some interesting things. I’ll talk
about some of them in this issue, and some in the next.

Conferences are a funny thing. On science newsgroups on the net, there is very
little talk about conferences. This is probably because the people who really understand
conferences are too busy flying from one conference to the next to post to newsgroups
very often. Academic success is in part measured by the number of conference invitations
one receives, the prestige of the conferences, and the type of invitation. For example, a
big plenary lecture on an impressive stage, preceded by a little warmup where someone
explains how great you are, counts for infinitely many talks in those parallel sessions
where dozens of people get 10 minutes each to explain their work before the moderator
begins to make little coughs indicating that it’s time for the next one, while all the while
people drift in and out in a feeble attempt to find the really interesting talks. Still, giving
any sort of talk is regarded as better than giving none, so academics spend a lot of time
doing this sort of thing.

One of the great dangers of being a successful academic, in fact, is that one may get
invited to so many conferences that one never has time to think. Winning the Nobel prize
is purported to be the kiss of death in this respect. Of course, it’s a universal platitude
that the real thinking at conferences gets done not during the talks, but informally in
small groups. But the funny thing is that at most conferences people are so worn out
after going to a day’s worth of talks that they have limited energy for serious conversation
afterwards: they usually seem more interested in finding the good local restaurants and
scenic attractions. If people could have conferences with no lectures whatsoever, or
maybe one a day, it would probably be more productive. But the idea that a bunch
of people could figure something out just by sitting around and chatting informally is
absolutely foreign to our conception of “work”. People expect to receive money from
bureaucrats to go to conferences, but to convince a bureaucrat that you are deserve the
money, you need to give a lecture, so of course all conferences have too many lectures.

Turning back towards Warsaw, a city with a marvelous mathematical history, I am
reminded of Gian-Carlo Rota’s biographical sketch of Stanislaw Ulam, in which (as a
master of irony) he talks about how lazy Ulam was: all he wanted to do was sit around
in cafes and come up with interesting conjectures and research programs, and leave it
to others to work them out. And this in turn reminds me of the Scottish Cafe, where
Polish mathematicians used to hang out and write on the tablecloths, until the owner
provided them with a notebook, in which many famous conjectures were formulated,
and I believe prizes like bottles of wine were offered for their solutions. Was the Scottish
Cafe in Warsaw? [No, Lwow.] Does it still exist? I completely forgot to check while I
was there. The Banach Center, in which the conference participants stayed, comes from
a later stratum of Polish mathematical history; it was built after the war, and one room
still contains a portrait of Lenin. I know that because a film crew used it to shoot a scene
for a historical movie!

Anyway, I enjoyed this conference in Warsaw quite a bit, because a lot of people
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working on the loop representation of quantum gravity were there, and I managed to
have a fair number of serious conversations. Before going into what I learned there, I
should say that I just found a fun thing for people to read who are interested in quantum
gravity, but are not necessarily specialists:

1) Gary Au, “The quest for quantum gravity”, available as gr/qc-9506001.

This consists mainly of interviews with Chris Isham, Abhay Ashtekar and Edward
Witten. What’s nice is that the interviews are conducted by someone who knows physics.
The questions and answers are technical enough to convey some of the real substance
of the subject, while still (I hope) non-technical enough so that you don’t have to be
an expert to get a lot out of them. Isham talks mainly about the “problem of time”
in quantum gravity, Ashtekar talks mainly about the loop representation of quantum
gravity, and Witten talks about string theory.

Anyway, Ashtekar and a bunch of other good people were at this Warsaw confer-
ence, which is why I went. The main topics of conversation were spin networks and
their use in studying the area and volume operators in quantum gravity. As I explained
earlier in “Week 43”, one may very roughly think of a spin network as a graph whose
edges are labelled with “spins” 0,1/2,1,3/2, and so on, and who vertices are labelled
with certain gadgets called “intertwining operators” (which in the simplest case are just
the Clebsch-Gordon coefficients you learn about when studying angular momentum in
quantum mechanics). Penrose introduced these as abstract graphs (see “Week 22” and
“Week 41”), as a kind of substitute for thinking of space as a manifold, but more recently
Rovelli and Smolin started thinking of them as graphs embedded into 3d space, and saw
that these were a really natural way to describe states of quantum gravity: even better
than loops, because they form an orthonormal basis! Actually, it was mainly me who
proved in a really rigorous way that they form an orthonormal basis, but Rovelli and
Smolin had already been doing calculations using this idea for a while. One thing they
computed was the eigenvalues of the observables in quantum gravity corresponding to
the area of a surface in space, or the volume of a region.

Now there are all sorts of technical caveats and subtleties that I don’t want to get into
here, but in a really rough sort of sense, what their answers suggest is that IF the loop
representation of quantum gravity is right, and we are on the right track about how it
works, then the area of surfaces comes in certain (not integer, but discrete) multiples of
the Planck length squared, and the volume of regions comes in multiples of the Planck
length cubed. Note: that was a big “IF”. This is especially interesting because it doesn’t
arise by assuming from the start that spacetime has a discrete structure. In fact, their
computations assume spacetime is a continuous manifold. Nonetheless this discreteness
pops out. It’s not completely surprising: after all, Schrodinger’s equation for the hydro-
gen atom is a perfectly “continuous” sort of thing, a partial differential equation, but
the energy of the bound states winds up being a discrete sort of thing. Still, it’s sort of
exciting and new.

An interesting thing happened at the conference. Renate Loll, who works on the loop
representation of gauge theories and also lattice gauge theory, has recently developed a
lattice formulation of quantum gravity closely modelled after the loop representation:

2) Renate Loll, “Nonperturbative solutions for lattice quantum gravity”, preprint avail-
able as gr-qc/9502006.
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This has the wonderful feature that it’s perfectly rigorous and also one can start using
computers to start calculating things with it. For example, the most subtle aspect of the
loop representation of quantum gravity is the Wheeler-DeWitt equation

Hψ = 0

where H is an operator called the “Hamiltonian constraint”. More on this later; my point
here is just that physical states of quantum gravity need to satisfy this equation. Getting
H to be well-defined is tricky when space is a continuum, but in Loll’s lattice version of
theory (which is an approximation to the full continuum theory) she has already done
this, so one can now start trying numerically to find solutions and see what they look
like. She has also found some explicit solutions.

Also, she did some work on the volume operator in her lattice approach, and came
up with a result in contradiction to Rovelli and Smolin’s paper on the subject (cited in
“Week 43”). They had said that states corresponding to trivalent spin networks — spin
networks with only 3 edges at each vertex — could have nonzero volume. But using her
version of the theory she computed that trivalent states — states with only 3 nonzero
spins at the edges of the lattice incident to any vertex — all had zero volume, and that
she needed at least 4 nonzero spins to get volume! The volume operator, in case you’re
wondering, acts as a certain sum over vertices: each one winds up contributing a certain
finite amount of volume, which the theory allows you to compute.

This led to a whole lot of discussion and scribbling on the blackboards of the Banach
center. I found it truly delightful to see all these physicists drawing pictures of spin
networks and doing graphical computations just the way a knot theorist like Kauffman
does all the time. It was as if the universe had this spin network aspect to it, and
everyone was finally starting to catch on. Either that or mass delusion! I hadn’t quite
gotten the hang of how to compute these volume operators before, so it was a great
chance to learn: one person would do a computation, then someone else would do it
a different way and get a different answer, then someone else would do it yet another
way and get yet another answer, and so on, so you could ask lots of questions without
seeming too dumb. Even I did a computation after a while, and got zero volume for at
least a certain class of trivalent vertices. The votes in favor of trivalent vertices having
zero volume kept piling up. Finally Smolin noticed that he and Rovelli had made a sign
mistake. This is incredibly easy to do, since there are lots of tricky sign conventions in
spin network theory. Fundamentally these are due to the fact that spin-1/2 particles are
fermions. . . but I don’t think people fully understand the physical implications of this.
(There is also a marvelous category-theoretic explanation of it, but I fear that if I go into
that all the physicists will stop reading. Maybe some other time.) Rovelli and Smolin
got pretty depressed about this for a while, but I tried to reassure them that only people
who write really interesting papers ever get anybody to find the mistakes.

So perhaps we know a little more about the meaning of volume in a quantum theory
of spacetime.

Spin networks are very beautiful and simple things. To learn about them, in addi-
tion to the various papers listed in the “weeks” above, one can now turn to Rovelli and
Smolin’s paper:

3) C. Rovelli and L. Smolin, “Spin networks in quantum gravity”, preprint available in
LaTeX form as gr/qc-9505006.
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If you are more of a mathematician, or less of an expert on quantum gravity, you
might also try a review article I wrote about them, which starts with a quick summary of
what the heck canonical quantum gravity is about, why it’s hard to do, and why the loop
representation seems to help:

4) J. Baez, “Spin networks in nonperturbative canonical quantum gravity”, preprint
available in LaTeX form as gr-qg/9504036, or via ftp from math.ucr.edu, as the
file net.tex in the directory baez.

Now so far I have been trying to make things sound simple, but here I should point
out that when one talks about “states of quantum gravity” there are at least three quite
different things one might mean. This is because the loop representation follows Dirac’s
general philosophy of quantizing systems with constraints, with some extra twists here
and there. As I’ve repeatedly explained (e.g. “Week 43”), Einstein’s equation for general
relativity has 10 components, and if you split spacetime up into space and time (more
or less arbitrarily — there’s no “best” way) 4 of these can be seen as constraints that the
metric on space and its first time derivative must satisfy (at any given time), while the
remaining 6 describe how the metric on space evolves in time (which makes sense, be-
cause the metric has 6 components). When you follow Dirac’s procedure for quantizing
the equations what you do is this. First you forget about the constraint and get a big
space of states, the “kinematical state space”. There are lots of mathematical choices in-
volved here, but Ashtekar and Lewandowski came up with a particular nice way of doing
this rigorously, and one calls this space of states “L2 of the space of SU(2) connections
modulo gauge transformations with respect to the Ashtekar-Lewandowski generalized
measure”. Spin networks form an orthonormal basis of this Hilbert space. All the stuff
about area and volume operators above refers to operators on this space.

Then, however, you need to deal with the constraints. Now 3 of the 4 constraints
simply amount to requiring that your states be invariant under all diffeomorphisms
of space, so these are usually dealt with first, and called the “diffeomorphism con-
straint”. Imposing these constraints are a bit tricky; naively one would first guess that
this “diffeomorphism- invariant state space” is just a subspace of the original kinemat-
ical state space, but actually it’s not quite so simple. In any event, there are also spin
network states at the diffeomorphism-invariant level, corresponding not to particular
embeddings of graphs in space, but to diffeomorphism equivalence classes thereof. This
again has been used by Rovelli, Smolin and others for a while now, but it was first rigor-
ously shown in the following paper:

5) Abhay Ashtekar, Jerzy Lewandowski, Don Marolf, Jose Mourao, and Thomas Thie-
mann, “Quantization of diffeomorphism invariant theories of connections with lo-
cal degrees of freedom”, to appear in the November 1995 Jour. Math. Phys. spe-
cial issue on diffeomorphism-invariant field theory, preprint available as gr-qc/

9504018.

This paper is nice in part because it doesn’t assume you already have read every pre-
vious paper about this stuff; instead, it describes the general plan of the loop representa-
tion before constructing the diffeomorphism- invariant spin network states. Also, buried
in an appendix somewhere, it gives nice conceptual formulas for the area and volume
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operators, which serve as a complement to Rovelli and Smolin’s explicit computations of
their matrix elements in terms of the spin network basis.

Anyway, after taking care of the diffeomorphism constraint, one finally needs to
take care of the Hamiltonian constraint, meaning one needs to find states satisfying
the Wheeler-DeWitt equation. This is the hardest thing to make rigorous, and the most
exciting aspect of the whole subject, because it expresses the fact that “physical states”
of quantum gravity are invariant under diffeomorphisms of space-TIME, not just space.
There is much more to say about this, but I won’t go into it here.

Now besides Loll and Rovelli and Smolin, all the authors of the above paper except
Mourao were at the conference in Warsaw, so there was a large contingent of spin net-
work fans around, not even counting some other folks whose work I will get to in a
while. This is why I was so eager to go there, especially because my own talk was on a
rather esoteric subject which only these experts could be expected to give a darn about.
Namely. . . .

The breakthrough of Ashtekar and Lewandowski, when it came to making the loop
representation rigorous, involved working with piecewise real-analytic loops rather than
piecewise smooth loops. (Actually Penrose suggested this idea.) This is because piece-
wise smooth loops can intersect in crazy ways, like in a Cantor set, which nobody could
figure out how to handle. But the price of this breakthrough was that one had to assume
the 3-manifold representing space was real-analytic, and things then only work nicely
for real-analytic diffeomorphisms, as opposed to smooth ones. This always bugged me,
so I have been working away for about a year trying to deal with smooth loops, and
finally I got smart and teamed up with Steve Sawin, and we recently figured out how
to get things to work with smooth loops (at least a bunch of things, like the Ashtekar-
Lewandowski generalized measure). Our paper will be out pretty soon, but for now
anyone who wants a taste of the mathematical technology involved should look at:

6) Steve Sawin, “Path integration in two-dimensional topological quantum field the-
ory”, to appear in the October 1995 Jour. Math. Phys. issue on diffeomorphism-
invariant field theory, preprint available as gr/qc-9505040.

Loop representation ideas are applicable not only to canonical quantum gravity but
also to path integrals in gauge theory, because in both cases one is doing integrals over
a space of connections mod gauge transformations. Here Sawin uses them to give a
rigorous formulation of 2d TQFTs in terms of path integrals. There aren’t many unitary
2d TQFTs, and all of them are isomorphic to 2-dimensional quantum gravity with the
usual Einstein-Hilbert action, with different values of the coupling constant, or else direct
sums of such theories.

Next “week” I’ll talk about cool new idea Smolin has about TQFTs, quantum gravity,
and Bekenstein’s bound on the entropy of a physical system in terms of its surface area.
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Week 56

June 16, 1995

I got a copy of the following paper when I showed up in Warsaw:

1) Lee Smolin, “Linking topological quantum field theory and nonperturbative quan-
tum gravity”, available as gr-qc/9505028.

and then I spent a fair amount of time reading it and thinking about it throughout the
conference. If the big hypothesis formulated in this paper is correct, I think we are on
the verge of having a really beautiful theory of 4-dimensional quantum gravity, at least
given certain boundary conditions. Mind you, I just mean a really beautiful theory, not
necessarily a physically correct theory. But beautiful theories have a certain tendency to
be right, or at least close, so let me explain this hypothesis.

First of all, we have to remember that Ashtekar reformulated Einstein’s equation so
that the configuration space for general relativity on the spacetime R×S, instead of being
the space of metrics on a 3-manifold S, is a space of connections on S. A connection is
just what a physicist often calls a vector potential, but for any old gauge theory, not just
electromagnetism. Different gauge theories have different gauge groups, so I had better
tell you the gauge group of Ashtekar’s version of general relativity: it’s SL(2,C), the
group of 2× 2 complex matrices with determinant equal to 1. And I should probably tell
you which bundle over S we have an SL(2,C) connection on. . . but luckily, all SL(2,C)
bundles over 3-manifolds are trivial, so I can cut corners by saying it’s the trivial bundle.
We can think of a connection A on the trivial SL(2,C) bundle over S as 1-forms taking
values in the Lie algebra sl(2,C), consisting of 2× 2 complex matrices with trace zero.

Okay, so naively you might think a state in the quantum version of general relativity
a la Ashtekar is just a wavefunction ψ(A). That’s not too far wrong and I won’t bother
about certain nitpicky technicalities here (again, for the full story try net.tex). But
there’s one very important catch I can’t ignore: general relativity has constraint equa-
tions, meaning that ψ has to satisfy some equations. The first constraint, the Gauss law,
just says that we must have

ψ(A) = ψ(A′)

whenever A′ is the result of doing a gauge transformation to A. Or at the very least,
this should hold up to a phase; the point is that ψ is only supposed to record physically
significant information about the state of the universe, and two connections are phys-
ically equivalent if they differ by a gauge transformation. The second constraint, the
diffeomorphism constraint, says we need to have

ψ(A) = ψ(A′)

when A′ is the result of applying a diffeomorphism of space, S, to A. Again, the point
is that two solutions of general relativity are physically the same if they differ only by a
coordinate transformation, or — roughly the same thing — a diffeomorphism. The third
constraint is the real killer. It’s meaning is that ψ(A) doesn’t change when we do a diffeo-
morphism of spaceTIME to the connection A, but it’s usually formulated ‘infinitesimally’
as the Wheeler-DeWitt equation

Hψ = 0
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meaning roughly that the time derivative of ψ is zero. Think of it as a screwy quantum
gravity version of Schrodinger’s equation, where dψ/dt had better be zero!

It’s hard to find explicit solutions of these equations. Indeed, it’s hard to know what
the heck these equations mean in a sufficiently precise way to recognize a solution if we
found one! However, things were even worse back in the old days. Back in the old days
when we thought of states as wavefunctions on the space of metrics, we didn’t know
ANY solutions of these equations. But nowadays we are very happy, because we know
infinitely many times as many solutions! To be precise, we now know ONE solution. This
is called the Chern-Simons state, and it was discovered by Kodama:

2) H. Kodama, “Holomorphic wavefunction of the universe”, Phys. Rev. D42 (1990),
2548–2565.

Now actually people have proposed other explicit solutions, but personally I have
certain worries about all those other solutions, and I am not alone in this, whereas
everyone seems to agree that, no matter how you slice it, the Chern-Simons state is a
solution.

Now there is a slight catch: the Chern-Simons state is a solution of quantum gravity
with cosmological constant. This is an extra term that Einstein threw into his equations so
that they wouldn’t make the obviously ridiculous prediction that the universe is expand-
ing. When Hubble took a look and saw galactic redshifts all over, Einstein called this
extra term the biggest blunder in his life. That kind of remark, coming from that kind
of person, might make you a little bit reluctant to get too excited about having found a
state of quantum gravity with this extra term thrown in! Luckily it turns out that you
can take the limit as the cosmological constant goes to zero, and get a state of the theory
where the cosmological constant is zero. I like to call this the ‘flat state’, because it’s zero
except where the connection A is flat.

(In fact, if the space S is not simply connected, there are lots of different flat states,
because there is what experts call a moduli space of flat connections, i.e., lots of different
flat connections modulo gauge transformations. Not many people talk too much about
these flat states, but I do so in my paper net.tex and also the harder one knot.tex.)

Now what is this Chern-Simons state? Well, there is a wonderful thing you can
compute from a connection A on a (compact oriented) 3-manifold S, called the Chern-
Simons action:

CS(A) =

∫
S

tr(A ∧ dA+ (2/3)A ∧A ∧A)

which looks weird when you first see it, but gradually starts seeming very sensible and
nice. The reason why folks like it is that it doesn’t change when you do a small gauge
transformation — i.e., one you can get to following a continuous path from the identity
— and it changes only by an integral multiple of 8π2 if you do a large gauge transfor-
mation. Plus, it’s diffeomorphism-invariant. It’s incredibly hard to write down many
functions of A with these properties, so they are precious. There are deeper reasons why
it’s so nice, but let’s leave it at that for now.

So, the Chern-Simons state is

ψ(A) = exp(−6CS(A)/Λ)

where Λ is the cosmological constant. Don’t worry about the factor of 6 too much;
depending on how you set up various things you might get different numbers, and I can
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never keep certain factors of 2 straight in this particular calculation. Note however that
it looks as if things go completely haywire as Λ approaches zero, which is why my earlier
remark about the ‘flat state’ is a bit nontrivial.

Why does this satisfy the constraints? Well, I just said above that the Chern-Simons
action was hand-tailored to have the gauge-invariance and diffeomorphism-invariance
we want, so the only big surprise is that we also have a solution of the Wheeler-DeWitt
equation. Well, we do: a two-line computation shows it.

But clearly nature, or at least the goddess of mathematics, is trying to tell us some-
thing if this Chern-Simons state, which has all sorts of wonderful properties relating to
3-dimensional geometry, is also a solution of the Wheeler-DeWitt equation, which is all
about 4-dimensional geometry, since it expresses the invariance of ψ under evolution in
TIME. I have been thinking about this for several years now and I think I finally really
understand it. There are probably people out there to whom it’s perfectly obvious, be-
cause it’s not really all that complicated, but unfortunately none of these people has ever
explained it. Let me briefly say, for those who know about such things, that it all comes
down to the fact that the Chern-Simons action was born as a 3-dimensional spinoff of a
4-dimensional thing called the 2nd Chern class. (If you want more details, I explained
this as well as I could at the time in knot.tex.)

What is the physical meaning of the Chern-Simons state? As far as I know Kodama’s
paper hasn’t been vastly surpassed in explaining this. He shows that in the classical limit
this state becomes something called the anti-deSitter universe, a solution of Einstein’s
equation describing a (roughly) exponentially expanding universe. If you are wondering
what this has to do with Einstein’s introduction of the constant to KEEP the universe
from expanding, let me just say this. In our current big bang theory the universe is ex-
panding, but the presence of matter, or any sort of positive energy density, tends to pull
it back in, and if there is enough matter it’ll collapse again. Einstein’s stuck in a cosmo-
logical constant term to give the vacuum some negative energy density, exactly enough
to counteract the positive energy density of matter, so things would neither collapse nor
expand, but instead remain in an (unstable, alas) equilibrium. In the deSitter universe
there’s no matter, just a cosmological constant of the opposite sign, so that the vacuum
has positive energy density. In the anti-deSitter universe (invented by deSitter’s nemesis
anti-deSitter) there’s no matter either, but the cosmological constant has the sign giving
the vacuum negative energy density, which pushes the universe to keep expanding faster
and faster.

Now in addition to this physical interpretation, the Chern-Simons state also has some
remarkable relationships to knot theory, which were discovered by Witten and, since
then, studied intensively by lots of people. I have written a lot in This Week’s Finds
about this! But briefly, there should be an invariant of knots and links associated to
any state of quantum gravity, and the one associated to the Chern-Simons state is the
Kauffman bracket, a close relative of the Jones polynomial, which is distinguished by
having a very simple, beautiful definition, and also lots of wonderful relationships to
an algebraic structure, the quantum group SUq(2). I should add that in addition to an
invariant of knots and links, a state of quantum gravity should also give an invariant
of spin networks, and indeed the Kauffman bracket extends to a wonderful invariant of
spin networks. One can read about this in many places, but perhaps the most detailed
account is Kauffman and Lins’ book referred to in “Week 30”.

So the question arises: are all these wonderful features of the Chern-Simons state
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of quantum gravity very special things that tell us very little about quantum gravity in
general, or are they important clues that, if we understood them, would reveal a lot
about the nature of all states of quantum gravity?

Of course, everyone who has fallen in love with the beauty of Chern-Simons theory
would like the answer to be the latter. Louis Crane, for example, is deeply convinced
that Chern-Simons theory is indeed the key to the whole business. He has written many
papers on the subject, most of which I’ve gone over in earlier Finds, and also one brand
new one, which is actually a very readable introduction to the grand scheme he has in
mind:

3) Louis Crane: “Clock and category: is quantum gravity algebraic?”, to appear in the
November 1995 special issue of Jour. Math. Phys. on diffeomorphism-invariant
physics, preprint available as gr-qc/9504038.

This grand scheme involves a thorough refashioning of quantum gravity in terms of
category theory, and uses some of the very beautiful mathematics of n-categories, but
neglecting all these subtleties, let us simply say that he argues that if the universe is IN
the Chern-Simons state, there is no need to understand any other states! He doesn’t
really think all there is in the universe is gravity, of course, so he envisages a souped-
up theory containing other forces and particles, but he argues that a generalization of
quantum gravity to include all these other forces and particles will still have a special
state, and that that’s the state of the universe.

Being a conservative fellow myself, I prefer to remain agnostic on this issue, but I did
write a paper showing how, if you assumed that space, the manifold above I called S, is
a 3-dimensional sphere — a so-called S3 — then if quantum gravity was in the Chern-
Simons state, there would be very nice Hilbert spaces of “relative states” on each “half”
of space. The relative state notion is often associated with Everett, who made a big deal
out of the fact that, even if a two-part system was in a single state (a “pure state” in the
language of quantum theory), each part could be regarded as being in a probabilistic
mixture of lots of states (a “mixed state”). Whether or not you like the “many-worlds
interpretation” of quantum theory which Everett’s thesis spawned, it is true that a single
pure state on a two-part system specifies a whole space of states on each half. So my idea
was to take S3, arbitrarily split it into two balls (D3’s in math jargon), and work out the
space of states on each half. If you want to wax rhapsodic of this you can call one half
the “observer” and the other the “observed”, though it’s crucial that there is a symmetry
interchanging the two — there’s not any way to tell them apart.

On the more technical side, there is a lot of nice (though well- understood) knot
theory involved. For example, a special property of the quantum group SUq(2) — called
the “positivity of the Markov trace”, and discovered by Jones of Jones polynomial fame -
equips each space of states with an inner product, even in this situation where we have
no idea of an inner product to begin with. This paper is:

4) John Baez, “Quantum gravity and the algebra of tangles”, Jour. Class. Quant.
Grav. 10 (1993), 673–694, also available (without the all-important pictures!) as
tang.tex.

So what has Lee Smolin done? Actually I have spent so much time leading up to it
that now I’m too tired to do it justice! So I’ll explain it next time. But let me just say,
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in order to tantalize you into tuning in to the next episode, that he carefully analyzes
quantum gravity on a ball, imposing boundary conditions that let you see why relative
states of Chern-Simons theory give states of quantum gravity. And then he makes the
hypothesis that I mentioned at the beginning of this article. This is that all states of quan-
tum gravity with these boundary conditions come from relative states of Chern-Simons
theory. He even gives some good evidence for this hypothesis, coming originally from
Hawking’s work on the thermal radiation produced by black holes! (To be continued.)
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Week 57

July 3, 1995

This week I’ll start by finishing up my introduction to the following paper:

1) Lee Smolin, “Linking topological quantum field theory and nonperturbative quan-
tum gravity”, available as gr-qc/9505028.

So: recall where we were. Let me not repeat the details, but simply note that we were
playing around with quantum gravity on a 4-dimensional spacetime, using the Ashtekar
‘new variables’ formalism, and we’d noticed that in the theory with nonzero cosmological
constant Λ, there is an explicit solution of the theory, the ‘Chern-Simons’ state. Actually
I hadn’t really shown that this state satisfies the key equation, the Wheeler-DeWitt equa-
tion, but if you know the formulas it’s easy to check.

Now one might think that one solution isn’t all that much, apart from it being a whole
lot better than none, which was the situation before these discoveries. However, as I
began to explain last time, one can get a whole slew of states if one takes as ones space
S, not a closed 3-dimensional manifold (as we were doing at first) but a 3-manifold with
boundary. This is where Lee Smolin starts. He considers quantum gravity with certain
‘self-dual boundary conditions’ that are specially compatible with Chern-Simons theory.

There is presumably an enormous space of states of quantum gravity satisfying these
boundary conditions, although we don’t really know what they look like. Say we want
to understand these states as much as possible. What do they look like? Well, first
of all, the loop representation gives us a nice picture of the ‘kinematical states’ — i.e.,
states not necessarily satisfying the diffeomorphism constraint or the Wheeler-DeWitt
equation. (This picture may be wrong, of course, but let me throw caution to the winds
and just explain the picture.) Every kinematical state is a linear combination of ‘spin
network states’. For more on spin networks, check out “Week 55” and the references in
there, but let me remind you what spin networks look like in this case.

For simplicity and ease of visualization, you can pretend S is a ball, so its boundary
is a sphere. Think of a spin network state as a graph embedded in this ball, possi-
bly with some edges ending on the the boundary, with all the edges labelled by spins
j = 0, 1/2, 1, 3/2, . . ., and with the vertices labelled by some extra numbers that we
won’t worry about here. Let’s call the points where edges end on the boundary ‘punc-
tures’, because the idea is that they really poke through the boundary and keep on going.
Physically, these edges graph represent ‘flux tubes of area’: if we measure the area of
some surface in this state (or at least a surface that doesn’t intersect the vertices), the
area is just the quantity

L2
√
j(j + 1)

summed over all edges that poke through the surface, where L is the Planck length
and j is the spin labelling that edge. Gauge theories often have “flux tube” solutions
when you quantize them: for example, type II superconductors admit flux tubes of the
magnetic field, while superfluids admit flux tubes of angular momentum (vortices). The
idea behind spin networks in quantum gravity, physically speaking, is that gravity is a
gauge field which at the Planck scale is organized into branching flux tubes of area.
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But we want to understand, not the kinematical states in general, but the actual
physical states, which satisfy the diffeomorphism constraint and the Wheeler-DeWitt
equation. We can start by measuring everything we measure by doing experiments right
at the boundary of S. More precisely, we can try to find a maximal set of commuting
observables that ‘live on the boundary’ in this sense. For example, the area of any patch
of S counts as one of these observables, and all these ‘surface patch area’ observables
commute. If we measure all of them, we know everything there is to know about the area
of all regions on the boundary of S. Thanks to spin network technology, as described
above, specifying all their eigenvalues amounts to specifying the location of a bunch of
punctures on the boundary of S, together with the spins labelling the edges ending there.

Now Chern-Simons theory gives an obvious candidate for the space of physical states
of quantum gravity for which these ‘surface patch area’ observables have specified eigen-
values. In fact, if you hand Chern-Simons theory a surface like the boundary of S, to-
gether with a bunch of punctures labelled by spins, it gives you a FINITE-DIMENSIONAL
state space. Let’s not explain just now how it gives you this state space; let’s simply
mumble that it gives you this space by virtue of being an ‘extended topological quantum
field theory.’ If you want, you can think of these states as being the ‘relative states’ I dis-
cussed in last week’s Finds, but not all of them: only those for which the ‘surface patch
area’ observables have specified eigenvalues. There is a wonderfully simple combinato-
rial recipe for describing all these states in terms of spin networks living in S, having
edges that end at the punctures, with the right spins at these ends.

Smolin’s hypothesis is that this finite-dimensional space of states coming from Chern-
Simons theory is the space of all physical states of quantum gravity on S that

1) satisfy the self-dual boundary conditions, and

2) have the specified values of the surface patch area observables.

Now if this hypothesis is true, it means we have a wonderfully simple description of
all the physical states on S satisfying the self-dual boundary conditions!

So why should such a wonderful thing be true? I wish I knew! In fact, I’m busily
trying to figure it out. Smolin doesn’t give any direct evidence that it is true, so it
might not be. But he does give some very interesting indirect evidence, coming from
thermodynamics.

Thanks to work by Hawking, Bekenstein and others, there is a lot of evidence that if
one takes quantum gravity into account, the maximal entropy of any system contained
in a region with surface area A should be proportional to A. The basic idea is this. For
various reasons, one expects that the entropy of a black hole is proportional to the area
of its event horizon. For example, when you smash some black holes together it turns
out that the total area of the event horizons goes up — this is called the ‘second law of
black hole thermodynamics’. This and many more fancy thought experiments suggest
that when you have some black holes around the right notion of entropy should include
a term proportional to the total area of their event horizons. Now suppose you had some
other system which had even MORE entropy than this, but the same surface area. Then
you could dump in extra matter until it became a black hole, which would therefore have
less entropy, violating the second law.

This is a hand-waving argument, all right! It’s not the sort of thing that would con-
vince a mathematician. But it does suggest an intriguing connection between the vast
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literature on black hole thermodynamics and the more mathematical problem of relating
quantum gravity and Chern-Simons theory.

Now the maximum entropy of a system is proportional to the logarithm of the total
number of states it can assume. So if the ‘Bekenstein bound’ holds, the dimension of the
space of states of a system contained in a region with surface area A is proportional to
exp(A/c) for some constant c (which should be about the Planck length squared). Now
the remarkable thing about Smolin’s hypothesis is that if it’s true, this is what one gets,
because the dimension of the space given by Chern-Simons theory does grow like this.

There is another approach leading to this conclusion that the space of states of a
bounded region should have dimensional proportional to exp(A/c), called the ‘t Hooft-
Susskind holographic hypothesis. I was going to bone up on this for This Week’s Finds,
but I have been too busy! It’s getting late and I’m getting bleary-eyed, so I’ll stop here.
I will simply give the references to this ’holographic hypothesis’; if anyone wants to
explain it, please post to sci.physics.research — I’d be immensely grateful.

2) G ’t Hooft, “Dimensional reduction in quantum gravity”, preprint available as gr-qc/
9310006.

3) L. Susskind, “The world as a hologram”, to appear in the November 1995 special
issue of Jour. Math. Phys. on diffeomorphism-invariant physics, preprint available
as hep-th/9409089.

L. Susskind, “Strings, black holes and Lorentz contractions”, preprint available as
hep-th/9308139.

Note: in earlier Finds I referred to the October 1995 special issue of Jour. Math.
Phys., but now I’ve heard it’s coming out in November.
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Week 58

July 12, 1995

A few weeks ago I went to the IVth Porto Meeting on Knot Theory and Physics, to which I
had been kindly invited by Jose Mourao. Quite a few of the (rather few) believers in the
relevance of n-categories to physics were there. I spoke on higher-dimensional algebra
and topological quantum field theory, and also a bit on spin networks. Louis Crane spoke
on his ideas, especially the idea of getting 4-dimensional TQFTs out of state-sum models.
And John Barrett spoke on

1) John Barrett, “Quantum gravity as topological quantum field theory”, to appear in
the November 1995 special issue of Jour. Math. Physics, also available as gr-qc/
9506070.

This is a nice introduction to the concepts of topological quantum field theory (TQFT)
that doesn’t get bogged down in the (still substantial) technicalities. In particular, it pays
more emphasis than usual to the physical interpretation of TQFTs, and how this meshes
with more traditional issues in the interpretation of quantum mechanics. One of the
main things I got out of the conference, in fact, was a sense that there is a budding field
along these lines, just crying out to be developed. As Barrett notes, Atiyah’s axioms for a
TQFT can really be seen as coming from combining

a) The rules of quantum mechanics for composing amplitudes

and

b) Functoriality, or the correct behavior under diffeomorphisms of manifolds.

Indeed, he convincingly recovers the TQFT axioms from these two principles. And
of course these two principles could be roughly called “basic quantum mechanics” and
“general covariance”. . . lending credence to the idea that whatever the theory of quan-
tum gravity turns out to be, it should be something closely related to a TQFT. (I should
emphasize, though, that this question is one of the big puzzles in the subject.)

The richness inherent in b) makes the business of erecting a formalism to interpret
topological quantum field theory much more interesting than the (by now) rather stale
discussions that only treat a), or “basic quantum mechanics”. In particular, in a TQFT,
every way of combining manifolds — spaces or spacetimes — yields a corresponding
rule for composing amplitudes. For example, if we have two spacetimes that look like
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(that’s supposed to look like a pipe!) and

— that is, a cylinder and a “trinion” (or upside-down pair of pants) — we can combine
them either “horizontally” like this:

or “vertically” like this:

Corresponding to each spacetime we have a “time evolution operator” — a linear
operator that describes how states going in one end pop out the other, “evolved in time”.
And corresponding to horizontal and vertical composition of spacetimes we have two
ways to compose operators: horizontal composition usually being called “tensor prod-
uct”, and vertical composition being called simply “composition”. These two ways satisfy
some compatibility conditions, as well.
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Now if one has read a bit about n-categories and/or “extended” topological quantum
field theories, one already knows that this is just the tip of the iceberg. If we allow our-
selves to cut spacetimes into smaller bits — e.g., pieces with “corners”, such as tetrahedra
or their higher-dimensional kin — one gets more possible ways of composing operators,
and more compatibility conditions. These become algebraically rather sophisticated,
but luckily, there is a huge amount of evidence that existing TQFTs extend to more so-
phisticated structures of this sort, through a miraculous harmony between algebra and
topology.

This leads to some interesting new concepts when it comes to the physical interpre-
tation of extended TQFTs. As Crane described in his talk (see also his papers listed in
“Week 2”, Week 23 and Week 56), in a 4-dimensional extended TQFT one expects the
following sort of thing. If we think of an “observer” as a 3-manifold with boundary —
imagine a person being the 3-manifold and his skin being the boundary, if one likes
— the extended TQFT should assign to his boundary a “Hilbert category” or “2-Hilbert
space”. This is the categorical analog of a Hilbert space. In other words, just as a Hilbert
space is a set in which you can sum things and multiply them by complex numbers, and
get complex numbers by taking inner products of things, a 2-Hilbert space is an analogous
structure in which every term surrounded by asterisks is replaced by its analog one step
up the categorical ladder. This means:

set→ category

sum→ direct sum

multiply→ tensor

complex numbers→ vector spaces

inner products→ homs

There’s a good chance that you know the analogy between numbers and vector
spaces: just as you can add numbers and multiply them, you can take direct sums and
tensor products of vector spaces, and many of the same rules still apply (in a somewhat
more sophisticated form, because laws that were equations are now isomorphisms). A
little less familiar is the analogy between inner products and “homs”. Given two vectors
v and w in a Hilbert space you can take the inner product 〈v, w〉 and get a number; sim-
ilarly, given two (finite-dimensional) Hilbert spaces V and W you can form hom(V,W )
— that is, the set of all linear maps from V to W — and get a Hilbert space. The same
thing works in any “2-Hilbert space”.

The most basic example of a 2-Hilbert space would be Hilb, the category of finite-
dimensional Hilbert spaces, but also Reps(G), the category of finite-dimensional unitary
representations of a finite group. (Similar remarks hold for quantum groups at root of
unity.) Just as the inner product is linear in one argument and conjugate-linear in the
other, “hom” behaves nicely under direct sums in each argument, but each argument
behaves a bit differently under tensor product, so one can say it’s “linear” in one and
“conjugate-linear” in the other.

So anyway, just as in a 4d TQFT a 3-manifold M determines a Hilbert space Z(M),
and a 4-manifold N with boundary equal to M determines a vector Z(N) in Z(M),
something similar happens in an extended TQFT. (For experts, here I’m really talking
about “unitary” TQFTs and extended TQFTs — these are the physically sensible ones.)
Namely, a “skin of observation” or 2-manifold S determines a 2-Hilbert space Z(S), and
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an “observer” or 3-manifold M with boundary equal to S determines an object in Z(S).
Now, given two observers M and M ′ with the same “skin” — for example, the observer
“you” and the observer “everything in the world except you” — one gets two objects
Z(M) and Z(M ′) in Z(S), so one can form the “inner product” hom(Z(M), Z(M ′)),
which is a Hilbert space. This is your Hilbert space for describing states of everything in
the world except you. Note that we are using the term “observer” here in a somewhat
whimsical sense; in particular, every region of space counts as an observer in this game,
so we can flip things around and form the inner product hom(Z(M ′), Z(M)), which is
the Hilbert space that everything in the world except you can use to describe states of
you. These two Hilbert spaces, with roles reversed, are conjugate to each other (using
an obvious but perhaps slightly unfamiliar definition of “conjugate” Hilbert space), so
they’re pretty much the same.

Now this may at first seem weird, but if you think about it, it becomes a bit less so.
Of course, all of this stuff simply follows from the notion of a unitary extended TQFT,
and whether the actual laws of physics are given by such a structure is a separate issue.
But there is clearly a lot of relevance to the “holographic hypothesis” and Lee Smolin’s
more mathematical version of that hypothesis, as sketched in “Week 57”. The basic idea,
there as here, is that we are concentrating our attention on the things about a system
that can be measured at its boundary, and what we measure there can be either thought
of describing the state of the “inside” or dually the “outside”.

I think if I go out on a limb here, and rhapsodize a bit, the point might be clearer:
but don’t take this too seriously. Namely: all of the stuff you see, hear, and otherwise
observe about the world — which seems to be “information about the outside” — is also
stuff going on in your brain, hence “information about the inside”. What this stuff really
is, of course, is correlations between the inside and the outside. This is the reason for the
duality between observer and observed mentioned above. Note: we need not worry here
whether or not there’s “really” a lot more going on outside than what you observe. The
point is simply that everything you observe about what’s going on in the world outside is
correlated to stuff that the world could observe about what is going on in you. (Maybe.)

I should perhaps also add that the mathematicians are getting a bit behind on the job
of developing the “higher linear algebra” needed to support this sort of physics. So it’s a
bit hard to point to a good reference for all this 2-Hilbert space stuff. I’m slowly writing
a paper on it, but for now the best sources seem to be Kapranov and Voevodsky’s work
on 2-vector spaces:

2) M. Kapranov and V. Voevodsky, “2-Categories and Zamolodchikov tetrahedra equa-
tions”, in Proc. Symp. Pure Math. 56, Part 2 (1994), AMS, Providence, pp. 177–
260.

(see also “Week 4”) Dan Freed’s work on higher algebraic structures in gauge theory
(“Week 12”, “Week 48”), and David Yetter’s new paper:

3) David Yetter, “Categorical linear algebra: a setting for questions from physics and
low-dimensional topology”, Kansas U. preprint, available as http://math.ucr.

edu/home/baez/yetter.pdf and http://math.ucr.edu/home/baez/yetter.ps

This treats 2-vector spaces in a very beautiful way, but not 2-Hilbert spaces. Definitely
worth reading for anyone interested in this sort of thing!

38



WEEK 58 JULY 12, 1995

While visiting Porto, I managed somehow to miss talking to Eugenia Cesar de Sa,
which was really a pity because she was the one who developed the way of describing
4-manifolds that Broda (see “Week 9”, “Week 10”) used to construct a 4-dimensional
TQFT. This TQFT was later shown by Roberts (see “Week 14”) to be isomorphic to that
described by Crane and Yetter using a state sum model — i.e., by a discrete analog of
a path integral in which one chops spacetime up into 4-dimensional “hypertetrahedra”
(better known as 4-simplices!), labels their 2d and 3d faces by spins, and sums over
labellings. Her work is cited in the Broda reference in “Week 17”, but I managed luckily
to get a copy of her thesis:

4) Eugenia Cesar de Sa, Automorphisms of 3-manifolds and representations of 4-manifolds,
Ph.D. thesis, University of Warwick, 1977.

This should let me learn more about 4-dimensional topology, a fascinating subject on
which I’m woefully ignorant.

One reason why Broda’s work, and thus de Sa’s, is interesting to me, is that peo-
ple have suspected for a while that the Crane-Yetter-Broda theory, which is constructed
purely combinatorially, is isomorphic to BF theory with cosmological term. BF theory
(see “Week 36”) is a 4-dimensional field theory that can be described starting from a La-
grangian in the traditional manner of physics. The theory “with cosmological term” can
be regarded as a baby version of quantum gravity with nonzero cosmological constant,
a baby version having only one state, the “Chern-Simons state”. As I discussed in “Week
56”, it’s this Chern-Simons state that plays a key role in Smolin’s attempt to “exactly
solve” quantum gravity. Thus I suspect that BF theory is a good thing to understand
really well. Recently I showed in

5) John Baez, “4-dimensional BF theory with cosmological term as a topological
quantum field theory”, available as q-alg/9507006.

that the Crane-Yetter-Broda theory is indeed isomorphic as a TQFT to a certain BF
theory. With a bit more work, this should give us a state sum model for the BF theory
that’s a baby version of quantum gravity in 4 dimensions. This should come in handy for
studying Smolin’s hypothesis and its ramifications.

6) Timothy Porter, “TQFTs from homotopy n-types”, University of Wales, Bangor preprint,
available at http://www.bangor.ac.uk/~mas013/preprint.html

The Dijkgraaf-Witten model is an n-dimensional TQFT one gets from a finite group
G. It’s given by a really simple state sum model. Chop your manifold into simplices;
then the allowed “states” are just labellings of the edges with elements of G subject to
the constraint that the product around any triangle is 1. You can think of a labelling as
a kind of “connection” that tells you how to parallel transport along the edges, and the
constraint says the connection is flat. Expectation values of physical observables are then
computed as sums over these states. In fact, this TQFT is a baby version of BF theory
without cosmological constant. A toy model of a toy model of quantum gravity, in other
words: the classical solutions of BF theory without cosmological constant are just flat
connections on some G-bundle where G is a Lie group, while the Dijkgraaf-Witten model
does something similar for a finite group.
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In a previous paper (see “Week 54”) Porter studied the Dijkgraaf-Witten model and
a generalization of it due to Yetter that allows one to label faces with things too. . . one
can think of this generalization as allowing “curvature”, because the product of elements
of G around a triangle need no longer be 1; instead, it’s something determined by the
labelling of the face.

7) David Yetter, “TQFTs from homotopy 2-types”, Journal of Knot Theory and its Ram-
ifications 2 (1993), 113–123.

In his new paper Porter takes this idea to its logical conclusion and constructs analo-
gous theories that allow labellings of simplices in any dimension. Technically, the input
data is no longer just a finite group, but a finite simplicial group G.

What’s a simplicial group? It’s a wonderful thing; using the “internalization” trick
I’ve referred to in some previous Finds, all I need to say is that it’s a simplicial object in
the category of groups. A simplicial set is a bunch of sets, one for each natural number,
together with a bunch of “face” and “degeneracy” maps satisfying the same laws that
the face and degeneracy maps do for a simplex. (Students of singular or simplicial
homology will know what I’m talking about.) Similarly, a simplicial group is a bunch of
groups, together with a bunch of of “face” and “degeneracy” homomorphisms satisfying
the same laws.

A triangulated manifold gives a simplicial set in an obvious way, and from any simpli-
cial set one can obtain a simplicial groupoid (like a simplicial group, but with groupoids
instead!) called its “loop groupoid”. The sort of labellings Porter considers are homo-
morphisms from this simplicial groupoid to the given simplicial group G.

I will refrain from trying to say what all this has to do with homotopy n-types.
Nonetheless, from a pure mathematics point of view, that’s the most exciting aspect
of the whole business! Part of the puzzle about TQFTs is their relation to traditional al-
gebraic topology (and not-so-traditional algebraic topology like nonabelian cohomology,
n-stacks, etc.), and this work serves as a big clue about that relationship.
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Week 59

August 3, 1995

As you crack your eyes one morning your reason is assaulted by a strange
sight. Over your head, humming quietly, there floats a monitor, an ethereal
otherworldly screen on which is written a curious message. ”I am the Screen
of ultimate Truth. I am bulging with information and ask nothing better than
to be allowed to impart it.”

It would be nice if more math books started with something attention-grabbing like
this. In fact, it appears near the beginning of

1) Geoffrey M. Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers
and the Algebraic Design of Physics, Springer Verlag, 1994.

Dixon is convinced that the details of the Standard Model of particle interactions can
be understood better by taking certain mathematical structures very seriously. There are
very few algebras over the reals where we can divide by nonzero elements: if we demand
associativity and commutativity, just the reals themselves and the complex numbers. If
we drop the demand for commutativity, we also get a 4-dimensional algebra called the
quaternions, invented by Hamilton. If in addition we drop the demand for associativity,
and ask only that our algebra be “alternative”, we also get an 8-dimensional algebra
called the octonions, or Cayley numbers. (I’ll say what “alternative” means in “Week
61”) Clearly these are very special structures, and also clearly they play an important
role in physics. . . or do they?

Well, few people doubt that the real numbers are fundamental to physics (though
some advocates of the discrete might prefer the integers), and with emergence of quan-
tum theory, if not sooner, the basic role of the complex numbers also became clear.
Hamilton discovered the quaternions in the 1800s, and used them to formulate a beau-
tiful theory of rotations in 3-dimensional space. They fell out of favor somewhat when
the vectors of Gibbs proved simpler for many purposes, but their deeper importance be-
came clear when people started studying spin: indeed, the Pauli matrices so important
in physics are closely related to the quaternions, and it is the group of unit quaternions,
SU(2), rather than the group of rotations in 3d space, SO(3), which turns out to be
the symmetry group whose different representations correspond to particles of different
spin. But what about the octonions?

Well, there are not too many places in physics yet where the octonions reach out and
grab one with the force the reals, complexes, and quaternions do. But they are certainly
out there, they have a certain beauty to them, and they are the natural stopping-point of
a certain finite sequence of structures, so it is natural for people of a certain temperament
to believe that they are there for a reason. Dixon makes a passionate case for this in the
beginning of his book.

Suppose you were confronted with the Screen of Truth. What would you ask it?
Dixon, being a physicist, naturally fantasizes asking it why the universe is the way it is!
What kind of answer could this possibly have? Perhaps there is only one consistent way
for things to be, and mathematics, with its unique and beautiful structures that are pure
expressions of logical necessity, is trying to tell us something about this?
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On the one hand this seems outrageous. . . especially to the hard-nosed pragmatist
or empiricist in us. It seems old-fashioned, naive, and too good to be true. On the
other hand, the universe is outrageous! It’s outrageous that it exists in the first place,
and doubly outrageous that it has the particular physical laws it does and no others. It
has only been through the old-fashioned, naive belief that we can understand it using
mathematics that we discovered what we have of its physical laws. So maybe eventually
we will see that the basic structures of mathematics determine, in some mysterious sense,
all the basic laws of physics. Or maybe we won’t. In either case, there is a long way yet
to go. As Dixon’s Screen of Truth comments, before it departs:

“Do you believe that were I to explain as much of what I know as you” “could
comprehend that you would recognize it, that you would say, oh” “yes, this is
but an extension of what we have already done, and though” “the mathematics
is broader, the principles deeper, I am not surprised?” “Do you think you have
asked even a fraction of the questions you need” “to ask?”

Anyway, it is at least worth considering all the beautiful mathematical structures one
runs into for their potential importance. For example, the octonions.

In order to write this week’s Finds, I needed to learn a little about the octonions. I
wanted some good descriptions of the octonions, that hopefully would “explain” them
or at least make them easy to remember. So I asked for help on sci.physics.research,
and I got some help from Greg Kuperberg, Ezra Getzler, Matthew Wiener, and Alexander
Vlasov. After a while Geoffrey Dixon got wind of this and referred me to his work! I’ll
probably talk to him later this summer when I go back to Cambridge Massachusetts, and
hopefully I’ll learn more about octonions and the like.

But for now let me just give a quick beginner’s introduction to the octonions. A lot of
this appears in

2) William Fulton and Joe Harris, Representation Theory — a First Course, Springer
Verlag, Berlin, 1991.

I should add that this book is a very good place to learn about Lie groups, Lie algebras,
and their representations. . . I wish I had taken a course based on this book when I was
in grad school!

Let’s start with the real numbers. Then the complex number

a+ bi

can be thought of as a pair
(a, b)

of real numbers. Addition is done component-wise, and multiplication goes like this:

(a, b)(c, d) = (ac− db, da+ bc)

We can also define the conjugate of a complex number by

(a, b)∗ = (a,−b).
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Now that we have the complex numbers, we can define the quaternions in a similar way.
A quaternion can be thought of as a pair

(a, b)

of complex numbers. Addition is component-wise and multiplication goes like this

(a, b)(c, d) = (ac− d∗b, da+ bc∗)

This is just like how we defined multiplication of complex numbers, but with a couple
of conjugates (∗’s) thrown in. To emphasize how similar the two multiplications are,
we could have included the conjugates in the first formula, since the conjugate of a real
number is just itself.

We can also define the conjugate of a quaternion by

(a, b)∗ = (a∗,−b).

The game continues! Now we can define an octonion to be a pair of quaternions; as
before, we add these component-wise and multiply them as follows:

(a, b)(c, d) = (ac− d∗b, da+ bc∗).

One can also define the conjugate of an octonion by

(a, b)∗ = (a∗,−b).

Why do the real numbers, complex numbers, quaternions and octonions have multiplica-
tive inverses? I take it as obvious for the real numbers. For the complex numbers, you
can check that

(a, b)∗(a, b) = (a, b)(a, b)∗ = K(1, 0)

where K is a real number called the “norm squared” of (a, b). The multiplicative identity
for the complex numbers is (1, 0). This means that the multiplicative inverse of (a, b) is
(a, b)∗/K. You can check that the same holds for the quaternions and octonions!

This game of getting new algebras from old is called the “Cayley-Dickson” construc-
tion. Of course, the fun we’ve had so far should make you want to keep playing this game
and develop a 16-dimensional algebra, the “hexadecanions,” consisting of pairs of octo-
nions equipped with the same sort of multiplication law. What do you get? Why aren’t
there multiplicative inverses anymore? I haven’t checked, because this is my summer
vacation! I am learning about octonions just for fun, since I just finished writing some
rather technical papers, and my idea of fun does not presently include multiplying two
hexadecanions together to see why the norm-squared law (a, b)(a, b)∗ = (a, b)∗(a, b) =
K(1, 0) breaks down. But I’m sure someone out there will enjoy doing this. . . and I’m
sure someone else out there has already done it! So they should let me know what
happens. There is something out there called “Pfister forms”, which I think might be
related.

[Toby Bartels did some nice work on hexadecanions in response to the above chal-
lenge, which appears at the end of this article.]

Now if we unravel the above definition of quaternions, by writing the quaternion
(a+ bi, c+ di) as a+ bi+ cj + dk, we see that the multiplication law is

i2 = j2 = k2 = −1,
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and
ij = −ji = k, jk = −kj = i, ki = −ik = j.

For more about the inner meaning of these rules, see “Week 5”. Similarly, we can
unravel the above definition of octonions by writing the octonion (a + bi + cj + dk, e +
fi+ gj + hk) as

a+ be1 + ce2 + de3 + ee4 + fe5 + ge6 + he7.

Note: since mathematicians are very impersonal, they usually call these seven dwarves
e1, . . . , e7 instead of Sleepy, Grumpy, etc. as in the Disney movie. Any one of these
7 guys times himself is −1. Also, any two distinct ones anticommute; for example,
e3e7 = −e7e3. There is a nice way to remember how to multiply them using the “Fano
plane”. This is a projective plane with 7 points, where by a “projective plane” I mean
that any two points determine an abstract sort of “line”, which in this case consists of
just 3 points, and any two lines intersect in a point. It looks like this:

The “lines” are the 3 edges of the big triangle, the 3 lines going through a vertex, the
center and the midpoint of the opposite edge, and the circle including e1, e2, and e3. All
the “lines” are cyclically ordered, and that tells you how to multiply the seven dwarves.
For example, the line that’s actually a circle goes clockwise, so e1e2 = e4, e2e4 = e1,
and e4e1 = e2. The lines that are edges of the big triangle also point clockwise, so for
example e5e2 = e3, and cyclic permutations thereof, and e6e3 = e4. The lines that go
through the center point from the vertex to the midpoint of the opposite edge, so for
example e3e7 = e1. I hope that made sense; you can work it out yourself, of course.

My convention for numbering the seven dwarves in the picture above is completely
arbitrary, so don’t bother remembering it — make up your own if you prefer! The
convention I chose looks sort of weird at first, but it has a couple of endearing features:

• Index cycling: if eiej = ek, then ei+1ej+1 = ek+1.

• Index doubling: if eiej = ek, then e2ie2j = e2k.
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Here we add and multiply mod 7. Index doubling corresponds to rotating the Fano
plane.

So those are the octonions in a nutshell. I should say a bit about how they relate to
triality for SO(8), the exceptional Lie group G2, the group SU(3) which is so important
in the study of the strong force, and to lattices like E8, Λ16 and the Leech lattice. But I
will postpone that; for now you can consult Fulton and Harris, and also various papers
by Dixon:

3) Geoffrey Dixon, “Octonion X-product orbits”, preprint available as hep-th/9410202.

“Octonion X-product and E8 lattices”, preprint available as hep-th/9411063.

“Octonions: E8 lattice to Λ16”, preprint available as hep-th/9501007.

“Octonions: invariant representation of the Leech lattice”, preprint available as
hep-th/9504040.

“Octonions: invariant Leech lattice exposed”, preprint available as hep-th/9506080.

I am not presently in a position to assess these papers or Dixon’s work relating divi-
sion algebras and the Standard Model, but hopefully sometime I will be able to say a bit
more.

Let me wrap up by saying a bit about the Leech lattice. As described in my review
of Conway and Sloane’s book (“Week 20”, there is a wonderful branch of mathematics
that studies the densest ways of packing spheres in n dimensions. Most of the results so
far concern lattice packings, packings in which the centers of the spheres form a subset
of Rn closed under addition and scalar multiplication by integers. When n = 8, the
densest known packing is given by the so-called E8 lattice. In “Week 20” I described how
to get this lattice using the quaternions and the icosahedron. Briefly, it goes as follows.
The group of rotational symmetries of the icosahedron (not counting reflections) is a
subgroup of the rotation group SO(3) containing 60 elements. As mentioned above,
SO(3) has as a double cover the group SU(2) of unit quaternions. So there is a 120-
element subgroup of SU(2) consisting of elements that map to elements of SO(3) that are
symmetries of the icosahedron. Now form all integer linear combinations of these 120
special elements of SU(2). We get a subring of the quaternions known as the ”icosians’ ’.

We can think of icosians as special quaternions, but we can also think of them as
special vectors in R8, as follows. Every icosian is of the form

(a+
√

5b) + (c+
√

5d)i+ (e+
√

5f)j + (g +
√

5h)k

with a, b, c, d, e, f, g, h rational — but not all rational values of a, . . . , h give icosians. The
set of all vectors x = (a, b, c, d, e, f, g, h) in R8 that correspond to icosians in this way is
the E8 lattice!

The Leech lattice is the densest known packing in 24 dimensions. It has all sorts of
remarkable properties. Here is an easy way to get ones hands on it. First consider triples
of icosians (x, y, z). Let L be the set of such triples with

x = y = z mod h

and
x+ y + z = 0 mod h∗
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where h is the quaternion (−
√

5 + i + j + k)/2. Since we can think of an icosian as a
vector in R8, we can think of L as a subset of R24. It is a lattice, and in fact, it’s the
Leech lattice! I have a bit more to say about the Leech lattice in “Week 20”, but the real
place to go for information on this beast is Conway and Sloane’s book. It turns out to be
related to all sorts of other ”exceptional’ ’ algebraic structures. People have found uses
for many of these in string theory, so if string theory is right, maybe they are important in
physics. Personally, I want to understand them more deeply as pure mathematics before
worrying too much about their applications to physics.

Here is what Toby Bartels wrote:

From: Toby Bartels Subject: Re: why hexadecanions have no inverses To: John
Baez Date: Sun, 20 Aug 1995

I spent a couple days thinking about why hexadecanions have no inverses, and
the first thing I want to say about it is that they do. However, these inverses are
of limited applicability, because the hexadecanions are not a division algebra. A
division algebra allows you to conclude, given xy = 0, that x or y is 0. If your
algebra has inverses, you might try to multiply this equation by the inverse of
x or y (whichever one isn’t 0) to prove the other is 0, but this only works if the
algebra is associative. Since the octonions and hexadecanions aren’t associative,
there’s no reason (yet) to think either of these is a division algebra. It turns out
that the octonions are a division algebra, despite not being associative, but the
hexadecanions aren’t.

Why aren’t the hexadecanions a division algebra? Because the real numbers
aren’t of characteristic 2. Allow me to explain.

I will prove below that the 2n onions are a division algebra only if the 2n−1

onions are associative. So, the question becomes: why aren’t the octonions as-
sociative? Well, I’ve found a proof that 2n onions are associative only if 2n−1

onions are commutative. So, why aren’t the quaternions commutative? Again,
I have a proof that 2n onions are commutative only if 2n−1 onions equal their
own conjugates. So, why don’t the complex numbers equal their own conju-
gates? I have a proof that 2n onions do equal their own conjugates, but it works
only if the 2n−1 onions are of characteristic 2. The real numbers are not of
characteristic 2, so the complex numbers don’t equal their own conjugates, so
the quaternions aren’t commutative, so the octonions aren’t associative, so the
hexadecanions aren’t a division algebra.

I require a few identities about conjugates that hold for all 2n onions: (x∗)∗ = x,
(x + y)∗ = x∗ + y∗, and (xy)∗ = y∗x∗. (If these identities are reminiscent of
identities for transposes of matrices, it is no coincidence.) I will prove these by
induction. That is, if an identity holds for 2n−1 onions, I show it holds for 2n

onions. Since they hold trivially for the reals (n = 0), they hold for all.

((a, b)∗)∗ = (a∗,−b)∗ = ((a∗)∗,−(−b)).
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By the induction hypothesis and the nature of addition (an Abelian group),

((a∗)∗,−(−b)) = (a, b).

((a, b) + (c, d))∗ = (a+ c, b+ d)∗ = ((a+ c)∗,−(b+ d)).

By the induction hypothesis and addition again,

((a+c)∗,−(b+d)) = (a∗+c∗,−b+−d) = (a∗,−b)+(c∗,−d) = (a, b)∗+(c, d)∗.

The next proof needs the distribution of multiplication over addition.

(a, b)((c, d)+(e, f)) = (a, b)(c+e, d+f) = (a(c+e)−(d+f)∗b, (d+f)a+b(c+e)∗).

By the induction hypothesis and the identity immediately above,

(a(c+ e)− (d+ f)∗b, (d+ f)a+ b(c+ e)∗)

= (ac+ ae− d∗b− f∗b, da+ fa+ bc∗ + be∗)

= (ac− d∗b, da+ bc∗) + (ae− f∗b, fa+ be∗)

= (a, b)(c, d) + (a, b)(e, f).

Also,
((a, b) + (c, d))(e, f)

= (a+ c, b+ d)(e, f)

= ((a+ c)e− f∗(b+ d), f(a+ c) + (b+ d)e∗).

By the induction hypothesis again,

((a+ c)e− f∗(b+ d), f(a+ c) + (b+ d)e∗)

= (ae+ ce− f∗b− f∗d, fa+ fc+ be∗ + de∗)

= (ae− f∗b, fa+ be∗) + (ce− f∗d, fc+ de∗)

= (a, b)(e, f) + (c, d)(e, f).

((a, b)(c, d))∗ = (ac− d∗b, da+ bc∗)∗ = ((ac− d∗b)∗,−(da+ bc∗)).

Using the induction hypothesis and each of the above identities,

((ac− d∗b)∗,−(da+ bc∗))

= (c∗a∗ − (−b)∗(−d),−da+ (−b)c∗)
= (c∗,−d)(a∗,−b)

= (c, d)∗(a, b)∗.

In light of the above identities, if I ever come across, say, (xy∗ + z)∗, I’ll simply
write yx∗ + z∗ without a moment’s hesitation.

Since inductive proofs have been so useful, I’ll use one to prove that 2n onions
always have inverses. First, I’ll extend the method in John’s article, beginning
with an inductive proof that xx∗ = x∗x is real.

(a, b)(a, b)∗ = (a, b)(a∗,−b) = (aa∗ + b∗b, 0),
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and
(a, b)∗(a, b) = (a∗,−b)(a, b) = (a∗a+ b∗b, 0).

The inductive hypothesis states that both a∗a = aa∗ and b∗b are real, so (a, b)(a, b)∗ =
(a, b)∗(a, b) is real. Since the sum of a positive real and a nonnegative real is
positive, I can take this as a proof by induction that xx∗ = x∗x is not only real,
but is also positive unless x = 0 (which will be important). All you have to
do now is check that these things are true of the 20 onions, and they are, quite
trivially (since the 20 onions are the reals).

Since the 2n onions are always a vector space over the reals (as mentioned in
John’s article),

x(x∗/(xx∗)) = (xx∗)/(xx∗) = 1.

Since one can always divide by the real xx∗, the inverse of x is x∗/(xx∗) in any
2n onion algebra.

To continue with the streak of inductive proofs, I will now try to prove that the
2n onions are always a division algebra. (I will fail.) Assume

0 = (0, 0) = (a, b)(c, d) = (ac− d∗b, da+ bc∗).

This gives the system of equations

ac− d∗b = 0 = da+ bc∗.

Multiplying,

(ac)c∗ − (d∗b)c∗ = 0c∗ = 0 = d∗0 = d∗(da) + d∗(bc∗).

If 2n−1 onions are associative, I can add the equations to get

a(cc∗) + (d∗d)a = 0.

Since cc∗ and d∗d are real, they commute with a, and the division algebra
nature of 2n−1 onions allows me to conclude that cc∗ + d∗d = 0 (which implies
c = d = 0 in light of positive definiteness) or that a = 0 (from which the
original equation gives b = 0). Thus, the octonions are a division algebra
(since the quaternions are associative), but the hexadecanions aren’t (since the
octonions aren’t associative).

(If you’re reading carefully, you realize that I haven’t really proved that the
hexadecanions aren’t a division algebra. I’ve failed to prove that they are, but
that’s not the same thing. When I first wrote this, I wasn’t reading carefully; I
will return to plug this hole later.)

Thus, the 2n onions are a division algebra iff the 2n−1 onions are a division
algebra and are associative. So, let’s try to prove associativity of 2n onions by
induction.

((a, b)(c, d))(e, f)

= (ac− d∗b, da+ bc∗)(e, f)

= ((ac− d∗b)e− f∗(da+ bc∗), f(ac− d∗b) + (da+ bc∗)e∗)

= ((ac)e− (d∗b)e− f∗(da)− f∗(bc∗), f(ac)− f(d∗b) + (da)e∗ + (bc∗)e∗).
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On the other hand,

(a, b)((c, d)(e, f))

= (a, b)(ce− f∗d, fc+ de∗)

= (a(ce− f∗d)− (fc+ de∗)∗b, (fc+ de∗)a+ b(ce− f∗d)∗)

= (a(ce)− a(f∗d)− (c∗f∗)b− (ed∗)b, (fc)a+ (de∗)a+ b(e∗c∗)− b(d∗f)).

Assuming the induction hypothesis that 2n−1 onions are associative, these are
equal in general iff 2n−1 onions also are commutative.

Thus, 2n onions are associative iff 2n−1 onions are associative and are commu-
tative. So, let’s try to prove commutativity of 2n onions by induction.

(a, b)(c, d) = (ac− d∗b, da+ bc∗).

On the other hand,

(c, d)(a, b) = (ca− b∗d, bc+ da∗).

Assuming the induction hypothesis that 2n−1 onions are commutative, these are
equal in general iff 2n−1 onions also equal their own conjugates.

Thus, 2n onions are commutative iff 2n−1 onions are commutative and equal
their own conjugates. So, let’s try to prove conjugate equality of 2n onions by
induction.

(a, b) = (a, b).

On the other hand,
(a, b)∗ = (a∗,−b).

Assuming the induction hypothesis that 2n−1 onions equal their own conjugates,
these are equal in general iff 2n−1 onions also have characteristic 2. (b = −b
means 0 = b + b = 1b + 1b = (1 + 1)b = 2b; this is true in general iff 0 = 2,
which is what characteristic 2 means.)

Thus, 2n onions equal their own conjugates iff 2n−1 onions equal their own
conjugates and have characteristic 2. Since the reals don’t have characteristic 2,
there’s no point in trying to prove anything about that by induction. However,
it’s a general result that any algebra has characteristic 2 if it has a superalgebra
of characteristic 2. Since the 2n onions are all superalgebras of the reals (which
means the reals are always isomorphic to a subset of the 2n onions), none of the
2n onions can have characteristic 2 if the reals don’t.

In summary, the definition of the reals as the complete ordered field, along with
an initial definition that x∗ = x in the reals, allows trivial proofs that: they
form a division algebra, they are associative, they are commutative, and they
equal their own conjugates, but they don’t have characteristic 2. (All of these,
in fact, are true of any ordered field with this definition of conjugate, complete
or not.) From this and the above considerations, the complex numbers form a
division algebra, are associative, and are commutative, but they neither equal
their own conjugates nor have characteristic 2. From this, the quaternions form
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a division algebra and are associative, but they neither are commutative, equal
their own conjugates, nor have characteristic 2. From this, the octonions form a
division algebra but they neither associative, are commutative, equal their own
conjugates, nor have characteristic 2. Finally, the hexadecanions neither form a
division algebra, are associative, are commutative, equal their own conjugates,
nor have characteristic 2.

At this point, I must return to the logical hole I mentioned earlier. But I want
to work with a different algebraic concept than a division algebra; instead I will
use (inspired by Doug Merrit’s post to sci.physics.research) what I guess is
called ‘alternativity’, which says x(xy) = (xx)y. I don’t like putting alternativity
into the pattern, since associativity implies alternativity. All the other properties
(commutativity, conjugate equality, characteristic) are logically independent in
general. I’d like to prove that every associative 2n onion algebra is alternative,
just as I proved every commutative one was associative, without its having been
obvious to begin with. Well, I will be disappointed even more badly later on.

Taking the conjugate of x(xy) = (xx)y,

(y∗x∗)x∗ = y∗(x∗x∗),

so left alternativity implies right alternativity, for 2n onions.

I require an additional general identity of 2n onions. Earlier, I proved by induc-
tion that xx∗ was real, but now I need the reality of x + x∗. Like everything
else, this is proved by induction.

(a, b) + (a, b)∗ = (a, b) + (a∗,−b) = (a+ a∗, 0).

Thus, if a+ a∗ is real, (a, b) + (a, b)∗ is real. Since x+ x∗ is real when x is real,
x+ x∗ is real when x is any 2n onion.

Now suppose we’re working in an alternative 2n onion algebra.

x(xy) + x∗(xy) = (x+ x∗)(xy).

Since x+ x∗ is real, it associates, so

x(xy) + x∗(xy) = ((x+ x∗)x)y = (xx)y + (x∗x)y.

Since x(xy) = (xx)y,
x∗(xy) = (x∗x)y,

which will be needed.

Let’s attempt to prove by induction that 2n onions are always alternative.

(a, b)((a, b)(c, d))

= (a, b)(ac− d∗b, da+ bc∗)

= (a(ac− d∗b)− (da+ bc∗)∗b, (da+ bc∗)a+ b(ac− d∗b)∗)
= (a(ac)− a(d∗b)− (a∗d∗)b− (cb∗)b, (da)a+ (bc∗)a+ b(c∗a∗)− b(b∗d)).
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Meanwhile,

((a, b)(a, b))(c, d)

= (aa− b∗b, ba+ ba∗)(c, d)

= ((aa)c− (b∗b)c− d∗(ba)− d∗(ba∗), d(aa)− d(b∗b) + (ba)c∗ + (ba∗)c∗).

These are indeed equal in general iff 2n−1 onions are associative.

The last sentence may not be immediately obvious. The induction hypothesis
and its corollaries leave us with x(yz)+(x∗y)z = y(zx)+y(zx∗) as a necessary
and sufficient condition. It may not be clear that associativity implies this, much
less vice versa. However, the reality of x+ x∗ once more enters the picture.

y(zx) + y(zx∗) = y(z(x+ x∗)) = (x+ x∗)(yz) = x(yz) + x∗(yz).

Thus, the condition becomes

x(yz) + (x∗y)z = x(yz) + x∗(yz),

which is equivalent, in the general case, to associativity.

To sum up the findings so far: For any n, the 2n onions form a vector space over
the reals. x + x∗ and xx∗ are real if x is any 2n onion; additionally, xx∗ =
x∗x. Every 2n onion has an inverse, which is a real multiple of its conjugate.
Conjugation is analogous to matrix transposition in that

(x∗)∗ = x, (x+ y)∗ = x∗ + y∗, and(xy)∗ = y∗x∗.

Multiplication distributes over addition every time. For no n do all 2n onions
equal their own negatives. 2n+1 onions equal their own conjugates iff 2n onions
equal their own conjugates and their own negatives. all 2n+1 onions commute
iff all 2n onions commute and equal their own conjugates. 2n+1 onions are
associative iff 2n onions are associative and commutative. 2n+1 onions are
alternative iff 2n onions are alternative and associative. The 2n onions form a
division algebra if they are alternative.

I will be satisfied if I can prove the converse of the last statement. In light of
the results about alternativity, my original attempt to prove that division of 2n

onions requires associativity of 2n−1 onions looks even more convincing, (since
alternativity of 2n−1 onions can be included in the induction hypothesis), but
it’s still not valid. I still haven’t shown that, if 2n−1 onions aren’t alternative,
there must be non0 2n onions x and y such that xy = 0. There doesn’t seem
to be any reason why there shouldn’t be, but there just might happen not to be
any. So, despite the inelegance of it all, in order to prove that the hexadecanions
aren’t a division algebra, I’m forced to exhibit non-0 x and y such that xy = 0.

Just playing around, I found

(e1, e4)(−1, e5)

= (e1(−1)− (e5) ∗ e4, e5e1 + e4(−1)∗)
= (−e1 + e5e4, e5e1 − e4).
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Since e5e4 = (0, i)(0, 1) = (i, 0) = e1 and e5e1 = (0, i)(i, 0) = (0, i ∗ i) =
(0, 1) = e4,

(e1, e4)(−1, e5) = (0, 0) = 0.

The 2n onions can’t be a division algebra if the 2n−1 onions aren’t. If xy = 0
in the 2n−1 onions, (x, 0)(y, 0) = (xy, 0) = (0, 0) = 0. Thus, the octonions and
below are the only 2n onions to be division algebras. Still, I wish I had a proof
of this that didn’t require the ugly brute force use of a specific counterexample.
(This is the interested reader’s cue . . . )

– Toby

By the way, in a post to sci.physics.research on November 2, 1999, Ralph Hartley
pointed out that even if we start with a field of characteristic 2, repeatedly applying the
Cayley-Dickson construction will not lead to an infinite sequence of division algebras,
because it’s not true in this case that if x is nonzero, xx∗ is nonzero. The problem is that
a field of characteristic 2 can’t be an ordered field.
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Week 60

August 8, 1995

The end of a sabbatical is a somewhat sad affair. . . so many plans one had, and so
few accomplished! As I pack my bags to return from Cambridge England to Cambridge
Massachusetts, and then wing my way back to Riverside, I find I have quite a stack of
preprints that I meant to include in This Week’s Finds, but haven’t gotten around to yet.

1) N. P. Landsman, “Rieffel induction as generalized quantum Marsden-Weinstein re-
duction”, Journal of Geometry and Physics 15 (1995), 285–319.

Marsden-Weinstein reduction, also called symplectic reduction, is the modern way to
deal with constraints in classical mechanics problems. It’s a two-step procedure where
first one looks at the subspace of your phase space on which the constraints vanish, and
then a quotient of this by a certain equivalence relation. For example, if you have a
particle in a plane, its phase space is R4, with coordinates (x, y, px, py) representing the
x and y components of the position and the x and y components of the momentum. If we
have a constraint x = 0, Marsden-Weinstein reduction tells us first to form the subspace
of our phase space on which x = 0, and then quotient by the equivalence relation where
two points are equivalent if they have the same value of px. We get down to R2, with
coordinates (y, py). But Marsden- Weinstein reduction works in great generality and has
become a basic part of the toolkit of mathematical physics.

What’s the quantum analog of Marsden-Weinstein reduction? That’s what this paper
is about. Quantum mechanics in the presence of constraints is a tricky and important
business, and there are lots of theories about how to do it. Gauge theories all have
constraints, and so does general relativity. . . and in quantizing general relativity, the
presence of constraints is what gives rise to the “problem of time”. (See “Week 43” for
more on this.) What attracted my attention to this paper is a two-stage procedure for
dealing with contraints, quite analogous to Marsden-Weinstein reduction. This should
shed some interesting light on the problem of time.

2) T. Ohtsuki, “Finite type invariants of integral homology 3-spheres”, preprint, 1994.

L. Rozansky, “The trivial connection contribution to Witten’s invariant and finite
type invariants of rational homology spheres”, preprint available as q-alg/9505015.

Stavros Garoufalidis, “On finite type 3-manifold invariants I”, MIT preprint, 1995.

Stavros Garoufalidis and Jerome Levine, “On finite type 3-manifold invariants II”,
MIT preprint, June 1995. (Garoufalidis is at stavros@math.mit.edu, and Levine
is at levine@max.math.brandeis.edu.)

Ruth J. Lawrence, “Asymptotic expansions of Witten-Reshetikhin-Turaev invariants
for some simple 3-manifolds”, to appear in Jour. Math. Physics.

Chern-Simons theory gives invariant of links in R3, which are functions of Planck’s
constant ~, and if one expands them as power series in h, the coefficients are link in-
variants with special properties, which one summarizes by calling them “Vassiliev invari-
ants” or “invariants of finite type”. (See “Week 3” for more.) But the partition function
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of Chern-Simons theory on a compact oriented 3-manifold is also interesting; it’s an in-
variant of the 3-manifold defined for certain values of ~. (Often instead one thinks of it
instead as a function of a quantity q, the limit q → 1 corresponding to the limit ~→ 0.)

Recently people have studied the partition function of special 3-manifolds called ho-
mology spheres, which have the same homology as S3. (People have looked at both
integral and rational homology spheres.) After a bit of subtle fiddling, one can extract
from the partition function of a homology sphere a power series in

~′ = q − 1,

and the coefficients of the powers of ~′ have been conjectured by Rozansky to have
nice properties which one may summarize by calling them “finite type” invariants, in
analogy to the link invariant case. (Namely, that they transform in nice ways under Dehn
surgery.) For example, the coefficient of ~′ itself is 6 times the Casson invariant of the
(integral) homology 3-sphere. So there appears to be a budding branch of “perturbative
3-manifold invariant theory”. I just wish I understood better what’s really going on
behind all this!

3) Thomas Friedrich, “Neue Invarianten der 4-dimensionalen Mannigfaltigkeiten”,
Berlin preprint.

This is a nice introduction to the new Seiberg-Witten approach to Donaldson theory,
which does not assume you already know the old stuff by heart. Very pretty mathematics!

4) Andre Joyal, Ross Street, and Dominic Verity, “Traced monoidal categories”, to
appear in Math. Proc. Camb. Phil. Soc..

This is an abstract characterization of monoidal categories (categories with tensor
products) which have a good notion of the “trace” of a morphism. Many abstract treat-
ments of traces assume that your category is “rigid symmetric” or “balanced”, meaning
that your objects have duals and you can switch around objects in order to define the
trace of a morphism f : V → V in a manner analogous to how one usually does it in
linear algebra, as a certain composite:

I → V ⊗ V ∗ f⊗1−−−→ V ⊗ V ∗ → I

where I is the “unit object” for the tensor product (e.g. the complex numbers, when
we’re working in the category of vector spaces.) But one does not really need all this
extra structure if all one wants is a good notion of “trace”. This paper isolates the bare
minimum. As one might expect if one knows the relation between knot theory and
category theory, there are lots of nice pictures of tangles in this paper!

5) Michael Reisenberger, “Worldsheet formulations of gauge theories and gravity”,
University of Utrecht preprint, 1994, available as gr-qc/9412035.

The loop representation of a gauge theory describes states as linear combinations of
loops in space, or more generally, “spin networks”. What’s the spacetime picture of which
this is a spacelike slice? The obvious thing that comes to mind is a two-dimensional
surface of some sort. I’ve advocated this point of view myself in an attempt to relate the
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loop representation of gravity to string theory (see “Week 18”). Here Reisenberger makes
some progress in making this precise for some simpler theories analogous to gravity —
for example, BF theory.

And now for some things I did manage to finish up on my sabbatical:

6) John Baez and Stephen Sawin, “Functional integration on spaces of connections”,
available as q-alg/9507023.

As I described in “Week 55”, it’s now possible to set up a rigorous version of the
loop representation without assuming (as had earlier been required) that ones manifold
is real-analytic and the loops are all analytic. This means that one can do things in a
manner invariant under all diffeomorphisms, not just analytic ones. To achieve this, one
needs to ponder rather carefully the complicated ways smooth paths, even embedded
ones, can intersect (for example, they can intersect in a Cantor set).

7) John Baez, Javier P. Muniain and Dardo Piriz, “Quantum gravity hamiltonian for
manifolds with boundary”, available as gr-qc/9501016.

When space is a compact manifold with boundary, there is no Hamiltonian in quan-
tum gravity, just a Hamiltonian constraint (see “Week 43”). This makes it tricky to
understand time evolution in the theory — the “problem of time”. But with a boundary,
there is a Hamiltonian, given by a surface integral over the boundary. (The reason is
that, at least when the equations of motion hold, the Hamiltonian is a total divergence,
so you can use Gauss’ theorem to express it as an integral over the boundary, which of
course is zero when there is no boundary.)

Rovelli and Smolin (see “Week 42”) worked out a loop representation of quantum
gravity — in a heuristic sort of way which various slower sorts like myself have been
struggling to make rigorous in the subsequent years — and a key step in this was ex-
pressing the Hamiltonian constraint in terms of loops. In this paper we do the same sort
of thing for the Hamiltonian, when there is a boundary. This requires considering not
only loops but also paths that start and end at the boundary.

Remarkably, the Hamiltonian acts on paths that start and end at the boundary in
a manner very similar to the Hamiltonian constraint for quantum gravity coupled to
massless chiral spinors (e.g. neutrinos, if neutrinos are really massless and have a “hand-
edness” as they appear to). This suggests that on a manifold with boundary, the degrees
of freedom “living on the boundary” are described by a chiral spinor field. Steve Car-
lip has already shown something very similar for quantum gravity in 2+1 dimensional
spacetime, a more tractable simplified model — see “Week 41”. Moreover, he used this
to explain why the entropy of a black hole is proportional to its area (or length in 2+1 di-
mensions). The idea is that the entropy is really accounted for by the degrees of freedom
of the event horizon itself. It would be nice to do something similar in 3+1-dimensional
spacetime.
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Week 61

August 24, 1995

I’d like to return to the theme of octonions, which I began to explore in “Week 59”.
The recipe I described there, which starts with the real numbers, and then builds up the
complex numbers, quaternions, octonions, hexadecanions etc. by a recursive process, is
called the “Cayley-Dickson process”. Now let me describe a way to obtain the octonions
using a special property of rotations in 8-dimensional space, called “triality”. I’ll start
with a gentle introduction to the theory of rotation groups; for this, a nice reference is
the book by Fulton and Harris that I mentioned in “Week 59”. Then I will turn up the
heat a bit and describe triality and how to use it to get the octonions. I learned some of
this stuff from:

1) Alex J. Feingold, Igor B. Frenkel, and John F. X. Rees, Spinor construction of vertex
operator algebras, triality, and E

(1)
8 , Contemp. Math. 121, AMS, Providence Rhode

Island.

I should emphasize, however, that what I will talk about is older, while the above
book starts with triality and then does far more sophisticated things. An older reference
for what I’ll talk about is

2) Claude Chevalley, The algebraic theory of spinors, Columbia U. Press, New York,
1954.

I think the concept of triality goes back to Cartan, but I don’t really know the history.
By the way, I’d really appreciate any corrections to what I say below.

Okay, so, how should we start? Well, probably we should start with the group of
rotations in n-dimensional Euclidean space. This group is called SO(n). It is not simply
connected if n > 1, meaning that there are loops in it which cannot be continuously
shrunk to a point. This is easy to see for SO(2), which is just the circle — or, if you
prefer, the unit complex numbers. It’s a bit trickier to see for SO(3), but it is easy enough
to demonstrate — either mathematically or via the famous “belt trick” — that the loop
consisting of a 360 degree rotation around an axis cannot be continuously shrunk to a
point, while the loop consisting of a 720 degree rotation around an axis can.

This “doubly connected” property of SO(3) implies that it has an interesting “double
cover”, a group G in which all loops can be contracted to a point, together with a two-
to-one function F : G → SO(3) with F (gh) = F (g)F (h). (This sort of function, the
nice kind of function between groups, is called a “homomorphism”.) And this double
cover G is just SU(2), the group of 2 × 2 complex matrices which are unitary and have
determinant 1. Better yet — if we are warming up for the octonions — we can think of
SU(2) as the unit quaternions!

Now elements of SO(n) are just n × n real matrices which are orthogonal and have
determinant 1, so given an element g of SO(n) and a vector v in Rn, we can do matrix
multiplication to get a new vector gv in Rn, which of course is just the result of rotating
v by the rotation g. This makes Rn into a “representation” of SO(n), meaning simply
that

(gh)v = g(hv)
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and
1v = v.

We call Rn the “vector” representation of the rotation group SO(n), for obvious reasons.
Now SO(n) has lots of other representations, too. If we consider SO(3), for example,

there is in addition to the vector representation (which is 3-dimensional) also the trivial
1-dimensional representation (where the group element g acts on a complex number v
by leaving it alone!) and also interesting representations of dimensions 5, 7, 9, etc.. The
interesting representation of dimension 2j + 1 is called the “spin-j” representation by
physicists. All representations of SO(3) can be built up from these representations, and
none of these representations can be broken down into smaller ones — one says they are
irreducible.

But the double cover of SO(3), namely SU(2), has more representations! Using the
two-to-one homomorphism F : SU(2) → SO(3) we can convert any representation of
SO(3) into one of SU(2), but not vice versa. For example, since SU(2) consists of 2 × 2
complex matrices, it has a representation on C2, given by the obvious matrix multiplica-
tion. This is called the “spinor” or “spin-1/2” representation of SU(2). It doesn’t come
from a representation of SO(3).

To digress a bit, the reason physicists got so interested in SU(2) is that to describe
what happens when you rotate a particle (in the framework of quantum theory) it turns
out you need, not just the representations of SO(3), but of its double cover, SU(2). E.g.,
an electron, proton or neutron is described by the spin-1/2 representation. This implies
that when you turn an electron around 360 degrees about an axis, its wavefunction
changes sign, but when you rotate it another 360 degrees, its wavefunction is back to
where it started. You can’t describe this behavior using representations of SO(3), but
you can using SU(2). In general, for any j = 0, 1/2, 1, 3/2, 2, . . ., there is an irreducible
representation of SU(2), called the “spin-j” representation, which is (2j+1)-dimensional.
Only when the spin is an integer does the representation come from one of SO(3).

Things get more complicated when we consider rotations in higher dimensional
space. For any n greater than or equal to 3, the group SO(n) is doubly connected,
and has a simply connected double cover, which in general is called Spin(n). Folks have
figured out all the representations of Spin(n) and which of these come from representa-
tions of SO(n). It is more complicated for n > 3 than for n = 3 (in particular, they aren’t
just classified by “spin”), but it is still quite comprehensible and charming. Just to head
off any confusions that might occur, let me emphasize that it’s sort of a lucky coincidence
that Spin(3) = SU(2). In general, the spin groups don’t have too much to do with the
groups SU(n) of n× n unitary complex matrices with determinant 1.

There is, however, a doubly lucky coincidence in dimension 4; namely, Spin(4) =
SU(2) × SU(2). In other words, an element of Spin(4) can be thought of as a pair of
SU(2) matrices, and we multiply these pairs like (g, g′)(h, h′) = (gh, g′h′). This implies
that the irreducible representations of Spin(4) are given by a “tensor product” of two
irreducible representations of SU(2), so we can classify them by pairs of spins, say (j, j′).
The dimension of the (j, j′) representation is (2j + 1)(2j′ + 1), since the dimension of a
tensor product is the product of the dimensions. In particular, we call the (1/2, 0) rep-
resentation the “left-handed” spinor representation and the (0, 1/2) representation the
“right-handed” spinor representation. The reason is that a reflection transforms one into
the other. Since spacetime is 4-dimensional, representations of Spin(4) are important in
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physics, although really one should keep track of the fact that time works a bit differently
than space, which Spin(4) fails to do. In any event, ignoring the subtleties about how
time works differently than space, we can roughly say that the existence of left-handed
and right-handed spinor representations of Spin(4) is the reason why massless spin-1/2
particles such as neutrinos can have a “handedness” or “chirality”.

More generally, it turns out that the representation theory of Spin(n) depends strongly
on whether n is even or odd. When n is even (and bigger than 2), it turns out that
Spin(n) has left-handed and right-handed spinor representations, each of dimension
2n/2−1. When n is odd there is just one spinor representation. Of course, there is al-
ways the representation of Spin(n) coming from the vector representation of SO(n),
which is n-dimensional.

This leads to something very curious. If you are an ordinary 4-dimensional physicist
you undoubtedly tend to think of spinors as “smaller” than vectors, since the spinor rep-
resentations are 2-dimensional, while the vector representation is 3-dimensional. How-
ever, in general, when the dimension n of space (or spacetime) is even, the dimension of
the spinor representations is 2n/2−1, while that of the vector representation is n, so after
a while the spinor representation catches up with the vector representation and becomes
bigger!

This is a little bit curious, or at least it may seem so at first, but what’s really curious is
what happens exactly when the spinor representation catches up with the vector repre-
sentation. That’s when 2n/2−1 = n, or n = 8. The group Spin(8) has three 8-dimensional
irreducible representations: the vector, left-handed spinor, and right-handed spinor rep-
resentation. While they are not equivalent to each other, they are darn close; they are
related by a symmetry of Spin(8) called “triality”. And, to top it off, the octonions can be
seen as a kind of spin-off of this triality symmetry. . . as one might have guessed, from
all this 8-dimensional stuff. One can, in fact, describe the product of octonions in these
terms.

So now let’s dig in a bit deeper and describe how this triality business works. For
this, unfortunately, I will need to assume some vague familiarity with exterior algebras,
Clifford algebras, and their relation to the spin group. But we will have a fair amount
of fun getting our hands on a 24-dimensional beast called the Chevalley algebra, which
contains the vector and spinor representations of Spin(8)!

Start with an 8-dimensional complex vector space V with a nondegenerate symmetric
bilinear form on it. We can think of V as the representation of SO(8), hence Spin(8),
where now I’ve switched notation and write SO(8) to mean SO(8,C), and Spin(8) to
mean Spin(8,C). We can split V into two 4-dimensional subspaces V+ and V− such that
〈v, w〉 = 0 whenever v and w are either both in V+, or both in V−. Let Cliff be the Clifford
algebra over V . Note that as a vector space, there is a natural identification of Cliff with∧

V+ ⊗
∧
V−

where
∧

means “exterior algebra” and ⊗ means “tensor product”. (If you are physicist
you may enjoy following Dirac and thinking of

∧
V+ as a Fock space for “holes”, and∧

V− as a Fock space for “particles”. If you don’t enjoy this, ignore it! We will now to
proceed to fill all the holes.) Pick a nonzero vector v in

∧4
V−, the top exterior power

of V−. Let S denote the subspace of Cliff consisting of all elements of the form uv with
u in Cliff. Note that Cliff and S are representations of Cliff by left multiplication, and
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therefore are representations of Spin(8) — because Spin(8) sits inside Cliff. (This is a
standard way to get one’s hands on the spin groups.)

Note that
∧
V+ and

∧
V− both have dimension 24 = 16. We can think of both of these

as subspace of Cliff; for example, we can think of the vector u in
∧
V+ as the vector 1⊗u

in Cliff. Note that uv = 0 when u is in
∧
V+. (For physicists: since the sea of holes is

filled, you can’t create another.) Thus S consists of vectors of the form uv where u lies
in
∧
V−, and if you think a bit, it follows that S is 16-dimensional.

So we have our hands on a 16-dimensional representation of Spin(8), namely S.
However, we can split it into two 8-dimensional representations, the left- and right-
handed spinor representations, as follows. Let

even∧
V−

denote the part of the exterior algebra consisting of stuff with even degree, and

odd∧
V−

the part with odd degree. Then we can write S = S+⊕S−, where ⊕ means “direct sum”
and

S+ = (

even∧
V−)v, S− = (

odd∧
V−)v.

Now, since any element of Cliff that’s in Spin(8) has even degree in Cliff, and since even
times even is even, while even times odd is odd, it follows that as a representation of
Spin(8), S splits into S+ and S−, which we call the left-handed and right-handed spinors,
respectively. (Actually I don’t know which one is called which, but being left-handed
myself I think the positive one should obviously be called the left-handed one.)

Note, by the way, that everything so far works quite generally for Spin(n) when n is
even, and it’s only in the last paragraph that I used the fact that n was even. I certainly
haven’t done anything weird using the fact that n is 8. So as a bonus we’re learning some
quite general stuff about spinors.

Now let’s do something weird using the fact that n is 8. We’ve got these three 8-
dimensional representations of Spin(8) on our hands, namely V , S+, and S−. How do
they relate? Recall that S+ + S− = S is a representation of Cliff, and since V sits inside
Cliff as the elements of degree 1, we have for any a in V ,

ab is in S− if b is in S+

and
ab is in S+ if a is in S−

If we are in the mood, this might tempt us to lump V , S+, and S− together to form a
24-dimensional algebra! Let’s call this the Chevalley algebra and write

Chev = V + S+ + S−

Of course, we need to figure out how to multiply any two guys in Chev. We define
the product of any two guys in V to be zero, and ditto for S+ or S−. But we can find an
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interesting way to multiply a guy in S+ by a guy in S− to get a guy in V . I think the vector
representation always sits inside the tensor product of the left- and right-handed spinor
representations when space is even-dimensional, and that this is what we’re looking for.
But explicitly, here’s what we do in this case. There is a kind of ∗ operation on Cliff given
by

(abc . . . def)∗ = fed . . . cba

where a, b, c, . . . , d, e, f lie in V . This lets us define a symmetric bilinear form on S by

〈x, y〉v = x∗y

Together with the symmetric bilinear form we started with on V , this gives us a symmet-
ric bilinear form on all of Chev, defining〈a, b〉 to be 0 if a is in V and b is in S+ or S−.
This bilinear form on Chev turns out to be nondegenerate, and 〈a, b〉 = 0 whenever a
and b lie in different ones of three summands of Chev.

So now Chev has a nondegenerate symmetric bilinear form it. This lets us define a
cubic form on Chev! Say we have (a, b, c) in V ⊕ S+ ⊕ S− = Chev. Then we define our
cubic form F by

F (a, b, c) = 〈ab, c〉
using the fact that we already know how to multiply a guy in V with a guy in S+, and
get a guy in S−.

You probably know — if you’ve survived this far! — that from a quadratic form
you can get a symmetric bilinear form by “polarization”. Well, similarly, we can get a
symmetric trilinear form f on Chev by polarizing F . Explicitly, for any u1, u2, u3 in Chev,
we have

f(u1, u2, u3) = F (u1+u2+u3)−F (u1+u2)−F (u2+u3)−F (u1+u3)+F (u1)+F (u2)+F (u3).

Then, since we have a nondegenerate symmetric bilinear form on Chev, we can turn f
into a product on Chev, by setting

〈u1u2, u3〉 = f(u1, u2, u3).

The assiduous reader can check that this product on Chev agrees with the product we
had partially defined so far; the only new thing it does is define the product of a guy in S+

and a guy in S−, obtaining something in V . This product turns out to be commutative,
but not associative.

Now, if I were really gung-ho about describing triality, I would describe how the
group of permutations of 3 letters, S3, acts as automorphisms of Chev in a way that lets
one scramble the summands V , S+, and S− at will. In fact, S3 acts as automorphisms of
Spin(8) in a way that gives rise to this action on Chev. But right now I’m running out of
steam, so I think I’ll just say how to get the octonions out of the Chevalley algebra!

It’s simple: pick a vector v in V with 〈v, v〉 = 1, and a vector s+ in S+ with 〈s+, s+〉 =
1. Then s− = vs+ is a vector in S− with 〈s−, s−〉 = 1. We now turn V into the octonions
as follows. Given v and w in V , define their octonion product v∗w to be

v∗w = (vs−)(ws+)

where the product on the right hand side is the product in the Chevalley algebra. In
other words: take v and turn it into something in S+ by forming vs−. Take w and turn it
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into something in S− by forming ws+. The product of these is then something in V . In
short, we form the octonions from the three 8-dimensional representations of Spin(8) by
a kind of ring-around-the-rosie process using triality!

Note: what we just obtained was a complex 8-dimensional algebra, which is the com-
plexification of the octonions. Using the fact that the vector representation of SO(8,C)
on C8 contains the vector representation of SO(8,R) on R8 as a “real part”, we should
be able to get the octonions themselves.

One can work out the details following the book of Fulton and Harris, and the refer-
ences therein. I should add that they do a lot more fun stuff involving the exceptional Lie
groups and the 27-dimensional exceptional Jordan algebra. . . all of this “exceptional”
stuff seems to form a unified whole! There is a lot more fun stuff along these lines in

3) Ian R. Porteous, Topological Geometry, Cambridge U. Press, Cambridge, 1981.

In particular, to correct a widespread misimpression, it’s worth noting that there are
a lot of nonassociative division algebras over the reals besides the octonions; Porteous
describes one of dimension 4 in his book. However, all division algebras over R are of
dimension 1,2,4, or 8. Also, all normed division algebras over R are the reals, complexes,
quaternions, or octonions, and these are also all the alternative division algebras over R,
as well. . . where an “alternative” algebra is one for which any two elements generate an
associative algebra. Nota bene: here a division algebra is one such that for all nonzero
x, the map y 7→ xy is invertible. In the finite-dimensional case, this implies that every
element has a left and right inverse. If assume associativity, the converse is true, but in
the nonassociative case it ain’t. Whew! Nonassociative algebras are tricky, if you’re used
to associative ones, so you’re interested, you might try:

4) R. D. Schafer, An Introduction to Non-Associative Algebras, Dover, New York, 1995.

In addition to the people listed in “Week 59”, I should thank Dan Asimov, Michael
Kinyon, Frank Smith, and Dave Rusin for help with this post. I also thank Doug Merritt
for reminding me about the following nice book on quaternions, octonions, and all sorts
of similar algebras:

5) I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers — an Elementary Intro-
duction to Algebras, Springer-Verlag, Berlin, 1989; translation of “Giperkomplek-
snye chisla”, Moscow, 1973.

Back in the old days when there weren’t too many algebras around besides the reals,
complexes and quaternions, people called algebras “hypercomplex numbers”.
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Week 62

August 28, 1995

Now I’d like to talk about a fascinating subject of importance in both mathematics and
physics, the subject of “ADE classifications”. Here A, D, and E aren’t abbreviations for
anything; they are just names for certain diagrams. But these diagrams show up all over
the place when you start trying to classify beautiful and symmetrical things.

Let’s start with something nice and simple: the Platonic solids. It’s not terribly hard
to classify all the regular polyhedra in 3-dimensional Euclidean space. Roughly, it goes
like this. The faces could all be equilateral triangles. Obviously there need to be at
least 3 faces meeting at each vertex to get a polyhedron. If there are exactly 3, you
have a tetrahedron. If there are 4, you have an octahedron. If there are 5, you have an
icosahedron. There can’t be 6 or more, since when you have 6 they lie flat in the plane,
and more is even worse. The faces could also be squares. If there are 3 squares meeting
at each vertex you have a cube. There can’t be 4 or more, since when you have 4 they
lie flat in the plane. The faces could also be regular pentagons. If there are 3 pentagons
meeting at each vertex you have a dodecahedron. There can’t be 4 or more, since when
you have 4 you already have more than 360 degree’s worth of angles.

So, there we are: the 5 regular polyhedra are the tetrahedron, octahedron, icosahe-
dron, cube, and dodecahedron! Of course, we haven’t shown these solids actually exist.
Sometimes people forget that you really need to check that all these possibilities are re-
alized! But the Greeks did that a while back. This is perhaps the first example of an ADE
classification.

This had such beauty that in his “Timaeus” dialog, Plato suggested that the 4 elements
were made of these solids, not counting for the dodecahedron. Interestingly, Plato con-
sidered decomposing the faces of these solids into “elementary triangles”, in order to
explain how one element could turn into another. This is presumably why he left out
the dodecahedron: one can’t chop up a regular pentagon into 30-60-90 triangles. In a
passage that’s notoriously hard to translate, he suggested that the dodecahedron corre-
sponding to some sort of “quintessence”, or perhaps the zodiac. It’s worth pointing out,
also, that Plato explicitly says it’s okay if someone comes up with a better scheme. He
makes it clear that he is just trying to lay out an example of a mathematical scheme for
explaining the elements, to get people interested.

Later, of course, Kepler suggested that the 5 Platonic solids corresponded to the orbits
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of the 5 planets:

As it turns out, Plato and Kepler were in the right ball-park, but not really right. Both
the solar system and atoms are described pretty well by similar laws - the inverse-
square force laws for gravity and electrostatics. And solving this problem (in either
the classical or quantum case) does indeed require a deep understanding of rotations
in 3-dimensional space. It’s sort of amusing, however, that the Platonic solids have as
their symmetries finite subgroups of the rotation group in 3 dimensions, while the study
of quantum-mechanical atoms instead involves the theory of “representations” of this
group, which are in some sense dual. The rotation group in n dimensions, by the way,
is called SO(n). See “Week 61” for a bit more about it. For a grand tour of the inverse
square law, both classical and quantum, read:

1) Victor Guillemin and Shlomo Sternberg, Variations on a Theme by Kepler, American
Mathematical Society, Providence, Rhode Island, 1990.

You will see, among other things, that the real reason the inverse square force law
problem is exactly solvable is that it has a hidden symmetry under SO(4), not just SO(3).

But I digress! Recall how I said that “obviously” a regular polyhedron has to have 3
faces meeting at each vertex? What would happen if you relaxed the definition a little
bit, and let there be just 2 faces meeting at a vertex? Well, then any regular polygon
could qualify as a regular polyhedron, I guess. Then we would have an infinite series of
regular polyhedron with only two faces, together with 5 exceptions, the Platonic solids.
That’s actually typical of ADE-type classifications: often, when you are classifying re-
ally symmetrical things, you find some infinite series of “obvious” or “classical” cases,
together with finitely many weird “exceptional” cases.

Before I get further into ADE classifications, let me note that the problem of why there
are so many ADE classifications, and how they are all related, was explicitly raised by
the famous mathematical physicist V. I. Arnol’d, in
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2) “Problems of Present Day Mathematics” in Mathematical Developments Arising from
Hilbert’s Problems, ed. F. E. Browder, Proc. Symp. Pure Math. 28, American Math-
ematical Society, Providence, Rhode Island, 1976.

This lists a lot of important math problems, following up on Hilbert’s famous turn-
of-the-century listing of problems. Problem VIII in this book is the “ubiquity of ADE
classifications”. Arnol’d lists the following examples:

• Platonic solids

• Finite groups generated by reflections

• Weyl groups with roots of equal length

• Representations of quivers

• Singularities of algebraic hypersurfaces with definite intersection form

• Critical points of functions having no moduli

Don’t worry if you don’t know what those are except for the first one! I’ll try to explain
some of them. Later I’ll also explain two new ones that came out of string theory:

• Minimal models

• Certain “quantum categories”

Perhaps the best single place to start learning about ADE classifications is:

3) M. Hazewinkel, W. Hesselink, D. Siermsa, and F. D. Veldkamp, “The ubiquity of
Coxeter-Dynkin diagrams (an introduction to the ADE problem)”, Niew. Arch.
Wisk., 25 (1977), 257-307. Also available at http://repos.project.cwi.nl:8888/
cwi repository/docs/I/10/10039A.pdf or http://math.ucr.edu/home/baez/

hazewinkel et al.pdf

Okay, so what the heck is an ADE classification, after all? It’s probably good to start by
looking at “finite reflection groups.” Say we are in n-dimensional Euclidean space. Then
given any unit vector v, there is a reflection that takes v to −v, and doesn’t do anything
to the vectors orthogonal to v. Let’s call this a “reflection through v”. A finite reflection
group is a finite group of transformations of Euclidean space such that every element is
a product of reflections. For example, the group of symmetries of an equilateral n-gon is
a finite reflection group. (This is a useful exercise if you don’t see it right off the bat.)

Note that if we do two reflections, we get a rotation. In particular, suppose we have
vectors v and w at an angle A from each other, and let r and s be the reflections through
v and w, respectively. Then rs is a rotation by the angle 2A. Draw a picture and check it!
This means that if A = π/n, then (rs)n is a rotation by the angle 2π, which is the same
as no rotation at all, so (rs)n = 1. On the other hand, if A is not a rational number times
π, we never have (rs)n = 1, so r and s can not both be in some finite reflection group.

With a little more work, we can convince ourselves that any finite reflection group is
captured by a “Coxeter diagram”. The idea is that the group is generated by reflections
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through unit vectors that are all at angles of π/n from each other. To keep track of things,
we draw a dot for each one of these vectors. Suppose two of the vectors are at an angle
π/n from each other. If n = 2, we don’t bother drawing a line between the two dots.
Otherwise, we draw a line between them, and label it with the number n. Typically, if
n = 3 people don’t bother writing the number; they just draw that line. That’s what I’ll
do. (People also sometimes draw n− 2 lines instead of writing the number n, but I can’t
do that here.)

Algebraically speaking, if someone hands us a Coxeter diagram like

• •
7
•

we get a group having one generator for each dot, and with one relation r2 = 1 for each
generator r (since that’s what reflections do), and one relation of the form (rs)n = 1 for
each line connecting dots, or (rs)2 = 1 if there is no line connecting two dots. It turns
out that if a Coxeter diagram yields a finite group this way, it’s a finite reflection group.

However, not every diagram we draw yields a finite group! Here are all the possible
Coxeter diagrams giving finite groups. They have names. First there is An, which has n
dots like this:

• • • •

For example, the group of symmetries of the equilateral triangle is A2. The two dots can
correspond to the reflections r and s through two of the altitudes of the triangle, which
are at an angle of π/3 from each other. Thus they satisfy (rs)3 = 1. More generally, An

corresponds to the group of symmetries of an n-dimensional simplex — which is just the
group of permutations of the n+ 1 vertices.

Then there is Bn, which has n dots, where n > 1:

• • •
4
•

It has just one edge labelled with a 4. Bn turns out to be the group of symmetries of a
hypercube or hyperoctahedron in n dimensions.

Then there is Dn, where n > 3:

• • • •

•

•

Then there are E6, E7, and E8:

• • • • •

•

• • • • • •

•

• • • • • • •

•
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Interestingly, this series does not go on. That’s what I meant about “classical” versus
“exceptional” structures.

Then there is F4:

• •
4
• •

Then there’s G2:

•
6
•

and H3 and H4:

•
5
• • •

5
• • •

H3 is the group of symmetries of the dodecahedron or icosahedron. H4 is the group of
symmetries of a regular solid in 4 dimensions which I talked about in “Week 20”. This
regular solid is also called the “unit icosians” — it has 120 vertices, and is a close relative
of the icosahedron and dodecahedron. One amazing thing is that it itself is a group in a
very natural way. There are no “hypericosahedra” or “hyperdodecahedra” in dimensions
greater than 4, which is related to the fact that the H series quits at this point.

Finally, there is another infinite series, Im:

•
m
•

This corresponds to the symmetry group of the 2m-gon in the plane, and people usually
require m = 5 or m > 6, so as to not count twice some Coxeter diagrams that we’ve
already run into.

THAT’S ALL.
So, we have an “ABDEFGHI classification” of finite reflection groups. (In some fu-

ture week I had better say what happened to “C”.) Note that the symmetry groups of
the Platonic solids and some of their higher-dimensional relatives fit in nicely into this
classification, so that’s one sense in which the Greeks’ discovery of these solids counts
as the first “ADE classification”. But there is at least one another, deeper, way to fit the
Platonic solids themselves into an ADE classification. I’ll try to say more about this in
future weeks.

You may still be wondering what’s so special about A, D, and E. I’ll have to get to
that, too.
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Week 63

September 14, 1995

Let me continue the tale of “ADE classifications”. Last week I described an “ABDEFGHI
classification” of all finite reflection groups - that is, finite symmetry groups of Euclidean
space, every element of which is a product of reflections. Now we’ll build on that to get
other related classifications.

So, recall:
Every element of a finite reflection group is a product of reflections through certain

special vectors, which people call “roots”. These roots are all at angles π/n from each
other, where n > 1 is an integer. To describe the group, we draw a diagram with one
dot for each root. If two roots are perpendicular we don’t draw a line between them,
but otherwise, if they are at an angle π/n from each other, we draw a line and label it
with the integer n. Actually, the integer n = 3 comes up so often that we don’t bother
labelling the line in this case.

Now, not all of these diagrams correspond to finite reflection groups. The following
ones, together with disjoint unions of them, are all the possibilities.

An, which has n dots like this:

• • • •

Bn, which has n dots, where n > 1:

• • •
4
•

Dn, which has n dots, where n > 3:

• • • •

•

•

E6, E7, and E8:

• • • • •

•

• • • • • •

•

• • • • • • •

•

F4:

• •
4
• •
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G2:

•
6
•

H3 and H4:

•
5
• • •

5
• • •

Im, where m = 5 or m > 6:

•
m
•

Recall that Im is the symmetry group of the of regularm-gon, while others of these are
the symmetry groups of Platonic solids, and still others are symmetry groups of regular
polytopes in n-dimensional space. For example, the symmetry group of the dodecahe-
dron is H3, while that of its 4-dimensional relative is H4.

Now you may know that there are no perfect crystals in the shape of a regular do-
decahedron. However, iron pyrite comes close. In his wonderful book:

1) Hermann Weyl, Symmetry, Princeton University Press, Princeton, New Jersey, 1989.

Weyl suggests that this is how people discovered the regular dodecahedron:

. . . the discovery of the last two [Platonic solids] is certainly one of the most
beautiful and singular discoveries made in the whole history of mathematics.
With a fair amount of certainty, it can be traced to the colonial Greeks in south-
ern Italy. The suggestion has been made that they abstracted the regular dodec-
ahedron from the crystals of pyrite, a sulfurous mineral abundant in Sicily.

Thus while iron pyrite is nothing but “fool’s gold” to the miner, it may have done a
good deed by fooling the Greeks into discovering the regular dodecahedron. Could this
be why the ratio of the diagonal to the side of a regular pentagon, (

√
5 + 1)/2, is called

the golden ratio? Or am I just getting carried away? One is tempted to call the shape of
pyrite crystals the “fool’s dodecahedron,” but in fact it’s called a “pyritohedron”. (All this
information on pyrite, as well as the puns, I owe to Michael Weiss.)

More recently, I think people have discovered “quasicrystals” (related to Penrose tiles)
having true dodecahedral symmetry. But no perfectly repetitive crystals form dodecahe-
dra! And the reason is that there is no lattice having H3 as its symmetries.

Recall that we get a “lattice” by taking n linearly independent vectors in n-dimensional
Euclidean space and forming all linear combinations with integer coefficients. If some-
one hands us a finite reflection group, we can look for a lattice having it as symmetries.
If one exists, we say the group satisfies the “crystallographic condition”. The only ones
that do are

An, Bn, Dn, E6, E7, E8, F4, and G2

(and those corresponding to disjoint unions of these diagrams). In other words, the
symmetry groups of the pentagon (I5), the heptagon and so on (Im with m > 6), and
the dodecahedron and its 4-dimensional relative (H3 and H4) are ruled out.
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Now let us turn to the theory of Lie groups. Lie groups are the most important
“continuous” (as opposed to discrete) symmetry groups. Examples include the real line
(with addition as the group operation), the circle (with addition mod 2π), and the
groups SO(n) and SU(n) discussed in “Week 61”. These groups are incredibly important
in both physics and mathematics. Thus it is wonderful, and charmingly ironic, that the
same diagrams that classify the oh-so-discrete finite reflection groups also classify some
of the most beautiful of Lie groups: the “simple” Lie groups. It turns out that the simple
Lie groups correspond to the diagrams of forms A,B,D,E,F , and G. Oh yes, and C. I
have to tell you what happened to C.

There is a vast amount known about semisimple Lie groups, and everyone really se-
rious about mathematics winds up needing to learn some of this stuff. I took courses on
Lie groups and their Lie algebras in grad school, but it was only later that I really came
to appreciate the beauty of the simple Lie groups. Back then I found it mystifying be-
cause the work involved in the classification was so algebraic, and I preferred the more
geometrical aspects of Lie groups. Part of the reason is that the treatment I learned em-
phasized the Lie algebras and downplayed the groups. A nice treatment that emphasizes
the groups is:

2) John Frank Adams, Lectures on Lie groups, Benjamin, New York, 1969.

So what’s the basic idea? Let me summarize two semesters of grad school, and tell
you the basic stuff about Lie groups and the classification of simple Lie groups. Forgive
me if it’s a bit rushed, sketchy, and even mildly inaccurate: hopefully the main ideas will
shine through the murk this way.

A Lie group is a group that’s also a manifold, for which the group operations (multi-
plication and taking inverses) are smooth functions. This lets you form the tangent space
to any point in the group, and the tangent space at the identity plays a special role. It’s
called the Lie algebra of the group. If we have any element x in the Lie algebra, we
can exponentiate it to get an element exp(x) in the group, and we can keep track of the
noncommutativity of the group by forming the “bracket” of elements x and y in the Lie
algebra:

[x, y] =
d

dt

d

ds
exp(sx) exp(ty) exp(−sx) exp(−ty)

where s and t are real numbers, and we evaluate the derivative at s, t = 0. Note
that [x, y] = 0 if the group is commutative. This bracket operation satisfies some axioms,
and algebraists call anything a Lie algebra that satisfies those axioms. For example, you
could take n× n matrices and let [x, y] = xy − yx.

Now a Lie algebra is called “semisimple” if for any z, there are x and y with z = [x, y].
This is sort of the opposite of an abelian, or commutative, Lie algebra, where [x, y] = 0
for all x and y. It turns out that we can take direct sums of Lie algebras by defining
operations componentwise, and it turns out that if you have a compact Lie group, its Lie
algebra is always the direct sum of a semsimple Lie algebra and an abelian one. The
abelian ones are pretty trivial, so all the hard works lies in understanding the semisimple
ones. Any semisimple one is the direct sum of a bunch of semisimple ones that aren’t
sums of anything else, and these basic building blocks are called the “simple” ones. They
are like the prime numbers of Lie algebra theory. Unlike the prime numbers, though, we
can completely classify all of them!
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Now how does one classify the simple Lie algebras? Basically, it goes like this. We’ll
assume our simple Lie algebra is the Lie algebra of a compact Lie group G — it turns
out that they all are. Now, sitting inside G there is a maximal commutative subgroup T
that’s a torus: a product of a bunch of circles. Let Lie(T ) stand for the Lie algebra of this
torus T . Now, sitting inside Lie(T ) there is a lattice, consisting of all elements x with
exp(x) = 1. This is how lattices sneak into the picture!

Moreover, for some elements g in G, if we “conjugate” T by g, that is, form the set
of all elements gtg−1 where t is in T , we get T back. In other words, these elements of
g act as symmetries of the torus T . Now, if something acts as symmetries of something
else, it also acts as symmetries of everything naturally cooked up from that something
else. (Roughly speaking, “naturally” means ”without dependence on arbitrary choices.)
For this reason, these special elements of G also act as symmetries of Lie(T ) and of the
lattice sitting inside Lie(T ). So we have a lattice together with a group of symmetries,
which by the way is called the Weyl group of G. Now the cool part is that the Weyl group
is actually a finite reflection group, so it must correspond to one of the diagrams in the
list above! Even better, it turns out that the Lie algebra of G is determined by the lattice
together with its Weyl group.

The upshot is that to classify semisimple Lie algebras, all we need is the classification
of finite reflection groups satisfying the crystallographic condition — which we’ve done
already using diagrams — together with a classification of lattices having such finite
reflection groups as symmetries. It turns out that the operation of taking direct sums
of semisimple Lie algebras corresponds to taking disjoint unions of diagrams, so to get
the “building blocks” — the simple Lie algebras — we only need to worry about the
diagrams we’ve drawn above, not disjoint unions of them. Now it turns out that for
every type except B, there is (up to isomorphism) only one lattice having that group of
symmetries, but for B there are two. Recall the diagram Bn looks like:

• • •
4
•

with n dots. And recall that the dots correspond to “roots”, which in the present context
are vectors in Lie(T ). Now it turns out that whenever we have a finite reflection group
satisfying the crystallographic condition, we can get a lattice having it as symmetries by
taking integer linear combinations of the roots, but not necessarily roots that are unit
vectors; the lengths of the roots matter. In all cases except B, there is basically just
one way to get the lengths right, but for B there are two. We can keep track of the
root lengths with some extra markings on our diagrams, and then we get two diagrams,
which we call Bn and Cn. One of them has the root at the right of the diagram being
longer, and one has the root right next to it being longer. This makes no difference when
n = 2, since then we just have

•
4
•

which is perfectly symmetrical. So folks usually consider Cn only for n > 2, to avoid
double counting.

In other words, all the simple Lie algebras are of the form:

• An, n > 0
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• Bn, n > 1

• Cn, n > 2

• Dn, n > 3

• E6, E7, E8

• F4

• G2

Okay, so what are these things, really? What do they mean, and what are the im-
plications of the fact that the symmetries of the forces of nature are given by the some
of the corresponding Lie groups? Why are 4 infinite series of them and 5 “exceptional”
Lie algebras? What’s so special about A, D, and E, that makes people keep talking about
“ADE classifications”? What do the exceptional Lie algebras (and their corresponding Lie
groups) have to do with octonions? Why do some string theorists think the symmetry
group of nature is E8, the largest exceptional Lie group???

Well, I’m afraid that I’m going camping in a couple of hours, so I’ll have to leave you
hanging, even though I do know the answers to some of these questions. I’ll try to finish
talking about ADE classifications in the next couple of issues.

. . . without fantasy one would never become a mathematician, and what gave me a
place among the mathematicians of our day, despite my lack of knowledge and form, was
the audacity of my thinking. - Sophus Lie
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Week 64

September 23, 1995

I have been talking about different “ADE classifications”. This time I’ll start by contin-
uing the theme of last Week, namely simple Lie algebras, and then move on to discuss
affine Lie algebras and quantum groups. These are algebraic structures that describe the
symmetries appearing in quantum field theory in 2 and 3 dimensions. They are very
important in string theory and topological quantum field theory, and it’s largely physics
that has gotten people interested in them.

Remember, we began by classifying finite reflection groups. A finite reflection group is
simply a finite group of linear transformations of Rn, every element of which is a product
of reflections. Finite reflection groups are in 1-1 correspondence with the following
“Coxeter diagrams”, together with disjoint unions of such diagrams:

An, which has n dots like this:

• • • •

Bn, which has n dots, where n > 1:

• • •
4
•

Dn, which has n dots, where n > 3:

• • • •

•

•

E6, E7, and E8:

• • • • •

•

• • • • • •

•

• • • • • • •

•

F4:

• •
4
• •

G2:

•
6
•
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H3 and H4:

•
5
• • •

5
• • •

Im, where m = 5 or m > 6:

•
m
•

Not all of these finite reflection groups satisfy the “crystallographic condition”, namely
that they act as symmetries of some lattice. The ones that do are of types A,B,D,E,F, and
G, and disjoint unions thereof — but I’m going to stop reminding you about disjoint
unions all the time!

Now, if we have a finite reflection group that’s the symmetries of some lattice, we
can take the dimension of the lattice to be the number of dots in the Coxeter diagram.
In fact, the dots correspond to a basis of the lattice, and the lines between them (and
their numberings) keep track of the angles between the basis vectors. These basis vectors
are called “roots”. To describe the lattice completely, in principle we need to know the
lengths of the roots as well as the angles between them. But it turns out that except for
type B, there is just one choice of lengths that works (up to overall scale). For type B
there are two choices, which people call Bn and Cn, respectively. People keep track of
the lengths with a “Dynkin diagram” like this:

• Bn has n dots, where n > 1:

• • • >

4
•

• Cn has n dots, where n > 2:

• • • <

4
•

The arrow points to the shorter root; for Bn all the roots except the last one are
√

2
times as long as the last one, while for Cn all the roots except the last one are 1/

√
2

as long. (In fact, the lattices corresponding to Bn and Cn are “dual”, in the hopefully
obvious sense.) The only reason why we require n > 2 for Cn is that B2 is basically the
same as C2!

Now last Week, I also sketched how the Lie algebras of the compact simple Lie groups
were also classified by the same Dynkin diagrams of types A, B, C, D, E, F, and G. These
were real Lie algebras; we can also switch viewpoint and work with complex Lie algebras
if we like, in which case we simply say we’re studying the complex simple Lie algebras,
as opposed to their “compact real forms”.

Unfortunately, I didn’t say much about what these Lie algebras actually are! Basically,
they go like this:

An — The Lie algebra An is just sln+1(C), the (n+1)× (n+1) complex matrices with
vanishing trace, which form a Lie algebra with the usual bracket [x, y] = xy − yx. The
compact real form of sln(C) is sun, and the corresponding compact Lie group is SU(n),

73



WEEK 64 SEPTEMBER 23, 1995

the n× n unitary matrices with determinant 1. The symmetry group of the electroweak
force is U(1)× SU(2), where U(1) is the 1× 1 unitary matrices. The symmetry group of
the strong force is SU(3). The study of An is thus a big deal in particle physics. People
have also considered “grand unified theories” with symmetry groups like SU(5).

Bn — The Lie algebra Bn is so2n+1(C), the (2n + 1) × (2n + 1) skew-symmetric
complex matrices with vanishing trace. The compact real form of son(C) is son, and
the corresponding compact Lie group is SO(n), the n × n real orthogonal matrices with
determinant 1, that is, the rotation group in Euclidean n-space. For some basic cool facts
about SO(n), check out “Week 61”.

Cn — The Lie algebra Cn is spn(C), the 2n× 2n complex matrices of the form(
A B
C D

)
where B and C are symmetric, and D is minus the transpose of A. The compact real
form of spn(C) is spn, and the corresponding compact Lie group is called Sp(n). This is
the group of n× n quaternionic matrices which preserve the usual inner product on the
space Hn of n-tuples of quaternions.

Dn — The Lie algebra Dn is so2n(C), the 2n× 2n skew-symmetric complex matrices
with vanishing trace. See Bn above for more about this. It may seem weird that SO(n)
acts so differently depending on whether n is even or odd, but it’s true: for example,
there are “left-handed” and “right-handed” spinors in even dimensions, but not in odd
dimensions. Some clues as to why are given in “Week 61”.

Those are the “classical” Lie algebras, and they are things that are pretty easy to
reinvent for yourself, and to get interested in for all sorts of reasons. As you can see,
they are all about “rotations” in real, complex, and quaternionic vector spaces.

The remaining ones are called “exceptional”, and they are much more mysterious.
They were only discovered when people figured out the classification of simple Lie alge-
bras. As it turns out, they tend to be related to the octonions! Some other week I will
say more about them, but for now, let me just say:

F4 — This is a 52-dimensional Lie algebra. Its smallest representation is 26-dimensional,
consisting of the traceless 3 × 3 hermitian matrices over the octonions, on which it pre-
serves a trilinear form.

G2 — This is a 14-dimensional Lie algebra, and the compact Lie group corresponding
to its compact real form is also often called G2. This group is just the group of symmetries
(automorphisms) of the octonions! In fact, the smallest representation of this Lie algebra
is 7-dimensional, corresponding to the purely imaginary octonions.

E6 — This is a 78-dimensional Lie algebra. Its smallest representation is 27-dimensional,
consisting of all the 3 × 3 hermitian matrices over the octonions this time, on which it
preserves the anticommutator.

E7 — This is a 133-dimensional Lie algebra. Its smallest representation is 56-dimensional,
on which it preserves a tetralinear form.

E8 — This is a 248-dimensional Lie algebra, the biggest of the exceptional Lie alge-
bras. Its smallest representation is 248-dimensional, the so-called “adjoint” representa-
tion, in which it acts on itself. Thus in some vague sense, the simplest way to understand
the Lie group corresponding to E8 is as the symmetries of itself! (Thanks go to Dick Gross
for this charming information; I think he said all the other exceptional Lie algebras have
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representations smaller than themselves, but I forget the sizes.) In “Week 20” I described
a way to get its root lattice (the 8-dimensional lattice spanned by the roots) by playing
around with the icosahedron and the quaternions.

People have studied simple Lie algebras a lot this century, basically studied the hell
out of them, and in fact some people were getting a teeny bit sick of it recently, when
along came some new physics that put a lot of new life into the subject. A lot of this
new physics is related to string theory and quantum gravity. Some of this physics is “con-
formal field theory”, the study of quantum fields in 2 dimensional spacetime that are
invariant under all conformal (angle-preserving) transformations. This is important in
string theory because the string worldsheet is 2-dimensional. Some other hunks of this
physics go by the name of “topological quantum field theory”, which is the study of quan-
tum fields, usually in 3 dimensions so far, that are invariant under all transformations
(or more precisely, all diffeomorphisms).

Every simple Lie algebra gives rise to an “affine Lie algebra” and a “quantum group”.
The symmetries of conformal field theories are closely related to affine Lie algebras, and
the symmetries of topological quantum field theories are quantum groups. I won’t tell
you what affine Lie algebras and quantum groups ARE, since it would take quite a while.
Instead I’ll refer you to a good good introduction to this stuff:

1) Juergen Fuchs, Affine Lie Algebras and Quantum Groups, Cambridge Monographs
on Mathematical Physics, Cambridge U. Press, Cambridge 1992.

Let me whiz through his table of contents and very roughly sketch what it’s all about.

1. Semisimple Lie algebras

This is a nice summary of the theory of semisimple Lie algebras (remember, those
are just direct sums of simple Lie algebras) and their representations. Especially if
you are a physicist, a slick summary like this might be a better way to start learning
the subject than a big fat textbook on the subject. He covers the Dynkin diagram
stuff and much, much more.

2. Affine Lie algebras

This starts by describing Kac-Moody algebras, which are certain infinite-dimensional
analogs of the simple Lie algebras. Fuchs concentrates on a special class of these,
the affine Lie algebras, and describes the classification of these using Dynkin dia-
grams. The main nice thing about the affine Lie algebras is that their corresponding
infinite-dimensional Lie groups are very nice: they are almost “loop groups”. If we
have a Lie group G, the loop group LG is just the set of all smooth functions from
the circle to G, which we make into a group by pointwise multiplication. If you’re
a physicist, this is obviously relevant to string theory, because at each time, a string
is just a circle (or bunch of circles), and if you are doing gauge theory on the string,
with symmetry group G, the gauge group is then just the loop group LG. So you’d
expect the representation theory of loop groups and their Lie algebras to be really
important.

You’d almost be right, but there is a slight catch. In quantum theory, what counts
are the “projective” representations of a group, that is, representations that satisfy
the rule g(h(v)) = (gh)(v) up to a phase. (This is because “phases are unobservable
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in quantum theory” — one of those mottoes that needs to be carefully interpreted
to be correct.) The projective representations of the loop group LG correspond to
the honest-to-goodness representations of a “central extensions” of LG, a slightly
fancier group than LG itself. And the Lie algebra of this group is called an affine
Lie algebra.

So, people who like gauge theory and string theory need to know a lot about affine
Lie algebras and their representations, and that’s what this chapter covers. A real
heavy-duty string theorist will need to know more about Kac-Moody algebras, so if
you’re planning on becoming one of those, you’d better also try:

2) Victor Kac, Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University
Press, Cambridge, 1990.

You’ll also need to know more about loop groups, so try:

3) Loop groups, by Andrew Pressley and Graeme Segal, Oxford University Press,
Oxford, 1986.

3. WZW theories

Well, I just said that physicists liked affine Lie algebras because they were the
symmetries of conformal field theories that were also gauge theories. Guess what:
a Wess-Zumino-Witten, or WZW, theory, is a conformal field theory that’s also a
gauge theory! You can think of it as the natural generalization of the wave equation
in 2 dimension (which is conformally invariant, btw) from the case of real-valued
fields, to general G-valued fields, where G is our favorite Lie group.

4. Quantum groups

When you quantize a WZW theory whose symmetry group G is some simple Lie
group, something funny happens. In a sense, the group itself also gets quantized!
In other words, the algebraic structure of the group, or its Lie algebra, gets “de-
formed” in a way that depends on the parameter ~ (Planck’s constant). I have
muttered much about quantum groups on This Week’s Finds, especially concern-
ing their relevance to topological quantum field theory, and I will not try to explain
them any better here! Eventually I will discuss a bunch of books that have come
out on quantum groups, and I hope to give a mini-introduction to the subject in
the process.

5. Duality, fusion rules, and modular invariance

The previous chapter described quantum groups as abstract algebraic structures,
showing how you can get one from any simple Lie algebra. Here Fuchs really shows
how you get them from quantizing a WZW theory. WZW theories are invariant un-
der conformal transformations, and quantum groups inherit lots of cool properties
from this fact. For example, suppose you form a torus by taking the complex plane
and identifying two points if they differ by any number of the form nz1 + mz2,
where z1 and z2 are fixed complex numbers and n, m are arbitrary integers. For
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example, we might identify all these points:

<(z)

=(z)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

The resulting torus is a “Riemann surface” and it has lots of transformations, called
“modular transformations”. The group of modular transformations is the discrete
group SL(2,Z) of 2 × 2 integer matrices with determinant 1; I leave it as an easy
exercise to guess how these give transformations of the torus. (This is an example
of a “mapping class group” as discussed in “Week 28”.) In any event, the way the
the WZW theory transforms under modular transformations translates into some
cool properties of the corresponding quantum group, which Fuchs discusses. That’s
roughly what “modular invariance” means.

Similarly, “fusion rules” have to do with the thrice-punctured sphere, or “trinion”,
which is another Riemann surface. And “duality” has to do with the sphere with
four punctures, which can be viewed as built up from trinions in either of two
“dual” ways:
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or

This is one of the reasons string theory was first discovered — we can think of the
above pictures as two Feynman diagrams for interacting strings, and the fact that
they are really just distorted versions of each other gives rise to identities among
Feynman diagrams. Similarly, this fact gives rise to identities satisfied by the fusion
rules of quantum groups.

So — Fuchs’ book should make clear how, starting from the austere beauty of the
Dynkin diagrams, we get not only simple Lie groups, but also a wealth of more compli-
cated structures that people find important in modern theoretical physics.

Mathematics, rightly viewed, possesses not only truth, but supreme beauty - a beauty
cold and austere, like that of sculpture, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a
stern perfection such as only the greatest art can show. - Bertrand Russell.
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Week 65

October 3, 1995

This time I’ll finish up talking about “ADE classifications” for a while, although there is
certainly more to say. Recall where we were: the following diagrams correspond to the
simple Lie algebras, and they also define certain lattices, the “root lattices” of those Lie
algebras:

An, which has n dots like this:

• • • •

Bn, which has n dots, where n > 1:

• • •
4
•

Dn, which has n dots, where n > 3:

• • • •

•

•

E6, E7, and E8:

• • • • •

•

• • • • • •

•

• • • • • • •

•

F4:

• •
4
• •

G2:

•
6
•

The dots in one of these “Dynkin diagrams” correspond to certain set of basis vectors,
or “roots”, of the lattice. The lines, with their decorative numbers and arrows, give
enough information to recover the lattice from the diagram. In particular, two dots that
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are not connected by a line correspond to roots that are at a 90 degree angle from each
other, while two dots connected by an unnumbered line correspond to roots that are at
a 60 degree angle from each other. Numbered lines mean the angle between roots is
something else, and the arrows point from the longer to the shorter root in this case, as
partially explained in “Week 63”.

However, we will now concentrate on the cases A, D, and E, where all the roots are
90 or 60 degrees from each other, and they are all the same length — usually taken to
be length 2. These are the “simply laced” Dynkin diagrams. I want to explain what’s so
special about them! But first, I should describe the corresponding lattices more explicitly,
to make it clear how simple they really are.

The following information, and more, can be found in Chapter 4 of:

1) Sphere Packings, Lattices and Groups, J. H. Conway and N. J. A. Sloane, second
edition, Grundlehren der mathematischen Wissenschaften 290, Springer, Berlin,
1993.

which I described in more detail in “Week 20”.
So, what are A, D, and E like?
A. We can describe the lattice An as the set of all (n+1)-tuples of integers (x1, ..., xn+1)

such that
x1 + . . .+ xn+1 = 0.

It’s a fun exercise to show that A2 is a 2-dimensional hexagonal lattice, the sort of lattice
you use to pack pennies as densely as possible. Similarly, A3 gives a standard way of
packing grapefruit, which is in fact the densest lattice packing of spheres in 3 dimen-
sions. (Hsiang has claimed to have shown it’s the densest packing, lattice or not, but this
remains controversial.)

D. We can describe Dn as the set of all n-tuples of integers (x1, ..., xn) such that

x1 + . . .+ xn is even.

Or, if you like, you can imagine taking an n-dimensional checkerboard, coloring the
cubes alternately red and black, and taking the center of each red cube. In four di-
mensions, D4 gives a denser packing of spheres than A4; in fact, it gives the densest
lattice packing possible. Moreover, D5 gives the densest lattice packing of in dimension
5. However, in dimensions 6, 7, and 8, the En lattices are the best!

E. We can describe E8 as the set of 8-tuples (x1, ..., x8) such that the xi are either all
integers or all half-integers — a half-integer being an integer plus 1/2 — and

x1 + . . .+ x8 is even.

Each point has 240 closest neighbors. Alternatively, as described in “Week 20”, we can
describe E8 in a slick way in terms of the quaternions. Another neat way to think of E8

is in terms of the octonions! Not too surprising, perhaps, since the octonions and E8 are
both 8-dimensional, but it’s still sorta neat. For the details, check out

2) Geoffrey Dixon, “Octonion X-product and E8 lattices”, preprint available as hep-th/
9411063.
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Briefly, this goes as follows. In “Week 59” we described a multiplication table for
the “seven dwarves” — a basis of the imaginary octonions — but there are lots of other
multiplication tables that would also give an algebra isomorphic to the octonions. Given
any unit octonion a, we can define an “octonion ×-product” as follows:

b× c = (ba)(a∗c)

where a∗ is the conjugate of a (as defined in “Week 59”) and the product on the right-
hand side is the usual octonion product, parenthesized because it ain’t associative. For
exactly 480 choices of the unit octonion a, the ×-product gives us a new multiplication
table for the seven dwarves, such that we get an algebra isomorphic to the octonions
again! 240 of these choices have all rational coordinates (in terms of the seven dwarves),
and these are precisely the 240 closest neighbors of the origin in a copy of the E8 lattice!
The other 240 have all irrational coordinates, and these are the closest neighbors to the
origin of a different copy of the E8 lattice. (Here we’ve rescaled the E8 lattice so the
nearest neighbors have distance 1 from the origin, instead of

√
2 as above.)

Once we have E8 in hand, we can get its little pals E7 and E6 as follows. To get
E7, just take all the vectors in E8 that are perpendicular to some closest neighbor of the
origin. To get E6, find a copy of the lattice A2 in E8 (there are lots) and then take all the
vectors in E8 perpendicular to everything in that copy of A2.

So, now that we have a nodding acquaintance with A, D, and E, let me describe some
of the many places they show up. First, what’s so great about these lattices, apart from
the fact that they’re the root lattices of simple Lie algebras, with a special “simply-laced”
property? I don’t think I really understand the answer to this in a deep way, but I know
various things to say!

First, Witt’s theorem says that the A, D, and E lattices and their direct sums are the
only integral lattices having a basis consisting of vectors v with ‖v‖2 = 2. Here a lattice
is “integral” if the dot product of any two vectors in it is an integer. In fact, any integral
lattice having a basis consisting of vectors with ‖v‖2 equal to 1 or 2 is a direct sum of
copies of A, D, and E lattices and the integers, thought of as a 1-dimensional lattice.

This makes ADE classifications pop up in various places in math and physics. For ex-
ample, there is a cool relationship between the ADE diagrams and the symmetry groups
of the Platonic solids, called the McKay correspondence. Briefly, this is what you do to
get it. First, learn about SO(3) and SU(2) from “Week 61” or somewhere. Then, take the
symmetry group of a Platonic solid, or more generally any finite subgroup G of SO(3).
Since SO(3) has SU(2) as a double cover, you can get a double cover of G, say G̃, sitting
inside SU(2). For example, if G was the symmetry group of the icosahedron, G̃ would
be the icosians (see “Week 24”).

Since G̃ is finite, it has finitely many irreducible representations. Draw a dot for
each of the irreducible representations. One of these will be 2-dimensional, coming from
the spin-1/2 representation of SU(2). Now, when you tensor this 2d rep with any other
irreducible rep R, you get a direct sum of irreducible reps; draw one line from the dot
for R to each other dot for each time that other irreducible rep appears in this direct
sum. What do you get? Well, you get an “affine Dynkin diagram” of type A, D, or E,
which is like the usual Dynkin diagram but with an extra dot thrown in (corresponding
to the trivial rep of G̃). And, you get all of them this way!

In fact, playing around with this stuff some more, you can get the affine Dynkin
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diagrams of the other simple Lie algebras. There is a lot more to this. . . you should
probably look at:

3) John McKay, “Graphs, singularities and finite groups”, in Proc. Symp. Pure Math.
vol 37, Amer. Math. Soc. (1980), pages 183– and 265–.

John McKay, “Representations and Coxeter Graphs”, in The Geometric Vein Coxeter
Festschrift (1982), Springer-Verlag, Berlin, pages 549–.

John McKay, A rapid introduction to ADE theory, http://math.ucr.edu/home/

baez/ADE.html

4) Pavel Etinghof and Mikhail Khovanov, Representations of tensor categories and
Dynkin diagrams, preprint available as hep-th/9408078.

McKay does lots of other mindblowing group theory. He’s clearly in tune with the
symmetries of the universe. . . and occaisionally he deigns to post to the net! A beautiful
way of thinking about the McKay correspondence in terms of category theory appears in
the paper by Etinghof and Khovanov; what we are really doing, it turns out, is classifying
the representations of the tensor category of unitary representations of SU(2). This ten-
sor category is generated by one object, the spin-1/2 representation, meaning that every
other representation sits inside some tensor power of that one. This way of thinking of
it is important in

5) Jurg Froehlich and Thomas Kerler, Quantum Groups, Quantum Categories, and
Quantum Field Theory, Springer Lecture Notes in Mathematics 1542, Springer-
Verlag, Berlin, 1991.

Here Froehlich and Kerler give a classification of certain “quantum categories” that
show up in conformal field theory and topological quantum field theory. These are cer-
tain braided tensor categories with properties like those of the categories of representa-
tions of quantum groups at roots of unity. In such categories, every object has a “quantum
dimension”, which need not be integral, and Froehlich and Kerler concentrate on those
categories which are generated by a single object of quantum dimension less than 2,
getting an ADE-type classification of them. The category of representations of SU(2), on
the other hand, is generated by a single object of dimension equal to 2 — the spin-1/2
representation — so Froehlich and Kerler are basically generalizing the McKay stuff to
certain quantum groups related to SU(2).

Where else do ADE diagrams show up? Well, here I won’t try to say anything about
their role in the representation theory of “quivers”, or in singularity theory; these are
covered pretty well in

6) M. Hazewinkel, W. Hesselink, D. Siermsa, and F. D. Veldkamp, “The ubiquity of
Coxeter-Dynkin diagrams (an introduction to the ADE problem)”, Niew. Arch.
Wisk., 25 (1977), 257–307.

Instead, I’ll mention something more recent. In string theory, there is a Lie algebra
called the Virasoro algebra that plays a crucial role; its almost just the Lie algebra of the
group of diffeomorphisms of the circle, but it’s actually just one dimension bigger, being
a “central extension” thereof; projective representations of the Lie algebra of the group
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of diffeomorphisms of the circle correspond to honest representations of the Virasoro
algebra. An important task in string theory was to classify the unitary representations of
the Virasoro algebra having a given “central charge” c (this describes the action of that
one extra dimension) and “conformal weight” h (this describes the action of dilations).
It turns out that to get unitary reps one needs c and h to be nonnegative. The represen-
tations with c between 0 and 1 are especially nice, for reasons I don’t really understand,
and they are called “minimal models”. An ADE classification of these was conjectured by
Capelli and Zuber, and proved by

7) Capelli and Zuber, Comm. Math. Phys. 113 (1987) 1.

8) Kato, Mod. Phys. Lett. A2 (1987) 585.

Friedan, Qiu, and Shenker also played a big role in this, in part by figuring out the
allowed values of c. For a good introduction to this stuff and what it has to do with
honest physics (which I admit I’ve been slacking off on here), try:

9) Claude Itzykson and Jean-Michel Drouffe, Statistical Field Theory, 1: From Brown-
ian Motion to Renormalization and Lattice Gauge Theory, and 2: Strong Coupling,
Monte Carlo Methods, Conformal Field Theory and Random Systems. Cambridge U.
Press, 1989.

I will probably come back to this ADE stuff as time goes by, since I’m sort of fascinated
by it, and hopefully folks can refer back to the last few weeks when I do, so they’ll re-
member what I’m talking about. But in the next few Weeks I want to catch up with some
new developments in math and physics that have happened in the last few months. . .

A mathematician, like a painter or poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made with ideas - Godfrey Hardy
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Week 66

October 10, 1995

Well, I want to get back to talking about some honest physics, but I think this week I
won’t get around to it, since I can’t resist mentioning two tidbits of a more mathematical
sort. The first one is about π, and the second one is about the Monster. The second one
does have a lot to do with string theory, if only indirectly.

First, thanks to my friend Steven Finch, I just found out that Simon Plouffe, Peter
Borwein and David Bailey have computed the ten billionth digit in the hexadecimal (i.e.,
base 16) expansion of π. They use a wonderful formula which lets one compute a given
digit of π in base 16 without needing to compute all the preceding digits! Namely, π is
the sum from n = 0 to∞ of[

4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

]
1

16n

Since the quantity in square brackets is not an integer, it requires cleverness to use this
formula to get a given digit of π, but they figured out a way. Moreover, their method
generalizes to a variety of other constants. If you can use the World-Wide Web, try the
following sites:

1) “The ten billionth hexadecimal digit of π is 9”, by Simon Plouffe, http://groups.
google.com/groups?selm=451p8p%24qcr%40morgoth.sfu.ca&output=gplain

2) David Bailey, Peter Borwein and Simon Plouffe, “On the rapid computation of var-
ious polylogarithmic constants”, available in postscript form from http://www.

cecm.sfu.ca/personal/pborwein/PISTUFF/Apistuff.html

3) “The miraculous Bailey-Borwein-Plouffe π algorithm”, by Steven Finch, http://
www.lacim.uqam.ca/~plouffe/Simon/Miraculous.pdf

The first one is an announcement that appeared on sci.math, and lists the billionth
digits of π2, ln(2), and some other constants. The second one has the details. The third
one gives a good overview of what’s up.

Can we hope for a similar formula in base 10? More importantly, could these ideas
let us prove that π is “normal”, that is, that every possible string of digits appears in it
with the frequency one would expect of a “random” number? It seems that this would
be a natural avenue of attack.

Next, a tidbit of a more erudite sort concerning the elusive Monster manifold. Recall
from “Week 63” and “Week 64” that the compact simple Lie groups can classified into 4
infinite families and 5 exceptions. I have always been puzzled by these “exceptional Lie
groups”, so I tried to explain a bit about how they are related to some other “exceptional
structures” in mathematics, such as the icosahedron and the octonions. In physics, Wit-
ten has suggested that the correct theory of our universe might also be an exceptional
structure of some sort. This idea has found some support in string theory, which uses the
exceptional Lie group E8 and other structures I’ll mention a bit later. In a more hand-
waving way, one may argue that the theory of our universe must be incredibly special,
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since out of all the theories we can write down, just this one describes the universe that
actually exists. All sorts of simpler universes apparently don’t exist. So maybe the theory
of the universe needs to use special, “exceptional” mathematics for some reason, even
though it’s complicated.

Anyway, as a hard-nosed mathematician, vague musings along these lines get tire-
some to me rather quickly. Instead, what interests me most about this stuff is the whole
idea of “exceptional structures” — symmetrical structures that don’t fit into the neat reg-
ular families in classification theorems. The remarkable fact is that many of them are
deeply related. As Geoffrey Dixon put it to me, they seem to have a “holographic” qual-
ity, meaning that each one contains in encoded form some of the information needed to
construct all the rest! It thus seems pointless to hope that one is “the explanation” for
the rest, but I would still like some conceptual “explanation” for the whole collection of
them — though I have no idea what it should be.

Surely a clue must lie in the theory of finite simple groups. Just as the simple Lie
groups are the building blocks of the theory of continuous symmetries, these are the
building blocks of the theory of discrete — indeed finite — symmetries. More precisely
“finite simple” group is a group G with finitely many elements and no normal subgroups,
that is, no nontrivial subgroups H such that h in H implies ghg−1 in H for all g in G.
This condition means that you cannot form the “quotient group” G/H, which one can
think of as a “more simplified” version of G.

The classification of the finite simple groups is one of remarkable achievements of
20th-century mathematics. The entire proof of the classification theorem is estimated to
take 10,000 pages, done by many mathematicians. To start learning about it, try:

4) Ron Solomon, “On finite simple groups and their classification”, AMS Notices Vol.
45, February 1995, 231–239.

and the references therein. Again, there are some infinite families and 26 exceptions
called the “sporadic” groups. The biggest of these is the Monster, with

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

= 808017424794512875886459904961710757005754368000000000

elements. It is a kind of Mt. Everest of the sporadic groups, and all the routes to it I know
involve a tough climb through all sorts of exceptional structures: E8 (see “Week 65”),
the Leech lattice (see “Week 20”), the Golay code, the Parker loop, the Griess algebra,
and more. I certainly don’t understand this stuff. . . .

Even before the Monster was proved to exist, it started casting its enormous shadow
over mathematics. For example, consider the theory of modular functions. What are
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those? Well, consider a lattice in the complex plane, like

<(z)

=(z)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

These are important in complex analysis, as described in “Week 13”. To describe one of
these you can specify two “periods” ω1 and ω2, complex numbers such that every point
in the lattice of the form

nω1 +mω2.

But this description is redundant, because if we choose instead to use

ω′1 = aω1 + bω2

ω′2 = cω1 + bω2

we’ll get the same lattice as long as the matrix of integers(
a b
c d

)
is invertible and its inverse also consists of integers. These transformations preserve the
“handedness” of the basis ω1, ω2 if they have determinant 1, and that’s generally a good
thing to require. The group of 2×2 invertible matrices over the integers with determinant
1 is called SL(2,Z), or the “modular group” in this context. I said a bit about it and its
role in string theory in “Week 64”.

Now, if we are only interested in parametrizing the different shapes of lattices, where
two rotated or dilated versions of the same lattice count as having the same shape, it
suffices to use one complex number, the ratio

τ =
ω1

ω2
.

We might as well assume τ is in the upper halfplane, H, while we’re at it. But for the
reason given above, this description is redundant; if we have a lattice described by τ ,
and a matrix in SL(2,Z), we get a new guy τ ′ which really describes the same shaped
lattice. If you work it out,

τ ′ =
aτ + b

cτ + d
.
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So the space of different possible shapes of lattices in the complex plane is really the
quotient

H/SL(2,Z).

Now, a function on this space is just a function of τ that doesn’t change when you replace
τ by τ ′ as above. In other words, it’s basically just a function depending only on the shape
of a 2d lattice. Now it turns out that there is essentially just one “nice” function of this
sort, called j; all other “nice” functions of this sort are functions of j. (For experts, what
I mean is that the meromorphic SL(2,Z)-invariant functions on H union the point at
infinity are all rational functions of this function j.)

It looks like this:

j(τ) = q−1 + 744 + 196884q + 21493706q2 + . . .

where q = exp(2πiτ). In fact, starting from a simple situation, we have quickly gotten
into quite deep waters. The simplest explicit formula I know for j involves lattices in
24-dimensional space! This could easily be due to my limited knowledge of this stuff,
but it suits my present purpose: first, we get a vague glimpse of where E8 and the Leech
lattice come in, and second, we get a vague glimpse of the mysterious significance of the
numbers 24 and 26 in string theory.

So what is this j function, anyway? Well, it turns out we can define it as follows.
First form the Dedekind eta function

η(q) = q
1
24

∞∏
n=1

(1− qn).

This is not invariant under the modular group, but it transforms in a pretty simple way.
Then take the E8 lattice — remember, that’s a very nice lattice in 8 dimensions, in fact
the only “even unimodular” lattice in 8 dimensions, meaning that the inner product of
any two vectors in the lattice is even, and the volume of each fundamental domain in it
equals 1. Now take the direct sum of 3 copies of E8 to get an even unimodular lattice L
in 24 dimensions. Then form the theta function

θ(q) =
∑
x∈L

q〈x,x〉/2.

In other words, we take all lattice points x and sum q to the power of their norm squared
over 2. Now we have

j(τ) =
θ(q)

η(q)24

Quite a witches’ brew of a formula, no? If someone could explain to me the deep
inner reason for why this works, I’d be delighted, but right now I am clueless. I will
say this, though: we could replace L with any other even unimodular lattice in 24 di-
mensions and get a function differing from j only by a constant. Guess how many even
unimodular lattices there are in 24 dimensions? Why, 24, of course! These “Niemeier lat-
tices” were classified by Niemeier in 1968. All but one of them have vectors with length
squared equal to 2, but there is one whose shortest vector has length squared equal to
4, and that’s the Leech lattice. This one has a very charming relation to 26-dimensional
spacetime, described in “Week 20”.
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Since the constant term in j can be changed by picking different lattices in 24 di-
mensions, and constant functions aren’t very interesting anyway, we can say that the
first interesting coefficient in the above power series for j is 196884. Then, right around
when the Monster was being dreamt up, McKay noticed that the dimension of its small-
est nontrivial representation, namely 196883, was suspiciously similar. Coincidence?
No. It turns out that all the coefficients of j can be computed from the dimensions of
the irreducible representations of the Monster! Similarly, Ogg noticed in the study of the
modular group, the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59 and 71 play
a special role. He went to a talk on the Monster and noticed the “coincidence”. Then
he wrote a paper offering a bottle of Jack Daniels to anyone who could explain it. This
was the beginning of a subject called “Monstrous Moonshine”. . . the mysterious relation
between the Monster and the modular group.

Well, as it eventually turned out, one way to get ahold of the Monster is as a group
of symmetries of a certain algebra of observables for a string theory, or more precisely, a
“vertex operator algebra”:

5) Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex Operator Algebras and
the Monster, Academic Press, Boston, 1988.

The relation of string theory to modular invariance and 26 dimensional spacetime
then “explains” some of the mysterious stuff mentioned above. (By the way, the authors
of the above book say the fact that there are 26 sporadic finite simple groups is just a
coincidence. I’m not so sure myself. . . not that I understand any of this stuff, but it’s just
too spooky how the number 26 keeps coming up all over!)

Anway, now let me fast-forward to some recent news. I vaguely gather that people
would like to explain the relation between the Monster and string theory more deeply,
by finding a 24-dimensional manifold having the Monster as symmetries, and cooking
up a field theory of maps from the string worldsheet to this “Monster manifold”, so that
the associated vertex operator algebra would have a good reason for having the Monster
as symmetries. Apparently Hirzebruch has offered a prize for anyone who could do this
in a nice way, by finding a “24-manifold with p1 = 0 whose Witten genus is (j − 744)∆”
on which the Monster acts. Recently, Mike Hopkins at MIT and Mark Mahowald at
Northwestern have succeeded in doing the first part, the part in quotes above. They
haven’t gotten a Monster action yet. Their construction uses a lot of homotopy theory.

I don’t have much of a clue about any of this stuff, but Allen Knutson suggests that I
read

6) Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular
forms, translated by Peter S. Landweber, pub. Braunschweig, Vieweg, 1992.

for more about this “Witten genus” stuff. He also has referred me to the following
articles by Borcherds:

7) Richard E. Borcherds, “The Monster Lie-algebra”, Adv. Math. 83 (1990), 30–47.

Richard E. Borcherds, “Monstrous Moonshine and monstrous Lie-superalgebras”,
Invent. Math. 109 (1992), 405–444.

For your entertainment and edification I include the abstract of the second one below:
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We prove Conway and Norton’s moonshine conjectures for the infinite dimen-
sional representation of the monster simple group constructed by Frenkel, Lep-
owsky and Meurman. To do this we use the no-ghost theorem from string the-
ory to construct a family of generalized Kac-Moody superalgebras of rank 2,
which are closely related to the monster and several of the other sporadic sim-
ple groups. The denominator formulas of these superalgebras imply relations
between the Thompson functions of elements of the monster (i.e. the traces of
elements of the monster on Frenkel, Lepowsky, and Meurman’s representation),
which are the replication formulas conjectured by Conway and Norton. These
replication formulas are strong enough to verify that the Thompson functions
have most of the “moonshine” properties conjectured by Conway and Norton,
and in particular they are modular functions of genus 0. We also construct a
second family of Kac-Moody superalgebras related to elements of Conway’s spo-
radic simple group Co1. These superalgebras have even rank between 2 and
26; for example two of the Lie algebras we get have ranks 26 and 18, and one
of the superalgebras has rank 10. The denominator formulas of these algebras
give some new infinite product identities, in the same way that the denominator
formulas of the affine Kac-Moody algebras give the Macdonald identities.
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Week 67

October 23, 1995

I’m pretty darn busy now, so the forthcoming Weeks will probably be pretty hastily writ-
ten. This time I’ll mainly write about quantum gravity.

1) Margaret Wertheim, Pythagoras’ Trousers: God, Physics, and the Gender Wars, Times
Books/Random House, New York, 1995.

I enjoyed this book, despite or perhaps because of the fact that it may annoy lots
of physicists. It notes that, starting with Pythagoras, theoretical physics has always had
a crypto-religious aspect. With Pythagoras it was obvious; he seems to have been the
leader of a special sort of religious cult. With people like Kepler, Newton and Einstein it
is only slightly less obvious. The operative mythology in every case is that of the mage.
Think of Einstein, stereotypically with long white hair (though most of best work was
actually done before his hair got white), a powerful but benign figure devoted to finding
out “the thoughts of God”. The mage, of course, is typically male, and Wertheim argues
that this makes it harder for women to become physicists. (A lot of the same comments
would apply to mathematics.) It is not a very scholarly book, but I wouldn’t dismiss it.

2) Stephen W. Hawking, Virtual black holes, available as hep-th/9510029.

Hawking likes the “Euclidean path-integral approach” to quantum gravity. The word
“Euclidean” is a horrible misnomer here, but it seems to have stuck. It should really
read “Riemannian”, the idea being to replace the Lorentzian metric on spacetime by
one in which time is on the same footing as space. One thus attempts to compute an-
swers to quantum gravity problems by integrating over all Riemannian metrics on some
4-manifold, possibly with some boundary conditions. Of course, this is tough — impos-
sible so far — to make rigorous. But Hawking isn’t scared; he also wants to sum over all
4-manifolds (possibly having a fixed boundary). Of course, to do this one needs to have
some idea of what “all 4-manifolds” are. Lots of people like to consider wormholes,
which means considering 4-manifolds that aren’t simply connected. Here, however,
Hawking argues against wormholes, and concentrates on simply-connected 4-manifolds.
He writes: “Barring some pure mathematical details, it seems that the topology of sim-
ply connected four-manifolds can be essentially represented by gluing together three
elementary units, which I call bubbles. The three elementary units are S2 × S2, CP2,
and K3. The latter two have orientation reversed versions, −CP2 and −K3. S2 × S2 is
just the product of the 2-dimensional sphere with itself, and he argues that this sort of
bubble corresponds to a virtual black hole pair. He considers the effect on the Euclidean
path integral when you have lots of these around (i.e., when you take the connected
sum of S4 with lots of these). He argues that particles scattering off these lose quantum
coherence, i.e., pure states turn to mixed states. And he argues that this effect is very
small at low energies except for scalar fields, leading him to predict that we may never
observe the Higgs particle! Yes, a real honest particle physics prediction from quantum
gravity! As he notes,”unless quantum gravity can make contact with observation, it will
become as academic as arguments about how many angels can dance on the head of a
pin“. I suspect he also realizes that he’ll never get a Nobel prize unless he goes out on a
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limb like this. He also gives an argument for why the”θ angle” measuring CP violation
by the strong force may be zero. This parameter sits in front of a term in the Standard
Model Lagrangian; there seems to be no good reason for it to be zero, but measurements
of the neutron electric dipole moment show that it has to be less than 10−9, according
to the following book. . .

3) Kerson Huang, Quarks, Leptons, and Gauge Fields, World Scientific Publishing Co.,
Singapore, 1982.

Perhaps there are better bounds now, but this book is certainly one of the nicest
introductions to the Standard Model, and if you want to learn about this “θ angle” stuff,
it’s a good place to start.

Anyway, rather than going further into the physics, let me say a bit about the “pure
mathematical details”. Here I got some help from Greg Kuperberg, Misha Verbitsky, and
Zhenghan Wang (via Xiao-Song Lin, a topologist who is now here at Riverside). Needless
to say, the mistakes are mine alone, and corrections and comments are welcome!

First of all, Hawking must be talking about homeomorphism classes of compact ori-
ented simply-connected smooth 4-manifolds, rather than diffeomorphism classes, be-
cause if we take the connected sum of 9 copies of CP2 and one of −CP2, that has in-
finitely many different smooth structures. Why the physics depends only on the homeo-
morphism class is beyond me. . . maybe he is being rather optimistic. But let’s follow suit
and talk about homeomorphism classes. Folks consider two cases, depending on whether
the intersection form on the second cohomology is even or odd. If our 4-manifold has an
odd intersection form, Donaldson showed that it is an connected sum of copies of CP2

and −CP2. If its intersection form is even, we don’t know yet, but if the “11/8 conjec-
ture” is true, it must be a connected sum of K3’s and S2 × S2’s. Here I cannot resist
adding that K3 is a 4-manifold whose intersection is E8 ⊕ E8 ⊕H ⊕H ⊕H, where H is
the 2× 2 matrix (

0 1
0 1

)
and E8 is the nondegenerate symmetric 8 × 8 matrix describing the inner products of
vectors in the wonderful lattice, also called E8, which I discussed in “Week 65”! So E8

raises its ugly head yet again. . . . By the way, H is just the intersection form of S2 × S2,
while the intersection form of CP2 is just the 1× 1 matrix (1).

Even if the 11/8 conjecture is not true, we could if necessary resort to Wall’s theo-
rem, which implies that any 4-manifold becomes homeomorphic — even diffeomorphic
— to a connected sum of the 5 basic types of “bubbles” after one takes its connected sum
with sufficiently many copies of S2 × S2. This suggests that if Euclidean path integral is
dominated by the case where there are lots of virtual black holes around, Hawking’s ar-
guments could be correct at the level of diffeomorphism, rather than merely homeomor-
phism. Indeed, he says that “in the wormhole picture, one considered metrics that were
multiply connected by wormholes. Thus one concentrated on metrics [I’d say topolo-
gies!] with large values of the first Betti number[. . . .] However, in the quantum bubbles
picture, one concentrates on spaces with large values of the second Betti number.”

4) Ted Jacobson, “Thermodynamics of spacetime: the Einstein equation of state”,
available as gr-qc/9504004.
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Well, here’s another paper on quantum gravity, also very good, which seems at first
to directly contradict Hawking’s paper. Actually, however, I think it’s another piece in
the puzzle. The idea here is to derive Einstein’s equation from thermodynamics! More
precisely, “The key idea is to demand that this relation hold for all the local Rindler causal
horizons through each spacetime point, with [the change in heat] and [the temperature]
interpreted as the energy flux and Unruh temperature seen by an accelerated observer
just inside the horizon. This requires that gravitational lensing by matter energy distorts
the causal structure of spacetime in just such a way that the Einstein equation holds”.
It’s a very clever mix of classical and quantum (or semiclassical) arguments. It suggests
that all sorts of quantum theories on the microscale could wind up yielding Einstein’s
equation on the macroscale.

5) Lee Smolin, “The Bekenstein bound, topological quantum field theory and plural-
istic quantum field theory”, available as gr-qc/9508064.

This is a continued exploration of the themes of Smolin’s earlier paper, reviewed in
“Week 56” and “Week 57”. Particularly interesting is the general notion of “pluralistic
quantum field theory”, in which different observers have different Hilbert spaces. This
falls out naturally in the n-categorical approach pursued by Crane (see “Week 56”),
which I am also busily studying.

6) Rodolfo Gambini, Octavio Obregon and Jorge Pullin, “Towards a loop representa-
tion for quantum canonical supergravity”, available as hep-th/9508036.

Some knot theorists and quantum group theorists had better take a look at this! This
paper considers the analog of SU(2) Chern-Simons theory where you use the supergroup
GSU(2), and perturbatively work out the skein relations of the associated link invariant
(up to a certain low order in ~). If someone understood the quantum supergroup “quan-
tum GSU(2)”, they could do this stuff nonperturbatively, and maybe get an interesting
invariant of links and 3-manifolds, and make some physicists happy in the process.

7) Roh Suan Tung and Ted Jacobson, “Spinor one-forms as gravitational potentials”,
available as gr-qc/9502037.

This paper writes out a new Lagrangian for general relativity, closely related to the
action that gives general relativity in the Ashtekar variables. It’s incredibly simple and
beautiful! I am hoping that if I work on it someday, it will explain to me the mysterious
relation between quantum gravity and spinor fields (see the end of “Week 60”).

8) Joseph Polchinski and Edward Witten, “Evidence for heterotic — type I string du-
ality”, available as hep-th/9510169.

I’m no string theorist, so I’ve been lagging vastly behind the new work on “dualities”
that has revived interest in the subject. Roughly speaking, though, it seems folks have
discovered a host of secret symmetries relating superficially different string theories. . .
making them, in some deeper sense, the same. The heterotic and type I strings are two of
the most famous string theories, so if they were really equivalent as this paper suggests,
it would be very interesting.
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Week 68

October 29, 1995

Okay, now the time has come to speak of many things: of topoi, glueballs, communica-
tion between branches in the many-worlds interpretation of quantum theory, knots, and
quantum gravity.

1) Robert Goldblatt, Topoi: the Categorial Analysis of Logic, Studies in logic and the
foundations of mathematics vol. 98, North-Holland, New York, 1984.

If you’ve ever been interested in logic, you’ve got to read this book. Unless you
learn a bit about topoi, you are really missing lots of the fun. The basic idea is simple
and profound: abstract the basic concepts of set theory, so as to define the notion of a
“topos”, a kind of universe like the world of classical logic and set theory, but far more
general!

For example, there are “intuitionistic” topoi in which Brouwer reigns supreme —
that is, you can’t do proof by contradiction, you can’t use the axiom of choice, etc..
There is also the “effective topos” of Hyland in which Turing reigns supreme — for
example, the only functions are the effectively computable ones. There is also a “finitary”
topos in which all sets are finite. So there are topoi to satisfy various sorts of ascetic
mathematicians who want a stripped-down, minimal form of mathematics.

However, there are also topoi for the folks who want a mathematical universe with
lots of horsepower and all the options! There are topoi in which everything is a function
of time: the membership of sets, the truth-values of propositions, and so on all depend
on time. There are topoi in which everything has a particular group of symmetries. Then
there are really high-powered things like topoi of sheaves on a category equipped with a
Grothendieck topology. . . .

And so on: not an attempt to pick out “the” universe of logic and mathematics, but
instead, an effort to systematically examine a bunch of them and how they relate to each
other. The details can be intimidating, but Goldblatt explains them very nicely. A glance
at the subject headings reveal some of the delights in store: “elementary truth”, “local
truth”, “geometric logic”, etc..

What is a topos, precisely? Well, most people would need to limber up a little bit
before getting the precise definition. . . so let me just start you off with some mental
stretching exercises. In classical logic we are used to working with two truth values,
True and False. Let’s call the set of truth values Ω, just to make it sound impressive —
and because it’s traditional in topos theory. So, we are used to doing all our logic with

Ω = {True,False}.

In set theory, one of the things we do with Ω is describe subsets of a given set X. In
other words, to describe a subset Y of X, we can say for each member of X, whether it
is True or False that it is a member of Y . Thus we can describe the subset Y by giving a
function

f : X → Ω.

We say x is in Y if f(x) = True, but x is not in Y if f(x) = False.
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Now say we wanted to describe a topos of “time-dependent sets”. But instead of
“time-dependent sets”, let’s act like topos theorists and call them simply “objects”, and
instead of talking about one being a “subset” of another, let’s say one is a “subobject” of
another. To keep life simple, let’s consider only two times: today and tomorrow. So we
can think of an object X in this topos as a pair (X1, X2) of sets: one set X1 today, and
another set X2 tomorrow. We say that an object Y is a “subobject” of X if Y1 is a subset
of X1 and Y2 is a subset of X2. The idea is that we want Y to be contained in X both
today and tomorrow.

Now, to describe a subobject Y of X, we can what’s in Y today, and also what’s in Y
tomorrow. We would like to do so using some kind of function, or what topos theorists
call a “morphism”,

f : X → Ω.

Clearly we can’t do this with our old truth values set {True,False}. Instead, we should
use a truth values object Ω that keeps track of what’s true or false today and what’s true
or false tomorrow. In other words, Ω should now be the pair of sets

({True,False}, {True,False})

Now what is that “morphism” f exactly? Well, it’s like one function today and another
function tomorrow, or in other words, a pair of functions! In general, a morphism f : S →
T between objects in this topos is a pair of functions (f1, f2), with f1 : S1 → T1 and
f2 : S2 → T2. Then in our particular case, the morphism f : X → Ω will say which
elements of X1 are in Y1, and which elements of X2 are in Y2.

This is a pretty simple example of what the objects and morphisms in a topos can
be like. They can be a lot weirder. The key thing is that you can do a lot of the same
things with them that you can do with sets and functions. Also, you can do a lot of the
same things with Ω that you can with {True,False}. Note that in our example, like in
the classical example where Ω = {True,False}, the subobject classifier has a bunch of
logical operations on it: morphisms like

Not: Ω→ ΩAnd : Ω× Ω→ ΩOr: Ω× Ω→ Ω

and so on. In our example, and in the classical example, these make Ω into what folks
call a boolean algebra. Basically, all the usual rule of logic apply. In general, though,
Ω only needs to be a Heyting algebra. This is more general than a boolean algebra,
and it can be sort of intuitionistic in flavor; for example, NotNot doesn’t need to equal
the identity morphism 1: Ω → Ω, so proof by contradiction doesn’t necessarily work.
A typical example of a Heyting algebra Ω is the set of open sets in a topological space,
with And and Or being intersection and union, and with Not being the interior of the
complement. This gives a little hint as to what topoi have to do with topology.

After studying this sort of thing a while, it’s rather hard to go on pretending that the
Zermelo-Fraenkel axioms of set theory, which were cooked up in the early 20th century
to escape the logical paradoxes of Russell and others, are the last word on “foundations”.
One can develop topos theory within set theory if one wishes, but one can also set up
topos theory from scratch, as a kind of pluralistic foundation of mathematics.

For a deeper but still friendly and expository introduction to topoi, try

2) Saunders Mac Lane and Ieke Moerdijk, Sheaves in Geometry and Logic: A First
Introduction to Topos Theory, Springer-Verlag, New York, 1992.
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Here you can learn about “Brouwer’s theorem: all functions are continuous” (in a
suitably intuitionistic topos, of course). You can also learn topos-theoretic versions of Co-
hen’s proofs of the independence of the continuum hypothesis and the axiom of choice.

Goldblatt’s book teaches you all the category theory you need to learn about topoi. . .
but for people who already know some category theory, let me give the precise definition
of a topos (or more precisely, an elementary topos, to distinguish it from a “Grothendieck
topos”): it’s a category with finite limits and power objects. This automatically implies a
lot of things, such as the existence of the subobject classifier Ω that I was talking about.

To get deeper into topos theory, try:

3) Michael Barr and Charles Wells, Toposes, Triples and Theories, Springer-Verlag, New
York, 1983. Available for free electronically at http://www.cwru.edu/artsci/

math/wells/pub/ttt.html

Now let me catch up on some things more directly related to physics:

4) Frank Close, “Are glueballs and hybrids found?”, available as hep-ph/9509245. To
appear in Proceedings of Hadron95.

J. Sexton, A. Vaccarino, D. Weingarten, “Numerical evidence for the observation of a
scalar glueball”, available as hep-lat/9510022.

Thanks go to Greg Kilcup for bringing these to my attention. Have they found a
glueball??? That would be really exciting. What’s a glueball, you ask? Well, quantum
chromodynamics, our best theory of the strong force, says that that the strong force is
carried by particles called “gluons”. Like electromagnetism, the strong force is a gauge
field, but it’s a nonabelian gauge field, so the gluons themselves have charge, or “color”.
Thus they interact in a nonlinear way. This is what lets them bind together quarks in such
a tight way. But perhaps, in addition to pairs of quarks and antiquarks held together by
gluons — i.e., mesons — and triples of quarks held together by gluons — i.e., baryons
— there could be short-lived assemblages consisting entirely of gluons, held together by
their self-interactions. These are called glueballs, but we don’t know if these exist.

However, to my surprise, it turns out that there are now some candidates out there!
The first paper suggests that the f0(1500), a neutral spin-zero particle with mass around
1500 MeV, is a glueball. The second paper argues instead that this is basically a quark-
antiquark pair (made of a strange quark and a strange antiquark. . . where “strange”
is the technical name for one of the 6 quarks!). It presents evidence from a numerical
simulation and argues that the “θ” or fJ(1710), a neutral particle with even spin and
mass 1710 MeV, is a glueball. Part of the subtlety here is that, thanks to the superposition
principle, there is not a perfectly sharp distinction between a glueball with some virtual
quark-antiquark pairs in it, and a quark-antiquark pair with a bunch of virtual gluons in
it. There can be “hybrids” that are a bit of both a linear combination of a meson and a
glueball! (This phenomenon of “hybridization” is also familiar in chemistry.)

It’s tough to do nonperturbative computations in nonlinear gauge field theories —
basically one needs to approximately compute a path integral, using Monte Carlo tech-
nique, approximating spacetime by a lattice (in this case, a 16 × 16 × 16 × 24 lattice).
Computing the properties of a glueball and matching it with an experimentally observed
particle would be a marvelous confirmation of quantum chromodynamics. In addition,
I find there to be something charming about the idea that in a nonabelian gauge theory
we could have a particle made simply of the gauge field itself.
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5) R. Plaga, “Proposal for an experimental test of the many-worlds interpretation of
quantum mechanics”, preprint available as quant-ph/9510007.

John Gribbin brought this one to my attention and asked me what I thought about
it. Basically, the idea here is to isolate an ion from its environment in an “ion trap”,
and then perform a measurement on with two possible outcomes on another quantum
system, and to excite the ion only if the first outcome occurs, before the ion has had time
to “decohere” or get “entangled” with the environment. Then one checks to see if the ion
is excited. The idea is that even if we didn’t see the outcome that made us excite the ion,
we might see the ion excited, because it was excited in the other “world” or “branch”
— the one in which we did see the outcome that made us excite the ion. The author
gets fairly excited himself, suggesting that “outside physics, interworld communication
would lead to truly mind-boggling possibilities”.

Does this idea really make sense? First of all, I don’t think of this sort of thing as a test
of the many-worlds interpretation; I think that all sufficiently sensible interpretations of
quantum mechanics (not necessarily very sensible, either!) give the same concrete pre-
dictions for all experiments, when it comes to what we actually observe. They may make
us tell very different stories about what is happening behind the scenes, but not of any
testable sort. As soon as one comes up with something that makes different predictions,
I think it is (more or less by definition) not a new “interpretation” of quantum theory but
an actual new theory. And I don’t think the many-worlds interpretation is that.

So the question as I see it is simply, will this experiment work? Will we sometimes see
the ion excited even when we didn’t excite it? It seems hard; usually the decoherence
between the two “branches” prevents this kind of “inter-world communication” (not that
I’m particularly fond of this way of talking about it). What exactly is supposed to make
this case different? The problem is that the paper is quite sketchy at the crucial point. . .
just when the rabbit being pulled from the hat, as it were. I haven’t put much time into
analyzing it, but some people interested in this sort of thing might enjoy having a go at
it.

6) Nicholas Landsman, “Against the Wheeler-DeWitt equation”, preprint available as
gr-qc/9510033.

I haven’t read this one yet, but I had some nice talks with Landsman about his ideas
on quantization of constrained systems (see “Week 60”) back when I was in Cambridge,
England. Quantizing constrained systems is the main problem with the so-called “canon-
ical” approach to quantum gravity (see “Week 43”), so I was eager to see it applied to
gravity, and I guess that’s what he’s done. The title of the paper is deliberately provoca-
tive. . . hmmm, I guess I’d better read it soon! Here’s the abstract:

The ADM approach to canonical general relativity combined with Dirac’s method
of quantizing constrained systems leads to the Wheeler-DeWitt equation. A
number of mathematical as well as physical difficulties that arise in connection
with this equation may be circumvented if one employs a covariant Hamilto-
nian method in conjunction with a recently developed, mathematically rigorous
technique to quantize constrained systems using Rieffel induction. The classical
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constraints are cleanly separated into four components of a covariant momen-
tum map coming from the diffeomorphism group of spacetime, each of which
is linear in the canonical momenta, plus a single finite-dimensional quadratic
constraint that arises in any theory, parametrized or not. The new quantiza-
tion method is carried through in a minisuperspace example, and is found to
produce a “wavefunction of the universe”. This differs from the proposals of
both Vilenkin and Hartle-Hawking for a closed FRW universe, but happens to
coincide with the latter in the open case.

7) Pavel Etingof and David Kazhdan, “Quantization of Lie bialgebras, I”, preprint
available in AMSTeX form as q-alg/9506005.

“Quantization of Poisson algebraic groups and Poisson homogeneous spaces”, preprint
available in AMSTeX form as q-alg/9510020.

It sounds like Etinghof and Kazhdan are making serious progress on some questions
of Drinfeld about when you can quantize Lie bialgebras and their kin. More stuff I need
to read! I need to invent a time machine and keep running it backwards to make my
weekends longer and read this stuff!

8) Steve Carlip, “Statistical mechanics and black hole entropy”, preprint available as
gr-qc/9509024.

Claudio Teitelboim, “Statistical thermodynamics of a black hole in terms of surface
fields”, preprint available as hep-th/9510180.

Steve Carlip’s paper is a nice introduction to recent ideas, many of them his, on
deriving black hole area/entropy relations by thinking of the entropy as associated to
degrees of freedom of a field living on the event horizon. I haven’t read Teitelboim’s
paper, but it sounds related.

9) Jorge Griego, “Is the third coefficient of the Jones knot polynomial a quantum state
of gravity?”, preprint available as gr-qc/9510051.

“The Kauffman bracket and the Jones polynomial in quantum gravity”, preprint
available as gr-qc/9510050.

In the loop representation of quantum gravity, states of quantum gravity give rise
to link invariants. Which link invariants, though? The Kauffman bracket comes from a
state of quantum gravity with cosmological constant. . . that is something I understand
pretty well by now. But Gambini and Pullin also have an argument suggesting that the
second coefficient of the Jones polynomial (also known as the Arf invariant) is a state of
quantum gravity without cosmological constant. I’ve tried to make this argument more
rigorous and never succeeded. They also floated a conjecture that all the coefficients of
the Jones polynomial are states of quantum gravity. This confuses me a lot, because the
Jones polynomial depends on the orientations of the components of a link, while states
of quantum gravity should give link invariants that are independent of orientations. I
guess all the odd coefficients of the Jones polynomial are orientation dependent. Thus
I’m not shocked that Griego has done calculations indicating that the third coefficient
does not come from a state of quantum gravity.

97

https://arxiv.org/abs/q-alg/9506005
https://arxiv.org/abs/q-alg/9510020
https://arxiv.org/abs/gr-qc/9509024
https://arxiv.org/abs/hep-th/9510180
https://arxiv.org/abs/gr-qc/9510051
https://arxiv.org/abs/gr-qc/9510050


WEEK 69 NOVEMBER 11, 1995

Week 69

November 11, 1995

One of the great things about starting to work on quantum gravity was getting to know
some of the people in the field. Ever since the development of string theory and the loop
representation of quantum gravity, there has been a fair amount of interest in under-
standing how quantum theory and gravity fit together. Indeed, now that the Standard
Model seems to be giving a spectacularly accurate description of all the forces except
gravity, quantum gravity is one of the few really big mysteries left when it comes to
working out the basic laws of physics — or at least, one of the few obvious big mysteries.
(As soon as one mystery starts becoming less mysterious, new mysteries tend to become
more visible.) But back when particle physics was big business, only a few rather special
sorts of people were seriously devoted to quantum gravity. These people seem to be
often more than averagely interested in philosophy, often more interested in mathemat-
ics (which is one of the few solid handholds in this slippery subject), and always more
resigned to the fact that Nature does not reveal all her secrets very readily.

One of these folks is Chris Isham, whom I first saw at a conference in Seattle in
1991. The conference was on classical field theory but somehow he, Abhay Ashtekar,
and Renate Loll sneaked in and gave some talks on the loop representation of quantum
gravity. This is when I first became really interested in this subject, which I was later to
work on quite a bit. I remember Isham saying how he had been working on quantum
gravity for many years, and that he’d gotten used to the fact that nothing ever worked,
but that this approach seemed to be working so far. He went on to talk about work he’d
done with Ashtekar on making the loop representation rigorous, which was based on
Gelfand-Naimark spectral theory. He said that as a student, when he’d learned about this
theory, he was really excited, because it completely depends on the fact that if we have
a space X, we can think of any point x in X as a functional on the space of functions
on X, basically defining by defining x(f) to be f(x). He said this with a laugh, but I
knew what he meant, because I too had found this idea tremendously exciting when I
first learned the Gelfand-Naimark theory. I guess it’s something about how what seems
at first like some sort of bizarre joke can turn out to be very useful. . . .

Anyway, later, when I decided to work on this sort of thing and was trying to learn
more about quantum gravity, I found his review article on the problem of time (see “Week
9”) tremendously helpful, and I constantly recommend it to everyone who is trying to
get their teeth into this somewhat elusive issue. So it’s not surprising that Isham figures
prominently in the following nice popular article on the problem of time:

1) Marcia Bartusiak, “When the universe began, what time was it?”, Technology Review
(edited at the Massachusetts Institute of Technology), November/December 1995,
pp. 54-63.

If you can find this, read it: it also features Karel Kuchar and Carlo Rovelli.
This spring, I visited Isham at Imperial College in London and found him to be just

as interesting in person as in print, and not at all scary. . . a bit of an cynic about all
existing approaches to quantum gravity (probably because he sees so clearly how flawed
they all are), but thoroughly good-humored about it and perfectly open to all sorts of
ideas, even my own nutty ideas about n-categories and physics.
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Anyway, Isham has recently written a review article on quantum gravity that gives a
nice overview of the basic issues of the field:

2) C. J. Isham, “Structural issues in quantum gravity”, plenary session lecture given at
the GR14 conference, Florence, August 1995, preprint available as gr-qc/9510063.

One interesting thing about it is the emphasis on the question of whether spacetime
is really a manifold the way we all usually think, or perhaps something that just looks
like a manifold at sufficiently large distance scales. This is one of those fundamental
issues that is rather hard to make direct progress on; one has to sort of sneak up on it,
but it’s nice to see someone boldly holding the problem up for examination. Often the
most important issues are the ones everyone is scared to talk about, because they are so
intractable.

Much of Abhay Ashtekar’s early work dealt with asymptotically flat solutions of Ein-
stein’s equation, but in about 1986 he somehow invented a new formulation of general
relativity, which everyone now calls the “new variables” or “Ashtekar variables”. In terms
of these new variables general relativity looks a whole lot more like Yang-Mills theory
(the theory of all the forces except gravity), and this let Rovelli and Smolin formulate a
radical new approach to quantum gravity, the “loop representation”. (For a fun, non-
technical introduction to this, try the article by Bartusiak reviewed in “Week 10”.)

Nowadays, Ashtekar is the main person behind the drive to make the loop represen-
tation of quantum gravity into a mathematically rigorous theory. Thus it’s natural that
after that first time in Seattle I would wind up seeing him pretty often. . . first at Syra-
cuse University and then at the Center for Gravitational Physics and Geometry which he
started at Penn State. It’s really impressive how he has organized people into an effec-
tive team there. . . and how he is systematically converting people’s hopes and dreams
concerning the loop representation into a beautiful set of rigorous theorems. For a good
mathematical introduction to his program, see his paper reviewed in “Week 7”. A less
mathematical introduction is:

3) Abhay Ashtekar, “Polymer geometry at Planck scale and quantum Einstein equa-
tions”.

This will probably appear on gr-qc in a while.
I have also seen Renate Loll fairly often in the years since that Seattle conference. She

is younger than Ashtekar and Isham (in fact, she was a postdoc with Isham at one point),
hence less intimidating to me, which meant that I really enjoyed pestering her with
stupid questions when I was just starting to learn about this loop representation stuff.
One of her specialities is lattice gauge theory, and recently she has developed a lattice
version of quantum gravity that is eminently suitable for computer calculations. The last
time I saw her was at a conference in Warsaw this spring (as reported in “Week 55” and
“Week 56”). In the process of working on her lattice approach, she gave Rovelli and
Smolin a big shock by turning up an error in their computation of the volume operator
in quantum gravity. A state of quantum gravity can be visualized roughly as a graph
embedded in space, with edges labelled by spins. Rovelli and Smolin had thought there
were states of nonzero volume corresponding to graphs with only trivalent vertices (3
edges meeting a vertex, that is). As it turns out, they’d made a sign error, and these
states have zero volume; you need a quadrivalent vertex to get some volume. She has
just written a paper on this topic:
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4) Renate Loll, “Spectrum of the volume operator in quantum gravity”, 14 pages in
plain tex, with 4 figures (postscript, compressed and uu-encoded), available as
gr-qc/9511030.

The abstract reads as follows:

The volume operator is an important kinematical quantity in the non-perturbative
approach to four-dimensional quantum gravity in the connection formulation.
We give a general algorithm for computing its spectrum when acting on four-
valent spin network states, evaluate some of the eigenvalue formulae explicitly,
and discuss the role played by the Mandelstam constraints.

Quote of the week:

“Nothing is too wonderful to be true, if it be consistent with the laws of
nature, and in such things as these, experiment is the best test of such con-
sistency.”

Faraday, laboratory diaries, entry 10,040, March 19, 1849.
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Week 70

November 26, 1995

Probably many of the mathematicians reading this know about the Newton Institute in
Cambridge, a mathematics institute run by Sir Michael Atiyah. It’s a cozy little building,
in a quiet neighborhood a certain distance from the center of town, which one can
reach by taking a nice walk or bike ride over the bridge near Trinity College, across
Grange Road, and down Clarkson Road. Inside it’s one big space, with stairways slightly
reminiscent of a certain picture by Escher, with a nice little library on the first floor, tea
and coffee on the 3rd floor, blackboards in the bathrooms. . . everything a mathematician
could want. This is where Wiles first announced his proof of Fermat’s last theorem, and
they sell T-shirts there commemorating that fact, which are unfortunately too small to
contain the proof itself. . . as they do not refrain from pointing out.

I just got back from a conference there on New Connections between Mathematics
and Computer Science. It was organized by Jeremy Gunawardena, who was eager to
expose computer scientists and mathematicians to a wide gamut of new interactions
between the two subjects. I spoke about n-categories in logic, topology and physics.
Since I don’t know anything about computer science, when I first got the invitation
I thought it was a mistake: a wrong email address or something! But Gunawardena
assured me otherwise. I assumed the idea was that n-categories, being so abstract, must
have some application to just about everything, even computer science. Luckily, some
other speakers at the conference gave some very nice applications of n-category theory
to computer science, so now I know they really exist.

Unfortunately I had to miss the beginning of the conference, and therefore missed
some interesting talks of a geometrical nature by Smale, Gromov, Shub and others. Let
me say a bit about some of the talks I did catch. You can find a list of all the speakers
and abstracts of their talks at

1) Basic Research Institute in the Mathematical Sciences, New Connections web page,
‘http://www-uk.hpl.hp.com/brims/“

Richard Jozsa gave an interesting talk on quantum computers, in part outlining Peter
Shor’s work (see “Week 34”) on efficient factoring via quantum computation, but also
presenting some new results on “counterfactual quantum computation”. It turns out that
— in principle — in some cases you can get a quantum computer to help you answer
a question, even without running it, just as long as you COULD HAVE run it! (I should
add that in practice a lot of things make this quite impractical.) This is a new twist on
the Elitzur-Vaidman bomb-testing paradox about how if you have a bunch of bombs and
half of them are duds, and the only way you can test a bomb is by lighting the fuse and
seeing if it goes off, you can still get a bomb you’re sure will work, if you use quantum
mechanics. The trick involves getting a fuse that’s so sensitive that even one photon
will make the bomb go off, and then setting up a beam-splitter, and using the bomb to
measure which path the photon followed, before recombining the beams. Check out:

2) A. C. Elitzur and L. Vaidman, “Quantum mechanical interaction-free measure-
ments”, Foundations of Phys. 23 (1993), 987–997.
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Graeme Mitchison and Richard Jozsa, Counterfactual quantum computation, Proc.
Roy. Soc. Lond. A457 (2001) 1175–1194. Also available as quant-ph/9907007.

Jean-Yves Girard gave an overview of linear logic. Linear logic is a new version of
logic that he invented, which has some new operations besides the good old ones like
“and”, “or”, and “not”. For example, there are things like “par” (written as an upside-
down ampersand), “!” (usually pronounced “bang”) and “?”. Ever since I started going
to conferences on category theory and computer science I have been hearing a lot about
it, and I keep trying to get people to explain these weird new logical operations to me.
Unfortunately, I keep getting very different answers, so it has remained rather mysterious
to me, even though it seems like a lot of fun (see “Week 40”). Thus I was eager to hear
it from the horse’s mouth.

Indeed, Girard gave a fascinating talk on it which almost made me feel I understood
it. I think the big thing I’d been missing was a good appreciation of topics in proof theory
like “cut elimination”. He noted that this subject usually appears to be all about the
precise manipulation of formulas according to purely syntactic rules: “Very bureaucratic”
he joked, “one parenthesis missing and you’ve had it!” (For full effect, one must imagine
this being said in a French accent by someone stylishly dressed entirely in black.) He
wanted to get a more geometrical way to think about proofs, but to do this it turned
out to be important to refine ordinary logic in certain ways. . . . leading to linear logic.
However, I still don’t feel up to explaining it, so let me turn you to:

3) Jean-Yves Girard, “Linear logic”, Theoretical Computer Science 50, 1–102, 1987.

Jean-Yves Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge Tracts in
Theoretical Computer Science 7, Cambridge U. Press, 1989. Also available at
http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html

Eric Goubault and Vaughan Pratt talked, in somewhat different ways, about a for-
malism for treating concurrency using “higher-dimensional automata”. The basic idea is
simple: say we have two jobs to do, one of which gets us from some starting-point A to
some result B, and the other of which gets us from A′ to B′. We can represent each task
by an arrow, as follows:

A −→ B

A′ −→ B′

We can think of this arrow as a “morphism”, that is, a completely abstract sort of opera-
tion taking A to B. Or, we can think of it more concretely as an interval of time, where
our computer is doing something at each moment. Alternatively, we can think of it more
discretely as a sequence of steps, starting with A and winding up with B.

If we now consider doing both these tasks concurrently, we can represent the situa-
tion by a square:

AA′ BA′

AB′ BB′

Going first across and then down corresponds to completing one task before starting
the other, while going first down and then across corresponds to doing the other one
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first. However, we can also imagine various roughly diagonal paths through the square,
corresponding to doing both tasks at the same time. We might go horizontally for a
while, then vertically, then diagonally, and so on. Of course, if the two tasks were not
completely independent — for example, if some steps of one could only occur after some
steps of the other were finished — we would have some constraints on what paths from
AA′ to BB′ were allowed. The idea is then to model these constaints as “holes” in
the square, forbidden regions where the path cannot go. There may then be several
“essentially distinct” ways of getting from AA′ to BB′, that is, classes of paths that
cannot be deformed into each other.

To anyone who knows homotopy theory, this will seem very familiar, homotopy the-
ory being all about spaces with holes in them, and how those holes prevent you from
continuously deforming one path into another. Goubault’s title, “Scheduling problems
and homotopy theory”, emphasized the relationships. But there are also some big differ-
ences. Unlike homotopy theory, here the paths are typically required to be “monotonic”:
they can’t double back and go backwards in time. And, as I mentioned, the tasks can be
thought of more abstractly than as paths in some space. So we are really talking about
2-categories here: they give a general framework for studying situations with “dots” or
“objects”, “arrows between dots” or “morphisms”, and “arrows between arrows between
dots” or “2-morphisms”. Similarly, when we study concurrency with more than 2 tasks
at a time we can think of it in terms of n-categories.

By the way, since I don’t know much about parallel processing, I’m not sure how
much the above formalism actually helps the “working man”. Probably not much, yet.
I get the impression, however, that parallel processing is a complicated problem, and
that people are busily dreaming up new formalisms for talking about it, hoping they will
eventually be useful for inventing and analyzing parallel programming languages.

Some references for this are:

4) Eric Goubault, Schedulers as abstract interpretations of higher-dimensional au-
tomata, in Proc. PEPM ’95 (La Jolla), ACM Press, 1995. Also available at http://
www.di.ens.fr/%7Egoubault/GOUBAULTpapers.html

Eric Goubault and Thomas Jensen, “Homology of higher-dimensional automata”,
in Proc. CONCUR ’92 (New York), Lecture Notes in Computer Science 630, Springer,
1992. Also available at http://www.di.ens.fr/%7Egoubault/GOUBAULTpapers.
html

5) Vaughan Pratt, “Time and information in sequential and concurrent computation”,
in Proc. Theory and Practice of Parallel Programming, Sendai, Japan, 1994.

Yves Lafont also gave a talk with strong connections to n-category theory. Recall that
a monoid is a set with an associative product having a unit element. One way to describe
a monoid is by giving a presentation with “generators”, say

a, b, c, d,

and “relations”, say
ab = a, da = ac.

We get a monoid out of this in an obvious sort of way, namely by taking all strings built
from the generators a,b,c, and d, and then identifying two strings if you can get from one
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to the other by repeated use of the relations. In math jargon, we form the free monoid
on the generators and then mod out by the relations.

Suppose our monoid is finitely presented, that is, there are finitely many generators
and finitely many relations. How can we tell whether two elements of it are equal? For
example, does

dacb = acc

in the above monoid? Well, if the two are equal, we will always eventually find that out
by an exhaustive search, applying the relations mechanicallly in all possible ways. But if
they are not, we may never find out! (For the above example, the answer appears at the
end of this article in case anyone wants to puzzle over it. Personally, I can’t stand this
sort of puzzle.) In fact, there is no general algorithm for solving this “word problem for
monoids”, and in fact one can even write down a specific finitely presented monoid for
which no algorithm works.

However, sometimes things are nice. Suppose you write the relations as “rewrite
rules”, that go only one way:

ab→ a

da→ ac

Then if you have an equation you are trying to check, you can try to repeatedly apply
the rewrite rules to each side, reducing it to “normal form”, and see if the normal forms
are equal. This will only work, however, if some good things happen! First of all, your
rewrite rules had better terminate: it had better be that you can only apply them finitely
many times to a given string. This happens to be true for the above pair of rewrite rules,
because both rules decrease the number of b’s and c’s. Second of all, your rewrite rules
had better be confluent: it had better be that if I use the rules one way until I can’t go any
further, and you use them some other way, that we both wind up with the same thing! If
both these hold, then we can reduce any string to a unique normal form by applying the
rules until we can’t do it any more.

Unfortunately, the rules above aren’t confluent; if we start with the word dab, you
can apply the rules like this

dab→ acb

while I apply them like this
dab→ da→ ac

and we both terminate, but at different answers. We could try to cure this by adding a
new rule to our list,

acb→ ac.

This is certainly a valid rule, which cures the problem at hand. . . but if we foolishly
keep adding new rules to our list this way we may only succeed in getting confluence
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and termination when we have an infinite list of rules:

ab→ a

da→ ac

acb→ ac

accb→ acc

acccb→ accc

accccb→ acccc

...
...

and so on. I leave you to check that this is really terminating and confluent. Because
it is, and because it’s a very predictable list of rules, we can use it to write a computer
program in this case to solve the word problem for the monoid at hand. But in fact, if
we had been cleverer, we could have invented a finite list of rules that was terminating
and confluent:

ab→ a

ac→ da

Lafont’s went on to describe some work by Squier:

6) Craig C. Squier, “Word problems and a homological finiteness condition for monoids”,
Jour. Pure Appl. Algebra 49 (1987), 201–217.

Craig C. Squier, “A finiteness condition for rewriting systems”, revision by F. Otto
and Y. Kobayashi, to appear in Theoretical Computer Science.

Craig C. Squier and F. Otto, “The word problem for finitely presented monoids and
finite canonical rewriting systems”, in Rewriting Techniques and Applications, ed. J.
P. Jouannuad, Lecture Notes in Computer Science 256, Springer, Berlin, 1987,
74-82.

which gave general conditions which must hold for there to be a finite terminat-
ing and confluent set of rewrite rules for a monoid. The nice thing is that this relies
heavily on ideas from n-category theory. Note: we started with a monoid in which the
relations are equations, but we then started thinking of the relations as rewrite rules or
morphisms, so what we really have is a monoidal category. We then started worrying
about “confluences”, or equations between these morphisms. This is typical of “categori-
fication”, in which equations are replaced by morphisms, which we then want to satisfy
new equations (see “Week 38”).

For the experts, let me say exactly how it all goes. Given any monoid M , we can
cook up a topological space called its “classifying space” KM , as follows. We can think
of KM as a simplicial complex. We start by sticking in one 0-simplex, which we can
visualize as a dot like this:

•
Then we stick in one 1-simplex for each element of the monoid, which we can visualize
as an arrow going from the dot to itself. Unrolled a bit, it looks like this:

• a
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Really we should draw an arrow going from left to right, but soon things will get too
messy if I do that, so I won’t. Then, whenever we have ab = c in the monoid, we stick in
a 2-simplex, which we can visualize as a triangle like this:

• c •

b

•

a

Then, whenever we have abc = d in the monoid, we stick in a 3-simplex, which we can
visualize as a tetrahedron like this

• d •

bc

•

a

ab

•

b

c

And so on. . . This is a wonderful space whose homology groups depend only on the
monoid, so we can call them Hk(M). If we have a presentation of M with only finitely
many generators, we can build KM using 1-simplices only for those generators, and it
follows that H1(M) is finitely generated. (More precisely, we can build a space with the
same homotopy type as KM using only the generators in our presentation.) Similarly, if
we have a presentation with only finitely many relations, we can build KM using only
finitely many 2-simplices, so H2(M) is finitely generated. What Squier showed is that if
we can find a finite list of rewrite rules for M which is terminating and confluent, then
we can build KM using only finitely many 3-simplices, so H3(M) is finitely generated!
What’s nice about this is that homological algebra gives an easy way to compute Hk(M)
given a presentation of M , so in some cases we can prove that a monoid has no finite list
of rewrite rules for M which is terminating and confluent, just by showing that H3(M)
is too big. Examples of this, and many further details, appear in Lafont’s work:

7) Yves Lafont and Alain Proute, “Church-Rosser property and homology of monoids”,
Mathematical Structures in Computer Science 1 (1991), 297–326. Also available at
http://iml.univ-mrs.fr/~lafont/publications.html

Yves Lafont, “A new finiteness condition for monoids presented by complete rewrit-
ing systems (after Craig C. Squier)”, Journal of Pure and Applied Algebra 98 (1995),
229–244. Also available at http://iml.univ-mrs.fr/~lafont/publications.

html

There were many other interesting talks, but I think I will quit here. Next time I want
to talk a bit about topological quantum field theory. (Of course, folks who read “Week
38” will know that Lafont’s work is deeply related to topological quantum field theory. . .
but I won’t go into that now.)
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(Answer: dacb = ddab = dda = dac = acc.)
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Week 71

December 3, 1995

This week I will get back to mathematical physics. . . but before I do, I can’t resist adding
that in my talk in that conference I announced that James Dolan and I had come up
with a definition of weak n-categories. (For what these are supposed to be, and what
they have to do with physics, see “Week 38”, “Week 49”, and “Week 53”.) John Power
was at the talk, and before long his collaborator Ross Street sent me some email from
Australia asking about the definition. Gordon, Power, and Street have done a lot of work
on n-categories — see “Week 29”. Now, Dolan and I have been struggling for several
months to put this definition onto paper in a reasonably elegant and comprehensible
form, so Street’s request was a good excuse to get something done quickly. . . sacrificing
comprehensibility for terseness. The result can be found in

1) John Baez and James Dolan, “n-Categories, sketch of a definition”, http://math.
ucr.edu/home/baez/ncat.def.html

A more readable version will appear as a paper fairly soon. I should add that this will
eventually be part of Dolan’s thesis, and he has done most of the hard work on it; my
role has largely been to push him along and get him to explain everything to me.

On to some physics. . .
First, it’s amusing to note that Maxwell’s equations are back in fashion! In the follow-

ing papers you will see how the duality symmetry of Maxwell’s equations (the symmetry
between electric and magnetic fields) plays a new role in modern work on 4-dimensional
gauge theory. Also, there is some good stuff in Thompson’s review article about the
Seiberg-Witten theory, which is basically just a U(1) gauge theory like Maxwell’s equa-
tions. . . but with some important extra twists!

2) Erik Verlinde, “Global aspects of electric-magnetic duality”, Nuc. Phys. B455
(1995), 211–225, available as arXiv:hep-th/9506011.

George Thompson, “New results in topological field theory and abelian gauge the-
ory”, 64 pages, available as arXiv:hep-th/9511038.

Next, it’s nice to see that work on the loop representation of quantum gravity contin-
ues apace:

3) Thomas Thiemann, “An account of transforms on (A/G)”, available as arXiv:gr-qc/
9511049.

Thomas Thiemann, “Reality conditions inducing transforms for quantum gauge
field theory and quantum gravity”, available as arXiv:gr-qc/9511057.

Abhay Ashtekar, “A generalized Wick transform for gravity”, available as arXiv:gr-qc/
9511083.

Renate Loll, “Making quantum gravity calculable”, preprint available in LaTeX form
as arXiv:gr-qc/9511080.

Rodolfo Gambini and Jorge Pullin, “A rigorous solution of the quantum Einstein
equations”, available as arXiv:gr-qc/9511042.
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The first three papers here discuss some new work tackling the “reality conditions”
and “Hamiltonian constraint”, two of the toughest issues in the loop representation of
quantum gravity. First, the Hamiltonian constraint is another name for the Wheeler-
DeWitt equation

Hψ = 0

that every physical state of quantum gravity must satisfy (see “Week 11” for why). The
“reality conditions” have to do with the fact that this constraint looks different depend-
ing on whether we are working with Riemannian or Lorentzian quantum gravity. The
constraint is simpler when we work with Riemannian quantum gravity. Classically, in
Riemannian gravity the metric on spacetime looks like

dt2 + dx2 + dy2 + dz2

at any point, if we use suitable local coordinates. In this Riemannian world, time is no
different from space! In the real world, the world of Lorentzian gravity, the metric looks
like

−dt2 + dx2 + dy2 + dz2

at any point, in suitable coordinates. Folks often call the Riemannian world the world
of “imaginary time”, since in some vague sense we can get from the Lorentzian world to
the Riemannian world by making the transformation

t 7→ it,

called a “Wick transform”. It looks simple the way I have just written it, in local coordi-
nates. But a priori it’s far from clear that this Wick transform makes any sense globally.
Apparently, however, there is something we can do along these lines, which transforms
the Hamiltonian for Lorentzian quantum gravity to the better-understood one of Rie-
mannian quantum gravity! Alas, I have been too distracted by n-categories to keep up
with the latest work on this, but I’ll catch up in a bit. Maybe over Christmas I can relax
a bit, lounge in front of a nice warm fire, and read these papers.

The goal of all these machinations, of course, is to find some equations that make
mathematical sense, have a good right to be called a “quantized version of Einstein’s
equation”, and let one compute answers to some physics problems. We don’t expect that
quantum gravity is enough to describe what’s really going on in interesting problems. . .
there are lots of other forces and particles out there. Indeed, string theory is founded on
the premise that quantum gravity is completely inseparable from the quantum theories
of everything else. But here we are taking a different tack, treating quantum gravity
by itself in as simple a way as possible, expecting that the predictions of theory will be
qualitatively of great interest even if they are quantitatively inaccurate.

As described in earlier Finds (“Week 55”, “Week 68”), Loll has been working to make
quantum gravity “calculable”, by working on a discretized version of the theory called
lattice quantum gravity. If one does it carefully, it’s not too bad to treat space as a lattice
in the loop representation of quantum gravity, because even in the continuum the theory
is discrete in a certain sense, since the states are described by “spin networks”, certain
graphs embedded in space. (See “Week 43” for more on these.) Her latest paper is an
introduction to some of these issues.
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In a somewhat different vein, Gambini and Pullin have been working on relating the
loop representation to knot theory. One of their most intriguing results is that the second
coefficient of the Alexander-Conway knot polynomial is a solution of the Hamiltonian
constraint. Here they argue for this result using a lattice regularization of the theory.

Now let me turn to a variety of other matters. . .

4) Matt Greenwood and Xiao-Song Lin, “On Vassiliev knot invariants induced from
finite type”, available as arXiv:q-alg/9506001.

Lev Rozansky, “On finite type invariants of links and rational homology spheres de-
rived from the Jones polynomial and Witten–Reshetikhin–Turaev invariant”, avail-
able as arXiv:q-alg/9511025.

Scott Axelrod, “Overview and warmup example for perturbation theory with in-
stantons”, available as arXiv:hep-th/9511196.

These papers all deal with perturbative Chern-Simons theory and its spinoffs. The
first two consider homology 3-spheres. In Chern-Simons theory, this makes the moduli
space of flat SU(2) connections trivial, thus eliminating some subtleties in the perturba-
tion theory. A homology 3-sphere is a 3-manifold whose homology is the same as that
of the 3-sphere. . . the first one was discovered by Poincare when he was studying his
conjecture that every 3-manifold with the homology of a 3-sphere is a 3-sphere. It turns
out that you can get a counterexample if you just take an ordinary 3-sphere, cut out a
solid torus embedded in the shape of a trefoil knot, and stick it back in with the merid-
ian and longitude (the short way around, and the long way around) switched — making
sure they wind up pointing in the correct directions. This is called “doing Dehn surgery
on the trefoil”. It gives something with the homology of a 3-sphere that’s not a 3-sphere.
So Poincare had to revise his conjecture to say that every 3-manifold homotopic to a 3-
sphere is (homeomorphic to) a 3-sphere. This improved “Poincare conjecture” remains
unsolved. . . its analog is known to be true in every dimension other than 3! Since every
possible counterexample to the Poincare conjecture is a homology 3-sphere, it makes
some sense to ponder these manifolds carefully.

Now, just as perturbative Chern-Simons theory gives certain special invariants of
links, said to be of “finite type”, the same is true for homology 3-spheres. When we
say a link invariants is of finite type, all we mean is that it satisfies a simple property
described in “Week 3”. There is a similar but subtler definition for an invariant of ho-
mology 3-spheres to be of finite type; they need to transform in a nice way under Dehn
surgery. (See “Week 60” for more references.)

The second paper concentrates precisely on those subtleties due to the moduli space
of flat connections, developing perturbation theory in the presence of “instantons” (here,
nontrivial flat connections).

5) Alan Carey, Jouko Mickelsson, and Michael Murray, “Index theory, gerbes, and
Hamiltonian quantization”, available as arXiv:hep-th/9511151.

Alan Carey, M. K. Murray and B. L. Wang, “Higher bundle gerbes and cohomology
classes in gauge theories”, available as arXiv:hep-th/9511169

Higher-dimensional algebra is sneaking into physics in yet another way: gerbs! What’s
a gerb? Roughly speaking, it’s a sheaf of groupoids, but there are some other ways of
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thinking of them that come in handy in physics. See “Week 25” for a review of Brylinski’s
excellent book on gerbs, and also:

6) Jean-Luc Brylinski, “Holomorphic gerbes and the Beilinson regulator”, in Proc. Int.
Conf. on K-Theory (Strasbourg, 1992), to appear in Asterisque.

Jean-Luc Brylinski, “The geometry of degree-four characteristic classes and of line
bundles on loop spaces I”, Duke Math. Jour. 75 (1994), 603–638.

Jean-Luc Brylinski, “Cech cocyles for characteristic classes”, J.-L. Brylinski and D.
A. McLaughlin.

7) Joe Polchinski, “Recent results in string duality”, available as arXiv:hep-th/9511157.

This should help folks keep up with the ongoing burst of work on dualities relating
superficially different string theories.

8) Leonard Susskind and John Uglum, “String physics and black holes”, available as
arXiv:hep-th/9511227.

Among other things, this review discusses the “holographic hypothesis” mentioned in
“Week 57”:

9) Boguslaw Broda, “A gauge-field approach to 3- and 4-manifold invariants”, avail-
able in TeX form as arXiv:q-alg/9511010.

This summarizes the Reshetikhin-Turaev construction of 3d topological quantum field
theories from quantum groups, and Broda’s own closely related approach to 4d topolog-
ical quantum field theories.

10) John Baez and Martin Neuchl, “Higher-dimensional algebra I: braided monoidal
2-categories”, available as arXiv:q-alg/9511013.

In this paper, we begin with a brief sketch of what is known and conjectured concern-
ing braided monoidal 2-categories and their applications to 4d topological quantum field
theories and 2-tangles (surfaces embedded in 4-dimensional space). Then we give con-
cise definitions of semistrict monoidal 2-categories and braided monoidal 2-categories,
and show how these may be unpacked to give long explicit definitions similar to, but
not quite the same as, those given by Kapranov and Voevodsky. Finally, we describe how
to construct a semistrict braided monoidal 2-category Z(C) as the ‘center’ of a semistrict
monoidal category C. This is analogous to the construction of a braided monoidal cat-
egory as the center, or ‘quantum double’, of a monoidal category. The idea is to de-
velop algebra that will do for 4-dimensional topology what quantum groups and braided
monoidal categories did for 3d topology. As a corollary of the center construction, we
prove a strictification theorem for braided monoidal 2-categories.
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Week 72

February 1, 1996

It’s been a while since I’ve written an issue of This Week’s Finds. . . due to holiday
distractions and a bunch of papers that need writing up. But tonight I just can’t seem to
get any work done, so let me do a bit of catching up.

I’m no string theorist, but I still can’t help hearing all the rumbling noises over in that
direction: first about all the dualities relating seemingly different string theories, and
then about the mysterious “M-theory” in 11 dimensions which seems to underlie all these
developments. Let me try to explain a bit of this stuff. . . in the hopes that I prompt some
string theorists to correct me and explain it better! I will simplify everything a lot to keep
people from getting scared of the math involved. But I may also make some mistakes, so
the experts should be kind to me and try to distinguish between the simplifications and
the mistakes.

Recall that it’s hard to get a consistent string theory — one that’s not plagued by
infinite answers to interesting questions. But this difficulty is generally regarded as a
good thing, because it drastically limits the number of different versions of string theory
one needs to think about. It’s often said that there are only 5 consistent string theories:
the type I theory, the type IIA and IIB theory, and the two kinds of heterotic string
theory. I’m not sure exactly what this statement means, but certainly it’s only meant to
cover supersymmetric string theories, which can handle fermions (like the electron and
neutrino) in addition to bosons (like the photon).

Type I strings are “open strings” — not closed loops — and they live in 10 dimen-
sional spacetime, meaning that you need the dimension to be 10 to make certain nasty
infinities cancel out. Type II strings also live in 10 dimensions, but they are “closed
strings”. That means that they look like a circle, so there are vibrational modes that
march around clockwise and other modes that march around counterclockwise, and
these are supposed to correspond to different particles that we see. We can think of
these vibrational modes as moving around the circle at the speed of light; they are called
“left-movers” and “right-movers”. Now fermions which move at the speed of light are
able to be rather asymmetric and only spin one way (when viewed head-on). We say
they have a “chirality” or handedness. Ordinary neutrinos, for example, are left-handed.
This asymmetry of nature shocked everyone when first discovered, but it appears to be a
fact of life, and it’s certainly a fact of mathematics. In the type IIA string theory, the left-
moving and right-moving fermionic vibrational modes have opposite chiralities, while in
the IIB theory, they have the same chirality. When I last checked, the type IIA theory
seemed to fit our universe a bit better than the IIB theory.

But lots of people say the heterotic theory matches our universe even better. The
name “heterotic” refers to the fact that this theory is supposed to have “hybrid vigor”.
It’s quite bizarre: the left-movers are purely bosonic — no fermions — and live in
26-dimensional spacetime, the way non-supersymmetric string theories do. The right-
movers, on the other hand, are supersymmetric and live in 10- dimensional space-
time. It sounds not merely heterotic, but downright schizophrenic! But in fact, the
26-dimensional spacetime can also thought of as being 10-dimensional, with 16 extra
“curled-up dimensions” in the shape of a torus. This torus has two possible shapes: R16
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modulo the E8 × E8 lattice or the D∗16 lattice. (For some of the wonders of E8 and other
lattices, check out “Week 64” and “Week 65”. The D∗16 lattice is related to the D16 lattice
described in those Weeks, but not quite the same.)

Now there is still lots of room for toying with these theories depending on how you
“compactify”: how you think of 10-dimensional spacetime as 4-dimensional spacetime
plus 6 curled-up dimensions. That’s because there are lots of 6-dimensional manifolds
that will do the job (the so-called “Calabi-Yau” manifolds). Different choices give differ-
ent physics, and there is a lot of work to be done to pick the right one.

However, recently it’s beginning to seem that all five of the basic sorts of string theory
are beginning to look like different manifestations of the same theory in 11 dimensions. . .
some monstrous thing called M-theory! Let me quote the following paper:

1) Kelly Jay Davis, “M-Theory and String-String Duality”, 28 pages, available as hep-th/
9601102, uses harvmac.tex.

The idea seems to be roughly that depending on how one compactifies the 11th
dimension, one gets different 10-dimensional theories from M-theory:

“In the past year much has happened in the field of string theory. Old results
relating the two Type II string theories and the two Heterotic string theories
have been combined with newer results relating the Type II theory and the Het-
erotic theory, as well as the Type I theory and the Heterotic theory, to obtain
a single”String Theory.” In addition, there has been much recent progress in
interpreting some, if not all, properties of String Theory in terms of an eleven-
dimensional M-Theory. In this paper we will perform a self-consistency check
on the various relations between M-Theory and String Theory. In particular, we
will examine the relation between String Theory and M-Theory by examining its
consistency with the string-string duality conjecture of six-dimensional String
Theory. So, let us now take a quick look at the relations between M-Theory and
String Theory some of which we will be employing in this article.

In Witten’s paper he established that the strong coupling limit of Type IIA string
theory in ten dimensions is equivalent to eleven-dimensional supergravity on a
“large” S1. [Note: S1 just means the circle — jb.] As the low energy limit of
M-theory is eleven-dimensional supergravity, this relation states that the strong
coupling limit of Type IIA string theory in ten-dimensions is equivalent to the
low-energy limit of M-Theory on a “large” S1. In the paper of Witten and Ho-
rava, they establish that the strong coupling limit of the ten-dimensional E8×E8

Heterotic string theory is equivalent to M-Theory on a “large” S1/Z2.

Recently, Witten, motivated by Dasgupta and Mukhi, examined M-Theory on
a Z2 orbifold of the five-torus and established a relation between M-Theory on
this orbifold and Type IIB string theory on K3. [Note: most of these undefined
terms refer to various spaces; for example, the five-torus is the 5-dimensional
version of a doughnut, while K3 is a certain 4-dimensional manifold — jb.]
Also, Schwarz very recently looked at M-Theory and its relation to T-Duality.

As stated above, M-Theory on a “large” S1 is equivalent to a strongly coupled
Type IIA string theory in ten-dimensions. Also, M-theory on a “large” S1/Z2
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is equivalent to a strongly coupled E8 × E8 Heterotic string theory in ten di-
mensions. However, the string-string duality conjecture in six dimensions states
that the strongly coupled limit of a Heterotic string theory in six dimensions
on a four-torus is equivalent to a weakly coupled Type II string theory in six-
dimensions on K3. Similarly, it states that the strongly coupled limit of a Type
II theory in six dimensions on K3 is equivalent to a weakly coupled Heterotic
string theory in six-dimensions on a four-torus. Now, as a strongly coupled Type
IIA string theory in ten-dimensions is equivalent to the low energy limit of M-
Theory on a “large” S1, the low energy limit of M-Theory on S1×K3 should be
equivalent to a weakly coupled Heterotic string theory on a four-torus by way of
six-dimensional string-string duality. Similarly, as a strongly coupled E8 × E8

Heterotic string theory in ten-dimensions is equivalent to the low energy limit of
M-Theory on a “large” S1/Z2, the low energy limit of M-Theory on S1/Z2 × T 4

should be equivalent to a weakly coupled Type II string theory on K3. The
first of the above two consistency checks on the relation between M-Theory and
String Theory will be the subject of this article. However, we will comment on
the second consistency check in our conclusion.”

So, as you can see, there is a veritable jungle of relationships out there. But you must
be wondering by now: what’s M-theory? According to

2) Edward Witten, “Five-branes and M-Theory on an orbifold”, available as hep-th/
9512219.

the M stands for “magic”, “mystery”, or “membrane”, according to taste. From a
mathematical viewpoint a better term might be “murky”, since apparently everything
known about M-theory is indirect and circumstantial, except for the classical limit, in
which it seems to act as a theory of 2-branes and 5-branes, where an “n-brane” is an
n-dimensional analog of a membrane or surface.

Well, here I must leave off, for reasons of ignorance. I don’t really understand the
evidence for the existence of the M-theory. . . I can only await the day when the murk
clears and it becomes possible to learn about this stuff a bit more easily. It has been
suggested that string theory is a bit of 21st-century mathematics that accidentally fell
into the 20th century. I think this is right, and that eventually much of this stuff will be
seen as much simpler than it seems now.

Now let me briefly describe some papers I actually sort of understand.

3) Abhay Ashtekar, “Polymer geometry at Planck scale and quantum Einstein equa-
tions”, available as hep-th/9601054.

Roumen Borissov, Seth Major and Lee Smolin, “The geometry of quantum spin
networks”, available as gr-qc/9512043, 35 Postscript figures, uses epsfig.sty.

Bernd Bruegmann, “On the constraint algebra of quantum gravity in the loop rep-
resentation”, available as gr-qc/9512036.

Kiyoshi Ezawa, “Nonperturbative solutions for canonical quantum gravity: an overview”,
available as gr-qc/9601050

Kiyoshi Ezawa, “A semiclassical interpretation of the topological solutions for canon-
ical quantum gravity”, available as gr-qc/9512017.
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Jorge Griego, “Extended knots and the space of states of quantum gravity”, avail-
able as gr-qc/9601007.

Seth Major and Lee Smolin, “Quantum deformation of quantum gravity”, available
as gr-qc/9512020.

Work on the loop representation of quantum gravity proceeds apace. The paper by
Ashtekar and the first one by Ezawa review various recent developments and might be
good to look at if one is just getting interested in this subject. Smolin has been pushing
the idea of combining ideas about the quantum group SUq(2) with the loop representa-
tion, and his papers with Borissov and Major are about that. This seems rather interesting
but still a bit mysterious to me. I suspect that what it amounts to is thinking of loops as
excitations not of the Ashtekar-Lewandowksi vacuum state but the Chern-Simons state.
I’d love to see this clarified, since these two states are two very important exact solutions
of quantum gravity, and the latter has the former as a limit as the cosmological constant
goes to zero. In the second paper listed, Ezawa gives semiclassical interpretations of
these and other exact solutions of quantum gravity.

4) Thomas Kerler, “Genealogy of nonperturbative quantum-invariants of 3-Manifolds:
the surgical family”, available as q-alg/9601021.

Kerler brings a bit more order to the study of quantum invariants of 3-manifolds,
in particular, the Reshetikhin-Turaev, Hennings-Kauffman-Radford, and Lyubashenko in-
variants. All of these are constructed using certain braided monoidal categories, like the
category of (nice) representations of a quantum group. He describes how Lyubashenko’s
invariant specializes to the Reshetikhin-Turaev invariant for semisimple categories and
to the Hennings-Kauffman-Radford invariant for Tannakian categories. People interested
in extended TQFTs and 2-categories will find his work especially interesting, because he
works with these invariants using these techniques. James Dolan and I have argued that
it’s only this way that one will really understand these TQFTs (see “Week 49”).

In future editions of This Week’s Finds I will say more about n-categories and topo-
logical quantum field theory. I have a feeling that while I’ve discussed these a lot, I have
never really explained the basic ideas very well. As I gradually understand the basic ideas
better, they seem simpler and simpler to me, so I think I should try to explain them.
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Week 73

February 24, 1996

In this and future issues of This Week’s Finds, I’d like to talk a bit more about higher-
dimensional algebra, and how it should lead to many exciting developments in mathe-
matics and physics in the 21st century. I’ve talked quite a bit about this already, but I
hear from some people that the “big picture” remained rather obscure. The main reason,
I suppose, is that I was just barely beginning to see the big picture myself! As Louis
Crane noted, in this subject it often feels that we are unearthing the fossilized remains
of some enormous prehistoric beast, still unsure of its extent or how it all fits together.
Of course that’s what makes it so exciting, but I’ll try to make sense what we’ve found
so far, and where it may lead. In the Weeks to come, I’ll start out describing some basic
stuff, and work my way up to some very new ideas.

However, before I get into that, I’d like to say a bit about something completely
different: biology.

1) Biological Asymmetry and Handedness, Ciba Foundation Symposium 162, John Wi-
ley and Sons, 1991.

D. K. Kondepudi and D. K. Nelson, “Weak neutral currents and the origins of molec-
ular chirality”, Nature 314, pp. 438–441.

It’s always puzzled me how humans and other animals could be consistently asym-
metric. A 50-50 mix of two mirror-image forms could easily be explained by “sponta-
neously broken symmetry”, but in fact there are many instances of populations with a
uniform handedness. Many examples appear in Weyl’s book “Symmetry” (see “Week
63”). To take an example close to home, the human brain appears to be lateralized in
a fairly consistent manner; for example, most people have the speech functions concen-
trated in the left hemisphere of their cerebrum — even most, though not all, left-handers.

One might find this unsurprising: it just means that the asymmetry is encoded in the
genes. But think about it: how are the genes supposed to tell the embryo to develop in
an asymmetric way? How do they explain the difference between right and left? That’s
what intrigues me.

Of course, genes code for proteins, and most proteins are themselves asymmetric.
Presumably the answer lurks somewhere around here. Indeed, even the amino acids of
which the proteins are composed are asymmetric, as are many sugars and for that matter,
the DNA itself, which is composed of two spirals, each of which has an intrinsic direc-
tionality and hence a handedness. The handedness of many of these basic biomolecules
is uniform for all life on the globe, as far as I know.

In the conference proceedings on biological asymmetry, there is an interesting article
on the development of asymmetry in C. elegans. Ever since the 1960s, this little nema-
tode has been a favorite among biologists because of its simplicity, and because of the
advantages understanding one organism thoroughly rather than many organisms in a
sketchy way. I’m sure most of you know about the fondness geneticists have for the fruit
fly, but Caenorhabditis elegans is a far simpler critter: it only has 959 cells, all of which
have been individually named and studied! There are over 1000 people studying it by
now, there is a journal devoted to it — The Worm Breeder’s Gazette — and it has its own
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world-wide web server. Moreover, folks are busily sequencing not only the complete
human genome but also all 100 million bases of the DNA of C. elegans.

But I digress! The point here is that C. elegans is asymmetric, and exhibits a consistent
handedness. And the cool thing is that in the conference proceedings, Wood and Kevshan
report on experiments where they artificially changed the handedness of C. elegans em-
bryos when they consisted of only 6 cells! The embryos look symmetric when they have
4 cells; by the time they have 8 cells the asymmetry is marked. By moving some cells
around at the 6-cell stage, Wood and Kevshan were able to create fully functional C.
elegans having opposite the usual handedness.

The question of exactly how the embryo’s asymmetry originates from some asymme-
try at the molecular still seems shrouded in mystery. And there is another puzzle: how
did the biomolecules choose their handedness in the first place? Here spontaneous sym-
metry breaking — an essentially random choice later amplified by selection — seems a
natural hypothesis. But physicists should be interested to note that another alternative
has been seriously proposed. Weak interactions violate parity and thus endow the laws
of nature with an intrinsic handedness. This means there is a slight difference in energies
between any biomolecule and its enantiomer, or mirror-image version. According to S. F.
Mason’s article in the conference proceedings, this difference indeed favors the observed
forms of amino acids and sugars — the left-handed or “L” amino acids and the right-
handed or “D” sugars. But the difference is is incredibly puny — typically it amounts to
10−14 joules per mole! How could such a small difference matter? Well, Kondepudi and
Nelson have done calculations suggesting that in certain situations where there is both
autocatalysis of both L and D forms of these molecules, and also competition between
them, random fluctuations can be averaged out, while small energy level differences can
make a big difference.

That would be rather satisfying to me: knowing that my heart is where it is for the
same reason that neutrinos are left-handed. But in fact this theory is very controver-
sial. . . . I mention it only because of its charm.

If we think of the universe as passing through the course of history from simplicity to
complexity, from neutrinos to nematodes to humans, it’s natural to wonder what’s at the
bottom, where things get very simple, where physics blurs into pure logic. . . . far from
the “spires of form”. Ironically, even the simplest things may be hard to understand,
because they are so abstract.

Let’s begin with the world of sets. In a certain sense, there is nothing much to a set
except its cardinality, the number of elements it has. Of course, set theorists work hard
to build up the universe of sets from the empty set, each set being a set of sets, with its
own distinctive personality:

{}, {{}}, {{{}}}, {{}, {{}}}, {{}, {{{}}}}, {{}, {{}}, {{}, {{}}}}

and the like. But for many purposes, a one-to-one and onto function between two sets
allows us to treat them as the same. So if necessary, we could actually get by with just
one set of each cardinality. For example

{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}

and so on. For short, people like to call these

0, 1, 2, 3
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and so on. We could wonder what comes after all these finite cardinals, and what comes
after that, and so on, but let’s not. Instead, let’s ponder what we’ve done so far. We
started with the universe of sets — not exactly the set of all sets, but pretty close — but
very soon we started playing with functions between sets. This is what allowed us to
speak of two sets with the same cardinality as being isomorphic.

In short, we are really working with the category of sets. A category is something just
as abstract as a set, but a bit more structured. It’s not a mere collection of objects; there
are also morphisms between objects, in this case the functions between sets.

Some of you might not know the precise definition of a category; let me state it
just for completeness. A category consists of a collection of “objects” and a collection
of “morphisms”. Every morphism f has a “source” object and a “target” object. If the
source of f is X and its target is Y , we write f : X → Y . In addition, we have:

1) Given a morphism f : X → Y and a morphism g : Y → Z, there is a morphism
fg : X → Z, which we call the “composite” of f and g.

2) Composition is associative: (fg)h = f(gh).

3) For each object X there is a morphism 1X : X → X, called the “identity” of X. For
any f : X → Y we have 1Xf = f1Y = f .

That’s it.
(Note that we are writing the composite of f : X → Y and g : Y → Z as fg, which is

backwards from the usual order. This will make life easier in the long run, though, since
fg will mean “first do f , then g”.)

Now, there are lots of things one can do with sets, which lead to all sorts of interesting
examples of categories, but in a sense the primordial category is Set, the category of sets
and functions. (One might try to make this precise, by trying to prove that every category
is a subcategory of Set, or something like that. Actually the right way to say how Set is
primordial is called the “Yoneda lemma”. But to understand this lemma, one needs to
understand categories a little bit.)

When we get to thinking about categories a lot, it’s natural to think about the “cate-
gory of all categories”. Now just as it’s a bit bad to speak of the set of all sets, it’s bad to
speak of the category of all categories. This is true, not only because Russell’s paradox
tends to ruin attempts at a consistent theory of the “thing of all things”, but because, just
as what really counts is the category of all sets, what really counts is the 2-category of all
categories.

To understand this, note that there is a very sensible notion of a morphism between
categories. It’s called a “functor”, and a functor F : C → D from a category C to a
category D is just something that assigns to each object x of C an object F (x) of D, and
to each morphism f of C a morphism F (f) of D, in such a way that “all structure in sight
is preserved”. More precisely, we want:

1) If f : x→ y, then F (f) : F (x)→ F (y).

2) If fg = h, then F (f)F (g) = F (h).

3) If 1x is the identity morphism of x, then F (1x) is the identity morphism of F (x).
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It’s good to think of a category as a bunch of dots — objects — and arrows going
between them — morphisms. I would draw one for you if I could here. Category theorists
love drawing these pictures. In these terms, we can think of the functor F : C → D as
putting a little picture of the category C inside the category D. Each dot of C gets drawn
as a particular dot in D, and each arrow in C gets drawn as a particular arrow in D. (Two
dots or arrows in C can get drawn as the same dot or arrow in D, though.)

In addition, however, there is a very sensible notion of a “2-morphism”, that is, a
morphism between morphisms between categories! It’s called a “natural transforma-
tion”. The idea is this. Suppose we have two functors F : C → D and G : C → D. We can
think of these as giving two pictures of C inside D. So for example, if we have any object
x in C, we get two objects in D, F (x) and G(x). A “natural transformation” is then a
gadget that draws an arrow from each dot like F (x) to the dot like G(x). In other words,
for each x, the natural transformation T gives a morphism Tx : F (x) → G(x). But we
want a kind of compatibility to occur: if we have a morphism f : x→ y in C, we want

F (x) F (y)

G(x) G(y)

F (f)

Tx Ty

G(f)

to commute; in other words, we want TxG(f) = F (f)Ty.
This must seem very boring to the people who understand it and very mystifying

to those who don’t. I’ll need to explain it more later. For now, let me just say a bit
about what’s going on. Sets are “zero-dimensional” in that they only consist of objects,
or “dots”. There is no way to “go from one dot to another” within a set. Nonetheless,
we can go from one set to another using a function. So the category of all sets is “one-
dimensional”: it has both objects or “dots” and morphisms or “arrows between dots”. In
general, categories are “one-dimensional” in this sense. But this in turn makes the col-
lection of all categories into a “two-dimensional” structure, a 2-category having objects,
morphisms between objects, and 2-morphisms between morphisms.

This process never stops. The collection of all n-categories is an (n + 1)-category, a
thing with objects, morphisms, 2-morphisms, and so on all the way up to n-morphisms.
To study sets carefully we need categories, to study categories well we need 2-categories,
to study 2-categories well we need 3-categories, and so on. . . so “higher- dimensional al-
gebra”, as this subject is called, is automatically generated in a recursive process starting
with a careful study of set theory.

If you want to show off, you can call the 2-category of all categories Cat, and more
generally, you can call the (n+1)-category of all n-categories nCat. nCat is the primordial
example of an (n+ 1)-category!

Now, just as you might wonder what comes after 0, 1, 2, 3, . . ., you might wonder
what comes after all these n-categories. The answer is “ω-categories”.

What comes after these? Well, let us leave that for another time. I’d rather conclude
by mentioning the part that’s the most fascinating to me as a mathematical physicist.
Namely, the various dimensions of category turn out to correspond in a very beautiful
— but still incompletely understood — way to the various dimensions of spacetime.
In other words, the study of physics in imaginary 2-dimensional spacetimes uses lots
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of 2-categories, the study of physics in a 3d spacetimes uses 3-categories, the study of
physics in 4d spacetimes appears to use 4-categories, and so on. It’s very surprising
at first that something so simple and abstract as the process of starting with sets and
recursively being led to study the (n + 1)-category of all n-categories could be related
to the dimensionality of spacetime. In particular, what could possibly be special about 4
dimensions?

Well, it turns out that there are some special things about 4 dimensions. But more on
that later.

To continue reading the “Tale of n-Categories”, see “Week 74”.

Addendum: Long after writing the above, I just saw an interesting article on chirality
in biology:

2) N. Hirokawa, Y. Tanaka, Y. Okada and S. Takeda, “Nodal flow and the generation
of left-right asymmetry”, Cell 125 1 (2006), 33–45.

It reports on detailed studies of how left-right asymmetry first shows in the devel-
opment of animal embryos. It turns out this asymmetry is linked to certain genes with
names like Lefty-1, Lefty-2, Nodal and Pitx2. About half of the people with a genetic dis-
order called Kartagener’s Syndrome have their organs in the reversed orientation. These
people also have immotile sperm and defective cilia in their airway. This suggests that
the genes controlling left-right asymmetry also affect the development of cilia! And the
link has recently been understood. . .

The first visible sign of left-right asymmetry in mammal embryos is the formation of a
structure called the “ventral node” after the front-back (dorsal-ventral) and top-bottom
(anterior-posterior) symmetries have been broken. This node is a small bump on the
front of the embryo.

It has recently been found that cilia on this bump wiggle in a way that makes the
fluid the embryo is floating in flow towards the left. It seems to be this leftward flow that
generates many of the more fancy left-right asymmetries that come later.

How do these cilia generate a leftward flow? It seems they spin around clockwise,
and are tilted in such a way that they make a leftward swing when they are near the
surface of the embryo, and a rightward swing when they are far away. This manages to
do the job. . . the article discusses the hydrodynamics involved.

I guess now the question becomes: why do these cilia spin clockwise?

120



WEEK 74 MARCH 5, 1996

Week 74

March 5, 1996

Before continuing my story about higher-dimensional algebra, let me say a bit about
gravity. Probably far fewer people study general relativity than quantum mechanics,
which is partially because quantum mechanics is more practical, but also because general
relativity is mathematically more sophisticated. This is a pity, because general relativity
is so beautiful!

Recently, I have been spending time on sci.physics leading an informal (nay, chaotic)
“general relativity tutorial”. The goal is to explain the subject with a minimum of compli-
cated equations, while still getting to the mathematical heart of the subject. For example,
what does Einstein’s equation REALLY MEAN? It’s been a lot of fun and I’ve learned a
lot! Now I’ve gathered up some of the posts and put them on a web site:

1) John Baez et al, “General relativity tutorial”, gr/gr.html

I hope to improve this as time goes by, but it should already be fun to look at.
Let me also list a couple new papers on the loop representation of quantum gravity,

dealing with ways to make volume and area into observables in quantum gravity:

2) Abhay Ashtekar and Jerzy Lewandowski, “Quantum Theory of Geometry I: Area
Operators”, 31 pages in LaTeX format, to appear in Classical and Quantum Gravity,
preprint available as gr-qc/9602046.

Jerzy Lewandowski, “Volume and Quantizations”, preprint available as gr-qc/

9602035.

Roberto De Pietri and Carlo Rovelli, “Geometry Eigenvalues and Scalar Product
from Recoupling Theory in Loop Quantum Gravity”, 38 pages, 5 Postscript figures,
uses RevTeX 3.0 and epsfig.sty, preprint available as gr-qc/9602023.

I won’t say anything about these now, but see “Week 55” for some information on
area operators.

Okay, where were we? We had started messing around with sets, and we noted
that sets and functions between sets form a category, called Set. Then we started mess-
ing around with categories, and we noted that not only are there “functors” between
categories, there are things that ply their trade between functors, called “natural trans-
formations”. I then said that categories, functors, and natural transformations form a
2-category. I didn’t really say what a 2-category is, except to say that it has objects, mor-
phisms between objects, and 2-morphisms between morphisms. Finally, I said that this
pattern continues: nCat forms an (n+ 1)-category.

By the way, I said last time that Set was “the primordial category”. Keith Ramsay
reminded me by email that this can be misleading. There are other categories that act
a whole lot like Set and can serve equally well as “the primordial category”. These are
called topoi. Poetically speaking, we can think of these as alternate universes in which
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to do mathematics. For more on topoi, see “Week 68”. All I meant by saying that Set was
“the primordial category” is that, if we start from Set and various categories of structures
built using sets — groups, rings, vector spaces, topological spaces, manifolds, and so on
— we can then abstract the notion of “category”, and thus obtain Cat. In the same sense,
Cat is the primordial 2-category, and so on.

I mention this because it is part of a very important broad pattern in higher-dimensional
algebra. For example, we will see that the complex numbers are the primordial Hilbert
space, and that the category of Hilbert spaces is the primordial “2-Hilbert space”, and
that the 2-category of 2-Hilbert spaces is the primordial “3-Hilbert space”, and so on.
This leads to a quantum-theoretic analog of the hierarchy of n-categories, which plays
an important role in mathematical physics. But I’m getting ahead of myself!

Let’s start by considering a few examples of categories. I want to pick some examples
that will lead us naturally to the main themes of higher-dimensional algebra. Beware:
it will take us a while to get rolling. For a while — maybe a few issues of This Week’s
Finds — everything may seem somewhat dry, pointless and abstract, except for those
of you who are already clued in. It has the flavor of “foundations of mathematics,” but
eventually we’ll see these new foundations reveal topology, representation theory, logic,
and quantum theory to be much more tightly interknit than we might have thought. So
hang in there.

For starters, let’s keep the idea of “symmetry” in mind. The typical way to think about
symmetry is with the concept of a “group”. But to get a concept of symmetry that’s really
up to the demands put on it by modern mathematics and physics, we need — at the very
least — to work with a category of symmetries, rather than a group of symmetries.

To see this, first ask: what is a category with one object? It is a “monoid”. The usual
definition of a monoid is this: a set M with an associative binary product and a unit
element 1 such that a1 = 1a = a for all a in M . Monoids abound in mathematics; they
are in a sense the most primitive interesting algebraic structures.

To check that a category with one object is “essentially just a monoid”, note that if our
category C has one object x, the set Hom(x, x) of all morphisms from x to x is indeed a
set with an associative binary product, namely composition, and a unit element, namely
1x. (Actually, in an arbitrary category Hom(x, y) could be a class rather than a set. But
let’s not worry about such nuances.) Conversely, if you hand me a monoid M in the
traditional sense, I can easily cook up a category with one object x and Hom(x, x) = M .

How about categories in which every morphism is invertible? We say a morphism
f : x→ y in a category has inverse g : y → x if fg = 1x and gf = 1y. Well, a category in
which every morphism is invertible is called a “groupoid”.

Finally, a group is a category with one object in which every morphism is invertible.
It’s both a monoid and a groupoid!

When we use groups in physics to describe symmetry, we think of each element g of
the group G as a “process”. The element 1 corresponds to the “process of doing nothing
at all”. We can compose processes g and h — do h and then g — and get the product gh.
Crucially, every process g can be “undone” using its inverse g−1.

We tend to think of this ability to “undo” any process as a key aspect of symmetry.
I.e., if we rotate a beer bottle, we can rotate it back so it was just as it was before.
We don’t tend to think of SMASHING the beer bottle as a symmetry, because it can’t be
undone. But while processes that can be undone are especially interesting, it’s also nice
to consider other ones. . . so for a full understanding of symmetry we should really study
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monoids as well as groups.
But we also should be interested in “partially defined” processes, processes that can

be done only if the initial conditions are right. This is where categories come in! Suppose
that we have a bunch of boxes, and a bunch of processes we can do to a bottle in one
box to turn it into a bottle in another box: for example, “take the bottle out of box x,
rotate it 90 degrees clockwise, and put it in box y”. We can then think of the boxes as
objects and the processes as morphisms: a process that turns a bottle in box x to a bottle
in box y is a morphism f : x → y. We can only do a morphism f : x → y to a bottle in
box x, not to a bottle in any other box, so f is a “partially defined” process. This implies
we can only compose f : x→ y and g : u→ v to get fg : x→ v if y = u.

So: a monoid is like a group, but the “symmetries” no longer need be invertible; a
category is like a monoid, but the “symmetries” no longer need to be composable!

Note for physicists: the operation of “evolving initial data from one spacelike slice
to another” is a good example of a “partially defined” process: it only applies to initial
data on that particular spacelike slice. So dynamics in special relativity is most naturally
described using groupoids. Only after pretending that all the spacelike slices are the
same can we pretend we are using a group. It is very common to pretend that groupoids
are groups, since groups are more familiar, but often insight is lost in the process. Also,
one can only pretend a groupoid is a group if all its objects are isomorphic. Groupoids
really are more general.

Physicists wanting to learn more about groupoids might try:

3) Alan Weinstein, “Groupoids: unifying internal and external symmetry”, available
as http://math.berkeley.edu/~alanw/Groupoids.ps or http://www.ams.org/
notices/199607/weinstein.pdf

So: in contrast to a set, which consists of a static collection of “things”, a category
consists not only of objects or “things” but also morphisms which can viewed as “pro-
cesses” transforming one thing into another. Similarly, in a 2-category, the 2-morphisms
can be regarded as “processes between processes”, and so on. The eventual goal of
basing mathematics upon ω-categories is thus to allow us the freedom to think of any
process as the sort of thing higher-level processes can go between. By the way, it should
also be very interesting to consider “Z-categories” (where Z denotes the integers), hav-
ing j-morphisms not only for j = 0, 1, 2, . . . but also for negative j. Then we may also
think of any thing as a kind of process.

How do the above remarks about groups, monoids, groupoids and categories gener-
alize to the n-categorical context? Well, all we did was start with the notion of category
and consider two sorts of requirement: that the category have just one object, or that all
morphisms be invertible.

A category with just one object — a monoid — could also be seen as a set with extra
algebraic structure, namely a product and unit. Suppose we look at an n-category with
just one object? Well, it’s very similar: then we get a special sort of (n − 1)-category,
one with a product and unit! We call this a “monoidal (n − 1)-category”. I will explain
this more thoroughly later, but let me just note that we can keep playing this game,
and consider a monoidal (n− 1)-category with just one object, which is a special sort of
(n − 2)-category, which we could call a “doubly monoidal (n − 2)-category”, and so on.
This game must seem very abstract and mysterious when one first hears of it. But it turns

123



WEEK 74 MARCH 5, 1996

out to yield a remarkable set of concepts, some already very familiar in mathematics,
and it turns out to greatly deepen our notion of “commutativity”. For now, let me simply
display a chart of “k-tuply monoidal n-categories” for certain low values of n and k:

Table 1: k-tuply monoidal n-categories

n = 0 n = 1 n = 2

k = 0 sets categories 2-categories

k = 1 monoids monoidal
categories

monoidal
2-categories

k = 2 commutative
monoids

braided monoidal
categories

braided monoidal
2-categories

k = 3 ” ” symmetric
monoidal
categories

weakly involutory
monoidal
2-categories

k = 4 ” ” ” ” strongly
involutory
monoidal
2-categories

k = 5 ” ” ” ” ” ”

The quotes indicate that each column “stabilizes” past a certain point. If you can’t
wait to read more about this, you might try “Week 49” for more, but I will explain it all
in more detail in future issues.

What if we take an n-category and demand that all j-morphisms (j > 0) be in-
vertible? Well, then we get something we could call an “n-groupoid”. However, there
are some important subtle issues about the precise sense in which we might want all
j-morphisms to be invertible. I will have to explain that, too.

Let me conclude, though, by mentioning something the experts should enjoy. If we
define n-groupoids correctly, and then figure out how to define ω-groupoids correctly, the
homotopy category of ω-groupoids turns out to be equivalent to the homotopy category
of topological spaces. The latter category is something algebraic topologists have spent
decades studying. This is one of the main ways n-categories are important in topology.
Using this correspondence between n-groupoid theory and homotopy theory, the “stabi-
lization” property described above is then related to a subject called “stable homotopy
theory”, and “Z-groupoids” are a way of talking about “spectra” — another important
tool in homotopy theory.

The above paragraph is overly erudite and obscure, so let me explain the gist: there is
a way to think of a topological space as giving us an ω-groupoid, and the ω-groupoid then
captures all the information about its topology that homotopy theorists find interesting.
(I will explain in more detail how this works later.) If this is all n-category theory did, it
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would simply be an interesting language for doing topology. But as we shall see, it does a
lot more. One reason is that, not only can we use n-categories to think about spaces, we
can also use them to think about symmetries, as described above. Of course, physicists
are very interested in space and also symmetry. So from the viewpoint of a mathematical
physicist, one interesting thing about n-categories is that they unify the study of space
(or spacetime) with the study of symmetry.

I will continue along these lines next time and try to fill in some of the big gaping
holes.

To continue reading the “Tale of n-Categories”, see “Week 75”.
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Week 75

March 6, 1996

If you’ve been following my recent introduction to n-categories, you’ll note that I haven’t
actually given the definition of n-categories! I’ve only defined categories, and hinted at
the definition of 2-categories by giving an example, namely Cat. This is the 2-category
whose objects are categories, whose morphisms are functors, and whose 2-morphisms
are natural transformations.

The definition of n-categories — or maybe I should say the problem of defining n-
categories — is actually surprisingly subtle. Since I want to proceed at a gentle pace here,
I think I should first get everyone used to the 2-category Cat, then define 2-categories in
general, then play around with those a bit, and then move on to n-categories for higher
n.

So recall what the objects, morphisms and 2-morphisms in Cat are: they are cate-
gories, functors and natural transformations. A functor F : C → D assigns to each object
x of C an object F (x) of D, and to each morphism f of C a morphism F (f) of D, and has

1. If f : x→ y, then F (f) : F (x)→ F (y).

2. If fg = h, then F (f)F (g) = F (h).

3. If 1x is the identity morphism of x, then F (1x) is the identity morphism of F (x).

Given two functors F : C → D and G : C → D, a “natural transformation” T : F → G
assigns to each object x of C a morphism Tx : F (x)→ G(x), such that for any morphism
f : x→ yinC, the diagram

F (x) F (y)

G(x) G(y)

F (f)

Tx Ty

G(f)

commutes.
Let me give a nice example. Let Top be the category with topological spaces and con-

tinuous functions between them as morphisms. Let Gpd be the category with groupoids
as objects and functors between them as morphisms. (Remember from “Week 74” that a
groupoid is a category with all morphisms invertible.) Then there is a functor

Π1 : Top→ Gpd

called the “fundamental groupoid” functor, which plays a very basic role in algebraic
topology.

Here’s how we get from any space X its “fundamental groupoid” Π1(X). (If per-
chance you already know about the “fundamental group”, fear not, what we’re doing
now is very similar.) To say what the groupoid Π1(X) is, we need to say what its objects
and morphisms are. The objects in Π1(X) are just the POINTS of X and the morphisms
are just certain equivalence classes of PATHS in X. More precisely, a morphism f : x→ y
in Π1(X) is just an equivalence class of continuous paths from x to y, where two paths
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from x to y are decreed equivalent if one can be continuously deformed to the other
while not moving the endpoints. (If this equivalence relation holds we say the two paths
are “homotopic”, and we call the equivalence classes “homotopy classes of paths.”)

This is a truly wonderful thing! Recall the idea behind categories. A morphism
f : x → y is supposed to be some abstract sort of “process going from x to y.” The
human mind often works by visual metaphors, and our visual image of a “process” from
x to y is some sort of “arrow” from x to y:

x
f−→ y.

That’s why we write f : x → y, of course. But now what we are doing is taking this
visual metaphor literally! We have a space X, like the piece of the computer screen on
which you are actually reading this text. The objects in Π1(X) are then points in X, and
a morphism is basically just a path from x to y:

x
f−→ y.

Well, not quite; it’s a homotopy class of paths. But still, something very interesting
is going on here: we are turning something “concrete”, namely the space X, into a
corresponding “abstract” thing, namely the groupoid Π1(X), by thinking of “concrete”
paths as “abstract” morphisms. Here I am thinking of geometrical concepts as “concrete”,
and algebraic ones as “abstract”.

You may wonder why we use homotopy classes of paths, rather than paths. One
reason is that topologists want to use Π1 to distill a very abstract “essence” of the topo-
logical space X, an essence that conveys only information that’s invariant under “homo-
topy equivalence”. Another reason is that we can easily get homotopy classes of paths to
compose associatively, as they must if they are to be morphisms in a category. We simply
glom them end to end:

x
f−→ y

g−→ z

and there is no problem with associativity, since we can easily reparametrize the paths to
make (fg)h = f(gh). (If you haven’t thought about this, please do!) If we do not work
with homotopy classes, it’s a pain to define composition in such a way that (fg)h =
f(gh). Unless you are sneaky, you only get that (fg)h is homotopic to f(gh); there are
ways to get composition to come out associative, but they are all somewhat immoral.
As we shall see, if we want to preserve the “concreteness” of X as much as possible,
and work with morphisms that are actual paths in X rather than homotopy equivalence
classes, the best thing is to work with n-categories. More on that later.

Let’s see; I claimed there is a functor Π1 : Top → Gpd, but so far I have only defined
Π1 on the objects of Top; we also need to define it for morphisms. That’s easy. A
morphism F : X → Y in Top is a continuous map from the space X to the space Y ; this
is just what we need to take points in X to points in Y , and homotopy classes of paths
in X to homotopy classes of paths in Y . So it gives us a morphism in Gpd from the
fundamental groupoid Π1(X) to the fundamental groupoid Π1(Y ). There are various
things to check here, but it’s not hard. We call this morphism Π1(F ) : Π1(X) → Π1(Y ).
With a little extra work, we can check that Π1 : Top → Gpd, defined this way, is really a
functor.
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Perhaps you are finding this confusing. If so, it could easily be because there are
several levels of categories and such going on here. For example, Π1(X) is a groupoid,
and thus a category, so there are morphisms like f : x → y in it; but on the other hand
Gpd itself is a category, and there are morphisms like Π1(F ) : Π1(X) → Π1(Y ) in it,
which are functors! If you find this confusing, take heart. Getting confused this way
is crucial to learning n-category theory! After all, n-category theory is all about how
every “process” is also a “thing” which can undergo higher-level “processes”. Complex,
interesting structures emerge from very simple ones by the interplay of these different
levels. It takes work to mentally hop up and down these levels, and to weather the
inevitable “level slips” one makes when one screws up. If you expect it to be easy and
are annoyed when you mess up, you will hate this subject. When approached in the right
spirit, it is very fun; it teaches one a special sort of agility. (We are, by the way, nowhere
near the really tricky stuff yet.)

Okay, so we have seen an interesting example of a functor

Π1 : Top→ Gpd

. As I said, we can think of this as going from the concrete world of spaces to the abstract
world of groupoids, turning concrete paths into abstract “morphisms”. Wonderfully,
there is a kind of “reverse” functor,

K : Gpd→ Top

which turns the abstract into the concrete, by making abstract morphisms into concrete
paths! Basically, it goes like this. Say we have a groupoid G. We will build the space
K(G) out of simplices as follows. Start with one 0-simplex for each object in G. A
0-simplex is simply a point. We can draw the 0-simplex for the object x as follows:

x

Then put in one 1-simplex for each morphism in G. A 1-simplex is just a line segment.
We can draw the 1-simplex for the morphism f : x→ y as follows:

x yf

Really we should draw an arrow going from left to right, but soon things will get too
messy if I do that, so I won’t. Then, whenever we have fg = h in the groupoid, we stick
in a 2-simplex. A 2-simplex is just a triangle and we visualize it as follows:

x

y

z

f

h

g

f : x→ y

g : x→ z

h : y → z

Then, whenever we have fgh = k in the groupoid, we stick in a 3-simplex, which we can
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visualize as a tetrahedron like this

x

x

y

z

f

g

h

k

fg

gh

f : w → x

g : x→ y

h : y → z

k : w → z

And so on. . . we do this forever and get a big “simplicial complex,” which we can think
of as the topological space KG. The reader might want to compare “Week 70”, where do
the same thing for a monoid instead of a groupoid. Really, one can do it for any category.

That’s how we define K on objects; it’s not hard to define K on morphisms too, so
we get

K : Gpd→ Top

In case you study this in more detail at some point, I should add that folks often think of
simplicial complexes as somewhat abstract combinatorial objects in their own right, and
then they break down K into two steps: first they take the “nerve” of a groupoid and get
a simplicial complex, and then they take the “geometrical realization” of the simplicial
complex to get a topological space. For more on simplicial complexes and the like, try:

1) J. P. May, Simplicial Objects in Algebraic Topology, Van Nostrand, Princeton, 1968.

Now, in what sense is the functorK : Gpd→ Top the “reverse” of the functor Π1 : Top→
Gpd? Is it just the “inverse” in the traditional sense? No! It’s something more subtle. As
we shall see, the fact that Cat is a 2-category means that a functor can have a more subtle
and interesting sorts of “reverse” than one might expect if one were used to the simple
“inverse” of a function. This is something I alluded to in “Week 74”: inverses become
subtler as we march up the n-categorical hierarchy.

I’ll talk about this more later. But let me just drop a teaser. . . Quantum mechanics
is all about Hilbert spaces and linear operators between them. Given any (bounded)
linear operator F : H → H ′ from one Hilbert space to another, there is a subtle kind of
“reverse” operator, called the “adjoint” of F and written F ∗ : H ′ → H, defined by

〈x, F ∗y〉 = 〈Fx, y〉

for all x inH and y inH ′. This is not the same as the “inverse” of F ; indeed, it exists even
if F is not invertible. This sort of “reverse” operator is deeply related to the “reverse”
functors I am hinting at above, and for this reason those “reverse” functors are also called
“adjoints”. This is part of a profound and somewhat mysterious relationship between
quantum theory and category theory. . . which I eventually need to describe.

To continue reading the “Tale of n-Categories”, see “Week 76”.
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Week 76

March 9, 1996

Yesterday I went to the oral exam of Hong Xiang, a student of Richard Seto who is looking
for evidence of quark-gluon plasma at Brookhaven. The basic particles interacting via
the strong force are quarks and gluons; these have an associated kind of “charge” known
as color. Under normal conditions, quarks and gluons are confined to lie within particles
with zero total color, such as protons and neutrons, and more generally the baryons and
mesons seen in particle acccelerators — and possibly glueballs, as well. (See “Week 68”
for more on glueballs.)

However, the current theory of the strong force — quantum chromodynamics — pre-
dicts that at sufficiently high densities and/or pressures, a plasma of protons and neu-
trons should undergo a phase transition called “deconfinement”, past which the quarks
and gluons will roam freely. At low densities, this is expected to happen at a temperature
corresponding to about 200 MeV per nucleon (i.e., proton or neutron). If my calculation
is right, this is about 2 trillion Kelvin! At low temperatures, it’s expected to happen at
about 5 to 20 times the density of an atomic nucleus. (Normal nuclear matter has about
0.16 nucleons per femtometer cubed.) For more on this, check out these:

1) Relativistic Heavy Ion Collider homepage, http://www.bnl.gov/RHIC/

CERN Courier, “Phase diagram of nuclear matter”, http://www.cerncourier.

com/main/article/40/5/17/1/cernquarks1 6-00

The folks at Brookhaven are attempting to get high densities and temperatures by
slamming two gold nuclei together. They are getting densities of about 9 times that
of a nucleus. . . and I forget what sort of temperature, but there is reason to hope
that the combined high density and pressure might be enough to cause deconfinement
and create a “quark-gluon plasma”. Colliding gold on gold at high energies produces
a enormous spray of particles, but amidst this they are looking for a particular signal
of deconfinement. They are looking for ϕ-mesons and looking to see if their lifetime is
modified. A ϕ-meson is a spin-1 particle made of a strange quark / strange antiquark
pair; strange quarks and antiquarks are supposed to be common in the quark-gluon
plasma formed by the collision. Folks think the lifetime of a ϕ-meson will be affected by
the medium it finds itself in, and that this should serve as a signature of deconfinement.
In fact, they may have already seen this!

People might also enjoy looking at this review article:

2) Adriano Di Giacomo, “Mechanisms of colour confinement”, preprint available as
hep-th/9603029.

Okay, let me continue the tale of n-categories. I want to lead up to their role in
physics, but to do it well, there are quite a few things I need to explain first. One of the
important things about n-category theory is that they allow a much more fine-grained
approach to the notion of “sameness” than we would otherwise be able to achieve.

In a bare set, two elements x and y are either equal or not equal; there is nothing
much more to say.
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In a category, two objects x and y can be equal or not equal, but more interestingly,
they can be isomorphic or not, and if they are, they can be isomorphic in many different
ways. An isomorphism between x and y is simply a morphism f : x → y which has an
inverse g : y → x. (For a discussion of inverse morphisms, see “Week 74”.)

For example, in the category Set an isomorphism is just a one-to-one and onto func-
tion. If we know two sets x and y are isomorphic we know that they are “the same in
a way”, even if they are not equal. But specifying an isomorphism f : x → y does more
than say x and y are the same in a way; it specifies a particular way to regard x and y as
the same.

In short, while equality is a yes-or-no matter, a mere property, an isomorphism is a
structure. It is quite typical, as we climb the categorical ladder (here from elements of a
set to objects of a category) for properties to be reinterpreted as structures, or sometimes
vice-versa.

What about in a 2-category? Here the notion of equality sprouts still further nuances.
Since I haven’t defined 2-categories in general, let me work with an example, Cat. This
has categories as its objects, functors as its morphisms, and natural transformations as
its 2-morphisms.

So. . . we can certainly speak, as before, of the equality of categories. We can also
speak of the isomorphism of categories: an isomorphism between C and D is a functor
F : C → D for which there is an inverse functor G : D → C. I.e., FG is the identity
functor on C and GF is the identity on D, where we define the composition of functors
in the obvious way. But because we also have natural transformations, we can also define
a subtler notion, the equivalence of categories. An equivalence is a functor F : C → D
together with a functor G : D → C and natural isomorphisms a : FG→ 1C and b : GF →
1D. A “natural isomorphism” is a natural transformation which has an inverse.

Abstractly, I hope you can see the pattern here: just as we can “relax” the notion
of equality to the notion of isomorphism when we pass from sets to categories, we can
relax the condition that FG and GF equal identity functors to the condition that they be
isomorphic to identity functors when we pass from categories to the 2-category Cat. We
need to have the natural transformations to be able to speak of functors being isomor-
phic, just as we needed functions to be able to speak of sets being isomorphic. In fact,
with each extra level in the theory of n-categories, we will be able to come up with a
still more refined notion of “n-equivalence” in this way. That’s what “processes between
processes between processes. . . ” allow us to do.

But let me attempt to bring this notion of equivalence of categories down to earth
with some examples. Consider first a little category C with only one object x and one
morphism, the identity morphism 1x : x→ x. We can draw C as follows:

x

where we don’t bother drawing the identity morphism 1x. This category, by the way, is
called the “terminal category”. Next consider a little category D with two objects y and
z and only four morphisms: the identities 1y and 1z, and two morphisms f : y → z and
g : z → y which are inverse to each other. We can draw D as follows:

y z

f

g
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where again we don’t draw identities.
So: C is a little world with only one object, while D is a little world with only two

isomorphic objects. . . that are isomorphic in precisely one way! C and D are clearly
not isomorphic, because for a functor F : C → D to be invertible it would need to be
one-to-one and onto on objects, and also on morphisms.

However, C and D are equivalent. For example, we can let F : C → D be the unique
functor with F (x) = y, and let G : D → C be the unique functor from D to C. (There is
only one functor from any category to C, since C has only one object and one morphism;
this is why we call C the terminal category.) Now, if we look at the functor FG : C → C,
it’s not hard to see that this is the identity functor on C. But the composite GF : D → D
is not the identity functor on D. Instead, it sends both y and z to y, and sends all the
morphisms in D to 1y. But while not equal to the identity functor on D, the functor GF
is naturally isomorphic to it. We can define a natural transformation b : GF → 1D by
setting by = 1y and bz = f . Here some folks may want to refresh themselves on the
definition of natural transformation, given in “Week 75”, and check that b is really one
of these, and that b is a natural isomorphism because it has an inverse.

The point is, basically, that having two uniquely isomorphic things with no morphisms
other than the isomorphisms between them and the identity morphisms isn’t really all
that different from having one thing with only the identity morphism. Category theorists
generally regard equivalent categories as “the same for all practical purposes”. For exam-
ple, given any category we can find an equivalent category in which any two isomorphic
objects are equal. We call these “skeletal” categories because all the fat is gone and just
the essential bones are left. For example, the category FinSet of finite sets, with functions
between them as morphisms, is equivalent to the category with just the sets

0 = {}
0 = {0}
0 = {0, 1}
0 = {0, 1, 2}

etc., and functions between them as morphisms (see “Week 73”). Essentially all the
mathematics that can be done in FinSet can be done in this skeletal category. This
may seem shocking, but it’s true. . . . Similarly, the category Set is equivalent to the
category Card having one set of each cardinality. Also, the category Vect of complex
finite–dimensional vector spaces, with linear functions between them as morphisms, is
equivalent to a skeletal category where the only objects are those of the form Cn. This
example should not seem shocking; it’s this fact which allows unsophisticated people to
do linear algebra under the impression that all finite-dimensional vector spaces are of the
form Cn, and still manage to do all the practical computations that more sophisticated
people can do, who know the abstract definition of vector space and thus know of lots
more finite-dimensional vector spaces.

However, there is another thing we can do in Cat, another refinement of the notion
of isomorphism, which I alluded to in “Week 75”. This is the notion of “adjoint functor”.
Let me mention a few examples (in addition to the example given in “Week 75”) and
let the reader ponder them before giving the definition. Let Grp denote the category
with groups as objects and homomorphisms as morphisms, a homomorphism f : G→ H
between groups being a function with f(1) = 1 and f(gh) = f(g)f(h) for all g, h in G.
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Then there is a nice functor
L : Set→ Grp

which takes any set S to the free group on S: this is the group L(S) formed by all formal
products of elements in S and inverses thereof, with no relations other than those in the
definition of a group. For example, a typical element of the free group on {x, y, z} is
xyzy−1xxy.

(It’s easy to see that f : S → T is a function between sets, there is a unique homo-
morphism L(f) : L(S)→ L(T ) with L(f)(x) = f(x) for all x in S, and that this makes L
into a functor.)

There is also a nice functor
R : Grp→ Set

taking any group to its underlying set, and taking any homomorphism to its underlying
function. We call this a “forgetful” functor since it simply amounts to forgetting that we
are working with groups and just thinking of them as sets.

Now there is a sense in which L and R are reverse processes, but it is delicate.
They certainly aren’t inverses, and they aren’t even part of an equivalence between Set
and Grp. Nonetheless they are “adjoints”. If the reader hasn’t thought about this, she
may enjoy figuring out what this might mean. . . perhaps keeping the adjoint operators
mentioned in “Week 75” in mind.

To continue reading the “Tale of n-Categories”, see “Week 77”
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Week 77

March 23, 1996

I spent last week at Penn State visiting the CGPG — the Center for Gravitational Physics
and Geometry. I like to visit this place whenever I can, because I’ve never found any-
where else that’s as good for talking about quantum gravity.

The CGPG is run by Abhay Ashtekar, who introduced the “new variables” for general
relativity (see “Week 7”). This formulation of general relativity allowed Carlo Rovelli
and Lee Smolin to develop a new approach to quantum gravity, called the “loop repre-
sentation”. Smolin is at the CGPG, while Rovelli teaches at Pittsburgh, only a brief plane
ride away: he was heading back just when I showed up. Jorge Pullin, who has done a lot
of work on knot theory and quantum gravity, is also at the CGPG. Roger Penrose visits it
regularly, and happened to be there last week. There is always a peppy bunch of grad
students and postdocs wandering about the place, and some interesting mathematicians
across the street. I have a particular interest in the work of Jean-Luc Brylinski, since he
has thought a lot about the relationships between conformal field theory and category
theory (see “Week 25”).

You can find out more about the CGPG and the new variables at the following web
sites:

1) Center for Gravitational Physics and Geometry (CGPG) home page, ‘http://vishnu.nirvana.phys.psu.edu/“

Reading list on the new variables: http://vishnu.nirvana.phys.psu.edu/readinglist/
readinglist.html

I had two goals at the CGPG. One was to get people interested in the uses of higher-
dimensional algebra in physics, and the other was to find out where folks were heading
in quantum gravity. I made decent headway on the first front, but let me talk about the
second one.

In the last few years, Abhay Ashtekar has been working hard with a bunch of collabo-
rators on getting the loop representation set up on a mathematically rigorous basis, and
making good progress. There is a natural order in which to set things up, and the next
problem to deal with is the so-called Hamiltonian constraint (see “Week 43”). I have
always been very worried about this, and I’m not alone, since this all the dynamics of
quantum gravity is in this operator. Ashtekar and Lewandowski have a paper partially
written in which they rigorously define an operator along these lines, using earlier ideas
of Rovelli and Smolin. I have been hoping that this answer could be tested somehow. . .
for example, checking out its commutation relations with the other constraints. It turns
out that they have already done this to extent that seems possible. So then the question
is, what next? March on, or continue trying to make sure the Hamiltonian constraint is
right?

I should add that Pullin and Gambini have another proposal regarding the Hamilto-
nian constraint:

2) Rodolfo Gambini and Jorge Pullin, “The general solution of the quantum Einstein
equations?”, preprint in Revtex format, 7 figures included with psfig, available as
gr-qc/9603019.
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This is not as fully worked out, but it has a certain mathematical charm to it so far.
Thus we may eventually be in a situation where there are various competing quantiza-
tions of gravity using the loop representation, differing mainly in their choice of Hamil-
tonian constraint. This suggests that we need further tests for what counts as the “right”
Hamiltonian constraint.

When we spoke this time, Ashtekar was in favor of testing Hamiltonian constraints by
seeing whether they implied the “Bekenstein bound”. This bound says that the maximal
entropy of a physical system is proportional to its surface area when we take quantum
gravity into account. There are a number of heuristic derivations of this bound, so lots of
people hope it would follow from any good theory of quantum gravity. Since the “phys-
ical states” of quantum gravity must be annihilated by the Hamiltonian constraint, and
the maximal entropy of a system is just the logarithm of the number of physical states,
the Hamiltonian constraint must have some interesting properties to get the Bekenstein
bound to work out. So we can expect some work along these lines in the near future.

I also talked to Lee Smolin. He has been very interested in the relation between the
loop representation and certain simplified versions of quantum gravity called topological
quantum field theories (TQFTs). He has ideas on how to derive the Bekenstein bound
using this relationship — see “Week 56” and “Week 57” for a description.

The funny thing is, some of the mathematics connecting TQFTs to the loop repre-
sentation of quantum gravity also connects TQFTs to another well-known approach to
quantum gravity — string theory! Smolin has been boning up on string theory lately, in
part by giving a course on the subject, and presently he is eager to bring string theory
and the loop representation closer together. So we can also expect to see more work on
attempts to unify string and loops. (See “Week 18” for a bit more on strings and loops.)

So I left feeling reinvigorated and eager to continue my own work on higher-dimensional
algebra and physics. . . which is what I have talking about here ever since “Week 73”. In
fact, I have been engaging in a lengthy warmup, a minicourse in category theory, with
an eye to the basic themes of n-category theory. That way, when I get around to the re-
ally cool stuff, everyone out there will know what the heck I’m talking about. In theory,
anyway. You gotta work a bit to wrap your mind around these concepts!

So, let’s recall where we are in our tale of n-categories. We were studying increasingly
subtle variations on the theme of identity and difference. Given two categories C and D,
we can ask if they are equal or not. We can also discuss isomorphisms between C and D.
An isomorphism is a functor F : C → D having an inverse: a functor G : D → C such that
FG is equal to the identity functor on D and GF is equal to the identity on C.

We can also discuss equivalences between C and D. An equivalence is a functor
F : C → D together with a functor G : D → C such that FG is naturally isomorphic
to the identity functor on D, and GF is naturally isomorphic to the identity functor on C.
Remember, two functors from one category to another are “naturally isomorphic” if there
is a natural transformation from the first to the second, and that natural transformation
has an inverse.

In math jargon we say it this way: two categories are equivalent if there is a functor
from one to the other which is invertible “up to a natural isomorphism”.

The most useful notion of categories being “the same” turns out to be not equality, or
isomorphism, but this more supple notion of “equivalence”!
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(As we shall see later, this is because Cat is a 2-category. Remember, an n-category is
some sort of thing with objects, morphisms, 2-morphisms, and so on up to n-morphisms.
One of the of the main themes of n-category theory is that we may regard two things
are “the same”, or “equivalent”, if there is some sort of process to get from one to the
other, and this process is invertible. . . up to equivalence! More precisely, we say an
n-morphism is an equivalence if it’s invertible, and then we work our way down, in-
ductively defining a (j − 1)-morphism to be an equivalence if it’s invertible up to an
equivalence. This downwards induction leaves off when we define equivalence for “0-
morphisms”, meaning objects.)

We have also begun talking about a curious situation where the categories C and D
are not at all “the same,” but there are “adjoint” functors L : C → D and R : D → C. Let
me list some examples before defining the concept of adjoint functor and talking about
it:

1. First for the one we discussed in “Week 76”. Let Set be the category of sets, and
Grp the category of groups. Let L : Set → Grp be the functor taking each set S to
the free group on S, and doing the obvious thing to morphisms. Let R : Grp→ Set
be the functor taking each group to its underlying set.

2. Let Ab be the category of abelian (i.e., commutative) groups. Let L : Set → Ab be
the functor taking each set S to the free abelian group on S. The “free abelian
group” on S is what we get by taking the free group on S and imposing commu-
tativity relations like xy = yx for all elements x, y in S. Let R : Ab → Set be the
functor taking each abelian group to its underlying set.

3. Let L : Grp → Ab be the functor taking each group G to its “abelianization”. The
abelianization of G is what we get when we impose the extra relations xy = yx for
all elements x, y in G. Let R : Ab → Grp be the functor taking each abelian group
to its underlying group.

4. Let Mon be the category of monoids, where the objects are monoids and the mor-
phisms are monoid homomorphisms. (Remember that a monoid is a set with an
associative product and a unit; a monoid morphism f : M → N is a function be-
tween monoids such that f(xy) = f(x)f(y) and f(1) = 1.) Let L : Set → Mon be
the functor taking each set S to the free monoid on S. This is simply the set of
words whose letters are elements of S, with the product given by concatenation
of words, and the unit being the empty word. Let R : Mon → Set be the functor
taking each monoid to its underlying set.

5. Let L : Mon → Grp be the functor taking each monoid M to the group obtained
by throwing in formal inverses for every element of M . The famous example of
this is when N = {0, 1, 2, ...}, which is a monoid whose “product” is addition.
Then L(N) = Z, the integers, since we have thrown in the negative integers. Let
R : Grp → Mon be the functor taking each group to its underlying monoid. I.e., R
simply forgets that our group has inverses and thinks of it as a monoid.

Note the common aspects of these examples! In most of them, L : C → D gives us a
“free” object of D for every object of C, while R : D → C gives us an “underlying” object
of C for every object of D. This is an especially good way to think about it when the
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objects of D are objects of C equipped with extra structure, as in examples 1, 2, 4, and 5.
For example, a group is a set equipped with some extra structure, the group operations.
In this case, the functor L : C → D turns an object of C into an object of D by “freely
throwing in whatever extra stuff is necessary, without putting in any relations other than
those needed to get an object of D”.

It’s not quite the same when the objects of D are objects of C with extra properties,
as in example 3. In this case, the functor L : C → D forces an object of C to have the
properties needed to be an object of D. It does so in as nonviolent a manner as possible.

In either of these situations, R : D → C has the flavor of what we call a “forgetful”
functor. This is not a precisely defined term, but folks use it whenever we can simply
“forget” something about an object of D and think of it as an object of C. For example,
we can take a group, and forget about the group operations, thinking of it as merely a
set. Here we are forgetting extra structure; we can also forget extra properties.

The crucial thing here is that unlike in an equivalence, there is a built-in asymmetry
here: L and R have very different flavors, and serve different mathematical purposes.
We call L the “left adjoint” of R, and we call R the “right adjoint” of L.

There are situations where adjoint functors L and R aren’t so immediately reminis-
cent of the concepts “free” and “underlying”. But it’s good to keep these ideas in mind
when learning about adjoint functors. I used to have trouble remembering which was
supposed to be the left adjoint and which was the right. The honest way to do this is to
remember the definition (coming up soon), but for a cheap mnemonic, you can think of
the L in a left adjoint as standing for “liberty” — that is, freedom!

So what’s the definition of “adjoint”? Roughly speaking, it’s that for any object c of C
and any object d of D, we have

Hom(Lc, d) = Hom(c,Rd).

Actually this is a slight exaggeration: we don’t want these to be equal. The guy on the
left is the set of morphisms from Lc to d in the category D. The guy on the right is the
set of morphisms from c to Rd in the category C. So it’s evil to want them to be equal.
As you might guess, it’s enough for them to be naturally isomorphic in some sense. Let’s
not worry about that too much yet, though. Let’s get the basic idea here!

Consider example 1. Say S is a set and G is a group. Why is

Hom(LS,G)

naturally isomorphic to
Hom(S,RG) ?

In other words, why is the set of homomorphisms from the free group on S to G
naturally isomorphic to the set of functions from S to the underlying set of G?

Well, say we have a homomorphism f : LS → G. Since LS is a free group, we know
f if we know what it does to each element of S. . . and it can do whatever it wants to
these elements! So we can think of it as just a function from S to the underlying set of G.
In other words, we can think of it as a function f ′ : S → RG. Conversely, any function
f ′ : S → RG gives us a homomorphism f : LS → G.

So this is the idea. Say we have an object c of C and an object d of D. Then:

“The set of morphisms from the free D-object on c to d is naturally isomorphic
to the set of morphisms from c to the underlying C-object of d.”
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Next time I will finish off the definition of adjoint functors, by making this “naturally
isomorphic” stuff precise. I will also begin to explain what adjoint functors have to
do with adjoint operators in quantum mechanics. Remember that an “observable” in
quantum theory is an operator on a Hilbert space which is its own adjoint, while a
“symmetry” in quantum theory is an operator whose adjoint is its inverse. I eventually
hope to show that this, and many other shocking aspects of quantum theory, become less
shocking when we think of the world in terms of categories (or n-categories) rather than
sets. The way I think of it these days, the mysterious way quantum theory slammed into
physics in the early 20th century was just nature’s way of telling us we’d better learn
n-category theory.

I’ll also explain what adjoint functors have to do with the following topological equa-
tions:

=

=

To continue reading the “Tale of n-Categories”, see “Week 78”.
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Week 78

March 28, 1996

Last Week I began explaining the concept of “adjoint functor”. This Week I want to finish
explaining it - or at least finish one round of explanation! Then we’ll begin to be able to
see the unity of category theory, topology, and quantum theory. These may seem rather
distinct subjects, but they have an interesting tendency to blur together when one is
doing topological quantum field theory. Part of the point of higher-dimensional algebra
is to explain this.

So, remember the idea of adjoint functors. Say we have categories C and D and
functors L : C → D and R : D → C. Then we say L is the “left adjoint” of R, or that R
is the “right adjoint” of L, if for any object c of C and object d of D, there is a natural
one-to-one correspondence between Hom(Lc, d) and Hom(c,Rd). An example to keep
in mind is when C is the category of sets and D is the category of groups. Then L turns
any set into the free group on that set, while R turns any group into the underlying set
of that group. All sorts of other “free” and “underlying” constructions are also left and
right adjoints, respectively.

Now the only thing I didn’t make very precise is what I mean by “natural” in the
above paragraph. Informally, the idea of a “natural” one-to-one correspondence is that
doesn’t depend on any arbitrary choices. The famous example is that if we have a finite-
dimensional vector space V , it’s always isomorphic to its dual V ∗, but not naturally so:
to set up an isomorphism we need to pick a basis ei of V , and this gives a dual basis f i

of V ∗, and then we get an isomorphism sending ei to f i, but this isomorphism depends
on our choice of basis. But V is naturally isomorphic to its double dual (V ∗)∗.

Now, it’s hard to formalize the idea of “not depending on any arbitrary choices”
directly, so one needs to reflect on why it’s bad for an isomorphism to depend on arbitrary
choices. The main reason is that the arbitrariness may break a useful symmetry. In
fact, Eilenberg and Mac Lane invented category theory in order to formalize this idea
of “naturality as absence of symmetry-breaking”. Of course, they needed the notion of
category to get a sufficiently general concept of “symmetry”. They realized that a nice
way to turn things in the category C into things in the category D is typically a functor
F : C → D. And then, if we have two functors F,G : C → D, they defined a “natural
transformation” from F to G to be a bunch of morphisms

Tc : F (c)→ G(c),

one for each object c of C, such that the following diagram commutes for every morphism
f : c→ c′ in C:

F (c) F (c′)

G(c) G(c′)

F (f)

Tc Tc′

G(f)

This condition says that the transformation T gets along with all the “symmetries”, or
more precisely morphisms f , in the category D. We can do it either before or after
applying one of these symmetries, and we get the same result. For example, a vector
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space construction which depends crucially on a choice of basis will fail this condition if
we take f to be a linear transformation corresponding to a change of basis.

A “natural isomorphism” is then just a natural transformation that’s invertible, or in
other words, one for which all the morphisms Tc are isomorphisms.

Okay. Hopefully that explains the idea of “naturality” a bit better. But right now we
are trying to figure out what we mean by saying that Hom(Lc, d) and Hom(c,Rd) are
naturally isomorphic. To do this, we need to introduce a couple more ideas: the product
of categories, and the opposite of a category.

First, just as you can take the Cartesian product of two sets, you can take the Carte-
sian product of two categories, say C and D. It’s not hard. An object of C×D is just a pair
of objects, one from C and one from D. A morphism in C ×D is just a pair of morphisms,
one from C and one from D. And everything works sort of the way you’d expect.

Second, if you have a category C, you can form a new category Cop, the opposite of
C, which has the same objects as C, and has the arrows in C turned around backwards.
In other words, a morphism f : x → yinCop is defined to be a morphism f : y → xinC,
and the composite fg of morphisms in Cop is defined to be their composite gf in C. So
Cop is like a through-the-looking-glass version of C where they do everything backwards.
A functor F : Cop → D is also called a “contravariant” functor from C to D, since we can
think of it as a screwy functor from C to D with F (fg) = F (g)F (f) instead of the usual
F (fg) = F (f)F (g). Whenever you see this perverse contravariant behavior going on,
you should suspect an opposite category is to blame.

Now, it turns out that we can think of the “Hom” in a category C as a functor

Hom(−,−) : Cop × C → Set

Here the −’s denote blanks to be filled in. Obviously, for any object (x, x′) in Cop × C,
there is a nice juicy set Hom(x, x′), the set of all morphisms from xtox′. But what if we
have a morphism

(f, f ′) : (x, x′)→ (y, y′)

in Cop × C? For Hom(−,−) to be a functor, we should get a nice juicy function

Hom(f, f ′) : Hom(x, x′)→ Hom(y, y′).

How does this work? Well, remember that a morphism (f, f ′) as above is really just
a pair consisting of a morphism f : x → y in Cop and a morphism f ′ : x′ → y′ in D.
A morphism f : x → y in Cop is just a morphism f : y → x in D. Now say we have
an unsuspecting element g of Hom(x, x′) and we want to hit it with Hom(f, f ′) to get
something in Hom(y, y′). Here’s how we do it:

Hom(f, f ′) : g 7→ f ′gf

We compose it with f’ on the left and f on the right! Composing on the left is a nice
covariant thing to do, but composing on the right is contravariant, which is why we
needed the opposite category Cop.

Okay, now back to our adjoint functors L : C → D and R : D → C. Now we are ready
to say what we mean by Hom(Lc, d) and Hom(c,Rd) being naturally isomorphic. Using
the stuff we have set up, we can define two functors

Hom(L−,−) : Cop ×D → Set
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and
Hom(−, R−) : Cop ×D → Set

and we are simply saying that for L and R to be adjoints, we demand the existence of a
natural isomorphism between these functors!

Of course, this seems abstract, but if you work it out in some of the examples of
adjoint functors given in “Week 76” you’ll see it all makes good sense.

Now let me start explaining what this all has to do with quantum theory. (I’ll put off
the topology until next Week.) First of all, the “Hom functor” we introduced,

Hom(−,−) : Cop × C → Set

should remind you a whole lot of the inner product on a Hilbert space H. The inner
product is linear in one slot and conjugate-linear in the other, just like Hom is covariant
in one slot and contravariant in the other. In fact, the inner product can be thought of as
a bilinear map

〈−,−〉 : Hop ×H → C

where Hop, the “opposite” Hilbert space, is like H but with a complex conjugate thrown
into the definition of scalar multiplication, and here C denotes the complex numbers!

Second of all, the definition of adjoint functor, with Hom(Lc, d) and Hom(c,Rd) being
naturally isomorphic, should remind you of adjoint linear operators on Hilbert spaces. If
we have a linear operator L : H → K from a Hilbert space H to a Hilbert space K, its
adjoint R : K → H is given by

〈Lh, k〉 = 〈h,Rk〉

for all h in H and k in K.
In fact, the whole situation with adjoint functors is a kind of “categorified” version of

the situation with adjoint linear operators. Everything has been boosted up one notch on
the n-categorical ladder. What I mean is this: the Hilbert spaces H and K above are sets,
with elements h and k, while the categories C and D are categories, with objects c and d.
The inner product of two elements of a Hilbert space is a number, while the hom of two
objects in a category is a set. Most interesting, the definition of adjoint operators requires
that 〈Lh, k〉 and 〈h,Rk〉 be equal, while the definition of adjoint functors requires only
that 〈Lc, d〉 and 〈c,Rd〉 be naturally isomorphic.

So we can think of adjoints in category theory as a boosted-up version of the adjoints
in quantum theory. But these days, I prefer to think of the adjoints in quantum theory
as a watered-down or “decategorified” version of the adjoints in category theory. The
reason is that categorification — as noted by Louis Crane, who I believe invented the
term — is a risky, hit-or-miss business, while decategorification is much more system-
atic. Decategorification is the simply the process of neglecting the difference between
isomorphism and equality. If we start with an n-category and then get lazy and decide
to think of invertible n-morphisms as equations between the (n − 1)-morphisms, we get
an (n − 1)-category. If we keep slacking off like this, before you know it we’re doing
set theory! The final stage of decategorification is when we get sloppy and instead of
keeping track of set, we merely record the number of its elements.

It’s amusing to imagine this process of decategorification as one of those elaborate
Gnostic myths about the Fall. We start in the paradise of ω-categories (or perhaps even
higher up), but by the repeated sin of confusing equality with isomorphism we fall all
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the way down the n-categorical ladder to the crude world of sets, or worse, simply
numbers. But all this happened a long time ago: now we need to work our butt off to
climb back up! In other words, historically our early ancestors dealt with finite sets by
replacing them with something cruder: their numbers of elements. Counting is actually
very handy, of course, but it can only tell if the cardinalities of two sets are equal; it
doesn’t address the problem of specific isomorphisms between sets. To climb back up the
n-categorical ladder, we needed to start with the set N of natural numbers

0, 1, 2, 3, . . .

and by dint of strenous mental effort realize that this is just the decategorification of the
category FinSet of finite sets. (In fact, category-theorists routinely use 2 to stand for the
2-element set in the skeletal category equivalent to FinSet, and so on — see “Week 76”.)

Now, you are certainly entitled to wonder if this elaborate mathematical-theological
fantasy is just a joke or if it has some practical spinoffs. For example, is there anything
we can do with the analogy between adjoint operators and adjoint functors? As it turns
out, there is. The point is that the analogy is not quite precise. For example, every linear
operator has an adjoint, but not every functor has an adjoint — nor need it be “linear” in
any sense. If we endeavor to make the analogy precise, we will invent a special sort of
category called a “2-Hilbert space” which is the precise categorified analog of a Hilbert
space. And we will invent a nice sort of “linear” functor between these, and all such
functors will have adjoints. Furthermore, in this situation all left adjoints will also be
right adjoints. . . fixing another funny discrepancy. And these 2-Hilbert spaces turn out
to be closely related to 2-dimensional topological quantum field theories (in general, n-
Hilbert spaces appear to be related to n-dimensional TQFTs), as well as some interesting
aspects of group representation theory.

I’m busily writing a paper on exactly this stuff, but I have not explained enough
category theory here to describe it in detail yet. For now, let me just make the connection
between the Hom(−,−) of category theory and the 〈−,−〉 of quantum theory more clear,
and hopefully more plausible. If we have states h and h′ in a Hilbert space, 〈h, h′〉 keeps
track of the amplitude of getting from h to h′. (Often people will say “from h′ to h”, but
here I think I really want to go the other way.) This is a mere number. If we have objects
c and c′ in a category, Hom(c, c′) is the actual set of ways to get from c to c′, that is, the
set of morphisms from c to c′.

When one computes transition amplitudes by summing over paths, as in Feynman
path integrals, one is in a sense decategorifying, that is, turning a set of ways to get
from here to there into a number, the transition amplitude. However, one is not just
counting the ways, one is counting them “with phase”. . . . and I must admit that the role
of the complex numbers in quantum theory is still puzzling from this viewpoint. For some
food for thought, you might want to check out Dan Freed’s work on torsors, which are a
categorified version of phases:

1) “Higher algebraic structures and quantization”, by Daniel Freed, Commun. Math.
Phys. 159 (1994), 343–398, also available as hep-th/9212115.

To continue reading the “Tale of n-Categories”, see “Week 79”.
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Week 79

April 1, 1996

Before I continue my tale of adjoint functors I want to say a little bit about icosahedra,
buckyballs, and last letter Galois wrote before his famous duel. . . . all of which is taken
from the following marvelous article:

1) Bertram Kostant, “The graph of the truncated icosahedron and the last letter of Ga-
lois”, Notices of the AMS 42 (September 1995), 959–968. Also available at http:/
/www.ams.org/notices/199509/199509-toc.html.

When I was a graduate student at MIT I realized that Kostant (who teaches there)
was deeply in love with symmetry, and deeply knowledgeable about some of its more
mysterious byways. Unfortunately I didn’t dig too deeply into group theory at the time,
and now I am struggling to catch up.

Let’s start with the Platonic solids. Note that the cube and the octahedron are dual
— putting a vertex in the center of each of the cube’s faces gives you an octahedron, and
vice versa. So every rotational symmetry of the cube can be reinterpreted as a symmetry
of the octahedron, and vice versa. Similarly, the dodecahedron and the icosahedron are
dual, while the tetrahedron is self-dual. So while there are 5 Platonic solids, there are
really only 3 different symmetry groups here.

These 3 “Platonic groups” are very interesting. The symmetry group of the tetrahe-
dron is the group A4 of all even permutations of 4 things, since by rotating the tetrahe-
dron we can achieve any even permutation of its 4 vertices. The symmetry group of the
cube is S4, the group of all permutations of 4 things. What are the 4 things here? Well,
we can draw 4 line segments connecting opposite vertices of the cube; these are the 4
things! The symmetry group of the icosahedron is A5, the group of even permutations
of 5 things. What are the 5 things? It we take all the line segments connecting opposite
vertices we get 6 things, not 5, but we can’t get all even permutations of those by rotating
the icosahedron. To find the 5 things is a bit trickier; I leave it as a puzzle here. See

2) John Baez, “Some thoughts on the number 6”, http://math.ucr.edu/home/baez/
six.html

for an answer.
Once we convince ourselves that the rotational symmetry group of the icosahedron

is A5, it follows that it has 5!/2 = 60 elements. But there is another nice way to see this.
Take an icosahedron and chop off all 12 corners, getting a truncated icosahedron with
12 regular pentagonal faces and 20 regular hexagonal faces, with all edges the same
length. It looks just like a soccer ball. It’s called an Archimedean solid because, while
not quite Platonic in its beauty, every face is a regular polygon and every vertex looks
alike: two pentagons abutting one hexagon.
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The truncated icosahedron has 5× 12 = 60 vertices. Every symmetry of the icosahe-
dron is a symmetry of the truncated icosahedron, so A5 acts to permute these 60 vertices.
Moreover, we can find an element of A5 that moves a given vertex of the truncated icosa-
hedron to any other one, since “every vertex looks alike”. Also, there is a unique element
of A5 that does the job. So there must be precisely as many elements of A5 as there are
vertices of the truncated icosahedron, namely 60.

There is a lot of interest in the truncated icosahedron recently, because chemists had
speculated for some time that carbon might form C60 molecules with the atoms at the
vertices of this solid, and a while ago they found this was true. In fact, while C60 in this
shape took a bit of work to get ahold of at first, it turns out that lowly soot contains lots
of this stuff!

Since Buckminster Fuller was fond of using truncated icosahedra in his geodesic domes,
C60 and its relatives are called fullerenes, and the shape is affectionately called a bucky-
ball. For more about this stuff, try:

3) P. W. Fowler and D. E. Manolpoulos, An Atlas of Fullerenes, Oxford University Press,
1995.

M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Car-
bon Nanotubules, Academic Press, New York, 1994.

G. Chung, B. Kostant and S. Sternberg, “Groups and the buckyball”, in Lie Theory
and Geometry, eds. J.-L. Brylinski, R. Brylinski, V. Guillemin and V. Kac, Birkhauser,
1994.
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In fact, for the person who has everything: you can now buy 99.5% pure C60 at the
following site:

4) BuckyUSA homepage, http://www.buckyusa.com/Fullerene%20C60.htm

But I digress. Coming back to the 3 Platonic groups. . . there is much more that’s
special about them. Most of it requires a little knowledge of group theory to understand.
For example, they are the 3 different finite subgroups of SO(3) having irreducible repre-
sentations on R3. And they are nice examples of finite reflection groups. For more about
them from this viewpoint, try “Week 62” and “Week 63”. Also, via the McKay correspon-
dence they correspond to the exceptional Lie groups E6, E7, and E8 — see “Week 65” for
an explanation of this!

Yet another interesting fact about these groups is buried in Galois’ last letter, written
to the mathematician Chevalier on the night before Galois’ fatal duel. He was thinking
about some groups we’d now call PSL(2, F ). Here F is a field (for example, the real
numbers, the complex numbers, or Zp, the integers mod pwhere p is prime). PSL(2, F )
is a “projective special linear group over F .” What does that mean? Well, first of all,
SL(2, F ) is the 2 × 2 matrices with entries in F having determinant equal to 1. These
form a group under good old matrix multiplication. The matrices in SL(2, F ) that are
scalar multiples of the identity matrix form the “center” Z of SL(2, F ) — the group of
guys who commute with everyone else. We can form the quotient group SL(2, F )/Z, and
get a new group called PSL(2, F ).

Now Galois was thinking about PSL(2,Zp) where p is prime. There’s an obvious way
to get this group to act as permutations of p + 1 things. Here’s how! For any field F ,
the group SL(2, F ) acts as linear transformations of the 2-dimensional vector space over
F , and it thus acts on the set of lines through the origin in this vector space. . . which
is called the “projective line” over F . But anything in SL(2, F ) that’s a scalar multiple
of the identity doesn’t move lines around, so we can mod out by the center and think of
the quotient group PSL(2, F ) as acting on projective line. (By the way, this explains the
point of working with PSL instead of plain old SL.)

Now, an element of the projective line is just a line through the origin in F 2. We
can specify such a line by taking any nonzero vector (x, y) in F 2 and drawing the line
through the origin and this vector. However, (x′, y′) and (x, y) determine the same line
if (x′, y′) is a scalar multiple of (x, y). Thus lines are in 1-1 correspondence with vectors
of the form (1, y) or (x, 1). When our field F is Zp, there are just p + 1 of these. So
PSL(2,Zp) acts naturally on a set of p+ 1 things.

What Galois told Chevalier is that PSL(2,Zp) doesn’t act nontrivially as permutation
of any set with fewer than p + 1 elements if p > 11. This presumably means he knew
that PSL(2,Zp) does act nontrivially on a set with only p elements if p = 5, 7, or 11. For
example, PSL(2, 5) turns out to be isomorphic to A5, which acts on a set of 5 elements
in an obvious way. PSL(2, 7) and PSL(2, 11) act on a 7-element set and an 11-element
set, respectively, in sneaky ways which Kostant describes.

These cases, p = 5, 7 and 11, are the the only cases where this happens and PSL(2,Zp)
is simple. (See “Week 66” if you don’t know what “simple” means.) In each case it is
very amusing to look at how PSL(2,Zp) acts nontrivially on a set with p elements and
consider the subgroup that doesn’t move a particular element of this set. For example,
when p = 5 we have PSL(2, 5) = A5, and if we look at the subgroup of even permuta-
tions of 5 things that leaves a particular thing alone, we get A4. Kostant explains how
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if we play this game with PSL(2, 7) we get S4, and if we play this game with PSL(2, 11)
we get A5. These are the 3 Platonic groups again!!

But notice an extra curious coincidence. A5 is both PSL(2, 5) and the subgroup
of PSL(2, 11) that fixes a point of an 11-element set. This gives a lot of relationships
between A5, PSL(2, 5), and PSL(2, 11). What Kostant does is take this and milk it for
all it’s worth! In particular, it turns out that one can think of A5 as the vertices of the
buckyball, and describe which vertices are connected by an edge using the embedding
of A5 in PSL(2, 11). I won’t say how this goes. . . read his paper!

This may even have some applications for fullerene spectroscopy, since one can use
symmetry to help understand spectra of compounds. (Indeed, this is one way group
theory entered chemistry in the first place.)

Now let me return to the tale of adjoint functors! I have been stressing the fact that
two functors L : C → D and R : D → C are adjoint if there is a natural isomorphism be-
tween Hom(Lc, d) and Hom(c,Rd). We can say that an “adjunction” is a pair of functors
L : C → D and R : D → C together with a natural isomorphism between Hom(Lc, d) and
Hom(c,Rd). But there is another way to think about adjunctions which is also good.

In “Week 76” we talked about an “equivalence” of categories. We can summarize it
this way: an “equivalence” of the categories C and D is a pair of functors F : C → D and
G : D → C together with natural transformations e : FG⇒ 1D and i : 1C ⇒ GF that are
themselves invertible. (Note that we are now writing products of functors in the order
that ordinary mortals typically do, instead of the backwards way we introduced in “Week
73”. Sorry! It just happens to be better to write it this way now.) Now, the concept of
“adjunction” is a cousin of the concept of “equivalence”, and it’s nice to have a definition
of adjunction that brings out this relationship.

First, consider what happens in the definition of adjunction if we take c = Rd. Then
we have a natural isomorphism between Hom(LRd, d) and Hom(Rd,Rd). Now there
is a special element of Hom(Rd,Rd), namely the identity 1Rd. This gives us a special
element of Hom(LRd, d). Let’s call this

ed : LRd→ d.

What is this morphism like in an example? Say L : Set → Grp takes each set to the
free group on that set, and R : Grp → Set takes each group to its underlying set. Then
if d is a group, LRd is the free group on the underlying set of d. There’s an obvious
homomorphism from LRd to d, taking each word of elements in d and their inverses to
their product in d. That’s ed. It goes from the free thing on the underlying thing of d to
the thing d itself!

In fact, since everything in sight is natural, whenever we have an adjunction the
morphisms ed define a natural transformation

e : LR⇒ 1D

Next, consider what happens in the definition of adjunction if we take d = Lc. Then
we have a natural isomorphism between Hom(c,RLc) and Hom(Lc, Lc). Now there is a
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special element in Hom(Lc, Lc), namely the identity 1Lc. This gives us a special element
in Hom(c,RLc). Let’s call this

ic : c→ RLc.

Again, it’s good to consider the example of sets and groups: if c is a set, RLc is the
underlying set of the free group on c. There is an obvious way to map c into RLc. That’s
ic. It goes from the thing c to the underlying thing of the free thing on c.

As before, we get a natural transformation

i : 1C ⇒ RL

So, as in an equivalence, when we have an adjunction we have natural transformations
e : LR ⇒ 1D and i : 1C ⇒ RL. Unlike in an equivalence, they needn’t be natural
isomorphisms, as the example of sets and groups shows. But they do have some cool
properties, which are nice to draw using pictures.

First, we draw e as a U-shaped thing:

L R

The idea here is that e goes from LR down to the identity 1D, which we draw as “noth-
ing”. We can think of L and R as processes, and the U-shaped thing as the meta-process
of L and R “colliding into each other and cancelling out”, like a particle and antiparticle.
(Lest you think that’s just purple prose, wait and see! Eventually I’ll explain what all this
has to do with antiparticles!) Similarly, we draw i as an upside-down-U-shaped thing:

R L

In other words, i goes from the identity 1C to RL.
We can also use this sort of notation to talk about identity natural transformations.

For example, if we have any old functor F , there is an identity natural transformation
1F : F ⇒ F , which we can draw as follows:

F

F

We draw it as a boring vertical line because “nothing is happening” as we go from F to
F .
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Now, I haven’t talked much about the ways one can compose natural transforma-
tions like i and e, but remember that they are 2-morphisms, or morphisms-between-
morphisms, in Cat (the 2-category of all categories). This means that they are inherently
2-dimensional, and in particular, one can compose them both “horizontally” and “verti-
cally”. I’ll explain this more next time, but for now please take my word for it! Using
these composition operations, one can make sense of the following equations involving
i and e:

R

R

=

R

R

and

L

L

=

L

L

In the first equation we are asserting that a certain way of sticking together i and e and
some identity natural transformations gives 1R : R ⇒ R. In the second we are asserting
that some other way gives 1L : L⇒ L.

I will explain these more carefully next time, but for now I mainly want to state that
we can also define an adjunction to be a pair of functors L : C → D and R : D → C
together with natural transformations e : LR ⇒ 1D and i : 1C ⇒ RL making the above
2 equations hold! This is the definition of “adjunction” that is the most similar to the
definition of “equivalence”.

Now, topologically, these 2 equations simply say that if you have a wiggly curve like

or
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you can pull it tight to get

Thus, while

and

are not exactly “inverses”, there is some subtler sense in which they “cancel out”. This
corresponds to the notion that while adjoint functors are not inverses, not even up to a
natural isomorphism, they still are “like inverses” in a subtler sense.

Now this may seem like a silly game, drawing natural transformations as “string
diagrams” and interpreting adjoint functors as wiggles in the string. But in fact this is
part of a very big, very important, and very fun game: the relation between n-category
theory and the topology of submanifolds of Rn. Right now we are dealing with Cat,
which is a 2-category, so we are getting into 2-dimensional pictures. But when we get
into 3-categories we will get into 3-dimensional pictures, and knot theory. . . and what
got me into this whole business in the first place: the relation between knots and physics.
In higher dimensions it gets even fancier.

So I will continue next time and explain the recipes for composing natural transfor-
mations, and the associated string diagrams, more carefully.

To continue reading the “Tale of n-Categories”, see “Week 80”.
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Week 80

April 20, 1996

There are a number of interesting books I want to mention.
Huw Price’s book on the arrow of time is finally out! It’s good to see a philosopher of

science who not only understands what modern physicists are up to, but can occaision-
ally beat them at their own game.

Why is the future different from the past? This has been vexing people for a long
time, and the stakes went up considerably when Boltzmann proved his “H-theorem”,
which seems at first to show that the entropy of a gas always increases, despite the time-
reversibility of the laws of classical mechanics. However, to prove the H-theorem he
needed an assumption, the “assumption of molecular chaos”. It says roughly that the
positions and velocities of the molecules in a gas are uncorrelated before they collide.
This seems so plausible that one can easily overlook that it has a time-asymmetry built
into it — visible in the word “before”. In fact, we aren’t getting something for nothing in
the H-theorem; we are making a time-asymmetric assumption in order to conclude that
entropy increases with time!

The “independence of incoming causes” is very intuitive: if we do an experiment on
an electron, we almost always assume our choice of how to set the dials is not correlated
to the state of the electron. If we drop this time-asymmetric assumption, the world looks
rather different. . . but I’ll let Price explain that to you.

Anyway, Price is an expert at spotting covertly time-asymmetric assumptions. you
may remember from “Week 26” that he even got into a nice argument with Stephen
Hawking about the arrow of time, thanks to this habit of his. you can read more about
it in:

1) Huw Price, Time’s Arrow and Archimedes’ Point: New Directions for a Physics of Time,
Oxford University Press, 1996.

Also, there is a new book out by Hawking and Roger Penrose on quantum gravity.
First they each present their own ideas, and then they duke it out in a debate in the
final chapter. This book is an excellent place to get an overview of some of the main
ideas in quantum gravity. It helps if you have a little familiarity with general relativity,
or differential geometry, or are willing to fake it.

There is even some stuff here about the arrow of time! Hawking has a theory of how
it arose, starting from his marvelous “no-boundary boundary conditions”, which say that
the wavefunction of the universe is full of quantum fluctuations corresponding to big
bangs which erupt and then recollapse in big crunches. The wavefunction itself has
no obvious “time-asymmetry”, indeed, time as we know it only makes sense within any
one of the quantum fluctuations, one of which is presumably the world we know! But
Hawking thinks that each of these quantum fluctuations, or at least most of them, should
have an arrow of time. This is what Price raised some objections to. Hawking seems to
argue that each quantum fluctuation should “start out” rather smooth near its big bang
and develop more inhomogeneities as time passes, “winding up” quite wrinkly near its
big crunch. But it’s not at all clear what this “starting out” and “winding up” means.
Possibly he is simply speaking vaguely, and all or most of the quantum fluctuations can
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be shown to have one smooth end and wrinkly at the other. That would be an adequate
resolution to the arrow of time problem. But it’s not clear, at least not to me, that
Hawking really showed this.

Penrose, on the other hand, has some closely related ideas. His “Weyl curvature
hypothesis” says that the Weyl curvature of spacetime goes to zero at initial singularities
(e.g. the big bang) and infinity at final ones (e.g. black holes). The Weyl curvature can be
regarded as a measure of the presence of inhomogeneity — the “wrinkliness” I alluded
to above. The Weyl curvature hypothesis can be regarded as a time-asymmetric law built
into physics from the very start.

To see them argue it out, read

2) Stephen Hawking and Roger Penrose, The Nature of Space and Time, Princeton
University Press, 1996.

There are also a couple of more technical books on general relativity that I’d been
meaning to get ahold of for a long time. They both feature authors of that famous book,

3) Charles Misner, Kip Thorne and John Wheeler, Gravitation, Freeman Press, 1973,

which was actually the book that made me decide to work on quantum gravity, back
at the end of my undergraduate days. They are:

4) Ignazio Ciufolini and John Archibald Wheeler, Gravitation and Inertia, Princeton
University Press, 1995.

and

5) Kip Thorne, Richard Price and Douglas Macdonald, eds., Black Holes: The Mem-
brane Paradigm, 1986.

The book by Ciufolini and Wheeler is full of interesting stuff, but it concentrates on
“gravitomagnetism”: the tendency, predicted by general relativity, for a massive spinning
body to apply a torque to nearby objects. This is related to Mach’s old idea that just as
spinning a bucket pulls the water in it up to the edges, thanks to the centrifugal force,
the same thing should happen if instead we make lots of stars rotate around the bucket!
Einstein’s theory of general relativity was inspired by Mach, but there has been a long-
running debate over whether general relativity is “truly Machian” — in part because
nobody knows what “truly Machian” means. In any event, Ciufolini and Wheeler argue
that gravitomagnetism exhibits the Machian nature of general relativity, and they give a
very nice tour of gravitomagnetic effects.

That is fine in theory. However, the gravitomagnetic effect has never yet been ob-
served! It was supposed to be tested by Gravity Probe B, a satellite flying at an altitude
of about 650 kilometers, containing a superconducting gyroscope that should precess at
a rate of 42 milliarcseconds per year thanks to gravitomagnetism. I don’t know what
ever happened with this, though: the following web page says “Gravity Probe B is ex-
pected to fly in 1995”, but now it’s 1996, right? Maybe someone can clue me in to the
latest news. . . . I seem to remember some arguments about funding the program.

6) Gravity Probe B, http://stugyro.stanford.edu/RELATIVITy/GPB/
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(Note added in 2002: now this webpage is gone; see http://einstein.stanford.

edu/ for the latest story.)
Kip Thorne’s name comes up a lot in conjuction with black holes and the LIGO — or

Laser-Interferometer Gravitational-Wave Observatory — project. As pairs of black holes
or neutron stars spiral emit gravitational radiation, they should spiral in towards each
other. In their final moments, as they merge, they should emit a “chirp” of gravitational
radiation, increasing in frequency and amplitude until their ecstatic union is complete.
The LIGO project aims to observe these chirps, and any other sufficiently strong gravi-
tational radiation that happens to be passing by our way. LIGO aims to do this by using
laser interferometry to measure the distance between two points about 4 kilometers
apart to an accuracy of about 10−18 meters, thus detecting tiny ripples in the spaceteim
metric. For more on LIGO, try

7) LIGO project home page, http://www.ligo.caltech.edu/

Thorne helped develop a nice way to think of black holes by envisioning their event
horizon as a kind of “membrane” with well-defined mechanical, electrical and magnetic
properties. This is called the membrane paradigm, and is useful for calculations and
understanding what black holes are really like. The book “Black Holes: The Membrane
Paradigm” is a good place to learn about this.

Now let me return to the tale of 2-categories. So far I’ve said only that a 2-category
is some sort of structure with objects, morphisms between objects, and 2-morphisms
between morphisms. But I have been attempting to develop your intuition for Cat, the
primordial example of a 2-category. Remember, Cat is the 2-category of all categories!
Its objects are categories, its morphisms are functors, and its 2-morphisms are natural
transformations — these being defined in “Week 73” and again in “Week 75”.

How can you learn more about 2-categories? Well, a really good place is the following
article by Ross Street, who is one of the great gurus of n-category theory. For example,
he was the one who invented ω-categories!

8) Ross Street, “Categorical structures”, in Handbook of Algebra, vol. 1, ed. M. Hazewinkel,
Elsevier, 1996.

Physicists should note his explanation of the yang-Baxter and Zamolodchikov equa-
tions in terms of category theory. If you have trouble finding this, you might try

9) G. Maxwell Kelly and Ross Street, Review of the elements of 2-categories, Springer
Lecture Notes in Mathematics 420, Berlin, 1974, pp. 75–103.

I can’t really compete with these for thoroughness, but at least let me give the def-
inition of a 2-category. I’ll give a pretty nuts-and-bolts definition; later I’ll give a more
elegant and abstract one. Readers who are familiar with Cat should keep this example
in mind at all times!

This definition is sort of long, so if you get tired of it, concentrate on the pictures!
They convey the basic idea. Also, keep in mind is that this is going to be sort of like the
definition of a category, but with an extra level on top, the 2-morphisms.
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So: first of all, a 2-category consists of a collection of “objects” and a collection of
“morphisms”. Every morphism f has a “source” object and a “target” object. If the
source of f is x and its target is y, we write f : x→ y. In addition, we have:

1) Given a morphism f : x → y and a morphism g : y → Z, there is a morphism
fg : x→ Z, which we call the “composite” of f and g.

2) Composition is associative: (fg)h = f(gh).

3) For each object x there is a morphism 1x : x→ x, called the “identity” of x. For any
f : x→ y we have 1xf = f1y = f .

you should visualize the composite of f : x→ y and g : y → Z as follows:

x
f−→ y

g−→ Z.

So far this is exactly the definition of a category! But a 2-category ALSO consists of
a collection of “2-morphisms”. Every 2-morphism T has a “source” morphism f and
a target morphism g. If the source of T is f and its target is g, we write T : f ⇒ g.
If T : f ⇒ g, we require that f and g have the same source and the same target; for
example, f : x→ y and g : x→ y. you should visualize T as follows:

x y

f

g

T

<latexit sha1_base64="SgzIMYlpeOSnYgxpzAQAANrpil0="></latexit>

In addition, we have:
1’) Given a 2-morphism S : f ⇒ g and a 2-morphism T : g ⇒ h, there is a 2-morphism

ST : f ⇒ h, which we call the “vertical composite” of S and T .
2’) Vertical composition is associative: (ST )U = S(TU).
3’) For each morphism f there is a 2-morphism 1f : f ⇒ f , called the “identity” of f .

For any T : f ⇒ g we have 1fT = T1g = T .
Note that these are just like the previous 3 rules. We draw the vertical composite of

S : f ⇒ g and T : g ⇒ h like this:

x y

f

g

h

S

T

<latexit sha1_base64="BVZ9huhtQ0wI8vutNVTRmziBZ/8="></latexit>

Now for a twist. We also require that we can “horizontally” compose 2-morphisms as
follows:

x y z

f

g

f 0

g0

S T

<latexit sha1_base64="nB3ZqR6pbQoq/ZYWVVysgXToK7s="></latexit>
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So we also demand:
1’ ’) Given morphisms f, g : x → y and f ′, g′ : y → z, and 2-morphisms S : f ⇒ g

and T : f ′ ⇒ g′, there is a 2-morphism S · T : ff ′ ⇒ gg′, which we call the “horizontal
composite” of S and T .

2’ ’) Horizontal composition is associative: (S · T ) · U = S · (T · U).
3’ ’) The identities for vertical composition are also the identities for horizontal com-

position. That is, given f, g : x→ y and T : f ⇒ g we have 11x · T = T · 11y = T .
Finally, we demand the “exchange law” relating horizontal and vertical composition:

(ST ) · (S′T ′) = (S · S′)(T · T ′)

This makes the following 2-morphism unambiguous:

x y z

f

g

h

f 0

g0

h0

S

T

S0

T 0

<latexit sha1_base64="wQ7t71PK+Qzy/rLGb+uchiTiwIs="></latexit>

We can think of it either as the result of first doing two vertical composites, and then one
horizontal composite, or as the result of first doing two horizontal composites, and then
one vertical composite!

Here we can really see why higher-dimensional algebra deserves its name. Unlike cat-
egory theory, where we can visualize morphisms as 1-dimensional arrows, here we have
2-morphisms which are intrinsically 2-dimensional, and can be composed both vertically
and horizontally.

Now if you are familiar with Cat, you may be wondering how we vertically and
horizontally compose natural transformations, which are the 2-morphisms in Cat. Let
me leave this as an exercise for now. . . there’s a nice way to do it that makes Cat into
a 2-category. This exercise is a good one to build up your higher-dimensional algebra
muscles.

In fact, we could have invented the above definition of 2-category simply by thinking
a lot about Cat and what you can do with categories, functors, and natural transforma-
tions. I’m pretty sure that’s more or less what happened, historically! Thinking hard
enough about nCat leads us on to the definition of (n+ 1)-categories. . . .

But that’s enough for now. Typing those diagrams is hard work.
To continue reading the “Tale of n-Categories”, see “Week 83”.

I thank Keith Harbaugh for catching lots of typos and other mistakes in “Week 73” –
“Week 80”.
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Week 81

May 12, 1996

I think I’ll take a little break on the continuing saga of n-categories. Instead I’ll talk about
something which is secretly the very same subject, namely loop groups and their central
extensions. This is important in string theory. But first I want to say a bit about some
very high-energy physics.

1) D. J. Bird et al, “Detection of a cosmic ray with measured energy well beyond the
expected spectral cutoff due to cosmic microwave radiation”, preprint available as
astro-ph/9410067

P. Bhattacharjee and G. Sigl, “Monopole annihilation and highest energy cosmic
rays”, preprint available as astro-ph/9412053.

R.J. Protheroe and P.A. Johnson, “Are topological defects responsible for the 300 EeV
cosmic rays?”, preprint available as astro-ph/9605006.

In 1994, folks at the Fly’s Eye air shower detector in Utah observed a cosmic ray
whose energy was about 320 EeV. In case you forget what an EeV is, it’s a unit of energy
equal to a billion GeV, and a Gev is equal to a billion ev (electron volts). Current particle
accelerators routinely particles with energies about a hundred GeV, but a few hundred
EeV is a whole different story! That’s about 50 joules, the energy of a one-kilogram mass
moving at 10 meters/second, all packed in one particle!

Nobody knows what would produce cosmic rays of this energy. To make the puzzle
more mysterious, this energy is above the Greisen-Zatsepin- Kuz’min (or GZK) cutoff for
cosmic rays produced at moderate extragalactic distances (30 megaparsecs). The idea of
the GZK cutoff is that particles of extremely high energies whizzing through space would
interact significantly with the cosmic microwave background radiation, losing energy to
produce pions.

So it seems that something is producing really high energy particles, and this some-
thing is not too far away, by cosmic standards. Established mechanisms don’t get ener-
gies that high. A possibility studied by various authors including P. Bhattacharjee and
G. Sigl is that these super-energetic cosmic rays are produced by the decay of “topo-
logical defects”. Various grand unified theories, or GUTs, predict that the strong, weak,
and electromagnetic forces all act the the same at really high temperatures, while at
low temperatures (like any sort of temperature you’d find around here) a “spontaneous
symmetry breaking” occurs which makes them split up into their observed distinct per-
sonalities.

Mathematically this is a bit like how a magnet at low temperatures randomly picks
out a certain axis of magnetization, breaking the rotational symmetry it possesses at
high temperatures. And like in the case of a magnet, one would expect the possibility
of “topological defects” where different regions of space pick different ways to break the
symmetry, leaving nasty spots like lumps in the carpet that can’t be straightened out. Or-
dinary magnets typically exhibit 2-dimensional “domain walls” between domains having
different axes of magnetization. But in various GUTs folks have considered, one can also
get 1-dimensional “cosmic strings” and 0-dimensional “topological solitons” including
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magnetic monopoles — particles with magnetic charge. None of these topological de-
fects have ever been observed, despite a fair amount of searching. Could super-energetic
cosmic rays be the result of a monopole-antimonopole collision?

Alas, Protheroe and Johnson’s paper argues that in such decays lots of the energy
would go into the production of high-energy γ rays. . . more than has been observed in
the super-energetic cosmic ray showers. So maybe the puzzle has some other answer.

The weekend before last I went to the 11th Geometry Festival, which was held at the
University of Maryland. Since I work on quantum gravity, I could be said to be a geometer
of sorts — perhaps a quantum geometer. But geometry means a lot of different things
to different people, and this conference concentrated on some aspects of geometry that
I don’t know much about. In particular, there were talks by Schmuel Weinberger, Bruce
Kleiner and G. Wei on the implications of positive and negative curvature for Riemannian
geometry.

A talk that was right up my alley was given by Jean-Luc Brylinski. It dealt with
themes from his papers with McLaughlin:

2) Jean-Luc Brylinski and Dennis A. McLaughlin, “The geometry of degree four char-
acteristic classes and of line bundles on loop spaces, I”, Duke Math. Journal 75
(1994), 603–638. “II”, Duke Math. Journal 83 (1996), 105–139.

Jean-Luc Brylinski, “Central extensions and reciprocity laws”, preprint.

Jean-Luc Brylinski, “Coadjoint orbits of central extensions of gauge groups”, preprint.

Jean-Luc Brylinski and Dennis A. McLaughlin, “The geometry of two dimensional
symbols”, preprint.

Let me say a bit about the math underlying these papers, the basic stuff that they build
on. One hot topic in mathematical physics in the last decade has been the study of “loop
groups”. Say you take any Lie group G. Then the “loop group” LG is the set of smooth
functions from the circle to G. This becomes a group with pointwise multiplication as
the group operation. This sort of group shows up in 2-dimensional quantum field theory,
where spacetime could be the cylinder. Then “space” is the circle, and if we are studying
gauge theory with gauge group G, the group of gauge transformations over space would
be the loop group LG. One main reason for being interested in 2-dimensional quantum
field theory is string theory: here we think of the 2-dimensional worldsheet of the string
as a spacetime in its own right, and we are often interested in doing gauge theory over
this spacetime. For this reason, folks in string theory need to understand all they can
about unitary representations of loop groups.

Actually they are interested in projective representations of loop groups. Remember,
in quantum mechanics two vectors in a Hilbert space give the same expectation values
for any observable if they differ only by a phase. So it is perfectly fine for a group
representation R to satisfy the usual law

R(g)R(h) = R(gh)

where g, h are group elements, only up to a phase. So in the definition of a projective
representation we weaken the above requirement to

R(g)R(h) = c(g, h)R(gh)
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where c(g, h) is a phase depending on g and h. Folks call c(g, h) the “cocycle” of the
projective representation.

A projective unitary representation of a group H can also be thought of as a repre-
sentation of a bigger group H̃ called a “central extension” of H. The idea is that this
bigger group has a bunch of phases built into it to absorb the phase ambiguities in the
projective representation of H. Let U(1) be the unit circle in the complex plane, a group
under multiplication. This is the group of phases. We can think of H̃ as H × U(1) given
a sneaky product designed to soak up the phases produced by the cocycle:

(g, a)(h, b) = (gh, abc(g, h)).

We can define a unitary representation S of H̃ as follows:

S(g, a) = R(g)a.

It’s then obvious that
S(g, a)S(h, b) = S((g, a)(h, b))

so S is really a representation. For this reason, if we are doing quantum theory and
we don’t like projective representations, it’s okay as long as we understand the central
extensions of our group of symmetries.

So, instead of thinking about projective representations of loop groups, we can think
about central extensions of loop groups. How does one get ahold of these? There is a
nice trick which Brylinski described in his talk. To get this trick, we need to assume a
bit about the group G. Let’s assume it’s a connected and simply-connected simple Lie
group. I’ll explain that in a minute, but some good examples to keep in mind are SU(n)
and Spin(n); see “Week 61” for the definitions and a bit of information about these
groups.

Now remember that Sk stands for the k-dimensional sphere, and πk(X) of a topo-
logical space X stands for the set of continuous maps from Sk to X, modulo homotopy.
In other words, two continuous maps from Sk to X define the same element of πk(X) if
one can be continuously deformed to the other.

Saying that G is connected means that π0(G) = 0. To understand this you need to
realize that S0 consists of two points. So π0(G) = 0 means that G consists of one piece,
any two points of which can be connected by a continuous path.

Saying that G is simply connected means that π1(G) = 0. In other words, all loops
in G can be “pulled tight”. A good example of a group that’s NOT simply connected is
the group SO(n) of rotations in n dimensional space.. This flaw with SO(n) is why they
needed to invent Spin(n); see “Week 61”.

As it turns out, every Lie group has π2(G) = 0. So all 2-spheres in G can be pulled
tight too. Imagine taking a balloon and sticking it in G; then you can always shrink it
down to a point in a continuous way without it getting stuck around a hole in G.

Saying that G is simple is an algebraic rather than topological condition, and I ex-
plained this condition in “Week 63”. But it has topological ramifications. It implies, for
example, that π3(G) = Z, the group of integers. So to each way of sticking a 3-sphere in
G we can associate an integer. One way to compute this integer involves the Killing form
on the Lie algebra of G. This is a special inner product on the Lie algebra of G. Using
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this inner product and the bracket in the Lie algebra we can convert 3 vectors u, v, and
w in the Lie algebra into a number as follows:

W (u, v, w) = k〈[u, v], w〉

Here k is a constant that will make life simpler later. The special property of the Killing
form implies that W is totally antisymmetric, and we can use left multiplication to trans-
late W all over the group G obtaining a closed 3-form on G. Call this 3-form W , too.
Then, given any smooth function from S3 into G we can pull back W to S3 and integrate
it over S3. If we choose the constant k right, the result will be an integer — the integer
we were looking for.

Hmm, this is getting technical. Well, it’ll keep getting more technical. Just stop
reading when it becomes unpleasant.

Okay, these topological facts about the group G have a bunch of cool consequences.
One trick usually goes by the name of the “WZW action”, which refers to Wess, Zumino,
and Witten. Say we have smooth function f from S2 to G. Since π2(G) = 0 we can
extend f to a smooth function F from the 3-dimensional ball, D3, to G. (This is just
another way of “pulling the balloon tight” as mentioned above.) Now we can use F to
pull back the magic 3-form W to D3, and then we can integrate the resulting 3-form over
D3 to get a number S(f) called the Wess-Zumino-Witten action.

Unfortunately, this number depends on the choice of the function F extending f to
the ball. Fortunately, it doesn’t depend too much on F . Say we extended f to some other
function F ′ from the ball to G. Then F together with F ′ define a map from S3 to G, and
we know from the previous stuff that the integral of the pullback of W over this S3 is
an integer. So changing our choice of an extension of f only changes S(f) by an integer.
This means that the exponential of the WZW action:

exp(2πiS(f))

is completely well-defined. This is nice in quantum physics, where the exponential of the
action is what really matters. Note also that this exponential is just a phase! So we are
getting a function

A : Maps(S2, G)→ U(1)

assigning a phase to any map f from S2 to G.
Now Maps(S2, G) is sort of like the loop group, since the loop group is just Maps(S1, G).

In particular, it too becomes a group by pointwise multiplication. A bit of calculation
shows that A above is a group homomorphism:

A(f)A(g) = A(fg).

This homomorphism is the key to finding the central extension of the loop group. Here’s
how we do it. By now everyone but the experts has probably fallen asleep at the screen,
so I can pull out all the stops.

Here’s a useful way to think of a central extensions: a central extension H̃ of the
group H by the group U(1) is a special sort of short exact sequence of groups:

1→ U(1)→ H̃ → H → 1
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By “short exact sequence of groups” I simply mean that U(1) is a subgroup of H̃ and that
H̃ modulo U(1) is H. What’s special about central extensions is that U(1) is in the center
of H̃. You can check that this definition of central extension matches up with our earlier
more lowbrow definition.

Now how do we get this short exact sequence? Well, it comes from a short exact
sequence of spaces:

{∗} → S1 → D2 → S2 → {∗}
This diagram means simply that we can think of the circle as a subspace of the 2-

dimensional disc D2 in an obvious way, and then if we collapse this circle to a point the
disc gets squashed down to a 2-sphere. Now, from this short exact sequence we get a
short exact sequence of groups

1→ Maps(S2, G)→ Maps(D2, G)→ Maps(S1, G)→ 1

In other words, Maps(S2, G) is a normal subgroup of Maps(D2, G), and if we mod out
by this subgroup we get Maps(S1, G). Now we can use the homomorphismA : Maps(S2, G)→
U(1) to get ourselves another exact sequence like this:

1 Maps(S2, G) Maps(D2, G) Maps(S1, G) 1

1 U(1) L̃ Maps(S1, G) 1

i

A

j

1

i j

Remembering that Maps(S1, G) is the loop group, L̃ turns out to be the desired central
extension! Concretely we can think of L̃ as a quotient group of Maps(D2, G) × U(1) by
the subgroup of pairs of the form (i(f), A(f)) with f in Maps(S2, G).

There is something fascinating about how spheres of different dimensions — S0, S1,
S2, and S3 — conspire together with the topology of the group G to yield the central
extension of the loop group LG. It appears that what we are really studying are the
closely related cohomology groups:

• H0(Maps(S3, G)) which is just another way of saying π3(G)

• H1(Maps(S2, G)) which describes homomorphisms from Maps(S2, G) to U(1)

• H2(Maps(S1, G)) which describes central extensions of Maps(S1, G)

• H3(Maps(S0, G)) which is just another way of saying H3(G), where W lives.

There is a fourth term in this series which I didn’t get around to talking about; it’s

• H4(BG) where the degree 4 characteristic class for G-bundles, e.g. the 2nd Chern
class for SU(n), lives.

Here BG is the “classifying space” of G. I would like to understand more deeply
what’s going on with this series, because the different terms have a lot to do with physics
in different dimensions — dimensions 0 to 4, the “low dimensions” which are so specially
interesting.

I should conclude by noting that while a lot of this appeared in Brylinski’s talk, and a
lot of it is probably common knowledge among topologists, it was in some conversations
with James Dolan that we worked out some of the patterns I mention here.
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Week 82

May 17, 1996

I will continue to take a break from the tale of n-categories. As the academic year winds
to an end, an enormous pile of articles and books is building up on my desk. I can kill
two birds with one stone if I list some of them while filing them. Here is a sampling:

1) Advances in Applied Clifford Algebras, ed. Jaime Keller. (Subscriptions are avail-
able from Mrs. Irma Aragon, F. Q., UNAM, Apartado 70-528, 04510 Mexico, D.F.,
MEXICO, for US $10 per year.)

This is a homegrown journal for fans of Clifford algebras. What are Clifford algebras?
Well, let’s start at the beginning, with the quaternions. . . .

As J. Lambek has pointed out, not many mathematicians can claim to have introduced
a new kind of number. One of them was the Sir William Rowan Hamilton. He knew about
the real numbers R, of course, and also the complex numbers C, which are the reals with
a square root of −1, usually called i, thrown in. Why not try putting in another square
root of−1? This might give a 3-dimensional algebra that’d help with 3-dimensional space
as much as the complex numbers help with 2 dimensions. He tried this but couldn’t get
division to work out well. He struggled this for a long time. On the 16th of October,
1843, he was walking along the Royal Canal with his wife to a meeting of the Royal Irish
Academy when he had a good idea: “. . . there dawned on me the notion that we must
admit, in some sense, a fourth dimension of space for the purpose of calculating with
triples . . . An electric circuit seemed to close, and a spark flashed forth.” He carved the
decisive relations

i2 = j2 = k2 = ijk = −1

in the stone of Brougham Bridge as he passed it. This was bold: a noncommutative
algebra, since ij = −ji, jk = −kj, and ik = −ki follow from the above equations. These
are the quaternions, which now we call H after Hamilton.

Hamilton wound up spending much of his time on quaternions. The lawyer and
mathematician Arthur Cayley heard Hamilton lecture on quaternions and — I imagine
— was influenced by this to invent his “octonions”, an 8-dimensional nonassociative
algebra in which division still works nicely. For more on quaternions, octonions, and the
general subject of division algebras, try “Week 59” and “Week 61”.

In 1845, two years after the birth of the quaternions, the visionary William Clifford
was born in Exeter, England. He only lived to the age of 37: despite suffering from
lung disease, he worked with incredible intensity, and his closest friend wrote that “He
could not be induced, or only with the utmost difficulty, to pay even moderate attention
to the cautions and observances which are commonly and aptly described as ‘taking
care of one’s self’ ”. But in his short life, he pushed quite far into the mathematics that
would become the physics of the 20th century. He studied the geometry of Riemann and
prophetically envisioned general relativity in 1876, in the following famous remarks:

”Riemann has shown that as there are different kinds of lines and surfaces, so
there are different kinds of space of three dimensions; and that we can only find
out by experience to which of these kinds the space in which we live belongs. I
hold in fact
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(1) That small portions of space are in fact of a nature analogous to little hills
on a surface which is on the average flat; namely, that the ordinary laws
of geometry are not valid for them.

(2) That this property of being curved or distorted is continually being passed
on from one portion of space to another after the manner of a wave.

(3) That this variation of the curvature of space is what really happens in that
phenomenon which we call the motion of matter, whether ponderable or
etherial.

(4) That in the physical world nothing else takes place but this variation, sub-
ject (possibly) to the law of continuity.

He also substantially generalized Hamilton’s quaternions, dropping the condition that
one have a division algebra, and focusing on the aspects crucial to n-dimensional geom-
etry. He obtained what we call the Clifford algebras.

What’s a Clifford algebra? Well, there are various flavors. But one of the nicest —
let’s call it Cn — is just the associative algebra over the real numbers generated by n
anticommuting square roots of −1. That is, we start with n fellows called

e1, . . . , en

and form all formal products of them, including the empty product, which we call 1.
Then we form all real linear combinations of these products, and then we impose the
relations

e2i = −1

eiej = −ejei.

What are these algebras like? Well, C0 is just the real numbers, since none of these ei’s
are thrown into the stew. C1 has one square root of−1, so it is just the complex numbers.
C2 has two square roots of −1, e1 and e2, with

e1e2 = −e2e1.

Thus C2 is just the quaternions, with e1, e2, and e1e2 corresponding to Hamilton’s i, j,
and k.

How about the Cn for larger values of n? Well, here is a little table up to n = 8:

C0 R
C1 C
C2 H
C3 H + H
C4 H(2)
C5 C(4)
C6 R(8)
C7 R(8) + R(8)
C8 R(16)

What do these entries mean? Well, R(n) means the n× n matrices with real entries.
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Similarly, C(n) means the n × n complex matrices, and H(n) means the n × n quater-
nionic matrices. All these become algebras with the usual matrix addition and matrix
multiplication. Finally, if A is an algebra, A+A means the algebra consisting of pairs of
guys in A, with the obvious rules for addition and multiplication:

(a, a′) + (b, b′) = (a+ b, a′ + b′)

(a, a′)(b, b′) = (ab, a′b′)

You might enjoy checking some of these descriptions of the Clifford algebras Cn for n
up to 8. You have to find the “isomorphism” — the correspondence between the Clifford
algebra and the algebra I claim is really the same. This gets pretty tricky when n gets
big.

How about n larger than 8? Well, here a remarkable fact comes into play. Clifford
algebras display a certain sort of “period 8” phenomenon. Namely, Cn+8 consists of
16× 16 matrices with entries in Cn! For a proof you might try

2) H. Blaine Lawson, Jr. and Marie-Louise Michelson, Spin Geometry, Princeton U.
Press, Princeton, 1989.

or

3) Dale Husemoller, Fibre Bundles, Springer-Verlag, Berlin, 1994.

These books also describe some of the amazing consequences of this periodicity phe-
nomenon. The topology of n-dimensional manifolds is very similar to the topology of
(n+ 8)-dimensional manifolds in some subtle but important ways! I should describe this
“Bott periodicity” sometime, but for now let me leave it as a tantalizing mystery.

I will also have to take a rain check when it comes to describing the importance of
Clifford algebras in physics. . . let me simply note that they are crucial for understanding
spin-1/2 particles. I talked a bit about this in “Week 61”.

The “Spin Geometry” book goes into a lot of detail on Clifford algebras, spinors,
the Dirac equation and more. The “Fibre Bundles” book concentrates on the branch of
topology called K-theory, and uses this together with Clifford algebras to tackle various
subtle questions, such as how many linearly independent vector fields you can find on a
sphere.

4) Ralph L. Cohen, John D. S. Jones, and Graeme B. Segal, “Morse theory and classi-
fying spaces”, preprint as of Sept. 13, 1991.

This is a nice way to think about what’s really going on with Morse theory. In Morse
theory we study the topology of a compact Riemannian manifold by putting a “Morse
function” on it: a real-valued smooth function with only nondegenerate critical points.
The gradient of this function defines a vector field and we use the way points flow along
this vector field to chop the manifold up into convenient pieces or “cells”. A while back,
Witten discovered, or rediscovered, a very cute way to compute a topological invariant
called the “homology” of the invariant using Morse theory. (I’ve heard that this was
previously known and then largely forgotten.)

Here the authors refine this construction. They cook up a category C from the Morse
function: the objects of C are critical points of the Morse function, and the morphisms are
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piecewise gradient flow lines. This is a topological category, meaning that for any pair of
objects x and y the morphisms in Hom(x, y) form a topological space, and composition
is a continuous map. There is a standard recipe to construct the “classifying space” of
any topological category, invented by Segal in the following paper:

5) Graeme B. Segal, “Classifying spaces and spectral sequences”, Pub. IHES 34 (1968),
105–112.

I described classifying spaces for discrete groups in “Week 70”, and the more general
case of discrete groupoids in “Week 75”. The construction for topological categories is
similar: we make a big space by sticking in one point for each object, one edge for each
morphism, one triangle for each composable pair of morphisms:

x

y

z

f

gf

g

f : x→ y

g : y → z

gf : x→ z

and so on. The only new trick is to make sure this space gets a topology in the right way
using the topologies on the spaces Hom(x, y).

Anyway, if we form this classifying space from the topological category C coming
from the Morse function on our manifold M , we get a space homotopic to M ! In other
words, for many topological purposes the category C is just as good as the manifold M
itself.

6) Ross Street, “Descent theory”, preprint of talks given at Oberwolfach, Sept. 17–23,
1995.

Ross Street, “Fusion operators and cocycloids in monoidal categories”, preprints.

Street is one of the gurus of n-category theory, which he notes “might be called post-
modern algebra (or even ‘post-modern mathematics’ since geometry and algebra are
handled equally well by higher categories).” His paper on “Descent theory” serves as
a rapid introduction to n-categories. But the real point of the paper is to explain the
role n-categories play in cohomology theory: in particular, how to do cohomology with
coefficients in an ω-category!

7) Viqar Husain, “Intersecting-loop solutions of the hamiltonian constraint of quan-
tum general relativity”, Nucl. Phys. B313 (1989), 711–724.

Viqar Husain and Karel V. “Kuchar, General covariance, new variables, and dynam-
ics without dynamics”, Phys. Rev. D 42 (1990), 4070–4077.

Viqar Husain, “Einstein’s equations and the chiral model”, to appear in Phys. Rev.
D, preprint available as gr-qc/9602050.

Viqar is one of the excellent younger folks at the Center for Gravitational Physics and
Geometry at Penn State; I only had a bit of time to speak with him during my last visit
there, but I got some of his papers. The first paper is from the good old days when folks
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were just beginning to find explicit solutions of the constraints of quantum gravity using
the loop representation — it’s still worth reading! The second introduced a field the-
ory now called the Husain-Kuchar model, which has the curious property of resembling
gravity without the dynamics. The third studies 4-dimensional general relativity assum-
ing there are two commuting spacelike Killing vector fields. Here he reduces the theory
to a 2-dimensional theory which appears to be completely integrable — though it has
not been proved to be so in the sense of admitting a complete set of Poisson-commuting
conserved quantities.

8) The Interface of Knots and Physics, ed. Louis H. Kauffman, Proc. Symp. Appl. Math.
51, American Mathematical Society, Providence, Rhode Island, 1996.

This slim volume contains the proceedings of an AMS “short course” on knots and
physics held in San Francisco in January 1995, namely:

• Louis H. Kauffman, “Knots and statistical mechanics”

• Ruth J. Lawrence, “An introduction to topological field theory”

• Dror Bar-Natan, “Vassiliev and quantum invariants of braids”

• Samuel J. Lomonaco, “The modern legacies of Thomson’s atomic vortex theory in
classical electrodynamics”

• John C. Baez, “Spin networks in nonperturbative quantum gravity”

William Kingon Clifford

Born May 4th, 1845

Died March 3rd, 1879

I was not, and was conceived

I loved, and did a little work

I am not, and grieve not.

And

Lucy, his wife

Died April 21st, 1929

Oh, two such silver currents when they join

Do glorify the banks that bound them in.
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Week 83

June 10, 1996

I’ll return to the tale of n-categories this week, and continue to explain the mysteries of
duals and inverses. But first let me describe two new papers by Connes.

1) Alain Connes, “Gravity coupled with matter and the foundation of non-commutative
geometry”, preprint available as hep-th/9603053.

Ali H. Chamseddine and Alain Connes, “The spectral action principle”, preprint
available as hep-th/9606001.

The second paper here fills in details that are missing from the first. Hopefully lots
of you know that Connes is the wizard of operator theory who turned to inventing a
new branch of geometry, “noncommutative geometry”. The idea of algebraic geometry
is that we can study a space by studying the functions on that space — which typically
form some kind of commutative algebra. If we let the algebra become noncommutative,
it is no longer functions on some space, but we can pretend it is nonetheless, and do
geometry by analogy with the commutative case. This is very much based on the philos-
ophy of quantum mechanics, where the observables form a noncommutative algebra, yet
are analogous to the commutative algebras of observables of classical mechanics, these
commutative algebras consisting simply of functions on the classical space states.

In quantum mechanics, the failure of two observables to commute implies that they
cannot always be simultaneously measured with arbitrary accuracy; there is a very pre-
cise mathematical statement of Heisenberg’s uncertainty principle that makes this quan-
titative. We can thus think of noncommutative geometry as “quantum geometry”, geom-
etry where the uncertainty principle of quantum mechanics has infected the very notion
of space itself! In noncommutative geometry it impossible to simultaneously measure all
the coordinates of a point with arbitrary accuracy, because they do not commute!

For the definitive introduction to noncommutative geometry, see Connes’ book “Non-
commutative Geometry”, reviewed in “Week 39”. Already in this book Connes, working
with Lott, was beginning to explore the idea that the geometry of our physical universe
is noncommutative. Actually, they used ideas from noncommutative geometry to study
a weird kind of commutative geometry in which spacetime is “two-sheeted” - two copies
of standard 4-dimensional spacetime, very close together. In normal geometry it doesn’t
even make sense to speak of two separate copies of spacetime being “close together”,
since there is no way to get from one to the other! Tricks from noncommutative geom-
etry allow it to make sense. They found something amazing: if you do U(1) × SU(2)
Yang-Mills theory on this spacetime, you get the Higgs particle for free!

Sorry for the jargon. What it means is this: in the Standard Model of particle physics
we describe the electromagnetic force and the weak nuclear force in a unified way using
a theory called “U(1)×SU(2) Yang-Mills theory”, but then we postulate an extra particle,
the Higgs particle, which has the effect of making the electromagnetic force work quite
differently from the weak force. We say it “breaks the symmetry” between the two
forces. It has not yet been observed, though particle physicists hope to see it (or not!)
in experiments coming up fairly soon. It is a rather puzzling, ad hoc element of the
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Standard Model. The amazing thing about the Connes-Lott model is that it arises in a
natural way from the fact that spacetime has two sheets.

Connes and Lott also studied the strong force, but now Connes has introduced gravity
into his model. I haven’t had time to absorb this new work yet, so let me simply say
what his current model of spacetime is, and list some of the concrete predictions the
new theory makes. His spacetime is the noncommutative algebra consisting of smooth
functions on good old 4-dimensional Minkowski spacetime, taking values in the algebra
A given by the direct sum

A = C + H +M3(C)

where C is the complex numbers, H is the quaternions, and M3(C) is the 3× 3 complex
matrices. (Exercise: redo Connes’ model, replacing M3(C) with the octonions. Hint:
develop nonassociative geometry and use Geoffrey Dixon’s theory relating the electro-
magnetic, weak, and strong forces to the complex numbers, quaternions, and octonions,
respectively. See “Week 59” for references to Dixon’s work, and an explanation of quater-
nions and octonions.)

The Chamseddine-Connes model predicts that the sine squared of the Weinberg angle
— an important constant in the theory of the electroweak force — is between .206 and
.210. Unfortunately this disagrees with the experimental value of .2325, but it’s sort of
surprising that they can derive something this close, since in the Standard Model the
Weinberg is just an arbitrary parameter. They also derive a Higgs mass of 160–180 GeV,
and expect accuracy comparable to their prediction of the Weinberg angle (about 10%).

Well worth pondering!

There is an interesting analogy between the dual of a vector space and the inverse of a
number which I would like to explain now. I assume you know that multiplying numbers
is a lot like tensoring vector spaces. For example, just as multiplication distributes over
addition, tensoring distributes over direct sums. Also, just as there is a number called
1 which is the unit for multiplication, there is a 1-dimensional vector space, the ground
field itself, which is the unit for tensoring. Let me take the unusual liberty of writing
tensor products by juxtaposition, so that xy is the tensor product of the vector space x
and the vector space y, and let me call the 1-dimensional vector space that’s the unit for
tensoring simply “1”.

Now, if a number x has an inverse y, we have

yx = 1

and
1 = xy.

Similarly, if a vector space x has a dual y, we have linear maps

e : yx→ 1

and
i : 1→ xy
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What are these linear maps? Well, the whole point of the dual vector space y is that a
vector in y is a linear functional from x to 1. This “dual pairing” between vectors in y
and those in x defines a linear map e : yx → 1, often called the “counit”. On the other
hand, the space xy can be thought of as the space of linear transformations of x. The
linear map i : 1→ xy sends any scalar (i.e., any vector in 1) to the corresponding scalar
multiple of the identity transformation of x.

So we see that dual vector spaces are a bit like inverse numbers, except that we don’t
have yx = 1 and 1 = xy, and we don’t even have that yx is isomorphic to 1 and 1 is
isomorphic to xy. We just have some maps going from yx to 1, and from 1 to xy.

These maps satisfy two equations, though. Here’s the first. We start with x, use the
obvious isomorphism to map to 1x, then use i : 1 → xy to map this to xyx, then use
e : yx→ 1 to map this to x1, and then use the other obvious isomorphism to map back to
x. This composite of maps should be the identity on x. What this says is that the identity
linear transformation of x really acts as the identity!

Stealing a trick from “Week 79”, we can draw this as follows. Draw the counit
e : yx→ 1 as follows:

y x

•
e

and draw the unit i : 1→ xy as follows:

x y

•
i

Then the above equation says that

x

x

x y x =

x

x

Here the left side, which we read from top to bottom, corresponds to the composite
x→ 1x→ xyx→ x1→ x. (The factors of 1 are invisible in the picture, since they don’t
do much.) The left side corresponds to the identity map x→ x.

The second equation goes like this. We start with y, use the obvious isomorphism to
map to y1, then use the unit to map this to yxy, then use the counit to map this to 1y,
and then use the other obvious isomorphism to map back to y. This composite should be
the identity on y. What this says is that the identity linear transformation of x also acts
dually as the identity on y! We can draw this as follows:

y

y

y x y =

y

y
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If you now steal a peek at “Week 79”, you’ll see that these two equations are just the
same equations used to define adjoint functors in category theory! What’s going on?
Well, dual vector spaces are analogous to adjoint functors, clearly. But more deeply,
what we have is an analogy between duals in any category with tensor products — or
“monoidal category” — and adjoints in any 2-category.

What’s a monoidal category, exactly? Roughly it’s a category with some sort of “tensor
product” and “unit object”. But we can precisely define the so-called “strict” monoidal
categories as follows: they are simply 2-categories with one object. (Turn to “Week 80”
for a definition of 2-categories.) A 2-category has objects, morphisms, and 2-morphisms,
but if there is only one object, we can do the following relabelling trick:

2-morphisms 7→ morphisms

morphisms 7→ objects

objects 7→

Namely, we can forget about the object, call the morphisms “objects”, and call the 2-
morphisms “morphisms”. But since all the new “objects” were really morphisms from
the original single object to itself, they can all be composed, or “tensored”. That’s why
we get a category with “tensor product”, and similarly, a “unit object”.

So, just as a category with one object is just a monoid, a 2-category with one object
is a monoidal category! This is one instance of a trick that I sketched many more cases
of in “Week 74”.

Now, in “Week 79” I defined left and right adjoints of functors between categories.
Here the only thing I really needed about category theory was that Cat is a 2-category
with categories as its objects, functors as its morphisms, and natural transformations as
its 2-morphisms. So we can define left and right adjoints of morphisms in any 2-category
by analogy as follows:

Suppose a and b are objects in a 2-category. Then we say that the morphism

L : a→ b

is a “left adjoint” of the morphism
R : b→ a

(and R is a “right adjoint” of L) if there are 2-morphisms

e : RL⇒ 1b

i : 1a ⇒ LR

satisfying two magic equations. If we draw e and i as we did above,

y x

•
e

x y

•
i
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then the two magic equations are

L

L

L R L =

L

L

and

R

R

R L R =

R

R

Alternatively, we can state these equations using the 2-categorical notation described
in “Week 80”, by saying that the following vertical composites of 2-morphisms are iden-
tity morphisms:

L = 1aL
i·1L==⇒ LRL

1L·e===⇒ L1a = L

and
R = R1a

1R·i===⇒ RLR
e·1R===⇒ 1bR = R

where · denotes the horizontal composite. If you look at these, and compare them to the
graphical notation above, you’ll see they are really saying the same thing.

The punchline is, when our 2-category has one object, we can think of it as a monoidal
category, and then these equations are the definition of “duals” — one example being our
earlier definition of dual vector spaces in the monoidal category Vect of vector spaces!

So adjoint functors and dual vector spaces are both instances of the general notion
of adjoint 1-morphisms in a 2-category. Adjointness is a very basic concept.

I hope all that made some sense.
If this category theory stuff seems confusing, maybe you should read a 3-volume book

about it! I can see you smiling, but seriously, I find the following reference very useful
(despite a certain number of annoying errors). You can find a lot of good stuff about
adjoint functors, monoidal categories, and much much more in here:

2) Francis Borceux, Handbook of Categorical Algebra, Cambridge U. Press 1994. Vol-
ume 1: Basic Category Theory. Volume 2: Categories and Structure. Volume 3:
Categories of Sheaves.

To continue reading the “Tale of n-Categories”, see “Week 84”.
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Week 84

June 27, 1996

While I try to limit myself to mathematical physics in This Week’s Finds, I can’t always
keep it from spilling over into other subjects. . . so if you’re not interested in comput-
ers, just skip down to reference 8 below. A while back on sci.physics Matt McIrvin
pointed out that the closest thing we have to the computer of old science fiction — the
underground behemoth attended by technicians in white lab coats that can answer any
question you type in — is AltaVista. I agree wholeheartedly.

In case you are a few months or years behind on the technological front, let me
explain: these days there is a vast amount of material available on the World-Wide Web,
so that the problem has become one of locating what you are interested in. You can
do this with programs known as search engines. There are lots of search engines, but
my favorite these days is AltaVista, which is run by DEC, and seems to be especially
comprehensive. So these days if you want to know, say, the meaning of life, you can just
go to

1) AltaVista, http://www.altavista.digital.com/

type in “meaning of life”, and see what everyone has written about it. You’ll be none
the wiser, of course, but that’s how it always worked in those old science fiction stories,
too.

The intelligence of AltaVista is of course far less than that of a fruit fly. But Matt’s
comment made me think about how now, as soon as we develop even a rudimentary form
of artificial intelligence, it will immediately have access to vast reams of information on
the Web. . . and may start doing some surprising things.

An example of what I’m talking about is the CYC project, Doug Lenat’s $35 million
project, begun in 1984, to write a program with common sense. In fact, the project plans
to set CYC loose on the web once it knows enough to learn something from it.

2) CYC project homepage, http://www.cyc.com/

The idea behind CYC is to encode “common sense” as about half a million rules
of thumb, declarative sentences which CYC can use to generate inferences. To have
any chance of success, these rules of thumb must be organized and manipulated very
carefully. One key aspect of this is CYC’s ontology — the framework that lets it know, for
example, that you can eat 4 sandwiches, but not 4 colors or the number 4. Most of the
CYC code is proprietary, but the ontology will be made public in July of this year, they
say. One can already read about aspects of it in

3) Douglas B. Lenat and R.V. Guha, Building Large Knowledge-Based Systems: Repre-
sentation and Inference in the Cyc Project, Addison-Wesley, Reading, Mass., 1990.

My network of spies informs me that many hackers are rather suspicious of CYC. For
an interesting and somewhat critical account of CYC at one stage of its development, see

4) Vaughan Pratt, “CYC Report”, http://boole.stanford.edu/pub/cyc.report
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Turning to something that’s already very practical, I was very pleased when I found
one could use AltaVista to do “backlinks”. Certainly the World-Wide Web is in part
inspired by Ted Nelson’s visionary but ill-starred Xanadu project.

5) Project Xanadu, http://xanadu.net/the.project

Backlinking is one of the most tricky parts of Ted Nelson’s vision, one often declared
infeasible, but one upon which he has always insisted. Basically, the idea is that you
should always be able to find all the documents pointing to a given document, as well as
those to which it points. This allows commentary or annotation: if you read something,
you can read what other people have written about it. My spies inform me that the
World-Wide Web Committee is moving in this direction, but it is exciting that one can
already do “backlinks browsing” with the help of a program written by Ted Kaehler:

6) Ted Kaehler’s backlinks browser, http://www.foresight.org/backlinks1.3.1.
html

Go to this page at the start of your browsing session. Follow the directions and let
it create a new Netscape window for you to browse in. Whenever you want backlinks,
click in the original page, and click “Links to Other Page”. This launches an AltaVista
search for links to the page you were just looking at.

It works quite nicely. I hope you try it, because with backlinking the Web will become
a much more interesting and useful place, and the more people who know about it, the
sooner it will catch on. For more discussion of backlinking, see

7) Backlinking news at the Foresight Institute, http://www.foresight.org/backlinks.
news.html

Robin Hanson’s ideas on backlinking, http://www.hss.caltech.edu/~hanson/

findcritics.html

I thank my best buddy Bruce Smith for telling me about CYC, Project Xanadu, and
Ted Kaehler’s backlinks browser.

Now let me turn to some mathematics and physics.

8) Francesco Fucito, Maurizio Martellini and Mauro Zeni, “The BF formalism for QCD
and quark confinement”, preprint available as hep-th/9605018.

9) Ioannis Tsohantjis, Alex C Kalloniatis, and Peter D. Jarvis, “Chord diagrams and
BPHZ subtractions”, preprint available as hep-th/9604191.

These two papers both treat interesting relationships between topology and quan-
tum field theory — not the “topological quantum field theory” beloved of effete math-
ematicians such as myself, but the pedestrian sort of quantum field theory that ordi-
nary working physicists use to study particle physics. So we are seeing an interesting
cross-fertilization here: first quantum field theory got applied to topology, and now the
resulting ideas are getting applied back to particle physics.

Why don’t we see quarks roaming the streets freely at night? Because they are con-
fined! Confined to the hadrons in which they reside, that is. We mainly see two sorts
of hadrons: baryons made of three quarks, like the proton and neutron, and mesons
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made of a quark and an antiquark, like the pion or kaon. Why are the quarks confined in
hadrons? Well, roughly it’s because if you grab a quark inside a hadron and try to pull it
out, the force needed to pull it doesn’t decrease as you pull it farther out; instead, it re-
mains about constant. Thus the energy grows linearly with the distance, and eventually
you have put enough energy into the hadron to create another quark-antiquark pair, and
pop — you find you are holding not a single quark but a quark together with a newly
born antiquark, that is, a meson! What’s left is a hadron with a newly born quark as the
replacement for the one you tried to pull out!

That’s a pretty heuristic description. In fact, particle physicists do not usually grab
hadrons and try to wrest quarks from them with their bare hands. Instead they smash
hadrons and other particles at each other and study the debris. But as a rough sketch of
the theory of quark confinement, the above description is not completely silly.

There are various interesting things left to do, though. One is to try to get those
quarks out by means of sneaky tricks. The only way known is to heat a bunch of hadrons
to ridiculously high temperatures, preferably at ridiculously high pressures. I’m talking
temperatures like 2 trillion degrees, and densities comparable to that of nuclear matter!
This should yield a “quark-gluon plasma” in which quarks can zip around freely at enor-
mous energies. That’s what the folks at the Relativistic Heavy Ion Collider are doing —
see “Week 76” for more.

This should certainly keep the experimentalists entertained. On the other hand, the-
orists can have lots of fun trying to understand more deeply why quarks are confined.
We’d like best to derive confinement in some fairly clear and fairly rigorous way from
quantum chromodynamics, or QCD — our current theory of the strong force, the force
that binds the quarks together. Unfortunately, mathematical physicists are still struggling
to formulate QCD in a rigorous way, so they can’t yet turn to the exciting challenge of
proving that confinement follows from QCD. And we certainly don’t expect any simple
way to “exactly solve” QCD, since it is complicated and highly nonlinear. So what some
people do instead is computer simulations of QCD, in which they approximate spacetime
by a lattice and do a lot of number-crunching. They usually use a fairly measly-sounding
grid of something like 16 x 16 x 16 x 16 sites or so, since currently calculations take too
long when the lattice gets much bigger than that.

Numerical calculations like these have a lot of potential. In “Week 68”, for example,
I talked about how people found numerical evidence for the existence of a “glueball” —
a hadron made of no quarks, just gluons, the gluon being the particle that carries the
strong force. This glueball candidate seems to match the features of an observed particle!
Also, people have put a lot of work into computing the masses of more familiar hadrons.
So far I believe they have concentrated on mesons, which are simpler. Eventually we
should in principle be able to calculate things like the mass of the proton and neutron —
which would be really thrilling, I think. Numerical calculations have also yielded a lot of
numerical evidence that QCD predicts confinement.

Still, one would very much like some conceptual explanation for confinement, even
if it’s not quite rigorous. One way people try to understand it is in terms of “dual su-
perconductivity”. In certain superconductors, magnetic fields can only penetrate as long
narrow tubes of magnetic flux. (For example, this happens in neutron stars - see “Week
37”.) Now, just as electromagnetism consists of an “electric” part and a “magnetic” part,
so does the strong force. But the idea is that confinement is due to the electric part of
the strong force only being able to penetrate the vacuum in the form of long narrow
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tubes of field lines. The electric and magnetic fields are “dual” to each other in a precise
mathematical sense, so this is referred to as dual superconductivity. Quarks have the
strong force version of electric charge — called “color” — and when we try to pull two
quarks apart, the strong electric field gets pulled into a long tube. This is why the force
remains constant rather than diminishing as the distance between the quarks increases.

A while back, ’t Hooft proposed an idea for studying confinement in terms of dual
superconductivity and certain “order” and “disorder” observables. It seems this idea has
languished to some extent due to a lack of necessary mathematical infrastructure. For
the last couple of years, Martellini has been suggesting to use ideas from topological
quantum field theory to serve this role. In particular, he suggested treating Yang-Mills
theory as a perturbation of BF theory, and applying some of the ideas of Witten and
Seiberg (who related confinement in the supersymmetric generalization of Yang-Mills
theory to Donaldson theory). In the paper with Fucito and Zeni, they make some of
these ideas precise. There are still some potentially serious loose ends, so I am very
interested to hear the reaction of others working on confinement.

I have not studied the paper of Tsohantjis, Kalloniatis, and Jarvis in any detail, but
people studying Vassiliev invariants might find it interesting, since it claims to relate the
renormalization theory of ϕ3 theory to the mathematics of chord diagrams.

10) Masaki Kashiwara and Yoshihisa Saito, “Geometric construction of crystal bases”,
q-alg/9606009.

The “canonical” and “crystal” bases associated to quantum groups, studied by Kashi-
wara, Lusztig, and others, are exciting to me because they indicate that the quantum
groups are just the tip of a still richer structure. Whenever you see an algebraic struc-
ture with a basis in which the structure constants are nonnegative integers, you should
suspect that you are really working with a category of some sort, but in boiled-down or
“decategorified” form.

Consider for example the representation ring R(G) of a group G. This is a ring
whose elements are just the isomorphism classes of finite- dimensional representations
of G. Addition in R(G) corresponds to taking the direct sum of representations, while
multiplication corresponds to taking the tensor product. Thus for example if x and y
are irreducible representations of G — or “irreps” for short — and [x] and [y] are the
corresponding basis elements of R(G), the product [x][y] is equal to a linear combina-
tion of the irreps appearing in x ⊗ y, with the coefficients in the linear combination
being the multiplicities with which the various irreps appear in x⊗ y. These coefficients
are therefore nonnegative integers. They are an example of what I’m calling “structure
constants”.

What’s happening here is that the ring R(G) is serving as a “decategorified” version
of the category Rep(G) of representations of the group G. Alsmost everything about
R(G) is just a decategorified version of something about Rep(G). For example, R(G) is a
monoid under multiplication, while Rep(G) is a monoidal category under tensor product.
R(G) is actually a commutative monoid, while Rep(G) is a symmetric monoidal category
— this being jargon for how the tensor product is “commutative” up to a nice sort of
isomorphism. In R(G) we have addition, while in Rep(G) we have direct sums, which
category theorists would call “biproducts”. And so on. The representation ring is a
common tool in group theory, but a lot of the reason for working with R(G) is simply
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that we don’t know enough about category theory and are too scared to work directly
with Rep(G). There are also good reasons for working with R(G), basically because it is
simpler and contains less information than Rep(G).

We can imagine that if someone handed us a representation ring R(G) we might
eventually notice that it had a nice basis in which the structure constants were nonneg-
ative integers. And we might then realize that lurking behind it was a category, Rep(G).
And then all sorts of things about it would become clearer. . . .

Something similar like this seems to be happening with quantum groups! Ignoring a
lot of important technical details, let me just say that quantum groups turn out have nice
bases in which the structure constants are nonnegative integers, and the reason is that
lurking behind the quantum groups are certain categories. What sort of categories? Cat-
egories of “Lagrangian subvarieties of the cotangent bundles of quiver varieties”. Yikes!
I don’t think I’ll explain that mouthful! Let me just note that a quiver is itself a cute little
category that you cook up by taking a graph and thinking of the vertices as objects and
the edges as morphisms, like this:

• → • → • → • → •

If you do this to a graph that’s the Dynkin diagram of a Lie group — see “Week 62” and
the weeks following that — then the fun starts! Dynkin diagrams give Lie groups, but
also quantum groups, and now it turns out that they also give rise to certain categories
of which the quantum groups are decategoried, boiled-down versions. . . . I don’t un-
derstand all this, but I certainly intend to, because it’s simply amazing how a world of
complex symmetry emerges from these Dynkin diagrams.

For more on this stuff try the paper by Crane and Frenkel referred to in “Week 38” and
“Week 50”. It suggests some amazing relationships between this stuff and 4-dimensional
topology. . . .

Let me conclude by reminding you where I am in “the tale of n-categories” and where
I want to go next. So far I have spoken mainly of 0-categories, 1-categories, and 2-
categories, with lots of vague allusions as to how various patterns generalize to higher
n. Also, I have concentrated mainly on the related notions of equality, isomorphism,
equivalence, and adjointness. Equality, isomorphism and equivalence are the most natu-
ral notions of “sameness” when working in 0-categories, 1-categories, and 2-categories,
respectively. Adjointness is a closely related but more subtle and exciting concept that
you can only start talking about once you get to the level of 2-categories. People got
tremendously excited by it when they started working with the 2-category Cat of all
small categories, because it explained a vast number of situations where you have a way
to go back and forth between two categories, without the categories being “the same”
(or equivalent). Another exciting thing about adjointness is that it really highlights the
relation between 2-categories and 2-dimensional topology — thus pointing the way to a
more general relation between n-categories and n-dimensional topology. From this point
of view, adjointness is all about “folds”:
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and their ability to cancel:

=

=

This concept of “doubling back” or “backtracking” is a very simple and powerful one,
so it’s not surprising that it is prevalent throughout mathematics and physics. It is an
essentially 2-dimensional phenomenon (though it occurs in higher dimensions as well),
so it can be understood most generally in the language of 2-categories.

(In physics, “doubling back” is related to the notion of antiparticles as particle moving
backwards in time, and appears in the Feynman diagrams for annihilation and creation
of particle/antiparticle pairs. For those familiar with the category-theoretic approach to
Feynman diagrams, the stuff in “Week 83” about dual vector spaces should suffice to
make this connection precise.)

Next I will talk about another 2-dimensional concept, the concept of “joining” or
“merging”:

This is probably even more powerful than the concept of “folding”: it shows up whenever
we add numbers, multiply numbers, or in many other ways combine things. The 2-
categorical way to understand this is as follows. Suppose we have an object x in a
2-category, and a morphism f : x→ x. Then we can ask for a 2-morphism

M : f2 ⇒ f.

If we have such a thing, we can draw it as a traditional 2-categorical diagram:

x

x

x

f f

f

M
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or dually as a “string diagram”

f f

•M

f

Regardless of how you draw it, the 2-morphism M : f2 ⇒ f represents a process turning
two copies of f into one. And as we’ll see, all sorts of fancy ways mathematicians have
of studying this sort of process — “monoids”, “monoidal categories”, and “monads” —
are special cases of this sort of situation.

To continue reading the “Tale of n-Categories”, see “Week 89”.
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Week 85

July 14, 1996

I’m spending this month at the Erwin Schroedinger Institute in Vienna, where Abhay
Ashtekar and Peter Aichelburg are running a workshop called Mathematical Problems of
Quantum Gravity.

Ashtekar is one of the founders of an approach to quantizing gravity called the loop
representation. I’ve explained this approach in “Week 7”, “Week 43”, and other places,
but let me just remind you of the basic idea. In the traditional approach to reconciling
general relativity with quantum theory, excitations of the gravitational field were de-
scribed by small ripples in the geometry of flat spacetime, or “gravitons”. In the loop
representation, they are instead described by collections of loops, which we can think of
as “flux tubes of area” floating in an otherwise utterly featureless void. More recently,
the loop approach has been supplemented by a technical device known as “spin net-
works”: roughly speaking, a spin network is a graph whose edges are labelled by spins
0, 1/2, 1, 3/2, . . . with an edge of spin j corresponding to a flux tube carrying area equal
to
√
j(j + 1) times the square of the Planck length — the fundamental length scale in

quantum gravity, about 10−35 meters. For more on spin networks, try “Week 55”.
Quantum gravity has always been a tough subject. After a lot of work, a lot of

people concluded that the traditional approach to quantum gravity didn’t make sense,
mathematically. This led to string theory, an attempt to quantize gravity together with
all the other forces and particles. But in the late 1980s, Rovelli and Smolin revived hopes
of quantizing gravity alone by introducing the loop representation.

One doesn’t expect the loop representation to describe much real physics until one
introduces other forces and particles. Pure gravity is just a warm-up exercise — but it’s
not at all easy! When the loop representation was born, it was rather sketchy at many
points. A lot of mathematical problems had to be overcome to make it as precise as it
is now. . . . and there are a lot of formidable difficulties left, any one of which could
spell doom for the theory. Luckily, progress has been rapid. Many of the problems which
seemed hopelessly beyond our reach a few years ago can now be formulated precisely,
and maybe even solved. The idea of this workshop is to start tackling these problems.

A lot has been going on! People give talks at 11 in the morning, while afternoons are
devoted to more informal discussions in small groups. There are general introductory
talks on Tuesdays, more technical talks on Thursdays, and short talks on research in
progress on some other days.

To give a bit of the flavor of the workshop, let me describe things day by day. I’ll need
to describe some days very sketchily, though, or I’ll never finish writing this!

• Wednesday, July 3 — Rodolfo Gambini spoke on gauge-invariance in the extended
loop representation. The idea of the loop representation is to study the gravita-
tional vector potential by studying certain integrals of it around loops. Mathemati-
cians call this the trace of the holonomy, and physicists call it a Wilson loop or the
trace of a path-ordered exponential. In the loop representation, states of quan-
tum gravity are described by certain functions that eat Wilson loops and spit out
complex numbers. . . i.e., that assign an “amplitude” to each Wilson loop.
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In quantum field theory you often need to average a quantum field over some
3-dimensional region of space or 4-dimensional region of spacetime to get a well-
defined operator. Wilson loops are rather singular because a loop is a one-dimensional
object. On the other hand, they are nice because they are gauge-invariant: they
don’t change when we do a gauge transformation to the vector potential.

In the “extended” loop representation one tries to make the integral less singu-
lar by not dealing with actual loops, but certain analogous integrals over all 3-
dimensional space. Heuristic calculations suggest that they are gauge-invariant,
but Troy Schilling noticed a while ago that they aren’t always really gauge-invariant
— basically because the the path-ordered exponential is given by a certain Taylor
series, and nasty things can happen when you manipulate infinite series without
checking if your manipulations are legitimate! See:

1) Troy Schilling, “Non-covariance of the generalized holonomies: Examples”,
preprint available as gr-qc/9503064.

There has been a certain amount of competition between the extended loop repre-
sentation, developed by Gambini and various coauthors, and Ashtekar’s approach.
Thus Schilling’s result was seen as a blow against the extended loop representa-
tion. In Gambini’s talk, he argued that gauge-invariance is rigorously maintained
by certain extended loops, e.g. those for which the power series has finitely many
terms. The most famous examples of functions of extended loops with only finitely
many terms are the Vassiliev invariants, which come up in knot theory (see “Week
3”). Gambini and Pullin have claimed that certain Vassiliev invariants are states of
quantum gravity, so these are of special interest.

The feeling was that we needed to compare these different loop representations
more carefully because they both have advantages.

Also, Renate Loll spoke about “Lattice Gravity”. See “Week 55” for a bit more
on this. Her talk led to an interesting discussion of the meaning of the limit, as
the lattice spacing goes to zero, of quantum gravity as done on a lattice. Does it
make sense? One needs, apparently, to look at ones formula for the Hamiltonian
constraint on the lattice, and see if it depends on the Planck length in a manner
other than having the Planck length as an overall prefactor. Various people tried to
do the calculation on the spot, and got mixed up.

• Thursday, July 4 — Thomas Thiemann spoke on “The Hamiltonian Constraint for
Lorentzian Canonical Quantum Gravity”. This was a big bombshell. The Hamilto-
nian constraint in quantum gravity is one of the biggest, baddest problems we are
facing. It’s the analog of Schrodinger’s equation in quantum mechanics, but it’s a
constraint:

Hψ = 0.

All the dynamics of the theory is contained in this equation, yet we only roughly
understand how to define it in a rigorous way. Thiemann, a student of Ashtekar
who is now a postdoc at Harvard, had put the following 5 papers on the general
relativity preprint server right before the workshop. The first one gives a rigorous
definition of the Hamiltonian constraint!
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2) Thomas Thiemann, “Quantum Spin Dynamics (QSD)”, preprint available as
gr-qc/9606089.
Thomas Thiemann, “Quantum Spin Dynamics (QSD) II”, preprint available as
gr-qc/9606090.
Thomas Thiemann, “Anomaly-free formulation of non-perturbative, four-dimensional
Lorentzian quantum gravity”, Phys. Lett. B 380 (1996) 257–264, preprint
available as gr-qc/9606088.
Thomas Thiemann, “Closed formula for the matrix elements of the volume
operator in canonical quantum gravity”, preprint available as gr-qc/9606091.
Thomas Thiemann, “A length operator for canonical quantum gravity”, preprint
available as gr-qc/9606092.

It is interesting to compare “Quantum Spin Dynamics” to the paper by Ashtekar
and Lewandowksi, so far available only in draft form to a select few, in which they
gave a rigorous definition of the square root of the Hamiltonian constraint. The
advantage of “QSD” is that it deals directly with the Hamiltonian constraint, rather
than its square root, and that it does this using some ingenious formulas for the
Hamiltonian constraint of Lorentzian gravity in terms of the Hamiltonian constraint
for Riemannian gravity and the total volume and total extrinsic curvature of the
universe (which we assume is compact).

You see, quantum gravity comes in two flavors, Lorentzian and Riemannian, de-
pending on whether we work with real time — the obviously sensible thing to do
— or imaginary time — not at all obviously sensible, but with a curious math-
ematical charm to it, which has won many hearts. The interplay between these
two has long been a bugaboo of the loop representation. The Lorentzian theory
is harder to work with, so lots of people cheat and study the Riemannian theory.
Sometimes they do this covertly, with a guilty conscience, so in some papers it’s
left unclear which theory the author is actually working with! Thiemann’s work,
however, seems to exploit the interplay between the theories in a benign way —
related to earlier ideas of Ashtekar, but different. I would like to understand this
interplay more deeply.

Due to jetlag I woke up at 4 am on the morning of this talk, and I couldn’t get back
to sleep, so I read his paper. When I came to the Institute at 9 am — a shockingly
early hour for people working on quantum gravity — I was sure nobody would be
there yet. But as I entered I bumped into Carlo Rovelli. It turned out he had stayed
up all night reading Thiemann’s paper, too excited to sleep!

After this talk everyone was busily trying to learn Thiemann’s stuff, trying to figure
out if it is physically correct, and trying to figure out what to do next.

• Tuesday, July 9 — Abhay Ashtekar gave a general talk on the “Quantum Theory
of Geometry”. Most of it was well-known stuff to fans of the loop representation,
but one new tidbit concerned the noncommutativity of area operators. Since the
area of surfaces in space depends only on the metric on space, not on its first time
derivative, one might expect their quantum analogs to commute, since the metric
and its first time derivative are analogous to position and momentum in quantum
mechanics. But they don’t commute! In a later talk, Ashtekar explained that this is
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not really a strange new feature of quantum gravity, but one which has its classical
analog.

• Wednesday, July 10 — Kirill Krasnov gave a talk on a paper we started working
on together just recently, “Quantization of diffeomorphism invariant theories with
fermions”. Kirill is a young Ukrainian physicist whom I first met last summer in
Warsaw; he had written a nice paper on the loop representation of quantum gravity
coupled to electromagnetism and fermions:

3) Kirill Krasnov, “Quantum loop representation for fermions coupled to Einstein-
Maxwell field”, Phys. Rev. D53 (1996), 1874; preprint available as gr-qc/

9506029.

When I met him again here, it turned out he was continuing this work, and also
making it more rigorous. Now, I had for some time been meaning to write some-
thing with Hugo Morales-Tecotl showing that a slight generalization of spin net-
work states form a basis of states for such theories. These states had already ap-
peared, for example, in his work with Rovelli:

4) Carlo Rovelli and Hugo Morales-Tecotl, “Fermions in quantum gravity”, Phys.
Rev. Lett. 72 (1994), 3642–3645.
Carlo Rovelli and Hugo Morales-Tecotl, Nucl. Phys. B451 (1995), 325, preprint
available as gr-qc/9401011.

But we had never gotten around to it. So, I decided to team up with Kirill and
write a paper on this stuff.
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Week 86

August 6, 1996

Let me continue my reportage of what happened at the Mathematical Problems of Quan-
tum Gravity workshop in Vienna. I will only write about quantum gravity aspects here.
I had an interesting conversation with Bertram Kostant in which he explained to me the
deep inner secrets of the exceptional Lie group E8. However, my writeup of that has
grown to the point where I will save it for some other week.

By the way, my course on n-category theory is not over! I’m merely taking a break
from it, and will return to it after this workshop.

So. . .

• Wednesday, July 10th — Jerzy Lewandowski gave a talk on the “Spectrum of the
Area Operator”. As I’ve mentioned a few times before, one of the exciting things
about the loop representation of quantum gravity is that the spectrum of the area
operator associated to any surface is discrete. In other words, area is quantized!

Let me describe the area operator a bit more precisely. Before I tell you what the
area operator is, I have to tell you what it operates on. Remember from “Week 43”
that there are various Hilbert spaces floating around in the canonical quantization
of gravity. First there is the “kinematical state space”. In the old-fashioned metric
approach to quantum gravity, known as geometrodynamics, this was supposed
to be L2(Met), where Met is the space of Riemannian metrics on space. (We
take as space some 3-manifold S, which for simplicity we assume is compact).
The problem was that nobody knew how to rigorously define this Hilbert space
L2(Met). In the “new variables” approach to quantum gravity, the kinematical
state space is taken instead to be L2(A), where A is the space of connections on
space on some trivial SU(2) bundle over S. This can be defined rigorously.

Here’s the idea, roughly. Fix any graph g, with finitely many edges and vertices,
embedded in S. Let Ag, the space of connections on that graph, be SU(2)n where
n is the number of edges in e. Thus a connection on a graph tells us how to
parallel transport things along each edge of that graph — an idea familiar from
lattice gauge theory. L2(Ag) is well-defined because SU(2) has a nice measure on
it, namely Haar measure, so Ag gets a nice measure on it as well.

Now if one graph g is contained in another graph h, the space L2(Ag) is contained
in the space L2(Ah) in an obvious way. So we can form the union of all the Hilbert
spaces L2(Ag) and get a big Hilbert space L2(A). Mathematicians would say that
L2(A) is the “projective limit” of the Hilbert spaces L2(Ag), but let’s not worry
about that.

So that’s how we get the space of “kinematical states” in the loop representation
of quantum gravity. The space of physical states is then obtained by imposing
constraints: the Gauss law constraint (i.e., gauge-invariance), the diffeomorphism
constraint (i.e., invariance under diffeomorphisms of S) and the Hamiltonian con-
straint (i.e., invariance under time evolution). States in the physical state space are
supposed to only contain information that’s invariant under all coordinate trans-
formations and gauge transformations — the really physical information.
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I explained these constraints to some extent in “Week 43”, and I don’t really want
to worry about them here. But let me just mention that the Gauss law constraint is
easy to impose in a mathematically rigorous way. The diffeomorphism constraint
is harder but still possible, and the Hamiltonian constraint is the big thorny ques-
tion plaguing quantum gravity — see “Week 85” for some recent progress on this.
The area operators I’ll be talking about are self-adjoint operators on the space of
kinematical states, L2(A), and are a preliminary version of some related operators
one hopes eventually to get on the physical state space, after much struggle and
sweat.

To define an operator on L2(A) it’s enough to define it on L2(Ag) for every graph
g and then check that these definitions fit together consistently to give an operator
on the big space L2(A). So let’s take a graph g and a surface s in space. The area
operator we’re after is supposed to be the quantum analog of the usual classical
formula for the area of s. The usual classical area is a function of the metric on
space; similarly, the quantum area is an operator on the space L2(A).

The area operator only cares about the points where the graph intersects the sur-
face. We assume that there are only finitely many points where it does so, apart
from points where the edges are tangent to the surface. (To make this assumption
reasonable, we need to assume, e.g., that the space S has a real-analytic structure
and the surface and graph are analytic — an annoying technicality that I have been
seeking to eliminate.)

The area operator is built using three operators on L2(SU(2)) called J1, J2, and
J3, the self-adjoint operators corresponding to the 3 generators of SU(2) — which
often show up in physics as the three components of angular momentum! Alter-
natively, we can think of all three together as one vector-valued operator J , the
“angular momentum operator”. Note that L2(Ag) is just the tensor product of one
copy of the Hilbert space L2(SU(2)) for each edge of our graph g. Thus for any edge
e we get an angular momentum operator J(e) that acts on the copy of L2(SU(2))
corresponding to the edge e in question, leaving the other copies alone.

This, then, is how we define the operator on L2(Ag) corresponding to the area of
the surface s. Pick an orientation for the surface s. For any point where the graph
g intersects s, let J(in) denote the sum of the angular momentum operators of
all edges intersecting s at the point in question and pointing “inwards” relative to
our chosen orientation. Similarly, let J(out) be the sum of the angular momentum
operators of edges intersecting s at the point in question and pointing “outwards”.
(Note: edges tangent to the surface contribute neither to J(in) nor J(out).) Now
sum up, over all points where the graph intersects the surface, the following quan-
tity: √

(J(in)− J(out)) · ((J(in)− J(out))

where the dot denotes the obvious sort of dot product of vector-valued operators.
Multiply by half the Planck length squared and you’ve got the area operator!

This very beautiful and simple formula was derived by Ashtekar and Lewandowski,
but the first people to try to quantize the area operator were Rovelli and Smolin;
see

182



WEEK 86 AUGUST 6, 1996

1) “Discreteness of area and volume in quantum gravity”, by Carlo Rovelli and
Lee Smolin, 36 pages in LaTeX format, 13 figures uuencoded, available as
gr-qc/9411005.
Abhay Ashtekar and Jerzy Lewandowski, “Quantum theory of geometry I:
area operators”, 31 pages in LaTeX format, to appear in the Classical and
Quantum Gravity special issue dedicated to Andrzej Trautman, preprint avail-
able as gr-qc/9602046.

In his talk Jerzy showed how to work the spectrum of the area operator (which
is discrete) and showed how it could depend on whether the surface s cuts space
into 2 parts or not.

Later that day, Mike Reisenberger, Matthias Blau, Carlo Rovelli and I talked about
the relation between string theory and the loop representation of quantum gravity.

Mike has been working on a very interesting “state sum model” for quantum grav-
ity; that is, a discretized model in which spacetime is made of 4-simplices (the 4d
version of tetrahedra), fields are thought of ways of labelling the faces, edges and
so on by spins, elements of SU(2) and the like, and the path integral is replaced by
a sum over these labellings. This works out quite nicely for quantum gravity in 3
dimensions — see “Week 16” — but it’s much more challenging in 4 dimensions.

One nice feature of these state sum models for quantum gravity is that they may be
reinterpreted as sums over “worldsheets” — surfaces mapped into spacetime. Since
the spacetime is discrete, so are these surfaces — they’re made of lots of triangles
— but apart from that, having a path integral that’s a sum over worldsheets is
pleasantly reminscent of string theory. Indeed, once upon a time I proposed that
the loop representation of quantum gravity and string theory were two aspects of
some theory still waiting to be fully understood:

2) John Baez, “Strings, loops, knots, and gauge fields”, in Knots and Quantum
Gravity, ed. J. Baez, Oxford U. Press, Oxford, 1994, preprint available in La-
TeX form as hep-th/9309067, 34 pages.

The problem was getting a concrete way to relate the Lagrangian for the string
theory to the Lagrangian for gravity (or whatever gauge theory one started with).
Iwasaki tackled this problem was tackled in 3d quantum gravity using state sum
models:

3) Junichi Iwasaki, “A reformulation of the Ponzano-Regge quantum gravity model
in terms of surfaces”, University of Pittsburgh, 11 pages in LaTeX format avail-
able as gr-qc/9410010.

Later, Reisenberger extended this approach to deal with certain 4d theories which
are simpler than quantum gravity, like BF theory:

4) Michael Reisenberger, “Worldsheet formulations of gauge theories and Grav-
ity”, University of Utrecht preprint, 1994, available as gr-qc/9412035.
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In all of these theories, one computes the action for the worldsheets by summing
something over places where they intersect. In other words, they “interact” at
intersections.

But the really exciting thing would be to do something like this for Mike’s new state
sum model for 4d quantum gravity. And the real challenge would be to relate this
— if possible! — to conventional string theory. In a coffeeshop I suggested that one
might do this by using the usual formula for the action in (bosonic) string theory.
This is simply the area of the string worldsheet with respect to some background
metric. The loop representation of quantum gravity doesn’t make reference to any
background metric; the closest approximation to a classical metric is a “weave”
state in which space is tightly packed with lots of loops or spin networks. From
the 4d point of view, we’d expect this to correspond to a spacetime packed with
lots of worldsheets. Now, given the relation between area and intersection num-
ber in the loop representation (see above!), one might expect the area of a given
worldsheet to be roughly proportional to the number of its intersections with the
other worldsheets in this “weave”. But this is what one would expect in any theory
where the worldsheets interact at intersections. So, one could hope that Mike’s
state sum model would be approximately equivalent to a string theory of the sort
string theorists study.

There are lots of obvious problems with this idea, but it led to an interesting con-
versation, and I am still not convinced that it is crazy.

• Thursday, July 11th — Jorge Pullin spoke on skein relations and the Hamiltonian
constraint in lattice quantum gravity. His idea was that the Hamiltonian constraint
contains a “topological factor” which serves as a skein relation on loop states.

• Friday, July 12th — Abhay Ashtekar gave a talk on “Noncommutativity of Area
Operators”. This explained how the rather shocking fact that the area operators
for two intersecting surfaces needn’t commute actually has a perfect analog in
classical general relativity.

Mike Reisenberger spoke on “Euclidean Simplicial GR”. This presented the details
of his state sum model. Since he hasn’t published this yet, and since I am getting a
bit tired out, I won’t describe it here.

• Monday, July 15th — Renate Loll gave a talk on the volume and area operators in
lattice gravity. I wrote a bit about her work on the volume operator in “Week 55”,
and more can be found in:

5) Renate Loll, “The volume operator in discretized quantum gravity”, preprint
available as gr-qc/9506014, 15 pages.
Renate Loll, “Spectrum of the volume operator in quantum gravity”, preprint
available as gr-qc/9511030, 14 pages.

Also, Jerzy Lewandowski spoke on his work with Ashtekar on the volume operator
in the continuum theory:

6) Jerzy Lewandowski, “Volume and quantizations”, preprint available as gr-qc/
9602035, 8 pages.
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Abhay Ashtekar and Jerzy Lewandowski, “Quantum theory of geometry II:
volume operators”, manuscript in preparation.

The volume operator is more tricky than the area operator, and various proposed
formulas for it do not agree. This is summarized quite clearly in Jerzy’s paper.

In fact, I have already left Vienna by now. I was too busy there to keep up with This
Week’s Finds, but my life is a bit calmer now and I will try to finish these reports
soon.
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Week 87

August 20, 1996

Let me continue summarizing what happened during July at the Mathematical Problems
of Quantum Gravity workshop in Vienna. The first two weeks concentrated on the foun-
dations of the loop representation of quantum gravity; the next week was all about black
holes!

• Tuesday, July 16th — Ted Jacobson gave an overview of “Issues of Black Hole
Thermodynamics”. There is a lot to say about this subject and I won’t try to repeat
his marvelous talk here. Let me just mention a very interesting technical point he
made. The original Bekenstein-Hawking formula for the entropy of a black hole is

S = A/(4~G)

where A is the area of the event horizon, ~ is Planck’s constant, and G is Newton’s
constant. One way to try to derive this is from the partition function of a quantum
field theory involving gravity and other fields. Jacobson sketched a heuristic cal-
culation along these lines. When you do this calculation it’s natural to worry why
the other fields, representing various forms of matter, don’t seem to contribute
to the answer above. Also, when we do quantum field theory, there is often a
difference between the “bare” coupling constants we put into the theory and the
“renormalized” coupling constants that are what the theory predicts we’ll observe
experimentally. So it’s natural to worry about whether it’s the bare or renormalized
Newton’s constant G that enters the above formula — even though quantum grav-
ity is so unlike most other quantum field theories that it’s unclear that this worry
makes sense, ultimately.

Anyway, the nice thing is that these two worries cancel each other out. In other
words: yes, it’s the renormalized Newton’s constant G — the physically measured
one — that enters the above formula. But at least to first order in ~, the difference
between the bare G and the renormalized G is precisely due to the interactions
between gravity and the matter fields (including the self-interaction of the gravita-
tional field). In other words, the matter fields really do contribute to the black hole
entropy, but this contribution is absorbed into the definition of the renormalized
G.

In the most extreme case, the bare 1/G is zero, and the renormalized 1/G is entirely
due to interactions between matter and gravity. This is Andrei Sakharov’s theory
of “induced gravity”. According to Jacobson, in this case all of the black hole
entropy is “entanglement entropy” — this being standard jargon for the way that
two parts of a quantum system can each have entropy due to correlations, even
though the whole system has zero entropy. Unfortunately my notes do not allow
me to reconstruct the wonderful argument whereby he showed this. (See “Week
27” for a more detailed explanation of entanglement entropy.)

• Wednesday July 17th — There was a talk on “Colombeau theory” by a mathemati-
cian whose name I unfortunately failed to catch. Colombeau theory is a theory that
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allows you to multiply distributions, just like they said in school that you weren’t
allowed to do. So if for example you want to square the Dirac delta function, you
can do it in the context of Colombeau theory. There has been a certain amount of
debate, however, on whether Colombeau theory allows you to this multiplication
in a useful way. There were a lot of physicists at this talk who would be willing
and eager to master Colombeau theory if it let one solve the physics problems
they wanted to solve. However, after much discussion, it appears that they didn’t
buy it. I believe that at best Colombeau theory provides a useful framework for
understanding the ambiguities one encounters when multiplying distributions.

I say “ambiguities” rather than “disasters” because while the square of the Dirac
delta function has no sensible interpretation as a distribution, there are many cases,
such as when you try to multiply the Dirac delta function and the Heaviside func-
tion, where you can interpret the result as a distribution in a variety of ways. These
ambiguous cases are the ones of greatest interest in physics. A nice place to see
this in quantum field theory is in

1) G. Scharf, Finite quantum electrodynamics: the causal approach, Springer-
Verlag, Berlin, 1995.

If you want to learn about Colombeau theory you can try:

2) J. F. Colombeau, Multiplication of Distributions: a Tool in Mathematics, Numer-
ical Engineering, and Theoretical Physics, Lecture Notes in Mathematics 1532,
Springer, Berlin, 1992.

Later that day I had nice conversation with Jerzy Lewandowski on the approach to
the loop representation where one uses smooth, rather than analytic, loops. (See
“Week 55” for more on this issue.)

• Thursday, July 18th — Carlo Rovelli spoke on “Black Hole Entropy”, reporting
some work he did with Kirill Krasnov. They have a nice approach to comput-
ing the black hole entropy using the loop representation of quantum gravity. A
common goal among quantum gravity folks is to recover the Bekenstein-Hawking
formula from some full-fledged theory of quantum gravity — the original deriva-
tion being a curious “semiclassical” hybrid of quantum and classical reasoning. In
a statistical mechanical approach, entropy should be the logarithm of the num-
ber of microstates some system can have in a given macrostate. So one wants to
count states somehow. Basically what Rovelli and Krasnov do is count the num-
ber of ways a surface can be pierced by a spin network so as to give it a certain
area. (This uses the formula for the area operator I descrbed in “Week 86”.) They
get an entropy proportional to the area, but not with the same constant as in the
Bekenstein-Hawking formula.

There were some hopes that taking matter fields into account might give the right
constant. But since everyone had been to Ted Jacobson’s talk, this led to much
interesting wrangling over whether Rovelli and Krasnov were using the bare or
renormalized Newton’s constant G, and whether the concept of bare and renor-
malized G even makes sense, ultimately! Also, there are some extremely important
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puzzles about what the right way to count states is, in these loop representation
computations.

For more, try:

3) Carlo Rovelli, “Loop quantum gravity and black hole physics”, preprint avail-
able as gr-qc/9608032.
Kirill Krasnov, “The Bekenstein bound and non-perturbative quantum grav-
ity”, preprint available as gr-qc/9603025.
Kirill Krasnov, “On statistical mechanics of gravitational systems”, preprint
available as gr-qc/9605047.

• Friday, July 19th — Don Marolf spoke on “Black hole entropy in string theory”. He
attempted valiantly to describe the string-theoretic approach to computing black
hole entropy to an audience only generally familiar with string theory. I will not
try to summarize his talk, except to note that he mainly discussed the case of a
black hole in 5 dimensions, which was really a “black string” in 6 dimensions —
a solution with translational symmetry in the 6th dimension, but where the extra
6th dimension is so tiny that ordinary 5-dimensional folks think they’ve just got a
black hole. (By the way, even the 6-dimensional approach is really just a way of
talking about a string theory that fundamentally lives in 10 dimensions. This stuff
is not for the faint-hearted.)

Here are a few papers on this subject by Marolf and Horowitz:

4) Gary Horowitz, “The origin of black hole entropy in string theory”, preprint
available as gr-qc/9604051.
Gary T. Horowitz and Donald Marolf, “Counting states of black strings with
traveling waves”, preprint available as hep-th/9605224.
Gary T. Horowitz and Donald Marolf, “Counting states of black strings with
traveling waves II”, preprint available as hep-th/9606113.

• Monday, July 22nd — Kirill Krasnov spoke on “The Einstein-Maxwell Theory of
Black Hole Entropy”. This was a report on attempts to see how his calculations
of the black entropy in the loop representation changed when he took the elec-
tromagnetic field into account. The calculations were very tentative, for certain
technical reasons I won’t go into here, but they made even clearer the importance
of the issue of how one counts states when computing entropy in this approach.

Later, I had a nice conversation with Carlo Rovelli about my hopes for thinking of
fermions (e.g., electrons) as the ends of wormholes in the loop representation of
quantum gravity. We came up with a nice heuristic argument to get the right Fermi
statistics for these wormhole ends. Hopefully we can make this all more precise at
some later date.

• Tuesday, July 23rd — Ted Jacobson gave informal talks on two subjects, the first
of which was “Transplanckian puzzle: origin of outgoing black hole modes.” This
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dealt with the puzzling fact that in the standard computation of Hawking radia-
tion, the rather low-frequency radiation which leaves the hole is the incredibly red-
shifted offspring of high-frequency modes which swung past the horizon shortly af-
ter the hole’s formation — modes whose wavelength is far smaller than the Planck
length!

What if spacetime is “grainy” in some way at the Planck scale? Jacobson studied
this using an analogy introduced by Unruh. If you have fluid flowing down a
narrowing pipe, and at some point the velocity of the fluid flow exceeds the speed
of sound in the fluid, there will be a “sonic horizon”. In other words, there is
a line where the fluid flow exceeds the speed of sound, and no sound can work
its way upstream across that line. Now if you quantize the theory of sound in
a simple-minded way you get “phonons” — which have indeed been observed in
solid-state physics. Unruh showed that in the case at hand you would get “Hawking
radiation” of phonons from the sonic horizon, going upstream and getting shifted
to lower frequencies as they go.

Jacobson considered what would happen if you actually took into account the
graininess of the fluid. (He considered the theory of liquid helium, to be spe-
cific.) The graininess at the molecular scale means that the group velocity of waves
drops at very high frequencies. So what happens instead of “Hawking radiation”
is something rather different. Start with a high-frequency wave attempting to go
upstream, starting from upstream of the sonic horizon. Its group velocity is very
slow so it fails miserably and gets swept toward the sonic horizon, like a hapless
poor swimmer getting pulled to the edge of a waterfall despite trying to swim up-
stream. But as it gets pulled near the horizon its wavelength increases, and thus
group velocity increases, thus allowing it to shoot upstream at the last minute!
(An analogous process is apparently familiar in plasma physics under the name of
“mode conversion”.) In this scenario, the Hawking radiation winds up resulting
from incoming modes through this process of mode conversion — modes that have
short wavelength, but not as short as the intermolecular spacing (or Planck length,
in the gravitational case.)

Ted Jacobson’s second talk was even more interesting to me, but I’ll postpone that
for next Week.

Here, by the way, is a paper related to the talk by Pullin discussed in “Week 86”:

5) Hugo Fort, Rodolfo Gambini and Jorge Pullin, “Lattice knot theory and quan-
tum gravity in the loop representation”, preprint available as gr-qc/9608033.
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Week 88

August 26, 1996

This issue concludes my report of what happened at the Mathematical Problems of Quan-
tum Gravity workshop in Vienna. I left the workshop at the end of July, so my reportage
ends there, but the workshop went on for a few more weeks after that. I’ll be really
bummed out if I find out that they solved all the problems with quantum gravity after I
left.

Before I launch into my day-by-day account of what happened, let me note that I’ve
written a little introduction to Thiemann’s work on the Hamiltonian constraint, which
he presented at the workshop (see “Week 85”):

1) John Baez, “The Hamiltonian constraint in the loop representation of quantum
gravity”, available at http://math.ucr.edu/home/baez/hamiltonian/

A less technical version of this appears in Jorge Pullin’s newsletter Matters of Gravity,
issue 8, at http://www.phys.lsu.edu//mog/mog8/node7.html

Okay. . . I’ll start out simple today since there is something nice and simple to ponder:

• Tuesday, July 23rd — Ted Jacobson spoke on the “Geometry and Evolution of
Degenerate Metrics”. One of the interesting things about Ashtekar’s reformulation
of general relativity is that it extends general relativity to the case of degenerate
metrics, that is, metrics where there are vectors whose dot product with all other
vectors is zero. However, one needs to be very careful because different versions
of Ashtekar’s formulation give different ways of handling degenerate metrics.

To see why in a simple example, remember that the usual metric on Minkowski
spacetime is nondegenerate and in nice coordinates looks like

−dt2 + dx2 + dy2 + dz2

Here we are setting the speed of light equal to 1. In general relativity, one way
people describe the metric is using a tensor gab, where the indices a and b go from
0 to 3. In Minkowski space this tensor equals

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


What this tensor means is that if you have two vectors v and w, their dot product
is gabvawb, where as usual we multiply the entries of the metric tensor and the
vectors v and w as indicated, and then sum over repeated indices. So, for example,
the dot product of the vector

v = (1, 1, 0, 0)

with itself is 0, though its dot product with other vectors needn’t be zero. There
is a bunch of vectors whose dot products with themselves are zero, and these are
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called lightlike vectors, because light travels in these directions, moving one unit
in space for each unit in time. There is actually a cone of lightlike vectors, called
the lightcone.

One can imagine a world where the metric gab is
−1 0 0 0
0 1 0 0
0 0 k 0
0 0 0 k


for some k > 0. This world isn’t really so different from Minkowski space, because
you can also think of it as Minkowski space described in screwy coordinates where
you are measuring distances in the y and z directions in different units than the x
direction. When k gets small, you can check that the lightcone gets stretched out in
the y and z directions. Alternatively, when k gets big, the lightcone gets squashed
in the y and z directions.

Another way to formulate general relativity uses the inverse metric gab. This is
just the inverse of the matrix gab, which is indeed invertible when the metric is
nondegenerate. So for example in the above case the inverse metric gab is

−1 0 0 0
0 1 0 0
0 0 K 0
0 0 0 K


where K = 1/k. You can think of K as the speed of light in the y and z directions,
which is different from the speed of light in the x direction.

Now there are two different limiting cases we can consider, depending on whether
we work with the metric or the inverse metric. If we work with the metric, we can
let k = 0. This corresponds to making the speed of light in the y and z directions
infinite, so that information can go as fast as it likes in those directions and the
lightcone gets completely stretched out in those directions. Note that now the
metric gab is 

−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


so the inverse metric doesn’t even make sense — you can’t invert this matrix. If we
extend general relativity to degenerate metrics, we are allowing ourselves to study
weird worlds like this. Why we’d want to — well, that’s another matter.

If we work with the inverse metric, we can’t let k = 0, but we can let K = 0. This
corresponds to making the speed of light in the y and z directions zero, so that
information can’t go at all in those directions: the lightcone is squashed down onto
the t-x plane. Now it’s the inverse metric that equals

−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
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and the metric doesn’t even make sense.

Ted Jacobson’s talk was about doing general relativity in weird worlds like this,
where the inverse metric is degenerate. Here information flows only along sur-
faces, like the x-t plane in the example above, and these different surfaces don’t
really talk to each other very much. It’s as if the world was split up (or in math jar-
gon, foliated) into lots of different 2-dimensional worlds, which didn’t know about
each other. Jacobson showed that in this case, the equations of general relativity
(extended in a certain way to degenerate inverse metrics) boil down to saying that
there are two kinds of massless spin-1/2 particle living on all these 2-dimensional
worlds.

This got me quite excited because it reminded me of string theory, which is all
about massless particles (or in physics jargon, conformal fields) living on the 2-
dimensional string worldsheet. I am always hunting around for relationships be-
tween string theory and the loop representation of quantum gravity, and I think
this is an important clue. The reason is that I think the loop representation can
be thought of as a quantum version of the theory of degenerate solutions of gen-
eral relativity where the metric is zero most places and less degenerate (but still
degenerate) on certain surfaces. When you slice one of these surfaces with the hy-
perplane t = 0 you get a bunch of loops (or more generally a graph), and these are
the loops of the loop representation. Jacobson’s talk may give a way to understand
the conformal field theory living on these surfaces, which one needs if one wants to
think of these surfaces as the “string worldsheets” of string theory fame. Anyway,
I am busily thrashing this stuff out and trying to write a paper on it, but it may or
may not hang together.

Jacobson’s talk is based on a short paper he’d just been editing the galley proofs
for; so it should come out soon:

2) Ted Jacobson, “1+1 sector of 3+1 gravity”, Class. Quant. Grav. 13 (1996),
L1–L6.

Now around this time the Erwin Schroedinger Institute, where the workshop was
being held, moved from its comfortable old spot on Pasteurgasse to a more spa-
cious location on Boltzmanngasse, near the physics department. (In Germany the
word “Gasse” means “alley”, and one might find it disrespectful that Pasteur and
Boltzmann have mere alleys named after them, but in Vienna even lots of large
streets are called “Gasse”, when in Germany they’d be called “Strasse”. But then
even the word for potato is different in Austria; it’s all part of the charm of the
place.) The move disrupted the schedule of the talks a bit, and it also seems to
have disrupted my note-taking, which gets more sketchy from here on out. Some
of the dates below might be a bit off.

• Thursday, July 25th — I spoke on “Topological Quantum Field Theory”. I am
always talking about this on This Week’s Finds so I won’t bore you with the details.
Basically I summarized what is known about BF theory (a particular topological
quantum field theory) in dimensions 2, 3, and 4, and the discrete formulation of
BF theory where you chop spacetime into simplices and label the edges and so on
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with spins and the like — so-called “state sum models”. You can read more about
this in “Week 38”.

Later that day, Jerzy Lewandowski spoke on “Degenerate Metrics”. Being some-
what less degenerate than Ted Jacobson, he spoke about extending general rela-
tivity to cases where the inverse metric looks like

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


In other words, where the speed of light is zero only in the z direction. Basically
what happens is that spacetime gets foliated with a lot of 3-dimensional slices, and
on each one you get the equations of 3-dimensional general relativity.

• Friday, July 26th — Thomas Strobl spoke on 2-dimensional gravity. I don’t un-
derstand his work well enough yet to have anything much to say, but the most
interesting thing about it to me is that it allows one to see how quantum groups
emerge from theG/G gauged Wess-Zumino-Witten model (a certain 2-dimensional
topological quantum field theory), by describing this theory as the quantization of
a Poisson σ-model — a field theory where the fields take values in a Poisson mani-
fold. For more, try:

3) Peter Schaller and Thomas Strobl, A brief introduction to Poisson σ-models,
preprint available as hep-th/9507020.
Peter Schaller and Thomas Strobl, Poisson σ-models: a generalization of 2d
gravity-Yang-Mills systems, preprint available as hep-th/9411163.

Later, I had a great conversation with Mike Reisenberger and Carlo Rovelli on
reformulating the loop representation of quantum gravity in terms of surfaces em-
bedded in spacetime. This again touched upon my interest in relating string theory
and the loop representation. They are writing a paper on this which should be on
the preprint servers pretty soon, so I’ll wait until then to talk about it.

• Saturday, July 27th — Carlo Rovelli explained some things about the problem of
time to me.

• Monday, July 30th — I spoke about relative states and entanglement entropy in
two-part quantum systems (see “Week 27” and the applications of these ideas to
topological quantum field theory and quantum gravity. A lot of this came from my
attempts to understand the relation between quantum gravity and Chern-Simons
theory, and Lee Smolin’s work where he tries to use this relation to derive the
Bekenstein bound on the entropy of a system in terms of its surface area (see
“Week 56”).

An interesting little fact that I needed to use is that if you have a two-part quan-
tum system in a pure state — a state of zero entropy — the two parts, regarded
individually, can themselves have entropy, but the entropies of the two parts are
equal. I worked this out using the symmetry of the situation but Walter Thirring,
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who attended the talk, pointed out that it can also be derived from a wonderful
general fact: the triangle inequality! Namely, if your two-part system has entropy
S, and the two parts individually have entropies S1 and S2, then S can never be
less than |S1 − S2| or greater than S1 + S2. (In classical mechanics it’s also true
that S can never be less than either S1 or S2, but this fails in quantum mechanics,
where for example you can have S be zero but S1 = S2 > 0.)

• Wednesday, August 1st — Full of excitement and new ideas, I somewhat regret-
fully left the workshop and flew to London. Then I spent most of August working
at Imperial College, thanks to a kind offer of office space from Chris Isham. I had
some nice talks with Isham and his students on quantum gravity and the decoher-
ent histories approach to quantum mechanics. I’ll say a bit about this in a while,
but next Week I am going to talk about triality and the secret inner meaning of E8.

194



WEEK 89 SEPTEMBER 17, 1996

Week 89

September 17, 1996

This week I want to return to the tale of n-categories, from which I have been taking a
break during summer vacation. But first, here are a few things about quantum gravity.
Last time I mentioned Jorge Pullin’s newsletter on general relativity, “Matters of Gravity”.
I am pleased to report that it is now available on the world-wide web:

1) Jorge Pullin, ed., Matters of Gravity, first 8 issues now available at http://www.
phys.lsu.edu//mog, or latest issue in LaTeX form as gr-qc/9609008.

Anyone who wants to keep up with the latest news on general relativity should cer-
tainly read “Matters of Gravity” and MacCallum’s list. MacCallum’s list? Yes, I should’ve
mentioned it earlier: it’s a mailing list where you can find out where the general relativ-
ity conferences are, where the postdoctoral positions are, what the latest books are, and
so on.

2) MacCallum’s gravity mailing list: to subscribe send polite email to M.A.H.MacCallum@qmw.

ac.uk

By the way, a bunch of math and physics preprints are available from the Schroedinger
Institute, including a lot of new stuff on quantum gravity that came out of that workshop
I’ve been talking about:

3) Erwin Schroedinger Institute preprint archive, available at http://www.esi.ac.
at/ESI-Preprints.html. Recent preprints include:

Abhay Ashtekar and Alejandro Corichi, “Photon inner-product and the Gauss link-
ing number”.

Abhay Ashtekar, Donald Marolf, Jose Mourao and Thomas Thiemann, “SU(N)
quantum Yang-Mills theory in 2 dimensions: a complete solution”.

Hugo Fort, Rodolfo Gambini and Jorge Pullin, “Lattice knot theory and quantum
gravity in the loop representation”, also available as gr-qc/9608033.

Michael Reisenberger, “A left-handed simplicial action for Euclidean GR”.

Carlo Rovelli, “Loop quantum gravity and black hole physics”.

I described the ideas behind some of these papers in ”Week 85 – “Week 88”. I didn’t
mention the paper by Ashtekar and Corichi. It gives nice formula for the inner product
in the Hilbert space for photons in terms of the Gauss linking number — a thing that
counts how many times one knot links another.

In its simplest form, the formula goes like this: say you have two knots, and you do
a line integral of the electric field around one of them, and of the magnetic field around
the other. You get two observables which in the quantum theory of electromagnetism
do not commute. So the uncertainty principle says you can’t measure them both exactly
at once. In fact, the uncertainty in one times the uncertainty in the other can’t be less
than ~/2 times the absolute value of the Gauss linking number of the two knots! A nice
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blend of quantum theory and topology! This winds up also being relevant to the photon
inner product, because, as the experts out there should know, the canonical commutation
relations in a free field theory always come from the imaginary part of the inner product
in the single-particle Hilbert space.

In “Week 88” I also mentioned a talk by Jerzy Lewandowski, which has now appeared
as a preprint:

4) Jerzy Lewandowski and Jacek Wilsniewski, “2+1 sector of 3+1 gravity”, preprint
available as gr-qc/9609019.

Also, Lee Smolin has written a paper arguing that Thiemann’s work has trouble squar-
ing with the positivity of energy and the existence of long-range correlations (i.e., mass-
less gravitons) that one might expect from semi-classical approaches to quantum gravity.

5) Lee Smolin, “The classical limit and the form of the Hamiltonian constraint in
nonperturbative quantum gravity”, preprint available as gr-qc/9609034.

This paper has sparked some controversy in the loop representation community. Its
arguments are heuristic rather than mathematically rigorous, so one can certainly imag-
ine ways to wriggle out of the conclusions it tries to draw. Nonetheless I think it does a
good service by focusing attention on down-to-earth physical issues. If the more mathe-
matically inclined quantum gravity folks are able either to prove or refute Smolin’s ideas,
we’ll have made lots of progress.

Smolin has also written a paper relating the loop representation to string theory:

6) Lee Smolin, “Three dimensional strings as collective coordinates of four dimen-
sional quantum gravity”, preprint available as gr-qc/9609031.

This paper really freaks me out, because it attempts to relate the loop representation
of quantum gravity in 4-dimensional spacetime to string theory in 3-dimensional space-
time. That’s an idea that never would have occurred to me. Smolin suggests it might
possibly be related to how supergravity in 11 dimensions is related to string theory in 10
dimensions, but unfortunately I don’t know enough about all that to know where to go
with it. I need to learn more about this string theory duality stuff — see “Week 72” for
my pathetic attempts so far to understand it. I haven’t read this yet, but I should:

7) Michael Dine, “String theory dualities”, preprint available as hep-th/9609051.

It’s an expository article.

Okay, now let’s go back to the tale of n-categories. As promised, I will tell you all
about monads, monoids, monoid objects, and monoidal categories.

You may or may not remember, but in “Week 80” I explained the idea of a “2-category”
pretty precisely. This is a gadget with a bunch of objects, a bunch of morphisms going
from one object to another, and a bunch of 2-morphisms going from one morphism to
another. We write f : x → y to denote a morphism f from the object x to the object y,
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and we write F : f ⇒ g to denote a 2-morphism F from the morphism f to the morphism
g.

Just as in a category, in a 2-category we can compose a morphism f : x → y with a
morphism g : y → z to get a morphism fg : x → z. (Note that I write fg instead of gf ;
I’m going to use this ordering most of the time, though I may occaisionally change my
mind just to confuse you more.) Similarly, we can compose a 2-morphism F : f ⇒ g
with a 2-morphism G : g ⇒ h to get a 2-morphism FG : f ⇒ h. This is called “vertical
composition” of 2-morphisms. We can visualize FG like this:

x y

f

g

h

F

G

<latexit sha1_base64="/+grh6mgj2o43o6K88XRjVvAi/w="></latexit>

We stick F on top of G to get FG, which is why it’s called “vertical” composition.
Also, if we have morphisms f, g : x→ y and f ′, g′ : y → z, and 2-morphisms F : f ⇒ g

and F ′ : f ′ ⇒ g′, we can “horizontally compose” F and F ′ to get F · F ′ : ff ′ ⇒ gg′. It
looks like this:

x y z

f

g

f 0

g0

F F 0

<latexit sha1_base64="75MkxE3Gpc3SEpn7kE2GQwnqirw="></latexit>

There are some axioms all this stuff has to satisfy, which I described in “Week 80”, but I
won’t repeat them here. The main thing to keep in mind is that a 2-category is like an ab-
stract 2-dimensional world. . . and the axioms for a 2-category are algebraic distillations
of the rules for putting things together in 2 dimensions. In particular, you can put the
2-morphisms together side by side (horizontally) or one on top of the other (vertically),
if they fit.

Later I’ll say more about what 2-categories have to do with 2-dimensional physics, but
right now I want to do something more fundamental. I want to show how all sorts of con-
cepts of “multiplication” or “combination” fit nicely into the framework of 2-categories.
The basic idea is really simple: we often think of multiplication as some sort of function

M : s× s→ s

where we take two elements a and b from some set s, and “multiply” them to get a new
one M(a, b). But we can visualize this as follows:

•

•

•

s s

s

M
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I’ve drawn a triangular shaped gadget that takes two “inputs” from the two slanted
edges labelled s, and spits out one “output” from the horizontal edge labelled s on the
bottom. It’s clear from the geometry here that M is something 2-dimensional — hence, a
2-morphism — and that s is 1-dimensional — hence, a morphism. Let’s label the corners
too:

x

x

x

s s

s

M

to make it clear that s is a morphism from x to itself. Here x, being 0-dimensional, is an
object.

This hocus-pocus may seem mystifying, but if you bear with me and work at it you’ll
see what I’m up to. I’m saying that essence of “multiplication” can be described very
generally in a situation where you have a 2-category with an object x in it, a morphism
s : x → x, and a 2-morphism M : ss ⇒ s. Often we are interested in situations like this
where the “multiplication” M is associative, meaning that the composite

sss
M ·1s===⇒ ss

M
=⇒ s

equals
sss

1s·M===⇒ ss
M
=⇒ s

(Here 1s : s ⇒ s is the identity 2-morphism from s to itself. . . the axioms for a 2-
category say that this exists.) Also, we’re often interested in situations where there is a
“multiplicative unit”, that is, a 2-morphism I : 1x → s for which

s = 1xs
I·1s==⇒ ss

M
=⇒ s

equals 1s, and so does
s = s1x

1s·I==⇒ ss
M
=⇒ s

If we have a 2-category with stuff in it satisfying these rules, we say we have a “monad”
in that 2-category.

What is an example of a monad? Well, consider our original example where s is
a set and M is a function. We can think of this as living in a 2-category as follows.
Our 2-category will have only one object, x. The morphisms of this 2-category are sets,
and composing morphisms corresponds to taking the Cartesian product of sets. The
2-morphisms of this 2-category are functions between sets.

What does a monad amount to in this case? Well, work it out! The multiplicative unit
1x must corresponds to the one-element set; s is some set; the 2-morphism I : 1x ⇒ s
is a function from the one-element set to s, which picks out a special element of s; the
2-morphism M : ss ⇒ s is our multiplication operation. The axioms of a monad I gave
then say that this multiplication is associative and that the special element of s is the
multiplicative unit. . . that is, it serves as the left and right identity for multiplication.

So we have a set with an associative multiplication and a unit for this multiplication.
That’s what folks call a “monoid” — see “Week 74” for more on these. So a monoid is a
special sort of monad!
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The point, however, is that there are lots of other kinds of monads, and this 2-
categorical nonsense unifies the study of all of them. Consider, for example, that trick
we played of turning the category Set into a 2-category with just one object x. It’s a
very versatile trick. In general, a 2-category with just one object is called a “monoidal
category”, because you can do this relabelling trick:

2-morphisms 7→ morphisms

morphisms 7→ objects

objects 7→

You take the 2-category with just one object, forget the object, call the morphisms “ob-
jects” and the 2-morphisms “morphisms”, and you’ve got a category! But one where you
can compose or “multiply” or “tensor” objects, because they were secretly morphisms
from x to itself. For example, Set is a monoidal category where we can multiply objects
(i.e., sets) with the Cartesian product.

However, there are lots of other interesting monoidal categories. For example, Vect
(the category of vector spaces) becomes a monoidal category if we multiply vector spaces
by tensoring them. Top (the category of topological spaces) becomes a monoidal cate-
gory if we multiply spaces by taking their Cartesian product with the usual product
topology. Mon (the category of monoids) becomes a monoidal category if we multiply
groups by taking their direct product. And so on. . . .

Because a monoidal category is a 2-category with one object, we can talk about mon-
ads in any monoidal category. These are usually called “monoid objects”, because they
are like a monoid living in the category in question. For example, a monoid object in
Vect is an associative algebra. A monoid object in Top is a topological monoid.

Sometimes funny things happen: for example, a monoid object in Mon is a commu-
tative monoid! This “birth of commutativity” illustrates something called the “Eckmann-
Hilton principle”. Some more sophisticated ramifications of this principle are discussed
in the following paper:

8) John Baez and Martin Neuchl, “Higher-dimensional algebra I: braided monoidal
2-categories”, Adv. Math. 121 (1996), 196–244. Also available as arXiv:q-alg/
9511013.

We can get into some curious self-referential loops, too: the category having (small)
categories as objects and functors as morphisms becomes a monoidal category with the
“Cartesian product” of categories as the way to multiply objects. . . and a monoid object
in this is a (small) monoidal category! Try wrapping your brain around that! A monoid
object is something you define in a monoidal category, but a monoidal category is itself
a kind of monoid object! This illustrates something that James Dolan and I call it the
“microcosm principle”. I should note at this point — I should have noted it before — that
most of this stuff about category theory is stuff I learned from Dolan. We are writing a
paper in which we give a general definition of n-categories, and explain this “microcosm
principle”.

Anyway, some of the most interesting monads live not in monoidal categories but
2-categories with lots of objects. The primordial 2-category is Cat, which has (small) cat-
egories as objects, functors as morphisms and natural transformations as 2-morphisms.
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(A minute ago I gave a way to think of Cat as a monoidal category. That was a bit dif-
ferent than this!) Monads in Cat are the first monads anyone called “monads”, I believe.
You can read a bunch about them in the bible of category theory:

9) Categories for the Working Mathematician, by Saunders Mac Lane, Springer, Berlin,
1988.

Believe or not, monads in Cat are nice way to think about algebraic theories — a
branch of logic perhaps pioneered by the theory of “univeral algebra”. (My knowledge
of the history here is sort of fuzzy.) It would take me a while to explain this so I’ll put it
off for next Week.

Let me just wrap up by saying that we can take this picture

x

x

x

s s

s

M

and draw a “dual” picture like this:

s s

•M

s

which illustrates perhaps more vividly how M is the process of two copies of s get-
ting squashed down into one copy. This sort of picture is called a “string diagram”,
and it’s literally the Poincare dual of the earlier picture, meaning that stuff that was k-
dimensional is now drawn as (2 − k)-dimensional. (The 0-dimensional object x is now
the 2-dimensional “background.”) For more on string diagrams, see:

10) Ross Street, “Categorical structures”, in Handbook of Algebra, vol. 1, ed. M. Hazewinkel,
Elsevier, 1996.

This diagram may also remind physicists (if any of them are still reading this) of a
Feynman diagram, in particular a 3-gluon vertex in QCD. It’s no coincidence! I’ll have to
say more about that later, though.

To continue reading the “Tale of n-Categories”, see “Week 92”.

200



WEEK 90 SEPTEMBER 30, 1996

Week 90

September 30, 1996

If you’ve been following This Week’s Finds, you know that I’m in love with symmetry.
Lately I’ve been making up for my misspent youth by trying to learn more about simple
Lie groups. They are, roughly speaking, the basic building blocks of the symmetry groups
of physics.

In trying to learn about them, certain puzzles come up. In July I asked Bertram
Kostant about one that’s been bugging me for years: “Why does E8 exist?” In a word, his
answer was: “Triality!” This was incredibly exciting to me; it completely blew my mind.
But I should start at the beginning. . . .

In my youth, I found the classification of simple Lie groups to be unintuitive and an-
noying. I still do, but over the years I’ve realized that suffering through this classification
theorem is the necessary entrance fee to a whole world of symmetry. I gave a tour of
this world in “Week 62” – “Week 65”, but here I want to make everything as simple as
possible, so I won’t assume you’ve read that stuff. Experts should jump directly to the
end of this article and read backwards until it becomes boring.

A Lie group is a group that can be given coordinates for which all the group op-
erations are infinitely differentiable. A good example is the group SO(n) of rotations
in n-dimensional Euclidean space. You can multiply rotations by doing first one and
then the other, or mathematically by doing matrix multiplication. Every rotation has an
inverse, given mathematically by the inverse matrix. Since matrices are just bunches
of numbers, you can coordinatize SO(n), at least locally, and in terms of these coordi-
nates the operations of multiplication and taking inverses are infinitely differentiable, or
“smooth”, so SO(n) is a Lie group.

Using the magic of calculus, we can think of tangent vectors at the identity element
of SO(n) as “infinitesimal rotations”. So for example, taking n = 3, let’s start with the
rotation by the angle t about the z axis, given by the matrix: cos t − sin t 0

sin t cos t 0
0 − 1


Then we can differentiate this and set t = 0 to get an “infinitesimal rotation about the z
axis”:  0 −1 0

1 0 0
0 − 1


Let’s call this Jz, since it’s very related to angular momentum about the z axis. (Folks
often throw in a factor of −i when they define Jz in quantum mechanics, but let’s not
bother with that here.)

Similarly we have Jx and Jy. Now rotations about different axes don’t commute, so
these infinitesimal rotations don’t either. In fact, we have

JxJy − JyJx = Jz,

JyJz − JzJy = Jx,

JzJx − JxJz = Jy.
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If you have never done it, there are few things in life as rewarding at this point as
computing Jx and Jy for yourself and checking the above “commutation relations”.

Folks usually write the “commutators” on the left hand side using brackets, like this:

[Jx, Jy] = Jz,

[Jy, Jz] = Jx,

[Jz, Jx] = Jy.

These relations are lurking in the definition of quaternions and also the vector cross
product. Quaternions and cross products are good for understanding rotations in 3-
dimensional space; they let us describe infinitesimal rotations and their failure to com-
mute. Here we are calling a spade a spade and working directly with the algebra of
infinitesimal rotations, which folks call so(3). (For related stuff, see “Week 5”.)

Okay. The point is, we can do this trick for any Lie group! The space of “infinitesimal
group elements”, or more precisely tangent vectors at the identity element of a Lie group,
is called the “Lie algebra of the group”. It’s a vector space whose dimension is the
dimension of the group, and it always has a bracket operation on it satisfying certain
axioms (listed in “Week 3”).

The classification of Lie groups can be reduced to the classification of Lie algebras,
because the Lie algebra almost determines the Lie group. More precisely, every Lie al-
gebra is the Lie algebra of a unique Lie group that is “simply connected” — i.e., one for
which every loop in it can be continuously shrunk to a point. People understand how to
get from any Lie group to a simply connected one (called its “universal cover”), so if we
understand simply connected Lie groups, we pretty much understand all Lie groups. See
“Week 61” for an instance of this philosophy.

Now classifying Lie algebras is just a matter of heavy-duty linear algebra. Let me
explain what the “simple” Lie algebras are; you’ll have to take my word for it that under-
standing these is a big step towards understanding all Lie algebras.

At one extreme in the world of Lie groups are the commutative, or “abelian” Lie
groups. Here multiplication is commutative, so [x, y] = 0 for all x and y in the Lie
algebra of the group. At the other extreme are the “semisimple” Lie groups. Here every
element in the Lie algebra is of the form [x, y] for some x and y: roughly, if we bracket
the whole Lie algebra with itself, we get itself back again. The semisimple Lie algebras
turn out to be incredibly important in physics, where they are the typical “gauge groups”
of field theories.

The “simple” Lie algebras are the building blocks of the semisimple ones: every
semisimple Lie algebra can be broken down into pieces that are simple. (Technically,
we say it’s a “direct sum” of simple Lie algebras). We say a Lie group is simple if its Lie
algebra is simple.

So: what are the simple Lie algebras? They were classified, thanks to some heroic
work by Killing and Cartan, in the early part of the 20th century. To keep life simple
(ahem) I’ll only give the classification of those simple Lie algebras whose corresponding
Lie groups are compact — meaning roughly that they are finite in size. (For example,
SO(n) is compact.) It turns out that if we understand the compact ones, we can under-
stand the noncompact ones too.

So, here are the Lie algebras of the compact simple Lie groups! There are 4 straight-
forward infinite families and 5 delightful and puzzling exceptions. The 4 infinite fami-
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lies are easy to understand and are called “classical groups”. They are the workhorses of
mathematics and physics. The other 5 are called “exceptional groups”. They have always
seemed very mysterious to me.

The 4 infinite families are:

• An: This is the Lie algebra of SU(n), the group of n × n complex matrices that
preserve lengths (i.e., are unitary) and have determinant 1. This Lie algebra is also
called su(n).

• Bn: This is the Lie algebra of SO(2n + 1), the group of (2n + 1) × (2n + 1) real
matrices that preserve lengths (i.e., are orthogonal) and have determinant 1. This
Lie algebra is also called so(2n+ 1).

• Cn: This is the Lie algebra of Sp(n), the group of n× n quaternionic matrices that
preserve lengths. This Lie algebra is also called sp(n).

• Dn: This is the Lie algebra of SO(2n), the group of 2n × 2n real matrices that
preserve lengths and have determinant 1. This Lie algebra is also called so(2n).

You may justly wonder why the heck they are called An, Bn, Cn, and Dn, and why
we separated out the even and odd cases of SO(n) as we did! This is explained in “Week
64”, and I don’t want to worry about it here. Anyway, glossing over some nuances, we
see that these guys are all pretty much just groups of rotations in real, complex, and
quaternionic vector spaces.

The 5 exceptions are as follows:

• F4: A 52-dimensional Lie algebra.

• G2: A 14-dimensional Lie algebra.

• E6: A 78-dimensional Lie algebra.

• E7: A 133-dimensional Lie algebra.

• E8: A 248-dimensional Lie algebra.

Here I am being rather reticent about what these Lie algebras — or the corresponding
Lie groups, which go by the same names — actually ARE! The reason is that it’s not so
easy to explain. One can certainly describe the exceptional Lie groups as groups of
matrices with certain complicated properties, but often this is done in a way that leaves
one utterly puzzled as to the real reason why these simple Lie groups exist.

Of course, the answer to “why” a mathematical object exists is a matter of taste. You
may feel satisfied if you can easily construct it from other objects you know and love, or
you may feel satisfied once it is so tightly woven into your overall scheme of things that
you can’t imagine life without it.

In any case, I have long been asking people why the exceptional Lie groups exist, but
without much luck. Until recently I only felt happy about one of them, the one called
G2: it’s the group of rotations of the octonions! The real numbers, complex numbers,
quaternions and octonions are the only “normed division algebras” — a property which
makes it easy to define rotation groups — but the octonions are weirder than the other
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three because, unlike the others, they are not associative. (See “Week 59” and “Week
61” for details.) One might expect a series of simple Lie groups coming from rotations
in octonionic vector spaces, like the other classical series. . . but there isn’t one! The
only simple Lie group like this is the group of rotations of a ONE-dimensional octonionic
vector space, G2. (More precisely, we say that G2 is the group of automorphisms of the
octonions, that is, the linear transformations that preserve the octonion product. These
all preserve lengths.)

The idea that the exceptional groups are all related to octonions is sort of pleasing,
because one might easily expect that the reals, complexes and quaternions give nice
infinite series of “classical” Lie groups, while the octonions, being much more bizarre,
give only 5 bizarre “exceptional” Lie groups. Indeed, in “Week 64” I described how F4

and E6 are related to the octonions. . . but in a pretty complicated way! As for E7 and
E8, here until recently I had always been completely in the dark. This is all the more
irksome because the biggest, most mysterious exceptional Lie group of all, E8, plays an
important role in string theory!

Luckily, on Thursday July 11th I ran into Bertram Kostant, who had been attending
the previous workshop here at the Erwin Schroedinger Institute. As I described in “Week
79”, Kostant is one of the expert’s experts on group theory. So I got up my nerve and
asked him, “Why does E8 exist?” And he told me! Best of all, he explained both E8 and
F4 in terms of a principle that I knew was crucial for understanding G2 and the octonions
. . . the principle of triality!

I sketched a description of triality in “Week 61”. Let me just summarize the idea here.
One of the main way to understand Lie algebras is to understand their “representations”.
A representation of a Lie algebra is simply a function from it to the space of n×nmatrices
that preserves the bracket operation. (The n × n matrices form a Lie algebra with the
commutator as the bracket operation.) For example, so(n) has a representation where we
map each element to an n×n matrix in the most utterly obvious way: each element IS an
n×nmatrix, so don’t do anything to it! This is called the “vector” representation, because
this is how we do infinitesimal rotations to vectors. But so(n) also has representations
called “spinor” representations. In physics, the vector representation describes spin-1
particles, while the spinor representations describe spin-1/2 particles.

Spinor representations work differently depending on whether the dimension n is
even or odd. (This is one reason why people distinguish the even and odd n case of so(n)
in that classification of simple Lie algebras above!) When n is odd there is one spinor rep-
resentation. That’s why in ordinary 3-dimensional space there is just one kind of spinor
to worry about, as you learn when you learn about spin-1/2 particles in undergradu-
ate quantum mechanics. When n is even there are two different spinor representations,
called the “left-handed” and “right-handed” spinor representations. This shows up when
you do quantum mechanics taking special relativity — and 4-dimensional spacetime —
into account. For example, the way neutrinos transform under rotations is described
by the left-handed spinor representation, while anti-neutrinos are described by right-
handed spinors.

When n is even, both the spinor representations of so(n) are of dimension 2n/2−1.
That is, they are functions from so(n) to the space of 2n/2−1 × 2n/2−1 matrices. Now
something marvelous happens when n = 8. Namely, 2n/2−1 = n, so the spinor represen-
tations are just as big as the vector representation. This might lead one to hope that in
some sense they are “the same” as the vector representation. This is actually true, but in
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a subtle way. . . . they are not “equivalent” representations in the standard sense of Lie
algebra theory, but something sneakier is true.

The Lie algebra so(8) has interesting symmetries! It has a little symmetry group
with 6 elements, the same as the symmetries of a equilateral triangle, and using these
6 symmetries we can permute the vector, left-handed spinor, and right-handed spinor
representations into each other however we please!

For example, one of these symmetries switches the left-handed and right-handed
spinor representations, but leaves the vector representation alone. Actually, this symme-
try works in any even dimension, not just dimension 8. Its analogue in 4-dimensional
spacetime is called “parity”, a symmetry that turns left-handed particles into right-handed
ones and vice versa. The fact that there are no right-handed neutrinos means that the
laws of nature do not actually have this symmetry. . . but it’s still very important in math
and physics.

What’s special about dimension 8 is that there are symmetries switching the vector
representation and the spinor representations. For example: if we take an element x of
so(8), apply the right symmetry of so(8) to turn it into another element of so(8), and
then use the right-handed spinor representation to it to turn it into a matrix, we get the
same thing as if we just used the vector representation to turn x into a matrix.

Now so(8) is the Lie algebra of the Lie group SO(8), but SO(8) is not “simply con-
nected” in the sense defined above. The simply connected group whose Lie algebra is
SO(n) is called Spin(n). I gave an introduction to these “spin groups” in “Week 61”, and
I don’t want to say much about them here, except for this: the triality symmetries of
so(8) do not give symmetries of SO(8), but they do give symmetries of Spin(8). Experts
say the group of outer automorphisms modulo inner automorphisms of SO(8) is S3 (the
group of permutations of 3 things).

Pretty sneaky, how a group of symmetries can have its own group of symmetries, no?
As we’ll now see, this is what gives birth to G2, F4, E8, and the octonions.

To get G2 is pretty simple; we look at those elements of Spin(8) that are fixed (i.e.,
unaffected) by all the triality symmetries, and these form a subgroup, which is G2.

For the rest, we need one more fact: there is a way to “multiply” a left-handed spinor
and a right-handed spinor and get a vector. This is true in all even dimensions, not just
n = 8, so in particular it is familiar to particle theorists who live in 4-dimensional space-
time. As I noted, what happens to a neutrino when you rotate (or Lorentz transform) it is
described using left-handed spinors, while anti-neutrinos are described by right-handed
spinors. Similarly, photons are described by vectors. So as far as rotational properties go,
one could think of a photon as a bound state of a neutrino and an antineutrino. This led
Schroedinger (or someone) to propose at one point that photons were actually neutrino-
antineutrino pairs. Subsequent experiments showed this theory has lots of problems,
and nobody sane believes it any more. Still, it’s sort of cute.

Now, in 8 dimensions, it shouldn’t be surprising that we can also multiply a left-
handed spinor and a vector to get a right-handed spinor, and so on. The point is, you
can just use triality to permute the three representations whichever way you please. . .
they are not really all that different.

So in particular, you can multiply two 8-dimensional vectors and get another vector.
And this gives us the octonions!

Now how about F4 and E8? This is the cool stuff Kostant told me about. Here I will
describe the Lie algebras, not the Lie groups.
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Let’s call the right-handed and left-handed spinor representations S+ and S−, respec-
tively. (Us left-handers are always getting shafted, being “sinister” rather than “dextrous”
and all that, so we get S− rather than S+.) And let’s call the vector representation V .
And let’s be sloppy, the way people usually are, and also use these letters to stand for the
8-dimensional vector spaces on which so(8) acts as transformations.

Now let’s form the direct sum of vector spaces

so(8)⊕ S+ ⊕ S− ⊕ V

A vector in this vector space is just a list consisting of a guy in so(8), a guy in S+, a guy
in S−, and a guy in $V. The dimension of this vector space is therefore

28 + 8 + 8 + 8 = 52

since it takes n(n− 1)/2 numbers to describe a rotation in n dimensions. Hey! Look! 52
is the dimension of F4! So maybe this thing is F4.

Yes, it is! Here’s how it works. To make this gadget into a Lie algebra — which turns
out to be F4 — we need a way to take the “bracket” of any two elements in it. We already
know how to take the bracket of two guys in so(8), so that’s no problem. Since so(8) acts
as transformations of S+ and S− and V , we also know how to multiply a guy in so(8) by
one of these other guys. We also know how to multiply a guy in S+ by a guy in S− to
get a guy in V , and so on. Finally, we can multiply two guys in V to get a guy in so(8)
as follows: two vectors determine an infinitesimal rotation which starts rotating the first
vector in the direction of the second. (More technically, we say that so(8) is isomorphic
to the second exterior power of V , so we can multiply two guys in V to get a guy in so(8)
using the wedge product.) Using triality, we can equally well multiply two guys in S+ to
get a guy in so(8), or multiply two guys in S− to get a guy in so(8).

So taking all these multiplication operations together, we can cook up a way to take
the bracket of any two guys in so(8)⊕ S+ ⊕ S− ⊕ V and get another such guy. If you do
it right — I’ve been pretty vague, so I leave it to you to fill in the details — you can get
this bracket to satisfy the Lie algebra axioms, and you get F4!

Emboldened with our success, we now look at the vector space

so(8)⊕ so(8)⊕ End(S+)⊕ End(S−)⊕ End(V ).

Here End(S+) is the space of all linear transformations of the vector space S+, so if you
like, it’s just the space of 8 × 8 matrices. Similarly for End(S−) and End(V ). Now the
dimension of this space is

28 + 28 + 64 + 64 + 64 = 248

Hey! This is just the dimension of E8! Maybe this space is E8!
Yes indeed. Again, you can cook up a bracket operation on this space using all the

stuff we’ve got. Here’s the basic idea. End(S+), End(S−), and End(V ) are already Lie
algebras, where the bracket of two guys x and y is just the commutator [x, y] = xy − yx,
where we multiply using matrix multiplication. Since so(8) has a representation as linear
transformations of V , it has two representations on End(V ), corresponding to left and
right matrix multiplication; glomming these two together we get a representation of
so(8)⊕ so(8) on End(V ). Similarly we have representations of so(8)⊕ so(8) on End(S+)
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and End(S−). Putting all this stuff together we get a Lie algebra, if we do it right — and
it’s E8. At least that’s what Kostant said; I haven’t checked it.

So now we see, at least roughly, how triality gives birth to the octonions, G2, F4,
and E8. That leaves E8’s “little brothers” E6 and E7. These are contained in E8 as Lie
subalgebras, but apart from that I don’t know any especially beautiful way to get ahold
of them, except for the way to get E6 from 3x3 matrices of octonions, which I described
in “Week 64”.

For some references to this stuff, try:

1) Claude C. Chevalley, The algebraic theory of spinors, Columbia University Press,
New York, 1954.

2) F. Reese Harvey, Spinors and calibrations, Perspectives in Mathematics, 9, Academic
Press, Inc., Boston, MA, 1990.

3) Ian R. Porteous, Topological geometry, 2nd ed., Cambridge University Press, Cam-
bridge, 1981.

4) Ian R. Porteous, Clifford algebras and the classical groups, Cambridge University
Press, Cambridge, 1995.

5) Hans Freudenthal and H. de Vries, Linear Lie groups, Academic Press, New York,
1969.

6) Alex J. Feingold, Igor B. Frenkel, and John F. X. Rees, “Spinor construction of vertex
operator algebras”, triality, and E

(1)
8 , Contemp. Math. 121, AMS, Providence Rhode

Island.

I haven’t looked at all these books lately, and the only source I know contains the
above construction of E8 from triality is the last one, by Feingold, Frenkel, and Rees.

Now let me allow myself to get a bit more technical.
I am still not entirely happy, by any means, because what I’d really like would be

a simple explanation of why these exceptional simple Lie algebras arise from triality,
and no others. In other words, I’d like a classification of the simple Lie algebras that
proceeded not by the usual exhaustive (and exhausting) case-by-case study of Dynkin
diagrams, but by some less combinatorial and more “synthetic” approach. For example,
it would be nice to really see a good explanation of how the reals, the complexes, the
quaternions and octonions each give rise to a family of simple Lie algebras, and one gets
all of them this way.

On the other hand, don’t think I’m knocking the Dynkin diagram stuff. As I explained
in “Week 62” – “Week 64”, what’s really fundamental to the Dynkin diagram approach
seems to be the not the Lie algebras themselves but their root lattices. Taking lattices as
fundamental to the study of symmetry does seem to be a good idea, since it gets you to
not just the simple Lie algebras described above, but also the “Kac-Moody algebras” so
important in string theory and other forms of 2-dimensional physics, as well as marvelous
things like the Leech lattice and the Monster group.

The Dynkin diagram approach also makes it clear why triality exists: symmetries of
Dynkin diagrams always give outer automorphisms of the corresponding Lie algebras,
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and as you examine the Dynkin diagrams of Dn, you get

D2 = so(4) =

•

•

D3 = so(6) = •

•

•

D4 = so(8) = • •

•

•

D6 = so(10) = • • •

•

•

and you can just see how when you get to so(8) there is that amazing triality symmetry,
flashing briefly into being before reverting to the boring old duality symmetry which only
interchanges the left-handed and right-handed spinor representations, corresponding to
the two dots on the far right of the Dynkin diagram. (The dot on the far left corresponds
to the vector representation.)

Of course, people don’t usually talk about D2 or D3, because D2 is two copies of A1,
and D3 is the same as A3. However, there is no shame in doing so, and indeed a lot of
insight to be gained: the fact that D2 consists of two copies of A1 corresponds to the
isomorphism

so(4) = su(2)⊕ su(2),

while the fact that D3 is the same as A3 corresponds to the isomorphism

so(6) = su(4).

Each of these could easily serve as the springboard for a very long and interesting
discussion. However, I will refrain. Here let me simply note that you can always “fold” a
Dynkin diagram using one of its symmetries, and if you do this to D4 using triality you
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go from

D4 = • •

•

•

down to

G2 = •
6

•

(Here the number 6 means that the two roots are at an angle of π/6 from each other.
People usually just draw a triple line to indicate this. The arrow points from the long root
to the shorter root.) This corresponds to how G2 is the subgroup of Spin(8) consisting of
elements that are invariant under triality. You can also go from

E6 = • • • • •

•

down to
F4 = • • • •

by folding along the reflection symmetry. And Friedrich Knop told me a neat way to get
triality symmetry from F4, if you happen to have F4 around: the long roots of F4 form
a root system of type D4, which defines an embedding of Spin(8) into the Lie group F4

(more precisely, the compact real form). On the other hand, the two short simple roots
define an embedding of SU(3) in F4. The Weyl group of SU(3) is S3 and can be lifted
to SU(3), so we have an S3 subgroup of F4. This acts by conjutation on the Spin(8)
subgroup, implementing the triality symmetries!

But I digress. My main point is, the Dynkin diagram symmetries do give a nice
way to understand outer automorphisms of simple Lie groups, and these provide some
important ties between simple Lie algebras, including triality, which links the “classical”
world to the “exceptional” world. But it is also nice to try to understand these in a
somewhat more “conceptual” way. This is one of the reasons I’m interested in 2-Hilbert
spaces. . . they seem to help one understand this stuff from a new angle. But more on
those, later. They tie into the n-category stuff I’m always talking about. I will return to
that tale soon, and I’ll keep building up some of the tools we need, until we are ready to
launch into a description of 2-Hilbert spaces.

In writing this Week’s Finds, I benefitted greatly from email correspondence with
Robt Bryant, Christopher Henrich, Geoffrey Mess, Friedrich Knop, and others.
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Week 91

October 6, 1996

For a while now I’ve been meaning to finish talking about monads and adjunctions, and
explain what that has to do with the 4-color theorem. But first I want to say a little bit
more about “triality”, which was the subject of “Week 90”.

Triality is a cool symmetry of the infinitesimal rotations in 8-dimensional space. It
was only last night, however, that I figured out what triality has to do with 3 dimensions.
Since it’s all about the number three obviously triality should originate in the symmetries
of three-dimensional space, right? Well, maybe it’s not so obvious, but it does. Here’s
how.

Take good old three-dimensional Euclidean space with its usual basis of unit vectors
i, j, and k. Look at the group of all permutations of {i, j, k}. This is a little 6-element
group which people usually call S3, the “symmetric group on 3 letters”.

Every permutation of {i, j, k} defines a linear transformation of three-dimensional
Euclidean space in an obvious way. For example the permutation p with

p(i) = j, p(j) = k, p(k) = i

determines a linear transformation, which we’ll also call p, with

p(ai+ bj + ck) = aj + bk + ci.

In general, the linear transformations we get this way either preserve the cross product,
or switch its sign. If p is an even permutation we’ll get

p(v)× p(w) = p(v × w)

while if p is odd we’ll get

p(v)× p(w) = −p(v × w) = p(w × v).

That’s where triality comes from. But now let’s see what it has to do with four-dimensional
space. We can describe four-dimensional space using the quaternions. A typical quater-
nion is something like

a+ bi+ cj + dk

where a, b, c, d are real numbers, and you multiply quaternions by using the usual rules
together with the rules

i2 = j2 = k2 = −1

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.

Now, any permutation p of {i, j, k} also determines a linear transformation of the quater-
nions, which we’ll also call p. For example, the permutation p I gave above has

p(a+ bi+ cj + dk) = a+ bj + ck + di.
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The quaternion product is related to the vector cross product, and so one can check that
for any quaternions q and q′ we get

p(qq′) = p(q)p(q′)

if p is even, and
p(q′q) = p(q′)p(q)

if p is odd. So we are getting triality to act as some sort of symmetries of the quaternions.
Now sitting inside the quaternions there is a nice lattice called the “Hurwitz integral

quaternions”. It consists of the quaternions a + bi + cj + dk for which either a, b, c, d
are all integers, or all half-integers. Here I’m using physics jargon, and referring to any
number that’s an integer plus 1/2 as a “half-integer”. A half-integer is not any number
that’s half an integer!

You can think of this lattice as the 4-dimensional version of all the black squares on a
checkerboard. One neat thing is that if you multiply any two guys in this lattice you get
another guy in this lattice, so we have a “subring” of the quaternions. Another neat thing
is that if you apply any permutation of {i, j, k} to a guy in this lattice, you get another
guy in this lattice — this is easy to see. So we are getting triality to act as some sort of
symmetries of this lattice. And that is what people usually call triality.

Let me explain, but now let me use a lot of jargon. (Having shown it’s all very simple,
I now want to relate it to the complicated stuff people usually talk about. Skip this if
you don’t like jargon.) We saw how to get S3 to act as automorphisms and antiautomor-
phisms of R3 with its usual vector cross product. . . or alternatively, as automorphisms
and antiautomorphisms of the Lie algebra so(3). From that we got an action as automor-
phisms and antiautomorphisms of the quaternions and the Hurwitz integral quaternions.
But the Hurwitz integral quaternions are just a differently coordinatized version of the
4-dimensional lattice D4! So we have gotten triality to act as symmetries of the D4 lat-
tice, and hence as automorphisms of the Lie algebra D4, or in other words so(8), the Lie
algebra of infinitesimal rotations in 8 dimensions. (For more on the D4 lattice see “Week
65”, where I describe it using different, more traditional coordinates.)

Actually I didn’t invent all this stuff, I sort of dug it out of the literature, in particular:

1) John H. Conway and Neil J. A. Sloane, Sphere Packings, Lattices and Groups, second
edition, Grundlehren der mathematischen Wissenschaften 290, Springer-Verlag,
1993.

and

2) Frank D. (Tony) Smith, “Sets and Cn; quivers and A-D-E; triality; generalized
supersymmetry; and D4-D5-E6”, preprint available as hep-th/9306011.

But I’ve never quite seen anyone come right out and admit that triality arises from
the permutations of the unit vectors i, j, and k in 3d Euclidean space.

I should add that Tony Smith has a bunch of far-out stuff about quaternions, octo-
nions, Clifford algebras, triality, the D4 lattice — you name it! — on his home page:

3) Tony Smith’s home page, http://valdostamuseum.org/hamsmith/
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He engages in more free association than is normally deemed proper in scientific
literature — you may raise your eyebrows at sentences like “the Tarot shows the Lie
algebra structure of the D4-D5-E6 model, while the I Ching shows its Clifford algebra
structure” — but don’t be fooled; his mathematics is solid. When it comes to the physics,
I’m not sure I buy his theory of everything, but that’s not unusual: I don’t think I buy
anyone’s theory of everything!

Let me wrap up by passing on something he told me about triality and the exceptional
groups. In “Week 90” I described how you could get the Lie groups G2, F4 and E8 from
triality. I didn’t know how E6 and E7 fit into the picture. He emailed me, saying:

”Here is a nice way: Start with D4 = Spin(8):

28 = 28 + 0 + 0 + 0 + 0 + 0 + 0

Add spinors and vector to get F4:

52 = 28 + 8 + 8 + 8 + 0 + 0 + 0

Now, “complexify” the 8 + 8 + 8 part of F4 to get E6:

78 = 28 + 16 + 16 + 16 + 1 + 0 + 1

Then, “quaternionify” the 8 + 8 + 8 part of F4 to get E7:

133 = 28 + 32 + 32 + 32 + 3 + 3 + 3

Finally, “octonionify” the 8 + 8 + 8 part of F4 to get E8:

248 = 28 + 64 + 64 + 64 + 7 + 14 + 7

This way shows you that the “second” Spin(8) in E8 breaks down as 28 =
7 + 14 + 7 which is globally like two 7-spheres and a G2, one S7 for left-action,
one for right-action, and a G2 automorphism group of octonions that is needed
to for “compatibility” of the two S7s. The 3+3+3 of E7, the 1+0+1 of E6, and
the 0 + 0 + 0 of F4 and D4 are the quaternionic, complex, and real analogues
of the 7 + 14 + 7.”

When I asked him where he got this, he said he cooked it up himself using the
construction of E8 that I learned from Kostant together with the Freudenthal-Tits magic
square. He gave some references for the latter:

4) Hans Freudenthal, Adv. Math. 1 (1964) 143.

5) Jacques Tits, Indag. Math. 28 (1966) 223–237.

6) Kevin McCrimmon, “Jordan Algebras and their applications”, Bull. AMS 84 (1978)
612–627, at pp. 620-621. Available at http://projecteuclid.org
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I would describe it here, but I’m running out of steam, and it’s easy to learn about it
from his web page:

7) Tony Smith, Freudenthal-Tits magic square, http://valdostamuseum.org/hamsmith/
FTsquare.html

“I regret that it has been necessary for me in this lecture to administer such
a large dose of four-dimensional geometry. I do not apologise, because I am
not really responsible for the fact that nature in its most fundamental aspect
is four-dimensional”

— Albert North Whitehead.

213



WEEK 92 OCTOBER 17, 1996

Week 92

October 17, 1996

I’m sure most of you have lost interest in my “tale of n-categories”, because it takes a fair
amount of work to keep up with all the abstract concepts involved. However, we are now
at a point where we can have some fun with what we’ve got, even if you haven’t really
followed all the previous stuff. So what follows is a rambling tour through monads,
adjunctions, the 4-color theorem and the large-N limit of SU(N) gauge theory. . . .

Okay, so in “Week 89” we defined a gadget called a “monad”. Using the string dia-
grams we talked about, you can think of a monad as involving a process like this:

s s

•M

s

which we read downwards as describing the “fusion” of two copies of something called
s into one copy of the same thing s. The fusion process itself is called M .

I can hear you wonder, what exactly is this thing s? What is this process M? Well,
I gave the technical answer in “Week 89” — but the point is that n-category theory is
deliberately designed to be so general that it covers pretty much anything you could
want! For example, s could be the set of real numbers and M could be multiplication
of real numbers, which is a function from s × s to s. Or we could be doing topology
in the plane, in which case the picture above stands for exactly what it looks like: two
lines merging to form one line! These and many other situations are analogous, and the
formalism allows us to treat them all at once. Here I will not review all the rules of the
game. If you just play along and trust me everything will be all right. If you don’t trust
me, go back and check the definitions.

Let me turn to the axioms for a monad. In addition to the multiplication M we want
to have a “multiplicative identity”, I, looking like this:

I

s

Here nothing is coming in, and a copy of s is going out. Because ordinary multiplication
has 1x = x and x1 = x for all x, we want the following axioms to hold:

I
s

•M

s

=

s
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and

I
s

•M

s

=

s

Also, since ordinary multiplication has (xy)z = x(yz), we want the following associativ-
ity law to hold, too:

s s s

•M

•M

s

s

=

sss

•M

•M

s

s

These rules are a translation of the rules given in “Week 89” into string diagram form.
If you are a physicist, you can think of these diagrams as being funny Feynman di-

agrams where you’ve got some kind of particle s and two processes M and I. Then M
is a bit like what you’d call a “cubic self-interaction”, where two particles combine to
form a third. These interactions show up in simple textbook theories like the “ϕ3 theory”
and, more importantly, in nonabelian gauge field theories like quantum chromodynam-
ics, where the gauge bosons have cubic self-interactions. On the other hand, I is a bit
like what you’d usually call a “source” or an “external potential”, some sort of field im-
posed from outside that can create particles of type s. You shouldn’t take the analogy
with Feynman diagrams too seriously yet, because the context we’re working in is so
general, and the most interesting physics theories don’t correspond to monads but to
more elaborate setups. However, we could flesh out the analogy to make it very precise
and accurate if we wanted, and this is especially important in topological quantum field
theory. More later about that.

Now in “Week 83” I discussed a different sort of gadget, called an “adjunction”. Here
you have two guys x and x∗, and two processes U and C called the “unit” and “counit”,
which look like this:

x x∗

•
U

and
x∗ x

•
C
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They satisfy the following axioms:

x

x

x∗

•
U

•
C

=

x

x∗

x∗

x

•
U

•
C

=

x∗

Physically, we can think of x∗ as the antiparticle of x, and then U is the process of creation
of a particle-antiparticle pair, while C is the process of annihilation. The axioms just say
that for a particle or antiparticle to “double back in time” by means of these processes
isn’t really different than for it to march obediently along forwards. Mathematically,
one nice example of an adjunction involves a vector space x and its dual vector space
x∗. This is really the same example, since if the behavior of a particle under symmetry
transformations is described by some group representation, its antiparticle is described
by the dual representation. For more details on the math, see “Week 83”.

Now, let’s see how to get a monad from an adjunction! We need to get s, M , and I
from x, x∗, U , and C. To do this, we first define s to be xx∗. Then define M to be

x∗ x

•
C

x x∗

x x∗

Again, to really understand the rules of the game you need to learn a bit about string
diagrams and 2-categories, but the basic idea is supposed to be simple: we can get two
xx∗’s to turn into one xx∗ by letting an x∗ and x annihilate each other!

Finally, we define I to be

x x∗

•
U

In other words, an xx∗ can be created out of nothing since it’s a “particle/antiparticle
pair”.

Now one can check that all the axioms for a monad hold. You really need to know
a bit about 2-categories to do it carefully, but basically you just let yourself deform the
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pictures, in part with the help of the axioms for an adjunction, which let you straighten
out curves that “double back in time.” So for example, we can prove the identity law

x x∗

•
U

x

•
C

x

x∗

x∗

=

x x∗

by canceling the U and the C on the left using one of the axioms for an adjunction.
Similarly, associativity holds because the following two pictures are topologically the
same:

x∗ x

•
C

x x∗

x x∗

x∗ x

•
C

x x∗

x x∗

x x∗

x x∗

=

xx∗

•
C

x∗x

x∗x

xx∗

•
C

x∗x

x∗x

x∗x

x∗x

Whew! Drawing these is tough work.
Now, as I said, an example of an adjunction is a vector space x and its dual x∗. What

monad do we get in this case? Well, the vector space x tensored with x∗ is just the vector
space of linear transformations of x, so that’s our monad in this case. In less high-brow
terms, we’ve proven that matrices form an algebra when you define matrix multiplication
in the usual way! In particular, the above picture serves as a diagrammatic proof that
matrix multiplication is associative.

Of course, people didn’t invent all this fancy-looking (but actually very basic) stuff
just to deal with matrix multiplication! Or did they? Well, actually, Penrose did invent a
diagrammatic notation for tensors which is just a slightly souped-up version of the above
stuff. You can find it in:

1) “Applications of negative dimensional tensors”, by Roger Penrose, in Combinatorial
Mathematics and its Applications, ed. D. J. A. Welsh, Academic Press, 1971.
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But most of the work on this sort of thing has been aimed at applications of other
sorts.

Now let me drift over to a related subject, the large-N limit of SU(N) gauge theory.
Quantum chromodynamics, or QCD, is an SU(N) gauge theory with N = 3, but it turns
out that things simplify a lot in the limit as N → ∞, and one gets some nice qualitative
insight into the strong force by considering this simplified theory. One can even treat the
number 3 as a small perturbation around the number ∞ and get some decent answers!
A good introduction to this appears in Coleman’s delightful book, essential reading for
anyone learning particle physics:

2) Sidney Coleman, Aspects of Symmetry, Cambridge University Press, Cambrdige,
1989.

Check out section 8.3.1, entitled “the double line representation and the dominance
of planar graphs”. Coleman considers Yang-Mills theories, like QCD, but many of the
same ideas apply to other gauge theories.

The idea is that if we start out studying the Feynman diagrams for a gauge field theory
with gauge group SU(N), and see how much various diagrams contribute to any process
for large N , the diagrams that contribute the most are those that can be drawn on a
plane without any lines crossing. Technically, the reason is that diagrams that can only
be drawn on a surface of genus g grow like N2−2g as N increases. This number 2− 2g is
called the Euler characteristic and it’s biggest when your surface has no handles.

Even better, in the N → ∞ limit we can think of the Feynman diagrams using di-
agrams like the ones above. For example, we can think of the cubic self-interaction in
Yang-Mills theory as simply matrix multiplication:

x∗

•
C

x

x

x

x∗

x∗

and the quartic self-interaction as something a wee bit fancier:

x∗

•
C

x

x

x

x∗

x∗

x∗
•
U

x

Apparently these ideas have spawned a whole field of physics called “matrix models”.
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These ideas work not only for Yang-Mills theory but also for Chern-Simons theory,
which is a topological quantum field theory: a theory that doesn’t require any metric on
spacetime to make sense. Here they have been exploited by Dror Bar-Natan to come up
with a new formulation of the famous 4-color theorem:

3) Dror Bar-Natan, “Lie algebras and the four color theorem”, preprint available as
q-alg/9606016.

As I explained in “Week 8” and “Week 22”, there is a way to formulate about the
4-color theorem as a statement about trivalent graphs. In particular, Penrose invented a
little recipe that lets us calculate an invariant of trivalent graphs, which is zero for some
planar graph only if some corresponding map can’t be 4-colored. This recipe involves
the vector cross product, or equivalently, the Lie algebra of the group SU(2). You can
generalize it to work for SU(N). And if you then consider the N →∞ limit, you get the
above stuff! (The point is that the above stuff also gives a rule for computing a number
from any trivalent graph.)

Now as I said, in the N →∞ limit all the nonplanar Feynman diagrams give negligi-
ble results compared to the planar ones. So another way to state the 4-color theorem is
this: if the SU(2) invariant of a trivalent graph is zero, the SU(N) invariant is negligible
in the N →∞ limit.

This doesn’t yet give a new proof of the 4-color theorem. But it makes it into sort of
a physics problem: a problem about the relation of SU(2) Chern-Simons theory and the
N →∞ limit of Chern-Simons theory.

Now, the 4-color theorem is one of the two deep mysteries of 2-dimensional topol-
ogy — a subject too often considered trivial. The other mystery is the Andrews-Curtis
conjecture, discussed in “Week 23”. Often a problem is hard or unsolvable until you get
the right tools. Topological quantum field theory is a new tool in topology, so one could
hope it’ll shed some light on these problems. Bar-Natan’s paper is a tantalizing piece of
evidence that maybe, just maybe, it will.

One can’t really tell yet.
Anyway, I don’t really care much about the 4-color theorem per se. If I ever need

to color a map I’ll hire a cartographer. It’s the connections between seemingly disparate
subjects that I find interesting. 2-categories are a very abstract formalism developed to
describe 2-dimensional ways of glomming things together. Starting from the study of
2-categories, we very naturally get the notions of “monad” and “adjunction”. And before
we know it, this leads us to some interesting questions about 2-dimensional quantum
field theory: for really, the dominance of planar diagrams in the N → ∞ limit of gauge
theory is saying that in this limit the theory becomes essentially a 2-dimensional field
theory, in some funny sense. And then, lo and behold, this turns out to be related to the
4-color theorem!

By the way, I guess you all know that the 4-color theorem was proved using a com-
puter, by breaking things down into lots of separate cases. (See “Week 22” for refer-
ences.) Well, there’s a new proof out, which also uses a computer, but is supposed to be
simpler:

4) Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas, “A new
proof of the four-colour theorem”, Electronic Research Announcements of the Amer-
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ican Mathematical Society 2 (1996), 17–25. Available at http://www.ams.org/

journals/era/1996-02-01/

I’m still hoping for the 2-page “physicist’s proof” using path integrals!
To continue reading the “Tale of n-Categories”, see “Week 99”.
For more on adjunctions and monoid objects, try “Week 173” and especially “Week

174”.
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Week 93

October 27, 1996

Lately I’ve been trying to learn more about string theory. I’ve always had grave doubts
about string theory, but it seems worth knowing about. As usual, when I’m trying to
learn something I find it helpful to write about it — it helps me remember stuff, and it
points out gaps in my understanding. So I’ll start trying to explain some string theory in
this and forthcoming Week’s Finds.

However: watch out! This isn’t going to be a systematic introduction to the subject.
First of all, I don’t know enough to do that. Secondly, it will be very quirky and id-
iosyncratic, because the aspects of string theory I’m interested in now aren’t necessarily
the ones most string theorists would consider central. I’ve been taking as my theme of
departure, “What’s so great about 10 and 26 dimensions?” When one reads about string
theory, one often hears that it only works in 10 or 26 dimensions — and the obvious
question is, why?

This question leads one down strange roads, and one runs into lots of surprising coin-
cidences, and spooky things that sound like coindences but might NOT be coincidences
if we understood them better.

For example, when we have a string in 26 dimensions we can think of it as wig-
gling around in the 24 directions perpendicular to the 2-dimensional surface the string
traces out in spacetime (the “string worldsheet”). So the number 24 plays an especially
important role in 26-dimensional string theory. It turns out that

12 + 22 + 32 + . . .+ 242 = 702.

In fact, 24 is the only integer n > 1 such that the sum of squares from 12 to n2 is itself a
perfect square. Is this a coincidence? Probably not, as I’ll eventually explain! This is just
one of many eerie facts one meets when trying to understand this stuff.

For starters I just want to explain why dimensions of the form 8k + 2 are special.
Notice that if we take k = 0 here we get 2, the dimension of the string worldsheet. For
k = 1 we get 10, the dimension of spacetime in “supersymmetric string theory”. For
k = 3 we get 26, the dimension of spacetime in “purely bosonic string theory”. So these
dimensions are important. What about k = 2 and the dimension 18, I hear you ask?
Well, I don’t know what happens there yet. . . maybe someone can tell me! All I want to
do now is to explain what’s good about 8k + 2.

But I need to start by saying a bit about fermions.
Remember that in the Standard Model of particle physics — the model that all fancier

theories are trying to outdo — elementary particles come in 3 basic kinds. There are the
basic fermions. In general a “fermion” is a particle whose angular momentum comes in
units of Planck’s constant ~ times 1/2, 3/2, 5/2, and so on. Fermions satisfy the Pauli
exclusion principle — you can’t put two identical fermions in the same state. That’s why
we have chemistry: the electrons stack up in “shells” at different energy levels, instead of
all going to the lowest-energy state, because they are fermions and satisfy the exclusion
principle. In the Standard Model the fermions go like this:
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Leptons Quarks

electron electron neutrino down quark up quark
muon muon neutrino strange quark charm quark
tauon tauon neutrino bottom quark top quark

There are three “generations” here, all rather similar to each other.
There are also particles in the Standard Model called “bosons” having angular mo-

mentum in units of ~ times 0,1,2, and so on. Identical bosons, far from satisfying the
exclusion principle, sort of like to all get into the same state: one sees this in phenomena
such as lasers, where lots of photons occupy the same few states. Most of the bosons in
the Standard Model are called “gauge bosons”. These carry the different forces in the
standard model, by which the particles interact:

Electromagnetic force Weak force Strong force

photon W+, W-, Z 8 gluons

Finally, there is also a bizarre particle in the Standard Model called the “Higgs boson”.
This was first introduced as a rather ad hoc hypothesis: it’s supposed to interact with the
forces in such a way as to break the symmetry that would otherwise be present between
the electromagnetic force and the weak force. It has not yet been observed; finding
it would would represent a great triumph for the Standard Model, while not finding it
might point the way to better theories.

Indeed, while the Standard Model has passed many stringent experimental tests, and
successfully predicted the existence of many particles which were later observed (like
the W, the Z, and the charm and top quarks), it is a most puzzling sort of hodgepodge.
Could nature really be this baroque at its most fundamental level? Few people seem to
think so; most hope for some deeper, simpler theory.

It’s easy to want a “deeper, simpler theory”, but how to get it? What are the clues?
What can we do? Experimentalists certainly have their work cut out for them. They can
try to find or rule out the Higgs. They can also try to see if neutrinos, assumed to be
massless in the Standard Model, actually have a small mass — for while the Standard
Model could easily be patched if this were the case, it would shed interesting light on one
of the biggest mysteries in physics, namely why the fermions in nature seem not to be
symmetric under reflection, or “parity”. Right now, we believe that neutrinos only exist
in a left-handed form, rotating one way but not the other around the axis they move
along. This is intimately related to their apparent masslessness. In fact, for reasons that
would take a while to explain, the lack of parity symmetry in the Standard Model forces
us to assume all the observed fermions acquire their mass only through interaction with
the Higgs particle! For more on the neutrino mass puzzle, try:

1) Paul Langacker, Implications of Neutrino Mass, http://dept.physics.upenn.edu/
neutrino/jhu/jhu.html

And, of course, experimentalists can continue to do what they always do best: dis-
cover the utterly unexpected.
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Theorists, on the other hand, have been spending the last couple of decades poring
over the standard model and trying to understand what it’s telling us. It’s so full of sug-
gestive patterns and partial symmetries! First, why are there 3 forces here? Each force
goes along with a group of symmetries called a “gauge group”, and electromagnetism
corresponds to U(1), while the weak force corresponds to SU(2) and the strong force
corresponds to SU(3). (Here U(n) is the group of n× n unitary complex matrices, while
SU(n) is the subgroup consisting of those with determinant equal to 1.) Well, actually
the Standard Model partially unifies the electromagnetic and weak force into the “elec-
troweak force”, and then resorts to the Higgs to explain why these forces are so different
in practice. Various “grand unified theories” or “GUTs” try to unify the forces further by
sticking the group SU(3) × SU(2) × U(1) into a bigger group — but then resort to still
more Higgses to break the symmetry between them!

Then, there is the curious parallel between the leptons and quarks in each generation.
Each generation has a lepton with mass, a massless or almost massless neutrino, and
two quarks. The massive lepton has charge −1, the neutrino has charge 0 as its name
suggests, the “down” type quark has charge −1/3, and the “up” type quark has charge
2/3. Funny pattern, eh? The Standard Model does not really explain this, although
it would be ruined by “anomalies” — certain nightmarish problems that can beset a
quantum field theory — if one idly tried to mess with the generations by leaving out a
quark or the like. It’s natural to try to “unify” the quarks and leptons, and indeed, in
grand unified theories like the SU(5) theory proposed in 1974 of Georgi and Glashow,
the quarks and leptons are treated in a unified way.

Another interesting pattern is the repetition of generations itself. Why is there more
than one? Why are there three, almost the same, but with the masses increasing dramat-
ically as we go up? The Standard Model makes no attempt to explain this, although it
does suggest that there had better not be more than 17 quarks — more, and the strong
force would not be “asymptotically free” (weak at high energies), which would cause
lots of problems for the theory. In fact, experiments strongly suggest that there are no
more than 3 generations. Why?

Finally, there is the grand distinction between bosons and fermions. What does this
mean? Here we understand quite a bit from basic principles. For example, the “spin-
statistics theorem” explains why particles with half-integer spin should satisfy the Pauli
exclusion principle, while those with integer spin should like to hang out together. This
is a very beautiful result with a deep connection to topology, which I try to explain in

2) John Baez, Spin, statistics, CPT and all that jazz, http://math.ucr.edu/home/
baez/spin.stat.html

But many people have tried to bridge the chasm between bosons and fermions, unify-
ing them by a principle called “supersymmetry”. As in the other cases mentioned above,
when they do this, they then need to pull tricks to “break” the symmetry to get a theory
that fits the experimental fact that bosons and fermions are very different. Personally, I’m
suspicious of all these symmetries postulated only to be cleverly broken; this approach
was so successful in dealing with the electroweak force — modulo the missing Higgs!
- that it seems to have been accepted as a universal method of having ones cake and
eating it too.

Now, string theory comes in two basic flavors. Purely bosonic string theory lives in 26
dimensions and doesn’t have any fermions in it. Supersymmetric string theories live in
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10 dimensions and have both bosons and fermions, unified via supersymmetry. To deal
with the fermions in nature, most work in physics has focused on the supersymmetric
case. Just for completeness, I should point out that there are 5 different supersymmetric
string theories: type I, type IIA, type IIB, E8 × E8 heterotic and SO(32) heterotic. For
more on these, see “Week 72”. We won’t be getting into them here. Instead, I just want
to explain how fermions work in different dimensions, and why nice things happen in
dimensions of the form 8k + 2. Most of what I say is in Section 3 of

3) John H. Schwarz, “Introduction to supersymmetry”, in Superstrings and Supergrav-
ity, Proc. of the 28th Scottish Universities Summer School in Physics, ed. A. T. Davies
and D. G. Sutherland, University Printing House, Oxford, 1985.

but mathematicians may also want to supplement this with material from the book
“Spin Geometry” by Lawson and Michelson, cited in “Week 82”.

To understand fermions in different dimensions we need to understand Clifford alge-
bras. As far as I know, when Clifford originally invented these algebras in the late 1800s,
he was trying to generalize Hamilton’s quaternion algebra by considering algebras that
had lots of different anticommuting square roots of −1. In other words, he considered
an associative algebra generated by a bunch of guys e1, . . . , en, satisfying

e2i = −1

for all i, and
eiej = −ejei

whenever i is not equal to j. I discussed these algebras in “Week 82” and I said what
they all were — they all have nice descriptions in terms of the reals, the complexes, and
the quaternions.

These original Clifford algebras are great for studying rotations in n-dimensional
Euclidean space — please take my word for this for now. However, here we want to
study rotations and Lorentz transformations in n-dimensional Minkowski spacetime, so
we need to work with a slightly Different kind of Clifford algebra, which was probably
invented by Dirac. In n-dimensional Euclidean space the metric (used for measuring
distances) is

dx21 + dx22 + . . .+ dx2n

while in n-dimensional Minkowski spacetime it is

dx21 + dx22 + . . .− dx2n

or if you prefer (it’s just a matter of convention), you can take it to be

−dx21 − dx22 − . . .+ dx2n

So it turns out that we need to switch some signs in the definition of the Clifford algebra
when working in Minkowski spacetime.

In general, we can define the Clifford algebra Cp,q to be the algebra generated by
a bunch of elements ei, with p of them being square roots of −1 and q of them being
square roots of 1. As before, we require that they anticommute:

eiej = −ejei
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when i and j are different. Physicists usually call these guys “gamma matrices”. For n-
dimensional Minkowski space we can work either with Cn− 1, 1 or C1,n−1, depending
on our preference. As Cecile DeWitt has pointed out, it does make a difference which
one we use.

With some work, one can check that these algebras go like this:

C0,1 R + R C1,0 C
C1,1 R(2) C1,1 R(2)
C2,1 C(2) C1,2 R(2) + R(2)
C3,1 H(2) C1,3 R(4)
C4,1 H(2) + H(2) C1,4 C(4)
C5,1 H(4) C1,5 H(4)
C6,1 C(8) C1,6 H(4) + H(4)
C7,1 R(16) C1,7 H(8)

I’ve only listed these up to 8-dimensional Minkowski spacetime, and the cool thing is
that after that they sort of repeat — more precisely, Cn+8,1 is just the same as 16 × 16
matrices with entries in Cn,1, and C1,n+8 is just 16 × 16 matrices with entries in C1,n!
This “period-8” phenomenon, sometimes called Bott periodicity, has implications for all
sorts of branches of math and physics. This is why fermions in 2 dimensions are a bit
like fermions in 10 dimensions and 18 dimensions and 26 dimensions. . . .

In physics, we describe fermions using “spinors”, but there are different kinds of
spinors: Dirac spinors, Weyl spinors, Majorana spinors, and even Majorana-Weyl spinors.
This is a bit technical but I want to dig into it here, since it explains what’s special about
8k + 2 dimensions and especially 10 dimensions.

Before I get technical, though, let me just summarize the point for those of you
who don’t want all the gory details. “Dirac spinors” are what you use to describe spin-
1/2 particles that come in both left-handed and right-handed forms and aren’t their
own antiparticle — like the electron. Weyl spinors have half as many components, and
describe spin-1/2 particles with an intrinsic handedness that aren’t their own antiparticle
— like the neutrino. “Weyl spinors” are only possible in even dimensions!

Both these sorts of spinors are “complex” — they have complex-valued components.
But there are also real spinors. These are used for describing particles that are their own
antiparticle, because the operation of turning a particle into an antiparticle is described
mathematically by complex conjugation. “Majorana spinors” describe spin-1/2 particles
that come in both left-handed and right-handed forms and are their own antiparticle.
Finally, “Majorana-Weyl spinors” are used to describe spin-1/2 particles with an intrinsic
handedness that are their own antiparticle.

As far as we can tell, none of the particles we’ve seen are Majorana or Majorana-Weyl
spinors, although if the neutrino has a mass it might be a Majorana spinor. Majorana
and Majorana-Weyl spinors only exist in certain dimensions. In particular, Majorana-
Weyl spinors are very finicky: they only work in dimensions of the form 8k + 2. This is
part of what makes supersymmetric string theory work in 10 dimensions!

Now let me describe the technical details. I’m doing this mainly for my own benefit;
if I write this up, I’ll be able to refer to it whenever I forget it. For those of you who stick
with me, there will be a little reward: we’ll see that a certain kind of supersymmetric
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gauge theory, in which there’s a symmetry between gauge bosons and fermions, only
works in dimensions 3, 4, 6, and 10. Perhaps coincidentally — I don’t understand this
stuff well enough to know — these are also the dimensions when supersymmetric string
theory works classically. (It’s the quantum version that only works in dimension 10.)

So: part of the point of these Clifford algebras is that they give representations of the
double cover of the Lorentz group in different dimensions. In “Week 61” I explained this
double cover business, and how the group SO(n) of rotations of n-dimensional Euclidean
space has a double cover called Spin(n). Similarly, the Lorentz group of n-dimensional
Minkowski space, written SO(n − 1, 1), has a double cover we could call Spin(n − 1, 1).
The spinors we’ll discuss are all representations of this group.

The way Clifford algebras help is that there is a nice way to embed Spin(n − 1, 1)
in either Cn−1,1 or C1,n−1, so any representation of these Clifford algebras gives a rep-
resentation of Spin(n − 1, 1). We have a choice of dealing with real representations or
complex representations. Any complex representation of one of these Clifford algebras
is also a representation of the complexified Clifford algebra. What I mean is this: above I
implicitly wanted Cp,q to consist of all real linear combinations of products of the e i, but
we could have worked with complex linear combinations instead. Then we would have
“complexified” Cp,q. Since the complex numbers include a square root of minus 1, the
complexification of Cp,q only depends on the dimension p + q, not on how many minus
signs we have.

Now, it is easy and fun and important to check that if you complexify R you get C,
and if you complexify C you get C+C, and if you complexify H you get C(2). Thus from
the above table we get this table:

dimension n complexified Clifford algebra

1 C + C
2 C(2)
3 C(2) + C(2)
4 C(4)
5 C(4) + C(4)
6 C(8)
7 C(8) + C(8)
8 C(16)

Notice this table is a lot simpler — complex Clifford algebras are “period-2” instead
of period-8.

Now the smallest complex representation of the complexified Clifford algebra in di-
mension n is what we call a “Dirac spinor”. We can figure out what this is using the
above table, since the smallest complex representation of C(n) or C(n) + C(n) is on the
n-dimensional complex vector space Cn, given by matrix multiplication. Of course, for
C(n) + C(n) there are two representations depending on which copy of C(n) we use,
but these give equivalent representations of Spin(n − 1, 1), which is what we’re really
interested in, so we still speak of “the” Dirac spinors.

So we get:
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dimension n Dirac spinors

1 C
2 C(2)
3 C(2)
4 C(4)
5 C(4)
6 C(8)
7 C(8)
8 C(16)

The dimension of the Dirac spinors doubles as we go to each new even dimension.
We can also look for the smallest real representation of Cn−1,1 or C1,n−1. This is

easy to work out from our tables using the fact that the algebra R has its smallest real
representation on R, while for C it’s on R2 and for H it’s on R4.

Sometimes this smallest real representation is secretly just the Dirac spinors viewed as
a real representation — we can view Cn as the real vector space R2n. But sometimes the
Dirac spinors are the complexification of the smallest real representation — for example,
Cn is the complexification of Rn. In this case folks call the smallest real representation
“Majorana spinors”.

When we are looking for the smallest real representations, we get different answers
for Cn−1,1 and C1,n−1. Here is what we get:

n Cn−1,1 smallest R rep. M.s? C1,n−1 smallest R rep. M.s?

1 R + R R X C R2

2 R(2) R2 X R(2) R2 X
3 C(2) R4 R(2) + R(2) R2 X
4 H(2) R8 R(4) R4 X
5 H(2) + H(2) R8 C(4) R8

6 H(4) R16 H(4) R16

7 C(8) R16 H(4) + H(4) R16

8 R(16) R16 X H(8) R32

I’ve noted when the representations are Majorana spinors. Everything repeats with
period 8 after this, in an obvious way.

Finally, sometimes there are “Weyl spinors” or “Majorana-Weyl” spinors. The point
is that sometimes the Dirac spinors, or Majorana spinors, are a reducible representation
of Spin(1, n − 1). For Dirac spinors this happens in every even dimension, because the
Clifford algebra element

Γ = e1 . . . en

commutes with everything in Spin(1, n− 1) and Γ2 is 1 or −1, so we can break the space
of Dirac spinors into the two eigenspaces of Γ, which will be smaller reps of Spin(1, n−1)
— the “Weyl spinors”. Physicists usually call this Γ thing “γ5”, and it’s an operator that
represents parity transformations. We get “Majorana-Weyl” spinors only when we have
Majorana spinors, n is even, and Γ2 = 1, since we are then working with real numbers
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and −1 doesn’t have a square root. You can work out Γ2 for either Cn−1,1 or C1,n−1, and
see that we’ll only get Majorana-Weyl spinors when n = 8k + 2.

Whew! Let me summarize some of our results:

n Dirac Majorana Weyl Majorana-Weyl

1 C R
2 C2 R2 C R
3 C2 R2

4 C4 R4 C2

5 C4

6 C8 C4

7 C8

8 C16 R16 C8

When there are blanks here, the relevant sort of spinor doesn’t exist. Here I’m not dis-
tinguishing Majorana spinors that come from Cn−1,1 and those that come from C1,n−1;
you can do that with the previous table. Again, things continue for larger n in an obvious
way.

Now, let’s imagine a theory that has a supersymmetry between a gauge bosons and
a fermion. We’ll assume there are as many physical degrees of freedom for the gauge
boson as there are for the fermion. Gauge bosons have n−2 physical degrees of freedom
in n dimensions: for example, in dimension 4 the photon has 2 degrees of freedom, the
left and right polarized states. So we want to find a kind of spinor that has n−2 physical
degrees of freedom. But the number of physical degrees of freedom of a spinor field is
half the number of (real) components of the spinor, since the Dirac equation relates the
components. So we are looking for a kind of spinor that has 2(n − 2) real components.
This occurs in only 4 cases:

• n = 3: then 2(n− 2) = 2, and Majorana spinors have 2 real components

• n = 4: then 2(n− 2) = 4, and Majorana or Weyl spinors have 4 real components

• n = 6: then 2(n− 2) = 8, and Weyl spinors have 8 real components

• n = 10: then 2(n− 2) = 16, and Majorana-Weyl spinors have 16 real components

Note we count complex components as two real components. And note how dimen-
sion 10 works: the dimension of the spinors grows pretty fast as n increases, but the
Majorana-Weyl condition reduces the dimension by a factor of 4, so dimension 10 just
squeaks by!

Here John Schwarz explains how nice things happen in the same dimensions for
superstring theory:

4) John H. Schwarz, “Introduction to superstrings”, in Superstrings and Supergravity,
Proc. of the 28th Scottish Universities Summer School in Physics, ed. A. T. Davies
and D. G. Sutherland, University Printing House, Oxford, 1985.
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He also makes a tantalizing remark: perhaps these 4 cases correspond somehow to
the reals, complexes, quaternions and octonions. Note: 3 = 1 + 2, 4 = 2 + 2, 6 = 4 + 2
and 10 = 8 + 2. You can never tell with this stuff. . . everything is related.

I thank Joshua Burton for helping me overcome my fear of Majorana spinors, and for
correcting a number of embarrassing errors in the first version of this article.

Addendum: In July 2001, long after the above article was written, Lubos Motl ex-
plained where the number 18 shows up in string theory:

Today we know that the two heterotic string theories are related by various
dualities. For example, in 17+1 dimension, the lattices Γ16 and Γ8 + Γ8, with
an added Lorentzian Γ1,1, become isometric. There is a single even self-dual
lattice in 17+1 dimensions, Γ17,1. This is the reason why two heterotic string
theories are T-dual to each other. The compactification on a circle adds two extra
U(1)s (from Kaluza-Klein graviphoton and the B-field), and with appropriate
Wilson lines, a compactification of one heterotic string theory on radius R is
equivalent to the other on radius 1/R, using correct units.

Also, in “Week 104”, and especially in the Addendum written by Robert Helling, we’ll
see that it’s not a coincidence that super-Yang-Mills theory works nicely in dimensions
that are 2 more than the dimensions of the reals, complex numbers, quaternions and
octonions.

Since the mathematicians have grabbed ahold of the theory of relativity, I no longer
understand it. — Albert Einstein
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Week 94

November 11, 1996

Today I want to talk a bit about asymptotic freedom.
First of all, remember that in quantum field theory, studying very small things is the

same as studying things at very high energies. The reason is that in quantum mechanics
you need to collide two particles at a large relative momentum p to make sure the
distance x between them gets small, thanks to the uncertainty principle. But in special
relativity the energy E and momentum p of a particle of mass m are related by

E2 = p2 +m2,

in God’s units, where the speed of light is 1. So small x also corresponds to large E.
“Asymptotic freedom” refers to fact that some forces become very weak at high en-

ergies, or equivalently, at very short distances. The most interesting example of this is
the so-called “strong force”, which holds the quarks together in a hadron, like a proton
or neutron. True to its name, it is very strong at distances comparable to the radius of
proton, or at energies comparable to the mass of the proton (where if we don’t use God’s
units, we have to use E = mc2 to convert units of mass to units of energy). But if we
smash protons at each other at much higher energies, the constituent quarks act almost
as free particles, indicating that the strong force gets weak when the quarks get really
close to each other.

Now in “Week 76” and “Week 84” I talked about another phenomenon, called “con-
finement”. This simply means that at lower energies, or larger distance scales, the strong
force becomes so strong that it is impossible to pull a quark out of a hadron. Asymp-
totic freedom and confinement are two aspects of the same thing: the dependence of
the strength of the strong force on the energy scale. Asymptotic freedom is better un-
derstood, though, because the weaker a force is, the better we can apply the methods of
perturbation theory — a widely used approach where we try to calculate everything as a
Taylor series in the “coupling constant” measuring the strength of the force in question.
This is often successful when the coupling constant is small, but not when it’s big.

The interesting thing is that in quantum field theory the coupling constants “run”.
This is particle physics slang for the fact that they depend on the energy scale at which we
measure them. “Asymptotic freedom” happens when the coupling constant runs down to
zero as we move up to higher and higher energy scales. If you want to impress someone
about your knowledge of this, just mutter something about the “beta function” being
negative — this is a fancy way of saying the coupling constant decreases as you go to
higher energies. You’ll sound like a real expert.

Now, Frank Wilczek is one of the original discoverers of asymptotic freedom. He is
a real expert. He recently won a prize for this work, and he gave a nice talk which he
made into a paper:

1) Frank Wilczek, “Asymptotic freedom”, preprint available as hep-th/9609099.

Among other things, he gives a nice summary of the work of Nielsen and Hughes,
which gave the first really easy to understand explanation of asymptotic freedom. For
the original work, try:
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2) N. K. Nielsen, Am. J. Phys. 49, 1171 (1981).

3) R. J. Hughes, Nucl. Phys. B186, 376 (1981).

Why would a force get weak at short distance scales? Actually it’s easier to imagine
why it would get strong — and sometimes that is what happens. Of course there are lots
of forces that decrease with distance like 1/r2, but I’m talking about something more
drastic: I’m talking about “screening”.

For example, say you have an electron in some water. It’ll make an electric field, but
this will push all the other negatively charged particles little bit away from your electron
and pull all the positively charged ones a little bit towards your electron:

-

+

your electron: - +-

+

-

In other words, it will “polarize” all the neighboring water molecules. But this will
create a counteracting sort of electric field, since it means that if you draw any sphere
around your electron, there will be a bit more positively charged other stuff in that sphere
than negatively charged other stuff. The bigger the sphere is, the more this effect occurs
— though there is a limit to how much it occurs. We say that the further you go from
your electron, the more its electric charge is “screened”, or hidden, behind the effect of
the polarization.

This effect is very common in materials that don’t conduct electricity, like water or
plastics or glass. They’re called “dielectrics”, and the dielectric constant, ε, measures the
strength of this screening effect. Unlike in math, this ε is typically bigger than 1. If you
apply an electric field to a dielectric material, the electric field inside the material is only
1/ε as big as you’d expect if this polarization wasn’t happening.

What’s cool is that according to quantum field theory, screening occurs even in the
vacuum, thanks to “vacuum polarization”. One can visualize it rather vaguely as due to a
constant buzz of virtual particle-antiparticle pairs getting created and then annihilating
— called “vacuum bubbles” in the charming language of Feynman diagrams, because
you can draw them like this:

e+ e-

Here I’ve drawn a positron-electron pair getting created and then annihilating as time
passes.

There is a lot I should say about virtual particles, and how despite the fact that they
aren’t “real” they can produce very real effects like vacuum polarization. A strong enough
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electric field will even “spark the vacuum” and make the virtual particles become real! But
discussing this would be too big of a digression. Suffice it to say that you have to learn
quantum field theory to see how something that starts out as a kind of mathematical
book-keeping device — a line in a Feynman diagram — winds up acting a bit like a real
honest particle. It’s a case of a metaphor gone berserk, but in an exceedingly useful way.

Anyway, so much for screening. Asymptotic freedom requires something opposite,
called “anti-screening”! That’s why it’s harder to understand.

Nielsen and Hughes realized that anti-screening is easier to understand using mag-
netism than electricity. In analogy to dielectrics, there are some materials that screen
magnetic fields, and these are called “diamagnetic” — for example, one of the strongest
diamagnets is bismuth. But in addition, there are materials that “anti-screen” magnetic
fields — the magnetic field inside them is stronger than the externally applied magnetic
field — and these are called “paramagnetic”. For example, aluminum is paramagnetic.
People keep track of paramagnetism using a constant called the magnetic permeability,
µ. Just to confuse you, this works the opposite way from the dielectric constant. If you
apply a magnetic field to some material, the magnetic field inside it is µ times as big as
you’d expect if there were no magnetic effects going on.

The nice thing is that there are lots of examples of paramagnetism and we can sort
of understand it if we think about it. It turns out that paramagnetism in ordinary matter
is due to the spin of the electrons in it. The electrons are like little magnets — they
have a little “magnetic moment” pointing along the axis of their spin. Actually, purely
by convention it points in the direction opposite their spin, since for some stupid reason
Benjamin Franklin decided to decree that electrons were negative. But don’t worry about
this — it doesn’t really matter. The point is that when you put electrons in a magnetic
field, their spins like to line up in such a way that their magnetic field points the same
way as the externally applied magnetic field, just like a compass needle does in the
Earth’s magnetic field. So they add to the magnetic field. Ergo, paramagnetism.

Now, spin is a form of angular momentum intrinsic to the electron, but there is an-
other kind of angular momentum, namely orbital angular momentum, caused by how
the electron (or whatever particle) is moving around in space. It turns out that orbital
angular momentum also has magnetic effects, but only causes diamagnetism. The idea
that when you apply a magnetic field to some material, it can also make the electrons in
it tend to move in orbits perpendicular to the magnetic field, and the resulting current
creates a magnetic field. But this magnetic field must oppose the external magnetic field.
Ergo, diamagnetism.

Why does orbital angular momentum work one way, while spin works the other way?
I’ll say a bit more about that later. Now let me get back to asymptotic freedom.

I’ve talked about screening and antiscreening for both electric and magnetic fields
now. But say the “substance” we’re studying is the vacuum. Unlike most substances,
the vacuum doesn’t look different when we look at it from a moving frame of reference.
We say it’s “Lorentz-invariant”. But if we look at an electric field in a moving frame
of reference, we see a bit of magnetic field added on, and vice versa. We say that the
electric and magnetic fields transform into each other. . . they are two aspects of single
thing, the electromagnetic field. So the amount of electric screening or antiscreening in
the vacuum has to equal the amount of the magnetic screening or antiscreening. In other
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words, thanks to the silly way we defined ε differently from µ, we must have

ε = 1/µ

in the vacuum.
Now the cool thing is that the Yang-Mills equations, which describe the strong force,

are very similar to Maxwell’s equations. In particular, the strong force, also known as the
“color” force, consists of two aspects, the “chromoelectric” field and “chromomagnetic”
field. Moreover, the same argument above applies here: the vacuum must give the same
antiscreening for the chromoelectric field as it does for the chromomagnetic field, so
ε = 1/µ here too.

So to understand asymptotic freedom it is sufficient to see why the vacuum acts like
a paramagnet for the strong force! This depends on a big difference between the strong
force and electromagnetism. Just as the electromagnetic field is carried by photons,
which are spin-1 particles, the strong force is carried by “gluons”, which are also spin-1
particles. But while the photon is electrically uncharged, the gluon is charged as far as
the strong force goes: we say it has “color”.

The vacuum is bustling with virtual gluons. When we apply a chromomagnetic field
to the vacuum, we get two competing effects: paramagnetism thanks to the spin of the
gluons, and diamagnetism due to their orbital angular momentum. But — the spin effect
is stronger. The vacuum acts like a paramagnet for the strong force. So we get asymptotic
freedom!

That’s the basic idea. Of course, there are some loose ends. To see why the spin
effect is stronger, you have to calculate a bit. At least I don’t know how to see it without
calculating — but Wilczek sketches the calculation, and it doesn’t look too bad. It’s also
true in most metals that the spin effect wins, so they are paramagnetic.

You might also wonder why spin and orbital angular momentum work oppositely
as far as magnetism goes. Unfortunately I don’t have any really simple slick answer.
One thing is that it seems any answer must involve quantum mechanics. [Note: later I
realized some very basic things about this, which I append below.] In volume II of his
magnificent series:

4) Richard Feynman, Robert Leighton, and Matthew Sands, The Feynman Lectures on
Physics, Addison-Wesley, Reading, Mass., 1964.

Feynman notes: “It is a consequence of classical mechanics that if you have any kind
of system — a gas with electrons, protons, and whatever — kept in a box so that the
whole thing can’t turn, there will be no magnetic effect. [. . . .] The theorem then says
that if you turn on a magnetic field and wait for the system to get into thermal equi-
librium, there will be no paramagnetism or diamagnetism — there will be no induced
magnetic moment. Proof: According to statistical mechanics, the probability that a sys-
tem will have any given state of motion is proportional to exp(−U/kT ), where U is the
energy of that motion. Now what is the energy of motion. For a particle moving in a
constant magnetic field, the energy is the ordinary potential energy plus mv2/2, with
nothing additional for the magnetic field. (You know that the forces from electromag-
netic fields are q(E + v × B), and that the rate of work F · v is just qE · v, which is not
affected by the magnetic field.) So the energy of a system, whether it is in a magnetic
field or not, is always given by the kinetic energy plus the potential energy. Since the
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probability of any motion depends only on the energy — that is, on the velocity and po-
sition — it is the same whether or not there is a magnetic field. For thermal equilibrium,
therefore, the magnetic field has no effect.”

So to understand magnetism we really need to work quantum-mechanically. Lau-
rence Yaffe has brought to my attention a nice path-integral argument as to why orbital
angular momentum can only yield diamagnetism; this can be found in his charming
book:

5) Barry Simon, Functional Integration and Quantum Physics, Academic Press, 1979.

This argument is very simple if you know about path integrals, but I think there
should be some more lowbrow way to see it, too. I think it’s good to make all this stuff
as simple as possible, because the phenomena of asympotic freedom and confinement
are very important and shouldn’t only be accessible to experts.

I’d like to thank Douglas Singleton, Matt McIrvin, Mike Kelsey, and Laurence Yaffe
for some posts on sci.physics.research that helped me understand this stuff.

Addendum (November 13, 1996). Thanks to emails from Yehuda Naveh and Bruce
Smith I’m beginning to understand this stuff at the 13-year-old level it deserves. If you
want to jump to the punchline, skip down to the stuff between double lines — that’s the
part I should have known ages ago!

Here’s the deal. Feynman’s theorem deals with classical systems made only of a bunch
of electrically charged point particles. Remember how it goes: A magnetic field can never
do work on such a system, because it always exerts a force perpendicular to the velocity
of an electrically charged particle. So the energy of such a system is independent of
the externally applied magnetic field. Now, in statistical mechanics the equilibrium state
of a system depends only on the energy of each state, since the probability of being in
a state with energy E is proportional to exp(−E/kT ). So an external magnetic field
doesn’t affect the equilibrium state of this sort of system. So there can’t be anything like
paramagnetism or diamagnetism, where the equilibrium state is affected by an external
magnetic field.

But suppose instead we allowed an extra sort of building block of our system, in
addition to electrically charged particles. Suppose we allow little “current loops”. We
take these as “primitives”, in the sense that we don’t ask how or why the current keeps
flowing around the loop, we just assume it does. We just define one of these “current
loops” to be a little circle of stuff with a constant mass per unit length, with a constant
current that flows around it. This may or may not be physically reasonable, but we’re
gonna do it anyway!

Note: If we tried to make a current loop out of classical electrically charged point
particles, the current loop would tend to fall apart! A loop is not going to be the equilib-
rium state of a bunch of charged particles. So we are going to get around this by taking
current loops as new primitives — simply assuming they exist and have the properties
given above.

If we build our system out of current loops and point particles, Feynman’s theorem
no longer applies. Why? Well, a constant magnetic field exerts a force perpendicular to
the direction of the current, and this applies a torque to the current loop — no net force,
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just a torque. But since the current loop is made out of stuff that has a constant mass per
unit length, when the current loop is rotating it will have kinetic energy. So by applying
a torque to the current loop, the magnetic field does work on the current loop. Thus
Feynman’s reasoning no longer applies to this case.

In particular, what happens is just what we expect. The torque on the little current
loops makes them want to line up with the external magnetic field. In other words, they
will have less energy when they are lined up like this. In particular, the energy of the
system does depend on the external magnetic field, and the equilibrium state will tend
to have more little current loops lined up with the field than not.

Now if we keep track of the magnetic field produced by these current loops, we see
it points the same way as the externally applied field. So we get paramagnetism.

Now, even without doing a detailed quantum-mechanical treatment of this problem,
we see what’s special about spin: a particle with spin is a bit like one of our imaginary
“primitive current loops”. This is how spin can give paramagnetism.

Great. But what had always been bugging me is this! If you put a charged particle in
a constant magnetic field, it moves in a circular or spiral orbit. For simplicity let’s say it
moves in a circle. You can think of this, if you like, as a kind of current loop — but a very
different sort of current loop than the one we’ve just been considering! In particular, if
you work it out, this particle circling around will produce a magnetic field that opposes
the external magnetic field. On the other hand, our primitive current loops are in the
state of least energy when they’re lined up to produce a magnetic field that goes with the
external field.

What’s the deal? Well, it’s just something about how the vector cross product works;
you gotta work it out yourself to believe it. All you need to know is that the force on a
charged particle is qv ×B. It boils down to this:

A positively charged particle orbiting in a magnetic field pointing along the z-
axis will orbit CLOCKWISE in the x-y plane. However, a primitive current loop
in a magnetic field pointing along the z-axis will be in its state of least energy
when the current runs COUNTERCLOCKWISE in the x-y plane.

I’m sure this is what was nagging at me. It’s just one of those basic funny little things.
If I’m still mixed up, someone had better let me know.

There are a couple other things perhaps worth saying about this:

1. In our calculation of the energy of the system, we have been neglecting the energy
due to the electric and magnetic fields produced by our point particles and current
loops. A more careful analysis would take these into account. In particular, the
reason ferromagnets prefer to have lots of “domains” than to have all their little
current loops lined up, is to keep the energy due to the magnetic field produced by
these loops from getting too big.

2. A little current loop acts like a magnetic dipole. We’d also get interesting effects
if we had magnetic monopoles. Here I simply assume that, just as an electric field
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exerts a force on a electrically charged particle equal to qE, a magnetic field exerts
a force on a magnetically charged particle equal to mB, where m is the magnetic
charge. A magnetic field would then be able to do work on a magnetic monopole,
and again Feynman’s theorem would not apply. So it’s perhaps not so surprising
that Feynmans’ theorem fails when we have magnetic dipoles as primitive con-
stituents of our system, too (although these dipoles had better not be points —
they need a moment of inertia for a torque on them to do work).
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Week 95

November 26, 1996

Last week I talked about asymptotic freedom — how the “strong” force gets weak at
high energies. Basically, I was trying to describe an aspect of “renormalization” without
getting too technical about it. By coincidence, I recently got my hands on a book I’d been
meaning to read for quite a while:

1) Laurie M. Brown, ed., Renormalization: From Lorentz to Landau (and Beyond),
Springer-Verlag, New York, 1993.

It’s a nice survey of how attitudes to renormalization have changed over the years.
It’s probably the most fun to read if you know some quantum field theory, but it’s not
terribly technical, and it includes a “Tutorial on infinities in QED”, by Robert Mills, that
might serve as an introduction to renormalization for folks who’ve never studied it.

Okay, on to some new stuff. . . .
It’s a bit funny how one of the most curious features of bosonic string theory in 26

dimensions was anticipated by the number theorist Edouard Lucas in 1875. I assume
this is the same Lucas who is famous for the Lucas numbers: 1,3,4,7,11,18,. . . , each one
being the sum of the previous two, after starting off with 1 and 3. They are not quite
as wonderful as the Fibonacci numbers, but in a study of pine cones it was found that
while most cones have consecutive Fibonacci numbers of spirals going around clockwise
and counterclockwise, a small minority of deviant cones use Lucas numbers instead.

Anyway, Lucas must have liked playing around with numbers, because in one publica-
tion he challenged his readers to prove that: “A square pyramid of cannon balls contains
a square number of cannon balls only when it has 24 cannon balls along its base”. In
other words, the only integer solution of

12 + 22 + . . .+ n2 = m2,

is the solution n = 24, not counting silly solutions like n = 0 and n = 1.
It seems that Lucas didn’t have a proof of this; the first proof is due to G. N. Watson in

1918, using elliptic functions. Apparently an elementary proof appears in the following
ridiculously overpriced book:

2) W. S. Anglin, The Queen of Mathematics: An Introduction to Number Theory, Kluwer,
Dordrecht, 1995.

For more historical details, see the review in

3) Jet Wimp, “Eight recent mathematical books”, Math. Intelligencer 18 (1996), 72–
79.

Unfortunately, I haven’t seen these proofs of Lucas’ claim, so I don’t know why it’s
true. I do know a little about its relation to string theory, so I’ll talk about that.

There are two main flavors of string theory, “bosonic” and “supersymmetric”. The
first is, true to its name, just the quantized, special-relativistic theory of little loops made

237



WEEK 95 NOVEMBER 26, 1996

of some abstract string stuff that has a certain tension — the “string tension”. Classically
this theory would make sense in any dimension, but quantum-mechanically, for reasons
that I want to explain someday but not now, this theory works best in 26 dimensions.
Different modes of vibration of the string correspond to different particles, but the theory
is called “bosonic” because these particles are all bosons. That’s no good for a realistic
theory of physics, because the real world has lots of fermions, too. (For a bit about
bosons and fermions in particle physics, see “Week 93”.)

For a more realistic theory people use “supersymmetric” string theory. The idea here
is to let the string be a bit more abstract: it vibrates in “superspace”, which has in
addition to the usual coordinates some extra “fermionic” coordinates. I don’t want to
get too technical here, but the basic idea is that while the usual coordinates commute as
usual:

xixj = xjxi

the fermionic coordinates “anticommute”

yiyj = −yjyi

while the bosonic coordinates commute with fermionic ones:

xiyj = yjxi.

If you’ve studied bosons and fermions this will be sort of familiar; all the differences be-
tween them arise from the difference between commuting and anticommuting variables.
For a little glimpse of this subject try:

4) John Baez, Spin and the harmonic oscillator, http://math.ucr.edu/home/baez/
harmonic.html

As it so happens, supersymmetric string theory — often abbreviated to “superstring
theory” — works best in 10 dimensions. There are five main versions of superstring
theory, which I described in “Week 74”. The type I string theory involves open strings
— little segments rather than loops. The type IIA and type IIB theories involve closed
strings, that is, loops. But the most popular sort of superstring theories are the “heterotic
strings”. A nice introduction to these, written by one of their discoverers, is:

5) David J. Gross, ‘The heterotic string’, in Workshop on Unified String Theories, eds. M.
Green and D. Gross, World Scientific, Singapore, 1986, pp. 357–399.

These theories involve closed strings, but the odd thing about them, which accounts
for the name “heterotic”, is that vibrations of the string going around one way are super-
symmetric and act as if they were in 10 dimensions, while the vibrations going around
the other way are bosonic and act as if they were in 26 dimensions!

To get this string with a split personality to make sense, people cleverly think of the
26 dimensional spacetime for the bosonic part as a 10-dimensional spacetime times a
little 16-dimensional curled-up space, or “compact manifold”. To get the theory to work,
it seems that this compact manifold needs to be flat, which means it has to be a torus - a
16-dimensional torus. We can think of any such torus as 16-dimensional Euclidean space
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“modulo a lattice”. Remember, a lattice in Euclidean space is something that looks sort
of like this:

x

y

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Mathematically, it’s just a discrete subset L of Rn (n-dimensional Euclidean space, with
its usual coordinates) with the property that if x and y lie in L, so does jx + ky for all
integers j and k. When we form n-dimensional Euclidean space “modulo a lattice”, we
decree two points x and y to be the same if x − y is in L. For example, all the points
labelled x in the figure above count as the same when we “mod out by the lattice”. . . so
in this case, we get a 2-dimensional torus.

For more on 2-dimensional tori and their relation to complex analysis, you can read
“Week 13”. Here we are going to be macho and plunge right into talking about lattices
and tori in arbitrary dimensions.

To get our 26-dimensional string theory to work out nicely when we curl up 16-
dimensional space to a 16-dimensional torus, it turns out that we need the lattice L
that we’re modding out by to have some nice properties. First of all, it needs to be an
“integral” lattice, meaning that for any vectors x and y in L the dot product x · y must
be an integer. This is no big deal — there are gadzillions of integral lattices. In fact,
sometimes when people say “lattice” they really mean “integral lattice”. What’s more of
a big deal is that L must be “even”, that is, for any x in L the inner product x · x is even.
This implies that L is integral, by the identity

(x+ y) · (x+ y) = x · x+ 2x · y + y · y.

But what’s really a big deal is that L must also be “unimodular”. There are different
ways to define this concept. Perhaps the easiest to grok is that the volume of each lattice
cell — e.g., each parallelogram in the picture above — is 1. Another way to say it is
this. Take any basis of L, that is, a bunch of vectors in L such that any vector in L can
be uniquely expressed as an integer linear combination of these vectors. Then make a
matrix with the components of these vectors as rows. Then take its determinant. That
should equal plus or minus 1. Still another way to say it is this. We can define the “dual”
of L, say L∗, to be all the vectors x such that x · y is an integer for all y in L. An integer
lattice is one that’s contained in its dual, but L is unimodular if and only if L = L∗. So
people also call unimodular lattices “self-dual”. It’s a fun little exercise in linear algebra
to show that all these definitions are equivalent.
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Why does L have to be an even unimodular lattice? Well, one can begin to under-
stand this a litle by thinking about what a closed string vibrating in a torus is like. If
you’ve ever studied the quantum mechanics of a particle on a torus (e.g. a circle!) you
may know that its momentum is quantized, and must be an element of L∗. So the
momentum of the center of mass of the string lies in L∗.

On the other hand, the string can also wrap around the torus in various topologically
different ways. Since two points in Euclidean space correspond to the same point in the
torus if they differ by a vector in L, if we imagine the string as living up in Euclidean
space, and trace our finger all around it, we don’t necesarily come back to the same point
in Euclidean space: the same point plus any vector in L will do. So the way the string
wraps around the torus is described by a vector in L. If you’ve heard of the “winding
number”, this is just a generalization of that.

So both L and L∗ are really important here (which has to do with the fashionable
subject of “string duality”), and a bunch more work shows that they both need to be
even, which implies that L is even and unimodular.

Now something cool happens: even unimodular lattices are only possible in certain
dimensions — namely, dimensions divisible by 8. So we luck out, since we’re in dimen-
sion 16.

In dimension 8 there is only one even unimodular lattice (up to isometry), namely
the wonderful lattice E8! The easiest way to think about this lattice is as follows. Say
you are packing spheres in n dimensions in a checkerboard lattice — in other words, you
color the cubes of an n-dimensional checkerboard alternately red and black, and you put
spheres centered at the center of every red cube, using the biggest spheres that will fit.
There are some little hole left over where you could put smaller spheres if you wanted.
And as you go up to higher dimensions, these little holes gets bigger! By the time you
get up to dimension 8, there’s enough room to put another sphere OF THE SAME SIZE
AS THE REST in each hole! If you do that, you get the lattice E8. (I explained this and a
bunch of other lattices in “Week 65”, so more info take a look at that.)

In dimension 16 there are only two even unimodular lattices. One is E8⊕E8. A vector
in this is just a pair of vectors in E8. The other is called D+

16, which we get the same way
as we got E8: we take a checkerboard lattice in 16 dimensions and stick in extra spheres
in all the holes. More mathematically, to get E8 or D+

16, we take all vectors in R8 or R16,
respectively, whose coordinates are either all integers or all half-integers, for which the
coordinates add up to an even integer. (A “half-integer” is an integer plus 1/2.)

So E8 ⊕ E8 and D+
16 give us the two kinds of heterotic string theory! They are often

called the E8 ⊕ E8 and SO(32) heterotic theories.
In “Week 63” and “Week 64” I explained a bit about lattices and Lie groups, and if

you know about that stuff, I can explain why the second sort of string theory is called
“SO(32)”. Any compact Lie group has a maximal torus, which we can think of as some
Euclidean space modulo a lattice. There’s a group called E8, described in “Week 90”,
which gives us the E8 lattice this way, and the product of two copies of this group gives
us E8 ⊕ E8. On the other hand, we can also get a lattice this way from the group
SO(32) of rotations in 32 dimensions, and after a little finagling this gives us the D+

16

lattice (technically, we need to use the lattice generated by the weights of the adjoint
representation and one of the spinor representations, according to Gross). In any event,
it turns out that these two versions of heterotic string theory act, at low energies, like
gauge field theories with gauge group E8 × E8 and SO(32), respectively! People seem
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especially optimistic that the E8 × E8 theory is relevant to real-world particle physics;
see for example:

6) Edward Witten, “Unification in ten dimensions”, in Workshop on Unified String
Theories, eds. M. Green and D. Gross, World Scientific, Singapore, 1986, pp. 438–
456.

Edward Witten, “Topological tools in ten dimensional physics”, with an appendix by
R. E. Stong, in Workshop on Unified String Theories, eds. M. Green and D. Gross, World
Scientific, Singapore, 1986, pp. 400–437.

The first paper listed here is about particle physics; I mention the second here just
because E8 fans should enjoy it — it discusses the classification of bundles with E8 as
gauge group.

Anyway, what does all this have to do with Lucas and his stack of cannon balls?
Well, in dimension 24, there are 24 even unimodular lattices, which were classified

by Niemeier. A few of these are obvious, like E8 ⊕E8 ⊕E8 and E8 ⊕D+
16, but the coolest

one is the “Leech lattice”, which is the only one having no vectors of length 2. This is
related to a whole WORLD of bizarre and perversely fascinating mathematics, like the
“Monster group”, the largest sporadic finite simple group — and also to string theory. I
said a bit about this stuff in “Week 66”, and I will say more in the future, but for now let
me just describe how to get the Leech lattice.

First of all, let’s think about Lorentzian lattices, that is, lattices in Minkowski space-
time instead of Euclidean space. The difference is just that now the dot product is defined
by

(x1, . . . , xn) · (y1, . . . , yn) = −x1y1 + x2y2 + . . .+ xnyn

with the first coordinate representing time. It turns out that the only even unimodular
Lorentzian lattices occur in dimensions of the form 8k + 2. There is only one in each
of those dimensions, and it is very easy to describe: it consists of all vectors whose
coordinates are either all integers or all half-integers, and whose coordinates add up to
an even number.

Note that the dimensions of this form: 2, 10, 18, 26, etc., are precisely the dimensions
I said were specially important in “Week 93” for some other string-theoretic reason. Is
this a “coincidence”? Well, all I can say is that I don’t understand it.

Anyway, the 10-dimensional even unimodular Lorentzian lattice is pretty neat and
has attracted some attention in string theory:

7) Reinhold W. Gebert and Hermann Nicolai, “E10 for beginners”, preprint available
as hep-th/9411188

but the 26-dimensional one is even more neat. In particular, thanks to the cannonball
trick of Lucas, the vector

v = (70, 0, 1, 2, 3, 4, . . . , 24)

is “lightlike”. In other words,
v · v = 0.

What this implies is that if we let T be the set of all integer multiples of v, and let S be
the set of all vectors x in our lattice with x · v = 0, then T is contained in S, and S/T is
a 24-dimensional lattice — the Leech lattice!
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Now that has all sorts of ramifications that I’m just barely beginning to understand.
For one, it means that if we do bosonic string theory in 26 dimensions on R26 modulo
the 26-dimensional even unimodular lattice, we get a theory having lots of symmetries
related to those of the Leech lattice. In some sense this is a “maximally symmetric”
approach to 26-dimensional bosonic string theory:

8) Gregory Moore, “Finite in all directions”, preprint available as hep-th/9305139.

Indeed, the Monster group is lurking around as a symmetry group here! For a physics-
flavored introduction to that aspect, try:

9) Reinhold W. Gebert, “Introduction to vertex algebras, Borcherds algebras, and the
Monster Lie algebra”, preprint available as hep-th/9308151

and for a detailed mathematical tour see:

10) Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex Operator Algebras and
the Monster, Academic Press, 1988.

Also try the very readable review articles by Richard Borcherds, who came up with a
lot of this business:

11) Richard Borcherds, “Automorphic forms and Lie algebras”.

Richard Borcherds, “Sporadic groups and string theory”.

These and other papers available at http://www.pmms.cam.ac.uk/Staff/R.E.Borcherds.
html; click on the personal home page.

Well, there is a lot more to say, but I need to go home and pack for my Thanksgiving
travels. Let me conclude by answering a natural followup question: how many even
unimodular lattices are there in 32 dimensions? Well, one can show that there are AT
LEAST 80 MILLION!

Some of you may have wondered what’s happened to the “tale of n-categories”. I
haven’t forgotten that! In fact, earlier this fall I finished writing a big fat paper on 2-
Hilbert spaces (which are to Hilbert spaces as categories are to sets), and since then I
have been struggling to finish another big fat paper with James Dolan, on the general
definition of “weak n-categories”. I want to talk about this sort of thing, and other
progress on n-categories and physics, but I’ve been so busy working on it that I haven’t
had time to chat about it on This Week’s Finds. Maybe soon I’ll find time.

Addenda: Robin Chapman pointed out that Anglin’s proof also appears in the Amer-
ican Mathematical Monthly, February 1990, pp. 120–124, and that another elementary
proof has subsequently appeared in the Journal of Number Theory. David Morrison
pointed out in email that since the sum

12 + 22 + . . .+ n2 = m2
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is n(n+ 1)(2n+ 1)/6, this problem can be solved by finding all the rational points (n,m)
on the elliptic curve

n3

3
+
n2

2
+
n

6
= m2

which is the sort of thing folks know how to do.
Also, here’s something Michael Thayer wrote on one of the newsgroups, and my

reply:

> John Baez wrote:

>> In particular, thanks to the cannonball trick of Lucas,

>> the vector

>>

>> v = (70,0,1,2,3,4,...,24)

>>

>> is "lightlike". In other words,

>>

>> v.v = 0

> I don’t see what is so significant about the vector v.

> For instance, the 10 dimensional vector

> (3,1,1,1,1,1,1,1,1,1) is also light like, and you make

> no big deal about that. Is there some reason why the

> ascending values in v are important?

Yikes! Thanks for catching that massive hole in the exposition.
You’re right that there’s no shortage of lightlike vectors in the even unimodular

Lorentzian lattices of other dimensions 8n + 2; there are also lots of other lightlike vec-
tors in the 26-dimensional one. Any one of these gives us a lattice in 8n-dimensional
Euclidean space. In fact, we can get all 24 even unimodular lattices in 24-dimensional
Euclidean space by suitable choices of lightlike vector. The lightlike vector you wrote
down happens to give us the E8 lattice in 8 dimensions.

So what’s so special about I wrote, which gives the Leech lattice? Of course the Leech
lattice is itself special, but what does this have to do with the nicely ascending values of
the components of v?

Alas, I don’t know the real answer. I’m not an expert on this stuff; I’m just explaining
it in order to try to learn it. Let me just say what I know, which all comes from Chap. 27
of Conway and Sloane’s book “Sphere Packings, Lattices, and Groups”.

If we have a lattice, we say a vector r in it is a “root” if the reflection through r
is a symmetry of the lattice. Corresponding to each root is a hyperplane consisting of
all vectors perpendicular to that root. These chop space into a bunch of “fundamental
regions”. If we pick a fundamental region, the roots corresponding to the hyperplanes
that form the walls of this region are called “fundamental roots”. The nice thing about
the fundamental roots is that the reflection through any root is a product of reflections
through these fundamental roots.

[For more stuff on reflection groups and lattices see “Week 62” and the following
weeks.]
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In 1983 John Conway published a paper where he showed various amazing things;
this is now Chapter 27 of the above book. First, he shows that the fundamental roots of
the even unimodular Lorentzian lattices in dimensions 10, 18, and 26 are the vectors r
with r · r = 2 and r · v = −1, where the “Weyl vector” v is

(28, 0, 1, 2, 3, 4, 5, 6, 7, 8)

(46, 0, 1, 2, 3, . . . , 16)

and
(70, 0, 1, 2, 3, . . . , 70)

respectively.
They all have this nice ascending form but only in 26 dimensions is the Weyl vector

lightlike!
Howerver, Conway doesn’t seem to explain why the Weyl vectors have this ascending

form. So I’m afraid I really don’t understand how all the pieces fit together. All I can say
is that for some reason the Weyl vectors have this ascending form, and the fact that the
Weyl vector is also lightlike makes a lot of magic happen in 26 dimensions. For example,
it turns out that in 26 dimensions there are infinitely many fundamental roots, unlike in
the two lower dimensional cases.

Just to add mystery upon mystery, Conway notes that in higher dimensions there is
no vector v for which all the fundamental roots r have r · v equal to some constant. So
the pattern above does not continue.

I find this stuff fascinating, but it would drive me nuts to try to work on it. It’s as
if God had a day off and was seeing how many strange features he could build into
mathematics without actually making it inconsistent.

Yet another addendum (August 2001): now, with the rise of interest in 11-dimensional
physics, there is even a paper on E11:

12) P. West, E11 and M-theory, available as hep-th/0104081.
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Week 96

December 16, 1996

Lots of cool papers have been appearing which I’ve been neglecting in my attempts to
write expository stuff about string theory, lattices, category theory, and all that. It’s time
to start catching up!

Let me start with the following book:

1) J. Scott Carter, Daniel E. Flath and Masahico Saito, The Classical and Quantum
6j-Symbols, Princeton University Press, Princeton, 1995. ISBN 0-691-02730-7.

Ever since Jones discovered the Jones polynomial invariant of knots, an amazing
story has been unfolding about the relation between algebra and 3-dimensional topol-
ogy. Some key players in this story are the “quantum groups”: certain noncommutative
algebras analogous to the commutative algebras of functions on groups. In fact, not
merely are they analogous, they depend on a parameter, usually called Planck’s constant
or ~, and in the classical limit where ~ → 0 they actually reduce to algebras of func-
tions on familiar groups. The simplest case is “quantum SU(2)”, which reduces in the
classical limit to the group SU(2) of 2 × 2 unitary matrices with determinant 1. Iron-
ically, it’s good old “classical SU(2)” that governs the quantum mechanical theory of
angular momentum. Quantum SU(2) was first discovered by people working on physics
in 2-dimensional spacetime, where when you quantize certain systems you also need to
quantize their group of symmetries!

Nowadays, mathematicians find it simpler to work with the closely related “quan-
tum SL(2)”, a quantization of the the group SL(2) of all 2 × 2 complex matrices with
determinant 1. The above book is largely about quantum SL(2) and its applications to
topology.

All quantum groups give rise to invariants of knots, links, and tangles. They also give
rise to 3-dimensional topological quantum field theories of “Turaev-Viro type”. This is a
kind of quantum field theory you can define on a 3-dimensional spacetime that you’ve tri-
angulated, i.e., chopped up into tetrahedra. One of the main things you want to compute
in a quantum field theory is the “partition function”, and we say the Turaev-Viro theories
are “topological” because you get the same answer for the partition function no matter
how you triangulate the 3-dimensional manifold corresponding to your spacetime: the
partition function only depends on the topology of the manifold. The SU(2) Turaev-Viro
theory, the first one to be discovered, is also one of the most interesting because, modulo
a few subtle points, this theory is just quantum gravity in 3 dimensions (see “Week 16”).
The basic idea, though, is that you compute the partition function by summing over all
ways of labelling the edges of your tetrahedra by “spins” j = 0, 1/2, 1, 3/2, . . .. Ponzano
and Regge had tried to set up 3-dimensional quantum gravity this way previously, but
there were problems getting the sum to converge. The neat thing about the quantum
group is that you only sum over spins less than some fixed spin depending on the value
of ~. Since the sums are finite, they automatically converge.

It turns out that in these Turaev-Viro theories you are not actually taking advan-
tage of all the structure of the quantum group. Using the extra structure, you can also
use quantum groups to define certain 4-dimensional topological quantum field theories,
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those of “Crane-Yetter-Broda” type. Here you triangulate a 4-dimensional manifold and,
in the SU(2) case, you label both the 2d faces the 3d tetrahedra with spins. Actually,
lots of people think the Crane-Yetter-Broda theories are boring, because they look sort
of boring if you only examine their implications for 4-dimensional topology. However,
they become interesting when you realize that, like all topological quantum field theo-
ries defined using triangulations, they are “extended topological quantum field theories”.
Roughly speaking this means that they have implications for all dimensions below the
dimension they live in.

In particular, the Crane-Yetter-Broda theories spawn 3-dimensional topological quan-
tum field theories of “Chern-Simons-Reshetikhin-Turaev” type, and most people agree
that these are interesting. I like to emphasize, however, that a deep understanding of
these 3-dimensional progeny requires an understanding of their seemingly innocuous
4-dimensional ancestors. Also, there are a lot of interesting relationships between the
SU(2) Crane-Yetter-Broda model and quantum gravity in 4 dimensions, which we are
just beginning to understand. See “Week 56” for a bit about this.

If you haven’t yet joined the fun, Carter, Saito, and Flath’s book is a great place to
start learning about the marvelous interplay between algebra, topology, and physics in 3
and 4 dimensions. Needless to say, it doesn’t cover all the ground I’ve sketched above.
Instead, it focuses on a rather specific and concrete aspect: the 6j symbols. This should
make it especially handy for beginners who aren’t familiar with category theory, path
integrals, and all that jazz.

What are the 6j symbols, anyway? Here I need to get a wee bit more technical. The
“classical” 6j symbols are important in the representation theory of plain old classical
SU(2), while the “quantum” ones are analogous gadgets applicable to quantum SU(2).
In either case the idea is the same. SU(2), classical or quantum, has different represen-
tations corresponding to different spins j = 0, 1/2, 1, 3/2, . . .. (If you don’t know what
I mean by this, try “Week 5”.) If we take three representations j1, j2, and j3, we can
tensor them either like this:

(j1 ⊗ j2)⊗ j3
or like this

j1 ⊗ (j2 ⊗ j3)

The tensor product is associative, but that doesn’t mean that the above two representa-
tions are equal. They are only isomorphic. This isomorphism can be thought of as just a
big fat matrix, and the entries in this matrix are a bunch of numbers, the 6j symbols.

Turaev and Viro used the quantum 6j symbols to define the original Turaev-Viro
model. It goes like this: first you chop your 3-dimensional manifold up into tetrahe-
dra, and then you consider all possible ways of labelling the edges with spins. Each
tetrahedron gets labelled with 6 spins since it has 6 edges, and from these spins we
can compute a number: the 6j symbol. Then we multiply all these together, one for
each tetrahedron, and finally we sum over labellings to get the partition function. Mar-
velously, the identities satisfied by the 6j symbols are precisely what’s needed to make
the result independent of the triangulation! See “Week 38” for an explanation of this
seeming miracle: it’s actually no miracle at all.

2) E. Guadagnini, L. Pilo, “Three-manifold invariants and their relation with the fun-
damental group”, 22 pages in LaTeX available as hep-th/9612090.
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Fans of topological field theory may like this one, though I must admit I haven’t got-
ten around to doing more than reading the abstract yet. In this paper the authors give
evidence for the conjecture that among 3-manifolds M for which the Chern-Simons in-
variant CS(M) is nonzero, the absolute value |CS(M)| only depends on the fundamental
group of M . Chern-Simons theory depends on a choice of group; they prove the conjec-
ture for certain manifolds (“lens spaces”) when the group is SU(2), and give numerical
evidence when the gauge group is SU(3).

What’s interesting about this to me is that |CS(M)|2 is just the Turaev-Viro theory
partition function, so this conjecture is saying that the Turaev-Viro theories discussed
above have a tendency to notice only the fundamental group.

3) Michael Reisenberger and Carlo Rovelli, “ ‘Sum over surfaces’ form of loop quantum
gravity”, preprint available as gr-qc/9612035.

This wonderful paper should really push forwards our understanding of the loop
representation of quantum gravity. I talked a little bit about the basic idea in “Week 86”.
In the loop representation, a state of quantum gravity at a given moment is represented
by a bunch of knotted loops or “spin networks” in space. What’s the spacetime picture?
Well, if you have a surface in spacetime and look at it at one moment of time, it typically
looks like a bunch of loops. . . so maybe the spacetime picture of quantum gravity is that
spacetime is packed with 2-dimensional surfaces, all tangled up. Interestingly, this is also
very reminiscent of the picture of quantum gravity in string theory!

I’ve been working on this sort of idea ever since I wrote a paper suggesting that the
loop representation and string theory might be two faces of the same ideas (see “Week
18”). Since then, most of the time I’ve been trying to understand how these ideas relate
to the Crane-Yetter-Broda theories, and trying to set up the necessary algebra (n-category
theory) to deal nicely with surfaces in 4-dimensional spacetime.

But there are many other angles from which one can attack this problem, and one of
the best is to start directly from Einstein’s equations for general relativity, try to quantize
them using the path-integral approach, and see how the path integral can be written
as a sum over surfaces. Reisenberger has already begun work on this in the context of
“simplicial quantum gravity” — where you chop spacetime up into the 4-dimensional
analog of tetrahedra. But during the Vienna workshop on canonical quantum gravity
this summer, we talked about a different, still more direct approach (see “Week 89”).
The idea is to copy standard quantum field theory, write the propagator describing time
evolution as a time-ordered exponential, and interpret the terms in the resulting sum as
surfaces in spacetime. It’s all very analogous to traditional Feynman diagrams, where
you write the propagator as a sum over diagrams, but now the “Feynman diagrams” are
2-dimensional surfaces. (Again, this is reminiscent of string theory — but with many
important differences.)

There is much more to say, but I think I’ll leave it at that. . . . Over in the world
of n-categories there is also some very interesting stuff happening, which I will discuss
more next week. I’m almost done writing a paper with James Dolan on the definition
of n-categories, but in the meantime some other folks have been coming up with other
definitions of n-categories, so we will soon be in the position to compare definitions and
see how similar or different they are, and start erecting the formalism needed to deal
with all these topological quantum field theories and “sums over surfaces” in a really

247

https://arxiv.org/ps/gr-qc/9612035


WEEK 96 DECEMBER 16, 1996

elegant way! Everything looks like its fitting together. At least, that’s my momentary
optimistic feeling. Perhaps it’s just the fact that classes are over that is making me so
happy. Yes, it’s probably just that.
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Week 97

February 8, 1997

I’ve taken a break from writing This Week’s Finds in order to finish up a paper with James
Dolan in which we give a definition of “weak n-categories” for all n. This paper is now
available on my website, and I’m immodestly eager to talk about it, and I will, but a lot
of stuff has accumulated in the meantime which I want to discuss first.

First, I’m sure you remember a while back when atoms were first coaxed to form
true Bose-Einstein condensates. The basic idea is that particles come in two basic kinds,
fermions and bosons, and while the fermions have half-integer spin and obey the Pauli
exclusion principle saying that no two identical fermions can be in the same state at the
same time, bosons have integer spin and are gregarious: they love to be in the same state
at the same time.

Why is spin related to what happens when you try to put a bunch of particles in the
same state? Well, it all has to do with the relation between twisting something around:

and switching two things:

To understand this, try

1) Spin, statistics, CPT and all that jazz, http://math.ucr.edu/home/baez/spin.
stat.html

But let’s consider some examples. Since photons have spin 1 they are bosons. In
laser light one has a bunch of photons all in the same state. Thanks to the Heisenberg
uncertainty principle, of course, we can’t know both their position and momentum. In a
laser we don’t know the position of the photons: each photon is all over the laser beam
in a spread-out sort of way. However, we do know the momentum of the photons and
they all have the same momentum. This means that we have “coherent light” in which
all the photons are like waves wiggling perfectly in phase. One can demonstrate this by
interfering two beams of laser light and seeing beautifully perfect interference fringes,
bright and dark stripes in places where the two beams are either in phase with each
other and adding up, or out of phase and cancelling out.

Now, other particles are bosons as well, and they can do similar tricks. Bose and
Einstein predicted that when any gas of noninteracting bosons gets sufficiently cold, all
— or at least a sizeable fraction — of them will be found in the same state: the state
of least possible energy. Unfortunately, when things get cold they are usually liquids
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or solids rather than a gas, and the particles in a liquid or gas interact a lot, so true
Bose-Einstein condensation is hard to achieve.

Some related things have been studied for decades. If you get an even number of
fermions together they act approximately like a boson, at least if the density is not too
high. Helium stays liquid at temperatures arbitrarily close to absolute zero, when the
pressure is low enough. Since helium 4 has 2 protons, 2 neutrons, and 2 electrons, and
all these particles are fermions, helium 4 acts like a boson. At really low temperatures,
helium 4 becomes “superfluid” — a substantial fraction of the atoms fall into the same
state and the liquid acquires shocking properties, like zero viscosity. Similarly, in certain
metals at low temperatures electrons will, by a subtle mechanism, form “Cooper pairs”,
and these act like bosons. When a bunch of these fall into the same state, you have a
“superconductor”.

But neither of these is a Bose-Einstein condensate in the technical sense of the term,
because the helium atoms interact a lot in superfluid helium, and the Cooper pairs inter-
act a lot in a superconductor. Only recently have people been able to get dilute gases of
bosonic atoms cold enough to study true Bose-Einstein condensation.

The fist team to do it, the “JILA” team in Boulder, Colorado got a Bose-Einstein con-
densate of about 2000 rubidium atoms to form in a magnetic trap at less than 2 × 10−7

degrees above absolute zero. A team at Rice University did it with lithium soon after,
followed by a team at MIT, who did it with sodium.

Check out:

2) Physicists create new state of matter, http://jilav1.colorado.edu/www/bose-ein.
html

Atomcool home page, http://atomcool.rice.edu/

Neutral sodium ion trap at MIT, http://bink.mit.edu/dallin/nat.html

So what’s the news? Well, recently the team at MIT, led by Wolfgang Ketterle, made
two blobs of Bose-Einstein condensate out of sodium atoms. Ramming these into each
other, they were able to see interference fringes just as in a laser! In other words, they is
seeing interference of matter waves, just as quantum mechanics predicts, but involving
lots of atoms in a coherent state rather than a single electron as in the famous double
slit experiment. For pictures and even movies, try:

3) Matter-wave interference of two Bose condensates, http://bink.mit.edu/dallin/
news.html#matterwave

In honor of this event, I hereby present the following limerick composed by the poet
Lisa Raphals, with myself serving as science consultant. It may aid your appreciation if I
note first that “Squantum” is an actual town in Massachusetts. With no further ado:

A metaphysician from Squantum Was asked, what’s the state of the quantum?
It’s all reciprocity: Position, velocity — They’re never both there when you want
’em!

Now on to some more technical stuff. . . .
I am now visiting the Center for Gravitational Physics and Geometry here at Penn

State, which is a delightful place for people interested in the loop representation of
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quantum gravity (see “Week 77”). Right now everyone is working on using the loop
representation to derive Hawking’s formula which says that the entropy of a black hole
is proportional to the surface area of its event horizon.

When I arrived, Jorge Pullin handed me a copy of his book:

4) Rodolfo Gambini and Jorge Pullin, Loops, knots, gauge theories, and quantum grav-
ity, Cambridge U. Press, Cambridge, 1996.

Here is the table of contents:

1. Holonomies and the group of loops

2. Loop coordinates and the extended group of loops

3. The loop representation

4. Maxwell theory

5. Yang-Mills theories

6. Lattice techniques

7. Quantum gravity

8. The loop representation of quantum gravity

9. Loop representation: further developments

10. Knot theory and physical states of quantum gravity

11. The extended loop representation of quantum gravity

12. Conclusions, present status and outlook

This is presently the most complete introduction available to the “loop representa-
tion” concept, as applied to electromagnetism, Yang-Mills theory, and quantum gravity.
Gambini was one of the original inventors of this notion, and this book covers the whole
sweep of its ramifications, with a special emphasis on a particular technical form, the
“extended loop representation”, which he has been developing with Pullin and other
collaborators.

What the heck is the loop representation, anyway? Well, all the forces we know are
described by gauge theories, and gauge theories all describe the “phase”, or generaliza-
tion thereof, that a particle acquires when you carry it around a loop. In the case of
electromagnetism, for example, a charged quantum particle carried around a loop in
space acquires a phase equal to

exp(−iqB/~)

where q is the particle’s charge, ~ is Planck’s constant, and B is the magnetic flux through
the loop: i.e., the integral of the magnetic field over any surface spanning the loop.
Knowing these phase for all loops is the same as knowing the magnetic field. Similarly,
if we knew the phase for all loops in SPACETIME instead of just space, we would know
both the electric and magnetic fields throughout spacetime.
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General relativity is similar except that instead of a phase one gets a rotation, or more
generally a Lorentz transformation, when one parallel transports a little arrow around a
loop.

The theories of the electroweak and strong forces are similar but the analog of the
“phase” is a bit more abstract: an element of the group SU(2) × U(1) or SU(3), respec-
tively.

The idea of the loop representation is to take these “phases acquired around loops”
as basic variables for describing the laws of physics.

That’s the idea in a nutshell. It turns out, not surprisingly, that there are many
interesting relationships with such topics involving loops, such as string theory and knot
theory.

Gambini and Pullin’s book develops this theme in many directions. Let me say a bit
about one fascinating topic that they mention, which I would like to understand better:
Gerard ’t Hooft’s work on confinement in chromodynamics using his “order and disorder
operators”.

I explained some basic ideas about confinement and asymptotic freedom in “Week
84” and “Week 94”, so I’ll assume you’ve read that stuff. Remember, the basic idea
of confinement is that if you take a meson and try to pull the quark and antiquark it
contains apart, the force required does not decrease with distance like 1/r2, because the
chromoelectric field — the strong force analog of the electric field — does not spread
out in all directions like an ordinary electric field does. Instead, all the field lines are
confined to a “flux tube”, so the force is roughly independent of the distance.

This means that the energy is roughly proportional to the distance. Since action
has dimensions of energy times time, this means that if we consider the creation and
subsequent annihilation of a virtual quark-antiquark pair:

q q

the total action is proportional to the area of the loop traced out in spacetime. Here I
am neglecting the action due to the kinetic energy of the quark and antiquark, and only
worrying about the potential energy due to the flux tube joining them. This amounts to
treating the quark and antiquark as “test particles” to study the behavior of the strong
force.

Now, when we study quantum physics using Euclidean path integrals the basic prin-
ciple is that the probability of the occurence of any process is proportional to

exp(−S/~)

where S is the action of that process and ~ is Planck’s constant again. So in this frame-
work the probability of a particular virtual quark-antiquark pair tracing out a loop like
the above one is proportional to

exp(−cA)
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where c > 0 is some constant and A is the area of the loop. This “area law” was first
proposed by Kenneth Wilson in his pioneering work on confinement; he proposed it as a
way to tell, mathematically, if confinement was happening in some theory. Just compute
the probability of a virtual quark-antiquark pair tracing out a particular loop and see if
it decreases exponentially with the area!

Deriving confinement from chromodynamics is something that people have worked
on for quite a while, and it’s not easy: there is still no rigorous proof, even though there
are a bunch of heuristic arguments for it, and computer simulations seem to demonstrate
that it’s bound to occur. One approach to studying the puzzle is due to ’t Hooft and
involves “order” and “disorder” operators.

I’ll explain what these are, and what they have to do with knot theory, but not how ’t
Hooft actually uses them in his argument for confinement. For the actual argument, try
Gambini and Pullin’s book, or else ’t Hooft’s paper:

5) Gerard ’t Hooft, Nucl. Phys. B138, (1978) 1.

Let us work in space at a given time, rather than in the Euclidean path integral
approach. We’ll do “canonical quantization”, meaning that now observables will be op-
erators on some Hilbert space.

If we have any loop g in space, there is an observable called the “Wilson loop” W (g),
which is the trace of the holonomy of the connection around g. The precise way of
stating Wilson’s area law for confinement in this context is that

〈W (g)〉 ∼ exp(−cA)

where 〈W (g)〉 is the vacuum expectation value of the Wilson loop, and A is the area
spanned by the loop g. The point is that 〈W (g)〉 is the same as what I was (a bit sloppily)
calling the probability of the quark-antiquark pair tracing out the loop g.

’t Hooft calls the Wilson loops “order operators”. We don’t really need to worry why
he calls them this, but if you know how physicists think, you may know that the Wilson
loops are keeping track of a kind of “order parameter” of the vacuum state. Anyway,
his idea was to study the Wilson loops by introducing some other operators he called
“disorder operators”.

Chromodynamics is an SU(3) gauge theory but it’s a little clearer if we work with any
SU(N) gauge theory. Notice that the center of the group SU(N) consists of the matrices
of the form

exp(2πin/N)

where n is an integer. So if we have a loop h, we can imagine an operator that does
the following thing: it modifies the connection, or vector potential, in such a way that
if you do parallel transport around a tiny loop linking h once, the holonomy changes to
exp(2πi/N) times what it had been. Note: this is a gauge-invariant thing to do, because
that exp(2πi/N) is in the center of SU(N)! So just as the Wilson loop observables are
gauge-invariant, we can hope for some some “disorder operators” V (h) that modify the
connection in this way.

If you think about it, what this means is that the following commutation relations
hold:

W (g)V (h) = V (h)W (g) exp(2πiL(g, h)/N)
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where L(g, h) is the linking number of the loops g and h, which counts how many times
g wraps around h.

There is an obvious symmetry or “duality” between the V ’s and theW ’s going on here.
In fact, just as W ’s satisfy an area law where there is confinement of chromoelectric field
lines into flux tubes, I believe the V ’s satisfy an area law when there is confinement of
chromomagnetic field lines into flux tubes. The simplest case of this kind of thing occurs
in plain old electromagnetism, where plain old magnetic field lines are confined into
flux tubes in type II superconductors. For this reason confinement of electric field lines
is sometimes called “dual superconductivity”.

Perhaps the simplest way of beginning to understand this stuff more deeply is to un-
derstand the wonderful formula proved by Ashtekar and Corichi in the following paper:

6) Abhay Ashtekar and Alejandro Corichi, “Gauss linking number and electro-magnetic
uncertainty principle”, preprint available as hep-th/9701136.

This formula applies to plain old electromagnetism, or more precisely, quantum elec-
trodynamics. If we work in units where ~ = 1, and consider a particle of charge 1, the
Wilson loop operator W (g) in electromagnetism is just

W (g) = exp(−iB(g))

where B is the magnetic flux flowing through the loop g. But instead we can just work
with B(g) directly. Similarly, instead of V (h)’s we can work with the operator E(h)
corresponding to the electric flux through the loop h. Then we have

B(g)E(h)− E(h)B(g) = iL(g, h).

In other words, the electric and magnetic fields don’t commute in quantum electrody-
namics, and the Heisenberg uncertainty of the electric field flowing through a loop g and
the magnetic field flowing through a loop h is proportional to the linking number of g
and h!

Quantum mechanics, electromagnetism, and knot theory are clearly quite tangled up
here. Since the linking number was first discovered by Gauss in his work on magnetism,
it’s all quite fitting.

And that leads me to the last paper I want to mention this week. It should be of
great interest to Vassiliev invariant fans; see “Week 3” if you don’t know what a Vassiliev
invariant is.

7) Dror Bar-Natan and Alexander Stoimenow, “The fundamental theorem of Vassiliev
invariants”, preprint available as q-alg/9702009.

Let me just quote the abstract here:

The “fundamental theorem of Vassiliev invariants” says that every weight system
can be integrated to a knot invariant. We discuss four different approaches to
the proof of this theorem: a topological/combinatorial approach following M.
Hutchings, a geometrical approach following Kontsevich, an algebraic approach
following Drinfel’d’s theory of associators, and a physical approach coming from
the Chern-Simons quantum field theory. Each of these approaches is unsatis-
factory in one way or another, and hence we argue that we still don’t really
understand the fundamental theorem of Vassiliev invariants.
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Week 98

February 27, 1997

I feel guilty for slacking off on This Week’s Finds, so I should explain the reason. Lots of
things have been building up that I’m dying to talk about, but new ones keep coming in
at such a rapid rate that I never feel I have time!

I will have to be ruthless, and face up to the fact that a quick and imperfect exposition
is better than none.

First of all, here at the Center for Gravitational Physics and Geometry there are a lot
of interesting attempts going on to compute the entropy of black holes from first prin-
ciples. Bekenstein, Hawking and many others have used a wide variety of semiclassical
arguments to argue that black holes satisfy

S = A/4

where S is the entropy and A is the area of the event horizon, both measured in Planck’s
units, where G = c = ~ = 1.

For example, using purely classical reasoning (general relativity, but no quantum
theory) one can prove the “2nd law of black hole thermodynamics”, which says that A
always increases. As Bekenstein noted, this suggests that the area of the event horizon
is somehow analogous to entropy. However, by itself this does not determine the magic
number 1/4, which can only be derived using quantum theory (as one can see by simple
dimensional analysis).

By semiclassical reasoning — studying quantum electrodynamics in the Schwarzschild
metric used to describe black holes — Hawking showed that black holes should radiate
as if they had a temperature inversely proportional to their mass:

T =
1

8πM
.

This made the analogy between entropy and event horizon area much more than an
analogy, because it meant that one could assign a temperature to black holes and see
if they satisfy the laws of thermodynamics. It turns out that if you consider A/4 to be
the entropy of a black hole, you can eliminate seeming violations of the 2nd law that
otherwise arise in thought experiments where you get rid of entropy by throwing it into
a black hole. In other words, if you throw something with entropy S into a black hole,
calculations seem to show that the area of the event horizon always increases by at least
4S!

So far nothing I’ve said is related to full-fledged quantum gravity, because in the
semiclassical arguments one is still working in the approximation where the gravitational
field is treated classically. An interesting test of any theory of quantum gravity is whether
can use it to derive S = A/4. In a subject with no real experimental evidence, this is the
closest we have to an “experimental result” that our theory should predict.

Recently the string theorists have done some calculations claiming to show that string
theory predicts S = A/4. Personally I feel that while these calculations are interesting
they are far from definitive. For example, they all involve taking calculations done using
perturbative string theory on flat spacetime and extrapolating them drastically to the
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regime in which string theory approximates general relativity. One typically uses ideas
from supersymmetry to justify such extrapolations; however, these ideas only seem to
apply to “extremal black holes”, having the maximum possible charge for a black hole
of a given mass and angular momentum. Realistic black holes are far from extremal. In
short, while exciting, these calculations still need to be taken with a grain of salt.

Of course, I am biased because I am interested in another approach to quantum
gravity, the loop representation of quantum gravity, which folks are working on here at
the CGPG, among other places. This is in many ways a more conservative approach. The
idea is to simply take Einstein’s equation for general relativity and quantize it, rather
than trying to develop a theory of all particles and forces as in string theory. Of course,
for various reasons it is not so easy to quantize Einstein’s equation. String theorists
think it’s impossible without dragging in all sorts of other forces and particles, but folks
working on the loop representation are more optimistic. This is an ongoing argument,
but certainly a good test of the loop representation would be to try to use it to derive
Hawking’s formula S = A/4. If the loop representation is really any good, this should
be possible, because many different lines of reasoning using only general relativity and
quantum theory lead to this formula.

I’ve already mentioned a few attempts to do this in ”Week 56“, ”Week 57”, and “Week
87”. These were promising, but they didn’t get the magical number 1/4. Also, they are
rather rough, in that they do computations on some region with boundary, but don’t use
anything that ensures the boundary is an event horizon.

Recently Kirill Krasnov has made some progress:

1) Kirill Krasnov, “On statistical mechanics of Schwarzschild black hole”, preprint
available as gr-qc/9605047.

This paper still doesn’t get the magic number 1/4, and Krasnov later realized it has a
few mistakes in it, but it does something very cool. It notes that the boundary conditions
holding on the event horizon of a Schwarzschild black hole are closely related to Chern-
Simons theory. Now is not the time for me to go into Chern-Simons theory, but basically,
it lets you apply a lot of neat mathematics to calculate everything to your heart’s content,
very much as Carlip did on his work on the toy model of a 2+1-dimensional black
hole (see “Week 41”). Also, it sheds new light on the relationship between topological
quantum field theory and quantum gravity, something I am always trying to understand
better.

While I’m at it, I should note the existence of a paper that reworks Carlip’s calculation
from a slightly different angle:

2) Maximo Banados and Andres Gomberoff, “Black hole entropy in the Chern-Simons
formulation of 2+1 gravity”, preprint available as gr-qc/9611044.

2+1-dimensional quantum gravity is very simple compared to the 3+1-dimensional
quantum gravity we’d really like to understand: in a sense it’s “exactly solvable”. But
there are still some puzzling things about Carlip’s computation of the entropy of a black
hole in 2+1 dimensions which need figuring out, so every paper on the subject is worth
looking at, if you’re interested in black hole entropy.

Speaking of topological quantum field theory and quantum gravity, I just finished a
paper on these topics:
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3) John Baez, “Degenerate solutions of general relativity from topological field the-
ory”, preprint available as gr-qc/9702051 or in Postscript form at http://math.
ucr.edu/home/baez/deg.ps.

Let me just summarize the basic idea, resisting the temptation to become insanely
technical.

A while ago Rovelli and Smolin introduced Penrose’s notion of “spin network” into
the loop representation of quantum gravity. I described spin networks pretty carefully in
“Week 43”, but here let me just say that they are graphs embedded in space with edges
labelled by spins j = 0, 1/2, 1, 3/2, . . ., just as in the quantum mechanics of angular mo-
mentum, and with vertices labelled by “intertwining operators”, which are other gadgets
that come up in the study of angular momentum. In the loop representation these spin
networks form a basis of states. Geometrical observables like the area of surfaces and
the volumes of regions have been quantized and their matrix elements computed in the
spin network basis, giving us a nice picture of “quantum 3-geometries”, that is, the pos-
sible geometries of space in the context of quantum gravity. In this picture, the edges of
spin networks play the role of quantized flux tubes of area, much as the magnetic field
comes in quantized flux tubes in a type II superconductor. To work out the area of a
surface in some spin network state, you just total up contributions from each edge of the
spin network that pokes through the surface. An edge labelled with spin j carries an area
equal to

√
j(j + 1) times the Planck length squared. What’s cool is that this is not merely

postulated, it’s derived from fairly standard ideas about how you turn observables into
operators in quantum mechanics.

However, the dynamics of quantum gravity is more obscure. Technical issues aside,
the main problem is that while we have a nice picture of quantum 3-geometries, we
don’t have a similar picture of the 4-dimensional, or spacetime, aspects of the theory. To
represent a physical state of quantum gravity, a spin network state (or linear combination
thereof) has to satisfy something called the Wheeler-DeWitt equation. This is sort of the
quantum gravity analog of the Schrodinger equation. There is a lot of controversy over
the Wheeler-DeWitt equation and what’s the right way to write it down in the loop
representation. The really annoying thing, however, is that even if you feel you know
how to write it down — for example, Thomas Thiemann has worked out one way (see
“Week 85”) — and can find solutions, you still don’t necessarily have a good intuition
as to what the solutions mean. For example, almost everyone seems to agree that spin
networks with no vertices should satisfy the Wheeler-DeWitt equation. These are just
knots or links with edges are labelled by spins. We know these states are supposed to
represent “quantum 4-geometries” satisfying the quantized Einstein equations. But how
should we visualize these states in 4-dimensional terms?

In search of some insight into the 4-dimensional interpretation of these states, I turn
to classical general relativity. In my paper, I construct solutions of the equations of
general relativity which at a typical fixed time look like “flux tubes of area” reminiscent
of the loop states of quantum gravity. These are “degenerate solutions”, meaning that
the “3-metric”, the tensor you use to measure distances in 3-dimensional space, is zero in
lots of regions of space. Here I should warn you that ordinary general relativity doesn’t
allow degenerate metrics like this. The loop representation works with an extension of
general relativity that covers the case of degenerate metrics; for more on this, see “Week
88”.
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More precisely, if you look at these “flux tube” solutions at a typical time, the 3-metric
vanishes outside a collection of solid tori embedded in space, while inside any of these
solid tori the metric is degenerate in the longitudinal direction, but nondegenerate in the
two transverse directions.

Now since these are classical solutions — no quantum theory in sight! — there is
no problem with understanding what they do as time passes. We can solve Einstein’s
equation and get a 4-metric, a metric on spacetime. The 4-dimensional picture is as fol-
lows: given any surface Σ embedded in spacetime, I get solutions for which the 4-metric
vanishes outside a neighborhood of Σ. Inside this neighborhood, the 4-metric is zero in
the two directions tangent to Σ but nondegenerate in the two transverse directions. In
the 4-geometry defined by one of these solutions, the area of a typical surface Σ′ inter-
secting Σ in some isolated points is a sum of contributions from the points where Σ and
Σ′ intersect.

The solutions I study are inspired by the work of Mike Reisenberger, who studied a
solution for which the metric vanishes outside a neighborhood of a sphere embedded in
R4. I consider more general surfaces embedded in more general 4-manifolds, so I need
to worry a lot more about topological issues. Also, I allow the possibility of a nonzero
cosmological constant (this being a parameter in Einstein’s equation that determines the
energy density of the vacuum). A lot of the most interesting stuff happens for nonzero
cosmological constant, and this case actually helps one understand the case of vanishing
cosmological constant as a kind of limiting case.

It turns out that the interesting degrees of freedom of the metric living on the surface
Σ in spacetime are described by fields living on this surface. In fact, these fields are
solutions of a 2-dimensional topological field theory called BF theory. To prove this, I
take advantage of the relation between general relativity andBF theory in 4 dimensions,
together with the fact that BF theory behaves in a simple manner under dimensional
reduction.

Another neat thing is that to get a solution of general relativity this way, we need to
pick a “framing” of Σ. Roughly speaking, this means we need to pick a way of thick-
ening up the surface Σ to a neighborhood that looks like Σ × D2, where D2 is the
2-dimensional disc. This is precisely the 4-dimensional analog of a framing of a knot or
link in 3-dimensions. People who know about topological quantum field theory know
that framings are very important. In fact, I can show that my solutions of general relativ-
ity are closely related to Chern-Simons theory, a 3-dimensional topological field theory
famous for giving invariants of framed knots and links. What’s beginning to emerge is a
picture that makes the spacetime aspects of framings easier to understand.

Now before I plunge into some even more esoteric stuff, let me briefly return to
reality and answer the question you’ve all been secretly dying to ask: how does general
relativity impact the world of big business?

In plain terms: is all this fancy physics just an excuse to have fun visualizing evolving
spin networks in terms of quantum field theories on surfaces embedded in 4-dimensional
spacetime, etcetera etcetera. . . or does it actually contribute to the well-being of the
corporations upon which we depend?

Well, you may be surprised to know that general relativity plays an significant role
in a $200-million business. Surprised? Read on! What follows is taken from the latest
issue of “Matters of Gravity”, the newsletter put out by Jorge Pullin. More precisely, it’s
from:
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4) Neil Ashby, “General relativity in the global positioning system”, in Matters of Grav-
ity, ed. Jorge Pullin, no. 9, available at http://www.phys.lsu.edu//mog/mog9/
node9.html.

I will simply quote some excerpts from this fascinating article:

”The Global Position System (GPS) consists of 24 earth-orbiting satellites, each
carrying accurate, stable atomic clocks. Four satellites are in each of six differ-
ent orbital planes, of inclination 55 degrees with respect to earth’s equator. Or-
bital periods are 12 hours (sidereal), so that the apparent position of a satellite
against the background of stars repeats in 12 hours. Clock-driven transmitters
send out synchronous time signals, tagged with the position and time of the
transmission event, so that a receiver near the earth can determine its position
and time by decoding navigation messages from four satellites to find the trans-
mission event coordinates, and then solving four simultaneous one-way signal
propagation equations. Conversely, γ-ray detectors on the satellites could deter-
mine the space-time coordinates of a nuclear event by measuring signal arrival
times and solving four one-way propagation delay equations.

Apart possibly from high-energy accelerators, there are no other engineering
systems in existence today in which both special and general relativity have so
many applications. The system is based on the principle of the constancy of c in
a local inertial frame: the Earth-Centered Inertial or ECI frame. Time dilation
of moving clocks is significant for clocks in the satellites as well as clocks at rest
on earth. The weak principle of equivalence finds expression in the presence of
several sources of large gravitational frequency shifts. Also, because the earth
and its satellites are in free fall, gravitational frequency shifts arising from the
tidal potentials of the moon and sun are only a few parts in 10ˆ16 and can be
neglected.

[. . . ]

At the time of launch of the first NTS-2 satellite (June 1977), which contained
the first Cesium clock to be placed in orbit, there were some who doubted that
relativistic effects were real. A frequency synthesizer was built into the satellite
clock system so that after launch, if in fact the rate of the clock in its final
orbit was that predicted by GR, then the synthesizer could be turned on bringing
the clock to the coordinate rate necessary for operation. The atomic clock was
first operated for about 20 days to measure its clock rate before turning on the
synthesizer. The frequency measured during that interval was +442.5 parts
in 1012 faster than clocks on the ground; if left uncorrected this would have
resulted in timing errors of about 38,000 nanoseconds per day. The difference
between predicted and measured values of the frequency shift was only 3.97
parts in 1012, well within the accuracy capabilities of the orbiting clock. This
then gave about a 1% validation of the combined motional and gravitational
shifts for a clock at 4.2 earth radii.

[. . . ]
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This system was intended primarily for navigation by military users having ac-
cess to encrypted satellite transmissions which are not available to civilian users.
Uncertainty of position determination in real time by using the Precise Position-
ing code is now about 2.4 meters. Averaging over time and over many satellites
reduces this uncertainty to the point where some users are currently interested in
modelling many effects down to the millimeter level. Even without this impetus,
the GPS provides a rich source of examples for the applications of the concepts
of relativity.

New and surprising applications of position determination and time transfer
based on GPS are continually being invented. Civilian applications include for
example, tracking elephants in Africa, studies of crustal plate movements, sur-
veying, mapping, exploration, salvage in the open ocean, vehicle fleet tracking,
search and rescue, power line fault location, and synchronization of telecom-
munications nodes. About 60 manufacturers now produce over 350 different
commercial GPS products. Millions of receivers are being made each year; prices
of receivers at local hardware stores start in the neighborhood of $200.”

Pretty cool, eh?
Okay, now for something completely different — homotopy theory! Well, everything

I write about is actually secretly part of my grand plan to see how everything interesting
is related to everything else, but let me not delve into how homotopy theory is related to
topological quantum field theory and thus quantum gravity. Let me simply mention the
existence of this great book:

5) Handbook of Algebraic Topology, ed. I. M. James, North-Holland, the Netherlands,
1995, 1324 pages.

Occasionally you come across a book that you wish you just download into your
brain; for me this is one of those books. It is probably not a good idea to read it if you
are just wanting to get started on algebraic topology; it assumes you are pretty familiar
with the basic ideas already, and it goes into a lot of depth, mainly in hardcore homotopy
theory. A lot of it is too technical for me to appreciate, but let me list a few chapters that
I can understand and like.

• Chapter 1, “Homotopy types” by Hans-Joachim Baues, is a great survey of different
models of homotopy types. Remember, we say two topological spaces X and Y are
homotopy equivalent if there are continuous functions f : X → Y and g : Y → X
that are inverses “up to homotopy”. In other words, we don’t require that fg and
gf are equal to identity functions, but merely that they can both be continuously
deformed to identity functions. So for example the circle and an annulus are ho-
motopy equivalent, and we say therefore that they represent the same “homotopy
type”.

The cool thing is that there turn out to be very elegant algebraic and combinatorial
ways of describing homotopy types that don’t mention topology at all. Perhaps
the most beautiful way of all is a way that in a sense hasn’t been fully worked out
yet: namely, thinking of homotopy types as “ω-groupoids”. The idea is this. An
“ω-category” is something that has
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– objects like x

– morphisms between objects like f : x→ y

– 2-morphisms between morphisms like F : f → g

– 3-morphisms between 2-morphisms like T : F → G

– . . .

and so on ad infinitum. There should be some ways of composing these, and these
should satisfy some axioms, and that of course is the tricky part. But the basic idea
is that if you hand me a topological space X, I can cook up an ω-category whose

– objects are points in X

– morphisms are paths between points in X

– 2-morphisms are continuous 1-parameter families of paths in X, i.e. “paths of
paths” in X

– 3-morphisms are “paths of paths of paths” in X

– . . .

and so on. This is better than your garden-variety ω-category because all the mor-
phisms and 2-morphisms and 3-morphisms and so on have inverses, at least “up to
homotopy”. We call it an “ω-groupoid”. This ω-groupoid keeps track of the homo-
topy type of X in a very nice way. (If this “ω” stuff is too mind-boggling, you may
want to start by reading a bit about plain old categories and groupoids in “Week
74”.)

Conversely, given any ω-groupoid there should be a nice way to cook up a ho-
motopy corresponding to it. This is just the infinite-dimensional generalization
of something I described in “Week 75”. There, I showed how you could get a
groupoid from a “homotopy 1-type” and vice versa. Here there 1-morphisms but
no interesting 2-morphisms, 3-morphisms, and so on, because the topology of a
“homotopy 1-type” is boring in dimensions greater than 1. (In case any experts are
reading this, what I mean is that its higher homotopy groups are trivial; its higher
homology and cohomology groups can be very interesting.)

So we can — and should — think of homotopy theory as, among other things, the
study of ω-groupoids, and thus a very useful warmup to the study of ω-categories.
In my occasional series on This Week’s Finds called “the tale of n-Categories”, I
have tried to explain why n-categories, and ultimately ω-categories, should serve
as a powerful unifying approach to lots of mathematics and physics. In trying to
understand this subject, I find time and time again that homotopy theorists are the
ones to listen to.

• Chapter 2, “Homotopy theories and model categories”, by W. G. Dwyer and J.
Spalinski, is a nice introduction to the formal idea of using different “models” for
homotopy types. For example, above I was sketching how one might do homotopy
theory using the “model category” of ω-groupoids. Other model categories include
gadgets like Kan complexes, CW complexes, simplicial complexes, and so on.
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• Chapter 6, “Modern foundations for stable homotopy theory”, by A. D. Elmendorf,
I. Kriz, M. Mandell and J. P. May describes a very nice approach to spectra. Loosely
speaking, we can think of a spectrum as a Z-groupoid, where Z denotes the in-
tegers. In other words, in addition to j-morphisms for all natural numbers j, we
also have j-morphisms for negative j! This may seem bizarre, but it’s a lot like
how in homology theory one is interested in chain complexes that extend in both
the positive and negative directions. In fact, we can think of a chain complex as a
very special sort of Z-groupoid or spectrum. The study of spectra is called stable
homotopy theory.

• Chapter 13, “Stable homotopy and iterated loop spaces”, by G. Carlsson and R. J.
Milgram, is packed with handy information about stable homotopy theory.

• Chapter 21, “Classifying spaces of compact Lie groups and finite loop spaces”, by
D. Notbohm, is a good source of heavy-duty information on classifying spaces of
your favorite Lie groups. To study vector bundles and the like one really needs
to become comfortable with classifying spaces, and I’m finally doing this, and I
hope eventually I’ll be comfortable enough with them to really understand all these
results.

There is a lot more, but I will stop here.
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Week 99

March 15, 1997

Life here at the Center for Gravitational Physics and Geometry is tremendously exciting.
In two weeks I have to return to U. C. Riverside and my mundane life as a teacher
of calculus, but right now I’m still living it up. I’m working with Ashtekar, Corichi,
and Krasnov on computing the entropy of black holes using the loop representation of
quantum gravity, and also I’m talking to lots of people about an interesting 4-dimensional
formulation of the loop representation in terms of “spin foams” — roughly speaking,
soap-bubble-like structures with faces labelled by spins.

Here are some papers I’ve come across while here:

1) Lee Smolin, “The future of spin networks”, in The Geometric Universe: Science,
Geometry, and the Work of Roger Penrose, eds. S. Hugget, Paul Tod, and L.J. Mason,
Oxford University Press, 1998. Also available as gr-qc/9702030.

I’ve spoken a lot about spin networks here on This Week’s Finds. They were first
invented by Penrose as a radical alternative to the usual way of thinking of space as a
smooth manifold. For him, they were purely discrete, purely combinatorial structures:
graphs with edges labelled by “spins” j = 0, 1/2, 1, 3/2, . . ., and with three edges meeting
at each vertex. He showed how when these spin networks become sufficiently large
and complicated, they begin in certain ways to mimic ordinary 3-dimensional Euclidean
space. Interestingly, he never got around to publishing his original paper on the subject,
so it remains available only if you know someone who knows someone who has it:

2) Roger Penrose, “Theory of quantized directions”, unpublished manuscript.

In case you’re wondering, I don’t have a copy. Someone here has an nth-generation
xerox copy, which I read, but n was sufficiently large that the (n + 1)st generation copy
would have been unreadable. I will get ahold of it somehow, though!

Anyway, Smolin’s paper is a kind of tribute to Penrose, and it traces the curiously
twisting history of spin networks from their origin up to the present day, where they play
a major role in topological quantum field theory and the loop representation — now
more appropriately called the spin network representation! — of quantum gravity. (See
“Week 55” for more on spin networks.)

Note however that the title of the paper refers to the future of spin networks. Smolin
argues that spin networks are a major clue about the future of physics, and he paints a
picture of what this future might be. . . which I urge you to look at.

For more on this, try:

3) Fotini Markopoulou and Lee Smolin, “Causal evolution of spin networks”, preprint
available as gr-qc/9702025.

Fotini Markopoulou is a student of Chris Isham at Imperial College, but now she’s
visiting the CGPG and working with Lee Smolin on spin networks. In this paper they
describe some theories in which spin networks evolve in time in discrete steps. The
evolution is “local” in the sense that in a given step, any vertex of the spin network
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changes in a way that only depends on its immediate neighbors — vertices connected
to it by an edge. It is also “causal” in the sense that history of spin network evolving
according to their rules gives a causal set, i.e. a set equipped with a partial ordering
which we think of as saying which points come “before” which other points. This ties
their work to the work of Rafael Sorkin on causal sets, e.g.:

4) Luca Bombelli, Joohan Lee, David Meyer and Rafael D. Sorkin, “Space-time as a
causal set”, Phys. Rev. Lett. 59 (1987), 521.

Unlike the related work of Reisenberger and Rovelli (see “Week 96”), Markopolou
and Smolin do not attempt to “derive” their rules from general relativity by standard
quantization techniques. Instead, they hope that some theory of the sort they consider
will approximate general relativity in the large-scale limit. To check this will require
some new techniques akin to the “renormalization group” approach to studying the
large-scale limits of statistical mechanical systems defined on a lattice. This is a bit
daunting, but it seems likely that no matter how one proceeds to pursue a spin-network-
based theory of quantum gravity, one will need to develop such techniques at some
point.

Now I’d like to switch gears and return to. . .
THE TALE OF n-CATEGORIES!
Recall that in our last episode, in “Week 92”, we had worked our way up to 2-

categories, and we were beginning to see what they had to do with 2-dimensional physics
and toplogy. I described how to get monads from adjunctions, and what this has to do
with matrix multiplication, Yang-Mills theory, and the 4-color theorem.

Next week I want to get serious and start talking about n-categories for arbitrary n.
One reason is that at the end of this month there’s a conference on n-categories and
physics that I want to report on:

5) Workshop on Higher Category Theory and Physics, March 28-30, 1997, Northwest-
ern University, Evanston, Illinois. Organized by Ezra Getzler and Mikhail Kapranov;
program available at http://math.nwu.edu/~getzler/conf97.html

But before doing this, I want to say a bit about what category theory has to do with
quantum mechanics!

First remember the big picture: n-category theory is a language to talk about pro-
cesses that turn processes into other processes. Roughly speaking, an n-category is some
sort of structure with objects, morphisms between objects, 2-morphisms between mor-
phisms, and so on up to n-morphisms. A 0-category is just a set, with its objects usually
being called “elements”. Things get trickier as n increases. For a precise definition of
n-categories for n = 1 and 2, see “Week 73” and “Week 80”, respectively.

Most familiar mathematical gadgets are sets equipped with extra bells and whistles:
groups, vector spaces, Hilbert spaces, and so on all have underlying sets. This is why set
theory plays an important role in mathematics. However, we can also consider fancier
gadgets that are categories equipped with extra bells and whistles. Some of the most
interesting examples are just “categorifications” of well-known gadgets.
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For example, a “monoid” is a simple gadget, just a set equipped with an associative
product and multiplicative identity. An example we all know and love is the complex
numbers: the product is just ordinary multiplication, and the multiplicative identity is
the number 1.

We may categorify the notion of “monoid” and define a “monoidal category” to be
a category equipped with an associative product and multiplicative identity. I gave the
precise definition back in “Week 89”; the point here is that while they may sound scary,
monoidal categories are actually very familiar. For example, the category of Hilbert
spaces is a monoidal category where the product of Hilbert spaces is the tensor product
and the multiplicative identity is C, the complex numbers.

If one systematically studies categorification one discovers an amazing fact: many
deep-sounding results in mathematics are just categorifications of stuff we all learned in
high school. There is a good reason for this, I believe. All along, mathematicians have
been unwittingly “decategorifying” mathematics by pretending that categories are just
sets. We “decategorify” a category by forgetting about the morphisms and pretending
that isomorphic objects are equal. We are left with a mere set: the set of isomorphism
classes of objects.

I gave an example in “Week 73”. There is a category FinSet whose objects are finite
sets and whose morphisms are functions. If we decategorify this, we get the set of natural
numbers! Why? Well, two finite sets are isomorphic if they have the same number of
elements. “Counting” is thus the primordial example of decategorification.

I like to think of it in terms of the following fairy tale. Long ago, if you were a
shepherd and wanted to see if two finite sets of sheep were isomorphic, the most obvious
way would be to look for an isomorphism. In other words, you would try to match each
sheep in herd A with a sheep in herd B. But one day, along came a shepherd who
invented decategorification. This person realized you could take each set and “count” it,
setting up an isomorphism between it and some set of “numbers”, which were nonsense
words like “one, two, three, four,. . . ” specially designed for this purpose. By comparing
the resulting numbers, you could see if two herds were isomorphic without explicitly
establishing an isomorphism!

According to this fairy tale, decategorification started out as the ultimate stroke of
mathematical genius. Only later did it become a matter of dumb habit, which we are
now struggling to overcome through the process of “categorification”.

Okay, so what does this have to do with quantum mechanics?
Well, a Hilbert space is a set with extra bells and whistles, so maybe there is some

gadget called a “2-Hilbert space” which is a category with analogous extra bells and
whistles. And maybe if we figure out this notion we will learn something about quantum
mechanics.

Actually the notion of 2-Hilbert space didn’t arise in this simple-minded way. It arose
in some work by Daniel Freed on topological quantum field theory:

5) “Higher algebraic structures and quantization”, by Dan Freed, Comm. Math. Phys.
159 (1994), 343–398, preprint available as hep-th/9212115; see also “Week 48”.

Later, Louis Crane adopted this notion as part of his program to reduce quantum
gravity to n-category theory:
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6) Louis Crane: “Clock and category: is quantum gravity algebraic?”, Jour. Math.
Phys. 36 (1995), 6180–6193, preprint available as gr-qc/9504038.

These papers made is clear that 2-Hilbert spaces are interesting things and that one
should go further and think about “n-Hilbert spaces” for higher n, too. However, neither
of them gave a precise definition of 2-Hilbert space, so at some point I decided to do this.
It took a while for me to learn enough category theory, but eventually I wrote something
about it:

7) John Baez, “Higher-dimensional algebra II: 2-Hilbert spaces”, to appear in Adv.
Math., preprint available as q-alg/9609018 or at http://math.ucr.edu/home/

baez/

To understand this requires a little category theory, so let me explain the basic ideas
here.

I’ll concentrate on finite-dimensional Hilbert spaces, since the infinite-dimensional
case introduces extra complications. To define 2-Hilbert spaces we need to start by
categorifying the various ingredients in the definition of Hilbert space. These are:

1. the zero element,

2. addition,

3. subtraction,

4. scalar multiplication, and

5. the inner product.

The first four have well-known categorical analogs. The fifth one, which is really the
essence of a Hilbert space, may seem a bit more mysterious at first, but as we shall see,
it’s really the key to the whole business.

1) The analog of the zero vector is a ‘zero object’. A zero object in a category is an
object that is both initial and terminal. That is, there is exactly one morphism from
it to any object, and exactly one morphism to it from any object. Consider for
example the category Hilb having finite-dimensional Hilbert spaces as objects, and
linear maps between them as morphisms. In Hilb, any zero-dimensional Hilbert
space is a zero object.

Note: there isn’t really a unique zero object in the “strict” sense of the term. In-
stead, any two zero objects are canonically isomorphic. The reason is that if you
have two zero objects, say 0 and 0′, there is a unique morphism f : 0 → 0′ and a
unique morphism g : 0′ → 0. These morphisms are inverses of each other so they
are isomorphisms. Why are they inverses? Well, fg : 0 → 0′ must be the identity
morphism 10 : 0 → 0, because there is only one morphism from 0 to 0! Similarly,
gf is the identity on 0′. (Note that I am using category theorist’s notation, where
the composite of f : x→ y and g : y → z is denoted fg : x→ z.)

This is typical in category theory. We don’t expect stuff to be unique; it should only
be unique up to a canonical isomorphism.
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2) The analog of adding two vectors is forming the “coproduct” of two objects. Co-
products are just a fancy way of talking about direct sums. Any decent quantum
mechanic knows about the direct sum of Hilbert spaces. But in fact, we can de-
fine this notion very generally in any category, where it goes under the name of a
“coproduct”. (I give the definition below; if I gave it here it would scare people
away.) As with zero objects, coproducts are typically not unique, but they are al-
ways unique up to canonical isomorphism, which is what matters. It’s a good little
exercise to show this.

3) The analog of subtracting vectors is forming the “cokernel” of a morphism f : x→
y. If x and y are Hilbert spaces, the cokernel of f is just the orthogonal complement
of the range of f . In other words, for Hilbert spaces we have “direct differences” as
well as direct sums. However, the notion of cokernel makes sense in any category
with a zero object. I won’t burden you with the precise definition here.

An important difference between zero, addition and subtraction and their categorical
analogs is that these operations represent extra structure on a set, while having a zero
object, coproducts of two objects, or cokernels of morphisms is merely a property of a
category. Thus these concepts are in some sense more intrinsic to categories than to sets.
On the other hand, we’ve seen one pays a price for this: while the zero element, sums,
and differences are unique in a Hilbert space, the zero object, coproducts, and cokernels
are typically unique only up to canonical isomorphism.

4) The analog of multiplying a vector by a complex number is tensoring an object
by a Hilbert space. Besides its additive properties (zero object, binary coproducts,
and cokernels), Hilb is also a monoidal category: we can multiply Hilbert space
by tensoring them, and there is and a multiplicative identity, namely the complex
numbers C. In fact, Hilb is a “ring category”, as defined by Laplaza and Kelly.

We expect Hilb to play a role in 2-Hilbert space theory analogous to the role played by
the ring C of complex numbers in Hilbert space theory. Thus we expect 2-Hilbert spaces
to be “module categories” over Hilb, as defined by Kapranov and Voevodsky.

An important part of our philosophy here is that C is the primordial Hilbert space:
the simplest one, upon which the rest are modelled. By analogy, we expect Hilb to
be the primordial 2-Hilbert space. This is part of a general pattern pervading higher-
dimensional algebra; for example, there is a sense in which the (n + 1)-category of all
(small) n-categories, nCat, is the primordial (n + 1)-category. The real significance of
this pattern remains mysterious.

5) Finally, what is the categorification of the inner product in a Hilbert space? It’s the
‘Hom functor’! The inner product in a Hilbert space eats two vectors v and w and
spits out a complex number

〈v, w〉
Similarly, given two objects v and w in a category, the Hom functor gives a set

Hom(x, y)

namely the set of morphisms from x to y. Note that the inner product 〈v, w〉 is
linear in w and conjugate-linear in y, and similarly, the Hom functor Hom(x, y) is
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covariant in y and contravariant in x. This hints at the category theory secretly
underlying quantum mechanics. In quantum theory the inner product 〈v, w〉 repre-
sents the amplitude to pass from v to w, while in category theory Hom(x, y) is the
set of ways to get from x to y. In Feynman path integrals, we do an integral over
the set of ways to get from here to there, and get a number, the amplitude to get
from here to there. So when physicists do Feynman path integration — just like a
shepherd counting sheep — they are engaged in a process of decategorification!

To understand this analogy better, note that any morphism f : x → y in Hilb can be
turned around or “dualized” to obtain a morphism f∗ : y → x. This is usually called the
“adjoint” of f , and it satisfies

〈fv, w〉 = 〈v, f∗w〉
for all v in x, and w in y. This ability to dualize morphisms is crucial to quantum theory.
For example, observables are represented by self-adjoint morphisms, while symmetries
are represented by unitary morphisms, whose adjoint equals their inverse.

However, it should now be clear — at least to the categorically minded — that this
sort of adjoint is just a decategorified version of the “adjoint functors” so important in
category theory. As I explained in “Week 79”, a functor F ∗ : D → C is a “right adjoint” of
F : C → D if there is, not an equation, but a natural isomorphism

Hom(Fc, d) ∼= Hom(c, F ∗d)

for all objects c in C, and $d in D.
Anyway, in the paper I proceed to use these ideas to give a precise definition of 2-

Hilbert spaces, and then I prove all sorts of stuff which I won’t describe here.
Let me wrap up by explaining the definition of “coproduct”. This is one of those

things they should teach all math grad students, but for some reason they don’t. It’s a
bit dry but it’ll be good for you. A coproduct of the objects x and y is an object x + y
equipped with morphisms

i : x→ x+ y

and
j : y → x+ y

that is universal with respect to this property. In other words, if we have any other object,
say z, and morphisms

i′ : x→ z

and
j′ : y → z

then there is a unique morphism f : x+ y → z such that

i′ = if

and
j′ = jf.

This kind of definition automatically implies that the coproduct is unique up to canonical
isomorphism. To understand this abstract nonsense, it’s good to check that the coproduct
of sets or topological spaces is just their disjoint union, while the coproduct of vector
spaces or Hilbert spaces is their direct sum.

To continue reading the “Tale of n-Categories”, see “Week 100”.
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Week 100

March 23, 1997

Pretty much ever since I started writing “This Week’s Finds” I’ve been trying to get folks
interested in n-categories and other aspects of higher-dimensional algebra. There is
really an enormous world out there that only becomes visible when you break out of
“linear thinking” — the mental habits that go along with doing math by writing strings
of symbols in a line. For example, when we write things in a line, the sums a + b and
b + a look very different. Then we introduce a profound and mysterious equation, the
“commutative law”:

a+ b = b+ a

which says that actually they are the same. But in real life, we prove this equation using
higher-dimensional reasoning:

a+ b = a + b =
a
+
b

= b + a = b+ a

If this seems silly, think about explaining to a kid what 9 + 17 means, and how you could
prove that 9 + 17 = 17 + 9. You might take a pile of 9 rocks and set it to the left of a
pile of 17 rocks, and say “this is 9+17 rocks”. Alternatively, you might put the pile of 9
rocks to the right of the pile of 17 rocks, and say “this is 17+9 rocks”. Thus to prove that
9 + 17 = 17 + 9, you would simply need to switch the two piles by moving one around
the other.

This is all very simple. Historically, however, it took people a long to really under-
stand. It’s one of those things that’s too simple to take seriously until it turns out to have
complicated ramifications. Now it goes by the name of the “Eckmann-Hilton theorem”,
which says that “a monoid object in the category of monoids is a commutative monoid”.
You practically need a PhD in math to understand that! However, lest you think that
Eckmann and Hilton were merely dressing up the obvious in fancy jargon, it’s important
to note that what they did was to figure out a framework that turns the above “picture
proof” that a + b = b + a into an actual rigorous proof! This is one of the goals of
higher-dimensional algebra.

The above proof that a + b = b + a uses 2-dimensional space, but if you really think
about it also uses a 3rd dimension, namely time: the time that passes as you move “a”
around “b”. If we draw this 3rd dimension as space rather than time we can visualize the
process of moving a around b as follows:

a b

ab

This picture is an example of what mathematicians call a “braid”. This particular one is
a boring little braid with only two strands and one place where the two strands cross.

269



WEEK 100 MARCH 23, 1997

It illustrates another major idea behind higher-dimensional algebra: equations are best
thought of as summarizing “processes” (or technically, “isomorphisms”). The equation
a+b = b+a is a summary of the process of switching a and b. There is more information
in the process than in the mere equation a + b = b + a, because in fact there are two
different ways to switch a and b: the above way and

a b

ab

If one has a bunch of objects one can switch them around in a lot of ways, getting lots of
different braids.

In fact, the mathematics of braids, and related things like knots, is crucially impor-
tant for understanding quantum gravity in 3-dimensional spacetime. Spacetime is really
4-dimensional, of course, but quantum gravity in 4-dimensional spacetime is awfully dif-
ficult, so in the late 1980s people got serious about studying 3-dimensional quantum
gravity as a kind of warmup exercise. It turned out that the math required was closely
related to some mysterious new mathematics related to knots and “braidings”. At first
this must sound bizarre: a deep relationship between knots and 3-dimensional quan-
tum gravity! However, after you fight your way through the sophisticated mathematical
physics that’s involved, it becomes clear why they are related: both rely crucially on
“3-dimensional algebra”, the algebra describing how you can move things around in
3-dimensional spacetime.

However, there is more to the story, because knot theory also seems deeply related
to 4-dimensional quantum gravity. Here the knots arise as “flux tubes of area” living in
3-dimensional space at a given time. Recent work on quantum gravity suggests that as
time passes these knots (or more generally, “spin networks”) move around and change
topology as time passes.

To really understand this, we probably need to understand “4-dimensional algebra”.
Unfortunately, not enough is known about 4-dimensional algebra. The problem is that
we don’t know much about 4-categories! To do n-dimensional algebra in a really nice
way, you need to know about n-categories. Roughly speaking, an n-category is an al-
gebraic structure that has a bunch of things called “objects”, a bunch of things called
“morphisms” that go between objects, and similarly 2-morphisms going between mor-
phisms, 3-morphisms going between 2-morphisms, and so on up to the number n. You
can think of the objects as “things” of whatever sort you like, the morphisms as processes
going from one thing to another, the 2-morphisms as meta-processes going from one
process to another, and so on. Depending on how you play the n-category game, there
are either no morphisms after level n, or only simple and bland ones playing the role
of “equations”. The idea is that in the world of n-categories, one keeps track of things,
processes, meta-processes, and so on to the nth level, but after that one calls it quits and
uses equations.
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So what is the definition of 4-categories? Well, Eilenberg and Mac Lane defined
1-categories, or simply “categories”, in a paper that was published in 1945:

1) S. Eilenberg and S. Mac Lane, “General theory of natural equivalences”, Trans.
Amer. Math. Soc. 58 (1945), 231–294.

Benabou defined 2-categories — though actually he called them “bicategories” — in
a 1967 paper:

2) J. Benabou, Introduction to bicategories, Springer Lecture Notes in Mathematics 47,
New York, 1967, pp. 1–77.

Gordon, Power, and Street defined 3-categories — or actually “tricategories” — in a
paper that came out in 1995:

3) R. Gordon, A. J. Power, and R. Street, “Coherence for tricategories”, Memoirs Amer.
Math. Soc. 117 (1995) Number 558.

This step took a long time in part because it took a long time for people to understand
deeply where braidings fit into the picture.

But what about 4-categories and higher n? Well, the history is complicated and I
won’t get it right, but let me say a bit anyway. First of all, there are some things called
“strict n-categories” that people have known how to define for arbitrarily high n for quite
a while. In fact, people know how to go up to infinity and define “strict ω-categories”;
see for example:

4) S. E. Crans, On combinatorial models for higher dimensional homotopies, Ph.D. the-
sis, University of Utrecht, Utrecht, 1991.

Strict n-categories are quite interesting and important, but I’m mainly mentioning
them here to emphasize that they are not what I’m talking about. People sometimes often
call strict n-categories simply “n-categories”, and call the more general n-categories I’m
talking about above “weak n-categories”. However, I think the weak n-categories will
will eventually be called simply “n-categories”, because they are far more interesting
and important than the strict ones. Anyway, that’s what I’m doing here.

Secondly, when you define n-categories you have to make some choice about the
“shapes” of your j-morphisms. In general they should be some j-dimensional things, but
they could be simplices, or cubes, or other shapes. In some ways the simplest shapes are
“globes”, a j-dimensional globe being a j-dimensional ball with its boundary divided into
two hemispheres, the “inface” and “outface”, which are themselves (j − 1)-dimensional
globes. This corresponds to a picture where each “process” has one input and one output,
which are themselves processes having the same input and output. The definitions of
category, bicategory, and tricategory work this way. In fact, Ross Street came up with a
very nice definition of n-categories for all n using simplices in 1987:

5) Ross Street, “The algebra of oriented simplexes”, Jour. Pure Appl. Alg. 49 (1987),
283–335.
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Since then, however, he and his students and collaborators seem to have been work-
ing to translate this definition into the “globular” formalism. . . while also making some
other important adjustments too technical to discuss here. In particular, Dominic Verity
and Todd Trimble have done a lot of work on getting the definition of n-category worked
out, and a while ago I learned that Trimble came up with a definition of “tetracategory”
(or what I’m calling simply “4-category”) in August of 1995. I don’t think this has been
published, however.

James Dolan came to U. C. Riverside in the fall of 1993, and ever since then, he
and have been talking about n-categories and their role in physics. Most of the category
theory I know, I learned in this process. It soon became clear that we needed a nice
definition of n-category for all n in order to turn our hopes and dreams into theorems.
After a while we started working pretty hard on this. His job was to come up with all
the bright ideas, and mine was to get him to explain them, to try to poke holes in them,
and to figure out rigorous proofs of all the things that were so obvious to him that he
couldn’t figure out how (or why) to prove them. We sent a summarized version of our
definition to Ross Street at the end of 1995:

6) J. Baez and J. Dolan, “n-Categories — sketch of a definition”, letter to Ross Street,
Nov. 29, 1995, available at http://math.ucr.edu/home/baez/ncat.def.html

and then for a year I worked on trying to write up a longer, clearer version, while all
the meantime Dolan kept coming up with new ways of looking at everything. I finished
in February of this year:

7) J. Baez and J. Dolan, “Higher-dimensional algebra III: n-Categories and the algebra
of opetopes”, to appear in Adv. Math., preprint available as q-alg/9702014 and
at http://math.ucr.edu/home/baez/op.ps, or in compressed form as http://

math.ucr.edu/home/baez/op.ps.Z

The key feature of this definition is that it uses “j-dimensional opetopes” as the shapes
for j-morphisms. These shapes are very handy because the (j+ 1)-dimensional opetopes
describe all the legal ways of sticking together a bunch of j-dimensional opetopes to
form another j-dimensional opetope! They are related to the theory of “operads”, which
is part of the reason for their name. (By the way, the first two syllables are pronounced
exactly as in “operation”.)

In the meantime, Michael Makkai and John Power had begun work using our def-
inition. Also, other definitions of “n-category” have appeared on the scene! Zouhair
Tamsamani came up with one in terms of “multi-simplicial sets”:

8) Z. Tamsamani, Sur des notions de∞-categorie et∞-groupoide non-strictes via des en-
sembles multi-simpliciaux, Ph.D. thesis, Universite Paul Sabatier, Toulouse, France,
1995.

Michael Batanin also has a definition of ω-categories, of the “globular” sort:

9) M. A. Batanin, “On the definition of weak ω-category”, Macquarie Mathematics
Report number 96/207.
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Now the fun will begin! These different definitions of (weak) n-category should be
equivalent, albeit in a rather subtle sense, so we should check to see if they really are.
Also, we need to develop many more tools for working with n-categories. Then we can
really start using them as a tool.

When I started writing this I thought I was going to explain the definition that Dolan
and I came up with. Now I’m too tired! It takes a while to explain, so I think I’ll stop here
and save that for some other week or weeks. Perhaps I’ll mix it in with my report on the
Workshop on Higher Category Theory and Physics, which is taking place next weekend
at Northwestern University.

This is the end of the “Tale of n-Categories”. If you want more, try ‘An Introduction
to n-Categories’ (in Postscript form), or else read the above papers.
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For people in theoretical physics, Trieste is a kind of mecca. It's an
Italian town on the Adriatic quite near the border with Slovenia, and
it's quite charming, especially the castle of Maximilian near the coast,
built when parts of northern Italy were under Hapsburg rule. Maximilian
later took his architect with him to Mexico when he became Emperor
there, who built another castle for him in Mexico City. (The Mexicans,
apparently unimpressed, overthrew and killed Maximilian.) These days,
physicists visit Trieste partially for the charm of the area, but mainly
to go to the ICTP and SISSA, two physics institutes, the latter of which
has grad students, the former of which is purely for research. There are
lots of conferences and workshops at Trieste, and I was lucky enough to
be invited to Trieste while one I found interesting was going on.

As I described to some extent in \protect\hyperlink{week44}{``Week 44''}
and \protect\hyperlink{week45}{``Week 45''}, Seiberg and Witten have
recently shaken up the subject of Donaldson theory by using some
physical reasoning to radically simplify the computations involved.
Donaldson theory has always had a lot to do with physics, since it uses
the special features of of gauge theory in 4 dimensions to obtain
invariants of \(4\)-dimensional manifolds. So perhaps it is not
surprising that physicists have had a lot to say about Donaldson theory
all along, even before the recent Seiberg-Witten revolution. And indeed,
at Trieste lots of mathematicians and physicists were busy talking to
each other about Donaldson theory, trying to catch up with the latest
stuff and trying to see what to do next.

Now I don't know much about Donaldson theory, but I have a vague
interest in it for various reasons. First, it's \emph{supposed} to be a
4-dimensional topological quantum field theory, or TQFT. Indeed, the
very first paper on TQFTs was about Donaldson theory in 4 dimensions:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Topological quantum field theory'', by Edward Witten, \emph{Comm.
  Math. Phys.} \textbf{117} (1988) 353.
\end{enumerate}

Only later did Witten turn to the comparatively easier case of
Chern-Simons theory, which is a \(3\)-dimensional TQFT:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  ``Quantum field theory and the Jones polynomial'', by Edward Witten,
  \emph{Comm. Math. Phys.} \textbf{121} (1989) 351.
\end{enumerate}

However, when \emph{mathematicians} talk about TQFTs they usually mean
something satisfying Atiyah's axioms for a TQFT (which are nicely
presented in his book --- see \protect\hyperlink{week39}{``Week 39''}).
Now it turns out that Chern-Simons theory can be rigorously constructed
as a TQFT satisfying these axioms most efficiently using braided
monoidal categories, which play a big role in 3d topology. So it makes
quite a bit of sense in a \emph{general} sort of way that Crane and
Frenkel are trying to construct Donaldson theory using braided monoidal
\(2\)-categories, which seem to play a comparable role in 4d topology.
In the paper which I cite in \protect\hyperlink{week50}{``Week 50''},
they begin to construct a braided monoidal \(2\)-category related to the
group \(\mathrm{SU}(2)\), which they conjecture gives a TQFT related to
Donaldson theory. That also makes some \emph{general} sense, because
Donaldson theory, at least ``old'' Donaldson theory, is closely related
to gauge theory with gauge group \(\mathrm{SU}(2)\). Still, I've always
wanted to see a more \emph{specific} reason why Donaldson theory should
be related to the Crane-Frenkel ideas, not necessarily a proof, but at
least a good heuristic argument.

Luckily George Thompson, who invited me to Trieste, knows a bunch about
TQFTs. Unluckily he was sick and I never really got to talk to him very
much! But luckily his collaborator Matthias Blau was also there, so I
took the opportunity to pester him with questions. I learned a bit, most
of which is in their paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  ``\(N = 2\) topological gauge theory, the Euler characteristic of
  moduli spaces, and the Casson invariant'', by Matthias Blau and George
  Thompson, \emph{Comm. Math. Phys.} \textbf{152} (1993), 41--71.
\end{enumerate}

This paper helped me a lot in understanding Crane and Frenkel's ideas.
But so that this ``week'' doesn't get too long, I'll just focus on one
basic aspect of the paper, which is the importance of supersymmetric
quantum theory for TQFTs. Then next week I'll say a bit more about the
Donaldson theory business.

If you look at Witten's paper on Donaldson theory above, you'll see he
writes down the Lagrangian for a ``supersymmetric'' field theory, which
is supposed to be a TQFT, namely, Donaldson theory. Supersymmetric field
theories treat bosons and fermions in an even-handed way. But why does
supersymmetry show up here? The connection with TQFTs is actually pretty
simple and beautiful, at least in essence.

Suppose we are doing quantum field theory, and ``space'' (as opposed to
``spacetime'') is some manifold \(M\). Then we have some Hilbert space
of states \(Z(M)\) and some Hamiltonian \(H\), which is a self-adjoint
operator on \(Z(M)\). To evolve a state (a vector in \(Z(M)\)) in time,
we hit it with the unitary operator \(\exp(-itH)\), where \(t\) is the
amount of time we want to evolve by, and the minus sign is just a
convention designed to confuse you.

We can think of this geometrically as follows. We are taking spacetime
to be \([0,t] \times M\). You can visualize spacetime as a kind of pipe,
if you want, and then imagine sticking in the state \(\psi\) at one end
and having \(\exp(-itH)\psi\) pop out at the other end.

Now say we bend the pipe around and connect the input end to the output
end! Then we get the spacetime \(S^1\times M\), where \(S^1\) is the
circle of circumference \(t\), formed by gluing the two ends of the
interval \([0,t]\) together. For this kind of ``closed'' spacetime, or
compact manifold, a quantum field theory should give us not an operator
like \(\exp(-itH)\), but a number, the ``partition function'', which in
this case is just the \emph{trace} \(\operatorname{tr}(\exp(-itH))\).

The deep reason for this is that taking the trace of an operator ---
remember, that means taking the sum of the diagonal entries, when you
think of it as a matrix --- is really very much like as taking a pipe
and bending it around, connecting the input end to the output end,
forming a closed loop. This may seem bizarre, but observe that taking
the sum of the diagonal entries really is just a quantitative measure of
how much the ``output constructively interferes with the input''. (And a
very nice one, since it winds up not depending on the basis in which we
write the matrix!) This sort of idea is basic in the Bohm-Aharonov
effect, where we take a particle in an electomagnetic field around a
loop and see how much it interferes with itself, and it is also the
basic idea of a ``Wilson loop'', where we do the same thing for a
particle in a gauge field. In other words, the trace measures the amount
of ``positive feedback''. If this still seems bizarre, or just vague,
take a look at:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  \emph{Knots and Physics}, by Louis Kauffman, World Scientific Press,
  Singapore, 1991.
\end{enumerate}

You will see that the same idea shows up in knot theory, where taking a
trace corresponds to taking something (like a braid or tangle) and
folding it over to connect the input and output. In a later ``week''
I'll talk a bit about a new paper by Joyal, Street and Verity that
studies the notion of ``trace'', ``feedback'' and ``folding over'' in a
really general context, the context of category theory.

Anyway, the partition function \(\operatorname{tr}(\exp(-itH))\)
typically depends on \(t\), or in other words, it depends on the
circumference of our circle \(S^1\), not just on the topology of the
manifold \(S^1\times M\). In a TQFT, the partition function is only
supposed to depend on the topology of spacetime! So, how can we get
\(\operatorname{tr}(\exp(-itH))\) to be independent of \(t\)?

There is a banal answer and a clever answer. The banal answer is to take
\(H = 0\)! Then \(\operatorname{tr}(\exp(-itH)) = \operatorname{tr}(1)\)
is just the \emph{dimension} of the Hilbert space:
\[\operatorname{tr}(\exp(-itH)) = dim(Z(M)).\] Actually this isn't quite
as banal as it may sound; indeed, the basic equation of quantum gravity
is the Wheeler-DeWitt equation, \[H \psi = 0,\] which must hold for all
physical states. In other words, in quantum gravity there is a big space
of ``kinematical states'' on which \(H\) is an operator, but the really
meaningful ``physical states'' are just those in the subspace
\[Z(M) = {\psi: H \psi = 0}.\] Read \protect\hyperlink{week11}{``Week
11''} for more on this.

But there is a clever answer involving supersymmetry! You might hope
that there were some more interesting self-adjoint operators \(H\) such
that \(\operatorname{tr}(\exp(-itH))\) is time-independent, but there
aren't. So we seem stuck. This reminds me of a course I took from Raoul
Bott. He said ``so, we think about the problem\ldots{} and still we are
stuck, so what should we do? SUPERTHINK!''

Recall that the Hamiltonian of a free particle in quantum mechanics is
--- up to boring constants --- just minus the Laplacian on configuration
space which is some Riemannian manifold that the particle roams around
on. For this Hamiltonian, \(\operatorname{tr}(\exp(-itH))\) doesn't
quite make sense, since the Hilbert space is infinite-dimensional and
the sum of the diagonal matrix entries diverges. But
\(\operatorname{tr}(\exp(-tH))\) often \emph{does} converge. This is why
folks often replace \(t\) by \(-it\) in formulas, which is called
``going to imaginary time'' or a ``Wick transform''; it really amounts
to replacing Schrodinger's equation by the heat equation: i.e., instead
of a quantum particle, we have a particle undergoing Brownian motion! In
any event, \(\operatorname{tr}(\exp(-tH))\) certainly depends on \(t\)
in these situations, but there is something very similar that does NOT.

Namely, let's replace the Laplacian on \emph{functions} by the Laplacian
on \emph{differential forms}. I won't try to remind you what these are;
I'll simply note that functions are 0-forms, but there are also
\(1\)-forms, 2-forms, and so on --- tensor fields of various sorts ---
and the Laplacian of a \(j\)-form is another \(j\)-form. So for each
\(j\) we get a kind of Hamiltonian \(H_j\), which is just minus the
Laplacian on \(j\)-forms. We can also consider the space of \emph{all}
forms, never mind the \(j\), and on this space there is a Hamiltonian
\(H\), which is just minus the Laplacian on \emph{all} forms. Now, we
could try to take the trace of \(\exp(-tH)\), but it's more interesting
to take the ``supertrace'':
\[\operatorname{str}(\exp(-tH)) = \operatorname{tr}(\exp(-tH_0)) - \operatorname{tr}(\exp(-tH_1)) + \operatorname{tr}(\exp(-tH_2)) - \ldots\]
in other words, the trace of \(\exp(-tH)\) acting on even forms,
\emph{minus} the trace on odd forms.

Why?? Well, odd forms are sort of ``fermionic'' in nature, while even
forms are sort of ``bosonic''. The idea of supersymmetry is to throw in
minus signs when you've got ``odd things'', because they are like
fermions, and physicists know that lots formulas for fermions are just
like formulas for bosons, which are ``even things'', except for these
signs. That's the rough idea. It's all related to how, when you
interchange two identical bosons, their wavefunction remains unchanged,
while for fermions it picks up a phase of \(-1\).

Now the amazing cool thing is that \(\operatorname{str}(\exp(-tH))\) is
independent of \(t\). This follows from some stuff called Hodge theory,
or, if you want to really show off, index theory. Basically it works
like this. If you have an operator \(A\) with eigenvalues \(\lambda_i\),
then \[\operatorname{tr}(\exp(-tA)) = \sum_i \exp(-t \lambda_i)\] if the
sum makes sense. We can use this formula to write out
\(\operatorname{str}(\exp(-tH))\) in terms of eigenvalues of the
Laplacians \(H_j\), and it turns out that all the terms coming from
nonzero eigenvalues exactly cancel! So all that's left is the part
coming from the zero eigenvalues, which is independent of \(t\). If you
believe this for a second, it means we can compute the supertrace by
taking the limit as \(t\to\infty\). The eigenvalues are all nonnegative,
so all the quantities \(\exp(-t \lambda_i)\) go to zero except for the
zero eigenvalues, and we're left with \(\operatorname{str}(\exp(-tH))\)
being equal to the alternating sum of the dimensions of the spaces
\[\{\psi \mid H_j \psi = 0\}\] Now in fact, Hodge theory tells us that
these spaces are really just the ``cohomology groups'' of our
configuration space, so the answer we get for
\(\operatorname{str}(\exp(-tH))\) is what folks call the ``Euler
characteristic'' of our configuration space\ldots{} an important
topological invariant.

So, generalizing the heck out of this idea, we can hope to get TQFTs
from supersymmetric quantum field theories as follows. Start with some
recipe for associating to each choice of ``space'' \(M\) a
``configuration space'' \(C(M)\)\ldots{} some space of fields on \(M\),
typically. Let \(Z(M)\) be the space of all forms on \(C(M)\), and let
\(H\) be the minus the Laplacian, as an operator on \(Z(M)\). Then we
expect that the partition function \(\operatorname{str}(\exp(-tH))\)
will be independent of \(t\). This is just what one wants in a TQFT.
Moreover, the partition function will be the Euler characteristic of the
configuration space \(C(M)\).

But what if we want to get a TQFT out of this trick, and avoid reference
to the Laplacian? Then we can just do the following equivalent thing (at
least it's morally equivalent: there will usually be things to check).
Let \(Z_+(M)\) be the direct sum of all the even cohomology groups of
\(C(M)\), and let \(Z_-(M)\) be the direct sum of all the odd ones. Then
\[\operatorname{str}(\exp(-tH)) = dim(Z_+(M))-dim(Z_-(M))\] so what we
expect is, not quite a TQFT in the Atiyah sense, but a ``superTQFT''
whose space of states has an ``even'' part equal to \(Z_+(M)\) and an
``odd'' part equal to \(Z_-(M)\); the right hand side is then the
``superdimension'' of the space of states this ``superTQFT'' assigns to
\(M\).

Now actually in real life things get tricky because the configuration
space \(C(M)\) might be infinite-dimensional, or a singular variety. If
\(C(M)\) is too weird, it gets hard to say what its Euler characteristic
should be! But as Blau and Thompson's paper and the references in it
point out, one can often still make it make sense, with enough work. In
particular, when we are dealing with Donaldson theory, \(C(M)\) is just
the moduli space of flat \(\mathrm{SU}(2)\) connections on \(M\). This
means that the partition function of \(S^1\times M\) should be the Euler
characteristic of moduli space, better known as the Casson invariant.
And what is the vector space our superTQFT assigns to \(M\)? Well, it's
called Floer homology. Now actually there are a lot of subtleties here
I'm deliberately sloughing over. Read Blau and Thompson's paper for some
of them --- and read the references for more!
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So, last ``week'', I said a bit about how supersymmetry could be handy
for constructing topological quantum field theories, and this week I
want to say a bit more about what that has to do with getting a purely
combinatorial description of Donaldson theory.

But first, I want to lighten things up a bit by mentioning a good
science fiction novel!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Permutation City}, by Greg Egan, published in Britain by
  Millenium (should be available in the U.S. by autumn).
\end{enumerate}

There is a lot of popular interest these days in the anthropic
principle. Roughly, this claims to explain certain features of the
universe by noting that if the universe didn't have those features,
there would be no intelligent life. So, presumably, the very fact that
we are here and asking certain questions guarantees that the questions
will have certain answers.

Of course, the anthropic principle is controversial. Suppose one could
really show that if the universe didn't have property \(X\), there would
be no intelligent life. Does this really count as an ``explanation'' of
property \(X\)? People like arguing about this. But this question is
much too subtle for a simple-minded soul such as myself. I'm still stuck
on more basic things!

For example, are there any examples where we \emph{can} really show that
if the universe didn't have property \(X\), there would be no
intelligent life? It seems that to answer this, we need to have some
idea about what we're counting as ``all possible universes'', and what
counts as ``intelligent life''. So far we only know ONE example of a
universe and ONE example of intelligent life, so it is difficult to
become an expert on these subjects! It'd be all to easy for us to
unthinkingly assume that all intelligent life is carbon-based,
metabolizes using oxidation, and eats pizza, just because folks around
here do.

Our unthinking parochialism is probably all the worse as far as
different universes are concerned! What counts as a possible universe,
anyway? Rather depressingly, we must admit we don't even know the laws
of \emph{this} universe, so we don't really know what it takes for a
universe to be possible, in the strong sense of capable of actually
existing as a universe. We are a little bit better off if we consider
all \emph{logically possible} universes, but not a whole lot better.
Certainly every axiom system counts as a logically possible set of laws
of a universe - every set of axioms in every possible formal system. But
who is to say that universes must have laws of this form? We don't even
know for sure that \emph{ours} does!

So this whole topic will remain a hopeless quagmire until one takes a
small, carefully limited piece of it and studies that. People studying
artificial life are addressing one of these bite-sized pieces, and
getting some interesting results. I hope everyone has heard about Thomas
Ray's program Tierra, for example: he created an artificial ecosystem -
one could call it a ``possible universe'' - and found, after seeding it
with one self-reproducing program, a rapid evolution of parasites, etc.,
following many of the patterns of ecology here. But so far, perhaps
merely due to time and memory limitations, no intelligence!

\emph{One} of the cool things about ``Permutation City'' is an imagined
cellular automaton, the ``Autoverse'', which is complicated enough to
allow life. But something much cooler is the main theme of the book.
Egan calls it the ``Dust Theory''. It's an absolutely outrageous theory,
but if you think about it carefully, you'll see that it's rather hard to
spot a flaw. It depends on the tricky puzzles concealed in the issue of
``isomorphism''.

Being a mathematician, one thing that always puzzled me about the
notions of ``intelligent life'' and ``all possible universes'' was the
question of isomorphisms between universes. Certainly we all agree that,
say, the Heisenberg ``matrix mechanics'' and Schrodinger ``wave
mechanics'' formulations of quantum mechanics are isomorphic. In both of
them, the space of states is a Hilbert space, but in one the states are
described as sequences of numbers, while in the other they are described
as wavefunctions. At first they look like quite different theories. But
in a while people realized that there was a unitary operator from
Heisenberg's space of states to Schrodinger's, and that via this
correspondence all of matrix mechanics is equivalent to wave mechanics.

So does Heisenberg's universe count as the same one as Schrodinger's, or
a different one? It seems clear that they're the same. But say we had
two quantum-mechanical systems whose Hamiltonians have the same
eigenvalues (or spectrum); does that mean they are the ``same'' system,
really? Is that all there is to a physical system, a list of
eigenvalues??? If we are going to go around talking about ``all possible
universes'', it would probably pay to think a little about this sort of
thing!

Say we had two candidates for ``laws of the universe'', written down as
axioms in different formal systems. How would we decide if these were
describing different universes, or were simply different ways of talking
about the same universe? Pretty soon it becomes clear that the issue is
not a black-and-white one of ``same'' versus ``different'' universes.
Instead, laws of physics, or universes satisfying these laws, can turn
out to be isomorphic or not depending on how much structure you want the
isomorphism to preserve. And even if they are isomorphic, there may not
be a ``unique'' isomorphism or a ``canonical'' isomorphism. (Very
roughly speaking, a canonical isomorphism is a ``God-given best one'',
but one can use some category theory to make this precise.) If you think
about this carefully you'll see that our universe could be isomorphic to
some very different-seeming ones, or could have some very
different-seeming ones `embedded' in it.

Greg Egan takes this issue and runs with it -- in a very interesting
direction. Everyone interested in cellular automata, artificial life,
virtual reality, or other issues of simulation should read this, as well
as anyone who likes philosophy or just a good story.

Okay, back to business here\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Alberto Cattaneo, ``Teorie topologiche di tipo BF ed invarianti dei
  nodi'', doctoral thesis, department of physics, University of Milan.

  Alberto Cattaneo, Paolo Cotta-Ramusino, Juerg Froehlich, and Maurizio
  Martellini, ``Topological BF theories in 3 and 4 dimensions'',
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9505027}{\texttt{hep-th/9505027}}.
\end{enumerate}

So, last week I said a wee bit about Blau and Thompson's paper on
supersymmetry and the Casson invariant. All I said was that suitably
concocted supersymmetric field theories could be used to compute the
Euler characteristics of your favorite spaces, and that Blau and
Thompson talked about one which computed the Casson invariant, which is
(in a rather subtle sense) the Euler characteristic of the moduli space
of flat connections on a trivial \(\mathrm{SU}(2)\) bundle over a
3-manifold. Traditionally one requires that the 3-manifold be a homology
3-sphere, but Kevin Walker showed how to do it for rational homology
spheres, and Blau and Thompson mention other work in which the Casson
invariant is generalized still further.

But I didn't say \emph{which} supersymmetric field theory computes the
Casson invariant for you. The answer is, \(N = 2\) supersymmetric \(BF\)
theory with gauge group \(\mathrm{SU}(2)\). So now I should say a little
about \(BF\) theory. Actually I have already mentioned it here and
there, especially in \protect\hyperlink{week36}{``Week 36''}. But I
should say a bit more. This is going to be pretty technical, though, so
fasten your seatbelts.

The people I know who are the most excited about \(BF\) theory are the
folks I was visiting at Milan, namely Cotta-Ramusino, Martellini and his
student Cattaneo. They are working on \(BF\) theory in 3 and 4
dimensions. Let me talk about \(BF\) theory in 3 dimensions, which is
what's most directly relevant here. Well, in \emph{any} dimension, say
\(n\), the fields in \(BF\) theory are a connection \(A\) on a trivial
bundle (take your favorite gauge group \(G\)), whose curvature \(F\)
we'll think of as a \(2\)-form taking values in the Lie algebra of
\(G\), and Lie-algebra-valued \((n-2)\)-form \(B\). Then the Lagrangian
of the theory is \[L(B,F) = \operatorname{tr}(B \wedge F)\] where in the
``trace'' we're using something like the Killing form to get an honest
n-form which we can integrate over spacetime.

But in 3 dimensions, since \(B\) is a \(1\)-form, you can add an extra
``cosmological constant'' term and take as your Lagrangian
\[L(B,F,c) = \operatorname{tr}(B \wedge F + (c^2/3) B \wedge B \wedge B)\]
where I have put in ``\(c^2/3\)'' as my ``cosmological constant'' for
insidious reasons to become clear momentarily. Now what the article by
Cattaneo, Cotta-Ramusino, Froehlich and Martellini makes really clear is
how \(BF\) theory is related to Chern-Simons theory. This is implicit in
Witten's work on 3d gravity (see \protect\hyperlink{week16}{``Week
16''}), which is just the special case where \(G\) is
\(\mathrm{SO}(2,1)\) or \(\mathrm{SO}(3)\), and where the cosmological
constant really is the usual cosmological constant. But I'd never
noticed it. Recall that the Chern-Simons action is
\[L(A) = \operatorname{tr}(A \wedge dA + (2/3)A \wedge A \wedge A)\]
Thus if we have \(1\)-form B around as well, we can set \[
  \begin{aligned}
    A' &= A + cB,
  \\A'' &= A - cB
  \end{aligned}
\] so we get two different Chern-Simons theories with actions \(L(A')\)
and \(L(A'')\), respectively. OR, we can form a theory whose action is
the difference of these two, and, lo and behold:
\[L(A') - L(A'') = 4cL(B,F,c).\] In other words, \(BF\) theory with
cosmological constant is just a ``difference of two Chern-Simons
theories''. Fans of topological quantum field theory may perhaps be more
familiar with this if I point out that the Turaev-Viro theory is just
\(BF\) theory with gauge group \(\mathrm{SU}(2)\), and the fact that the
partition function for this theory is the absolute value squared of that
for Chern-Simons theory is a special case of what I'm talking about. The
nice thing about all this is that the funny phases coming from framings
in Chern-Simons theory precisely cancel out when you form this
``difference of two Chern-Simons theories''.

Now the Casson invariant is related to \(BF\) theory in 3 dimensions
\emph{without} cosmological constant, i.e., taking \(c = 0\). We might
get worried by the equation above, which we can't solve for \(L(B,F)\)
when \(c = 0\), but as Cattaneo and company point out,
\[L(B,F) = \lim_{c\to0}\frac{L(A')-L(A'')}{4c}\] so \(BF\) theory
without cosmological constant is just a limiting case, actually a kind
of \emph{derivative} of Chern-Simons theory. They use this to make
clearer the relation between the vacuum expectation values of Wilson
loops in Chern-Simons theory --- which give you the HOMFLY polynomial
for \(G = \mathrm{SU}(N)\) --- and the corresponding vacuum expectation
values in \(BF\) theory without cosmological constant --- which give you
the Alexander polynomial! Very pretty stuff.

Now back to the Casson invariant and some flagrant speculation on my
part concerning Crane and Frenkel's ideas on Donaldson theory. (I said
last week that this is where I was heading, and now I'm almost there!)
Okay: we know how to define Chern-Simons theory in a purely
combinatorial way using quantum groups. I.e., we can compute the
partition function of Chern-Simons theory with gauge group \(G\) using
the quantum version of the group \(G\)\ldots{} let me just call it
``quantum \(G\)''. If we take \(c\) to be imaginary above, one can show
that \(BF\) theory with cosmological constant can be computed in a very
similar way starting with the quantum group corresponding to the
\emph{complexification} of \(G\), i.e.~``quantum \(\mathbb{C}G\)''. The
point is that \(A+cB\) can then be thought of as a connection on a
bundle with gauge group \(\mathbb{C}G\). So far this is not flagrant
speculation. Slightly more flagrantly, but not really very much at all,
the formulas above hint that \(BF\) theory without cosmological constant
can be computed in a similar way starting with the quantum group
corresponding to the \emph{tangent bundle} of \(G\), or ``quantum
\(TG\)''. (The tangent bundle of a Lie group is again a Lie group, and
as we let \(c \to 0\) what we are really doing is taking a limit in
which \(\mathbb{C}G\) approaches \(TG\); folks call this a
``contraction'', and in the \(\mathrm{SU}(2)\) case many of the details
appear in Witten's paper on 3d quantum gravity; the tangent bundle of
\(\mathrm{SO}(2,1)\) being just the Poincare group in 3 dimensions.) If
anyone knows whether folks have worked out the quantization of these
tangent bundle groups, let me know! I think some examples have been
worked out.

Okay, but Blau and Thompson say that to compute the Casson invariant you
need to use, not \(BF\) theory with gauge group \(\mathrm{SU}(2)\), but
\emph{supersymmetric} \(BF\) theory with gauge group \(\mathrm{SU}(2)\).
Well, no problemo --- just compute it with ``quantum
super-\(T(\mathrm{SU}(2))\)''! Here I'm getting a bit flagrant; there
\emph{are} theories of quantum supergroups, but I don't know much about
them, especially ``quantum super-\(TG\)'' for \(G\) compact semisimple.
Again, if anybody does, please let me know! (Actually Blau told me to
check out a paper by Saleur and somebody on this, but I never
did\ldots.)

Okay, but now let's get seriously flagrant. Recall that the Casson
invariant is really the Euler characteristic of something, just a
number, but this number is just the superdimension of a
super-vector-space, namely the Floer cohomology. From numbers to vector
spaces: this is a typical sort of ``categorification'' process that one
would expect as one goes from 3d to 4d TQFTs. And indeed, folks suspect
that the Floer cohomology is the space of states for a 4d TQFT, or
something like a 4d TQFT, namely Donaldson theory. (``Something like
it'' because of many quirky twists that one wouldn't expect of a
full-fledged TQFT satisfying the Atiyah axioms.) So, just as the Casson
invariant is associated to a certain Hopf algebra, namely ``quantum
super-\(T(\mathrm{SU}(2))\)'', we'd expect Donaldson theory to be
associated to a certain Hopf \emph{category}, the ``categorification of
quantum super-\(T(\mathrm{SU}(2))\)''. So all we need to do is figure
out how to categorify quantum super-\(T(\mathrm{SU}(2))\) and we've got
a purely combinatorial definition of Donaldson theory!

Well, that's not quite so easy, of course. And I may have made, not only
the inevitable errors involved in painting a simplified sketch of what
is bound to be a rather big task, but also other worse errors. Still,
this business should clarify, if only a wee bit, what Crane and Frenkel
are up to when they are categorifying \(\mathrm{SU}(2)\). In fact, it's
likely that working with \(\mathrm{SU}(2)\) rather than
\(T(\mathrm{SU}(2))\) will remove some of the divergences from the state
sum, since, being compact, \(\mathrm{SU}(2)\) has a discrete set of
representations (and quantum \(\mathrm{SU}(2)\) has finitely many
interesting ones, at roots of unity). So they may get a theory that's
allied to but not exactly the same as Donaldson theory, yet
better-behaved as far as the TQFT axioms go.

If anyone actually does anything interesting with these ideas I'd very
much appreciate hearing about it.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week53}{%
\section{May 18, 1995}\label{week53}}

Near the end of April I was invited by Ronnie Brown to Bangor, Wales for
a very exciting get-together. Readers of ``This Week's Finds'' will know
I'm interested in \(n\)-categories and higher-dimensional algebra these
days. Brown is the originator of the term ``higher-dimensional algebra''
and has been sort of a prophet of the subject for many years. Tim Porter
at Bangor also works on this subject; I'll try to say a bit more about
his stuff next week. And visiting Bangor at the time were John Power and
Ross Street, two category theorists who do a lot of work on
\(n\)-categories. So I had a chance to learn some more
higher-dimensional algebra and category theory and see what these folks
thought of my crazy ideas.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Ronald Brown, ``Out of line'', \emph{Royal Institution Proceedings}
  \textbf{64}, 207--243.
\end{enumerate}

Brown is very interested in explaining mathematics to the public, and
this paper is based on a talk he gave to a general audience. It is a
very accessible introduction to what mathematics is really all about,
and what higher-dimensional algebra is about in particular. ``Out of
line'' is a pun, of course, because not only does higher-dimensional
algebra seek to burst free of certain habits of ``linear thinking'' that
tend to go along with symbol string manipulation, it also has been a bit
outside the mainstream of mathematics until recently.

Now, when I speak of ``linear thinking'' I am not indulging in some
vague new-agey complaint against rationality. I mean something very
precise: the tendency to focus ones energy on operations that are easily
modelled by the juxtaposition of symbols in a line. The primordial
example is addition: we have a bunch of sticks in a row:
\[\vert\vert\vert\vert\vert\] and we say there are ``5'' sticks and
write \[1+1+1+1+1=5.\] Fine. But when we have a \(2\)-dimensional array
of sticks:
\[\begin{gathered}\vert\vert\vert\vert\\\vert\vert\vert\vert\end{gathered}\]

\begin{verbatim}
                        ||||
                        ||||
\end{verbatim}

we are in a hurry to bring the situation to linear form by making up a
new operation, ``multiplication'', and saying we have \(2 \times 4\)
sticks. This isn't so bad for plenty of purposes; it's not as if I'm
against times tables! But certain things, particular in topology, can
get obscured by neglecting operations that correspond most naturally to
higher-dimensional forms of juxtaposition, and Brown's paper explains
some of these, and how to deal with these problems. The point is not to
avoid linear notation; it's to avoid falling into certain mental traps
it can lead you into if you're not careful!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  A. J. Power, ``Why tricategories?'', preprint available as
  \texttt{ECS-LFCS-94-289} from Laboratory for Foundations of Computer
  Science, University of Edinburgh. Also available at
  \texttt{http://www.ima.umn.edu/talks/workshops/SP6.7-18.04/power/power.pdf}
\end{enumerate}

When I mentioned this paper to a friend, she puzzledly asked ``\,`Why
try categories?'?'' And indeed, one must have tried categories and
enjoyed them before moving on to bicategories, tricategories and that
great beckoning terra incognita of mathematics, \(n\)-category theory.

In a sense I already know ``why tricategories''. I think they're great,
and in a paper with James Dolan --- summarized in
\protect\hyperlink{week49}{``Week 49''} --- I did my best to get
everyone else interested in general \(n\)-categories. For me, the great
thing about \(n\)-category theory is that it strives to formalize the
notion of ``process'' in all its recursive splendor. An \(n\)-category
is a mathematical structure containing not only objects, which one might
think of as ``things'', and morphisms, which one might think of as
``processes leading from one thing to another'', but also
\(2\)-morphisms, which are ``processes leading from one process to
another'', and then 3-morphisms, etc., on up to \(n\)-morphisms.

In physics and topology applications, the \(k\)-morphisms can often be
thought of as \(k\)-dimensional geometrical objects, since (as the
Greeks knew) the process of motion of a point traces out a
\(1\)-dimensional figure, and similarly the motion of a
\(1\)-dimensional figure traces out a 2-dimensional surface\ldots{} and
\(n\)-dimensional spacetime is in some rough sense ``traced out'' by the
motion of \((n-1)\)-dimensional spacelike slices through time. If you
think this is vague, you're right --- and that's why one needs
\(n\)-category theory, to make it precise! When one understands
\(n\)-categories (which so far we really do only up to \(n = 3\)) one
sees that the possibilities inherent in \(n\)-dimensional topology match
up very nicely with one might have stumbled on not knowing topology at
all, but just playing around with this iterated notion of processes
between processes between processes\ldots{} This ``natural
correspondence'' between purely algebraic concepts and topological ones
is what makes topological quantum field theory tick, and I can't help
but feel that it will have quite a bit to say about physics eventually.

Power, however, gives a quite different set of reasons for being
interested in tricategories. These are drawn from computer science and
logic, and they make me realize yet again how poor and outdated my
education in logic was, and how much interesting stuff there is going on
in the subject!

At a completely naive level, one might already expect that relation
between ``processes'' and ``things'' is subtle and interesting in
computer science. For after all, we can think of a program either as a
process that turns one thing into another, or as data, a sort of thing,
which other programs can act on. Power does not really emphasize this
issue explicitly, but I can't help remarking on it, especially because
it reminds me of the curious fact that in mathematical physics, ``time
is the last dimension''.

That is, in topological quantum field theory, the \(n\)-morphisms in an
\(n\)-category, which are the processes having no further processes
going between them, represent the passage of time. And indeed, for many
practical purposes it appears that \(n = 4\) is where things leave off,
since spacetime appears \(4\)-dimensional. On the other hand, nobody
knows any mathematical reason why one has to stop at any given \(n\). So
ultimately we should try to understand ``\(\omega\)-categories'', having
\(n\)-morphisms for all \(n\) greater than or equal to zero (0-morphisms
being simply objects, and \(1\)-morphisms being morphisms). This
corresponds philosophically to the notion that every ``process'' can
also be regarded as a ``thing'' which other processes can transform.
Moreover, we should also try to understand
``\(\mathbb{Z}\)-categories'', having \(n\)-morphisms for all integers
\(n\), even negative ones! In this world, where there is no bottom as
well as no top, every ``thing'' can also be regarded as a ``process''.

But I digress. Power is actually more interested in a different (though
perhaps related) hierarchy. Sometimes people like to say computers just
do stuff with bunches of numbers, but that's pretty misleading. Of
course computers \emph{can} do things with numbers, but that's one of
the simpler mathematical things they can do. A number is an element of a
set (the set of real numbers, or some set of more computer-manageable
numbers.) And computers have no problem dealing with elements of sets.
But computers can also deal with sets themselves --- and more fancy
mathematical objects.

Many mathematical objects are sets, or bunches of sets, equipped with
operations satisfying equational laws. For example, a group is a set
equipped with a product and inverse operation satisfying various laws.
Sometimes these operations are only defined if certain conditions hold,
of course. For example, a category is a set of ``objects'' and a set of
``morphisms'', together with various operations like composition of
morphisms, but one can only compose two morphisms \(f\colon x\to y\) and
\(g\colon w\to z\) if \(y = w\). Other examples might include graphs,
partially ordered sets\ldots{} and all sorts of things computer
scientists know and love.

We could call all of these ``sets with essentially algebraic
structure.'' Mathematically sophisticated computer scientists want to be
able define data types corresponding to arbitrary sorts of sets with
essentially algebraic structure, and to play around with them easily. So
they need to ponder such things in considerable generality.

Note that in all cases, there is not just a bunch of objects to play
with --- like ``groups'' or ``partially ordered sets'' --- but a
\emph{category} in which the morphisms are structure-preserving maps
between the objects in question. For example, there is a category
\(\mathsf{Grp}\) whose objects are groups and whose morphisms are group
homomorphisms.

The categories one gets this way are of a certain sort. Power calls them
``categories of models of finite limit theories''. To define this
requires a bit of know-how, but it's basically simple. For example,
suppose I were trying to explain the definition of a category to a
computer scientist; I might say, every category has a set
\(\mathrm{ob}\) of objects and a set \(\mathrm{mor}\) of morphisms;
every morphism has an object called its source (or domain), so there is
a function \[\operatorname{source}\colon\mathrm{mor}\to\mathrm{ob}\] and
similarly every morphism has an object called its target (or codomain)
so there is a function
\[\operatorname{target}\colon\mathrm{mor}\to\mathrm{ob}.\] Now, we can
compose a morphism \(f\) and a morphism \(g\) to get \(fg\) if
\(\operatorname{target}(f) = \operatorname{source}(g)\), so we have a
composition function
\[\operatorname{composition}\colon C\to\mathrm{mor}\] defined only on
the subset \(C\) of \(\mathrm{mor}\times\mathrm{mor}\) that is the
biggest subset making the following diagram commute: \[
  \begin{tikzcd}
    C \ar[r,"p_1"]
      \ar[d,swap,"p_2"]
    &\mathrm{mor} \ar[d,"\operatorname{target}"]
  \\\mathrm{mor} \ar[r,"\operatorname{source}"]
    &\mathrm{ob}
  \end{tikzcd}
\] where \(p_1\colon(f,g)\mapsto f\) and \(p_2\colon(f,g)\mapsto g\).

Now category theorists have a slick way of dealing with these functions
defined only a subset satisfying equational conditions; instead of
talking about the ``biggest subset'' \(C\) they would say that \(C\) is
the ``limit'' of the diagram \[
  \begin{tikzcd}
    &\mathrm{mor} \ar[d,"\operatorname{target}"]
  \\\mathrm{mor} \ar[r,"\operatorname{source}"]
    &\mathrm{ob}
  \end{tikzcd}
\] If you don't get this, don't worry; in a sense it's just another way
of talking about the same thing, with the advantage of being infinitely
more general, since one can talk about the limit of any diagram, though
here we will only need limits of \emph{finite} diagrams.

Then, after having lined up these ingredients (and I have left some
out!), I could go ahead and say what equational laws they need to
satisfy, like associativity of composition; and if I wanted I could
write all these laws out using commutative diagrams, too! Then I would
have laid out the ``theory of categories'' --- a complete description of
the operations in a category and the laws they obey.

The theory of categories is a typical example of a ``finite limit
theory'', because what I really did above, in describing the ``theory of
categories'', is describe a CATEGORY, say \(\mathsf{Th}\), having
objects called \(\mathrm{ob}\) and \(\mathrm{mor}\), and morphisms
called \(\operatorname{source}\), \(\operatorname{target}\),
\(\operatorname{composition}\), and so on, such that various diagrams
commute! Moreover, we should think of \(\mathsf{Th}\) as a category with
all finite limits, that is, one in which all finite diagrams have
limits. That allows us to deal with things like the object \(C\) above,
which are defined as limits of finite diagrams.

So we have this thing \(\mathsf{Th}\), the ``theory of categories''. And
then, any \emph{particular} category is a ``model'' of this theory
\(\mathsf{Th}\). A ``model'' assigns to each object in \(\mathsf{Th}\) a
particular set --- for example, ``mor'' above gets assigned the set of
morphisms in some particular category \(\mathcal{C}\) --- and assigns to
each morphism in \(\mathsf{Th}\) a particular function --- for example,
``composition'' above gets assigned the function representing
composition in \(\mathcal{C}\). Moreover, this assignment satisfies a
bunch of utterly obvious consistency conditions which one summarizes by
saying that a ``model of the theory \(\mathsf{Th}\) is a functor from
\(\mathsf{Th}\) to \(\mathsf{Set}\) that preserves finite limits''. In
logic, you know, a model of a theory is something that assigns to each
thingie in the theory an actual thingie, in such a way that all the
stuff the theory SAYS is true about these thingies, IS true!

Now if you are with me thus far you either know this stuff better than I
do, or else I congratulate you, because the example I picked was
deliberately self-referential and confusing --- I was using category
theory to describe the theory of categories, and also, the theory
\(\mathsf{Th}\) itself was a category! But the world of thought does
have a funny way of wrapping back on itself like that\ldots{} so it's
good to get used to it.

In fact there is a big literature on ``sets with essentially algebraic
structure'' and ``categories of models of finite limit
theories''\ldots{} this is a branch of logic they never taught me about
in school, but it definitely exists, and Power gives some references to
it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  P. Gabriel and F. Ulmer, \emph{Lokal praesentierbare Kategorien}, in
  Springer Lecture Notes in Math \textbf{221} (1971).

  G. Kelly, Structures defined by finite limits in the enriched context
  I, \emph{Cahiers de Top. et. Geom. Diff.} \textbf{23} (1982), 3--41.

  Michael Makkai and Robert Pare, ``Accessible categories: the
  foundations of categorical model theory'', in \emph{Contemp. Math.}
  \textbf{104} (1989).
\end{enumerate}

But let's dig in a bit further, since really the fun is just starting.
Now, I told you what a model of one of these finite limit theories Th
was, but not what a morphism between models is! Well, if a model is a
sort of functor, a morphism between them should be a sort of natural
transformation between functors; that's how it usually goes. So there is
really a category \(\mathsf{Mod}(\mathsf{Th})\) of models of one of
these theories \(\mathsf{Th}\). If \(\mathsf{Th}\) were the theory of
categories as above, \(\mathsf{Mod}(\mathsf{Th})\) would be the category
of (small) categories, which is called \(\mathsf{Cat}\). To take a less
fiendish example, if \(\mathsf{Th}\) were the theory of groups,
\(\mathsf{Mod}(\mathsf{Th})\) would the category \(\mathsf{Grp}\).

But now suppose one wanted to build a computer language that could not
only deal with all sorts of data types corresponding to different ``sets
with essentially algebraic structure'', but also various ``categories
with essentially algebraic structure''. For if one likes category theory
well enough to do a lot of computer science using it, it makes sense to
let the computer itself join the fun, by creating a language in which
it's easy to talk about categories. After all, our eventual goal with
computers is to have them completely replace computer scientists, right?

Well, in a way ``categories with essentially algebraic structure''
aren't terribly different from sets with essentially algebraic
structure. Roughly, the idea is that instead of having a data type that
consists of a bunch of sets with functions between them satisfying some
equational laws, we have a data type consisting of a bunch of
categories, functors between them, and natural transformations between
THEM satisfying equational laws. What this means is that if we try to
copy the above stuff, instead of a ``theory'' we will have a
``2-theory'' \(\mathsf{Th}\), which is some sort of \(2\)-category, and
then a model of this would be a 2-functor from \(\mathsf{Th}\) to
\(\mathsf{Cat}\). We want to wind up getting a \(2\)-category
\(\mathsf{Mod}(\mathsf{Th})\) of models of \(\mathsf{Th}\).

But actually carrying this out is a bit tricky, and much of Power's
paper goes into the details of various proposed schemes. Of course there
is no reason in principle to stop here, other than our limited
understanding of \(n\)-categories, sheer bewilderment, or boredom.
Reasoning about \(n\)-categories always tends to drag in
\((n+1)\)-categories, because the collection of all \(n\)-categories
with some particular structure (such as the ``essentially algebraic
structures'' I've focussed on here, but also other sorts) typically
forms an \((n+1)\)-category. This is how Power motivates tricategories.
Right now we are stuck at \(n = 3\), but there are good reasons to
expect that pretty soon we'll go beyond that. In fact, Power and Street
showed me a sketch of their ideas on tetracategories\ldots.
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I just got back from a quantum gravity conference in Warsaw, and I'm
dying to talk about some of the stuff I heard there, but first I should
describe some work on topology and higher-dimensional algebra that I
have been meaning to discuss for some time now.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Timothy Porter, `Abstract homotopy theory: the interaction of category
  theory and homotopy theory, lectures from the school on ``Categories
  and Topology''\,', Department of Mathematics, Universita di Genova,
  report \#199, March 1992.
\end{enumerate}

Timothy Porter is another expert on higher-dimensional algebra whom I
met in Bangor, Wales, where he teaches. As paper 3) below makes clear,
he is very interested in the relationship between traditional themes in
topology and the new-fangled topological quantum field theories (TQFTs)
people have been coming up with these days. The above paper does not
mention TQFTs; instead, it is an overview of various approaches that
people have used to study homotopy theory in an algebraic way. But
anyone seriously interested in the intersection of physics and topology
would do well to get ahold of it, since it's a pleasant way to get
acquainted with some of the beautiful techniques algebraic topologists
have been developing, which many physicists are just starting to catch
up with.

What's homotopy theory? Well, roughly, it's the study of the properties
of spaces that are preserved by a wide class of stretchings and
squashings, called ``homotopies''.

For example, a closed disc \(D\) and a one-point set \(\{p\}\) are quite
different as topological spaces, in that there is no continuous map from
one to the other having a continuous inverse. (This is obvious because
they have a different number of points!) But there is clearly something
similar about them, because you can squash a disc down to a point
without crushing any holes in the process (since the disc has no holes).
To formalize this, note that we can find continuous functions
\[f\colon D\to\{p\}\] and \[g\colon\{p\}\to D\] that are inverses ``up
to homotopy''. For example, let \(f\) be the only possible function from
\(D\) to \(\{p\}\), taking every point in \(D\) to \(p\), and let \(g\)
be the map that sends \(p\) to the point \(0\), where we think of \(D\)
as the unit disc in the plane. Now if we first do \(g\) and then do
\(f\) we are back where we started from, so \(gf\) is the identity on
\(\{p\}\). But if we first do \(f\) and then \(g\) we are NOT
necessarily back where we started from: instead, the function \(fg\)
takes every point in \(D\) to the point \(0\) in \(D\). So \(fg\) is not
the identity. But it is ``homotopic'' to the identity, by which I mean
that there is a continuously varying family of continuous functions
\(F_t\) from \(D\) to itself, such that \(F_0 = fg\) and \(F_1\) is the
identity on \(D\). Simply let \(F_t\) be scalar multiplication by \(t\)!
As \(t\) goes from \(1\) to \(0\), we see that \(F_t\) squashes the disc
down to a point.

A bit more precisely, and more generally too, if we have two topological
spaces \(X\) and \(Y\) we say that two continuous functions
\(f,g\colon X \to Y\) are homotopic if there is a continuous function
\[F\colon[0,1]\times X\to Y\] such that \[F(0,x)=f(x)\] and
\[F(1,x) = g(x).\] Intuitively, this means that \(f\) can be
``continuously deformed'' into \(g\). Then we say that two spaces \(X\)
and \(Y\) are homotopic if there are continuous functions
\(f\colon X\to Y\), \(g\colon Y \to X\) which are inverse up to
homotopy, i.e., such that \(gf\) and \(fg\) are homotopic to the
identity on \(X\) and \(Y\), respectively.

The main goal in homotopy theory is to understand when functions are
homotopic and when spaces are homotopic. This is incredibly hard in
\emph{general}, but in special cases a huge amount is known. To take a
random (but important) example, people know that all maps from the
sphere to the circle are homotopic. Remember that algebraists call the
sphere \(S^2\) since its surface is \(2\)-dimensional, and call the
circle \(S^1\); in general the unit sphere in \(\mathbb{R}^{n+1}\) is
called \(S^n\). So for short, one says that all maps from \(S^2\) to
\(S^1\) are homotopic. But: there are infinitely many different
nonhomotopic maps from \$S\^{}3 to \(S^2\)! In fact there is a nice way
to label all these ``homotopy classes'' of maps by integers. And then:
there are only two homotopy classes of maps from \(S^4\) to \(S^3\).
There are also only two homotopy classes of maps from \(S^5\) to
\(S^4\), and from \(S^6\) to \(S^5\), and so on.

Now, the famous topologist J. H. C. Whitehead put forth an important
program in 1950, as follows: ``The ultimate aim of \emph{algebraic
homotopy} is to construct a purely algebraic theory, which is equivalent
to homotopy theory in the same way that `analytic' is equivalent to
`pure' projective geometry.'' Since then a lot of people have approached
this program from various angles, and Porter's paper tours some of the
key ideas involved.

Part of the reason for pursuing this program is simply to get good at
computing things, in a manner similar to how analytic geometry helps you
solve problems in ``pure'' geometry. This is not my main interest; if I
want to know how many homotopy classes of maps there are from \(S^9\) to
\(S^6\), or something, I know where to look it up, or whom to ask ---
which is infinitely more efficient than trying to figure it out myself!
And indeed, there is a formidable collection of tools out there for
solving various sorts of specific homotopy-theoretic problems, not all
of which rely crucially on a \emph{general} purely algebraic theory of
homotopy.

I'm more interested in this program for another reason, which is simply
to find an algebraic language for talking about things being true ``up
to homotopy''. As I've tried to explain in recent ``weeks'', there are
many situations where equations should be replaced by some weaker form
of equivalence. Taking this seriously leads naturally to the study of
\(n\)-categories, in which equations between \(j\)-morphisms can be
replaced by specified \((j+1)\)-morphisms. But Porter describes a host
of different (though related) formalisms set up to handle this sort of
issue. A few of the main ones are: simplicial sets, simplicial objects
in more general categories, Kan complexes, Quillen's ``model
categories'', \(\mathsf{Cat}^n\) groups, and homotopy coherent diagrams.
Understanding how all these formalisms are related and what they are
good for is quite a job, but this paper helps one get started.

So far everything I've actually said is quite elementary --- I've made
reference to some impressive buzzwords without explaining them, but that
doesn't count. So I should put in something for the folks who want more!
Let me say a word or two about \(\mathsf{Cat}^n\) groups. The definition
of these is a typical mind-blowing piece of higher-dimensional algebra,
so I can't resist explaining it. (After a while these definitions stop
seeming so mind-boggling, and then one is presumably beginning
understand the point of the subject!) In
\protect\hyperlink{week53}{``Week 53''} I gave a definition of a
category using category theory. This might seem completely circular and
useless, but of course I was illustrating quite generally how one could
define a ``model'' of a ``finite limit theory'' using category theory.
The idea was that a category is a \emph{set} of objects, a \emph{set} of
morphisms, together with various \emph{functions} like the source and
target functions which assign to any morphism (or ``arrow'') its source
and target (or ``tail'' and ``tip''). These sets and functions needed to
satisfy various axioms, of course.

Now \emph{sets} and \emph{functions} are the objects and morphisms in
the category of sets, which folks call Set. So in
\protect\hyperlink{week53}{``Week 53''} I cooked up a little category
\(\mathsf{Th}\) called ``the theory of categories'', which has objects
called ``\(\mathrm{ob}\)'' and ``\(\mathrm{mor}\)'', morphisms called
``\(s\)'' and ``\(t\)'', etc.. These were completely abstract gizmos,
not actual sets and functions. But we required them to satisfy the exact
same laws that the sets of objects and morphisms, and the source and
target functions, and so on, satisfy in an actual category. Then a
functor from \(\mathsf{Th}\) to \(\mathsf{Set}\) which preserves finite
limits is called a ``model'' of the theory of categories, because it
assigns to the completely abstract gizmos actual sets and functions
satisfying the same laws. In other words, if we have a functor
\[F\colon\mathsf{Th}\to\mathsf{Set}\] we have an actual set
\(F(\mathrm{ob})\) of objects, an actual set \(F(\mathrm{mor})\) of
morphisms, an actual function \(F(s)\) from \(F(\mathrm{ob})\) to
\(F(\mathrm{mor})\), and so on. In short, we have an actual category!

Now to get this trick to work we didn't need much to be true about the
category Set: all we needed was that it had finite limits. (Ignore this
technical stuff about limits if you don't get it; you can still get the
basic idea here.) And there are lots of categories with this property,
like the category \(\mathsf{Grp}\) of groups. So we can also talk about
a model of the theory of categories in the category of groups! What is
this? Well, it's just a functor from \(\mathsf{Th}\) to \(\mathsf{Grp}\)
that preserves finite limits. More concretely, it's exactly like a
category, except everywhere in the definition of category where you see
the word ``set'', scratch that out and write in ``group'', and
everywhere you see the word ``function'', scratch that out and write in
``homomorphism''. So you have a \emph{group} of objects, a \emph{group}
of morphisms, together with various \emph{homomorphisms} like the source
and target, and so on\ldots{} satisfying laws perfectly analogous to
those in the definition of a category!

Folks call this kind of thing a ``categorical group'', a ``category
object in \(\mathsf{Grp}\)'' or an ``internal category in
\(\mathsf{Grp}\)''. From the point of view of sheer audacity alone, it's
a wonderful concept: we have taken the definition of a category and
transplanted it from the soil in which it was born, namely the category
\(\mathsf{Set}\), into new soil, namely the category \(\mathsf{Grp}\)!
But more remarkably still, the study of these ``categorical groups'' is
equivalent to the study of ``homotopy 2-types'' - that is, topological
spaces, but where you only care about them up to homotopy, and even more
drastically, where nothing above dimension 2 concerns you. This result
is due (as far as I can tell) to Ronnie Brown and C. B. Spencer,
building on earlier work of Mac Lane and Whitehead.

But why stop here? Consider the category \(\mathsf{Cat}(\mathsf{Grp})\)
of these category objects in \(\mathsf{Grp}\). Take my word for it, such
a thing exists and it has finite limits. That means we can look for
models of the theory of categories in \(\mathsf{Cat}(\mathsf{Grp})\) ---
i.e., functors from \(\mathsf{Th}\) to \(\mathsf{Cat}(\mathsf{Grp})\),
preserving finite limits. In fact, \emph{there} things form a category,
say \(\mathsf{Cat}^2(\mathsf{Grp})\), and \emph{this} category has
finite limits, so we can look for models of the theory of categories in
\emph{this} category, and \emph{these} form a category
\(\mathsf{Cat}^3(\mathsf{Grp})\), which also has finite limits\ldots{}
etc. So we can construct an insanely recursive hierarchy:

\begin{itemize}
\tightlist
\item
  groups
\item
  category objects in the the category of groups
\item
  category objects in the category of (category objects in the category
  of groups)
\item
  etc\ldots.
\end{itemize}

Now, truly wonderfully, L. Loday showed that the study of
\(\mathsf{Cat}^n(\mathsf{Grp})\) is equivalent (in a certain precise
sense) to the study of homotopy \(n\)-types --- i.e., homotopy theory
where you don't care about phenomena above dimension n:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  L. Loday, ``Spaces with finitely many non-trivial homotopy groups'',
  \emph{Jour. Pure Appl. Algebra} \textbf{24} (1982), 179--202.
\end{enumerate}

Subsequently, Ronnie Brown, Loday and others have done some interesting
topology using this fact. But the most remarkable thing, in a way, is
how taking a perfectly basic concept, the concept of GROUP, and then
doing category theory ``internally'' in the category of groups in an
iterated fashion, winds up being very much the same as doing topology -
or at least homotopy theory. This suggests that there is something
deeply algebraic about homotopy theory in the first place.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Timothy Porter, ``Interpretations of Yetter's notion of G-coloring:
  simplicial fibre bundles and non-abelian cohomology'', available at
  \url{http://citeseer.ist.psu.edu/100965.html}
\end{enumerate}

Physicists know and love the Dijkgraaf-Witten model, a 2+1-dimensional
TQFT that depends on a finite group \(G\). It's easy to compute the
Hilbert space of states for any compact oriented 2-manifold in this
TQFT. Just triangulate your 2-manifold and let your Hilbert space have
as a basis the set of all possible ways of labelling the edges with
elements of \(G\) such that \(g_1g_2g_3 = 1\) whenever we have 3 edges
going counterclockwise around any triangle. Yetter figured out how to
generalize this to get an interesting TQFT from any finite categorical
group:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  David N. Yetter, ``Topological quantum field theories associated to
  finite groups and crossed G-sets'', \emph{Journal of Knot Theory and
  its Ramifications} \textbf{1} (1992), 1--20.

  ``TQFTs from homotopy 2-types'', \emph{Journal of Knot Theory and its
  Ramifications} \textbf{2} (1993), 113--123.
\end{enumerate}

This should be the beginning of some bigger pattern relating homotopy
theory and TQFTs. Jim Dolan and I have our own theories as to how this
pattern should work (see \protect\hyperlink{week49}{``Week 49''}) but
they are still a rather long ways from being theorems. Porter, who is an
expert in simplicial methods, makes the relationship (or ONE of the
relationships) very clear in this special case.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Justin Roberts, ``Skein theory and Turaev-Viro invariants'', preprint.

  ``Refined state-sum invariants of 3- and 4-manifolds'', preprint.

  ``Skeins and mapping class groups'', \emph{Math. Proc. Camb. Phil.
  Soc.} \textbf{115} (1994), 53--77.

  G. Masbaum and Justin Roberts, ``On central extensions of mapping
  class groups'', \emph{Mathematica Gottingensis, Schriftenreihe des
  Sonderforschungsbereichs Geometrie und Analysis}, Heft \textbf{42}
  (1993).
\end{enumerate}

The first two papers here might be the most interesting for physicists.
They both deal with 3d and 4d TQFTs constructed using quantum
\(\mathrm{SU}(2)\): in particular, the Turaev-Viro theory in dimension
3, and the Crane-Yetter-Broda theory in dimension 4. The first theory is
interesting physically because it corresponds to 3d Euclidean quantum
gravity with cosmological constant. The second theory is interesting
mainly because it's one of the few 4d TQFTs for which the Atiyah axioms
have been shown; sometime I will explain the Lagrangian for this theory,
which seems not to be well-known.

In Roberts' first paper, which was already discussed in
\protect\hyperlink{week14}{``Week 14''}, he gave a simple proof that the
partition function for the Turaev-Viro theory was the absolute value
squared of that for Chern-Simons theory, perhaps the most famous of
TQFTs. He also showed that the partition function for the
Crane-Yetter-Broda theory was a function of the signature and Euler
characteristic (classical invariants of 4-manifolds). In the second
paper, he considers observables for the TV and CYB theories depending on
cohomology classes in the manifold. I wish I had energy now to explain a
bit more about these observables, since they are very interesting, but I
don't!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Lawrence Breen, ``On the Classification of 2-Gerbes and 2-Stacks'',
  \emph{Asterisque} \textbf{225}, 1994.
\end{enumerate}

Suffice it to say that if gerbes and stacks --- which are, very roughly,
sort of like sheaves of categories --- are too simple to interest you,
it's time to read about 2-gerbes and 2-stacks --- which are roughly like
sheaves of \(2\)-categories.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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I recently went to a workshop on canonical quantum gravity in Warsaw,
organized by Jerzy Kijowski and Jerzy Lewandowski, and I learned some
interesting things. I'll talk about some of them in this issue, and some
in the next.

Conferences are a funny thing. On science newsgroups on the net, there
is very little talk about conferences. This is probably because the
people who really understand conferences are too busy flying from one
conference to the next to post to newsgroups very often. Academic
success is in part measured by the number of conference invitations one
receives, the prestige of the conferences, and the type of invitation.
For example, a big plenary lecture on an impressive stage, preceded by a
little warmup where someone explains how great you are, counts for
infinitely many talks in those parallel sessions where dozens of people
get 10 minutes each to explain their work before the moderator begins to
make little coughs indicating that it's time for the next one, while all
the while people drift in and out in a feeble attempt to find the really
interesting talks. Still, giving any sort of talk is regarded as better
than giving none, so academics spend a lot of time doing this sort of
thing.

One of the great dangers of being a successful academic, in fact, is
that one may get invited to so many conferences that one never has time
to think. Winning the Nobel prize is purported to be the kiss of death
in this respect. Of course, it's a universal platitude that the real
thinking at conferences gets done not during the talks, but informally
in small groups. But the funny thing is that at most conferences people
are so worn out after going to a day's worth of talks that they have
limited energy for serious conversation afterwards: they usually seem
more interested in finding the good local restaurants and scenic
attractions. If people could have conferences with no lectures
whatsoever, or maybe one a day, it would probably be more productive.
But the idea that a bunch of people could figure something out just by
sitting around and chatting informally is absolutely foreign to our
conception of ``work''. People expect to receive money from bureaucrats
to go to conferences, but to convince a bureaucrat that you are deserve
the money, you need to give a lecture, so of course all conferences have
too many lectures.

Turning back towards Warsaw, a city with a marvelous mathematical
history, I am reminded of Gian-Carlo Rota's biographical sketch of
Stanislaw Ulam, in which (as a master of irony) he talks about how lazy
Ulam was: all he wanted to do was sit around in cafes and come up with
interesting conjectures and research programs, and leave it to others to
work them out. And this in turn reminds me of the Scottish Cafe, where
Polish mathematicians used to hang out and write on the tablecloths,
until the owner provided them with a notebook, in which many famous
conjectures were formulated, and I believe prizes like bottles of wine
were offered for their solutions. Was the Scottish Cafe in Warsaw?
{[}No, Lwow.{]} Does it still exist? I completely forgot to check while
I was there. The Banach Center, in which the conference participants
stayed, comes from a later stratum of Polish mathematical history; it
was built after the war, and one room still contains a portrait of
Lenin. I know that because a film crew used it to shoot a scene for a
historical movie!

Anyway, I enjoyed this conference in Warsaw quite a bit, because a lot
of people working on the loop representation of quantum gravity were
there, and I managed to have a fair number of serious conversations.
Before going into what I learned there, I should say that I just found a
fun thing for people to read who are interested in quantum gravity, but
are not necessarily specialists:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Gary Au, ``The quest for quantum gravity'', available as
  \texttt{gr/qc-9506001}.
\end{enumerate}

This consists mainly of interviews with Chris Isham, Abhay Ashtekar and
Edward Witten. What's nice is that the interviews are conducted by
someone who knows physics. The questions and answers are technical
enough to convey some of the real substance of the subject, while still
(I hope) non-technical enough so that you don't have to be an expert to
get a lot out of them. Isham talks mainly about the ``problem of time''
in quantum gravity, Ashtekar talks mainly about the loop representation
of quantum gravity, and Witten talks about string theory.

Anyway, Ashtekar and a bunch of other good people were at this Warsaw
conference, which is why I went. The main topics of conversation were
spin networks and their use in studying the area and volume operators in
quantum gravity. As I explained earlier in
\protect\hyperlink{week43}{``Week 43''}, one may very roughly think of a
spin network as a graph whose edges are labelled with ``spins''
\(0\),\(1/2\),\(1\),\(3/2\), and so on, and who vertices are labelled
with certain gadgets called ``intertwining operators'' (which in the
simplest case are just the Clebsch-Gordon coefficients you learn about
when studying angular momentum in quantum mechanics). Penrose introduced
these as abstract graphs (see \protect\hyperlink{week22}{``Week 22''}
and \protect\hyperlink{week41}{``Week 41''}), as a kind of substitute
for thinking of space as a manifold, but more recently Rovelli and
Smolin started thinking of them as graphs embedded into 3d space, and
saw that these were a really natural way to describe states of quantum
gravity: even better than loops, because they form an orthonormal basis!
Actually, it was mainly me who proved in a really rigorous way that they
form an orthonormal basis, but Rovelli and Smolin had already been doing
calculations using this idea for a while. One thing they computed was
the eigenvalues of the observables in quantum gravity corresponding to
the area of a surface in space, or the volume of a region.

Now there are all sorts of technical caveats and subtleties that I don't
want to get into here, but in a really rough sort of sense, what their
answers suggest is that IF the loop representation of quantum gravity is
right, and we are on the right track about how it works, then the area
of surfaces comes in certain (not integer, but discrete) multiples of
the Planck length squared, and the volume of regions comes in multiples
of the Planck length cubed. Note: that was a big ``IF''. This is
especially interesting because it doesn't arise by assuming from the
start that spacetime has a discrete structure. In fact, their
computations assume spacetime is a continuous manifold. Nonetheless this
discreteness pops out. It's not completely surprising: after all,
Schrodinger's equation for the hydrogen atom is a perfectly
``continuous'' sort of thing, a partial differential equation, but the
energy of the bound states winds up being a discrete sort of thing.
Still, it's sort of exciting and new.

An interesting thing happened at the conference. Renate Loll, who works
on the loop representation of gauge theories and also lattice gauge
theory, has recently developed a lattice formulation of quantum gravity
closely modelled after the loop representation:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Renate Loll, ``Nonperturbative solutions for lattice quantum
  gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9502006}{\texttt{gr-qc/9502006}}.
\end{enumerate}

This has the wonderful feature that it's perfectly rigorous and also one
can start using computers to start calculating things with it. For
example, the most subtle aspect of the loop representation of quantum
gravity is the Wheeler-DeWitt equation \[H\psi=0\] where \(H\) is an
operator called the ``Hamiltonian constraint''. More on this later; my
point here is just that physical states of quantum gravity need to
satisfy this equation. Getting \(H\) to be well-defined is tricky when
space is a continuum, but in Loll's lattice version of theory (which is
an approximation to the full continuum theory) she has already done
this, so one can now start trying numerically to find solutions and see
what they look like. She has also found some explicit solutions.

\emph{Also}, she did some work on the volume operator in her lattice
approach, and came up with a result in contradiction to Rovelli and
Smolin's paper on the subject (cited in
\protect\hyperlink{week43}{``Week 43''}). They had said that states
corresponding to trivalent spin networks --- spin networks with only 3
edges at each vertex --- could have nonzero volume. But using her
version of the theory she computed that trivalent states --- states with
only 3 nonzero spins at the edges of the lattice incident to any vertex
--- all had zero volume, and that she needed at least 4 nonzero spins to
get volume! The volume operator, in case you're wondering, acts as a
certain sum over vertices: each one winds up contributing a certain
finite amount of volume, which the theory allows you to compute.

This led to a whole lot of discussion and scribbling on the blackboards
of the Banach center. I found it truly delightful to see all these
physicists drawing pictures of spin networks and doing graphical
computations just the way a knot theorist like Kauffman does all the
time. It was as if the universe had this spin network aspect to it, and
everyone was finally starting to catch on. Either that or mass delusion!
I hadn't quite gotten the hang of how to compute these volume operators
before, so it was a great chance to learn: one person would do a
computation, then someone else would do it a different way and get a
different answer, then someone else would do it yet another way and get
yet another answer, and so on, so you could ask lots of questions
without seeming too dumb. Even I did a computation after a while, and
got zero volume for at least a certain class of trivalent vertices. The
votes in favor of trivalent vertices having zero volume kept piling up.
Finally Smolin noticed that he and Rovelli had made a sign mistake. This
is incredibly easy to do, since there are lots of tricky sign
conventions in spin network theory. Fundamentally these are due to the
fact that spin-\(1/2\) particles are fermions\ldots{} but I don't think
people fully understand the physical implications of this. (There is
also a marvelous category-theoretic explanation of it, but I fear that
if I go into that all the physicists will stop reading. Maybe some other
time.) Rovelli and Smolin got pretty depressed about this for a while,
but I tried to reassure them that only people who write really
interesting papers ever get anybody to find the mistakes.

So perhaps we know a little more about the meaning of volume in a
quantum theory of spacetime.

Spin networks are very beautiful and simple things. To learn about them,
in addition to the various papers listed in the ``weeks'' above, one can
now turn to Rovelli and Smolin's paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  C. Rovelli and L. Smolin, ``Spin networks in quantum gravity'',
  preprint available in LaTeX form as \texttt{gr/qc-9505006}.
\end{enumerate}

If you are more of a mathematician, or less of an expert on quantum
gravity, you might also try a review article I wrote about them, which
starts with a quick summary of what the heck canonical quantum gravity
is about, why it's hard to do, and why the loop representation seems to
help:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  J. Baez, ``Spin networks in nonperturbative canonical quantum
  gravity'', preprint available in LaTeX form as \texttt{gr-qg/9504036},
  or via ftp from \texttt{math.ucr.edu}, as the file
  \href{http://math.ucr.edu/home/baez/net.tex}{\texttt{net.tex}} in the
  directory \texttt{baez}.
\end{enumerate}

Now so far I have been trying to make things sound simple, but here I
should point out that when one talks about ``states of quantum gravity''
there are at least three quite different things one might mean. This is
because the loop representation follows Dirac's general philosophy of
quantizing systems with constraints, with some extra twists here and
there. As I've repeatedly explained
(e.g.~\protect\hyperlink{week43}{``Week 43''}), Einstein's equation for
general relativity has 10 components, and if you split spacetime up into
space and time (more or less arbitrarily --- there's no ``best'' way) 4
of these can be seen as constraints that the metric on space and its
first time derivative must satisfy (at any given time), while the
remaining 6 describe how the metric on space evolves in time (which
makes sense, because the metric has 6 components). When you follow
Dirac's procedure for quantizing the equations what you do is this.
First you forget about the constraint and get a big space of states, the
``kinematical state space''. There are lots of mathematical choices
involved here, but Ashtekar and Lewandowski came up with a particular
nice way of doing this rigorously, and one calls this space of states
``\(L^2\) of the space of \(\mathrm{SU}(2)\) connections modulo gauge
transformations with respect to the Ashtekar-Lewandowski generalized
measure''. Spin networks form an orthonormal basis of this Hilbert
space. All the stuff about area and volume operators above refers to
operators on this space.

Then, however, you need to deal with the constraints. Now 3 of the 4
constraints simply amount to requiring that your states be invariant
under all diffeomorphisms of space, so these are usually dealt with
first, and called the ``diffeomorphism constraint''. Imposing these
constraints are a bit tricky; naively one would first guess that this
``diffeomorphism- invariant state space'' is just a subspace of the
original kinematical state space, but actually it's not quite so simple.
In any event, there are also spin network states at the
diffeomorphism-invariant level, corresponding not to \emph{particular}
embeddings of graphs in space, but to diffeomorphism equivalence classes
thereof. This again has been used by Rovelli, Smolin and others for a
while now, but it was first rigorously shown in the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Abhay Ashtekar, Jerzy Lewandowski, Don Marolf, Jose Mourao, and Thomas
  Thiemann, ``Quantization of diffeomorphism invariant theories of
  connections with local degrees of freedom'', to appear in the November
  1995 \emph{Jour. Math. Phys.} special issue on
  diffeomorphism-invariant field theory, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9504018}{\texttt{gr-qc/9504018}}.
\end{enumerate}

This paper is nice in part because it doesn't assume you already have
read every previous paper about this stuff; instead, it describes the
general plan of the loop representation before constructing the
diffeomorphism- invariant spin network states. Also, buried in an
appendix somewhere, it gives nice conceptual formulas for the area and
volume operators, which serve as a complement to Rovelli and Smolin's
explicit computations of their matrix elements in terms of the spin
network basis.

Anyway, after taking care of the diffeomorphism constraint, one finally
needs to take care of the Hamiltonian constraint, meaning one needs to
find states satisfying the Wheeler-DeWitt equation. This is the hardest
thing to make rigorous, and the most exciting aspect of the whole
subject, because it expresses the fact that ``physical states'' of
quantum gravity are invariant under diffeomorphisms of space-TIME, not
just space. There is much more to say about this, but I won't go into it
here.

Now besides Loll and Rovelli and Smolin, all the authors of the above
paper except Mourao were at the conference in Warsaw, so there was a
large contingent of spin network fans around, not even counting some
other folks whose work I will get to in a while. This is why I was so
eager to go there, especially because my own talk was on a rather
esoteric subject which only these experts could be expected to give a
darn about. Namely\ldots.

The breakthrough of Ashtekar and Lewandowski, when it came to making the
loop representation rigorous, involved working with piecewise
real-analytic loops rather than piecewise smooth loops. (Actually
Penrose suggested this idea.) This is because piecewise smooth loops can
intersect in crazy ways, like in a Cantor set, which nobody could figure
out how to handle. But the price of this breakthrough was that one had
to assume the 3-manifold representing space was real-analytic, and
things then only work nicely for real-analytic diffeomorphisms, as
opposed to smooth ones. This always bugged me, so I have been working
away for about a year trying to deal with smooth loops, and finally I
got smart and teamed up with Steve Sawin, and we recently figured out
how to get things to work with smooth loops (at least a bunch of things,
like the Ashtekar-Lewandowski generalized measure). Our paper will be
out pretty soon, but for now anyone who wants a taste of the
mathematical technology involved should look at:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
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\item
  Steve Sawin, ``Path integration in two-dimensional topological quantum
  field theory'', to appear in the October 1995 \emph{Jour. Math. Phys.}
  issue on diffeomorphism-invariant field theory, preprint available as
  \texttt{gr/qc-9505040}.
\end{enumerate}

Loop representation ideas are applicable not only to canonical quantum
gravity but also to path integrals in gauge theory, because in both
cases one is doing integrals over a space of connections mod gauge
transformations. Here Sawin uses them to give a rigorous formulation of
2d TQFTs in terms of path integrals. There aren't many unitary 2d TQFTs,
and all of them are isomorphic to \(2\)-dimensional quantum gravity with
the usual Einstein-Hilbert action, with different values of the coupling
constant, or else direct sums of such theories.

Next ``week'' I'll talk about cool new idea Smolin has about TQFTs,
quantum gravity, and Bekenstein's bound on the entropy of a physical
system in terms of its surface area.



\hypertarget{week56}{%
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I got a copy of the following paper when I showed up in Warsaw:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Lee Smolin, ``Linking topological quantum field theory and
  nonperturbative quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9505028}{\texttt{gr-qc/9505028}}.
\end{enumerate}

and then I spent a fair amount of time reading it and thinking about it
throughout the conference. If the big hypothesis formulated in this
paper is correct, I think we are on the verge of having a really
beautiful theory of \(4\)-dimensional quantum gravity, at least given
certain boundary conditions. Mind you, I just mean a really beautiful
theory, not necessarily a physically correct theory. But beautiful
theories have a certain tendency to be right, or at least close, so let
me explain this hypothesis.

First of all, we have to remember that Ashtekar reformulated Einstein's
equation so that the configuration space for general relativity on the
spacetime \(\mathbb{R}\times S\), instead of being the space of
\emph{metrics} on a 3-manifold \(S\), is a space of \emph{connections}
on \(S\). A connection is just what a physicist often calls a vector
potential, but for any old gauge theory, not just electromagnetism.
Different gauge theories have different gauge groups, so I had better
tell you the gauge group of Ashtekar's version of general relativity:
it's \(\mathrm{SL}(2,\mathbb{C})\), the group of \(2\times2\) complex
matrices with determinant equal to \(1\). And I should probably tell you
which bundle over \(S\) we have an \(\mathrm{SL}(2,\mathbb{C})\)
connection on\ldots{} but luckily, all \(\mathrm{SL}(2,\mathbb{C})\)
bundles over 3-manifolds are trivial, so I can cut corners by saying
it's the trivial bundle. We can think of a connection \(A\) on the
trivial \(\mathrm{SL}(2,\mathbb{C})\) bundle over \(S\) as \(1\)-forms
taking values in the Lie algebra \(\mathfrak{sl}(2,\mathbb{C})\),
consisting of \(2\times2\) complex matrices with trace zero.

Okay, so naively you might think a state in the \emph{quantum} version
of general relativity a la Ashtekar is just a wavefunction \(\psi(A)\).
That's not too far wrong and I won't bother about certain nitpicky
technicalities here (again, for the full story try
\href{http://math.ucr.edu/home/baez/net.tex}{\texttt{net.tex}}). But
there's one very important catch I can't ignore: general relativity has
\emph{constraint} equations, meaning that \(\psi\) has to satisfy some
equations. The first constraint, the Gauss law, just says that we must
have \[\psi(A) = \psi(A')\] whenever \(A'\) is the result of doing a
gauge transformation to \(A\). Or at the very least, this should hold up
to a phase; the point is that \(\psi\) is only supposed to record
physically significant information about the state of the universe, and
two connections are physically equivalent if they differ by a gauge
transformation. The second constraint, the diffeomorphism constraint,
says we need to have \[\psi(A) = \psi(A')\] when \(A'\) is the result of
applying a diffeomorphism of space, \(S\), to \(A\). Again, the point is
that two solutions of general relativity are physically the same if they
differ only by a coordinate transformation, or --- \emph{roughly} the
same thing --- a diffeomorphism. The third constraint is the real
killer. It's meaning is that \(\psi(A)\) doesn't change when we do a
diffeomorphism of spaceTIME to the connection \(A\), but it's usually
formulated `infinitesimally' as the Wheeler-DeWitt equation
\[H \psi = 0\] meaning roughly that the time derivative of \(\psi\) is
zero. Think of it as a screwy quantum gravity version of Schrodinger's
equation, where \(d\psi/dt\) had better be zero!

It's hard to find explicit solutions of these equations. Indeed, it's
hard to know what the heck these equations \emph{mean} in a sufficiently
precise way to recognize a solution if we found one! However, things
were even worse back in the old days. Back in the old days when we
thought of states as wavefunctions on the space of metrics, we didn't
know ANY solutions of these equations. But nowadays we are very happy,
because we know infinitely many times as many solutions! To be precise,
we now know ONE solution. This is called the Chern-Simons state, and it
was discovered by Kodama:

\begin{enumerate}
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\item
  H. Kodama, ``Holomorphic wavefunction of the universe'', \emph{Phys.
  Rev.} \textbf{D42} (1990), 2548--2565.
\end{enumerate}

Now actually people have proposed other explicit solutions, but
personally I have certain worries about all those other solutions, and I
am not alone in this, whereas everyone seems to agree that, no matter
how you slice it, the Chern-Simons state is a solution.

Now there is a slight catch: the Chern-Simons state is a solution of
quantum gravity \emph{with cosmological constant}. This is an extra term
that Einstein threw into his equations so that they wouldn't make the
obviously ridiculous prediction that the universe is expanding. When
Hubble took a look and saw galactic redshifts all over, Einstein called
this extra term the biggest blunder in his life. That kind of remark,
coming from that kind of person, might make you a little bit reluctant
to get too excited about having found a state of quantum gravity with
this extra term thrown in! Luckily it turns out that you can take the
limit as the cosmological constant goes to zero, and get a state of the
theory where the cosmological constant is zero. I like to call this the
`flat state', because it's zero except where the connection \(A\) is
flat.

(In fact, if the space \(S\) is not simply connected, there are lots of
different flat states, because there is what experts call a moduli space
of flat connections, i.e., lots of different flat connections modulo
gauge transformations. Not many people talk too much about these flat
states, but I do so in my paper
\href{http://math.ucr.edu/home/baez/net.tex}{\texttt{net.tex}} and also
the harder one
\href{http://math.ucr.edu/home/baez/knot.tex}{\texttt{knot.tex}}.)

Now what is this Chern-Simons state? Well, there is a wonderful thing
you can compute from a connection \(A\) on a (compact oriented)
3-manifold \(S\), called the Chern-Simons action:
\[CS(A) = \int_S \operatorname{tr}(A \wedge dA + (2/3)A \wedge A \wedge A)\]
which looks weird when you first see it, but gradually starts seeming
very sensible and nice. The reason why folks like it is that it doesn't
change when you do a small gauge transformation --- i.e., one you can
get to following a continuous path from the identity --- and it changes
only by an integral multiple of \(8\pi^2\) if you do a large gauge
transformation. Plus, it's diffeomorphism-invariant. It's incredibly
hard to write down many functions of \(A\) with these properties, so
they are precious. There are deeper reasons why it's so nice, but let's
leave it at that for now.

So, the Chern-Simons state is \[\psi(A) = \exp(-6 CS(A)/\Lambda)\] where
\(\Lambda\) is the cosmological constant. Don't worry about the factor
of 6 too much; depending on how you set up various things you might get
different numbers, and I can never keep certain factors of 2 straight in
this particular calculation. Note however that it looks as if things go
completely haywire as \(\Lambda\) approaches zero, which is why my
earlier remark about the `flat state' is a bit nontrivial.

Why does this satisfy the constraints? Well, I just said above that the
Chern-Simons action was hand-tailored to have the gauge-invariance and
diffeomorphism-invariance we want, so the only big surprise is that we
\emph{also} have a solution of the Wheeler-DeWitt equation. Well, we do:
a two-line computation shows it.

But clearly nature, or at least the goddess of mathematics, is trying to
tell us something if this Chern-Simons state, which has all sorts of
wonderful properties relating to \emph{3-dimensional} geometry, is also
a solution of the Wheeler-DeWitt equation, which is all about
\emph{4-dimensional} geometry, since it expresses the invariance of
\(\psi\) under evolution in TIME. I have been thinking about this for
several years now and I think I finally really understand it. There are
probably people out there to whom it's perfectly obvious, because it's
not really all that complicated, but unfortunately none of these people
has ever explained it. Let me briefly say, for those who know about such
things, that it all comes down to the fact that the Chern-Simons action
was \emph{born} as a \(3\)-dimensional spinoff of a \(4\)-dimensional
thing called the 2nd Chern class. (If you want more details, I explained
this as well as I could at the time in
\href{http://math.ucr.edu/home/baez/knot.tex}{\texttt{knot.tex}}.)

What is the physical meaning of the Chern-Simons state? As far as I know
Kodama's paper hasn't been vastly surpassed in explaining this. He shows
that in the classical limit this state becomes something called the
anti-deSitter universe, a solution of Einstein's equation describing a
(roughly) exponentially expanding universe. If you are wondering what
this has to do with Einstein's introduction of the constant to KEEP the
universe from expanding, let me just say this. In our current big bang
theory the universe is expanding, but the presence of matter, or any
sort of positive energy density, tends to pull it back in, and if there
is enough matter it'll collapse again. Einstein's stuck in a
cosmological constant term to give the vacuum some negative energy
density, exactly enough to counteract the positive energy density of
matter, so things would neither collapse nor expand, but instead remain
in an (unstable, alas) equilibrium. In the deSitter universe there's no
matter, just a cosmological constant of the opposite sign, so that the
vacuum has positive energy density. In the anti-deSitter universe
(invented by deSitter's nemesis anti-deSitter) there's no matter either,
but the cosmological constant has the sign giving the vacuum negative
energy density, which pushes the universe to keep expanding faster and
faster.

Now in addition to this physical interpretation, the Chern-Simons state
also has some remarkable relationships to knot theory, which were
discovered by Witten and, since then, studied intensively by lots of
people. I have written a lot in This Week's Finds about this! But
briefly, there should be an invariant of knots and links associated to
any state of quantum gravity, and the one associated to the Chern-Simons
state is the Kauffman bracket, a close relative of the Jones polynomial,
which is distinguished by having a very simple, beautiful definition,
and also lots of wonderful relationships to an algebraic structure, the
quantum group \(SU_q(2)\). I should add that in addition to an invariant
of knots and links, a state of quantum gravity should also give an
invariant of \emph{spin networks}, and indeed the Kauffman bracket
extends to a wonderful invariant of spin networks. One can read about
this in many places, but perhaps the most detailed account is Kauffman
and Lins' book referred to in \protect\hyperlink{week30}{``Week 30''}.

So the question arises: are all these wonderful features of the
Chern-Simons state of quantum gravity very special things that tell us
very little about quantum gravity in general, or are they important
clues that, if we understood them, would reveal a lot about the nature
of \emph{all} states of quantum gravity?

Of course, everyone who has fallen in love with the beauty of
Chern-Simons theory would \emph{like} the answer to be the latter. Louis
Crane, for example, is deeply convinced that Chern-Simons theory is
indeed the key to the whole business. He has written many papers on the
subject, most of which I've gone over in earlier Finds, and also one
brand new one, which is actually a very readable introduction to the
grand scheme he has in mind:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
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\item
  Louis Crane: ``Clock and category: is quantum gravity algebraic?'', to
  appear in the November 1995 special issue of \emph{Jour. Math. Phys.}
  on diffeomorphism-invariant physics, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9504038}{\texttt{gr-qc/9504038}}.
\end{enumerate}

This grand scheme involves a thorough refashioning of quantum gravity in
terms of category theory, and uses some of the very beautiful
mathematics of \(n\)-categories, but neglecting all these subtleties,
let us simply say that he argues that if the universe is IN the
Chern-Simons state, there is no need to understand any other states! He
doesn't really think all there is in the universe is gravity, of course,
so he envisages a souped-up theory containing other forces and
particles, but he argues that a generalization of quantum gravity to
include all these other forces and particles will still have a special
state, and that that's the state of the universe.

Being a conservative fellow myself, I prefer to remain agnostic on this
issue, but I did write a paper showing how, if you assumed that space,
the manifold above I called \(S\), is a \(3\)-dimensional sphere --- a
so-called \(S^3\) --- then if quantum gravity was in the Chern-Simons
state, there would be very nice Hilbert spaces of ``relative states'' on
each ``half'' of space. The relative state notion is often associated
with Everett, who made a big deal out of the fact that, even if a
two-part system was in a single state (a ``pure state'' in the language
of quantum theory), each part could be regarded as being in a
probabilistic mixture of lots of states (a ``mixed state''). Whether or
not you like the ``many-worlds interpretation'' of quantum theory which
Everett's thesis spawned, it is true that a single pure state on a
two-part system specifies a whole \emph{space} of states on each half.
So my idea was to take \(S^3\), arbitrarily split it into two balls
(\(D^3\)'s in math jargon), and work out the space of states on each
half. If you want to wax rhapsodic of this you can call one half the
``observer'' and the other the ``observed'', though it's crucial that
there is a symmetry interchanging the two --- there's not any way to
tell them apart.

On the more technical side, there is a lot of nice (though well-
understood) knot theory involved. For example, a special property of the
quantum group \(SU_q(2)\) --- called the ``positivity of the Markov
trace'', and discovered by Jones of Jones polynomial fame - equips each
space of states with an inner product, even in this situation where we
have no idea of an inner product to begin with. This paper is:
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\item
  John Baez, ``Quantum gravity and the algebra of tangles'', \emph{Jour.
  Class. Quant. Grav.} \textbf{10} (1993), 673--694, also available
  (without the all-important pictures!) as
  \href{http://math.ucr.edu/home/baez/tang.tex}{\texttt{tang.tex}}.
\end{enumerate}

So what has Lee Smolin done? Actually I have spent so much time leading
up to it that now I'm too tired to do it justice! So I'll explain it
next time. But let me just say, in order to tantalize you into tuning in
to the next episode, that he carefully analyzes quantum gravity on a
ball, imposing boundary conditions that let you see why relative states
of Chern-Simons theory give states of quantum gravity. And then he makes
the hypothesis that I mentioned at the beginning of this article. This
is that \emph{all} states of quantum gravity with these boundary
conditions come from relative states of Chern-Simons theory. He even
gives some good evidence for this hypothesis, coming originally from
Hawking's work on the thermal radiation produced by black holes! (To be
continued.)
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This week I'll start by finishing up my introduction to the following
paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Lee Smolin, ``Linking topological quantum field theory and
  nonperturbative quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9505028}{\texttt{gr-qc/9505028}}.
\end{enumerate}

So: recall where we were. Let me not repeat the details, but simply note
that we were playing around with quantum gravity on a \(4\)-dimensional
spacetime, using the Ashtekar `new variables' formalism, and we'd
noticed that in the theory with nonzero cosmological constant
\(\Lambda\), there is an explicit solution of the theory, the
`Chern-Simons' state. Actually I hadn't really shown that this state
satisfies the key equation, the Wheeler-DeWitt equation, but if you know
the formulas it's easy to check.

Now one might think that one solution isn't all that much, apart from it
being a whole lot better than none, which was the situation before these
discoveries. However, as I began to explain last time, one can get a
whole slew of states if one takes as ones space S, not a closed
3-dimensional manifold (as we were doing at first) but a 3-manifold with
boundary. This is where Lee Smolin starts. He considers quantum gravity
with certain `self-dual boundary conditions' that are specially
compatible with Chern-Simons theory.

There is presumably an enormous space of states of quantum gravity
satisfying these boundary conditions, although we don't really know what
they look like. Say we want to understand these states as much as
possible. What do they look like? Well, first of all, the loop
representation gives us a nice picture of the `kinematical states' ---
i.e., states not necessarily satisfying the diffeomorphism constraint or
the Wheeler-DeWitt equation. (This picture may be wrong, of course, but
let me throw caution to the winds and just explain the picture.) Every
kinematical state is a linear combination of `spin network states'. For
more on spin networks, check out \protect\hyperlink{week55}{``Week 55''}
and the references in there, but let me remind you what spin networks
look like in this case.

For simplicity and ease of visualization, you can pretend \(S\) is a
ball, so its boundary is a sphere. Think of a spin network state as a
graph embedded in this ball, possibly with some edges ending on the the
boundary, with all the edges labelled by spins
\(j = 0,1/2,1,3/2,\ldots\), and with the vertices labelled by some extra
numbers that we won't worry about here. Let's call the points where
edges end on the boundary `punctures', because the idea is that they
really poke through the boundary and keep on going. Physically, these
edges graph represent `flux tubes of area': if we measure the area of
some surface in this state (or at least a surface that doesn't intersect
the vertices), the area is just the quantity \[L^2  \sqrt{j(j+1)}\]
summed over all edges that poke through the surface, where \(L\) is the
Planck length and \(j\) is the spin labelling that edge. Gauge theories
often have ``flux tube'' solutions when you quantize them: for example,
type II superconductors admit flux tubes of the magnetic field, while
superfluids admit flux tubes of angular momentum (vortices). The idea
behind spin networks in quantum gravity, physically speaking, is that
gravity is a gauge field which at the Planck scale is organized into
branching flux tubes of area.

But we want to understand, not the kinematical states in general, but
the actual physical states, which satisfy the diffeomorphism constraint
and the Wheeler-DeWitt equation. We can start by measuring everything we
measure by doing experiments right at the boundary of \(S\). More
precisely, we can try to find a maximal set of commuting observables
that `live on the boundary' in this sense. For example, the area of any
patch of \(S\) counts as one of these observables, and all these
`surface patch area' observables commute. If we measure all of them, we
know everything there is to know about the area of all regions on the
boundary of \(S\). Thanks to spin network technology, as described
above, specifying all their eigenvalues amounts to specifying the
location of a bunch of punctures on the boundary of \(S\), together with
the spins labelling the edges ending there.

Now Chern-Simons theory gives an obvious candidate for the space of
physical states of quantum gravity for which these `surface patch area'
observables have specified eigenvalues. In fact, if you hand
Chern-Simons theory a surface like the boundary of \(S\), together with
a bunch of punctures labelled by spins, it gives you a
FINITE-DIMENSIONAL state space. Let's not explain just now how it gives
you this state space; let's simply mumble that it gives you this space
by virtue of being an `extended topological quantum field theory.' If
you want, you can think of these states as being the `relative states' I
discussed in last week's Finds, but not all of them: only those for
which the `surface patch area' observables have specified eigenvalues.
There is a wonderfully simple combinatorial recipe for describing all
these states in terms of spin networks living in \(S\), having edges
that end at the punctures, with the right spins at these ends.

Smolin's hypothesis is that this finite-dimensional space of states
coming from Chern-Simons theory \emph{is} the space of all physical
states of quantum gravity on \(S\) that
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\item
  satisfy the self-dual boundary conditions, and
\item
  have the specified values of the surface patch area observables.
\end{enumerate}

Now if this hypothesis is true, it means we have a wonderfully simple
description of all the physical states on \(S\) satisfying the self-dual
boundary conditions!

So why should such a wonderful thing be true? I wish I knew! In fact,
I'm busily trying to figure it out. Smolin doesn't give any direct
evidence that it \emph{is} true, so it might not be. But he does give
some very interesting indirect evidence, coming from thermodynamics.

Thanks to work by Hawking, Bekenstein and others, there is a lot of
evidence that if one takes quantum gravity into account, the maximal
entropy of any system contained in a region with surface area \(A\)
should be proportional to \(A\). The basic idea is this. For various
reasons, one expects that the entropy of a black hole is proportional to
the area of its event horizon. For example, when you smash some black
holes together it turns out that the total area of the event horizons
goes up --- this is called the `second law of black hole
thermodynamics'. This and many more fancy thought experiments suggest
that when you have some black holes around the right notion of entropy
should include a term proportional to the total area of their event
horizons. Now suppose you had some other system which had even MORE
entropy than this, but the same surface area. Then you could dump in
extra matter until it became a black hole, which would therefore have
less entropy, violating the second law.

This is a hand-waving argument, all right! It's not the sort of thing
that would convince a mathematician. But it does suggest an intriguing
connection between the vast literature on black hole thermodynamics and
the more mathematical problem of relating quantum gravity and
Chern-Simons theory.

Now the maximum entropy of a system is proportional to the logarithm of
the total number of states it can assume. So if the `Bekenstein bound'
holds, the dimension of the space of states of a system contained in a
region with surface area \(A\) is proportional to \(\exp(A/c)\) for some
constant \(c\) (which should be about the Planck length squared). Now
the remarkable thing about Smolin's hypothesis is that if it's true,
this is what one gets, because the dimension of the space given by
Chern-Simons theory does grow like this.

There is another approach leading to this conclusion that the space of
states of a bounded region should have dimensional proportional to
\(\exp(A/c)\), called the `t Hooft-Susskind holographic hypothesis. I
was going to bone up on this for This Week's Finds, but I have been too
busy! It's getting late and I'm getting bleary-eyed, so I'll stop here.
I will simply give the references to this 'holographic hypothesis'; if
anyone wants to explain it, please post to \texttt{sci.physics.research}
--- I'd be immensely grateful.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  G 't Hooft, ``Dimensional reduction in quantum gravity'', preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9310006}{\texttt{gr-qc/9310006}}.
\item
  L. Susskind, ``The world as a hologram'', to appear in the November
  1995 special issue of \emph{Jour. Math. Phys.} on
  diffeomorphism-invariant physics, preprint available as
  \href{https://arxiv.org/abs/hep-th/9409089}{\texttt{hep-th/9409089}}.

  L. Susskind, ``Strings, black holes and Lorentz contractions'',
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9308139}{\texttt{hep-th/9308139}}.
\end{enumerate}

Note: in earlier Finds I referred to the October 1995 special issue of
\emph{Jour. Math. Phys.}, but now I've heard it's coming out in
November.
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A few weeks ago I went to the IVth Porto Meeting on Knot Theory and
Physics, to which I had been kindly invited by Jose Mourao. Quite a few
of the (rather few) believers in the relevance of \(n\)-categories to
physics were there. I spoke on higher-dimensional algebra and
topological quantum field theory, and also a bit on spin networks. Louis
Crane spoke on his ideas, especially the idea of getting
\(4\)-dimensional TQFTs out of state-sum models. And John Barrett spoke
on

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Barrett, ``Quantum gravity as topological quantum field theory'',
  to appear in the November 1995 special issue of \emph{Jour. Math.
  Physics}, also available as
  \href{https://arxiv.org/abs/gr-qc/9506070}{\texttt{gr-qc/9506070}}.
\end{enumerate}

This is a nice introduction to the concepts of topological quantum field
theory (TQFT) that doesn't get bogged down in the (still substantial)
technicalities. In particular, it pays more emphasis than usual to the
physical interpretation of TQFTs, and how this meshes with more
traditional issues in the interpretation of quantum mechanics. One of
the main things I got out of the conference, in fact, was a sense that
there is a budding field along these lines, just crying out to be
developed. As Barrett notes, Atiyah's axioms for a TQFT can really be
seen as coming from combining

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\tightlist
\item
  The rules of quantum mechanics for composing amplitudes
\end{enumerate}

and

\begin{enumerate}
\def\labelenumi{\alph{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Functoriality, or the correct behavior under diffeomorphisms of
  manifolds.
\end{enumerate}

Indeed, he convincingly recovers the TQFT axioms from these two
principles. And of course these two principles could be roughly called
``basic quantum mechanics'' and ``general covariance''\ldots{} lending
credence to the idea that whatever the theory of quantum gravity turns
out to be, it should be something closely related to a TQFT. (I should
emphasize, though, that this question is one of the big puzzles in the
subject.)

The richness inherent in b) makes the business of erecting a formalism
to interpret topological quantum field theory much more interesting than
the (by now) rather stale discussions that only treat a), or ``basic
quantum mechanics''. In particular, in a TQFT, every way of combining
manifolds --- spaces or spacetimes --- yields a corresponding rule for
composing amplitudes. For example, if we have two spacetimes that look
like \[
  \begin{tikzpicture}[scale=0.5]
    \draw[thick] (0,0) ellipse (2cm and 1cm);
    \draw[thick] (-2,0) to (-2,-6);
    \draw[thick] (2,0) to (2,-6);
    \begin{scope}[shift={(0,-6)}]
      \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
      \draw[thick] (180:2) arc (180:360:2cm and 1cm);
    \end{scope}
  \end{tikzpicture}
\] (that's supposed to look like a pipe!) and \[
  \begin{tikzpicture}[scale=0.5]
    \draw[thick] (-3,0) ellipse (2cm and 1cm);
    \draw[thick] (3,0) ellipse (2cm and 1cm);
    \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
    \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
    \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
    \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
    \begin{scope}[shift={(0,-6)}]
      \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
      \draw[thick] (180:2) arc (180:360:2cm and 1cm);
    \end{scope}
  \end{tikzpicture}
\] --- that is, a cylinder and a ``trinion'' (or upside-down pair of
pants) --- we can combine them either ``horizontally'' like this: \[
  \begin{tikzpicture}[scale=0.5]
    \begin{scope}[shift={(8,0)}]
      \draw[thick] (0,0) ellipse (2cm and 1cm);
      \draw[thick] (-2,0) to (-2,-6);
      \draw[thick] (2,0) to (2,-6);
      \begin{scope}[shift={(0,-6)}]
        \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
        \draw[thick] (180:2) arc (180:360:2cm and 1cm);
      \end{scope}
    \end{scope}
    \draw[thick] (-3,0) ellipse (2cm and 1cm);
    \draw[thick] (3,0) ellipse (2cm and 1cm);
    \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
    \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
    \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
    \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
    \begin{scope}[shift={(0,-6)}]
      \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
      \draw[thick] (180:2) arc (180:360:2cm and 1cm);
    \end{scope}
  \end{tikzpicture}
\] or ``vertically'' like this: \[
  \begin{tikzpicture}[scale=0.5]
    \draw[thick] (-3,0) ellipse (2cm and 1cm);
    \draw[thick] (3,0) ellipse (2cm and 1cm);
    \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
    \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
    \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
    \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
    \begin{scope}[shift={(0,-6)}]
      \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
      \draw[thick] (180:2) arc (180:360:2cm and 1cm);
    \end{scope}
    \draw[thick] (-2,-6) to (-2,-10);
    \draw[thick] (2,-6) to (2,-10);
    \begin{scope}[shift={(0,-10)}]
      \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
      \draw[thick] (180:2) arc (180:360:2cm and 1cm);
    \end{scope}
  \end{tikzpicture}
\]

Corresponding to each spacetime we have a ``time evolution operator''
--- a linear operator that describes how states going in one end pop out
the other, ``evolved in time''. And corresponding to horizontal and
vertical composition of spacetimes we have two ways to compose
operators: horizontal composition usually being called ``tensor
product'', and vertical composition being called simply ``composition''.
These two ways satisfy some compatibility conditions, as well.

Now if one has read a bit about \(n\)-categories and/or ``extended''
topological quantum field theories, one already knows that this is just
the tip of the iceberg. If we allow ourselves to cut spacetimes into
smaller bits --- e.g., pieces with ``corners'', such as tetrahedra or
their higher-dimensional kin --- one gets more possible ways of
composing operators, and more compatibility conditions. These become
algebraically rather sophisticated, but luckily, there is a huge amount
of evidence that existing TQFTs extend to more sophisticated structures
of this sort, through a miraculous harmony between algebra and topology.

This leads to some interesting new concepts when it comes to the
physical interpretation of extended TQFTs. As Crane described in his
talk (see also his papers listed in \protect\hyperlink{week2}{``Week
2''}, \protect\hyperlink{week23}{Week 23} and
\protect\hyperlink{week56}{Week 56}), in a 4-dimensional extended TQFT
one expects the following sort of thing. If we think of an ``observer''
as a 3-manifold with boundary --- imagine a person being the 3-manifold
and his skin being the boundary, if one likes --- the extended TQFT
should assign to his boundary a ``Hilbert category'' or ``2-Hilbert
space''. This is the categorical analog of a Hilbert space. In other
words, just as a Hilbert space is a \emph{set} in which you can
\emph{sum} things and \emph{multiply} them by \emph{complex numbers},
and get \emph{complex numbers} by taking \emph{inner products} of
things, a 2-Hilbert space is an analogous structure in which every term
surrounded by asterisks is replaced by its analog one step up the
categorical ladder. This means: \[
  \begin{aligned}
    \text{set} &\to \text{category}
  \\\text{sum} &\to \text{direct sum}
  \\\text{multiply} &\to \text{tensor}
  \\\text{complex numbers} &\to \text{vector spaces}
  \\\text{inner products} &\to \text{homs}
  \end{aligned}
\]

There's a good chance that you know the analogy between numbers and
vector spaces: just as you can add numbers and multiply them, you can
take direct sums and tensor products of vector spaces, and many of the
same rules still apply (in a somewhat more sophisticated form, because
laws that were equations are now isomorphisms). A little less familiar
is the analogy between inner products and ``homs''. Given two vectors
\(v\) and \(w\) in a Hilbert space you can take the inner product
\(\langle v,w\rangle\) and get a number; similarly, given two
(finite-dimensional) Hilbert spaces \(V\) and \(W\) you can form
\(\mathrm{hom}(V,W)\) --- that is, the set of all linear maps from \(V\)
to \(W\) --- and get a Hilbert space. The same thing works in any
``2-Hilbert space''.

The most basic example of a 2-Hilbert space would be Hilb, the category
of finite-dimensional Hilbert spaces, but also \(\mathsf{Reps}(G)\), the
category of finite-dimensional unitary representations of a finite
group. (Similar remarks hold for quantum groups at root of unity.) Just
as the inner product is linear in one argument and conjugate-linear in
the other, ``\(\mathrm{hom}\)'' behaves nicely under direct sums in each
argument, but each argument behaves a bit differently under tensor
product, so one can say it's ``linear'' in one and ``conjugate-linear''
in the other.

So anyway, just as in a 4d TQFT a 3-manifold \(M\) determines a Hilbert
space \(Z(M)\), and a 4-manifold \(N\) with boundary equal to \(M\)
determines a vector \(Z(N)\) in \(Z(M)\), something similar happens in
an extended TQFT. (For experts, here I'm really talking about
``unitary'' TQFTs and extended TQFTs --- these are the physically
sensible ones.) Namely, a ``skin of observation'' or 2-manifold \(S\)
determines a 2-Hilbert space \(Z(S)\), and an ``observer'' or 3-manifold
\(M\) with boundary equal to \(S\) determines an object in \(Z(S)\).
Now, given two observers \(M\) and \(M'\) with the same ``skin'' --- for
example, the observer ``you'' and the observer ``everything in the world
except you'' --- one gets two objects \(Z(M)\) and \(Z(M')\) in
\(Z(S)\), so one can form the ``inner product''
\(\mathrm{hom}(Z(M),Z(M'))\), which is a Hilbert space. This is
\emph{your} Hilbert space for describing states of \emph{everything in
the world except you}. Note that we are using the term ``observer'' here
in a somewhat whimsical sense; in particular, every region of space
counts as an observer in this game, so we can flip things around and
form the inner product \(\mathrm{hom}(Z(M'),Z(M))\), which is the
Hilbert space that \emph{everything in the world except you} can use to
describe states of \emph{you}. These two Hilbert spaces, with roles
reversed, are conjugate to each other (using an obvious but perhaps
slightly unfamiliar definition of ``conjugate'' Hilbert space), so
they're pretty much the same.

Now this may at first seem weird, but if you think about it, it becomes
a bit less so. Of course, all of this stuff simply follows from the
notion of a unitary extended TQFT, and whether the actual laws of
physics are given by such a structure is a separate issue. But there is
clearly a lot of relevance to the ``holographic hypothesis'' and Lee
Smolin's more mathematical version of that hypothesis, as sketched in
\protect\hyperlink{week57}{``Week 57''}. The basic idea, there as here,
is that we are concentrating our attention on the things about a system
that can be measured at its boundary, and what we measure there can be
either thought of describing the state of the ``inside'' or dually the
``outside''.

I think if I go out on a limb here, and rhapsodize a bit, the point
might be clearer: but don't take this too seriously. Namely: all of the
stuff you see, hear, and otherwise observe about the world --- which
seems to be ``information about the outside'' --- is also stuff going on
in your brain, hence ``information about the inside''. What this stuff
really is, of course, is \emph{correlations} between the inside and the
outside. This is the reason for the duality between observer and
observed mentioned above. Note: we need not worry here whether or not
there's ``really'' a lot more going on outside than what you observe.
The point is simply that everything \emph{you} observe about what's
going on in the world outside is correlated to stuff that the world
could observe about what is going on in you. (Maybe.)

I should perhaps also add that the mathematicians are getting a bit
behind on the job of developing the ``higher linear algebra'' needed to
support this sort of physics. So it's a bit hard to point to a good
reference for all this 2-Hilbert space stuff. I'm slowly writing a paper
on it, but for now the best sources seem to be Kapranov and Voevodsky's
work on 2-vector spaces:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  M. Kapranov and V. Voevodsky, ``2-Categories and Zamolodchikov
  tetrahedra equations'', in \emph{Proc. Symp. Pure Math.} \textbf{56},
  Part 2 (1994), AMS, Providence, pp.~177--260.
\end{enumerate}

(see also \protect\hyperlink{week4}{``Week 4''}) Dan Freed's work on
higher algebraic structures in gauge theory
(\protect\hyperlink{week12}{``Week 12''},
\protect\hyperlink{week48}{``Week 48''}), and David Yetter's new paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  David Yetter, ``Categorical linear algebra: a setting for questions
  from physics and low-dimensional topology'', Kansas U. preprint,
  available as \texttt{http://math.ucr.edu/home/baez/yetter.pdf} and
  \texttt{http://math.ucr.edu/home/baez/yetter.ps}
\end{enumerate}

This treats 2-vector spaces in a very beautiful way, but not 2-Hilbert
spaces. Definitely worth reading for anyone interested in this sort of
thing!

While visiting Porto, I managed somehow to miss talking to Eugenia Cesar
de Sa, which was really a pity because she was the one who developed the
way of describing 4-manifolds that Broda (see
\protect\hyperlink{week9}{``Week 9''}, \protect\hyperlink{week10}{``Week
10''}) used to construct a 4-dimensional TQFT. This TQFT was later shown
by Roberts (see \protect\hyperlink{week14}{``Week 14''}) to be
isomorphic to that described by Crane and Yetter using a state sum model
--- i.e., by a discrete analog of a path integral in which one chops
spacetime up into \(4\)-dimensional ``hypertetrahedra'' (better known as
\(4\)-simplices!), labels their 2d and 3d faces by spins, and sums over
labellings. Her work is cited in the Broda reference in
\protect\hyperlink{week17}{``Week 17''}, but I managed luckily to get a
copy of her thesis:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Eugenia Cesar de Sa, \emph{Automorphisms of 3-manifolds and
  representations of 4-manifolds}, Ph.D.~thesis, University of Warwick,
  1977.
\end{enumerate}

This should let me learn more about \(4\)-dimensional topology, a
fascinating subject on which I'm woefully ignorant.

One reason why Broda's work, and thus de Sa's, is interesting to me, is
that people have suspected for a while that the Crane-Yetter-Broda
theory, which is constructed purely combinatorially, is isomorphic to BF
theory with cosmological term. \(BF\) theory (see
\protect\hyperlink{week36}{``Week 36''}) is a \(4\)-dimensional field
theory that can be described starting from a Lagrangian in the
traditional manner of physics. The theory ``with cosmological term'' can
be regarded as a baby version of quantum gravity with nonzero
cosmological constant, a baby version having only one state, the
``Chern-Simons state''. As I discussed in
\protect\hyperlink{week56}{``Week 56''}, it's this Chern-Simons state
that plays a key role in Smolin's attempt to ``exactly solve'' quantum
gravity. Thus I suspect that \(BF\) theory is a good thing to understand
really well. Recently I showed in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  John Baez, ``4-dimensional \(BF\) theory with cosmological term as a
  topological quantum field theory'', available as
  \href{https://arxiv.org/abs/q-alg/9507006}{\texttt{q-alg/9507006}}.
\end{enumerate}

that the Crane-Yetter-Broda theory is indeed isomorphic as a TQFT to a
certain \(BF\) theory. With a bit more work, this should give us a state
sum model for the \(BF\) theory that's a baby version of quantum gravity
in 4 dimensions. This should come in handy for studying Smolin's
hypothesis and its ramifications.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Timothy Porter, ``TQFTs from homotopy \(n\)-types'', University of
  Wales, Bangor preprint, available at
  \texttt{http://www.bangor.ac.uk/\textasciitilde{}mas013/preprint.html}
\end{enumerate}

The Dijkgraaf-Witten model is an n-dimensional TQFT one gets from a
finite group \(G\). It's given by a really simple state sum model. Chop
your manifold into simplices; then the allowed ``states'' are just
labellings of the edges with elements of \(G\) subject to the constraint
that the product around any triangle is \(1\). You can think of a
labelling as a kind of ``connection'' that tells you how to parallel
transport along the edges, and the constraint says the connection is
flat. Expectation values of physical observables are then computed as
sums over these states. In fact, this TQFT is a baby version of \(BF\)
theory \emph{without} cosmological constant. A toy model of a toy model
of quantum gravity, in other words: the classical solutions of \(BF\)
theory without cosmological constant are just flat connections on some
G-bundle where G is a Lie group, while the Dijkgraaf-Witten model does
something similar for a finite group.

In a previous paper (see \protect\hyperlink{week54}{``Week 54''}) Porter
studied the Dijkgraaf-Witten model and a generalization of it due to
Yetter that allows one to label faces with things too\ldots{} one can
think of this generalization as allowing ``curvature'', because the
product of elements of G around a triangle need no longer be \(1\);
instead, it's something determined by the labelling of the face.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  David Yetter, ``TQFTs from homotopy 2-types'', \emph{Journal of Knot
  Theory and its Ramifications} \textbf{2} (1993), 113--123.
\end{enumerate}

In his new paper Porter takes this idea to its logical conclusion and
constructs analogous theories that allow labellings of simplices in any
dimension. Technically, the input data is no longer just a finite group,
but a finite simplicial group \(G\).

What's a simplicial group? It's a wonderful thing; using the
``internalization'' trick I've referred to in some previous Finds, all I
need to say is that it's a simplicial object in the category of groups.
A simplicial set is a bunch of sets, one for each natural number,
together with a bunch of ``face'' and ``degeneracy'' maps satisfying the
same laws that the face and degeneracy maps do for a simplex. (Students
of singular or simplicial homology will know what I'm talking about.)
Similarly, a simplicial group is a bunch of \emph{groups}, together with
a bunch of of ``face'' and ``degeneracy'' \emph{homomorphisms}
satisfying the same laws.

A triangulated manifold gives a simplicial set in an obvious way, and
from any simplicial set one can obtain a simplicial groupoid (like a
simplicial group, but with groupoids instead!) called its ``loop
groupoid''. The sort of labellings Porter considers are homomorphisms
from this simplicial groupoid to the given simplicial group G.

I will refrain from trying to say what all this has to do with homotopy
\(n\)-types. Nonetheless, from a pure mathematics point of view, that's
the most exciting aspect of the whole business! Part of the puzzle about
TQFTs is their relation to traditional algebraic topology (and
not-so-traditional algebraic topology like nonabelian cohomology,
\(n\)-stacks, etc.), and this work serves as a big clue about that
relationship.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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\begin{quote}
\emph{As you crack your eyes one morning your reason is assaulted by a}
\emph{strange sight. Over your head, humming quietly, there floats a}
\emph{monitor, an ethereal otherworldly screen on which is written a
curious} \emph{message. "I am the Screen of ultimate Truth. I am bulging
with} \emph{information and ask nothing better than to be allowed to
impart it."}
\end{quote}

It would be nice if more math books started with something
attention-grabbing like this. In fact, it appears near the beginning of

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Geoffrey M. Dixon, \emph{Division Algebras: Octonions, Quaternions,
  Complex Numbers and the Algebraic Design of Physics}, Springer Verlag,
  1994.
\end{enumerate}

Dixon is convinced that the details of the Standard Model of particle
interactions can be understood better by taking certain mathematical
structures very seriously. There are very few algebras over the reals
where we can divide by nonzero elements: if we demand associativity and
commutativity, just the reals themselves and the complex numbers. If we
drop the demand for commutativity, we also get a \(4\)-dimensional
algebra called the quaternions, invented by Hamilton. If in addition we
drop the demand for associativity, and ask only that our algebra be
``alternative'', we also get an \(8\)-dimensional algebra called the
octonions, or Cayley numbers. (I'll say what ``alternative'' means in
\protect\hyperlink{week61}{``Week 61''}) Clearly these are very special
structures, and also clearly they play an important role in
physics\ldots{} or do they?

Well, few people doubt that the real numbers are fundamental to physics
(though some advocates of the discrete might prefer the integers), and
with emergence of quantum theory, if not sooner, the basic role of the
complex numbers also became clear. Hamilton discovered the quaternions
in the 1800s, and used them to formulate a beautiful theory of rotations
in \(3\)-dimensional space. They fell out of favor somewhat when the
vectors of Gibbs proved simpler for many purposes, but their deeper
importance became clear when people started studying spin: indeed, the
Pauli matrices so important in physics are closely related to the
quaternions, and it is the group of unit quaternions,
\(\mathrm{SU}(2)\), rather than the group of rotations in 3d space,
\(\mathrm{SO}(3)\), which turns out to be the symmetry group whose
different representations correspond to particles of different spin. But
what about the octonions?

Well, there are not too many places in physics yet where the octonions
reach out and grab one with the force the reals, complexes, and
quaternions do. But they are certainly out there, they have a certain
beauty to them, and they are the natural stopping-point of a certain
finite sequence of structures, so it is natural for people of a certain
temperament to believe that they are there for a reason. Dixon makes a
passionate case for this in the beginning of his book.

Suppose you were confronted with the Screen of Truth. What would you ask
it? Dixon, being a physicist, naturally fantasizes asking it why the
universe is the way it is! What kind of answer could this possibly have?
Perhaps there is only one consistent way for things to be, and
mathematics, with its unique and beautiful structures that are pure
expressions of logical necessity, is trying to tell us something about
this?

On the one hand this seems outrageous\ldots{} especially to the
hard-nosed pragmatist or empiricist in us. It seems old-fashioned,
naive, and too good to be true. On the other hand, the universe
\emph{is} outrageous! It's outrageous that it exists in the first place,
and doubly outrageous that it has the particular physical laws it does
and no others. It has only been through the old-fashioned, naive belief
that we can understand it using mathematics that we discovered what we
have of its physical laws. So maybe eventually we \emph{will} see that
the basic structures of mathematics determine, in some mysterious sense,
all the basic laws of physics. Or maybe we won't. In either case, there
is a long way yet to go. As Dixon's Screen of Truth comments, before it
departs:

\begin{quote}
``Do you believe that were I to explain as much of what I know as you''
``could comprehend that you would recognize it, that you would say, oh''
``yes, this is but an extension of what we have already done, and
though'' ``the mathematics is broader, the principles deeper, I am not
surprised?'' ``Do you think you have asked even a fraction of the
questions you need'' ``to ask?''
\end{quote}

Anyway, it is at least worth considering all the beautiful mathematical
structures one runs into for their potential importance. For example,
the octonions.

In order to write this week's Finds, I needed to learn a little about
the octonions. I wanted some good descriptions of the octonions, that
hopefully would ``explain'' them or at least make them easy to remember.
So I asked for help on sci.physics.research, and I got some help from
Greg Kuperberg, Ezra Getzler, Matthew Wiener, and Alexander Vlasov.
After a while Geoffrey Dixon got wind of this and referred me to his
work! I'll probably talk to him later this summer when I go back to
Cambridge Massachusetts, and hopefully I'll learn more about octonions
and the like.

But for now let me just give a quick beginner's introduction to the
octonions. A lot of this appears in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  William Fulton and Joe Harris, \emph{Representation Theory --- a First
  Course}, Springer Verlag, Berlin, 1991.
\end{enumerate}

I should add that this book is a very good place to learn about Lie
groups, Lie algebras, and their representations\ldots{} I wish I had
taken a course based on this book when I was in grad school!

Let's start with the real numbers. Then the complex number \[a+bi\] can
be thought of as a pair \[(a,b)\] of real numbers. Addition is done
component-wise, and multiplication goes like this:
\[(a,b)(c,d) = (ac - db,da + bc)\] We can also define the conjugate of a
complex number by \[(a,b)^* = (a,-b).\] Now that we have the complex
numbers, we can define the quaternions in a similar way. A quaternion
can be thought of as a pair \[(a,b)\] of complex numbers. Addition is
component-wise and multiplication goes like this
\[(a,b)(c,d) = (ac - d^*b, da + bc^*)\] This is just like how we defined
multiplication of complex numbers, but with a couple of conjugates
(\({}^*\)'s) thrown in. To emphasize how similar the two multiplications
are, we could have included the conjugates in the first formula, since
the conjugate of a real number is just itself.

We can also define the conjugate of a quaternion by
\[(a,b)^* = (a^*,-b).\] The game continues! Now we can define an
octonion to be a pair of quaternions; as before, we add these
component-wise and multiply them as follows:
\[(a,b)(c,d) = (ac - d^*b, da + bc^*).\] One can also define the
conjugate of an octonion by \[(a,b)^* = (a^*,-b).\] Why do the real
numbers, complex numbers, quaternions and octonions have multiplicative
inverses? I take it as obvious for the real numbers. For the complex
numbers, you can check that \[(a,b)^* (a,b) = (a,b) (a,b)^* = K (1,0)\]
where \(K\) is a real number called the ``norm squared'' of \((a,b)\).
The multiplicative identity for the complex numbers is \((1,0)\). This
means that the multiplicative inverse of \((a,b)\) is \((a,b)^*/K\). You
can check that the same holds for the quaternions and octonions!

This game of getting new algebras from old is called the
``Cayley-Dickson'' construction. Of course, the fun we've had so far
should make you want to keep playing this game and develop a
16-dimensional algebra, the ``hexadecanions,'' consisting of pairs of
octonions equipped with the same sort of multiplication law. What do you
get? Why aren't there multiplicative inverses anymore? I haven't
checked, because this is my summer vacation! I am learning about
octonions just for fun, since I just finished writing some rather
technical papers, and my idea of fun does not presently include
multiplying two hexadecanions together to see why the norm-squared law
\((a,b) (a,b)^* = (a,b)^* (a,b) = K (1,0)\) breaks down. But I'm sure
someone out there will enjoy doing this\ldots{} and I'm sure someone
else out there has already done it! So they should let me know what
happens. There is something out there called ``Pfister forms'', which I
think might be related.

{[}Toby Bartels did some nice work on hexadecanions in response to the
above challenge, which appears at the end of this article.{]}

Now if we unravel the above definition of quaternions, by writing the
quaternion \((a+bi,c+di)\) as \(a+bi+cj+dk\), we see that the
multiplication law is \[i^2 = j^2 = k^2 = -1,\] and
\[ij = -ji = k, \quad jk = -kj = i, \quad ki = -ik = j.\]

For more about the inner meaning of these rules, see
\protect\hyperlink{week5}{``Week 5''}. Similarly, we can unravel the
above definition of octonions by writing the octonion
\((a+bi+cj+dk,e+fi+gj+hk)\) as
\[a + b e_1 + c e_2 + d e_3 + e e_4 + f e_5 + g e_6 + h e_7.\] Note:
since mathematicians are very impersonal, they usually call these seven
dwarves \(e_1,\ldots,e_7\) instead of Sleepy, Grumpy, etc. as in the
Disney movie. Any one of these 7 guys times himself is \(-1\). Also, any
two distinct ones anticommute; for example, \(e_3 e_7 = -e_7 e_3\).
There is a nice way to remember how to multiply them using the ``Fano
plane''. This is a projective plane with 7 points, where by a
``projective plane'' I mean that any two points determine an abstract
sort of ``line'', which in this case consists of just 3 points, and any
two lines intersect in a point. It looks like this:
\[\includegraphics[max width=0.65\linewidth]{../images/fano.jpg}\]

The ``lines'' are the 3 edges of the big triangle, the 3 lines going
through a vertex, the center and the midpoint of the opposite edge, and
the circle including \(e_1\), \(e_2\), and \(e_3\). All the ``lines''
are cyclically ordered, and that tells you how to multiply the seven
dwarves. For example, the line that's actually a circle goes clockwise,
so \(e_1 e_2 = e_4\), \(e_2 e_4 = e_1\), and \(e_4 e_1 = e_2\). The
lines that are edges of the big triangle also point clockwise, so for
example \(e_5 e_2 = e_3\), and cyclic permutations thereof, and
\(e_6 e_3 = e_4\). The lines that go through the center point from the
vertex to the midpoint of the opposite edge, so for example
\(e_3 e_7 = e_1\). I hope that made sense; you can work it out yourself,
of course.

My convention for numbering the seven dwarves in the picture above is
\emph{completely arbitrary}, so don't bother remembering it --- make up
your own if you prefer! The convention I chose looks sort of weird at
first, but it has a couple of endearing features:

\begin{itemize}
\tightlist
\item
  Index cycling: if \(e_i e_j = e_k\), then
  \(e_{i+1} e_{j+1} = e_{k+1}\).
\item
  Index doubling: if \(e_i e_j = e_k\), then \(e_{2i} e_{2j} = e_{2k}\).
\end{itemize}

Here we add and multiply \(\mod 7\). Index doubling corresponds to
rotating the Fano plane.

So those are the octonions in a nutshell. I should say a bit about how
they relate to triality for \(\mathrm{SO}(8)\), the exceptional Lie
group \(\mathrm{G}_2\), the group \(\mathrm{SU}(3)\) which is so
important in the study of the strong force, and to lattices like
\(\mathrm{E}_8\), \(\Lambda 16\) and the Leech lattice. But I will
postpone that; for now you can consult Fulton and Harris, and also
various papers by Dixon:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Geoffrey Dixon, ``Octonion X-product orbits'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9410202}{\texttt{hep-th/9410202}}.

  ``Octonion X-product and \(\mathrm{E}_8\) lattices'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9411063}{\texttt{hep-th/9411063}}.

  ``Octonions: \(\mathrm{E}_8\) lattice to \(\Lambda 16\)'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9501007}{\texttt{hep-th/9501007}}.

  ``Octonions: invariant representation of the Leech lattice'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9504040}{\texttt{hep-th/9504040}}.

  ``Octonions: invariant Leech lattice exposed'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9506080}{\texttt{hep-th/9506080}}.
\end{enumerate}

I am not presently in a position to assess these papers or Dixon's work
relating division algebras and the Standard Model, but hopefully
sometime I will be able to say a bit more.

Let me wrap up by saying a bit about the Leech lattice. As described in
my review of Conway and Sloane's book (\protect\hyperlink{week20}{``Week
20''}, there is a wonderful branch of mathematics that studies the
densest ways of packing spheres in n dimensions. Most of the results so
far concern lattice packings, packings in which the centers of the
spheres form a subset of \(\mathbb{R}^n\) closed under addition and
scalar multiplication by integers. When \(n = 8\), the densest known
packing is given by the so-called \(\mathrm{E}_8\) lattice. In
\protect\hyperlink{week20}{``Week 20''} I described how to get this
lattice using the quaternions and the icosahedron. Briefly, it goes as
follows. The group of rotational symmetries of the icosahedron (not
counting reflections) is a subgroup of the rotation group
\(\mathrm{SO}(3)\) containing 60 elements. As mentioned above,
\(\mathrm{SO}(3)\) has as a double cover the group \(\mathrm{SU}(2)\) of
unit quaternions. So there is a 120-element subgroup of
\(\mathrm{SU}(2)\) consisting of elements that map to elements of
\(\mathrm{SO}(3)\) that are symmetries of the icosahedron. Now form all
integer linear combinations of these 120 special elements of
\(\mathrm{SU}(2)\). We get a subring of the quaternions known as the
"icosians'\,'.

We can think of icosians as special quaternions, but we can also think
of them as special vectors in \(\mathbb{R}^8\), as follows. Every
icosian is of the form
\[(a + \sqrt{5} b) + (c + \sqrt{5} d)i + (e + \sqrt{5} f)j + (g + \sqrt{5} h)k\]
with \(a,b,c,d,e,f,g,h\) rational --- but not all rational values of
\(a,\ldots,h\) give icosians. The set of all vectors
\(x = (a,b,c,d,e,f,g,h)\) in \(\mathbb{R}^8\) that correspond to
icosians in this way is the \(\mathrm{E}_8\) lattice!

The Leech lattice is the densest known packing in 24 dimensions. It has
all sorts of remarkable properties. Here is an easy way to get ones
hands on it. First consider triples of icosians \((x,y,z)\). Let \(L\)
be the set of such triples with \[x = y = z \mod h\] and
\[x + y + z = 0 \mod h^*\] where \(h\) is the quaternion
\((-\sqrt{5} + i + j + k)/2\). Since we can think of an icosian as a
vector in \(\mathbb{R}^8\), we can think of \(L\) as a subset of
\(\mathbb{R}^{24}\). It is a lattice, and in fact, it's the Leech
lattice! I have a bit more to say about the Leech lattice in
\protect\hyperlink{week20}{``Week 20''}, but the real place to go for
information on this beast is Conway and Sloane's book. It turns out to
be related to all sorts of other "exceptional'\,' algebraic structures.
People have found uses for many of these in string theory, so if string
theory is right, maybe they are important in physics. Personally, I want
to understand them more deeply as pure mathematics before worrying too
much about their applications to physics.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Here is what Toby Bartels wrote:

\begin{quote}
From: Toby Bartels Subject: Re: why hexadecanions have no inverses To:
John Baez Date: Sun, 20 Aug 1995
\end{quote}

\begin{quote}
I spent a couple days thinking about why hexadecanions have no inverses,
and the first thing I want to say about it is that they do. However,
these inverses are of limited applicability, because the hexadecanions
are not a division algebra. A division algebra allows you to conclude,
given \(x y = 0\), that \(x\) or \(y\) is \(0\). If your algebra has
inverses, you might try to multiply this equation by the inverse of
\(x\) or \(y\) (whichever one isn't \(0\)) to prove the other is \(0\),
but this only works if the algebra is associative. Since the octonions
and hexadecanions aren't associative, there's no reason (yet) to think
either of these is a division algebra. It turns out that the octonions
are a division algebra, despite not being associative, but the
hexadecanions aren't.

Why aren't the hexadecanions a division algebra? Because the real
numbers aren't of characteristic 2. Allow me to explain.

I will prove below that the \(2^n\) onions are a division algebra only
if the \(2^{n-1}\) onions are associative. So, the question becomes: why
aren't the octonions associative? Well, I've found a proof that \(2^n\)
onions are associative only if \(2^{n-1}\) onions are commutative. So,
why aren't the quaternions commutative? Again, I have a proof that
\(2^n\) onions are commutative only if \(2^{n-1}\) onions equal their
own conjugates. So, why don't the complex numbers equal their own
conjugates? I have a proof that \(2^n\) onions do equal their own
conjugates, but it works only if the \(2^{n-1}\) onions are of
characteristic 2. The real numbers are not of characteristic 2, so the
complex numbers don't equal their own conjugates, so the quaternions
aren't commutative, so the octonions aren't associative, so the
hexadecanions aren't a division algebra.

I require a few identities about conjugates that hold for all \(2^n\)
onions: \((x^*)^* = x\), \((x + y)^* = x^* + y^*\), and
\((x y)^* = y^* x^*\). (If these identities are reminiscent of
identities for transposes of matrices, it is no coincidence.) I will
prove these by induction. That is, if an identity holds for \(2^{n-1}\)
onions, I show it holds for \(2^n\) onions. Since they hold trivially
for the reals (\(n = 0\)), they hold for all.

\[((a, b)^*)^* = (a^*, -b)^* = ((a^*)^*, -(-b)).\] By the induction
hypothesis and the nature of addition (an Abelian group),
\[((a^*)^*, -(-b)) = (a, b).\]
\[((a, b) + (c, d))^* = (a + c, b + d)^* = ((a + c)^*, -(b + d)).\] By
the induction hypothesis and addition again,
\[((a + c)^*, -(b + d)) = (a^* + c^*, -b + -d) = (a^*, -b) + (c^*, -d) = (a, b)^* + (c, d)^*.\]

The next proof needs the distribution of multiplication over addition.
\[(a, b) ((c, d) + (e, f)) = (a, b) (c + e, d + f) = (a (c + e) - (d + f)^* b, (d + f) a + b (c + e)^*).\]
By the induction hypothesis and the identity immediately above, \[
  \begin{gathered}
    (a (c + e) - (d + f)^* b, (d + f) a + b (c + e)^*)
  \\= (a c + a e - d^* b - f^* b, d a + f a + b c^* + b e^*)
  \\= (a c - d^* b, d a + b c^*) + (a e - f^* b, f a + b e^*)
  \\= (a, b) (c, d) + (a, b) (e, f).
  \end{gathered}
\] Also, \[
  \begin{gathered}
    ((a, b) + (c, d)) (e, f)
  \\= (a + c, b + d) (e, f)
  \\= ((a + c) e - f^* (b + d), f (a + c) + (b + d) e^*).
  \end{gathered}
\] By the induction hypothesis again, \[
  \begin{gathered}
    ((a + c) e - f^* (b + d), f (a + c) + (b + d) e^*)
  \\= (a e + c e - f^* b - f^* d, f a + f c + b e^* + d e^*)
  \\= (a e - f^* b, f a + b e^*) + (c e - f^* d, f c + d e^*)
  \\= (a, b) (e, f) + (c, d) (e, f).
  \end{gathered}
\]

\[((a, b) (c, d))^* = (a c - d^* b, d a + b c^*)^* = ((a c - d^* b)^*, -(d a + b c^*)).\]
Using the induction hypothesis and each of the above identities, \[
  \begin{gathered}
    ((a c - d^* b)^*, -(d a + b c^*))
  \\= (c^* a^* - (-b)^* (-d), -d a + (-b) c^*)
  \\= (c^*, -d) (a^*, -b)
  \\= (c, d)^* (a, b)^*.
  \end{gathered}
\]

In light of the above identities, if I ever come across, say,
\((x y^* + z)^*\), I'll simply write \(y x^* + z^*\) without a moment's
hesitation.

Since inductive proofs have been so useful, I'll use one to prove that
\(2^n\) onions always have inverses. First, I'll extend the method in
John's article, beginning with an inductive proof that \(x x^* = x^* x\)
is real. \[(a, b) (a, b)^* = (a, b) (a^*, -b) = (a a^* + b^* b, 0),\]
and \[(a, b)^* (a, b) = (a^*, -b) (a, b) = (a^* a + b^* b, 0).\] The
inductive hypothesis states that both \(a^* a = a a^*\) and \(b^* b\)
are real, so \((a, b) (a, b)^* = (a, b)^* (a, b)\) is real. Since the
sum of a positive real and a nonnegative real is positive, I can take
this as a proof by induction that \(x x^* = x^* x\) is not only real,
but is also positive unless \(x = 0\) (which will be important). All you
have to do now is check that these things are true of the \(2^0\)
onions, and they are, quite trivially (since the \(2^0\) onions are the
reals).

Since the \(2^n\) onions are always a vector space over the reals (as
mentioned in John's article),
\[x (x^* / (x x^*)) = (x x^*) / (x x^*) = 1.\] Since one can always
divide by the real \(x x^*\), the inverse of \(x\) is \(x^* / (x x^*)\)
in any \(2^n\) onion algebra.

To continue with the streak of inductive proofs, I will now try to prove
that the \(2^n\) onions are always a division algebra. (I will fail.)
Assume \[0 = (0, 0) = (a, b) (c, d) = (a c - d^* b, d a + b c^*).\] This
gives the system of equations \[a c - d^* b = 0 = d a + b c^*.\]
Multiplying,
\[(a c) c^* - (d^* b) c^* = 0 c^* = 0 = d^* 0 = d^* (d a) + d^* (b c^*).\]
If \(2^{n-1}\) onions are associative, I can add the equations to get
\[a (c c^*) + (d^* d) a = 0.\] Since \(c c^*\) and \(d^* d\) are real,
they commute with \(a\), and the division algebra nature of \(2^{n-1}\)
onions allows me to conclude that \(c c^* + d^* d = 0\) (which implies
\(c = d = 0\) in light of positive definiteness) or that \(a = 0\) (from
which the original equation gives \(b = 0\)). Thus, the octonions are a
division algebra (since the quaternions are associative), but the
hexadecanions aren't (since the octonions aren't associative).

(If you're reading carefully, you realize that I haven't really proved
that the hexadecanions aren't a division algebra. I've failed to prove
that they are, but that's not the same thing. When I first wrote this, I
wasn't reading carefully; I will return to plug this hole later.)

Thus, the \(2^n\) onions are a division algebra iff the \(2^{n-1}\)
onions are a division algebra and are associative. So, let's try to
prove associativity of \(2^n\) onions by induction. \[
  \begin{gathered}
    ((a, b) (c, d)) (e, f)
  \\= (a c - d^* b, d a + b c^*) (e, f)
  \\= ((a c - d^* b) e - f^* (d a + b c^*), f (a c - d^* b) + (d a + b c^*) e^*)
  \\=((ac)e - (d^* b)e - f^* (da) - f^* (b c^*), f(ac) - f(d^* b) + (da) e^* + (b c^*) e^*).
  \end{gathered}
\] On the other hand, \[
  \begin{gathered}
    (a, b) ((c, d) (e, f))
  \\= (a, b) (c e - f^* d, f c + d e^*)
  \\= (a (c e - f^* d) - (f c + d e^*)^* b, (f c + d e^*) a + b (c e - f^* d)^*)
  \\= (a(ce) - a(f^* d) - (c^* f^*)b - (e d^*)b, (fc)a + (d e^*)a + b(e^* c^*) - b(d^* f)).
  \end{gathered}
\] Assuming the induction hypothesis that \(2^{n-1}\) onions are
associative, these are equal in general iff \(2^{n-1}\) onions also are
commutative.

Thus, \(2^n\) onions are associative iff \(2^{n-1}\) onions are
associative and are commutative. So, let's try to prove commutativity of
\(2^n\) onions by induction.
\[(a, b) (c, d) = (a c - d^* b, d a + b c^*).\] On the other hand,
\[(c, d) (a, b) = (c a - b^* d, b c + d a^*).\] Assuming the induction
hypothesis that \(2^{n-1}\) onions are commutative, these are equal in
general iff \(2^{n-1}\) onions also equal their own conjugates.

Thus, \(2^n\) onions are commutative iff \(2^{n-1}\) onions are
commutative and equal their own conjugates. So, let's try to prove
conjugate equality of \(2^n\) onions by induction. \[(a, b) = (a, b).\]
On the other hand, \[(a, b)^* = (a^*, -b).\] Assuming the induction
hypothesis that \(2^{n-1}\) onions equal their own conjugates, these are
equal in general iff \(2^{n-1}\) onions also have characteristic 2.
(\(b = -b\) means \(0 = b + b = 1 b + 1 b = (1 + 1) b = 2 b\); this is
true in general iff \(0 = 2\), which is what characteristic 2 means.)

Thus, \(2^n\) onions equal their own conjugates iff \(2^{n-1}\) onions
equal their own conjugates and have characteristic 2. Since the reals
don't have characteristic 2, there's no point in trying to prove
anything about that by induction. However, it's a general result that
any algebra has characteristic 2 if it has a superalgebra of
characteristic 2. Since the \(2^n\) onions are all superalgebras of the
reals (which means the reals are always isomorphic to a subset of the
\(2^n\) onions), none of the \(2^n\) onions can have characteristic 2 if
the reals don't.

In summary, the definition of the reals as the complete ordered field,
along with an initial definition that \(x^* = x\) in the reals, allows
trivial proofs that: they form a division algebra, they are associative,
they are commutative, and they equal their own conjugates, but they
don't have characteristic 2. (All of these, in fact, are true of any
ordered field with this definition of conjugate, complete or not.) From
this and the above considerations, the complex numbers form a division
algebra, are associative, and are commutative, but they neither equal
their own conjugates nor have characteristic 2. From this, the
quaternions form a division algebra and are associative, but they
neither are commutative, equal their own conjugates, nor have
characteristic 2. From this, the octonions form a division algebra but
they neither associative, are commutative, equal their own conjugates,
nor have characteristic 2. Finally, the hexadecanions neither form a
division algebra, are associative, are commutative, equal their own
conjugates, nor have characteristic 2.

At this point, I must return to the logical hole I mentioned earlier.
But I want to work with a different algebraic concept than a division
algebra; instead I will use (inspired by Doug Merrit's post to
\texttt{sci.physics.research}) what I guess is called `alternativity',
which says \(x (x y) = (x x) y\). I don't like putting alternativity
into the pattern, since associativity implies alternativity. All the
other properties (commutativity, conjugate equality, characteristic) are
logically independent in general. I'd like to prove that every
associative \(2^n\) onion algebra is alternative, just as I proved every
commutative one was associative, without its having been obvious to
begin with. Well, I will be disappointed even more badly later on.

Taking the conjugate of \(x (x y) = (x x) y\),
\[(y^* x^*) x^* = y^* (x^* x^*),\] so left alternativity implies right
alternativity, for \(2^n\) onions.

I require an additional general identity of \(2^n\) onions. Earlier, I
proved by induction that \(x x^*\) was real, but now I need the reality
of \(x + x^*\). Like everything else, this is proved by induction.
\[(a, b) + (a, b)^* = (a, b) + (a^*, -b) = (a + a^*, 0).\] Thus, if
\(a + a^*\) is real, \((a, b) + (a, b)^*\) is real. Since \(x + x^*\) is
real when \(x\) is real, \(x + x^*\) is real when \(x\) is any \(2^n\)
onion.

Now suppose we're working in an alternative \(2^n\) onion algebra.
\[x (x y) + x^* (x y) = (x + x^*) (x y).\] Since \(x + x^*\) is real, it
associates, so
\[x (x y) + x^* (x y) = ((x + x^*) x) y = (x x) y + (x^* x) y.\] Since
\(x (x y) = (x x) y\), \[x^* (x y) = (x^* x) y,\] which will be needed.

Let's attempt to prove by induction that \(2^n\) onions are always
alternative. \[
  \begin{gathered}
    (a, b) ((a, b) (c, d))
  \\= (a, b) (a c - d^* b, d a + b c^*)
  \\= (a (a c - d^* b) - (d a + b c^*)^* b, (d a + b c^*) a + b (a c - d^* b)^*)
  \\= (a(ac) - a(d^* b) - (a^* d^*)b - (c b^*)b, (da)a + (b c^*)a + b(c^* a^*) - b(b^* d)).
  \end{gathered}
\] Meanwhile, \[
  \begin{gathered}
    ((a, b) (a, b)) (c, d)
  \\= (a a - b^* b, b a + b a^*) (c, d)
  \\= ((aa)c - (b^* b)c - d^* (ba) - d^* (b a^*),d(aa) - d(b^* b) + (ba) c^* + (b a^*) c^*).
  \end{gathered}
\] These are indeed equal in general iff \(2^{n-1}\) onions are
associative.

The last sentence may not be immediately obvious. The induction
hypothesis and its corollaries leave us with
\(x (y z) + (x^* y) z = y (z x) + y (z x^*)\) as a necessary and
sufficient condition. It may not be clear that associativity implies
this, much less vice versa. However, the reality of \(x + x^*\) once
more enters the picture.
\[y (z x) + y (z x^*) = y (z (x + x^*)) = (x + x^*) (y z) = x (y z) + x^* (y z).\]
Thus, the condition becomes
\[x (y z) + (x^* y) z = x (y z) + x^* (y z),\] which is equivalent, in
the general case, to associativity.

To sum up the findings so far: For any n, the \(2^n\) onions form a
vector space over the reals. \(x + x^*\) and \(x x^*\) are real if \(x\)
is any \(2^n\) onion; additionally, \(x x^* = x^* x.\) Every \(2^n\)
onion has an inverse, which is a real multiple of its conjugate.
Conjugation is analogous to matrix transposition in that
\[(x^*)^* = x, (x + y)^* = x^* + y^*, and (x y)^* = y^* x^*.\]
Multiplication distributes over addition every time. For no n do all
\(2^n\) onions equal their own negatives. \(2^{n+1}\) onions equal their
own conjugates iff \(2^n\) onions equal their own conjugates and their
own negatives. all \(2^{n+1}\) onions commute iff all \(2^n\) onions
commute and equal their own conjugates. \(2^{n+1}\) onions are
associative iff \(2^n\) onions are associative and commutative.
\(2^{n+1}\) onions are alternative iff \(2^n\) onions are alternative
and associative. The \(2^n\) onions form a division algebra if they are
alternative.

I will be satisfied if I can prove the converse of the last statement.
In light of the results about alternativity, my original attempt to
prove that division of \(2^n\) onions requires associativity of
\(2^{n-1}\) onions looks even more convincing, (since alternativity of
\(2^{n-1}\) onions can be included in the induction hypothesis), but
it's still not valid. I still haven't shown that, if \(2^{n-1}\) onions
aren't alternative, there must be non0 \(2^n\) onions \(x\) and \(y\)
such that \(x y = 0\). There doesn't seem to be any reason why there
shouldn't be, but there just might happen not to be any. So, despite the
inelegance of it all, in order to prove that the hexadecanions aren't a
division algebra, I'm forced to exhibit non-\(0\) \(x\) and \(y\) such
that \(x y = 0\).

Just playing around, I found \[
  \begin{gathered}
    (e_1, e_4) (-1, e_5)
  \\= (e_1 (-1) - (e_5)* e_4, e_5 e_1 + e_4 (-1)*)
  \\= (-e_1 + e_5 e_4, e_5 e_1 - e_4).
  \end{gathered}
\] Since \(e_5 e_4 = (0, i) (0, 1) = (i, 0) = e_1\) and
\(e_5 e_1 = (0, i) (i, 0) = (0, i* i) = (0, 1) = e_4\),
\[(e_1, e_4) (-1, e_5) = (0, 0) = 0.\]

The \(2^n\) onions can't be a division algebra if the \(2^{n-1}\) onions
aren't. If \(x y = 0\) in the \(2^{n-1}\) onions,
\((x, 0) (y, 0) = (x y, 0) = (0, 0) = 0\). Thus, the octonions and below
are the only \(2^n\) onions to be division algebras. Still, I wish I had
a proof of this that didn't require the ugly brute force use of a
specific counterexample. (This is the interested reader's cue \ldots)

-- Toby
\end{quote}

By the way, in a post to \texttt{sci.physics.research} on November 2,
1999, Ralph Hartley pointed out that even if we start with a field of
characteristic 2, repeatedly applying the Cayley-Dickson construction
will \emph{not} lead to an infinite sequence of division algebras,
because it's not true in this case that if \(x\) is nonzero, \(xx^*\) is
nonzero. The problem is that a field of characteristic 2 can't be an
ordered field.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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The end of a sabbatical is a somewhat sad affair\ldots{} so many plans
one had, and so few accomplished! As I pack my bags to return from
Cambridge England to Cambridge Massachusetts, and then wing my way back
to Riverside, I find I have quite a stack of preprints that I meant to
include in This Week's Finds, but haven't gotten around to yet.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  N. P. Landsman, ``Rieffel induction as generalized quantum
  Marsden-Weinstein reduction'', \emph{Journal of Geometry and Physics}
  \textbf{15} (1995), 285--319.
\end{enumerate}

Marsden-Weinstein reduction, also called symplectic reduction, is the
modern way to deal with constraints in classical mechanics problems.
It's a two-step procedure where first one looks at the subspace of your
phase space on which the constraints vanish, and then a quotient of this
by a certain equivalence relation. For example, if you have a particle
in a plane, its phase space is \(\mathbb{R}^4\), with coordinates
\((x,y,p_x,p_y)\) representing the \(x\) and \(y\) components of the
position and the \(x\) and \(y\) components of the momentum. If we have
a constraint \(x = 0\), Marsden-Weinstein reduction tells us first to
form the subspace of our phase space on which \(x = 0\), and then
quotient by the equivalence relation where two points are equivalent if
they have the same value of \(p_x\). We get down to \(\mathbb{R}^2\),
with coordinates \((y,p_y)\). But Marsden- Weinstein reduction works in
great generality and has become a basic part of the toolkit of
mathematical physics.

What's the quantum analog of Marsden-Weinstein reduction? That's what
this paper is about. Quantum mechanics in the presence of constraints is
a tricky and important business, and there are lots of theories about
how to do it. Gauge theories all have constraints, and so does general
relativity\ldots{} and in quantizing general relativity, the presence of
constraints is what gives rise to the ``problem of time''. (See
\protect\hyperlink{week43}{``Week 43''} for more on this.) What
attracted my attention to this paper is a two-stage procedure for
dealing with contraints, quite analogous to Marsden-Weinstein reduction.
This should shed some interesting light on the problem of time.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  T. Ohtsuki, ``Finite type invariants of integral homology 3-spheres'',
  preprint, 1994.

  L. Rozansky, ``The trivial connection contribution to Witten's
  invariant and finite type invariants of rational homology spheres'',
  preprint available as
  \href{https://arxiv.org/abs/q-alg/9504015}{\texttt{q-alg/9505015}}.

  Stavros Garoufalidis, ``On finite type 3-manifold invariants I'', MIT
  preprint, 1995.

  Stavros Garoufalidis and Jerome Levine, ``On finite type 3-manifold
  invariants II'', MIT preprint, June 1995. (Garoufalidis is at
  \texttt{stavros@math.mit.edu}, and Levine is at
  \texttt{levine@max.math.brandeis.edu}.)

  Ruth J. Lawrence, ``Asymptotic expansions of Witten-Reshetikhin-Turaev
  invariants for some simple 3-manifolds'', to appear in \emph{Jour.
  Math. Physics}.
\end{enumerate}

Chern-Simons theory gives invariant of links in \(\mathbb{R}^3\), which
are functions of Planck's constant \(\hbar\), and if one expands them as
power series in h, the coefficients are link invariants with special
properties, which one summarizes by calling them ``Vassiliev
invariants'' or ``invariants of finite type''. (See
\protect\hyperlink{week3}{``Week 3''} for more.) But the partition
function of Chern-Simons theory on a compact oriented 3-manifold is also
interesting; it's an invariant of the 3-manifold defined for certain
values of \(\hbar\). (Often instead one thinks of it instead as a
function of a quantity \(q\), the limit \(q \to 1\) corresponding to the
limit \(\hbar \to 0\).)

Recently people have studied the partition function of special
3-manifolds called homology spheres, which have the same homology as
\(S^3\). (People have looked at both integral and rational homology
spheres.) After a bit of subtle fiddling, one can extract from the
partition function of a homology sphere a power series in
\[\hbar' = q - 1,\] and the coefficients of the powers of \(\hbar'\)
have been conjectured by Rozansky to have nice properties which one may
summarize by calling them ``finite type'' invariants, in analogy to the
link invariant case. (Namely, that they transform in nice ways under
Dehn surgery.) For example, the coefficient of \(\hbar'\) itself is 6
times the Casson invariant of the (integral) homology 3-sphere. So there
appears to be a budding branch of ``perturbative 3-manifold invariant
theory''. I just wish I understood better what's really going on behind
all this!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Thomas Friedrich, ``Neue Invarianten der \(4\)-dimensionalen
  Mannigfaltigkeiten'', Berlin preprint.
\end{enumerate}

This is a nice introduction to the new Seiberg-Witten approach to
Donaldson theory, which does not assume you already know the old stuff
by heart. Very pretty mathematics!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Andre Joyal, Ross Street, and Dominic Verity, ``Traced monoidal
  categories'', to appear in \emph{Math. Proc. Camb. Phil. Soc.}.
\end{enumerate}

This is an abstract characterization of monoidal categories (categories
with tensor products) which have a good notion of the ``trace'' of a
morphism. Many abstract treatments of traces assume that your category
is ``rigid symmetric'' or ``balanced'', meaning that your objects have
duals and you can switch around objects in order to define the trace of
a morphism \(f\colon V \to V\) in a manner analogous to how one usually
does it in linear algebra, as a certain composite:
\[I\to V\otimes V^* \xrightarrow{f\otimes1}V\otimes V^*\to I\] where
\(I\) is the ``unit object'' for the tensor product (e.g.~the complex
numbers, when we're working in the category of vector spaces.) But one
does not really need all this extra structure if all one wants is a good
notion of ``trace''. This paper isolates the bare minimum. As one might
expect if one knows the relation between knot theory and category
theory, there are lots of nice pictures of tangles in this paper!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Michael Reisenberger, ``Worldsheet formulations of gauge theories and
  gravity'', University of Utrecht preprint, 1994, available as
  \href{https://arxiv.org/abs/gr-qc/9412035}{\texttt{gr-qc/9412035}}.
\end{enumerate}

The loop representation of a gauge theory describes states as linear
combinations of loops in space, or more generally, ``spin networks''.
What's the spacetime picture of which this is a spacelike slice? The
obvious thing that comes to mind is a two-dimensional surface of some
sort. I've advocated this point of view myself in an attempt to relate
the loop representation of gravity to string theory (see
\protect\hyperlink{week18}{``Week 18''}). Here Reisenberger makes some
progress in making this precise for some simpler theories analogous to
gravity --- for example, \(BF\) theory.

And now for some things I \emph{did} manage to finish up on my
sabbatical:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  John Baez and Stephen Sawin, ``Functional integration on spaces of
  connections'', available as
  \href{https://arxiv.org/abs/q-alg/9507023}{\texttt{q-alg/9507023}}.
\end{enumerate}

As I described in \protect\hyperlink{week55}{``Week 55''}, it's now
possible to set up a rigorous version of the loop representation without
assuming (as had earlier been required) that ones manifold is
real-analytic and the loops are all analytic. This means that one can do
things in a manner invariant under all diffeomorphisms, not just
analytic ones. To achieve this, one needs to ponder rather carefully the
complicated ways smooth paths, even embedded ones, can intersect (for
example, they can intersect in a Cantor set).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  John Baez, Javier P. Muniain and Dardo Piriz, ``Quantum gravity
  hamiltonian for manifolds with boundary'', available as
  \href{https://arxiv.org/abs/gr-qc/9501016}{\texttt{gr-qc/9501016}}.
\end{enumerate}

When space is a compact manifold with boundary, there is no Hamiltonian
in quantum gravity, just a Hamiltonian constraint (see
\protect\hyperlink{week43}{``Week 43''}). This makes it tricky to
understand time evolution in the theory --- the ``problem of time''. But
with a boundary, there is a Hamiltonian, given by a surface integral
over the boundary. (The reason is that, at least when the equations of
motion hold, the Hamiltonian is a total divergence, so you can use
Gauss' theorem to express it as an integral over the boundary, which of
course is zero when there is no boundary.)

Rovelli and Smolin (see \protect\hyperlink{week42}{``Week 42''}) worked
out a loop representation of quantum gravity --- in a heuristic sort of
way which various slower sorts like myself have been struggling to make
rigorous in the subsequent years --- and a key step in this was
expressing the Hamiltonian constraint in terms of loops. In this paper
we do the same sort of thing for the Hamiltonian, when there is a
boundary. This requires considering not only loops but also paths that
start and end at the boundary.

Remarkably, the Hamiltonian acts on paths that start and end at the
boundary in a manner very similar to the Hamiltonian constraint for
quantum gravity coupled to massless chiral spinors (e.g.~neutrinos, if
neutrinos are really massless and have a ``handedness'' as they appear
to). This suggests that on a manifold with boundary, the degrees of
freedom ``living on the boundary'' are described by a chiral spinor
field. Steve Carlip has already shown something very similar for quantum
gravity in 2+1 dimensional spacetime, a more tractable simplified model
--- see \protect\hyperlink{week41}{``Week 41''}. Moreover, he used this
to explain why the entropy of a black hole is proportional to its area
(or length in 2+1 dimensions). The idea is that the entropy is really
accounted for by the degrees of freedom of the event horizon itself. It
would be nice to do something similar in 3+1-dimensional spacetime.



\hypertarget{week61}{%
\section{August 24, 1995}\label{week61}}

I'd like to return to the theme of octonions, which I began to explore
in \protect\hyperlink{week59}{``Week 59''}. The recipe I described
there, which starts with the real numbers, and then builds up the
complex numbers, quaternions, octonions, hexadecanions etc. by a
recursive process, is called the ``Cayley-Dickson process''. Now let me
describe a way to obtain the octonions using a special property of
rotations in 8-dimensional space, called ``triality''. I'll start with a
gentle introduction to the theory of rotation groups; for this, a nice
reference is the book by Fulton and Harris that I mentioned in
\protect\hyperlink{week59}{``Week 59''}. Then I will turn up the heat a
bit and describe triality and how to use it to get the octonions. I
learned some of this stuff from:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Alex J. Feingold, Igor B. Frenkel, and John F. X. Rees, \emph{Spinor
  construction of vertex operator algebras, triality, and
  \(\mathrm{E}_8^{(1)}\)}, Contemp. Math. \textbf{121}, AMS, Providence
  Rhode Island.
\end{enumerate}

I should emphasize, however, that what I will talk about is older, while
the above book starts with triality and then does far more sophisticated
things. An older reference for what I'll talk about is

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Claude Chevalley, \emph{The algebraic theory of spinors}, Columbia U.
  Press, New York, 1954.
\end{enumerate}

I think the concept of triality goes back to Cartan, but I don't really
know the history. By the way, I'd really appreciate any corrections to
what I say below.

Okay, so, how should we start? Well, probably we should start with the
group of rotations in \(n\)-dimensional Euclidean space. This group is
called \(\mathrm{SO}(n)\). It is not simply connected if \(n > 1\),
meaning that there are loops in it which cannot be continuously shrunk
to a point. This is easy to see for \(\mathrm{SO}(2)\), which is just
the circle --- or, if you prefer, the unit complex numbers. It's a bit
trickier to see for \(\mathrm{SO}(3)\), but it is easy enough to
demonstrate --- either mathematically or via the famous ``belt trick''
--- that the loop consisting of a 360 degree rotation around an axis
cannot be continuously shrunk to a point, while the loop consisting of a
720 degree rotation around an axis can.

This ``doubly connected'' property of \(\mathrm{SO}(3)\) implies that it
has an interesting ``double cover'', a group \(G\) in which all loops
\emph{can} be contracted to a point, together with a two-to-one function
\(F\colon G \to \mathrm{SO}(3)\) with \(F(gh) = F(g)F(h)\). (This sort
of function, the nice kind of function between groups, is called a
``homomorphism''.) And this double cover \(G\) is just
\(\mathrm{SU}(2)\), the group of \(2\times2\) complex matrices which are
unitary and have determinant \(1\). Better yet --- if we are warming up
for the octonions --- we can think of \(\mathrm{SU}(2)\) as the unit
quaternions!

Now elements of \(\mathrm{SO}(n)\) are just \(n\times n\) real matrices
which are orthogonal and have determinant \(1\), so given an element
\(g\) of \(\mathrm{SO}(n)\) and a vector \(v\) in \(\mathbb{R}^n\), we
can do matrix multiplication to get a new vector \(gv\) in
\(\mathbb{R}^n\), which of course is just the result of rotating \(v\)
by the rotation \(g\). This makes \(\mathbb{R}^n\) into a
``representation'' of \(\mathrm{SO}(n)\), meaning simply that
\[(gh)v = g(hv)\] and \[1v = v.\] We call \(\mathbb{R}^n\) the
``vector'' representation of the rotation group \(\mathrm{SO}(n)\), for
obvious reasons.

Now \(\mathrm{SO}(n)\) has lots of other representations, too. If we
consider \(\mathrm{SO}(3)\), for example, there is in addition to the
vector representation (which is 3-dimensional) also the trivial
\(1\)-dimensional representation (where the group element \(g\) acts on
a complex number \(v\) by leaving it alone!) and also interesting
representations of dimensions 5, 7, 9, etc.. The interesting
representation of dimension \(2j+1\) is called the ``spin-\(j\)''
representation by physicists. All representations of \(\mathrm{SO}(3)\)
can be built up from these representations, and none of these
representations can be broken down into smaller ones --- one says they
are irreducible.

But the double cover of \(\mathrm{SO}(3)\), namely \(\mathrm{SU}(2)\),
has more representations! Using the two-to-one homomorphism
\(F\colon \mathrm{SU}(2) \to \mathrm{SO}(3)\) we can convert any
representation of \(\mathrm{SO}(3)\) into one of \(\mathrm{SU}(2)\), but
not vice versa. For example, since \(\mathrm{SU}(2)\) consists of
\(2\times2\) complex matrices, it has a representation on
\(\mathbb{C}^2\), given by the obvious matrix multiplication. This is
called the ``spinor'' or ``spin-\(1/2\)'' representation of
\(\mathrm{SU}(2)\). It doesn't come from a representation of
\(\mathrm{SO}(3)\).

To digress a bit, the reason physicists got so interested in
\(\mathrm{SU}(2)\) is that to describe what happens when you rotate a
particle (in the framework of quantum theory) it turns out you need, not
just the representations of \(\mathrm{SO}(3)\), but of its double cover,
\(\mathrm{SU}(2)\). E.g., an electron, proton or neutron is described by
the spin-\(1/2\) representation. This implies that when you turn an
electron around 360 degrees about an axis, its wavefunction changes
sign, but when you rotate it another 360 degrees, its wavefunction is
back to where it started. You can't describe this behavior using
representations of \(\mathrm{SO}(3)\), but you can using
\(\mathrm{SU}(2)\). In general, for any
\(j = 0, 1/2, 1, 3/2, 2, \ldots\), there is an irreducible
representation of \(\mathrm{SU}(2)\), called the ``spin-\(j\)''
representation, which is \((2j+1)\)-dimensional. Only when the spin is
an integer does the representation come from one of \(\mathrm{SO}(3)\).

Things get more complicated when we consider rotations in higher
dimensional space. For any \(n\) greater than or equal to 3, the group
\(\mathrm{SO}(n)\) is doubly connected, and has a simply connected
double cover, which in general is called \(\mathrm{Spin}(n)\). Folks
have figured out all the representations of \(\mathrm{Spin}(n)\) and
which of these come from representations of \(\mathrm{SO}(n)\). It is
more complicated for \(n > 3\) than for \(n = 3\) (in particular, they
aren't just classified by ``spin''), but it is still quite
comprehensible and charming. Just to head off any confusions that might
occur, let me emphasize that it's sort of a lucky coincidence that
\(\mathrm{Spin}(3) = \mathrm{SU}(2)\). In general, the spin groups don't
have too much to do with the groups \(\mathrm{SU}(n)\) of \(n\times n\)
unitary complex matrices with determinant \(1\).

There is, however, a doubly lucky coincidence in dimension 4; namely,
\(\mathrm{Spin}(4) = \mathrm{SU}(2) \times \mathrm{SU}(2)\). In other
words, an element of \(\mathrm{Spin}(4)\) can be thought of as a pair of
\(\mathrm{SU}(2)\) matrices, and we multiply these pairs like
\((g,g')(h,h') = (gh,g'h')\). This implies that the irreducible
representations of \(\mathrm{Spin}(4)\) are given by a ``tensor
product'' of two irreducible representations of \(\mathrm{SU}(2)\), so
we can classify them by pairs of spins, say \((j,j')\). The dimension of
the \((j,j')\) representation is \((2j+1)(2j'+1)\), since the dimension
of a tensor product is the product of the dimensions. In particular, we
call the \((1/2,0)\) representation the ``left-handed'' spinor
representation and the \((0,1/2)\) representation the ``right-handed''
spinor representation. The reason is that a reflection transforms one
into the other. Since spacetime is \(4\)-dimensional, representations of
\(\mathrm{Spin}(4)\) are important in physics, although really one
should keep track of the fact that time works a bit differently than
space, which \(\mathrm{Spin}(4)\) fails to do. In any event, ignoring
the subtleties about how time works differently than space, we can
roughly say that the existence of left-handed and right-handed spinor
representations of \(\mathrm{Spin}(4)\) is the reason why massless
spin-\(1/2\) particles such as neutrinos can have a ``handedness'' or
``chirality''.

More generally, it turns out that the representation theory of
\(\mathrm{Spin}(n)\) depends strongly on whether \(n\) is even or odd.
When \(n\) is even (and bigger than 2), it turns out that
\(\mathrm{Spin}(n)\) has left-handed and right-handed spinor
representations, each of dimension \(2^{n/2-1}\). When \(n\) is odd
there is just one spinor representation. Of course, there is always the
representation of \(\mathrm{Spin}(n)\) coming from the vector
representation of \(\mathrm{SO}(n)\), which is \(n\)-dimensional.

This leads to something very curious. If you are an ordinary
4-dimensional physicist you undoubtedly tend to think of spinors as
``smaller'' than vectors, since the spinor representations are
2-dimensional, while the vector representation is \(3\)-dimensional.
However, in general, when the dimension \(n\) of space (or spacetime) is
even, the dimension of the spinor representations is \(2^{n/2-1}\),
while that of the vector representation is \(n\), so after a while the
spinor representation catches up with the vector representation and
becomes bigger!

This is a little bit curious, or at least it may seem so at first, but
what's \emph{really} curious is what happens exactly when the spinor
representation catches up with the vector representation. That's when
\(2^{n/2-1} = n\), or \(n = 8\). The group \(\mathrm{Spin}(8)\) has
three \(8\)-dimensional irreducible representations: the vector,
left-handed spinor, and right-handed spinor representation. While they
are not equivalent to each other, they are darn close; they are related
by a symmetry of \(\mathrm{Spin}(8)\) called ``triality''. And, to top
it off, the octonions can be seen as a kind of spin-off of this triality
symmetry\ldots{} as one might have guessed, from all this
\(8\)-dimensional stuff. One can, in fact, describe the product of
octonions in these terms.

So now let's dig in a bit deeper and describe how this triality business
works. For this, unfortunately, I will need to assume some vague
familiarity with exterior algebras, Clifford algebras, and their
relation to the spin group. But we will have a fair amount of fun
getting our hands on a \(24\)-dimensional beast called the Chevalley
algebra, which contains the vector and spinor representations of
\(\mathrm{Spin}(8)\)!

Start with an \(8\)-dimensional \emph{complex} vector space \(V\) with a
nondegenerate symmetric bilinear form on it. We can think of \(V\) as
the representation of \(\mathrm{SO}(8)\), hence \(\mathrm{Spin}(8)\),
where now I've switched notation and write \(\mathrm{SO}(8)\) to mean
\(\mathrm{SO}(8,\mathbb{C})\), and \(\mathrm{Spin}(8)\) to mean
\(\mathrm{Spin}(8,\mathbb{C})\). We can split \(V\) into two
\(4\)-dimensional subspaces \(V_+\) and \(V_-\) such that
\(\langle v,w\rangle = 0\) whenever \(v\) and \(w\) are either both in
\(V_+\), or both in \(V_-\). Let \(\mathrm{Cliff}\) be the Clifford
algebra over \(V\). Note that as a vector space, there is a natural
identification of \(\mathrm{Cliff}\) with
\[\bigwedge V_+ \otimes \bigwedge V_-\] where \(\bigwedge\) means
``exterior algebra'' and \(\otimes\) means ``tensor product''. (If you
are physicist you may enjoy following Dirac and thinking of
\(\bigwedge V_+\) as a Fock space for ``holes'', and \(\bigwedge V_-\)
as a Fock space for ``particles''. If you don't enjoy this, ignore it!
We will now to proceed to fill all the holes.) Pick a nonzero vector
\(v\) in \(\bigwedge^4 V_-\), the top exterior power of \(V_-\). Let
\(S\) denote the subspace of \(\mathrm{Cliff}\) consisting of all
elements of the form \(uv\) with \(u\) in \(\mathrm{Cliff}\). Note that
\(\mathrm{Cliff}\) and \(S\) are representations of \(\mathrm{Cliff}\)
by left multiplication, and therefore are representations of
\(\mathrm{Spin}(8)\) --- because \(\mathrm{Spin}(8)\) sits inside
\(\mathrm{Cliff}\). (This is a standard way to get one's hands on the
spin groups.)

Note that \(\bigwedge V_+\) and \(\bigwedge V_-\) both have dimension
\(2^4 = 16\). We can think of both of these as subspace of
\(\mathrm{Cliff}\); for example, we can think of the vector \(u\) in
\(\bigwedge V_+\) as the vector \(1 \otimes u\) in \(\mathrm{Cliff}\).
Note that \(uv = 0\) when \(u\) is in \(\bigwedge V_+\). (For
physicists: since the sea of holes is filled, you can't create another.)
Thus \(S\) consists of vectors of the form \(uv\) where \(u\) lies in
\(\bigwedge V_-\), and if you think a bit, it follows that \(S\) is
16-dimensional.

So we have our hands on a \(16\)-dimensional representation of
\(\mathrm{Spin}(8)\), namely \(S\). However, we can split it into two
\(8\)-dimensional representations, the left- and right-handed spinor
representations, as follows. Let \[\bigwedge^\text{even} V_-\] denote
the part of the exterior algebra consisting of stuff with even degree,
and \[\bigwedge^\text{odd} V_-\] the part with odd degree. Then we can
write \(S = S_+ \oplus S_-\), where \(\oplus\) means ``direct sum'' and
\[S_+ = (\bigwedge^{even} V_-)v , \quad  S_- = (\bigwedge^{odd} V_-)v.\]
Now, since any element of \(\mathrm{Cliff}\) that's in
\(\mathrm{Spin}(8)\) has even degree in \(\mathrm{Cliff}\), and since
even times even is even, while even times odd is odd, it follows that as
a representation of \(\mathrm{Spin}(8)\), \(S\) splits into \(S_+\) and
\(S_-\), which we call the left-handed and right-handed spinors,
respectively. (Actually I don't know which one is called which, but
being left-handed myself I think the positive one should obviously be
called the left-handed one.)

Note, by the way, that everything so far works quite generally for
\(\mathrm{Spin}(n)\) when \(n\) is even, and it's only in the last
paragraph that I used the fact that \(n\) was even. I certainly haven't
done anything weird using the fact that \(n\) is 8. So as a bonus we're
learning some quite general stuff about spinors.

Now let's do something weird using the fact that \(n\) is 8. We've got
these three \(8\)-dimensional representations of \(\mathrm{Spin}(8)\) on
our hands, namely \(V\), \(S_+\), and \(S_-\). How do they relate?
Recall that \(S_+ + S_- = S\) is a representation of \(\mathrm{Cliff}\),
and since \(V\) sits inside \(\mathrm{Cliff}\) as the elements of degree
\(1\), we have for any \(a\) in \(V\),
\[\mbox{$ab$ is in $S_-$ if $b$ is in $S_+$}\] and
\[\mbox{$ab$ is in $S_+$ if $a$ is in $S_-$}\] If we are in the mood,
this might tempt us to lump \(V\), \(S_+\), and \(S_-\) together to form
a \(24\)-dimensional algebra! Let's call this the Chevalley algebra and
write \[\mathrm{Chev} = V + S_+ + S_-\]

Of course, we need to figure out how to multiply any two guys in
\(\mathrm{Chev}\). We define the product of any two guys in \(V\) to be
zero, and ditto for \(S_+\) or \(S_-\). But we can find an interesting
way to multiply a guy in \(S_+\) by a guy in \(S_-\) to get a guy in
\(V\). I think the vector representation always sits inside the tensor
product of the left- and right-handed spinor representations when space
is even-dimensional, and that this is what we're looking for. But
explicitly, here's what we do in this case. There is a kind of \({}^*\)
operation on \(\mathrm{Cliff}\) given by
\[(abc \ldots def)^* = fed\ldots cba\] where \(a,b,c,\ldots,d,e,f\) lie
in \(V\). This lets us define a symmetric bilinear form on \(S\) by
\[\langle x,y\rangle v = x^* y\] Together with the symmetric bilinear
form we started with on \(V\), this gives us a symmetric bilinear form
on all of \(\mathrm{Chev}, defining \langle a,b \rangle\) to be \(0\) if
\(a\) is in \(V\) and \(b\) is in \(S_+\) or \(S_-\). This bilinear form
on \(\mathrm{Chev}\) turns out to be nondegenerate, and
\(\langle a,b \rangle = 0\) whenever \(a\) and \(b\) lie in different
ones of three summands of \(\mathrm{Chev}\).

So now \(\mathrm{Chev}\) has a nondegenerate symmetric bilinear form it.
This lets us define a cubic form on \(\mathrm{Chev}\)! Say we have
\((a,b,c)\) in \(V \oplus S_+ \oplus S_- = \mathrm{Chev}\). Then we
define our cubic form \(F\) by \[F(a,b,c) = \langle ab,c \rangle\] using
the fact that we already know how to multiply a guy in \(V\) with a guy
in \(S_+\), and get a guy in \(S_-\).

You probably know --- if you've survived this far! --- that from a
quadratic form you can get a symmetric bilinear form by
``polarization''. Well, similarly, we can get a symmetric trilinear form
f on \(\mathrm{Chev}\) by polarizing \(F\). Explicitly, for any
\(u1,u2,u3\) in \(\mathrm{Chev}\), we have
\[f(u1,u2,u3) =  F(u1 + u2 + u3) -F(u1 + u2) -F(u2 + u3) -F(u1 + u3) +F(u1) +F(u2) +F(u3).\]
Then, since we have a nondegenerate symmetric bilinear form on
\(\mathrm{Chev}\), we can turn \(f\) into a product on
\(\mathrm{Chev}\), by setting
\[\langle u1 u2, u3 \rangle = f(u1,u2,u3).\] The assiduous reader can
check that this product on \(\mathrm{Chev}\) agrees with the product we
had partially defined so far; the only new thing it does is define the
product of a guy in \(S_+\) and a guy in \(S_-\), obtaining something in
\(V\). This product turns out to be commutative, but not associative.

Now, if I were really gung-ho about describing triality, I would
describe how the group of permutations of 3 letters, \(S_3\), acts as
automorphisms of \(\mathrm{Chev}\) in a way that lets one scramble the
summands \(V\), \(S_+\), and \(S_-\) at will. In fact, \(S_3\) acts as
automorphisms of \(\mathrm{Spin}(8)\) in a way that gives rise to this
action on \(\mathrm{Chev}\). But right now I'm running out of steam, so
I think I'll just say how to get the octonions out of the Chevalley
algebra!

It's simple: pick a vector \(v\) in \(V\) with
\(\langle v,v \rangle = 1\), and a vector \(s_+\) in \(S_+\) with
\(\langle s_+,s_+ \rangle = 1\). Then \(s_- = vs_+\) is a vector in
\(S_-\) with \(\langle s_-,s_- \rangle = 1\). We now turn \(V\) into the
octonions as follows. Given \(v\) and \(w\) in \(V\), define their
octonion product \(v^*w\) to be \[v^*w = (v s_-) (w s_+)\] where the
product on the right hand side is the product in the Chevalley algebra.
In other words: take \(v\) and turn it into something in \(S_+\) by
forming \(v s_-\). Take \(w\) and turn it into something in \(S_-\) by
forming \(w s_+\). The product of these is then something in \(V\). In
short, we form the octonions from the three \(8\)-dimensional
representations of \(\mathrm{Spin}(8)\) by a kind of
ring-around-the-rosie process using triality!

Note: what we just obtained was a \emph{complex} \(8\)-dimensional
algebra, which is the complexification of the octonions. Using the fact
that the vector representation of \(\mathrm{SO}(8,\mathbb{C})\) on
\(\mathbb{C}^8\) contains the vector representation of
\(\mathrm{SO}(8,\mathbb{R})\) on \(\mathbb{R}^8\) as a ``real part'', we
should be able to get the octonions themselves.

One can work out the details following the book of Fulton and Harris,
and the references therein. I should add that they do a lot more fun
stuff involving the exceptional Lie groups and the \(27\)-dimensional
exceptional Jordan algebra\ldots{} all of this ``exceptional'' stuff
seems to form a unified whole! There is a lot more fun stuff along these
lines in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Ian R. Porteous, \emph{Topological Geometry}, Cambridge U. Press,
  Cambridge, 1981.
\end{enumerate}

In particular, to correct a widespread misimpression, it's worth noting
that there are a lot of nonassociative division algebras over the reals
besides the octonions; Porteous describes one of dimension 4 in his
book. However, all division algebras over \(\mathbb{R}\) are of
dimension 1,2,4, or 8. Also, all normed division algebras over
\(\mathbb{R}\) are the reals, complexes, quaternions, or octonions, and
these are also all the alternative division algebras over
\(\mathbb{R}\), as well\ldots{} where an ``alternative'' algebra is one
for which any two elements generate an associative algebra. Nota bene:
here a division algebra is one such that for all nonzero \(x\), the map
\(y \mapsto xy\) is invertible. In the finite-dimensional case, this
implies that every element has a left and right inverse. If assume
associativity, the converse is true, but in the nonassociative case it
ain't. Whew! Nonassociative algebras are tricky, if you're used to
associative ones, so you're interested, you might try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  R. D. Schafer, \emph{An Introduction to Non-Associative Algebras},
  Dover, New York, 1995.
\end{enumerate}

In addition to the people listed in \protect\hyperlink{week59}{``Week
59''}, I should thank Dan Asimov, Michael Kinyon, Frank Smith, and Dave
Rusin for help with this post. I also thank Doug Merritt for reminding
me about the following nice book on quaternions, octonions, and all
sorts of similar algebras:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  I. L. Kantor and A. S. \emph{Solodovnikov, Hypercomplex Numbers --- an
  Elementary Introduction to Algebras}, Springer-Verlag, Berlin, 1989;
  translation of ``Giperkompleksnye chisla'', Moscow, 1973.
\end{enumerate}

Back in the old days when there weren't too many algebras around besides
the reals, complexes and quaternions, people called algebras
``hypercomplex numbers''.
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Now I'd like to talk about a fascinating subject of importance in both
mathematics and physics, the subject of ``ADE classifications''. Here A,
D, and E aren't abbreviations for anything; they are just names for
certain diagrams. But these diagrams show up all over the place when you
start trying to classify beautiful and symmetrical things.

Let's start with something nice and simple: the Platonic solids. It's
not terribly hard to classify all the regular polyhedra in
\(3\)-dimensional Euclidean space. Roughly, it goes like this. The faces
could all be equilateral triangles. Obviously there need to be at least
3 faces meeting at each vertex to get a polyhedron. If there are exactly
3, you have a tetrahedron. If there are 4, you have an octahedron. If
there are 5, you have an icosahedron. There can't be 6 or more, since
when you have 6 they lie flat in the plane, and more is even worse. The
faces could also be squares. If there are 3 squares meeting at each
vertex you have a cube. There can't be 4 or more, since when you have 4
they lie flat in the plane. The faces could also be regular pentagons.
If there are 3 pentagons meeting at each vertex you have a dodecahedron.
There can't be 4 or more, since when you have 4 you already have more
than 360 degree's worth of angles.

So, there we are: the 5 regular polyhedra are the tetrahedron,
octahedron, icosahedron, cube, and dodecahedron! Of course, we haven't
shown these solids actually exist. Sometimes people forget that you
really need to check that all these possibilities are realized! But the
Greeks did that a while back. This is perhaps the first example of an
ADE classification.

This had such beauty that in his ``Timaeus'' dialog, Plato suggested
that the 4 elements were made of these solids, not counting for the
dodecahedron. Interestingly, Plato considered decomposing the faces of
these solids into ``elementary triangles'', in order to explain how one
element could turn into another. This is presumably why he left out the
dodecahedron: one can't chop up a regular pentagon into 30-60-90
triangles. In a passage that's notoriously hard to translate, he
suggested that the dodecahedron corresponding to some sort of
``quintessence'', or perhaps the zodiac. It's worth pointing out, also,
that Plato explicitly says it's okay if someone comes up with a better
scheme. He makes it clear that he is just trying to lay out an
\emph{example} of a mathematical scheme for explaining the elements, to
get people interested.

Later, of course, Kepler suggested that the 5 Platonic solids
corresponded to the orbits of the 5 planets:
\[\includegraphics[max width=0.65\linewidth]{../images/kepler_mysterium_cosmographicum.jpg}\]
As it turns out, Plato and Kepler were in the right ball-park, but not
really right. Both the solar system and atoms are described pretty well
by similar laws - the inverse-square force laws for gravity and
electrostatics. And solving this problem (in either the classical or
quantum case) does indeed require a deep understanding of rotations in
3-dimensional space. It's sort of amusing, however, that the Platonic
solids have as their symmetries finite subgroups of the rotation group
in 3 dimensions, while the study of quantum-mechanical atoms instead
involves the theory of ``representations'' of this group, which are in
some sense dual. The rotation group in \(n\) dimensions, by the way, is
called \(\mathrm{SO}(n)\). See \protect\hyperlink{week61}{``Week 61''}
for a bit more about it. For a grand tour of the inverse square law,
both classical and quantum, read:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Victor Guillemin and Shlomo Sternberg, \emph{Variations on a Theme by
  Kepler}, American Mathematical Society, Providence, Rhode Island,
  1990.
\end{enumerate}

You will see, among other things, that the real reason the inverse
square force law problem is exactly solvable is that it has a hidden
symmetry under \(\mathrm{SO}(4)\), not just \(\mathrm{SO}(3)\).

But I digress! Recall how I said that ``obviously'' a regular polyhedron
has to have 3 faces meeting at each vertex? What would happen if you
relaxed the definition a little bit, and let there be just 2 faces
meeting at a vertex? Well, then any regular polygon could qualify as a
regular polyhedron, I guess. Then we would have an infinite series of
regular polyhedron with only two faces, together with 5 exceptions, the
Platonic solids. That's actually typical of ADE-type classifications:
often, when you are classifying really symmetrical things, you find some
infinite series of ``obvious'' or ``classical'' cases, together with
finitely many weird ``exceptional'' cases.

Before I get further into ADE classifications, let me note that the
\emph{problem} of why there are so many ADE classifications, and how
they are all related, was explicitly raised by the famous mathematical
physicist V. I. Arnol'd, in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  ``Problems of Present Day Mathematics'' in \emph{Mathematical
  Developments Arising from Hilbert's Problems}, ed.~F. E. Browder,
  Proc. Symp. Pure Math. \textbf{28}, American Mathematical Society,
  Providence, Rhode Island, 1976.
\end{enumerate}

This lists a lot of important math problems, following up on Hilbert's
famous turn-of-the-century listing of problems. Problem VIII in this
book is the ``ubiquity of ADE classifications''. Arnol'd lists the
following examples:

\begin{itemize}
\tightlist
\item
  Platonic solids
\item
  Finite groups generated by reflections
\item
  Weyl groups with roots of equal length
\item
  Representations of quivers
\item
  Singularities of algebraic hypersurfaces with definite intersection
  form
\item
  Critical points of functions having no moduli
\end{itemize}

Don't worry if you don't know what those are except for the first one!
I'll try to explain some of them. Later I'll also explain two new ones
that came out of string theory:

\begin{itemize}
\tightlist
\item
  Minimal models
\item
  Certain ``quantum categories''
\end{itemize}

Perhaps the best single place to start learning about ADE
classifications is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  M. Hazewinkel, W. Hesselink, D. Siermsa, and F. D. Veldkamp, ``The
  ubiquity of Coxeter-Dynkin diagrams (an introduction to the ADE
  problem)'', \emph{Niew. Arch. Wisk.}, \textbf{25} (1977), 257-307.
  Also available at
  \href{\%20http://repos.project.cwi.nl:8888/cwi_repository/docs/I/10/10039A.pdf\%0A}{\texttt{http://repos.project.cwi.nl:8888/cwi\_repository/docs/I/10/10039A.pdf}}
  or
  \href{\%20http://math.ucr.edu/home/baez/hazewinkel_et_al.pdf}{\texttt{http://math.ucr.edu/home/baez/hazewinkel\_et\_al.pdf}}
\end{enumerate}

Okay, so what the heck is an ADE classification, after all? It's
probably good to start by looking at ``finite reflection groups.'' Say
we are in \(n\)-dimensional Euclidean space. Then given any unit vector
\(v\), there is a reflection that takes \(v\) to \(-v\), and doesn't do
anything to the vectors orthogonal to \(v\). Let's call this a
``reflection through \(v\)''. A finite reflection group is a finite
group of transformations of Euclidean space such that every element is a
product of reflections. For example, the group of symmetries of an
equilateral \(n\)-gon is a finite reflection group. (This is a useful
exercise if you don't see it right off the bat.)

Note that if we do two reflections, we get a rotation. In particular,
suppose we have vectors \(v\) and \(w\) at an angle \(A\) from each
other, and let \(r\) and \(s\) be the reflections through \(v\) and
\(w\), respectively. Then \(rs\) is a rotation by the angle \(2A\). Draw
a picture and check it! This means that if \(A = \pi / n\), then
\((rs)^n\) is a rotation by the angle \(2\pi\), which is the same as no
rotation at all, so \((rs)^n = 1\). On the other hand, if \(A\) is not a
rational number times \(\pi\), we never have \((rs)^n = 1\), so \(r\)
and \(s\) can not both be in some \emph{finite} reflection group.

With a little more work, we can convince ourselves that any finite
reflection group is captured by a ``Coxeter diagram''. The idea is that
the group is generated by reflections through unit vectors that are all
at angles of \(\pi/n\) from each other. To keep track of things, we draw
a dot for each one of these vectors. Suppose two of the vectors are at
an angle \(\pi/n\) from each other. If \(n = 2\), we don't bother
drawing a line between the two dots. Otherwise, we draw a line between
them, and label it with the number \(n\). Typically, if \(n = 3\) people
don't bother writing the number; they just draw that line. That's what
I'll do. (People also sometimes draw \(n - 2\) lines instead of writing
the number \(n\), but I can't do that here.)

Algebraically speaking, if someone hands us a Coxeter diagram like \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to node[label=above:{7}]{} (2,0) node {$\bullet$};
  \end{tikzpicture}
\] we get a group having one generator for each dot, and with one
relation \(r^2 = 1\) for each generator \(r\) (since that's what
reflections do), and one relation of the form \((rs)^n = 1\) for each
line connecting dots, or \((rs)^2 = 1\) if there is no line connecting
two dots. It turns out that if a Coxeter diagram yields a \emph{finite}
group this way, it's a finite reflection group.

However, not every diagram we draw yields a finite group! Here are all
the possible Coxeter diagrams giving finite groups. They have names.
First there is \(\mathrm{A}_n\), which has \(n\) dots like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node {$\bullet$} to (4,0) node{$\bullet$};
  \end{tikzpicture}
\] For example, the group of symmetries of the equilateral triangle is
\(A_2\). The two dots can correspond to the reflections \(r\) and \(s\)
through two of the altitudes of the triangle, which are at an angle of
\(\pi/3\) from each other. Thus they satisfy \((rs)^3 = 1\). More
generally, \(\mathrm{A}_n\) corresponds to the group of symmetries of an
\(n\)-dimensional simplex --- which is just the group of permutations of
the \(n+1\) vertices.

Then there is \(\mathrm{B}_n\), which has \(n\) dots, where \(n > 1\):
\[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to node[label=above:{4}]{} (3,0) node {$\bullet$};
  \end{tikzpicture}
\] It has just one edge labelled with a 4. \(\mathrm{B}_n\) turns out to
be the group of symmetries of a hypercube or hyperoctahedron in \(n\)
dimensions.

Then there is \(\mathrm{D}_n\), where \(n > 3\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] Then there are \(\mathrm{E}_6\), \(\mathrm{E}_7\), and
\(\mathrm{E}_8\): \[
  \begin{gathered}
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
    \qquad
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \\\begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \end{gathered}
\] Interestingly, this series does \emph{not} go on. That's what I meant
about ``classical'' versus ``exceptional'' structures.

Then there is \(\mathrm{F}_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to node[label=above:{4}]{} (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
  \end{tikzpicture}
\] Then there's \(\mathrm{G}_2\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{6}]{} (1,0) node{$\bullet$};
  \end{tikzpicture}
\] and \(H_3\) and \(H_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{5}]{} (1,0) node{$\bullet$} to (2,0) node{$\bullet$};
  \end{tikzpicture}
  \qquad
  \begin{tikzpicture}
  \draw[thick] (0,0) node{$\bullet$} to node[label=above:{5}]{} (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
\end{tikzpicture}
\] \(H_3\) is the group of symmetries of the dodecahedron or
icosahedron. \(H_4\) is the group of symmetries of a regular solid in 4
dimensions which I talked about in \protect\hyperlink{week20}{``Week
20''}. This regular solid is also called the ``unit icosians'' --- it
has 120 vertices, and is a close relative of the icosahedron and
dodecahedron. One amazing thing is that it itself \emph{is} a group in a
very natural way. There are no ``hypericosahedra'' or
``hyperdodecahedra'' in dimensions greater than 4, which is related to
the fact that the \(H\) series quits at this point.

Finally, there is another infinite series, \(\mathrm{I}_m\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{$m$}]{} (1,0) node{$\bullet$};
  \end{tikzpicture}
\] This corresponds to the symmetry group of the \(2m\)-gon in the
plane, and people usually require \(m = 5\) or \(m > 6\), so as to not
count twice some Coxeter diagrams that we've already run into.

THAT'S ALL.

So, we have an ``ABDEFGHI classification'' of finite reflection groups.
(In some future week I had better say what happened to ``C''.) Note that
the symmetry groups of the Platonic solids and some of their
higher-dimensional relatives fit in nicely into this classification, so
that's one sense in which the Greeks' discovery of these solids counts
as the first ``ADE classification''. But there is at least one another,
deeper, way to fit the Platonic solids themselves into an ADE
classification. I'll try to say more about this in future weeks.

You may still be wondering what's so special about A, D, and E. I'll
have to get to that, too.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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Let me continue the tale of ``ADE classifications''. Last week I
described an ``ABDEFGHI classification'' of all finite reflection groups
- that is, finite symmetry groups of Euclidean space, every element of
which is a product of reflections. Now we'll build on that to get other
related classifications.

So, recall:

Every element of a finite reflection group is a product of reflections
through certain special vectors, which people call ``roots''. These
roots are all at angles \(\pi/n\) from each other, where \(n > 1\) is an
integer. To describe the group, we draw a diagram with one dot for each
root. If two roots are perpendicular we don't draw a line between them,
but otherwise, if they are at an angle \(\pi/n\) from each other, we
draw a line and label it with the integer \(n\). Actually, the integer
\(n = 3\) comes up so often that we don't bother labelling the line in
this case.

Now, not all of these diagrams correspond to finite reflection groups.
The following ones, together with disjoint unions of them, are all the
possibilities.

\begin{quote}
\(\mathrm{A}_n\), which has \(n\) dots like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node {$\bullet$} to (4,0) node{$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{B}_n\), which has \(n\) dots, where \(n > 1\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to node[label=above:{4}]{} (3,0) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{D}_n\), which has \(n\) dots, where \(n > 3\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{E}_6\), \(\mathrm{E}_7\), and \(\mathrm{E}_8\): \[
  \begin{gathered}
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
    \qquad
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \\\begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \end{gathered}
\] \(\mathrm{F}_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to node[label=above:{4}]{} (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{G}_2\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{6}]{} (1,0) node{$\bullet$};
  \end{tikzpicture}
\] \(H_3\) and \(H_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{5}]{} (1,0) node{$\bullet$} to (2,0) node{$\bullet$};
  \end{tikzpicture}
  \qquad
  \begin{tikzpicture}
  \draw[thick] (0,0) node{$\bullet$} to node[label=above:{5}]{} (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
\end{tikzpicture}
\] \(\mathrm{I}_m\), where \(m = 5\) or \(m > 6\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{$m$}]{} (1,0) node{$\bullet$};
  \end{tikzpicture}
\]
\end{quote}

Recall that \(\mathrm{I}_m\) is the symmetry group of the of regular
\(m\)-gon, while others of these are the symmetry groups of Platonic
solids, and still others are symmetry groups of regular polytopes in
\(n\)-dimensional space. For example, the symmetry group of the
dodecahedron is \(H_3\), while that of its \(4\)-dimensional relative is
\(H_4\).

Now you may know that there are no perfect crystals in the shape of a
regular dodecahedron. However, iron pyrite comes close. In his wonderful
book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Hermann Weyl, \emph{Symmetry}, Princeton University Press, Princeton,
  New Jersey, 1989.
\end{enumerate}

Weyl suggests that this is how people discovered the regular
dodecahedron:

\begin{quote}
\ldots the discovery of the last two {[}Platonic solids{]} is certainly
one of the most beautiful and singular discoveries made in the whole
history of mathematics. With a fair amount of certainty, it can be
traced to the colonial Greeks in southern Italy. The suggestion has been
made that they abstracted the regular dodecahedron from the crystals of
pyrite, a sulfurous mineral abundant in Sicily.
\end{quote}

Thus while iron pyrite is nothing but ``fool's gold'' to the miner, it
may have done a good deed by fooling the Greeks into discovering the
regular dodecahedron. Could this be why the ratio of the diagonal to the
side of a regular pentagon, \((\sqrt{5} + 1)/2\), is called the golden
ratio? Or am I just getting carried away? One is tempted to call the
shape of pyrite crystals the ``fool's dodecahedron,'' but in fact it's
called a ``pyritohedron''. (All this information on pyrite, as well as
the puns, I owe to Michael Weiss.)

More recently, I think people have discovered ``quasicrystals'' (related
to Penrose tiles) having true dodecahedral symmetry. But no perfectly
repetitive crystals form dodecahedra! And the reason is that there is no
lattice having \(H_3\) as its symmetries.

Recall that we get a ``lattice'' by taking \(n\) linearly independent
vectors in \(n\)-dimensional Euclidean space and forming all linear
combinations with integer coefficients. If someone hands us a finite
reflection group, we can look for a lattice having it as symmetries. If
one exists, we say the group satisfies the ``crystallographic
condition''. The only ones that do are

\[\mbox{$\mathrm{A}_n$, $\mathrm{B}_n$, $\mathrm{D}_n$, $\mathrm{E}_6$, $\mathrm{E}_7$, $\mathrm{E}_8$, $\mathrm{F}_4$, and $\mathrm{G}_2$}\]

(and those corresponding to disjoint unions of these diagrams). In other
words, the symmetry groups of the pentagon (\(I_5\)), the heptagon and
so on (\(\mathrm{I}_m\) with \(m > 6\)), and the dodecahedron and its
\(4\)-dimensional relative (\(H_3\) and \(H_4\)) are ruled out.

Now let us turn to the theory of Lie groups. Lie groups are the most
important ``continuous'' (as opposed to discrete) symmetry groups.
Examples include the real line (with addition as the group operation),
the circle (with addition \(\mod 2\pi\)), and the groups
\(\mathrm{SO}(n)\) and \(\mathrm{SU}(n)\) discussed in
\protect\hyperlink{week61}{``Week 61''}. These groups are incredibly
important in both physics and mathematics. Thus it is wonderful, and
charmingly ironic, that the same diagrams that classify the
oh-so-discrete finite reflection groups also classify some of the most
beautiful of Lie groups: the ``simple'' Lie groups. It turns out that
the simple Lie groups correspond to the diagrams of forms
\(A\),\(B\),\(D\),\(E\),\(F\), and \(G\). Oh yes, and \(C\). I have to
tell you what happened to \(C\).

There is a vast amount known about semisimple Lie groups, and everyone
really serious about mathematics winds up needing to learn some of this
stuff. I took courses on Lie groups and their Lie algebras in grad
school, but it was only later that I really came to appreciate the
beauty of the simple Lie groups. Back then I found it mystifying because
the work involved in the classification was so algebraic, and I
preferred the more geometrical aspects of Lie groups. Part of the reason
is that the treatment I learned emphasized the Lie algebras and
downplayed the groups. A nice treatment that emphasizes the groups is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Frank Adams, \emph{Lectures on Lie groups}, Benjamin, New York,
  1969.
\end{enumerate}

So what's the basic idea? Let me summarize two semesters of grad school,
and tell you the basic stuff about Lie groups and the classification of
simple Lie groups. Forgive me if it's a bit rushed, sketchy, and even
mildly inaccurate: hopefully the main ideas will shine through the murk
this way.

A Lie group is a group that's also a manifold, for which the group
operations (multiplication and taking inverses) are smooth functions.
This lets you form the tangent space to any point in the group, and the
tangent space at the identity plays a special role. It's called the Lie
algebra of the group. If we have any element \(x\) in the Lie algebra,
we can exponentiate it to get an element \(\exp(x)\) in the group, and
we can keep track of the noncommutativity of the group by forming the
``bracket'' of elements \(x\) and \(y\) in the Lie algebra:

\[[x,y] = \frac{d}{dt}\frac{d}{ds} \exp(sx) \exp(ty) \exp(-sx) \exp(-ty)\]

where \(s\) and \(t\) are real numbers, and we evaluate the derivative
at \(s,t = 0\). Note that \([x,y] = 0\) if the group is commutative.
This bracket operation satisfies some axioms, and algebraists call
anything a Lie algebra that satisfies those axioms. For example, you
could take \(n \times n\) matrices and let \([x,y] = xy - yx\).

Now a Lie algebra is called ``semisimple'' if for any \(z\), there are
\(x\) and \(y\) with \(z = [x,y]\). This is sort of the opposite of an
abelian, or commutative, Lie algebra, where \([x,y] = 0\) for all \(x\)
and \(y\). It turns out that we can take direct sums of Lie algebras by
defining operations componentwise, and it turns out that if you have a
\emph{compact} Lie group, its Lie algebra is always the direct sum of a
semsimple Lie algebra and an abelian one. The abelian ones are pretty
trivial, so all the hard works lies in understanding the semisimple
ones. Any semisimple one is the direct sum of a bunch of semisimple ones
that aren't sums of anything else, and these basic building blocks are
called the ``simple'' ones. They are like the prime numbers of Lie
algebra theory. Unlike the prime numbers, though, we can completely
classify all of them!

Now how does one classify the simple Lie algebras? Basically, it goes
like this. We'll assume our simple Lie algebra is the Lie algebra of a
compact Lie group \(G\) --- it turns out that they all are. Now, sitting
inside \(G\) there is a maximal commutative subgroup \(T\) that's a
torus: a product of a bunch of circles. Let \(\mathrm{Lie}(T)\) stand
for the Lie algebra of this torus \(T\). Now, sitting inside
\(\mathrm{Lie}(T)\) there is a lattice, consisting of all elements \(x\)
with \(\exp(x) = 1\). This is how lattices sneak into the picture!

Moreover, for some elements \(g\) in \(G\), if we ``conjugate'' \(T\) by
\(g\), that is, form the set of all elements \(gtg^{-1}\) where \(t\) is
in \(T\), we get \(T\) back. In other words, these elements of \(g\) act
as symmetries of the torus \(T\). Now, if something acts as symmetries
of something else, it also acts as symmetries of everything naturally
cooked up from that something else. (Roughly speaking, ``naturally''
means "without dependence on arbitrary choices.) For this reason, these
special elements of \(G\) also act as symmetries of \(\mathrm{Lie}(T)\)
and of the lattice sitting inside \(\mathrm{Lie}(T)\). So we have a
lattice together with a group of symmetries, which by the way is called
the Weyl group of \(G\). Now the cool part is that the Weyl group is
actually a finite reflection group, so it must correspond to one of the
diagrams in the list above! Even better, it turns out that the Lie
algebra of \(G\) is determined by the lattice together with its Weyl
group.

The upshot is that to classify semisimple Lie algebras, all we need is
the classification of finite reflection groups satisfying the
crystallographic condition --- which we've done already using diagrams
--- together with a classification of lattices having such finite
reflection groups as symmetries. It turns out that the operation of
taking direct sums of semisimple Lie algebras corresponds to taking
disjoint unions of diagrams, so to get the ``building blocks'' --- the
\emph{simple} Lie algebras --- we only need to worry about the diagrams
we've drawn above, not disjoint unions of them. Now it turns out that
for every type except \(B\), there is (up to isomorphism) only
\emph{one} lattice having that group of symmetries, but for \(B\) there
are two. Recall the diagram \(\mathrm{B}_n\) looks like: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to node[label=above:{4}]{} (3,0) node {$\bullet$};
  \end{tikzpicture}
\] with \(n\) dots. And recall that the dots correspond to ``roots'',
which in the present context are vectors in \(\mathrm{Lie}(T)\). Now it
turns out that whenever we have a finite reflection group satisfying the
crystallographic condition, we can get a lattice having it as symmetries
by taking integer linear combinations of the roots, but \emph{not}
necessarily roots that are unit vectors; the lengths of the roots
matter. In all cases except \(B\), there is basically just one way to
get the lengths right, but for \(B\) there are two. We can keep track of
the root lengths with some extra markings on our diagrams, and then we
get two diagrams, which we call \(\mathrm{B}_n\) and \(\mathrm{C}_n\).
One of them has the root at the right of the diagram being longer, and
one has the root right next to it being longer. This makes no difference
when \(n = 2\), since then we just have \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{4}]{} (1,0) node {$\bullet$};
  \end{tikzpicture}
\] which is perfectly symmetrical. So folks usually consider
\(\mathrm{C}_n\) only for \(n > 2\), to avoid double counting.

In other words, all the simple Lie algebras are of the form:

\begin{itemize}
\tightlist
\item
  \(\mathrm{A}_n\), \(n > 0\)
\item
  \(\mathrm{B}_n\), \(n > 1\)
\item
  \(\mathrm{C}_n\), \(n > 2\)
\item
  \(\mathrm{D}_n\), \(n > 3\)
\item
  \(\mathrm{E}_6\), \(\mathrm{E}_7\), \(\mathrm{E}_8\)
\item
  \(\mathrm{F}_4\)
\item
  \(\mathrm{G}_2\)
\end{itemize}

Okay, so what \emph{are} these things, really? What do they \emph{mean},
and what are the implications of the fact that the symmetries of the
forces of nature are given by the some of the corresponding Lie groups?
Why are 4 infinite series of them and 5 ``exceptional'' Lie algebras?
What's so special about A, D, and E, that makes people keep talking
about ``ADE classifications''? What do the exceptional Lie algebras (and
their corresponding Lie groups) have to do with octonions? Why do some
string theorists think the symmetry group of nature is \(\mathrm{E}_8\),
the largest exceptional Lie group???

Well, I'm afraid that I'm going camping in a couple of hours, so I'll
have to leave you hanging, even though I do know the answers to
\emph{some} of these questions. I'll try to finish talking about ADE
classifications in the next couple of issues.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{\ldots{} without fantasy one would never become a mathematician,
and what gave me a place among the mathematicians of our day, despite my
lack of knowledge and form, was the audacity of my thinking.} - Sophus
Lie
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I have been talking about different ``ADE classifications''. This time
I'll start by continuing the theme of last Week, namely simple Lie
algebras, and then move on to discuss affine Lie algebras and quantum
groups. These are algebraic structures that describe the symmetries
appearing in quantum field theory in 2 and 3 dimensions. They are very
important in string theory and topological quantum field theory, and
it's largely physics that has gotten people interested in them.

Remember, we began by classifying finite reflection groups. A finite
reflection group is simply a finite group of linear transformations of
\(\mathbb{R}^n\), every element of which is a product of reflections.
Finite reflection groups are in 1-1 correspondence with the following
``Coxeter diagrams'', together with disjoint unions of such diagrams:

\begin{quote}
\(\mathrm{A}_n\), which has \(n\) dots like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node {$\bullet$} to (4,0) node{$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{B}_n\), which has \(n\) dots, where \(n > 1\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to node[label=above:{4}]{} (3,0) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{D}_n\), which has \(n\) dots, where \(n > 3\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{E}_6\), \(\mathrm{E}_7\), and \(\mathrm{E}_8\): \[
  \begin{gathered}
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
    \qquad
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \\\begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \end{gathered}
\] \(\mathrm{F}_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to node[label=above:{4}]{} (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{G}_2\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{6}]{} (1,0) node{$\bullet$};
  \end{tikzpicture}
\] \(H_3\) and \(H_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{5}]{} (1,0) node{$\bullet$} to (2,0) node{$\bullet$};
  \end{tikzpicture}
  \qquad
  \begin{tikzpicture}
  \draw[thick] (0,0) node{$\bullet$} to node[label=above:{5}]{} (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
\end{tikzpicture}
\] \(\mathrm{I}_m\), where \(m = 5\) or \(m > 6\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{$m$}]{} (1,0) node{$\bullet$};
  \end{tikzpicture}
\]
\end{quote}

Not all of these finite reflection groups satisfy the ``crystallographic
condition'', namely that they act as symmetries of some lattice. The
ones that do are of types A,B,D,E,F, and G, and disjoint unions thereof
--- but I'm going to stop reminding you about disjoint unions all the
time!

Now, if we have a finite reflection group that's the symmetries of some
lattice, we can take the dimension of the lattice to be the number of
dots in the Coxeter diagram. In fact, the dots correspond to a basis of
the lattice, and the lines between them (and their numberings) keep
track of the angles between the basis vectors. These basis vectors are
called ``roots''. To describe the lattice completely, in principle we
need to know the lengths of the roots as well as the angles between
them. But it turns out that except for type B, there is just one choice
of lengths that works (up to overall scale). For type B there are two
choices, which people call \(\mathrm{B}_n\) and \(\mathrm{C}_n\),
respectively. People keep track of the lengths with a ``Dynkin diagram''
like this:

\begin{itemize}
\tightlist
\item
  \(\mathrm{B}_n\) has \(n\) dots, where \(n>1\): \[
      \begin{tikzpicture}
        \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to node[label=above:{4}]{\textgreater} (3,0) node {$\bullet$};
      \end{tikzpicture}
    \]
\item
  \(\mathrm{C}_n\) has \(n\) dots, where \(n>2\): \[
      \begin{tikzpicture}
        \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to node[label=above:{4}]{\textless} (3,0) node {$\bullet$};
      \end{tikzpicture}
    \]
\end{itemize}

The arrow points to the shorter root; for \(\mathrm{B}_n\) all the roots
except the last one are \(\sqrt{2}\) times as long as the last one,
while for \(\mathrm{C}_n\) all the roots except the last one are
\(1/\sqrt{2}\) as long. (In fact, the lattices corresponding to
\(\mathrm{B}_n\) and \(\mathrm{C}_n\) are ``dual'', in the hopefully
obvious sense.) The only reason why we require \(n > 2\) for
\(\mathrm{C}_n\) is that \(B_2\) is basically the same as \(C_2\)!

Now last Week, I also sketched how the Lie algebras of the compact
simple Lie groups were \emph{also} classified by the same Dynkin
diagrams of types A, B, C, D, E, F, and G. These were real Lie algebras;
we can also switch viewpoint and work with complex Lie algebras if we
like, in which case we simply say we're studying the complex simple Lie
algebras, as opposed to their ``compact real forms''.

Unfortunately, I didn't say much about what these Lie algebras actually
are! Basically, they go like this:

\(\mathrm{A}_n\) --- The Lie algebra \(\mathrm{A}_n\) is just
\(\mathfrak{sl}_{n+1}(\mathbb{C})\), the \((n+1) \times (n+1)\) complex
matrices with vanishing trace, which form a Lie algebra with the usual
bracket \([x,y] = xy -yx\). The compact real form of
\(\mathfrak{sl}_n(\mathbb{C})\) is \(\mathfrak{su}_n\), and the
corresponding compact Lie group is \(\mathrm{SU}(n)\), the \(n\times n\)
unitary matrices with determinant \(1\). The symmetry group of the
electroweak force is \(\mathrm{U}(1) \times \mathrm{SU}(2)\), where
\(\mathrm{U}(1)\) is the \(1 \times 1\) unitary matrices. The symmetry
group of the strong force is \(\mathrm{SU}(3)\). The study of
\(\mathrm{A}_n\) is thus a big deal in particle physics. People have
also considered ``grand unified theories'' with symmetry groups like
\(\mathrm{SU}(5)\).

\(\mathrm{B}_n\) --- The Lie algebra \(\mathrm{B}_n\) is
\(\mathfrak{so}_{2n+1}(\mathbb{C})\), the \((2n+1) \times (2n+1)\)
skew-symmetric complex matrices with vanishing trace. The compact real
form of \(\mathfrak{so}_n(\mathbb{C})\) is \(\mathfrak{so}_n\), and the
corresponding compact Lie group is \(\mathrm{SO}(n)\), the
\(n \times n\) real orthogonal matrices with determinant \(1\), that is,
the rotation group in Euclidean \(n\)-space. For some basic cool facts
about \(\mathrm{SO}(n)\), check out \protect\hyperlink{week61}{``Week
61''}.

\(\mathrm{C}_n\) --- The Lie algebra \(\mathrm{C}_n\) is
\(\mathfrak{sp}_n(\mathbb{C})\), the \(2n \times 2n\) complex matrices
of the form \[
  \left(
    \begin{array}{cc}
      A&B\\C&D
    \end{array}
  \right)
\] where \(B\) and \(C\) are symmetric, and \(D\) is minus the transpose
of \(A\). The compact real form of \(\mathfrak{sp}_n(\mathbb{C})\) is
\(\mathfrak{sp}_n\), and the corresponding compact Lie group is called
\(\mathrm{Sp}(n)\). This is the group of \(n \times n\) quaternionic
matrices which preserve the usual inner product on the space
\(\mathbb{H}^n\) of \(n\)-tuples of quaternions.

\(\mathrm{D}_n\) --- The Lie algebra \(\mathrm{D}_n\) is
\(\mathfrak{so}_{2n}(\mathbb{C})\), the \(2n \times 2n\) skew-symmetric
complex matrices with vanishing trace. See \(\mathrm{B}_n\) above for
more about this. It may seem weird that \(\mathrm{SO}(n)\) acts so
differently depending on whether \(n\) is even or odd, but it's true:
for example, there are ``left-handed'' and ``right-handed'' spinors in
even dimensions, but not in odd dimensions. Some clues as to why are
given in \protect\hyperlink{week61}{``Week 61''}.

Those are the ``classical'' Lie algebras, and they are things that are
pretty easy to reinvent for yourself, and to get interested in for all
sorts of reasons. As you can see, they are all about ``rotations'' in
real, complex, and quaternionic vector spaces.

The remaining ones are called ``exceptional'', and they are much more
mysterious. They were only discovered when people figured out the
classification of simple Lie algebras. As it turns out, they tend to be
related to the octonions! Some other week I will say more about them,
but for now, let me just say:

\(\mathrm{F}_4\) --- This is a 52-dimensional Lie algebra. Its smallest
representation is \(26\)-dimensional, consisting of the traceless
\(3\times3\) hermitian matrices over the octonions, on which it
preserves a trilinear form.

\(\mathrm{G}_2\) --- This is a \(14\)-dimensional Lie algebra, and the
compact Lie group corresponding to its compact real form is also often
called \(\mathrm{G}_2\). This group is just the group of symmetries
(automorphisms) of the octonions! In fact, the smallest representation
of this Lie algebra is 7-dimensional, corresponding to the purely
imaginary octonions.

\(\mathrm{E}_6\) --- This is a 78-dimensional Lie algebra. Its smallest
representation is \(27\)-dimensional, consisting of all the \(3\times3\)
hermitian matrices over the octonions this time, on which it preserves
the anticommutator.

\(\mathrm{E}_7\) --- This is a 133-dimensional Lie algebra. Its smallest
representation is 56-dimensional, on which it preserves a tetralinear
form.

\(\mathrm{E}_8\) --- This is a 248-dimensional Lie algebra, the biggest
of the exceptional Lie algebras. Its smallest representation is
248-dimensional, the so-called ``adjoint'' representation, in which it
acts on itself. Thus in some vague sense, the simplest way to understand
the Lie group corresponding to \(\mathrm{E}_8\) is as the symmetries of
itself! (Thanks go to Dick Gross for this charming information; I think
he said all the other exceptional Lie algebras have representations
smaller than themselves, but I forget the sizes.) In
\protect\hyperlink{week20}{``Week 20''} I described a way to get its
root lattice (the \(8\)-dimensional lattice spanned by the roots) by
playing around with the icosahedron and the quaternions.

People have studied simple Lie algebras a lot this century, basically
studied the hell out of them, and in fact some people were getting a
teeny bit sick of it recently, when along came some new physics that put
a lot of new life into the subject. A lot of this new physics is related
to string theory and quantum gravity. Some of this physics is
``conformal field theory'', the study of quantum fields in 2 dimensional
spacetime that are invariant under all conformal (angle-preserving)
transformations. This is important in string theory because the string
worldsheet is \(2\)-dimensional. Some other hunks of this physics go by
the name of ``topological quantum field theory'', which is the study of
quantum fields, usually in 3 dimensions so far, that are invariant under
\emph{all} transformations (or more precisely, all diffeomorphisms).

Every simple Lie algebra gives rise to an ``affine Lie algebra'' and a
``quantum group''. The symmetries of conformal field theories are
closely related to affine Lie algebras, and the symmetries of
topological quantum field theories are quantum groups. I won't tell you
what affine Lie algebras and quantum groups ARE, since it would take
quite a while. Instead I'll refer you to a good good introduction to
this stuff:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Juergen Fuchs, \emph{Affine Lie Algebras and Quantum Groups},
  Cambridge Monographs on Mathematical Physics, Cambridge U. Press,
  Cambridge 1992.
\end{enumerate}

Let me whiz through his table of contents and very roughly sketch what
it's all about.

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\item
  \textbf{Semisimple Lie algebras}

  This is a nice summary of the theory of semisimple Lie algebras
  (remember, those are just direct sums of simple Lie algebras) and
  their representations. Especially if you are a physicist, a slick
  summary like this might be a better way to start learning the subject
  than a big fat textbook on the subject. He covers the Dynkin diagram
  stuff and much, much more.
\item
  \textbf{Affine Lie algebras}

  This starts by describing Kac-Moody algebras, which are certain
  \emph{infinite-dimensional} analogs of the simple Lie algebras. Fuchs
  concentrates on a special class of these, the affine Lie algebras, and
  describes the classification of these using Dynkin diagrams. The main
  nice thing about the affine Lie algebras is that their corresponding
  infinite-dimensional Lie groups are very nice: they are almost ``loop
  groups''. If we have a Lie group \(G\), the loop group \(LG\) is just
  the set of all smooth functions from the circle to \(G\), which we
  make into a group by pointwise multiplication. If you're a physicist,
  this is obviously relevant to string theory, because at each time, a
  string is just a circle (or bunch of circles), and if you are doing
  gauge theory on the string, with symmetry group \(G\), the gauge group
  is then just the loop group \(LG\). So you'd expect the representation
  theory of loop groups and their Lie algebras to be really important.

  You'd \emph{almost} be right, but there is a slight catch. In quantum
  theory, what counts are the ``projective'' representations of a group,
  that is, representations that satisfy the rule \(g(h(v)) = (gh)(v)\)
  \emph{up to a phase}. (This is because ``phases are unobservable in
  quantum theory'' --- one of those mottoes that needs to be carefully
  interpreted to be correct.) The projective representations of the loop
  group \(LG\) correspond to the honest-to-goodness representations of a
  ``central extensions'' of \(LG\), a slightly fancier group than \(LG\)
  itself. And the Lie algebra of \emph{this} group is called an affine
  Lie algebra.

  So, people who like gauge theory and string theory need to know a lot
  about affine Lie algebras and their representations, and that's what
  this chapter covers. A real heavy-duty string theorist will need to
  know more about Kac-Moody algebras, so if you're planning on becoming
  one of those, you'd better also try:

  \begin{enumerate}
  \def\labelenumii{\arabic{enumii})}
  \setcounter{enumii}{1}
  \tightlist
  \item
    Victor Kac, \emph{Infinite Dimensional Lie Algebras}, 3rd ed.,
    Cambridge University Press, Cambridge, 1990.
  \end{enumerate}

  You'll also need to know more about loop groups, so try:

  \begin{enumerate}
  \def\labelenumii{\arabic{enumii})}
  \setcounter{enumii}{2}
  \tightlist
  \item
    \emph{Loop groups}, by Andrew Pressley and Graeme Segal, Oxford
    University Press, Oxford, 1986.
  \end{enumerate}
\item
  \textbf{WZW theories}

  Well, I just said that physicists liked affine Lie algebras because
  they were the symmetries of conformal field theories that were also
  gauge theories. Guess what: a Wess-Zumino-Witten, or WZW, theory, is a
  conformal field theory that's also a gauge theory! You can think of it
  as the natural generalization of the wave equation in 2 dimension
  (which is conformally invariant, btw) from the case of real-valued
  fields, to general \(G\)-valued fields, where \(G\) is our favorite
  Lie group.
\item
  \textbf{Quantum groups}

  When you quantize a WZW theory whose symmetry group \(G\) is some
  simple Lie group, something funny happens. In a sense, the group
  itself also gets quantized! In other words, the algebraic structure of
  the group, or its Lie algebra, gets ``deformed'' in a way that depends
  on the parameter \(\hbar\) (Planck's constant). I have muttered much
  about quantum groups on This Week's Finds, especially concerning their
  relevance to topological quantum field theory, and I will not try to
  explain them any better here! Eventually I will discuss a bunch of
  books that have come out on quantum groups, and I hope to give a
  mini-introduction to the subject in the process.
\item
  \textbf{Duality, fusion rules, and modular invariance}

  The previous chapter described quantum groups as abstract algebraic
  structures, showing how you can get one from any simple Lie algebra.
  Here Fuchs really shows how you get them from quantizing a WZW theory.
  WZW theories are invariant under conformal transformations, and
  quantum groups inherit lots of cool properties from this fact. For
  example, suppose you form a torus by taking the complex plane and
  identifying two points if they differ by any number of the form
  \(n z_1 + m z_2\), where \(z_1\) and \(z_2\) are fixed complex numbers
  and \(n\), \(m\) are arbitrary integers. For example, we might
  identify all these points: \[
     \begin{tikzpicture}[scale=0.7]
       \draw[->] (-3,0) to (4,0) node[label=below:{$\Re(z)$}]{};
       \draw[->] (0,-3) to (0,4) node[label=left:{$\Im(z)$}]{};
       \foreach \m in {-1,0,1,2}
       {
         \foreach \n in {-1,0,1,2}
         {
           \node at ({\m*1.5-\n/3-0.2},{1.5*\n+\m-0.5}) {$\bullet$};
         }
       }
     \end{tikzpicture}
   \] The resulting torus is a ``Riemann surface'' and it has lots of
  transformations, called ``modular transformations''. The group of
  modular transformations is the discrete group
  \(\mathrm{SL}(2,\mathbb{Z})\) of \(2\times2\) integer matrices with
  determinant \(1\); I leave it as an easy exercise to guess how these
  give transformations of the torus. (This is an example of a ``mapping
  class group'' as discussed in \protect\hyperlink{week28}{``Week
  28''}.) In any event, the way the the WZW theory transforms under
  modular transformations translates into some cool properties of the
  corresponding quantum group, which Fuchs discusses. That's roughly
  what ``modular invariance'' means.

  Similarly, ``fusion rules'' have to do with the thrice-punctured
  sphere, or ``trinion'', which is another Riemann surface. And
  ``duality'' has to do with the sphere with four punctures, which can
  be viewed as built up from trinions in either of two ``dual'' ways: \[
     \begin{tikzpicture}[scale=0.3,rotate=90]
       \begin{scope}
         \draw[thick] (-3,0) ellipse (2cm and 1cm);
         \draw[thick] (3,0) ellipse (2cm and 1cm);
         \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
         \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
         \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
         \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
         \draw[thick] (-2,-6) to (-2,-7);
         \draw[thick] (2,-6) to (2,-7);
       \end{scope}
       \begin{scope}[rotate=180,shift={(0,14)}]
         \begin{scope}[shift={(-3,0)},rotate=180]
           \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
           \draw[thick] (180:2) arc (180:360:2cm and 1cm);
         \end{scope}
         \begin{scope}[shift={(3,0)},rotate=180]
           \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
           \draw[thick] (180:2) arc (180:360:2cm and 1cm);
         \end{scope}
         \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
         \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
         \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
         \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
         \draw[thick] (-2,-6) to (-2,-7);
         \draw[thick] (2,-6) to (2,-7);
       \end{scope}
     \end{tikzpicture}
   \] or \[
     \begin{tikzpicture}[scale=0.3]
       \begin{scope}
         \draw[thick] (-3,0) ellipse (2cm and 1cm);
         \draw[thick] (3,0) ellipse (2cm and 1cm);
         \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
         \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
         \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
         \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
         \draw[thick] (-2,-6) to (-2,-7);
         \draw[thick] (2,-6) to (2,-7);
       \end{scope}
       \begin{scope}[rotate=180,shift={(0,14)}]
         \begin{scope}[shift={(-3,0)},rotate=180]
           \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
           \draw[thick] (180:2) arc (180:360:2cm and 1cm);
         \end{scope}
         \begin{scope}[shift={(3,0)},rotate=180]
           \draw[thick,dashed] (0:2) arc (0:180:2cm and 1cm);
           \draw[thick] (180:2) arc (180:360:2cm and 1cm);
         \end{scope}
         \draw[thick] (-5,0) .. controls (-5,-2) and (-2,-4) .. (-2,-6);
         \draw[thick] (5,0) .. controls (5,-2) and (2,-4) .. (2,-6);
         \draw[thick] (-1,0) .. controls (-1,-1) .. (0,-2);
         \draw[thick] (1,0) .. controls (1,-1) .. (0,-2);
         \draw[thick] (-2,-6) to (-2,-7);
         \draw[thick] (2,-6) to (2,-7);
       \end{scope}
     \end{tikzpicture}
   \] This is one of the reasons string theory was first discovered ---
  we can think of the above pictures as two Feynman diagrams for
  interacting strings, and the fact that they are really just distorted
  versions of each other gives rise to identities among Feynman
  diagrams. Similarly, this fact gives rise to identities satisfied by
  the fusion rules of quantum groups.
\end{enumerate}

So --- Fuchs' book should make clear how, starting from the austere
beauty of the Dynkin diagrams, we get not only simple Lie groups, but
also a wealth of more complicated structures that people find important
in modern theoretical physics.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{Mathematics, rightly viewed, possesses not only truth, but supreme
beauty - a beauty cold and austere, like that of sculpture, without
appeal to any part of our weaker nature, without the gorgeous trappings
of painting or music, yet sublimely pure, and capable of a stern
perfection such as only the greatest art can show.} - Bertrand Russell.
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This time I'll finish up talking about ``ADE classifications'' for a
while, although there is certainly more to say. Recall where we were:
the following diagrams correspond to the simple Lie algebras, and they
also define certain lattices, the ``root lattices'' of those Lie
algebras:

\begin{quote}
\(\mathrm{A}_n\), which has \(n\) dots like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node {$\bullet$} to (4,0) node{$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{B}_n\), which has \(n\) dots, where \(n > 1\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to node[label=above:{4}]{} (3,0) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{D}_n\), which has \(n\) dots, where \(n > 3\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{E}_6\), \(\mathrm{E}_7\), and \(\mathrm{E}_8\): \[
  \begin{gathered}
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
    \qquad
    \begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \\\begin{tikzpicture}
      \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$} to (5,0) node {$\bullet$} to (6,0) node {$\bullet$};
      \draw[thick] (2,0) to (2,1) node{$\bullet$};
    \end{tikzpicture}
  \end{gathered}
\] \(\mathrm{F}_4\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to node[label=above:{4}]{} (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
  \end{tikzpicture}
\] \(\mathrm{G}_2\): \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[label=above:{6}]{} (1,0) node{$\bullet$};
  \end{tikzpicture}
\]
\end{quote}

The dots in one of these ``Dynkin diagrams'' correspond to certain set
of basis vectors, or ``roots'', of the lattice. The lines, with their
decorative numbers and arrows, give enough information to recover the
lattice from the diagram. In particular, two dots that are not connected
by a line correspond to roots that are at a 90 degree angle from each
other, while two dots connected by an unnumbered line correspond to
roots that are at a 60 degree angle from each other. Numbered lines mean
the angle between roots is something else, and the arrows point from the
longer to the shorter root in this case, as partially explained in
\protect\hyperlink{week63}{``Week 63''}.

However, we will now concentrate on the cases A, D, and E, where all the
roots are 90 or 60 degrees from each other, and they are all the same
length --- usually taken to be length 2. These are the ``simply laced''
Dynkin diagrams. I want to explain what's so special about them! But
first, I should describe the corresponding lattices more explicitly, to
make it clear how simple they really are.

The following information, and more, can be found in Chapter 4 of:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Sphere Packings, Lattices and Groups}, J. H. Conway and N. J. A.
  Sloane, second edition, Grundlehren der mathematischen Wissenschaften
  \textbf{290}, Springer, Berlin, 1993.
\end{enumerate}

which I described in more detail in \protect\hyperlink{week20}{``Week
20''}.

So, what are A, D, and E like?

\textbf{A}. We can describe the lattice \(\mathrm{A}_n\) as the set of
all \((n+1)\)-tuples of integers \((x_1,...,x_{n+1})\) such that
\[x_1+\ldots+x_{n+1}=0.\] It's a fun exercise to show that \(A_2\) is a
\(2\)-dimensional hexagonal lattice, the sort of lattice you use to pack
pennies as densely as possible. Similarly, \(A_3\) gives a standard way
of packing grapefruit, which is in fact the densest lattice packing of
spheres in 3 dimensions. (Hsiang has claimed to have shown it's the
densest packing, lattice or not, but this remains controversial.)

\textbf{D}. We can describe \(\mathrm{D}_n\) as the set of all
\(n\)-tuples of integers \((x_1,...,x_n)\) such that
\[x_1+\ldots+x_n\quad\text{is even}.\] Or, if you like, you can imagine
taking an \(n\)-dimensional checkerboard, coloring the cubes alternately
red and black, and taking the center of each red cube. In four
dimensions, \(D_4\) gives a denser packing of spheres than \(A_4\); in
fact, it gives the densest lattice packing possible. Moreover, \(D_5\)
gives the densest lattice packing of in dimension 5. However, in
dimensions 6, 7, and 8, the \(\mathrm{E}_n\) lattices are the best!

\textbf{E}. We can describe \(\mathrm{E}_8\) as the set of 8-tuples
\((x_1,...,x_8)\) such that the \(x_i\) are either all integers or all
half-integers --- a half-integer being an integer plus \(1/2\) --- and
\[x_1+\ldots+x_8\quad\text{is even}.\] Each point has 240 closest
neighbors. Alternatively, as described in
\protect\hyperlink{week20}{``Week 20''}, we can describe
\(\mathrm{E}_8\) in a slick way in terms of the quaternions. Another
neat way to think of \(\mathrm{E}_8\) is in terms of the octonions! Not
too surprising, perhaps, since the octonions and \(\mathrm{E}_8\) are
both \(8\)-dimensional, but it's still sorta neat. For the details,
check out

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Geoffrey Dixon, ``Octonion X-product and \(\mathrm{E}_8\) lattices'',
  preprint available as
  \href{https://arxiv.org/abs/hep-th/9411063}{\texttt{hep-th/9411063}}.
\end{enumerate}

Briefly, this goes as follows. In \protect\hyperlink{week59}{``Week
59''} we described a multiplication table for the ``seven dwarves'' ---
a basis of the imaginary octonions --- but there are lots of other
multiplication tables that would also give an algebra isomorphic to the
octonions. Given any unit octonion \(a\), we can define an ``octonion
\(\times\)-product'' as follows: \[b \times c = (b a)(a^* c)\] where
\(a^*\) is the conjugate of \(a\) (as defined in
\protect\hyperlink{week59}{``Week 59''}) and the product on the
right-hand side is the usual octonion product, parenthesized because it
ain't associative. For exactly 480 choices of the unit octonion \(a\),
the \(\times\)-product gives us a new multiplication table for the seven
dwarves, such that we get an algebra isomorphic to the octonions again!
240 of these choices have all rational coordinates (in terms of the
seven dwarves), and these are precisely the 240 closest neighbors of the
origin in a copy of the \(\mathrm{E}_8\) lattice! The other 240 have all
irrational coordinates, and these are the closest neighbors to the
origin of a \emph{different} copy of the \(\mathrm{E}_8\) lattice. (Here
we've rescaled the \(\mathrm{E}_8\) lattice so the nearest neighbors
have distance \(1\) from the origin, instead of \(\sqrt{2}\) as above.)

Once we have \(\mathrm{E}_8\) in hand, we can get its little pals
\(\mathrm{E}_7\) and \(\mathrm{E}_6\) as follows. To get
\(\mathrm{E}_7\), just take all the vectors in \(\mathrm{E}_8\) that are
perpendicular to some closest neighbor of the origin. To get
\(\mathrm{E}_6\), find a copy of the lattice \(A_2\) in \(\mathrm{E}_8\)
(there are lots) and then take all the vectors in \(\mathrm{E}_8\)
perpendicular to everything in that copy of \(A_2\).

So, now that we have a nodding acquaintance with A, D, and E, let me
describe some of the many places they show up. First, what's so great
about these lattices, apart from the fact that they're the root lattices
of simple Lie algebras, with a special ``simply-laced'' property? I
don't think I really understand the answer to this in a deep way, but I
know various things to say!

First, Witt's theorem says that the A, D, and E lattices and their
direct sums are the only integral lattices having a basis consisting of
vectors \(v\) with \(\|v\|^2 = 2\). Here a lattice is ``integral'' if
the dot product of any two vectors in it is an integer. In fact, any
integral lattice having a basis consisting of vectors with \(\|v\|^2\)
equal to \(1\) or \(2\) is a direct sum of copies of A, D, and E
lattices and the integers, thought of as a \(1\)-dimensional lattice.

This makes ADE classifications pop up in various places in math and
physics. For example, there is a cool relationship between the ADE
diagrams and the symmetry groups of the Platonic solids, called the
McKay correspondence. Briefly, this is what you do to get it. First,
learn about \(\mathrm{SO}(3)\) and \(\mathrm{SU}(2)\) from
\protect\hyperlink{week61}{``Week 61''} or somewhere. Then, take the
symmetry group of a Platonic solid, or more generally any finite
subgroup \(G\) of \(\mathrm{SO}(3)\). Since \(\mathrm{SO}(3)\) has
\(\mathrm{SU}(2)\) as a double cover, you can get a double cover of
\(G\), say \(\widetilde{G}\), sitting inside \(\mathrm{SU}(2)\). For
example, if \(G\) was the symmetry group of the icosahedron,
\(\widetilde{G}\) would be the icosians (see
\protect\hyperlink{week24}{``Week 24''}).

Since \(\widetilde{G}\) is finite, it has finitely many irreducible
representations. Draw a dot for each of the irreducible representations.
One of these will be \(2\)-dimensional, coming from the spin-\(1/2\)
representation of \(\mathrm{SU}(2)\). Now, when you tensor this 2d rep
with any other irreducible rep \(R\), you get a direct sum of
irreducible reps; draw one line from the dot for \(R\) to each other dot
for each time that other irreducible rep appears in this direct sum.
What do you get? Well, you get an ``affine Dynkin diagram'' of type A,
D, or E, which is like the usual Dynkin diagram but with an extra dot
thrown in (corresponding to the trivial rep of \(\widetilde{G}\)). And,
you get all of them this way!

In fact, playing around with this stuff some more, you can get the
affine Dynkin diagrams of the other simple Lie algebras. There is a lot
more to this\ldots{} you should probably look at:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  John McKay, ``Graphs, singularities and finite groups'', in
  \emph{Proc. Symp. Pure Math.} vol \textbf{37}, Amer. Math. Soc.
  (1980), pages 183-- and 265--.

  John McKay, ``Representations and Coxeter Graphs'', in \emph{The
  Geometric Vein} Coxeter Festschrift (1982), Springer-Verlag, Berlin,
  pages 549--.

  John McKay, A rapid introduction to ADE theory,
  \texttt{http://math.ucr.edu/home/baez/ADE.html}
\item
  Pavel Etinghof and Mikhail Khovanov, Representations of tensor
  categories and Dynkin diagrams, preprint available as
  \href{https://arxiv.org/abs/hep-th/9408078}{\texttt{hep-th/9408078}}.
\end{enumerate}

McKay does lots of other mindblowing group theory. He's clearly in tune
with the symmetries of the universe\ldots{} and occaisionally he deigns
to post to the net! A beautiful way of thinking about the McKay
correspondence in terms of category theory appears in the paper by
Etinghof and Khovanov; what we are really doing, it turns out, is
classifying the representations of the tensor category of unitary
representations of \(\mathrm{SU}(2)\). This tensor category is generated
by one object, the spin-\(1/2\) representation, meaning that every other
representation sits inside some tensor power of that one. This way of
thinking of it is important in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Jurg Froehlich and Thomas Kerler, \emph{Quantum Groups, Quantum
  Categories, and Quantum Field Theory}, Springer Lecture Notes in
  Mathematics \textbf{1542}, Springer-Verlag, Berlin, 1991.
\end{enumerate}

Here Froehlich and Kerler give a classification of certain ``quantum
categories'' that show up in conformal field theory and topological
quantum field theory. These are certain braided tensor categories with
properties like those of the categories of representations of quantum
groups at roots of unity. In such categories, every object has a
``quantum dimension'', which need not be integral, and Froehlich and
Kerler concentrate on those categories which are generated by a single
object of quantum dimension less than \(2\), getting an ADE-type
classification of them. The category of representations of
\(\mathrm{SU}(2)\), on the other hand, is generated by a single object
of dimension equal to \(2\) --- the spin-\(1/2\) representation --- so
Froehlich and Kerler are basically generalizing the McKay stuff to
certain quantum groups related to \(\mathrm{SU}(2)\).

Where else do ADE diagrams show up? Well, here I won't try to say
anything about their role in the representation theory of ``quivers'',
or in singularity theory; these are covered pretty well in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  M. Hazewinkel, W. Hesselink, D. Siermsa, and F. D. Veldkamp, ``The
  ubiquity of Coxeter-Dynkin diagrams (an introduction to the ADE
  problem)'', \emph{Niew. Arch. Wisk.}, \textbf{25} (1977), 257--307.
\end{enumerate}

Instead, I'll mention something more recent. In string theory, there is
a Lie algebra called the Virasoro algebra that plays a crucial role; its
almost just the Lie algebra of the group of diffeomorphisms of the
circle, but it's actually just one dimension bigger, being a ``central
extension'' thereof; projective representations of the Lie algebra of
the group of diffeomorphisms of the circle correspond to honest
representations of the Virasoro algebra. An important task in string
theory was to classify the unitary representations of the Virasoro
algebra having a given ``central charge'' \(c\) (this describes the
action of that one extra dimension) and ``conformal weight'' \(h\) (this
describes the action of dilations). It turns out that to get unitary
reps one needs \(c\) and \(h\) to be nonnegative. The representations
with \(c\) between \(0\) and \(1\) are especially nice, for reasons I
don't really understand, and they are called ``minimal models''. An ADE
classification of these was conjectured by Capelli and Zuber, and proved
by

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Capelli and Zuber, \emph{Comm. Math. Phys.} \textbf{113} (1987) 1.
\item
  Kato, \emph{Mod. Phys. Lett.} \textbf{A2} (1987) 585.
\end{enumerate}

Friedan, Qiu, and Shenker also played a big role in this, in part by
figuring out the allowed values of \(c\). For a good introduction to
this stuff and what it has to do with honest \emph{physics} (which I
admit I've been slacking off on here), try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Claude Itzykson and Jean-Michel Drouffe, \emph{Statistical Field
  Theory, 1: From Brownian Motion to Renormalization and Lattice Gauge
  Theory}, and \emph{2: Strong Coupling, Monte Carlo Methods, Conformal
  Field Theory and Random Systems.} Cambridge U. Press, 1989.
\end{enumerate}

I will probably come back to this ADE stuff as time goes by, since I'm
sort of fascinated by it, and hopefully folks can refer back to the last
few weeks when I do, so they'll remember what I'm talking about. But in
the next few Weeks I want to catch up with some new developments in math
and physics that have happened in the last few months\ldots{}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{A mathematician, like a painter or poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because they are
made with ideas} - Godfrey Hardy
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Well, I want to get back to talking about some honest physics, but I
think this week I won't get around to it, since I can't resist
mentioning two tidbits of a more mathematical sort. The first one is
about \(\pi\), and the second one is about the Monster. The second one
\emph{does} have a lot to do with string theory, if only indirectly.

First, thanks to my friend Steven Finch, I just found out that Simon
Plouffe, Peter Borwein and David Bailey have computed the ten billionth
digit in the hexadecimal (i.e., base 16) expansion of \(\pi\). They use
a wonderful formula which lets one compute a given digit of \(\pi\) in
base 16 without needing to compute all the preceding digits! Namely,
\(\pi\) is the sum from \(n = 0\) to \(\infty\) of \[
  \left[
    \frac{4}{8n+1} -\frac{2}{8n+4} -\frac{1}{8n+5} -\frac{1}{8n+6}
  \right] \frac{1}{16^n}
\] Since the quantity in square brackets is not an integer, it requires
cleverness to use this formula to get a given digit of \(\pi\), but they
figured out a way. Moreover, their method generalizes to a variety of
other constants. If you can use the World-Wide Web, try the following
sites:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  ``The ten billionth hexadecimal digit of \(\pi\) is 9'', by Simon
  Plouffe,
  \texttt{http://groups.google.com/groups?selm=451p8p\%24qcr\%40morgoth.sfu.ca\&output=gplain}
\item
  David Bailey, Peter Borwein and Simon Plouffe, ``On the rapid
  computation of various polylogarithmic constants'', available in
  postscript form from
  \texttt{http://www.cecm.sfu.ca/personal/pborwein/PISTUFF/Apistuff.html}
\item
  ``The miraculous Bailey-Borwein-Plouffe \(\pi\) algorithm'', by Steven
  Finch,
  \texttt{http://www.lacim.uqam.ca/\textasciitilde{}plouffe/Simon/Miraculous.pdf}
\end{enumerate}

The first one is an announcement that appeared on \texttt{sci.math}, and
lists the billionth digits of \(\pi^2\), \(\ln(2)\), and some other
constants. The second one has the details. The third one gives a good
overview of what's up.

Can we hope for a similar formula in base 10? More importantly, could
these ideas let us prove that \(\pi\) is ``normal'', that is, that every
possible string of digits appears in it with the frequency one would
expect of a ``random'' number? It seems that this would be a natural
avenue of attack.

Next, a tidbit of a more erudite sort concerning the elusive Monster
manifold. Recall from \protect\hyperlink{week63}{``Week 63''} and
\protect\hyperlink{week64}{``Week 64''} that the compact simple Lie
groups can classified into 4 infinite families and 5 exceptions. I have
always been puzzled by these ``exceptional Lie groups'', so I tried to
explain a bit about how they are related to some other ``exceptional
structures'' in mathematics, such as the icosahedron and the octonions.
In physics, Witten has suggested that the correct theory of our universe
might also be an exceptional structure of some sort. This idea has found
some support in string theory, which uses the exceptional Lie group
\(\mathrm{E}_8\) and other structures I'll mention a bit later. In a
more hand-waving way, one may argue that the theory of our universe must
be incredibly special, since out of all the theories we can write down,
just this \emph{one} describes the universe that actually \emph{exists}.
All sorts of simpler universes apparently don't exist. So maybe the
theory of the universe needs to use special, ``exceptional'' mathematics
for some reason, even though it's complicated.

Anyway, as a hard-nosed mathematician, vague musings along these lines
get tiresome to me rather quickly. Instead, what interests me most about
this stuff is the whole idea of ``exceptional structures'' ---
symmetrical structures that don't fit into the neat regular families in
classification theorems. The remarkable fact is that many of them are
deeply related. As Geoffrey Dixon put it to me, they seem to have a
``holographic'' quality, meaning that each one contains in encoded form
some of the information needed to construct all the rest! It thus seems
pointless to hope that one is ``the explanation'' for the rest, but I
would still like some conceptual ``explanation'' for the whole
collection of them --- though I have no idea what it should be.

Surely a clue must lie in the theory of finite simple groups. Just as
the simple Lie groups are the building blocks of the theory of
continuous symmetries, these are the building blocks of the theory of
discrete --- indeed finite --- symmetries. More precisely ``finite
simple'' group is a group \(G\) with finitely many elements and no
normal subgroups, that is, no nontrivial subgroups \(H\) such that \(h\)
in \(H\) implies \(ghg^{-1}\) in \(H\) for all \(g\) in \(G\). This
condition means that you cannot form the ``quotient group'' \(G/H\),
which one can think of as a ``more simplified'' version of \(G\).

The classification of the finite simple groups is one of remarkable
achievements of 20th-century mathematics. The entire proof of the
classification theorem is estimated to take 10,000 pages, done by many
mathematicians. To start learning about it, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Ron Solomon, ``On finite simple groups and their classification'',
  \emph{AMS Notices Vol.} \textbf{45}, February 1995, 231--239.
\end{enumerate}

and the references therein. Again, there are some infinite families and
26 exceptions called the ``sporadic'' groups. The biggest of these is
the Monster, with \[
  \begin{gathered}
    246\cdot 320\cdot 59\cdot 76\cdot 112\cdot 133\cdot 17\cdot 19\cdot 23\cdot 29\cdot 31\cdot 41\cdot 47\cdot 59\cdot 71
    \\= 808017424794512875886459904961710757005754368000000000
  \end{gathered}
\] elements. It is a kind of Mt. Everest of the sporadic groups, and all
the routes to it I know involve a tough climb through all sorts of
exceptional structures: \(\mathrm{E}_8\) (see
\protect\hyperlink{week65}{``Week 65''}), the Leech lattice (see
\protect\hyperlink{week20}{``Week 20''}), the Golay code, the Parker
loop, the Griess algebra, and more. I certainly don't understand this
stuff\ldots.

Even before the Monster was proved to exist, it started casting its
enormous shadow over mathematics. For example, consider the theory of
modular functions. What are those? Well, consider a lattice in the
complex plane, like \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-3,0) to (4,0) node[label=below:{$\Re(z)$}]{};
    \draw[->] (0,-3) to (0,4) node[label=left:{$\Im(z)$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node at ({\m*1.5-\n/3-0.2},{1.5*\n+\m-0.5}) {$\bullet$};
      }
    }
  \end{tikzpicture}
\] These are important in complex analysis, as described in
\protect\hyperlink{week13}{``Week 13''}. To describe one of these you
can specify two ``periods'' \(\omega_1\) and \(\omega_2\), complex
numbers such that every point in the lattice of the form
\[n \omega1 + m \omega2.\] But this description is redundant, because if
we choose instead to use \[
  \begin{aligned}
    \omega'_1 &= a\omega_1+b\omega_2
  \\\omega'_2 &= c\omega_1+b\omega_2
  \end{aligned}
\] we'll get the same lattice as long as the matrix of integers \[
  \left(
    \begin{array}{cc}
      a&b\\c&d
    \end{array}
  \right)
\] is invertible and its inverse also consists of integers. These
transformations preserve the ``handedness'' of the basis \(\omega_1\),
\(\omega_2\) if they have determinant \(1\), and that's generally a good
thing to require. The group of \(2\times2\) invertible matrices over the
integers with determinant \(1\) is called \(\mathrm{SL}(2,\mathbb{Z})\),
or the ``modular group'' in this context. I said a bit about it and its
role in string theory in \protect\hyperlink{week64}{``Week 64''}.

Now, if we are only interested in parametrizing the different
\emph{shapes} of lattices, where two rotated or dilated versions of the
same lattice count as having the same shape, it suffices to use one
complex number, the ratio \[\tau=\frac{\omega_1}{\omega_2}.\] We might
as well assume \(\tau\) is in the upper halfplane, \(H\), while we're at
it. But for the reason given above, this description is redundant; if we
have a lattice described by \(\tau\), and a matrix in
\(\mathrm{SL}(2,\mathbb{Z})\), we get a new guy \(\tau'\) which really
describes the same shaped lattice. If you work it out,
\[\tau' = \frac{a\tau + b}{c\tau + d}.\] So the space of different
possible shapes of lattices in the complex plane is really the quotient
\[H/\mathrm{SL}(2,\mathbb{Z}).\] Now, a function on this space is just a
function of \(\tau\) that doesn't change when you replace \(\tau\) by
\(\tau'\) as above. In other words, it's basically just a function
depending only on the shape of a 2d lattice. Now it turns out that there
is essentially just one ``nice'' function of this sort, called \(j\);
all other ``nice'' functions of this sort are functions of \(j\). (For
experts, what I mean is that the meromorphic
\(\mathrm{SL}(2,\mathbb{Z})\)-invariant functions on \(H\) union the
point at infinity are all rational functions of this function \(j\).)

It looks like this:
\[j(\tau) = q^{-1} + 744 + 196884 q + 21493706 q^2 + \ldots\] where
\(q = \exp(2\pi i\tau)\). In fact, starting from a simple situation, we
have quickly gotten into quite deep waters. The simplest explicit
formula I know for \(j\) involves lattices in \(24\)-dimensional space!
This could easily be due to my limited knowledge of this stuff, but it
suits my present purpose: first, we get a vague glimpse of where
\(\mathrm{E}_8\) and the Leech lattice come in, and second, we get a
vague glimpse of the mysterious significance of the numbers 24 and 26 in
string theory.

So what is this \(j\) function, anyway? Well, it turns out we can define
it as follows. First form the Dedekind eta function
\[\eta(q) = q^{\frac{1}{24}}\prod_{n=1}^\infty(1-q^n).\] This is not
invariant under the modular group, but it transforms in a pretty simple
way. Then take the \(\mathrm{E}_8\) lattice --- remember, that's a very
nice lattice in 8 dimensions, in fact the only ``even unimodular''
lattice in 8 dimensions, meaning that the inner product of any two
vectors in the lattice is even, and the volume of each fundamental
domain in it equals \(1\). Now take the direct sum of 3 copies of
\(\mathrm{E}_8\) to get an even unimodular lattice \(L\) in 24
dimensions. Then form the theta function
\[\theta(q) = \sum_{x\in L}q^{\langle x,x\rangle/2}.\] In other words,
we take all lattice points \(x\) and sum \(q\) to the power of their
norm squared over \(2\). Now we have
\[j(\tau) = \frac{\theta(q)}{\eta(q)^24}\]

Quite a witches' brew of a formula, no? If someone could explain to me
the deep inner reason for \emph{why} this works, I'd be delighted, but
right now I am clueless. I will say this, though: we could replace \(L\)
with any other even unimodular lattice in 24 dimensions and get a
function differing from \(j\) only by a constant. Guess how many even
unimodular lattices there are in 24 dimensions? Why, 24, of course!
These ``Niemeier lattices'' were classified by Niemeier in 1968. All but
one of them have vectors with length squared equal to \(2\), but there
is one whose shortest vector has length squared equal to \(4\), and
that's the Leech lattice. This one has a very charming relation to
\(26\)-dimensional spacetime, described in
\protect\hyperlink{week20}{``Week 20''}.

Since the constant term in \(j\) can be changed by picking different
lattices in 24 dimensions, and constant functions aren't very
interesting anyway, we can say that the first interesting coefficient in
the above power series for \(j\) is 196884. Then, right around when the
Monster was being dreamt up, McKay noticed that the dimension of its
smallest nontrivial representation, namely 196883, was suspiciously
similar. Coincidence? No.~It turns out that all the coefficients of
\(j\) can be computed from the dimensions of the irreducible
representations of the Monster! Similarly, Ogg noticed in the study of
the modular group, the primes 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
41, 47, 59 and 71 play a special role. He went to a talk on the Monster
and noticed the ``coincidence''. Then he wrote a paper offering a bottle
of Jack Daniels to anyone who could explain it. This was the beginning
of a subject called ``Monstrous Moonshine''\ldots{} the mysterious
relation between the Monster and the modular group.

Well, as it eventually turned out, one way to get ahold of the Monster
is as a group of symmetries of a certain algebra of observables for a
string theory, or more precisely, a ``vertex operator algebra'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Igor Frenkel, James Lepowsky, and Arne Meurman, \emph{Vertex Operator
  Algebras and the Monster}, Academic Press, Boston, 1988.
\end{enumerate}

The relation of string theory to modular invariance and 26 dimensional
spacetime then ``explains'' some of the mysterious stuff mentioned
above. (By the way, the authors of the above book say the fact that
there are 26 sporadic finite simple groups is just a coincidence. I'm
not so sure myself\ldots{} not that I understand any of this stuff, but
it's just too spooky how the number 26 keeps coming up all over!)

Anway, now let me fast-forward to some recent news. I vaguely gather
that people would like to explain the relation between the Monster and
string theory more deeply, by finding a \(24\)-dimensional manifold
having the Monster as symmetries, and cooking up a field theory of maps
from the string worldsheet to this ``Monster manifold'', so that the
associated vertex operator algebra would have a good reason for having
the Monster as symmetries. Apparently Hirzebruch has offered a prize for
anyone who could do this in a nice way, by finding a ``24-manifold with
\(p_1=0\) whose Witten genus is \((j-744)\Delta\)'' on which the Monster
acts. Recently, Mike Hopkins at MIT and Mark Mahowald at Northwestern
have succeeded in doing the first part, the part in quotes above. They
haven't gotten a Monster action yet. Their construction uses a lot of
homotopy theory.

I don't have much of a clue about any of this stuff, but Allen Knutson
suggests that I read

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, \emph{Manifolds
  and modular forms}, translated by Peter S. Landweber, pub.
  Braunschweig, Vieweg, 1992.
\end{enumerate}

for more about this ``Witten genus'' stuff. He also has referred me to
the following articles by Borcherds:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Richard E. Borcherds, ``The Monster Lie-algebra'', \emph{Adv. Math.}
  \textbf{83} (1990), 30--47.

  Richard E. Borcherds, ``Monstrous Moonshine and monstrous
  Lie-superalgebras'', \emph{Invent. Math.} \textbf{109} (1992),
  405--444.
\end{enumerate}

For your entertainment and edification I include the abstract of the
second one below:

\begin{quote}
We prove Conway and Norton's moonshine conjectures for the infinite
dimensional representation of the monster simple group constructed by
Frenkel, Lepowsky and Meurman. To do this we use the no-ghost theorem
from string theory to construct a family of generalized Kac-Moody
superalgebras of rank 2, which are closely related to the monster and
several of the other sporadic simple groups. The denominator formulas of
these superalgebras imply relations between the Thompson functions of
elements of the monster (i.e.~the traces of elements of the monster on
Frenkel, Lepowsky, and Meurman's representation), which are the
replication formulas conjectured by Conway and Norton. These replication
formulas are strong enough to verify that the Thompson functions have
most of the ``moonshine'' properties conjectured by Conway and Norton,
and in particular they are modular functions of genus 0. We also
construct a second family of Kac-Moody superalgebras related to elements
of Conway's sporadic simple group Co1. These superalgebras have even
rank between 2 and 26; for example two of the Lie algebras we get have
ranks 26 and 18, and one of the superalgebras has rank 10. The
denominator formulas of these algebras give some new infinite product
identities, in the same way that the denominator formulas of the affine
Kac-Moody algebras give the Macdonald identities.
\end{quote}
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\hypertarget{week67}{%
\section{October 23, 1995}\label{week67}}

I'm pretty darn busy now, so the forthcoming Weeks will probably be
pretty hastily written. This time I'll mainly write about quantum
gravity.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Margaret Wertheim, \emph{Pythagoras' Trousers: God, Physics, and the
  Gender Wars}, Times Books/Random House, New York, 1995.
\end{enumerate}

I enjoyed this book, despite or perhaps because of the fact that it may
annoy lots of physicists. It notes that, starting with Pythagoras,
theoretical physics has always had a crypto-religious aspect. With
Pythagoras it was obvious; he seems to have been the leader of a special
sort of religious cult. With people like Kepler, Newton and Einstein it
is only slightly less obvious. The operative mythology in every case is
that of the mage. Think of Einstein, stereotypically with long white
hair (though most of best work was actually done before his hair got
white), a powerful but benign figure devoted to finding out ``the
thoughts of God''. The mage, of course, is typically male, and Wertheim
argues that this makes it harder for women to become physicists. (A lot
of the same comments would apply to mathematics.) It is not a very
scholarly book, but I wouldn't dismiss it.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Stephen W. Hawking, Virtual black holes, available as
  \href{https://arxiv.org/abs/hep-th/9510029}{\texttt{hep-th/9510029}}.
\end{enumerate}

Hawking likes the ``Euclidean path-integral approach'' to quantum
gravity. The word ``Euclidean'' is a horrible misnomer here, but it
seems to have stuck. It should really read ``Riemannian'', the idea
being to replace the Lorentzian metric on spacetime by one in which time
is on the same footing as space. One thus attempts to compute answers to
quantum gravity problems by integrating over all Riemannian metrics on
some 4-manifold, possibly with some boundary conditions. Of course, this
is tough --- impossible so far --- to make rigorous. But Hawking isn't
scared; he also wants to sum over all 4-manifolds (possibly having a
fixed boundary). Of course, to do this one needs to have some idea of
what ``all 4-manifolds'' are. Lots of people like to consider wormholes,
which means considering 4-manifolds that aren't simply connected. Here,
however, Hawking argues against wormholes, and concentrates on
simply-connected 4-manifolds. He writes: ``Barring some pure
mathematical details, it seems that the topology of simply connected
four-manifolds can be essentially represented by gluing together three
elementary units, which I call bubbles. The three elementary units are
\(S^2 \times S^2\), \(\mathbb{CP}^2\), and \(K3\). The latter two have
orientation reversed versions, \(-\mathbb{CP}^2\) and \(-K3\).
\(S^2 \times S^2\) is just the product of the 2-dimensional sphere with
itself, and he argues that this sort of bubble corresponds to a virtual
black hole pair. He considers the effect on the Euclidean path integral
when you have lots of these around (i.e., when you take the connected
sum of \(S^4\) with lots of these). He argues that particles scattering
off these lose quantum coherence, i.e., pure states turn to mixed
states. And he argues that this effect is very small at low energies
\emph{except} for scalar fields, leading him to predict that we may
never observe the Higgs particle! Yes, a real honest particle physics
prediction from quantum gravity! As he notes,''unless quantum gravity
can make contact with observation, it will become as academic as
arguments about how many angels can dance on the head of a pin``. I
suspect he also realizes that he'll never get a Nobel prize unless he
goes out on a limb like this. He also gives an argument for why
the''\(\theta\) angle" measuring CP violation by the strong force may be
zero. This parameter sits in front of a term in the Standard Model
Lagrangian; there seems to be no good reason for it to be zero, but
measurements of the neutron electric dipole moment show that it has to
be less than \(10^{-9}\), according to the following book\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Kerson Huang, \emph{Quarks, Leptons, and Gauge Fields}, World
  Scientific Publishing Co., Singapore, 1982.
\end{enumerate}

Perhaps there are better bounds now, but this book is certainly one of
the nicest introductions to the Standard Model, and if you want to learn
about this ``\(\theta\) angle'' stuff, it's a good place to start.

Anyway, rather than going further into the physics, let me say a bit
about the ``pure mathematical details''. Here I got some help from Greg
Kuperberg, Misha Verbitsky, and Zhenghan Wang (via Xiao-Song Lin, a
topologist who is now here at Riverside). Needless to say, the mistakes
are mine alone, and corrections and comments are welcome!

First of all, Hawking must be talking about homeomorphism classes of
compact oriented simply-connected smooth 4-manifolds, rather than
diffeomorphism classes, because if we take the connected sum of 9 copies
of \(\mathbb{CP}^2\) and one of \(-\mathbb{CP}^2\), that has infinitely
many different smooth structures. Why the physics depends only on the
homeomorphism class is beyond me\ldots{} maybe he is being rather
optimistic. But let's follow suit and talk about homeomorphism classes.
Folks consider two cases, depending on whether the intersection form on
the second cohomology is even or odd. If our 4-manifold has an odd
intersection form, Donaldson showed that it is an connected sum of
copies of \(\mathbb{CP}^2\) and \(-\mathbb{CP}^2\). If its intersection
form is even, we don't know yet, but if the ``11/8 conjecture'' is true,
it must be a connected sum of \(K3\)'s and \(S^2 \times S^2\)'s. Here I
cannot resist adding that \(K3\) is a 4-manifold whose intersection is
\(\mathrm{E}_8 \oplus \mathrm{E}_8 \oplus H \oplus H \oplus H\), where
\(H\) is the \(2\times2\) matrix \[
  \left(
    \begin{array}{cc}
      0&1\\0&1
    \end{array}
  \right)
\] and \(\mathrm{E}_8\) is the nondegenerate symmetric \(8\times8\)
matrix describing the inner products of vectors in the wonderful
lattice, also called \(\mathrm{E}_8\), which I discussed in
\protect\hyperlink{week65}{``Week 65''}! So \(\mathrm{E}_8\) raises its
ugly head yet again\ldots. By the way, \(H\) is just the intersection
form of \(S^2 \times S^2\), while the intersection form of
\(\mathbb{CP}^2\) is just the \(1\times1\) matrix \((1)\).

Even if the 11/8 conjecture is not true, we could if necessary resort to
Wall's theorem, which implies that any 4-manifold becomes homeomorphic
--- even diffeomorphic --- to a connected sum of the 5 basic types of
``bubbles'' after one takes its connected sum with sufficiently many
copies of \(S^2 \times S^2\). This suggests that if Euclidean path
integral is dominated by the case where there are lots of virtual black
holes around, Hawking's arguments could be correct at the level of
diffeomorphism, rather than merely homeomorphism. Indeed, he says that
``in the wormhole picture, one considered metrics that were multiply
connected by wormholes. Thus one concentrated on metrics {[}I'd say
topologies!{]} with large values of the first Betti number{[}\ldots.{]}
However, in the quantum bubbles picture, one concentrates on spaces with
large values of the second Betti number.''

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Ted Jacobson, ``Thermodynamics of spacetime: the Einstein equation of
  state'', available as
  \href{https://arxiv.org/abs/gr-qc/9504004}{\texttt{gr-qc/9504004}}.
\end{enumerate}

Well, here's another paper on quantum gravity, also very good, which
seems at first to directly contradict Hawking's paper. Actually,
however, I think it's another piece in the puzzle. The idea here is to
derive Einstein's equation from thermodynamics! More precisely, ``The
key idea is to demand that this relation hold for all the local Rindler
causal horizons through each spacetime point, with {[}the change in
heat{]} and {[}the temperature{]} interpreted as the energy flux and
Unruh temperature seen by an accelerated observer just inside the
horizon. This requires that gravitational lensing by matter energy
distorts the causal structure of spacetime in just such a way that the
Einstein equation holds''. It's a very clever mix of classical and
quantum (or semiclassical) arguments. It suggests that all sorts of
quantum theories on the microscale could wind up yielding Einstein's
equation on the macroscale.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Lee Smolin, ``The Bekenstein bound, topological quantum field theory
  and pluralistic quantum field theory'', available as
  \href{https://arxiv.org/abs/gr-qc/9508064}{\texttt{gr-qc/9508064}}.
\end{enumerate}

This is a continued exploration of the themes of Smolin's earlier paper,
reviewed in \protect\hyperlink{week56}{``Week 56''} and
\protect\hyperlink{week57}{``Week 57''}. Particularly interesting is the
general notion of ``pluralistic quantum field theory'', in which
different observers have different Hilbert spaces. This falls out
naturally in the \(n\)-categorical approach pursued by Crane (see
\protect\hyperlink{week56}{``Week 56''}), which I am also busily
studying.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Rodolfo Gambini, Octavio Obregon and Jorge Pullin, ``Towards a loop
  representation for quantum canonical supergravity'', available as
  \href{https://arxiv.org/abs/hep-th/9508036}{\texttt{hep-th/9508036}}.
\end{enumerate}

Some knot theorists and quantum group theorists had better take a look
at this! This paper considers the analog of \(\mathrm{SU}(2)\)
Chern-Simons theory where you use the supergroup \(G\mathrm{SU}(2)\),
and perturbatively work out the skein relations of the associated link
invariant (up to a certain low order in \(\hbar\)). If someone
understood the quantum supergroup ``quantum \(G\mathrm{SU}(2)\)'', they
could do this stuff nonperturbatively, and maybe get an interesting
invariant of links and 3-manifolds, and make some physicists happy in
the process.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Roh Suan Tung and Ted Jacobson, ``Spinor one-forms as gravitational
  potentials'', available as
  \href{https://arxiv.org/abs/gr-qc/9502037}{\texttt{gr-qc/9502037}}.
\end{enumerate}

This paper writes out a new Lagrangian for general relativity, closely
related to the action that gives general relativity in the Ashtekar
variables. It's incredibly simple and beautiful! I am hoping that if I
work on it someday, it will explain to me the mysterious relation
between quantum gravity and spinor fields (see the end of
\protect\hyperlink{week60}{``Week 60''}).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Joseph Polchinski and Edward Witten, ``Evidence for heterotic --- type
  I string duality'', available as
  \href{https://arxiv.org/abs/hep-th/9510169}{\texttt{hep-th/9510169}}.
\end{enumerate}

I'm no string theorist, so I've been lagging vastly behind the new work
on ``dualities'' that has revived interest in the subject. Roughly
speaking, though, it seems folks have discovered a host of secret
symmetries relating superficially different string theories\ldots{}
making them, in some deeper sense, the same. The heterotic and type I
strings are two of the most famous string theories, so if they were
really equivalent as this paper suggests, it would be very interesting.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week68}{%
\section{October 29, 1995}\label{week68}}

Okay, now the time has come to speak of many things: of topoi,
glueballs, communication between branches in the many-worlds
interpretation of quantum theory, knots, and quantum gravity.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Robert Goldblatt, \emph{Topoi: the Categorial Analysis of Logic},
  Studies in logic and the foundations of mathematics vol.~\textbf{98},
  North-Holland, New York, 1984.
\end{enumerate}

If you've ever been interested in logic, you've got to read this book.
Unless you learn a bit about topoi, you are really missing lots of the
fun. The basic idea is simple and profound: abstract the basic concepts
of set theory, so as to define the notion of a ``topos'', a kind of
universe like the world of classical logic and set theory, but far more
general!

For example, there are ``intuitionistic'' topoi in which Brouwer reigns
supreme --- that is, you can't do proof by contradiction, you can't use
the axiom of choice, etc.. There is also the ``effective topos'' of
Hyland in which Turing reigns supreme --- for example, the only
functions are the effectively computable ones. There is also a
``finitary'' topos in which all sets are finite. So there are topoi to
satisfy various sorts of ascetic mathematicians who want a
stripped-down, minimal form of mathematics.

However, there are also topoi for the folks who want a mathematical
universe with lots of horsepower and all the options! There are topoi in
which everything is a function of time: the membership of sets, the
truth-values of propositions, and so on all depend on time. There are
topoi in which everything has a particular group of symmetries. Then
there are \emph{really} high-powered things like topoi of sheaves on a
category equipped with a Grothendieck topology\ldots.

And so on: not an attempt to pick out ``the'' universe of logic and
mathematics, but instead, an effort to systematically examine a bunch of
them and how they relate to each other. The details can be intimidating,
but Goldblatt explains them very nicely. A glance at the subject
headings reveal some of the delights in store: ``elementary truth'',
``local truth'', ``geometric logic'', etc..

What is a topos, precisely? Well, most people would need to limber up a
little bit before getting the precise definition\ldots{} so let me just
start you off with some mental stretching exercises. In classical logic
we are used to working with two truth values, \(\mathrm{True}\) and
\(\mathrm{False}\). Let's call the set of truth values \(\Omega\), just
to make it sound impressive --- and because it's traditional in topos
theory. So, we are used to doing all our logic with
\[\Omega = \{\mathrm{True}, \mathrm{False}\}.\] In set theory, one of
the things we do with \(\Omega\) is describe subsets of a given set
\(X\). In other words, to describe a subset \(Y\) of \(X\), we can say
for each member of \(X\), whether it is \(\mathrm{True}\) or
\(\mathrm{False}\) that it is a member of \(Y\). Thus we can describe
the subset \(Y\) by giving a function \[f\colon X \to \Omega.\] We say
\(x\) is in \(Y\) if \(f(x) = \mathrm{True}\), but \(x\) is not in \(Y\)
if \(f(x) = \mathrm{False}\).

Now say we wanted to describe a topos of ``time-dependent sets''. But
instead of ``time-dependent sets'', let's act like topos theorists and
call them simply ``objects'', and instead of talking about one being a
``subset'' of another, let's say one is a ``subobject'' of another. To
keep life simple, let's consider only two times: today and tomorrow. So
we can think of an object \(X\) in this topos as a pair \((X_1, X_2)\)
of sets: one set \(X_1\) today, and another set \(X_2\) tomorrow. We say
that an object \(Y\) is a ``subobject'' of \(X\) if \(Y_1\) is a subset
of \(X_1\) and \(Y_2\) is a subset of \(X_2\). The idea is that we want
\(Y\) to be contained in \(X\) both today and tomorrow.

Now, to describe a subobject \(Y\) of \(X\), we can what's in \(Y\)
today, and also what's in \(Y\) tomorrow. We would like to do so using
some kind of function, or what topos theorists call a ``morphism'',
\[f: X \to \Omega.\] Clearly we can't do this with our old truth values
set \(\{\mathrm{True},\mathrm{False}\}\). Instead, we should use a truth
values \emph{object} \(\Omega\) that keeps track of what's true or false
today and what's true or false tomorrow. In other words, \(\Omega\)
should now be the pair of sets
\[(\{\mathrm{True}, \mathrm{False}\}, \{\mathrm{True}, \mathrm{False}\})\]
Now what is that ``morphism'' \(f\) exactly? Well, it's like one
function today and another function tomorrow, or in other words, a pair
of functions! In general, a morphism \(f\colon S \to T\) between objects
in this topos is a pair of functions \((f_1,f_2)\), with
\(f_1\colon S_1 \to T_1\) and \(f_2\colon S_2 \to T_2\). Then in our
particular case, the morphism \(f\colon X \to \Omega\) will say which
elements of \(X_1\) are in \(Y_1\), and which elements of \(X_2\) are in
\(Y_2\).

This is a pretty simple example of what the objects and morphisms in a
topos can be like. They can be a lot weirder. The key thing is that you
can do a lot of the same things with them that you can do with sets and
functions. Also, you can do a lot of the same things with \(\Omega\)
that you can with \(\{\mathrm{True}, \mathrm{False}\}\). Note that in
our example, like in the classical example where
\(\Omega = \{\mathrm{True}, \mathrm{False}\}\), the subobject classifier
has a bunch of logical operations on it: morphisms like \[
  \begin{aligned}
    \mathrm{Not}&\colon \Omega \to \Omega
    \mathrm{And}&\colon \Omega \times \Omega \to \Omega
    \mathrm{Or}&\colon \Omega \times \Omega \to \Omega
  \end{aligned}
\] and so on. In our example, and in the classical example, these make
\(\Omega\) into what folks call a boolean algebra. Basically, all the
usual rule of logic apply. In general, though, \(\Omega\) only needs to
be a Heyting algebra. This is more general than a boolean algebra, and
it can be sort of intuitionistic in flavor; for example,
\(\mathrm{Not} \mathrm{Not}\) doesn't need to equal the identity
morphism \(1\colon \Omega \to \Omega\), so proof by contradiction
doesn't necessarily work. A typical example of a Heyting algebra
\(\Omega\) is the set of open sets in a topological space, with
\(\mathrm{And}\) and \(\mathrm{Or}\) being intersection and union, and
with \(\mathrm{Not}\) being the \emph{interior} of the complement. This
gives a little hint as to what topoi have to do with topology.

After studying this sort of thing a while, it's rather hard to go on
pretending that the Zermelo-Fraenkel axioms of set theory, which were
cooked up in the early 20th century to escape the logical paradoxes of
Russell and others, are the last word on ``foundations''. One can
develop topos theory within set theory if one wishes, but one can also
set up topos theory from scratch, as a kind of pluralistic foundation of
mathematics.

For a deeper but still friendly and expository introduction to topoi,
try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Saunders Mac Lane and Ieke Moerdijk, \emph{Sheaves in Geometry and
  Logic: A First Introduction to Topos Theory}, Springer-Verlag, New
  York, 1992.
\end{enumerate}

Here you can learn about ``Brouwer's theorem: all functions are
continuous'' (in a suitably intuitionistic topos, of course). You can
also learn topos-theoretic versions of Cohen's proofs of the
independence of the continuum hypothesis and the axiom of choice.

Goldblatt's book teaches you all the category theory you need to learn
about topoi\ldots{} but for people who already know some category
theory, let me give the precise definition of a topos (or more
precisely, an elementary topos, to distinguish it from a ``Grothendieck
topos''): it's a category with finite limits and power objects. This
automatically implies a lot of things, such as the existence of the
subobject classifier \(\Omega\) that I was talking about.

To get deeper into topos theory, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Michael Barr and Charles Wells, \emph{Toposes, Triples and Theories},
  Springer-Verlag, New York, 1983. Available for free electronically at
  \texttt{http://www.cwru.edu/artsci/math/wells/pub/ttt.html}
\end{enumerate}

Now let me catch up on some things more directly related to physics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Frank Close, ``Are glueballs and hybrids found?'', available as
  \href{https://arxiv.org/abs/hep-ph/9509245}{\texttt{hep-ph/9509245}}.
  To appear in Proceedings of Hadron95.
\end{enumerate}

J. Sexton, A. Vaccarino, D. Weingarten, ``Numerical evidence for the
observation of a scalar glueball'', available as
\href{https://arxiv.org/abs/hep-lat/9510022}{\texttt{hep-lat/9510022}}.

Thanks go to Greg Kilcup for bringing these to my attention. Have they
found a glueball??? That would be really exciting. What's a glueball,
you ask? Well, quantum chromodynamics, our best theory of the strong
force, says that that the strong force is carried by particles called
``gluons''. Like electromagnetism, the strong force is a gauge field,
but it's a nonabelian gauge field, so the gluons themselves have charge,
or ``color''. Thus they interact in a nonlinear way. This is what lets
them bind together quarks in such a tight way. But perhaps, in addition
to pairs of quarks and antiquarks held together by gluons --- i.e.,
mesons --- and triples of quarks held together by gluons --- i.e.,
baryons --- there could be short-lived assemblages consisting entirely
of gluons, held together by their self-interactions. These are called
glueballs, but we don't know if these exist.

However, to my surprise, it turns out that there are now some candidates
out there! The first paper suggests that the \(f_0(1500)\), a neutral
spin-zero particle with mass around 1500 MeV, is a glueball. The second
paper argues instead that this is basically a quark-antiquark pair (made
of a strange quark and a strange antiquark\ldots{} where ``strange'' is
the technical name for one of the 6 quarks!). It presents evidence from
a numerical simulation and argues that the ``\(\theta\)'' or
\(f_J(1710)\), a neutral particle with even spin and mass 1710 MeV, is a
glueball. Part of the subtlety here is that, thanks to the superposition
principle, there is not a perfectly sharp distinction between a glueball
with some virtual quark-antiquark pairs in it, and a quark-antiquark
pair with a bunch of virtual gluons in it. There can be ``hybrids'' that
are a bit of both a linear combination of a meson and a glueball! (This
phenomenon of ``hybridization'' is also familiar in chemistry.)

It's tough to do nonperturbative computations in nonlinear gauge field
theories --- basically one needs to approximately compute a path
integral, using Monte Carlo technique, approximating spacetime by a
lattice (in this case, a \(16\times16\times16\times24\) lattice).
Computing the properties of a glueball and matching it with an
experimentally observed particle would be a marvelous confirmation of
quantum chromodynamics. In addition, I find there to be something
charming about the idea that in a nonabelian gauge theory we could have
a particle made simply of the gauge field itself.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  R. Plaga, ``Proposal for an experimental test of the many-worlds
  interpretation of quantum mechanics'', preprint available as
  \href{https://arxiv.org/abs/quant-ph/9510007}{\texttt{quant-ph/9510007}}.
\end{enumerate}

John Gribbin brought this one to my attention and asked me what I
thought about it. Basically, the idea here is to isolate an ion from its
environment in an ``ion trap'', and then perform a measurement on with
two possible outcomes on another quantum system, and to excite the ion
only if the first outcome occurs, before the ion has had time to
``decohere'' or get ``entangled'' with the environment. Then one checks
to see if the ion is excited. The idea is that even if we didn't see the
outcome that made us excite the ion, we might see the ion excited,
because it was excited in the other ``world'' or ``branch'' --- the one
in which we \emph{did} see the outcome that made us excite the ion. The
author gets fairly excited himself, suggesting that ``outside physics,
interworld communication would lead to truly mind-boggling
possibilities''.

Does this idea really make sense? First of all, I don't think of this
sort of thing as a test of the many-worlds interpretation; I think that
all sufficiently sensible interpretations of quantum mechanics (not
necessarily \emph{very} sensible, either!) give the same concrete
predictions for all experiments, when it comes to what we actually
observe. They may make us tell very different stories about what is
happening behind the scenes, but not of any testable sort. As soon as
one comes up with something that makes different predictions, I think it
is (more or less by definition) not a new ``interpretation'' of quantum
theory but an actual new theory. And I don't think the many-worlds
interpretation is that.

So the question as I see it is simply, will this experiment work? Will
we sometimes see the ion excited even when we didn't excite it? It seems
hard; usually the decoherence between the two ``branches'' prevents this
kind of ``inter-world communication'' (not that I'm particularly fond of
this way of talking about it). What exactly is supposed to make this
case different? The problem is that the paper is quite sketchy at the
crucial point\ldots{} just when the rabbit being pulled from the hat, as
it were. I haven't put much time into analyzing it, but some people
interested in this sort of thing might enjoy having a go at it.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Nicholas Landsman, ``Against the Wheeler-DeWitt equation'', preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9510033}{\texttt{gr-qc/9510033}}.
\end{enumerate}

I haven't read this one yet, but I had some nice talks with Landsman
about his ideas on quantization of constrained systems (see
\protect\hyperlink{week60}{``Week 60''}) back when I was in Cambridge,
England. Quantizing constrained systems is the main problem with the
so-called ``canonical'' approach to quantum gravity (see
\protect\hyperlink{week43}{``Week 43''}), so I was eager to see it
applied to gravity, and I guess that's what he's done. The title of the
paper is deliberately provocative\ldots{} hmmm, I guess I'd better read
it soon! Here's the abstract:

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
The ADM approach to canonical general relativity combined with Dirac's
method of quantizing constrained systems leads to the Wheeler-DeWitt
equation. A number of mathematical as well as physical difficulties that
arise in connection with this equation may be circumvented if one
employs a covariant Hamiltonian method in conjunction with a recently
developed, mathematically rigorous technique to quantize constrained
systems using Rieffel induction. The classical constraints are cleanly
separated into four components of a covariant momentum map coming from
the diffeomorphism group of spacetime, each of which is linear in the
canonical momenta, plus a single finite-dimensional quadratic constraint
that arises in any theory, parametrized or not. The new quantization
method is carried through in a minisuperspace example, and is found to
produce a ``wavefunction of the universe''. This differs from the
proposals of both Vilenkin and Hartle-Hawking for a closed FRW universe,
but happens to coincide with the latter in the open case.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Pavel Etingof and David Kazhdan, ``Quantization of Lie bialgebras,
  I'', preprint available in AMSTeX form as
  \href{https://arxiv.org/abs/q-alg/9506005}{\texttt{q-alg/9506005}}.

  ``Quantization of Poisson algebraic groups and Poisson homogeneous
  spaces'', preprint available in AMSTeX form as
  \href{https://arxiv.org/abs/q-alg/9510020}{\texttt{q-alg/9510020}}.
\end{enumerate}

It sounds like Etinghof and Kazhdan are making serious progress on some
questions of Drinfeld about when you can quantize Lie bialgebras and
their kin. More stuff I need to read! I need to invent a time machine
and keep running it backwards to make my weekends longer and read this
stuff!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Steve Carlip, ``Statistical mechanics and black hole entropy'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9509024}{\texttt{gr-qc/9509024}}.

  Claudio Teitelboim, ``Statistical thermodynamics of a black hole in
  terms of surface fields'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9510180}{\texttt{hep-th/9510180}}.
\end{enumerate}

Steve Carlip's paper is a nice introduction to recent ideas, many of
them his, on deriving black hole area/entropy relations by thinking of
the entropy as associated to degrees of freedom of a field living on the
event horizon. I haven't read Teitelboim's paper, but it sounds related.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\item
  Jorge Griego, ``Is the third coefficient of the Jones knot polynomial
  a quantum state of gravity?'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9510051}{\texttt{gr-qc/9510051}}.

  ``The Kauffman bracket and the Jones polynomial in quantum gravity'',
  preprint available as
  \href{https://arxiv.org/abs/gr-qc/9510050}{\texttt{gr-qc/9510050}}.
\end{enumerate}

In the loop representation of quantum gravity, states of quantum gravity
give rise to link invariants. Which link invariants, though? The
Kauffman bracket comes from a state of quantum gravity with cosmological
constant\ldots{} that is something I understand pretty well by now. But
Gambini and Pullin also have an argument suggesting that the second
coefficient of the Jones polynomial (also known as the Arf invariant) is
a state of quantum gravity without cosmological constant. I've tried to
make this argument more rigorous and never succeeded. They also floated
a conjecture that \emph{all} the coefficients of the Jones polynomial
are states of quantum gravity. This confuses me a lot, because the Jones
polynomial depends on the orientations of the components of a link,
while states of quantum gravity should give link invariants that are
independent of orientations. I guess all the odd coefficients of the
Jones polynomial are orientation dependent. Thus I'm not shocked that
Griego has done calculations indicating that the third coefficient does
\emph{not} come from a state of quantum gravity.
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One of the great things about starting to work on quantum gravity was
getting to know some of the people in the field. Ever since the
development of string theory and the loop representation of quantum
gravity, there has been a fair amount of interest in understanding how
quantum theory and gravity fit together. Indeed, now that the Standard
Model seems to be giving a spectacularly accurate description of all the
forces \emph{except} gravity, quantum gravity is one of the few really
big mysteries left when it comes to working out the basic laws of
physics --- or at least, one of the few \emph{obvious} big mysteries.
(As soon as one mystery starts becoming less mysterious, new mysteries
tend to become more visible.) But back when particle physics was big
business, only a few rather special sorts of people were seriously
devoted to quantum gravity. These people seem to be often more than
averagely interested in philosophy, often more interested in mathematics
(which is one of the few solid handholds in this slippery subject), and
always more resigned to the fact that Nature does not reveal all her
secrets very readily.

One of these folks is Chris Isham, whom I first saw at a conference in
Seattle in 1991. The conference was on classical field theory but
somehow he, Abhay Ashtekar, and Renate Loll sneaked in and gave some
talks on the loop representation of quantum gravity. This is when I
first became really interested in this subject, which I was later to
work on quite a bit. I remember Isham saying how he had been working on
quantum gravity for many years, and that he'd gotten used to the fact
that nothing ever worked, but that \emph{this} approach \emph{seemed} to
be working so far. He went on to talk about work he'd done with Ashtekar
on making the loop representation rigorous, which was based on
Gelfand-Naimark spectral theory. He said that as a student, when he'd
learned about this theory, he was really excited, because it completely
depends on the fact that if we have a space \(X\), we can think of any
point \(x\) in \(X\) as a functional on the space of functions on \(X\),
basically defining by defining \(x(f)\) to be \(f(x)\). He said this
with a laugh, but I knew what he meant, because I too had found this
idea tremendously exciting when I first learned the Gelfand-Naimark
theory. I guess it's something about how what seems at first like some
sort of bizarre joke can turn out to be very useful\ldots.

Anyway, later, when I decided to work on this sort of thing and was
trying to learn more about quantum gravity, I found his review article
on the problem of time (see \protect\hyperlink{week9}{``Week 9''})
tremendously helpful, and I constantly recommend it to everyone who is
trying to get their teeth into this somewhat elusive issue. So it's not
surprising that Isham figures prominently in the following nice popular
article on the problem of time:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Marcia Bartusiak, ``When the universe began, what time was it?'',
  \emph{Technology Review} (edited at the Massachusetts Institute of
  Technology), November/December 1995, pp.~54-63.
\end{enumerate}

If you can find this, read it: it also features Karel Kuchar and Carlo
Rovelli.

This spring, I visited Isham at Imperial College in London and found him
to be just as interesting in person as in print, and not at all
scary\ldots{} a bit of an cynic about all existing approaches to quantum
gravity (probably because he sees so clearly how flawed they all are),
but thoroughly good-humored about it and perfectly open to all sorts of
ideas, even my own nutty ideas about \(n\)-categories and physics.

Anyway, Isham has recently written a review article on quantum gravity
that gives a nice overview of the basic issues of the field:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  C. J. Isham, ``Structural issues in quantum gravity'', plenary session
  lecture given at the GR14 conference, Florence, August 1995, preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9510063}{\texttt{gr-qc/9510063}}.
\end{enumerate}

One interesting thing about it is the emphasis on the question of
whether spacetime is really a manifold the way we all usually think, or
perhaps something that just looks like a manifold at sufficiently large
distance scales. This is one of those fundamental issues that is rather
hard to make direct progress on; one has to sort of sneak up on it, but
it's nice to see someone boldly holding the problem up for examination.
Often the most important issues are the ones everyone is scared to talk
about, because they are so intractable.

Much of Abhay Ashtekar's early work dealt with asymptotically flat
solutions of Einstein's equation, but in about 1986 he somehow invented
a new formulation of general relativity, which everyone now calls the
``new variables'' or ``Ashtekar variables''. In terms of these new
variables general relativity looks a whole lot more like Yang-Mills
theory (the theory of all the forces \emph{except} gravity), and this
let Rovelli and Smolin formulate a radical new approach to quantum
gravity, the ``loop representation''. (For a fun, nontechnical
introduction to this, try the article by Bartusiak reviewed in
\protect\hyperlink{week10}{``Week 10''}.)

Nowadays, Ashtekar is the main person behind the drive to make the loop
representation of quantum gravity into a mathematically rigorous theory.
Thus it's natural that after that first time in Seattle I would wind up
seeing him pretty often\ldots{} first at Syracuse University and then at
the Center for Gravitational Physics and Geometry which he started at
Penn State. It's really impressive how he has organized people into an
effective team there\ldots{} and how he is systematically converting
people's hopes and dreams concerning the loop representation into a
beautiful set of rigorous \emph{theorems}. For a good mathematical
introduction to his program, see his paper reviewed in
\protect\hyperlink{week7}{``Week 7''}. A less mathematical introduction
is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Abhay Ashtekar, ``Polymer geometry at Planck scale and quantum
  Einstein equations''.
\end{enumerate}

This will probably appear on \texttt{gr-qc} in a while.

I have also seen Renate Loll fairly often in the years since that
Seattle conference. She is younger than Ashtekar and Isham (in fact, she
was a postdoc with Isham at one point), hence less intimidating to me,
which meant that I really enjoyed pestering her with stupid questions
when I was just starting to learn about this loop representation stuff.
One of her specialities is lattice gauge theory, and recently she has
developed a lattice version of quantum gravity that is eminently
suitable for computer calculations. The last time I saw her was at a
conference in Warsaw this spring (as reported in
\protect\hyperlink{week55}{``Week 55''} and
\protect\hyperlink{week56}{``Week 56''}). In the process of working on
her lattice approach, she gave Rovelli and Smolin a big shock by turning
up an error in their computation of the volume operator in quantum
gravity. A state of quantum gravity can be visualized roughly as a graph
embedded in space, with edges labelled by spins. Rovelli and Smolin had
thought there were states of nonzero volume corresponding to graphs with
only trivalent vertices (3 edges meeting a vertex, that is). As it turns
out, they'd made a sign error, and these states have zero volume; you
need a quadrivalent vertex to get some volume. She has just written a
paper on this topic:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Renate Loll, ``Spectrum of the volume operator in quantum gravity'',
  14 pages in plain tex, with 4 figures (postscript, compressed and
  uu-encoded), available as
  \href{https://arxiv.org/abs/gr-qc/9511030}{\texttt{gr-qc/9511030}}.
\end{enumerate}

The abstract reads as follows:

\begin{quote}
The volume operator is an important kinematical quantity in the
non-perturbative approach to four-dimensional quantum gravity in the
connection formulation. We give a general algorithm for computing its
spectrum when acting on four-valent spin network states, evaluate some
of the eigenvalue formulae explicitly, and discuss the role played by
the Mandelstam constraints.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Quote of the week:

\begin{quote}
\emph{``Nothing is too wonderful to be true, if it be consistent with
the laws of nature, and in such things as these, experiment is the best
test of such consistency.''}

Faraday, laboratory diaries, entry 10,040, March 19, 1849.
\end{quote}
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Probably many of the mathematicians reading this know about the Newton
Institute in Cambridge, a mathematics institute run by Sir Michael
Atiyah. It's a cozy little building, in a quiet neighborhood a certain
distance from the center of town, which one can reach by taking a nice
walk or bike ride over the bridge near Trinity College, across Grange
Road, and down Clarkson Road. Inside it's one big space, with stairways
slightly reminiscent of a certain picture by Escher, with a nice little
library on the first floor, tea and coffee on the 3rd floor, blackboards
in the bathrooms\ldots{} everything a mathematician could want. This is
where Wiles first announced his proof of Fermat's last theorem, and they
sell T-shirts there commemorating that fact, which are unfortunately too
small to contain the proof itself\ldots{} as they do not refrain from
pointing out.

I just got back from a conference there on New Connections between
Mathematics and Computer Science. It was organized by Jeremy
Gunawardena, who was eager to expose computer scientists and
mathematicians to a wide gamut of new interactions between the two
subjects. I spoke about \(n\)-categories in logic, topology and physics.
Since I don't know anything about computer science, when I first got the
invitation I thought it was a mistake: a wrong email address or
something! But Gunawardena assured me otherwise. I assumed the idea was
that \(n\)-categories, being so abstract, must have \emph{some}
application to just about \emph{everything}, even computer science.
Luckily, some other speakers at the conference gave some very nice
applications of \(n\)-category theory to computer science, so now I know
they really exist.

Unfortunately I had to miss the beginning of the conference, and
therefore missed some interesting talks of a geometrical nature by
Smale, Gromov, Shub and others. Let me say a bit about some of the talks
I did catch. You can find a list of all the speakers and abstracts of
their talks at

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Basic Research Institute in the Mathematical Sciences}, New
  Connections web page, `http://www-uk.hpl.hp.com/brims/``
\end{enumerate}

Richard Jozsa gave an interesting talk on quantum computers, in part
outlining Peter Shor's work (see \protect\hyperlink{week34}{``Week
34''}) on efficient factoring via quantum computation, but also
presenting some new results on ``counterfactual quantum computation''.
It turns out that --- in principle --- in some cases you can get a
quantum computer to help you answer a question, even without running it,
just as long as you COULD HAVE run it! (I should add that in practice a
lot of things make this quite impractical.) This is a new twist on the
Elitzur-Vaidman bomb-testing paradox about how if you have a bunch of
bombs and half of them are duds, and the only way you can test a bomb is
by lighting the fuse and seeing if it goes off, you can still get a bomb
you're sure will work, if you use quantum mechanics. The trick involves
getting a fuse that's so sensitive that even one photon will make the
bomb go off, and then setting up a beam-splitter, and using the bomb to
measure which path the photon followed, before recombining the beams.
Check out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  A. C. Elitzur and L. Vaidman, ``Quantum mechanical interaction-free
  measurements'', \emph{Foundations of Phys.} \textbf{23} (1993),
  987--997.

  Graeme Mitchison and Richard Jozsa, Counterfactual quantum
  computation, \emph{Proc. Roy. Soc. Lond.} \textbf{A457} (2001)
  1175--1194. Also available as
  \href{http://arxiv.org/abs/quant-ph/9907007}{\texttt{quant-ph/9907007}}.
\end{enumerate}

Jean-Yves Girard gave an overview of linear logic. Linear logic is a new
version of logic that he invented, which has some new operations besides
the good old ones like ``and'', ``or'', and ``not''. For example, there
are things like ``par'' (written as an upside-down ampersand), ``!''
(usually pronounced ``bang'') and ``?''. Ever since I started going to
conferences on category theory and computer science I have been hearing
a lot about it, and I keep trying to get people to explain these weird
new logical operations to me. Unfortunately, I keep getting very
different answers, so it has remained rather mysterious to me, even
though it seems like a lot of fun (see \protect\hyperlink{week40}{``Week
40''}). Thus I was eager to hear it from the horse's mouth.

Indeed, Girard gave a fascinating talk on it which almost made me feel I
understood it. I think the big thing I'd been missing was a good
appreciation of topics in proof theory like ``cut elimination''. He
noted that this subject usually appears to be all about the precise
manipulation of formulas according to purely syntactic rules: ``Very
bureaucratic'' he joked, ``one parenthesis missing and you've had it!''
(For full effect, one must imagine this being said in a French accent by
someone stylishly dressed entirely in black.) He wanted to get a more
\emph{geometrical} way to think about proofs, but to do this it turned
out to be important to refine ordinary logic in certain ways\ldots.
leading to linear logic. However, I still don't feel up to explaining
it, so let me turn you to:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Jean-Yves Girard, ``Linear logic'', \emph{Theoretical Computer
  Science} \textbf{50}, 1--102, 1987.

  Jean-Yves Girard, Y. Lafont and P. Taylor, \emph{Proofs and Types},
  Cambridge Tracts in Theoretical Computer Science \textbf{7}, Cambridge
  U. Press, 1989. Also available at
  \texttt{http://www.cs.man.ac.uk/\textasciitilde{}pt/stable/Proofs+Types.html}
\end{enumerate}

Eric Goubault and Vaughan Pratt talked, in somewhat different ways,
about a formalism for treating concurrency using ``higher-dimensional
automata''. The basic idea is simple: say we have two jobs to do, one of
which gets us from some starting-point \(A\) to some result \(B\), and
the other of which gets us from \(A'\) to \(B'\). We can represent each
task by an arrow, as follows: \[
  \begin{aligned}
    A&\longrightarrow B
  \\A'&\longrightarrow B'
  \end{aligned}
\] We can think of this arrow as a ``morphism'', that is, a completely
abstract sort of operation taking \(A\) to \(B\). Or, we can think of it
more concretely as an interval of time, where our computer is doing
something at each moment. Alternatively, we can think of it more
discretely as a sequence of steps, starting with \(A\) and winding up
with \(B\).

If we now consider doing both these tasks concurrently, we can represent
the situation by a square: \[
  \begin{tikzcd}
    AA' \rar\dar & BA' \dar
  \\AB' \rar & BB'
  \end{tikzcd}
\] Going first across and then down corresponds to completing one task
before starting the other, while going first down and then across
corresponds to doing the other one first. However, we can also imagine
various roughly diagonal paths through the square, corresponding to
doing both tasks at the same time. We might go horizontally for a while,
then vertically, then diagonally, and so on. Of course, if the two tasks
were not completely independent --- for example, if some steps of one
could only occur after some steps of the other were finished --- we
would have some constraints on what paths from \(AA'\) to \(BB'\) were
allowed. The idea is then to model these constaints as ``holes'' in the
square, forbidden regions where the path cannot go. There may then be
several ``essentially distinct'' ways of getting from \(AA'\) to
\(BB'\), that is, classes of paths that cannot be deformed into each
other.

To anyone who knows homotopy theory, this will seem very familiar,
homotopy theory being all about spaces with holes in them, and how those
holes prevent you from continuously deforming one path into another.
Goubault's title, ``Scheduling problems and homotopy theory'',
emphasized the relationships. But there are also some big differences.
Unlike homotopy theory, here the paths are typically required to be
``monotonic'': they can't double back and go backwards in time. And, as
I mentioned, the tasks can be thought of more abstractly than as paths
in some space. So we are really talking about \(2\)-categories here:
they give a general framework for studying situations with ``dots'' or
``objects'', ``arrows between dots'' or ``morphisms'', and ``arrows
between arrows between dots'' or ``2-morphisms''. Similarly, when we
study concurrency with more than 2 tasks at a time we can think of it in
terms of \(n\)-categories.

By the way, since I don't know much about parallel processing, I'm not
sure how much the above formalism actually helps the ``working man''.
Probably not much, yet. I get the impression, however, that parallel
processing is a complicated problem, and that people are busily dreaming
up new formalisms for talking about it, hoping they will eventually be
useful for inventing and analyzing parallel programming languages.

Some references for this are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Eric Goubault, Schedulers as abstract interpretations of
  higher-dimensional automata, in \emph{Proc. PEPM '95 (La Jolla)}, ACM
  Press, 1995. Also available at
  \texttt{http://www.di.ens.fr/\%7Egoubault/GOUBAULTpapers.html}

  Eric Goubault and Thomas Jensen, ``Homology of higher-dimensional
  automata'', in \emph{Proc. CONCUR '92 (New York)}, Lecture Notes in
  Computer Science \textbf{630}, Springer, 1992. Also available at
  \texttt{http://www.di.ens.fr/\%7Egoubault/GOUBAULTpapers.html}
\item
  Vaughan Pratt, ``Time and information in sequential and concurrent
  computation'', in \emph{Proc. Theory and Practice of Parallel
  Programming}, Sendai, Japan, 1994.
\end{enumerate}

Yves Lafont also gave a talk with strong connections to \(n\)-category
theory. Recall that a monoid is a set with an associative product having
a unit element. One way to describe a monoid is by giving a presentation
with ``generators'', say \[a, b, c, d,\] and ``relations'', say
\[ab = a,\quad da = ac.\] We get a monoid out of this in an obvious sort
of way, namely by taking all strings built from the generators
\(a\),\(b\),\(c\), and \(d\), and then identifying two strings if you
can get from one to the other by repeated use of the relations. In math
jargon, we form the free monoid on the generators and then mod out by
the relations.

Suppose our monoid is finitely presented, that is, there are finitely
many generators and finitely many relations. How can we tell whether two
elements of it are equal? For example, does \[dacb = acc\] in the above
monoid? Well, if the two are equal, we will always eventually find that
out by an exhaustive search, applying the relations mechanicallly in all
possible ways. But if they are not, we may never find out! (For the
above example, the answer appears at the end of this article in case
anyone wants to puzzle over it. Personally, I can't stand this sort of
puzzle.) In fact, there is no general algorithm for solving this ``word
problem for monoids'', and in fact one can even write down a
\emph{specific} finitely presented monoid for which no algorithm works.

However, sometimes things are nice. Suppose you write the relations as
``rewrite rules'', that go only one way: \[
  \begin{aligned}
    ab &\to a
  \\da &\to ac
  \end{aligned}
\] Then if you have an equation you are trying to check, you can try to
repeatedly apply the rewrite rules to each side, reducing it to ``normal
form'', and see if the normal forms are equal. This will only work,
however, if some good things happen! First of all, your rewrite rules
had better terminate: it had better be that you can only apply them
finitely many times to a given string. This happens to be true for the
above pair of rewrite rules, because both rules decrease the number of
\(b\)'s and \(c\)'s. Second of all, your rewrite rules had better be
confluent: it had better be that if I use the rules one way until I
can't go any further, and you use them some other way, that we both wind
up with the same thing! If both these hold, then we can reduce any
string to a unique normal form by applying the rules until we can't do
it any more.

Unfortunately, the rules above aren't confluent; if we start with the
word \(dab\), you can apply the rules like this \[dab \to acb\] while I
apply them like this \[dab \to da \to ac\] and we both terminate, but at
different answers. We could try to cure this by adding a new rule to our
list, \[acb \to ac.\] This is certainly a valid rule, which cures the
problem at hand\ldots{} but if we foolishly keep adding new rules to our
list this way we may only succeed in getting confluence and termination
when we have an \emph{infinite} list of rules: \[
  \begin{aligned}
    ab &\to a
  \\da &\to ac
  \\acb &\to ac
  \\accb &\to acc
  \\acccb &\to accc
  \\accccb &\to acccc
  \\\vdots & \vdots
  \end{aligned}
\] and so on. I leave you to check that this is really terminating and
confluent. Because it is, and because it's a very predictable list of
rules, we can use it to write a computer program in this case to solve
the word problem for the monoid at hand. But in fact, if we had been
cleverer, we could have invented a \emph{finite} list of rules that was
terminating and confluent: \[
  \begin{aligned}
    ab &\to a
  \\ac &\to da
  \end{aligned}
\] Lafont's went on to describe some work by Squier:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Craig C. Squier, ``Word problems and a homological finiteness
  condition for monoids'', \emph{Jour. Pure Appl. Algebra} \textbf{49}
  (1987), 201--217.

  Craig C. Squier, ``A finiteness condition for rewriting systems'',
  revision by F. Otto and Y. Kobayashi, to appear in \emph{Theoretical
  Computer Science}.

  Craig C. Squier and F. Otto, ``The word problem for finitely presented
  monoids and finite canonical rewriting systems'', in \emph{Rewriting
  Techniques and Applications}, ed.~J. P. Jouannuad, Lecture Notes in
  Computer Science \textbf{256}, Springer, Berlin, 1987, 74-82.
\end{enumerate}

which gave general conditions which must hold for there to be a finite
terminating and confluent set of rewrite rules for a monoid. The nice
thing is that this relies heavily on ideas from \(n\)-category theory.
Note: we started with a monoid in which the relations are
\emph{equations}, but we then started thinking of the relations as
rewrite rules or \emph{morphisms}, so what we really have is a monoidal
category. We then started worrying about ``confluences'', or equations
between these morphisms. This is typical of ``categorification'', in
which equations are replaced by morphisms, which we then want to satisfy
new equations (see \protect\hyperlink{week38}{``Week 38''}).

For the experts, let me say exactly how it all goes. Given any monoid
\(M\), we can cook up a topological space called its ``classifying
space'' \(KM\), as follows. We can think of \(KM\) as a simplicial
complex. We start by sticking in one 0-simplex, which we can visualize
as a dot like this: \[\bullet\] Then we stick in one \(1\)-simplex for
each element of the monoid, which we can visualize as an arrow going
from the dot to itself. Unrolled a bit, it looks like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$a$} (1,0);
  \end{tikzpicture}
\] Really we should draw an arrow going from left to right, but soon
things will get too messy if I do that, so I won't. Then, whenever we
have \(ab = c\) in the monoid, we stick in a \(2\)-simplex, which we can
visualize as a triangle like this: \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$c$} (1.5,0) node{$\bullet$} to node[fill=white]{$b$} (0.75,1.3) node{$\bullet$} to node[fill=white]{$a$} cycle;
  \end{tikzpicture}
\] Then, whenever we have \(abc = d\) in the monoid, we stick in a
\(3\)-simplex, which we can visualize as a tetrahedron like this \[
  \begin{tikzpicture}
    \draw[thick] (0,0) node{$\bullet$} to node[fill=white]{$d$} (3,0) node{$\bullet$} to node[fill=white]{$bc$} (1.5,2.6) node{$\bullet$} to node[fill=white]{$a$} cycle;
    \draw[thick] (0,0) to node[fill=white]{$ab$} (1.5,1) node{$\bullet$};
    \draw[thick] (1.5,2.6) to node[fill=white]{$b$} (1.5,1);
    \draw[thick] (3,0) to node[fill=white]{$c$} (1.5,1);
  \end{tikzpicture}
\] And so on\ldots{} This is a wonderful space whose homology groups
depend only on the monoid, so we can call them \(H_k(M)\). If we have a
presentation of \(M\) with only finitely many generators, we can build
\(KM\) using \(1\)-simplices only for those generators, and it follows
that \(H_1(M)\) is finitely generated. (More precisely, we can build a
space with the same homotopy type as \(KM\) using only the generators in
our presentation.) Similarly, if we have a presentation with only
finitely many relations, we can build \(KM\) using only finitely many
\(2\)-simplices, so \(H_2(M)\) is finitely generated. What Squier showed
is that if we can find a finite list of rewrite rules for M which is
terminating and confluent, then we can build \(KM\) using only finitely
many \(3\)-simplices, so \(H_3(M)\) is finitely generated! What's nice
about this is that homological algebra gives an easy way to compute
\(H_k(M)\) given a presentation of \(M\), so in some cases we can
\emph{prove} that a monoid has no finite list of rewrite rules for \(M\)
which is terminating and confluent, just by showing that \(H_3(M)\) is
too big. Examples of this, and many further details, appear in Lafont's
work:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Yves Lafont and Alain Proute, ``Church-Rosser property and homology of
  monoids'', \emph{Mathematical Structures in Computer Science}
  \textbf{1} (1991), 297--326. Also available at
  \texttt{http://iml.univ-mrs.fr/\textasciitilde{}lafont/publications.html}

  Yves Lafont, ``A new finiteness condition for monoids presented by
  complete rewriting systems (after Craig C. Squier)'', \emph{Journal of
  Pure and Applied Algebra} \textbf{98} (1995), 229--244. Also available
  at
  \texttt{http://iml.univ-mrs.fr/\textasciitilde{}lafont/publications.html}
\end{enumerate}

There were many other interesting talks, but I think I will quit here.
Next time I want to talk a bit about topological quantum field theory.
(Of course, folks who read \protect\hyperlink{week38}{``Week 38''} will
know that Lafont's work is deeply related to topological quantum field
theory\ldots{} but I won't go into that now.)

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

(Answer: \(dacb = ddab = dda = dac = acc\).)

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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This week I will get back to mathematical physics\ldots{} but before I
do, I can't resist adding that in my talk in that conference I announced
that James Dolan and I had come up with a definition of weak
\(n\)-categories. (For what these are supposed to be, and what they have
to do with physics, see \protect\hyperlink{week38}{``Week 38''},
\protect\hyperlink{week49}{``Week 49''}, and
\protect\hyperlink{week53}{``Week 53''}.) John Power was at the talk,
and before long his collaborator Ross Street sent me some email from
Australia asking about the definition. Gordon, Power, and Street have
done a lot of work on \(n\)-categories --- see
\protect\hyperlink{week29}{``Week 29''}. Now, Dolan and I have been
struggling for several months to put this definition onto paper in a
reasonably elegant and comprehensible form, so Street's request was a
good excuse to get something done quickly\ldots{} sacrificing
comprehensibility for terseness. The result can be found in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez and James Dolan, ``\(n\)-Categories, sketch of a
  definition'', \texttt{http://math.ucr.edu/home/baez/ncat.def.html}
\end{enumerate}

A more readable version will appear as a paper fairly soon. I should add
that this will eventually be part of Dolan's thesis, and he has done
most of the hard work on it; my role has largely been to push him along
and get him to explain everything to me.

On to some physics\ldots{}

First, it's amusing to note that Maxwell's equations are back in
fashion! In the following papers you will see how the duality symmetry
of Maxwell's equations (the symmetry between electric and magnetic
fields) plays a new role in modern work on \(4\)-dimensional gauge
theory. Also, there is some good stuff in Thompson's review article
about the Seiberg-Witten theory, which is basically just a
\(\mathrm{U}(1)\) gauge theory like Maxwell's equations\ldots{} but with
some important extra twists!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Erik Verlinde, ``Global aspects of electric-magnetic duality'',
  \emph{Nuc. Phys.} \textbf{B455} (1995), 211--225, available as
  \href{http://arxiv.org/abs/hep-th/9506011}{\texttt{arXiv:hep-th/9506011}}.

  George Thompson, ``New results in topological field theory and abelian
  gauge theory'', 64 pages, available as
  \href{http://arxiv.org/abs/hep-th/9511038}{\texttt{arXiv:hep-th/9511038}}.
\end{enumerate}

Next, it's nice to see that work on the loop representation of quantum
gravity continues apace:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Thomas Thiemann, ``An account of transforms on
  \(\overline(\mathcal{A}/\mathcal{G})\)'', available as
  \href{http://arxiv.org/abs/gr-qc/9511049}{\texttt{arXiv:gr-qc/9511049}}.

  Thomas Thiemann, ``Reality conditions inducing transforms for quantum
  gauge field theory and quantum gravity'', available as
  \href{http://arxiv.org/abs/gr-qc/9511057}{\texttt{arXiv:gr-qc/9511057}}.

  Abhay Ashtekar, ``A generalized Wick transform for gravity'',
  available as
  \href{http://arxiv.org/abs/gr-qc/9511083}{\texttt{arXiv:gr-qc/9511083}}.

  Renate Loll, ``Making quantum gravity calculable'', preprint available
  in LaTeX form as
  \href{http://arxiv.org/abs/gr-qc/9511080}{\texttt{arXiv:gr-qc/9511080}}.

  Rodolfo Gambini and Jorge Pullin, ``A rigorous solution of the quantum
  Einstein equations'', available as
  \href{http://arxiv.org/abs/gr-qc/9511042}{\texttt{arXiv:gr-qc/9511042}}.
\end{enumerate}

The first three papers here discuss some new work tackling the ``reality
conditions'' and ``Hamiltonian constraint'', two of the toughest issues
in the loop representation of quantum gravity. First, the Hamiltonian
constraint is another name for the Wheeler-DeWitt equation
\[H \psi = 0\] that every physical state of quantum gravity must satisfy
(see \protect\hyperlink{week11}{``Week 11''} for why). The ``reality
conditions'' have to do with the fact that this constraint looks
different depending on whether we are working with Riemannian or
Lorentzian quantum gravity. The constraint is simpler when we work with
Riemannian quantum gravity. Classically, in \emph{Riemannian} gravity
the metric on spacetime looks like \[dt^2 + dx^2 + dy^2 + dz^2\] at any
point, if we use suitable local coordinates. In this Riemannian world,
time is no different from space! In the real world, the world of
\emph{Lorentzian} gravity, the metric looks like
\[-dt^2 + dx^2 + dy^2 + dz^2\] at any point, in suitable coordinates.
Folks often call the Riemannian world the world of ``imaginary time'',
since in some vague sense we can get from the Lorentzian world to the
Riemannian world by making the transformation \[t \mapsto it,\] called a
``Wick transform''. It looks simple the way I have just written it, in
local coordinates. But a priori it's far from clear that this Wick
transform makes any sense globally. Apparently, however, there is
something we can do along these lines, which transforms the Hamiltonian
for Lorentzian quantum gravity to the better-understood one of
Riemannian quantum gravity! Alas, I have been too distracted by
\(n\)-categories to keep up with the latest work on this, but I'll catch
up in a bit. Maybe over Christmas I can relax a bit, lounge in front of
a nice warm fire, and read these papers.

The goal of all these machinations, of course, is to find some equations
that make mathematical sense, have a good right to be called a
``quantized version of Einstein's equation'', and let one compute
answers to some physics problems. We don't expect that quantum gravity
is enough to describe what's really going on in interesting
problems\ldots{} there are lots of other forces and particles out there.
Indeed, string theory is founded on the premise that quantum gravity is
completely inseparable from the quantum theories of everything else. But
here we are taking a different tack, treating quantum gravity by itself
in as simple a way as possible, expecting that the predictions of theory
will be \emph{qualitatively} of great interest even if they are
quantitatively inaccurate.

As described in earlier Finds (\protect\hyperlink{week55}{``Week 55''},
\protect\hyperlink{week68}{``Week 68''}), Loll has been working to make
quantum gravity ``calculable'', by working on a discretized version of
the theory called lattice quantum gravity. If one does it carefully,
it's not too bad to treat space as a lattice in the loop representation
of quantum gravity, because even in the continuum the theory is discrete
in a certain sense, since the states are described by ``spin networks'',
certain graphs embedded in space. (See \protect\hyperlink{week43}{``Week
43''} for more on these.) Her latest paper is an introduction to some of
these issues.

In a somewhat different vein, Gambini and Pullin have been working on
relating the loop representation to knot theory. One of their most
intriguing results is that the second coefficient of the
Alexander-Conway knot polynomial is a solution of the Hamiltonian
constraint. Here they argue for this result using a lattice
regularization of the theory.

Now let me turn to a variety of other matters\ldots{}

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Matt Greenwood and Xiao-Song Lin, ``On Vassiliev knot invariants
  induced from finite type'', available as
  \href{http://arxiv.org/abs/q-alg/9506001}{\texttt{arXiv:q-alg/9506001}}.

  Lev Rozansky, ``On finite type invariants of links and rational
  homology spheres derived from the Jones polynomial and
  Witten--Reshetikhin--Turaev invariant'', available as
  \href{http://arxiv.org/abs/q-alg/9511025}{\texttt{arXiv:q-alg/9511025}}.

  Scott Axelrod, ``Overview and warmup example for perturbation theory
  with instantons'', available as
  \href{http://arxiv.org/abs/hep-th/9511196}{\texttt{arXiv:hep-th/9511196}}.
\end{enumerate}

These papers all deal with perturbative Chern-Simons theory and its
spinoffs. The first two consider homology 3-spheres. In Chern-Simons
theory, this makes the moduli space of flat \(\mathrm{SU}(2)\)
connections trivial, thus eliminating some subtleties in the
perturbation theory. A homology 3-sphere is a 3-manifold whose homology
is the same as that of the 3-sphere\ldots{} the first one was discovered
by Poincare when he was studying his conjecture that every 3-manifold
with the homology of a 3-sphere is a 3-sphere. It turns out that you can
get a counterexample if you just take an ordinary 3-sphere, cut out a
solid torus embedded in the shape of a trefoil knot, and stick it back
in with the meridian and longitude (the short way around, and the long
way around) switched --- making sure they wind up pointing in the
correct directions. This is called ``doing Dehn surgery on the
trefoil''. It gives something with the homology of a 3-sphere that's not
a 3-sphere. So Poincare had to revise his conjecture to say that every
3-manifold \emph{homotopic} to a 3-sphere is (homeomorphic to) a
3-sphere. This improved ``Poincare conjecture'' remains unsolved\ldots{}
its analog is known to be true in every dimension other than 3! Since
every possible counterexample to the Poincare conjecture is a homology
3-sphere, it makes some sense to ponder these manifolds carefully.

Now, just as perturbative Chern-Simons theory gives certain special
invariants of links, said to be of ``finite type'', the same is true for
homology 3-spheres. When we say a link invariants is of finite type, all
we mean is that it satisfies a simple property described in
\protect\hyperlink{week3}{``Week 3''}. There is a similar but subtler
definition for an invariant of homology 3-spheres to be of finite type;
they need to transform in a nice way under Dehn surgery. (See
\protect\hyperlink{week60}{``Week 60''} for more references.)

The second paper concentrates precisely on those subtleties due to the
moduli space of flat connections, developing perturbation theory in the
presence of ``instantons'' (here, nontrivial flat connections).

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\item
  Alan Carey, Jouko Mickelsson, and Michael Murray, ``Index theory,
  gerbes, and Hamiltonian quantization'', available as
  \href{http://arxiv.org/abs/hep-th/9511151}{\texttt{arXiv:hep-th/9511151}}.

  Alan Carey, M. K. Murray and B. L. Wang, ``Higher bundle gerbes and
  cohomology classes in gauge theories'', available as
  \href{http://arxiv.org/abs/hep-th/9511169}{\texttt{arXiv:hep-th/9511169}}
\end{enumerate}

Higher-dimensional algebra is sneaking into physics in yet another way:
gerbs! What's a gerb? Roughly speaking, it's a sheaf of groupoids, but
there are some other ways of thinking of them that come in handy in
physics. See \protect\hyperlink{week25}{``Week 25''} for a review of
Brylinski's excellent book on gerbs, and also:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Jean-Luc Brylinski, ``Holomorphic gerbes and the Beilinson
  regulator'', in \emph{Proc. Int. Conf. on K-Theory (Strasbourg,
  1992)}, to appear in Asterisque.

  Jean-Luc Brylinski, ``The geometry of degree-four characteristic
  classes and of line bundles on loop spaces I'', Duke Math. Jour. 75
  (1994), 603--638.

  Jean-Luc Brylinski, ``Cech cocyles for characteristic classes'', J.-L.
  Brylinski and D. A. McLaughlin.
\item
  Joe Polchinski, ``Recent results in string duality'', available as
  \href{http://arxiv.org/abs/hep-th/9511157}{\texttt{arXiv:hep-th/9511157}}.
\end{enumerate}

This should help folks keep up with the ongoing burst of work on
dualities relating superficially different string theories.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Leonard Susskind and John Uglum, ``String physics and black holes'',
  available as
  \href{http://arxiv.org/abs/hep-th/9511227}{\texttt{arXiv:hep-th/9511227}}.
\end{enumerate}

Among other things, this review discusses the ``holographic hypothesis''
mentioned in \protect\hyperlink{week57}{``Week 57''}:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Boguslaw Broda, ``A gauge-field approach to 3- and 4-manifold
  invariants'', available in TeX form as
  \href{http://arxiv.org/abs/q-alg/9511010}{\texttt{arXiv:q-alg/9511010}}.
\end{enumerate}

This summarizes the Reshetikhin-Turaev construction of 3d topological
quantum field theories from quantum groups, and Broda's own closely
related approach to 4d topological quantum field theories.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
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\item
  John Baez and Martin Neuchl, ``Higher-dimensional algebra I: braided
  monoidal \(2\)-categories'', available as
  \href{http://arxiv.org/abs/q-alg/9511013}{\texttt{arXiv:q-alg/9511013}}.
\end{enumerate}

In this paper, we begin with a brief sketch of what is known and
conjectured concerning braided monoidal \(2\)-categories and their
applications to 4d topological quantum field theories and 2-tangles
(surfaces embedded in \(4\)-dimensional space). Then we give concise
definitions of semistrict monoidal \(2\)-categories and braided monoidal
\(2\)-categories, and show how these may be unpacked to give long
explicit definitions similar to, but not quite the same as, those given
by Kapranov and Voevodsky. Finally, we describe how to construct a
semistrict braided monoidal \(2\)-category \(Z(\mathcal{C})\) as the
`center' of a semistrict monoidal category \(\mathcal{C}\). This is
analogous to the construction of a braided monoidal category as the
center, or `quantum double', of a monoidal category. The idea is to
develop algebra that will do for 4-dimensional topology what quantum
groups and braided monoidal categories did for 3d topology. As a
corollary of the center construction, we prove a strictification theorem
for braided monoidal \(2\)-categories.
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It's been a while since I've written an issue of This Week's
Finds\ldots{} due to holiday distractions and a bunch of papers that
need writing up. But tonight I just can't seem to get any work done, so
let me do a bit of catching up.

I'm no string theorist, but I still can't help hearing all the rumbling
noises over in that direction: first about all the dualities relating
seemingly different string theories, and then about the mysterious
``M-theory'' in 11 dimensions which seems to underlie all these
developments. Let me try to explain a bit of this stuff\ldots{} in the
hopes that I prompt some string theorists to correct me and explain it
better! I will simplify everything a lot to keep people from getting
scared of the math involved. But I may also make some mistakes, so the
experts should be kind to me and try to distinguish between the
simplifications and the mistakes.

Recall that it's hard to get a consistent string theory --- one that's
not plagued by infinite answers to interesting questions. But this
difficulty is generally regarded as a good thing, because it drastically
limits the number of different versions of string theory one needs to
think about. It's often said that there are only 5 consistent string
theories: the type I theory, the type IIA and IIB theory, and the two
kinds of heterotic string theory. I'm not sure exactly what this
statement means, but certainly it's only meant to cover supersymmetric
string theories, which can handle fermions (like the electron and
neutrino) in addition to bosons (like the photon).

Type I strings are ``open strings'' --- not closed loops --- and they
live in 10 dimensional spacetime, meaning that you need the dimension to
be 10 to make certain nasty infinities cancel out. Type II strings also
live in 10 dimensions, but they are ``closed strings''. That means that
they look like a circle, so there are vibrational modes that march
around clockwise and other modes that march around counterclockwise, and
these are supposed to correspond to different particles that we see. We
can think of these vibrational modes as moving around the circle at the
speed of light; they are called ``left-movers'' and ``right-movers''.
Now fermions which move at the speed of light are able to be rather
asymmetric and only spin one way (when viewed head-on). We say they have
a ``chirality'' or handedness. Ordinary neutrinos, for example, are
left-handed. This asymmetry of nature shocked everyone when first
discovered, but it appears to be a fact of life, and it's certainly a
fact of mathematics. In the type IIA string theory, the left-moving and
right-moving fermionic vibrational modes have opposite chiralities,
while in the IIB theory, they have the same chirality. When I last
checked, the type IIA theory seemed to fit our universe a bit better
than the IIB theory.

But lots of people say the heterotic theory matches our universe even
better. The name ``heterotic'' refers to the fact that this theory is
supposed to have ``hybrid vigor''. It's quite bizarre: the left-movers
are purely bosonic --- no fermions --- and live in \(26\)-dimensional
spacetime, the way non-supersymmetric string theories do. The
right-movers, on the other hand, are supersymmetric and live in 10-
dimensional spacetime. It sounds not merely heterotic, but downright
schizophrenic! But in fact, the \(26\)-dimensional spacetime can also
thought of as being 10-dimensional, with 16 extra ``curled-up
dimensions'' in the shape of a torus. This torus has two possible
shapes: \(\mathbb{R}^16\) modulo the
\(\mathrm{E}_8 \times \mathrm{E}_8\) lattice or the \(D_{16}^*\)
lattice. (For some of the wonders of \(\mathrm{E}_8\) and other
lattices, check out \protect\hyperlink{week64}{``Week 64''} and
\protect\hyperlink{week65}{``Week 65''}. The \(D_{16}^*\) lattice is
related to the \(D_{16}\) lattice described in those Weeks, but not
quite the same.)

Now there is still lots of room for toying with these theories depending
on how you ``compactify'': how you think of \(10\)-dimensional spacetime
as 4-dimensional spacetime plus 6 curled-up dimensions. That's because
there are lots of \(6\)-dimensional manifolds that will do the job (the
so-called ``Calabi-Yau'' manifolds). Different choices give different
physics, and there is a lot of work to be done to pick the right one.

However, recently it's beginning to seem that all five of the basic
sorts of string theory are beginning to look like different
manifestations of the same theory in 11 dimensions\ldots{} some
monstrous thing called M-theory! Let me quote the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Kelly Jay Davis, ``M-Theory and String-String Duality'', 28 pages,
  available as
  \href{https://arxiv.org/abs/hep-th/9601102}{\texttt{hep-th/9601102}},
  uses \texttt{harvmac.tex}.
\end{enumerate}

The idea seems to be roughly that depending on how one compactifies the
11th dimension, one gets different \(10\)-dimensional theories from
M-theory:

\begin{quote}
``In the past year much has happened in the field of string theory. Old
results relating the two Type II string theories and the two Heterotic
string theories have been combined with newer results relating the Type
II theory and the Heterotic theory, as well as the Type I theory and the
Heterotic theory, to obtain a single''String Theory." In addition, there
has been much recent progress in interpreting some, if not all,
properties of String Theory in terms of an eleven-dimensional M-Theory.
In this paper we will perform a self-consistency check on the various
relations between M-Theory and String Theory. In particular, we will
examine the relation between String Theory and M-Theory by examining its
consistency with the string-string duality conjecture of six-dimensional
String Theory. So, let us now take a quick look at the relations between
M-Theory and String Theory some of which we will be employing in this
article.

In Witten's paper he established that the strong coupling limit of Type
IIA string theory in ten dimensions is equivalent to eleven-dimensional
supergravity on a ``large'' \(S^1\). {[}Note: \(S^1\) just means the
circle --- jb.{]} As the low energy limit of M-theory is
eleven-dimensional supergravity, this relation states that the strong
coupling limit of Type IIA string theory in ten-dimensions is equivalent
to the low-energy limit of M-Theory on a ``large'' \(S^1\). In the paper
of Witten and Horava, they establish that the strong coupling limit of
the ten-dimensional \(\mathrm{E}_8 \times \mathrm{E}_8\) Heterotic
string theory is equivalent to M-Theory on a ``large''
\(S^1/\mathbb{Z}_2\).

Recently, Witten, motivated by Dasgupta and Mukhi, examined M-Theory on
a \(\mathbb{Z}_2\) orbifold of the five-torus and established a relation
between M-Theory on this orbifold and Type IIB string theory on \(K3\).
{[}Note: most of these undefined terms refer to various spaces; for
example, the five-torus is the \(5\)-dimensional version of a doughnut,
while \(K3\) is a certain \(4\)-dimensional manifold --- jb.{]} Also,
Schwarz very recently looked at M-Theory and its relation to T-Duality.

As stated above, M-Theory on a ``large'' \(S^1\) is equivalent to a
strongly coupled Type IIA string theory in ten-dimensions. Also,
M-theory on a ``large'' \(S^1/\mathbb{Z}_2\) is equivalent to a strongly
coupled \(\mathrm{E}_8 \times \mathrm{E}_8\) Heterotic string theory in
ten dimensions. However, the string-string duality conjecture in six
dimensions states that the strongly coupled limit of a Heterotic string
theory in six dimensions on a four-torus is equivalent to a weakly
coupled Type II string theory in six-dimensions on \(K3\). Similarly, it
states that the strongly coupled limit of a Type II theory in six
dimensions on K3 is equivalent to a weakly coupled Heterotic string
theory in six-dimensions on a four-torus. Now, as a strongly coupled
Type IIA string theory in ten-dimensions is equivalent to the low energy
limit of M-Theory on a ``large'' \(S^1\), the low energy limit of
M-Theory on \(S^1 \times K3\) should be equivalent to a weakly coupled
Heterotic string theory on a four-torus by way of six-dimensional
string-string duality. Similarly, as a strongly coupled
\(\mathrm{E}_8 \times \mathrm{E}_8\) Heterotic string theory in
ten-dimensions is equivalent to the low energy limit of M-Theory on a
``large'' \(S^1/\mathbb{Z}_2\), the low energy limit of M-Theory on
\(S^1/\mathbb{Z}_2 \times T^4\) should be equivalent to a weakly coupled
Type II string theory on \(K3\). The first of the above two consistency
checks on the relation between M-Theory and String Theory will be the
subject of this article. However, we will comment on the second
consistency check in our conclusion."
\end{quote}

So, as you can see, there is a veritable jungle of relationships out
there. But you must be wondering by now: \emph{what's M-theory?}
According to

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Edward Witten, ``Five-branes and M-Theory on an orbifold'', available
  as
  \href{https://arxiv.org/abs/hep-th/9512219}{\texttt{hep-th/9512219}}.
\end{enumerate}

the M stands for ``magic'', ``mystery'', or ``membrane'', according to
taste. From a mathematical viewpoint a better term might be ``murky'',
since apparently everything known about M-theory is indirect and
circumstantial, except for the classical limit, in which it seems to act
as a theory of \(2\)-branes and \(5\)-branes, where an ``n-brane'' is an
n-dimensional analog of a membrane or surface.

Well, here I must leave off, for reasons of ignorance. I don't really
understand the evidence for the existence of the M-theory\ldots{} I can
only await the day when the murk clears and it becomes possible to learn
about this stuff a bit more easily. It has been suggested that string
theory is a bit of 21st-century mathematics that accidentally fell into
the 20th century. I think this is right, and that eventually much of
this stuff will be seen as much simpler than it seems now.

Now let me briefly describe some papers I actually sort of understand.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Abhay Ashtekar, ``Polymer geometry at Planck scale and quantum
  Einstein equations'', available as
  \href{https://arxiv.org/abs/hep-th/9601054}{\texttt{hep-th/9601054}}.

  Roumen Borissov, Seth Major and Lee Smolin, ``The geometry of quantum
  spin networks'', available as
  \href{https://arxiv.org/abs/gr-qc/9512043}{\texttt{gr-qc/9512043}}, 35
  Postscript figures, uses \texttt{epsfig.sty}.

  Bernd Bruegmann, ``On the constraint algebra of quantum gravity in the
  loop representation'', available as
  \href{https://arxiv.org/abs/gr-qc/9512036}{\texttt{gr-qc/9512036}}.

  Kiyoshi Ezawa, ``Nonperturbative solutions for canonical quantum
  gravity: an overview'', available as
  \href{https://arxiv.org/abs/gr-qc/9601050}{\texttt{gr-qc/9601050}}

  Kiyoshi Ezawa, ``A semiclassical interpretation of the topological
  solutions for canonical quantum gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9512017}{\texttt{gr-qc/9512017}}.

  Jorge Griego, ``Extended knots and the space of states of quantum
  gravity'', available as
  \href{https://arxiv.org/abs/gr-qc/9601007}{\texttt{gr-qc/9601007}}.

  Seth Major and Lee Smolin, ``Quantum deformation of quantum gravity'',
  available as
  \href{https://arxiv.org/abs/gr-qc/9512020}{\texttt{gr-qc/9512020}}.
\end{enumerate}

Work on the loop representation of quantum gravity proceeds apace. The
paper by Ashtekar and the first one by Ezawa review various recent
developments and might be good to look at if one is just getting
interested in this subject. Smolin has been pushing the idea of
combining ideas about the quantum group \(SU_q(2)\) with the loop
representation, and his papers with Borissov and Major are about that.
This seems rather interesting but still a bit mysterious to me. I
suspect that what it amounts to is thinking of loops as excitations not
of the Ashtekar-Lewandowksi vacuum state but the Chern-Simons state. I'd
love to see this clarified, since these two states are two very
important exact solutions of quantum gravity, and the latter has the
former as a limit as the cosmological constant goes to zero. In the
second paper listed, Ezawa gives semiclassical interpretations of these
and other exact solutions of quantum gravity.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Thomas Kerler, ``Genealogy of nonperturbative quantum-invariants of
  3-Manifolds: the surgical family'', available as
  \href{https://arxiv.org/abs/q-alg/9601021}{\texttt{q-alg/9601021}}.
\end{enumerate}

Kerler brings a bit more order to the study of quantum invariants of
3-manifolds, in particular, the Reshetikhin-Turaev,
Hennings-Kauffman-Radford, and Lyubashenko invariants. All of these are
constructed using certain braided monoidal categories, like the category
of (nice) representations of a quantum group. He describes how
Lyubashenko's invariant specializes to the Reshetikhin-Turaev invariant
for semisimple categories and to the Hennings-Kauffman-Radford invariant
for Tannakian categories. People interested in extended TQFTs and
\(2\)-categories will find his work especially interesting, because he
works with these invariants using these techniques. James Dolan and I
have argued that it's only this way that one will really understand
these TQFTs (see \protect\hyperlink{week49}{``Week 49''}).

In future editions of This Week's Finds I will say more about
\(n\)-categories and topological quantum field theory. I have a feeling
that while I've discussed these a lot, I have never really explained the
basic ideas very well. As I gradually understand the basic ideas better,
they seem simpler and simpler to me, so I think I should try to explain
them.



\hypertarget{week73}{%
\section{February 24, 1996}\label{week73}}

In this and future issues of This Week's Finds, I'd like to talk a bit
more about higher-dimensional algebra, and how it should lead to many
exciting developments in mathematics and physics in the 21st century.
I've talked quite a bit about this already, but I hear from some people
that the ``big picture'' remained rather obscure. The main reason, I
suppose, is that I was just barely beginning to see the big picture
myself! As Louis Crane noted, in this subject it often feels that we are
unearthing the fossilized remains of some enormous prehistoric beast,
still unsure of its extent or how it all fits together. Of course that's
what makes it so exciting, but I'll try to make sense what we've found
so far, and where it may lead. In the Weeks to come, I'll start out
describing some basic stuff, and work my way up to some very new ideas.

However, before I get into that, I'd like to say a bit about something
completely different: biology.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  \emph{Biological Asymmetry and Handedness}, Ciba Foundation Symposium
  \textbf{162}, John Wiley and Sons, 1991.

  D. K. Kondepudi and D. K. Nelson, ``Weak neutral currents and the
  origins of molecular chirality'', \emph{Nature} \textbf{314},
  pp.~438--441.
\end{enumerate}

It's always puzzled me how humans and other animals could be
consistently asymmetric. A 50-50 mix of two mirror-image forms could
easily be explained by ``spontaneously broken symmetry'', but in fact
there are many instances of populations with a uniform handedness. Many
examples appear in Weyl's book ``Symmetry'' (see
\protect\hyperlink{week63}{``Week 63''}). To take an example close to
home, the human brain appears to be lateralized in a fairly consistent
manner; for example, most people have the speech functions concentrated
in the left hemisphere of their cerebrum --- even most, though not all,
left-handers.

One might find this unsurprising: it just means that the asymmetry is
encoded in the genes. But think about it: how are the genes supposed to
tell the embryo to develop in an asymmetric way? How do they explain the
difference between right and left? That's what intrigues me.

Of course, genes code for proteins, and most proteins are themselves
asymmetric. Presumably the answer lurks somewhere around here. Indeed,
even the amino acids of which the proteins are composed are asymmetric,
as are many sugars and for that matter, the DNA itself, which is
composed of two spirals, each of which has an intrinsic directionality
and hence a handedness. The handedness of many of these basic
biomolecules is uniform for all life on the globe, as far as I know.

In the conference proceedings on biological asymmetry, there is an
interesting article on the development of asymmetry in \emph{C.
elegans}. Ever since the 1960s, this little nematode has been a favorite
among biologists because of its simplicity, and because of the
advantages understanding one organism thoroughly rather than many
organisms in a sketchy way. I'm sure most of you know about the fondness
geneticists have for the fruit fly, but Caenorhabditis elegans is a far
simpler critter: it only has 959 cells, all of which have been
individually named and studied! There are over 1000 people studying it
by now, there is a journal devoted to it --- The Worm Breeder's Gazette
--- and it has its own world-wide web server. Moreover, folks are busily
sequencing not only the complete human genome but also all 100 million
bases of the DNA of \emph{C. elegans}.

But I digress! The point here is that \emph{C. elegans} is asymmetric,
and exhibits a consistent handedness. And the cool thing is that in the
conference proceedings, Wood and Kevshan report on experiments where
they artificially changed the handedness of \emph{C. elegans} embryos
when they consisted of only 6 cells! The embryos look symmetric when
they have 4 cells; by the time they have 8 cells the asymmetry is
marked. By moving some cells around at the 6-cell stage, Wood and
Kevshan were able to create fully functional \emph{C. elegans} having
opposite the usual handedness.

The question of exactly how the embryo's asymmetry originates from some
asymmetry at the molecular still seems shrouded in mystery. And there is
another puzzle: how did the biomolecules choose their handedness in the
first place? Here spontaneous symmetry breaking --- an essentially
random choice later amplified by selection --- seems a natural
hypothesis. But physicists should be interested to note that another
alternative has been seriously proposed. Weak interactions violate
parity and thus endow the laws of nature with an intrinsic handedness.
This means there is a slight difference in energies between any
biomolecule and its enantiomer, or mirror-image version. According to S.
F. Mason's article in the conference proceedings, this difference indeed
favors the observed forms of amino acids and sugars --- the left-handed
or ``L'' amino acids and the right-handed or ``D'' sugars. But the
difference is is incredibly puny --- typically it amounts to
\(10^{-14}\) joules per mole! How could such a small difference matter?
Well, Kondepudi and Nelson have done calculations suggesting that in
certain situations where there is both autocatalysis of both L and D
forms of these molecules, and also competition between them, random
fluctuations can be averaged out, while small energy level differences
can make a big difference.

That would be rather satisfying to me: knowing that my heart is where it
is for the same reason that neutrinos are left-handed. But in fact this
theory is very controversial\ldots. I mention it only because of its
charm.

If we think of the universe as passing through the course of history
from simplicity to complexity, from neutrinos to nematodes to humans,
it's natural to wonder what's at the bottom, where things get very
simple, where physics blurs into pure logic\ldots. far from the ``spires
of form''. Ironically, even the simplest things may be hard to
understand, because they are so abstract.

Let's begin with the world of sets. In a certain sense, there is nothing
much to a set except its cardinality, the number of elements it has. Of
course, set theorists work hard to build up the universe of sets from
the empty set, each set being a set of sets, with its own distinctive
personality:
\[\{\} ,\, \{\{\}\} ,\, \{\{\{\}\}\} ,\, \{\{\},\{\{\}\}\} ,\, \{\{\},\{\{\{\}\}\}\} ,\, \{\{\},\{\{\}\},\{\{\},\{\{\}\}\}\}\]
and the like. But for many purposes, a one-to-one and onto function
between two sets allows us to treat them as the same. So if necessary,
we could actually get by with just one set of each cardinality. For
example
\[\{\} ,\, \{\{\}\} ,\, \{\{\},\{\{\}\}\} ,\, \{\{\},\{\{\}\},\{\{\},\{\{\}\}\}\}\]
and so on. For short, people like to call these \[0 ,\, 1 ,\, 2 ,\, 3\]
and so on. We could wonder what comes after all these finite cardinals,
and what comes after that, and so on, but let's not. Instead, let's
ponder what we've done so far. We started with the universe of sets ---
not exactly the set of all sets, but pretty close --- but very soon we
started playing with functions between sets. This is what allowed us to
speak of two sets with the same cardinality as being isomorphic.

In short, we are really working with the \emph{category} of sets. A
category is something just as abstract as a set, but a bit more
structured. It's not a mere collection of objects; there are also
morphisms between objects, in this case the functions between sets.

Some of you might not know the precise definition of a category; let me
state it just for completeness. A category consists of a collection of
``objects'' and a collection of ``morphisms''. Every morphism \(f\) has
a ``source'' object and a ``target'' object. If the source of \(f\) is
\(X\) and its target is \(Y\), we write \(f\colon X \to Y\). In
addition, we have:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Given a morphism \(f\colon X \to Y\) and a morphism
  \(g\colon Y \to Z\), there is a morphism \(fg\colon X \to Z\), which
  we call the ``composite'' of \(f\) and \(g\).
\item
  Composition is associative: \((fg)h = f(gh)\).
\item
  For each object \(X\) there is a morphism \(1_X\colon X \to X\),
  called the ``identity'' of \(X\). For any \(f\colon X \to Y\) we have
  \(1_X f = f 1_Y = f\).
\end{enumerate}

That's it.

(Note that we are writing the composite of \(f\colon X \to Y\) and
\(g\colon Y \to Z\) as \(fg\), which is backwards from the usual order.
This will make life easier in the long run, though, since \(fg\) will
mean ``first do \(f\), then \(g\)''.)

Now, there are lots of things one can do with sets, which lead to all
sorts of interesting examples of categories, but in a sense the
primordial category is \(\mathsf{Set}\), the category of sets and
functions. (One might try to make this precise, by trying to prove that
every category is a subcategory of \(\mathsf{Set}\), or something like
that. Actually the right way to say how \(\mathsf{Set}\) is primordial
is called the ``Yoneda lemma''. But to understand this lemma, one needs
to understand categories a little bit.)

When we get to thinking about categories a lot, it's natural to think
about the ``category of all categories''. Now just as it's a bit bad to
speak of the set of all sets, it's bad to speak of the category of all
categories. This is true, not only because Russell's paradox tends to
ruin attempts at a consistent theory of the ``thing of all things'', but
because, just as what really counts is the \emph{category} of all sets,
what really counts is the \emph{\(2\)-category} of all categories.

To understand this, note that there is a very sensible notion of a
morphism between categories. It's called a ``functor'', and a functor
\(F\colon \mathcal{C} \to \mathcal{D}\) from a category \(\mathcal{C}\)
to a category \(\mathcal{D}\) is just something that assigns to each
object \(x\) of \(\mathcal{C}\) an object \(F(x)\) of \(\mathcal{D}\),
and to each morphism \(f\) of \(\mathcal{C}\) a morphism \(F(f)\) of
\(\mathcal{D}\), in such a way that ``all structure in sight is
preserved''. More precisely, we want:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  If \(f\colon x \to y\), then \(F(f)\colon F(x) \to F(y)\).
\item
  If \(fg = h\), then \(F(f)F(g) = F(h)\).
\item
  If \(1_x\) is the identity morphism of \(x\), then \(F(1_x)\) is the
  identity morphism of \(F(x)\).
\end{enumerate}

It's good to think of a category as a bunch of dots --- objects --- and
arrows going between them --- morphisms. I would draw one for you if I
could here. Category theorists love drawing these pictures. In these
terms, we can think of the functor
\(F\colon \mathcal{C} \to \mathcal{D}\) as putting a little picture of
the category \(\mathcal{C}\) inside the category \(\mathcal{D}\). Each
dot of \(\mathcal{C}\) gets drawn as a particular dot in
\(\mathcal{D}\), and each arrow in \(\mathcal{C}\) gets drawn as a
particular arrow in \(\mathcal{D}\). (Two dots or arrows in
\(\mathcal{C}\) can get drawn as the same dot or arrow in
\(\mathcal{D}\), though.)

In addition, however, there is a very sensible notion of a
``2-morphism'', that is, a morphism between morphisms between
categories! It's called a ``natural transformation''. The idea is this.
Suppose we have two functors \(F\colon \mathcal{C} \to \mathcal{D}\) and
\(G\colon \mathcal{C} \to \mathcal{D}\). We can think of these as giving
two pictures of \(\mathcal{C}\) inside \(\mathcal{D}\). So for example,
if we have any object \(x\) in \(\mathcal{C}\), we get two objects in
\(\mathcal{D}\), \(F(x)\) and \(G(x)\). A ``natural transformation'' is
then a gadget that draws an arrow from each dot like \(F(x)\) to the dot
like \(G(x)\). In other words, for each \(x\), the natural
transformation \(T\) gives a morphism \(T_x\colon F(x) \to G(x)\). But
we want a kind of compatibility to occur: if we have a morphism
\(f\colon x \to y\) in \(\mathcal{C}\), we want \[
  \begin{tikzcd}
    F(x) \rar["F(f)"] \dar[swap,"T_x"]
    & F(y) \dar["T_y"]
  \\G(x) \rar[swap,"G(f)"]
    & G(y)
  \end{tikzcd}
\] to commute; in other words, we want \(T_x G(f) = F(f) T_y\).

This must seem very boring to the people who understand it and very
mystifying to those who don't. I'll need to explain it more later. For
now, let me just say a bit about what's going on. Sets are
``zero-dimensional'' in that they only consist of objects, or ``dots''.
There is no way to ``go from one dot to another'' within a set.
Nonetheless, we can go from one set to another using a function. So the
category of all sets is ``one-dimensional'': it has both objects or
``dots'' and morphisms or ``arrows between dots''. In general,
categories are ``one-dimensional'' in this sense. But this in turn makes
the collection of all categories into a ``two-dimensional'' structure, a
\(2\)-category having objects, morphisms between objects, and
\(2\)-morphisms between morphisms.

This process never stops. The collection of all \(n\)-categories is an
\((n+1)\)-category, a thing with objects, morphisms, \(2\)-morphisms,
and so on all the way up to \(n\)-morphisms. To study sets carefully we
need categories, to study categories well we need \(2\)-categories, to
study \(2\)-categories well we need \(3\)-categories, and so on\ldots{}
so ``higher- dimensional algebra'', as this subject is called, is
automatically generated in a recursive process starting with a careful
study of set theory.

If you want to show off, you can call the \(2\)-category of all
categories \(\mathsf{Cat}\), and more generally, you can call the
\((n+1)\)-category of all \(n\)-categories \(n\mathsf{Cat}\).
\(n\mathsf{Cat}\) is the primordial example of an \((n+1)\)-category!

Now, just as you might wonder what comes after \(0,1,2,3,\ldots\), you
might wonder what comes after all these \(n\)-categories. The answer is
``\(\omega\)-categories''.

What comes after these? Well, let us leave that for another time. I'd
rather conclude by mentioning the part that's the most fascinating to me
as a mathematical physicist. Namely, the various dimensions of category
turn out to correspond in a very beautiful --- but still incompletely
understood --- way to the various dimensions of spacetime. In other
words, the study of physics in imaginary \(2\)-dimensional spacetimes
uses lots of \(2\)-categories, the study of physics in a 3d spacetimes
uses 3-categories, the study of physics in 4d spacetimes appears to use
4-categories, and so on. It's very surprising at first that something so
simple and abstract as the process of starting with sets and recursively
being led to study the \((n+1)\)-category of all \(n\)-categories could
be related to the dimensionality of spacetime. In particular, what could
possibly be special about 4 dimensions?

Well, it turns out that there \emph{are} some special things about 4
dimensions. But more on that later.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week74}{``Week 74''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum}: Long after writing the above, I just saw an
interesting article on chirality in biology:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  N. Hirokawa, Y. Tanaka, Y. Okada and S. Takeda, ``Nodal flow and the
  generation of left-right asymmetry'', \emph{Cell} \textbf{125} 1
  (2006), 33--45.
\end{enumerate}

It reports on detailed studies of how left-right asymmetry first shows
in the development of animal embryos. It turns out this asymmetry is
linked to certain genes with names like \emph{Lefty-1}, \emph{Lefty-2},
\emph{Nodal} and \emph{Pitx2}. About half of the people with a genetic
disorder called Kartagener's Syndrome have their organs in the reversed
orientation. These people also have immotile sperm and defective cilia
in their airway. This suggests that the genes controlling left-right
asymmetry also affect the development of cilia! And the link has
recently been understood\ldots{}

The first visible sign of left-right asymmetry in mammal embryos is the
formation of a structure called the ``ventral node'' after the
front-back (dorsal-ventral) and top-bottom (anterior-posterior)
symmetries have been broken. This node is a small bump on the front of
the embryo.

It has recently been found that cilia on this bump wiggle in a way that
makes the fluid the embryo is floating in flow towards the \emph{left}.
It seems to be this leftward flow that generates many of the more fancy
left-right asymmetries that come later.

How do these cilia generate a leftward flow? It seems they spin around
\emph{clockwise}, and are tilted in such a way that they make a leftward
swing when they are near the surface of the embryo, and a rightward
swing when they are far away. This manages to do the job\ldots{} the
article discusses the hydrodynamics involved.

I guess now the question becomes: why do these cilia spin clockwise?

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week74}{%
\section{March 5, 1996}\label{week74}}

Before continuing my story about higher-dimensional algebra, let me say
a bit about gravity. Probably far fewer people study general relativity
than quantum mechanics, which is partially because quantum mechanics is
more practical, but also because general relativity is mathematically
more sophisticated. This is a pity, because general relativity is so
beautiful!

Recently, I have been spending time on \texttt{sci.physics} leading an
informal (nay, chaotic) ``general relativity tutorial''. The goal is to
explain the subject with a minimum of complicated equations, while still
getting to the mathematical heart of the subject. For example, what does
Einstein's equation REALLY MEAN? It's been a lot of fun and I've learned
a lot! Now I've gathered up some of the posts and put them on a web
site:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez et al, ``General relativity tutorial'',
  \href{http://math.ucr.edu/home/baez/gr/gr.html}{\texttt{gr/gr.html}}
\end{enumerate}

I hope to improve this as time goes by, but it should already be fun to
look at.

Let me also list a couple new papers on the loop representation of
quantum gravity, dealing with ways to make volume and area into
observables in quantum gravity:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Abhay Ashtekar and Jerzy Lewandowski, ``Quantum Theory of Geometry I:
  Area Operators'', 31 pages in LaTeX format, to appear in Classical and
  Quantum Gravity, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9602046}{\texttt{gr-qc/9602046}}.

  Jerzy Lewandowski, ``Volume and Quantizations'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9602035}{\texttt{gr-qc/9602035}}.

  Roberto De Pietri and Carlo Rovelli, ``Geometry Eigenvalues and Scalar
  Product from Recoupling Theory in Loop Quantum Gravity'', 38 pages, 5
  Postscript figures, uses RevTeX 3.0 and \texttt{epsfig.sty}, preprint
  available as
  \href{https://arxiv.org/abs/gr-qc/9602023}{\texttt{gr-qc/9602023}}.
\end{enumerate}

I won't say anything about these now, but see
\protect\hyperlink{week55}{``Week 55''} for some information on area
operators.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Okay, where were we? We had started messing around with sets, and we
noted that sets and functions between sets form a category, called Set.
Then we started messing around with categories, and we noted that not
only are there ``functors'' between categories, there are things that
ply their trade between functors, called ``natural transformations''. I
then said that categories, functors, and natural transformations form a
\(2\)-category. I didn't really say what a \(2\)-category is, except to
say that it has objects, morphisms between objects, and \(2\)-morphisms
between morphisms. Finally, I said that this pattern continues:
\(n\mathsf{Cat}\) forms an \((n+1)\)-category.

By the way, I said last time that \(\mathsf{Set}\) was ``the primordial
category''. Keith Ramsay reminded me by email that this can be
misleading. There are other categories that act a whole lot like
\(\mathsf{Set}\) and can serve equally well as ``the primordial
category''. These are called topoi. Poetically speaking, we can think of
these as alternate universes in which to do mathematics. For more on
topoi, see \protect\hyperlink{week68}{``Week 68''}. All I meant by
saying that \(\mathsf{Set}\) was ``the primordial category'' is that, if
we start from \(\mathsf{Set}\) and various categories of structures
built using sets --- groups, rings, vector spaces, topological spaces,
manifolds, and so on --- we can then abstract the notion of
``category'', and thus obtain \(\mathsf{Cat}\). In the same sense,
\(\mathsf{Cat}\) is the primordial \(2\)-category, and so on.

I mention this because it is part of a very important broad pattern in
higher-dimensional algebra. For example, we will see that the complex
numbers are the primordial Hilbert space, and that the category of
Hilbert spaces is the primordial ``2-Hilbert space'', and that the
\(2\)-category of 2-Hilbert spaces is the primordial ``3-Hilbert
space'', and so on. This leads to a quantum-theoretic analog of the
hierarchy of \(n\)-categories, which plays an important role in
mathematical physics. But I'm getting ahead of myself!

Let's start by considering a few examples of categories. I want to pick
some examples that will lead us naturally to the main themes of
higher-dimensional algebra. Beware: it will take us a while to get
rolling. For a while --- maybe a few issues of This Week's Finds ---
everything may seem somewhat dry, pointless and abstract, except for
those of you who are already clued in. It has the flavor of
``foundations of mathematics,'' but eventually we'll see these new
foundations reveal topology, representation theory, logic, and quantum
theory to be much more tightly interknit than we might have thought. So
hang in there.

For starters, let's keep the idea of ``symmetry'' in mind. The typical
way to think about symmetry is with the concept of a ``group''. But to
get a concept of symmetry that's really up to the demands put on it by
modern mathematics and physics, we need --- at the very least --- to
work with a \emph{category} of symmetries, rather than a group of
symmetries.

To see this, first ask: what is a category with one object? It is a
``monoid''. The \emph{usual} definition of a monoid is this: a set \(M\)
with an associative binary product and a unit element \(1\) such that
\(a1 = 1a = a\) for all \(a\) in \(M\). Monoids abound in mathematics;
they are in a sense the most primitive interesting algebraic structures.

To check that a category with one object is ``essentially just a
monoid'', note that if our category \(\mathcal{C}\) has one object
\(x\), the set \(\operatorname{Hom}(x,x)\) of all morphisms from \(x\)
to \(x\) is indeed a set with an associative binary product, namely
composition, and a unit element, namely \(1_x\). (Actually, in an
arbitrary category \(\operatorname{Hom}(x,y)\) could be a class rather
than a set. But let's not worry about such nuances.) Conversely, if you
hand me a monoid \(M\) in the traditional sense, I can easily cook up a
category with one object \(x\) and \(\operatorname{Hom}(x,x) = M\).

How about categories in which every morphism is invertible? We say a
morphism \(f\colon x\to y\) in a category has inverse \(g\colon y\to x\)
if \(fg = 1_x\) and \(gf = 1_y\). Well, a category in which every
morphism is invertible is called a ``groupoid''.

Finally, a group is a category with one object in which every morphism
is invertible. It's both a monoid and a groupoid!

When we use groups in physics to describe symmetry, we think of each
element \(g\) of the group \(G\) as a ``process''. The element \(1\)
corresponds to the ``process of doing nothing at all''. We can compose
processes \(g\) and \(h\) --- do \(h\) and then \(g\) --- and get the
product \(gh\). Crucially, every process \(g\) can be ``undone'' using
its inverse \(g^{-1}\).

We tend to think of this ability to ``undo'' any process as a key aspect
of symmetry. I.e., if we rotate a beer bottle, we can rotate it back so
it was just as it was before. We don't tend to think of SMASHING the
beer bottle as a symmetry, because it can't be undone. But while
processes that can be undone are especially interesting, it's also nice
to consider other ones\ldots{} so for a full understanding of symmetry
we should really study monoids as well as groups.

But we also should be interested in ``partially defined'' processes,
processes that can be done only if the initial conditions are right.
This is where categories come in! Suppose that we have a bunch of boxes,
and a bunch of processes we can do to a bottle in one box to turn it
into a bottle in another box: for example, ``take the bottle out of box
\(x\), rotate it 90 degrees clockwise, and put it in box \(y\)''. We can
then think of the boxes as objects and the processes as morphisms: a
process that turns a bottle in box \(x\) to a bottle in box \(y\) is a
morphism \(f\colon x\to y\). We can only do a morphism
\(f\colon x\to y\) to a bottle in box \(x\), not to a bottle in any
other box, so \(f\) is a ``partially defined'' process. This implies we
can only compose \(f\colon x\to y\) and \(g\colon u \to v\) to get
\(fg\colon x \to v\) if \(y = u\).

So: a monoid is like a group, but the ``symmetries'' no longer need be
invertible; a category is like a monoid, but the ``symmetries'' no
longer need to be composable!

Note for physicists: the operation of ``evolving initial data from one
spacelike slice to another'' is a good example of a ``partially
defined'' process: it only applies to initial data on that particular
spacelike slice. So dynamics in special relativity is most naturally
described using groupoids. Only after pretending that all the spacelike
slices are the same can we pretend we are using a group. It is very
common to pretend that groupoids are groups, since groups are more
familiar, but often insight is lost in the process. Also, one can only
pretend a groupoid is a group if all its objects are isomorphic.
Groupoids really are more general.

Physicists wanting to learn more about groupoids might try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Alan Weinstein, ``Groupoids: unifying internal and external
  symmetry'', available as
  \texttt{http://math.berkeley.edu/\textasciitilde{}alanw/Groupoids.ps}
  or \texttt{http://www.ams.org/notices/199607/weinstein.pdf}
\end{enumerate}

So: in contrast to a set, which consists of a static collection of
``things'', a category consists not only of objects or ``things'' but
also morphisms which can viewed as ``processes'' transforming one thing
into another. Similarly, in a \(2\)-category, the \(2\)-morphisms can be
regarded as ``processes between processes'', and so on. The eventual
goal of basing mathematics upon \(\omega\)-categories is thus to allow
us the freedom to think of any process as the sort of thing higher-level
processes can go between. By the way, it should also be very interesting
to consider ``\(\mathbb{Z}\)-categories'' (where \(\mathbb{Z}\) denotes
the integers), having \(j\)-morphisms not only for \(j = 0,1,2,\ldots\)
but also for negative \(j\). Then we may also think of any thing as a
kind of process.

How do the above remarks about groups, monoids, groupoids and categories
generalize to the \(n\)-categorical context? Well, all we did was start
with the notion of category and consider two sorts of requirement: that
the category have just one object, or that all morphisms be invertible.

A category with just one object --- a monoid --- could also be seen as a
set with extra algebraic structure, namely a product and unit. Suppose
we look at an \(n\)-category with just one object? Well, it's very
similar: then we get a special sort of \((n-1)\)-category, one with a
product and unit! We call this a ``monoidal \((n-1)\)-category''. I will
explain this more thoroughly later, but let me just note that we can
keep playing this game, and consider a monoidal \((n-1)\)-category with
just one object, which is a special sort of \((n-2)\)-category, which we
could call a ``doubly monoidal \((n-2)\)-category'', and so on. This
game must seem very abstract and mysterious when one first hears of it.
But it turns out to yield a remarkable set of concepts, some already
very familiar in mathematics, and it turns out to greatly deepen our
notion of ``commutativity''. For now, let me simply display a chart of
``\(k\)-tuply monoidal \(n\)-categories'' for certain low values of
\(n\) and \(k\):

\begin{longtable}[]{@{}llll@{}}
\caption{\(k\)-tuply monoidal \(n\)-categories}\tabularnewline
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endfirsthead
\toprule
\begin{minipage}[b]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=0\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=1\)\strut
\end{minipage} & \begin{minipage}[b]{0.21\columnwidth}\raggedright
\(n=2\)\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=0\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
sets\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=1\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=2\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
commutative monoids\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
braided monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=3\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
symmetric monoidal categories\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
weakly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=4\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
strongly involutory monoidal \(2\)-categories\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.26\columnwidth}\raggedright
\(k=5\)\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage} & \begin{minipage}[t]{0.21\columnwidth}\raggedright
" "\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

The quotes indicate that each column ``stabilizes'' past a certain
point. If you can't wait to read more about this, you might try
\protect\hyperlink{week49}{``Week 49''} for more, but I will explain it
all in more detail in future issues.

What if we take an \(n\)-category and demand that all \(j\)-morphisms
(\(j > 0\)) be invertible? Well, then we get something we could call an
``\(n\)-groupoid''. However, there are some important subtle issues
about the precise sense in which we might want all \(j\)-morphisms to be
invertible. I will have to explain that, too.

Let me conclude, though, by mentioning something the experts should
enjoy. If we define \(n\)-groupoids correctly, and then figure out how
to define \(\omega\)-groupoids correctly, the homotopy category of
\(\omega\)-groupoids turns out to be equivalent to the homotopy category
of topological spaces. The latter category is something algebraic
topologists have spent decades studying. This is one of the main ways
\(n\)-categories are important in topology. Using this correspondence
between \(n\)-groupoid theory and homotopy theory, the ``stabilization''
property described above is then related to a subject called ``stable
homotopy theory'', and ``\(\mathbb{Z}\)-groupoids'' are a way of talking
about ``spectra'' --- another important tool in homotopy theory.

The above paragraph is overly erudite and obscure, so let me explain the
gist: there is a way to think of a topological space as giving us an
\(\omega\)-groupoid, and the \(\omega\)-groupoid then captures all the
information about its topology that homotopy theorists find interesting.
(I will explain in more detail how this works later.) If this is
\emph{all} \(n\)-category theory did, it would simply be an interesting
language for doing topology. But as we shall see, it does a lot more.
One reason is that, not only can we use \(n\)-categories to think about
spaces, we can also use them to think about symmetries, as described
above. Of course, physicists are very interested in space and also
symmetry. So from the viewpoint of a mathematical physicist, one
interesting thing about \(n\)-categories is that they \emph{unify} the
study of space (or spacetime) with the study of symmetry.

I will continue along these lines next time and try to fill in some of
the big gaping holes.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week75}{``Week 75''}.
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If you've been following my recent introduction to \(n\)-categories,
you'll note that I haven't actually given the definition of
\(n\)-categories! I've only defined categories, and \emph{hinted} at the
definition of \(2\)-categories by giving an example, namely
\(\mathsf{Cat}\). This is the \(2\)-category whose objects are
categories, whose morphisms are functors, and whose \(2\)-morphisms are
natural transformations.

The definition of \(n\)-categories --- or maybe I should say the problem
of defining \(n\)-categories --- is actually surprisingly subtle. Since
I want to proceed at a gentle pace here, I think I should first get
everyone used to the \(2\)-category \(\mathsf{Cat}\), then define
\(2\)-categories in general, then play around with those a bit, and then
move on to \(n\)-categories for higher \(n\).

So recall what the objects, morphisms and \(2\)-morphisms in
\(\mathsf{Cat}\) are: they are categories, functors and natural
transformations. A functor \(F\colon \mathcal{C}\to\mathcal{D}\) assigns
to each object \(x\) of \(\mathcal{C}\) an object \(F(x)\) of
\(\mathcal{D}\), and to each morphism \(f\) of \(\mathcal{C}\) a
morphism \(F(f)\) of \(\mathcal{D}\), and has

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  If \(f\colon x \to y\), then \(F(f)\colon F(x) \to F(y)\).
\item
  If \(fg = h\), then \(F(f)F(g) = F(h)\).
\item
  If \(1_x\) is the identity morphism of \(x\), then \(F(1_x)\) is the
  identity morphism of \(F(x)\).
\end{enumerate}

Given two functors \(F\colon\mathcal{C}\to\mathcal{D}\) and
\(G\colon\mathcal{C}\to\mathcal{D}\), a ``natural transformation''
\(T\colon F\to G\) assigns to each object \(x\) of \(\mathcal{C}\) a
morphism \(T_x\colon F(x)\to G(x)\), such that for any morphism
\(f\colon x\to y in C\), the diagram \[
  \begin{tikzcd}
    F(x) \rar["F(f)"] \dar[swap,"T_x"]
    & F(y) \dar["T_y"]
  \\G(x) \rar[swap,"G(f)"]
    & G(y)
  \end{tikzcd}
\] commutes.

Let me give a nice example. Let \(\mathsf{Top}\) be the category with
topological spaces and continuous functions between them as morphisms.
Let \(\mathsf{Gpd}\) be the category with groupoids as objects and
functors between them as morphisms. (Remember from
\protect\hyperlink{week74}{``Week 74''} that a groupoid is a category
with all morphisms invertible.) Then there is a functor
\[\Pi_1\colon\mathsf{Top}\to\mathsf{Gpd}\] called the ``fundamental
groupoid'' functor, which plays a very basic role in algebraic topology.

Here's how we get from any space \(X\) its ``fundamental groupoid''
\(\Pi_1(X)\). (If perchance you already know about the ``fundamental
group'', fear not, what we're doing now is very similar.) To say what
the groupoid \(\Pi_1(X)\) is, we need to say what its objects and
morphisms are. The objects in \(\Pi_1(X)\) are just the POINTS of \(X\)
and the morphisms are just certain equivalence classes of PATHS in X.
More precisely, a morphism \(f\colon x\to y\) in \(\Pi_1(X)\) is just an
equivalence class of continuous paths from \(x\) to \(y\), where two
paths from \(x\) to \(y\) are decreed equivalent if one can be
continuously deformed to the other while not moving the endpoints. (If
this equivalence relation holds we say the two paths are ``homotopic'',
and we call the equivalence classes ``homotopy classes of paths.'')

This is a truly wonderful thing! Recall the idea behind categories. A
morphism \(f\colon x\to y\) is supposed to be some abstract sort of
``process going from \(x\) to \(y\).'' The human mind often works by
visual metaphors, and our visual image of a ``process'' from \(x\) to
\(y\) is some sort of ``arrow'' from \(x\) to \(y\):
\[x\xrightarrow{f}y.\] That's why we write \(f\colon x\to y\), of
course. But now what we are doing is taking this visual metaphor
literally! We have a space \(X\), like the piece of the computer screen
on which you are actually reading this text. The objects in \(\Pi_1(X)\)
are then points in \(X\), and a morphism is basically just a path from
\(x\) to \(y\): \[x\xrightarrow{f}y.\] Well, not quite; it's a homotopy
class of paths. But still, something very interesting is going on here:
we are turning something ``concrete'', namely the space \(X\), into a
corresponding ``abstract'' thing, namely the groupoid \(\Pi_1(X)\), by
thinking of ``concrete'' paths as ``abstract'' morphisms. Here I am
thinking of geometrical concepts as ``concrete'', and algebraic ones as
``abstract''.

You may wonder why we use homotopy classes of paths, rather than paths.
One reason is that topologists want to use \(\Pi_1\) to distill a very
abstract ``essence'' of the topological space \(X\), an essence that
conveys only information that's invariant under ``homotopy
equivalence''. Another reason is that we can easily get homotopy classes
of paths to compose associatively, as they must if they are to be
morphisms in a category. We simply glom them end to end:
\[x\xrightarrow{f}y\xrightarrow{g}z\] and there is no problem with
associativity, since we can easily reparametrize the paths to make
\((fg)h = f(gh)\). (If you haven't thought about this, please do!) If we
do not work with homotopy classes, it's a pain to define composition in
such a way that \((fg)h = f(gh)\). Unless you are sneaky, you only get
that \((fg)h\) is \emph{homotopic} to \(f(gh)\); there are ways to get
composition to come out associative, but they are all somewhat immoral.
As we shall see, if we want to preserve the ``concreteness'' of \(X\) as
much as possible, and work with morphisms that are actual paths in \(X\)
rather than homotopy equivalence classes, the best thing is to work with
\(n\)-categories. More on that later.

Let's see; I claimed there is a functor
\(\Pi_1\colon\mathsf{Top}\to\mathsf{Gpd}\), but so far I have only
defined \(\Pi_1\) on the objects of \(\mathsf{Top}\); we also need to
define it for morphisms. That's easy. A morphism \(F\colon X\to Y\) in
\(\mathsf{Top}\) is a continuous map from the space \(X\) to the space
\(Y\); this is just what we need to take points in \(X\) to points in
\(Y\), and homotopy classes of paths in \(X\) to homotopy classes of
paths in \(Y\). So it gives us a morphism in \(\mathsf{Gpd}\) from the
fundamental groupoid \(\Pi_1(X)\) to the fundamental groupoid
\(\Pi_1(Y)\). There are various things to check here, but it's not hard.
We call this morphism \(\Pi_1(F)\colon\Pi_1(X)\to\Pi_1(Y)\). With a
little extra work, we can check that
\(\Pi_1\colon\mathsf{Top}\to\mathsf{Gpd}\), defined this way, is really
a functor.

Perhaps you are finding this confusing. If so, it could easily be
because there are several levels of categories and such going on here.
For example, \(\Pi_1(X)\) is a groupoid, and thus a category, so there
are morphisms like \(f\colon x\to y\) in it; but on the other hand
\(\mathsf{Gpd}\) itself is a category, and there are morphisms like
\(\Pi_1(F)\colon\Pi_1(X)\to\Pi_1(Y)\) in it, which are functors! If you
find this confusing, take heart. Getting confused this way is crucial to
learning \(n\)-category theory! After all, \(n\)-category theory is all
about how every ``process'' is also a ``thing'' which can undergo
higher-level ``processes''. Complex, interesting structures emerge from
very simple ones by the interplay of these different levels. It takes
work to mentally hop up and down these levels, and to weather the
inevitable ``level slips'' one makes when one screws up. If you expect
it to be easy and are annoyed when you mess up, you will hate this
subject. When approached in the right spirit, it is very fun; it teaches
one a special sort of agility. (We are, by the way, nowhere near the
really tricky stuff yet.)

Okay, so we have seen an interesting example of a functor
\[\Pi_1\colon\mathsf{Top}\to\mathsf{Gpd}\]. As I said, we can think of
this as going from the concrete world of spaces to the abstract world of
groupoids, turning concrete paths into abstract ``morphisms''.
Wonderfully, there is a kind of ``reverse'' functor,
\[K\colon\mathsf{Gpd}\to\mathsf{Top}\] which turns the abstract into the
concrete, by making abstract morphisms into concrete paths! Basically,
it goes like this. Say we have a groupoid \(G\). We will build the space
\(K(G)\) out of simplices as follows. Start with one 0-simplex for each
object in \(G\). A 0-simplex is simply a point. We can draw the
0-simplex for the object \(x\) as follows: \[x\] Then put in one
\(1\)-simplex for each morphism in \(G\). A \(1\)-simplex is just a line
segment. We can draw the \(1\)-simplex for the morphism
\(f\colon x\to y\) as follows: \[
  \begin{tikzpicture}
    \node (x) at (0,0) {$x$};
    \node (y) at (1.5,0) {$y$};
    \draw[thick] (x) to node[fill=white]{$f$} (y);
  \end{tikzpicture}
\] Really we should draw an arrow going from left to right, but soon
things will get too messy if I do that, so I won't. Then, whenever we
have \(fg=h\) in the groupoid, we stick in a \(2\)-simplex. A
\(2\)-simplex is just a triangle and we visualize it as follows: \[
  \begin{tikzpicture}
    \node (x) at (0,0) {$x$};
    \node (y) at (1,1.7) {$y$};
    \node (z) at (2,0) {$z$};
    \draw[thick] (x) to node[fill=white]{$f$} (y);
    \draw[thick] (x) to node[fill=white]{$h$} (z);
    \draw[thick] (y) to node[fill=white]{$g$} (z);
    \node at (4,0.8) {$
      \begin{aligned}
        f&\colon x\to y
      \\g&\colon x\to z
      \\h&\colon y\to z
      \end{aligned}
    $};
  \end{tikzpicture}
\] Then, whenever we have \(fgh = k\) in the groupoid, we stick in a
\(3\)-simplex, which we can visualize as a tetrahedron like this \[
  \begin{tikzpicture}
    \node (w) at (0,0) {$x$};
    \node (x) at (1.5,2.6,0) {$x$};
    \node (y) at (1.5,1) {$y$};
    \node (z) at (3,0) {$z$};
    \draw[thick] (w) to node[fill=white]{$f$} (x);
    \draw[thick] (x) to node[fill=white]{$g$} (y);
    \draw[thick] (y) to node[fill=white]{$h$} (z);
    \draw[thick] (w) to node[fill=white]{$k$} (z);
    \draw[thick] (w) to node[fill=white]{$fg$} (y);
    \draw[thick] (x) to node[fill=white]{$gh$} (z);
    \node at (5.5,1.2) {$
      \begin{aligned}
        f&\colon w\to x
      \\g&\colon x\to y
      \\h&\colon y\to z
      \\k&\colon w\to z
      \end{aligned}
    $};
  \end{tikzpicture}
\] And so on\ldots{} we do this forever and get a big ``simplicial
complex,'' which we can think of as the topological space \(KG\). The
reader might want to compare \protect\hyperlink{week70}{``Week 70''},
where do the same thing for a monoid instead of a groupoid. Really, one
can do it for any category.

That's how we define \(K\) on objects; it's not hard to define \(K\) on
morphisms too, so we get \[K\colon\mathsf{Gpd}\to\mathsf{Top}\] In case
you study this in more detail at some point, I should add that folks
often think of simplicial complexes as somewhat abstract combinatorial
objects in their own right, and then they break down K into two steps:
first they take the ``nerve'' of a groupoid and get a simplicial
complex, and then they take the ``geometrical realization'' of the
simplicial complex to get a topological space. For more on simplicial
complexes and the like, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  J. P. May, \emph{Simplicial Objects in Algebraic Topology}, Van
  Nostrand, Princeton, 1968.
\end{enumerate}

Now, in what sense is the functor \(K\colon\mathsf{Gpd}\to\mathsf{Top}\)
the ``reverse'' of the functor
\(\Pi_1\colon\mathsf{Top}\to\mathsf{Gpd}\)? Is it just the ``inverse''
in the traditional sense? No! It's something more subtle. As we shall
see, the fact that \(\mathsf{Cat}\) is a \(2\)-category means that a
functor can have a more subtle and interesting sorts of ``reverse'' than
one might expect if one were used to the simple ``inverse'' of a
function. This is something I alluded to in
\protect\hyperlink{week74}{``Week 74''}: inverses become subtler as we
march up the \(n\)-categorical hierarchy.

I'll talk about this more later. But let me just drop a teaser\ldots{}
Quantum mechanics is all about Hilbert spaces and linear operators
between them. Given any (bounded) linear operator \(F\colon H\to H'\)
from one Hilbert space to another, there is a subtle kind of ``reverse''
operator, called the ``adjoint'' of \(F\) and written
\(F^*\colon H'\to H\), defined by
\[\langle x,F^*y \rangle = \langle Fx,y \rangle\] for all \(x\) in \(H\)
and \(y\) in \(H'\). This is not the same as the ``inverse'' of \(F\);
indeed, it exists even if \(F\) is not invertible. This sort of
``reverse'' operator is deeply related to the ``reverse'' functors I am
hinting at above, and for this reason those ``reverse'' functors are
also called ``adjoints''. This is part of a profound and somewhat
mysterious relationship between quantum theory and category
theory\ldots{} which I eventually need to describe.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week76}{``Week 76''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week76}{%
\section{March 9, 1996}\label{week76}}

Yesterday I went to the oral exam of Hong Xiang, a student of Richard
Seto who is looking for evidence of quark-gluon plasma at Brookhaven.
The basic particles interacting via the strong force are quarks and
gluons; these have an associated kind of ``charge'' known as color.
Under normal conditions, quarks and gluons are confined to lie within
particles with zero total color, such as protons and neutrons, and more
generally the baryons and mesons seen in particle acccelerators --- and
possibly glueballs, as well. (See \protect\hyperlink{week68}{``Week
68''} for more on glueballs.)

However, the current theory of the strong force --- quantum
chromodynamics --- predicts that at sufficiently high densities and/or
pressures, a plasma of protons and neutrons should undergo a phase
transition called ``deconfinement'', past which the quarks and gluons
will roam freely. At low densities, this is expected to happen at a
temperature corresponding to about 200 MeV per nucleon (i.e., proton or
neutron). If my calculation is right, this is about 2 trillion Kelvin!
At low temperatures, it's expected to happen at about 5 to 20 times the
density of an atomic nucleus. (Normal nuclear matter has about 0.16
nucleons per femtometer cubed.) For more on this, check out these:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Relativistic Heavy Ion Collider homepage,
  \texttt{http://www.bnl.gov/RHIC/}

  CERN Courier, ``Phase diagram of nuclear matter'',
  \texttt{http://www.cerncourier.com/main/article/40/5/17/1/cernquarks1\_6-00}
\end{enumerate}

The folks at Brookhaven are attempting to get high densities \emph{and}
temperatures by slamming two gold nuclei together. They are getting
densities of about 9 times that of a nucleus\ldots{} and I forget what
sort of temperature, but there is reason to hope that the combined high
density and pressure might be enough to cause deconfinement and create a
``quark-gluon plasma''. Colliding gold on gold at high energies produces
a enormous spray of particles, but amidst this they are looking for a
particular signal of deconfinement. They are looking for
\(\varphi\)-mesons and looking to see if their lifetime is modified. A
\(\varphi\)-meson is a spin-\(1\) particle made of a strange quark /
strange antiquark pair; strange quarks and antiquarks are supposed to be
common in the quark-gluon plasma formed by the collision. Folks think
the lifetime of a \(\varphi\)-meson will be affected by the medium it
finds itself in, and that this should serve as a signature of
deconfinement. In fact, they may have already seen this!

People might also enjoy looking at this review article:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Adriano Di Giacomo, ``Mechanisms of colour confinement'', preprint
  available as
  \href{https://arxiv.org/abs/hep-th/9603029}{\texttt{hep-th/9603029}}.
\end{enumerate}

Okay, let me continue the tale of \(n\)-categories. I want to lead up to
their role in physics, but to do it well, there are quite a few things I
need to explain first. One of the important things about \(n\)-category
theory is that they allow a much more fine-grained approach to the
notion of ``sameness'' than we would otherwise be able to achieve.

In a bare set, two elements \(x\) and \(y\) are either equal or not
equal; there is nothing much more to say.

In a category, two objects \(x\) and \(y\) can be equal or not equal,
but more interestingly, they can be \emph{isomorphic} or not, and if
they are, they can be isomorphic in many different ways. An isomorphism
between \(x\) and \(y\) is simply a morphism \(f\colon x\to y\) which
has an inverse \(g\colon y\to x\). (For a discussion of inverse
morphisms, see \protect\hyperlink{week74}{``Week 74''}.)

For example, in the category Set an isomorphism is just a one-to-one and
onto function. If we know two sets \(x\) and \(y\) are isomorphic we
know that they are ``the same in a way'', even if they are not equal.
But specifying an isomorphism \(f\colon x\to y\) does more than say
\(x\) and \(y\) are the same in a way; it specifies a \emph{particular
way} to regard \(x\) and \(y\) as the same.

In short, while equality is a yes-or-no matter, a mere \emph{property},
an isomorphism is a \emph{structure}. It is quite typical, as we climb
the categorical ladder (here from elements of a set to objects of a
category) for properties to be reinterpreted as structures, or sometimes
vice-versa.

What about in a \(2\)-category? Here the notion of equality sprouts
still further nuances. Since I haven't defined \(2\)-categories in
general, let me work with an example, Cat. This has categories as its
objects, functors as its morphisms, and natural transformations as its
2-morphisms.

So\ldots{} we can certainly speak, as before, of the \emph{equality} of
categories. We can also speak of the \emph{isomorphism} of categories:
an isomorphism between \(\mathcal{C}\) and \(\mathcal{D}\) is a functor
\(F\colon\mathcal{C}\to\mathcal{D}\) for which there is an inverse
functor \(G\colon\mathcal{D}\to\mathcal{C}\). I.e., \(FG\) is the
identity functor on \(\mathcal{C}\) and \(GF\) is the identity on
\(\mathcal{D}\), where we define the composition of functors in the
obvious way. But because we also have natural transformations, we can
also define a subtler notion, the \emph{equivalence} of categories. An
equivalence is a functor \(F\colon\mathcal{C}\to\mathcal{D}\) together
with a functor \(G\colon\mathcal{D}\to\mathcal{C}\) and natural
isomorphisms \(a\colon FG\to 1_C\) and \(b\colon GF \to 1_D\). A
``natural isomorphism'' is a natural transformation which has an
inverse.

Abstractly, I hope you can see the pattern here: just as we can
``relax'' the notion of equality to the notion of isomorphism when we
pass from sets to categories, we can relax the condition that \(FG\) and
\(GF\) equal identity functors to the condition that they be isomorphic
to identity functors when we pass from categories to the \(2\)-category
\(\mathsf{Cat}\). We need to have the natural transformations to be able
to speak of functors being isomorphic, just as we needed functions to be
able to speak of sets being isomorphic. In fact, with each extra level
in the theory of \(n\)-categories, we will be able to come up with a
still more refined notion of ``\(n\)-equivalence'' in this way. That's
what ``processes between processes between processes\ldots{}'' allow us
to do.

But let me attempt to bring this notion of equivalence of categories
down to earth with some examples. Consider first a little category
\(\mathcal{C}\) with only one object \(x\) and one morphism, the
identity morphism \(1_x\colon x\to x\). We can draw \(\mathcal{C}\) as
follows: \[x\] where we don't bother drawing the identity morphism
\(1_x\). This category, by the way, is called the ``terminal category''.
Next consider a little category \(\mathcal{D}\) with two objects \(y\)
and \(z\) and only four morphisms: the identities \(1_y\) and \(1_z\),
and two morphisms \(f\colon y\to z\) and \(g\colon z\to y\) which are
inverse to each other. We can draw \(\mathcal{D}\) as follows: \[
  \begin{tikzcd}
    y \rar[bend right=40,swap,"f"] & z \lar[bend right=40,swap,"g"]
  \end{tikzcd}
\] where again we don't draw identities.

So: \(\mathcal{C}\) is a little world with only one object, while D is a
little world with only two isomorphic objects\ldots{} that are
isomorphic in precisely one way! \(\mathcal{C}\) and \(\mathcal{D}\) are
clearly not isomorphic, because for a functor
\(F\colon\mathcal{C}\to\mathcal{D}\) to be invertible it would need to
be one-to-one and onto on objects, and also on morphisms.

However, \(\mathcal{C}\) and \(\mathcal{D}\) are equivalent. For
example, we can let \(F\colon\mathcal{C}\to\mathcal{D}\) be the unique
functor with \(F(x) = y\), and let \(G\colon\mathcal{D}\to\mathcal{C}\)
be the unique functor from \(\mathcal{D}\) to \(\mathcal{C}\). (There is
only one functor from any category to \(\mathcal{C}\), since
\(\mathcal{C}\) has only one object and one morphism; this is why we
call \(\mathcal{C}\) the terminal category.) Now, if we look at the
functor \(FG\colon\mathcal{C}\to\mathcal{C}\), it's not hard to see that
this is the identity functor on \(\mathcal{C}\). But the composite
\(GF\colon\mathcal{D}\to\mathcal{D}\) is not the identity functor on
\(\mathcal{D}\). Instead, it sends both \(y\) and \(z\) to \(y\), and
sends all the morphisms in \(\mathcal{D}\) to \(1_y\). But while not
\emph{equal} to the identity functor on \(\mathcal{D}\), the functor
\(GF\) is \emph{naturally isomorphic} to it. We can define a natural
transformation \(b\colon GF\to 1_D\) by setting \(b_y = 1_y\) and
\(b_z = f\). Here some folks may want to refresh themselves on the
definition of natural transformation, given in
\protect\hyperlink{week75}{``Week 75''}, and check that \(b\) is really
one of these, and that \(b\) is a natural isomorphism because it has an
inverse.

The point is, basically, that having two uniquely isomorphic things with
no morphisms other than the isomorphisms between them and the identity
morphisms isn't really all that different from having one thing with
only the identity morphism. Category theorists generally regard
equivalent categories as ``the same for all practical purposes''. For
example, given any category we can find an equivalent category in which
any two isomorphic objects are equal. We call these ``skeletal''
categories because all the fat is gone and just the essential bones are
left. For example, the category \(\mathsf{FinSet}\) of finite sets, with
functions between them as morphisms, is equivalent to the category with
just the sets \[
  \begin{aligned}
    0 &= \{\}
  \\0 &= \{0\}
  \\0 &= \{0,1\}
  \\0 &= \{0,1,2\}
  \end{aligned}
\] etc., and functions between them as morphisms (see
\protect\hyperlink{week73}{``Week 73''}). Essentially all the
mathematics that can be done in \(\mathsf{FinSet}\) can be done in this
skeletal category. This may seem shocking, but it's true\ldots.
Similarly, the category \(\mathsf{Set}\) is equivalent to the category
\(\mathsf{Card}\) having one set of each cardinality. Also, the category
\(\mathsf{Vect}\) of complex finite--dimensional vector spaces, with
linear functions between them as morphisms, is equivalent to a skeletal
category where the only objects are those of the form \(\mathbb{C}^n\).
\emph{This} example should not seem shocking; it's this fact which
allows unsophisticated people to do linear algebra under the impression
that all finite-dimensional vector spaces are of the form
\(\mathbb{C}^n\), and still manage to do all the practical computations
that more sophisticated people can do, who know the abstract definition
of vector space and thus know of lots more finite-dimensional vector
spaces.

However, there is another thing we can do in \(\mathsf{Cat}\), another
refinement of the notion of isomorphism, which I alluded to in
\protect\hyperlink{week75}{``Week 75''}. This is the notion of ``adjoint
functor''. Let me mention a few examples (in addition to the example
given in \protect\hyperlink{week75}{``Week 75''}) and let the reader
ponder them before giving the definition. Let \(\mathsf{Grp}\) denote
the category with groups as objects and homomorphisms as morphisms, a
homomorphism \(f\colon G\to H\) between groups being a function with
\(f(1) = 1\) and \(f(gh) = f(g)f(h)\) for all \(g, h\) in \(G\). Then
there is a nice functor \[L\colon\mathsf{Set}\to\mathsf{Grp}\] which
takes any set \(S\) to the free group on \(S\): this is the group
\(L(S)\) formed by all formal products of elements in \(S\) and inverses
thereof, with no relations other than those in the definition of a
group. For example, a typical element of the free group on \(\{x,y,z\}\)
is \(xyzy^{-1}xxy\).

(It's easy to see that \(f\colon S\to T\) is a function between sets,
there is a unique homomorphism \(L(f)\colon L(S)\to L(T)\) with
\(L(f)(x) = f(x)\) for all \(x\) in \(S\), and that this makes \(L\)
into a functor.)

There is also a nice functor \[R\colon\mathsf{Grp}\to\mathsf{Set}\]
taking any group to its underlying set, and taking any homomorphism to
its underlying function. We call this a ``forgetful'' functor since it
simply amounts to forgetting that we are working with groups and just
thinking of them as sets.

Now there is a sense in which \(L\) and \(R\) are reverse processes, but
it is delicate. They certainly aren't inverses, and they aren't even
part of an equivalence between \(\mathsf{Set}\) and \(\mathsf{Grp}\).
Nonetheless they are ``adjoints''. If the reader hasn't thought about
this, she may enjoy figuring out what this might mean\ldots{} perhaps
keeping the adjoint operators mentioned in
\protect\hyperlink{week75}{``Week 75''} in mind.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week77}{``Week 77''}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week77}{%
\section{March 23, 1996}\label{week77}}

I spent last week at Penn State visiting the CGPG --- the Center for
Gravitational Physics and Geometry. I like to visit this place whenever
I can, because I've never found anywhere else that's as good for talking
about quantum gravity.

The CGPG is run by Abhay Ashtekar, who introduced the ``new variables''
for general relativity (see \protect\hyperlink{week7}{``Week 7''}). This
formulation of general relativity allowed Carlo Rovelli and Lee Smolin
to develop a new approach to quantum gravity, called the ``loop
representation''. Smolin is at the CGPG, while Rovelli teaches at
Pittsburgh, only a brief plane ride away: he was heading back just when
I showed up. Jorge Pullin, who has done a lot of work on knot theory and
quantum gravity, is also at the CGPG. Roger Penrose visits it regularly,
and happened to be there last week. There is always a peppy bunch of
grad students and postdocs wandering about the place, and some
interesting mathematicians across the street. I have a particular
interest in the work of Jean-Luc Brylinski, since he has thought a lot
about the relationships between conformal field theory and category
theory (see \protect\hyperlink{week25}{``Week 25''}).

You can find out more about the CGPG and the new variables at the
following web sites:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Center for Gravitational Physics and Geometry (CGPG) home page,
  `http://vishnu.nirvana.phys.psu.edu/``

  Reading list on the new variables:
  \texttt{http://vishnu.nirvana.phys.psu.edu/readinglist/readinglist.html}
\end{enumerate}

I had two goals at the CGPG. One was to get people interested in the
uses of higher-dimensional algebra in physics, and the other was to find
out where folks were heading in quantum gravity. I made decent headway
on the first front, but let me talk about the second one.

In the last few years, Abhay Ashtekar has been working hard with a bunch
of collaborators on getting the loop representation set up on a
mathematically rigorous basis, and making good progress. There is a
natural order in which to set things up, and the next problem to deal
with is the so-called Hamiltonian constraint (see
\protect\hyperlink{week43}{``Week 43''}). I have always been very
worried about this, and I'm not alone, since this all the dynamics of
quantum gravity is in this operator. Ashtekar and Lewandowski have a
paper partially written in which they rigorously define an operator
along these lines, using earlier ideas of Rovelli and Smolin. I have
been hoping that this answer could be tested somehow\ldots{} for
example, checking out its commutation relations with the other
constraints. It turns out that they have already done this to extent
that seems possible. So then the question is, what next? March on, or
continue trying to make sure the Hamiltonian constraint is right?

I should add that Pullin and Gambini have another proposal regarding the
Hamiltonian constraint:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Rodolfo Gambini and Jorge Pullin, ``The general solution of the
  quantum Einstein equations?'', preprint in Revtex format, 7 figures
  included with \texttt{psfig}, available as
  \href{https://arxiv.org/abs/gr-qc/9603019}{\texttt{gr-qc/9603019}}.
\end{enumerate}

This is not as fully worked out, but it has a certain mathematical charm
to it so far. Thus we may eventually be in a situation where there are
various competing quantizations of gravity using the loop
representation, differing mainly in their choice of Hamiltonian
constraint. This suggests that we need further tests for what counts as
the ``right'' Hamiltonian constraint.

When we spoke this time, Ashtekar was in favor of testing Hamiltonian
constraints by seeing whether they implied the ``Bekenstein bound''.
This bound says that the maximal entropy of a physical system is
proportional to its surface area when we take quantum gravity into
account. There are a number of heuristic derivations of this bound, so
lots of people hope it would follow from any good theory of quantum
gravity. Since the ``physical states'' of quantum gravity must be
annihilated by the Hamiltonian constraint, and the maximal entropy of a
system is just the logarithm of the number of physical states, the
Hamiltonian constraint must have some interesting properties to get the
Bekenstein bound to work out. So we can expect some work along these
lines in the near future.

I also talked to Lee Smolin. He has been very interested in the relation
between the loop representation and certain simplified versions of
quantum gravity called topological quantum field theories (TQFTs). He
has ideas on how to derive the Bekenstein bound using this relationship
--- see \protect\hyperlink{week56}{``Week 56''} and
\protect\hyperlink{week57}{``Week 57''} for a description.

The funny thing is, some of the mathematics connecting TQFTs to the loop
representation of quantum gravity also connects TQFTs to another
well-known approach to quantum gravity --- string theory! Smolin has
been boning up on string theory lately, in part by giving a course on
the subject, and presently he is eager to bring string theory and the
loop representation closer together. So we can also expect to see more
work on attempts to unify string and loops. (See
\protect\hyperlink{week18}{``Week 18''} for a bit more on strings and
loops.)

So I left feeling reinvigorated and eager to continue my own work on
higher-dimensional algebra and physics\ldots{} which is what I have
talking about here ever since \protect\hyperlink{week73}{``Week 73''}.
In fact, I have been engaging in a lengthy warmup, a minicourse in
category theory, with an eye to the basic themes of \(n\)-category
theory. That way, when I get around to the really cool stuff, everyone
out there will know what the heck I'm talking about. In theory, anyway.
You gotta work a bit to wrap your mind around these concepts!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

So, let's recall where we are in our tale of \(n\)-categories. We were
studying increasingly subtle variations on the theme of identity and
difference. Given two categories \(\mathcal{C}\) and \(\mathcal{D}\), we
can ask if they are \emph{equal} or not. We can also discuss
\emph{isomorphisms} between \(\mathcal{C}\) and \(\mathcal{D}\). An
isomorphism is a functor \(F\colon\mathcal{C}\to\mathcal{D}\) having an
inverse: a functor \(G\colon\mathcal{D}\to\mathcal{C}\) such that \(FG\)
is equal to the identity functor on \(\mathcal{D}\) and \(GF\) is equal
to the identity on \(\mathcal{C}\).

We can also discuss \emph{equivalences} between \(\mathcal{C}\) and
\(\mathcal{D}\). An equivalence is a functor
\(F\colon\mathcal{C}\to\mathcal{D}\) together with a functor
\(G\colon\mathcal{D}\to\mathcal{C}\) such that \(FG\) is naturally
isomorphic to the identity functor on \(\mathcal{D}\), and \(GF\) is
naturally isomorphic to the identity functor on \(\mathcal{C}\).
Remember, two functors from one category to another are ``naturally
isomorphic'' if there is a natural transformation from the first to the
second, and that natural transformation has an inverse.

In math jargon we say it this way: two categories are equivalent if
there is a functor from one to the other which is invertible ``up to a
natural isomorphism''.

The most useful notion of categories being ``the same'' turns out to be
not equality, or isomorphism, but this more supple notion of
``equivalence''!

(As we shall see later, this is because \(\mathsf{Cat}\) is a
\(2\)-category. Remember, an \(n\)-category is some sort of thing with
objects, morphisms, 2-morphisms, and so on up to \(n\)-morphisms. One of
the of the main themes of \(n\)-category theory is that we may regard
two things are ``the same'', or ``equivalent'', if there is some sort of
process to get from one to the other, and this process is
invertible\ldots{} up to equivalence! More precisely, we say an
\(n\)-morphism is an equivalence if it's invertible, and then we work
our way down, inductively defining a \((j-1)\)-morphism to be an
equivalence if it's invertible up to an equivalence. This downwards
induction leaves off when we define equivalence for ``0-morphisms'',
meaning objects.)

We have also begun talking about a curious situation where the
categories \(\mathcal{C}\) and \(\mathcal{D}\) are not at all ``the
same,'' but there are ``adjoint'' functors
\(L\colon\mathcal{C}\to\mathcal{D}\) and \(R\colon\mathcal{D}\to C\).
Let me list some examples before defining the concept of adjoint functor
and talking about it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  First for the one we discussed in \protect\hyperlink{week76}{``Week
  76''}. Let \(\mathsf{Set}\) be the category of sets, and
  \(\mathsf{Grp}\) the category of groups. Let
  \(L\colon\mathsf{Set}\to\mathsf{Grp}\) be the functor taking each set
  \(S\) to the free group on \(S\), and doing the obvious thing to
  morphisms. Let \(R\colon\mathsf{Grp}\to\mathsf{Set}\) be the functor
  taking each group to its underlying set.
\item
  Let \(\mathsf{Ab}\) be the category of abelian (i.e., commutative)
  groups. Let \(L\colon\mathsf{Set}\to\mathsf{Ab}\) be the functor
  taking each set \(S\) to the free abelian group on \(S\). The ``free
  abelian group'' on \(S\) is what we get by taking the free group on
  \(S\) and imposing commutativity relations like \(xy = yx\) for all
  elements \(x,y\) in \(S\). Let \(R\colon\mathsf{Ab}\to\mathsf{Set}\)
  be the functor taking each abelian group to its underlying set.
\item
  Let \(L\colon\mathsf{Grp}\to\mathsf{Ab}\) be the functor taking each
  group \(G\) to its ``abelianization''. The abelianization of \(G\) is
  what we get when we impose the extra relations \(xy = yx\) for all
  elements \(x,y\) in \(G\). Let \(R\colon\mathsf{Ab}\to\mathsf{Grp}\)
  be the functor taking each abelian group to its underlying group.
\item
  Let \(\mathsf{Mon}\) be the category of monoids, where the objects are
  monoids and the morphisms are monoid homomorphisms. (Remember that a
  monoid is a set with an associative product and a unit; a monoid
  morphism \(f\colon M\to N\) is a function between monoids such that
  \(f(xy) = f(x)f(y)\) and \(f(1) = 1\).) Let
  \(L\colon\mathsf{Set}\to\mathsf{Mon}\) be the functor taking each set
  \(S\) to the free monoid on \(S\). This is simply the set of words
  whose letters are elements of \(S\), with the product given by
  concatenation of words, and the unit being the empty word. Let
  \(R\colon\mathsf{Mon}\to\mathsf{Set}\) be the functor taking each
  monoid to its underlying set.
\item
  Let \(L\colon\mathsf{Mon}\to\mathsf{Grp}\) be the functor taking each
  monoid \(M\) to the group obtained by throwing in formal inverses for
  every element of \(M\). The famous example of this is when
  \(\mathbb{N} = \{0,1,2,...\}\), which is a monoid whose ``product'' is
  addition. Then \(L(\mathbb{N}) = \mathbb{Z}\), the integers, since we
  have thrown in the negative integers. Let
  \(R\colon\mathsf{Grp}\to\mathsf{Mon}\) be the functor taking each
  group to its underlying monoid. I.e., \(R\) simply forgets that our
  group has inverses and thinks of it as a monoid.
\end{enumerate}

Note the common aspects of these examples! In most of them,
\(L\colon\mathcal{C} \to \mathcal{D}\) gives us a ``free'' object of
\(\mathcal{D}\) for every object of \(\mathcal{C}\), while
\(R\colon\mathcal{D}\to\mathcal{C}\) gives us an ``underlying'' object
of \(\mathcal{C}\) for every object of \(\mathcal{D}\). This is an
especially good way to think about it when the objects of
\(\mathcal{D}\) are objects of \(\mathcal{C}\) equipped with extra
structure, as in examples 1, 2, 4, and 5. For example, a group is a set
equipped with some extra structure, the group operations. In this case,
the functor \(L\colon\mathcal{C}\to\mathcal{D}\) turns an object of
\(\mathcal{C}\) into an object of \(\mathcal{D}\) by ``freely throwing
in whatever extra stuff is necessary, without putting in any relations
other than those needed to get an object of \(\mathcal{D}\)''.

It's not quite the same when the objects of \(\mathcal{D}\) are objects
of \(\mathcal{C}\) with extra \emph{properties}, as in example 3. In
this case, the functor \(L\colon\mathcal{C}\to\mathcal{D}\) forces an
object of \(\mathcal{C}\) to have the properties needed to be an object
of \(\mathcal{D}\). It does so in as nonviolent a manner as possible.

In either of these situations, \(R\colon\mathcal{D}\to\mathcal{C}\) has
the flavor of what we call a ``forgetful'' functor. This is not a
precisely defined term, but folks use it whenever we can simply
``forget'' something about an object of \(\mathcal{D}\) and think of it
as an object of \(\mathcal{C}\). For example, we can take a group, and
forget about the group operations, thinking of it as merely a set. Here
we are forgetting extra structure; we can also forget extra properties.

The crucial thing here is that unlike in an equivalence, there is a
built-in asymmetry here: \(L\) and \(R\) have very different flavors,
and serve different mathematical purposes. We call \(L\) the ``left
adjoint'' of \(R\), and we call \(R\) the ``right adjoint'' of \(L\).

There are situations where adjoint functors \(L\) and \(R\) aren't so
immediately reminiscent of the concepts ``free'' and ``underlying''. But
it's good to keep these ideas in mind when learning about adjoint
functors. I used to have trouble remembering which was supposed to be
the left adjoint and which was the right. The honest way to do this is
to remember the definition (coming up soon), but for a cheap mnemonic,
you can think of the L in a left adjoint as standing for ``liberty'' ---
that is, freedom!

So what's the definition of ``adjoint''? Roughly speaking, it's that for
any object \(c\) of \(\mathcal{C}\) and any object \(d\) of
\(\mathcal{D}\), we have
\[\operatorname{Hom}(Lc,d) = \operatorname{Hom}(c,Rd).\] Actually this
is a slight exaggeration: we don't want these to be equal. The guy on
the left is the set of morphisms from \(Lc\) to \(d\) in the category
\(\mathcal{D}\). The guy on the right is the set of morphisms from \(c\)
to \(Rd\) in the category \(\mathcal{C}\). So it's evil to want them to
be \emph{equal}. As you might guess, it's enough for them to be
naturally isomorphic in some sense. Let's not worry about that too much
yet, though. Let's get the basic idea here!

Consider example 1. Say \(S\) is a set and \(G\) is a group. Why is
\[\operatorname{Hom}(LS,G)\] naturally isomorphic to
\[\operatorname{Hom}(S,RG) \,\text{?}\]

In other words, why is the set of homomorphisms from the free group on
\(S\) to \(G\) naturally isomorphic to the set of functions from \(S\)
to the underlying set of \(G\)?

Well, say we have a homomorphism \(f\colon LS \to G\). Since \(LS\) is a
free group, we know \(f\) if we know what it does to each element of
\(S\)\ldots{} and it can do whatever it wants to these elements! So we
can think of it as just a function from \(S\) to the underlying set of
\(G\). In other words, we can think of it as a function
\(f'\colon S \to RG\). Conversely, any function \(f'\colon S \to RG\)
gives us a homomorphism \(f\colon LS \to G\).

So this is the idea. Say we have an object \(c\) of \(\mathcal{C}\) and
an object \(d\) of \(\mathcal{D}\). Then:

\begin{quote}
``The set of morphisms from the free \(\mathcal{D}\)-object on \(c\) to
\(d\) is naturally isomorphic to the set of morphisms from \(c\) to the
underlying \(\mathcal{C}\)-object of \(d\).''
\end{quote}

Next time I will finish off the definition of adjoint functors, by
making this ``naturally isomorphic'' stuff precise. I will also begin to
explain what adjoint functors have to do with adjoint operators in
quantum mechanics. Remember that an ``observable'' in quantum theory is
an operator on a Hilbert space which is its own adjoint, while a
``symmetry'' in quantum theory is an operator whose adjoint is its
inverse. I eventually hope to show that this, and many other shocking
aspects of quantum theory, become less shocking when we think of the
world in terms of categories (or \(n\)-categories) rather than sets. The
way I think of it these days, the mysterious way quantum theory slammed
into physics in the early 20th century was just nature's way of telling
us we'd better learn \(n\)-category theory.

I'll also explain what adjoint functors have to do with the following
topological equations: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to (0,1)
      to [out=up,in=up,looseness=2] (1,1)
      to [out=down,in=down,looseness=2] (2,1)
      to (2,2);
    \end{knot}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-2,0)}]
      \begin{knot}
        \strand[thick] (0,0)
        to (0,1)
        to [out=up,in=up,looseness=2] (1,1)
        to [out=down,in=down,looseness=2] (2,1)
        to (2,2);
      \end{knot}
    \end{scope}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\]

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week78}{``Week 78''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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\section{March 28, 1996}\label{week78}}

Last Week I began explaining the concept of ``adjoint functor''. This
Week I want to finish explaining it - or at least finish one round of
explanation! Then we'll begin to be able to see the unity of category
theory, topology, and quantum theory. These may seem rather distinct
subjects, but they have an interesting tendency to blur together when
one is doing topological quantum field theory. Part of the point of
higher-dimensional algebra is to explain this.

So, remember the idea of adjoint functors. Say we have categories
\(\mathcal{C}\) and \(\mathcal{D}\) and functors
\(L\colon\mathcal{C}\to\mathcal{D}\) and
\(R\colon\mathcal{D}\to\mathcal{C}\). Then we say \(L\) is the ``left
adjoint'' of \(R\), or that \(R\) is the ``right adjoint'' of \(L\), if
for any object \(c\) of \(\mathcal{C}\) and object \(d\) of
\(\mathcal{D}\), there is a natural one-to-one correspondence between
\(\operatorname{Hom}(Lc,d)\) and \(\operatorname{Hom}(c,Rd)\). An
example to keep in mind is when \(\mathcal{C}\) is the category of sets
and \(\mathcal{D}\) is the category of groups. Then \(L\) turns any set
into the free group on that set, while \(R\) turns any group into the
underlying set of that group. All sorts of other ``free'' and
``underlying'' constructions are also left and right adjoints,
respectively.

Now the only thing I didn't make very precise is what I mean by
``natural'' in the above paragraph. Informally, the idea of a
``natural'' one-to-one correspondence is that doesn't depend on any
arbitrary choices. The famous example is that if we have a
finite-dimensional vector space \(V\), it's always isomorphic to its
dual \(V^*\), but not naturally so: to set up an isomorphism we need to
pick a basis \(e_i\) of \(V\), and this gives a dual basis \(f^i\) of
\(V^*\), and then we get an isomorphism sending \(e_i\) to \(f^i\), but
this isomorphism depends on our choice of basis. But \(V\) is
\emph{naturally} isomorphic to its double dual \((V^*)^*\).

Now, it's hard to formalize the idea of ``not depending on any arbitrary
choices'' directly, so one needs to reflect on why it's bad for an
isomorphism to depend on arbitrary choices. The main reason is that the
arbitrariness may break a useful symmetry. In fact, Eilenberg and Mac
Lane invented category theory in order to formalize this idea of
``naturality as absence of symmetry-breaking''. Of course, they needed
the notion of category to get a sufficiently general concept of
``symmetry''. They realized that a nice way to turn things in the
category \(\mathcal{C}\) into things in the category \(\mathcal{D}\) is
typically a functor \(F\colon\mathcal{C}\to\mathcal{D}\). And then, if
we have two functors \(F,G\colon\mathcal{C}\to\mathcal{D}\), they
defined a ``natural transformation'' from \(F\) to \(G\) to be a bunch
of morphisms \[T_c\colon F(c)\to G(c),\] one for each object \(c\) of
\(\mathcal{C}\), such that the following diagram commutes for every
morphism \(f\colon c\to c'\) in \(\mathcal{C}\): \[
  \begin{tikzcd}
    F(c) \rar["F(f)"] \dar[swap,"T_c"]
    & F(c') \dar["T_{c'}"]
  \\G(c) \rar[swap,"G(f)"]
    & G(c')
  \end{tikzcd}
\] This condition says that the transformation \(T\) gets along with all
the ``symmetries'', or more precisely morphisms \(f\), in the category
\(\mathcal{D}\). We can do it either before or after applying one of
these symmetries, and we get the same result. For example, a vector
space construction which depends crucially on a choice of basis will
fail this condition if we take f to be a linear transformation
corresponding to a change of basis.

A ``natural isomorphism'' is then just a natural transformation that's
invertible, or in other words, one for which all the morphisms
T\textsubscript{c} are isomorphisms.

Okay. Hopefully that explains the idea of ``naturality'' a bit better.
But right now we are trying to figure out what we mean by saying that
\(\operatorname{Hom}(Lc,d)\) and \(\operatorname{Hom}(c,Rd)\) are
naturally isomorphic. To do this, we need to introduce a couple more
ideas: the product of categories, and the opposite of a category.

First, just as you can take the Cartesian product of two sets, you can
take the Cartesian product of two categories, say \(\mathcal{C}\) and
\(\mathcal{D}\). It's not hard. An object of
\(\mathcal{C}\times\mathcal{D}\) is just a pair of objects, one from
\(\mathcal{C}\) and one from \(\mathcal{D}\). A morphism in
\(\mathcal{C}\times\mathcal{D}\) is just a pair of morphisms, one from
\(\mathcal{C}\) and one from \(\mathcal{D}\). And everything works sort
of the way you'd expect.

Second, if you have a category \(\mathcal{C}\), you can form a new
category \(\mathcal{C}^\mathrm{op}\), the opposite of \(\mathcal{C}\),
which has the same objects as \(\mathcal{C}\), and has the arrows in
\(\mathcal{C}\) turned around backwards. In other words, a morphism
\(f\colon x\to y in \mathcal{C}^\mathrm{op}\) is defined to be a
morphism \(f\colon y\to x in \mathcal{C}\), and the composite \(fg\) of
morphisms in \(\mathcal{C}^\mathrm{op}\) is defined to be their
composite \(gf\) in \(\mathcal{C}\). So \(\mathcal{C}^\mathrm{op}\) is
like a through-the-looking-glass version of \(\mathcal{C}\) where they
do everything backwards. A functor
\(F\colon\mathcal{C}^\mathrm{op}\to\mathcal{D}\) is also called a
``contravariant'' functor from \(\mathcal{C}\) to \(\mathcal{D}\), since
we can think of it as a screwy functor from \(\mathcal{C}\) to
\(\mathcal{D}\) with \(F(fg) = F(g)F(f)\) instead of the usual
\(F(fg) = F(f)F(g)\). Whenever you see this perverse contravariant
behavior going on, you should suspect an opposite category is to blame.

Now, it turns out that we can think of the ``\(\operatorname{Hom}\)'' in
a category \(\mathcal{C}\) as a functor
\[\operatorname{Hom}(-,-)\colon\mathcal{C}^\mathrm{op}\times\mathcal{C}\to\mathsf{Set}\]
Here the \(-\)'s denote blanks to be filled in. Obviously, for any
object \((x,x')\) in \(\mathcal{C}^\mathrm{op}\times\mathcal{C}\), there
is a nice juicy set \(\operatorname{Hom}(x,x')\), the set of all
morphisms from \(x to x'\). But what if we have a morphism
\[(f,f')\colon(x,x')\to(y,y')\] in
\(\mathcal{C}^\mathrm{op}\times\mathcal{C}\)? For
\(\operatorname{Hom}(-,-)\) to be a functor, we should get a nice juicy
function
\[\operatorname{Hom}(f,f')\colon\operatorname{Hom}(x,x')\to\operatorname{Hom}(y,y').\]
How does this work? Well, remember that a morphism \((f,f')\) as above
is really just a pair consisting of a morphism \(f\colon x\to y\) in
\(\mathcal{C}^\mathrm{op}\) and a morphism \(f'\colon x'\to y'\) in
\(\mathcal{D}\). A morphism \(f\colon x\to y\) in
\(\mathcal{C}^\mathrm{op}\) is just a morphism \(f\colon y\to x\) in
\(\mathcal{D}\). Now say we have an unsuspecting element \(g\) of
\(\operatorname{Hom}(x,x')\) and we want to hit it with
\(\operatorname{Hom}(f,f')\) to get something in
\(\operatorname{Hom}(y,y')\). Here's how we do it:
\[\operatorname{Hom}(f,f')\colon g \mapsto f'gf\] We compose it with f'
on the left and f on the right! Composing on the left is a nice
covariant thing to do, but composing on the right is contravariant,
which is why we needed the opposite category
\(\mathcal{C}^\mathrm{op}\).

Okay, now back to our adjoint functors
\(L\colon\mathcal{C}\to\mathcal{D}\) and
\(R\colon\mathcal{D}\to\mathcal{C}\). Now we are ready to say what we
mean by \(\operatorname{Hom}(Lc,d)\) and \(\operatorname{Hom}(c,Rd)\)
being naturally isomorphic. Using the stuff we have set up, we can
define two functors
\[\operatorname{Hom}(L-,-)\colon\mathcal{C}^\mathrm{op}\times\mathcal{D}\to\mathsf{Set}\]
and
\[\operatorname{Hom}(-,R-)\colon\mathcal{C}^\mathrm{op}\times \mathcal{D} \to\mathsf{Set}\]
and we are simply saying that for \(L\) and \(R\) to be adjoints, we
demand the existence of a natural isomorphism between these functors!

Of course, this seems abstract, but if you work it out in some of the
examples of adjoint functors given in \protect\hyperlink{week76}{``Week
76''} you'll see it all makes good sense.

Now let me start explaining what this all has to do with quantum theory.
(I'll put off the topology until next Week.) First of all, the
``\(\operatorname{Hom}\) functor'' we introduced,
\[\operatorname{Hom}(-,-)\colon\mathcal{C}^\mathrm{op}\times\mathcal{C}\to\mathsf{Set}\]
should remind you a whole lot of the inner product on a Hilbert space
\(H\). The inner product is linear in one slot and conjugate-linear in
the other, just like \(\operatorname{Hom}\) is covariant in one slot and
contravariant in the other. In fact, the inner product can be thought of
as a bilinear map
\[\langle -,- \rangle\colon H^\mathrm{op}\times H \to\mathbb{C}\] where
\(H^\mathrm{op}\), the ``opposite'' Hilbert space, is like \(H\) but
with a complex conjugate thrown into the definition of scalar
multiplication, and here \(\mathbb{C}\) denotes the complex numbers!

Second of all, the definition of adjoint functor, with
\(\operatorname{Hom}(Lc,d)\) and \(\operatorname{Hom}(c,Rd)\) being
naturally isomorphic, should remind you of adjoint linear operators on
Hilbert spaces. If we have a linear operator \(L\colon H\to K\) from a
Hilbert space \(H\) to a Hilbert space \(K\), its adjoint
\(R\colon K \to H\) is given by
\[\langle Lh,k \rangle = \langle h,Rk \rangle\] for all \(h\) in \(H\)
and \(k\) in \(K\).

In fact, the whole situation with adjoint functors is a kind of
``categorified'' version of the situation with adjoint linear operators.
Everything has been boosted up one notch on the \(n\)-categorical
ladder. What I mean is this: the Hilbert spaces \(H\) and \(K\) above
are \emph{sets}, with \emph{elements} \(h\) and \(k\), while the
categories \(\mathcal{C}\) and \(\mathcal{D}\) are \emph{categories},
with \emph{objects} \(c\) and \(d\). The inner product of two elements
of a Hilbert space is a \emph{number}, while the hom of two objects in a
category is a \emph{set}. Most interesting, the definition of adjoint
operators requires that \(\langle Lh,k \rangle\) and
\(\langle h,Rk \rangle\) be \emph{equal}, while the definition of
adjoint functors requires only that \(\langle Lc,d \rangle\) and
\(\langle c,Rd \rangle\) be \emph{naturally isomorphic}.

So we can think of adjoints in category theory as a boosted-up version
of the adjoints in quantum theory. But these days, I prefer to think of
the adjoints in quantum theory as a watered-down or ``decategorified''
version of the adjoints in category theory. The reason is that
categorification --- as noted by Louis Crane, who I believe invented the
term --- is a risky, hit-or-miss business, while decategorification is
much more systematic. Decategorification is the simply the process of
neglecting the difference between isomorphism and equality. If we start
with an \(n\)-category and then get lazy and decide to think of
invertible \(n\)-morphisms as \emph{equations} between the
\((n-1)\)-morphisms, we get an \((n-1)\)-category. If we keep slacking
off like this, before you know it we're doing set theory! The final
stage of decategorification is when we get sloppy and instead of keeping
track of \emph{set}, we merely record the \emph{number} of its elements.

It's amusing to imagine this process of decategorification as one of
those elaborate Gnostic myths about the Fall. We start in the paradise
of \(\omega\)-categories (or perhaps even higher up), but by the
repeated sin of confusing equality with isomorphism we fall all the way
down the \(n\)-categorical ladder to the crude world of sets, or worse,
simply numbers. But all this happened a long time ago: now we need to
work our butt off to climb back up! In other words, historically our
early ancestors dealt with finite sets by replacing them with something
cruder: their numbers of elements. Counting is actually very handy, of
course, but it can only tell if the cardinalities of two sets are
\emph{equal}; it doesn't address the problem of specific
\emph{isomorphisms} between sets. To climb back up the \(n\)-categorical
ladder, we needed to start with the set \(\mathbb{N}\) of natural
numbers \[0, 1, 2, 3, \ldots\] and by dint of strenous mental effort
realize that this is just the decategorification of the category
\(\mathsf{FinSet}\) of finite sets. (In fact, category-theorists
routinely use \(2\) to stand for the 2-element set in the skeletal
category equivalent to \(\mathsf{FinSet}\), and so on --- see
\protect\hyperlink{week76}{``Week 76''}.)

Now, you are certainly entitled to wonder if this elaborate
mathematical-theological fantasy is just a joke or if it has some
practical spinoffs. For example, is there anything we can \emph{do} with
the analogy between adjoint operators and adjoint functors? As it turns
out, there is. The point is that the analogy is not quite precise. For
example, every linear operator has an adjoint, but not every functor has
an adjoint --- nor need it be ``linear'' in any sense. If we endeavor to
make the analogy precise, we will invent a special sort of category
called a ``2-Hilbert space'' which is the precise categorified analog of
a Hilbert space. And we will invent a nice sort of ``linear'' functor
between these, and all such functors will have adjoints. Furthermore, in
this situation all left adjoints will also be right adjoints\ldots{}
fixing another funny discrepancy. And these 2-Hilbert spaces turn out to
be closely related to \(2\)-dimensional topological quantum field
theories (in general, \(n\)-Hilbert spaces appear to be related to
\(n\)-dimensional TQFTs), as well as some interesting aspects of group
representation theory.

I'm busily writing a paper on exactly this stuff, but I have not
explained enough category theory here to describe it in detail yet. For
now, let me just make the connection between the
\(\operatorname{Hom}(-,-)\) of category theory and the
\(\langle -,-\rangle\) of quantum theory more clear, and hopefully more
plausible. If we have states \(h\) and \(h'\) in a Hilbert space,
\(\langle h,h'\rangle\) keeps track of the \emph{amplitude} of getting
from \(h\) to \(h'\). (Often people will say ``from \(h'\) to \(h\)'',
but here I think I really want to go the other way.) This is a mere
\emph{number}. If we have objects \(c\) and \(c'\) in a category,
\(\operatorname{Hom}(c,c')\) is the actual \emph{set} of ways to get
from \(c\) to \(c'\), that is, the set of morphisms from \(c\) to
\(c'\).

When one computes transition amplitudes by summing over paths, as in
Feynman path integrals, one is in a sense decategorifying, that is,
turning a set of ways to get from here to there into a number, the
transition amplitude. However, one is not just counting the ways, one is
counting them ``with phase''\ldots. and I must admit that the role of
the \emph{complex numbers} in quantum theory is still puzzling from this
viewpoint. For some food for thought, you might want to check out Dan
Freed's work on torsors, which are a categorified version of phases:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Higher algebraic structures and quantization'', by Daniel Freed,
  \emph{Commun. Math. Phys.} \textbf{159} (1994), 343--398, also
  available as
  \href{https://arxiv.org/abs/hep-th/9212115}{\texttt{hep-th/9212115}}.
\end{enumerate}

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week79}{``Week 79''}.
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Before I continue my tale of adjoint functors I want to say a little bit
about icosahedra, buckyballs, and last letter Galois wrote before his
famous duel\ldots. all of which is taken from the following marvelous
article:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Bertram Kostant, ``The graph of the truncated icosahedron and the last
  letter of Galois'', \emph{Notices of the AMS} \textbf{42} (September
  1995), 959--968. Also available at
  \texttt{http://www.ams.org/notices/199509/199509-toc.html}.
\end{enumerate}

When I was a graduate student at MIT I realized that Kostant (who
teaches there) was deeply in love with symmetry, and deeply
knowledgeable about some of its more mysterious byways. Unfortunately I
didn't dig too deeply into group theory at the time, and now I am
struggling to catch up.

Let's start with the Platonic solids. Note that the cube and the
octahedron are dual --- putting a vertex in the center of each of the
cube's faces gives you an octahedron, and vice versa. So every
rotational symmetry of the cube can be reinterpreted as a symmetry of
the octahedron, and vice versa. Similarly, the dodecahedron and the
icosahedron are dual, while the tetrahedron is self-dual. So while there
are 5 Platonic solids, there are really only 3 different symmetry groups
here.

These 3 ``Platonic groups'' are very interesting. The symmetry group of
the tetrahedron is the group \(A_4\) of all \emph{even} permutations of
4 things, since by rotating the tetrahedron we can achieve any even
permutation of its 4 vertices. The symmetry group of the cube is
\(S_4\), the group of \emph{all} permutations of 4 things. What are the
4 things here? Well, we can draw 4 line segments connecting opposite
vertices of the cube; these are the 4 things! The symmetry group of the
icosahedron is \(A_5\), the group of even permutations of 5 things. What
are the 5 things? It we take all the line segments connecting opposite
vertices we get 6 things, not 5, but we can't get all even permutations
of those by rotating the icosahedron. To find the \emph{5} things is a
bit trickier; I leave it as a puzzle here. See

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Baez, ``Some thoughts on the number 6'',
  \texttt{http://math.ucr.edu/home/baez/six.html}
\end{enumerate}

for an answer.

Once we convince ourselves that the rotational symmetry group of the
icosahedron is \(A_5\), it follows that it has \(5!/2 = 60\) elements.
But there is another nice way to see this. Take an icosahedron and chop
off all 12 corners, getting a truncated icosahedron with 12 regular
pentagonal faces and 20 regular hexagonal faces, with all edges the same
length. It looks just like a soccer ball. It's called an Archimedean
solid because, while not quite Platonic in its beauty, every face is a
regular polygon and every vertex looks alike: two pentagons abutting one
hexagon.

\[\href{http://en.wikipedia.org/wiki/Truncated_icosahedron}{\includegraphics[scale=0.6]{../images/Truncatedicosahedron.png}}\]

The truncated icosahedron has \(5 \times 12 = 60\) vertices. Every
symmetry of the icosahedron is a symmetry of the truncated icosahedron,
so \(A_5\) acts to permute these 60 vertices. Moreover, we can find an
element of \(A_5\) that moves a given vertex of the truncated
icosahedron to any other one, since ``every vertex looks alike''. Also,
there is a \emph{unique} element of \(A_5\) that does the job. So there
must be precisely as many elements of \(A_5\) as there are vertices of
the truncated icosahedron, namely 60.

There is a lot of interest in the truncated icosahedron recently,
because chemists had speculated for some time that carbon might form
\(C_{60}\) molecules with the atoms at the vertices of this solid, and a
while ago they found this was true. In fact, while \(C_{60}\) in this
shape took a bit of work to get ahold of at first, it turns out that
lowly soot contains lots of this stuff!
\[\href{http://en.wikipedia.org/wiki/Fullerene#Buckminsterfullerene}{\includegraphics[scale=0.8]{../images/160px-C60a.png}}\]
Since Buckminster Fuller was fond of using truncated icosahedra in his
geodesic domes, \(C_{60}\) and its relatives are called fullerenes, and
the shape is affectionately called a buckyball. For more about this
stuff, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  P. W. Fowler and D. E. Manolpoulos, \emph{An Atlas of Fullerenes},
  Oxford University Press, 1995.

  M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, \emph{Science of
  Fullerenes and Carbon Nanotubules}, Academic Press, New York, 1994.

  G. Chung, B. Kostant and S. Sternberg, ``Groups and the buckyball'',
  in \emph{Lie Theory and Geometry}, eds.~J.-L. Brylinski, R. Brylinski,
  V. Guillemin and V. Kac, Birkhauser, 1994.
\end{enumerate}

In fact, for the person who has everything: you can now buy 99.5\% pure
\(C_{60}\) at the following site:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  BuckyUSA homepage,
  \texttt{http://www.buckyusa.com/Fullerene\%20C60.htm}
\end{enumerate}

But I digress. Coming back to the 3 Platonic groups\ldots{} there is
much more that's special about them. Most of it requires a little
knowledge of group theory to understand. For example, they are the 3
different finite subgroups of \(\mathrm{SO}(3)\) having irreducible
representations on \(\mathbb{R}^3\). And they are nice examples of
finite reflection groups. For more about them from this viewpoint, try
\protect\hyperlink{week62}{``Week 62''} and
\protect\hyperlink{week63}{``Week 63''}. Also, via the McKay
correspondence they correspond to the exceptional Lie groups
\(\mathrm{E}_6\), \(\mathrm{E}_7\), and \(\mathrm{E}_8\) --- see
\protect\hyperlink{week65}{``Week 65''} for an explanation of this!

Yet another interesting fact about these groups is buried in Galois'
last letter, written to the mathematician Chevalier on the night before
Galois' fatal duel. He was thinking about some groups we'd now call
\(\mathrm{PSL}(2,F)\). Here \(F\) is a field (for example, the real
numbers, the complex numbers, or \(\mathbb{Z}_p\), the integers
\(\mod p\) where \(p\) is prime). \(\mathrm{PSL}(2,F)\) is a
``projective special linear group over \(F\).'' What does that mean?
Well, first of all, \(\mathrm{SL}(2,F)\) is the \(2\times2\) matrices
with entries in \(F\) having determinant equal to \(1\). These form a
group under good old matrix multiplication. The matrices in
\(\mathrm{SL}(2,F)\) that are scalar multiples of the identity matrix
form the ``center'' \(Z\) of \(\mathrm{SL}(2,F)\) --- the group of guys
who commute with everyone else. We can form the quotient group
\(\mathrm{SL}(2,F)/Z\), and get a new group called
\(\mathrm{PSL}(2,F)\).

Now Galois was thinking about \(\mathrm{PSL}(2,\mathbb{Z}_p)\) where
\(p\) is prime. There's an obvious way to get this group to act as
permutations of \(p+1\) things. Here's how! For any field \(F\), the
group \(\mathrm{SL}(2,F)\) acts as linear transformations of the
\(2\)-dimensional vector space over \(F\), and it thus acts on the set
of lines through the origin in this vector space\ldots{} which is called
the ``projective line'' over \(F\). But anything in \(\mathrm{SL}(2,F)\)
that's a scalar multiple of the identity doesn't move lines around, so
we can mod out by the center and think of the quotient group
\(\mathrm{PSL}(2,F)\) as acting on projective line. (By the way, this
explains the point of working with \(PSL\) instead of plain old \(SL\).)

Now, an element of the projective line is just a line through the origin
in \(F^2\). We can specify such a line by taking any nonzero vector
\((x,y)\) in \(F^2\) and drawing the line through the origin and this
vector. However, \((x',y')\) and \((x,y)\) determine the same line if
\((x',y')\) is a scalar multiple of \((x,y)\). Thus lines are in 1-1
correspondence with vectors of the form \((1,y)\) or \((x,1)\). When our
field \(F\) is \(\mathbb{Z}_p\), there are just \(p+1\) of these. So
\(\mathrm{PSL}(2,\mathbb{Z}_p)\) acts naturally on a set of \(p+1\)
things.

What Galois told Chevalier is that \(\mathrm{PSL}(2,\mathbb{Z}_p)\)
doesn't act nontrivially as permutation of any set with fewer than
\(p+1\) elements if \(p > 11\). This presumably means he knew that
\(\mathrm{PSL}(2,\mathbb{Z}_p)\) \emph{does} act nontrivially on a set
with only \(p\) elements if \(p = 5\), \(7\), or \(11\). For example,
\(\mathrm{PSL}(2,5)\) turns out to be isomorphic to \(A_5\), which acts
on a set of 5 elements in an obvious way. \(\mathrm{PSL}(2,7)\) and
\(\mathrm{PSL}(2,11)\) act on a 7-element set and an 11-element set,
respectively, in sneaky ways which Kostant describes.

These cases, \(p = 5\), \(7\) and \(11\), are the the only cases where
this happens and \(\mathrm{PSL}(2,\mathbb{Z}_p)\) is simple. (See
\protect\hyperlink{week66}{``Week 66''} if you don't know what
``simple'' means.) In each case it is very amusing to look at how
\(\mathrm{PSL}(2,\mathbb{Z}_p)\) acts nontrivially on a set with \(p\)
elements and consider the subgroup that doesn't move a particular
element of this set. For example, when \(p = 5\) we have
\(\mathrm{PSL}(2,5) = A_5\), and if we look at the subgroup of even
permutations of 5 things that leaves a particular thing alone, we get
\(A_4\). Kostant explains how if we play this game with
\(\mathrm{PSL}(2,7)\) we get \(S_4\), and if we play this game with
\(\mathrm{PSL}(2,11)\) we get \(A_5\). These are the 3 Platonic groups
again!!

But notice an extra curious coincidence. \(A_5\) is both
\(\mathrm{PSL}(2,5)\) and the subgroup of \(\mathrm{PSL}(2,11)\) that
fixes a point of an 11-element set. This gives a lot of relationships
between \(A_5\), \(\mathrm{PSL}(2,5)\), and \(\mathrm{PSL}(2,11)\). What
Kostant does is take this and milk it for all it's worth! In particular,
it turns out that one can think of \(A_5\) as the vertices of the
buckyball, and describe which vertices are connected by an edge using
the embedding of \(A_5\) in \(\mathrm{PSL}(2,11)\). I won't say how this
goes\ldots{} read his paper!

This may even have some applications for fullerene spectroscopy, since
one can use symmetry to help understand spectra of compounds. (Indeed,
this is one way group theory entered chemistry in the first place.)

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Now let me return to the tale of adjoint functors! I have been stressing
the fact that two functors \(L\colon\mathcal{C}\to\mathcal{D}\) and
\(R\colon\mathcal{D}\to\mathcal{C}\) are adjoint if there is a natural
isomorphism between \(\operatorname{Hom}(Lc,d)\) and
\(\operatorname{Hom}(c,Rd)\). We can say that an ``adjunction'' is a
pair of functors \(L\colon\mathcal{C}\to\mathcal{D}\) and
\(R\colon\mathcal{D}\to\mathcal{C}\) together with a natural isomorphism
between \(\operatorname{Hom}(Lc,d)\) and \(\operatorname{Hom}(c,Rd)\).
But there is another way to think about adjunctions which is also good.

In \protect\hyperlink{week76}{``Week 76''} we talked about an
``equivalence'' of categories. We can summarize it this way: an
``equivalence'' of the categories \(\mathcal{C}\) and \(\mathcal{D}\) is
a pair of functors \(F\colon\mathcal{C}\to\mathcal{D}\) and
\(G\colon\mathcal{D}\to\mathcal{C}\) together with natural
transformations \(e: FG \Rightarrow 1_\mathcal{D}\) and
\(i\colon 1_\mathcal{C} \Rightarrow GF\) that are themselves invertible.
(Note that we are now writing products of functors in the order that
ordinary mortals typically do, instead of the backwards way we
introduced in \protect\hyperlink{week73}{``Week 73''}. Sorry! It just
happens to be better to write it this way now.) Now, the concept of
``adjunction'' is a cousin of the concept of ``equivalence'', and it's
nice to have a definition of adjunction that brings out this
relationship.

First, consider what happens in the definition of adjunction if we take
\(c = Rd\). Then we have a natural isomorphism between
\(\operatorname{Hom}(LRd,d)\) and \(\operatorname{Hom}(Rd,Rd)\). Now
there is a special element of \(\operatorname{Hom}(Rd,Rd)\), namely the
identity \(1_{Rd}\). This gives us a special element of
\(\operatorname{Hom}(LRd,d)\). Let's call this \[e_d\colon LRd \to d.\]
What is this morphism like in an example? Say
\(L\colon\mathsf{Set}\to\mathsf{Grp}\) takes each set to the free group
on that set, and \(R\colon\mathsf{Grp}\to\mathsf{Set}\) takes each group
to its underlying set. Then if \(d\) is a group, \(LRd\) is the free
group on the underlying set of \(d\). There's an obvious homomorphism
from \(LRd\) to \(d\), taking each word of elements in \(d\) and their
inverses to their product in \(d\). That's \(e_d\). It goes from the
free thing on the underlying thing of \(d\) to the thing \(d\) itself!

In fact, since everything in sight is natural, whenever we have an
adjunction the morphisms \(e_d\) define a natural transformation
\[e\colon LR \Rightarrow 1_\mathcal{D}\] Next, consider what happens in
the definition of adjunction if we take \(d = Lc\). Then we have a
natural isomorphism between \(\operatorname{Hom}(c,RLc)\) and
\(\operatorname{Hom}(Lc,Lc)\). Now there is a special element in
\(\operatorname{Hom}(Lc,Lc)\), namely the identity \(1_{Lc}\). This
gives us a special element in \(\operatorname{Hom}(c,RLc)\). Let's call
this \[i_c\colon c \to RLc.\] Again, it's good to consider the example
of sets and groups: if \(c\) is a set, \(RLc\) is the underlying set of
the free group on \(c\). There is an obvious way to map \(c\) into
\(RLc\). That's \(i_c\). It goes from the thing \(c\) to the underlying
thing of the free thing on \(c\).

As before, we get a natural transformation
\[i: 1_\mathcal{C} \Rightarrow RL\] So, as in an equivalence, when we
have an adjunction we have natural transformations
\(e: LR \Rightarrow 1_\mathcal{D}\) and
\(i: 1_\mathcal{C} \Rightarrow RL\). Unlike in an equivalence, they
needn't be natural \emph{isomorphisms}, as the example of sets and
groups shows. But they do have some cool properties, which are nice to
draw using pictures.

First, we draw \(e\) as a U-shaped thing: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
    \node[label=above:{$L$}] at (0,0) {};
    \node[label=above:{$R$}] at (1,0) {};
  \end{tikzpicture}
\] The idea here is that \(e\) goes from \(LR\) down to the identity
\(1_\mathcal{D}\), which we draw as ``nothing''. We can think of \(L\)
and \(R\) as processes, and the U-shaped thing as the meta-process of
\(L\) and \(R\) ``colliding into each other and cancelling out'', like a
particle and antiparticle. (Lest you think that's just purple prose,
wait and see! Eventually I'll explain what all this has to do with
antiparticles!) Similarly, we draw \(i\) as an upside-down-U-shaped
thing: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to [out=up,in=up,looseness=2] (1,0);
    \end{knot}
    \node[label=below:{$R$}] at (0,0) {};
    \node[label=below:{$L$}] at (1,0) {};
  \end{tikzpicture}
\] In other words, \(i\) goes from the identity \(1_\mathcal{C}\) to
\(RL\).

We can also use this sort of notation to talk about identity natural
transformations. For example, if we have any old functor \(F\), there is
an identity natural transformation \(1_F\colon F\Rightarrow F\), which
we can draw as follows: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0) to (0,2);
    \end{knot}
    \node[label=below:{$F$}] at (0,0) {};
    \node[label=above:{$F$}] at (0,2) {};
  \end{tikzpicture}
\] We draw it as a boring vertical line because ``nothing is happening''
as we go from \(F\) to \(F\).

Now, I haven't talked much about the ways one can compose natural
transformations like \(i\) and \(e\), but remember that they are
\(2\)-morphisms, or morphisms-between-morphisms, in \(\mathsf{Cat}\)
(the \(2\)-category of all categories). This means that they are
inherently \(2\)-dimensional, and in particular, one can compose them
both ``horizontally'' and ``vertically''. I'll explain this more next
time, but for now please take my word for it! Using these composition
operations, one can make sense of the following equations involving
\(i\) and \(e\): \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to (0,1)
      to [out=up,in=up,looseness=2] (1,1)
      to [out=down,in=down,looseness=2] (2,1)
      to (2,2);
    \end{knot}
    \node[label=below:{$R$}] at (0,0) {};
    \node[label=above:{$R$}] at (2,2) {};
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[label=below:{$R$}] at (0,0) {};
      \node[label=above:{$R$}] at (0,2) {};
    \end{scope}
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-2,0)}]
      \begin{knot}
        \strand[thick] (0,0)
        to (0,1)
        to [out=up,in=up,looseness=2] (1,1)
        to [out=down,in=down,looseness=2] (2,1)
        to (2,2);
      \end{knot}
      \node[label=below:{$L$}] at (0,0) {};
      \node[label=above:{$L$}] at (2,2) {};
    \end{scope}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[label=below:{$L$}] at (0,0) {};
      \node[label=above:{$L$}] at (0,2) {};
    \end{scope}
  \end{tikzpicture}
\] In the first equation we are asserting that a certain way of sticking
together \(i\) and \(e\) and some identity natural transformations gives
\(1_R\colon R\Rightarrow R\). In the second we are asserting that some
other way gives \(1_L\colon L\Rightarrow L\).

I will explain these more carefully next time, but for now I mainly want
to state that we can also \emph{define} an adjunction to be a pair of
functors \(L\colon\mathcal{C}\to\mathcal{D}\) and
\(R\colon\mathcal{D}\to\mathcal{C}\) together with natural
transformations \(e\colon LR\Rightarrow 1_\mathcal{D}\) and
\(i\colon1_\mathcal{C}\Rightarrow RL\) making the above 2 equations
hold! This is the definition of ``adjunction'' that is the most similar
to the definition of ``equivalence''.

Now, topologically, these 2 equations simply say that if you have a
wiggly curve like \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to (0,1)
      to [out=up,in=up,looseness=2] (1,1)
      to [out=down,in=down,looseness=2] (2,1)
      to (2,2);
    \end{knot}
  \end{tikzpicture}
\] or \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-2,0)}]
      \begin{knot}
        \strand[thick] (0,0)
        to (0,1)
        to [out=up,in=up,looseness=2] (1,1)
        to [out=down,in=down,looseness=2] (2,1)
        to (2,2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] you can pull it tight to get \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0) to (0,2);
    \end{knot}
  \end{tikzpicture}
\] Thus, while \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to [out=up,in=up,looseness=2] (1,0);
    \end{knot}
  \end{tikzpicture}
\] are not exactly ``inverses'', there is some subtler sense in which
they ``cancel out''. This corresponds to the notion that while adjoint
functors are not inverses, not even up to a natural isomorphism, they
still are ``like inverses'' in a subtler sense.

Now this may seem like a silly game, drawing natural transformations as
``string diagrams'' and interpreting adjoint functors as wiggles in the
string. But in fact this is part of a very big, very important, and very
fun game: the relation between \(n\)-category theory and the topology of
submanifolds of \(\mathbb{R}^n\). Right now we are dealing with
\(\mathsf{Cat}\), which is a \(2\)-category, so we are getting into
\(2\)-dimensional pictures. But when we get into \(3\)-categories we
will get into \(3\)-dimensional pictures, and knot theory\ldots{} and
what got me into this whole business in the first place: the relation
between knots and physics. In higher dimensions it gets even fancier.

So I will continue next time and explain the recipes for composing
natural transformations, and the associated string diagrams, more
carefully.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week80}{``Week 80''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}



\hypertarget{week80}{%
\section{April 20, 1996}\label{week80}}

There are a number of interesting books I want to mention.

Huw Price's book on the arrow of time is finally out! It's good to see a
philosopher of science who not only understands what modern physicists
are up to, but can occaisionally beat them at their own game.

Why is the future different from the past? This has been vexing people
for a long time, and the stakes went up considerably when Boltzmann
proved his ``H-theorem'', which seems at first to show that the entropy
of a gas always increases, despite the time-reversibility of the laws of
classical mechanics. However, to prove the H-theorem he needed an
assumption, the ``assumption of molecular chaos''. It says roughly that
the positions and velocities of the molecules in a gas are uncorrelated
before they collide. This seems so plausible that one can easily
overlook that it has a time-asymmetry built into it --- visible in the
word ``before''. In fact, we aren't getting something for nothing in the
H-theorem; we are making a time-asymmetric assumption in order to
conclude that entropy increases with time!

The ``independence of incoming causes'' is very intuitive: if we do an
experiment on an electron, we almost always assume our choice of how to
set the dials is not correlated to the state of the electron. If we drop
this time-asymmetric assumption, the world looks rather
different\ldots{} but I'll let Price explain that to you.

Anyway, Price is an expert at spotting covertly time-asymmetric
assumptions. you may remember from \protect\hyperlink{week26}{``Week
26''} that he even got into a nice argument with Stephen Hawking about
the arrow of time, thanks to this habit of his. you can read more about
it in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Huw Price, \emph{Time's Arrow and Archimedes' Point: New Directions
  for a Physics of Time}, Oxford University Press, 1996.
\end{enumerate}

Also, there is a new book out by Hawking and Roger Penrose on quantum
gravity. First they each present their own ideas, and then they duke it
out in a debate in the final chapter. This book is an excellent place to
get an overview of some of the main ideas in quantum gravity. It helps
if you have a little familiarity with general relativity, or
differential geometry, or are willing to fake it.

There is even some stuff here about the arrow of time! Hawking has a
theory of how it arose, starting from his marvelous ``no-boundary
boundary conditions'', which say that the wavefunction of the universe
is full of quantum fluctuations corresponding to big bangs which erupt
and then recollapse in big crunches. The wavefunction itself has no
obvious ``time-asymmetry'', indeed, time as we know it only makes sense
\emph{within} any one of the quantum fluctuations, one of which is
presumably the world we know! But Hawking thinks that each of these
quantum fluctuations, or at least most of them, should have an arrow of
time. This is what Price raised some objections to. Hawking seems to
argue that each quantum fluctuation should ``start out'' rather smooth
near its big bang and develop more inhomogeneities as time passes,
``winding up'' quite wrinkly near its big crunch. But it's not at all
clear what this ``starting out'' and ``winding up'' means. Possibly he
is simply speaking vaguely, and all or most of the quantum fluctuations
can be shown to have one smooth end and wrinkly at the other. That would
be an adequate resolution to the arrow of time problem. But it's not
clear, at least not to me, that Hawking really showed this.

Penrose, on the other hand, has some closely related ideas. His ``Weyl
curvature hypothesis'' says that the Weyl curvature of spacetime goes to
zero at initial singularities (e.g.~the big bang) and infinity at final
ones (e.g.~black holes). The Weyl curvature can be regarded as a measure
of the presence of inhomogeneity --- the ``wrinkliness'' I alluded to
above. The Weyl curvature hypothesis can be regarded as a
time-asymmetric law built into physics from the very start.

To see them argue it out, read

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Stephen Hawking and Roger Penrose, \emph{The Nature of Space and
  Time}, Princeton University Press, 1996.
\end{enumerate}

There are also a couple of more technical books on general relativity
that I'd been meaning to get ahold of for a long time. They both feature
authors of that famous book,

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Charles Misner, Kip Thorne and John Wheeler, \emph{Gravitation},
  Freeman Press, 1973,
\end{enumerate}

which was actually the book that made me decide to work on quantum
gravity, back at the end of my undergraduate days. They are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Ignazio Ciufolini and John Archibald Wheeler, \emph{Gravitation and
  Inertia}, Princeton University Press, 1995.
\end{enumerate}

and

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Kip Thorne, Richard Price and Douglas Macdonald, eds., \emph{Black
  Holes: The Membrane Paradigm}, 1986.
\end{enumerate}

The book by Ciufolini and Wheeler is full of interesting stuff, but it
concentrates on ``gravitomagnetism'': the tendency, predicted by general
relativity, for a massive spinning body to apply a torque to nearby
objects. This is related to Mach's old idea that just as spinning a
bucket pulls the water in it up to the edges, thanks to the centrifugal
force, the same thing should happen if instead we make lots of stars
rotate around the bucket! Einstein's theory of general relativity was
inspired by Mach, but there has been a long-running debate over whether
general relativity is ``truly Machian'' --- in part because nobody knows
what ``truly Machian'' means. In any event, Ciufolini and Wheeler argue
that gravitomagnetism exhibits the Machian nature of general relativity,
and they give a very nice tour of gravitomagnetic effects.

That is fine in theory. However, the gravitomagnetic effect has never
yet been observed! It was supposed to be tested by Gravity Probe B, a
satellite flying at an altitude of about 650 kilometers, containing a
superconducting gyroscope that should precess at a rate of 42
milliarcseconds per year thanks to gravitomagnetism. I don't know what
ever happened with this, though: the following web page says ``Gravity
Probe B is expected to fly in 1995'', but now it's 1996, right? Maybe
someone can clue me in to the latest news\ldots. I seem to remember some
arguments about funding the program.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Gravity Probe B, \texttt{http://stugyro.stanford.edu/RELATIVITy/GPB/}
\end{enumerate}

(Note added in 2002: now this webpage is gone; see
\texttt{http://einstein.stanford.edu/} for the latest story.)

Kip Thorne's name comes up a lot in conjuction with black holes and the
LIGO --- or Laser-Interferometer Gravitational-Wave Observatory ---
project. As pairs of black holes or neutron stars spiral emit
gravitational radiation, they should spiral in towards each other. In
their final moments, as they merge, they should emit a ``chirp'' of
gravitational radiation, increasing in frequency and amplitude until
their ecstatic union is complete. The LIGO project aims to observe these
chirps, and any other sufficiently strong gravitational radiation that
happens to be passing by our way. LIGO aims to do this by using laser
interferometry to measure the distance between two points about 4
kilometers apart to an accuracy of about \(10^{-18}\) meters, thus
detecting tiny ripples in the spaceteim metric. For more on LIGO, try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  LIGO project home page, \texttt{http://www.ligo.caltech.edu/}
\end{enumerate}

Thorne helped develop a nice way to think of black holes by envisioning
their event horizon as a kind of ``membrane'' with well-defined
mechanical, electrical and magnetic properties. This is called the
membrane paradigm, and is useful for calculations and understanding what
black holes are really like. The book ``Black Holes: The Membrane
Paradigm'' is a good place to learn about this.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Now let me return to the tale of \(2\)-categories. So far I've said only
that a \(2\)-category is some sort of structure with objects, morphisms
between objects, and \(2\)-morphisms between morphisms. But I have been
attempting to develop your intuition for \(\mathsf{Cat}\), the
primordial example of a \(2\)-category. Remember, \(\mathsf{Cat}\) is
the \(2\)-category of all categories! Its objects are categories, its
morphisms are functors, and its \(2\)-morphisms are natural
transformations --- these being defined in
\protect\hyperlink{week73}{``Week 73''} and again in
\protect\hyperlink{week75}{``Week 75''}.

How can you learn more about \(2\)-categories? Well, a really good place
is the following article by Ross Street, who is one of the great gurus
of \(n\)-category theory. For example, he was the one who invented
\(\omega\)-categories!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Ross Street, ``Categorical structures'', in \emph{Handbook of
  Algebra}, vol.~\textbf{1}, ed.~M. Hazewinkel, Elsevier, 1996.
\end{enumerate}

Physicists should note his explanation of the yang-Baxter and
Zamolodchikov equations in terms of category theory. If you have trouble
finding this, you might try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  G. Maxwell Kelly and Ross Street, \emph{Review of the elements of
  \(2\)-categories}, Springer Lecture Notes in Mathematics \textbf{420},
  Berlin, 1974, pp.~75--103.
\end{enumerate}

I can't really compete with these for thoroughness, but at least let me
give the definition of a \(2\)-category. I'll give a pretty
nuts-and-bolts definition; later I'll give a more elegant and abstract
one. Readers who are familiar with \(\mathsf{Cat}\) should keep this
example in mind at all times!

This definition is sort of long, so if you get tired of it, concentrate
on the pictures! They convey the basic idea. Also, keep in mind is that
this is going to be sort of like the definition of a category, but with
an extra level on top, the \(2\)-morphisms.

So: first of all, a \(2\)-category consists of a collection of
``objects'' and a collection of ``morphisms''. Every morphism \(f\) has
a ``source'' object and a ``target'' object. If the source of \(f\) is
\(x\) and its target is y, we write \(f\colon x\to y\). In addition, we
have:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Given a morphism \(f\colon x\to y\) and a morphism \(g\colon y\to Z\),
  there is a morphism \(fg\colon x\to Z\), which we call the
  ``composite'' of \(f\) and \(g\).
\item
  Composition is associative: \((fg)h = f(gh)\).
\item
  For each object \(x\) there is a morphism \(1_x\colon x \to x\),
  called the ``identity'' of x. For any \(f\colon x\to y\) we have
  \(1_x f = f 1_y = f\).
\end{enumerate}

you should visualize the composite of \(f\colon x\to y\) and
\(g\colon y\to Z\) as follows: \[x\xrightarrow{f}y\xrightarrow{g}Z.\] So
far this is exactly the definition of a category! But a \(2\)-category
ALSO consists of a collection of ``2-morphisms''. Every \(2\)-morphism
\(T\) has a ``source'' morphism \(f\) and a target morphism \(g\). If
the source of \(T\) is \(f\) and its target is \(g\), we write
\(T\colon f\Rightarrow g\). If \(T\colon f\Rightarrow g\), we require
that \(f\) and \(g\) have the same source and the same target; for
example, \(f\colon x\to y\) and \(g\colon x\to y\). you should visualize
\(T\) as follows:
\[\includegraphics[scale=0.3]{../images/Tnatftog.pdf}\] In addition, we
have:

1') Given a \(2\)-morphism \(S\colon f\Rightarrow g\) and a
\(2\)-morphism \(T\colon g\Rightarrow h\), there is a \(2\)-morphism
\(ST\colon f\Rightarrow h\), which we call the ``vertical composite'' of
\(S\) and \(T\).

2') Vertical composition is associative: \((ST)U = S(TU)\).

3') For each morphism \(f\) there is a \(2\)-morphism
\(1_f\colon f\Rightarrow f\), called the ``identity'' of \(f\). For any
\(T\colon f\Rightarrow g\) we have \(1_f T = T 1_g = T\).

Note that these are just like the previous 3 rules. We draw the vertical
composite of \(S\colon f\Rightarrow g\) and \(T\colon g\Rightarrow h\)
like this: \[\includegraphics[scale=0.3]{../images/STvertical.pdf}\] Now
for a twist. We also require that we can ``horizontally'' compose
2-morphisms as follows:
\[\includegraphics[scale=0.3]{../images/SThorizontal.pdf}\] So we also
demand:

1'\,') Given morphisms \(f,g\colon x\to y\) and \(f',g'\colon y\to z\),
and \(2\)-morphisms \(S\colon f\Rightarrow g\) and
\(T\colon f'\Rightarrow g'\), there is a \(2\)-morphism
\(S\cdot T\colon ff' \Rightarrow gg'\), which we call the ``horizontal
composite'' of \(S\) and \(T\).

2'\,') Horizontal composition is associative:
\((S\cdot T)\cdot U = S\cdot (T\cdot U)\).

3'\,') The identities for vertical composition are also the identities
for horizontal composition. That is, given \(f,g\colon x\to y\) and
\(T\colon f\Rightarrow g\) we have
\(1_{1_x}\cdot T = T\cdot 1_{1_y} = T\).

Finally, we demand the ``exchange law'' relating horizontal and vertical
composition: \[(ST)\cdot (S'T') = (S\cdot S')(T\cdot T')\] This makes
the following \(2\)-morphism unambiguous:
\[\includegraphics[scale=0.3]{../images/STS'T'.pdf}\] We can think of it
either as the result of first doing two vertical composites, and then
one horizontal composite, or as the result of first doing two horizontal
composites, and then one vertical composite!

Here we can really see why higher-dimensional algebra deserves its name.
Unlike category theory, where we can visualize morphisms as
1-dimensional arrows, here we have \(2\)-morphisms which are
intrinsically 2-dimensional, and can be composed both vertically and
horizontally.

Now if you are familiar with \(\mathsf{Cat}\), you may be wondering how
we vertically and horizontally compose natural transformations, which
are the 2-morphisms in \(\mathsf{Cat}\). Let me leave this as an
exercise for now\ldots{} there's a nice way to do it that makes
\(\mathsf{Cat}\) into a \(2\)-category. This exercise is a good one to
build up your higher-dimensional algebra muscles.

In fact, we could have invented the above definition of \(2\)-category
simply by thinking a lot about \(\mathsf{Cat}\) and what you can do with
categories, functors, and natural transformations. I'm pretty sure
that's more or less what happened, historically! Thinking hard enough
about nCat leads us on to the definition of \((n+1)\)-categories\ldots.

But that's enough for now. Typing those diagrams is hard work.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week83}{``Week 83''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

I thank Keith Harbaugh for catching lots of typos and other mistakes in
\protect\hyperlink{week73}{``Week 73''} --
\protect\hyperlink{week80}{``Week 80''}.



\hypertarget{week81}{%
\section{May 12, 1996}\label{week81}}

I think I'll take a little break on the continuing saga of n-categories.
Instead I'll talk about something which is secretly the very same
subject, namely loop groups and their central extensions. This is
important in string theory. But first I want to say a bit about some
very high-energy physics.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  D. J. Bird et al, ``Detection of a cosmic ray with measured energy
  well beyond the expected spectral cutoff due to cosmic microwave
  radiation'', preprint available as
  \href{https://arxiv.org/abs/astro-ph/9410067}{\texttt{astro-ph/9410067}}
\end{enumerate}

P. Bhattacharjee and G. Sigl, ``Monopole annihilation and highest energy
cosmic rays'', preprint available as
\href{https://arxiv.org/abs/astro-ph/9412053}{\texttt{astro-ph/9412053}}.

R.J. Protheroe and P.A. Johnson, ``Are topological defects responsible
for the 300 EeV cosmic rays?'', preprint available as
\href{https://arxiv.org/abs/astro-ph/9605006}{\texttt{astro-ph/9605006}}.

In 1994, folks at the Fly's Eye air shower detector in Utah observed a
cosmic ray whose energy was about 320 EeV. In case you forget what an
EeV is, it's a unit of energy equal to a billion GeV, and a Gev is equal
to a billion ev (electron volts). Current particle accelerators
routinely particles with energies about a hundred GeV, but a few hundred
\emph{EeV} is a whole different story! That's about 50 joules, the
energy of a one-kilogram mass moving at 10 meters/second, all packed in
one particle!

Nobody knows what would produce cosmic rays of this energy. To make the
puzzle more mysterious, this energy is above the Greisen-Zatsepin-
Kuz'min (or GZK) cutoff for cosmic rays produced at moderate
extragalactic distances (30 megaparsecs). The idea of the GZK cutoff is
that particles of extremely high energies whizzing through space would
interact significantly with the cosmic microwave background radiation,
losing energy to produce pions.

So it seems that something is producing really high energy particles,
and this something is not too far away, by cosmic standards. Established
mechanisms don't get energies that high. A possibility studied by
various authors including P. Bhattacharjee and G. Sigl is that these
super-energetic cosmic rays are produced by the decay of ``topological
defects''. Various grand unified theories, or GUTs, predict that the
strong, weak, and electromagnetic forces all act the the same at really
high temperatures, while at low temperatures (like any sort of
temperature you'd find around here) a ``spontaneous symmetry breaking''
occurs which makes them split up into their observed distinct
personalities.

Mathematically this is a bit like how a magnet at low temperatures
randomly picks out a certain axis of magnetization, breaking the
rotational symmetry it possesses at high temperatures. And like in the
case of a magnet, one would expect the possibility of ``topological
defects'' where different regions of space pick different ways to break
the symmetry, leaving nasty spots like lumps in the carpet that can't be
straightened out. Ordinary magnets typically exhibit \(2\)-dimensional
``domain walls'' between domains having different axes of magnetization.
But in various GUTs folks have considered, one can also get
1-dimensional ``cosmic strings'' and 0-dimensional ``topological
solitons'' including magnetic monopoles --- particles with magnetic
charge. None of these topological defects have ever been observed,
despite a fair amount of searching. Could super-energetic cosmic rays be
the result of a monopole-antimonopole collision?

Alas, Protheroe and Johnson's paper argues that in such decays lots of
the energy would go into the production of high-energy \(\gamma\)
rays\ldots{} more than has been observed in the super-energetic cosmic
ray showers. So maybe the puzzle has some other answer.

The weekend before last I went to the 11th Geometry Festival, which was
held at the University of Maryland. Since I work on quantum gravity, I
could be said to be a geometer of sorts --- perhaps a quantum geometer.
But geometry means a lot of different things to different people, and
this conference concentrated on some aspects of geometry that I don't
know much about. In particular, there were talks by Schmuel Weinberger,
Bruce Kleiner and G. Wei on the implications of positive and negative
curvature for Riemannian geometry.

A talk that was right up my alley was given by Jean-Luc Brylinski. It
dealt with themes from his papers with McLaughlin:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Jean-Luc Brylinski and Dennis A. McLaughlin, ``The geometry of degree
  four characteristic classes and of line bundles on loop spaces, I'',
  \emph{Duke Math. Journal} \textbf{75} (1994), 603--638. ``II'',
  \emph{Duke Math. Journal} \textbf{83} (1996), 105--139.

  Jean-Luc Brylinski, ``Central extensions and reciprocity laws'',
  preprint.

  Jean-Luc Brylinski, ``Coadjoint orbits of central extensions of gauge
  groups'', preprint.

  Jean-Luc Brylinski and Dennis A. McLaughlin, ``The geometry of two
  dimensional symbols'', preprint.
\end{enumerate}

Let me say a bit about the math underlying these papers, the basic stuff
that they build on. One hot topic in mathematical physics in the last
decade has been the study of ``loop groups''. Say you take any Lie group
\(G\). Then the ``loop group'' \(LG\) is the set of smooth functions
from the circle to \(G\). This becomes a group with pointwise
multiplication as the group operation. This sort of group shows up in
\(2\)-dimensional quantum field theory, where spacetime could be the
cylinder. Then ``space'' is the circle, and if we are studying gauge
theory with gauge group \(G\), the group of gauge transformations over
space would be the loop group \(LG\). One main reason for being
interested in \(2\)-dimensional quantum field theory is string theory:
here we think of the \(2\)-dimensional worldsheet of the string as a
spacetime in its own right, and we are often interested in doing gauge
theory over this spacetime. For this reason, folks in string theory need
to understand all they can about unitary representations of loop groups.

Actually they are interested in \emph{projective} representations of
loop groups. Remember, in quantum mechanics two vectors in a Hilbert
space give the same expectation values for any observable if they differ
only by a phase. So it is perfectly fine for a group representation
\(R\) to satisfy the usual law \[R(g)R(h) = R(gh)\] where \(g\), \(h\)
are group elements, \emph{only up to a phase}. So in the definition of a
projective representation we weaken the above requirement to
\[R(g) R(h) = c(g,h) R(gh)\] where \(c(g,h)\) is a phase depending on
\(g\) and \(h\). Folks call \(c(g,h)\) the ``cocycle'' of the projective
representation.

A projective unitary representation of a group \(H\) can also be thought
of as a representation of a bigger group \(\widetilde{H}\) called a
``central extension'' of \(H\). The idea is that this bigger group has a
bunch of phases built into it to absorb the phase ambiguities in the
projective representation of \(H\). Let \(\mathrm{U}(1)\) be the unit
circle in the complex plane, a group under multiplication. This is the
group of phases. We can think of \(\widetilde{H}\) as
\(H \times \mathrm{U}(1)\) given a sneaky product designed to soak up
the phases produced by the cocycle: \[(g, a)(h, b) = (gh, ab c(g,h)).\]
We can define a unitary representation \(S\) of \(\widetilde{H}\) as
follows: \[S(g, a) = R(g)a.\] It's then obvious that
\[S(g, a) S(h, b) = S((g, a)(h, b))\] so \(S\) is really a
representation. For this reason, if we are doing quantum theory and we
don't like projective representations, it's okay as long as we
understand the central extensions of our group of symmetries.

So, instead of thinking about projective representations of loop groups,
we can think about central extensions of loop groups. How does one get
ahold of these? There is a nice trick which Brylinski described in his
talk. To get this trick, we need to assume a bit about the group \(G\).
Let's assume it's a connected and simply-connected simple Lie group.
I'll explain that in a minute, but some good examples to keep in mind
are \(\mathrm{SU}(n)\) and \(\mathrm{Spin}(n)\); see
\protect\hyperlink{week61}{``Week 61''} for the definitions and a bit of
information about these groups.

Now remember that \(S^k\) stands for the \(k\)-dimensional sphere, and
\(\pi_k(X)\) of a topological space \(X\) stands for the set of
continuous maps from \(S^k\) to \(X\), modulo homotopy. In other words,
two continuous maps from \(S^k\) to \(X\) define the same element of
\(\pi_k(X)\) if one can be continuously deformed to the other.

Saying that \(G\) is connected means that \(\pi_0(G) = 0\). To
understand this you need to realize that \(S^0\) consists of two points.
So \(\pi_0(G) = 0\) means that \(G\) consists of one piece, any two
points of which can be connected by a continuous path.

Saying that \(G\) is simply connected means that \(\pi_1(G) = 0\). In
other words, all loops in \(G\) can be ``pulled tight''. A good example
of a group that's NOT simply connected is the group \(\mathrm{SO}(n)\)
of rotations in \(n\) dimensional space.. This flaw with
\(\mathrm{SO}(n)\) is why they needed to invent \(\mathrm{Spin}(n)\);
see \protect\hyperlink{week61}{``Week 61''}.

As it turns out, every Lie group has \(\pi_2(G) = 0\). So all 2-spheres
in \(G\) can be pulled tight too. Imagine taking a balloon and sticking
it in \(G\); then you can always shrink it down to a point in a
continuous way without it getting stuck around a hole in \(G\).

Saying that \(G\) is simple is an algebraic rather than topological
condition, and I explained this condition in
\protect\hyperlink{week63}{``Week 63''}. But it has topological
ramifications. It implies, for example, that \(\pi_3(G) = \mathbb{Z}\),
the group of integers. So to each way of sticking a 3-sphere in \(G\) we
can associate an integer. One way to compute this integer involves the
Killing form on the Lie algebra of \(G\). This is a special inner
product on the Lie algebra of \(G\). Using this inner product and the
bracket in the Lie algebra we can convert 3 vectors \(u\), \(v\), and
\(w\) in the Lie algebra into a number as follows:
\[W(u,v,w) = k \langle [u,v],w \rangle\] Here \(k\) is a constant that
will make life simpler later. The special property of the Killing form
implies that \(W\) is totally antisymmetric, and we can use left
multiplication to translate \(W\) all over the group \(G\) obtaining a
closed \(3\)-form on \(G\). Call this \(3\)-form \(W\), too. Then, given
any smooth function from \(S^3\) into \(G\) we can pull back \(W\) to
\(S^3\) and integrate it over \(S^3\). If we choose the constant \(k\)
right, the result will be an integer --- the integer we were looking
for.

Hmm, this is getting technical. Well, it'll keep getting more technical.
Just stop reading when it becomes unpleasant.

Okay, these topological facts about the group \(G\) have a bunch of cool
consequences. One trick usually goes by the name of the ``WZW action'',
which refers to Wess, Zumino, and Witten. Say we have smooth function
\(f\) from \(S^2\) to \(G\). Since \(\pi_2(G) = 0\) we can extend \(f\)
to a smooth function \(F\) from the \(3\)-dimensional ball, \(D^3\), to
\(G\). (This is just another way of ``pulling the balloon tight'' as
mentioned above.) Now we can use \(F\) to pull back the magic \(3\)-form
\(W\) to \(D^3\), and then we can integrate the resulting \(3\)-form
over \(D^3\) to get a number \(S(f)\) called the Wess-Zumino-Witten
action.

Unfortunately, this number depends on the choice of the function \(F\)
extending \(f\) to the ball. Fortunately, it doesn't depend too much on
\(F\). Say we extended \(f\) to some other function \(F'\) from the ball
to \(G\). Then \(F\) together with \(F'\) define a map from \(S^3\) to
\(G\), and we know from the previous stuff that the integral of the
pullback of \(W\) over this \(S^3\) is an integer. So changing our
choice of an extension of \(f\) only changes \(S(f)\) by an integer.
This means that the exponential of the WZW action:
\[\exp(2 \pi i S(f))\] is completely well-defined. This is nice in
quantum physics, where the exponential of the action is what really
matters. Note also that this exponential is just a phase! So we are
getting a function \[A\colon\mathrm{Maps}(S^2,G)\to \mathrm{U}(1)\]
assigning a phase to any map \(f\) from \(S^2\) to \(G\).

Now \(\mathrm{Maps}(S^2,G)\) is sort of like the loop group, since the
loop group is just \(\mathrm{Maps}(S^1,G)\). In particular, it too
becomes a group by pointwise multiplication. A bit of calculation shows
that \(A\) above is a group homomorphism: \[A(f) A(g) = A(fg).\] This
homomorphism is the key to finding the central extension of the loop
group. Here's how we do it. By now everyone but the experts has probably
fallen asleep at the screen, so I can pull out all the stops.

Here's a useful way to think of a central extensions: a central
extension \(\widetilde{H}\) of the group \(H\) by the group
\(\mathrm{U}(1)\) is a special sort of short exact sequence of groups:
\[1 \to \mathrm{U}(1) \to \widetilde{H} \to H \to 1\] By ``short exact
sequence of groups'' I simply mean that \(\mathrm{U}(1)\) is a subgroup
of \(\widetilde{H}\) and that \(\widetilde{H}\) modulo \(\mathrm{U}(1)\)
is \(H\). What's special about central extensions is that
\(\mathrm{U}(1)\) is in the \emph{center} of \(\widetilde{H}\). You can
check that this definition of central extension matches up with our
earlier more lowbrow definition.

Now how do we get this short exact sequence? Well, it comes from a short
exact sequence of spaces: \[\{*\} \to S^1 \to D^2 \to S^2 \to \{*\}\]

This diagram means simply that we can think of the circle as a subspace
of the \(2\)-dimensional disc \(D^2\) in an obvious way, and then if we
collapse this circle to a point the disc gets squashed down to a
2-sphere. Now, from this short exact sequence we get a short exact
sequence of groups
\[1 \to \mathrm{Maps}(S^2,G) \to \mathrm{Maps}(D^2,G) \to \mathrm{Maps}(S^1,G) \to 1\]

In other words, \(\mathrm{Maps}(S^2,G)\) is a normal subgroup of
\(\mathrm{Maps}(D^2,G)\), and if we mod out by this subgroup we get
\(\mathrm{Maps}(S^1,G)\). Now we can use the homomorphism
\(A\colon\mathrm{Maps}(S^2,G)\to \mathrm{U}(1)\) to get ourselves
another exact sequence like this: \[
  \begin{tikzcd}
    1 \rar
    & \mathrm{Maps}(S^2,G)
      \rar["i"] \dar["A"]
    & \mathrm{Maps}(D^2,G)
      \rar["j"] \dar
    & \mathrm{Maps}(S^1,G)
      \rar \dar["1"]
    & 1
  \\1 \rar
    & \mathrm{U}(1)
      \rar["i"]
    & \widetilde{L}
      \rar["j"]
    & \mathrm{Maps}(S^1,G)
      \rar
    & 1
  \end{tikzcd}
\] Remembering that \(\mathrm{Maps}(S^1,G)\) is the loop group,
\(\widetilde{L}\) turns out to be the desired central extension!
Concretely we can think of \(\widetilde{L}\) as a quotient group of
\(\mathrm{Maps}(D^2,G)\times \mathrm{U}(1)\) by the subgroup of pairs of
the form \((i(f),A(f))\) with \(f\) in \(\mathrm{Maps}(S^2,G)\).

There is something fascinating about how spheres of different dimensions
--- \(S^0\), \(S^1\), \(S^2\), and \(S^3\) --- conspire together with
the topology of the group \(G\) to yield the central extension of the
loop group \(LG\). It appears that what we are really studying are the
closely related cohomology groups:

\begin{itemize}
\tightlist
\item
  \(H^0(\mathrm{Maps}(S^3,G))\) which is just another way of saying
  \(\pi_3(G)\)
\item
  \(H^1(\mathrm{Maps}(S^2,G))\) which describes homomorphisms from
  \(\mathrm{Maps}(S^2,G)\) to \(\mathrm{U}(1)\)
\item
  \(H^2(\mathrm{Maps}(S^1,G))\) which describes central extensions of
  \(\mathrm{Maps}(S^1,G)\)
\item
  \(H^3(\mathrm{Maps}(S^0,G))\) which is just another way of saying
  \(H^3(G)\), where \(W\) lives.
\end{itemize}

There is a fourth term in this series which I didn't get around to
talking about; it's

\begin{itemize}
\tightlist
\item
  \(H^4(\mathcal{B}G)\) where the degree 4 characteristic class for
  \(G\)-bundles, e.g.~the 2nd Chern class for \(\mathrm{SU}(n)\), lives.
\end{itemize}

Here \(\mathcal{B}G\) is the ``classifying space'' of \(G\). I would
like to understand more deeply what's going on with this series, because
the different terms have a lot to do with physics in different
dimensions --- dimensions 0 to 4, the ``low dimensions'' which are so
specially interesting.

I should conclude by noting that while a lot of this appeared in
Brylinski's talk, and a lot of it is probably common knowledge among
topologists, it was in some conversations with James Dolan that we
worked out some of the patterns I mention here.



\hypertarget{week82}{%
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I will continue to take a break from the tale of \(n\)-categories. As
the academic year winds to an end, an enormous pile of articles and
books is building up on my desk. I can kill two birds with one stone if
I list some of them while filing them. Here is a sampling:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  \emph{Advances in Applied Clifford Algebras}, ed.~Jaime Keller.
  (Subscriptions are available from Mrs.~Irma Aragon, F. Q., UNAM,
  Apartado 70-528, 04510 Mexico, D.F., MEXICO, for US \$10 per year.)
\end{enumerate}

This is a homegrown journal for fans of Clifford algebras. What are
Clifford algebras? Well, let's start at the beginning, with the
quaternions\ldots.

As J. Lambek has pointed out, not many mathematicians can claim to have
introduced a new kind of number. One of them was the Sir William Rowan
Hamilton. He knew about the real numbers \(\mathbb{R}\), of course, and
also the complex numbers \(\mathbb{C}\), which are the reals with a
square root of \(-1\), usually called \(i\), thrown in. Why not try
putting in another square root of \(-1\)? This might give a
\(3\)-dimensional algebra that'd help with \(3\)-dimensional space as
much as the complex numbers help with 2 dimensions. He tried this but
couldn't get division to work out well. He struggled this for a long
time. On the 16th of October, 1843, he was walking along the Royal Canal
with his wife to a meeting of the Royal Irish Academy when he had a good
idea: ``\ldots there dawned on me the notion that we must admit, in some
sense, a fourth dimension of space for the purpose of calculating with
triples \ldots{} An electric circuit seemed to close, and a spark
flashed forth.'' He carved the decisive relations
\[i^2 = j^2 = k^2 = ijk = -1\] in the stone of Brougham Bridge as he
passed it. This was bold: a \emph{noncommutative} algebra, since
\(ij = -ji\), \(jk = -kj\), and \(ik = -ki\) follow from the above
equations. These are the quaternions, which now we call \(\mathbb{H}\)
after Hamilton.

Hamilton wound up spending much of his time on quaternions. The lawyer
and mathematician Arthur Cayley heard Hamilton lecture on quaternions
and --- I imagine --- was influenced by this to invent his
``octonions'', an 8-dimensional nonassociative algebra in which division
still works nicely. For more on quaternions, octonions, and the general
subject of division algebras, try \protect\hyperlink{week59}{``Week
59''} and \protect\hyperlink{week61}{``Week 61''}.

In 1845, two years after the birth of the quaternions, the visionary
William Clifford was born in Exeter, England. He only lived to the age
of 37: despite suffering from lung disease, he worked with incredible
intensity, and his closest friend wrote that ``He could not be induced,
or only with the utmost difficulty, to pay even moderate attention to
the cautions and observances which are commonly and aptly described as
`taking care of one's self'\,''. But in his short life, he pushed quite
far into the mathematics that would become the physics of the 20th
century. He studied the geometry of Riemann and prophetically envisioned
general relativity in 1876, in the following famous remarks:

\begin{quote}
"Riemann has shown that as there are different kinds of lines and
surfaces, so there are different kinds of space of three dimensions; and
that we can only find out by experience to which of these kinds the
space in which we live belongs. I hold in fact

\begin{enumerate}
\def\labelenumi{(\arabic{enumi})}
\item
  That small portions of space \emph{are} in fact of a nature analogous
  to little hills on a surface which is on the average flat; namely,
  that the ordinary laws of geometry are not valid for them.
\item
  That this property of being curved or distorted is continually being
  passed on from one portion of space to another after the manner of a
  wave.
\item
  That this variation of the curvature of space is what really happens
  in that phenomenon which we call the \emph{motion of matter}, whether
  ponderable or etherial.
\item
  That in the physical world nothing else takes place but this
  variation, subject (possibly) to the law of continuity.
\end{enumerate}
\end{quote}

He also substantially generalized Hamilton's quaternions, dropping the
condition that one have a division algebra, and focusing on the aspects
crucial to n-dimensional geometry. He obtained what we call the Clifford
algebras.

What's a Clifford algebra? Well, there are various flavors. But one of
the nicest --- let's call it \(\mathrm{C}_n\) --- is just the
associative algebra over the real numbers generated by \(n\)
anticommuting square roots of \(-1\). That is, we start with \(n\)
fellows called \[e_1, \ldots , e_n\] and form all formal products of
them, including the empty product, which we call \(1\). Then we form all
real linear combinations of these products, and then we impose the
relations \[
  \begin{aligned}
    e_i^2 &= -1
  \\e_ie_j &= -e_je_i.
  \end{aligned}
\] What are these algebras like? Well, \(C_0\) is just the real numbers,
since none of these \(e_i\)'s are thrown into the stew. \(C_1\) has one
square root of \(-1\), so it is just the complex numbers. \(C_2\) has
two square roots of \(-1\), \(e_1\) and \(e_2\), with
\[e_1 e_2 = - e_2 e_1.\] Thus \(C_2\) is just the quaternions, with
\(e_1\), \(e_2\), and \(e_1 e_2\) corresponding to Hamilton's \(i\),
\(j\), and \(k\).

How about the \(\mathrm{C}_n\) for larger values of \(n\)? Well, here is
a little table up to \(n = 8\):

\begin{longtable}[]{@{}rl@{}}
\toprule
\endhead
\(C_0\) & \(\mathbb{R}\)\tabularnewline
\(C_1\) & \(\mathbb{C}\)\tabularnewline
\(C_2\) & \(\mathbb{H}\)\tabularnewline
\(C_3\) & \(\mathbb{H}+\mathbb{H}\)\tabularnewline
\(C_4\) & \(\mathbb{H}(2)\)\tabularnewline
\(C_5\) & \(\mathbb{C}(4)\)\tabularnewline
\(C_6\) & \(\mathbb{R}(8)\)\tabularnewline
\(C_7\) & \(\mathbb{R}(8)+\mathbb{R}(8)\)\tabularnewline
\(C_8\) & \(\mathbb{R}(16)\)\tabularnewline
\bottomrule
\end{longtable}

What do these entries mean? Well, \(\mathbb{R}(n)\) means the
\(n\times n\) matrices with real entries. Similarly, \(\mathbb{C}(n)\)
means the \(n\times n\) complex matrices, and \(\mathbb{H}(n)\) means
the \(n\times n\) quaternionic matrices. All these become algebras with
the usual matrix addition and matrix multiplication. Finally, if \(A\)
is an algebra, \(A + A\) means the algebra consisting of pairs of guys
in \(A\), with the obvious rules for addition and multiplication: \[
  \begin{aligned}
    (a, a') + (b, b') &= (a + b, a' + b')
  \\(a, a') (b, b') &= (ab, a'b')
  \end{aligned}
\]

You might enjoy checking some of these descriptions of the Clifford
algebras \(\mathrm{C}_n\) for \(n\) up to 8. You have to find the
``isomorphism'' --- the correspondence between the Clifford algebra and
the algebra I claim is really the same. This gets pretty tricky when
\(n\) gets big.

How about \(n\) larger than 8? Well, here a remarkable fact comes into
play. Clifford algebras display a certain sort of ``period 8''
phenomenon. Namely, \(C_{n+8}\) consists of \(16\times 16\) matrices
with entries in \(\mathrm{C}_n\)! For a proof you might try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  H. Blaine Lawson, Jr.~and Marie-Louise Michelson, \emph{Spin
  Geometry}, Princeton U. Press, Princeton, 1989.
\end{enumerate}

or

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Dale Husemoller, \emph{Fibre Bundles}, Springer-Verlag, Berlin, 1994.
\end{enumerate}

These books also describe some of the amazing consequences of this
periodicity phenomenon. The topology of \(n\)-dimensional manifolds is
very similar to the topology of \((n+8)\)-dimensional manifolds in some
subtle but important ways! I should describe this ``Bott periodicity''
sometime, but for now let me leave it as a tantalizing mystery.

I will also have to take a rain check when it comes to describing the
importance of Clifford algebras in physics\ldots{} let me simply note
that they are crucial for understanding spin-\(1/2\) particles. I talked
a bit about this in \protect\hyperlink{week61}{``Week 61''}.

The ``Spin Geometry'' book goes into a lot of detail on Clifford
algebras, spinors, the Dirac equation and more. The ``Fibre Bundles''
book concentrates on the branch of topology called K-theory, and uses
this together with Clifford algebras to tackle various subtle questions,
such as how many linearly independent vector fields you can find on a
sphere.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Ralph L. Cohen, John D. S. Jones, and Graeme B. Segal, ``Morse theory
  and classifying spaces'', preprint as of Sept.~13, 1991.
\end{enumerate}

This is a nice way to think about what's really going on with Morse
theory. In Morse theory we study the topology of a compact Riemannian
manifold by putting a ``Morse function'' on it: a real-valued smooth
function with only nondegenerate critical points. The gradient of this
function defines a vector field and we use the way points flow along
this vector field to chop the manifold up into convenient pieces or
``cells''. A while back, Witten discovered, or rediscovered, a very cute
way to compute a topological invariant called the ``homology'' of the
invariant using Morse theory. (I've heard that this was previously known
and then largely forgotten.)

Here the authors refine this construction. They cook up a category
\(\mathcal{C}\) from the Morse function: the objects of \(\mathcal{C}\)
are critical points of the Morse function, and the morphisms are
piecewise gradient flow lines. This is a topological category, meaning
that for any pair of objects \(x\) and \(y\) the morphisms in
\(\operatorname{Hom}(x,y)\) form a topological space, and composition is
a continuous map. There is a standard recipe to construct the
``classifying space'' of any topological category, invented by Segal in
the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Graeme B. Segal, ``Classifying spaces and spectral sequences'',
  \emph{Pub. IHES} \textbf{34} (1968), 105--112.
\end{enumerate}

I described classifying spaces for discrete groups in
\protect\hyperlink{week70}{``Week 70''}, and the more general case of
discrete groupoids in \protect\hyperlink{week75}{``Week 75''}. The
construction for topological categories is similar: we make a big space
by sticking in one point for each object, one edge for each morphism,
one triangle for each composable pair of morphisms: \[
  \begin{tikzpicture}
    \node (x) at (0,0) {$x$};
    \node (y) at (1,1.7) {$y$};
    \node (z) at (2,0) {$z$};
    \draw[thick] (x) to node[fill=white]{$f$} (y);
    \draw[thick] (x) to node[fill=white]{$gf$} (z);
    \draw[thick] (y) to node[fill=white]{$g$} (z);
    \node at (4,0.8) {$
      \begin{aligned}
        f&\colon x\to y
      \\g&\colon y\to z
      \\gf&\colon x\to z
      \end{aligned}
    $};
  \end{tikzpicture}
\] and so on. The only new trick is to make sure this space gets a
topology in the right way using the topologies on the spaces
\(\operatorname{Hom}(x,y)\).

Anyway, if we form this classifying space from the topological category
\(\mathcal{C}\) coming from the Morse function on our manifold \(M\), we
get a space homotopic to \(M\)! In other words, for many topological
purposes the category \(\mathcal{C}\) is just as good as the manifold
\(M\) itself.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\item
  Ross Street, ``Descent theory'', preprint of talks given at
  Oberwolfach, Sept.~17--23, 1995.

  Ross Street, ``Fusion operators and cocycloids in monoidal
  categories'', preprints.
\end{enumerate}

Street is one of the gurus of \(n\)-category theory, which he notes
``might be called post-modern algebra (or even `post-modern mathematics'
since geometry and algebra are handled equally well by higher
categories).'' His paper on ``Descent theory'' serves as a rapid
introduction to n-categories. But the real point of the paper is to
explain the role n-categories play in cohomology theory: in particular,
how to do cohomology with coefficients in an \(\omega\)-category!

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Viqar Husain, ``Intersecting-loop solutions of the hamiltonian
  constraint of quantum general relativity'', \emph{Nucl. Phys.}
  \textbf{B313} (1989), 711--724.

  Viqar Husain and Karel V. ``Kuchar, General covariance, new variables,
  and dynamics without dynamics'', \emph{Phys. Rev.~D} \textbf{42}
  (1990), 4070--4077.

  Viqar Husain, ``Einstein's equations and the chiral model'', to appear
  in \emph{Phys. Rev.} D, preprint available as
  \href{https://arxiv.org/abs/gr-qc/9602050}{\texttt{gr-qc/9602050}}.
\end{enumerate}

Viqar is one of the excellent younger folks at the Center for
Gravitational Physics and Geometry at Penn State; I only had a bit of
time to speak with him during my last visit there, but I got some of his
papers. The first paper is from the good old days when folks were just
beginning to find explicit solutions of the constraints of quantum
gravity using the loop representation --- it's still worth reading! The
second introduced a field theory now called the Husain-Kuchar model,
which has the curious property of resembling gravity without the
dynamics. The third studies \(4\)-dimensional general relativity
assuming there are two commuting spacelike Killing vector fields. Here
he reduces the theory to a \(2\)-dimensional theory which appears to be
completely integrable --- though it has not been proved to be so in the
sense of admitting a complete set of Poisson-commuting conserved
quantities.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  \emph{The Interface of Knots and Physics}, ed.~Louis H. Kauffman,
  Proc. Symp. Appl. Math. \textbf{51}, American Mathematical Society,
  Providence, Rhode Island, 1996.
\end{enumerate}

This slim volume contains the proceedings of an AMS ``short course'' on
knots and physics held in San Francisco in January 1995, namely:

\begin{itemize}
\tightlist
\item
  Louis H. Kauffman, ``Knots and statistical mechanics''
\item
  Ruth J. Lawrence, ``An introduction to topological field theory''
\item
  Dror Bar-Natan, ``Vassiliev and quantum invariants of braids''
\item
  Samuel J. Lomonaco, ``The modern legacies of Thomson's atomic vortex
  theory in classical electrodynamics''
\item
  John C. Baez, ``Spin networks in nonperturbative quantum gravity''
\end{itemize}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{verbatim}
William Kingon Clifford
Born May 4th, 1845
Died March 3rd, 1879

I was not, and was conceived
I loved, and did a little work
I am not, and grieve not.

And

Lucy, his wife
Died April 21st, 1929

Oh, two such silver currents when they join
Do glorify the banks that bound them in.
\end{verbatim}



\hypertarget{week83}{%
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I'll return to the tale of \(n\)-categories this week, and continue to
explain the mysteries of duals and inverses. But first let me describe
two new papers by Connes.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Alain Connes, ``Gravity coupled with matter and the foundation of
  non-commutative geometry'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9603053}{\texttt{hep-th/9603053}}.

  Ali H. Chamseddine and Alain Connes, ``The spectral action
  principle'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9606001}{\texttt{hep-th/9606001}}.
\end{enumerate}

The second paper here fills in details that are missing from the first.
Hopefully lots of you know that Connes is the wizard of operator theory
who turned to inventing a new branch of geometry, ``noncommutative
geometry''. The idea of algebraic geometry is that we can study a space
by studying the functions on that space --- which typically form some
kind of commutative algebra. If we let the algebra become
noncommutative, it is no longer functions on some space, but we can
pretend it is nonetheless, and do geometry by analogy with the
commutative case. This is very much based on the philosophy of quantum
mechanics, where the observables form a noncommutative algebra, yet are
analogous to the commutative algebras of observables of classical
mechanics, these commutative algebras consisting simply of functions on
the classical space states.

In quantum mechanics, the failure of two observables to commute implies
that they cannot always be simultaneously measured with arbitrary
accuracy; there is a very precise mathematical statement of Heisenberg's
uncertainty principle that makes this quantitative. We can thus think of
noncommutative geometry as ``quantum geometry'', geometry where the
uncertainty principle of quantum mechanics has infected the very notion
of space itself! In noncommutative geometry it impossible to
simultaneously measure all the coordinates of a point with arbitrary
accuracy, because they do not commute!

For the definitive introduction to noncommutative geometry, see Connes'
book ``Noncommutative Geometry'', reviewed in
\protect\hyperlink{week39}{``Week 39''}. Already in this book Connes,
working with Lott, was beginning to explore the idea that the geometry
of our physical universe is noncommutative. Actually, they used ideas
from noncommutative geometry to study a weird kind of commutative
geometry in which spacetime is ``two-sheeted'' - two copies of standard
\(4\)-dimensional spacetime, very close together. In normal geometry it
doesn't even make sense to speak of two separate copies of spacetime
being ``close together'', since there is no way to get from one to the
other! Tricks from noncommutative geometry allow it to make sense. They
found something amazing: if you do
\(\mathrm{U}(1)\times \mathrm{SU}(2)\) Yang-Mills theory on this
spacetime, you get the Higgs particle for free!

Sorry for the jargon. What it means is this: in the Standard Model of
particle physics we describe the electromagnetic force and the weak
nuclear force in a unified way using a theory called
``\(\mathrm{U}(1)\times \mathrm{SU}(2)\) Yang-Mills theory'', but then
we postulate an extra particle, the Higgs particle, which has the effect
of making the electromagnetic force work quite differently from the weak
force. We say it ``breaks the symmetry'' between the two forces. It has
not yet been observed, though particle physicists hope to see it (or
not!) in experiments coming up fairly soon. It is a rather puzzling, ad
hoc element of the Standard Model. The amazing thing about the
Connes-Lott model is that it arises in a natural way from the fact that
spacetime has two sheets.

Connes and Lott also studied the strong force, but now Connes has
introduced gravity into his model. I haven't had time to absorb this new
work yet, so let me simply say what his current model of spacetime is,
and list some of the concrete predictions the new theory makes. His
spacetime is the noncommutative algebra consisting of smooth functions
on good old \(4\)-dimensional Minkowski spacetime, taking values in the
algebra \(A\) given by the direct sum
\[A = \mathbb{C} + \mathbb{H} + M_3(\mathbb{C})\] where \(\mathbb{C}\)
is the complex numbers, \(\mathbb{H}\) is the quaternions, and
\(M_3(\mathbb{C})\) is the \(3\times3\) complex matrices. (Exercise:
redo Connes' model, replacing \(M_3(\mathbb{C})\) with the octonions.
Hint: develop nonassociative geometry and use Geoffrey Dixon's theory
relating the electromagnetic, weak, and strong forces to the complex
numbers, quaternions, and octonions, respectively. See
\protect\hyperlink{week59}{``Week 59''} for references to Dixon's work,
and an explanation of quaternions and octonions.)

The Chamseddine-Connes model predicts that the sine squared of the
Weinberg angle --- an important constant in the theory of the
electroweak force --- is between \(.206\) and \(.210\). Unfortunately
this disagrees with the experimental value of \(.2325\), but it's sort
of surprising that they can derive something this close, since in the
Standard Model the Weinberg is just an arbitrary parameter. They also
derive a Higgs mass of 160--180 GeV, and expect accuracy comparable to
their prediction of the Weinberg angle (about 10\%).

Well worth pondering!

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

There is an interesting analogy between the dual of a vector space and
the inverse of a number which I would like to explain now. I assume you
know that multiplying numbers is a lot like tensoring vector spaces. For
example, just as multiplication distributes over addition, tensoring
distributes over direct sums. Also, just as there is a number called
\(1\) which is the unit for multiplication, there is a \(1\)-dimensional
vector space, the ground field itself, which is the unit for tensoring.
Let me take the unusual liberty of writing tensor products by
juxtaposition, so that \(xy\) is the tensor product of the vector space
\(x\) and the vector space \(y\), and let me call the \(1\)-dimensional
vector space that's the unit for tensoring simply ``\(1\)''.

Now, if a number \(x\) has an inverse \(y\), we have \[yx = 1\] and
\[1 = xy.\] Similarly, if a vector space \(x\) has a dual \(y\), we have
linear maps \[e\colon yx\to 1\] and \[i\colon 1\to xy\] What are these
linear maps? Well, the whole point of the dual vector space y is that a
vector in \(y\) is a linear functional from \(x\) to \(1\). This ``dual
pairing'' between vectors in \(y\) and those in \(x\) defines a linear
map \(e\colon yx\to 1\), often called the ``counit''. On the other hand,
the space \(xy\) can be thought of as the space of linear
transformations of \(x\). The linear map \(i\colon 1\to xy\) sends any
scalar (i.e., any vector in \(1\)) to the corresponding scalar multiple
of the identity transformation of \(x\).

So we see that dual vector spaces are a bit like inverse numbers, except
that we don't have \(yx = 1\) and \(1 = xy\), and we don't even have
that \(yx\) is \emph{isomorphic} to \(1\) and \(1\) is \emph{isomorphic}
to \(xy\). We just have some maps going from \(yx\) to \(1\), and from
\(1\) to \(xy\).

These maps satisfy two equations, though. Here's the first. We start
with \(x\), use the obvious isomorphism to map to \(1x\), then use
\(i\colon 1\to xy\) to map this to \(xyx\), then use \(e\colon yx\to 1\)
to map this to \(x1\), and then use the other obvious isomorphism to map
back to \(x\). This composite of maps should be the identity on \(x\).
What this says is that the identity linear transformation of \(x\)
really acts as the identity!

Stealing a trick from \protect\hyperlink{week79}{``Week 79''}, we can
draw this as follows. Draw the counit \(e\colon yx\to 1\) as follows: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=down,looseness=2] (1,0)
        to (1,0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$y$};
    \node[fill=white] at (1,0) {$x$};
    \node[label=below:{$e$}] at (0.5,-0.6) {$\bullet$};
  \end{tikzpicture}
\] and draw the unit \(i\colon1\to xy\) as follows: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,-0.5)
        to (0,0)
        to [out=up,in=up,looseness=2] (1,0)
        to (1,-0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x$};
    \node[fill=white] at (1,0) {$y$};
    \node[label=above:{$i$}] at (0.5,0.57) {$\bullet$};
  \end{tikzpicture}
\] Then the above equation says that \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to (0,1)
      to [out=up,in=up,looseness=2] (1,1)
      to [out=down,in=down,looseness=2] (2,1)
      to (2,2);
    \end{knot}
    \node[fill=white] at (0,0.25) {$x$};
    \node[fill=white] at (2,1.75) {$x$};
    \node[fill=white] at (0,1) {$x$};
    \node[fill=white] at (1,1) {$y$};
    \node[fill=white] at (2,1) {$x$};
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[fill=white] at (0,0.25) {$x$};
      \node[fill=white] at (0,1.75) {$x$};
    \end{scope}
  \end{tikzpicture}
\] Here the left side, which we read from top to bottom, corresponds to
the composite \(x\to 1x\to xyx\to x1\to x\). (The factors of \(1\) are
invisible in the picture, since they don't do much.) The left side
corresponds to the identity map \(x\to x\).

The second equation goes like this. We start with \(y\), use the obvious
isomorphism to map to \(y1\), then use the unit to map this to \(yxy\),
then use the counit to map this to \(1y\), and then use the other
obvious isomorphism to map back to \(y\). This composite should be the
identity on \(y\). What this says is that the identity linear
transformation of \(x\) also acts dually as the identity on \(y\)! We
can draw this as follows: \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-2,0)}]
      \begin{knot}
        \strand[thick] (0,0)
        to (0,1)
        to [out=up,in=up,looseness=2] (1,1)
        to [out=down,in=down,looseness=2] (2,1)
        to (2,2);
      \end{knot}
      \node[fill=white] at (0,0.5) {$y$};
      \node[fill=white] at (2,1.5) {$y$};
      \node[fill=white] at (2,1) {$y$};
      \node[fill=white] at (1,1) {$x$};
      \node[fill=white] at (0,1) {$y$};
    \end{scope}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[fill=white] at (0,0.5) {$y$};
      \node[fill=white] at (0,1.7) {$y$};
    \end{scope}
  \end{tikzpicture}
\] If you now steal a peek at \protect\hyperlink{week79}{``Week 79''},
you'll see that these two equations are just the same equations used to
define adjoint functors in category theory! What's going on? Well, dual
vector spaces are analogous to adjoint functors, clearly. But more
deeply, what we have is an analogy between duals in any category with
tensor products --- or ``monoidal category'' --- and adjoints in any
\(2\)-category.

What's a monoidal category, exactly? Roughly it's a category with some
sort of ``tensor product'' and ``unit object''. But we can precisely
define the so-called ``strict'' monoidal categories as follows: they are
simply \(2\)-categories with one object. (Turn to
\protect\hyperlink{week80}{``Week 80''} for a definition of
\(2\)-categories.) A \(2\)-category has objects, morphisms, and
\(2\)-morphisms, but if there is only one object, we can do the
following relabelling trick: \[
  \begin{aligned}
    \text{2-morphisms} &\mapsto \text{morphisms}
  \\\text{morphisms} &\mapsto \text{objects}
  \\\text{objects} &\mapsto 
  \end{aligned}
\] Namely, we can forget about the object, call the morphisms
``objects'', and call the \(2\)-morphisms ``morphisms''. But since all
the new ``objects'' were really morphisms from the original single
object to itself, they can all be composed, or ``tensored''. That's why
we get a category with ``tensor product'', and similarly, a ``unit
object''.

So, just as a category with one object is just a monoid, a
\(2\)-category with one object is a monoidal category! This is one
instance of a trick that I sketched many more cases of in
\protect\hyperlink{week74}{``Week 74''}.

Now, in \protect\hyperlink{week79}{``Week 79''} I defined left and right
adjoints of functors between categories. Here the only thing I really
needed about category theory was that \(\mathsf{Cat}\) is a
\(2\)-category with categories as its objects, functors as its
morphisms, and natural transformations as its 2-morphisms. So we can
define left and right adjoints of morphisms in any \(2\)-category by
analogy as follows:

Suppose \(a\) and \(b\) are objects in a \(2\)-category. Then we say
that the morphism \[L\colon a\to b\] is a ``left adjoint'' of the
morphism \[R\colon b\to a\] (and \(R\) is a ``right adjoint'' of \(L\))
if there are \(2\)-morphisms \[
  \begin{aligned}
    e&\colon RL\Rightarrow 1_b
  \\i&\colon 1_a\Rightarrow LR
  \end{aligned}
\] satisfying two magic equations. If we draw \(e\) and \(i\) as we did
above, \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=down,looseness=2] (1,0)
        to (1,0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$y$};
    \node[fill=white] at (1,0) {$x$};
    \node[label=below:{$e$}] at (0.5,-0.6) {$\bullet$};
  \end{tikzpicture}
  \qquad
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,-0.5)
        to (0,0)
        to [out=up,in=up,looseness=2] (1,0)
        to (1,-0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x$};
    \node[fill=white] at (1,0) {$y$};
    \node[label=above:{$i$}] at (0.5,0.57) {$\bullet$};
  \end{tikzpicture}
\] then the two magic equations are \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to (0,1)
      to [out=up,in=up,looseness=2] (1,1)
      to [out=down,in=down,looseness=2] (2,1)
      to (2,2);
    \end{knot}
    \node[fill=white] at (0,0.25) {$L$};
    \node[fill=white] at (2,1.75) {$L$};
    \node[fill=white] at (0,1) {$L$};
    \node[fill=white] at (1,1) {$R$};
    \node[fill=white] at (2,1) {$L$};
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[fill=white] at (0,0.25) {$L$};
      \node[fill=white] at (0,1.75) {$L$};
    \end{scope}
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-2,0)}]
      \begin{knot}
        \strand[thick] (0,0)
        to (0,1)
        to [out=up,in=up,looseness=2] (1,1)
        to [out=down,in=down,looseness=2] (2,1)
        to (2,2);
      \end{knot}
      \node[fill=white] at (0,0.5) {$R$};
      \node[fill=white] at (2,1.5) {$R$};
      \node[fill=white] at (2,1) {$R$};
      \node[fill=white] at (1,1) {$L$};
      \node[fill=white] at (0,1) {$R$};
    \end{scope}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[fill=white] at (0,0.5) {$R$};
      \node[fill=white] at (0,1.7) {$R$};
    \end{scope}
  \end{tikzpicture}
\]

Alternatively, we can state these equations using the \(2\)-categorical
notation described in \protect\hyperlink{week80}{``Week 80''}, by saying
that the following vertical composites of \(2\)-morphisms are identity
morphisms:
\[L = 1_aL\xRightarrow{i\cdot1_L}LRL\xRightarrow{1_L\cdot e}L1_a = L\]
and
\[R = R1_a\xRightarrow{1_R\cdot i}RLR\xRightarrow{e\cdot1_R}1_bR = R\]
where \(\cdot\) denotes the horizontal composite. If you look at these,
and compare them to the graphical notation above, you'll see they are
really saying the same thing.

The punchline is, when our \(2\)-category has one object, we can think
of it as a monoidal category, and then these equations are the
definition of ``duals'' --- one example being our earlier definition of
dual vector spaces in the monoidal category Vect of vector spaces!

So adjoint functors and dual vector spaces are both instances of the
general notion of adjoint \(1\)-morphisms in a \(2\)-category.
Adjointness is a very basic concept.

I hope all that made some sense.

If this category theory stuff seems confusing, maybe you should read a
3-volume book about it! I can see you smiling, but seriously, I find the
following reference very useful (despite a certain number of annoying
errors). You can find a lot of good stuff about adjoint functors,
monoidal categories, and much much more in here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Francis Borceux, \emph{Handbook of Categorical Algebra}, Cambridge U.
  Press 1994. \emph{Volume 1: Basic Category Theory}. \emph{Volume 2:
  Categories and Structure}. \emph{Volume 3: Categories of Sheaves}.
\end{enumerate}

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week84}{``Week 84''}.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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While I try to limit myself to mathematical physics in This Week's
Finds, I can't always keep it from spilling over into other
subjects\ldots{} so if you're not interested in computers, just skip
down to reference 8 below. A while back on \texttt{sci.physics} Matt
McIrvin pointed out that the closest thing we have to the computer of
old science fiction --- the underground behemoth attended by technicians
in white lab coats that can answer any question you type in --- is
AltaVista. I agree wholeheartedly.

In case you are a few months or years behind on the technological front,
let me explain: these days there is a vast amount of material available
on the World-Wide Web, so that the problem has become one of locating
what you are interested in. You can do this with programs known as
search engines. There are lots of search engines, but my favorite these
days is AltaVista, which is run by DEC, and seems to be especially
comprehensive. So these days if you want to know, say, the meaning of
life, you can just go to

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  AltaVista, \texttt{http://www.altavista.digital.com/}
\end{enumerate}

type in ``meaning of life'', and see what everyone has written about it.
You'll be none the wiser, of course, but that's how it always worked in
those old science fiction stories, too.

The intelligence of AltaVista is of course far less than that of a fruit
fly. But Matt's comment made me think about how now, as soon as we
develop even a rudimentary form of artificial intelligence, it will
immediately have access to vast reams of information on the Web\ldots{}
and may start doing some surprising things.

An example of what I'm talking about is the CYC project, Doug Lenat's
\$35 million project, begun in 1984, to write a program with common
sense. In fact, the project plans to set CYC loose on the web once it
knows enough to learn something from it.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  CYC project homepage, \texttt{http://www.cyc.com/}
\end{enumerate}

The idea behind CYC is to encode ``common sense'' as about half a
million rules of thumb, declarative sentences which CYC can use to
generate inferences. To have any chance of success, these rules of thumb
must be organized and manipulated very carefully. One key aspect of this
is CYC's ontology --- the framework that lets it know, for example, that
you can eat 4 sandwiches, but not 4 colors or the number 4. Most of the
CYC code is proprietary, but the ontology will be made public in July of
this year, they say. One can already read about aspects of it in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Douglas B. Lenat and R.V. Guha, \emph{Building Large Knowledge-Based
  Systems: Representation and Inference in the Cyc Project},
  Addison-Wesley, Reading, Mass., 1990.
\end{enumerate}

My network of spies informs me that many hackers are rather suspicious
of CYC. For an interesting and somewhat critical account of CYC at one
stage of its development, see

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Vaughan Pratt, ``CYC Report'',
  \texttt{http://boole.stanford.edu/pub/cyc.report}
\end{enumerate}

Turning to something that's already very practical, I was very pleased
when I found one could use AltaVista to do ``backlinks''. Certainly the
World-Wide Web is in part inspired by Ted Nelson's visionary but
ill-starred Xanadu project.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Project Xanadu, \texttt{http://xanadu.net/the.project}
\end{enumerate}

Backlinking is one of the most tricky parts of Ted Nelson's vision, one
often declared infeasible, but one upon which he has always insisted.
Basically, the idea is that you should always be able to find all the
documents pointing \emph{to} a given document, as well as those to which
it points. This allows \textbf{commentary} or \textbf{annotation}: if
you read something, you can read what other people have written about
it. My spies inform me that the World-Wide Web Committee is moving in
this direction, but it is exciting that one can already do ``backlinks
browsing'' with the help of a program written by Ted Kaehler:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Ted Kaehler's backlinks browser,
  \texttt{http://www.foresight.org/backlinks1.3.1.html}
\end{enumerate}

Go to this page at the start of your browsing session. Follow the
directions and let it create a new Netscape window for you to browse in.
Whenever you want backlinks, click in the original page, and click
``Links to Other Page''. This launches an AltaVista search for links to
the page you were just looking at.

It works quite nicely. I hope you try it, because with backlinking the
Web will become a much more interesting and useful place, and the more
people who know about it, the sooner it will catch on. For more
discussion of backlinking, see

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\item
  Backlinking news at the Foresight Institute,
  \texttt{http://www.foresight.org/backlinks.news.html}

  Robin Hanson's ideas on backlinking,
  \texttt{http://www.hss.caltech.edu/\textasciitilde{}hanson/findcritics.html}
\end{enumerate}

I thank my best buddy Bruce Smith for telling me about CYC, Project
Xanadu, and Ted Kaehler's backlinks browser.

Now let me turn to some mathematics and physics.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\item
  Francesco Fucito, Maurizio Martellini and Mauro Zeni, ``The BF
  formalism for QCD and quark confinement'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9605018}{\texttt{hep-th/9605018}}.
\item
  Ioannis Tsohantjis, Alex C Kalloniatis, and Peter D. Jarvis, ``Chord
  diagrams and BPHZ subtractions'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9604191}{\texttt{hep-th/9604191}}.
\end{enumerate}

These two papers both treat interesting relationships between topology
and quantum field theory --- not the ``topological quantum field
theory'' beloved of effete mathematicians such as myself, but the
pedestrian sort of quantum field theory that ordinary working physicists
use to study particle physics. So we are seeing an interesting
cross-fertilization here: first quantum field theory got applied to
topology, and now the resulting ideas are getting applied back to
particle physics.

Why don't we see quarks roaming the streets freely at night? Because
they are confined! Confined to the hadrons in which they reside, that
is. We mainly see two sorts of hadrons: baryons made of three quarks,
like the proton and neutron, and mesons made of a quark and an
antiquark, like the pion or kaon. Why are the quarks confined in
hadrons? Well, roughly it's because if you grab a quark inside a hadron
and try to pull it out, the force needed to pull it doesn't decrease as
you pull it farther out; instead, it remains about constant. Thus the
energy grows linearly with the distance, and eventually you have put
enough energy into the hadron to create another quark-antiquark pair,
and \emph{pop} --- you find you are holding not a single quark but a
quark together with a newly born antiquark, that is, a meson! What's
left is a hadron with a newly born quark as the replacement for the one
you tried to pull out!

That's a pretty heuristic description. In fact, particle physicists do
not usually grab hadrons and try to wrest quarks from them with their
bare hands. Instead they smash hadrons and other particles at each other
and study the debris. But as a rough sketch of the theory of quark
confinement, the above description is not \emph{completely} silly.

There are various interesting things left to do, though. One is to try
to get those quarks out by means of sneaky tricks. The only way known is
to \emph{heat} a bunch of hadrons to ridiculously high temperatures,
preferably at ridiculously high pressures. I'm talking temperatures like
2 trillion degrees, and densities comparable to that of nuclear matter!
This should yield a ``quark-gluon plasma'' in which quarks can zip
around freely at enormous energies. That's what the folks at the
Relativistic Heavy Ion Collider are doing --- see
\protect\hyperlink{week76}{``Week 76''} for more.

This should certainly keep the experimentalists entertained. On the
other hand, theorists can have lots of fun trying to understand more
deeply why quarks are confined. We'd like best to derive confinement in
some fairly clear and fairly rigorous way from quantum chromodynamics,
or QCD --- our current theory of the strong force, the force that binds
the quarks together. Unfortunately, mathematical physicists are still
struggling to formulate QCD in a rigorous way, so they can't yet turn to
the exciting challenge of proving that confinement follows from QCD. And
we certainly don't expect any simple way to ``exactly solve'' QCD, since
it is complicated and highly nonlinear. So what some people do instead
is computer simulations of QCD, in which they approximate spacetime by a
lattice and do a lot of number-crunching. They usually use a fairly
measly-sounding grid of something like 16 x 16 x 16 x 16 sites or so,
since currently calculations take too long when the lattice gets much
bigger than that.

Numerical calculations like these have a lot of potential. In
\protect\hyperlink{week68}{``Week 68''}, for example, I talked about how
people found numerical evidence for the existence of a ``glueball'' ---
a hadron made of no quarks, just gluons, the gluon being the particle
that carries the strong force. This glueball candidate seems to match
the features of an observed particle! Also, people have put a lot of
work into computing the masses of more familiar hadrons. So far I
believe they have concentrated on mesons, which are simpler. Eventually
we should in principle be able to calculate things like the mass of the
proton and neutron --- which would be really thrilling, I think.
Numerical calculations have also yielded a lot of numerical evidence
that QCD predicts confinement.

Still, one would very much like some conceptual explanation for
confinement, even if it's not quite rigorous. One way people try to
understand it is in terms of ``dual superconductivity''. In certain
superconductors, magnetic fields can only penetrate as long narrow tubes
of magnetic flux. (For example, this happens in neutron stars - see
\protect\hyperlink{week37}{``Week 37''}.) Now, just as electromagnetism
consists of an ``electric'' part and a ``magnetic'' part, so does the
strong force. But the idea is that confinement is due to the
\emph{electric} part of the strong force only being able to penetrate
the vacuum in the form of long narrow tubes of field lines. The electric
and magnetic fields are ``dual'' to each other in a precise mathematical
sense, so this is referred to as dual superconductivity. Quarks have the
strong force version of electric charge --- called ``color'' --- and
when we try to pull two quarks apart, the strong electric field gets
pulled into a long tube. This is why the force remains constant rather
than diminishing as the distance between the quarks increases.

A while back, 't Hooft proposed an idea for studying confinement in
terms of dual superconductivity and certain ``order'' and ``disorder''
observables. It seems this idea has languished to some extent due to a
lack of necessary mathematical infrastructure. For the last couple of
years, Martellini has been suggesting to use ideas from topological
quantum field theory to serve this role. In particular, he suggested
treating Yang-Mills theory as a perturbation of \(BF\) theory, and
applying some of the ideas of Witten and Seiberg (who related
confinement in the supersymmetric generalization of Yang-Mills theory to
Donaldson theory). In the paper with Fucito and Zeni, they make some of
these ideas precise. There are still some potentially serious loose
ends, so I am very interested to hear the reaction of others working on
confinement.

I have not studied the paper of Tsohantjis, Kalloniatis, and Jarvis in
any detail, but people studying Vassiliev invariants might find it
interesting, since it claims to relate the renormalization theory of
\(\varphi^3\) theory to the mathematics of chord diagrams.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Masaki Kashiwara and Yoshihisa Saito, ``Geometric construction of
  crystal bases'',
  \href{https://arxiv.org/abs/q-alg/9606009}{\texttt{q-alg/9606009}}.
\end{enumerate}

The ``canonical'' and ``crystal'' bases associated to quantum groups,
studied by Kashiwara, Lusztig, and others, are exciting to me because
they indicate that the quantum groups are just the tip of a still richer
structure. Whenever you see an algebraic structure with a basis in which
the structure constants are nonnegative integers, you should suspect
that you are really working with a category of some sort, but in
boiled-down or ``decategorified'' form.

Consider for example the representation ring \(R(G)\) of a group \(G\).
This is a ring whose elements are just the isomorphism classes of
finite- dimensional representations of \(G\). Addition in \(R(G)\)
corresponds to taking the direct sum of representations, while
multiplication corresponds to taking the tensor product. Thus for
example if \(x\) and \(y\) are irreducible representations of \(G\) ---
or ``irreps'' for short --- and \([x]\) and \([y]\) are the
corresponding basis elements of R(G), the product \([x][y]\) is equal to
a linear combination of the irreps appearing in \(x\otimes y\), with the
coefficients in the linear combination being the \emph{multiplicities}
with which the various irreps appear in \(x\otimes y\). These
coefficients are therefore nonnegative integers. They are an example of
what I'm calling ``structure constants''.

What's happening here is that the ring \(R(G)\) is serving as a
``decategorified'' version of the category \(\mathsf{Rep}(G)\) of
representations of the group G. Alsmost everything about \(R(G)\) is
just a decategorified version of something about \(\mathsf{Rep}(G)\).
For example, \(R(G)\) is a monoid under multiplication, while
\(\mathsf{Rep}(G)\) is a monoidal category under tensor product.
\(R(G)\) is actually a commutative monoid, while \(\mathsf{Rep}(G)\) is
a symmetric monoidal category --- this being jargon for how the tensor
product is ``commutative'' up to a nice sort of isomorphism. In \(R(G)\)
we have addition, while in \(\mathsf{Rep}(G)\) we have direct sums,
which category theorists would call ``biproducts''. And so on. The
representation ring is a common tool in group theory, but a lot of the
reason for working with \(R(G)\) is simply that we don't know enough
about category theory and are too scared to work directly with
\(\mathsf{Rep}(G)\). There are also \emph{good} reasons for working with
\(R(G)\), basically \emph{because} it is simpler and contains less
information than \(\mathsf{Rep}(G)\).

We can imagine that if someone handed us a representation ring \(R(G)\)
we might eventually notice that it had a nice basis in which the
structure constants were nonnegative integers. And we might then realize
that lurking behind it was a category, \(\mathsf{Rep}(G)\). And then all
sorts of things about it would become clearer\ldots.

Something similar like this seems to be happening with quantum groups!
Ignoring a lot of important technical details, let me just say that
quantum groups turn out have nice bases in which the structure constants
are nonnegative integers, and the reason is that lurking behind the
quantum groups are certain categories. What sort of categories?
Categories of ``Lagrangian subvarieties of the cotangent bundles of
quiver varieties''. Yikes! I don't think I'll explain \emph{that}
mouthful! Let me just note that a quiver is itself a cute little
category that you cook up by taking a graph and thinking of the vertices
as objects and the edges as morphisms, like this:
\[\bullet\to\bullet\to\bullet\to\bullet\to\bullet\] If you do this to a
graph that's the Dynkin diagram of a Lie group --- see
\protect\hyperlink{week62}{``Week 62''} and the weeks following that ---
then the fun starts! Dynkin diagrams give Lie groups, but also quantum
groups, and now it turns out that they also give rise to certain
categories of which the quantum groups are decategoried, boiled-down
versions\ldots. I don't understand all this, but I certainly intend to,
because it's simply amazing how a world of complex symmetry emerges from
these Dynkin diagrams.

For more on this stuff try the paper by Crane and Frenkel referred to in
\protect\hyperlink{week38}{``Week 38''} and
\protect\hyperlink{week50}{``Week 50''}. It suggests some amazing
relationships between this stuff and \(4\)-dimensional topology\ldots.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Let me conclude by reminding you where I am in ``the tale of
\(n\)-categories'' and where I want to go next. So far I have spoken
mainly of 0-categories, \(1\)-categories, and \(2\)-categories, with
lots of vague allusions as to how various patterns generalize to higher
\(n\). Also, I have concentrated mainly on the related notions of
equality, isomorphism, equivalence, and adjointness. Equality,
isomorphism and equivalence are the most natural notions of ``sameness''
when working in 0-categories, \(1\)-categories, and \(2\)-categories,
respectively. Adjointness is a closely related but more subtle and
exciting concept that you can only start talking about once you get to
the level of \(2\)-categories. People got tremendously excited by it
when they started working with the \(2\)-category \(\mathsf{Cat}\) of
all small categories, because it explained a vast number of situations
where you have a way to go back and forth between two categories,
without the categories being ``the same'' (or equivalent). Another
exciting thing about adjointness is that it really highlights the
relation between \(2\)-categories and \(2\)-dimensional topology ---
thus pointing the way to a more general relation between
\(n\)-categories and \(n\)-dimensional topology. From this point of
view, adjointness is all about ``folds'': \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to [out=down,in=down,looseness=2] (1,0);
    \end{knot}
  \end{tikzpicture}
  \qquad
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to [out=up,in=up,looseness=2] (1,0);
    \end{knot}
  \end{tikzpicture}
\] and their ability to cancel: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to (0,1)
      to [out=up,in=up,looseness=2] (1,1)
      to [out=down,in=down,looseness=2] (2,1)
      to (2,2);
    \end{knot}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-2,0)}]
      \begin{knot}
        \strand[thick] (0,0)
        to (0,1)
        to [out=up,in=up,looseness=2] (1,1)
        to [out=down,in=down,looseness=2] (2,1)
        to (2,2);
      \end{knot}
    \end{scope}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
    \end{scope}
  \end{tikzpicture}
\] This concept of ``doubling back'' or ``backtracking'' is a very
simple and powerful one, so it's not surprising that it is prevalent
throughout mathematics and physics. It is an essentially
\(2\)-dimensional phenomenon (though it occurs in higher dimensions as
well), so it can be understood most generally in the language of
\(2\)-categories.

(In physics, ``doubling back'' is related to the notion of antiparticles
as particle moving backwards in time, and appears in the Feynman
diagrams for annihilation and creation of particle/antiparticle pairs.
For those familiar with the category-theoretic approach to Feynman
diagrams, the stuff in \protect\hyperlink{week83}{``Week 83''} about
dual vector spaces should suffice to make this connection precise.)

Next I will talk about another \(2\)-dimensional concept, the concept of
``joining'' or ``merging'': \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=up] (0.5,-1)
        to (0.5,-1.5);
      \strand[thick] (1,0)
        to [out=down,in=up] (0.5,-1);
    \end{knot}
  \end{tikzpicture}
\] This is probably even more powerful than the concept of ``folding'':
it shows up whenever we add numbers, multiply numbers, or in many other
ways combine things. The \(2\)-categorical way to understand this is as
follows. Suppose we have an object \(x\) in a \(2\)-category, and a
morphism \(f\colon x \to x\). Then we can ask for a \(2\)-morphism
\[M\colon f^2 \Rightarrow f.\] If we have such a thing, we can draw it
as a traditional \(2\)-categorical diagram: \[
  \begin{tikzpicture}
    \node (xl) at (0,0) {$x$};
    \node (xt) at (1.25,2) {$x$};
    \node (xr) at (2.5,0) {$x$};
    \draw[thick] (xl) to node[fill=white]{$f$} (xt);
    \draw[thick] (xt) to node[fill=white]{$f$} (xr);
    \draw[thick] (xl) to node[fill=white]{$f$} (xr);
    \draw[-implies,double equal sign distance] (xt) to (1.25,0.2);
    \node at (1,0.7) {$M$};
  \end{tikzpicture}
\] or dually as a ``string diagram'' \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=up] (0.5,-1)
        to (0.5,-2);
      \strand[thick] (1,0.5)
        to (1,0)
        to [out=down,in=up] (0.5,-1);
    \end{knot}
    \node[fill=white] at (0,0) {$f$};
    \node[fill=white] at (1,0) {$f$};
    \node[label=left:{$M$}] at (0.5,-0.95) {$\bullet$};
    \node[fill=white] at (0.5,-1.5) {$f$};
  \end{tikzpicture}
\] Regardless of how you draw it, the \(2\)-morphism
\(M\colon f^2 \Rightarrow f\) represents a process turning two copies of
\(f\) into one. And as we'll see, all sorts of fancy ways mathematicians
have of studying this sort of process --- ``monoids'', ``monoidal
categories'', and ``monads'' --- are special cases of this sort of
situation.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week89}{``Week 89''}.
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I'm spending this month at the Erwin Schroedinger Institute in Vienna,
where Abhay Ashtekar and Peter Aichelburg are running a workshop called
Mathematical Problems of Quantum Gravity.

Ashtekar is one of the founders of an approach to quantizing gravity
called the loop representation. I've explained this approach in
\protect\hyperlink{week7}{``Week 7''}, \protect\hyperlink{week43}{``Week
43''}, and other places, but let me just remind you of the basic idea.
In the traditional approach to reconciling general relativity with
quantum theory, excitations of the gravitational field were described by
small ripples in the geometry of flat spacetime, or ``gravitons''. In
the loop representation, they are instead described by collections of
loops, which we can think of as ``flux tubes of area'' floating in an
otherwise utterly featureless void. More recently, the loop approach has
been supplemented by a technical device known as ``spin networks'':
roughly speaking, a spin network is a graph whose edges are labelled by
spins \(0,1/2,1,3/2,\ldots\) with an edge of spin \(j\) corresponding to
a flux tube carrying area equal to \(\sqrt{j(j+1)}\) times the square of
the Planck length --- the fundamental length scale in quantum gravity,
about \(10^{-35}\) meters. For more on spin networks, try
\protect\hyperlink{week55}{``Week 55''}.

Quantum gravity has always been a tough subject. After a lot of work, a
lot of people concluded that the traditional approach to quantum gravity
didn't make sense, mathematically. This led to string theory, an attempt
to quantize gravity together with all the other forces and particles.
But in the late 1980s, Rovelli and Smolin revived hopes of quantizing
gravity alone by introducing the loop representation.

One doesn't expect the loop representation to describe much real physics
until one introduces other forces and particles. Pure gravity is just a
warm-up exercise --- but it's not at all easy! When the loop
representation was born, it was rather sketchy at many points. A lot of
mathematical problems had to be overcome to make it as precise as it is
now\ldots. and there are a lot of formidable difficulties left, any one
of which could spell doom for the theory. Luckily, progress has been
rapid. Many of the problems which seemed hopelessly beyond our reach a
few years ago can now be formulated precisely, and maybe even solved.
The idea of this workshop is to start tackling these problems.

A lot has been going on! People give talks at 11 in the morning, while
afternoons are devoted to more informal discussions in small groups.
There are general introductory talks on Tuesdays, more technical talks
on Thursdays, and short talks on research in progress on some other
days.

To give a bit of the flavor of the workshop, let me describe things day
by day. I'll need to describe some days very sketchily, though, or I'll
never finish writing this!

\begin{itemize}
\item
  \textbf{Wednesday, July 3} --- Rodolfo Gambini spoke on
  gauge-invariance in the extended loop representation. The idea of the
  loop representation is to study the gravitational vector potential by
  studying certain integrals of it around loops. Mathematicians call
  this the trace of the holonomy, and physicists call it a Wilson loop
  or the trace of a path-ordered exponential. In the loop
  representation, states of quantum gravity are described by certain
  functions that eat Wilson loops and spit out complex numbers\ldots{}
  i.e., that assign an ``amplitude'' to each Wilson loop.

  In quantum field theory you often need to average a quantum field over
  some \(3\)-dimensional region of space or \(4\)-dimensional region of
  spacetime to get a well-defined operator. Wilson loops are rather
  singular because a loop is a one-dimensional object. On the other
  hand, they are nice because they are gauge-invariant: they don't
  change when we do a gauge transformation to the vector potential.

  In the ``extended'' loop representation one tries to make the integral
  less singular by not dealing with actual loops, but certain analogous
  integrals over all \(3\)-dimensional space. Heuristic calculations
  suggest that they are gauge-invariant, but Troy Schilling noticed a
  while ago that they aren't always \emph{really} gauge-invariant ---
  basically because the the path-ordered exponential is given by a
  certain Taylor series, and nasty things can happen when you manipulate
  infinite series without checking if your manipulations are legitimate!
  See:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \tightlist
  \item
    Troy Schilling, ``Non-covariance of the generalized holonomies:
    Examples'', preprint available as
    \href{https://arxiv.org/abs/gr-qc/9503064}{\texttt{gr-qc/9503064}}.
  \end{enumerate}

  There has been a certain amount of competition between the extended
  loop representation, developed by Gambini and various coauthors, and
  Ashtekar's approach. Thus Schilling's result was seen as a blow
  against the extended loop representation. In Gambini's talk, he argued
  that gauge-invariance is rigorously maintained by certain extended
  loops, e.g.~those for which the power series has finitely many terms.
  The most famous examples of functions of extended loops with only
  finitely many terms are the Vassiliev invariants, which come up in
  knot theory (see \protect\hyperlink{week3}{``Week 3''}). Gambini and
  Pullin have claimed that certain Vassiliev invariants are states of
  quantum gravity, so these are of special interest.

  The feeling was that we needed to compare these different loop
  representations more carefully because they both have advantages.

  Also, Renate Loll spoke about ``Lattice Gravity''. See
  \protect\hyperlink{week55}{``Week 55''} for a bit more on this. Her
  talk led to an interesting discussion of the meaning of the limit, as
  the lattice spacing goes to zero, of quantum gravity as done on a
  lattice. Does it make sense? One needs, apparently, to look at ones
  formula for the Hamiltonian constraint on the lattice, and see if it
  depends on the Planck length in a manner \emph{other than} having the
  Planck length as an overall prefactor. Various people tried to do the
  calculation on the spot, and got mixed up.
\item
  \textbf{Thursday, July 4} --- Thomas Thiemann spoke on ``The
  Hamiltonian Constraint for Lorentzian Canonical Quantum Gravity''.
  This was a big bombshell. The Hamiltonian constraint in quantum
  gravity is one of the biggest, baddest problems we are facing. It's
  the analog of Schrodinger's equation in quantum mechanics, but it's a
  constraint: \[H\psi=0.\] All the dynamics of the theory is contained
  in this equation, yet we only roughly understand how to define it in a
  rigorous way. Thiemann, a student of Ashtekar who is now a postdoc at
  Harvard, had put the following 5 papers on the general relativity
  preprint server right before the workshop. The first one gives a
  rigorous definition of the Hamiltonian constraint!

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{1}
  \item
    Thomas Thiemann, ``Quantum Spin Dynamics (QSD)'', preprint available
    as
    \href{https://arxiv.org/abs/gr-qc/9606089}{\texttt{gr-qc/9606089}}.

    Thomas Thiemann, ``Quantum Spin Dynamics (QSD) II'', preprint
    available as
    \href{https://arxiv.org/abs/gr-qc/9606090}{\texttt{gr-qc/9606090}}.

    Thomas Thiemann, ``Anomaly-free formulation of non-perturbative,
    four-dimensional Lorentzian quantum gravity'', \emph{Phys. Lett. B}
    \textbf{380} (1996) 257--264, preprint available as
    \href{https://arxiv.org/abs/gr-qc/9606088}{\texttt{gr-qc/9606088}}.

    Thomas Thiemann, ``Closed formula for the matrix elements of the
    volume operator in canonical quantum gravity'', preprint available
    as
    \href{https://arxiv.org/abs/gr-qc/9606091}{\texttt{gr-qc/9606091}}.

    Thomas Thiemann, ``A length operator for canonical quantum
    gravity'', preprint available as
    \href{https://arxiv.org/abs/gr-qc/9606092}{\texttt{gr-qc/9606092}}.
  \end{enumerate}

  It is interesting to compare ``Quantum Spin Dynamics'' to the paper by
  Ashtekar and Lewandowksi, so far available only in draft form to a
  select few, in which they gave a rigorous definition of the square
  root of the Hamiltonian constraint. The advantage of ``QSD'' is that
  it deals directly with the Hamiltonian constraint, rather than its
  square root, and that it does this using some ingenious formulas for
  the Hamiltonian constraint of Lorentzian gravity in terms of the
  Hamiltonian constraint for Riemannian gravity and the total volume and
  total extrinsic curvature of the universe (which we assume is
  compact).

  You see, quantum gravity comes in two flavors, Lorentzian and
  Riemannian, depending on whether we work with real time --- the
  obviously sensible thing to do --- or imaginary time --- not at all
  obviously sensible, but with a curious mathematical charm to it, which
  has won many hearts. The interplay between these two has long been a
  bugaboo of the loop representation. The Lorentzian theory is harder to
  work with, so lots of people cheat and study the Riemannian theory.
  Sometimes they do this covertly, with a guilty conscience, so in some
  papers it's left unclear which theory the author is actually working
  with! Thiemann's work, however, seems to exploit the interplay between
  the theories in a benign way --- related to earlier ideas of Ashtekar,
  but different. I would like to understand this interplay more deeply.

  Due to jetlag I woke up at 4 am on the morning of this talk, and I
  couldn't get back to sleep, so I read his paper. When I came to the
  Institute at 9 am --- a shockingly early hour for people working on
  quantum gravity --- I was sure nobody would be there yet. But as I
  entered I bumped into Carlo Rovelli. It turned out he had stayed up
  all night reading Thiemann's paper, too excited to sleep!

  After this talk everyone was busily trying to learn Thiemann's stuff,
  trying to figure out if it is physically correct, and trying to figure
  out what to do next.
\item
  \textbf{Tuesday, July 9} --- Abhay Ashtekar gave a general talk on the
  ``Quantum Theory of Geometry''. Most of it was well-known stuff to
  fans of the loop representation, but one new tidbit concerned the
  noncommutativity of area operators. Since the area of surfaces in
  space depends only on the metric on space, not on its first time
  derivative, one might expect their quantum analogs to commute, since
  the metric and its first time derivative are analogous to position and
  momentum in quantum mechanics. But they don't commute! In a later
  talk, Ashtekar explained that this is not really a strange new feature
  of quantum gravity, but one which has its classical analog.
\item
  \textbf{Wednesday, July 10} --- Kirill Krasnov gave a talk on a paper
  we started working on together just recently, ``Quantization of
  diffeomorphism invariant theories with fermions''. Kirill is a young
  Ukrainian physicist whom I first met last summer in Warsaw; he had
  written a nice paper on the loop representation of quantum gravity
  coupled to electromagnetism and fermions:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{2}
  \tightlist
  \item
    Kirill Krasnov, ``Quantum loop representation for fermions coupled
    to Einstein-Maxwell field'', \emph{Phys. Rev.} \textbf{D53} (1996),
    1874; preprint available as
    \href{https://arxiv.org/abs/gr-qc/9506029}{\texttt{gr-qc/9506029}}.
  \end{enumerate}

  When I met him again here, it turned out he was continuing this work,
  and also making it more rigorous. Now, I had for some time been
  meaning to write something with Hugo Morales-Tecotl showing that a
  slight generalization of spin network states form a basis of states
  for such theories. These states had already appeared, for example, in
  his work with Rovelli:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{3}
  \item
    Carlo Rovelli and Hugo Morales-Tecotl, ``Fermions in quantum
    gravity'', \emph{Phys. Rev.~Lett.} \textbf{72} (1994), 3642--3645.

    Carlo Rovelli and Hugo Morales-Tecotl, \emph{Nucl. Phys.}
    \textbf{B451} (1995), 325, preprint available as
    \href{https://arxiv.org/abs/gr-qc/9401011}{\texttt{gr-qc/9401011}}.
  \end{enumerate}

  But we had never gotten around to it. So, I decided to team up with
  Kirill and write a paper on this stuff.
\end{itemize}



\hypertarget{week86}{%
\section{August 6, 1996}\label{week86}}

Let me continue my reportage of what happened at the Mathematical
Problems of Quantum Gravity workshop in Vienna. I will only write about
quantum gravity aspects here. I had an interesting conversation with
Bertram Kostant in which he explained to me the deep inner secrets of
the exceptional Lie group \(\mathrm{E}_8\). However, my writeup of that
has grown to the point where I will save it for some other week.

By the way, my course on \(n\)-category theory is not over! I'm merely
taking a break from it, and will return to it after this workshop.

So\ldots{}

\begin{itemize}
\item
  \textbf{Wednesday, July 10th} --- Jerzy Lewandowski gave a talk on the
  ``Spectrum of the Area Operator''. As I've mentioned a few times
  before, one of the exciting things about the loop representation of
  quantum gravity is that the spectrum of the area operator associated
  to any surface is discrete. In other words, area is quantized!

  Let me describe the area operator a bit more precisely. Before I tell
  you what the area operator is, I have to tell you what it operates on.
  Remember from \protect\hyperlink{week43}{``Week 43''} that there are
  various Hilbert spaces floating around in the canonical quantization
  of gravity. First there is the ``kinematical state space''. In the
  old-fashioned metric approach to quantum gravity, known as
  geometrodynamics, this was supposed to be \(L^2(\mathrm{Met})\), where
  \(\mathrm{Met}\) is the space of Riemannian metrics on space. (We take
  as space some 3-manifold \(S\), which for simplicity we assume is
  compact). The problem was that nobody knew how to rigorously define
  this Hilbert space \(L^2(\mathrm{Met})\). In the ``new variables''
  approach to quantum gravity, the kinematical state space is taken
  instead to be \(L^2(\mathcal{A})\), where \(\mathcal{A}\) is the space
  of connections on space on some trivial \(\mathrm{SU}(2)\) bundle over
  \(S\). This \emph{can} be defined rigorously.

  Here's the idea, roughly. Fix any graph \(g\), with finitely many
  edges and vertices, embedded in \(S\). Let \(\mathcal{A}_g\), the
  space of connections on that graph, be \(\mathrm{SU}(2)^n\) where
  \(n\) is the number of edges in \(e\). Thus a connection on a graph
  tells us how to parallel transport things along each edge of that
  graph --- an idea familiar from lattice gauge theory.
  \(L^2(\mathcal{A}_g)\) is well-defined because \(\mathrm{SU}(2)\) has
  a nice measure on it, namely Haar measure, so \(\mathcal{A}_g\) gets a
  nice measure on it as well.

  Now if one graph \(g\) is contained in another graph \(h\), the space
  \(L^2(\mathcal{A}_g)\) is contained in the space
  \(L^2(\mathcal{A}_h)\) in an obvious way. So we can form the union of
  all the Hilbert spaces \(L^2(\mathcal{A}_g)\) and get a big Hilbert
  space \(L^2(\mathcal{A})\). Mathematicians would say that
  \(L^2(\mathcal{A})\) is the ``projective limit'' of the Hilbert spaces
  \(L^2(\mathcal{A}_g)\), but let's not worry about that.

  So that's how we get the space of ``kinematical states'' in the loop
  representation of quantum gravity. The space of physical states is
  then obtained by imposing constraints: the Gauss law constraint (i.e.,
  gauge-invariance), the diffeomorphism constraint (i.e., invariance
  under diffeomorphisms of S) and the Hamiltonian constraint (i.e.,
  invariance under time evolution). States in the physical state space
  are supposed to only contain information that's invariant under all
  coordinate transformations and gauge transformations --- the really
  physical information.

  I explained these constraints to some extent in
  \protect\hyperlink{week43}{``Week 43''}, and I don't really want to
  worry about them here. But let me just mention that the Gauss law
  constraint is easy to impose in a mathematically rigorous way. The
  diffeomorphism constraint is harder but still possible, and the
  Hamiltonian constraint is the big thorny question plaguing quantum
  gravity --- see \protect\hyperlink{week85}{``Week 85''} for some
  recent progress on this. The area operators I'll be talking about are
  self-adjoint operators on the space of kinematical states,
  \(L^2(\mathcal{A})\), and are a preliminary version of some related
  operators one hopes eventually to get on the physical state space,
  after much struggle and sweat.

  To define an operator on \(L^2(\mathcal{A})\) it's enough to define it
  on \(L^2(\mathcal{A}_g)\) for every graph \(g\) and then check that
  these definitions fit together consistently to give an operator on the
  big space \(L^2(\mathcal{A})\). So let's take a graph \(g\) and a
  surface \(s\) in space. The area operator we're after is supposed to
  be the quantum analog of the usual classical formula for the area of
  \(s\). The usual classical area is a function of the metric on space;
  similarly, the quantum area is an operator on the space
  \(L^2(\mathcal{A})\).

  The area operator only cares about the points where the graph
  intersects the surface. We assume that there are only finitely many
  points where it does so, apart from points where the edges are tangent
  to the surface. (To make this assumption reasonable, we need to
  assume, e.g., that the space \(S\) has a real-analytic structure and
  the surface and graph are analytic --- an annoying technicality that I
  have been seeking to eliminate.)

  The area operator is built using three operators on
  \(L^2(\mathrm{SU}(2))\) called \(J_1\), \(J_2\), and \(J_3\), the
  self-adjoint operators corresponding to the 3 generators of
  \(\mathrm{SU}(2)\) --- which often show up in physics as the three
  components of angular momentum! Alternatively, we can think of all
  three together as one vector-valued operator \(J\), the ``angular
  momentum operator''. Note that \(L^2(\mathcal{A}_g)\) is just the
  tensor product of one copy of the Hilbert space
  \(L^2(\mathrm{SU}(2))\) for each edge of our graph \(g\). Thus for any
  edge \(e\) we get an angular momentum operator \(J(e)\) that acts on
  the copy of \(L^2(\mathrm{SU}(2))\) corresponding to the edge \(e\) in
  question, leaving the other copies alone.

  This, then, is how we define the operator on \(L^2(\mathcal{A}_g)\)
  corresponding to the area of the surface \(s\). Pick an orientation
  for the surface \(s\). For any point where the graph \(g\) intersects
  \(s\), let \(J(\mathrm{in})\) denote the sum of the angular momentum
  operators of all edges intersecting \(s\) at the point in question and
  pointing ``inwards'' relative to our chosen orientation. Similarly,
  let \(J(\mathrm{out})\) be the sum of the angular momentum operators
  of edges intersecting \(s\) at the point in question and pointing
  ``outwards''. (Note: edges tangent to the surface contribute neither
  to \(J(\mathrm{in})\) nor \(J(\mathrm{out})\).) Now sum up, over all
  points where the graph intersects the surface, the following quantity:
  \[\sqrt{(J(\mathrm{in})-J(\mathrm{out})) \cdot ((J(\mathrm{in})-J(\mathrm{out}))}\]
  where the dot denotes the obvious sort of dot product of vector-valued
  operators. Multiply by half the Planck length squared and you've got
  the area operator!

  This very beautiful and simple formula was derived by Ashtekar and
  Lewandowski, but the first people to try to quantize the area operator
  were Rovelli and Smolin; see

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \item
    ``Discreteness of area and volume in quantum gravity'', by Carlo
    Rovelli and Lee Smolin, 36 pages in LaTeX format, 13 figures
    uuencoded, available as
    \href{https://arxiv.org/abs/gr-qc/9411005}{\texttt{gr-qc/9411005}}.

    Abhay Ashtekar and Jerzy Lewandowski, ``Quantum theory of geometry
    I: area operators'', 31 pages in LaTeX format, to appear in the
    \emph{Classical and Quantum Gravity} special issue dedicated to
    Andrzej Trautman, preprint available as
    \href{https://arxiv.org/abs/gr-qc/9602046}{\texttt{gr-qc/9602046}}.
  \end{enumerate}

  In his talk Jerzy showed how to work the spectrum of the area operator
  (which is discrete) and showed how it could depend on whether the
  surface \(s\) cuts space into 2 parts or not.

  Later that day, Mike Reisenberger, Matthias Blau, Carlo Rovelli and I
  talked about the relation between string theory and the loop
  representation of quantum gravity.

  Mike has been working on a very interesting ``state sum model'' for
  quantum gravity; that is, a discretized model in which spacetime is
  made of \(4\)-simplices (the 4d version of tetrahedra), fields are
  thought of ways of labelling the faces, edges and so on by spins,
  elements of \(\mathrm{SU}(2)\) and the like, and the path integral is
  replaced by a sum over these labellings. This works out quite nicely
  for quantum gravity in 3 dimensions --- see
  \protect\hyperlink{week16}{``Week 16''} --- but it's much more
  challenging in 4 dimensions.

  One nice feature of these state sum models for quantum gravity is that
  they may be reinterpreted as sums over ``worldsheets'' --- surfaces
  mapped into spacetime. Since the spacetime is discrete, so are these
  surfaces --- they're made of lots of triangles --- but apart from
  that, having a path integral that's a sum over worldsheets is
  pleasantly reminscent of string theory. Indeed, once upon a time I
  proposed that the loop representation of quantum gravity and string
  theory were two aspects of some theory still waiting to be fully
  understood:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{1}
  \tightlist
  \item
    John Baez, ``Strings, loops, knots, and gauge fields'', in
    \emph{Knots and Quantum Gravity}, ed.~J. Baez, Oxford U. Press,
    Oxford, 1994, preprint available in LaTeX form as
    \href{https://arxiv.org/abs/hep-th/9309067}{\texttt{hep-th/9309067}},
    34 pages.
  \end{enumerate}

  The problem was getting a concrete way to relate the Lagrangian for
  the string theory to the Lagrangian for gravity (or whatever gauge
  theory one started with). Iwasaki tackled this problem was tackled in
  3d quantum gravity using state sum models:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{2}
  \tightlist
  \item
    Junichi Iwasaki, ``A reformulation of the Ponzano-Regge quantum
    gravity model in terms of surfaces'', University of Pittsburgh, 11
    pages in LaTeX format available as
    \href{https://arxiv.org/abs/gr-qc/9410010}{\texttt{gr-qc/9410010}}.
  \end{enumerate}

  Later, Reisenberger extended this approach to deal with certain 4d
  theories which are simpler than quantum gravity, like \(BF\) theory:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{3}
  \tightlist
  \item
    Michael Reisenberger, ``Worldsheet formulations of gauge theories
    and Gravity'', University of Utrecht preprint, 1994, available as
    \href{https://arxiv.org/abs/gr-qc/9412035}{\texttt{gr-qc/9412035}}.
  \end{enumerate}

  In all of these theories, one computes the action for the worldsheets
  by summing something over places where they intersect. In other words,
  they ``interact'' at intersections.

  But the really exciting thing would be to do something like this for
  Mike's new state sum model for 4d quantum gravity. And the real
  challenge would be to relate this --- if possible! --- to conventional
  string theory. In a coffeeshop I suggested that one might do this by
  using the usual formula for the action in (bosonic) string theory.
  This is simply the \emph{area} of the string worldsheet with respect
  to some background metric. The loop representation of quantum gravity
  doesn't make reference to any background metric; the closest
  approximation to a classical metric is a ``weave'' state in which
  space is tightly packed with lots of loops or spin networks. From the
  4d point of view, we'd expect this to correspond to a spacetime packed
  with lots of worldsheets. Now, given the relation between area and
  intersection number in the loop representation (see above!), one might
  expect the area of a given worldsheet to be roughly proportional to
  the number of its intersections with the other worldsheets in this
  ``weave''. But this is what one would expect in any theory where the
  worldsheets interact at intersections. So, one could hope that Mike's
  state sum model would be approximately equivalent to a string theory
  of the sort string theorists study.

  There are lots of obvious problems with this idea, but it led to an
  interesting conversation, and I am still not convinced that it is
  crazy.
\item
  \textbf{Thursday, July 11th} --- Jorge Pullin spoke on skein relations
  and the Hamiltonian constraint in lattice quantum gravity. His idea
  was that the Hamiltonian constraint contains a ``topological factor''
  which serves as a skein relation on loop states.
\item
  \textbf{Friday, July 12th} --- Abhay Ashtekar gave a talk on
  ``Noncommutativity of Area Operators''. This explained how the rather
  shocking fact that the area operators for two intersecting surfaces
  needn't commute actually has a perfect analog in classical general
  relativity.

  Mike Reisenberger spoke on ``Euclidean Simplicial GR''. This presented
  the details of his state sum model. Since he hasn't published this
  yet, and since I am getting a bit tired out, I won't describe it here.
\item
  \textbf{Monday, July 15th} --- Renate Loll gave a talk on the volume
  and area operators in lattice gravity. I wrote a bit about her work on
  the volume operator in \protect\hyperlink{week55}{``Week 55''}, and
  more can be found in:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{4}
  \item
    Renate Loll, ``The volume operator in discretized quantum gravity'',
    preprint available as
    \href{https://arxiv.org/abs/gr-qc/9506014}{\texttt{gr-qc/9506014}},
    15 pages.

    Renate Loll, ``Spectrum of the volume operator in quantum gravity'',
    preprint available as
    \href{https://arxiv.org/abs/gr-qc/9511030}{\texttt{gr-qc/9511030}},
    14 pages.
  \end{enumerate}

  Also, Jerzy Lewandowski spoke on his work with Ashtekar on the volume
  operator in the continuum theory:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{5}
  \item
    Jerzy Lewandowski, ``Volume and quantizations'', preprint available
    as
    \href{https://arxiv.org/abs/gr-qc/9602035}{\texttt{gr-qc/9602035}},
    8 pages.

    Abhay Ashtekar and Jerzy Lewandowski, ``Quantum theory of geometry
    II: volume operators'', manuscript in preparation.
  \end{enumerate}

  The volume operator is more tricky than the area operator, and various
  proposed formulas for it do not agree. This is summarized quite
  clearly in Jerzy's paper.

  In fact, I have already left Vienna by now. I was too busy there to
  keep up with This Week's Finds, but my life is a bit calmer now and I
  will try to finish these reports soon.
\end{itemize}



\hypertarget{week87}{%
\section{August 20, 1996}\label{week87}}

Let me continue summarizing what happened during July at the
Mathematical Problems of Quantum Gravity workshop in Vienna. The first
two weeks concentrated on the foundations of the loop representation of
quantum gravity; the next week was all about black holes!

\begin{itemize}
\item
  \textbf{Tuesday, July 16th} --- Ted Jacobson gave an overview of
  ``Issues of Black Hole Thermodynamics''. There is a lot to say about
  this subject and I won't try to repeat his marvelous talk here. Let me
  just mention a very interesting technical point he made. The original
  Bekenstein-Hawking formula for the entropy of a black hole is
  \[S=A/(4\hbar G)\] where \(A\) is the area of the event horizon,
  \(\hbar\) is Planck's constant, and G is Newton's constant. One way to
  try to derive this is from the partition function of a quantum field
  theory involving gravity and other fields. Jacobson sketched a
  heuristic calculation along these lines. When you do this calculation
  it's natural to worry why the other fields, representing various forms
  of matter, don't seem to contribute to the answer above. Also, when we
  do quantum field theory, there is often a difference between the
  ``bare'' coupling constants we put into the theory and the
  ``renormalized'' coupling constants that are what the theory predicts
  we'll observe experimentally. So it's natural to worry about whether
  it's the bare or renormalized Newton's constant \(G\) that enters the
  above formula --- even though quantum gravity is so unlike most other
  quantum field theories that it's unclear that this worry makes sense,
  ultimately.

  Anyway, the nice thing is that these two worries cancel each other
  out. In other words: yes, it's the renormalized Newton's constant
  \(G\) --- the physically measured one --- that enters the above
  formula. But at least to first order in \(\hbar\), the difference
  between the bare \(G\) and the renormalized \(G\) is precisely due to
  the interactions between gravity and the matter fields (including the
  self-interaction of the gravitational field). In other words, the
  matter fields really \emph{do} contribute to the black hole entropy,
  but this contribution is absorbed into the definition of the
  renormalized \(G\).

  In the most extreme case, the bare \(1/G\) is zero, and the
  renormalized \(1/G\) is entirely due to interactions between matter
  and gravity. This is Andrei Sakharov's theory of ``induced gravity''.
  According to Jacobson, in this case all of the black hole entropy is
  ``entanglement entropy'' --- this being standard jargon for the way
  that two parts of a quantum system can each have entropy due to
  correlations, even though the whole system has zero entropy.
  Unfortunately my notes do not allow me to reconstruct the wonderful
  argument whereby he showed this. (See
  \protect\hyperlink{week27}{``Week 27''} for a more detailed
  explanation of entanglement entropy.)
\item
  \textbf{Wednesday July 17th} --- There was a talk on ``Colombeau
  theory'' by a mathematician whose name I unfortunately failed to
  catch. Colombeau theory is a theory that allows you to multiply
  distributions, just like they said in school that you weren't allowed
  to do. So if for example you want to square the Dirac delta function,
  you can do it in the context of Colombeau theory. There has been a
  certain amount of debate, however, on whether Colombeau theory allows
  you to this multiplication in a \emph{useful} way. There were a lot of
  physicists at this talk who would be willing and eager to master
  Colombeau theory if it let one solve the physics problems they wanted
  to solve. However, after much discussion, it appears that they didn't
  buy it. I believe that at best Colombeau theory provides a useful
  framework for understanding the ambiguities one encounters when
  multiplying distributions.

  I say ``ambiguities'' rather than ``disasters'' because while the
  square of the Dirac delta function has no sensible interpretation as a
  distribution, there are many cases, such as when you try to multiply
  the Dirac delta function and the Heaviside function, where you can
  interpret the result as a distribution in a variety of ways. These
  ambiguous cases are the ones of greatest interest in physics. A nice
  place to see this in quantum field theory is in

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \tightlist
  \item
    G. Scharf, \emph{Finite quantum electrodynamics: the causal
    approach}, Springer-Verlag, Berlin, 1995.
  \end{enumerate}

  If you want to learn about Colombeau theory you can try:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{1}
  \tightlist
  \item
    J. F. Colombeau, \emph{Multiplication of Distributions: a Tool in
    Mathematics, Numerical Engineering, and Theoretical Physics},
    Lecture Notes in Mathematics \textbf{1532}, Springer, Berlin, 1992.
  \end{enumerate}

  Later that day I had nice conversation with Jerzy Lewandowski on the
  approach to the loop representation where one uses smooth, rather than
  analytic, loops. (See \protect\hyperlink{week55}{``Week 55''} for more
  on this issue.)
\item
  \textbf{Thursday, July 18th} --- Carlo Rovelli spoke on ``Black Hole
  Entropy'', reporting some work he did with Kirill Krasnov. They have a
  nice approach to computing the black hole entropy using the loop
  representation of quantum gravity. A common goal among quantum gravity
  folks is to recover the Bekenstein-Hawking formula from some
  full-fledged theory of quantum gravity --- the original derivation
  being a curious ``semiclassical'' hybrid of quantum and classical
  reasoning. In a statistical mechanical approach, entropy should be the
  logarithm of the number of microstates some system can have in a given
  macrostate. So one wants to count states somehow. Basically what
  Rovelli and Krasnov do is count the number of ways a surface can be
  pierced by a spin network so as to give it a certain area. (This uses
  the formula for the area operator I descrbed in
  \protect\hyperlink{week86}{``Week 86''}.) They get an entropy
  proportional to the area, but not with the same constant as in the
  Bekenstein-Hawking formula.

  There were some hopes that taking matter fields into account might
  give the right constant. But since everyone had been to Ted Jacobson's
  talk, this led to much interesting wrangling over whether Rovelli and
  Krasnov were using the bare or renormalized Newton's constant \(G\),
  and whether the concept of bare and renormalized \(G\) even makes
  sense, ultimately! Also, there are some extremely important puzzles
  about what the right way to count states is, in these loop
  representation computations.

  For more, try:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{2}
  \item
    Carlo Rovelli, ``Loop quantum gravity and black hole physics'',
    preprint available as
    \href{https://arxiv.org/abs/gr-qc/9608032}{\texttt{gr-qc/9608032}}.

    Kirill Krasnov, ``The Bekenstein bound and non-perturbative quantum
    gravity'', preprint available as
    \href{https://arxiv.org/abs/gr-qc/9603025}{\texttt{gr-qc/9603025}}.

    Kirill Krasnov, ``On statistical mechanics of gravitational
    systems'', preprint available as
    \href{https://arxiv.org/abs/gr-qc/9605047}{\texttt{gr-qc/9605047}}.
  \end{enumerate}
\item
  \textbf{Friday, July 19th} --- Don Marolf spoke on ``Black hole
  entropy in string theory''. He attempted valiantly to describe the
  string-theoretic approach to computing black hole entropy to an
  audience only generally familiar with string theory. I will not try to
  summarize his talk, except to note that he mainly discussed the case
  of a black hole in 5 dimensions, which was really a ``black string''
  in 6 dimensions --- a solution with translational symmetry in the 6th
  dimension, but where the extra 6th dimension is so tiny that ordinary
  \(5\)-dimensional folks think they've just got a black hole. (By the
  way, even the \(6\)-dimensional approach is really just a way of
  talking about a string theory that fundamentally lives in 10
  dimensions. This stuff is not for the faint-hearted.)

  Here are a few papers on this subject by Marolf and Horowitz:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{3}
  \item
    Gary Horowitz, ``The origin of black hole entropy in string
    theory'', preprint available as
    \href{https://arxiv.org/abs/gr-qc/9604051}{\texttt{gr-qc/9604051}}.

    Gary T. Horowitz and Donald Marolf, ``Counting states of black
    strings with traveling waves'', preprint available as
    \href{https://arxiv.org/abs/hep-th/9605224}{\texttt{hep-th/9605224}}.

    Gary T. Horowitz and Donald Marolf, ``Counting states of black
    strings with traveling waves II'', preprint available as
    \href{https://arxiv.org/abs/hep-th/9606113}{\texttt{hep-th/9606113}}.
  \end{enumerate}
\item
  \textbf{Monday, July 22nd} --- Kirill Krasnov spoke on ``The
  Einstein-Maxwell Theory of Black Hole Entropy''. This was a report on
  attempts to see how his calculations of the black entropy in the loop
  representation changed when he took the electromagnetic field into
  account. The calculations were very tentative, for certain technical
  reasons I won't go into here, but they made even clearer the
  importance of the issue of how one counts states when computing
  entropy in this approach.

  Later, I had a nice conversation with Carlo Rovelli about my hopes for
  thinking of fermions (e.g., electrons) as the ends of wormholes in the
  loop representation of quantum gravity. We came up with a nice
  heuristic argument to get the right Fermi statistics for these
  wormhole ends. Hopefully we can make this all more precise at some
  later date.
\item
  \textbf{Tuesday, July 23rd} --- Ted Jacobson gave informal talks on
  two subjects, the first of which was ``Transplanckian puzzle: origin
  of outgoing black hole modes.'' This dealt with the puzzling fact that
  in the standard computation of Hawking radiation, the rather
  low-frequency radiation which leaves the hole is the incredibly
  redshifted offspring of high-frequency modes which swung past the
  horizon shortly after the hole's formation --- modes whose wavelength
  is far smaller than the Planck length!

  What if spacetime is ``grainy'' in some way at the Planck scale?
  Jacobson studied this using an analogy introduced by Unruh. If you
  have fluid flowing down a narrowing pipe, and at some point the
  velocity of the fluid flow exceeds the speed of sound in the fluid,
  there will be a ``sonic horizon''. In other words, there is a line
  where the fluid flow exceeds the speed of sound, and no sound can work
  its way upstream across that line. Now if you quantize the theory of
  sound in a simple-minded way you get ``phonons'' --- which have indeed
  been observed in solid-state physics. Unruh showed that in the case at
  hand you would get ``Hawking radiation'' of phonons from the sonic
  horizon, going upstream and getting shifted to lower frequencies as
  they go.

  Jacobson considered what would happen if you actually took into
  account the graininess of the fluid. (He considered the theory of
  liquid helium, to be specific.) The graininess at the molecular scale
  means that the group velocity of waves drops at very high frequencies.
  So what happens instead of ``Hawking radiation'' is something rather
  different. Start with a high-frequency wave attempting to go upstream,
  starting from upstream of the sonic horizon. Its group velocity is
  very slow so it fails miserably and gets swept toward the sonic
  horizon, like a hapless poor swimmer getting pulled to the edge of a
  waterfall despite trying to swim upstream. But as it gets pulled near
  the horizon its wavelength increases, and thus group velocity
  increases, thus allowing it to shoot upstream at the last minute! (An
  analogous process is apparently familiar in plasma physics under the
  name of ``mode conversion''.) In this scenario, the Hawking radiation
  winds up resulting from incoming modes through this process of mode
  conversion --- modes that have short wavelength, but not as short as
  the intermolecular spacing (or Planck length, in the gravitational
  case.)

  Ted Jacobson's second talk was even more interesting to me, but I'll
  postpone that for next Week.

  Here, by the way, is a paper related to the talk by Pullin discussed
  in \protect\hyperlink{week86}{``Week 86''}:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{4}
  \tightlist
  \item
    Hugo Fort, Rodolfo Gambini and Jorge Pullin, ``Lattice knot theory
    and quantum gravity in the loop representation'', preprint available
    as
    \href{https://arxiv.org/abs/gr-qc/9608033}{\texttt{gr-qc/9608033}}.
  \end{enumerate}
\end{itemize}



\hypertarget{week88}{%
\section{August 26, 1996}\label{week88}}

This issue concludes my report of what happened at the Mathematical
Problems of Quantum Gravity workshop in Vienna. I left the workshop at
the end of July, so my reportage ends there, but the workshop went on
for a few more weeks after that. I'll be really bummed out if I find out
that they solved all the problems with quantum gravity after I left.

Before I launch into my day-by-day account of what happened, let me note
that I've written a little introduction to Thiemann's work on the
Hamiltonian constraint, which he presented at the workshop (see
\protect\hyperlink{week85}{``Week 85''}):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John Baez, ``The Hamiltonian constraint in the loop representation of
  quantum gravity'', available at
  \texttt{http://math.ucr.edu/home/baez/hamiltonian/}
\end{enumerate}

A less technical version of this appears in Jorge Pullin's newsletter
\emph{Matters of Gravity}, issue 8, at
\texttt{http://www.phys.lsu.edu//mog/mog8/node7.html}

Okay\ldots{} I'll start out simple today since there is something nice
and simple to ponder:

\begin{itemize}
\item
  \textbf{Tuesday, July 23rd} --- Ted Jacobson spoke on the ``Geometry
  and Evolution of Degenerate Metrics''. One of the interesting things
  about Ashtekar's reformulation of general relativity is that it
  extends general relativity to the case of degenerate metrics, that is,
  metrics where there are vectors whose dot product with all other
  vectors is zero. However, one needs to be very careful because
  different versions of Ashtekar's formulation give \emph{different}
  ways of handling degenerate metrics.

  To see why in a simple example, remember that the usual metric on
  Minkowski spacetime is nondegenerate and in nice coordinates looks
  like \[-dt^2 + dx^2 + dy^2 + dz^2\] Here we are setting the speed of
  light equal to \(1\). In general relativity, one way people describe
  the metric is using a tensor \(g_{ab}\), where the indices \(a\) and
  \(b\) go from 0 to 3. In Minkowski space this tensor equals \[
      \left(
        \begin{array}{cccc}
          -1&0&0&0
        \\0&1&0&0
        \\0&0&1&0
        \\0&0&0&1
        \end{array}
      \right)
    \] What this tensor means is that if you have two vectors \(v\) and
  \(w\), their dot product is \(g_{ab} v^a w^b\), where as usual we
  multiply the entries of the metric tensor and the vectors \(v\) and
  \(w\) as indicated, and then sum over repeated indices. So, for
  example, the dot product of the vector \[v = (1, 1, 0, 0)\] with
  itself is \(0\), though its dot product with other vectors needn't be
  zero. There is a bunch of vectors whose dot products with themselves
  are zero, and these are called lightlike vectors, because light
  travels in these directions, moving one unit in space for each unit in
  time. There is actually a cone of lightlike vectors, called the
  lightcone.

  One can imagine a world where the metric \(g_{ab}\) is \[
      \left(
        \begin{array}{cccc}
          -1&0&0&0
        \\0&1&0&0
        \\0&0&k&0
        \\0&0&0&k
        \end{array}
      \right)
    \] for some \(k > 0\). This world isn't really so different from
  Minkowski space, because you can also think of it as Minkowski space
  described in screwy coordinates where you are measuring distances in
  the \(y\) and \(z\) directions in different units than the \(x\)
  direction. When \(k\) gets small, you can check that the lightcone
  gets stretched out in the \(y\) and \(z\) directions. Alternatively,
  when \(k\) gets big, the lightcone gets squashed in the \(y\) and
  \(z\) directions.

  Another way to formulate general relativity uses the inverse metric
  \(g^{ab}\). This is just the inverse of the matrix \(g_{ab}\), which
  is indeed invertible when the metric is nondegenerate. So for example
  in the above case the inverse metric \(g^{ab}\) is \[
      \left(
        \begin{array}{cccc}
          -1&0&0&0
        \\0&1&0&0
        \\0&0&K&0
        \\0&0&0&K
        \end{array}
      \right)
    \] where \(K = 1/k\). You can think of \(K\) as the speed of light
  in the \(y\) and \(z\) directions, which is different from the speed
  of light in the \(x\) direction.

  Now there are two different limiting cases we can consider, depending
  on whether we work with the metric or the inverse metric. If we work
  with the metric, we can let \(k = 0\). This corresponds to making the
  speed of light in the \(y\) and \(z\) directions \emph{infinite}, so
  that information can go as fast as it likes in those directions and
  the lightcone gets completely stretched out in those directions. Note
  that now the metric \(g_{ab}\) is \[
      \left(
        \begin{array}{cccc}
          -1&0&0&0
        \\0&1&0&0
        \\0&0&0&0
        \\0&0&0&0
        \end{array}
      \right)
    \] so the inverse metric doesn't even make sense --- you can't
  invert this matrix. If we extend general relativity to degenerate
  metrics, we are allowing ourselves to study weird worlds like this.
  Why we'd want to --- well, that's another matter.

  If we work with the inverse metric, we can't let \(k = 0\), but we can
  let \(K = 0\). This corresponds to making the speed of light in the
  \(y\) and \(z\) directions \emph{zero}, so that information can't go
  at all in those directions: the lightcone is squashed down onto the
  \(t\)-\(x\) plane. Now it's the inverse metric that equals \[
      \left(
        \begin{array}{cccc}
          -1&0&0&0
        \\0&1&0&0
        \\0&0&0&0
        \\0&0&0&0
        \end{array}
      \right)
    \] and the metric doesn't even make sense.

  Ted Jacobson's talk was about doing general relativity in weird worlds
  like this, where the inverse metric is degenerate. Here information
  flows only along surfaces, like the \(x\)-\(t\) plane in the example
  above, and these different surfaces don't really talk to each other
  very much. It's as if the world was split up (or in math jargon,
  foliated) into lots of different \(2\)-dimensional worlds, which
  didn't know about each other. Jacobson showed that in this case, the
  equations of general relativity (extended in a certain way to
  degenerate inverse metrics) boil down to saying that there are two
  kinds of massless spin-\(1/2\) particle living on all these
  \(2\)-dimensional worlds.

  This got me quite excited because it reminded me of string theory,
  which is all about massless particles (or in physics jargon, conformal
  fields) living on the \(2\)-dimensional string worldsheet. I am always
  hunting around for relationships between string theory and the loop
  representation of quantum gravity, and I think this is an important
  clue. The reason is that I think the loop representation can be
  thought of as a quantum version of the theory of degenerate solutions
  of general relativity where the metric is \emph{zero} most places and
  less degenerate (but still degenerate) on certain surfaces. When you
  slice one of these surfaces with the hyperplane \(t = 0\) you get a
  bunch of loops (or more generally a graph), and these are the loops of
  the loop representation. Jacobson's talk may give a way to understand
  the conformal field theory living on these surfaces, which one needs
  if one wants to think of these surfaces as the ``string worldsheets''
  of string theory fame. Anyway, I am busily thrashing this stuff out
  and trying to write a paper on it, but it may or may not hang
  together.

  Jacobson's talk is based on a short paper he'd just been editing the
  galley proofs for; so it should come out soon:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{1}
  \tightlist
  \item
    Ted Jacobson, ``1+1 sector of 3+1 gravity'', \emph{Class. Quant.
    Grav.} \textbf{13} (1996), L1--L6.
  \end{enumerate}

  Now around this time the Erwin Schroedinger Institute, where the
  workshop was being held, moved from its comfortable old spot on
  Pasteurgasse to a more spacious location on Boltzmanngasse, near the
  physics department. (In Germany the word ``Gasse'' means ``alley'',
  and one might find it disrespectful that Pasteur and Boltzmann have
  mere alleys named after them, but in Vienna even lots of large streets
  are called ``Gasse'', when in Germany they'd be called ``Strasse''.
  But then even the word for potato is different in Austria; it's all
  part of the charm of the place.) The move disrupted the schedule of
  the talks a bit, and it also seems to have disrupted my note-taking,
  which gets more sketchy from here on out. Some of the dates below
  might be a bit off.
\item
  \textbf{Thursday, July 25th} --- I spoke on ``Topological Quantum
  Field Theory''. I am always talking about this on This Week's Finds so
  I won't bore you with the details. Basically I summarized what is
  known about \(BF\) theory (a particular topological quantum field
  theory) in dimensions 2, 3, and 4, and the discrete formulation of
  \(BF\) theory where you chop spacetime into simplices and label the
  edges and so on with spins and the like --- so-called ``state sum
  models''. You can read more about this in
  \protect\hyperlink{week38}{``Week 38''}.

  Later that day, Jerzy Lewandowski spoke on ``Degenerate Metrics''.
  Being somewhat less degenerate than Ted Jacobson, he spoke about
  extending general relativity to cases where the inverse metric looks
  like \[
      \left(
        \begin{array}{cccc}
          -1&0&0&0
        \\0&1&0&0
        \\0&0&1&0
        \\0&0&0&0
        \end{array}
      \right)
    \] In other words, where the speed of light is zero only in the
  \(z\) direction. Basically what happens is that spacetime gets
  foliated with a lot of \(3\)-dimensional slices, and on each one you
  get the equations of \(3\)-dimensional general relativity.
\item
  \textbf{Friday, July 26th} --- Thomas Strobl spoke on
  \(2\)-dimensional gravity. I don't understand his work well enough yet
  to have anything much to say, but the most interesting thing about it
  to \emph{me} is that it allows one to see how quantum groups emerge
  from the \(G/G\) gauged Wess-Zumino-Witten model (a certain
  \(2\)-dimensional topological quantum field theory), by describing
  this theory as the quantization of a Poisson \(\sigma\)-model --- a
  field theory where the fields take values in a Poisson manifold. For
  more, try:

  \begin{enumerate}
  \def\labelenumi{\arabic{enumi})}
  \setcounter{enumi}{2}
  \item
    Peter Schaller and Thomas Strobl, A brief introduction to Poisson
    \(\sigma\)-models, preprint available as
    \href{https://arxiv.org/abs/hep-th/9507020}{hep-th/9507020}.

    Peter Schaller and Thomas Strobl, Poisson \(\sigma\)-models: a
    generalization of 2d gravity-Yang-Mills systems, preprint available
    as \href{https://arxiv.org/abs/hep-th/9411163}{hep-th/9411163}.
  \end{enumerate}

  Later, I had a great conversation with Mike Reisenberger and Carlo
  Rovelli on reformulating the loop representation of quantum gravity in
  terms of surfaces embedded in spacetime. This again touched upon my
  interest in relating string theory and the loop representation. They
  are writing a paper on this which should be on the preprint servers
  pretty soon, so I'll wait until then to talk about it.
\item
  \textbf{Saturday, July 27th} --- Carlo Rovelli explained some things
  about the problem of time to me.
\item
  \textbf{Monday, July 30th} --- I spoke about relative states and
  entanglement entropy in two-part quantum systems (see
  \protect\hyperlink{week27}{``Week 27''} and the applications of these
  ideas to topological quantum field theory and quantum gravity. A lot
  of this came from my attempts to understand the relation between
  quantum gravity and Chern-Simons theory, and Lee Smolin's work where
  he tries to use this relation to derive the Bekenstein bound on the
  entropy of a system in terms of its surface area (see
  \protect\hyperlink{week56}{``Week 56''}).

  An interesting little fact that I needed to use is that if you have a
  two-part quantum system in a pure state --- a state of zero entropy
  --- the two parts, regarded individually, can themselves have entropy,
  but the entropies of the two parts are equal. I worked this out using
  the symmetry of the situation but Walter Thirring, who attended the
  talk, pointed out that it can also be derived from a wonderful general
  fact: the triangle inequality! Namely, if your two-part system has
  entropy \(S\), and the two parts individually have entropies \(S_1\)
  and \(S_2\), then \(S\) can never be less than \(|S_1 - S_2|\) or
  greater than \(S_1 + S_2\). (In classical mechanics it's also true
  that \(S\) can never be less than \emph{either} \(S_1\) \emph{or}
  \(S_2\), but this fails in quantum mechanics, where for example you
  can have \(S\) be zero but \(S1 = S2 > 0\).)
\item
  \textbf{Wednesday, August 1st} --- Full of excitement and new ideas, I
  somewhat regretfully left the workshop and flew to London. Then I
  spent most of August working at Imperial College, thanks to a kind
  offer of office space from Chris Isham. I had some nice talks with
  Isham and his students on quantum gravity and the decoherent histories
  approach to quantum mechanics. I'll say a bit about this in a while,
  but next Week I am going to talk about triality and the secret inner
  meaning of \(\mathrm{E}_8\).
\end{itemize}



\hypertarget{week89}{%
\section{September 17, 1996}\label{week89}}

This week I want to return to the tale of \(n\)-categories, from which I
have been taking a break during summer vacation. But first, here are a
few things about quantum gravity. Last time I mentioned Jorge Pullin's
newsletter on general relativity, ``Matters of Gravity''. I am pleased
to report that it is now available on the world-wide web:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Jorge Pullin, ed., \emph{Matters of Gravity}, first 8 issues now
  available at \texttt{http://www.phys.lsu.edu//mog}, or latest issue in
  LaTeX form as
  \href{https://arxiv.org/abs/gr-qc/9609008}{\texttt{gr-qc/9609008}}.
\end{enumerate}

Anyone who wants to keep up with the latest news on general relativity
should certainly read ``Matters of Gravity'' and MacCallum's list.
MacCallum's list? Yes, I should've mentioned it earlier: it's a mailing
list where you can find out where the general relativity conferences
are, where the postdoctoral positions are, what the latest books are,
and so on.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  MacCallum's gravity mailing list: to subscribe send polite email to
  \texttt{M.A.H.MacCallum@qmw.ac.uk}
\end{enumerate}

By the way, a bunch of math and physics preprints are available from the
Schroedinger Institute, including a lot of new stuff on quantum gravity
that came out of that workshop I've been talking about:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\item
  Erwin Schroedinger Institute preprint archive, available at
  \texttt{http://www.esi.ac.at/ESI-Preprints.html}. Recent preprints
  include:

  Abhay Ashtekar and Alejandro Corichi, ``Photon inner-product and the
  Gauss linking number''.

  Abhay Ashtekar, Donald Marolf, Jose Mourao and Thomas Thiemann,
  ``\(\mathrm{SU}(N)\) quantum Yang-Mills theory in 2 dimensions: a
  complete solution''.

  Hugo Fort, Rodolfo Gambini and Jorge Pullin, ``Lattice knot theory and
  quantum gravity in the loop representation'', also available as
  \href{https://arxiv.org/abs/gr-qc/9608033}{\texttt{gr-qc/9608033}}.

  Michael Reisenberger, ``A left-handed simplicial action for Euclidean
  GR''.

  Carlo Rovelli, ``Loop quantum gravity and black hole physics''.
\end{enumerate}

I described the ideas behind some of these papers in
\protect\hyperlink{week85}{"Week 85} --
\protect\hyperlink{week88}{``Week 88''}. I didn't mention the paper by
Ashtekar and Corichi. It gives nice formula for the inner product in the
Hilbert space for photons in terms of the Gauss linking number --- a
thing that counts how many times one knot links another.

In its simplest form, the formula goes like this: say you have two
knots, and you do a line integral of the electric field around one of
them, and of the magnetic field around the other. You get two
observables which in the \emph{quantum} theory of electromagnetism do
not commute. So the uncertainty principle says you can't measure them
both exactly at once. In fact, the uncertainty in one times the
uncertainty in the other can't be less than \(\hbar/2\) times the
absolute value of the Gauss linking number of the two knots! A nice
blend of quantum theory and topology! This winds up also being relevant
to the photon inner product, because, as the experts out there should
know, the canonical commutation relations in a free field theory always
come from the imaginary part of the inner product in the single-particle
Hilbert space.

In \protect\hyperlink{week88}{``Week 88''} I also mentioned a talk by
Jerzy Lewandowski, which has now appeared as a preprint:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Jerzy Lewandowski and Jacek Wilsniewski, ``2+1 sector of 3+1
  gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9609019}{\texttt{gr-qc/9609019}}.
\end{enumerate}

Also, Lee Smolin has written a paper arguing that Thiemann's work has
trouble squaring with the positivity of energy and the existence of
long-range correlations (i.e., massless gravitons) that one might expect
from semi-classical approaches to quantum gravity.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Lee Smolin, ``The classical limit and the form of the Hamiltonian
  constraint in nonperturbative quantum gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9609034}{\texttt{gr-qc/9609034}}.
\end{enumerate}

This paper has sparked some controversy in the loop representation
community. Its arguments are heuristic rather than mathematically
rigorous, so one can certainly imagine ways to wriggle out of the
conclusions it tries to draw. Nonetheless I think it does a good service
by focusing attention on down-to-earth physical issues. If the more
mathematically inclined quantum gravity folks are able either to prove
\emph{or} refute Smolin's ideas, we'll have made lots of progress.

Smolin has also written a paper relating the loop representation to
string theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Lee Smolin, ``Three dimensional strings as collective coordinates of
  four dimensional quantum gravity'', preprint available as
  \href{https://arxiv.org/abs/gr-qc/9609031}{\texttt{gr-qc/9609031}}.
\end{enumerate}

This paper really freaks me out, because it attempts to relate the loop
representation of quantum gravity in \(4\)-dimensional spacetime to
string theory in \emph{3-dimensional} spacetime. That's an idea that
never would have occurred to me. Smolin suggests it might possibly be
related to how supergravity in 11 dimensions is related to string theory
in 10 dimensions, but unfortunately I don't know enough about all that
to know where to go with it. I need to learn more about this string
theory duality stuff --- see \protect\hyperlink{week72}{``Week 72''} for
my pathetic attempts so far to understand it. I haven't read this yet,
but I should:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Michael Dine, ``String theory dualities'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9609051}{\texttt{hep-th/9609051}}.
\end{enumerate}

It's an expository article.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Okay, now let's go back to the tale of \(n\)-categories. As promised, I
will tell you all about monads, monoids, monoid objects, and monoidal
categories.

You may or may not remember, but in \protect\hyperlink{week80}{``Week
80''} I explained the idea of a ``\(2\)-category'' pretty precisely.
This is a gadget with a bunch of objects, a bunch of morphisms going
from one object to another, and a bunch of \(2\)-morphisms going from
one morphism to another. We write \(f\colon x\to y\) to denote a
morphism \(f\) from the object \(x\) to the object \(y\), and we write
\(F\colon f\Rightarrow g\) to denote a \(2\)-morphism \(F\) from the
morphism \(f\) to the morphism \(g\).

Just as in a category, in a \(2\)-category we can compose a morphism
\(f\colon x\to y\) with a morphism \(g\colon y\to z\) to get a morphism
\(fg\colon x\to z\). (Note that I write \(fg\) instead of \(gf\); I'm
going to use this ordering most of the time, though I may occaisionally
change my mind just to confuse you more.) Similarly, we can compose a
\(2\)-morphism \(F\colon f\Rightarrow g\) with a 2-morphism
\(G\colon g\Rightarrow h\) to get a \(2\)-morphism
\(FG\colon f\Rightarrow h\). This is called ``vertical composition'' of
\(2\)-morphisms. We can visualize FG like this:
\[\includegraphics[scale=0.3]{../images/FGnat.pdf}\] We stick \(F\) on
top of \(G\) to get \(FG\), which is why it's called ``vertical''
composition.

Also, if we have morphisms \(f,g\colon x\to y\) and
\(f',g'\colon y\to z\), and 2-morphisms \(F\colon f\Rightarrow g\) and
\(F'\colon f'\Rightarrow g'\), we can ``horizontally compose'' \(F\) and
\(F'\) to get \(F\cdot F'\colon ff'\Rightarrow gg'\). It looks like
this: \[\includegraphics[scale=0.3]{../images/FF'nat.pdf}\] There are
some axioms all this stuff has to satisfy, which I described in
\protect\hyperlink{week80}{``Week 80''}, but I won't repeat them here.
The main thing to keep in mind is that a \(2\)-category is like an
abstract 2-dimensional world\ldots{} and the axioms for a \(2\)-category
are algebraic distillations of the rules for putting things together in
2 dimensions. In particular, you can put the \(2\)-morphisms together
side by side (horizontally) or one on top of the other (vertically), if
they fit.

Later I'll say more about what \(2\)-categories have to do with
2-dimensional physics, but right now I want to do something more
fundamental. I want to show how all sorts of concepts of
``multiplication'' or ``combination'' fit nicely into the framework of
\(2\)-categories. The basic idea is really simple: we often think of
multiplication as some sort of function \[M\colon s\times s\to s\] where
we take two elements \(a\) and \(b\) from some set \(s\), and
``multiply'' them to get a new one \(M(a,b)\). But we can visualize this
as follows: \[
  \begin{tikzpicture}
    \node (xl) at (0,0) {$\bullet$};
    \node (xt) at (1.25,2) {$\bullet$};
    \node (xr) at (2.5,0) {$\bullet$};
    \draw[thick] (xl) to node[fill=white]{$s$} (xt);
    \draw[thick] (xt) to node[fill=white]{$s$} (xr);
    \draw[thick] (xl) to node[fill=white]{$s$} (xr);
    \draw[-implies,double equal sign distance] (xt) to (1.25,0.2);
    \node at (1,0.7) {$M$};
  \end{tikzpicture}
\] I've drawn a triangular shaped gadget that takes two ``inputs'' from
the two slanted edges labelled \(s\), and spits out one ``output'' from
the horizontal edge labelled \(s\) on the bottom. It's clear from the
geometry here that \(M\) is something \(2\)-dimensional --- hence, a
\(2\)-morphism --- and that \(s\) is \(1\)-dimensional --- hence, a
morphism. Let's label the corners too: \[
  \begin{tikzpicture}
    \node (xl) at (0,0) {$x$};
    \node (xt) at (1.25,2) {$x$};
    \node (xr) at (2.5,0) {$x$};
    \draw[thick,->] (xl) to node[fill=white]{$s$} (xt);
    \draw[thick,->] (xt) to node[fill=white]{$s$} (xr);
    \draw[thick,->] (xl) to node[fill=white]{$s$} (xr);
    \draw[-implies,double equal sign distance] (xt) to (1.25,0.2);
    \node at (1,0.7) {$M$};
  \end{tikzpicture}
\] to make it clear that \(s\) is a morphism from \(x\) to itself. Here
\(x\), being 0-dimensional, is an object.

This hocus-pocus may seem mystifying, but if you bear with me and work
at it you'll see what I'm up to. I'm saying that essence of
``multiplication'' can be described very generally in a situation where
you have a \(2\)-category with an object \(x\) in it, a morphism
\(s\colon x\to x\), and a 2-morphism \(M\colon ss\Rightarrow s\). Often
we are interested in situations like this where the ``multiplication''
\(M\) is associative, meaning that the composite
\[sss\xRightarrow{M\cdot1_s}ss\xRightarrow{M}s\] equals
\[sss\xRightarrow{1_s\cdot M}ss\xRightarrow{M}s\] (Here
\(1_s\colon s\Rightarrow s\) is the identity \(2\)-morphism from \(s\)
to itself\ldots{} the axioms for a \(2\)-category say that this exists.)
Also, we're often interested in situations where there is a
``multiplicative unit'', that is, a \(2\)-morphism \(I\colon 1_x\to s\)
for which \[s = 1_xs\xRightarrow{I\cdot1_s}ss\xRightarrow{M}s\] equals
\(1_s\), and so does
\[s = s1_x\xRightarrow{1_s\cdot I}ss\xRightarrow{M}s\] If we have a
\(2\)-category with stuff in it satisfying these rules, we say we have a
``monad'' in that \(2\)-category.

What is an example of a monad? Well, consider our original example where
s is a set and M is a function. We can think of this as living in a
\(2\)-category as follows. Our \(2\)-category will have only one object,
\(x\). The morphisms of this \(2\)-category are sets, and composing
morphisms corresponds to taking the Cartesian product of sets. The
\(2\)-morphisms of this \(2\)-category are functions between sets.

What does a monad amount to in this case? Well, work it out! The
multiplicative unit \(1_x\) must corresponds to the one-element set;
\(s\) is some set; the \(2\)-morphism \(I\colon 1_x\Rightarrow s\) is a
function from the one-element set to \(s\), which picks out a special
\emph{element} of \(s\); the 2-morphism \(M\colon ss\Rightarrow s\) is
our multiplication operation. The axioms of a monad I gave then say that
this multiplication is associative and that the special element of \(s\)
is the multiplicative unit\ldots{} that is, it serves as the left and
right identity for multiplication.

So we have a set with an associative multiplication and a unit for this
multiplication. That's what folks call a ``monoid'' --- see
\protect\hyperlink{week74}{``Week 74''} for more on these. So a monoid
is a special sort of monad!

The point, however, is that there are lots of other kinds of monads, and
this \(2\)-categorical nonsense unifies the study of all of them.
Consider, for example, that trick we played of turning the category
\(\mathsf{Set}\) into a \(2\)-category with just one object \(x\). It's
a very versatile trick. In general, a \(2\)-category with just one
object is called a ``monoidal category'', because you can do this
relabelling trick: \[
  \begin{aligned}
    \text{2-morphisms} &\mapsto \text{morphisms}
  \\\text{morphisms} &\mapsto \text{objects}
  \\\text{objects} &\mapsto 
  \end{aligned}
\] You take the \(2\)-category with just one object, forget the object,
call the morphisms ``objects'' and the \(2\)-morphisms ``morphisms'',
and you've got a category! But one where you can compose or ``multiply''
or ``tensor'' objects, because they were secretly morphisms from \(x\)
to itself. For example, \(\mathsf{Set}\) is a monoidal category where we
can multiply objects (i.e., sets) with the Cartesian product.

However, there are lots of other interesting monoidal categories. For
example, \(\mathsf{Vect}\) (the category of vector spaces) becomes a
monoidal category if we multiply vector spaces by tensoring them.
\(\mathsf{Top}\) (the category of topological spaces) becomes a monoidal
category if we multiply spaces by taking their Cartesian product with
the usual product topology. \(\mathsf{Mon}\) (the category of monoids)
becomes a monoidal category if we multiply groups by taking their direct
product. And so on\ldots.

Because a monoidal category is a \(2\)-category with one object, we can
talk about monads in any monoidal category. These are usually called
``monoid objects'', because they are like a monoid living in the
category in question. For example, a monoid object in \(\mathsf{Vect}\)
is an associative algebra. A monoid object in \(\mathsf{Top}\) is a
topological monoid.

Sometimes funny things happen: for example, a monoid object in
\(\mathsf{Mon}\) is a commutative monoid! This ``birth of
commutativity'' illustrates something called the ``Eckmann-Hilton
principle''. Some more sophisticated ramifications of this principle are
discussed in the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  John Baez and Martin Neuchl, ``Higher-dimensional algebra I: braided
  monoidal \(2\)-categories'', \emph{Adv. Math.} \textbf{121} (1996),
  196--244. Also available as
  \href{http://arxiv.org/abs/q-alg/9511013}{\texttt{arXiv:q-alg/9511013}}.
\end{enumerate}

We can get into some curious self-referential loops, too: the category
having (small) categories as objects and functors as morphisms becomes a
monoidal category with the ``Cartesian product'' of categories as the
way to multiply objects\ldots{} and a monoid object in this is a (small)
monoidal category! Try wrapping your brain around that! A monoid object
is something you define in a monoidal category, but a monoidal category
is itself a kind of monoid object! This illustrates something that James
Dolan and I call it the ``microcosm principle''. I should note at this
point --- I should have noted it before --- that most of this stuff
about category theory is stuff I learned from Dolan. We are writing a
paper in which we give a general definition of \(n\)-categories, and
explain this ``microcosm principle''.

Anyway, some of the most interesting monads live not in monoidal
categories but \(2\)-categories with lots of objects. The primordial
\(2\)-category is Cat, which has (small) categories as objects, functors
as morphisms and \emph{natural transformations} as \(2\)-morphisms. (A
minute ago I gave a way to think of \(\mathsf{Cat}\) as a monoidal
category. That was a bit different than this!) Monads in
\(\mathsf{Cat}\) are the first monads anyone called ``monads'', I
believe. You can read a bunch about them in the bible of category
theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  \emph{Categories for the Working Mathematician}, by Saunders Mac Lane,
  Springer, Berlin, 1988.
\end{enumerate}

Believe or not, monads in \(\mathsf{Cat}\) are nice way to think about
\emph{algebraic theories} --- a branch of logic perhaps pioneered by the
theory of ``univeral algebra''. (My knowledge of the history here is
sort of fuzzy.) It would take me a while to explain this so I'll put it
off for next Week.

Let me just wrap up by saying that we can take this picture \[
  \begin{tikzpicture}
    \node (xl) at (0,0) {$x$};
    \node (xt) at (1.25,2) {$x$};
    \node (xr) at (2.5,0) {$x$};
    \draw[thick,->] (xl) to node[fill=white]{$s$} (xt);
    \draw[thick,->] (xt) to node[fill=white]{$s$} (xr);
    \draw[thick,->] (xl) to node[fill=white]{$s$} (xr);
    \draw[-implies,double equal sign distance] (xt) to (1.25,0.2);
    \node at (1,0.7) {$M$};
  \end{tikzpicture}
\] and draw a ``dual'' picture like this: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=up] (0.5,-1)
        to (0.5,-2);
      \strand[thick] (1,0.5)
        to (1,0)
        to [out=down,in=up] (0.5,-1);
    \end{knot}
    \node[fill=white] at (0,0) {$s$};
    \node[fill=white] at (1,0) {$s$};
    \node[label=left:{$M$}] at (0.5,-0.95) {$\bullet$};
    \node[fill=white] at (0.5,-1.5) {$s$};
  \end{tikzpicture}
\] which illustrates perhaps more vividly how \(M\) is the process of
two copies of \(s\) getting squashed down into one copy. This sort of
picture is called a ``string diagram'', and it's literally the Poincare
dual of the earlier picture, meaning that stuff that was
\(k\)-dimensional is now drawn as \((2-k)\)-dimensional. (The
0-dimensional object \(x\) is now the 2-dimensional ``background.'') For
more on string diagrams, see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Ross Street, ``Categorical structures'', in \emph{Handbook of
  Algebra}, vol.~\textbf{1}, ed.~M. Hazewinkel, Elsevier, 1996.
\end{enumerate}

This diagram may also remind physicists (if any of them are still
reading this) of a Feynman diagram, in particular a 3-gluon vertex in
QCD. It's no coincidence! I'll have to say more about that later,
though.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week92}{``Week 92''}.
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If you've been following This Week's Finds, you know that I'm in love
with symmetry. Lately I've been making up for my misspent youth by
trying to learn more about simple Lie groups. They are, roughly
speaking, the basic building blocks of the symmetry groups of physics.

In trying to learn about them, certain puzzles come up. In July I asked
Bertram Kostant about one that's been bugging me for years: ``Why does
\(\mathrm{E}_8\) exist?'' In a word, his answer was: ``Triality!'' This
was incredibly exciting to me; it completely blew my mind. But I should
start at the beginning\ldots.

In my youth, I found the classification of simple Lie groups to be
unintuitive and annoying. I still do, but over the years I've realized
that suffering through this classification theorem is the necessary
entrance fee to a whole world of symmetry. I gave a tour of this world
in \protect\hyperlink{week62}{``Week 62''} --
\protect\hyperlink{week65}{``Week 65''}, but here I want to make
everything as simple as possible, so I won't assume you've read that
stuff. Experts should jump directly to the end of this article and read
backwards until it becomes boring.

A Lie group is a group that can be given coordinates for which all the
group operations are infinitely differentiable. A good example is the
group \(\mathrm{SO}(n)\) of rotations in \(n\)-dimensional Euclidean
space. You can multiply rotations by doing first one and then the other,
or mathematically by doing matrix multiplication. Every rotation has an
inverse, given mathematically by the inverse matrix. Since matrices are
just bunches of numbers, you can coordinatize \(\mathrm{SO}(n)\), at
least locally, and in terms of these coordinates the operations of
multiplication and taking inverses are infinitely differentiable, or
``smooth'', so \(\mathrm{SO}(n)\) is a Lie group.

Using the magic of calculus, we can think of tangent vectors at the
identity element of \(\mathrm{SO}(n)\) as ``infinitesimal rotations''.
So for example, taking \(n = 3\), let's start with the rotation by the
angle \(t\) about the \(z\) axis, given by the matrix: \[
  \left(
    \begin{array}{ccc}
      \cos t & -\sin t & 0
    \\\sin t & \cos t & 0
    \\0 & - & 1
    \end{array}
  \right)
\] Then we can differentiate this and set \(t = 0\) to get an
``infinitesimal rotation about the \(z\) axis'': \[
  \left(
    \begin{array}{ccc}
      0 & -1 & 0
    \\1 & 0 & 0
    \\0 & - & 1
    \end{array}
  \right)
\] Let's call this \(J_z\), since it's very related to angular momentum
about the \(z\) axis. (Folks often throw in a factor of \(-i\) when they
define \(J_z\) in quantum mechanics, but let's not bother with that
here.)

Similarly we have \(J_x\) and \(J_y\). Now rotations about different
axes don't commute, so these infinitesimal rotations don't either. In
fact, we have \[
  \begin{aligned}
    J_x J_y - J_y J_x &= J_z,
  \\J_y J_z - J_z J_y &= J_x,
  \\J_z J_x - J_x J_z &= J_y.
  \end{aligned}
\]

If you have never done it, there are few things in life as rewarding at
this point as computing \(J_x\) and \(J_y\) for yourself and checking
the above ``commutation relations''.

Folks usually write the ``commutators'' on the left hand side using
brackets, like this: \[
  \begin{aligned}
    \,[J_x,J_y] &= J_z,
  \\ [J_y,J_z] &= J_x,
  \\ [J_z,J_x] &= J_y.
  \end{aligned}
\] These relations are lurking in the definition of quaternions and also
the vector cross product. Quaternions and cross products are good for
understanding rotations in \(3\)-dimensional space; they let us describe
infinitesimal rotations and their failure to commute. Here we are
calling a spade a spade and working directly with the algebra of
infinitesimal rotations, which folks call \(\mathfrak{so}(3)\). (For
related stuff, see \protect\hyperlink{week5}{``Week 5''}.)

Okay. The point is, we can do this trick for any Lie group! The space of
``infinitesimal group elements'', or more precisely tangent vectors at
the identity element of a Lie group, is called the ``Lie algebra of the
group''. It's a vector space whose dimension is the dimension of the
group, and it always has a bracket operation on it satisfying certain
axioms (listed in \protect\hyperlink{week3}{``Week 3''}).

The classification of Lie groups can be reduced to the classification of
Lie algebras, because the Lie algebra almost determines the Lie group.
More precisely, every Lie algebra is the Lie algebra of a unique Lie
group that is ``simply connected'' --- i.e., one for which every loop in
it can be continuously shrunk to a point. People understand how to get
from any Lie group to a simply connected one (called its ``universal
cover''), so if we understand simply connected Lie groups, we pretty
much understand all Lie groups. See \protect\hyperlink{week61}{``Week
61''} for an instance of this philosophy.

Now classifying Lie algebras is just a matter of heavy-duty linear
algebra. Let me explain what the ``simple'' Lie algebras are; you'll
have to take my word for it that understanding these is a big step
towards understanding all Lie algebras.

At one extreme in the world of Lie groups are the commutative, or
``abelian'' Lie groups. Here multiplication is commutative, so
\([x,y] = 0\) for all \(x\) and \(y\) in the Lie algebra of the group.
At the other extreme are the ``semisimple'' Lie groups. Here every
element in the Lie algebra is of the form \([x,y]\) for some \(x\) and
\(y\): roughly, if we bracket the whole Lie algebra with itself, we get
itself back again. The semisimple Lie algebras turn out to be incredibly
important in physics, where they are the typical ``gauge groups'' of
field theories.

The ``simple'' Lie algebras are the building blocks of the semisimple
ones: every semisimple Lie algebra can be broken down into pieces that
are simple. (Technically, we say it's a ``direct sum'' of simple Lie
algebras). We say a Lie group is simple if its Lie algebra is simple.

So: what are the simple Lie algebras? They were classified, thanks to
some heroic work by Killing and Cartan, in the early part of the 20th
century. To keep life simple (ahem) I'll only give the classification of
those simple Lie algebras whose corresponding Lie groups are
\emph{compact} --- meaning roughly that they are finite in size. (For
example, \(\mathrm{SO}(n)\) is compact.) It turns out that if we
understand the compact ones, we can understand the noncompact ones too.

So, here are the Lie algebras of the compact simple Lie groups! There
are 4 straightforward infinite families and 5 delightful and puzzling
exceptions. The 4 infinite families are easy to understand and are
called ``classical groups''. They are the workhorses of mathematics and
physics. The other 5 are called ``exceptional groups''. They have always
seemed very mysterious to me.

The 4 infinite families are:

\begin{itemize}
\tightlist
\item
  \(\mathrm{A}_n\): This is the Lie algebra of \(\mathrm{SU}(n)\), the
  group of \(n\times n\) complex matrices that preserve lengths (i.e.,
  are unitary) and have determinant \(1\). This Lie algebra is also
  called \(\mathfrak{su}(n)\).
\item
  \(\mathrm{B}_n\): This is the Lie algebra of \(\mathrm{SO}(2n+1)\),
  the group of \((2n+1)\times(2n+1)\) real matrices that preserve
  lengths (i.e., are orthogonal) and have determinant \(1\). This Lie
  algebra is also called \(\mathfrak{so}(2n+1)\).
\item
  \(\mathrm{C}_n\): This is the Lie algebra of \(\mathrm{Sp}(n)\), the
  group of \(n\times n\) quaternionic matrices that preserve lengths.
  This Lie algebra is also called \(\mathfrak{sp}(n)\).
\item
  \(\mathrm{D}_n\): This is the Lie algebra of \(\mathrm{SO}(2n)\), the
  group of \(2n\times 2n\) real matrices that preserve lengths and have
  determinant \(1\). This Lie algebra is also called
  \(\mathfrak{so}(2n)\).
\end{itemize}

You may justly wonder why the heck they are called \(\mathrm{A}_n\),
\(\mathrm{B}_n\), \(\mathrm{C}_n\), and \(\mathrm{D}_n\), and why we
separated out the even and odd cases of \(\mathrm{SO}(n)\) as we did!
This is explained in \protect\hyperlink{week64}{``Week 64''}, and I
don't want to worry about it here. Anyway, glossing over some nuances,
we see that these guys are all pretty much just groups of rotations in
real, complex, and quaternionic vector spaces.

The 5 exceptions are as follows:

\begin{itemize}
\tightlist
\item
  \(\mathrm{F}_4\): A 52-dimensional Lie algebra.
\item
  \(\mathrm{G}_2\): A \(14\)-dimensional Lie algebra.
\item
  \(\mathrm{E}_6\): A 78-dimensional Lie algebra.
\item
  \(\mathrm{E}_7\): A 133-dimensional Lie algebra.
\item
  \(\mathrm{E}_8\): A 248-dimensional Lie algebra.
\end{itemize}

Here I am being rather reticent about what these Lie algebras --- or the
corresponding Lie groups, which go by the same names --- actually ARE!
The reason is that it's not so easy to explain. One can certainly
describe the exceptional Lie groups as groups of matrices with certain
complicated properties, but often this is done in a way that leaves one
utterly puzzled as to the real reason why these simple Lie groups exist.

Of course, the answer to ``why'' a mathematical object exists is a
matter of taste. You may feel satisfied if you can easily construct it
from other objects you know and love, or you may feel satisfied once it
is so tightly woven into your overall scheme of things that you can't
imagine life without it.

In any case, I have long been asking people why the exceptional Lie
groups exist, but without much luck. Until recently I only felt happy
about one of them, the one called \(\mathrm{G}_2\): it's the group of
rotations of the octonions! The real numbers, complex numbers,
quaternions and octonions are the only ``normed division algebras'' ---
a property which makes it easy to define rotation groups --- but the
octonions are weirder than the other three because, unlike the others,
they are not associative. (See \protect\hyperlink{week59}{``Week 59''}
and \protect\hyperlink{week61}{``Week 61''} for details.) One might
expect a series of simple Lie groups coming from rotations in octonionic
vector spaces, like the other classical series\ldots{} but there isn't
one! The only simple Lie group like this is the group of rotations of a
ONE-dimensional octonionic vector space, \(\mathrm{G}_2\). (More
precisely, we say that \(\mathrm{G}_2\) is the group of automorphisms of
the octonions, that is, the linear transformations that preserve the
octonion product. These all preserve lengths.)

The idea that the exceptional groups are all related to octonions is
sort of pleasing, because one might easily \emph{expect} that the reals,
complexes and quaternions give nice infinite series of ``classical'' Lie
groups, while the octonions, being much more bizarre, give only 5
bizarre ``exceptional'' Lie groups. Indeed, in
\protect\hyperlink{week64}{``Week 64''} I described how \(\mathrm{F}_4\)
and \(\mathrm{E}_6\) are related to the octonions\ldots{} but in a
pretty complicated way! As for \(\mathrm{E}_7\) and \(\mathrm{E}_8\),
here until recently I had always been completely in the dark. This is
all the more irksome because the biggest, most mysterious exceptional
Lie group of all, \(\mathrm{E}_8\), plays an important role in string
theory!

Luckily, on Thursday July 11th I ran into Bertram Kostant, who had been
attending the previous workshop here at the Erwin Schroedinger
Institute. As I described in \protect\hyperlink{week79}{``Week 79''},
Kostant is one of the expert's experts on group theory. So I got up my
nerve and asked him, ``Why does \(\mathrm{E}_8\) exist?'' And he told
me! Best of all, he explained both \(\mathrm{E}_8\) and \(\mathrm{F}_4\)
in terms of a principle that I knew was crucial for understanding
\(\mathrm{G}_2\) and the octonions \ldots{} the principle of triality!

I sketched a description of triality in
\protect\hyperlink{week61}{``Week 61''}. Let me just summarize the idea
here. One of the main way to understand Lie algebras is to understand
their ``representations''. A representation of a Lie algebra is simply a
function from it to the space of \(n\times n\) matrices that preserves
the bracket operation. (The \(n\times n\) matrices form a Lie algebra
with the commutator as the bracket operation.) For example,
\(\mathfrak{so}(n)\) has a representation where we map each element to
an \(n\times n\) matrix in the most utterly obvious way: each element IS
an \(n\times n\) matrix, so don't do anything to it! This is called the
``vector'' representation, because this is how we do infinitesimal
rotations to vectors. But \(\mathfrak{so}(n)\) also has representations
called ``spinor'' representations. In physics, the vector representation
describes spin-\(1\) particles, while the spinor representations
describe spin-\(1/2\) particles.

Spinor representations work differently depending on whether the
dimension \(n\) is even or odd. (This is one reason why people
distinguish the even and odd n case of \(\mathfrak{so}(n)\) in that
classification of simple Lie algebras above!) When n is odd there is one
spinor representation. That's why in ordinary \(3\)-dimensional space
there is just one kind of spinor to worry about, as you learn when you
learn about spin-\(1/2\) particles in undergraduate quantum mechanics.
When n is even there are two different spinor representations, called
the ``left-handed'' and ``right-handed'' spinor representations. This
shows up when you do quantum mechanics taking special relativity --- and
\(4\)-dimensional spacetime --- into account. For example, the way
neutrinos transform under rotations is described by the left-handed
spinor representation, while anti-neutrinos are described by
right-handed spinors.

When \(n\) is even, both the spinor representations of
\(\mathfrak{so}(n)\) are of dimension \(2^{n/2 - 1}\). That is, they are
functions from \(\mathfrak{so}(n)\) to the space of
\(2^{n/2 - 1} \times 2^{n/2 - 1}\) matrices. Now something marvelous
happens when \(n = 8\). Namely, \(2^{n/2 - 1} = n\), so the spinor
representations are just as big as the vector representation. This might
lead one to hope that in some sense they are ``the same'' as the vector
representation. This is actually true, but in a subtle way\ldots. they
are not ``equivalent'' representations in the standard sense of Lie
algebra theory, but something sneakier is true.

The Lie algebra \(\mathfrak{so}(8)\) has interesting symmetries! It has
a little symmetry group with 6 elements, the same as the symmetries of a
equilateral triangle, and using these 6 symmetries we can permute the
vector, left-handed spinor, and right-handed spinor representations into
each other however we please!

For example, one of these symmetries switches the left-handed and
right-handed spinor representations, but leaves the vector
representation alone. Actually, this symmetry works in any even
dimension, not just dimension 8. Its analogue in \(4\)-dimensional
spacetime is called ``parity'', a symmetry that turns left-handed
particles into right-handed ones and vice versa. The fact that there are
no right-handed neutrinos means that the laws of nature do not actually
have this symmetry\ldots{} but it's still very important in math and
physics.

What's special about dimension 8 is that there are symmetries switching
the vector representation and the spinor representations. For example:
if we take an element \(x\) of \(\mathfrak{so}(8)\), apply the right
symmetry of \(\mathfrak{so}(8)\) to turn it into another element of
\(\mathfrak{so}(8)\), and then use the right-handed spinor
representation to it to turn it into a matrix, we get the same thing as
if we just used the vector representation to turn \(x\) into a matrix.

Now \(\mathfrak{so}(8)\) is the Lie algebra of the Lie group
\(\mathrm{SO}(8)\), but \(\mathrm{SO}(8)\) is not ``simply connected''
in the sense defined above. The simply connected group whose Lie algebra
is \(\mathrm{SO}(n)\) is called \(\mathrm{Spin}(n)\). I gave an
introduction to these ``spin groups'' in
\protect\hyperlink{week61}{``Week 61''}, and I don't want to say much
about them here, except for this: the triality symmetries of
\(\mathfrak{so}(8)\) do not give symmetries of \(\mathrm{SO}(8)\), but
they do give symmetries of \(\mathrm{Spin}(8)\). Experts say the group
of outer automorphisms modulo inner automorphisms of \(\mathrm{SO}(8)\)
is \(S_3\) (the group of permutations of 3 things).

Pretty sneaky, how a group of symmetries can have its own group of
symmetries, no? As we'll now see, this is what gives birth to
\(\mathrm{G}_2\), \(\mathrm{F}_4\), \(\mathrm{E}_8\), and the octonions.

To get \(\mathrm{G}_2\) is pretty simple; we look at those elements of
\(\mathrm{Spin}(8)\) that are fixed (i.e., unaffected) by all the
triality symmetries, and these form a subgroup, which is
\(\mathrm{G}_2\).

For the rest, we need one more fact: there is a way to ``multiply'' a
left-handed spinor and a right-handed spinor and get a vector. This is
true in all even dimensions, not just \(n = 8\), so in particular it is
familiar to particle theorists who live in \(4\)-dimensional spacetime.
As I noted, what happens to a neutrino when you rotate (or Lorentz
transform) it is described using left-handed spinors, while
anti-neutrinos are described by right-handed spinors. Similarly, photons
are described by vectors. So as far as \emph{rotational} properties go,
one could think of a photon as a bound state of a neutrino and an
antineutrino. This led Schroedinger (or someone) to propose at one point
that photons were actually neutrino- antineutrino pairs. Subsequent
experiments showed this theory has lots of problems, and nobody sane
believes it any more. Still, it's sort of cute.

Now, in 8 dimensions, it shouldn't be surprising that we can also
multiply a left-handed spinor and a vector to get a right-handed spinor,
and so on. The point is, you can just use triality to permute the three
representations whichever way you please\ldots{} they are not really all
that different.

So in particular, you can multiply two \(8\)-dimensional vectors and get
another vector. And this gives us the octonions!

Now how about \(\mathrm{F}_4\) and \(\mathrm{E}_8\)? This is the cool
stuff Kostant told me about. Here I will describe the Lie algebras, not
the Lie groups.

Let's call the right-handed and left-handed spinor representations
\(S_+\) and \(S_-\), respectively. (Us left-handers are always getting
shafted, being ``sinister'' rather than ``dextrous'' and all that, so we
get \(S_-\) rather than \(S_+\).) And let's call the vector
representation \(V\). And let's be sloppy, the way people usually are,
and also use these letters to stand for the \(8\)-dimensional vector
spaces on which \(\mathfrak{so}(8)\) acts as transformations.

Now let's form the direct sum of vector spaces
\[\mathfrak{so}(8)\oplus S_+ \oplus S_- \oplus V\] A vector in this
vector space is just a list consisting of a guy in \(\mathfrak{so}(8)\),
a guy in \(S_+\), a guy in \(S_-\), and a guy in \$V. The dimension of
this vector space is therefore \[28+8+8+8=52\] since it takes
\(n(n-1)/2\) numbers to describe a rotation in \(n\) dimensions. Hey!
Look! 52 is the dimension of \(\mathrm{F}_4\)! So maybe this thing is
\(\mathrm{F}_4\).

Yes, it is! Here's how it works. To make this gadget into a Lie algebra
--- which turns out to be \(\mathrm{F}_4\) --- we need a way to take the
``bracket'' of any two elements in it. We already know how to take the
bracket of two guys in \(\mathfrak{so}(8)\), so that's no problem. Since
\(\mathfrak{so}(8)\) acts as transformations of \(S_+\) and \(S_-\) and
\(V\), we also know how to multiply a guy in \(\mathfrak{so}(8)\) by one
of these other guys. We also know how to multiply a guy in \(S_+\) by a
guy in \(S_-\) to get a guy in \(V\), and so on. Finally, we can
multiply two guys in \(V\) to get a guy in \(\mathfrak{so}(8)\) as
follows: two vectors determine an infinitesimal rotation which starts
rotating the first vector in the direction of the second. (More
technically, we say that \(\mathfrak{so}(8)\) is isomorphic to the
second exterior power of \(V\), so we can multiply two guys in \(V\) to
get a guy in \(\mathfrak{so}(8)\) using the wedge product.) Using
triality, we can equally well multiply two guys in \(S_+\) to get a guy
in \(\mathfrak{so}(8)\), or multiply two guys in \(S_-\) to get a guy in
\(\mathfrak{so}(8)\).

So taking all these multiplication operations together, we can cook up a
way to take the bracket of any two guys in
\(\mathfrak{so}(8)\oplus S_+\oplus S_-\oplus V\) and get another such
guy. If you do it right --- I've been pretty vague, so I leave it to you
to fill in the details --- you can get this bracket to satisfy the Lie
algebra axioms, and you get \(\mathrm{F}_4\)!

Emboldened with our success, we now look at the vector space
\[\mathfrak{so}(8)\oplus\mathfrak{so}(8)\oplus\operatorname{End}(S_+)\oplus\operatorname{End}(S_-)\oplus\operatorname{End}(V).\]
Here \(\operatorname{End}(S_+)\) is the space of all linear
transformations of the vector space \(S_+\), so if you like, it's just
the space of \(8\times8\) matrices. Similarly for
\(\operatorname{End}(S_-)\) and \(\operatorname{End}(V)\). Now the
dimension of this space is \[28+28+64+64+64=248\] Hey! This is just the
dimension of \(\mathrm{E}_8\)! Maybe this space is \(\mathrm{E}_8\)!

Yes indeed. Again, you can cook up a bracket operation on this space
using all the stuff we've got. Here's the basic idea.
\(\operatorname{End}(S_+)\), \(\operatorname{End}(S_-)\), and
\(\operatorname{End}(V)\) are already Lie algebras, where the bracket of
two guys \(x\) and \(y\) is just the commutator \([x,y]=xy-yx\), where
we multiply using matrix multiplication. Since \(\mathfrak{so}(8)\) has
a representation as linear transformations of \(V\), it has two
representations on \(\operatorname{End}(V)\), corresponding to left and
right matrix multiplication; glomming these two together we get a
representation of \(\mathfrak{so}(8)\oplus\mathfrak{so}(8)\) on
\(\operatorname{End}(V)\). Similarly we have representations of
\(\mathfrak{so}(8)\oplus\mathfrak{so}(8)\) on
\(\operatorname{End}(S_+)\) and \(\operatorname{End}(S_-)\). Putting all
this stuff together we get a Lie algebra, if we do it right --- and it's
\(\mathrm{E}_8\). At least that's what Kostant said; I haven't checked
it.

So now we see, at least roughly, how triality gives birth to the
octonions, \(\mathrm{G}_2\), \(\mathrm{F}_4\), and \(\mathrm{E}_8\).
That leaves \(\mathrm{E}_8\)'s ``little brothers'' \(\mathrm{E}_6\) and
\(\mathrm{E}_7\). These are contained in \(\mathrm{E}_8\) as Lie
subalgebras, but apart from that I don't know any especially beautiful
way to get ahold of them, except for the way to get \(\mathrm{E}_6\)
from 3x3 matrices of octonions, which I described in
\protect\hyperlink{week64}{``Week 64''}.

For some references to this stuff, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  Claude C. Chevalley, \emph{The algebraic theory of spinors}, Columbia
  University Press, New York, 1954.
\item
  F. Reese Harvey, \emph{Spinors and calibrations}, Perspectives in
  Mathematics, \textbf{9}, Academic Press, Inc., Boston, MA, 1990.
\item
  Ian R. Porteous, \emph{Topological geometry}, 2nd ed., Cambridge
  University Press, Cambridge, 1981.
\item
  Ian R. Porteous, \emph{Clifford algebras and the classical groups},
  Cambridge University Press, Cambridge, 1995.
\item
  Hans Freudenthal and H. de Vries, \emph{Linear Lie groups}, Academic
  Press, New York, 1969.
\item
  Alex J. Feingold, Igor B. Frenkel, and John F. X. Rees, ``Spinor
  construction of vertex operator algebras'', triality, and
  \(\mathrm{E}_8^{(1)}\), \emph{Contemp. Math.} \textbf{121}, AMS,
  Providence Rhode Island.
\end{enumerate}

I haven't looked at all these books lately, and the only source I
\emph{know} contains the above construction of \(\mathrm{E}_8\) from
triality is the last one, by Feingold, Frenkel, and Rees.

Now let me allow myself to get a bit more technical.

I am still not entirely happy, by any means, because what I'd really
like would be a simple explanation of why these exceptional simple Lie
algebras arise from triality, \emph{and no others}. In other words, I'd
like a classification of the simple Lie algebras that proceeded not by
the usual exhaustive (and exhausting) case-by-case study of Dynkin
diagrams, but by some less combinatorial and more ``synthetic''
approach. For example, it would be nice to really see a good explanation
of how the reals, the complexes, the quaternions and octonions each give
rise to a family of simple Lie algebras, and one gets \emph{all} of them
this way.

On the other hand, don't think I'm knocking the Dynkin diagram stuff. As
I explained in \href{week62.html}{``Week 62''} --
\protect\hyperlink{week64}{``Week 64''}, what's really fundamental to
the Dynkin diagram approach seems to be the not the Lie algebras
themselves but their root lattices. Taking lattices as fundamental to
the study of symmetry \emph{does} seem to be a good idea, since it gets
you to not just the simple Lie algebras described above, but also the
``Kac-Moody algebras'' so important in string theory and other forms of
\(2\)-dimensional physics, as well as marvelous things like the Leech
lattice and the Monster group.

The Dynkin diagram approach also makes it clear \emph{why} triality
exists: symmetries of Dynkin diagrams always give outer automorphisms of
the corresponding Lie algebras, and as you examine the Dynkin diagrams
of \(\mathrm{D}_n\), you get \[
  \begin{tikzpicture}
    \node at (2,0) {$\mathrm{D}_2=\mathfrak{so}(4)$};
    \node at (3.25,0) {$=$};
    \draw[thick] (4,1) node {$\bullet$};
    \draw[thick] (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] \[
  \begin{tikzpicture}
    \node at (1,0) {$\mathrm{D}_3=\mathfrak{so}(6)$};
    \node at (2.25,0) {$=$};
    \draw[thick] (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] \[
  \begin{tikzpicture}
    \node at (0,0) {$\mathrm{D}_4=\mathfrak{so}(8)$};
    \node at (1.25,0) {$=$};
    \draw[thick] (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] \[
  \begin{tikzpicture}
    \node at (-1,0) {$\mathrm{D}_6=\mathfrak{so}(10)$};
    \node at (0.25,0) {$=$};
    \draw[thick] (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] and you can just \emph{see} how when you get to \(\mathfrak{so}(8)\)
there is that amazing triality symmetry, flashing briefly into being
before reverting to the boring old duality symmetry which only
interchanges the left-handed and right-handed spinor representations,
corresponding to the two dots on the far right of the Dynkin diagram.
(The dot on the far left corresponds to the vector representation.)

Of course, people don't usually talk about \(\mathrm{D}_2\) or
\(\mathrm{D}_3\), because \(\mathrm{D}_2\) is two copies of
\(\mathrm{A}_1\), and \(\mathrm{D}_3\) is the same as \(\mathrm{A}_3\).
However, there is no shame in doing so, and indeed a lot of insight to
be gained: the fact that \(\mathrm{D}_2\) consists of two copies of
\(\mathrm{A}_1\) corresponds to the isomorphism
\[\mathfrak{so}(4) = \mathfrak{su}(2) \oplus \mathfrak{su}(2),\] while
the fact that \(\mathrm{D}_3\) is the same as \(\mathrm{A}_3\)
corresponds to the isomorphism \[\mathfrak{so}(6) = \mathfrak{su}(4).\]

Each of these could easily serve as the springboard for a very long and
interesting discussion. However, I will refrain. Here let me simply note
that you can always ``fold'' a Dynkin diagram using one of its
symmetries, and if you do this to \(\mathrm{D}_4\) using triality you go
from \[
  \begin{tikzpicture}
    \node at (0,0) {$\mathrm{D}_4$};
    \node at (0.75,0) {$=$};
    \draw[thick] (1.5,0) node{$\bullet$} to (3,0) node {$\bullet$};
    \draw[thick] (3,0) to (4,1) node {$\bullet$};
    \draw[thick] (3,0) to (4,-1) node {$\bullet$};
  \end{tikzpicture}
\] down to \[
  \begin{tikzpicture}
    \node at (0,0) {$\mathrm{G}_2$};
    \node at (0.75,0) {$=$};
    \draw[thick] (1.5,0) node{$\bullet$} to node[label=above:{6}]{} (3,0) node {$\bullet$};
  \end{tikzpicture}
\] (Here the number 6 means that the two roots are at an angle of
\(\pi/6\) from each other. People usually just draw a triple line to
indicate this. The arrow points from the long root to the shorter root.)
This corresponds to how \(\mathrm{G}_2\) is the subgroup of
\(\mathrm{Spin}(8)\) consisting of elements that are invariant under
triality. You can also go from \[
  \begin{tikzpicture}
    \node at (-1.5,0) {$\mathrm{E}_6$};
    \node at (-0.75,0) {$=$};
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$} to (4,0) node {$\bullet$};
    \draw[thick] (2,0) to (2,1) node{$\bullet$};
  \end{tikzpicture}
\] down to \[
  \begin{tikzpicture}
    \node at (-1.5,0) {$\mathrm{F}_4$};
    \node at (-0.75,0) {$=$};
    \draw[thick] (0,0) node{$\bullet$} to (1,0) node{$\bullet$} to (2,0) node{$\bullet$} to (3,0) node {$\bullet$};
  \end{tikzpicture}
\] by folding along the reflection symmetry. And Friedrich Knop told me
a neat way to get triality symmetry \emph{from} \(\mathrm{F}_4\), if you
happen to have \(\mathrm{F}_4\) around: the long roots of
\(\mathrm{F}_4\) form a root system of type \(\mathrm{D}_4\), which
defines an embedding of \(\mathrm{Spin}(8)\) into the Lie group
\(\mathrm{F}_4\) (more precisely, the compact real form). On the other
hand, the two short simple roots define an embedding of
\(\mathrm{SU}(3)\) in \(\mathrm{F}_4\). The Weyl group of
\(\mathrm{SU}(3)\) is \(S_3\) and can be lifted to \(\mathrm{SU}(3)\),
so we have an \(S_3\) subgroup of \(\mathrm{F}_4\). This acts by
conjutation on the \(\mathrm{Spin}(8)\) subgroup, implementing the
triality symmetries!

But I digress. My main point is, the Dynkin diagram symmetries do give a
nice way to understand outer automorphisms of simple Lie groups, and
these provide some important ties between simple Lie algebras, including
triality, which links the ``classical'' world to the ``exceptional''
world. But it is also nice to try to understand these in a somewhat more
``conceptual'' way. This is one of the reasons I'm interested in
2-Hilbert spaces\ldots{} they seem to help one understand this stuff
from a new angle. But more on those, later. They tie into the
\(n\)-category stuff I'm always talking about. I will return to that
tale soon, and I'll keep building up some of the tools we need, until we
are ready to launch into a description of 2-Hilbert spaces.

In writing this Week's Finds, I benefitted greatly from email
correspondence with Robt Bryant, Christopher Henrich, Geoffrey Mess,
Friedrich Knop, and others.
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For a while now I've been meaning to finish talking about monads and
adjunctions, and explain what that has to do with the 4-color theorem.
But first I want to say a little bit more about ``triality'', which was
the subject of \protect\hyperlink{week90}{``Week 90''}.

Triality is a cool symmetry of the infinitesimal rotations in
8-dimensional space. It was only last night, however, that I figured out
what triality has to do with 3 dimensions. Since it's all about the
number \emph{three} obviously triality should originate in the
symmetries of \emph{three}-dimensional space, right? Well, maybe it's
not so obvious, but it does. Here's how.

Take good old three-dimensional Euclidean space with its usual basis of
unit vectors \(i\), \(j\), and \(k\). Look at the group of all
permutations of \(\{i,j,k\}\). This is a little 6-element group which
people usually call \(S_3\), the ``symmetric group on 3 letters''.

Every permutation of \(\{i,j,k\}\) defines a linear transformation of
three-dimensional Euclidean space in an obvious way. For example the
permutation \(p\) with \[p(i) = j, \quad p(j) = k, \quad p(k) = i\]
determines a linear transformation, which we'll also call \(p\), with
\[p(ai+ bj + ck) = aj + bk + ci.\] In general, the linear
transformations we get this way either preserve the cross product, or
switch its sign. If \(p\) is an even permutation we'll get
\[p(v)\times p(w) = p(v\times w)\] while if \(p\) is odd we'll get
\[p(v)\times p(w) = -p(v\times w) = p(w\times v).\] That's where
triality comes from. But now let's see what it has to do with
\emph{four}-dimensional space. We can describe four-dimensional space
using the quaternions. A typical quaternion is something like
\[a + bi + cj + dk\] where \(a\), \(b\), \(c\), \(d\) are real numbers,
and you multiply quaternions by using the usual rules together with the
rules \[
  \begin{gathered}
    i^2 = j^2 = k^2 = -1
  \\ij=k,\quad jk=i,\quad ki=j,
  \\ji=-k,\quad kj=-i,\quad ik=-j.
  \end{gathered}
\] Now, any permutation \(p\) of \(\{i,j,k\}\) also determines a linear
transformation of the quaternions, which we'll also call \(p\). For
example, the permutation \(p\) I gave above has
\[p(a + bi + cj + dk) = a + bj + ck + di.\] The quaternion product is
related to the vector cross product, and so one can check that for any
quaternions \(q\) and \(q'\) we get \[p(qq') = p(q)p(q')\] if \(p\) is
even, and \[p(q'q) = p(q')p(q)\] if \(p\) is odd. So we are getting
triality to act as some sort of symmetries of the quaternions.

Now sitting inside the quaternions there is a nice lattice called the
``Hurwitz integral quaternions''. It consists of the quaternions
\(a + bi + cj + dk\) for which either \(a\), \(b\), \(c\), \(d\) are all
integers, or all half-integers. Here I'm using physics jargon, and
referring to any number that's an integer plus \(1/2\) as a
``half-integer''. A half-integer is \emph{not} any number that's half an
integer!

You can think of this lattice as the \(4\)-dimensional version of all
the black squares on a checkerboard. One neat thing is that if you
multiply any two guys in this lattice you get another guy in this
lattice, so we have a ``subring'' of the quaternions. Another neat thing
is that if you apply any permutation of \(\{i,j,k\}\) to a guy in this
lattice, you get another guy in this lattice --- this is easy to see. So
we are getting triality to act as some sort of symmetries of this
lattice. And \emph{that} is what people \emph{usually} call triality.

Let me explain, but now let me use a lot of jargon. (Having shown it's
all very simple, I now want to relate it to the complicated stuff people
usually talk about. Skip this if you don't like jargon.) We saw how to
get \(S_3\) to act as automorphisms and antiautomorphisms of
\(\mathbb{R}^3\) with its usual vector cross product\ldots{} or
alternatively, as automorphisms and antiautomorphisms of the Lie algebra
\(\mathfrak{so}(3)\). From that we got an action as automorphisms and
antiautomorphisms of the quaternions and the Hurwitz integral
quaternions. But the Hurwitz integral quaternions are just a differently
coordinatized version of the \(4\)-dimensional lattice \(D_4\)! So we
have gotten triality to act as symmetries of the \(D_4\) lattice, and
hence as automorphisms of the Lie algebra \(D_4\), or in other words
\(\mathfrak{so}(8)\), the Lie algebra of infinitesimal rotations in 8
dimensions. (For more on the \(D_4\) lattice see
\protect\hyperlink{week65}{``Week 65''}, where I describe it using
different, more traditional coordinates.)

Actually I didn't invent all this stuff, I sort of dug it out of the
literature, in particular:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  John H. Conway and Neil J. A. Sloane, \emph{Sphere Packings, Lattices
  and Groups}, second edition, Grundlehren der mathematischen
  Wissenschaften \textbf{290}, Springer-Verlag, 1993.
\end{enumerate}

and

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Frank D. (Tony) Smith, ``Sets and \(C^n\); quivers and
  \(A\)-\(D\)-\(E\); triality; generalized supersymmetry; and
  \(D_4\)-\(D_5\)-\(\mathrm{E}_6\)'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9306011}{\texttt{hep-th/9306011}}.
\end{enumerate}

But I've never quite seen anyone come right out and admit that triality
arises from the permutations of the unit vectors \(i\), \(j\), and \(k\)
in 3d Euclidean space.

I should add that Tony Smith has a bunch of far-out stuff about
quaternions, octonions, Clifford algebras, triality, the \(D_4\) lattice
--- you name it! --- on his home page:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Tony Smith's home page, \texttt{http://valdostamuseum.org/hamsmith/}
\end{enumerate}

He engages in more free association than is normally deemed proper in
scientific literature --- you may raise your eyebrows at sentences like
``the Tarot shows the Lie algebra structure of the
\(D_4\)-\(D_5\)-\(\mathrm{E}_6\) model, while the I Ching shows its
Clifford algebra structure'' --- but don't be fooled; his mathematics is
solid. When it comes to the physics, I'm not sure I buy his theory of
everything, but that's not unusual: I don't think I buy \emph{anyone's}
theory of everything!

Let me wrap up by passing on something he told me about triality and the
exceptional groups. In \protect\hyperlink{week90}{``Week 90''} I
described how you could get the Lie groups \(\mathrm{G}_2\),
\(\mathrm{F}_4\) and \(\mathrm{E}_8\) from triality. I didn't know how
\(\mathrm{E}_6\) and \(\mathrm{E}_7\) fit into the picture. He emailed
me, saying:

\begin{quote}
"Here is a nice way: Start with \(D_4 = \mathrm{Spin}(8)\):

\[28 =  28  +   0  +   0  +   0  +   0  +   0  +   0\]

Add spinors and vector to get \(\mathrm{F}_4\):

\[52 =  28  +   8  +   8  +   8  +   0  +   0  +   0\]

Now, ``complexify'' the \(8+8+8\) part of \(\mathrm{F}_4\) to get
\(\mathrm{E}_6\):

\[78 =  28  +  16  +  16  +  16  +   1  +   0  +   1\]

Then, ``quaternionify'' the \(8+8+8\) part of \(\mathrm{F}_4\) to get
\(\mathrm{E}_7\):

\[133 =  28  +  32  +  32  +  32  +   3  +   3  +   3\]

Finally, ``octonionify'' the \(8+8+8\) part of \(\mathrm{F}_4\) to get
\(\mathrm{E}_8\):

\[248 =  28  +  64  +  64  +  64  +   7  +  14  +   7\]

This way shows you that the ``second'' \(\mathrm{Spin}(8)\) in
\(\mathrm{E}_8\) breaks down as \(28 = 7 + 14 + 7\) which is globally
like two 7-spheres and a \(\mathrm{G}_2\), one \(S_7\) for left-action,
one for right-action, and a \(\mathrm{G}_2\) automorphism group of
octonions that is needed to for ``compatibility'' of the two \(S_7\)s.
The \(3+3+3\) of \(\mathrm{E}_7\), the \(1+0+1\) of \(\mathrm{E}_6\),
and the \(0+0+0\) of \(\mathrm{F}_4\) and \(D_4\) are the quaternionic,
complex, and real analogues of the \(7+14+7\)."
\end{quote}

When I asked him where he got this, he said he cooked it up himself
using the construction of \(\mathrm{E}_8\) that I learned from Kostant
together with the Freudenthal-Tits magic square. He gave some references
for the latter:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\item
  Hans Freudenthal, \emph{Adv. Math.} \textbf{1} (1964) 143.
\item
  Jacques Tits, \emph{Indag. Math.} \textbf{28} (1966) 223--237.
\item
  Kevin McCrimmon, ``Jordan Algebras and their applications'',
  \emph{Bull. AMS} \textbf{84} (1978) 612--627, at pp.~620-621.
  Available at
  \href{http://projecteuclid.org/DPubS?service=UI\&version=1.0\&verb=Display\&handle=euclid.bams/1183540925}{\texttt{http://projecteuclid.org}}
\end{enumerate}

I would describe it here, but I'm running out of steam, and it's easy to
learn about it from his web page:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Tony Smith, Freudenthal-Tits magic square,
  \texttt{http://valdostamuseum.org/hamsmith/FTsquare.html}
\end{enumerate}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
\emph{``I regret that it has been necessary for me in this lecture to
administer such a large dose of four-dimensional geometry. I do not
apologise, because I am not really responsible for the fact that nature
in its most fundamental aspect is four-dimensional''}

--- Albert North Whitehead.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}
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I'm sure most of you have lost interest in my ``tale of n-categories'',
because it takes a fair amount of work to keep up with all the abstract
concepts involved. However, we are now at a point where we can have some
fun with what we've got, even if you haven't really followed all the
previous stuff. So what follows is a rambling tour through monads,
adjunctions, the 4-color theorem and the large-N limit of
\(\mathrm{SU}(N)\) gauge theory\ldots.

Okay, so in \protect\hyperlink{week89}{``Week 89''} we defined a gadget
called a ``monad''. Using the string diagrams we talked about, you can
think of a monad as involving a process like this: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=up] (0.5,-1)
        to (0.5,-2);
      \strand[thick] (1,0.5)
        to (1,0)
        to [out=down,in=up] (0.5,-1);
    \end{knot}
    \node[fill=white] at (0,0) {$s$};
    \node[fill=white] at (1,0) {$s$};
    \node[label=left:{$M$}] at (0.5,-0.95) {$\bullet$};
    \node[fill=white] at (0.5,-1.5) {$s$};
  \end{tikzpicture}
\] which we read downwards as describing the ``fusion'' of two copies of
something called \(s\) into one copy of the same thing \(s\). The fusion
process itself is called \(M\).

I can hear you wonder, what exactly \emph{is} this thing s? What
\emph{is} this process M? Well, I gave the technical answer in
\protect\hyperlink{week89}{``Week 89''} --- but the point is that
\(n\)-category theory is deliberately designed to be so general that it
covers pretty much anything you could want! For example, \(s\) could be
the set of real numbers and \(M\) could be multiplication of real
numbers, which is a function from \(s\times s\) to \(s\). Or we could be
doing topology in the plane, in which case the picture above stands for
exactly what it looks like: two lines merging to form one line! These
and many other situations are analogous, and the formalism allows us to
treat them all at once. Here I will not review all the rules of the
game. If you just play along and trust me everything will be all right.
If you don't trust me, go back and check the definitions.

Let me turn to the axioms for a monad. In addition to the multiplication
\(M\) we want to have a ``multiplicative identity'', \(I\), looking like
this: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,1)
        to (0,0);
    \end{knot}
    \node[label=above:{$I$}] at (0,1) {};
    \node[fill=white] at (0,0.5) {$s$};
  \end{tikzpicture}
\] Here nothing is coming in, and a copy of \(s\) is going out. Because
ordinary multiplication has \(1x = x\) and \(x1 = x\) for all \(x\), we
want the following axioms to hold: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=down,in=up] (0.5,-1)
        to (0.5,-2);
      \strand[thick] (1,1)
        to (1,0)
        to [out=down,in=up] (0.5,-1);
    \end{knot}
    \node[label=above:{$I$}] at (0,0) {};
    \node[fill=white] at (1,0.5) {$s$};
    \node[label=left:{$M$}] at (0.5,-0.95) {$\bullet$};
    \node[fill=white] at (0.5,-1.5) {$s$};
    \node at (2,-0.5) {$=$};
    \begin{knot}
      \strand[thick] (3,1) to (3,-2);
    \end{knot}
    \node[fill=white] at (3,0) {$s$};
  \end{tikzpicture}
\] and \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-1,0)}]
      \begin{knot}
        \strand[thick] (0,0)
          to [out=down,in=up] (0.5,-1)
          to (0.5,-2);
        \strand[thick] (1,1)
          to (1,0)
          to [out=down,in=up] (0.5,-1);
      \end{knot}
      \node[label=above:{$I$}] at (0,0) {};
      \node[fill=white] at (1,0.5) {$s$};
      \node[label=left:{$M$}] at (0.5,-0.95) {$\bullet$};
      \node[fill=white] at (0.5,-1.5) {$s$};
    \end{scope}
    \node at (2,-0.5) {$=$};
      \begin{knot}
        \strand[thick] (3,1) to (3,-2);
      \end{knot}
    \node[fill=white] at (3,0) {$s$};
  \end{tikzpicture}
\] Also, since ordinary multiplication has \((xy)z = x(yz)\), we want
the following associativity law to hold, too: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=up] (0.5,-1)
        to (0.5,-1.5)
        to [out=down,in=up] (1,-2.5)
        to (1,-3.5);
      \strand[thick] (1,0.5)
        to (1,0)
        to [out=down,in=up] (0.5,-1);
      \strand[thick] (2,0.5)
        to (2,0)
        to [out=down,in=up] (1.5,-1)
        to (1.5,-1.5)
        to [out=down,in=up] (1,-2.5);
    \end{knot}
    \node[fill=white] at (0,0) {$s$};
    \node[fill=white] at (1,0) {$s$};
    \node[fill=white] at (2,0) {$s$};
    \node[label=left:{$M$}] at (0.5,-0.95) {$\bullet$};
    \node[label=left:{$M$}] at (1,-2.45) {$\bullet$};
    \node[fill=white] at (0.5,-1.5) {$s$};
    \node[fill=white] at (1,-3) {$s$};
    \node at (3,-1.75) {$=$};
    \begin{scope}[xscale=-1,shift={(-6,0)}]
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=up] (0.5,-1)
        to (0.5,-1.5)
        to [out=down,in=up] (1,-2.5)
        to (1,-3.5);
      \strand[thick] (1,0.5)
        to (1,0)
        to [out=down,in=up] (0.5,-1);
      \strand[thick] (2,0.5)
        to (2,0)
        to [out=down,in=up] (1.5,-1)
        to (1.5,-1.5)
        to [out=down,in=up] (1,-2.5);
    \end{knot}
    \node[fill=white] at (0,0) {$s$};
    \node[fill=white] at (1,0) {$s$};
    \node[fill=white] at (2,0) {$s$};
    \node[label=left:{$M$}] at (0.5,-0.95) {$\bullet$};
    \node[label=left:{$M$}] at (1,-2.45) {$\bullet$};
    \node[fill=white] at (0.5,-1.5) {$s$};
    \node[fill=white] at (1,-3) {$s$};
    \end{scope}
  \end{tikzpicture}
\] These rules are a translation of the rules given in
\protect\hyperlink{week89}{``Week 89''} into string diagram form.

If you are a physicist, you can think of these diagrams as being funny
Feynman diagrams where you've got some kind of particle \(s\) and two
processes \(M\) and \(I\). Then \(M\) is a bit like what you'd call a
``cubic self-interaction'', where two particles combine to form a third.
These interactions show up in simple textbook theories like the
``\(\varphi^3\) theory'' and, more importantly, in nonabelian gauge
field theories like quantum chromodynamics, where the gauge bosons have
cubic self-interactions. On the other hand, I is a bit like what you'd
usually call a ``source'' or an ``external potential'', some sort of
field imposed from outside that can create particles of type \(s\). You
shouldn't take the analogy with Feynman diagrams too seriously yet,
because the context we're working in is so general, and the most
interesting physics theories don't correspond to monads but to more
elaborate setups. However, we could flesh out the analogy to make it
very precise and accurate if we wanted, and this is especially important
in topological quantum field theory. More later about that.

Now in \protect\hyperlink{week83}{``Week 83''} I discussed a different
sort of gadget, called an ``adjunction''. Here you have two guys \(x\)
and \(x^*\), and two processes \(U\) and \(C\) called the ``unit'' and
``counit'', which look like this: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,-0.5)
        to (0,0)
        to [out=up,in=up,looseness=2] (1,0)
        to (1,-0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x$};
    \node[fill=white] at (1,0) {$x^*$};
    \node[label=above:{$U$}] at (0.5,0.57) {$\bullet$};
  \end{tikzpicture}
  \qquad\raisebox{2em}{\text{and}}\qquad
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=down,looseness=2] (1,0)
        to (1,0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x^*$};
    \node[fill=white] at (1,0) {$x$};
    \node[label=below:{$C$}] at (0.5,-0.6) {$\bullet$};
  \end{tikzpicture}
\] They satisfy the following axioms: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
      to (0,1)
      to [out=up,in=up,looseness=2] (1,1)
      to [out=down,in=down,looseness=2] (2,1)
      to (2,2);
    \end{knot}
    \node[fill=white] at (0,0.5) {$x$};
    \node[fill=white] at (2,1.5) {$x$};
    \node[fill=white] at (1,1) {$x^*$};
    \node[label=above:{$U$}] at (0.5,1.57) {$\bullet$};
    \node[label=below:{$C$}] at (1.5,0.4) {$\bullet$};
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[fill=white] at (0,1.7) {$x$};
    \end{scope}
  \end{tikzpicture}
\] \[
  \begin{tikzpicture}
    \begin{scope}[xscale=-1,shift={(-2,0)}]
      \begin{knot}
        \strand[thick] (0,0)
        to (0,1)
        to [out=up,in=up,looseness=2] (1,1)
        to [out=down,in=down,looseness=2] (2,1)
        to (2,2);
      \end{knot}
      \node[fill=white] at (0,0.5) {$x^*$};
      \node[fill=white] at (2,1.5) {$x^*$};
      \node[fill=white] at (1,1) {$x$};
      \node[label=above:{$U$}] at (0.5,1.57) {$\bullet$};
      \node[label=below:{$C$}] at (1.5,0.4) {$\bullet$};
    \end{scope}
    \node at (3,1) {$=$};
    \begin{scope}[shift={(4,0)}]
      \begin{knot}
        \strand[thick] (0,0) to (0,2);
      \end{knot}
      \node[fill=white] at (0,1.7) {$x^*$};
    \end{scope}
  \end{tikzpicture}
\] Physically, we can think of \(x^*\) as the antiparticle of \(x\), and
then \(U\) is the process of creation of a particle-antiparticle pair,
while \(C\) is the process of annihilation. The axioms just say that for
a particle or antiparticle to ``double back in time'' by means of these
processes isn't really different than for it to march obediently along
forwards. Mathematically, one nice example of an adjunction involves a
vector space x and its dual vector space \(x^*\). This is really the
same example, since if the behavior of a particle under symmetry
transformations is described by some group representation, its
antiparticle is described by the dual representation. For more details
on the math, see \protect\hyperlink{week83}{``Week 83''}.

Now, let's see how to get a monad from an adjunction! We need to get
\(s\), \(M\), and \(I\) from \(x\), \(x^*\), \(U\), and \(C\). To do
this, we first define \(s\) to be \(xx^*\). Then define \(M\) to be \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=down,looseness=2] (1,0)
        to (1,0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x^*$};
    \node[fill=white] at (1,0) {$x$};
    \node[label=below:{$C$}] at (0.5,-0.6) {$\bullet$};
    \begin{knot}
      \strand[thick] (-0.75,0.5)
        to (-0.75,0)
        to [out=down,in=up] (0.125,-1.75)
        to (0.125,-2.5);
      \strand[thick] (1.75,0.5)
        to (1.75,0)
        to [out=down,in=up] (0.875,-1.75)
        to (0.875,-2.5);
    \end{knot}
    \node[fill=white] at (-0.75,0) {$x$};
    \node[fill=white] at (1.75,0) {$x^*$};
    \node[fill=white] at (0,-2) {$x$};
    \node[fill=white] at (1,-2) {$x^*$};
  \end{tikzpicture}
\] Again, to really understand the rules of the game you need to learn a
bit about string diagrams and \(2\)-categories, but the basic idea is
supposed to be simple: we can get two \(xx^*\)'s to turn into one
\(xx^*\) by letting an \(x^*\) and \(x\) annihilate each other!

Finally, we define \(I\) to be \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,-0.5)
        to (0,0)
        to [out=up,in=up,looseness=2] (1,0)
        to (1,-0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x$};
    \node[fill=white] at (1,0) {$x^*$};
    \node[label=above:{$U$}] at (0.5,0.57) {$\bullet$};
  \end{tikzpicture}
\] In other words, an \(xx^*\) can be created out of nothing since it's
a ``particle/antiparticle pair''.

Now one can check that all the axioms for a monad hold. You really need
to know a bit about \(2\)-categories to do it carefully, but basically
you just let yourself deform the pictures, in part with the help of the
axioms for an adjunction, which let you straighten out curves that
``double back in time.'' So for example, we can prove the identity law
\[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,-0.5)
        to (0,0)
        to [out=up,in=up,looseness=2] (1,0)
        to (1,-0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x$};
    \node[fill=white] at (1,0) {$x^*$};
    \node[label=above:{$U$}] at (0.5,0.57) {$\bullet$};
    \begin{knot}
      \strand[thick] (0,-0.5)
        to [out=down,in=up,looseness=1.5] (1,-3)
        to (1,-3.5);
    \end{knot}
    \node[fill=white] at (1,-3) {$x$};
    \begin{knot}
      \strand[thick] (1,-0.5)
        to [out=down,in=down,looseness=2] (2,-0.5)
        to (2,1.5);
    \end{knot}
    \node[label=below:{$C$}] at (1.5,-1.1) {$\bullet$};
    \node[fill=white] at (2,1) {$x$};
    \begin{knot}
      \strand[thick] (2,-3.5)
        to (2,-3)
        to [out=up,in=down,looseness=1.5] (3,-0.5)
        to (3,1.5);
    \end{knot}
    \node[fill=white] at (2,-3) {$x^*$};
    \node[fill=white] at (3,1) {$x^*$};
    \node at (4,-1) {$=$};
    \begin{knot}
      \strand[thick] (5,1.5) to (5,-3.5);
      \strand[thick] (6,1.5) to (6,-3.5);
    \end{knot}
    \node[fill=white] at (5,1) {$x$};
    \node[fill=white] at (6,1) {$x^*$};
  \end{tikzpicture}
\] by canceling the \(U\) and the \(C\) on the left using one of the
axioms for an adjunction. Similarly, associativity holds because the
following two pictures are topologically the same: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0.5)
        to (0,0)
        to [out=down,in=down,looseness=2] (1,0)
        to (1,0.5);
    \end{knot}
    \node[fill=white] at (0,0) {$x^*$};
    \node[fill=white] at (1,0) {$x$};
    \node[label=below:{$C$}] at (0.5,-0.6) {$\bullet$};
    \begin{knot}
      \strand[thick] (-0.75,0.5)
        to (-0.75,0)
        to [out=down,in=up] (0.125,-1.75)
        to (0.125,-2.5);
      \strand[thick] (1.75,0.5)
        to (1.75,0)
        to [out=down,in=up] (0.875,-1.75)
        to (0.875,-2.5);
    \end{knot}
    \node[fill=white] at (-0.75,0) {$x$};
    \node[fill=white] at (1.75,0) {$x^*$};
    \node[fill=white] at (0,-2) {$x$};
    \node[fill=white] at (1,-2) {$x^*$};
    \begin{scope}[shift={(0.875,-3)}]
      \begin{knot}
        \strand[thick] (0,0.5)
          to (0,0)
          to [out=down,in=down,looseness=2] (1,0)
          to (1,0.5);
      \end{knot}
      \node[fill=white] at (0,0) {$x^*$};
      \node[fill=white] at (1,0) {$x$};
      \node[label=below:{$C$}] at (0.5,-0.6) {$\bullet$};
      \begin{knot}
        \strand[thick] (-0.75,0.5)
          to (-0.75,0)
          to [out=down,in=up] (0.125,-1.75)
          to (0.125,-2.5);
        \strand[thick] (1.75,0.5)
          to (1.75,0)
          to [out=down,in=up] (0.875,-1.75)
          to (0.875,-2.5);
      \end{knot}
      \node[fill=white] at (-0.75,0) {$x$};
      \node[fill=white] at (1.75,0) {$x^*$};
      \node[fill=white] at (0,-2) {$x$};
      \node[fill=white] at (1,-2) {$x^*$};
    \end{scope}
    \begin{scope}[shift={(1.875,-2.5)}]
      \begin{knot}
        \strand[thick] (0,0)
          to (0,0.5)
          to [out=up,in=down,looseness=0.75] (1,2.5)
          to (1,3);
        \strand[thick] (0.75,0)
          to (0.75,0.5)
          to [out=up,in=down,looseness=0.75] (1.75,2.5)
          to (1.75,3);
      \end{knot}
      \node[fill=white] at (0,0.5) {$x$};
      \node[fill=white] at (0.75,0.5) {$x^*$};
      \node[fill=white] at (1,2.5) {$x$};
      \node[fill=white] at (1.75,2.5) {$x^*$};
    \end{scope}
    \node at (4.5,-2.5) {$=$};
    \begin{scope}[xscale=-1,shift={(-9,0)}]
      \begin{knot}
        \strand[thick] (0,0.5)
          to (0,0)
          to [out=down,in=down,looseness=2] (1,0)
          to (1,0.5);
      \end{knot}
      \node[fill=white] at (0,0) {$x$};
      \node[fill=white] at (1,0) {$x^*$};
      \node[label=below:{$C$}] at (0.5,-0.6) {$\bullet$};
      \begin{knot}
        \strand[thick] (-0.75,0.5)
          to (-0.75,0)
          to [out=down,in=up] (0.125,-1.75)
          to (0.125,-2.5);
        \strand[thick] (1.75,0.5)
          to (1.75,0)
          to [out=down,in=up] (0.875,-1.75)
          to (0.875,-2.5);
      \end{knot}
      \node[fill=white] at (-0.75,0) {$x^*$};
      \node[fill=white] at (1.75,0) {$x$};
      \node[fill=white] at (0,-2) {$x^*$};
      \node[fill=white] at (1,-2) {$x$};
      \begin{scope}[shift={(0.875,-3)}]
        \begin{knot}
          \strand[thick] (0,0.5)
            to (0,0)
            to [out=down,in=down,looseness=2] (1,0)
            to (1,0.5);
        \end{knot}
        \node[fill=white] at (0,0) {$x$};
        \node[fill=white] at (1,0) {$x^*$};
        \node[label=below:{$C$}] at (0.5,-0.6) {$\bullet$};
        \begin{knot}
          \strand[thick] (-0.75,0.5)
            to (-0.75,0)
            to [out=down,in=up] (0.125,-1.75)
            to (0.125,-2.5);
          \strand[thick] (1.75,0.5)
            to (1.75,0)
            to [out=down,in=up] (0.875,-1.75)
            to (0.875,-2.5);
        \end{knot}
        \node[fill=white] at (-0.75,0) {$x^*$};
        \node[fill=white] at (1.75,0) {$x$};
        \node[fill=white] at (0,-2) {$x^*$};
        \node[fill=white] at (1,-2) {$x$};
      \end{scope}
      \begin{scope}[shift={(1.875,-2.5)}]
        \begin{knot}
          \strand[thick] (0,0)
            to (0,0.5)
            to [out=up,in=down,looseness=0.75] (1,2.5)
            to (1,3);
          \strand[thick] (0.75,0)
            to (0.75,0.5)
            to [out=up,in=down,looseness=0.75] (1.75,2.5)
            to (1.75,3);
        \end{knot}
        \node[fill=white] at (0,0.5) {$x^*$};
        \node[fill=white] at (0.75,0.5) {$x$};
        \node[fill=white] at (1,2.5) {$x^*$};
        \node[fill=white] at (1.75,2.5) {$x$};
      \end{scope}
    \end{scope}
  \end{tikzpicture}
\] Whew! Drawing these is tough work.

Now, as I said, an example of an adjunction is a vector space \(x\) and
its dual \(x^*\). What monad do we get in this case? Well, the vector
space \(x\) tensored with \(x^*\) is just the vector space of linear
transformations of \(x\), so that's our monad in this case. In less
high-brow terms, we've proven that matrices form an algebra when you
define matrix multiplication in the usual way! In particular, the above
picture serves as a diagrammatic proof that matrix multiplication is
associative.

Of course, people didn't invent all this fancy-looking (but actually
very basic) stuff just to deal with matrix multiplication! Or did they?
Well, actually, Penrose \emph{did} invent a diagrammatic notation for
tensors which is just a slightly souped-up version of the above stuff.
You can find it in:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  ``Applications of negative dimensional tensors'', by Roger Penrose, in
  \emph{Combinatorial Mathematics and its Applications}, ed.~D. J. A.
  Welsh, Academic Press, 1971.
\end{enumerate}

But most of the work on this sort of thing has been aimed at
applications of other sorts.

Now let me drift over to a related subject, the large-\(N\) limit of
\(\mathrm{SU}(N)\) gauge theory. Quantum chromodynamics, or QCD, is an
\(\mathrm{SU}(N)\) gauge theory with \(N = 3\), but it turns out that
things simplify a lot in the limit as \(N\to\infty\), and one gets some
nice qualitative insight into the strong force by considering this
simplified theory. One can even treat the number \(3\) as a small
perturbation around the number \(\infty\) and get some decent answers! A
good introduction to this appears in Coleman's delightful book,
essential reading for anyone learning particle physics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Sidney Coleman, \emph{Aspects of Symmetry}, Cambridge University
  Press, Cambrdige, 1989.
\end{enumerate}

Check out section 8.3.1, entitled ``the double line representation and
the dominance of planar graphs''. Coleman considers Yang-Mills theories,
like QCD, but many of the same ideas apply to other gauge theories.

The idea is that if we start out studying the Feynman diagrams for a
gauge field theory with gauge group \(\mathrm{SU}(N)\), and see how much
various diagrams contribute to any process for large \(N\), the diagrams
that contribute the most are those that can be drawn on a plane without
any lines crossing. Technically, the reason is that diagrams that can
only be drawn on a surface of genus \(g\) grow like \(N^{2-2g}\) as
\(N\) increases. This number \(2-2g\) is called the Euler characteristic
and it's biggest when your surface has no handles.

Even better, in the \(N\to\infty\) limit we can think of the Feynman
diagrams using diagrams like the ones above. For example, we can think
of the cubic self-interaction in Yang-Mills theory as simply matrix
multiplication: \[
  \begin{tikzpicture}
    \draw[thick] (1,0) to node[fill=white]{$x^*$} (1.5,-1) node[label=below:{$C$}]{$\bullet$} to node[fill=white]{$x$} (2,0);
    \draw[thick] (0,0) to node[fill=white]{$x$} (1,-2) to node[fill=white]{$x$} (1,-3);
    \draw[thick] (3,0) to node[fill=white]{$x^*$} (2,-2) to node[fill=white]{$x^*$} (2,-3);
  \end{tikzpicture}
\] and the quartic self-interaction as something a wee bit fancier: \[
  \begin{tikzpicture}
    \draw[thick] (1,0) to node[fill=white]{$x^*$} (1.5,-1) node[label=below:{$C$}]{$\bullet$} to node[fill=white]{$x$} (2,0);
    \draw[thick] (0,0) to node[fill=white]{$x$} (1,-2) to node[fill=white]{$x$} (0,-4);
    \draw[thick] (3,0) to node[fill=white]{$x^*$} (2,-2) to node[fill=white]{$x^*$} (3,-4);
    \draw[thick] (1,-4) to node[fill=white]{$x^*$} (1.5,-3) node[label=above:{$U$}]{$\bullet$} to node[fill=white]{$x$} (2,-4);
  \end{tikzpicture}
\] Apparently these ideas have spawned a whole field of physics called
``matrix models''.

These ideas work not only for Yang-Mills theory but also for
Chern-Simons theory, which is a topological quantum field theory: a
theory that doesn't require any metric on spacetime to make sense. Here
they have been exploited by Dror Bar-Natan to come up with a new
formulation of the famous 4-color theorem:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Dror Bar-Natan, ``Lie algebras and the four color theorem'', preprint
  available as
  \href{https://arxiv.org/ps/q-alg/9606016}{\texttt{q-alg/9606016}}.
\end{enumerate}

As I explained in \protect\hyperlink{week8}{``Week 8''} and
\protect\hyperlink{week22}{``Week 22''}, there is a way to formulate
about the 4-color theorem as a statement about trivalent graphs. In
particular, Penrose invented a little recipe that lets us calculate an
invariant of trivalent graphs, which is zero for some \emph{planar}
graph only if some corresponding map can't be 4-colored. This recipe
involves the vector cross product, or equivalently, the Lie algebra of
the group \(\mathrm{SU}(2)\). You can generalize it to work for
\(\mathrm{SU}(N)\). And if you then consider the \(N\to\infty\) limit,
you get the above stuff! (The point is that the above stuff also gives a
rule for computing a number from any trivalent graph.)

Now as I said, in the \(N\to\infty\) limit all the nonplanar Feynman
diagrams give negligible results compared to the planar ones. So another
way to state the 4-color theorem is this: if the \(\mathrm{SU}(2)\)
invariant of a trivalent graph is zero, the \(\mathrm{SU}(N)\) invariant
is negligible in the \(N\to\infty\) limit.

This doesn't yet give a new proof of the 4-color theorem. But it makes
it into sort of a \emph{physics} problem: a problem about the relation
of \(\mathrm{SU}(2)\) Chern-Simons theory and the \(N\to\infty\) limit
of Chern-Simons theory.

Now, the 4-color theorem is one of the two deep mysteries of
2-dimensional topology --- a subject too often considered trivial. The
other mystery is the Andrews-Curtis conjecture, discussed in
\protect\hyperlink{week23}{``Week 23''}. Often a problem is hard or
unsolvable until you get the right tools. Topological quantum field
theory is a new tool in topology, so one could hope it'll shed some
light on these problems. Bar-Natan's paper is a tantalizing piece of
evidence that maybe, just maybe, it will.

One can't really tell yet.

Anyway, I don't really care much about the 4-color theorem per se. If I
ever need to color a map I'll hire a cartographer. It's the connections
between seemingly disparate subjects that I find interesting.
\(2\)-categories are a very abstract formalism developed to describe
\(2\)-dimensional ways of glomming things together. Starting from the
study of \(2\)-categories, we very naturally get the notions of
``monad'' and ``adjunction''. And before we know it, this leads us to
some interesting questions about \(2\)-dimensional quantum field theory:
for really, the dominance of planar diagrams in the \(N\to\infty\) limit
of gauge theory is saying that in this limit the theory becomes
essentially a 2-dimensional field theory, in some funny sense. And then,
lo and behold, this turns out to be related to the 4-color theorem!

By the way, I guess you all know that the 4-color theorem was proved
using a computer, by breaking things down into lots of separate cases.
(See \protect\hyperlink{week22}{``Week 22''} for references.) Well,
there's a new proof out, which also uses a computer, but is supposed to
be simpler:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas, ``A
  new proof of the four-colour theorem'', \emph{Electronic Research
  Announcements of the American Mathematical Society} \textbf{2} (1996),
  17--25. Available at
  \texttt{http://www.ams.org/journals/era/1996-02-01/}
\end{enumerate}

I'm still hoping for the 2-page ``physicist's proof'' using path
integrals!

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week99}{``Week 99''}.

For more on adjunctions and monoid objects, try
\protect\hyperlink{week173}{``Week 173''} and especially
\protect\hyperlink{week174}{``Week 174''}.



\hypertarget{week93}{%
\section{October 27, 1996}\label{week93}}

Lately I've been trying to learn more about string theory. I've always
had grave doubts about string theory, but it seems worth knowing about.
As usual, when I'm trying to learn something I find it helpful to write
about it --- it helps me remember stuff, and it points out gaps in my
understanding. So I'll start trying to explain some string theory in
this and forthcoming Week's Finds.

However: watch out! This isn't going to be a systematic introduction to
the subject. First of all, I don't know enough to do that. Secondly, it
will be very quirky and idiosyncratic, because the aspects of string
theory I'm interested in now aren't necessarily the ones most string
theorists would consider central. I've been taking as my theme of
departure, ``What's so great about 10 and 26 dimensions?'' When one
reads about string theory, one often hears that it only works in 10 or
26 dimensions --- and the obvious question is, why?

This question leads one down strange roads, and one runs into lots of
surprising coincidences, and spooky things that sound like coindences
but might NOT be coincidences if we understood them better.

For example, when we have a string in 26 dimensions we can think of it
as wiggling around in the 24 directions perpendicular to the
2-dimensional surface the string traces out in spacetime (the ``string
worldsheet''). So the number 24 plays an especially important role in
26-dimensional string theory. It turns out that
\[1^2 + 2^2 + 3^2 + \ldots + 24^2 = 70^2.\] In fact, 24 is the
\emph{only} integer \(n > 1\) such that the sum of squares from \(1^2\)
to \(n^2\) is itself a perfect square. Is this a coincidence? Probably
not, as I'll eventually explain! This is just one of many eerie facts
one meets when trying to understand this stuff.

For starters I just want to explain why dimensions of the form
\(8k + 2\) are special. Notice that if we take \(k = 0\) here we get
\(2\), the dimension of the string worldsheet. For \(k = 1\) we get
\(10\), the dimension of spacetime in ``supersymmetric string theory''.
For \(k = 3\) we get \(26\), the dimension of spacetime in ``purely
bosonic string theory''. So these dimensions are important. What about
\(k = 2\) and the dimension \(18\), I hear you ask? Well, I don't know
what happens there yet\ldots{} maybe someone can tell me! All I want to
do now is to explain what's good about \(8k+2\).

But I need to start by saying a bit about fermions.

Remember that in the Standard Model of particle physics --- the model
that all fancier theories are trying to outdo --- elementary particles
come in 3 basic kinds. There are the basic fermions. In general a
``fermion'' is a particle whose angular momentum comes in units of
Planck's constant \(\hbar\) times \(1/2\), \(3/2\), \(5/2\), and so on.
Fermions satisfy the Pauli exclusion principle --- you can't put two
identical fermions in the same state. That's why we have chemistry: the
electrons stack up in ``shells'' at different energy levels, instead of
all going to the lowest-energy state, because they are fermions and
satisfy the exclusion principle. In the Standard Model the fermions go
like this:

\begin{longtable}[]{@{}llll@{}}
\toprule
\textbf{Leptons} & & \textbf{Quarks} &\tabularnewline
\midrule
\endhead
electron & electron neutrino & down quark & up quark\tabularnewline
muon & muon neutrino & strange quark & charm quark\tabularnewline
tauon & tauon neutrino & bottom quark & top quark\tabularnewline
\bottomrule
\end{longtable}

There are three ``generations'' here, all rather similar to each other.

There are also particles in the Standard Model called ``bosons'' having
angular momentum in units of \(\hbar\) times \(0\),\(1\),\(2\), and so
on. Identical bosons, far from satisfying the exclusion principle, sort
of like to all get into the same state: one sees this in phenomena such
as lasers, where lots of photons occupy the same few states. Most of the
bosons in the Standard Model are called ``gauge bosons''. These carry
the different forces in the standard model, by which the particles
interact:

\begin{longtable}[]{@{}lll@{}}
\toprule
Electromagnetic force & Weak force & Strong force\tabularnewline
\midrule
\endhead
photon & W\textsubscript{+}, W\textsubscript{-}, Z & 8
gluons\tabularnewline
\bottomrule
\end{longtable}

Finally, there is also a bizarre particle in the Standard Model called
the ``Higgs boson''. This was first introduced as a rather ad hoc
hypothesis: it's supposed to interact with the forces in such a way as
to break the symmetry that would otherwise be present between the
electromagnetic force and the weak force. It has not yet been observed;
finding it would would represent a great triumph for the Standard Model,
while \emph{not} finding it might point the way to better theories.

Indeed, while the Standard Model has passed many stringent experimental
tests, and successfully predicted the existence of many particles which
were later observed (like the W, the Z, and the charm and top quarks),
it is a most puzzling sort of hodgepodge. Could nature really be this
baroque at its most fundamental level? Few people seem to think so; most
hope for some deeper, simpler theory.

It's easy to want a ``deeper, simpler theory'', but how to get it? What
are the clues? What can we do? Experimentalists certainly have their
work cut out for them. They can try to find or rule out the Higgs. They
can also try to see if neutrinos, assumed to be massless in the Standard
Model, actually have a small mass --- for while the Standard Model could
easily be patched if this were the case, it would shed interesting light
on one of the biggest mysteries in physics, namely why the fermions in
nature seem not to be symmetric under reflection, or ``parity''. Right
now, we believe that neutrinos only exist in a left-handed form,
rotating one way but not the other around the axis they move along. This
is intimately related to their apparent masslessness. In fact, for
reasons that would take a while to explain, the lack of parity symmetry
in the Standard Model forces us to assume all the observed fermions
acquire their mass only through interaction with the Higgs particle! For
more on the neutrino mass puzzle, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Paul Langacker, Implications of Neutrino Mass,
  \texttt{http://dept.physics.upenn.edu/neutrino/jhu/jhu.html}
\end{enumerate}

And, of course, experimentalists can continue to do what they always do
best: discover the utterly unexpected.

Theorists, on the other hand, have been spending the last couple of
decades poring over the standard model and trying to understand what
it's telling us. It's so full of suggestive patterns and partial
symmetries! First, why are there 3 forces here? Each force goes along
with a group of symmetries called a ``gauge group'', and
electromagnetism corresponds to \(\mathrm{U}(1)\), while the weak force
corresponds to \(\mathrm{SU}(2)\) and the strong force corresponds to
\(\mathrm{SU}(3)\). (Here \(\mathrm{U}(n)\) is the group of
\(n\times n\) unitary complex matrices, while \(\mathrm{SU}(n)\) is the
subgroup consisting of those with determinant equal to \(1\).) Well,
actually the Standard Model partially unifies the electromagnetic and
weak force into the ``electroweak force'', and then resorts to the Higgs
to explain why these forces are so different in practice. Various
``grand unified theories'' or ``GUTs'' try to unify the forces further
by sticking the group
\(\mathrm{SU}(3)\times\mathrm{SU}(2)\times\mathrm{U}(1)\) into a bigger
group --- but then resort to still more Higgses to break the symmetry
between them!

Then, there is the curious parallel between the leptons and quarks in
each generation. Each generation has a lepton with mass, a massless or
almost massless neutrino, and two quarks. The massive lepton has charge
\(-1\), the neutrino has charge \(0\) as its name suggests, the ``down''
type quark has charge \(-1/3\), and the ``up'' type quark has charge
\(2/3\). Funny pattern, eh? The Standard Model does not really explain
this, although it would be ruined by ``anomalies'' --- certain
nightmarish problems that can beset a quantum field theory --- if one
idly tried to mess with the generations by leaving out a quark or the
like. It's natural to try to ``unify'' the quarks and leptons, and
indeed, in grand unified theories like the \(\mathrm{SU}(5)\) theory
proposed in 1974 of Georgi and Glashow, the quarks and leptons are
treated in a unified way.

Another interesting pattern is the repetition of generations itself. Why
is there more than one? Why are there three, almost the same, but with
the masses increasing dramatically as we go up? The Standard Model makes
no attempt to explain this, although it does suggest that there had
better not be more than 17 quarks --- more, and the strong force would
not be ``asymptotically free'' (weak at high energies), which would
cause lots of problems for the theory. In fact, experiments strongly
suggest that there are no more than 3 generations. Why?

Finally, there is the grand distinction between bosons and fermions.
What does this mean? Here we understand quite a bit from basic
principles. For example, the ``spin-statistics theorem'' explains why
particles with half-integer spin should satisfy the Pauli exclusion
principle, while those with integer spin should like to hang out
together. This is a very beautiful result with a deep connection to
topology, which I try to explain in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  John Baez, Spin, statistics, CPT and all that jazz,
  \texttt{http://math.ucr.edu/home/baez/spin.stat.html}
\end{enumerate}

But many people have tried to bridge the chasm between bosons and
fermions, unifying them by a principle called ``supersymmetry''. As in
the other cases mentioned above, when they do this, they then need to
pull tricks to ``break'' the symmetry to get a theory that fits the
experimental fact that bosons and fermions are very different.
Personally, I'm suspicious of all these symmetries postulated only to be
cleverly broken; this approach was so successful in dealing with the
electroweak force --- modulo the missing Higgs! - that it seems to have
been accepted as a universal method of having ones cake and eating it
too.

Now, string theory comes in two basic flavors. Purely bosonic string
theory lives in 26 dimensions and doesn't have any fermions in it.
Supersymmetric string theories live in 10 dimensions and have both
bosons and fermions, unified via supersymmetry. To deal with the
fermions in nature, most work in physics has focused on the
supersymmetric case. Just for completeness, I should point out that
there are 5 different supersymmetric string theories: type I, type IIA,
type IIB, \(\mathrm{E}_8\times\mathrm{E}_8\) heterotic and
\(\mathrm{SO}(32)\) heterotic. For more on these, see
\protect\hyperlink{week72}{``Week 72''}. We won't be getting into them
here. Instead, I just want to explain how fermions work in different
dimensions, and why nice things happen in dimensions of the form
\(8k + 2\). Most of what I say is in Section 3 of

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John H. Schwarz, ``Introduction to supersymmetry'', in
  \emph{Superstrings and Supergravity, Proc. of the 28th Scottish
  Universities Summer School in Physics}, ed.~A. T. Davies and D. G.
  Sutherland, University Printing House, Oxford, 1985.
\end{enumerate}

but mathematicians may also want to supplement this with material from
the book ``Spin Geometry'' by Lawson and Michelson, cited in
\protect\hyperlink{week82}{``Week 82''}.

To understand fermions in different dimensions we need to understand
Clifford algebras. As far as I know, when Clifford originally invented
these algebras in the late 1800s, he was trying to generalize Hamilton's
quaternion algebra by considering algebras that had lots of different
anticommuting square roots of \(-1\). In other words, he considered an
associative algebra generated by a bunch of guys \(e_1,\ldots,e_n\),
satisfying \[e_i^2 = -1\] for all \(i\), and \[e_i e_j = - e_j e_i\]
whenever \(i\) is not equal to \(j\). I discussed these algebras in
\protect\hyperlink{week82}{``Week 82''} and I said what they all were
--- they all have nice descriptions in terms of the reals, the
complexes, and the quaternions.

These original Clifford algebras are great for studying rotations in
\(n\)-dimensional Euclidean space --- please take my word for this for
now. However, here we want to study rotations and Lorentz
transformations in \(n\)-dimensional Minkowski spacetime, so we need to
work with a slightly Different kind of Clifford algebra, which was
probably invented by Dirac. In \(n\)-dimensional Euclidean space the
metric (used for measuring distances) is
\[dx_1^2 + dx_2^2 + \ldots + dx_n^2\] while in \(n\)-dimensional
Minkowski spacetime it is \[dx_1^2 + dx_2^2 + \ldots - dx_n^2\] or if
you prefer (it's just a matter of convention), you can take it to be
\[-dx_1^2 - dx_2^2 - \ldots + dx_n^2\] So it turns out that we need to
switch some signs in the definition of the Clifford algebra when working
in Minkowski spacetime.

In general, we can define the Clifford algebra \(C_{p,q}\) to be the
algebra generated by a bunch of elements \(e_i\), with \(p\) of them
being square roots of \(-1\) and \(q\) of them being square roots of
\(1\). As before, we require that they anticommute:
\[e_i e_j = - e_j e_i\] when \(i\) and \(j\) are different. Physicists
usually call these guys ``gamma matrices''. For \(n\)-dimensional
Minkowski space we can work either with \(C{n-1,1}\) or \(C_{1,n-1}\),
depending on our preference. As Cecile DeWitt has pointed out, it
\emph{does} make a difference which one we use.

With some work, one can check that these algebras go like this:

\begin{longtable}[]{@{}rlrl@{}}
\toprule
\endhead
\(C_{0,1}\) & \(\mathbb{R}+\mathbb{R}\) & \(C_{1,0}\) &
\(\mathbb{C}\)\tabularnewline
\(C_{1,1}\) & \(\mathbb{R}(2)\) & \(C_{1,1}\) &
\(\mathbb{R}(2)\)\tabularnewline
\(C_{2,1}\) & \(\mathbb{C}(2)\) & \(C_{1,2}\) &
\(\mathbb{R}(2)+\mathbb{R}(2)\)\tabularnewline
\(C_{3,1}\) & \(\mathbb{H}(2)\) & \(C_{1,3}\) &
\(\mathbb{R}(4)\)\tabularnewline
\(C_{4,1}\) & \(\mathbb{H}(2)+\mathbb{H}(2)\) & \(C_{1,4}\) &
\(\mathbb{C}(4)\)\tabularnewline
\(C_{5,1}\) & \(\mathbb{H}(4)\) & \(C_{1,5}\) &
\(\mathbb{H}(4)\)\tabularnewline
\(C_{6,1}\) & \(\mathbb{C}(8)\) & \(C_{1,6}\) &
\(\mathbb{H}(4)+\mathbb{H}(4)\)\tabularnewline
\(C_{7,1}\) & \(\mathbb{R}(16)\) & \(C_{1,7}\) &
\(\mathbb{H}(8)\)\tabularnewline
\bottomrule
\end{longtable}

I've only listed these up to \(8\)-dimensional Minkowski spacetime, and
the cool thing is that after that they sort of repeat --- more
precisely, \(C_{n+8,1}\) is just the same as \(16\times16\) matrices
with entries in \(C_{n,1}\), and \(C_{1,n+8}\) is just \(16\times16\)
matrices with entries in \(C_{1,n}\)! This ``period-8'' phenomenon,
sometimes called Bott periodicity, has implications for all sorts of
branches of math and physics. This is why fermions in 2 dimensions are a
bit like fermions in 10 dimensions and 18 dimensions and 26
dimensions\ldots.

In physics, we describe fermions using ``spinors'', but there are
different kinds of spinors: Dirac spinors, Weyl spinors, Majorana
spinors, and even Majorana-Weyl spinors. This is a bit technical but I
want to dig into it here, since it explains what's special about
\(8k + 2\) dimensions and especially 10 dimensions.

Before I get technical, though, let me just summarize the point for
those of you who don't want all the gory details. ``Dirac spinors'' are
what you use to describe spin-\(1/2\) particles that come in both
left-handed and right-handed forms and aren't their own antiparticle ---
like the electron. Weyl spinors have half as many components, and
describe spin-\(1/2\) particles with an intrinsic handedness that aren't
their own antiparticle --- like the neutrino. ``Weyl spinors'' are only
possible in even dimensions!

Both these sorts of spinors are ``complex'' --- they have complex-valued
components. But there are also real spinors. These are used for
describing particles that are their own antiparticle, because the
operation of turning a particle into an antiparticle is described
mathematically by complex conjugation. ``Majorana spinors'' describe
spin-\(1/2\) particles that come in both left-handed and right-handed
forms and are their own antiparticle. Finally, ``Majorana-Weyl spinors''
are used to describe spin-\(1/2\) particles with an intrinsic handedness
that are their own antiparticle.

As far as we can tell, none of the particles we've seen are Majorana or
Majorana-Weyl spinors, although if the neutrino has a mass it might be a
Majorana spinor. Majorana and Majorana-Weyl spinors only exist in
certain dimensions. In particular, Majorana-Weyl spinors are very
finicky: they only work in dimensions of the form \(8k + 2\). This is
part of what makes supersymmetric string theory work in 10 dimensions!

Now let me describe the technical details. I'm doing this mainly for my
own benefit; if I write this up, I'll be able to refer to it whenever I
forget it. For those of you who stick with me, there will be a little
reward: we'll see that a certain kind of supersymmetric gauge theory, in
which there's a symmetry between gauge bosons and fermions, only works
in dimensions 3, 4, 6, and 10. Perhaps coincidentally --- I don't
understand this stuff well enough to know --- these are also the
dimensions when supersymmetric string theory works classically. (It's
the quantum version that only works in dimension 10.)

So: part of the point of these Clifford algebras is that they give
representations of the double cover of the Lorentz group in different
dimensions. In \protect\hyperlink{week61}{``Week 61''} I explained this
double cover business, and how the group \(\mathrm{SO}(n)\) of rotations
of \(n\)-dimensional Euclidean space has a double cover called
\(\mathrm{Spin}(n)\). Similarly, the Lorentz group of \(n\)-dimensional
Minkowski space, written \(\mathrm{SO}(n-1,1)\), has a double cover we
could call \(\mathrm{Spin}(n-1,1)\). The spinors we'll discuss are all
representations of this group.

The way Clifford algebras help is that there is a nice way to embed
\(\mathrm{Spin}(n-1,1)\) in either \(C_{n-1,1}\) or \(C_{1,n-1}\), so
any representation of these Clifford algebras gives a representation of
\(\mathrm{Spin}(n-1,1)\). We have a choice of dealing with real
representations or complex representations. Any complex representation
of one of these Clifford algebras is also a representation of the
\emph{complexified} Clifford algebra. What I mean is this: above I
implicitly wanted \(C_{p,q}\) to consist of all \emph{real} linear
combinations of products of the e\_i, but we could have worked with
\emph{complex} linear combinations instead. Then we would have
``complexified'' \(C_{p,q}\). Since the complex numbers include a square
root of minus 1, the complexification of \(C_{p,q}\) only depends on the
dimension p + q, not on how many minus signs we have.

Now, it is easy and fun and important to check that if you complexify
\(\mathbb{R}\) you get \(\mathbb{C}\), and if you complexify
\(\mathbb{C}\) you get \(\mathbb{C}+\mathbb{C}\), and if you complexify
\(\mathbb{H}\) you get \(\mathbb{C}(2)\). Thus from the above table we
get this table:

\begin{longtable}[]{@{}ll@{}}
\toprule
dimension \(n\) & complexified Clifford algebra\tabularnewline
\midrule
\endhead
1 & \(\mathbb{C}+\mathbb{C}\)\tabularnewline
2 & \(\mathbb{C}(2)\)\tabularnewline
3 & \(\mathbb{C}(2)+\mathbb{C}(2)\)\tabularnewline
4 & \(\mathbb{C}(4)\)\tabularnewline
5 & \(\mathbb{C}(4)+\mathbb{C}(4)\)\tabularnewline
6 & \(\mathbb{C}(8)\)\tabularnewline
7 & \(\mathbb{C}(8)+\mathbb{C}(8)\)\tabularnewline
8 & \(\mathbb{C}(16)\)\tabularnewline
\bottomrule
\end{longtable}

Notice this table is a lot simpler --- complex Clifford algebras are
``period-2'' instead of period-8.

Now the smallest complex representation of the complexified Clifford
algebra in dimension n is what we call a ``Dirac spinor''. We can figure
out what this is using the above table, since the smallest complex
representation of \(\mathbb{C}(n)\) or \(\mathbb{C}(n) + \mathbb{C}(n)\)
is on the \(n\)-dimensional complex vector space \(\mathbb{C}^n\), given
by matrix multiplication. Of course, for
\(\mathbb{C}(n) + \mathbb{C}(n)\) there are \emph{two} representations
depending on which copy of \(\mathbb{C}(n)\) we use, but these give
equivalent representations of \(\mathrm{Spin}(n-1,1)\), which is what
we're really interested in, so we still speak of ``the'' Dirac spinors.

So we get:

\begin{longtable}[]{@{}ll@{}}
\toprule
dimension \(n\) & Dirac spinors\tabularnewline
\midrule
\endhead
1 & \(\mathbb{C}\)\tabularnewline
2 & \(\mathbb{C}(2)\)\tabularnewline
3 & \(\mathbb{C}(2)\)\tabularnewline
4 & \(\mathbb{C}(4)\)\tabularnewline
5 & \(\mathbb{C}(4)\)\tabularnewline
6 & \(\mathbb{C}(8)\)\tabularnewline
7 & \(\mathbb{C}(8)\)\tabularnewline
8 & \(\mathbb{C}(16)\)\tabularnewline
\bottomrule
\end{longtable}

The dimension of the Dirac spinors doubles as we go to each new even
dimension.

We can also look for the smallest real representation of \(C_{n-1,1}\)
or \(C_{1,n-1}\). This is easy to work out from our tables using the
fact that the algebra \(\mathbb{R}\) has its smallest real
representation on \(\mathbb{R}\), while for \(\mathbb{C}\) it's on
\(\mathbb{R}^2\) and for \(\mathbb{H}\) it's on \(\mathbb{R}^4\).

Sometimes this smallest real representation is secretly just the Dirac
spinors \emph{viewed as a real representation} --- we can view
\(\mathbb{C}^n\) as the real vector space \(\mathbb{R}^{2n}\). But
sometimes the Dirac spinors are the \emph{complexification} of the
smallest real representation --- for example, \(\mathbb{C}^n\) is the
complexification of \(\mathbb{R}^n\). In this case folks call the
smallest real representation ``Majorana spinors''.

When we are looking for the smallest real representations, we get
different answers for \(C_{n-1,1}\) and \(C_{1,n-1}\). Here is what we
get:

\begin{longtable}[]{@{}lllcllc@{}}
\toprule
\begin{minipage}[b]{0.04\columnwidth}\raggedright
\(n\)\strut
\end{minipage} & \begin{minipage}[b]{0.15\columnwidth}\raggedright
\(C_{n-1,1}\)\strut
\end{minipage} & \begin{minipage}[b]{0.19\columnwidth}\raggedright
smallest \(\mathbb{R}\) rep.\strut
\end{minipage} & \begin{minipage}[b]{0.04\columnwidth}\centering
M.s?\strut
\end{minipage} & \begin{minipage}[b]{0.15\columnwidth}\raggedright
\(C_{1,n-1}\)\strut
\end{minipage} & \begin{minipage}[b]{0.19\columnwidth}\raggedright
smallest \(\mathbb{R}\) rep.\strut
\end{minipage} & \begin{minipage}[b]{0.04\columnwidth}\centering
M.s?\strut
\end{minipage}\tabularnewline
\midrule
\endhead
\begin{minipage}[t]{0.04\columnwidth}\raggedright
1\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{R}+\mathbb{R}\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\checkmark\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{C}\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^2\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.04\columnwidth}\raggedright
2\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{R}(2)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^2\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\checkmark\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{R}(2)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^2\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\checkmark\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.04\columnwidth}\raggedright
3\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{C}(2)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^4\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{R}(2)+\mathbb{R}(2)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^2\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\checkmark\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.04\columnwidth}\raggedright
4\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{H}(2)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^8\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{R}(4)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^4\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\checkmark\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.04\columnwidth}\raggedright
5\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{H}(2)+\mathbb{H}(2)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^8\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{C}(4)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^8\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.04\columnwidth}\raggedright
6\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{H}(4)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^{16}\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{H}(4)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^{16}\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.04\columnwidth}\raggedright
7\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{C}(8)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^{16}\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{H}(4)+\mathbb{H}(4)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^{16}\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage}\tabularnewline
\begin{minipage}[t]{0.04\columnwidth}\raggedright
8\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{R}(16)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^{16}\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\checkmark\strut
\end{minipage} & \begin{minipage}[t]{0.15\columnwidth}\raggedright
\(\mathbb{H}(8)\)\strut
\end{minipage} & \begin{minipage}[t]{0.19\columnwidth}\raggedright
\(\mathbb{R}^{32}\)\strut
\end{minipage} & \begin{minipage}[t]{0.04\columnwidth}\centering
\strut
\end{minipage}\tabularnewline
\bottomrule
\end{longtable}

I've noted when the representations are Majorana spinors. Everything
repeats with period 8 after this, in an obvious way.

Finally, sometimes there are ``Weyl spinors'' or ``Majorana-Weyl''
spinors. The point is that sometimes the Dirac spinors, or Majorana
spinors, are a \emph{reducible} representation of
\(\mathrm{Spin}(1,n-1)\). For Dirac spinors this happens in every even
dimension, because the Clifford algebra element
\[\Gamma = e_1 \ldots e_n\] commutes with everything in
\(\mathrm{Spin}(1,n-1)\) and \(\Gamma^2\) is \(1\) or \(-1\), so we can
break the space of Dirac spinors into the two eigenspaces of \(\Gamma\),
which will be smaller reps of \(\mathrm{Spin}(1,n-1)\) --- the ``Weyl
spinors''. Physicists usually call this \(\Gamma\) thing
``\(\gamma_5\)'', and it's an operator that represents parity
transformations. We get ``Majorana-Weyl'' spinors only when we have
Majorana spinors, \(n\) is even, and \(\Gamma^2 = 1\), since we are then
working with real numbers and \(-1\) doesn't have a square root. You can
work out \(\Gamma^2\) for either \(C_{n-1,1}\) or \(C_{1,n-1}\), and see
that we'll only get Majorana-Weyl spinors when \(n = 8k + 2\).

Whew! Let me summarize some of our results:

\begin{longtable}[]{@{}lllll@{}}
\toprule
\(n\) & Dirac & Majorana & Weyl & Majorana-Weyl\tabularnewline
\midrule
\endhead
1 & \(\mathbb{C}\) & \(\mathbb{R}\) & &\tabularnewline
2 & \(\mathbb{C}^2\) & \(\mathbb{R}^2\) & \(\mathbb{C}\) &
\(\mathbb{R}\)\tabularnewline
3 & \(\mathbb{C}^2\) & \(\mathbb{R}^2\) & &\tabularnewline
4 & \(\mathbb{C}^4\) & \(\mathbb{R}^4\) & \(\mathbb{C}^2\)
&\tabularnewline
5 & \(\mathbb{C}^4\) & & &\tabularnewline
6 & \(\mathbb{C}^8\) & & \(\mathbb{C}^4\) &\tabularnewline
7 & \(\mathbb{C}^8\) & & &\tabularnewline
8 & \(\mathbb{C}^{16}\) & \(\mathbb{R}^{16}\) & \(\mathbb{C}^8\)
&\tabularnewline
\bottomrule
\end{longtable}

When there are blanks here, the relevant sort of spinor doesn't exist.
Here I'm not distinguishing Majorana spinors that come from
\(C_{n-1,1}\) and those that come from \(C_{1,n-1}\); you can do that
with the previous table. Again, things continue for larger n in an
obvious way.

Now, let's imagine a theory that has a supersymmetry between a gauge
bosons and a fermion. We'll assume there are as many physical degrees of
freedom for the gauge boson as there are for the fermion. Gauge bosons
have \(n - 2\) physical degrees of freedom in n dimensions: for example,
in dimension 4 the photon has 2 degrees of freedom, the left and right
polarized states. So we want to find a kind of spinor that has \(n - 2\)
physical degrees of freedom. But the number of physical degrees of
freedom of a spinor field is half the number of (real) components of the
spinor, since the Dirac equation relates the components. So we are
looking for a kind of spinor that has \(2(n - 2)\) real components. This
occurs in only 4 cases:

\begin{itemize}
\item
  \(n = 3\): then \(2(n-2) = 2\), and Majorana spinors have 2 real
  components
\item
  \(n = 4\): then \(2(n-2) = 4\), and Majorana or Weyl spinors have 4
  real components
\item
  \(n = 6\): then \(2(n-2) = 8\), and Weyl spinors have 8 real
  components
\item
  \(n = 10\): then \(2(n-2) = 16\), and Majorana-Weyl spinors have 16
  real components
\end{itemize}

Note we count complex components as two real components. And note how
dimension 10 works: the dimension of the spinors grows pretty fast as n
increases, but the Majorana-Weyl condition reduces the dimension by a
factor of 4, so dimension 10 just squeaks by!

Here John Schwarz explains how nice things happen in the same dimensions
for superstring theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John H. Schwarz, ``Introduction to superstrings'', in
  \emph{Superstrings and Supergravity, Proc. of the 28th Scottish
  Universities Summer School in Physics}, ed.~A. T. Davies and D. G.
  Sutherland, University Printing House, Oxford, 1985.
\end{enumerate}

He also makes a tantalizing remark: perhaps these 4 cases correspond
somehow to the reals, complexes, quaternions and octonions. Note:
\(3 = 1 + 2\), \(4 = 2 + 2\), \(6 = 4 + 2\) and \(10 = 8 + 2\). You can
never tell with this stuff\ldots{} everything is related.

I thank Joshua Burton for helping me overcome my fear of Majorana
spinors, and for correcting a number of embarrassing errors in the first
version of this article.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum:} In July 2001, long after the above article was
written, Lubos Motl explained where the number 18 shows up in string
theory:

\begin{quote}
Today we know that the two heterotic string theories are related by
various dualities. For example, in 17+1 dimension, the lattices
\(\Gamma_{16}\) and \(\Gamma_8+\Gamma_8\), with an added Lorentzian
\(\Gamma_{1,1}\), become isometric. There is a single even self-dual
lattice in 17+1 dimensions, \(\Gamma_{17,1}\). This is the reason why
two heterotic string theories are T-dual to each other. The
compactification on a circle adds two extra \(\mathrm{U}(1)\)s (from
Kaluza-Klein graviphoton and the B-field), and with appropriate Wilson
lines, a compactification of one heterotic string theory on radius \(R\)
is equivalent to the other on radius \(1/R\), using correct units.
\end{quote}

Also, in \protect\hyperlink{week104}{``Week 104''}, and especially in
the Addendum written by Robert Helling, we'll see that it's \emph{not} a
coincidence that super-Yang-Mills theory works nicely in dimensions that
are 2 more than the dimensions of the reals, complex numbers,
quaternions and octonions.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\emph{Since the mathematicians have grabbed ahold of the theory of
relativity, I no longer understand it.} --- Albert Einstein
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Today I want to talk a bit about asymptotic freedom.

First of all, remember that in quantum field theory, studying very small
things is the same as studying things at very high energies. The reason
is that in quantum mechanics you need to collide two particles at a
large relative momentum p to make sure the distance \(x\) between them
gets small, thanks to the uncertainty principle. But in special
relativity the energy \(E\) and momentum \(p\) of a particle of mass
\(m\) are related by \[E^2 = p^2 + m^2,\] in God's units, where the
speed of light is \(1\). So small \(x\) also corresponds to large \(E\).

``Asymptotic freedom'' refers to fact that some forces become very weak
at high energies, or equivalently, at very short distances. The most
interesting example of this is the so-called ``strong force'', which
holds the quarks together in a hadron, like a proton or neutron. True to
its name, it is very strong at distances comparable to the radius of
proton, or at energies comparable to the mass of the proton (where if we
don't use God's units, we have to use \(E = mc^2\) to convert units of
mass to units of energy). But if we smash protons at each other at much
higher energies, the constituent quarks act almost as free particles,
indicating that the strong force gets weak when the quarks get really
close to each other.

Now in \protect\hyperlink{week76}{``Week 76''} and
\protect\hyperlink{week84}{``Week 84''} I talked about another
phenomenon, called ``confinement''. This simply means that at lower
energies, or larger distance scales, the strong force becomes so strong
that it is \emph{impossible} to pull a quark out of a hadron. Asymptotic
freedom and confinement are two aspects of the same thing: the
dependence of the strength of the strong force on the energy scale.
Asymptotic freedom is better understood, though, because the weaker a
force is, the better we can apply the methods of perturbation theory ---
a widely used approach where we try to calculate everything as a Taylor
series in the ``coupling constant'' measuring the strength of the force
in question. This is often successful when the coupling constant is
small, but not when it's big.

The interesting thing is that in quantum field theory the coupling
constants ``run''. This is particle physics slang for the fact that they
depend on the energy scale at which we measure them. ``Asymptotic
freedom'' happens when the coupling constant runs down to zero as we
move up to higher and higher energy scales. If you want to impress
someone about your knowledge of this, just mutter something about the
``beta function'' being negative --- this is a fancy way of saying the
coupling constant decreases as you go to higher energies. You'll sound
like a real expert.

Now, Frank Wilczek is one of the original discoverers of asymptotic
freedom. He \emph{is} a real expert. He recently won a prize for this
work, and he gave a nice talk which he made into a paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Frank Wilczek, ``Asymptotic freedom'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9609099}{\texttt{hep-th/9609099}}.
\end{enumerate}

Among other things, he gives a nice summary of the work of Nielsen and
Hughes, which gave the first really easy to understand explanation of
asymptotic freedom. For the original work, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  N. K. Nielsen, \emph{Am. J. Phys.} \textbf{49}, 1171 (1981).
\item
  R. J. Hughes, \emph{Nucl. Phys. B186}, \textbf{376} (1981).
\end{enumerate}

Why would a force get weak at short distance scales? Actually it's
easier to imagine why it would get \emph{strong} --- and sometimes that
is what happens. Of course there are lots of forces that decrease with
distance like \(1/r^2\), but I'm talking about something more drastic:
I'm talking about ``screening''.

For example, say you have an electron in some water. It'll make an
electric field, but this will push all the other negatively charged
particles little bit \emph{away} from your electron and pull all the
positively charged ones a little bit \emph{towards} your electron:

\begin{verbatim}
                                   -
                                     +

                         your electron: -        +-
 
                                            +
                                              -
                      
\end{verbatim}

In other words, it will ``polarize'' all the neighboring water
molecules. But this will create a counteracting sort of electric field,
since it means that if you draw any sphere around your electron, there
will be a bit more \emph{positively} charged other stuff in that sphere
than negatively charged other stuff. The bigger the sphere is, the more
this effect occurs --- though there is a limit to how much it occurs. We
say that the further you go from your electron, the more its electric
charge is ``screened'', or hidden, behind the effect of the
polarization.

This effect is very common in materials that don't conduct electricity,
like water or plastics or glass. They're called ``dielectrics'', and the
dielectric constant, \(\varepsilon\), measures the strength of this
screening effect. Unlike in math, this \(\varepsilon\) is typically
bigger than \(1\). If you apply an electric field to a dielectric
material, the electric field inside the material is only
\(1/\varepsilon\) as big as you'd expect if this polarization wasn't
happening.

What's cool is that according to quantum field theory, screening occurs
even in the vacuum, thanks to ``vacuum polarization''. One can visualize
it rather vaguely as due to a constant buzz of virtual
particle-antiparticle pairs getting created and then annihilating ---
called ``vacuum bubbles'' in the charming language of Feynman diagrams,
because you can draw them like this: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1.5,0);
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1.5,0);
    \end{knot}
    \node[fill=white] at (0.2,0.5) {e\textsuperscript{+}};
    \node[fill=white] at (1.3,0.5) {e\textsuperscript{-}};
  \end{tikzpicture}
\] Here I've drawn a positron-electron pair getting created and then
annihilating as time passes.

There is a lot I should say about virtual particles, and how despite the
fact that they aren't ``real'' they can produce very real effects like
vacuum polarization. A strong enough electric field will even ``spark
the vacuum'' and make the virtual particles \emph{become} real! But
discussing this would be too big of a digression. Suffice it to say that
you have to learn quantum field theory to see how something that starts
out as a kind of mathematical book-keeping device --- a line in a
Feynman diagram --- winds up acting a bit like a real honest particle.
It's a case of a metaphor gone berserk, but in an exceedingly useful
way.

Anyway, so much for screening. Asymptotic freedom requires something
opposite, called ``anti-screening''! That's why it's harder to
understand.

Nielsen and Hughes realized that anti-screening is easier to understand
using magnetism than electricity. In analogy to dielectrics, there are
some materials that screen magnetic fields, and these are called
``diamagnetic'' --- for example, one of the strongest diamagnets is
bismuth. But in addition, there are materials that ``anti-screen''
magnetic fields --- the magnetic field inside them is stronger than the
externally applied magnetic field --- and these are called
``paramagnetic''. For example, aluminum is paramagnetic. People keep
track of paramagnetism using a constant called the magnetic
permeability, \(\mu\). Just to confuse you, this works the opposite way
from the dielectric constant. If you apply a magnetic field to some
material, the magnetic field inside it is \(\mu\) times as big as you'd
expect if there were no magnetic effects going on.

The nice thing is that there are lots of examples of paramagnetism and
we can sort of understand it if we think about it. It turns out that
paramagnetism in ordinary matter is due to the spin of the electrons in
it. The electrons are like little magnets --- they have a little
``magnetic moment'' pointing along the axis of their spin. Actually,
purely by convention it points in the direction opposite their spin,
since for some stupid reason Benjamin Franklin decided to decree that
electrons were \emph{negative}. But don't worry about this --- it
doesn't really matter. The point is that when you put electrons in a
magnetic field, their spins like to line up in such a way that their
magnetic field points the same way as the externally applied magnetic
field, just like a compass needle does in the Earth's magnetic field. So
they \emph{add} to the magnetic field. Ergo, paramagnetism.

Now, spin is a form of angular momentum intrinsic to the electron, but
there is another kind of angular momentum, namely orbital angular
momentum, caused by how the electron (or whatever particle) is moving
around in space. It turns out that orbital angular momentum also has
magnetic effects, but only causes diamagnetism. The idea that when you
apply a magnetic field to some material, it can also make the electrons
in it tend to move in orbits perpendicular to the magnetic field, and
the resulting current creates a magnetic field. But this magnetic field
must \emph{oppose} the external magnetic field. Ergo, diamagnetism.

Why does orbital angular momentum work one way, while spin works the
other way? I'll say a bit more about that later. Now let me get back to
asymptotic freedom.

I've talked about screening and antiscreening for both electric and
magnetic fields now. But say the ``substance'' we're studying is the
\emph{vacuum}. Unlike most substances, the vacuum doesn't look different
when we look at it from a moving frame of reference. We say it's
``Lorentz-invariant''. But if we look at an electric field in a moving
frame of reference, we see a bit of magnetic field added on, and vice
versa. We say that the electric and magnetic fields transform into each
other\ldots{} they are two aspects of single thing, the electromagnetic
field. So the amount of \emph{electric} screening or antiscreening in
the vacuum has to equal the amount of the \emph{magnetic} screening or
antiscreening. In other words, thanks to the silly way we defined
\(\varepsilon\) differently from \(\mu\), we must have
\[\varepsilon = 1/\mu\] in the vacuum.

Now the cool thing is that the Yang-Mills equations, which describe the
strong force, are very similar to Maxwell's equations. In particular,
the strong force, also known as the ``color'' force, consists of two
aspects, the ``chromoelectric'' field and ``chromomagnetic'' field.
Moreover, the same argument above applies here: the vacuum must give the
same antiscreening for the chromoelectric field as it does for the
chromomagnetic field, so \(\varepsilon = 1/\mu\) here too.

So to understand asymptotic freedom it is sufficient to see why the
vacuum acts like a paramagnet for the strong force! This depends on a
big difference between the strong force and electromagnetism. Just as
the electromagnetic field is carried by photons, which are spin-\(1\)
particles, the strong force is carried by ``gluons'', which are also
spin-\(1\) particles. But while the photon is electrically uncharged,
the gluon is charged as far as the strong force goes: we say it has
``color''.

The vacuum is bustling with virtual gluons. When we apply a
chromomagnetic field to the vacuum, we get two competing effects:
paramagnetism thanks to the \emph{spin} of the gluons, and diamagnetism
due to their \emph{orbital angular momentum}. But --- the spin effect is
stronger. The vacuum acts like a paramagnet for the strong force. So we
get asymptotic freedom!

That's the basic idea. Of course, there are some loose ends. To see why
the spin effect is stronger, you have to calculate a bit. At least I
don't know how to see it without calculating --- but Wilczek sketches
the calculation, and it doesn't look too bad. It's also true in most
metals that the spin effect wins, so they are paramagnetic.

You might also wonder why spin and orbital angular momentum work
oppositely as far as magnetism goes. Unfortunately I don't have any
really simple slick answer. One thing is that it seems any answer must
involve quantum mechanics. {[}Note: later I realized some very basic
things about this, which I append below.{]} In volume II of his
magnificent series:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Richard Feynman, Robert Leighton, and Matthew Sands, \emph{The Feynman
  Lectures on Physics}, Addison-Wesley, Reading, Mass., 1964.
\end{enumerate}

Feynman notes: ``It is a consequence of classical mechanics that if you
have any kind of system --- a gas with electrons, protons, and whatever
--- kept in a box so that the whole thing can't turn, there will be no
magnetic effect. {[}\ldots.{]} The theorem then says that if you turn on
a magnetic field and wait for the system to get into thermal
equilibrium, there will be no paramagnetism or diamagnetism --- there
will be no induced magnetic moment. Proof: According to statistical
mechanics, the probability that a system will have any given state of
motion is proportional to \(\exp(-U/kT)\), where \(U\) is the energy of
that motion. Now what is the energy of motion. For a particle moving in
a constant magnetic field, the energy is the ordinary potential energy
plus \(mv^2/2\), with nothing additional for the magnetic field. (You
know that the forces from electromagnetic fields are
\(q(E + v \times B)\), and that the rate of work \(F\cdot v\) is just
\(qE\cdot v\), which is not affected by the magnetic field.) So the
energy of a system, whether it is in a magnetic field or not, is always
given by the kinetic energy plus the potential energy. Since the
probability of any motion depends only on the energy --- that is, on the
velocity and position --- it is the same whether or not there is a
magnetic field. For \emph{thermal} equilibrium, therefore, the magnetic
field has no effect.''

So to understand magnetism we really need to work quantum-mechanically.
Laurence Yaffe has brought to my attention a nice path-integral argument
as to why orbital angular momentum can only yield diamagnetism; this can
be found in his charming book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Barry Simon, \emph{Functional Integration and Quantum Physics},
  Academic Press, 1979.
\end{enumerate}

This argument is very simple if you know about path integrals, but I
think there should be some more lowbrow way to see it, too. I think it's
good to make all this stuff as simple as possible, because the phenomena
of asympotic freedom and confinement are very important and shouldn't
only be accessible to experts.

I'd like to thank Douglas Singleton, Matt McIrvin, Mike Kelsey, and
Laurence Yaffe for some posts on sci.physics.research that helped me
understand this stuff.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addendum} \emph{(November 13, 1996)}. Thanks to emails from
Yehuda Naveh and Bruce Smith I'm beginning to understand this stuff at
the 13-year-old level it deserves. If you want to jump to the punchline,
skip down to the stuff between double lines --- that's the part I should
have known ages ago!

Here's the deal. Feynman's theorem deals with classical systems made
only of a bunch of electrically charged point particles. Remember how it
goes: A magnetic field can never do work on such a system, because it
always exerts a force perpendicular to the velocity of an electrically
charged particle. So the energy of such a system is independent of the
externally applied magnetic field. Now, in statistical mechanics the
equilibrium state of a system depends only on the energy of each state,
since the probability of being in a state with energy \(E\) is
proportional to \(\exp(-E/kT)\). So an external magnetic field doesn't
affect the equilibrium state of this sort of system. So there can't be
anything like paramagnetism or diamagnetism, where the equilibrium state
is affected by an external magnetic field.

But suppose instead we allowed an extra sort of building block of our
system, in addition to electrically charged particles. Suppose we allow
little ``current loops''. We take these as ``primitives'', in the sense
that we don't ask how or why the current keeps flowing around the loop,
we just assume it does. We just \emph{define} one of these ``current
loops'' to be a little circle of stuff with a constant mass per unit
length, with a constant current that flows around it. This may or may
not be physically reasonable, but we're gonna do it anyway!

Note: If we tried to make a current loop out of classical electrically
charged point particles, the current loop would tend to fall apart! A
loop is not going to be the equilibrium state of a bunch of charged
particles. So we are going to get around this by taking current loops as
new primitives --- simply \emph{assuming} they exist and have the
properties given above.

If we build our system out of current loops and point particles,
Feynman's theorem no longer applies. Why? Well, a constant magnetic
field exerts a force perpendicular to the direction of the current, and
this applies a \emph{torque} to the current loop --- no net force, just
a torque. But since the current loop is made out of stuff that has a
constant mass per unit length, when the current loop is rotating it will
have kinetic energy. So by applying a torque to the current loop, the
magnetic field does \emph{work} on the current loop. Thus Feynman's
reasoning no longer applies to this case.

In particular, what happens is just what we expect. The torque on the
little current loops makes them want to line up with the external
magnetic field. In other words, they will have less energy when they are
lined up like this. In particular, the energy of the system \emph{does}
depend on the external magnetic field, and the equilibrium state will
tend to have more little current loops lined up with the field than not.

Now if we keep track of the magnetic field produced by these current
loops, we see it points the same way as the externally applied field. So
we get paramagnetism.

Now, even without doing a detailed quantum-mechanical treatment of this
problem, we see what's special about spin: a particle with spin is a bit
like one of our imaginary ``primitive current loops''. This is how spin
can give paramagnetism.

Great. But what had always been bugging me is this! If you put a charged
particle in a constant magnetic field, it moves in a circular or spiral
orbit. For simplicity let's say it moves in a circle. You can think of
this, if you like, as a kind of current loop --- but a very different
sort of current loop than the one we've just been considering! In
particular, if you work it out, this particle circling around will
produce a magnetic field that \emph{opposes} the external magnetic
field. On the other hand, our primitive current loops are in the state
of least energy when they're lined up to produce a magnetic field that
\emph{goes with} the external field.

What's the deal? Well, it's just something about how the vector cross
product works; you gotta work it out yourself to believe it. All you
need to know is that the force on a charged particle is
\(q v \times B\). It boils down to this:

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\begin{quote}
A positively charged particle orbiting in a magnetic field pointing
along the \(z\)-axis will orbit CLOCKWISE in the \(x\)-\(y\) plane.
However, a primitive current loop in a magnetic field pointing along the
\(z\)-axis will be in its state of least energy when the current runs
COUNTERCLOCKWISE in the \(x\)-\(y\) plane.
\end{quote}

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

I'm sure this is what was nagging at me. It's just one of those basic
funny little things. If I'm still mixed up, someone had better let me
know.

There are a couple other things perhaps worth saying about this:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  In our calculation of the energy of the system, we have been
  neglecting the energy due to the electric and magnetic fields
  \emph{produced} by our point particles and current loops. A more
  careful analysis would take these into account. In particular, the
  reason ferromagnets prefer to have lots of ``domains'' than to have
  all their little current loops lined up, is to keep the energy due to
  the magnetic field produced by these loops from getting too big.
\item
  A little current loop acts like a magnetic dipole. We'd also get
  interesting effects if we had magnetic monopoles. Here I simply assume
  that, just as an electric field exerts a force on a electrically
  charged particle equal to \(q E\), a magnetic field exerts a force on
  a magnetically charged particle equal to \(m B\), where \(m\) is the
  magnetic charge. A magnetic field would then be able to do work on a
  magnetic monopole, and again Feynman's theorem would not apply. So
  it's perhaps not so surprising that Feynmans' theorem fails when we
  have magnetic dipoles as primitive constituents of our system, too
  (although these dipoles had better not be points --- they need a
  moment of inertia for a torque on them to do work).
\end{enumerate}
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Last week I talked about asymptotic freedom --- how the ``strong'' force
gets weak at high energies. Basically, I was trying to describe an
aspect of ``renormalization'' without getting too technical about it. By
coincidence, I recently got my hands on a book I'd been meaning to read
for quite a while:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Laurie M. Brown, ed., \emph{Renormalization: From Lorentz to Landau
  (and Beyond)}, Springer-Verlag, New York, 1993.
\end{enumerate}

It's a nice survey of how attitudes to renormalization have changed over
the years. It's probably the most fun to read if you know some quantum
field theory, but it's not terribly technical, and it includes a
``Tutorial on infinities in QED'', by Robert Mills, that might serve as
an introduction to renormalization for folks who've never studied it.

Okay, on to some new stuff\ldots.

It's a bit funny how one of the most curious features of bosonic string
theory in 26 dimensions was anticipated by the number theorist Edouard
Lucas in 1875. I assume this is the same Lucas who is famous for the
Lucas numbers: 1,3,4,7,11,18,\ldots, each one being the sum of the
previous two, after starting off with 1 and 3. They are not quite as
wonderful as the Fibonacci numbers, but in a study of pine cones it was
found that while \emph{most} cones have consecutive Fibonacci numbers of
spirals going around clockwise and counterclockwise, a small minority of
deviant cones use Lucas numbers instead.

Anyway, Lucas must have liked playing around with numbers, because in
one publication he challenged his readers to prove that: ``A square
pyramid of cannon balls contains a square number of cannon balls only
when it has 24 cannon balls along its base''. In other words, the only
integer solution of \[1^2 + 2^2 + \ldots + n^2 = m^2,\]

is the solution \(n = 24\), not counting silly solutions like \(n=0\)
and \(n=1\).

It seems that Lucas didn't have a proof of this; the first proof is due
to G. N. Watson in 1918, using elliptic functions. Apparently an
elementary proof appears in the following ridiculously overpriced book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  W. S. Anglin, \emph{The Queen of Mathematics: An Introduction to
  Number Theory}, Kluwer, Dordrecht, 1995.
\end{enumerate}

For more historical details, see the review in

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Jet Wimp, ``Eight recent mathematical books'', \emph{Math.
  Intelligencer} \textbf{18} (1996), 72--79.
\end{enumerate}

Unfortunately, I haven't seen these proofs of Lucas' claim, so I don't
know why it's true. I do know a little about its relation to string
theory, so I'll talk about that.

There are two main flavors of string theory, ``bosonic'' and
``supersymmetric''. The first is, true to its name, just the quantized,
special-relativistic theory of little loops made of some abstract string
stuff that has a certain tension --- the ``string tension''. Classically
this theory would make sense in any dimension, but quantum-mechanically,
for reasons that I want to explain \emph{someday} but not now, this
theory works best in 26 dimensions. Different modes of vibration of the
string correspond to different particles, but the theory is called
``bosonic'' because these particles are all bosons. That's no good for a
realistic theory of physics, because the real world has lots of
fermions, too. (For a bit about bosons and fermions in particle physics,
see \protect\hyperlink{week93}{``Week 93''}.)

For a more realistic theory people use ``supersymmetric'' string theory.
The idea here is to let the string be a bit more abstract: it vibrates
in ``superspace'', which has in addition to the usual coordinates some
extra ``fermionic'' coordinates. I don't want to get too technical here,
but the basic idea is that while the usual coordinates commute as usual:
\[x_i x_j = x_j x_i\] the fermionic coordinates ``anticommute''
\[y_i y_j = -y_j yi\] while the bosonic coordinates commute with
fermionic ones: \[x_i y_j = y_j x_i.\] If you've studied bosons and
fermions this will be sort of familiar; all the differences between them
arise from the difference between commuting and anticommuting variables.
For a little glimpse of this subject try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  John Baez, Spin and the harmonic oscillator,
  \texttt{http://math.ucr.edu/home/baez/harmonic.html}
\end{enumerate}

As it so happens, supersymmetric string theory --- often abbreviated to
``superstring theory'' --- works best in 10 dimensions. There are five
main versions of superstring theory, which I described in
\protect\hyperlink{week74}{``Week 74''}. The type I string theory
involves open strings --- little segments rather than loops. The type
IIA and type IIB theories involve closed strings, that is, loops. But
the most popular sort of superstring theories are the ``heterotic
strings''. A nice introduction to these, written by one of their
discoverers, is:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  David J. Gross, `The heterotic string', in \emph{Workshop on Unified
  String Theories}, eds.~M. Green and D. Gross, World Scientific,
  Singapore, 1986, pp.~357--399.
\end{enumerate}

These theories involve closed strings, but the odd thing about them,
which accounts for the name ``heterotic'', is that vibrations of the
string going around one way are supersymmetric and act as if they were
in 10 dimensions, while the vibrations going around the other way are
bosonic and act as if they were in 26 dimensions!

To get this string with a split personality to make sense, people
cleverly think of the 26 dimensional spacetime for the bosonic part as a
10-dimensional spacetime times a little \(16\)-dimensional curled-up
space, or ``compact manifold''. To get the theory to work, it seems that
this compact manifold needs to be flat, which means it has to be a torus
- a 16-dimensional torus. We can think of any such torus as
\(16\)-dimensional Euclidean space ``modulo a lattice''. Remember, a
lattice in Euclidean space is something that looks sort of like this: \[
  \begin{tikzpicture}[scale=0.7]
    \draw[->] (-3,0) to (4,0) node[label=below:{$x$}]{};
    \draw[->] (0,-3) to (0,4) node[label=left:{$y$}]{};
    \foreach \m in {-1,0,1,2}
    {
      \foreach \n in {-1,0,1,2}
      {
        \node at ({\m*1.5-\n/3-0.2},{1.5*\n+\m-0.5}) {$\bullet$};
      }
    }
  \end{tikzpicture}
\] Mathematically, it's just a discrete subset \(L\) of \(\mathbb{R}^n\)
(\(n\)-dimensional Euclidean space, with its usual coordinates) with the
property that if \(x\) and \(y\) lie in \(L\), so does \(jx + ky\) for
all integers \(j\) and \(k\). When we form \(n\)-dimensional Euclidean
space ``modulo a lattice'', we decree two points \(x\) and \(y\) to be
the same if \(x-y\) is in \(L\). For example, all the points labelled
\(x\) in the figure above count as the same when we ``mod out by the
lattice''\ldots{} so in this case, we get a \(2\)-dimensional torus.

For more on \(2\)-dimensional tori and their relation to complex
analysis, you can read \protect\hyperlink{week13}{``Week 13''}. Here we
are going to be macho and plunge right into talking about lattices and
tori in arbitrary dimensions.

To get our \(26\)-dimensional string theory to work out nicely when we
curl up \(16\)-dimensional space to a \(16\)-dimensional torus, it turns
out that we need the lattice \(L\) that we're modding out by to have
some nice properties. First of all, it needs to be an ``integral''
lattice, meaning that for any vectors \(x\) and \(y\) in \(L\) the dot
product \(x\cdot y\) must be an integer. This is no big deal --- there
are gadzillions of integral lattices. In fact, sometimes when people say
``lattice'' they really mean ``integral lattice''. What's more of a big
deal is that \(L\) must be ``even'', that is, for any \(x\) in \(L\) the
inner product \(x\cdot x\) is even. This implies that \(L\) is integral,
by the identity
\[(x + y)\cdot (x + y) = x\cdot x + 2x\cdot y + y\cdot y.\] But what's
really a big deal is that \(L\) must also be ``unimodular''. There are
different ways to define this concept. Perhaps the easiest to grok is
that the volume of each lattice cell --- e.g., each parallelogram in the
picture above --- is \(1\). Another way to say it is this. Take any
basis of \(L\), that is, a bunch of vectors in \(L\) such that any
vector in \(L\) can be uniquely expressed as an integer linear
combination of these vectors. Then make a matrix with the components of
these vectors as rows. Then take its determinant. That should equal plus
or minus \(1\). Still another way to say it is this. We can define the
``dual'' of \(L\), say \(L^*\), to be all the vectors \(x\) such that
\(x\cdot y\) is an integer for all \(y\) in \(L\). An integer lattice is
one that's contained in its dual, but \(L\) is unimodular if and only if
\(L = L^*\). So people also call unimodular lattices ``self-dual''. It's
a fun little exercise in linear algebra to show that all these
definitions are equivalent.

Why does \(L\) have to be an even unimodular lattice? Well, one can
begin to understand this a litle by thinking about what a closed string
vibrating in a torus is like. If you've ever studied the quantum
mechanics of a particle on a torus (e.g.~a circle!) you may know that
its momentum is quantized, and must be an element of \(L^*\). So the
momentum of the center of mass of the string lies in \(L^*\).

On the other hand, the string can also wrap around the torus in various
topologically different ways. Since two points in Euclidean space
correspond to the same point in the torus if they differ by a vector in
\(L\), if we imagine the string as living up in Euclidean space, and
trace our finger all around it, we don't necesarily come back to the
same point in Euclidean space: the same point \emph{plus} any vector in
\(L\) will do. So the way the string wraps around the torus is described
by a vector in \(L\). If you've heard of the ``winding number'', this is
just a generalization of that.

So both \(L\) and \(L^*\) are really important here (which has to do
with the fashionable subject of ``string duality''), and a bunch more
work shows that they \emph{both} need to be even, which implies that
\(L\) is even and unimodular.

Now something cool happens: even unimodular lattices are only possible
in certain dimensions --- namely, dimensions divisible by 8. So we luck
out, since we're in dimension 16.

In dimension 8 there is only \emph{one} even unimodular lattice (up to
isometry), namely the wonderful lattice \(\mathrm{E}_8\)! The easiest
way to think about this lattice is as follows. Say you are packing
spheres in n dimensions in a checkerboard lattice --- in other words,
you color the cubes of an \(n\)-dimensional checkerboard alternately red
and black, and you put spheres centered at the center of every red cube,
using the biggest spheres that will fit. There are some little hole left
over where you could put smaller spheres if you wanted. And as you go up
to higher dimensions, these little holes gets bigger! By the time you
get up to dimension 8, there's enough room to put another sphere OF THE
SAME SIZE AS THE REST in each hole! If you do that, you get the lattice
\(\mathrm{E}_8\). (I explained this and a bunch of other lattices in
\protect\hyperlink{week65}{``Week 65''}, so more info take a look at
that.)

In dimension 16 there are only \emph{two} even unimodular lattices. One
is \(\mathrm{E}_8\oplus\mathrm{E}_8\). A vector in this is just a pair
of vectors in \(\mathrm{E}_8\). The other is called
\(\mathrm{D}_{16}^+\), which we get the same way as we got
\(\mathrm{E}_8\): we take a checkerboard lattice in 16 dimensions and
stick in extra spheres in all the holes. More mathematically, to get
\(\mathrm{E}_8\) or \(\mathrm{D}_{16}^+\), we take all vectors in
\(\mathbb{R}^8\) or \(\mathbb{R}^{16}\), respectively, whose coordinates
are either \emph{all} integers or \emph{all} half-integers, for which
the coordinates add up to an even integer. (A ``half-integer'' is an
integer plus \(1/2\).)

So \(\mathrm{E}_8\oplus\mathrm{E}_8\) and \(\mathrm{D}_{16}^+\) give us
the two kinds of heterotic string theory! They are often called the
\(\mathrm{E}_8\oplus\mathrm{E}_8\) and \(\mathrm{SO}(32)\) heterotic
theories.

In \protect\hyperlink{week63}{``Week 63''} and
\protect\hyperlink{week64}{``Week 64''} I explained a bit about lattices
and Lie groups, and if you know about that stuff, I can explain why the
second sort of string theory is called ``\(\mathrm{SO}(32)\)''. Any
compact Lie group has a maximal torus, which we can think of as some
Euclidean space modulo a lattice. There's a group called
\(\mathrm{E}_8\), described in \protect\hyperlink{week90}{``Week 90''},
which gives us the \(\mathrm{E}_8\) lattice this way, and the product of
two copies of this group gives us \(\mathrm{E}_8\oplus\mathrm{E}_8\). On
the other hand, we can also get a lattice this way from the group
\(\mathrm{SO}(32)\) of rotations in 32 dimensions, and after a little
finagling this gives us the \(\mathrm{D}_{16}^+\) lattice (technically,
we need to use the lattice generated by the weights of the adjoint
representation and one of the spinor representations, according to
Gross). In any event, it turns out that these two versions of heterotic
string theory act, at low energies, like gauge field theories with gauge
group \(\mathrm{E}_8\times\mathrm{E}_8\) and \(\mathrm{SO}(32)\),
respectively! People seem especially optimistic that the
\(\mathrm{E}_8\times\mathrm{E}_8\) theory is relevant to real-world
particle physics; see for example:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Edward Witten, ``Unification in ten dimensions'', in \emph{Workshop on
  Unified String Theories}, eds.~M. Green and D. Gross, World
  Scientific, Singapore, 1986, pp.~438--456.
\end{enumerate}

Edward Witten, ``Topological tools in ten dimensional physics'', with an
appendix by R. E. Stong, in \emph{Workshop on Unified String Theories},
eds.~M. Green and D. Gross, World Scientific, Singapore, 1986,
pp.~400--437.

The first paper listed here is about particle physics; I mention the
second here just because \(\mathrm{E}_8\) fans should enjoy it --- it
discusses the classification of bundles with \(\mathrm{E}_8\) as gauge
group.

Anyway, what does all this have to do with Lucas and his stack of cannon
balls?

Well, in dimension 24, there are \emph{24} even unimodular lattices,
which were classified by Niemeier. A few of these are obvious, like
\(\mathrm{E}_8\oplus\mathrm{E}_8\oplus\mathrm{E}_8\) and
\(\mathrm{E}_8\oplus\mathrm{D}_{16}^+\), but the coolest one is the
``Leech lattice'', which is the only one having no vectors of length 2.
This is related to a whole WORLD of bizarre and perversely fascinating
mathematics, like the ``Monster group'', the largest sporadic finite
simple group --- and also to string theory. I said a bit about this
stuff in \protect\hyperlink{week66}{``Week 66''}, and I will say more in
the future, but for now let me just describe how to get the Leech
lattice.

First of all, let's think about Lorentzian lattices, that is, lattices
in Minkowski spacetime instead of Euclidean space. The difference is
just that now the dot product is defined by
\[(x_1,\ldots,x_n)\cdot(y_1,\ldots,y_n) = -x_1y_1+x_2 y_2+\ldots+x_ny_n\]
with the first coordinate representing time. It turns out that the only
even unimodular Lorentzian lattices occur in dimensions of the form
\(8k + 2\). There is only \emph{one} in each of those dimensions, and it
is very easy to describe: it consists of all vectors whose coordinates
are either all integers or all half-integers, and whose coordinates add
up to an even number.

Note that the dimensions of this form: 2, 10, 18, 26, etc., are
precisely the dimensions I said were specially important in
\protect\hyperlink{week93}{``Week 93''} for some \emph{other}
string-theoretic reason. Is this a ``coincidence''? Well, all I can say
is that I don't understand it.

Anyway, the \(10\)-dimensional even unimodular Lorentzian lattice is
pretty neat and has attracted some attention in string theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Reinhold W. Gebert and Hermann Nicolai, ``\(\mathrm{E}_10\) for
  beginners'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9411188}{\texttt{hep-th/9411188}}
\end{enumerate}

but the \(26\)-dimensional one is even more neat. In particular, thanks
to the cannonball trick of Lucas, the vector
\[v = (70,0,1,2,3,4,\ldots,24)\] is ``lightlike''. In other words,
\[v\cdot v=0.\] What this implies is that if we let \(T\) be the set of
all integer multiples of \(v\), and let \(S\) be the set of all vectors
\(x\) in our lattice with \(x\cdot v = 0\), then \(T\) is contained in
\(S\), and \(S/T\) is a \(24\)-dimensional lattice --- the Leech
lattice!

Now \emph{that} has all sorts of ramifications that I'm just barely
beginning to understand. For one, it means that if we do bosonic string
theory in 26 dimensions on \(\mathbb{R}^{26}\) modulo the
\(26\)-dimensional even unimodular lattice, we get a theory having lots
of symmetries related to those of the Leech lattice. In some sense this
is a ``maximally symmetric'' approach to \(26\)-dimensional bosonic
string theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Gregory Moore, ``Finite in all directions'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9305139}{\texttt{hep-th/9305139}}.
\end{enumerate}

Indeed, the Monster group is lurking around as a symmetry group here!
For a physics-flavored introduction to that aspect, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  Reinhold W. Gebert, ``Introduction to vertex algebras, Borcherds
  algebras, and the Monster Lie algebra'', preprint available as
  \href{https://arxiv.org/abs/hep-th/9308151}{\texttt{hep-th/9308151}}
\end{enumerate}

and for a detailed mathematical tour see:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{9}
\tightlist
\item
  Igor Frenkel, James Lepowsky, and Arne Meurman, \emph{Vertex Operator
  Algebras and the Monster}, Academic Press, 1988.
\end{enumerate}

Also try the very readable review articles by Richard Borcherds, who
came up with a lot of this business:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{10}
\item
  Richard Borcherds, ``Automorphic forms and Lie algebras''.

  Richard Borcherds, ``Sporadic groups and string theory''.
\end{enumerate}

These and other papers available at
\texttt{http://www.pmms.cam.ac.uk/Staff/R.E.Borcherds.html}; click on
the personal home page.

Well, there is a lot more to say, but I need to go home and pack for my
Thanksgiving travels. Let me conclude by answering a natural followup
question: how many even unimodular lattices are there in 32 dimensions?
Well, one can show that there are AT LEAST 80 MILLION!

Some of you may have wondered what's happened to the ``tale of
\(n\)-categories''. I haven't forgotten that! In fact, earlier this fall
I finished writing a big fat paper on 2-Hilbert spaces (which are to
Hilbert spaces as categories are to sets), and since then I have been
struggling to finish another big fat paper with James Dolan, on the
general definition of ``weak \(n\)-categories''. I want to talk about
this sort of thing, and other progress on \(n\)-categories and physics,
but I've been so busy \emph{working} on it that I haven't had time to
\emph{chat} about it on This Week's Finds. Maybe soon I'll find time.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Addenda:} Robin Chapman pointed out that Anglin's proof also
appears in the American Mathematical Monthly, February 1990,
pp.~120--124, and that another elementary proof has subsequently
appeared in the Journal of Number Theory. David Morrison pointed out in
email that since the sum \[1^2 + 2^2 + \ldots + n^2 = m^2\] is
\(n(n+1)(2n+1)/6\), this problem can be solved by finding all the
rational points \((n,m)\) on the elliptic curve
\[\frac{n^3}{3} + \frac{n^2}2 + \frac{n}{6} = m^2\] which is the sort of
thing folks know how to do.

Also, here's something Michael Thayer wrote on one of the newsgroups,
and my reply:

\begin{verbatim}
> John Baez wrote:

>> In particular, thanks to the cannonball trick of Lucas,
>> the vector
>>
>>                v = (70,0,1,2,3,4,...,24)
>>
>> is "lightlike".  In other words,
>>
>>                     v.v = 0

> I don't see what is so significant about the vector v.
> For instance, the 10 dimensional vector
> (3,1,1,1,1,1,1,1,1,1) is also light like, and you make
> no big deal about that. Is there some reason why the
> ascending values in v are important?
\end{verbatim}

Yikes! Thanks for catching that massive hole in the exposition.

You're right that there's no shortage of lightlike vectors in the even
unimodular Lorentzian lattices of other dimensions \(8n+2\); there are
also lots of other lightlike vectors in the \(26\)-dimensional one. Any
one of these gives us a lattice in \(8n\)-dimensional Euclidean space.
In fact, we can get all 24 even unimodular lattices in
\(24\)-dimensional Euclidean space by suitable choices of lightlike
vector. The lightlike vector you wrote down happens to give us the
\(\mathrm{E}_8\) lattice in 8 dimensions.

So what's so special about I wrote, which gives the Leech lattice? Of
course the Leech lattice is itself special, but what does this have to
do with the nicely ascending values of the components of \(v\)?

Alas, I don't know the real answer. I'm not an expert on this stuff; I'm
just explaining it in order to try to learn it. Let me just say what I
know, which all comes from Chap. 27 of Conway and Sloane's book ``Sphere
Packings, Lattices, and Groups''.

If we have a lattice, we say a vector \(r\) in it is a ``root'' if the
reflection through \(r\) is a symmetry of the lattice. Corresponding to
each root is a hyperplane consisting of all vectors perpendicular to
that root. These chop space into a bunch of ``fundamental regions''. If
we pick a fundamental region, the roots corresponding to the hyperplanes
that form the walls of this region are called ``fundamental roots''. The
nice thing about the fundamental roots is that the reflection through
any root is a product of reflections through these fundamental roots.

{[}For more stuff on reflection groups and lattices see
\protect\hyperlink{week62}{``Week 62''} and the following weeks.{]}

In 1983 John Conway published a paper where he showed various amazing
things; this is now Chapter 27 of the above book. First, he shows that
the fundamental roots of the even unimodular Lorentzian lattices in
dimensions 10, 18, and 26 are the vectors \(r\) with \(r\cdot r = 2\)
and \(r\cdot v = -1\), where the ``Weyl vector'' \(v\) is
\[(28,0,1,2,3,4,5,6,7,8)\] \[(46,0,1,2,3,\ldots,16)\] and
\[(70,0,1,2,3,\ldots,70)\] respectively.

They all have this nice ascending form but only in 26 dimensions is the
Weyl vector lightlike!

Howerver, Conway doesn't seem to explain \emph{why} the Weyl vectors
have this ascending form. So I'm afraid I really don't understand how
all the pieces fit together. All I can say is that for some reason the
Weyl vectors have this ascending form, and the fact that the Weyl vector
is also lightlike makes a lot of magic happen in 26 dimensions. For
example, it turns out that in 26 dimensions there are \emph{infinitely
many} fundamental roots, unlike in the two lower dimensional cases.

Just to add mystery upon mystery, Conway notes that in higher dimensions
there is no vector \(v\) for which all the fundamental roots \(r\) have
\(r\cdot v\) equal to some constant. So the pattern above does not
continue.

I find this stuff fascinating, but it would drive me nuts to try to work
on it. It's as if God had a day off and was seeing how many strange
features he could build into mathematics without actually making it
inconsistent.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

\textbf{Yet another addendum (August 2001):} now, with the rise of
interest in \(11\)-dimensional physics, there is even a paper on
\(\mathrm{E}_{11}\):

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{11}
\tightlist
\item
  P. West, \(\mathrm{E}_{11}\) and M-theory, available as
  \href{https://arxiv.org/abs/hep-th/0104081}{\texttt{hep-th/0104081}}.
\end{enumerate}
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Lots of cool papers have been appearing which I've been neglecting in my
attempts to write expository stuff about string theory, lattices,
category theory, and all that. It's time to start catching up!

Let me start with the following book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  J. Scott Carter, Daniel E. Flath and Masahico Saito, \emph{The
  Classical and Quantum \(6j\)-Symbols}, Princeton University Press,
  Princeton, 1995. ISBN \texttt{0-691-02730-7}.
\end{enumerate}

Ever since Jones discovered the Jones polynomial invariant of knots, an
amazing story has been unfolding about the relation between algebra and
3-dimensional topology. Some key players in this story are the ``quantum
groups'': certain noncommutative algebras analogous to the commutative
algebras of functions on groups. In fact, not merely are they analogous,
they depend on a parameter, usually called Planck's constant or
\(\hbar\), and in the classical limit where \(\hbar\to0\) they actually
reduce to algebras of functions on familiar groups. The simplest case is
``quantum \(\mathrm{SU}(2)\)'', which reduces in the classical limit to
the group \(\mathrm{SU}(2)\) of \(2\times2\) unitary matrices with
determinant \(1\). Ironically, it's good old ``classical
\(\mathrm{SU}(2)\)'' that governs the quantum mechanical theory of
angular momentum. Quantum \(\mathrm{SU}(2)\) was first discovered by
people working on physics in 2-dimensional spacetime, where when you
quantize certain systems you also need to quantize their group of
symmetries!

Nowadays, mathematicians find it simpler to work with the closely
related ``quantum \(\mathrm{SL}(2)\)'', a quantization of the the group
\(\mathrm{SL}(2)\) of all \(2\times2\) complex matrices with determinant
\(1\). The above book is largely about quantum \(\mathrm{SL}(2)\) and
its applications to topology.

All quantum groups give rise to invariants of knots, links, and tangles.
They also give rise to \(3\)-dimensional topological quantum field
theories of ``Turaev-Viro type''. This is a kind of quantum field theory
you can define on a \(3\)-dimensional spacetime that you've
triangulated, i.e., chopped up into tetrahedra. One of the main things
you want to compute in a quantum field theory is the ``partition
function'', and we say the Turaev-Viro theories are ``topological''
because you get the same answer for the partition function no matter how
you triangulate the 3-dimensional manifold corresponding to your
spacetime: the partition function only depends on the topology of the
manifold. The \(\mathrm{SU}(2)\) Turaev-Viro theory, the first one to be
discovered, is also one of the most interesting because, modulo a few
subtle points, this theory is just quantum gravity in 3 dimensions (see
\protect\hyperlink{week16}{``Week 16''}). The basic idea, though, is
that you compute the partition function by summing over all ways of
labelling the edges of your tetrahedra by ``spins''
\(j = 0, 1/2, 1, 3/2,\ldots\). Ponzano and Regge had tried to set up
\(3\)-dimensional quantum gravity this way previously, but there were
problems getting the sum to converge. The neat thing about the quantum
group is that you only sum over spins less than some fixed spin
depending on the value of \(\hbar\). Since the sums are finite, they
automatically converge.

It turns out that in these Turaev-Viro theories you are not actually
taking advantage of all the structure of the quantum group. Using the
extra structure, you can also use quantum groups to define certain
\emph{4-dimensional} topological quantum field theories, those of
``Crane-Yetter-Broda'' type. Here you triangulate a \(4\)-dimensional
manifold and, in the \(\mathrm{SU}(2)\) case, you label both the 2d
faces the 3d tetrahedra with spins. Actually, lots of people think the
Crane-Yetter-Broda theories are boring, because they look sort of boring
if you only examine their implications for \(4\)-dimensional topology.
However, they become interesting when you realize that, like all
topological quantum field theories defined using triangulations, they
are ``extended topological quantum field theories''. Roughly speaking
this means that they have implications for all dimensions below the
dimension they live in.

In particular, the Crane-Yetter-Broda theories spawn \(3\)-dimensional
topological quantum field theories of
``Chern-Simons-Reshetikhin-Turaev'' type, and most people agree that
\emph{these} are interesting. I like to emphasize, however, that a deep
understanding of these \(3\)-dimensional progeny requires an
understanding of their seemingly innocuous \(4\)-dimensional ancestors.
Also, there are a lot of interesting relationships between the
\(\mathrm{SU}(2)\) Crane-Yetter-Broda model and quantum gravity in 4
dimensions, which we are just beginning to understand. See
\protect\hyperlink{week56}{``Week 56''} for a bit about this.

If you haven't yet joined the fun, Carter, Saito, and Flath's book is a
great place to start learning about the marvelous interplay between
algebra, topology, and physics in 3 and 4 dimensions. Needless to say,
it doesn't cover all the ground I've sketched above. Instead, it focuses
on a rather specific and concrete aspect: the \(6j\) symbols. This
should make it especially handy for beginners who aren't familiar with
category theory, path integrals, and all that jazz.

What are the \(6j\) symbols, anyway? Here I need to get a wee bit more
technical. The ``classical'' \(6j\) symbols are important in the
representation theory of plain old classical \(\mathrm{SU}(2)\), while
the ``quantum'' ones are analogous gadgets applicable to quantum
\(\mathrm{SU}(2)\). In either case the idea is the same.
\(\mathrm{SU}(2)\), classical or quantum, has different representations
corresponding to different spins \(j = 0, 1/2, 1, 3/2,\ldots\). (If you
don't know what I mean by this, try \protect\hyperlink{week5}{``Week
5''}.) If we take three representations \(j_1\), \(j_2\), and \(j_3\),
we can tensor them either like this: \[(j_1\otimes j_2)\otimes j_3\] or
like this \[j_1\otimes (j_2\otimes j_3)\] The tensor product is
associative, but that doesn't mean that the above two representations
are \emph{equal}. They are only \emph{isomorphic}. This
\emph{isomorphism} can be thought of as just a big fat matrix, and the
entries in this matrix are a bunch of numbers, the \(6j\) symbols.

Turaev and Viro used the quantum \(6j\) symbols to define the original
Turaev-Viro model. It goes like this: first you chop your
\(3\)-dimensional manifold up into tetrahedra, and then you consider all
possible ways of labelling the edges with spins. Each tetrahedron gets
labelled with 6 spins since it has 6 edges, and from these spins we can
compute a number: the \(6j\) symbol. Then we multiply all these
together, one for each tetrahedron, and finally we sum over labellings
to get the partition function. Marvelously, the identities satisfied by
the \(6j\) symbols are precisely what's needed to make the result
independent of the triangulation! See \protect\hyperlink{week38}{``Week
38''} for an explanation of this seeming miracle: it's actually no
miracle at all.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  E. Guadagnini, L. Pilo, ``Three-manifold invariants and their relation
  with the fundamental group'', 22 pages in LaTeX available as
  \href{https://arxiv.org/ps/hep-th/9612090}{\texttt{hep-th/9612090}}.
\end{enumerate}

Fans of topological field theory may like this one, though I must admit
I haven't gotten around to doing more than reading the abstract yet. In
this paper the authors give evidence for the conjecture that among
3-manifolds \(M\) for which the Chern-Simons invariant
\(\mathrm{CS}(M)\) is nonzero, the absolute value \(|\mathrm{CS}(M)|\)
only depends on the fundamental group of \(M\). Chern-Simons theory
depends on a choice of group; they prove the conjecture for certain
manifolds (``lens spaces'') when the group is \(\mathrm{SU}(2)\), and
give numerical evidence when the gauge group is \(\mathrm{SU}(3)\).

What's interesting about this to me is that \(|\mathrm{CS}(M)|^2\) is
just the Turaev-Viro theory partition function, so this conjecture is
saying that the Turaev-Viro theories discussed above have a tendency to
notice only the fundamental group.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Michael Reisenberger and Carlo Rovelli, ``\,`Sum over surfaces' form
  of loop quantum gravity'', preprint available as
  \href{https://arxiv.org/ps/gr-qc/9612035}{\texttt{gr-qc/9612035}}.
\end{enumerate}

This wonderful paper should really push forwards our understanding of
the loop representation of quantum gravity. I talked a little bit about
the basic idea in \protect\hyperlink{week86}{``Week 86''}. In the loop
representation, a state of quantum gravity at a given moment is
represented by a bunch of knotted loops or ``spin networks'' in space.
What's the spacetime picture? Well, if you have a surface in spacetime
and look at it at one moment of time, it typically looks like a bunch of
loops\ldots{} so maybe the spacetime picture of quantum gravity is that
spacetime is packed with \(2\)-dimensional surfaces, all tangled up.
Interestingly, this is also very reminiscent of the picture of quantum
gravity in string theory!

I've been working on this sort of idea ever since I wrote a paper
suggesting that the loop representation and string theory might be two
faces of the same ideas (see \protect\hyperlink{week18}{``Week 18''}).
Since then, most of the time I've been trying to understand how these
ideas relate to the Crane-Yetter-Broda theories, and trying to set up
the necessary \emph{algebra} (\(n\)-category theory) to deal nicely with
surfaces in 4-dimensional spacetime.

But there are many other angles from which one can attack this problem,
and one of the best is to start directly from Einstein's equations for
general relativity, try to quantize them using the path-integral
approach, and see how the path integral can be written as a sum over
surfaces. Reisenberger has already begun work on this in the context of
``simplicial quantum gravity'' --- where you chop spacetime up into the
4-dimensional analog of tetrahedra. But during the Vienna workshop on
canonical quantum gravity this summer, we talked about a different,
still more direct approach (see \protect\hyperlink{week89}{``Week
89''}). The idea is to copy standard quantum field theory, write the
propagator describing time evolution as a time-ordered exponential, and
interpret the terms in the resulting sum as surfaces in spacetime. It's
all very analogous to traditional Feynman diagrams, where you write the
propagator as a sum over diagrams, but now the ``Feynman diagrams'' are
\(2\)-dimensional surfaces. (Again, this is reminiscent of string theory
--- but with many important differences.)

There is much more to say, but I think I'll leave it at that\ldots. Over
in the world of n-categories there is also some very interesting stuff
happening, which I will discuss more next week. I'm almost done writing
a paper with James Dolan on the definition of \(n\)-categories, but in
the meantime some other folks have been coming up with other definitions
of \(n\)-categories, so we will soon be in the position to compare
definitions and see how similar or different they are, and start
erecting the formalism needed to deal with all these topological quantum
field theories and ``sums over surfaces'' in a really elegant way!
Everything looks like its fitting together. At least, that's my
momentary optimistic feeling. Perhaps it's just the fact that classes
are over that is making me so happy. Yes, it's probably just that.
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\section{February 8, 1997}\label{week97}}

I've taken a break from writing This Week's Finds in order to finish up
a paper with James Dolan in which we give a definition of ``weak
\(n\)-categories'' for all \(n\). This paper is now available on my
website, and I'm immodestly eager to talk about it, and I will, but a
lot of stuff has accumulated in the meantime which I want to discuss
first.

First, I'm sure you remember a while back when atoms were first coaxed
to form true Bose-Einstein condensates. The basic idea is that particles
come in two basic kinds, fermions and bosons, and while the fermions
have half-integer spin and obey the Pauli exclusion principle saying
that no two identical fermions can be in the same state at the same
time, bosons have integer spin and are gregarious: they \emph{love} to
be in the same state at the same time.

Why is spin related to what happens when you try to put a bunch of
particles in the same state? Well, it all has to do with the relation
between twisting something around: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=5]
      \strand[thick] (0,0)
        to (0,-0.5)
        to [out=down,in=left] (0.3,-1)
        to [out=right,in=right,looseness=2] (0.3,-0.5);
      \strand[thick] (0.3,-0.5)
        to [out=left,in=up] (0,-1)
        to (0,-1.5);
    \flipcrossings{1}
    \end{knot}
  \end{tikzpicture}
\] and switching two things: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (1,0) to (0,-2);
      \strand[thick] (0,0) to (1,-2);
    \end{knot}
  \end{tikzpicture}
\] To understand this, try

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Spin, statistics, CPT and all that jazz,
  \texttt{http://math.ucr.edu/home/baez/spin.stat.html}
\end{enumerate}

But let's consider some examples. Since photons have spin 1 they are
bosons. In laser light one has a bunch of photons all in the same state.
Thanks to the Heisenberg uncertainty principle, of course, we can't know
both their position and momentum. In a laser we don't know the position
of the photons: each photon is all over the laser beam in a spread-out
sort of way. However, we do know the momentum of the photons and they
all have the same momentum. This means that we have ``coherent light''
in which all the photons are like waves wiggling perfectly in phase. One
can demonstrate this by interfering two beams of laser light and seeing
beautifully perfect interference fringes, bright and dark stripes in
places where the two beams are either in phase with each other and
adding up, or out of phase and cancelling out.

Now, other particles are bosons as well, and they can do similar tricks.
Bose and Einstein predicted that when any gas of noninteracting bosons
gets sufficiently cold, all --- or at least a sizeable fraction --- of
them will be found in the same state: the state of least possible
energy. Unfortunately, when things get cold they are usually liquids or
solids rather than a gas, and the particles in a liquid or gas interact
a lot, so true Bose-Einstein condensation is hard to achieve.

Some related things have been studied for decades. If you get an even
number of fermions together they act approximately like a boson, at
least if the density is not too high. Helium stays liquid at
temperatures arbitrarily close to absolute zero, when the pressure is
low enough. Since helium 4 has 2 protons, 2 neutrons, and 2 electrons,
and all these particles are fermions, helium 4 acts like a boson. At
really low temperatures, helium 4 becomes ``superfluid'' --- a
substantial fraction of the atoms fall into the same state and the
liquid acquires shocking properties, like zero viscosity. Similarly, in
certain metals at low temperatures electrons will, by a subtle
mechanism, form ``Cooper pairs'', and these act like bosons. When a
bunch of these fall into the same state, you have a ``superconductor''.

But neither of these is a Bose-Einstein condensate in the technical
sense of the term, because the helium atoms interact a lot in superfluid
helium, and the Cooper pairs interact a lot in a superconductor. Only
recently have people been able to get dilute gases of bosonic atoms cold
enough to study true Bose-Einstein condensation.

The fist team to do it, the ``JILA'' team in Boulder, Colorado got a
Bose-Einstein condensate of about 2000 rubidium atoms to form in a
magnetic trap at less than \(2 \times 10^{-7}\) degrees above absolute
zero. A team at Rice University did it with lithium soon after, followed
by a team at MIT, who did it with sodium.

Check out:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\item
  Physicists create new state of matter,
  \texttt{http://jilav1.colorado.edu/www/bose-ein.html}

  Atomcool home page, \texttt{http://atomcool.rice.edu/}

  Neutral sodium ion trap at MIT,
  \texttt{http://bink.mit.edu/dallin/nat.html}
\end{enumerate}

So what's the news? Well, recently the team at MIT, led by Wolfgang
Ketterle, made two blobs of Bose-Einstein condensate out of sodium
atoms. Ramming these into each other, they were able to see interference
fringes just as in a laser! In other words, they is seeing interference
of matter waves, just as quantum mechanics predicts, but involving lots
of atoms in a coherent state rather than a single electron as in the
famous double slit experiment. For pictures and even movies, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Matter-wave interference of two Bose condensates,
  \texttt{http://bink.mit.edu/dallin/news.html\#matterwave}
\end{enumerate}

In honor of this event, I hereby present the following limerick composed
by the poet Lisa Raphals, with myself serving as science consultant. It
may aid your appreciation if I note first that ``Squantum'' is an actual
town in Massachusetts. With no further ado:

\begin{quote}
A metaphysician from Squantum Was asked, what's the state of the
quantum? It's all reciprocity: Position, velocity --- They're never both
there when you want 'em!
\end{quote}

Now on to some more technical stuff\ldots.

I am now visiting the Center for Gravitational Physics and Geometry here
at Penn State, which is a delightful place for people interested in the
loop representation of quantum gravity (see
\protect\hyperlink{week77}{``Week 77''}). Right now everyone is working
on using the loop representation to derive Hawking's formula which says
that the entropy of a black hole is proportional to the surface area of
its event horizon.

When I arrived, Jorge Pullin handed me a copy of his book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Rodolfo Gambini and Jorge Pullin, \emph{Loops, knots, gauge theories,
  and quantum gravity}, Cambridge U. Press, Cambridge, 1996.
\end{enumerate}

Here is the table of contents:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  Holonomies and the group of loops
\item
  Loop coordinates and the extended group of loops
\item
  The loop representation
\item
  Maxwell theory
\item
  Yang-Mills theories
\item
  Lattice techniques
\item
  Quantum gravity
\item
  The loop representation of quantum gravity
\item
  Loop representation: further developments
\item
  Knot theory and physical states of quantum gravity
\item
  The extended loop representation of quantum gravity
\item
  Conclusions, present status and outlook
\end{enumerate}

This is presently the most complete introduction available to the ``loop
representation'' concept, as applied to electromagnetism, Yang-Mills
theory, and quantum gravity. Gambini was one of the original inventors
of this notion, and this book covers the whole sweep of its
ramifications, with a special emphasis on a particular technical form,
the ``extended loop representation'', which he has been developing with
Pullin and other collaborators.

What the heck is the loop representation, anyway? Well, all the forces
we know are described by gauge theories, and gauge theories all describe
the ``phase'', or generalization thereof, that a particle acquires when
you carry it around a loop. In the case of electromagnetism, for
example, a charged quantum particle carried around a loop in space
acquires a phase equal to \[\exp(-iqB/\hbar)\] where \(q\) is the
particle's charge, \(\hbar\) is Planck's constant, and \(B\) is the
magnetic flux through the loop: i.e., the integral of the magnetic field
over any surface spanning the loop. Knowing these phase for all loops is
the same as knowing the magnetic field. Similarly, if we knew the phase
for all loops in SPACETIME instead of just space, we would know both the
electric and magnetic fields throughout spacetime.

General relativity is similar except that instead of a phase one gets a
rotation, or more generally a Lorentz transformation, when one parallel
transports a little arrow around a loop.

The theories of the electroweak and strong forces are similar but the
analog of the ``phase'' is a bit more abstract: an element of the group
\(\mathrm{SU}(2)\times\mathrm{U}(1)\) or \(\mathrm{SU}(3)\),
respectively.

The idea of the loop representation is to take these ``phases acquired
around loops'' as basic variables for describing the laws of physics.

That's the idea in a nutshell. It turns out, not surprisingly, that
there are many interesting relationships with such topics involving
loops, such as string theory and knot theory.

Gambini and Pullin's book develops this theme in many directions. Let me
say a bit about one fascinating topic that they mention, which I would
like to understand better: Gerard 't Hooft's work on confinement in
chromodynamics using his ``order and disorder operators''.

I explained some basic ideas about confinement and asymptotic freedom in
\href{week84}{``Week 84''} and \protect\hyperlink{week94}{``Week 94''},
so I'll assume you've read that stuff. Remember, the basic idea of
confinement is that if you take a meson and try to pull the quark and
antiquark it contains apart, the force required does not decrease with
distance like \(1/r^2\), because the chromoelectric field --- the strong
force analog of the electric field --- does not spread out in all
directions like an ordinary electric field does. Instead, all the field
lines are confined to a ``flux tube'', so the force is roughly
independent of the distance.

This means that the energy is roughly proportional to the distance.
Since action has dimensions of energy times time, this means that if we
consider the creation and subsequent annihilation of a virtual
quark-antiquark pair: \[
  \begin{tikzpicture}
    \begin{knot}
      \strand[thick] (0,0)
        to [out=up,in=up,looseness=2] (1.5,0);
      \strand[thick] (0,0)
        to [out=down,in=down,looseness=2] (1.5,0);
    \end{knot}
    \node[fill=white] at (0.2,0.5) {q};
    \node[fill=white] at (1.3,0.5) {$\overline{\mbox{q}}$};
  \end{tikzpicture}
\] the total action is proportional to the \emph{area} of the loop
traced out in spacetime. Here I am neglecting the action due to the
kinetic energy of the quark and antiquark, and only worrying about the
potential energy due to the flux tube joining them. This amounts to
treating the quark and antiquark as ``test particles'' to study the
behavior of the strong force.

Now, when we study quantum physics using Euclidean path integrals the
basic principle is that the probability of the occurence of any process
is proportional to \[\exp(-S/\hbar)\] where \(S\) is the action of that
process and \(\hbar\) is Planck's constant again. So in this framework
the \emph{probability} of a particular virtual quark-antiquark pair
tracing out a loop like the above one is proportional to \[\exp(-cA)\]
where \(c > 0\) is some constant and \(A\) is the area of the loop. This
``area law'' was first proposed by Kenneth Wilson in his pioneering work
on confinement; he proposed it as a way to tell, mathematically, if
confinement was happening in some theory. Just compute the probability
of a virtual quark-antiquark pair tracing out a particular loop and see
if it decreases exponentially with the area!

Deriving confinement from chromodynamics is something that people have
worked on for quite a while, and it's not easy: there is still no
rigorous proof, even though there are a bunch of heuristic arguments for
it, and computer simulations seem to demonstrate that it's bound to
occur. One approach to studying the puzzle is due to 't Hooft and
involves ``order'' and ``disorder'' operators.

I'll explain what these are, and what they have to do with knot theory,
but not how 't Hooft actually uses them in his argument for confinement.
For the actual argument, try Gambini and Pullin's book, or else 't
Hooft's paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Gerard 't Hooft, \emph{Nucl. Phys.} \textbf{B138}, (1978) 1.
\end{enumerate}

Let us work in space at a given time, rather than in the Euclidean path
integral approach. We'll do ``canonical quantization'', meaning that now
observables will be operators on some Hilbert space.

If we have any loop \(g\) in space, there is an observable called the
``Wilson loop'' \(W(g)\), which is the trace of the holonomy of the
connection around \(g\). The precise way of stating Wilson's area law
for confinement in this context is that
\[\langle W(g) \rangle \sim \exp(-cA)\] where \(\langle W(g) \rangle\)
is the vacuum expectation value of the Wilson loop, and \(A\) is the
area spanned by the loop \(g\). The point is that
\(\langle W(g) \rangle\) is the same as what I was (a bit sloppily)
calling the probability of the quark-antiquark pair tracing out the loop
\(g\).

't Hooft calls the Wilson loops ``order operators''. We don't really
need to worry why he calls them this, but if you know how physicists
think, you may know that the Wilson loops are keeping track of a kind of
``order parameter'' of the vacuum state. Anyway, his idea was to study
the Wilson loops by introducing some other operators he called
``disorder operators''.

Chromodynamics is an \(\mathrm{SU}(3)\) gauge theory but it's a little
clearer if we work with any \(\mathrm{SU}(N)\) gauge theory. Notice that
the center of the group \(\mathrm{SU}(N)\) consists of the matrices of
the form \[\exp(2\pi in/N)\]

where \(n\) is an integer. So if we have a loop \(h\), we can imagine an
operator that does the following thing: it modifies the connection, or
vector potential, in such a way that if you do parallel transport around
a tiny loop linking \(h\) once, the holonomy changes to
\(\exp(2\pi i/N)\) times what it had been. Note: this is a
gauge-invariant thing to do, because that \(\exp(2\pi i/N)\) is in the
center of \(\mathrm{SU}(N)\)! So just as the Wilson loop observables are
gauge-invariant, we can hope for some some ``disorder operators''
\(V(h)\) that modify the connection in this way.

If you think about it, what this means is that the following commutation
relations hold: \[W(g) V(h) = V(h) W(g) \exp(2\pi i L(g,h)/N)\] where
\(L(g,h)\) is the linking number of the loops \(g\) and \(h\), which
counts how many times \(g\) wraps around \(h\).

There is an obvious symmetry or ``duality'' between the \(V\)'s and the
\(W\)'s going on here. In fact, just as \(W\)'s satisfy an area law
where there is confinement of chromoelectric field lines into flux
tubes, I believe the \(V\)'s satisfy an area law when there is
confinement of chromomagnetic field lines into flux tubes. The simplest
case of this kind of thing occurs in plain old electromagnetism, where
plain old magnetic field lines are confined into flux tubes in type II
superconductors. For this reason confinement of electric field lines is
sometimes called ``dual superconductivity''.

Perhaps the simplest way of beginning to understand this stuff more
deeply is to understand the wonderful formula proved by Ashtekar and
Corichi in the following paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Abhay Ashtekar and Alejandro Corichi, ``Gauss linking number and
  electro-magnetic uncertainty principle'', preprint available as
  \href{https://arxiv.org/ps/hep-th/9701136}{\texttt{hep-th/9701136}}.
\end{enumerate}

This formula applies to plain old electromagnetism, or more precisely,
quantum electrodynamics. If we work in units where \(\hbar = 1\), and
consider a particle of charge \(1\), the Wilson loop operator \(W(g)\)
in electromagnetism is just \[W(g) = \exp(-iB(g))\] where \(B\) is the
magnetic flux flowing through the loop \(g\). But instead we can just
work with \(B(g)\) directly. Similarly, instead of \(V(h)\)'s we can
work with the operator \(E(h)\) corresponding to the electric flux
through the loop \(h\). Then we have
\[B(g) E(h) - E(h) B(g) = i L(g,h).\] In other words, the electric and
magnetic fields don't commute in quantum electrodynamics, and the
Heisenberg uncertainty of the electric field flowing through a loop g
and the magnetic field flowing through a loop \(h\) is proportional to
the linking number of \(g\) and \(h\)!

Quantum mechanics, electromagnetism, and knot theory are clearly quite
tangled up here. Since the linking number was first discovered by Gauss
in his work on magnetism, it's all quite fitting.

And that leads me to the last paper I want to mention this week. It
should be of great interest to Vassiliev invariant fans; see
\protect\hyperlink{week3}{``Week 3''} if you don't know what a Vassiliev
invariant is.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  Dror Bar-Natan and Alexander Stoimenow, ``The fundamental theorem of
  Vassiliev invariants'', preprint available as
  \href{https://arxiv.org/ps/q-alg/9702009}{\texttt{q-alg/9702009}}.
\end{enumerate}

Let me just quote the abstract here:

\begin{quote}
The ``fundamental theorem of Vassiliev invariants'' says that every
weight system can be integrated to a knot invariant. We discuss four
different approaches to the proof of this theorem: a
topological/combinatorial approach following M. Hutchings, a geometrical
approach following Kontsevich, an algebraic approach following
Drinfel'd's theory of associators, and a physical approach coming from
the Chern-Simons quantum field theory. Each of these approaches is
unsatisfactory in one way or another, and hence we argue that we still
don't really understand the fundamental theorem of Vassiliev invariants.
\end{quote}
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I feel guilty for slacking off on This Week's Finds, so I should explain
the reason. Lots of things have been building up that I'm dying to talk
about, but new ones keep coming in at such a rapid rate that I never
feel I have time!

I will have to be ruthless, and face up to the fact that a quick and
imperfect exposition is better than none.

First of all, here at the Center for Gravitational Physics and Geometry
there are a lot of interesting attempts going on to compute the entropy
of black holes from first principles. Bekenstein, Hawking and many
others have used a wide variety of semiclassical arguments to argue that
black holes satisfy \[S = A/4\] where \(S\) is the entropy and \(A\) is
the area of the event horizon, both measured in Planck's units, where
\(G = c = \hbar = 1\).

For example, using purely classical reasoning (general relativity, but
no quantum theory) one can prove the ``2nd law of black hole
thermodynamics'', which says that \(A\) always increases. As Bekenstein
noted, this suggests that the area of the event horizon is somehow
analogous to entropy. However, by itself this does not determine the
magic number \(1/4\), which can only be derived using quantum theory (as
one can see by simple dimensional analysis).

By semiclassical reasoning --- studying quantum electrodynamics in the
Schwarzschild metric used to describe black holes --- Hawking showed
that black holes should radiate as if they had a temperature inversely
proportional to their mass: \[T = \frac{1}{8\pi M}.\] This made the
analogy between entropy and event horizon area much more than an
analogy, because it meant that one could assign a temperature to black
holes and see if they satisfy the laws of thermodynamics. It turns out
that if you consider \(A/4\) to be the entropy of a black hole, you can
eliminate seeming violations of the 2nd law that otherwise arise in
thought experiments where you get rid of entropy by throwing it into a
black hole. In other words, if you throw something with entropy \(S\)
into a black hole, calculations seem to show that the area of the event
horizon always increases by at least \(4S\)!

So far nothing I've said is related to full-fledged quantum gravity,
because in the semiclassical arguments one is still working in the
approximation where the gravitational field is treated classically. An
interesting test of any theory of quantum gravity is whether can use it
to derive \(S = A/4\). In a subject with no real experimental evidence,
this is the closest we have to an ``experimental result'' that our
theory should predict.

Recently the string theorists have done some calculations claiming to
show that string theory predicts \(S = A/4\). Personally I feel that
while these calculations are interesting they are far from definitive.
For example, they all involve taking calculations done using
perturbative string theory on \emph{flat} spacetime and extrapolating
them drastically to the regime in which string theory approximates
general relativity. One typically uses ideas from supersymmetry to
justify such extrapolations; however, these ideas only seem to apply to
``extremal black holes'', having the maximum possible charge for a black
hole of a given mass and angular momentum. Realistic black holes are far
from extremal. In short, while exciting, these calculations still need
to be taken with a grain of salt.

Of course, I am biased because I am interested in another approach to
quantum gravity, the loop representation of quantum gravity, which folks
are working on here at the CGPG, among other places. This is in many
ways a more conservative approach. The idea is to simply take Einstein's
equation for general relativity and quantize it, rather than trying to
develop a theory of \emph{all} particles and forces as in string theory.
Of course, for various reasons it is not so easy to quantize Einstein's
equation. String theorists think it's \emph{impossible} without dragging
in all sorts of other forces and particles, but folks working on the
loop representation are more optimistic. This is an ongoing argument,
but certainly a good test of the loop representation would be to try to
use it to derive Hawking's formula S = A/4. If the loop representation
is really any good, this should be possible, because many different
lines of reasoning using only general relativity and quantum theory lead
to this formula.

I've already mentioned a few attempts to do this in
\protect\hyperlink{week56}{"Week 56}``, \protect\hyperlink{week57}{"Week
57}'', and \protect\hyperlink{week87}{``Week 87''}. These were
promising, but they didn't get the magical number \(1/4\). Also, they
are rather rough, in that they do computations on some region with
boundary, but don't use anything that ensures the boundary is an event
horizon.

Recently Kirill Krasnov has made some progress:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Kirill Krasnov, ``On statistical mechanics of Schwarzschild black
  hole'', preprint available as
  \href{https://arxiv.org/ps/gr-qc/9605047}{\texttt{gr-qc/9605047}}.
\end{enumerate}

This paper still doesn't get the magic number \(1/4\), and Krasnov later
realized it has a few mistakes in it, but it does something very cool.
It notes that the boundary conditions holding on the event horizon of a
Schwarzschild black hole are closely related to Chern-Simons theory. Now
is not the time for me to go into Chern-Simons theory, but basically, it
lets you apply a lot of neat mathematics to calculate everything to your
heart's content, very much as Carlip did on his work on the toy model of
a 2+1-dimensional black hole (see \protect\hyperlink{week41}{``Week
41''}). Also, it sheds new light on the relationship between topological
quantum field theory and quantum gravity, something I am always trying
to understand better.

While I'm at it, I should note the existence of a paper that reworks
Carlip's calculation from a slightly different angle:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Maximo Banados and Andres Gomberoff, ``Black hole entropy in the
  Chern-Simons formulation of 2+1 gravity'', preprint available as
  \href{https://arxiv.org/ps/gr-qc/9611044}{\texttt{gr-qc/9611044}}.
\end{enumerate}

2+1-dimensional quantum gravity is very simple compared to the
3+1-dimensional quantum gravity we'd really like to understand: in a
sense it's ``exactly solvable''. But there are still some puzzling
things about Carlip's computation of the entropy of a black hole in 2+1
dimensions which need figuring out, so every paper on the subject is
worth looking at, if you're interested in black hole entropy.

Speaking of topological quantum field theory and quantum gravity, I just
finished a paper on these topics:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  John Baez, ``Degenerate solutions of general relativity from
  topological field theory'', preprint available as
  \href{https://arxiv.org/ps/gr-qc/9702051}{\texttt{gr-qc/9702051}} or
  in Postscript form at \texttt{http://math.ucr.edu/home/baez/deg.ps}.
\end{enumerate}

Let me just summarize the basic idea, resisting the temptation to become
insanely technical.

A while ago Rovelli and Smolin introduced Penrose's notion of ``spin
network'' into the loop representation of quantum gravity. I described
spin networks pretty carefully in \protect\hyperlink{week43}{``Week
43''}, but here let me just say that they are graphs embedded in space
with edges labelled by spins \(j = 0, 1/2, 1, 3/2,\ldots\), just as in
the quantum mechanics of angular momentum, and with vertices labelled by
``intertwining operators'', which are other gadgets that come up in the
study of angular momentum. In the loop representation these spin
networks form a basis of states. Geometrical observables like the area
of surfaces and the volumes of regions have been quantized and their
matrix elements computed in the spin network basis, giving us a nice
picture of ``quantum 3-geometries'', that is, the possible geometries of
space in the context of quantum gravity. In this picture, the edges of
spin networks play the role of quantized flux tubes of area, much as the
magnetic field comes in quantized flux tubes in a type II
superconductor. To work out the area of a surface in some spin network
state, you just total up contributions from each edge of the spin
network that pokes through the surface. An edge labelled with spin \(j\)
carries an area equal to \(\sqrt{j(j+1)}\) times the Planck length
squared. What's cool is that this is not merely postulated, it's derived
from fairly standard ideas about how you turn observables into operators
in quantum mechanics.

However, the dynamics of quantum gravity is more obscure. Technical
issues aside, the main problem is that while we have a nice picture of
quantum 3-geometries, we don't have a similar picture of the
\emph{4-dimensional}, or \emph{spacetime}, aspects of the theory. To
represent a physical state of quantum gravity, a spin network state (or
linear combination thereof) has to satisfy something called the
Wheeler-DeWitt equation. This is sort of the quantum gravity analog of
the Schrodinger equation. There is a lot of controversy over the
Wheeler-DeWitt equation and what's the right way to write it down in the
loop representation. The really annoying thing, however, is that even if
you feel you know how to write it down --- for example, Thomas Thiemann
has worked out one way (see \protect\hyperlink{week85}{``Week 85''}) ---
and can find solutions, you still don't necessarily have a good
intuition as to what the solutions \emph{mean}. For example, almost
everyone seems to agree that spin networks with no vertices should
satisfy the Wheeler-DeWitt equation. These are just knots or links with
edges are labelled by spins. We know these states are supposed to
represent ``quantum 4-geometries'' satisfying the quantized Einstein
equations. But how should we visualize these states in \(4\)-dimensional
terms?

In search of some insight into the \(4\)-dimensional interpretation of
these states, I turn to classical general relativity. In my paper, I
construct solutions of the equations of general relativity which at a
typical fixed time look like ``flux tubes of area'' reminiscent of the
loop states of quantum gravity. These are ``degenerate solutions'',
meaning that the ``3-metric'', the tensor you use to measure distances
in 3-dimensional space, is zero in lots of regions of space. Here I
should warn you that ordinary general relativity doesn't allow
degenerate metrics like this. The loop representation works with an
extension of general relativity that covers the case of degenerate
metrics; for more on this, see \protect\hyperlink{week88}{``Week 88''}.

More precisely, if you look at these ``flux tube'' solutions at a
typical time, the 3-metric vanishes outside a collection of solid tori
embedded in space, while inside any of these solid tori the metric is
degenerate in the longitudinal direction, but nondegenerate in the two
transverse directions.

Now since these are classical solutions --- no quantum theory in sight!
--- there is no problem with understanding what they do as time passes.
We can solve Einstein's equation and get a 4-metric, a metric on
spacetime. The \(4\)-dimensional picture is as follows: given any
surface \(\Sigma\) embedded in spacetime, I get solutions for which the
4-metric vanishes outside a neighborhood of \(\Sigma\). Inside this
neighborhood, the 4-metric is zero in the two directions tangent to
\(\Sigma\) but nondegenerate in the two transverse directions. In the
4-geometry defined by one of these solutions, the area of a typical
surface \(\Sigma'\) intersecting \(\Sigma\) in some isolated points is a
sum of contributions from the points where \(\Sigma\) and \(\Sigma'\)
intersect.

The solutions I study are inspired by the work of Mike Reisenberger, who
studied a solution for which the metric vanishes outside a neighborhood
of a sphere embedded in \(\mathbb{R}^4\). I consider more general
surfaces embedded in more general 4-manifolds, so I need to worry a lot
more about topological issues. Also, I allow the possibility of a
nonzero cosmological constant (this being a parameter in Einstein's
equation that determines the energy density of the vacuum). A lot of the
most interesting stuff happens for nonzero cosmological constant, and
this case actually helps one understand the case of vanishing
cosmological constant as a kind of limiting case.

It turns out that the interesting degrees of freedom of the metric
living on the surface \(\Sigma\) in spacetime are described by fields
living on this surface. In fact, these fields are solutions of a
\(2\)-dimensional topological field theory called \(BF\) theory. To
prove this, I take advantage of the relation between general relativity
and \(BF\) theory in 4 dimensions, together with the fact that \(BF\)
theory behaves in a simple manner under dimensional reduction.

Another neat thing is that to get a solution of general relativity this
way, we need to pick a ``framing'' of \(\Sigma\). Roughly speaking, this
means we need to pick a way of thickening up the surface \(\Sigma\) to a
neighborhood that looks like \(\Sigma\times D^2\), where \(D^2\) is the
\(2\)-dimensional disc. This is precisely the \(4\)-dimensional analog
of a framing of a knot or link in 3-dimensions. People who know about
topological quantum field theory know that framings are very important.
In fact, I can show that my solutions of general relativity are closely
related to Chern-Simons theory, a \(3\)-dimensional topological field
theory famous for giving invariants of framed knots and links. What's
beginning to emerge is a picture that makes the \emph{spacetime} aspects
of framings easier to understand.

Now before I plunge into some even more esoteric stuff, let me briefly
return to reality and answer the question you've all been secretly dying
to ask: how does general relativity impact the world of big business?

In plain terms: is all this fancy physics just an excuse to have fun
visualizing evolving spin networks in terms of quantum field theories on
surfaces embedded in \(4\)-dimensional spacetime, etcetera
etcetera\ldots{} or does it actually contribute to the well-being of the
corporations upon which we depend?

Well, you may be surprised to know that general relativity plays an
significant role in a \$200-million business. Surprised? Read on! What
follows is taken from the latest issue of ``Matters of Gravity'', the
newsletter put out by Jorge Pullin. More precisely, it's from:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Neil Ashby, ``General relativity in the global positioning system'',
  in \emph{Matters of Gravity}, ed.~Jorge Pullin, no. \textbf{9},
  available at \texttt{http://www.phys.lsu.edu//mog/mog9/node9.html}.
\end{enumerate}

I will simply quote some excerpts from this fascinating article:

\begin{quote}
"The Global Position System (GPS) consists of 24 earth-orbiting
satellites, each carrying accurate, stable atomic clocks. Four
satellites are in each of six different orbital planes, of inclination
55 degrees with respect to earth's equator. Orbital periods are 12 hours
(sidereal), so that the apparent position of a satellite against the
background of stars repeats in 12 hours. Clock-driven transmitters send
out synchronous time signals, tagged with the position and time of the
transmission event, so that a receiver near the earth can determine its
position and time by decoding navigation messages from four satellites
to find the transmission event coordinates, and then solving four
simultaneous one-way signal propagation equations. Conversely,
\(\gamma\)-ray detectors on the satellites could determine the
space-time coordinates of a nuclear event by measuring signal arrival
times and solving four one-way propagation delay equations.
\end{quote}

\begin{quote}
Apart possibly from high-energy accelerators, there are no other
engineering systems in existence today in which both special and general
relativity have so many applications. The system is based on the
principle of the constancy of \(c\) in a local inertial frame: the
Earth-Centered Inertial or ECI frame. Time dilation of moving clocks is
significant for clocks in the satellites as well as clocks at rest on
earth. The weak principle of equivalence finds expression in the
presence of several sources of large gravitational frequency shifts.
Also, because the earth and its satellites are in free fall,
gravitational frequency shifts arising from the tidal potentials of the
moon and sun are only a few parts in 10\^{}16 and can be neglected.
\end{quote}

\begin{quote}
{[}\ldots{]}
\end{quote}

\begin{quote}
At the time of launch of the first NTS-2 satellite (June 1977), which
contained the first Cesium clock to be placed in orbit, there were some
who doubted that relativistic effects were real. A frequency synthesizer
was built into the satellite clock system so that after launch, if in
fact the rate of the clock in its final orbit was that predicted by GR,
then the synthesizer could be turned on bringing the clock to the
coordinate rate necessary for operation. The atomic clock was first
operated for about 20 days to measure its clock rate before turning on
the synthesizer. The frequency measured during that interval was +442.5
parts in \(10^{12}\) faster than clocks on the ground; if left
uncorrected this would have resulted in timing errors of about 38,000
nanoseconds per day. The difference between predicted and measured
values of the frequency shift was only 3.97 parts in \(10^{12}\), well
within the accuracy capabilities of the orbiting clock. This then gave
about a 1\% validation of the combined motional and gravitational shifts
for a clock at 4.2 earth radii.
\end{quote}

\begin{quote}
{[}\ldots{]}
\end{quote}

\begin{quote}
This system was intended primarily for navigation by military users
having access to encrypted satellite transmissions which are not
available to civilian users. Uncertainty of position determination in
real time by using the Precise Positioning code is now about 2.4 meters.
Averaging over time and over many satellites reduces this uncertainty to
the point where some users are currently interested in modelling many
effects down to the millimeter level. Even without this impetus, the GPS
provides a rich source of examples for the applications of the concepts
of relativity.
\end{quote}

\begin{quote}
New and surprising applications of position determination and time
transfer based on GPS are continually being invented. Civilian
applications include for example, tracking elephants in Africa, studies
of crustal plate movements, surveying, mapping, exploration, salvage in
the open ocean, vehicle fleet tracking, search and rescue, power line
fault location, and synchronization of telecommunications nodes. About
60 manufacturers now produce over 350 different commercial GPS products.
Millions of receivers are being made each year; prices of receivers at
local hardware stores start in the neighborhood of \$200."
\end{quote}

Pretty cool, eh?

Okay, now for something completely different --- homotopy theory! Well,
everything I write about is actually secretly part of my grand plan to
see how everything interesting is related to everything else, but let me
not delve into how homotopy theory is related to topological quantum
field theory and thus quantum gravity. Let me simply mention the
existence of this great book:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  \emph{Handbook of Algebraic Topology}, ed.~I. M. James, North-Holland,
  the Netherlands, 1995, 1324 pages.
\end{enumerate}

Occasionally you come across a book that you wish you just download into
your brain; for me this is one of those books. It is probably not a good
idea to read it if you are just wanting to get started on algebraic
topology; it assumes you are pretty familiar with the basic ideas
already, and it goes into a lot of depth, mainly in hardcore homotopy
theory. A lot of it is too technical for me to appreciate, but let me
list a few chapters that I can understand and like.

\begin{itemize}
\item
  Chapter 1, ``Homotopy types'' by Hans-Joachim Baues, is a great survey
  of different models of homotopy types. Remember, we say two
  topological spaces \(X\) and \(Y\) are homotopy equivalent if there
  are continuous functions \(f\colon X\to Y\) and \(g\colon Y\to X\)
  that are inverses ``up to homotopy''. In other words, we don't require
  that \(fg\) and \(gf\) are \emph{equal} to identity functions, but
  merely that they can both be \emph{continuously deformed} to identity
  functions. So for example the circle and an annulus are homotopy
  equivalent, and we say therefore that they represent the same
  ``homotopy type''.

  The cool thing is that there turn out to be very elegant algebraic and
  combinatorial ways of describing homotopy types that don't mention
  topology at all. Perhaps the most beautiful way of all is a way that
  in a sense hasn't been fully worked out yet: namely, thinking of
  homotopy types as ``\(\omega\)-groupoids''. The idea is this. An
  ``\(\omega\)-category'' is something that has

  \begin{itemize}
  \tightlist
  \item
    objects like \(x\)
  \item
    morphisms between objects like \(f\colon x\to y\)
  \item
    \(2\)-morphisms between morphisms like \(F\colon f\to g\)
  \item
    \(3\)-morphisms between \(2\)-morphisms like \(T\colon F\to G\)
  \item
    \ldots{}
  \end{itemize}

  and so on ad infinitum. There should be some ways of composing these,
  and these should satisfy some axioms, and that of course is the tricky
  part. But the basic idea is that if you hand me a topological space
  \(X\), I can cook up an \(\omega\)-category whose

  \begin{itemize}
  \tightlist
  \item
    objects are points in \(X\)
  \item
    morphisms are paths between points in \(X\)
  \item
    \(2\)-morphisms are continuous 1-parameter families of paths in
    \(X\), i.e.~``paths of paths'' in \(X\)
  \item
    \(3\)-morphisms are ``paths of paths of paths'' in \(X\)
  \item
    \ldots{}
  \end{itemize}

  and so on. This is better than your garden-variety \(\omega\)-category
  because all the morphisms and \(2\)-morphisms and \(3\)-morphisms and
  so on have inverses, at least ``up to homotopy''. We call it an
  ``\(\omega\)-groupoid''. This \(\omega\)-groupoid keeps track of the
  homotopy type of \(X\) in a very nice way. (If this ``\(\omega\)''
  stuff is too mind-boggling, you may want to start by reading a bit
  about plain old categories and groupoids in
  \protect\hyperlink{week74}{``Week 74''}.)

  Conversely, given any \(\omega\)-groupoid there should be a nice way
  to cook up a homotopy corresponding to it. This is just the
  infinite-dimensional generalization of something I described in
  \protect\hyperlink{week75}{``Week 75''}. There, I showed how you could
  get a groupoid from a ``homotopy 1-type'' and vice versa. Here there
  \(1\)-morphisms but no interesting \(2\)-morphisms, \(3\)-morphisms,
  and so on, because the topology of a ``homotopy 1-type'' is boring in
  dimensions greater than 1. (In case any experts are reading this, what
  I mean is that its higher homotopy groups are trivial; its higher
  homology and cohomology groups can be very interesting.)

  So we can --- and should --- think of homotopy theory as, among other
  things, the study of \(\omega\)-groupoids, and thus a very useful
  warmup to the study of \(\omega\)-categories. In my occasional series
  on This Week's Finds called ``the tale of \(n\)-Categories'', I have
  tried to explain why \(n\)-categories, and ultimately
  \(\omega\)-categories, should serve as a powerful unifying approach to
  lots of mathematics and physics. In trying to understand this subject,
  I find time and time again that homotopy theorists are the ones to
  listen to.
\item
  Chapter 2, ``Homotopy theories and model categories'', by W. G. Dwyer
  and J. Spalinski, is a nice introduction to the formal idea of using
  different ``models'' for homotopy types. For example, above I was
  sketching how one might do homotopy theory using the ``model
  category'' of \(\omega\)-groupoids. Other model categories include
  gadgets like Kan complexes, CW complexes, simplicial complexes, and so
  on.
\item
  Chapter 6, ``Modern foundations for stable homotopy theory'', by A. D.
  Elmendorf, I. Kriz, M. Mandell and J. P. May describes a very nice
  approach to spectra. Loosely speaking, we can think of a spectrum as a
  \(\mathbb{Z}\)-groupoid, where \(\mathbb{Z}\) denotes the integers. In
  other words, in addition to \(j\)-morphisms for all natural numbers
  \(j\), we also have \(j\)-morphisms for negative \(j\)! This may seem
  bizarre, but it's a lot like how in homology theory one is interested
  in chain complexes that extend in both the positive and negative
  directions. In fact, we can think of a chain complex as a very special
  sort of \(\mathbb{Z}\)-groupoid or spectrum. The study of spectra is
  called stable homotopy theory.
\item
  Chapter 13, ``Stable homotopy and iterated loop spaces'', by G.
  Carlsson and R. J. Milgram, is packed with handy information about
  stable homotopy theory.
\item
  Chapter 21, ``Classifying spaces of compact Lie groups and finite loop
  spaces'', by D. Notbohm, is a good source of heavy-duty information on
  classifying spaces of your favorite Lie groups. To study vector
  bundles and the like one really needs to become comfortable with
  classifying spaces, and I'm finally doing this, and I hope eventually
  I'll be comfortable enough with them to really understand all these
  results.
\end{itemize}

There is a lot more, but I will stop here.
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Life here at the Center for Gravitational Physics and Geometry is
tremendously exciting. In two weeks I have to return to U. C. Riverside
and my mundane life as a teacher of calculus, but right now I'm still
living it up. I'm working with Ashtekar, Corichi, and Krasnov on
computing the entropy of black holes using the loop representation of
quantum gravity, and also I'm talking to lots of people about an
interesting \(4\)-dimensional formulation of the loop representation in
terms of ``spin foams'' --- roughly speaking, soap-bubble-like
structures with faces labelled by spins.

Here are some papers I've come across while here:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  Lee Smolin, ``The future of spin networks'', in \emph{The Geometric
  Universe: Science, Geometry, and the Work of Roger Penrose}, eds.~S.
  Hugget, Paul Tod, and L.J. Mason, Oxford University Press, 1998. Also
  available as
  \href{https://arxiv.org/abs/gr-qc/9702030}{\texttt{gr-qc/9702030}}.
\end{enumerate}

I've spoken a lot about spin networks here on This Week's Finds. They
were first invented by Penrose as a radical alternative to the usual way
of thinking of space as a smooth manifold. For him, they were purely
discrete, purely combinatorial structures: graphs with edges labelled by
``spins'' \(j = 0, 1/2, 1, 3/2, \ldots\), and with three edges meeting
at each vertex. He showed how when these spin networks become
sufficiently large and complicated, they begin in certain ways to mimic
ordinary 3-dimensional Euclidean space. Interestingly, he never got
around to publishing his original paper on the subject, so it remains
available only if you know someone who knows someone who has it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  Roger Penrose, ``Theory of quantized directions'', unpublished
  manuscript.
\end{enumerate}

In case you're wondering, I don't have a copy. Someone here has an
\(n\)th-generation xerox copy, which I read, but \(n\) was sufficiently
large that the \((n+1)\)st generation copy would have been unreadable. I
will get ahold of it somehow, though!

Anyway, Smolin's paper is a kind of tribute to Penrose, and it traces
the curiously twisting history of spin networks from their origin up to
the present day, where they play a major role in topological quantum
field theory and the loop representation --- now more appropriately
called the spin network representation! --- of quantum gravity. (See
\protect\hyperlink{week55}{``Week 55''} for more on spin networks.)

Note however that the title of the paper refers to the \emph{future} of
spin networks. Smolin argues that spin networks are a major clue about
the future of physics, and he paints a picture of what this future might
be\ldots{} which I urge you to look at.

For more on this, try:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  Fotini Markopoulou and Lee Smolin, ``Causal evolution of spin
  networks'', preprint available as
  \href{http://arxiv.org/abs/gr-qc/9702025}{\texttt{gr-qc/9702025}}.
\end{enumerate}

Fotini Markopoulou is a student of Chris Isham at Imperial College, but
now she's visiting the CGPG and working with Lee Smolin on spin
networks. In this paper they describe some theories in which spin
networks evolve in time in discrete steps. The evolution is ``local'' in
the sense that in a given step, any vertex of the spin network changes
in a way that only depends on its immediate neighbors --- vertices
connected to it by an edge. It is also ``causal'' in the sense that
history of spin network evolving according to their rules gives a causal
set, i.e.~a set equipped with a partial ordering which we think of as
saying which points come ``before'' which other points. This ties their
work to the work of Rafael Sorkin on causal sets, e.g.:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  Luca Bombelli, Joohan Lee, David Meyer and Rafael D. Sorkin,
  ``Space-time as a causal set'', \emph{Phys. Rev.~Lett.} \textbf{59}
  (1987), 521.
\end{enumerate}

Unlike the related work of Reisenberger and Rovelli (see
\protect\hyperlink{week96}{``Week 96''}), Markopolou and Smolin do not
attempt to ``derive'' their rules from general relativity by standard
quantization techniques. Instead, they hope that some theory of the sort
they consider will approximate general relativity in the large-scale
limit. To check this will require some new techniques akin to the
``renormalization group'' approach to studying the large-scale limits of
statistical mechanical systems defined on a lattice. This is a bit
daunting, but it seems likely that no matter how one proceeds to pursue
a spin-network-based theory of quantum gravity, one will need to develop
such techniques at some point.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}

Now I'd like to switch gears and return to\ldots{}

THE TALE OF \(n\)-CATEGORIES!

Recall that in our last episode, in \protect\hyperlink{week92}{``Week
92''}, we had worked our way up to \(2\)-categories, and we were
beginning to see what they had to do with \(2\)-dimensional physics and
toplogy. I described how to get monads from adjunctions, and what this
has to do with matrix multiplication, Yang-Mills theory, and the 4-color
theorem.

Next week I want to get serious and start talking about \(n\)-categories
for arbitrary \(n\). One reason is that at the end of this month there's
a conference on \(n\)-categories and physics that I want to report on:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  \emph{Workshop on Higher Category Theory and Physics}, March 28-30,
  1997, Northwestern University, Evanston, Illinois. Organized by Ezra
  Getzler and Mikhail Kapranov; program available at
  \texttt{http://math.nwu.edu/\textasciitilde{}getzler/conf97.html}
\end{enumerate}

But before doing this, I want to say a bit about what category theory
has to do with quantum mechanics!

First remember the big picture: \(n\)-category theory is a language to
talk about processes that turn processes into other processes. Roughly
speaking, an \(n\)-category is some sort of structure with objects,
morphisms between objects, \(2\)-morphisms between morphisms, and so on
up to n-morphisms. A 0-category is just a set, with its objects usually
being called ``elements''. Things get trickier as \(n\) increases. For a
precise definition of \(n\)-categories for \(n = 1\) and \(2\), see
\protect\hyperlink{week73}{``Week 73''} and
\protect\hyperlink{week80}{``Week 80''}, respectively.

Most familiar mathematical gadgets are sets equipped with extra bells
and whistles: groups, vector spaces, Hilbert spaces, and so on all have
underlying sets. This is why set theory plays an important role in
mathematics. However, we can also consider fancier gadgets that are
\emph{categories} equipped with extra bells and whistles. Some of the
most interesting examples are just ``categorifications'' of well-known
gadgets.

For example, a ``monoid'' is a simple gadget, just a set equipped with
an associative product and multiplicative identity. An example we all
know and love is the complex numbers: the product is just ordinary
multiplication, and the multiplicative identity is the number \(1\).

We may categorify the notion of ``monoid'' and define a ``monoidal
category'' to be a \emph{category} equipped with an associative product
and multiplicative identity. I gave the precise definition back in
\protect\hyperlink{week89}{``Week 89''}; the point here is that while
they may sound scary, monoidal categories are actually very familiar.
For example, the category of Hilbert spaces is a monoidal category where
the product of Hilbert spaces is the tensor product and the
multiplicative identity is \(\mathbb{C}\), the complex numbers.

If one systematically studies categorification one discovers an amazing
fact: many deep-sounding results in mathematics are just
categorifications of stuff we all learned in high school. There is a
good reason for this, I believe. All along, mathematicians have been
unwittingly ``decategorifying'' mathematics by pretending that
categories are just sets. We ``decategorify'' a category by forgetting
about the morphisms and pretending that isomorphic objects are equal. We
are left with a mere set: the set of isomorphism classes of objects.

I gave an example in \protect\hyperlink{week73}{``Week 73''}. There is a
category FinSet whose objects are finite sets and whose morphisms are
functions. If we decategorify this, we get the set of natural numbers!
Why? Well, two finite sets are isomorphic if they have the same number
of elements. ``Counting'' is thus the primordial example of
decategorification.

I like to think of it in terms of the following fairy tale. Long ago, if
you were a shepherd and wanted to see if two finite sets of sheep were
isomorphic, the most obvious way would be to look for an isomorphism. In
other words, you would try to match each sheep in herd \(A\) with a
sheep in herd \(B\). But one day, along came a shepherd who invented
decategorification. This person realized you could take each set and
``count'' it, setting up an isomorphism between it and some set of
``numbers'', which were nonsense words like ``one, two, three,
four,\ldots{}'' specially designed for this purpose. By comparing the
resulting numbers, you could see if two herds were isomorphic without
explicitly establishing an isomorphism!

According to this fairy tale, decategorification started out as the
ultimate stroke of mathematical genius. Only later did it become a
matter of dumb habit, which we are now struggling to overcome through
the process of ``categorification''.

Okay, so what does this have to do with quantum mechanics?

Well, a Hilbert space is a set with extra bells and whistles, so maybe
there is some gadget called a ``2-Hilbert space'' which is a
\emph{category} with analogous extra bells and whistles. And maybe if we
figure out this notion we will learn something about quantum mechanics.

Actually the notion of 2-Hilbert space didn't arise in this
simple-minded way. It arose in some work by Daniel Freed on topological
quantum field theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  ``Higher algebraic structures and quantization'', by Dan Freed,
  \emph{Comm. Math. Phys.} \textbf{159} (1994), 343--398, preprint
  available as
  \href{https://arxiv.org/ps/hep-th/9212115}{\texttt{hep-th/9212115}};
  see also \protect\hyperlink{week48}{``Week 48''}.
\end{enumerate}

Later, Louis Crane adopted this notion as part of his program to reduce
quantum gravity to \(n\)-category theory:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  Louis Crane: ``Clock and category: is quantum gravity algebraic?'',
  \emph{Jour. Math. Phys.} \textbf{36} (1995), 6180--6193, preprint
  available as
  \href{https://arxiv.org/ps/gr-qc/9504038}{\texttt{gr-qc/9504038}}.
\end{enumerate}

These papers made is clear that 2-Hilbert spaces are interesting things
and that one should go further and think about ``\(n\)-Hilbert spaces''
for higher \(n\), too. However, neither of them gave a precise
definition of 2-Hilbert space, so at some point I decided to do this. It
took a while for me to learn enough category theory, but eventually I
wrote something about it:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  John Baez, ``Higher-dimensional algebra II: 2-Hilbert spaces'', to
  appear in \emph{Adv. Math.}, preprint available as
  \href{https://arxiv.org/ps/q-alg/9609018}{\texttt{q-alg/9609018}} or
  at \texttt{http://math.ucr.edu/home/baez/}
\end{enumerate}

To understand this requires a little category theory, so let me explain
the basic ideas here.

I'll concentrate on finite-dimensional Hilbert spaces, since the
infinite-dimensional case introduces extra complications. To define
2-Hilbert spaces we need to start by categorifying the various
ingredients in the definition of Hilbert space. These are:

\begin{enumerate}
\def\labelenumi{\arabic{enumi}.}
\tightlist
\item
  the zero element,
\item
  addition,
\item
  subtraction,
\item
  scalar multiplication, and
\item
  the inner product.
\end{enumerate}

The first four have well-known categorical analogs. The fifth one, which
is really the essence of a Hilbert space, may seem a bit more mysterious
at first, but as we shall see, it's really the key to the whole
business.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\item
  The analog of the zero vector is a `zero object'. A zero object in a
  category is an object that is both initial and terminal. That is,
  there is exactly one morphism from it to any object, and exactly one
  morphism to it from any object. Consider for example the category
  \(\mathsf{Hilb}\) having finite-dimensional Hilbert spaces as objects,
  and linear maps between them as morphisms. In \(\mathsf{Hilb}\), any
  zero-dimensional Hilbert space is a zero object.

  Note: there isn't really a unique zero object in the ``strict'' sense
  of the term. Instead, any two zero objects are canonically isomorphic.
  The reason is that if you have two zero objects, say \(0\) and \(0'\),
  there is a unique morphism \(f\colon 0\to 0'\) and a unique morphism
  \(g\colon 0'\to 0\). These morphisms are inverses of each other so
  they are isomorphisms. Why are they inverses? Well,
  \(fg\colon 0\to 0'\) must be the identity morphism
  \(1_0\colon 0 \to 0\), because there is only one morphism from \(0\)
  to \(0\)! Similarly, \(gf\) is the identity on \(0'\). (Note that I am
  using category theorist's notation, where the composite of
  \(f\colon x\to y\) and \(g\colon y\to z\) is denoted
  \(fg\colon x\to z\).)

  This is typical in category theory. We don't expect stuff to be
  unique; it should only be unique up to a canonical isomorphism.
\item
  The analog of adding two vectors is forming the ``coproduct'' of two
  objects. Coproducts are just a fancy way of talking about direct sums.
  Any decent quantum mechanic knows about the direct sum of Hilbert
  spaces. But in fact, we can define this notion very generally in any
  category, where it goes under the name of a ``coproduct''. (I give the
  definition below; if I gave it here it would scare people away.) As
  with zero objects, coproducts are typically not unique, but they are
  always unique up to canonical isomorphism, which is what matters. It's
  a good little exercise to show this.
\item
  The analog of subtracting vectors is forming the ``cokernel'' of a
  morphism \(f\colon x\to y\). If \(x\) and \(y\) are Hilbert spaces,
  the cokernel of \(f\) is just the orthogonal complement of the range
  of \(f\). In other words, for Hilbert spaces we have ``direct
  differences'' as well as direct sums. However, the notion of cokernel
  makes sense in any category with a zero object. I won't burden you
  with the precise definition here.
\end{enumerate}

An important difference between zero, addition and subtraction and their
categorical analogs is that these operations represent extra
\emph{structure} on a set, while having a zero object, coproducts of two
objects, or cokernels of morphisms is merely a \emph{property} of a
category. Thus these concepts are in some sense more intrinsic to
categories than to sets. On the other hand, we've seen one pays a price
for this: while the zero element, sums, and differences are unique in a
Hilbert space, the zero object, coproducts, and cokernels are typically
unique only up to canonical isomorphism.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  The analog of multiplying a vector by a complex number is tensoring an
  object by a Hilbert space. Besides its additive properties (zero
  object, binary coproducts, and cokernels), \(\mathsf{Hilb}\) is also a
  monoidal category: we can multiply Hilbert space by tensoring them,
  and there is and a multiplicative identity, namely the complex numbers
  \(\mathbb{C}\). In fact, \(\mathsf{Hilb}\) is a ``ring category'', as
  defined by Laplaza and Kelly.
\end{enumerate}

We expect \(\mathsf{Hilb}\) to play a role in 2-Hilbert space theory
analogous to the role played by the ring \(\mathbb{C}\) of complex
numbers in Hilbert space theory. Thus we expect 2-Hilbert spaces to be
``module categories'' over \(\mathsf{Hilb}\), as defined by Kapranov and
Voevodsky.

An important part of our philosophy here is that \(\mathbb{C}\) is the
primordial Hilbert space: the simplest one, upon which the rest are
modelled. By analogy, we expect \(\mathsf{Hilb}\) to be the primordial
2-Hilbert space. This is part of a general pattern pervading
higher-dimensional algebra; for example, there is a sense in which the
\((n+1)\)-category of all (small) \(n\)-categories, \(n\mathsf{Cat}\),
is the primordial \((n+1)\)-category. The real significance of this
pattern remains mysterious.

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Finally, what is the categorification of the inner product in a
  Hilbert space? It's the `\(\operatorname{Hom}\) functor'! The inner
  product in a Hilbert space eats two vectors \(v\) and \(w\) and spits
  out a complex number \[\langle v,w \rangle\] Similarly, given two
  objects \(v\) and \(w\) in a category, the \(\operatorname{Hom}\)
  functor gives a \emph{set} \[\operatorname{Hom}(x,y)\] namely the set
  of morphisms from \(x\) to \(y\). Note that the inner product
  \(\langle v,w \rangle\) is linear in \(w\) and conjugate-linear in
  \(y\), and similarly, the \(\operatorname{Hom}\) functor
  \(\operatorname{Hom}(x,y)\) is covariant in \(y\) and contravariant in
  \(x\). This hints at the category theory secretly underlying quantum
  mechanics. In quantum theory the inner product \(\langle v,w \rangle\)
  represents the \emph{amplitude} to pass from \(v\) to \(w\), while in
  category theory \(\operatorname{Hom}(x,y)\) is the \emph{set} of ways
  to get from \(x\) to \(y\). In Feynman path integrals, we do an
  integral over the set of ways to get from here to there, and get a
  number, the amplitude to get from here to there. So when physicists do
  Feynman path integration --- just like a shepherd counting sheep ---
  they are engaged in a process of decategorification!
\end{enumerate}

To understand this analogy better, note that any morphism
\(f\colon x\to y\) in \(\mathsf{Hilb}\) can be turned around or
``dualized'' to obtain a morphism \(f^*\colon y\to x\). This is usually
called the ``adjoint'' of \(f\), and it satisfies
\[\langle fv,w \rangle = \langle v,f^*w \rangle\] for all \(v\) in
\(x\), and \(w\) in \(y\). This ability to dualize morphisms is crucial
to quantum theory. For example, observables are represented by
self-adjoint morphisms, while symmetries are represented by unitary
morphisms, whose adjoint equals their inverse.

However, it should now be clear --- at least to the categorically minded
--- that this sort of adjoint is just a decategorified version of the
``adjoint functors'' so important in category theory. As I explained in
\protect\hyperlink{week79}{``Week 79''}, a functor
\(F^*\colon\mathcal{D}\to\mathcal{C}\) is a ``right adjoint'' of
\(F\colon\mathcal{C}\to\mathcal{D}\) if there is, not an equation, but a
natural isomorphism
\[\operatorname{Hom}(Fc,d) \cong \operatorname{Hom}(c,F^*d)\] for all
objects \(c\) in \(\mathcal{C}\), and \$d in \(\mathcal{D}\).

Anyway, in the paper I proceed to use these ideas to give a precise
definition of 2-Hilbert spaces, and then I prove all sorts of stuff
which I won't describe here.

Let me wrap up by explaining the definition of ``coproduct''. This is
one of those things they should teach all math grad students, but for
some reason they don't. It's a bit dry but it'll be good for you. A
coproduct of the objects \(x\) and \(y\) is an object \(x+y\) equipped
with morphisms \[i\colon x \to x+y\] and \[j\colon y \to x+y\] that is
universal with respect to this property. In other words, if we have any
\emph{other} object, say \(z\), and morphisms \[i'\colon x \to z\] and
\[j'\colon y \to z\] then there is a unique morphism
\(f\colon x+y \to z\) such that \[i' = if\] and \[j' = jf.\] This kind
of definition automatically implies that the coproduct is unique up to
canonical isomorphism. To understand this abstract nonsense, it's good
to check that the coproduct of sets or topological spaces is just their
disjoint union, while the coproduct of vector spaces or Hilbert spaces
is their direct sum.

To continue reading the ``Tale of \(n\)-Categories'', see
\protect\hyperlink{week100}{``Week 100''}.



\hypertarget{week100}{%
\section{March 23, 1997}\label{week100}}

Pretty much ever since I started writing ``This Week's Finds'' I've been
trying to get folks interested in \(n\)-categories and other aspects of
higher-dimensional algebra. There is really an enormous world out there
that only becomes visible when you break out of ``linear thinking'' ---
the mental habits that go along with doing math by writing strings of
symbols in a line. For example, when we write things in a line, the sums
\(a+b\) and \(b+a\) look very different. Then we introduce a profound
and mysterious equation, the ``commutative law'': \[a + b = b + a\]
which says that actually they are the same. But in real life, we prove
this equation using higher-dimensional reasoning:
\[a+b = {}^{\mbox{\normalfont $a$}}+{}_{\mbox{\normalfont $b$}} = \underset{{\mbox{\normalfont $b$}}}{\overset{{\mbox{\normalfont $a$}}}{+}} = {}_{{\mbox{\normalfont $b$}}}+{}^{{\mbox{\normalfont $a$}}} = b+a\]
If this seems silly, think about explaining to a kid what \(9+17\)
means, and how you could prove that \(9+17 = 17+9\). You might take a
pile of 9 rocks and set it to the left of a pile of 17 rocks, and say
``this is 9+17 rocks''. Alternatively, you might put the pile of 9 rocks
to the right of the pile of 17 rocks, and say ``this is 17+9 rocks''.
Thus to prove that \(9+17=17+9\), you would simply need to \emph{switch}
the two piles by moving one around the other.

This is all very simple. Historically, however, it took people a long to
really understand. It's one of those things that's too simple to take
seriously until it turns out to have complicated ramifications. Now it
goes by the name of the ``Eckmann-Hilton theorem'', which says that ``a
monoid object in the category of monoids is a commutative monoid''. You
practically need a PhD in math to understand \emph{that}! However, lest
you think that Eckmann and Hilton were merely dressing up the obvious in
fancy jargon, it's important to note that what they did was to figure
out a \emph{framework} that turns the above ``picture proof'' that
\(a+b = b+a\) into an actual rigorous proof! This is one of the goals of
higher-dimensional algebra.

The above proof that \(a+b = b+a\) uses \(2\)-dimensional space, but if
you really think about it also uses a 3rd dimension, namely time: the
time that passes as you move ``\(a\)'' around ``\(b\)''. If we draw this
3rd dimension as space rather than time we can visualize the process of
moving \(a\) around \(b\) as follows: \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (1,0) to (0,-2);
      \strand[thick] (0,0) to (1,-2);
    \end{knot}
    \node[label=above:{$a$}] at (0,0) {};
    \node[label=above:{$b$}] at (1,0) {};
    \node[label=below:{$a$}] at (1,-2) {};
    \node[label=below:{$b$}] at (0,-1.9) {};
  \end{tikzpicture}
\] This picture is an example of what mathematicians call a ``braid''.
This particular one is a boring little braid with only two strands and
one place where the two strands cross. It illustrates another major idea
behind higher-dimensional algebra: equations are best thought of as
summarizing ``processes'' (or technically, ``isomorphisms''). The
equation \(a+b = b+a\) is a summary of the process of switching \(a\)
and \(b\). There is more information in the process than in the mere
equation \(a+b = b+a\), because in fact there are two \emph{different}
ways to switch \(a\) and \(b\): the above way and \[
  \begin{tikzpicture}
    \begin{knot}[clip width=7]
      \strand[thick] (0,0) to (1,-2);
      \strand[thick] (1,0) to (0,-2);
    \end{knot}
    \node[label=above:{$a$}] at (0,0) {};
    \node[label=above:{$b$}] at (1,0) {};
    \node[label=below:{$a$}] at (1,-2) {};
    \node[label=below:{$b$}] at (0,-1.9) {};
  \end{tikzpicture}
\] If one has a bunch of objects one can switch them around in a lot of
ways, getting lots of different braids.

In fact, the mathematics of braids, and related things like knots, is
crucially important for understanding quantum gravity in
\(3\)-dimensional spacetime. Spacetime is really \(4\)-dimensional, of
course, but quantum gravity in \(4\)-dimensional spacetime is awfully
difficult, so in the late 1980s people got serious about studying
\(3\)-dimensional quantum gravity as a kind of warmup exercise. It
turned out that the math required was closely related to some mysterious
new mathematics related to knots and ``braidings''. At first this must
sound bizarre: a deep relationship between knots and \(3\)-dimensional
quantum gravity! However, after you fight your way through the
sophisticated mathematical physics that's involved, it becomes clear why
they are related: both rely crucially on ``3-dimensional algebra'', the
algebra describing how you can move things around in \(3\)-dimensional
spacetime.

However, there is more to the story, because knot theory also seems
deeply related to \emph{4-dimensional} quantum gravity. Here the knots
arise as ``flux tubes of area'' living in \(3\)-dimensional space at a
given time. Recent work on quantum gravity suggests that as time passes
these knots (or more generally, ``spin networks'') move around and
change topology as time passes.

To really understand this, we probably need to understand
``4-dimensional algebra''. Unfortunately, not enough is known about
4-dimensional algebra. The problem is that we don't know much about
4-categories! To do \(n\)-dimensional algebra in a really nice way, you
need to know about \(n\)-categories. Roughly speaking, an \(n\)-category
is an algebraic structure that has a bunch of things called ``objects'',
a bunch of things called ``morphisms'' that go between objects, and
similarly \(2\)-morphisms going between morphisms, \(3\)-morphisms going
between 2-morphisms, and so on up to the number n.~You can think of the
objects as ``things'' of whatever sort you like, the morphisms as
processes going from one thing to another, the \(2\)-morphisms as
meta-processes going from one process to another, and so on. Depending
on how you play the \(n\)-category game, there are either no morphisms
after level n, or only simple and bland ones playing the role of
``equations''. The idea is that in the world of \(n\)-categories, one
keeps track of things, processes, meta-processes, and so on to the
\(n\)th level, but after that one calls it quits and uses equations.

So what is the definition of \(4\)-categories? Well, Eilenberg and Mac
Lane defined \(1\)-categories, or simply ``categories'', in a paper that
was published in 1945:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\tightlist
\item
  S. Eilenberg and S. Mac Lane, ``General theory of natural
  equivalences'', \emph{Trans. Amer. Math. Soc.} \textbf{58} (1945),
  231--294.
\end{enumerate}

Benabou defined \(2\)-categories --- though actually he called them
``bicategories'' --- in a 1967 paper:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{1}
\tightlist
\item
  J. Benabou, \emph{Introduction to bicategories}, Springer Lecture
  Notes in Mathematics \textbf{47}, New York, 1967, pp.~1--77.
\end{enumerate}

Gordon, Power, and Street defined \(3\)-categories --- or actually
``tricategories'' --- in a paper that came out in 1995:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{2}
\tightlist
\item
  R. Gordon, A. J. Power, and R. Street, ``Coherence for
  tricategories'', \emph{Memoirs Amer. Math. Soc.} \textbf{117} (1995)
  Number 558.
\end{enumerate}

This step took a long time in part because it took a long time for
people to understand deeply where \emph{braidings} fit into the picture.

But what about \(4\)-categories and higher \(n\)? Well, the history is
complicated and I won't get it right, but let me say a bit anyway. First
of all, there are some things called ``strict \(n\)-categories'' that
people have known how to define for arbitrarily high \(n\) for quite a
while. In fact, people know how to go up to infinity and define ``strict
\(\omega\)-categories''; see for example:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{3}
\tightlist
\item
  S. E. Crans, \emph{On combinatorial models for higher dimensional
  homotopies}, Ph.D.~thesis, University of Utrecht, Utrecht, 1991.
\end{enumerate}

Strict \(n\)-categories are quite interesting and important, but I'm
mainly mentioning them here to emphasize that they are \emph{not} what
I'm talking about. People sometimes often call strict \(n\)-categories
simply ``\(n\)-categories'', and call the more general \(n\)-categories
I'm talking about above ``weak \(n\)-categories''. However, I think the
weak \(n\)-categories will will eventually be called simply
``\(n\)-categories'', because they are far more interesting and
important than the strict ones. Anyway, that's what I'm doing here.

Secondly, when you define \(n\)-categories you have to make some choice
about the ``shapes'' of your \(j\)-morphisms. In general they should be
some \(j\)-dimensional things, but they could be simplices, or cubes, or
other shapes. In some ways the simplest shapes are ``globes'', a
\(j\)-dimensional globe being a \(j\)-dimensional ball with its boundary
divided into two hemispheres, the ``inface'' and ``outface'', which are
themselves \((j-1)\)-dimensional globes. This corresponds to a picture
where each ``process'' has one input and one output, which are
themselves processes having the same input and output. The definitions
of category, bicategory, and tricategory work this way. In fact, Ross
Street came up with a very nice definition of \(n\)-categories for all
\(n\) using simplices in 1987:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{4}
\tightlist
\item
  Ross Street, ``The algebra of oriented simplexes'', \emph{Jour. Pure
  Appl. Alg.} \textbf{49} (1987), 283--335.
\end{enumerate}

Since then, however, he and his students and collaborators seem to have
been working to translate this definition into the ``globular''
formalism\ldots{} while also making some other important adjustments too
technical to discuss here. In particular, Dominic Verity and Todd
Trimble have done a lot of work on getting the definition of
\(n\)-category worked out, and a while ago I learned that Trimble came
up with a definition of ``tetracategory'' (or what I'm calling simply
``4-category'') in August of 1995. I don't think this has been
published, however.

James Dolan came to U. C. Riverside in the fall of 1993, and ever since
then, he and have been talking about \(n\)-categories and their role in
physics. Most of the category theory I know, I learned in this process.
It soon became clear that we needed a nice definition of \(n\)-category
for all \(n\) in order to turn our hopes and dreams into theorems. After
a while we started working pretty hard on this. His job was to come up
with all the bright ideas, and mine was to get him to explain them, to
try to poke holes in them, and to figure out rigorous proofs of all the
things that were so obvious to him that he couldn't figure out how (or
why) to prove them. We sent a summarized version of our definition to
Ross Street at the end of 1995:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{5}
\tightlist
\item
  J. Baez and J. Dolan, ``\(n\)-Categories --- sketch of a definition'',
  letter to Ross Street, Nov.~29, 1995, available at
  \texttt{http://math.ucr.edu/home/baez/ncat.def.html}
\end{enumerate}

and then for a year I worked on trying to write up a longer, clearer
version, while all the meantime Dolan kept coming up with new ways of
looking at everything. I finished in February of this year:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{6}
\tightlist
\item
  J. Baez and J. Dolan, ``Higher-dimensional algebra III:
  \(n\)-Categories and the algebra of opetopes'', to appear in
  \emph{Adv. Math.}, preprint available as
  \href{https://arxiv.org/ps/q-alg/9702014}{\texttt{q-alg/9702014}} and
  at \texttt{http://math.ucr.edu/home/baez/op.ps}, or in compressed form
  as \texttt{http://math.ucr.edu/home/baez/op.ps.Z}
\end{enumerate}

The key feature of this definition is that it uses ``\(j\)-dimensional
opetopes'' as the shapes for \(j\)-morphisms. These shapes are very
handy because the \((j+1)\)-dimensional opetopes describe all the legal
ways of sticking together a bunch of \(j\)-dimensional opetopes to form
another \(j\)-dimensional opetope! They are related to the theory of
``operads'', which is part of the reason for their name. (By the way,
the first two syllables are pronounced exactly as in ``operation''.)

In the meantime, Michael Makkai and John Power had begun work using our
definition. Also, other definitions of ``\(n\)-category'' have appeared
on the scene! Zouhair Tamsamani came up with one in terms of
``multi-simplicial sets'':

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{7}
\tightlist
\item
  Z. Tamsamani, \emph{Sur des notions de \(\infty\)-categorie et
  \(\infty\)-groupoide non-strictes via des ensembles
  multi-simpliciaux}, Ph.D.~thesis, Universite Paul Sabatier, Toulouse,
  France, 1995.
\end{enumerate}

Michael Batanin also has a definition of \(\omega\)-categories, of the
``globular'' sort:

\begin{enumerate}
\def\labelenumi{\arabic{enumi})}
\setcounter{enumi}{8}
\tightlist
\item
  M. A. Batanin, ``On the definition of weak \(\omega\)-category'',
  \emph{Macquarie Mathematics Report} number \textbf{96/207}.
\end{enumerate}

Now the fun will begin! These different definitions of (weak)
\(n\)-category should be equivalent, albeit in a rather subtle sense, so
we should check to see if they really are. Also, we need to develop many
more tools for working with \(n\)-categories. Then we can really start
using them as a tool.

When I started writing this I thought I was going to explain the
definition that Dolan and I came up with. Now I'm too tired! It takes a
while to explain, so I think I'll stop here and save that for some other
week or weeks. Perhaps I'll mix it in with my report on the Workshop on
Higher Category Theory and Physics, which is taking place next weekend
at Northwestern University.

This is the end of the ``Tale of \(n\)-Categories''. If you want more,
try \href{http://math.ucr.edu/home/baez/ncat.ps}{`An Introduction to
n-Categories'} (in Postscript form), or else read the above papers.

\begin{center}\rule{0.5\linewidth}{0.5pt}\end{center}




\end{document}


