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Foreword

Once there was a thing called Twitter, where people exchanged short messages called
‘tweets’. While it had its flaws, I came to like it and eventually decided to teach a short
course on entropy in the form of tweets. This little book is a slightly expanded version of
that course.

It’s easy to wax poetic about entropy, but what is it? I claim it’s the amount of infor-
mation we don’t know about a situation, which in principle we could learn. But how can
we make this idea precise and quantitative? To focus the discussion I decided to tackle
a specific puzzle: why does hydrogen gas at room temperature and pressure have an en-
tropy corresponding to about 23 unknown bits of information per molecule? This gave
me an excuse to explain these subjects:

• information

• Shannon entropy and Gibbs entropy

• the principle of maximum entropy

• the Boltzmann distribution

• temperature and coolness

• the relation between entropy, expected energy and temperature

• the equipartition theorem

• the partition function

• the relation between entropy, free energy and expected energy

• the entropy of a classical harmonic oscillator

• the entropy of a classical particle in a box

• the entropy of a classical ideal gas.

I have largely avoided the second law of thermodynamics, which says that entropy
always increases. While fascinating, this is so problematic that a good explanation would
require another book! I have also avoided the role of entropy in biology, black hole
physics, etc. Thus, the aspects of entropy most beloved by physics popularizers will not
be found here. I also never say that entropy is ‘disorder’.

I have tried to say as little as possible about quantum mechanics, to keep the physics
prerequisites low. However, Planck’s constant shows up in the formulas for the entropy of
the three classical systems mentioned above. The reason for this is fascinating: Planck’s
constant provides a unit of volume in position-momentum space, which is necessary to
define the entropy of these systems. Thus, we need a tiny bit of quantum mechanics to
get a good approximate formula for the entropy of hydrogen, even if we are trying our
best to treat this gas classically.

Since I am a mathematical physicist, this book is full of math. I spend more time try-
ing to make concepts precise and looking into strange counterexamples than an actual
‘working’ physicist would. If at any point you feel I am sinking into too many technical-
ities, don’t be shy about jumping to the next tweet. The really important stuff is in the
boxes. It may help to reach the end before going back and learning all the details. It’s up
to you.
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THE ENTROPY OF THE OBSERVABLE UNIVERSE

In 2010, Chas A. Egan and Charles H. Lineweaver estimated the
biggest contributors to the entropy of the observable universe.
Measuring entropy in bits, these are:

• stars: 𝟏𝟎𝟖𝟏 bits.

• interstellar and intergalactic gas and dust: 𝟏𝟎𝟖𝟐 bits.

• gravitons: 𝟏𝟎𝟖𝟖 bits.

• neutrinos: 𝟏𝟎𝟗𝟎 bits.

• photons: 𝟏𝟎𝟗𝟎 bits.

• stellar black holes: 𝟏𝟎𝟗𝟖 bits.

• supermassive black holes: 𝟏𝟎𝟏𝟎𝟓 bits.

So, almost all the entropy is in supermassive black holes!

In 2010, Chas A. Egan and Charles H. Lineweaver estimated the entropy of the ob-
servable universe. Entropy corresponds to unknown information, so there’s a heck of a
lot we don’t know! For stars, most of this unknown information concerns the details of
every single electron andnucleus zipping around in the hot plasma. There’smore entropy
in interstellar and intergalactic gas and dust. Most of the gas here is hydrogen—some in
molecular form H2, some individual atoms, and some ionized. For all this stuff, the un-
known information again mostly concerns the details, like the position and momentum,
of each of these molecules, atoms and ions.

There’s a lot more we don’t know about the precise details of other particles whizzing
through the universe, like gravitons, neutrinos and photons. But there’s even more en-
tropy in black holes! One reason Stephen Hawking is famous is that he figured out how
to compute the entropy of black holes. To do that you need a combination of statistical
mechanics, general relativity and quantum physics. Statistical mechanics is the study of
physical systems where there’s unknown information, which you study using probability
theory. I’ll explain some of that in these tweets. General relativity is Einstein’s theory of
gravity, and while I’ve explained that elsewhere, I don’t want to get into it here—so I will
say nothing about the entropy of black holes.

Quantum physics was also necessary for Hawking’s calculation, as witnessed by the
fact that his answer involves Planck’s constant, which sets the scale of quantum uncer-
tainty in our universe. I will try to steer clear of quantummechanics in these tweets, but
in the end we’ll need a tiny bit of it. There’s a funny sense in which statistical mechan-
ics is somewhat incomplete without quantum mechanics. You’ll eventually see what I
mean.
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THE ENTROPY OF HYDROGEN

At standard temperature and pressure, hydrogen gas has an en-
tropy of

𝟏𝟑𝟎.𝟔𝟖 joule/kelvin per mole

But a joule/kelvin of entropy is about

𝟏.𝟎𝟒𝟒𝟗 ⋅ 𝟏𝟎𝟐𝟑 bits of unknown information

and a mole of any chemical is about

𝟔.𝟎𝟐𝟐𝟏 ⋅ 𝟏𝟎𝟐𝟑 molecules

So theunknown information about the precisemicroscopic state
of hydrogen is

𝟏𝟑𝟎.𝟔𝟖 ⋅ 𝟏.𝟎𝟒𝟒𝟗 ⋅ 𝟏𝟎
𝟐𝟑

𝟔.𝟎𝟐𝟐𝟏 ⋅ 𝟏𝟎𝟐𝟑
≈ 𝟐𝟑 bits per molecule!

Egan and Lineweaver estimated the entropy of all the interstellar and intergalactic
gas and dust in the observable universe. Entropy corresponds to information we don’t
know. Their estimate implies that there are 1082 bits of information we don’t know about
all this gas and dust.

Most of this stuff is hydrogen. Hydrogen is very simple stuff. So it would be good
to understand the entropy of hydrogen. You can measure changes in entropy by doing
experiments. If you assume hydrogen has no entropy at absolute zero, you can do exper-
iments to figure out the entropy of hydrogen under other conditions. From this you can
calculate that each molecule in a container of hydrogen gas at standard temperature and
pressure has about 23 bits of information that we don’t know.

You can see a sketch of the calculation above. But everything about it is far from ob-
vious! What does ‘missing information’ really mean here? Joules are a unit of energy;
kelvin is a unit of temperature. So why is entropy measured in joules per kelvin? Why
does one joule per kelvin correspond to 1.0449 ⋅ 1023 bits of missing information? How
can we do experiments to measure changes in entropy? And why is missing information
the same as—or more precisely proportional to—entropy?

The good news: all these questions have answers! You can learn themhere. However,
you will have to persist. Since I’m starting from scratch it won’t be quick. It takes some
math—but luckily, nothingmuchmore than calculus of several variables. When you can
calculate the entropy of hydrogen from first principles, and understand what it means,
that will count as true success.

See how it goes! Partial success is okay too.
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WHERE AREWE GOING?

Themystery: why does eachmolecule of hydrogen have ∼𝟐𝟑 bits
of entropy at standard temperature and pressure?

The goal: derive and understand the formula for the entropy of
a classical ideal monatomic gas:

𝑺 = 𝒌𝑵 (𝟑𝟐 𝐥𝐧𝒌𝑻 + 𝐥𝐧 𝑽
𝑵 + 𝜸)

including the mysterious constant 𝜸.

The subgoal: compute the entropy of a single classical particle in
a 1-dimensional box.

The sub-subgoal: explain entropy from the ground up, and com-
pute the entropy of a classical harmonic oscillator.

To understand something deeply, it can be good to set yourself a concrete goal. To
avoid getting lost in the theory of entropy, let’s try to understand the entropy of hydrogen
gas. This is a ‘diatomic’ gas since a hydrogen molecule has two atoms. At standard tem-
perature and pressure it’s close to ‘ideal’, meaning the molecules don’t interact much. It’s
also close to ‘classical’, meaning we don’t need to know quantum mechanics to do this
calculation. Also, when the hydrogen is not extremely hot, its molecules don’t vibrate
much—but they do tumble around.

Given all this, we can derive a formula for the entropy 𝑆 of some hydrogen gas as a
function of its temperature 𝑇, the number 𝑁 of molecules, the volume 𝑉, and a physical
constant 𝑘 called ‘Boltzmann’s constant’. This formula also involves a rather surprising
constant which I’m calling 𝛾. We’ll figure that out too. It’s so weird I don’t want to give it
away!

As a warmup, we will derive the formula for the entropy of an ideal ‘monatomic’
gas—a gas made of individual atoms, like helium or neon or argon. Sackur and Tetrode
worked this out in 1912. Their result, called the Sackur–Tetrode equation, is similar to
the one for a diatomic gas.

But before doing a monatomic gas, we’ll figure out the entropy of a single atom of gas
in a box. That turns out to be a good start, since in an ideal monatomic gas the atoms
don’t interact, and the entropy of𝑁 atoms—as we’ll see—is just𝑁 times the entropy of a
single atom.

But before we can do any of this, we need to understand what entropy is, and how to
compute it. It will take quite a bit of time to compute the entropy of a classical harmonic
oscillator! But from then on, the rest is surprisingly quick.
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FIVE KINDS OF ENTROPY

Entropy in thermodynamics: the change in entropy as we change a
system’s internal energy by an infinitesimal amount 𝑑𝐸 while keeping
it in thermal equilibrium is 𝑑𝑆 = 𝑑𝐸∕𝑇, where 𝑇 is the temperature.

Entropy in classical statistical mechanics: 𝑆 =
−𝑘∫𝑋 𝑝(𝑥) ln(𝑝(𝑥))𝑑𝜇(𝑥) where 𝑝 is a probability distribution on
the measure space (𝑋, 𝜇) of states and 𝑘 is Boltzmann’s constant.

Entropy inquantumstatisticalmechanics: 𝑆 = −𝑘 tr(𝜌 ln 𝜌)where
𝜌 is a density matrix.

Entropy in information theory: 𝐻 = −
∑

𝑖∈𝑋 𝑝𝑖 log𝑝𝑖 where 𝑝 is a
probability distribution on the set 𝑋.

Algorithmic entropy: the entropy of a string of symbols is the length
of the shortest computer program that prints it out.

Before I actually start explaining entropy, a warning: it can be hard at first to learn
about entropy because there are many kinds—and people often don’t say which kind
they’re talking about. Here are 5 kinds. Luckily, they are closely related!

In thermodynamics we primarily have a formula for the change in entropy: if you
change the internal energy of a system by an infinitesimal amount 𝑑𝐸 while keeping it
in thermal equilibrium, the infinitesimal change in entropy is 𝑑𝑆 = 𝑑𝐸∕𝑇 where 𝑇 is the
temperature.

Later, in classical statistical mechanics, Gibbs explained entropy in terms of a proba-
bility distribution𝑝 on the space of states of a classical system. In this framework, entropy
is the integral of −𝑝 ln𝑝 times a constant 𝑘 called Boltzmann’s constant.

Later vonNeumann generalizedGibbs’ formula for entropy fromclassical to quantum
statistical mechanics! He replaced the probability distribution 𝑝 by a so-called density
matrix 𝜌, and the integral by a trace.

Later Shannon invented information theory, and a formula for the entropy of a prob-
ability distribution on a set (often a finite set). This is often called ‘Shannon entropy’.
It’s just a special case of Gibbs’ formula for entropy in classical statistical mechanics, but
without the Boltzmann’s constant.

Later still, Kolmogorov invented a formula for the entropy of a specific string of sym-
bols. It’s just the length of the shortest program, written in bits, that prints out this string.
It depends on the computer language, but not too much.

There’s a network of results connecting all these 5 concepts of entropy. I will first ex-
plain Shannon entropy, then entropy in classical statistical mechanics, and then entropy
in thermodynamics. While this is the reverse of the historical order, it’s the easiest way
to go.

I will not explain entropy in quantum statistical mechanics: for that I would feel com-
pelled to teach you quantum mechanics first. Nor will I explain algorithmic entropy.
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FROM PROBABILITY TO INFORMATION

How much information do you get when you learn an event of
probability 𝒑 has happened? It’s

− 𝐥𝐨𝐠𝒑

where we can use any base for the logarithm, usually 𝒆 or 𝟐.

Example: Suppose I flip 3 coins that you know are fair. I tell you
the outcome: “heads, tails, heads”. That’s an event of probability
𝟏∕𝟐𝟑, so the information you get is

− 𝐥𝐨𝐠 ( 𝟏
𝟐𝟑
) = 𝟑 𝐥𝐨𝐠 𝟐

or “3 bits” for short, since 𝐥𝐨𝐠 𝟐 of information is called a bit.

Here is the simplest link between probability and information: when you learn that
an event of probability 𝑝 has happened, how much information do you get? We say it’s
− log𝑝. We take a logarithm so that when you multiply probabilities, information adds.
The minus sign makes information come out positive.

Beware: when I write ‘𝐥𝐨𝐠’ I don’t necessarily mean the logarithm base 10. I
mean that you can use whatever base for the logarithm you want; this choice is like a
choice of units. Whatever base 𝑏 you decide to use, I’ll call log𝑏 2 a ‘bit’. For example, if I
flip a single coin that you know is fair, and you see that it comes up heads, you learn of
an event that’s of probability 1∕2, so the amount of information you learn is

− log𝑏
1
2 = log𝑏 2.

That’s one bit! Of course if you use base 𝑏 = 2 then this logarithm actually equals 1,
which is nice.

To understand the concept of information it helps to do some puzzles.

Puzzle 1. First I flip 2 fair coins and tell you the outcome. Then I flip 3 more and tell
you the outcome. How much information did you get?

Puzzle 2. I roll a fair 6-sided die and tell you the outcome. Approximately how much
information do you get, using logarithms base 2?

Puzzle 3. When you flip 7 fair coins and tell me the outcome, howmuch information do
I get?

Puzzle 4. Every day I eat either a cheese sandwich, a salad, or some fried rice for lunch—
each with equal probability. I tell you what I had for lunch today. Approximately how
many bits of information do you get?

Puzzle 5. I have a trick coin that always lands heads up. You know this. I flip it 5 times
and tell you the outcome. How much information do you receive?

5



Puzzle 6. I have a trick coin that always lands heads up. You believe it’s a fair coin. I flip
it 5 times and tell you the outcome. How much information do you receive?

Puzzle 7. I have a trick coin that always lands with the same face up. You know this, but
you don’t know which face always comes up. I flip it 5 times and tell you the outcome.
How much information do you receive?

These puzzles raise some questions about the nature of probability, like: is it subjec-
tive or objective? People like to argue about those questions. But oncewe get a probability
𝑝, we can convert it to information by computing − log𝑝.
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UNITS OF INFORMATION

An event of probability 1/2 carries one bit of information.

An event of probability 1/𝒆 carries one nat of information.

An event of probability 1/3 carries one trit of information.

An event of probability 1/4 carries one crumb of information.

An event of probability 1/10 carries one hartley of information.

An event of probability 1/16 carries one nibble of information.

An event of probability 1/256 carries one byte of information.

An event of probability 1/𝟐𝟖𝟏𝟗𝟐 carries one kilobyte of
information.

There aremanyunits of information. Using information = − log𝑝we can relate these
to probabilities. For example if you see a number in base 10, and each digit shows upwith
probability 1/10, the amount of information you get from each digit is one ‘hartley’.

How many bits are in a hartley? Remember: no matter what base you use, I call
log 10 a hartley and log 2 a bit. There are log 10∕ log 2 bits in a hartley. This number has
the same value no matter what base you use for your logarithms! If you use base 2, it’s

log2 10∕ log2 2 = log2 10 ≈ 3.32.

So a hartley is about 3.32 bits.
If you flip 8 fair coins and tell me what answers you got, I’ve learned of an event that

has probability 1∕28 = 1∕256. We say I’ve received a ‘byte’ of information. This equals
8 bits of information. Similarly, if you flip 1024 × 8 fair coins and tell me the outcome, I
receive a kilobyte of information.

Or at least that’s the old definition. Now many people define a kilobyte to be 1000
bytes rather than 1024 bytes, in keeping with the usual meaning of the prefix. If you
want 1024 bytes you’re supposed to ask for a ‘kibibyte’. When we get to a terabyte, the
new definition based on powers of 10 is about 10% less than the old one based on powers
of 2: 1012 bytes rather than 240 ≈ 1.0995 × 1012. If you want the old larger amount of
information you should ask for a ‘tebibyte’.

Wikipedia has an article that lists many strange units of information. Did you know
that 2 bits is a ‘crumb’? Did you even need to know? No, but now you do.

Feel free to dispose of this unnecessary information! All this is just for fun—but I
want you to get used to the formula

information = − log𝑝
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THE INFORMATION IN A LICENSE PLATE NUMBER

If there are𝑵 different possible license plate numbers, all
equally likely, howmany bits of information do you learn when

you see one?

If you think𝑁 alternatives are equally likely, when you seewhich one actually occurs,
you gain an amount of information equal to log𝑏𝑁. Here the choice of base 𝑏 is up to you:
it’s a choice of units. But what is this in bits? No matter what base you use,

log𝑏𝑁 = log2𝑁 × log𝑏 2.

Since we call log𝑏 2 a ‘bit’, this means you’ve learned log2𝑁 bits of information.
Let’s try it out!

Puzzle 8. Suppose a license plate has 7 numbers and/or letters on it. If there are 10+26
choices of number and/or letter, there are 367 possible license plate numbers. If all li-
cense plates are equally likely, what’s the information in a license plate number in bits—
approximately?

But wait! Suppose I tell you that all license plate numbers have a number, then 3
letters, then 3 numbers! You have just learned a lot of information. So the remaining
information content of each license plate is presumably less. Let’s work it out.
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Puzzle 9. How much information is there in a license plate number if they all have a
number, then 3 letters, then 3 numbers? (Assume they’re all equally probable and there
are 10 choices of each number and 26 choices of each letter.)

The moral: when you learn more about the possible choices, the information it takes
to describe a choice drops.
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THE INFORMATION IN A LICENSE PLATE

Howmuchunknown information do the atoms in a license plate
contain?

Aluminum has an entropy of about 28 joules/kelvin per mole
at standard temperature and pressure. A mole of aluminum
weighs about 27 grams. A typical license plate might weigh 150
grams, and thus have

𝟏𝟓𝟎 g × 𝟐𝟖 J/K ⋅mole
𝟐𝟕 g∕mole

≈ 𝟏𝟔𝟎 J/K

of entropy. But a joule/kelvin of entropy is about 𝟏𝟎𝟐𝟑 bits of un-
known information. Thus, the atoms in such a license plate con-
tain about

𝟏𝟔𝟎 × 𝟏𝟎𝟐𝟑 bits ≈ 𝟏.𝟔 ⋅ 𝟏𝟎𝟐𝟓 bits

of unknown information.

Last time we talked about the information in a license plate number. A license plate
number made of 7 numbers and/or letters contains

log2(36
7) ≈ 36.189

bits of information if all combinations are equally likely. How does this compare to the
information in the actual metal of the license plate?

These days most license plates are made of aluminum, and they weigh roughly be-
tween 100 and 200 grams. Let’s say 150 grams. If we work out the entropy of this much
aluminum, and express it in bits of unknown information, we get an enormous number:
roughly

𝟏𝟔,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎,𝟎𝟎𝟎 bits!

Here is the point. While the information on the license plate and the information
in the license plate can be studied using similar mathematics, the latter dwarfs the for-
mer. Thus, when we are doing chemistry and want to know, for example, how much
the entropy of the license plate increases when we dissolve it in hydrochloric acid, the
information in the writing on the license plate is irrelevant for all practical purposes.

Some people get fooled by this, in my opinion, and claim that “information” and “en-
tropy” are fundamentally unrelated. I disagree.
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JUSTIFYING THE FORMULA FOR INFORMATION

Why do we say the information of an event of probability 𝒑 is

𝑰(𝒑) = − 𝐥𝐨𝐠𝒃 𝒑

for some base 𝒃 > 𝟏? Here’s why:

Theorem. Suppose 𝑰 ∶ (𝟎, 𝟏]→ ℝ is a function that is:

1. Decreasing: 𝒑 < 𝒒 implies 𝑰(𝒑) > 𝑰(𝒒). This says less probable
events have more information.

2. Additive: 𝑰(𝒑𝒒) = 𝑰(𝒑) + 𝑰(𝒒). This says the information of
the combination of two independent events is the sum of their
separate informations.

Then for some 𝒃 > 𝟏we have 𝑰(𝒑) = − 𝐥𝐨𝐠𝒃 𝒑.

The information of an event of probability 𝑝 is − log𝑝, where you get to choose the
base of the logarithm. But why? This is the only option if we want less probable events
to have more information, and information to add for independent events.

Proving this will take somemath—but don’t worry, you won’t need to know this stuff
for the rest of this ‘course’.

Since we’re trying to prove 𝐼(𝑝) is a logarithm function, let’s write

𝐼(𝑝) = 𝑓(ln(𝑝))

and prove 𝑓 has to be linear:
𝑓(𝑥) = 𝑐𝑥.

As we’ll see, this gets the job done.
Writing 𝐼(𝑝) = 𝑓(𝑥) where 𝑥 = ln𝑝, we can check that Condition 1 above is equiva-

lent to
𝑥 < 𝑦 implies 𝑓(𝑥) > 𝑓(𝑦) for all 𝑥, 𝑦 ≤ 0.

Similarly, we can check that Condition 2 is equivalent to

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) for all 𝑥, 𝑦 ≤ 0.

Now what functions 𝑓 have

𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)

for all 𝑥, 𝑦 ≤ 0?
If we define 𝑓(−𝑥) = −𝑓(𝑥), 𝑓 will become a function from the whole real line to the

real numbers, and it will still obey 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦). So what functions obey this
equation? The obvious solutions are

𝑓(𝑥) = 𝑐𝑥
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for any real constant c. But are there any other solutions?
Yes, if you use the axiom of choice! Treat the reals as a vector space over the rationals.

Using the axiom of choice, pick a basis. To get 𝑓∶ ℝ → ℝ that’s linear over the rational
numbers, just let𝑓 send each basis element towhatever real number youwant and extend
it to a linear function defined on all of ℝ. This gives a function 𝑓 that obeys 𝑓(𝑥 + 𝑦) =
𝑓(𝑥) + 𝑓(𝑦).

However, no solutions of 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦)meet our other condition

𝑥 < 𝑦 implies 𝑓(𝑥) > 𝑓(𝑦) for all 𝑥, 𝑦 ≤ 0

except for the familiar ones 𝑓(𝑥) = 𝑐𝑥. For a proof seeWikipedia: they show all solutions
except the familiar ones are so discontinuous their graphs are dense in the plane!

• Wikipedia, Cauchy’s functional equation.

So, our conditions imply 𝑓(𝑥) = 𝑐𝑥 for some 𝑐, and since 𝑓 is decreasing we need 𝑐 < 0.
So our formula 𝐼(𝑝) = 𝑓(ln𝑝) says

𝐼(𝑝) = 𝑐 ln𝑝

but this equals− log𝑏 𝑝 if we take 𝑏 = exp(−1∕𝑐). And this number 𝑏 can be any number
> 1. QED.

Thus, if wewant amore general concept of the information associated to a probability,
we need to drop Condition 1 or 2. For example, we could replace additivity by some other
rule. People have tried this! Indeed, there is a world of generalized entropy concepts
including Tsallis entropies, Rényi entropies and others.
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WHAT IS PROBABILITY?

The theory of probabilities is at bottom nothing but common sense
reduced to calculus; it enables us to appreciate with exactness that

which accurate minds feel with a sort of instinct for which of
times they are unable to account. —Pierre-Simon Laplace

In no other branch of mathematics is it so easy for experts to
blunder as in probability theory. —Martin Gardner

Since I’ve defined information in terms of probability, you may naturally wonder
“what is probability?” I won’t seriously try to answer this. This question has stirred up
many debates over the centuries, and even today there’s not a fully accepted answer. It
deserves a whole book—and this is not that book. Luckily, we don’t really need to know
exactly what probability is to do calculations with it: wemainly need to set up some rules
forworkingwith it. Thismay seem like a cop-out. But it’s a strange andwonderful feature
of science that we can achieve great reliability in our results by sidestepping certain diffi-
cult questions, like someone who canmake their way safely through a jungle by avoiding
the quicksand and snakes.

One approach to probability goes like this. Suppose you repeat some experiment 𝑁
times, doing your best to make the conditions the same each time. Suppose that 𝑀 of
these times some event 𝐸 occurs. You may then say that the probability of event 𝐸 hap-
pening under these conditions is𝑀∕𝑁. This approach is called ‘finite frequentism’. Un-
fortunately, this approach can lead you to say a coin has probability 1 of landing heads
up if it does so the first time, or first 3 times, you flip it.

Another approach goes like this. You may say that some event 𝐸 has probability 𝑝
under some conditions if when you set up these conditions 𝑁 times, and the event 𝐸
happens 𝑀 times, the fraction 𝑀∕𝑁 approaches 𝑝 in the limit 𝑁 → ∞. This approach
is called ‘hypothetical frequentism’, because in real experiments you can’t take the limit
𝑁 →∞. But you can hope that when𝑁 becomes large enough, the fraction𝑀∕𝑁 usually
becomes close to the limiting probability 𝑝—whatever that means.

Another approach, called ‘Bayesianism’, treats a probability of an event 𝐸 under some
specified conditions as a measure of your degree of belief that 𝐸 will happen under these
conditions. But what is ‘degree of belief’? One answer involves bets. For example, per-
haps to believe an event has probability 1∕2means you’re willing to take a bet where you
win more when the event happens than you lose if it does not.

Bayesians tend to focus on the rules for updating your probabilities as you learn new
things, the most famous being ‘Bayes’ rule’. Even if agents start by assigning different
probabilities to an event, if they follow the same rules for changing these probabilities as
they learn new things, under certain circumstances we can prove their probabilities will
converge to the same value.

For a passionate and intelligent discussion of these issues, I recommend E. T. Jaynes’
book Probability Theory: the Logic of Science. Later we’ll meet his ‘principle of maximum
entropy’, another important approach to working with probabilities.
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PROBABILITYMEASURES

Ameasure ona set𝑿 is a function that assigns to certain so-called
measurable subsets 𝑺 ⊆ 𝑿 a number𝒎(𝑺) ∈ [𝟎,∞], obeying these
rules:

• ∅, 𝑿 ⊆ 𝑿 are measurable and

𝒎(∅) = 𝟎

• If 𝑺, 𝑻 ⊆ 𝑿 are measurable and 𝑺 ⊆ 𝑻, then 𝑻 − 𝑺 is measur-
able and

𝒎(𝑻) = 𝒎(𝑺) +𝒎(𝑻 − 𝑺)

• If a countable collection of subets 𝑺𝒊 ⊆ 𝑿 are measurable,
then their union is measurable, and if 𝑺𝒊 are disjoint then

𝒎 (
∞⋃

𝒊=𝟏

𝑺𝒊) =
∞∑

𝒊=𝟏
𝒎(𝑺𝒊)

We say𝒎 is a probability measure if𝒎(𝑿) = 𝟏.

It is easier to do calculations with probabilities than say exactly what they mean! I
will take a rough-and-ready approach to working with them, but first let’s take a peek at
how mathematicians do it. If you don’t care, it’s safe to move right on to the next tweet.

We start with any set. We call elements of 𝑋 ‘outcomes’ and subsets of 𝑋 ‘events’. We
can sometimes get into trouble trying to assign a probability to every subset of𝑋. So, we’ll
only try to assign probabilites to events in some collectionℳ with these properties:

• ∅ ∈ℳ and 𝑋 ∈ℳ.

• If 𝑆, 𝑇 ∈ℳ and 𝑆 ⊆ 𝑇 then the set of elements of 𝑇 that are not in 𝑆, called 𝑇 − 𝑆,
is inℳ.

• If 𝑆𝑖 ∈ℳ for 𝑖 = 1, 2,… then the union
⋃∞

𝑖=1 𝑆𝑖 is inℳ.

We call elements ofℳmeasurable subsets of𝑋. Ameasure is then a function𝑚∶ ℳ →
[0,∞] obeying these rules:

• 𝑚(∅) = 0

• If 𝑆, 𝑇 ∈ℳ and 𝑆 ⊆ 𝑀 then𝑚(𝑇) = 𝑚(𝑆) +𝑚(𝑇 − 𝑆).

• If the sets 𝑆𝑖 ∈ℳ are disjoint then𝑚
(⋃∞

𝑖=1 𝑆𝑖
)
=
∑∞

𝑖=1𝑚(𝑆𝑖).

If 𝑚 also obeys 𝑚(𝑋) = 1 then we say 𝑚 is a probability measure, and for any 𝑆 ∈ ℳ
we say 𝑚(𝑆) is the probability of the event 𝑆. But we will also be interested in other
measures, like the measure on the real line called ‘Lebesgue measure’. This is closely
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connected to the symbol ‘𝑑𝑥’ that shows up in integrals, because for any measurable set
𝑆 ⊆ ℝ, its Lebesgue measure is

∫
∞

−∞
𝜒𝑆(𝑥)𝑑𝑥

where 𝜒𝑆(𝑥) is 1 for 𝑥 ∈ 𝑆 and 0 for 𝑥 ∉ 𝑆. Indeed, people often get sloppy and say 𝑑𝑥 ‘is’
Lebesgue measure, and I may do that too. By the way, Lebesgue measure is one where
we cannot takeℳ to be the collection of all subsets of ℝ.

There is an extensive theory of measures. We will not need it here, but if you’re inter-
ested, you can try a book like Halsey Royden’s Real Analysis, where I learned the basics
myself, or Terry Tao’s An Introduction to Measure Theory, which has a legal free version
online.

Here are some puzzles about measures.

Puzzle 10. Let 𝑋 be any set and defineℳ to be the collection of all subsets of 𝑋. Show
that there is a measure 𝑚∶ ℳ → [0,∞] called counting measure such that for any
𝑆 ⊆ 𝑋,𝑚(𝑆) is the number of elements of 𝑆, or∞ if 𝑆 is infinite.

Puzzle 11. Let 𝑋 be any set and defineℳ as before. Suppose 𝑝 is a probability distri-
bution on 𝑋, meaning a function 𝑝∶ 𝑋 → [0,∞) with

∑
𝑖∈𝑋 𝑝(𝑖) = 1. Show that there is

a probability measure𝑚∶ ℳ → [0,∞] such that for any 𝑆 ⊆ 𝑋,

𝑚(𝑆) =
∑

𝑖∈𝑆
𝑝(𝑖).

In this situation we usually write 𝑝(𝑖) as 𝑝𝑖 and call it the probability of the outcome
𝑖 ∈ 𝑋. For any 𝑆 ⊆ 𝑀 we call𝑚(𝑆) the probability of the event 𝑆.

In the next puzzles𝑋 is any set,ℳ obeys the three rules for a collection of measurable
subsets of 𝑋, and𝑚∶ ℳ → [0,∞] is a measure.

Puzzle 12. Show that if 𝑆, 𝑇 ∈ℳ then the union 𝑆 ∪ 𝑇 is inℳ.

Puzzle 13. Show that if 𝑆, 𝑇 ∈ℳ then the intersection 𝑆 ∩ 𝑇 is inℳ.

Puzzle 14. Show that if 𝑆𝑖 ∈ℳ for 𝑖 = 1, 2,… then the intersection
⋂∞

𝑖=1 𝑆𝑖 is inℳ.

Puzzle 15. Show that if 𝑆, 𝑇 ∈ℳ and 𝑆 ⊆ 𝑇 then𝑚(𝑆) ≤ 𝑚(𝑇).

Puzzle 16. Show that if 𝑆𝑖 ∈ℳ for 𝑖 = 1, 2,… then

𝑚 (
∞⋃

𝑖=1

𝑆𝑖) ≤
∞∑

𝑖=1
𝑚(𝑆𝑖).

Puzzle 17. Show that if𝑚 is a probability measure and 𝑆 ∈ℳ then 0 ≤ 𝑚(𝑆) ≤ 1.

One of the main uses of a measure 𝑚 on a space 𝑋 is that it lets us integrate certain
functions 𝑓∶ 𝑋 → ℝ. Alas, not all functions! It’s only reasonable to try to integrate
measurable functions 𝑓∶ 𝑋 → ℝ, which have the property that if 𝑆 ⊆ ℝ is measurable,
its inverse image 𝑓−1(𝑆) ⊆ 𝑋 is measurable. And even measurable functions can cause
trouble, because when we try to integrate them we might get +∞, −∞, or something
even worse. For example, what’s

∫
∞

−∞
𝑥2 sin𝑥 𝑑𝑥?

There’s no good answer. We say a function 𝑓∶ 𝑋 → ℝ is integrable if it is measurable
and its integral over 𝑋, defined in a certain way I won’t explain here, gives a well-defined
real number.
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SHANNON ENTROPY: A FIRST TASTE

When you learn an event of probability 𝒑 has happened, the
amount of information you get is − 𝐥𝐨𝐠𝒑.

Question. Suppose you know a coin lands heads up 𝟐

𝟑
of the

time and tails up 𝟏

𝟑
of the time. What is the average or ‘ex-

pected’ amount of information you get when you learn which
side landed up?

Answer. 𝟐

𝟑
of the time you get − 𝐥𝐨𝐠 𝟐

𝟑
of information, and 𝟏

𝟑
of the

time you get− 𝐥𝐨𝐠 𝟏

𝟑
. So, the expected amount of information you

get is
− 𝟐

𝟑
𝐥𝐨𝐠 𝟐

𝟑
− 𝟏

𝟑
𝐥𝐨𝐠 𝟏

𝟑

You can do the same thing whenever you have any number of
probabilities that add to 1. The expected information is called
the Shannon entropy.

You flip a coin. You know the probability that it lands heads up. How much infor-
mation do you get, on average, when you discover which side lands up? It’s not hard to
work this out. It’s a simple example of ‘Shannon entropy’. Roughly speaking, entropy is
information that you don’t know, that you could get if you did enough experiments. Here
the experiment is simply flipping the coin and looking at it.

Puzzle 18. Suppose you know a coin lands heads up 1

2
of the time and tails up 1

2
of the

time. What is the expected amount of information you get from a coin flip? If you use
base 2 for the logarithm, you get the expected informationmeasured in bits. What do you
get?

Puzzle 19. Suppose you know a coin lands heads up 1

3
of the time and tails up 2

3
of the

time. What is the expected amount of information you get from a coin flip?

Puzzle 20. Suppose you know a coin lands heads up 1

4
of the time and tails up 3

4
of the

time. What is the expected amount of information you get from a coin flip, in bits?

If you solve these you’ll see a pattern: the Shannon entropy is biggest when the coin
is fair. As it becomes more and more likely for one side to land up than the other, the
entropy drops. You’re more sure about what will happen... so you learn less, on average,
from seeing what happens!

We’ve been doing examples where your experiment has just two possible outcomes:
heads up or down. But you can do Shannon entropy for any number of outcomes. It
measures how ignorant you are of what will happen. That is: how much you learn on
average when it does!
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SHANNON ENTROPY: A SECOND TASTE

According to the weather report there’s a 𝟏

𝟒
chance that it will

rain 1 centimeter, a 𝟏

𝟐
chance it will rain 2 centimeters, and a 𝟏

𝟒
chance it will rain 3 centimeters.

Question. What is the ‘expected’ amount of rainfall?

Answer. 𝟏

𝟒
⋅ 𝟏 + 𝟏

𝟐
⋅ 𝟐 + 𝟏

𝟒
⋅ 𝟑 = 𝟐 centimeters.

Question. What is the ‘expected’ amount of information you
learn when you find out howmuch it rains?

Answer. − 𝟏

𝟒
𝐥𝐨𝐠 𝟏

𝟒
− 𝟏

𝟐
𝐥𝐨𝐠 𝟏

𝟐
− 𝟏

𝟒
𝐥𝐨𝐠 𝟏

𝟒
= 𝟑

𝟐
𝐥𝐨𝐠 𝟐, or in other words, 𝟑

𝟐
bits. This is the Shannon entropy of the weather report.

If the weather report tells you it’ll rain different amounts with different probabilities,
you can figure out the ‘expected’ amount of rain. You can also figure out the expected
amount of information you’ll learn when it rains. This is called the ‘Shannon entropy’.

Shannon entropy is closely connected to information, but we can also think of it as a
measure of ignorance. This may seem paradoxical. But it’s not. Shannon entropy is the
expected amount of information that you don’t know when all you know is a probability
distribution, which you will know when you see a specific outcome chosen according to
this probability distribution.

For example, consider a weather report that says it will rain 1 centimeter with prob-
ability 0, 2 centimeters with probability 1, and 3 centimeters with probability 0. The
Shannon entropy of this weather report is

−0 log 0 − 1 log 1 − 0 log 0 = 0

since by convention we set 𝑝 log𝑝 = 0 when 𝑝 = 0, this being the limit of 𝑝 ln𝑝 as 𝑝
approaches 0 from above.

What does it mean that this weather report has zero Shannon entropy? It means
that when we see a specific outcome chosen according to this probability distribution,
we learn nothing! The weather report says it will rain 2 centimeters with probability 1.
When this happens, we learn nothing that the weather report didn’t already tell us.

The Shannon entropy doesn’t depend on the amounts of rain, or even whether the
forecast is about centimeters of rain or dollars of income. It only depends on the proba-
bilities of the various outcomes. So Shannon entropy is a universal, abstract concept.

Shannon entropy is closely connected to Gibbs entropy, which was already known
in physics. But by lifting entropy to a more general level and connecting it to digital
information, Shannon helped jump-start the information age. In fact a paper of his was
the first to use the word ‘bit’!
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THE DEFINITION OF SHANNON ENTROPY

Suppose you believe there are 𝒏 possible outcomes with
probabilities 𝒑𝟏,… , 𝒑𝒏 ≥ 𝟎 that sum to 𝟏.

The average amount of information you learn when one of
these outcomes happens, chosen according to this probability

distribution, is the Shannon entropy:

𝑯 = −
𝒏∑

𝒊=𝟏
𝒑𝒊 𝐥𝐨𝐠𝒑𝒊

Shannon entropy is larger for probability distributions that are
more spread out, and smaller for probability distributions that

are more sharply peaked.

I’ve been leading up to it with examples, but here it is in general: Shannon entropy!
Gibbs had alreadyused a similar formula in physics—butwith base 𝑒 for the logarithm, an
integral instead of a sum, andmultiplying the answer by Boltzmann’s constant. Shannon
applied it to digital information.

Here’s where the formula for Shannon entropy comes from. We have some set of
outcomes, say 𝑋. We have a probability distribution on this set, meaning a function
𝑝∶ 𝑋 → [0, 1] such that ∑

𝑖∈𝑋
𝑝𝑖 = 1.

If we have any function 𝐴∶ 𝑋 → ℝ, we define its expected value to be

⟨𝐴⟩ =
∑

𝑖∈𝑋
𝑝𝑖𝐴𝑖.

It’s a kind of average of 𝐴 where each value 𝐴(𝑖) is ‘weighted’, i.e. multiplied, by the
probability of the 𝑖th outcome. We saw an example in the last tweet: the expected amount
of rainfall.

We’ve seen that if you believe the 𝑖th outcome has probability 𝑝𝑖, the amount of infor-
mation you learn if the 𝑖th outcome actually occurs is− log𝑝𝑖. Thus, the expected amount
of information you learn is

⟨− log𝑝⟩ = −
∑

𝑖∈𝑋
𝑝𝑖 log𝑝𝑖.

And this is the Shannon entropy! We denote it by 𝐻, or more precisely𝐻(𝑝), so

𝐻(𝑝) = −
∑

𝑖∈𝑋
𝑝𝑖 log𝑝𝑖.

In the box above I was taking 𝑋 to be the set {1,… , 𝑛}. This is often a good thing to do
when there are finitely many outcomes.

Let’s get to know the Shannon entropy a little better.
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Puzzle 21. Let 𝑋 = {1, 2} so that we know a probability distribution 𝑝 on 𝑋 if we know
𝑝1, since 𝑝2 = 1 − 𝑝1. Graph the Shannon entropy𝐻(𝑝) as a function of 𝑝1. Show that it
has a maximum at 𝑝1 =

1

2
and minima at 𝑝1 = 0 and 𝑝1 = 1.

Thismakes sense: if you believe𝑝1 = 1 then you learnnothingwhen anoutcomehappens
chosen according to the probability distribution 𝑝: you are sure outcome 1will occur, and
it does (with probability 1). Similarly, if you believe 𝑝1 = 0 you learn nothing when an
outcome happens according to this probability distribution, since you are sure outcome
2 will occur. On the other hand, if 𝑝1 =

1

2
you are maximally undecided about what will

happens, and you learn 1 bit of information when it does.

Puzzle 22. Let 𝑋 = {1, 2, 3}. Draw the set of probability distributions on 𝑋 as an equilat-
eral triangle whose corners are the probability distributions (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Sketch contour lines of 𝐻(𝑝) as a function on this triangle. Show it has a maximum at
𝑝 = ( 1

3
, 1
3
, 1
3
) and minima at the corners of the triangle.

Again this should make intuitive sense. Here is a harder puzzle along the same lines:

Puzzle 23. Let 𝑋 = {1,… , 𝑛}. Show that 𝐻(𝑝) has a maximum at 𝑝 = ( 1
𝑛
,… , 1

𝑛
) and

minima at the probability distributions where 𝑝𝑖 = 1 for some particular 𝑖 ∈ 𝑋.

Here is one of the big lessons from all this:

Shannon entropy is larger for probability distributions that are more spread
out, and smaller for probability distributions that are more sharply peaked.

Indeed, you can think of Shannon entropy as a measure of how spread out a prob-
ability distribution is! The more spread out it is, the more you learn when an outcome
occurs, drawn from that distribution.

Another important way to think about Shannon entropy is that it sets a limit on how
much we can compress messages that are drawn from a given probability distribution.
This is made precise by a theorem Shannon proved in his original 1948 paper. I won’t
explain it here, but this result is fundamental for understanding the role of entropy in
communication and data storage:

• Wikipedia, Shannon’s source coding theorem.

• Claude E. Shannon, A mathematical theory of communication, Bell System Tech-
nical Journal 27 (1948), 379–423, 623–656.
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THE PRINCIPLE OFMAXIMUM ENTROPY

Suppose there are 𝒏 possible outcomes. At first you have no
reason to think any is more probable than any other.

Then you learn some facts about the correct probability
distribution—but not enough to determine it uniquely! Which

probability distribution 𝒑𝟏,… , 𝒑𝒏 should you choose?

The principle of maximum entropy says:

Of all the probability distributions consistent with the facts
you’ve learned, choose the one with the largest Shannon

entropy

𝑯 = −
𝒏∑

𝒊=𝟏
𝒑𝒊 𝐥𝐨𝐠𝒑𝒊

What’s Shannon entropy good for? For starters, it gives a principle for choosing the
‘best’ probability distribution consistent with what you know. Choose the one that maxi-
mizes the Shannon entropy!

This is called the ‘principle of maximum entropy’. This principle first arose in statisti-
cal mechanics, which is the application of probability theory to physics—but we can use
it elsewhere too.

For example: suppose you have a die with faces numbered 1,2,3,4,5,6. At first you
think it’s fair. But then you somehow learn that the average of the numbers that comes
up when you roll it is 5. Given this, what’s the probability that if you roll it, a 6 comes up?

Sounds like an unfair question! But you can figure out the probability distribution on
{1, 2, 3, 4, 5, 6} that maximizes Shannon entropy subject to the constraint that the mean
is 5. According to the principle of maximum entropy, you should use this to answer my
question!

But is this correct?
The problem is figuring out what ‘correct’ means! But in statistical mechanics we use

the principle of maximum entropy all the time, and it seems to work well. The brilliance
of E. T. Jaynes was to realize it’s a general principle of reasoning, not just for physics.

The principle of maximum entropy is widely used outside physics, though still con-
troversial. But I think we should use it to figure out some basic properties of a gas—like
its energy or entropy per molecule, as a function of pressure and temperature.

To do this, we should generalize Shannon entropy to ‘Gibbs entropy’, replacing the
sum by an integral. Or else we should ‘discretize’ the gas, assuming each molecule has
a finite set of states. It sort of depends on whether you prefer calculus or programming.
Either approach is okay if we study our gas using classical statistical mechanics.

Quantum statistical mechanics gives a more accurate answer. It uses a more general
definition of entropy—but the principle of maximum entropy still applies!
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I won’t dive into any calculations just yet. Before doing a gas, we should do some
simpler examples—like the die whose average roll is 5. But I can’t resisting mentioning
one philosophical point. In the box above I was hinting that maximum entropy works
when your ‘prior’ is uniform:

Suppose there are 𝒏 possible outcomes. At first you have no reason to
think any is more probable than any other.

This is an important assumption: when it’s not true, the principle of maximum entropy
as we’ve stated it does not apply. But what if our set of events is something like a line?
There’s no obvious best probability measure on the line! And even good old Lebesgue
measure 𝑑𝑥 depends on our choice of coordinates. To handle this, we need a general-
ization of the principle of maximum entropy, called the principle of maximum relative
entropy.

In short, a deeper treatment of the principle ofmaximumentropy paysmore attention
to our choice of ‘prior’: what we believe before we learn new facts. And it brings in the
concept of ‘relative entropy’: entropy relative to that prior. Butwewon’t get into this here,
because we will always be using a very bland prior, like assuming that each of finitely
many outcomes is equally likely.
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ADMITTING YOUR IGNORANCE

Suppose you describe your knowledge of a system with 𝒏 states
using a probability distribution 𝒑𝟏,… , 𝒑𝒏.

Then the Shannon information

𝑯 = −
𝒏∑

𝒊=𝟏
𝒑𝒊 𝐥𝐨𝐠𝒑𝒊

measures your ignorance of the system’s state.

So, choosing the maximum-entropy probability distribution
consistent with the facts you know

amounts to
not pretending to knowmore than you do.

Remember: if we describe our knowledge using a probability distribution, its Shan-
non entropy says how much we expect to learn when we find out what’s really going
on. We can roughly say it measures our ‘ignorance’—though ordinary language can be
misleading here.

At first you think this ordinary 6-sided die is fair. But then you learn that no, the
average of the numbers that come up is 5. What are the probabilities 𝑝1,… , 𝑝𝑛 for the
different faces to come up?

This is tricky: you can imagine different answers!
You could guess the die lands with 5 up every time. In other words, 𝑝5 = 1. This

indeed gives the correct average. But the entropy of this probability distribution is 0. So
you’re claiming to have no ignorance at all of what happens when you roll the die!

Next you might guess that it lands with 4 up half the time and 6 up half the time. In
other words, 𝑝4 = 𝑝6 =

1

2
. This probability distribution has 1 bit of entropy. Now you are

admitting more ignorance. But how can you be so sure that 5 never comes up?
Next you might guess that 𝑝4 = 𝑝6 =

1

4
and 𝑝5 =

1

2
. We can compute the entropy of

this probability distribution. It’s higher: 1.5 bits. Good, you’re being more honest now!
But how can you be sure that 1, 2, or 3 never come up? You are still pretending to know
stuff!

Keep improving your guess, finding probability distributions with mean 5 with big-
ger and bigger entropy. The bigger the entropy gets, the more you’re admitting your ig-
norance! If you do it right, your guess will converge to the unique maximum-entropy
solution.

But there’s a more systematic way to solve this problem.
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THE BOLTZMANN DISTRIBUTION

Suppose you want to maximize the Shannon entropy

−
𝒏∑

𝒊=𝟏
𝒑𝒊 𝐥𝐨𝐠𝒑𝒊

of a probability distribution 𝒑𝟏,… , 𝒑𝒏, subject to the constraint that the
expected value of some quantity 𝑨𝒊 is some number 𝒄:

𝒏∑

𝒊=𝟏
𝒑𝒊𝑨𝒊 = 𝒄 (∗)

Then try the Boltzmann distribution:

𝒑𝒊 =
𝐞𝐱𝐩(−𝜷𝑨𝒊)
𝒏∑

𝒊=𝟏
𝐞𝐱𝐩(−𝜷𝑨𝒊)

If you can find 𝜷 that makes (∗) hold, this is the answer you seek!

How do you actually use the principle of maximum entropy?
If you know the expected value of some quantity and want tomaximize entropy given

this, there’s a great formula for the probability distribution that usually does the job! It’s
called the ‘Boltzmann distribution’. In physics it also goes by the names ‘Gibbs distribu-
tion’ or ‘canonical ensemble’, and in statistics it’s called an ‘exponential family’.

In the Boltzmann distribution, the probability 𝑝𝑖 is proportional to exp(−𝛽𝐴𝑖) where
𝐴 is the quantity whose expected value you know. Since probabilities must sum to one,
we must have

𝑝𝑖 =
exp(−𝛽𝐴𝑖)
𝑛∑

𝑖=1
exp(−𝛽𝐴𝑖)

.

It is then easy to find the expected value of 𝐴 as a function of the number 𝛽: just plug
these probabilities into the formula

⟨𝐴⟩ =
𝑛∑

𝑖=1
𝐴𝑖𝑝𝑖

The hard part is inverting this process and finding 𝛽 if you know what you want ⟨𝐴⟩ to
be.

When and why does the Boltzmann distribution actually work? That’s a bit of a long
story, so I’ll explain it later. First, let’s use the Boltzmann distribution to solve the puzzle
I mentioned last time:
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At first you think this ordinary 6-sided die is fair. But then you learn that
no, the average of the numbers that come up is 5. What are the probabili-
ties 𝑝1,… , 𝑝𝑛 for the different faces to come up? You can use the Boltzmann
distribution to solve this puzzle!

To do it, take 1 ≤ 𝑖 ≤ 6 and 𝐴𝑖 = 𝑖. Stick the Boltzmann distribution 𝑝𝑖 into the
formula

∑
𝑖 𝐴𝑖𝑝𝑖 = 5 and get a polynomial equation for exp(−𝛽). You can solve this with

a computer and get exp(−𝛽) ≈ 1.877.
So, the probability of rolling the die and getting the number 1 ≤ 𝑖 ≤ 6 is proportional

to exp(−𝛽𝑖) ≈ 1.877𝑖. You can figure out the constant of proportionality by demanding
that the probabilities sum to 1—or just look at the formula for theBoltzmanndistribution.
You should get these probabilities:

𝑝1 ≈ 0.02053, 𝑝2 ≈ 0.03854, 𝑝3 ≈ 0.07232, 𝑝4 ≈ 0.1357, 𝑝5 ≈ 0.2548, 𝑝6 ≈ 0.4781.

You can compute the entropy of this probability distribution, and you get roughly 1.97
bits. You’ll remember that last time we got entropies up to 1.5 bits just by making some
rather silly guesses.

So, using the Boltzmann distribution, you can find the maximum-entropy die that
rolls 5 on average. Later, we’ll see how the same math lets us find the maximum-entropy
state of a box of gas that has some expected value of energy!
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MAXIMIZATION SUBJECT TO A CONSTRAINT

To maximize a smooth function 𝒇 of several variables
subject to a constraint on some smooth function 𝒈,

look for a point where

𝛁𝒇 = 𝝀𝛁𝒈

for some number 𝝀.

𝛁𝒇

𝒈=𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭

Whenwe’re trying tomaximize entropy subject to a constraint, we’re doing a problem
of the above sort. If you don’t know how to do problems like this, it’s time to learn about
Lagrange multipliers. You can find this in any book on calculus of several variables. But
the idea is in the picture above. Say we’ve got two smooth functions 𝑓, 𝑔∶ ℝ𝑛 → ℝ and
we have a point on the surface 𝑔 = constant where 𝑓 is as big as it gets on this surface.
The gradient of 𝑓must be perpendicular to the surface at this point. Otherwise we could
move along the surface in a way that made 𝑓 bigger! For the same reason, the gradient of
𝑔 is always perpendicular to the surface 𝑔 = constant. So ∇𝑓 and ∇𝑔 must point in the
same or opposite directions at this point. Thus, as long as the gradient of 𝑔 is nonzero,
we must have

∇𝑓 = 𝜆∇𝑔

for some number 𝜆, called a Lagrange multiplier. So, solving this equation along with

𝑔 = constant

is a way to find the point we’re looking for—though we still need to check we’ve found a
maximum, not a minimum or something else.

We can write a formula that means the exact same thing as ∇𝑓 = 𝜆∇𝑔 using differ-
entials:

𝑑𝑓 = 𝜆𝑑𝑔

This is what we’ll do from now on. Gradients are vector fields while differentials are 1-
forms. If you don’t know what this means, you can probably ignore this for now: the
difference, while ultimately quite important, will not be significant for anything we’re
doing.
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MAXIMIZING ENTROPY SUBJECT TO A CONSTRAINT

To maximize the entropy

𝑯 = −
𝒏∑

𝒊=𝟏
𝒑𝒊 𝐥𝐧𝒑𝒊

subject to a constraint on the expected value

⟨𝑨⟩ =
𝒏∑

𝒊=𝟏
𝒑𝒊𝑨𝒊,

it’s good to look for a probability distribution such that

𝒅𝑯 = 𝝀𝒅⟨𝑨⟩

for some number 𝝀. This will then be a
Boltzmann distribution:

𝒑𝒊 =
𝐞𝐱𝐩(−𝝀𝑨𝒊)
𝒏∑

𝒊=𝟏
𝐞𝐱𝐩(−𝝀𝑨𝒊)

𝒅𝑯

⟨𝑨⟩ =
𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭

We’ve seen how to maximize a function subject to a constraint. Now let’s do the case
we’re interested in: maximizing entropy subject to a constraint on the expected value of
some quantity.

Supposewe have a finite set of outcomes, say 1,… , 𝑛. Our ‘quantity’𝐴 is just a number
𝐴1,… , 𝐴𝑛 depending on the outcome. For any probability distribution 𝑝 on the set of
outcomes, we can define its Shannon entropy and the expected value of 𝐴:

𝐻 = −
𝑛∑

𝑖=1
𝑝𝑖 ln𝑝𝑖, ⟨𝐴⟩ =

𝑛∑

𝑖=1
𝑝𝑖𝐴𝑖.

Here we are using base 𝑒 for the Shannon entropy, to simplify the calculations. Let’s try
to find the probability distribution that maximizes 𝐻 on the surface ⟨𝐴⟩ = 𝑐. We’ll show
that if such a probability distribution 𝑝 exists, and none of the 𝑝𝑖 are zero, then 𝑝 must
be a Boltzmann distribution

𝑝𝑖 =
exp(−𝜆𝐴𝑖)
𝑛∑

𝑖=1
exp(−𝜆𝐴𝑖)
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for some 𝜆 ∈ ℝ. If you’re willing to trust me on this, you can skip this calculation.
To use the method from last time—the Lagrange multiplier method—we’d like to use

the probabilities𝑝𝑖 as coordinates on the space of probability distributions. But they aren’t
independent, since

𝑛∑

𝑖=1
𝑝𝑖 = 1.

To get around this, let’s use all but one of the 𝑝𝑖 as coordinates, and remember that the
remaining one is a function of those. Let’s use 𝑝2, 𝑝3,… , 𝑝𝑛 as coordinates, so that 𝑝1 =
1 − (𝑝2 +⋯ + 𝑝𝑛). Furthermore, the space of all probability distributions on our finite
set is

{𝑝 ∈ ℝ𝑛| 0 ≤ 𝑝𝑖 ≤ 1,
𝑛∑

𝑖=1
𝑝𝑖 = 1} .

It looks like a closed interval when 𝑛 = 2, or a triangle when 𝑛 = 3, or a tetrahedron
when 𝑛 = 4, or some higher-dimensional version of a tetahedron when 𝑛 is larger. In its
interior this space looks locally likeℝ𝑛−1, so we can use the Lagrange multiplier method,
but it also has a boundary where one or more of the 𝑝𝑖 vanish, and then this method no
longer applies. (We’ll see an example of that later.)

So, let’s assume 𝑝 is a probability distribution maximizing the Shannon entropy𝐻 on
the surface ⟨𝐴⟩ = 𝑐, and also suppose 𝑝 has 𝑝1,… , 𝑝𝑛 > 0. Suppose that not all the values
𝐴𝑖 are equal, since that makes the problem too easy–see why? Then 𝑑⟨𝐴⟩ is never zero,
so from what I said last time, we must have

𝑑𝐻 = 𝜆 𝑑⟨𝐴⟩

at the point 𝑝. So let’s see what this equation actually says.
Since

𝐻 = −
𝑛∑

𝑖=1
𝑝𝑖 ln𝑝𝑖

we have

𝑑𝐻 = −
𝑛∑

𝑖=1
𝑑(𝑝𝑖 ln𝑝𝑖) = −

𝑛∑

𝑖=1
(1 + ln𝑝𝑖)𝑑𝑝𝑖.

Similarly, since

⟨𝐴⟩ =
𝑛∑

𝑖=1
𝑝𝑖𝐴𝑖

we have

𝑑⟨𝐴⟩ =
𝑛∑

𝑖=1
𝐴𝑖𝑑𝑝𝑖.

So, our equation 𝑑𝐻 = 𝜆 𝑑⟨𝐴⟩ says

−
𝑛∑

𝑖=1
(1 + ln𝑝𝑖)𝑑𝑝𝑖 = 𝜆

𝑛∑

𝑖=1
𝐴𝑖𝑑𝑝𝑖.

For these to be equal, the coefficients of𝑑𝑝𝑖must agree for each of our coordinates𝑝2,… , 𝑝𝑛.
But we have to remember that 𝑝1 = 1−(𝑝2+⋯+𝑝𝑛) and thus 𝑑𝑝1 = −(𝑑𝑝2+⋯+𝑑𝑝𝑛).
Thus, for each 𝑖 = 2,…𝑛 we have

(1 + ln𝑝1) − (1 + ln𝑝𝑖) = 𝜆(−𝐴1 + 𝐴𝑖)
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and fiddling around we get
𝑝𝑖
𝑝1

=
exp(−𝜆𝐴𝑖)
exp(−𝜆𝐴1)

.

This says something cool: the probabilities𝑝𝑖 are proportional to the exponentials exp(−𝜆𝐴𝑖).
And since the probabilities must sum to 1, it’s obvious what the constant of proportion-
ality must be:

𝑝𝑖 =
exp(−𝜆𝐴𝑖)
𝑛∑

𝑖=1
exp(−𝜆𝐴𝑖)

.

So yes: 𝑝𝑖 must be given by the Boltzmann distribution!
In summary, we’ve seen that if there exists a probability distribution𝑝 thatmaximizes

the Shannon entropy among probability distributions with ⟨𝐴⟩ = 𝑐, and if all the 𝑝𝑖 are
positive, then 𝑝must be a Boltzmann distribution. But this raises other questions. When
does such a probability distribution exist? If it exists, is it unique? And what if not all the
𝑝𝑖 are positive?

In what follows we’ll dive down this rabbit hole and get to the bottom of it. I’ll just
state some facts—you may enjoy trying to see if you can prove them. First, there exists a
probability distribution 𝑝1,… , 𝑝𝑛 with ⟨𝐴⟩ = 𝑐 if and only if

𝐴min ≤ 𝑐 ≤ 𝐴max

where𝐴min is theminimumvalue and𝐴max is themaximumvalue of the numbers𝐴1,… , 𝐴𝑛.
Second, whenever

𝐴min ≤ 𝑐 ≤ 𝐴max,

there exists a unique probability distribution𝑝1,… , 𝑝𝑛maximizing Shannon entropy sub-
ject to the constraint ⟨𝐴⟩ = 𝑐. Third, this unique maximizer 𝑝 has 𝑝𝑖 > 0 for all 𝑖, and is
thus a Boltzmann distribution, whenever

𝐴min < 𝑐 < 𝐴max.

When 𝑐 = 𝐴min, the unique maximizer assigns the same probability 𝑝𝑖 to each outcome
𝑖 with 𝐴𝑖 = 𝐴min, while 𝑝𝑖 = 0 for all other outcomes. Similarly, when 𝑐 = 𝐴max, the
unique maximizer assigns the same probability 𝑝𝑖 to each outcome 𝑖 with 𝐴𝑖 = 𝐴max,
while 𝑝𝑖 = 0 for all other outcomes.

It’s good to look at an example:

Puzzle 24. Suppose there are only two outcomes, with 𝐴1 = −1 and 𝐴2 = 1. Work
out the Boltzmann distribution 𝑝maximizing Shannon entropy subject to the constraint
⟨𝐴⟩ = 𝑐 for −1 < 𝑐 < 1. Show that as 𝜆 → +∞ this Boltzmann distribution has

𝑝1 → 1, 𝑝2 → 0

while as 𝜆 → −∞ it has
𝑝1 → 0, 𝑝2 → 1.

Show the probability distribution 𝑝1 = 1, 𝑝2 = 0 maximizes Shannon entropy subject
to the constraint ⟨𝐴⟩ = −1, while 𝑝1 = 0, 𝑝2 = 1 maximizes it subject to the constraint
⟨𝐴⟩ = 1. Show these two probability distributions are not Boltzmann distributions.
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THERMAL EQUILIBRIUM

Suppose a system has finitely many states 𝒊 = 𝟏,… , 𝒏with
energies 𝑬𝒊. If the probability 𝒑𝒊 that it’s in the 𝒊th state maxi-
mizes entropy subject to a constraint on its expected energy:

⟨𝑬⟩ =
𝒏∑

𝒊=𝟏
𝒑𝒊𝑬𝒊

we say it is in thermal equilibrium. In this case 𝒑𝒊 is given by a
Boltzmann distribution

𝒑𝒊 =
𝐞𝐱𝐩(−𝜷𝑬𝒊)
𝒏∑

𝒊=𝟏
𝐞𝐱𝐩(−𝜷𝑬𝒊)

at least if all the probabilities 𝒑𝒊 are positive.

Don’t worry: the substance of what I’m saying here is almost the same as in the last
box. I’m merely attaching new words to the concepts, to make them sound more like
physics:

• Before I said we had a set of 𝑛 ‘outcomes’ numbered 1, 2,… , 𝑛. Now I’m talking
about ‘states’. If we have a system with 𝑛 states, it means there are 𝑛 outcomes
when we do a measurement to completely determine which state it’s in. A ‘state’
is some way for a physical system to be—that’s vague but it’s all we can say until
we consider some specific kind of system. In classical physics the states form a set,
usually infinite but sometimes finite.

• Before I said we had a ‘quantity’ 𝐴 that depends on the outcome, taking the value
𝐴𝑖 in the 𝑖th outcome. Now I’m calling this quantity the ‘energy’ 𝐸. Energy is a par-
ticularly interesting quantity in physics, so we’ll focus on that, without demanding
that you knowanything about it: for our present purposes, we can take any quantity
and dub it ‘energy’.

• Before I called the Lagrange multiplier 𝜆. Now I’m calling it 𝛽, because that’s what
physicists do in this particular context.

When a systemmaximizes entropy subject to a constraint on the expected value of its
energy, and perhaps also some other quantities, we say the system is in thermal equilib-
rium. This is meant to suggest that an object just sitting there, not heating up or cooling
down, is often best modeled this way.

You may have noticed the annoying clause “at least if all the probabilities 𝑝𝑖 are posi-
tive”. I only said that because I cannot tell a lie. In Puzzle 24 we saw that as 𝛽 → ±∞, the
Boltzmann distribution can converge to a non-Boltzmann probability distribution where
some of the probabilities 𝑝𝑖 vanish. This still counts as thermal equilibrium, because it’s
still maximizing entropy subject to a constraint on expected energy. We’ll learn more
about this when we study the concept of ‘absolute zero’.
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COOLNESS

If a probability distribution 𝒑𝒊 maximizes entropy
subject to a constraint on the expected value of the en-
ergy 𝑬𝒊, then

𝒑𝒊 ∝ 𝒆−𝜷𝑬𝒊

where 𝜷 is the coolness, inversely proportional to tem-
perature. So:

The cooler a system is, the less likely it is to be in a
high-energy state!

Say a system with finitely many states maximizes entropy subject to a constraint on
the expected value of some quantity 𝐸 that we choose to call ‘energy’. Then its probability
of being in the 𝑖th state is proportional to exp(−𝛽𝐸𝑖) for some number 𝛽.

When 𝛽 is big and positive, the probability of being in a state of high energy is tiny,
since exp(−𝛽𝐸𝑖) gets very small for large energies 𝐸𝑖. This means our system is cold.

Converselywhen𝛽 is small and positive, exp(−𝛽𝐸𝑖)drops off very slowly as the energy
𝐸𝑖 gets bigger. So, high-energy states become quite likely when 𝛽 is small and positive.
This means our system is hot.

It turns out 𝛽 is inversely proportional to the temperature—more about that later.
But in modern physics 𝛽 is just as important as temperature. It comes straight from the
principle of maximum entropy!

So 𝛽 deserves a name. And its name is ‘coolness’.
By the way, the formula

𝑝𝑖 ∝ 𝑒−𝛽𝐸𝑖

is only strictly true when 𝛽 is finite. There’s also a limiting case 𝛽 → +∞, when 𝑝𝑖 = 0
except for states of the very lowest energy. And there’s a limiting case 𝛽 → −∞, where
𝑝𝑖 = 0where except for states of the very highest energy. I’ll say a bit about these oddities
later. First I’ll say more about what coolness has to do with temperature.
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COOLNESS VERSUS TEMPERATURE

Coolness 𝜷 is inversely proportional to temperature 𝑻:

𝜷 = 𝟏
𝒌𝑻

where 𝒌 is Boltzmann’s constant.

Coolness is measured in joules−𝟏,
temperature is measured in kelvin, and

Boltzmann’s constant is a conversion factor:

𝒌 = 𝟏.𝟑𝟖𝟎𝟔𝟒𝟗 ⋅ 𝟏𝟎−𝟐𝟑
joules
kelvin

In statistical mechanics, coolness is inversely proportional to temperature. But cool-
ness has units of energy−1, not temperature−1. So we need a constant to convert between
coolness and inverse temperature! And this constant is very interesting.

Remember: when a system maximizes entropy with a constraint on its expected en-
ergy, the probability of it having energy 𝐸 is proportional to exp(−𝛽𝐸)where 𝛽 is its cool-
ness. But we can only exponentiate dimensionless quantities! (Why?) So 𝛽 has dimen-
sions of 1/energy.

Since coolness is inversely proportional to temperature, we must have 𝛽 = 1∕𝑘𝑇
where 𝑘 is some constant with dimensions of energy/temperature. This constant 𝑘 is
called ‘Boltzmann’s constant’. It’s tiny:

𝑘 = 1.380649 ⋅ 10−23 joules/kelvin.

This is mainly because we use units of energy, joules, suited to macroscopic objects like
a cup of hot water. Boltzmann’s constant being tiny reveals that such things have enor-
mously many microscopic states!

Later we’ll see that a single classical point particle, in empty space, has energy 3𝑘𝑇∕2
when it’s maximizing entropy at temperature 𝑇. The 3 here is because the atom canmove
in 3 directions, the 1∕2 because we integrate 𝑥2 to get this result. The important part is
𝑘𝑇. The 𝑘𝑇 says: if an ideal gas is made of atoms, each atom contributes just a tiny bit
of energy per kelvin, or degree Celsius: roughly 10−23 joules. So a little bit of gas, like a
gram of hydrogen, must have roughly 1023 atoms in it. This is a very rough estimate, but
it’s a big deal.

Indeed, the number of atoms in a gram of hydrogen is about 6 ⋅ 1023. You may have
heard of Avogadro’s number—this is quite close to that. So Boltzmann’s constant gives a
hint that matter is made of atoms—and even better, a nice rough estimate of how many
per gram!

Later we will see that Boltzmann’s constant has another important meaning: it’s a
fundamental unit of entropy, a nat, expressed in joules/kelvin.
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TEMPERATURE

If a system has finitely many states with energies 𝑬𝒊,
in thermal equilibrium at temperature 𝑻
the probability that it’s in the 𝒊th state is

𝒑𝒊 ∝ 𝐞𝐱𝐩(−𝑬𝒊∕𝒌𝑻)

where 𝒌 is Boltzmann’s constant and
𝑻 can be positive, negative, or even infinite:

𝑻 = ∞

𝑻 < 𝟎 𝑻 > 𝟎

A system with finitely many states can be pretty weird. It can have negative temper-
ature! Even weirder: as you heat it up, its temperature becomes large and positive, then
it reaches infinity, and then it ‘wraps around’ and become large and negative.

The reason: coolness is more fundamental than temperature. The coolness 𝛽 is in-
versely proportional to the temperature 𝑇:

𝛽 = 1∕𝑘𝑇.

When the temperature goes up to infinity and then suddenly becomes a large negative
number, it’s really just the coolness going down to zero and becoming negative. Temper-
atures ‘wrap around’ infinity, as shown in the picture.

A system with finitely many states can have negative or infinite temperature because
in thermal equilibrium, its probability of being in the 𝑖th state is

𝑝𝑖 =
exp(−𝛽𝐸𝑖)
𝑛∑

𝑖=1
exp(−𝛽𝐸𝑖)

where 𝐸𝑖 is the energy of the 𝑖th state, and this makes sense for any 𝛽 ∈ ℝ. Moreover,
the probability 𝑝𝑖 depends continously on 𝛽, even as 𝛽 passes through zero. This means
a large positive temperature is almost like a large negative temperature!

But the circle of temperature can be misleading. Temperatures wrap around 𝑇 = ∞
but not 𝑇 = 0. A systemwith a small positive temperature is very different from one with
a small negative temperature! That’s because 𝑝𝑖 for 𝛽 ≫ 0 is very different than it is for
𝛽 ≪ 0.

32



For a system with finitely many states we can take the limit of the Boltzmann dis-
tribution when 𝛽 → +∞; then the system will only occupy its lowest-energy state or
states. We can also take the limit when 𝛽 → −∞; then the system will only occupy its
highest-energy state or states. In terms of temperature, this means that the limit where
𝑇 approaches zero from above is very different than the limit where 𝑇 approaches zero
from below.

So, for a system with finitely many states, the best picture of possible thermal equi-
libria is not a circle of temperatures but a closed interval of coolness: the coolness 𝛽 can
be anything in [−∞,+∞], which topologically is a closed interval. In terms of coolness,
+∞ is different from −∞, but approaching 0 from above is the same as approaching it
from below. But in terms of temperature, approaching 0 from above is different from
approaching 0 from below, while a temperature of +∞ is the same as a temperature of
−∞.

Now, if all this seems veryweird, here’s why: we often describe physical systems using
infinitely many states, with a lowest possible energy but no highest possible energy. In
this case the sum in the Boltzmann distribution can’t converge for 𝛽 < 0, so negative
temperatures are ruled out.

However, some physical systems can be approximately described using a finite set
of states (or in quantum theory, a finite-dimensional Hilbert space of states). Then the
things I just said hold true! And people enjoy studying these systems, and their strange
properties, in the lab.

It’s good to look at a simple example, and work everything out explicitly:

Puzzle 25. Suppose a system has two states with energies 𝐸1 < 𝐸2. Compute the prob-
abilities 𝑝𝑖 that it is in either of these states in thermal equilibrium as a function of the
coolness 𝛽. Then express these probabilities as a function of the temperature 𝑇. Using
these functions 𝑝𝑖(𝑇):

• Show that when 0 < 𝑇 < +∞ the system is more likely to be in the lower-energy
state: 𝑝1(𝑇) > 𝑝2(𝑇).

• Show that when −∞ < 𝑇 < 0 the system is more likely to be in the higher-energy
state: 𝑝1(𝑇) < 𝑝2(𝑇).

• Show that
lim
𝑇→+∞

𝑝𝑖(𝑇) = lim
𝑇→−∞

𝑝𝑖(𝑇)

so we can speak unambiguously of the probabilities 𝑝𝑖 at infinite temperature.

• Show that at infinite temperature the system has an equal probability of being in
either state.

• Show that as 𝑇 approaches zero from above, the probability of the system being in
the lower energy state approaches 1.

• Show that as 𝑇 approaches zero from below, the probability of the system being in
the higher energy state approaches 1.
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INFINITE TEMPERATURE

If a system has finitely many states with energies 𝑬𝒊,
in thermal equilibrium at temperature 𝑻
the probability that it’s in the 𝒊th state is

𝒑𝒊 ∝ 𝒆−𝜷𝑬𝒊

where 𝜷 = 𝟏∕𝒌𝑻 and 𝒌 is Boltzmann’s constant.

When 𝜷 = 𝟎 the system’s temperature becomes infinite,
and all states become equally probable!

The probability of finding a system in a particular state decays exponentially with
energy when the coolness 𝛽 is positive. But for a system with finitely many states, 𝛽 can
be zero. Then it becomes equally probable for the system to be in any state!

Zero coolness means ‘utter randomness’: that is, maximum entropy.
Here’s why. The probability distribution with the largest entropy is the one where

all probabilities 𝑝𝑖 are all equal. This happens at zero coolness! When 𝛽 = 0 we get
exp(−𝛽𝐸𝑖) = 1 for all 𝑖. The probabilities𝑝𝑖 are proportional to these numbers exp(−𝛽𝐸𝑖) =
1, so they’re all equal.

It seems zero coolness is impossible for a system with infinitely many states. With
infinitely many states, all equally probable, the probability of being in any state would be
zero. In other words, there’s no uniform probability distribution on an infinite set.

One way out: replace sums with integrals. For the usual measure on [0, 1], called the
Lebesguemeasure 𝑑𝑥, we have∫1

0 𝑑𝑥 = 1. So this is a ‘probabilitymeasure’ that we could
use to describe a system at zero coolness, whose space of states is [0, 1].

But replacing sums by integrals raises all sorts of interesting issues. For example,
there’s a unique way to sum over a finite set of states, but an integral over an infinite set
of states depends on a choice of measure. So a choice of measure is a significant extra
structure we’re slapping on our set of states.

We’ll need to think about these issues later, since to compute the entropy of a classi-
cal ideal gas we’ll need integrals. But we’ll encounter difficulties, which are ultimately
resolved using quantum mechanics.

Anyway: infinite temperature is really zero coolness, and at least for systems with
finitely many states, the entropy becomes as large as possible at zero coolness.
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NEGATIVE TEMPERATURE

If a system has finitely many states with energies 𝑬𝒊,
in thermal equilibrium at temperature 𝑻
the probability that it’s in the 𝒊th state is

𝒑𝒊 ∝ 𝒆−𝜷𝑬𝒊

where 𝜷 = 𝟏∕𝒌𝑻 and 𝒌 is Boltzmann’s constant.

When 𝜷 < 𝟎 the system becomes ‘hotter than infinitely hot’.
Its temperature is negative—but the higher the energy of a

state, the more probable it is!

A system with finitely many states can reach infinite temperature. It can get even
hotter, but then its temperature ‘wraps around’ and become negative!

The possibility of negative temperatures was first discussed by the physicist Lars On-
sager in 1949, and they have been created in the labwith a variety of systems that—within
some approximation—can be described as having finitely many states. In quantum the-
ory, this happens for systems that have finite basis of ‘energy eigenstates’: states with
well-defined energies 𝐸𝑖. For example, the nucleus of an atom may have just two spin
states, and if we put it in an magnetic field these will have different energies. The result
is the system we studied in Puzzle 25.

Here is a generalization with more energy states, all equally spaced:

Puzzle 26. Consider a system with 2𝑁 + 1 states labeled by an integer 𝑛 with −𝑁 ≤
𝑛 ≤ 𝑁, where the 𝑛th state has energy 𝐸𝑛 = 𝛼𝑛 for some energy 𝛼 > 0. Compute the
Boltzmann distribution for this system at coolness 𝛽 for all 𝛽 ∈ ℝ. Compute the expected
energy ⟨𝐸⟩ as a function of 𝛽. What is the qualitative difference in your result between
the case of positive temperature (𝛽 > 0) and negative temperature (𝛽 < 0)?

For more, try this:

• Wikipedia, Negative temperature.
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ABSOLUTE ZERO: THE LIMIT OF INFINITE COOLNESS

If a systemwithfinitelymany states having energies𝑬𝒊 is in ther-
mal equilibrium, the probability𝒑𝒊 that it’s in the 𝒊th state is pro-
portional to 𝐞𝐱𝐩(−𝜷𝑬𝒊)where 𝜷 is the coolness.

In the limit of infinite coolness, 𝜷 → +∞, these probabilities go
to zero except for the states of lowest energy, which all become
equally probable.

The limit 𝜷 → +∞ is also the limitwhere𝑻 approaches zero from
above, commonly called absolute zero.

The limit where 𝑇 approaches zero from above is often called absolute zero. Why?
First people made up various temperature scales like Celsius, where zero was the freez-
ing point of water, and Fahrenheit, where zero is the freezing point of a mixture of water,
ice, and ammonium chloride. But researchers discovered that nature had a more funda-
mental concept of zero temperature: the limit of infinite coolness! This happens as the
temperature approaches−273.15 ◦C, or roughly−459.67 ◦F. This discovery led Kelvin to
propose a shifted version of Celsius where zero is absolute zero. This was originally called
‘absolute Celsius’, but now it is called the Kelvin scale. This is the scale of temperature
I’ll always use here. The size of the degrees is a somewhat arbitrary convention, but the
zero is not: it’s absolute zero.
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THE HAGEDORN TEMPERATURE

If a system has a countable infinity of states 𝒏 = 𝟏, 𝟐, 𝟑,…
with energies 𝑬𝒏, the Boltzmann distribution

𝒑𝒏 =
𝐞𝐱𝐩(−𝑬𝒏∕𝒌𝑻)
∞∑

𝒏=𝟏
𝐞𝐱𝐩(−𝑬𝒏∕𝒌𝑻)

is either:

1) defined for all 𝟎 < 𝑻 < +∞

2) undefined for all 𝟎 < 𝑻 < +∞

3) defined for all 𝟎 < 𝑻 < 𝑻𝐇 but not for 𝑻𝐇 < 𝑻 < +∞,
where 𝑻𝐇 is some temperature called the Hagedorn tempera-
ture.

We’ve been discussing systems with finitely many states, but many physical systems
have a countable infinity of states. So let’s think a bit about those. We can copy everything
we’ve done so far, but we have to be careful. For thermal equilibrium to be possible at
some temperature 𝑇, we need the Boltzmann distribution

𝑝𝑛 =
exp(−𝐸𝑛∕𝑘𝑇)
∞∑

𝑛=1
exp(−𝐸𝑛∕𝑘𝑇)

to make sense. But it might not. Sometimes the sum fails to converge! This happens
when the terms exp(−𝐸𝑛∕𝑘𝑇) don’t go to zero fast enough as 𝑛 → +∞.

Let’s investigate this issue. We’ll assume that

∞∑

𝑛=1
exp(−𝐸𝑛∕𝑘𝑇)

converges for some 𝑇 > 0. Then the energies 𝐸𝑛 must be bounded below: otherwise the
terms exp(−𝐸𝑛∕𝑘𝑇) will get bigger and bigger. Furthermore for any 𝐸 ∈ ℝ there can be
at most finitely many 𝐸𝑛 less than 𝐸: otherwise we’d be adding up infinitely many terms
greater than exp(−𝐸∕𝑘𝑇). As a result, we can reorder the states so their energies are
nondecreasing:

𝐸1 ≤ 𝐸2 ≤ 𝐸3 ≤⋯

and 𝐸𝑛 → +∞.
Reordering a sum can’t change its convergence or value if it’s a sum of nonnegative

numbers, like the sumwehave here. Sowemight aswell assumewe’ve listed the energies
in nondecreasing order as above. Then there are two cases:

37



1. The energies 𝐸𝑛 approach+∞ so fast that
∑∞

𝑛=1 exp(−𝐸𝑛∕𝑘𝑇) converges for all 0 <
𝑇 < +∞. Then our system can be in thermal equilibrium at any finite positive
temperature. This is the nicest situation, and the one we typically expect..

2. The energies 𝐸𝑛 approach +∞ slowly enough that
∑∞

𝑛=1 exp(−𝐸𝑛∕𝑘𝑇) converges
when 𝑇 is small enough, but not otherwise. In this case there is some temperature
𝑇H, called the Hagedorn temperature, such that our system can be in thermal
equilibrium at positive temperatures 𝑇 below 𝑇H, but not above 𝑇H.

In both cases,
∑∞

𝑛=1 exp(−𝐸𝑛∕𝑘𝑇) diverges for all −∞ ≤ 𝑇 < 0 and 𝑇 = +∞. So, for a
system with a countable infinity of states, if thermal equilibrium exists for some positive
temperature, it cannot exist for negative or infinite temperatures.

The second case is weird and interesting. It’s named after Rolf Hagedorn, who in 1964
noticed that this was a possibility in nuclear physics. He considered a model of nuclear
matter where the energies 𝐸𝑛 approach +∞ in a roughly logarithmic way. As you heat
it, its expected energy keeps increasing, but its temperature can never exceed 𝑇H. This
model turned out to be incorrect, but it’s interesting anyway.

Now let’s solve some puzzles on systems with a countable infinity of states. Some of
these show up in quantum mechanics, but you don’t need to know quantum mechanics
to do these puzzles.

Puzzle 27. Show that for a system with a countable infinity of states, if thermal equi-
librium is possible for some negative temperature, it is impossible for positive or infinite
temperatures.

Puzzle 28. Work out the Boltzmann distribution when 𝐸𝑛 = 𝑛𝐸 for some energy 𝐸, and
show that it is well-defined for all temperatures 0 < 𝑇 < +∞.

The next puzzle is a lot like the previous one—a bit more messy, but worthwhile be-
cause of its great importance in physics.

Puzzle 29. For a system called the quantum harmonic oscillator of frequency 𝜔 we have
𝐸𝑛 = (𝑛 + 1

2
)ℏ𝜔, where ℏ is the reduced Planck’s constant. Work out the Boltzmann

distribution in this case, and show it is well-defined for all temperatures 0 < 𝑇 < +∞.

Puzzle 30. For a system called the primon gas we have 𝐸𝑛 = 𝐸 ln𝑛 for some energy 𝐸.
Show that the Boltzmann distribution is well-defined for small enough positive temper-
atures, but there is a Hagedorn temperature. Give a formula for the Boltzmann distribu-
tion in terms of the Riemann zeta function:

𝜁(𝑠) =
∞∑

𝑛=1
𝑛−𝑠.

You can show that for the primon gas the sum
∑∞

𝑛=1 exp(−𝐸𝑛∕𝑘𝑇) diverges at the
Hagedorn temperature. But it can go the other way, too:

Puzzle 31. Find energies 𝐸𝑛 with a Hagedorn temperature such that
∑∞

𝑛=1 exp(−𝐸𝑛∕𝑘𝑇)
converges at the Hagedorn temperature.

Various other strange things can happen, as you should expect when dealing with
infinite series. For example, it’s possible that the Boltzmann distribution is well-defined
at some temperature but the expected value of the energy is infinite! But I’ll resist the
lure of these rabbit holes and turn to something much more important: systems with a
continuum of states. Wewill need to get good at these to compute the entropy of hydrogen.
Now our sums become integrals, and various new things happen.
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THE FINITE VERSUS THE CONTINUOUS

THE FINITE THE CONTINUOUS

𝒑 a probability distribution 𝒑 a probability distribution
on {𝟏,… , 𝒏} on ℝ

Gibbs entropy Gibbs entropy

𝑺(𝒑) = −𝒌
𝒏∑

𝒊=𝟏
𝒑𝒊 𝐥𝐧𝒑𝒊 𝑺(𝒑) = −𝒌∫

∞

−∞
𝒑(𝒙) 𝐥𝐧𝒑(𝒙)𝒅𝒙

𝑺(𝒑) always ≥ 𝟎 𝑺(𝒑) not always ≥ 𝟎

𝑺(𝒑) always finite 𝑺(𝒑) not always finite

𝑺(𝒑) invariant under 𝑺(𝒑) not invariant under
permutations of {𝟏,… , 𝒏} reparametrizations of ℝ

You can switch from finite sums to integrals in the definition of entropy, and we’ll
need to do this to compute the entropy of hydrogen. But be careful: a bunch of things
change!

We need to switch from finite sums to integrals when we switch from a finite set of
states to a measure space of states. I’ll illustrate the ideas with the real line,ℝ. We define
a probability distribution on ℝ to be an integrable function 𝑝∶ ℝ→ [0,∞) with

∫
∞

−∞
𝑝(𝑥)𝑑𝑥 = 1.

Such a probability distribution has a Gibbs entropy given by

𝑆(𝑝) = −𝑘∫
∞

−∞
𝑝(𝑥) ln𝑝(𝑥)𝑑𝑥.

We can also define Shannon entropy, where we leave out Boltzmann’s constant 𝑘 and
use whatever base we want for the logarithm:

𝐻(𝑝) = −∫
∞

−∞
𝑝(𝑥) log𝑝(𝑥)𝑑𝑥.

I should warn you that many writers reserve the term ‘Shannon entropy’ only for a sum

𝐻(𝑝) = −
∑

𝑖∈𝑋
𝑝𝑖 log𝑝𝑖.

While that convention has advantages, I want to use the term ‘Shannon entropy’ to signal
that I’m leaving out the factor of 𝑘.
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Unlike the entropy for a probability distribution on a finite set, the entropy of a prob-
ability distribution onℝ can be negative! This is disturbing. Earlier I said that the Shan-
non entropy of a probability distribution is the expected amount of information you learn
when an outcome is chosen according to that distribution. How can this be negative?

The answer is that this interpretation of entropy, valid for probability distributions on
a finite or even a countably infinite set, is not true in the continuous case! We have to
adapt our intuitions.

Look at an example. Let 𝑝𝜖 be the probability distribution on ℝ given by

𝑝𝜖(𝑥) =
⎧

⎨
⎩

1
𝜖 if 0 ≤ 𝑥 ≤ 𝜖

0 otherwise.

For small 𝜖 it’s a tall thin spike near 0. Let’s work out its Shannon entropy:

𝐻(𝑝) = −∫
∞

−∞
𝑝(𝑥) log𝑝(𝑥)𝑑𝑥

= −∫
𝜖

0

1
𝜖 log

1
𝜖 𝑑𝑥

= log 𝜖.

We’re just integrating a constant here, so it’s easy. When 𝜖 = 1 the entropy is zero, and
when 𝜖 becomes smaller than 1 the entropy becomes negative!

Why? We need a distance scale to define the entropy of a probability distribution on
the real line. If I measure distance in centimeters, I’ll think the entropy of a probabil-
ity distribution is bigger than you, who measures it in meters. And if I measure it in
kilometers, I’ll think the entropy is smaller—and possibly even negative.

Let’s see how this works. If I measure distance in different units from you, my coor-
dinate 𝑦 on the real line will not equal your coordinate 𝑥: instead we’ll have

𝑦 = 𝑐𝑥

for some 𝑐 > 0. Then my probability distribution, say 𝑞, will have

∫
∞

−∞
𝑞(𝑦)𝑑𝑦 =∫

∞

−∞
𝑞(𝑐𝑥)𝑑(𝑐𝑥) = 𝑐∫

∞

−∞
𝑞(𝑐𝑥)𝑑𝑥

so we must have
𝑞(𝑐𝑥) = 1

𝑐 𝑝(𝑥)

to make this integral equal 1. In other words, stretching out a probability distribution
must also flatten it out, making it less ‘tall’—and its entropy increases. Indeed:

Puzzle 32. Show that 𝐻(𝑞) = 𝐻(𝑝) + ln 𝑐.

Thanks to this formula choosing 0 < 𝑐 < 1 compresses a probability distribution and
makes it taller, reducing its entropy. Inevitably, this can make the entropy negative if 𝑐 is
small enough.
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In summary: in the continuous case, entropy is not invariant under reparametriza-
tions: our choice of coordinates matters! And this can make entropy negative. This ap-
plies not only to ℝ but many other measure spaces we’ll be considering, like ℝ𝑛. This
issue will be very important.

After learning this, it should be less of a shock that the entropy of a probability distri-
bution on ℝ can be infinite, or even undefined:

Puzzle 33. Find three probability distributions 𝑝 on the real line that have entropy +∞,
−∞, and undefined because it’s of the form +∞−∞.

41



ENTROPY, ENERGY AND TEMPERATURE

Suppose a system has somemeasure space 𝑿 of states with
energy 𝑬 ∶ 𝑿 → ℝ. In thermal equilibrium the probability

distribution on states, 𝒑∶ 𝑿 → ℝ, maximizes the Gibbs entropy

𝑺 = −𝒌∫
𝑿
𝒑(𝒙) 𝐥𝐧𝒑(𝒙)𝒅𝒙

subject to a constraint on the expected value of energy:

⟨𝑬⟩ =∫
𝑿
𝒑(𝒙)𝑬(𝒙)𝒅𝒙

Typically when this happens 𝒑 is the Boltzmann distribution

𝒑(𝒙) = 𝒆−𝑬(𝒙)∕𝒌𝑻

∫
𝑿
𝒆−𝑬(𝒙)∕𝒌𝑻 𝒅𝒙

where 𝑻 is the temperature and 𝒌 is Boltzmann’s constant.

Then as we vary ⟨𝑬⟩we have

𝒅⟨𝑬⟩ = 𝑻𝒅𝑺

We can now generalize a lot of our work from a finite set of states to a generalmeasure
space. I won’t redo all the arguments, just state the results and point out a couple of
caveats.

For any measure space 𝑋 we say a function 𝑝∶ 𝑋 → [0,∞) is a probability distri-
bution if it’s measurable and

∫
𝑋
𝑝(𝑥)𝑑𝑥 = 1.

We can define a version of Shannon entropy for 𝑝 by

𝐻 = −∫
𝑋
𝑝(𝑥) log𝑝(𝑥)𝑑𝑥,

but physicists mainly use the Gibbs entropy, defined by

𝑆 = −𝑘∫
𝑋
𝑝(𝑥) ln𝑝(𝑥)𝑑𝑥.

As I warned you last time, this can take values in [−∞,∞], though we are mainly inter-
ested in cases when it’s finite. If we think of 𝑋 as the space of states of some system, we
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can pick any measurable function 𝐸∶ 𝑋 → ℝ and call it the ‘energy’. Its expected value
is then

⟨𝐸⟩ =∫
𝑋
𝐸(𝑥)𝑝(𝑥)𝑑𝑥

at least when this integral converges.
We say the probability distribution 𝑝 describes thermal equilibrium if it maximizes

𝑆 subject to a constraint ⟨𝐸⟩ = 𝑐. Typically when this happens 𝑝 is a Boltzmann distri-
bution

𝑝(𝑥) = 𝑒−𝛽𝐸(𝑥)

∫
𝑋
𝑒−𝛽𝐸(𝑥) 𝑑𝑥

where 𝛽 is called the coolness. I say ‘typically’ because evenwhen𝑋 is a finite set, we saw
in Puzzle 24 that there can be thermal equilibria that are not Boltzmann distributions,
but only limits of Boltzmann distributions as 𝛽 → +∞ or 𝛽 → −∞. This can also happen
for other measure spaces 𝑋. I will not delve into this, because my goal now is to get to
some physics.

As before, we can write 𝛽 = 1∕𝑘𝑇, at least if 𝛽 ≠ 0, and then write the Boltzmann
distribution as

𝑝(𝑥) = 𝑒−𝐸(𝑥)∕𝑘𝑇

∫
𝑋
𝑒−𝐸(𝑥)∕𝑘𝑇 𝑑𝑥

.

Also as before, the Boltzmann distributions obey the crucial relation

𝑑𝐻 = 𝛽𝑑⟨𝐸⟩.

Rewriting this in terms of Gibbs entropy 𝑆 = 𝑘𝐻 and temperature 𝑇 = 1∕𝑘𝛽, it becomes
this famous relation between temperature, entropy and the expected energy:

𝑇𝑑𝑆 = 𝑑⟨𝐸⟩.

Notice that the units match here. The Shannon entropy 𝐻 is dimensionless, but since 𝑘
has units of energy/temperature, theGibbs entropy𝑆 = 𝑘𝐻 has units of energy/temperature.
Thus 𝑇𝑑𝑆 has units of energy, as does 𝑑⟨𝐸⟩.
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THE CHANGE IN ENTROPY

As we change the temperature of a system from 𝑻𝟎 to 𝑻𝟏
while keeping it in thermal equilibrium, the change in its

entropy is

𝑺(𝑻𝟏) − 𝑺(𝑻𝟎) =∫
𝑻𝟏

𝑻𝟎

𝒅⟨𝑬⟩
𝑻

where ⟨𝑬⟩ is its expected energy at temperature 𝑻.

Last timewe saw that as we change the expected energy ⟨𝐸⟩ of a systemwhile keeping
it in thermal equilibrium, this fundamental relation holds:

𝑇𝑑𝑆 = 𝑑⟨𝐸⟩.

We can rewrite this as
𝑑𝑆 = 𝑑⟨𝐸⟩

𝑇
and then integrate this from one temperature to another—remember, as the expected
energy changes, so does the temperature. We get

∫
𝑇1

𝑇0

𝑑⟨𝐸⟩
𝑇 = 𝑆(𝑇1) − 𝑆(𝑇0).

This is the main way people do experiments to ‘measure entropy’. Slowly heat some-
thing up, keeping track of howmuch energy it takes to increase its temperature each little
bit. Using this data you can approximately calculate the integral at left—and that gives
the change in entropy!

But so far we’re just measuring changes in entropy. How can you figure out the ac-
tual value of the entropy? One way is to assume the Third Law of Thermodynamics,
which says that in thermal equilibrium the entropy approaches zero as the temperature
approaches zero from above. This gives

∫
𝑇1

0

𝑑⟨𝐸⟩
𝑇 = 𝑆(𝑇1).

This is how people often ‘measure the entropy’ of a system in thermal equibrium. They
heat it up starting from absolute zero, very slowly so—they hope—it is close to thermal
equilibrium at every moment—and they take data on how much energy is used, and
approximately calculate the integral at left!

But this relies on the Third Law of Thermodynamics. So where does that come from?
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THE THIRD LAWOF THERMODYNAMICS

If a system has countably many states,
with just one of lowest energy,

and thermal equilibrium is possible for this system
for some temperature 𝑻 > 𝟎,

then its entropy in thermal equilibrium approaches zero
as 𝑻 approaches zero from above:

𝐥𝐢𝐦
𝑻→𝟎+

𝑺(𝑻) = 𝟎

Some people say the Third Law of Thermodynamics this way: “entropy is zero at
absolute zero”. But it’s not really that simple—indeed, other people say it’s impossible
to reach absolute zero. Above I’ve stated a version of the Third Law that’s actually a
theorem. Let’s prove it!

Actually, let’s prove it now for systems with only finitely many states. It’ll be easier
to handle systems with countably infinite number of states later, when we’ve developed
more tools. And by the way, we’ll see the Third Law isn’t always true for systems with
a continuum of states. It will fail for all three of the problems on our big to-do list: the
classical harmonic oscillator, the classical particle in a box and the classical ideal gas. This
is often taken as a failure of classical mechanics, since switching to quantum mechanics
makes the Third Law hold for these systems.

Let’s show that for a system with finitely many states 𝑖 = 1,… , 𝑛 with energies 𝐸𝑖,
as the temperature 𝑇 approaches zero from above, the entropy of the system in thermal
equilibriumapproaches 𝑘 ln𝑁where𝑁 is the number of lowest-energy states. In thermal
equilibrium

𝑝𝑖 ∝ 𝑒−𝐸𝑖∕𝑘𝑇.

Thus, all stateswith the lowest energy have the sameprobability, while as the temperature
approaches zero fromabove, anyhigher-energy states have𝑝𝑖 → 0. So, as the temperature
approaches zero fromabove, the probability of the systembeing in any one of its𝑁 lowest-
energy states approaches 1∕𝑁, and we get

lim
𝑇→0+

𝑆(𝑇) = lim
𝑇→0+

−𝑘
𝑛∑

𝑖=1
𝑝𝑖 ln𝑝𝑖 = −𝑘

𝑁∑

𝑖=1

1
𝑁 ln ( 1𝑁) = 𝑘 ln𝑁.

In particular, if the system has just one lowest-energy state, we get the Third Law of
Thermodynamics:

lim
𝑇→0+

𝑆(𝑇) = 0.

Here 𝑇 → 0+ means that 𝑇 is approaching zero from above.
But beware: for systems with lots of lowest-energy states, their entropy in thermal

equilibrium can be large even near absolute zero! Also, a related problem: systems may
take a ridiculously long time to reach equilibrium! This is especially true for systems that
havemany states whose energies are very near the lowest energy, like a piece of glass. You
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can put a piece of glass in a fancy refrigerator and try to cool it to near absolute zero. If it
has one lowest-energy state, its entropy should approach zero. If this happened, the glass
would change from glass to a crystal, which has less entropy. But nobody has seen glass
turn into a crystal when they cool it down. If this happens, it probably does so only after
an absurdly long time, much longer than the age of the Universe. This phenomenon is
called ‘frustration’. People like to argue about frustration and the Third Law, so I am not
trying to give you the final word here, just alert you to the issue. You can learn a bit more
here:

• Wikipedia, Third law of thermodynamics.

By theway: for systemswith finitelymany states, it’s possible to have negative temper-
atures, and the Third Law has a counterpart saying what happens when the temperature
approaches zero from below:

Puzzle 34. Show that for a system with finitely many states,

lim
𝑇→0−

𝑆(𝑇) = 𝑘 ln𝑀

where𝑀 is the number of states of highest energy.

However, most systems we’ll be studying won’t have a state of highest energy.
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MEASURING ENTROPY

If we assume the entropy of a system approaches zero as 𝑻
approaches zero from above, we have

∫
𝑻𝟏

𝟎

𝒅⟨𝑬⟩
𝑻 = 𝑺(𝑻𝟏)

Using this assumption, we can do experiments to measure
the entropy of different substances

at standard temperature and pressure:

• iron: ∼5 bits per atom

• water: ∼12 bits per molecule

• hydrogen: ∼23 bits per molecule

People actually do experiments and use the above formula to figure out the entropy of
many substances in thermal equilibrium assuming their entropy vanishes as the temper-
ature approaches absolute zero. They slowly heat up a substance and keep track of how
much energy is needed to raise its temperature as they go, so they can approximately cal-
culate the integral shown. They usually report the answers in joules/kelvin per mole, but
I enjoy ‘bits per molecule’.

As you can see, liquids tend to have more entropy than solids, and gases tend to have
evenmore. My goal in this course is to teach you how to approximately compute some of
these entropies from first principles. Unfortunately the only substances that are simple
enough for us to handle are gases.

This is a good opportunity to explain some conventions. A mole is defined to be
exactly 6.02214076 ⋅ 1023—this is called Avogadro’s number, and it’s close to the num-
ber of hydrogen atoms in a gram. A joule/kelvin of Gibbs entropy corresponds to about
7.242297⋅1022 nats of Shannon entropy: the number here is the reciprocal of Boltzmann’s
constant, which is defined to be exactly 1.380649⋅10−23 joules per kelvin. A bit is ln 2 nats.
From these three facts, we see 1 joule/kelvin of Gibbs entropy per mole corresponds to
about 0.173516 bits/molecule of Shannon entropy.

By the way, what is ‘standard temperature and pressure’? Annoyingly, this phrase
means different things to different organizations. I will try to always use it to mean a
temperature of 298.15 K and a pressure of 1 bar. The temperature here equals 25 ◦C,
which seems a bit random compared to 0 ◦C—but convenient, because it’s close to room
temperature. A pressure of 1 bar, or more officially 100 kilopascals, is slightly less than
a ‘standard atmosphere’, which is a unit of pressure intended to equal the average air
pressure at sea level. A pascal is an official SI unit: it’s a pressure of one newton per
square meter.
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THE EQUIPARTITION THEOREM

Suppose the energy of a system with 𝒏 degrees of freedom is a
positive definite quadratic form 𝑬 ∶ ℝ𝒏 → ℝ, for example

𝑬(𝒙) =
𝒏∑

𝒊=𝟏

𝒄𝒊𝒙𝟐𝒊
𝟐 𝒄𝒊 > 𝟎

Then in thermal equilibrium at temperature 𝑻,
the expected value of the energy is

⟨𝑬⟩ = 𝟏
𝟐𝒏𝒌𝑻

where 𝒌 is Boltzmann’s constant.

Temperature is very different fromenergy. But sometimes—not very often, but sometimes—
the expected energy of a system in thermal equilibrium is proportional to its temperature.
The equipartition theorem says this happens when the energy depends quadratically on
several real variables, defining a positive definite quadratic form on ℝ𝑛. For example, it
happens for a classical harmonic oscillator.

Some people get confused and try to apply the equipartition theoremwhere it doesn’t
apply. They foolishly conclude that temperature is always proportional to energy.

This theorem does not apply to quantum systems. Indeed, when people tried to ap-
ply the equipartition theorem to a mirrored box of light they ran into a problem called
the ultraviolet catastrophe. Classically the box of light is a system where the energy is a
positive definite quadratic form, but 𝑛 = ∞, so they got an infinite expected value of the
energy! Quantum mechanics saves the day and makes the answer finite.

The equipartition theorem also doesn’t apply to classical systems unless the energy is
quadratic. So it’s very limited in its applicability, but still useful.

Let’s prove this result! To prove a theorem, you have to understand the definitions.
We’ll start with some background.

48

https://en.wikipedia.org/wiki/Definite_quadratic_form
https://en.wikipedia.org/wiki/Ultraviolet_catastrophe


THE EQUIPARTITION THEOREM—BACKGROUND

Suppose the energy of a system with 𝒏 degrees of freedom is
some function

𝑬 ∶ ℝ𝒏 → ℝ

Let 𝒌 be Boltzmann’s constant.
Suppose 𝒑∶ ℝ𝒏 → ℝ is a probability distribution maximizing

the entropy

𝑺 = −𝒌∫
ℝ𝒏

𝒑(𝒙) 𝐥𝐧𝒑(𝒙)𝒅𝒏𝒙

subject to a constraint on the expected energy

⟨𝑬⟩ =∫
ℝ𝒏

𝑬(𝒙)𝒑(𝒙)𝒅𝒏𝒙

Then 𝒑must be a Boltzmann distribution:

𝒑(𝒙) = 𝒆−𝜷𝑬(𝒙)

∫
ℝ𝒏

𝒆−𝜷𝑬(𝒙)𝒅𝒏𝒙

for some number 𝜷 > 𝟎.

The temperature 𝑻 is defined so that 𝜷 = 𝟏∕𝒌𝑻.

We’re defining entropy with an integral now, unlike a sum as before, and sticking
Boltzmann’s constant into the definition of entropy, as physicists do, so that entropy has
units of energy over temperature.

Given the formula for the energy 𝐸 as a function on ℝ𝑛, we’ll have to find the Boltz-
mann distribution and then compute ⟨𝐸⟩ as a function of 𝑇.
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PROOF OF THE EQUIPARTITION THEOREM: 1

Special case: a system with 1 degree of freedomwhere the energy
𝑬 ∶ ℝ→ ℝ is 𝑬(𝒙) = 𝒙𝟐∕𝟐.

The Boltzmann distribution is

𝒑(𝒙) = 𝒆−𝜷𝑬(𝒙)

∫
∞

−∞
𝒆−𝜷𝑬(𝒙) 𝒅𝒙

= 𝒆−𝜷𝒙𝟐∕𝟐

∫
∞

−∞
𝒆−𝜷𝒙𝟐∕𝟐𝒅𝒙

so the expected energy is

⟨𝑬⟩ =∫
∞

−∞
𝑬(𝒙)𝒑(𝒙)𝒅𝒙 =

∫
∞

−∞

𝒙𝟐
𝟐 𝒆

−𝜷𝒙𝟐∕𝟐 𝒅𝒙

∫
∞

−∞
𝒆−𝜷𝒙𝟐∕𝟐𝒅𝒙

=

𝟏
𝟐𝜷

∫
∞

−∞
𝜷𝒙𝟐𝒆−𝜷𝒙𝟐∕𝟐 𝒅𝒙

∫
∞

−∞
𝒆−𝜷𝒙𝟐∕𝟐𝒅𝒙

so doing a substitution with 𝒖𝟐 = 𝜷𝒙𝟐:

⟨𝑬⟩ =

𝟏
𝟐𝜷

∫
∞

−∞
𝒖𝟐𝒆−𝒖𝟐∕𝟐 𝒅𝒖

∫
∞

−∞
𝒆−𝒖𝟐∕𝟐𝒅𝒖

= 𝟏
𝟐𝜷

= 𝟏
𝟐𝒌𝑻

since

∫
∞

−∞
𝒆−𝒖𝟐∕𝟐𝒅𝒖 =∫

∞

−∞
𝒖𝟐𝒆−𝒖𝟐∕𝟐𝒅𝒖 =

√
𝟐𝝅

We’ll do two special cases before proving the general result. First let’s do a system
with 1 degree of freedom where the energy is 𝐸(𝑥) = 𝑥2∕2. In this case, after a change
of variables, the Gibbs distribution becomes a Gaussian with mean 0 and variance 1, and
that gives the desired result. Or just do the integrals and see what you get! The expected
energy ⟨𝐸⟩ is 1

2
𝑘𝑇.
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PROOF OF THE EQUIPARTITION THEOREM: 2

More general case: a system with 𝒏 degrees of freedomwhere the energy
𝑬 ∶ ℝ𝒏 → ℝ is

𝑬(𝒙) = 𝟏
𝟐‖𝒙‖

𝟐 = 𝟏
𝟐

𝒏∑

𝒊=𝟏
𝒙𝟐𝒊

We can reduce this to the case with 1 degree of freedom:

⟨𝑬⟩ =
∫
ℝ𝒏

𝟏

𝟐
‖𝒙‖𝟐 𝒆−𝜷‖𝒙‖𝟐∕𝟐 𝒅𝒏𝒙

∫
ℝ𝒏

𝒆−𝜷‖𝒙‖𝟐∕𝟐𝒅𝒏𝒙
=

𝒏∑

𝒊=𝟏

∫
ℝ𝒏

𝟏

𝟐
𝒙𝟐𝒊 𝒆

−𝜷‖𝒙‖𝟐∕𝟐 𝒅𝒏𝒙

∫
ℝ𝒏

𝒆−𝜷‖𝒙‖𝟐∕𝟐𝒅𝒏𝒙
= 𝒏

𝟐𝒌𝑻

Next we do a system with 𝑛 degrees of freedom where the energy is a sum of 𝑛 terms
of the form 𝑥2𝑖 ∕2. It’s no surprise that each degree of freedom contributes 1

2
𝑘𝑇 to the

expected energy, giving
⟨𝐸⟩ = 1

2𝑛𝑘𝑇

But make sure you follow my calculation above. I skipped a couple of steps!
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PROOF OF THE EQUIPARTITION THEOREM: 3

General case: a system with 𝒏 degrees of freedomwhere
the energy 𝑬 ∶ ℝ𝒏 → ℝ is any positive definite quadratic form. Then

𝑬(𝒙) = 𝟏
𝟐‖𝑨𝒙‖

𝟐

for some invertible 𝒏 × 𝒏matrix 𝑨. When 𝑨 is a diagonal matrix this gives

𝑬(𝒙) =
𝒏∑

𝒊=𝟏

𝒄𝒊𝒙𝟐𝒊
𝟐 𝒄𝒊 > 𝟎

We can reduce the general case to the previous case by a change of
variables 𝒚 = 𝑨𝒙:

⟨𝑬⟩ =
∫
ℝ𝒏

𝟏

𝟐
‖𝑨𝒙‖𝟐 𝒆−𝜷‖𝑨𝒙‖𝟐∕𝟐 𝒅𝒏𝒙

∫
ℝ𝒏

𝒆−𝜷‖𝑨𝒙‖𝟐∕𝟐 𝒅𝒏𝒙
=

∫
ℝ𝒏

𝟏

𝟐
‖𝒚‖𝟐 𝒆−𝜷‖𝒚‖𝟐∕𝟐 𝒅𝒏𝒚

∫
ℝ𝒏

𝒆−𝜷‖𝒚‖𝟐∕𝟐 𝒅𝒏𝒚
= 𝒏

𝟐𝒌𝑻

Finally let’s do the general case. A quadratic form onℝ𝑛 is a map 𝑄∶ ℝ𝑛 → ℝ such
that

𝑄(𝑥) =
𝑛∑

𝑖,𝑗=1
𝑞𝑖𝑗𝑥𝑖𝑥𝑗

for some numbers 𝑞𝑖𝑗 ∈ ℝ. We say it’s positive definite if

𝑥 ≠ 0 ⟹ 𝑄(𝑥) > 0.

One can prove that a quadratic form 𝑄∶ ℝ𝑛 → ℝ is positive definite if and only if

𝑄(𝑥) = 1
2‖𝐴𝑥‖

2

for some invertible 𝑛×𝑛matrix𝐴. The factor of 1∕2 here is just to make our calculations
easier.

Thanks to this, if we have a systemwhose space of states isℝ𝑛 and its energy function
𝐸∶ ℝ𝑛 → ℝ is a positive definite quadratic form, we can compute

⟨𝐸⟩ =
∫
ℝ𝑛

𝐸(𝑥) exp(−𝛽𝐸(𝑥))𝑑𝑥

∫
ℝ𝑛

exp(−𝛽𝐸(𝑥))𝑑𝑥

by reducing it to the previous case using a change of variables. We get

⟨𝐸⟩ = 1
2𝑛𝑘𝑇
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So, eachdegree of freedomstill contributes 1
2
𝑘𝑇 to the expected energy. That’s the equipar-

tition theorem!
But be careful. The equipartition theorem doesn’t apply when the energy is an ar-

bitrary function of 𝑛 variables. It also fails when we switch from classical to quantum
statistical mechanics.

People sometimes memorize the conclusion of the equipartition theorem, 𝐸 = 1

2
𝑛𝑘𝑇,

without learning that it holds only for classical systemswhose energy is a positive definite
quadratic form. These people sometimes get fooled into thinking ⟨𝐸⟩ is always propor-
tional to 𝑇. Some of these poor benighted souls go around saying that temperature is just
a measure of energy per degree of freedom. This completely ignores the subtlety of the
concept of temperature.

As we’ve seen, the truly general relation between temperature and energy, for systems
in thermal equilibrium, also involves entropy:

𝑻𝒅𝑺 = 𝒅⟨𝑬⟩.
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THE AVERAGE ENERGY OF AN ATOM

Since an atom of helium gas can move in 3 directions, and its
energy depends quadratically on its velocity and not on

position, the equipartition theorem says that classically its
expected energy should be

⟨𝑬⟩ = 𝟑
𝟐𝒌𝑻

where 𝑻 is temperature and 𝒌 is Boltzmann’s constant, about
𝟏.𝟑𝟖 ⋅ 𝟏𝟎−𝟐𝟑 joules/kelvin.

So, heating an atom of helium gas 1 ◦C should take

𝟑
𝟐 × 𝟏.𝟑𝟖 ⋅ 𝟏𝟎

−𝟐𝟑 joules = 𝟐.𝟎𝟕 ⋅ 𝟏𝟎−𝟐𝟑 joules

This is very close to the truth.

Wecanfinally start reaping the rewards of all our thoughts about entropy! The equipar-
tition theorem lets us estimate how much energy it takes to heat up one atom of helium
one degree Celsius. And it works!

Of course we don’t heat up an individual atom: we heat up a bunch. Amole of helium
is about 6.02 ⋅ 1023 atoms, so heating up a mole of helium one degree Celsius (= 1 kelvin)
should take about

6.02 ⋅ 1023 × 2.07 ⋅ 10−23 ≈ 12.46 joules

And this is very close to correct! It seems the experimentally measured answer is 12.6
joules.

What are the sources of error? Most importantly, our calculation neglects the inter-
action between helium atoms. Luckily this is very small at standard temperature and
pressure. We’re also neglecting quantum mechanics. Luckily for helium this too gives
only small corrections at standard temperature and pressure.

It’s important here that helium is a monatomic gas. In hydrogen, which is a diatomic
gas, we get extra energy because this molecule can tumble around, not just move along.
We’ll try that next.
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THE ENERGY OF HYDROGEN

If we treat a molecule of hydrogen as a dumbbell whose
position takes 3 numbers and whose axis whose takes 2
numbers to describe, we can try to use the equipartition

theorem to estimate its expected energy as

⟨𝑬⟩ = 𝟓
𝟐𝒌𝑻

where 𝑻 is temperature and 𝒌 = 𝟏.𝟑𝟖 ⋅ 𝟏𝟎−𝟐𝟑 joules/kelvin.

In this approximation, heating a molecule of hydrogen gas
1 kelvin takes

𝟓
𝟐 × 𝟏.𝟑𝟖 ⋅ 𝟏𝟎

−𝟐𝟑 joules = 𝟑.𝟒𝟓 ⋅ 𝟏𝟎−𝟐𝟑 joules

In reality it takes 𝟑.𝟑𝟗 ⋅ 𝟏𝟎−𝟐𝟑 joules
at standard temperature and pressure. Not bad!

Amolecule of hydrogen gas is a blurry quantum thing, but let’s pretend it’s a classical
solid dumbbell that can move and tumble but not spin around its axis. Then it has 3+2
= 5 degrees of freedom, and we can use the equipartition theorem to estimate its energy.

For 𝑇 significantly less than 6000 kelvin, hydrogen molecules don’t vibrate with the
two atoms moving toward and away from each other. They don’t spin around their axis
until even higher temperatures. But they tumble like a dumbbell as soon as 𝑇 exceeds
about 90 kelvin.

We need quantum mechanics to compute these things. But at room temperature
and pressure, we can pretend a hydrogen gas is made of classical solid dumbbells that
can move around and tumble but not spin around their axes! In this approximation the
equipartition theorem tells us ⟨𝐸⟩ = 5

2
𝑘𝑇.

This is fine as far as it goes—but our goal in this course is to compute the entropy of
hydrogen. We’ll start with a useful warmup: the classical harmonic oscillator.
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ENTROPY OF THE HARMONIC OSCILLATOR: 1

A classical harmonic oscillator has energy

𝑬 =
𝒑𝟐

𝟐𝒎 +
𝜿𝒒𝟐

𝟐

where 𝒒 is its position, 𝒑 its momentum,𝒎 its mass and 𝜿 its spring constant.

By the equipartition theorem, in thermal equilibrium at temperature 𝑻
it has expected energy ⟨𝑬⟩ = 𝒌𝑻 where 𝒌 is Boltzmann’s constant.

So, using 𝒅⟨𝑬⟩ = 𝑻𝒅𝑺, its entropy is

𝑺 =∫𝒅𝑺 =∫ 𝒅⟨𝑬⟩
𝑻 = 𝒌∫ 𝒅𝑻

𝑻 = 𝒌(𝐥𝐧𝑻 + 𝑪)

Since this does not approach 𝟎 as 𝑻 → 𝟎 from above, the Third Law of
Thermodynamics doesn’t hold for the classical harmonic oscillator.

But what is this constant 𝑪?
For that we must think harder.

Youmayhave already studied the classical harmonic oscillator. We can use it tomodel
a rock of mass𝑚 hanging on a spring with spring constant 𝜅. But the harmonic oscillator
is not just about springs! Almost any classical system that vibrates can be approximately
modeled as a collection of classical harmonic oscillators. Such systems include radia-
tion in a box, the surface of a drum, a violin string, a vibrating molecule (when treated
classically), and many more. So, the harmonic oscillator is fundamental to physics.

In classical mechanics we learn how to answer this question: if we know the position
𝑞 and momentum 𝑝 of an classical harmonic oscillator now, what it will they be at some
time in the future? In classical statisticalmechanicswe can ask other questions, like: how
much entropy does a classical harmonic oscillator have in thermal equilibrium? Here we
don’t know the position and momentum of the oscillator: instead, we know its tempera-
ture𝑇. This determines a probability distribution on the space of pairs (𝑝, 𝑞) ∈ ℝ2, which
has some entropy 𝑆. Using the equipartition theorem and the formula 𝑑⟨𝐸⟩ = 𝑇𝑑𝑆, we
can show

𝑆 = 𝑘(ln𝑇 + 𝐶).

So, the entropy grows logarithmically with temperature. And it does not go to zero as 𝑇
approaches zero: instead, it goes to negative infinity. So the Third Law of Thermodynam-
ics does not hold for the classical harmonic oscillator!

That may seem shocking, but it actually makes sense. The Third Law holds only for
certain special systems. Furthermore, we’ve seen that the entropy of a sharply peaked
probability distribution on a continuous state space is negative. We’ll see that the Boltz-
mann distribution for the classical oscillator gets more and more sharply peaked near
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𝑞 = 𝑝 = 0 as the temperature approaches zero from above. So in fact, it makes perfect
sense that the entropy approaches −∞.

However, the classical harmonic oscillator is just an approximation to the quantum
harmonic oscillator, which does obey the Third Law. It’s a good approximation at high
temperatures, but bad at low temperatures. In fact, this business of negative entropies
at low temperature is not something that happens in the real world. It’s just a defect of
classical mechanics. It’s trying to tell us that quantum mechanics is better.

Another point: you’ll have noticed that constant 𝐶 here. What is it? We can make
progress with a bit of dimensional analysis. The quantity ln𝑇 is a funny thing: if we
change our units of temperature, it doesn’t get multiplied by a constant factor, the way
physical quantities usually do. It changes by adding a constant! So 𝑘 ln𝑇 doesn’t have
dimensions of entropy. But

𝑆 = 𝑘(ln𝑇 + 𝐶)

must have dimensions of entropy. The constant 𝐶 must somehow save the day! How
does that work? Let’s see.
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ENTROPY OF THE HARMONIC OSCILLATOR: 2

Classically, a harmonic oscillator at temperature 𝑻 has entropy

𝑺 = 𝒌(𝐥𝐧𝑻 + 𝑪)

Writing 𝑪 = − 𝐥𝐧(𝑻𝟎) for some constant 𝑻𝟎, this gives

𝑺 = 𝒌 𝐥𝐧(𝑻∕𝑻𝟎)

Dimensional analysis implies 𝑻𝟎 must have units of temperature!

But what is this temperature 𝑻𝟎? For that we must think harder.

The formula 𝑆 = 𝑘(ln𝑇 + 𝐶) is a bit scary from the viewpoint of dimensional analy-
sis. We usually avoidworkingwith the logarithmof a dimensionful quantity, like ln𝑇, be-
cause it transforms in a funnywaywhenwe change our units. But if wewrite𝐶 = − ln𝑇0
thenwe get 𝑆 = 𝑘 ln(𝑇∕𝑇0), andwe see the solution to our problem! If𝑇0 has units of tem-
perature, then 𝑇∕𝑇0 is dimensionless, so ln(𝑇∕𝑇0) doesn’t change at all when we change
our units. In other words: now ln(𝑇∕𝑇0) is dimensionless, so 𝑆 = 𝑘 ln(𝑇∕𝑇0) has units of
entropy as it should.

So, the constant 𝐶 must equal − ln𝑇0 for some temperature 𝑇0 that we can compute
for any harmonic oscillator. What is it? This is a fascinating puzzle.

For starters, what could this temperature 𝑇0 possibly depend on? Obviously the mass
𝑚, the spring constant 𝜅 and Boltzmann’s constant 𝑘. But there’s no way to form a quan-
tity with units of temperature from just𝑚, 𝜅 and 𝑘. So we need an extra ingredient. And
it turns out, remarkably, that the extra ingredient is Planck’s constant ℏ.

This should be absolutely shocking! Planck’s constant is associated to quantumme-
chanics, but we’re trying to compute the entropy of a classical harmonic oscillator. How
does Planck’s constant get into the game? We’ll say more about this later.

We can compute a quantity with units of temperature from 𝑚, 𝜅, 𝑘 and ℏ. The fre-
quency of our oscillator is 𝜔 =

√
𝑘∕𝑚, and it’s a famous fact that ℏ𝜔 has units of energy.

𝑘 has units of energy/temperature... so ℏ𝜔∕𝑘 has units of temperature.
Thus, our temperature 𝑇0 must be ℏ𝜔∕𝑘 times some dimensionless purely mathe-

matical constant, which I’ll call 1∕𝛼. 𝛼 must be something like 𝜋 or 2, or if we’re really
unlucky, 𝑒666 —though in physics our purely mathematical dimensionless constants are
usually numbers fairly close to 1, not huge or tiny numbers.

So, the entropy of a classical harmonic oscillator is

𝑆 = 𝑘 ln(𝑇∕𝑇0) = 𝑘 ln(𝛼𝑘𝑇∕ℏ𝜔).

This is far as I can get without breaking down and doing some real work. Later we will
compute 𝛼.
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ENTROPY OF THE HARMONIC OSCILLATOR: 3

We’ve seen a classical harmonic oscillator
with frequency 𝝎 has entropy

𝑺 = 𝒌 𝐥𝐧(𝜶𝒌𝑻∕ℏ𝝎)

when it’s in thermal equilibrium at temperature 𝑻.

Here 𝒌 is Boltzmann’s constant,
ℏ is Planck’s constant,

and 𝜶 is some dimensionless mathematical constant.
We’ll figure it out later.

Even though we don’t know 𝛼, this formula is already very interesting! 𝑘𝑇 is known
to be the typical energy scale of thermal fluctuations at temperature 𝑇. ℏ𝜔 is the spacing
between energy levels of a quantum harmonic oscillator with frequency 𝜔. The ratio
𝑘𝑇∕ℏ𝜔 is therefore roughly the number of energy eigenstates in which we may find a
quantum harmonic oscillator with high probability when it’s at temperature 𝑇.

Thus, 𝑆 is roughly 𝑘 times the logarithm of the number of states that we’re likely to
find a quantum harmonic oscillator in, when it’s at temperature 𝑇. This may seem mys-
terious. After all, we weren’t trying to do quantummechanics, much less count quantum
states.

In 1912, Otto Sackur and Hugo Tetrode ran into the same issue when trying to solve
the problem we’re working up to now: computing the entropy of a classical ideal gas.
They discovered—and so shall we—that Planck’s constant appears in the answer. For
the fascinating story of how they did it, read this:

• Walter Grimus, On the 100th anniversary of the Sackur-Tetrode equation, Annalen
der Physik 525 (2013), A32–A35.

We’ll learn more about this business of counting states later, when we relate entropy
to something called the ‘partition function’, which can be understood as the ‘number of
acccessible states’. This viewpoint will also explain the constant 𝛼. But now let’s calculate
this constant.
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ENTROPY OF THE HARMONIC OSCILLATOR: 4

A classical harmonic oscillator has energy

𝑬(𝒑, 𝒒) =
𝒑𝟐

𝟐𝒎 +
𝜿𝒒𝟐

𝟐

where 𝒑 is its momentum, 𝒒 its position,𝒎 its mass and 𝜿 its
spring constant.

At temperature 𝑻, the probability density of its momentum and
position is the Boltzmann distribution:

𝝆(𝒑, 𝒒) = 𝒆−𝜷𝑬(𝒑,𝒒)

∫
∞

−∞
∫

∞

−∞
𝒆−𝜷𝑬(𝒑,𝒒)

𝒅𝒑𝒅𝒒
𝒉

where 𝜷 = 𝟏∕𝒌𝑻, 𝒌 is Boltzmann’s constant,
and 𝒉 = 𝟐𝝅ℏ is the original ‘unreduced’ Planck’s constant.

The oscillator’s entropy at temperature 𝑻 is thus

𝑺 = −𝒌∫
∞

−∞
∫

∞

−∞
𝝆(𝒑, 𝒒) 𝐥𝐧 𝝆(𝒑, 𝒒)

𝒅𝒑𝒅𝒒
𝒉

Last time we found a formula for the entropy of a classical harmonic oscillator...
which includes a mysterious purely mathematical dimensionless constant 𝛼. Now let’s
figure out𝛼. To do this, we’ll grit our teeth and actually do the integral needed to calculate
the entropy—but only in one easy case! This will be enough to determine 𝛼.

First, recall the basics. The energy 𝐸(𝑝, 𝑞) of our harmonic oscillator at momentum
𝑝 and position 𝑞 determines its Boltzmann distribution at temperature 𝑇, which I’ll call
𝜌(𝑝, 𝑞) now since the letter 𝑝 is already being used. Integrating −𝜌 ln 𝜌 over the space of
states of the harmonic oscillator, which is the 𝑝𝑞 plane, we get the Shannon entropy. We
then multiply this by Boltzmann’s constant 𝑘 to get the Gibbs entropy.

But here’s the surprise: the Shannon entropy must be dimensionless, but the mea-
sure 𝑑𝑝 𝑑𝑞 has units of momentum times position– or in other words, action. Thus the
Shannon entropy cannot possibly be

∫
∞

−∞
∫

∞

−∞
𝜌(𝑝, 𝑞) ln 𝜌(𝑝, 𝑞) 𝑑𝑝 𝑑𝑞.

To get an answer that makes sense, we must divide 𝑑𝑝 𝑑𝑞 by some quantity with units of
action!

To get the correct answer—that is, the onemeasured in experiments—wemust divide
𝑑𝑝 𝑑𝑞 by Planck’s original constant ℎ, not the so-called ‘reduced’ Planck’s constant ℏ =
ℎ∕2𝜋. Planck’s constant ℎ is defined to be exactly 6.62607015 ⋅10−34 joule-seconds. Thus,
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the Gibbs entropy of the classical harmonic oscillator is

𝑆 = −𝑘∫
∞

−∞
∫

∞

−∞
𝜌(𝑝, 𝑞) ln 𝜌(𝑝, 𝑞)

𝑑𝑝 𝑑𝑞
ℎ

.

We just need to do this integral.
But what’s so good about 𝑑𝑝 𝑑𝑞∕ℎ? Why do we divide by ℎ and not, say ℏ? This is

related to Bohr and Sommerfeld’s early approach to quantum physics, the ‘old quantum
theory’, which was later subsumed by the theory of ‘geometric quantization’. In Bohr and
Sommerfeld’s approach, when we quantize a classical system with one position and one
momentum degree of freedom, there is one quantum state for each region of area ℎ in
the 𝑝𝑞 plane. More generally, when we quantize a classical system with 𝑛 position and
𝑛 momentum degrees of freedom, there should be one quantum state for each region
𝑅 ⊂ ℝ2𝑛 with

∫
𝑅

𝑑𝑛𝑝 𝑑𝑛𝑞
ℎ𝑛

= 1.

So, delving into the whys of quantummechanics and geometric quantization would shed
more light on what we are doing now. But when Sackur and Tetrode computed the en-
tropy of an ideal gas and compared it to experiment, they just went ahead and did an
integral using themeasure 𝑑𝑛𝑝 𝑑𝑛𝑞∕ℎ𝑛, and discovered that this gives the correct answer!
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ENTROPY OF THE HARMONIC OSCILLATOR: 5

We can choose units of length, time, mass and temperature
to make a classical harmonic oscillator’s mass𝒎, its spring

constant 𝜿, Boltzmann’s constant 𝒌, and the reduced Planck’s
constant ℏ all equal 𝟏.

Then at 𝑻 = 𝟏 the Boltzmann distribution of the oscillator is

𝝆(𝒑, 𝒒) = 𝒆−(𝒑𝟐+𝒒𝟐)∕𝟐

∫
∞

−∞
∫

∞

−∞
𝒆−(𝒑𝟐+𝒒𝟐)∕𝟐

𝒅𝒑𝒅𝒒
𝟐𝝅

= 𝒆−(𝒑𝟐+𝒒𝟐)∕𝟐

so its entropy is

𝑺 = −∫
∞

−∞
∫

∞

−∞
𝒆−(𝒑𝟐+𝒒𝟐)∕𝟐 𝐥𝐧

(
𝒆−(𝒑𝟐+𝒒𝟐)∕𝟐

) 𝒅𝒑𝒅𝒒
𝟐𝝅

Let’s do this integral!

Let’s compute the Boltzmann distribution 𝜌(𝑝, 𝑞) and the entropy 𝑆. To keep the
formulas clean, we’ll work in units where𝑚 = 𝜅 = 𝑘 = ℏ = 1, and compute everything
at one special temperature: 𝑇 = 1.

In this setup ℎ = 2𝜋, and
𝑒−𝛽𝐸(𝑝,𝑞) = 𝑒−(𝑝2+𝑞2)∕2

is a beautiful Gaussian with integral

∫
∞

−∞
∫

∞

−∞
𝑒−(𝑝2+𝑞2)∕2 = 2𝜋.

These two factors of 2𝜋 cancel when we compute the denominator of the probability
distribution 𝜌(𝑝, 𝑞):

∫
∞

−∞
∫

∞

−∞
𝑒−(𝑝2+𝑞2)∕2

𝑑𝑝𝑑𝑞
2𝜋 = 2𝜋

2𝜋 = 1.

Thus, we get simply
𝜌(𝑝, 𝑞) = 𝑒−(𝑝2+𝑞2)∕2.

The entropy of the harmonic oscillator is thus

𝑆 = −∫
∞

−∞
∫

∞

−∞
𝑒−(𝑝2+𝑞2)∕2 ln

(
𝑒−(𝑝2+𝑞2)∕2

) 𝑑𝑝𝑑𝑞
2𝜋

when 𝜅 = 𝑘 = ℏ = 𝑇 = 1. Next let’s do this integral.
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ENTROPY OF THE HARMONIC OSCILLATOR: 6

When𝒎 = 𝜿 = 𝒌 = ℏ = 𝑻 = 𝟏
the entropy of a classical harmonic oscillator is

𝑺 = −∫
∞

−∞
∫

∞

−∞
𝒆−(𝒑𝟐+𝒒𝟐)∕𝟐 𝐥𝐧

(
𝒆−(𝒑𝟐+𝒒𝟐)∕𝟐

) 𝒅𝒑𝒅𝒒
𝟐𝝅

= 𝟏
𝟐𝝅 ∫

𝟐𝝅

𝟎
∫

∞

𝟎

𝒓𝟐
𝟐 𝒆

−𝒓𝟐∕𝟐 𝒓𝒅𝒓𝒅𝜽 (switching to polar)

= ∫
∞

𝟎

𝒓𝟐
𝟐 𝒆

−𝒓𝟐∕𝟐 𝒓𝒅𝒓 (doing the 𝜽 integral)

= ∫
∞

𝟎
𝒖𝒆−𝒖𝒅𝒖 (substituting 𝒖 = 𝒓𝟐∕𝟐)

= 𝟏

Now let’s do the integral to compute the entropy of the harmonic oscillator. We copy
a famous trick for computing the integral of a Gaussian. First we switch to polar coordi-
nates in the 𝑝𝑞 plane, where

𝑟2 = 𝑝2 + 𝑞2 and 𝑑𝑝 𝑑𝑞 = 𝑟𝑑𝑟𝑑𝜃.

Then we integrate with respect to 𝜃, which cancels out the factor of 1∕2𝜋. Then we do a
substitution 𝑢 = 𝑟2∕2. But for us 𝑟2∕2 is minus the logarithm of the Gaussian:

− ln(𝑒−(𝑝2+𝑞2)∕2) = 𝑟2
2

so we’re left with

𝑆 =∫
∞

0
𝑢𝑒−𝑢 𝑑𝑢

which we can do with integration by parts.
After all this work, we get an incredibly simple answer:

𝑆 = 1.

So in the special case where𝑚 = 𝜅 = 𝑘 = ℏ = 𝑇 = 1, the entropy of a classical harmonic
oscillator in thermal equilibrium is 1.

Now let’s return to the general case, and finish the job.
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ENTROPY OF THE HARMONIC OSCILLATOR: 7

A classical harmonic oscillator with frequency 𝝎 has entropy

𝑺 = 𝒌 𝐥𝐧(𝜶𝒌𝑻∕ℏ𝝎)

for some dimensionless constant 𝜶.

But when𝒎 = 𝜿 = 𝒌 = ℏ = 𝑻 = 𝟏
we have 𝝎 = 𝟏 and 𝑺 = 𝟏, so we must have

𝜶 = 𝒆

and thus finally

𝑺 = 𝒌 (𝐥𝐧 (𝒌𝑻
ℏ𝝎

) + 𝟏)

Knowing the entropy in one special case, we can figure out the constant 𝛼 in our
general formula for the entropy. Our general formula says

𝑆 = 𝑘 ln(𝛼𝑘𝑇∕ℏ𝜔).

But when 𝑚 = 𝑘 = 𝑇 = ℏ = 1 we get 𝜔 = 𝑘∕𝑚 = 1, and we saw last time that in this
special case we get

𝑆 = 1.

So 𝛼 must equal 𝑒.
Thus, the entropy of an oscillator with frequency 𝜔 at temperature 𝑇 is

𝑆 = 𝑘 ln(𝑒𝑘𝑇∕ℏ𝜔) = 𝑘 (ln ( 𝑘𝑇
ℏ𝜔

) + 1) .

The extra 1 here is fascinating to me. If we had slacked off, ignored the possibility of a di-
mensionless constant 𝛼, and crudely used dimensional analysis to guess 𝑆 approximately
the way people often do, we might have gotten

𝑆 = 𝑘 ln(𝑘𝑇∕ℏ𝜔)

This would be off by 1 nat.
What does the 1 extra nat mean? It seems pretty mysterious now. But later we’ll un-

derstand it! I already mentioned that often entropy is roughly 𝑘 times the logarithm of
something called the ‘number of accessible states’. But that formula is not exactly right:
there’s also an extra term related to energy, and that accounts for the 1 extra nat here. Be
patient, and you’ll see what I mean.
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WHERE AREWE NOW?

Themystery: why does eachmolecule of hydrogen have ∼𝟐𝟑 bits
of entropy at standard temperature and pressure?

The goal: derive and understand the formula for the entropy of
a classical ideal monatomic gas:

𝑺 = 𝒌𝑵 (𝐥𝐧 𝑽
𝑵 + 𝟑

𝟐 𝐥𝐧𝒌𝑻 + 𝜸)

including the mysterious constant 𝜸.

The subgoal: compute the entropy of a single classical particle in
a 1-dimensional box.

The sub-subgoal: explain entropy from the ground up, and
compute the entropy of a classical harmonic oscillator:

𝑺 = 𝒌 (𝐥𝐧 𝒌𝑻
ℏ𝝎

+ 𝟏) ✓

Okay, so we’ve gotten somewhere! By doing the right integral, we’ve figured out that
the entropy 𝑆 of a classical harmonic oscillator of frequency 𝜔 in thermal equilibrium at
temperature 𝑇 is

𝑆 = 𝑘 (ln 𝑘𝑇
ℏ𝜔

+ 1) .

where 𝑘 is Boltzmann’s constant and ℏ is the reduced Planck’s constant.
We could compute the entropy of a single particle in a box the same way, and also the

entropy of a classical ideal diatomic gas. But the integrals get a bit hairy, so people prefer
to use a clever trick called the ‘partition function’. It’s definitely worth learning. It’s not
merely a clever trick, it gives new insights on the relation between entropy, energy and
temperature. So let’s talk about it.
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THE PARTITION FUNCTION

If a system has a set of states 𝑿
with measure 𝒅𝒙 and

its energy is a function 𝑬 ∶ 𝑿 → ℝ,
its partition function is

𝒁(𝜷) =∫
𝑿
𝒆−𝜷𝑬(𝒙) 𝒅𝒙

where 𝜷 is the coolness.

Iwant to compute the entropy of a particle in a box, andultimately the entropy of a box
of hydrogen. We could do it directly, but that’s a bit ugly. It’s better to use the ‘partition
function’. This amazing function knows everything about statistical mechanics. From it
you can get the entropy—and much more!
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THE PARTITION FUNCTION AND THE BOLTZMANN
DISTRIBUTION

If a system has a set of states 𝑿 with measure 𝒅𝒙
and its energy is 𝑬 ∶ 𝑿 → ℝ,

in thermal equilibrium at coolness 𝜷 its probability distribution
of states is the Boltzmann distribution:

𝒑(𝒙) = 𝒆−𝜷𝑬(𝒙)

∫𝑿 𝒆−𝜷𝑬(𝒙) 𝒅𝒙
= 𝒆−𝜷𝑬(𝒙)

𝒁(𝜷)

where

𝒁(𝜷) =∫
𝑿
𝒆−𝜷𝑬(𝒙) 𝒅𝒙

is its partition function.

In fact we’ve already seen the partition function: it’s the thing you have to divide
𝑒−𝛽𝐸(𝑥) by to get a function whose integral is 1. And that function whose integral is 1 is
the Boltzmann distribution: the probability distribution of states in thermal equilibrium
at coolness 𝛽. So the partition function is a humble normalizing factor! And yet we’ll see
that it’s incredibly powerful. It’s kind of surprising.

Like Lagrangians in classical mechanics, it’s fairly easy to use partition functions, but
it’s harder to understand what they ‘really mean’. We will try. But first let’s see how to
use them.
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THE PARTITION FUNCTION KNOWS ALL!

If a system has partition function

𝒁(𝜷) =∫
𝑿
𝒆−𝜷𝑬(𝒙) 𝒅𝒙

then in thermal equilibrium at coolness 𝜷 its expected energy is

⟨𝑬⟩ = − 𝒅
𝒅𝜷

𝐥𝐧𝒁

and its entropy is

𝑺 = 𝒌 (𝐥𝐧𝒁 − 𝜷 𝒅
𝒅𝜷

𝐥𝐧𝒁)

Here’s how you can compute the expected energy ⟨𝐸⟩ and the entropy 𝑆 of any system
starting from its partition function 𝑍(𝛽) as a function of the coolness 𝛽. I’ll show youwhy
these formulas are true, and then we’ll test them out on the harmonic oscillator, where
we have already computed the expected energy and entropy by other methods.
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THE PARTITION FUNCTION KNOWS THE EXPECTED
ENERGY

If a system has partition function 𝒁(𝜷) =∫
𝑿
𝒆−𝜷𝑬(𝒙) 𝒅𝒙 then

− 𝒅
𝒅𝜷

𝐥𝐧𝒁 = − 𝟏
𝒁
𝒅
𝒅𝜷

𝒁 = − 𝟏
𝒁
𝒅
𝒅𝜷

∫
𝑿
𝒆−𝜷𝑬(𝒙) 𝒅𝒙

= 𝟏
𝒁 ∫

𝑿
𝑬(𝒙) 𝒆−𝜷𝑬(𝒙) 𝒅𝒙

=
∫
𝑿
𝑬(𝒙) 𝒆−𝜷𝑬(𝒙) 𝒅𝒙

∫
𝑿
𝒆−𝜷𝑬(𝒙) 𝒅𝒙

= ⟨𝑬⟩

In short, the expected energy is ⟨𝑬⟩ = − 𝒅
𝒅𝜷

𝐥𝐧𝒁

The partition function is all-powerful! For starters, if you know the partition function
of a physical system, you can figure out its expected energy. The expected energy ⟨𝐸⟩ is
minus the derivative of ln𝑍 with respect to the coolness 𝛽 = 1∕𝑘𝑇.

How do we show this? Easy: just look at the calculation above! We get a fraction,
which is the expected value of 𝐸 with respect to the Gibbs distribution.

By the way, this trick of taking the derivative of the logarithm of a function is famous:
it’s called a ‘logarithmic derivative’. Notice that

𝑑
𝑑𝑥

ln𝑓(𝑥) =
𝑓′(𝑥)
𝑓(𝑥)

.

Thus the logarithmic derivative says how fast a function is growing compared to the value
of the function itself—like the interest rate in compound interest.
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THE PARTITION FUNCTION KNOWS THE ENTROPY

If a system has Boltzmann distribution

𝒑(𝒙) = 𝒆−𝜷𝑬(𝒙)
𝒁 where 𝒁 =∫

𝑿
𝒆−𝜷𝑬(𝒙) 𝒅𝒙

then its entropy in thermal equilibrium is

𝑺 = −𝒌∫
𝑿
𝒑(𝒙) 𝐥𝐧𝒑(𝒙)𝒅𝒙 = −𝒌∫

𝑿
𝒑(𝒙) 𝐥𝐧 (

𝒆−𝜷𝑬(𝒙)
𝒁 )𝒅𝒙

= 𝒌∫
𝑿
𝒑(𝒙)

(
𝐥𝐧𝒁 + 𝜷𝑬(𝒙)

)
𝒅𝒙

= 𝒌
(
𝐥𝐧𝒁 + 𝜷⟨𝑬⟩

)

But since ⟨𝑬⟩ = − 𝒅

𝒅𝜷
𝐥𝐧𝒁, this gives

𝑺 = 𝒌 (𝐥𝐧𝒁 − 𝜷 𝒅
𝒅𝜷

𝐥𝐧𝒁)

The entropy is a bit more complicated. But don’t be scared! The Boltzmann distribu-
tion 𝑝(𝑥) is a fraction, so the log of this fraction breaks into two parts:

ln𝑝(𝑥) = ln (
𝑒−𝛽𝐸(𝑥)
𝑍 ) = −(ln𝑍 + 𝛽𝐸(𝑥)).

Thus our integral for entropy breaks into two parts:

𝑆 = −𝑘∫𝑝(𝑥) ln𝑝(𝑥)𝑑𝑥 = 𝑘∫𝑝(𝑥) ln𝑍 𝑑𝑥 + 𝑘𝛽∫𝑝(𝑥)𝐸(𝑥)𝑑𝑥.

The first part is just 𝑘 ln𝑍 since the integral of 𝑝(𝑥) is 1. The second part is 𝑘𝛽⟨𝐸⟩. If we
use what we just learned about ⟨𝐸⟩:

⟨𝐸⟩ = − 𝑑
𝑑𝛽

ln𝑍

we get this formula for entropy in terms of the partition function:

𝑆 = 𝑘 (ln𝑍 − 𝛽 𝑑
𝑑𝛽

ln𝑍) .

This formula seems hard to understand at first. To extract its inner meaning, we need a
new concept: ‘free energy’.
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THE PARTITION FUNCTION KNOWS THE FREE ENERGY

Tomaximize entropy while holding expected energy constant,
you can just minimize the free energy

𝑭 = ⟨𝑬⟩ − 𝑻𝑺

We’ve seen

⟨𝑬⟩ = − 𝒅
𝒅𝜷

𝐥𝐧𝒁 and 𝑺 = 𝒌 (𝐥𝐧𝒁 − 𝜷 𝒅
𝒅𝜷

𝐥𝐧𝒁)

so with 𝜷 = 𝟏∕𝒌𝑻 a little algebra shows

𝑭 = −𝟏
𝜷
𝐥𝐧𝒁

We can understand the relation between entropy, energy and the partition function if
we bring in a concept I haven’t mentioned yet: the free energy

𝐹 = ⟨𝐸⟩ − 𝑇𝑆.

Since we know formulas for ⟨𝐸⟩ and 𝑆 in terms of the partition function, we can work out
a formula for 𝐹. And it’s really simple! Much simpler than 𝑆, for example. It’s just

𝐹 = −1
𝛽
ln𝑍.

Butwhat’s themeaning of free energy? Remember: tomaximize the Shannon entropy
𝐻 subject to a constraint on expected energy, we introduced the Lagrange multiplier 𝛽 =
1∕𝑘𝑇 and maximized the quantity 𝐻 − 𝛽⟨𝐸⟩. But if you multiply this quantity by −𝑘𝑇,
you get free energy:

−𝑘𝑇(𝐻 − 𝛽⟨𝐸⟩) = ⟨𝐸⟩ − 𝑇𝑆 = 𝐹.

So, as long as 𝑇 > 0, maximizing entropy subject to a constraint on expected energy is
equivalent tominimizing free energy!

Thus, free energy turns a problem of maximizing entropy subject to a constraint into
a minimization problem without a constraint. The point is not that we’ve turned maxi-
mization into minimization: that’s just an arbitrary business with signs. The point is that
free energy lets us stop thinking about the constraint.

There’s a huge amount to say about the free energy, which is also called the ‘Helmholtz
free energy’, since there are other kinds. You can think of 𝑇𝑆 as the amount of energy in
useless random form, since it comes from entropy. Since ⟨𝐸⟩ is the total expected energy,
𝐹 = ⟨𝐸⟩−𝑇𝑆 is the amount of ‘useful’ energy. More precisely, the free energy is the max-
imum amount of work obtainable from a system at a constant temperature. But showing
this would take us out of our way.
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THE PARTITION FUNCTION KNOWS ALL: REVISITED

If 𝒁(𝜷) is the partition function of a system, in thermal
equilibrium at coolness 𝜷 its expected energy is

⟨𝑬⟩ = − 𝒅
𝒅𝜷

𝐥𝐧𝒁

and its free energy is

𝑭 = −𝟏
𝜷
𝐥𝐧𝒁

We can compute its entropy from these using

𝑭 = ⟨𝑬⟩ − 𝑻𝑺

and we get

𝑺 = 𝒌 (𝐥𝐧𝒁 − 𝜷 𝒅
𝒅𝜷

𝐥𝐧𝒁)

Now we can tell a simpler story, which is easier to remember. Free energy, being the
energy in useful form, is the expected energy minus the useless energy, which is temper-
ature times entropy. Thus

𝐹 = ⟨𝐸⟩ − 𝑇𝑆

so
𝑆 = ⟨𝐸⟩ − 𝐹

𝑇

= 𝑘𝛽(−𝐹 + ⟨𝐸⟩)

and using our formulas for 𝐹 and ⟨𝐸⟩ in terms of the partition function 𝑍, we get

𝑆 = 𝑘 (ln𝑍 − 𝛽 𝑑
𝑑𝛽

ln𝑍) .

The story here is more of amnemonic than a true explanation, because I’m not saying
muchwhat it means for energy to be ‘useful’ or ‘useless’. I’ve only given this hint: when a
system is in thermal equilibrium, its free energy is minimized. For more on the meaning
of free energy, try a good book on thermodynamics, like this:

• Frederick Reif, Fundamentals of Statistical and Thermal Physics, Waveland Press,
Long Grove, Illinois, 2009.

Right now I’d rather say a bit about the meaning of the partition function.
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THEMEANING OF THE PARTITION FUNCTION

Say 𝑿 is a set where each point 𝒊 has an ‘energy’ 𝑬𝒊 ∈ ℝ.
Its partition function is

𝒁 =
∑

𝒊∈𝑿
𝒆−𝜷𝑬𝒊

where 𝜷 ∈ ℝ is the coolness.

The partition function counts the points of 𝑿—but it counts
points with large energy less, since they’re less likely to be

‘occupied’.

If 𝜷 = 𝟏∕𝒌𝑻, points with energy 𝑬𝒊 ≫ 𝒌𝑻 count for very little.

But as 𝑻 → +∞, all points get fully counted and 𝒁 → |𝑿|.

In physics we call 𝒁 the number of accessible states.

Say we have a system with some countable set of states 𝑋. In thermal equilibrium
at temperature 𝑇, the probability that the system is in its 𝑖th state is proportional to
exp(−𝛽𝐸𝑖), where 𝐸𝑖 is the energy of that state and 𝛽 is the coolness. Thus, physicists
say the partition function

𝑍 =
∑

𝑖∈𝑋
𝑒−𝛽𝐸𝑖

is the number of accessible states: roughly, the number of states the system can easily
be in at temperature 𝑇, where 𝛽 = 1∕𝑘𝑇.

This is a funny thing to say, because being ‘accessible’ is not a yes-or-no matter. A
more precise statement is that the partition function counts states weighted by their ac-
cessibility exp(−𝛽𝐸𝑖). States whose energy is low compared to 𝑘𝑇 are highly accessible,
or probable, because exp(−𝛽𝐸𝑖) is close to 1 if 𝐸𝑖 ≪ 𝑘𝑇. States of high energy are more
inaccessible, or improbable, since exp(−𝛽𝐸𝑖) is close to 0 if 𝐸𝑖 ≫ 𝑘𝑇.

Calling the partition function the ‘number of accessible states’ emphasizes how it
generalizes the cardinality |𝑋| of an ordinary set 𝑋, meaning its number of points. Let’s
make this precise! Let’s call a set 𝑋 with a function 𝐸∶ 𝑋 → ℝ an energetic set. I will
write it merely as 𝑋, so you need to remember it comes with an energy function. I will
call its partition function 𝑍(𝑋):

𝑍(𝑋) =
∑

𝑖∈𝑋
𝑒−𝛽𝐸𝑖 .

If𝑋 is finite we don’t have to worry about the convergence of this sum. Mymainmessage
is this:

The partition function 𝒁(𝑿) does for energetic sets
what the cardinality |𝑿| does for sets.

For example, just like the cardinality, the partition function adds when you take disjoint
unions, and multiplies when you take products! Let’s see why.
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Puzzle 35. The disjoint union 𝑋 + 𝑋′ of energetic sets 𝐸∶ 𝑋 → ℝ and 𝐸′∶ 𝑋′ → ℝ is
again an energetic set: for points in 𝑋 we use the energy function 𝐸, while for points in
𝑋′ we use the function 𝐸′. Show that the partition function obeys the law 𝑍(𝑋 + 𝑋′) =
𝑍(𝑋) + 𝑍(𝑋′), at least for finite energetic sets.
Puzzle 36. The cartesian product 𝑋 ×𝑋′ of energetic sets 𝐸∶ 𝑋 → ℝ and 𝐸′∶ 𝑋′ → ℝ is
again an energetic set: define the energy of (𝑥, 𝑥′) ∈ 𝑋×𝑋′ to be𝐸(𝑥)+𝐸(𝑥′). This is how
it really works in physics. Show that the partition function obeys the law 𝑍(𝑋 × 𝑋′) =
𝑍(𝑋)𝑍(𝑋′), at least for finite energetic sets.
Puzzle 37. Show that if 𝑋 is a finite energetic set, its partition function 𝑍(𝑋) approaches
its cardinality |𝑋| as 𝑇 → +∞.

The key virtue of cardinality is that two sets are isomorphic—that is, there exists a one-
to-one and onto function between them—if and only if they have the same cardinality.
This generalizes to energetic sets if we use the partition function instead of the cardinal-
ity! Let’s say two energetic sets with energy functions 𝐸∶ 𝑋 → ℝ and 𝐸′∶ 𝑋′ → ℝ are
isomorphic if there is a one-to-one and onto 𝑓∶ 𝑋 → 𝑋′ which is compatible with their
energy functions, meaning

𝐸′(𝑓(𝑥)) = 𝐸(𝑥)
for all 𝑥 ∈ 𝑋.
Puzzle 38. Show that two finite energetic sets are isomorphic if and only if they have
the same partition function. (Hint: the key is to show that the functions exp(−𝐸∕𝑘𝑇) for
various energies 𝐸 ∈ ℝ are linearly independent. As a step toward this, show that a finite
linear combination ∑

𝑖
𝑐𝑖 exp(−𝐸𝑖∕𝑘𝑇)

can only be zero if 𝑐𝑖 = 0 for the smallest energy 𝐸𝑖.)
If you’re into category theory, here are some ways to go further. If you’re not, please

skip to the next page.
Puzzle 39. Make up a category of energetic sets, where morphism are maps that are
compatible with their energy functions. Prove that it is a category.
Puzzle 40. Show the disjoint union of energetic sets is the coproduct in this category.
Puzzle 41. Show that what I called the cartesian product of energetic sets is not the prod-
uct in this category.
Puzzle 42. Show that what I called the ‘cartesian product’ of energetic sets gives a sym-
metric monoidal structure on the category of energetic sets. So we should really write it
as a tensor product 𝑋 ⊗ 𝑋′, not 𝑋 × 𝑋′.
Puzzle 43. Show this tensor product distributes over coproducts: 𝑋 ⊗ (𝑌 + 𝑍) ≅ 𝑋 ⊗
𝑌 + 𝑋 ⊗ 𝑍.

We can go even further and define not only a partition function for energetic sets, but
also an expected energy, free energy, and entropy, using the formulas we’ve seen earlier.
These obey a bunch of rules like this:
Puzzle 44. Define the entropy of an energetic set by

𝑆(𝑋) = 𝑘 (− ln𝑍(𝑋) + 𝛽 𝑑
𝑑𝛽

ln𝑍(𝑋)) .

Show that
𝑆(𝑋 ⊗ 𝑌) = 𝑆(𝑋) + 𝑆(𝑌).
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ENTROPY COMES IN TWO PARTS

The entropy of a system in thermal equilibrium
is always the sum of two parts:

1. The free energy part:
−𝑭𝑻 = 𝒌 𝐥𝐧𝒁

This isBoltzmann’s constant times the logarithmof thenumber
of accessible states.

2. The expected energy part:

⟨𝑬⟩
𝑻

This equals 𝟏

𝟐
𝒏𝒌𝑻 if the system has 𝒏 degrees of freedom and its

energy is a positive definite quadratic form.

Before we dive into examples, it’s good to think one last time about the entropy of a
system in thermal equilibrium. We’ve seen that this entropy is always the sum of two
parts, which we could call the free energy part −𝐹∕𝑇 and the expected energy part
⟨𝐸⟩∕𝑇. But there are various ways to think about this. One is simply that it follows from
𝐹 = ⟨𝐸⟩ − 𝑇𝑆: the free energy is the expected energy minus the useless energy. But here
is another way to think about it.

In his early work, Boltzmann said the entropy of a system is 𝑘 times the logarithm
of the number of states it can occupy. This is true if all these states are equally probable.
But typically some states are more probable than others. We could try to address this by
replacing the number of states with the number of accessible states

𝑍 =
∑

𝑖∈𝑋
𝑒−𝛽𝐸𝑖 .

Here we count states weighted by their accessibility exp(−𝛽𝐸𝑖). If we try to follow Boltz-
mann’s prescription with this adjustment we get 𝑘 ln𝑍 = 𝐹∕𝑇. This is the free energy
part of the entropy.

In many situations this is close to the true entropy. But this clearly can’t be all there is
to it. After all, suppose we add the same constant 𝑐 to the energy of each state. Then the
probability of each state in thermal equilibrium is unchanged, so the entropy must stay
the same! But the accessibility of each state gets multiplied by exp(−𝛽𝑐), so we have to
subtract 𝑘𝛽𝑐 from the free energy part of the entropy. There must be some compensating
term—and this is the expected energy part of the entropy, ⟨𝐸⟩∕𝑇. When we add 𝑐 to the
energy of each state, this goes up by 𝑐∕𝑇 = 𝑘𝛽𝑐.

Thus, in thermal equilibriumwe can think of entropy as 𝑘 times the log of the number
of accessible states, ‘corrected’ so that the result doesn’t change when we add a constant
to the energy of every state.
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THE POWER OF THE PARTITION FUNCTION

A classical harmonic oscillator with mass𝒎 and spring
constant 𝜿 has energy

𝑬(𝒑, 𝒒) =
𝒑𝟐

𝟐𝒎 +
𝜿𝒒𝟐

𝟐

Its partition function is

𝒁(𝜷) =∫
∞

−∞
∫

∞

−∞
𝒆−𝜷𝑬(𝒑,𝒒)

𝒅𝒑𝒅𝒒
𝒉

where 𝜷 is coolness and 𝒉 is Planck’s constant.

From this we can find its expected energy and free energy in
thermal equilibrium:

⟨𝑬⟩ = − 𝒅
𝒅𝜷

𝐥𝐧𝒁 𝑭 = −𝟏
𝜷
𝐥𝐧𝒁

and then its entropy:

𝑺 = ⟨𝑬⟩ − 𝑭
𝑻

where 𝑻 is temperature: 𝜷 = 𝟏∕𝒌𝑻 where 𝒌 is Boltzmann’s
constant.

To test the power of the partition function, let’s use it to figure out the entropy of a
classical harmonic oscillator. Here’s the game plan. First we’ll compute the partition
function by doing the integral in bright red. Then we’ll use it to compute the oscillator’s
expected energy and free energy. Then we’ll subtract those and divide by temperature to
get the entropy.

In fact, we’ve already worked out the answer to this problem:

𝑆 = 𝑘 (ln (𝑘𝑇
ℏ𝜔

) + 1) .

Our earlier approach led to some cool insights. But it was ‘tricky’, not systematic. The
partition function method is systematic, so it’s good for harder problems. It will also give
new insight into that pesky +1.

When we compute the entropy using a partition function, all the pain is concentrated
at one point: computing the partition function! So let’s get that over with.
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HARMONIC OSCILLATOR: PARTITION FUNCTION

A classical harmonic oscillator has energy 𝑬(𝒑, 𝒒) = 𝒑𝟐

𝟐𝒎
+ 𝜿𝒒𝟐

𝟐

and frequency 𝝎 =
√
𝜿∕𝒎, so its partition function is

𝒁(𝜷) = ∫
∞

−∞
∫

∞

−∞
𝒆
−𝜷( 𝒑

𝟐

𝟐𝒎
+ 𝜿𝒒𝟐

𝟐
) 𝒅𝒑𝒅𝒒

𝒉

=
√

𝒎
𝜿 ∫

∞

−∞
∫

∞

−∞
𝒆
−𝜷( 𝒙

𝟐+𝒚𝟐

𝟐
) 𝒅𝒙𝒅𝒚

𝒉
(𝒙 =

𝒑
√
𝒎
, 𝒚 =

√
𝜿𝒒)

= 𝟏
𝒉𝝎

∫
𝟐𝝅

𝟎
∫

∞

𝟎
𝒆−𝜷𝒓𝟐∕𝟐 𝒓𝒅𝒓𝒅𝜽 (switching to polar)

= 𝟐𝝅
𝒉𝝎

∫
∞

𝟎
𝒆−𝜷𝒖𝒅𝒖 (𝒖 = 𝒓𝟐∕𝟐)

= 𝟏
ℏ𝝎

⋅ 𝟏
𝜷

𝒁(𝜷) = 𝟏
𝜷ℏ𝝎

For the harmonic oscillator, the partition function is the integral of a Gaussian in
two variables. A change of variables makes the Gaussian ‘round’, and then we use polar
coordinates to do the integral.

The physicist Kelvin is said to have written

∫
∞

−∞
𝑒−𝑥2𝑑𝑥 =

√
𝜋

on the blackboard and said “A mathematician is one to whom that is as obvious as that
twice two makes four is to you.” I find that rather obnoxious, but when I heard the story
as a kid, I made damn sure I knew how to do this integral. The usual trick is to compute
the square of this integral using polar coordinates.

Now we’re seeing something interesting. The harmonic oscillator, whose energy de-
pends quadratically on two degrees of freedom, is physically more important than a sys-
tem whose energy depends quadratically on just one degree of freedom. And when 𝛽 =
ℎ = 𝜔 = 1, the partition function of the harmonic oscillator is

∫
∞

−∞
∫

∞

−∞
𝑒
−( 𝑥

2+𝑦2

2
)
𝑑𝑥 𝑑𝑦 =∫

2𝜋

0
∫

∞

0
𝑒−𝑟2∕2𝑟𝑑𝑟 𝑑𝜃 = 2𝜋∫

∞

0
𝑒−𝑢𝑑𝑢 = 2𝜋,

which ismore fundamental than the integral Kelvin wrote down.
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HARMONIC OSCILLATOR: EXPECTED ENERGY

A classical harmonic oscillator has partition function

𝒁 = 𝟏
𝜷ℏ𝝎

so its expected energy in thermal equilibrium is

⟨𝑬⟩ = − 𝒅
𝒅𝜷

𝐥𝐧𝒁 = 𝟏
𝜷

or

⟨𝑬⟩ = 𝒌𝑻

just as the equipartition theorem says it must be!

Once we know the partition function of the classical harmonic oscillator, it’s easy to
compute its expected energy: just use

⟨𝐸⟩ = − 𝑑
𝑑𝛽

ln𝑍

and get

⟨𝐸⟩ = − 𝑑
𝑑𝛽

ln ( 1
𝛽ℏ𝜔

) = 1
𝛽
.

We can also figure this out using the equipartition theorem. Remember, the equipartition
theorem applies to a classical system whose energy is quadratic. If it has 𝑛 degrees of
freedom, then at temperature 𝑇 it has

⟨𝐸⟩ = 𝑛
2𝑘𝑇.

Our harmonic oscillator has 𝑛 = 2, so we get ⟨𝐸⟩ = 𝑘𝑇. Good, this matches the partition
function approach!
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HARMONIC OSCILLATOR: FREE ENERGY

A classical harmonic oscillator has partition function

𝒁(𝜷) = 𝟏
𝜷ℏ𝝎

so its free energy in thermal equilibrium is

𝑭 = −𝟏
𝜷
𝐥𝐧𝒁 = −𝟏

𝜷
𝐥𝐧 ( 𝟏

𝜷ℏ𝝎
)

or

𝑭 = −𝒌𝑻 𝐥𝐧 (𝒌𝑻
ℏ𝝎

)

The partition function lets us do more! It lets us compute the free energy, too, using

𝐹 = −1
𝛽
ln𝑍

Unlike the expected energy, the free energy involves Planck’s constant:

𝐹 = −𝑘𝑇 ln (𝑘𝑇
ℏ𝜔

) .

Note 𝑘𝑇 and ℏ𝜔 both have units of energy, so 𝑘𝑇∕ℏ𝜔 is dimensionless, which is good
because we’re taking its logarithm. Also note that the free energy is negative at high
temperatures! That may seem weird, but it turns out to be good when we compute the
entropy.
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HARMONIC OSCILLATOR: ENTROPY

In thermal equilibrium at temperature 𝑻,
a classical harmonic oscillator has

expected energy ⟨𝑬⟩ = 𝒌𝑻 and free energy 𝑭 = −𝒌𝑻 𝐥𝐧 (𝒌𝑻
ℏ𝝎

)

so its entropy is

𝑺 = ⟨𝑬⟩ − 𝑭
𝑻 =

𝒌𝑻 + 𝒌𝑻 𝐥𝐧 (𝒌𝑻
ℏ𝝎

)

𝑻

or

𝑺 = 𝒌 (𝐥𝐧 (𝒌𝑻
ℏ𝝎

) + 𝟏)

To compute the entropy of a classical harmonic oscillator, we just use

𝑆 = ⟨𝐸⟩ − 𝐹
𝑇 .

We get the answer we got before, of course:

𝑆 = 𝑘 (ln (𝑘𝑇
ℏ𝜔

) + 1) .

But now we can finally understand the puzzling extra +1.
Aswe’ve seen, the entropy of any system in thermal equilibrium consists of two parts:

1. The free energy part, −𝐹∕𝑇. For the classical harmonic oscillator this is

−𝐹𝑇 = 𝑘 ln (𝑘𝑇
ℏ𝜔

) .

2. The expected energy part, ⟨𝐸⟩∕𝑇. For the classical harmonic oscillator this is

⟨𝐸⟩
𝑇 = 𝑘.

The free energy part of the entropy is always 𝑘 times the logarithm of the number of
accessible states. For the classical harmonic oscillator, the expected energy part of the
entropy must equal 𝑘 by the equipartition theorem, since the oscillator’s energy depends
on 2 degrees of freedom. This is small compared to the free energy part when ℏ𝜔 ≪ 𝑘𝑇:
that is, when quantum effects are small compared to thermal effects.
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PARTICLE IN A BOX: PARTITION FUNCTION

The energy of a classical free particle of mass𝒎
in a 1-dimensional box depends only on its momentum 𝒑:

𝑬(𝒑, 𝒒) =
𝒑𝟐

𝟐𝒎

Its position 𝒒 is trapped in the interval [𝟎, 𝑳].

Its partition function is therefore

𝒁(𝜷) =∫
𝑳

𝟎
∫

∞

−∞
𝒆−𝜷𝑬(𝒑,𝒒)

𝒅𝒑𝒅𝒒
𝒉

= 𝑳
𝒉
∫

∞

−∞
𝒆−𝜷𝒑𝟐∕𝟐𝒎 𝒅𝒑 = 𝑳

𝒉

√
𝟐𝝅𝒎
𝜷

Now let’s turn to our ultimate goal: computing the entropy of a box of gas. As a
warmup, let’s figure out the entropy of a single particle in a box. In fact, let’s start with a
a free classical particle in a one-dimensional box: that is, in some interval [0, 𝐿].

The first step is to compute its partition function. As you can see, this is easy enough.
But the whole idea raises some questions. Some people get freaked out by the concept of
entropy for a single particle—I guess because it involves probability theory for a single
particle, and they think probability only applies to large numbers of things.

I sometimes ask these people “how large counts as large?” In fact the foundations
of probability theory are just as mysterious for large numbers of things as for just one
thing. What do probabilities really mean? We could argue about this all day: Bayesian
versus. frequentist interpretations of probability, etc. I said a tiny bit about this before,
and I won’t say more now.

Large numbers of things tend to make large deviations less likely. For example the
chance of having all the gas atoms in a box all on the left side is less if you have 1000 atoms
than if you have just 2. This makes us worry less about using averages and probability.

But the math of probability works the same for small numbers of particles—even one
particle! Even better, knowing the entropy of one particle in a boxwill help us understand
the entropy of a million particles in a box—at least if they don’t interact, as we assume
for an ‘ideal gas’.

But why just a one-dimensional box? The answer is that particle in a 3-dimensional
box is mathematically the same as 3 noninteracting distinguishable particles in a one-
dimensional box! The 𝑥, 𝑦, and 𝑧 coordinates of the 3d particle act like positions of three
1d particles.
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PARTICLE IN A BOX: EXPECTED ENERGY

A classical free particle of mass𝒎 in a 1d box of length 𝑳
has partition function

𝒁 = 𝑳
𝒉

√
𝟐𝝅𝒎
𝜷

The expected energy of any system in
thermal equilibrium is

⟨𝑬⟩ = − 𝒅
𝒅𝜷

𝐥𝐧𝒁

So, by the miracle of basic calculus, we get

⟨𝑬⟩ = 𝟏
𝟐𝜷

= 𝟏
𝟐 𝒌𝑻

as we’d expect from the equipartition theorem!

We worked out the partition function of a classical free particle in a 1-dimensional
box. From this we can work out its expected energy. Look how simple it is! It’s just 1

2
𝑘𝑇,

where 𝑘 is Boltzmann’s constant and 𝑇 is the temperature!
Why is the final answer so simple? We can use the chain rule

𝑑
𝑑𝛽

ln𝑍 = 1
𝑍
𝑑𝑍
𝑑𝛽

to see that only the power of 𝛽 in

𝑍 = 𝐿
ℎ

√
2𝜋𝑚
𝛽

matters, not all the constants: these constants show up in 𝑑𝑍∕𝑑𝛽, but also in 1∕𝑍, and
they cancel. The length 𝐿, themass𝑚, Planck’s constant ℎ, the factor of 2𝜋... none of this
junk matters! Not for the expected energy, anyway. Because 𝑍 is proportional to 𝛽−1∕2,
we simply get ⟨𝐸⟩ = 1

2
𝑘𝑇.

More generally, if the partition function of a system is proportional to 𝛽−𝑐, its expected
energy will be 𝑐𝑘𝑇:

𝑍 ∝ 𝛽−𝑐 ⟹ ⟨𝐸⟩ = 𝑐𝑘𝑇.

Butwhen is the partition function of a systemproportional to 𝛽−𝑐 ? It’s enough for the sys-
tem’s energy to be a positive definite quadratic form in 𝑛 real variables—which physicists
call ‘degrees of freedom’. Then 𝑐 = 𝑛∕2. We’ve already seen an example with 2 degrees
of freedom: the classical harmonic oscillator. We saw that in this example 𝑍 ∝ 1∕𝛽. This
gives ⟨𝐸⟩ = 𝑘𝑇. But the result is quite general:
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Puzzle 45. Suppose we have a systemwith state spaceℝ𝑛 and energy function 𝐸∶ ℝ𝑛 →
ℝ that is a positive definite quadratic form, so that

𝐸(𝑥) = 1
2‖𝐴𝑥‖

2

for some invertible 𝑛×𝑛matrix𝐴. Show that its partition function is proportional to 𝛽−𝑐
where 𝑐 = 𝑛∕2.

In fact, this is just a new outlook on our friend the equipartition theorem.
Here’s another thing to consider. While our particle in a 1d box has 2 degrees of

freedom—position andmomentum—its energy depends on just one of these, and quadrat-
ically on that one. So its expected energy is 1

2
𝑛𝑘𝑇 where 𝑛 = 1, not 𝑛 = 2.

So here’s another puzzle for you:

Puzzle 46. Say we have a harmonic oscillator with spring constant 𝜅. As long as 𝜅 >
0, the energy depends quadratically on 2 degrees of freedom so ⟨𝐸⟩ = 𝑘𝑇. But when
𝜅 = 0 it depends on just one, and suddenly ⟨𝐸⟩ = 1

2
𝑘𝑇. How is such a discontinuity

possible? In other words: how can a particle care so much about the difference between
an arbitrarily small positive spring constant and a spring constant that’s exactly zero,
making its expected energy twice as much in the first case?

I’ll warn you: this puzzle is deliberately devilish. In a way it’s a trick question!
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PARTICLE IN A BOX: FREE ENERGY

A classical free particle of mass𝒎 in a 1d box of length 𝑳
has partition function

𝒁 = 𝑳
𝒉

√
𝟐𝝅𝒎
𝜷

The free energy of any system is given by 𝑭 = −𝟏
𝜷
𝐥𝐧𝒁, so

𝑭 = −𝟏
𝜷
𝐥𝐧 𝑳

𝒉

√
𝟐𝝅𝒎
𝜷

Using 𝜷 = 𝟏∕𝒌𝑻 and fiddling around a bit,
we can rewrite this as

𝑭 = −𝒌𝑻 (𝐥𝐧𝑳 + 𝟏
𝟐 𝐥𝐧𝒌𝑻 + 𝟏

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

)

From the partition function of a classical free particle in a one-dimensional box we
can also compute its free energy!
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PARTICLE IN A BOX: ENTROPY

We’ve shown that in thermal equilibrium, a classical particle of
mass𝒎 in a 1-dimensional box of length 𝑳 has expected energy

⟨𝑬⟩ = 𝟏
𝟐𝒌𝑻

and free energy

𝑭 = −𝒌𝑻 (𝐥𝐧𝑳 + 𝟏
𝟐 𝐥𝐧𝒌𝑻 + 𝟏

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

)

But entropy 𝑺 is always (⟨𝑬⟩ − 𝑭)∕𝑻, so

𝑺 = 𝒌 (𝐥𝐧𝑳 + 𝟏
𝟐 𝐥𝐧𝒌𝑻 + 𝟏

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

+ 𝟏
𝟐)

Having worked out the expected energy ⟨𝐸⟩ and free energy 𝐹 for a single classical
particle in thermal equilibrium in a 1-dimensional box, it is easy to work out its entropy.
We just subtract the free energy from the expected energy and divide by temperature:

𝑆 = ⟨𝐸⟩ − 𝐹
𝑇 .

The formula we get is not very snappy:

𝑆 = 𝑘 (ln𝐿 + 1
2 ln 𝑘𝑇 +

1
2 ln

2𝜋𝑚
ℎ2

+ 1
2) .

Wewill get a better formula later, and ponder its meaning. For now, let’s just make these
observations:

• When we make the length 𝐿 of the box larger, the entropy becomes larger.

• When we increase the temperature 𝑇, the entropy becomes larger.

• When we increase the mass𝑚 of the particle, the entropy becomes larger.

The first two facts should feel intuitively obvious. When we increase the box’s length,
there is more unknown information about the position of the particle in thermal equilib-
rium. When we increase the particle’s temperature, there is more unknown information
about its momentum. The third fact is less obvious. When we introduce the concept of
‘thermal wavelength’, we will see that increasing the particle’s mass decreases its thermal
wavelength, which in turn increases its entropy in thermal equilibrium.
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WHERE AREWE NOW?

Themystery: why does eachmolecule of hydrogen have ∼𝟐𝟑 bits
of entropy at standard temperature and pressure?

The goal: derive and understand the formula for the entropy of
a classical ideal monatomic gas:

𝑺 = 𝒌𝑵 (𝐥𝐧 𝑽
𝑵 + 𝟑

𝟐 𝐥𝐧𝒌𝑻 + 𝜸)

including the mysterious constant 𝜸.

The subgoal: compute the entropy of a single classical
particle in a 1-dimensional box:

𝑺 = 𝒌 (𝐥𝐧𝑳 + 𝟏
𝟐 𝐥𝐧𝒌𝑻 + 𝟏

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

+ 𝟏
𝟐) ✓

The sub-subgoal: explain entropy from the ground up, and
compute the entropy of a classical harmonic oscillator:

𝑺 = 𝒌 (𝐥𝐧 𝒌𝑻
ℏ𝝎

+ 𝟏) ✓

Let’s pause to remember where we are in our game plan. First we computed the
entropy of a classical harmonic oscillator. Now we’ve computed the entropy of a single
classical particle in a 1-dimensional box. The answer looks a bit like the entropy of an
ideal gas! That’s no coincidence—we’re almost there now.

In case you wanted to know the entropy of a particle in a 3-dimensional box, don’t
worry. It’s the same as the entropy of three particles of the samemass in three 1-dimensional
boxes of appropriate lengths: the length 𝐿, width𝑊 and height 𝐻 of our 3d box. So we
can just sum those 3 entropies and get our answer. Since ln𝐿+ln𝑊+ln𝐻 = ln𝑉 where
𝑉 is the volume of our 3d box, we get

𝑆 = 𝑘 (ln𝑉 + 3
2 ln 𝑘𝑇 +

3
2 ln

2𝜋𝑚
ℎ2

+ 3
2) .

Later we’ll do this calculation more rigorously andmore generally for a box of any shape.
But you may have another question: what’s the meaning of our formula for the en-

tropy of a classical particle in a 1-dimensional box? It’s pretty complicated, after all, and
we’ll need to understand it to have any chance of understanding the mysterious constant
𝛾 in the formula for a classical ideal monatomic gas.

We can understand our formula better if we delve into a tiny bit of quantummechan-
ics, and the concept of ‘thermal wavelength’. So let’s do that.
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THEWAVELENGTH OF A PARTICLE

In quantummechanics particles are waves!
A particle with momentum 𝒑 has wavelength

𝝀 = 𝒉
𝒑

where 𝒉 is the unreduced Planck’s constant, exactly

𝟔.𝟔𝟐𝟔𝟎𝟕𝟎𝟏𝟓 ⋅ 𝟏𝟎−𝟑𝟒 joule-seconds

For example, the wavelength of an electron moving at
1 meter/second is about 0.7 millimeters.

One of the most amazing discoveries of 20th-century physics: particles are waves.
The wavelength of a particle is Planck’s constant divided by its momentum! This was
first realized by Louis de Broglie in his 1924 Ph.D. thesis, so it’s called the ‘de Broglie
wavelength’.

Why am I telling you this? Because I want to explain and simplify the formula for the
entropy of a particle in a box. Even though I derived it classically, it contains Planck’s
constant! So, it will becomemore intuitive if we think a tiny bit about quantummechan-
ics.

A good explanation of quantum mechanics would require a whole other course. But
it’s good to know that in quantum mechanics, a particle with a given momentum has a
wavelength associated to it: we shouldn’t imagine it as having a definite location; it’s a bit
‘blurry’.

This will give amore intuitive explanation for our complicated formula of the entropy
of a particle in a 1d box. We’ll use this intuition to simplify our formula. That will make
it easier to generalize to𝑁 particles in a 3d box—that is, a classical monatomic ideal gas!
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THEWAVELENGTH OF AWARM PARTICLE

In thermal equilibrium, the average energy of
a classical free particle in 3d space is

⟨𝑬⟩ = 𝟑
𝟐𝒌𝑻

where 𝑻 is the temperature and 𝒌 is Boltzmann’s constant.

If the particle has mass𝒎,

𝑬 = 𝟏
𝟐𝒎𝒗

𝟐, 𝒑 = 𝒎𝒗 ⟹ 𝒑 =
√
𝟐𝒎𝑬 =

√
𝟑𝒎𝒌𝑻

In quantummechanics, a particle of momentum 𝒑 has
wavelength 𝝀 = 𝒉∕𝒑where 𝒉 is the unreduced Planck’s

constant.

So, at temperature 𝑻, the typical wavelength of
a free particle of mass𝒎 is roughly

𝝀 = 𝒉
√
𝟑𝒎𝒌𝑻

Particles are waves! Their wavelength is shorter when their momentum is bigger.
And the warmer they are, the bigger their momentum tends to be. So there should be a
formula for the typical wavelength of a warm particle. And here it is! It helps us visualize
the world: particles are a bit blurry, with a characteristic wavelength that depends on
temperature.

We get this formula from a blend of ideas. Classical mechanics says kinetic energy is
𝐸 = 𝑝2∕2𝑚. Classical statistical mechanics says ⟨𝐸⟩ = 3

2
𝑘𝑇. Quantum mechanics says

𝜆 = ℎ∕𝑝. It’s pretty optimistic to put these formulas together and see what we get. But
the result is approximately correct, though subject to limitations.

We derived ⟨𝐸⟩ = 3

2
𝑘𝑇 using classical statisticalmechanics. But it’s close to correct for

a single quantum particle in a big enough box at high enough temperatures. Otherwise
quantum effects kick in.

Another problem is that ⟨𝐸⟩ = 3

2
𝑘𝑇 and 𝐸 = 𝑝2∕2𝑚 do not imply ⟨𝑝⟩ =

√
3𝑚𝑘𝑇, even

if𝑝 heremeans themagnitude of themomentumvector. The arithmeticmean of a square
is not the square of the arithmetic mean! Really the ‘root mean square’ of 𝑝 is

√
3𝑚𝑘𝑇.

Similarly, even if the root mean square of 𝑝 is
√
3𝑚𝑘𝑇 and quantum mechanically 𝜆 =

ℎ∕𝑝, we cannot conclude that the root mean square of 𝜆 is ℎ∕
√
3𝑚𝑘𝑇. Again, you cannot

pass a root mean square through a reciprocal!
So, our derivation above is dodgy—but it’s okay as an order-of-magnitude approxima-

tion for a warm enough particle in a big enough box.
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THE PARTITION FUNCTION AND THE THERMAL
WAVELENGTH

The partition function of a classical free particle
of mass𝒎 in a 1d box of length 𝑳 is

𝒁 = ∫
𝑳

𝟎
∫

∞

−∞
𝒆−𝜷𝒑𝟐∕𝟐𝒎

𝒅𝒑𝒅𝒒
𝒉

= 𝑳
𝒉

√
𝟐𝝅𝒎
𝜷

= 𝑳
𝚲

where

𝚲 = 𝒉
√

𝜷
𝟐𝝅𝒎

is called the ‘thermal wavelength’.

Last time we saw that at temperature 𝑇, the typical wavelength of a free particle of
mass𝑚 is roughly

𝜆 = ℎ
√
3𝑚𝑘𝑇

= ℎ
√

𝛽
3𝑚 .

But the partition function of a classical particle of mass 𝑚 in a box simplifies a lot if we
introduce a slightly different distance scale, which people call the thermal wavelength

Λ = ℎ
√
2𝜋𝑚𝑘𝑇

= ℎ
√

𝛽
2𝜋𝑚 .

Then the partition function is just the length of the box divided by Λ. The thermal wave-
length Λ is a bit smaller than 𝜆: we have Λ ≈ 0.69𝜆. But we probably shouldn’t worry
about this too much, since our calculation of 𝜆 was so rough. Of course all these details
are worth thinking about. But the thermal wavelength will turn out to be very useful!
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FREE ENERGY AND THE THERMALWAVELENGTH

In thermal equilibrium, a classical free particle
of mass𝒎 in a 1d box of length 𝑳 has free energy

𝑭 = −𝟏
𝜷
𝐥𝐧 𝑳

𝒉

√
𝟐𝝅𝒎
𝜷

or

𝑭 = −𝒌𝑻 𝐥𝐧 𝑳
𝚲

where

𝚲 = 𝒉
√

𝜷
𝟐𝝅𝒎

is the thermal wavelength.

Since the partition function of the classical free particle in a one-dimensional box is

𝑍 = 𝐿
Λ

and free energy is related to the partition function by

𝐹 = −1
𝛽
ln𝑍,

we have
𝐹 = −1

𝛽
ln 𝐿
Λ .

Expressing this in terms of temperature rather than coolness, we have

𝐹 = −𝑘𝑇 ln 𝐿
Λ .
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ENTROPY AND THE THERMALWAVELENGTH

In thermal equilibrium, a classical free particle
of mass𝒎 in a 1d box of length 𝑳 has expected energy

⟨𝑬⟩ = 𝟏
𝟐𝒌𝑻

and free energy

𝑭 = −𝒌𝑻 𝐥𝐧 𝑳
𝚲

where 𝚲 = 𝒉∕
√
𝟐𝝅𝒎𝒌𝑻 is the thermal wavelength.

But entropy 𝑺 is (⟨𝑬⟩ − 𝑭)∕𝑻, so

𝑺 = 𝒌 (𝐥𝐧 𝑳
𝚲 + 𝟏

𝟐)

Now that we have clean formulas for the expected energy and free energy of the clas-
sical free particle in a 1-dimensional box, we can get a nice formula for its entropy. This
is equivalent to the formula we saw before, but it’s easier to understand. It’s a sum of two
terms:

𝑆 = 𝑘 (ln 𝐿
Λ + 1

2) .

Let’s make sure we understand this! We’ve seen that for any system in thermal equi-
librium, the entropy is the sum of two parts:

1. The free energy part. For the classical particle in a 1-dimensional box, this is

−𝐹𝑇 = 𝑘 ln 𝐿
Λ .

2. The expected energy part. For the classical particle in a 1-dimensional box, this is

⟨𝐸⟩
𝑇 = 1

2𝑘.

The free energy part is always 𝑘 times the logarithm of the number of accessible states,
and for the particle in a one-dimensional box the number of accessible states is 𝐿∕Λ. The
expected energy part is 1

2
𝑘, by the equipartition theorem, because the particle’s expected

energy depends on one degree of freedom.
Let us think a bit more about why the number of accessible states is 𝐿∕Λ. The most

rigorous approach is simply to compute the number of accessible states—that is, the par-
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tition function:

𝑍 = ∫
𝐿

0
∫

∞

−∞
𝑒−𝐸∕𝑘𝑇

𝑑𝑝 𝑑𝑞
ℎ

= ∫
𝐿

0
∫

∞

−∞
𝑒−𝛽𝑝2∕2𝑚

𝑑𝑝 𝑑𝑞
ℎ

= 𝐿
ℎ

√
2𝜋𝑚
𝛽

= 𝐿
Λ .

Amore hand-wavy approach is to imagine the space of states of the particle, meaning
the space of momentum-position pairs (𝑝, 𝑞) ∈ ℝ × [0, 𝐿]. When it comes to counting
accessible states, each region of area ℎ holds one state. The ‘accessible’ states are those
where the energy is not too big compared to 𝑘𝑇, so the probability density 𝑒−𝐸∕𝑘𝑇 is fairly
large. This is a bit vague, as it must be, because ‘accessibility’ is not really a yes-or-no
matter. But let’s just pretend it is, and say a state is accessible if 𝐸 ≤ 𝑘𝑇. Then the
accessible region of state space is where 𝑝2∕2𝑚 ≤ 𝑘𝑇, or

|𝑝| ≤
√
2𝑚∕𝛽.

This region is

{(𝑝, 𝑞) |||| −
√
2𝑚∕𝛽 ≤ 𝑝 ≤

√
2𝑚∕𝛽, 0 ≤ 𝑞 ≤ 𝐿} ⊆ [0, 𝐿] ×ℝ

It has area 𝐿 × 2
√
2𝑚∕𝛽, so the number of states it holds is this divided by ℎ, or

2𝐿
ℎ

√
2𝑚
𝛽

=
√

4
𝜋
𝐿
Λ .

This is just 13% more than the exact value of 𝑍. More importantly, I hope this calcula-
tion gives you a mental picture of number of accessible states for the particle in a one-
dimensional box. A mental picture can be helpful even if it’s oversimplified. I like to
imagine counting the little rectangles of area ℎ that can fit into the ‘accessible’ region of
state space.

Sometimes these little rectangles are called ‘phase space cells’, since ‘phase space’ is
essentially a synonym for state space.
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PARTICLE IN A 3D BOX: PARTITION FUNCTION

The partition function of a classical free particle of mass𝒎
in a 3d box 𝑩 of volume 𝑽 is

𝒁 = ∫
𝑩
∫
ℝ𝟑

𝒆−𝜷𝒑⃗⋅𝒑⃗∕𝟐𝒎
𝒅𝟑𝒑𝒅𝟑𝒒
𝒉𝟑

= 𝑽
𝒉𝟑

(𝟐𝝅𝒎
𝜷

)
𝟑∕𝟐

where 𝜷 = 𝟏∕𝒌𝑻 is the coolness.

This result becomes prettier using the thermal wavelength

𝚲 = 𝒉(𝜷∕𝟐𝝅𝒎)𝟏∕𝟐

Then we get simply

𝒁 = 𝑽
𝚲𝟑

Now that we’ve worked out the statistical mechanics of a classical particle in a one-
dimensional box, it’s easy to copy everything for a three-dimensional box of any shape.
We start with the partition function. The energy of a free particle of mass𝑚 is 𝑝⃗ ⋅ 𝑝⃗∕2𝑚,
so the partition function is the integral of exp(−𝑝⃗ ⋅ 𝑝⃗∕2𝑚) over all possible positions and
momenta. Integrate over momentum and you get

∫
ℝ3

𝑒−𝛽(𝑝21+𝑝32+𝑝23)∕2𝑚
𝑑𝑝1𝑑𝑝2𝑑𝑝3

ℎ3
= (∫

∞

−∞
𝑒−𝛽𝑝2∕2𝑚

𝑑𝑝
ℎ
)
3

= (ℎ

√
2𝜋𝑚
𝛽

)

3

.

In terms of the thermal wavelength this is just 1∕Λ3. Integrate over position and you
multiply this by the volume of the box, say𝑉. Sowe get an incredibly simple final answer:

𝑍 = 𝑉
Λ3 .

And this sort of calculation works in any dimension: there’s nothing special about the
number 3 here.
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PARTICLE IN A 3D BOX: ENTROPY

In thermal equilibrium, a classical free particle of mass𝒎
in a 3d box of volume 𝑽 has expected energy

⟨𝑬⟩ = 𝟑
𝟐𝒌𝑻

and free energy

𝑭 = −𝒌𝑻 𝐥𝐧 𝑽
𝚲𝟑

where 𝚲 = 𝒉∕
√
𝟐𝝅𝒎𝒌𝑻 is the thermal wavelength.

But entropy 𝑺 is (⟨𝑬⟩ − 𝑭)∕𝑻, so

𝑺 = 𝒌 (𝐥𝐧 𝑽
𝚲𝟑 + 𝟑

𝟐)

The entropy of a particle in thermal equilibrium in a three-dimensional box works
very much like our earlier calculation for a one-dimensional box, with a couple of adjust-
ments due to the dimension. Since the particle’s energy is now a quadratic function of 3
variables, the equipartition theorem now says its expected energy is

⟨𝐸⟩ = 3
2𝑘𝑇.

We can work out its free energy from its partition function, which we computed in the
last tweet:

𝐹 = −𝑘𝑇 ln𝑍 = −𝑘 ln 𝑉
Λ3 .

Thus its entropy is

𝑆 = ⟨𝐸⟩ − 𝐹
𝑇 = 𝑘 (ln 𝑉

Λ3 + 3
2) .

The meaning of the two terms here is very similar to that for the particle in the one-
dimensional box. The first term is 𝑘 times the logarithm of the number of accessible
states, as always for the Gibbs entropy of a system in thermal equilibrium. Here the
number of accessible states is 𝑉∕Λ3. The second term is 3

2
𝑘 thanks to the equipartition

theorem, since the particle’s expected energy depends quadratically on 3 degrees of free-
dom. When 𝑉 ≫ Λ3 this second term is a small correction to the first. As this ceases
to be true, the second term becomes more important—and when Λ3 is comparable to 𝑉,
quantum corrections to our calculation also become significant.
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A TALE OF TWO GASES

The entropy of an ideal gas of𝑵 distinguishable
classical particles of mass𝒎 in a box of volume 𝑽 is

𝑺𝒅 = 𝒌𝑵 (𝐥𝐧𝑽 + 𝟑
𝟐 𝐥𝐧𝒌𝑻 + 𝟑

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

+ 𝟑
𝟐)

while for indistinguishable particles it’s

𝑺𝒊 ≈ 𝒌𝑵 (𝐥𝐧 𝑽
𝑵 + 𝟑

𝟐 𝐥𝐧𝒌𝑻 + 𝟑
𝟐 𝐥𝐧

𝟐𝝅𝒎
𝒉𝟐

+ 𝟓
𝟐)

where the corrections are small compared to𝑵 as𝑵 →∞.

Now we are finally ready to tackle the entropy of a gas. We start with a ‘monatomic
ideal gas’, which means 𝑁 free point particles bouncing around in a box. But there’s a
subtlety! We’ll get different answers depending on whether we think of these particles as
distinguishable or indistinguishable. That is: do we count the state of the gas as different
if we switch two particles, or not?

The formulas look very similar. There are three differences:

• For distinguishable particles we’ll get an exact formula, while for indistinguishable
particles we’ll get an approximate one, where the corrections are small compared
to 𝑁 when 𝑁 become large.

• The entropy for distinguishable particles has a term equal to 3

2
𝑘𝑁, while for indis-

tinguishable particles it has a term equal to 5

2
𝑘𝑁.

• Most importantly, there’s a huge difference in the volume dependence! Where the
distinguishable particles have a term in the entropy equal to 𝑘𝑁 ln𝑉, the indis-
tinguishable ones have a term equal to 𝑘𝑁 ln 𝑉

𝑁
, so their entropy is considerably

smaller for large volumes.

The last difference makes the entropy behave strangely for distinguishable particles,
so in practice the physically important case is the gas of indistinguishable particles. But
we’ll do the calculations in both cases, because the distinguishable case is easier, and
interesting.

95



GAS OF DISTINGUISHABLE PARTICLES: PARTITION FUNCTION

The partition function of an ideal gas of𝑵 distinguishable
classical particles of mass𝒎 in a 3d box 𝑩 of volume 𝑽 is

𝒁𝒅 = ∫
𝑩𝑵

∫
ℝ𝟑𝑵

𝒆
−𝜷

𝑵∑

𝒊=𝟏

𝒑⃗𝒊 ⋅ 𝒑⃗𝒊

𝟐𝒎 𝒅𝟑𝒑𝟏⋯𝒅𝟑𝒑𝑵 𝒅𝟑𝒒𝟏⋯𝒅𝟑𝒒𝑵
𝒉𝟑𝑵

= 𝑽𝑵

𝒉𝟑𝑵
(𝟐𝝅𝒎

𝜷
)
𝟑𝑵∕𝟐

Thus

𝒁𝒅 = 𝑽𝑵

𝚲𝟑𝑵

where 𝚲 = 𝒉(𝜷∕𝟐𝝅𝒎)𝟏∕𝟐 is the thermal wavelength.

Suppose we have a system of 𝑁 distinguishable classical free particles in a three-
dimensional box 𝐵 of volume 𝑉. The state of this system is described by 𝑁 positions
𝑞1,… , 𝑞𝑁 ∈ 𝐵 and 𝑁 momenta 𝑝⃗1,… , 𝑝⃗𝑁 ∈ ℝ3. If each particle has mass 𝑚, the energy
of the 𝑖th particle is equal to

𝐸𝑖 =
𝑝⃗𝑖 ⋅ 𝑝⃗𝑖
2𝑚

and the energy of the system is

𝐸 =
𝑁∑

𝑖=1
𝐸𝑖.

Let’s call the partition function of this system 𝑍𝑑. To compute this we integrate exp(−𝛽𝐸)
over the space of states, obtaining

𝑍𝑑 =∫
𝐵𝑁
∫
ℝ3𝑁

exp(−𝛽𝐸)
𝑑3𝑝1⋯𝑑3𝑝𝑁 𝑑3𝑞1⋯𝑑3𝑞𝑁

ℎ3𝑁
.

Above, I proceeded to compute 𝑍𝑑 directly by doing the Gaussian integral over mo-
menta and integrating each position over the box. Here’s a slightly different way. Because

exp(−𝛽𝐸) = exp(−𝛽𝐸1)⋯ exp(−𝛽𝐸𝑁),

the partition function 𝑍𝑑 is a product of integrals which are all equal:

𝑍𝑑 = (∫
𝐵
∫
ℝ3

𝑒−𝛽𝑝⃗⋅𝑝⃗∕2𝑚
𝑑3𝑝 𝑑3𝑞
ℎ3

)
𝑁

.
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The integral in the parentheses is the partition function of an single particle in a box. We
have already seen that this equals

∫
𝐵
∫
ℝ3

𝑒−𝛽𝑝⃗⋅𝑝⃗∕2𝑚
𝑑3𝑝 𝑑3𝑞
ℎ3

= 𝑉
Λ3

where Λ is the thermal wavelength. Thus we have

𝑍𝑑 = ( 𝑉
Λ3)

𝑁

.

We can also do this calculation with a lot less work using Puzzle 36. This implies that
when we build a new system from𝑁 identical noninteracting copies of some old system,
the partition function of the new system is the𝑁th power of the partition function of the
old system. What I just did is show this in a special case.
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GAS OF DISTINGUISHABLE PARTICLES: ENTROPY

In thermal equilibrium, an ideal gas of𝑵 distinguishable
classical particles of mass𝒎 in a 3-dimensional box of volume 𝑽

has expected energy

⟨𝑬𝒅⟩ =
𝟑
𝟐𝒌𝑵𝑻

and free energy

𝑭𝒅 = −𝒌𝑻 𝐥𝐧 𝑽𝑵

𝚲𝟑𝑵

where 𝚲 = 𝒉∕
√
𝟐𝝅𝒎𝒌𝑻 is the thermal wavelength.

Its entropy 𝑺𝒅 is (⟨𝑬𝒅⟩ − 𝑭𝒅)∕𝑻, so

𝑺𝒅 = 𝒌𝑵 (𝐥𝐧 𝑽
𝚲𝟑 + 𝟑

𝟐)

We use the subscript 𝑑 for a gas of 𝑁 distinguishable particles. Since the energy is a
quadratic function of 3𝑁 variables, the equipartition theorem says the expected energy is

⟨𝐸𝑑⟩ =
3
2𝑘𝑁𝑇.

The free energy 𝐹 is minus Boltzmann’s constant times the logarithm of the partition
function, which we just computed:

𝐹𝑑 = −𝑘 ln𝑍𝑑 = −𝑘 ln 𝑉𝑁

Λ3𝑁 .

Thus the entropy of the gas is

𝑆𝑑 =
⟨𝐸𝑑⟩ − 𝐹𝑑

𝑇 = 𝑘𝑁 (ln 𝑉
Λ3 + 3

2) .

If we expand this out using

Λ = ℎ
√
2𝜋𝑚𝑘𝑇

we get the formula I promised earlier:

𝑆𝑑 = 𝑘𝑁 (ln𝑉 + 3
2 ln 𝑘𝑇 +

3
2 ln

2𝜋𝑚
ℎ2

+ 3
2) .

The only advantage of this messier formula is that it separates out the temperature de-
pendence and the volume dependence.
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THE GIBBS “PARADOX”

For the ideal gas of𝑵 distinguishable classical particles in a box
of volume 𝑽, the entropy

𝑺𝒅 = 𝒌𝑵 (𝐥𝐧𝑽 + 𝟑
𝟐 𝐥𝐧𝒌𝑻 + 𝟑

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

+ 𝟑
𝟐)

more than doubles if we double both𝑵 and 𝑽
while keeping everything else the same.

This confused people for a while,
so it’s called the ‘Gibbs paradox’.

Start with a box 𝐵 containing an ideal gas of distinguishable classical particles. Then
double the volume of the box to get a new box 𝐵′, and double the number of particles in
the box too, while keeping the temperature and everything else the same.

We might expect the entropy to double. After all, we could take the doubled box and
slip a thin wall down the middle to get two identical copies of the original box. So the
entropy should be twice as big now. Right?

Apparently not! Instead of just doubling the 𝑘𝑁 ln𝑉 term in the original entropy, we
are replacing it with 2𝑘𝑁 ln(2𝑉), which is more than twice as big. The reason is that in
the doubled box 𝐵′ each individual particle has twice as much room to roam than if you
put a wall down themiddle. Thus, it takesmore information to say where all the particles
are.

While there’s no real paradox here, people found this result deeply counterintuitive,
so they called it the ‘Gibbs paradox’. And in fact they had a good reason for being suspi-
cious of this result. It would be correct if gas molecules were distinguishable. But in fact
molecules of the same kind are not distinguishable—they don’t have little labels on them
that let you recognize which is which. And if we take this fact into account, our formula
for the entropy changes. Let’s see how!
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GAS OF INDISTINGUISHABLE PARTICLES: PARTITION
FUNCTION

The partition function of an ideal gas of𝑵 indistinguishable
classical particles of mass𝒎 in a 3d box 𝑩 of volume 𝑽 is

𝒁𝒊(𝜷) =
𝒁𝒅(𝜷)
𝑵!

= 𝟏
𝑵!

𝑽𝑵

𝒉𝟑𝑵
(𝟐𝝅𝒎

𝜷
)
𝟑𝑵∕𝟐

Thus

𝒁𝒊(𝜷) = 𝟏
𝑵!

𝑽𝑵

𝚲𝟑𝑵

where 𝚲 = 𝒉(𝜷∕𝟐𝝅𝒎)𝟏∕𝟐 is the thermal wavelength.

The partition function 𝑍𝑖 for a gas of 𝑁 indistinguishable particles is 1∕𝑁! times that
for a gas of distinguishable particles. Why? We got 𝑍𝑑 by integrating exp(−𝛽𝐸) over
the space of ordered 𝑁-tuples of position-momentum pairs. The energy 𝐸 here does not
change if we permute our𝑁-tuple, so we can also think of it as a function of unordered𝑁-
tuples. Then we get 𝑍𝑖 by integrating exp(−𝛽𝐸) over the space of such unordered tuples.
Notice that there are𝑁! ordered𝑁-tuples for each unordered𝑁-tuple, except for𝑁-tuple
with repeated entries, which form a set of measure zero and thus contribute nothing to
the integral. Thus, we should not be surprised that

𝑍𝑖(𝛽) =
𝑍𝑑(𝛽)
𝑁! .

But we’ve seen
𝑍𝑑(𝛽) =

𝑉𝑁

Λ3𝑁

where Λ is the thermal wavelength, so

𝑍𝑖(𝛽) =
1
𝑁!

𝑉𝑁

Λ3𝑁 .

Making this sketchy argument precise requiresmore notation. I think carefully doing the
case 𝑁 = 2 is the best way for you to see what’s going on.
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GAS OF INDISTINGUISHABLE PARTICLES: ENTROPY

In thermal equilibrium, an ideal gas of𝑵 indistinguishable
classical particles of mass𝒎 in a 3-dimensional box of volume 𝑽

has expected energy

⟨𝑬𝒊⟩ =
𝟑
𝟐𝒌𝑵𝑻

and free energy

𝑭𝒊 = −𝒌𝑻 𝐥𝐧 ( 𝟏
𝑵!

𝑽𝑵

𝚲𝟑𝑵 )

where 𝚲 = 𝒉∕
√
𝟐𝝅𝒎𝒌𝑻 is the thermal wavelength.

Its entropy 𝑺𝒊 is (⟨𝑬𝒊⟩ − 𝑭𝒊)∕𝑻, so

𝑺𝒊 = 𝒌𝑵 (𝐥𝐧 𝑽
𝚲𝟑 + 𝟑

𝟐) − 𝒌 𝐥𝐧𝑵!

Suppose we have a gas of𝑁 indistinguishable classical free particles. Since the energy
is a quadratic function of the 3𝑁momentumvariables, the equipartition theorem says the
expected energy of this gas is

⟨𝐸𝑖⟩ =
3
2𝑘𝑁𝑇.

The free energy 𝐹 is minus Boltzmann’s constant times the logarithm of the partition
function, which we just computed:

𝐹𝑖 = −𝑘 ln𝑍𝑖 = −𝑘 ln ( 1𝑁!
𝑉𝑁

Λ3𝑁 ) .

Thus the entropy of the gas is

𝑆𝑖 =
⟨𝐸𝑖⟩ − 𝐹𝑖

𝑇 = 𝑘𝑁 (ln 𝑉
Λ3 + 3

2) − 𝑘 ln𝑁!

In short, it is 𝑘 ln𝑁! less than for the gas of distinguishable particles. Thismakes beautiful
intuitive sense: there are𝑁! permutations of the particles that we no longer care about in
the indistinguishable case, so we learn ln𝑁! less information when we learn everything
we can about this gas when our initial assumption was that it’s in thermal equilibrium.
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STIRLING’S FORMULA

Stirling’s formula says

𝑵! ∼
√
𝟐𝝅𝑵 (𝑵𝒆 )

𝑵

and it gives

𝐥𝐧𝑵! ≈ (𝐥𝐧𝑵 − 𝟏)𝑵 + 𝟏

𝟐
𝐥𝐧 𝟐𝝅𝑵

where the error goes to zero as𝑵 → +∞.

Now we need a bit of math: Stirling’s formula for the factorial function. In one form
this says

lim
𝑁→+∞

√
2𝜋𝑁

(𝑁
𝑒

)𝑁

𝑁! = 1.

We abbreviate this fact, that the ratio of two quantities approaches 1 as 𝑁 → +∞, by

saying 𝑁! is asymptotic to
√
2𝜋𝑁

(𝑁
𝑒

)𝑁
. We also write

𝑁! ∼
√
2𝜋𝑁 (𝑁𝑒 )

𝑁

.

where the symbol ∼means ‘asymptotic to’.
If we take the logarithm of both sides we get

ln𝑁! ≈ (ln𝑁 − 1)𝑁 + 1

2
ln 2𝜋𝑁.

The symbol ≈ has a vaguer meaning: ‘approximately equal to’. But it turns out that in
this instance the approximation is extremely good: the difference between the left and
right sides goes to zero as 𝑁 → +∞. In fact we will content ourselves with a cruder
approximation:

ln𝑁! ≈ (ln𝑁 − 1)𝑁
because in the entropy of an ideal gas𝑁 is typically huge, so the term we have discarded
here is dwarfed by the others.

Puzzle 47. Suppose𝑁 is Avogadro’s number, close to the number of atoms in 4 grams of
helium:

𝑁 ≈ 6 ⋅ 1023.
What is the ratio of 1

2
ln 2𝜋𝑁 to 𝑁?

While deriving Stirling’s formula is fascinating and not at all trivial, doing so would
take us rather far afield. So I will resist, and refer you instead to this:

• John C. Baez, Stirling’s formula, The 𝑛-Category Café, October 24, 2021.

102

https://golem.ph.utexas.edu/category/2021/10/stirlings_formula.html


THE SACKUR–TETRODE EQUATION

In thermal equilibrium, an ideal gas of𝑵 indistinguishable
classical particles in a 3-dimensional box of volume 𝑽 has

entropy

𝑺𝒊 = 𝒌𝑵 (𝐥𝐧 𝑽
𝚲𝟑 + 𝟑

𝟐) − 𝒌 𝐥𝐧𝑵!

where 𝚲 = 𝒉∕
√
𝟐𝝅𝒎𝒌𝑻 is the thermal wavelength.

Using Stirling’s formula

𝐥𝐧𝑵! ≈ (𝐥𝐧𝑵 − 𝟏)𝑵

we get the Sackur–Tetrode equation:

𝑺𝒊 ≈ 𝒌𝑵 (𝐥𝐧 𝑽
𝑵𝚲𝟑 +

𝟓
𝟐)

Taking our formula

𝑆𝑖 = 𝑘𝑁 (ln 𝑉
Λ3 + 3

2) − 𝑘 ln𝑁!

and using a simple version of Stirling’s formula, ln𝑁! ∼ (ln𝑁 − 1)𝑁, we get the famous
Sackur–Tetrode equation:

𝑆𝑖 ∼ 𝑘𝑁 (ln 𝑉
Λ3 + 3

2) − 𝑘(ln𝑁 − 1)𝑁

∼ 𝑘𝑁 (ln 𝑉
𝑁Λ3 +

5
2) .

Note that with this formula, if we multiply both 𝑉 and 𝑁 by the same constant, the en-
tropy also gets multiplied by that constant. In this situation we say the entropy is ‘exten-
sive’.

For a better approximation, we can use

ln𝑁! ≈ (ln𝑁 − 1)𝑁 + 1

2
ln 2𝜋𝑁

where the error goes to zero as 𝑁 → ∞. This gives a correction to the Sackur–Tetrode
equation:

𝑆𝑖 ≈ 𝑘𝑁 (ln 𝑉
𝑁Λ3 +

5
2) −

1
2 ln 2𝜋𝑁.

Here if we multiply both 𝑉 and 𝑁 by a constant 𝑐, we don’t just multiply the entropy by
𝑐: we also have to subtract 1

2
ln 2𝜋𝑐. So the entropy is not quite extensive—but this effect

is tiny when you’ve got a mole of gas.
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THE ENTROPY OF AN IDEALMONATOMIC GAS

In thermal equilibrium, an ideal gas of𝑵 indistinguishable
classical particles in a 3-dimensional box of volume 𝑽 has

entropy given approximately by the Sackur–Tetrode equation:

𝑺 ≈ 𝒌𝑵 (𝐥𝐧 𝑽
𝑵𝚲𝟑 +

𝟓
𝟐)

But the thermal wavelength 𝚲 is

𝚲 = 𝒉
√
𝟐𝝅𝒎𝒌𝑻

so we can rewrite this as

𝑺 ≈ 𝒌𝑵 (𝐥𝐧 𝑽
𝑵 + 𝟑

𝟐 𝐥𝐧𝒌𝑻 + 𝟑
𝟐 𝐥𝐧

𝟐𝝅𝒎
𝒉𝟐

+ 𝟓
𝟐)

We’ve done it: we’ve figured out the entropy of a gas of 𝑁 indistinguishable classical
free particles in a 3-dimensional box of volume 𝑉. Above I’ve written it in two different
ways. Let’s mull over the meaning of each term in each formula.

The first formula says

𝑆 ≈ 𝑘𝑁 (ln 𝑉
𝑁Λ3 +

5
2) .

Like the entropy of the classical harmonic oscillator and the classical free particle in a
box, this breaks up into two parts, thanks to the formula

𝑆 = ⟨𝐸⟩ − 𝐹
𝑇 .

But it does so a bit subtly. The two parts are not what you might naively think! They are:

1. The free energy part:

−𝐹𝑇 ≈ 𝑘𝑁 (ln 𝑉
𝑁Λ3 + 1) .

2. The expected energy part:
⟨𝐸⟩
𝑇 = 3

2𝑘𝑁.

As usual, the free energy part of the entropy is 𝑘 times the logarithm of the number of
accessible states. The expected energy part of the entropy is 3

2
𝑁 times 𝑘 by the equiparti-

tion theorem, since there are𝑁 particles each of whose energy depends on 3 momentum
degrees of freedom.

The expected energy part of the entropy is small compared to the free energy part
when 𝑉∕𝑁 ≫ Λ3: that is, when the volume available per particle greatly exceeds the
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cube of its thermal wavelength. This happens for a gas that is sufficiently warm and
dilute, made of sufficiently massive particles. We will see that this is true for helium at
standard temperature and pressure. It’s evenmore true for the heavier monatomic gases:
the noble gases like neon, argon, and krypton.

The surprise is the extra “+1” in the first part of the entropy—the free energy part. It’s
telling us that the logarithm of the number of accessible states, divided by the number of
particles, is

ln 𝑉
𝑁Λ3 + 1.

What’s the physical origin of this mysterious extra nat?
Mathematically it comes fromStirling’s formula, which showedupwhenwe switched

from a gas of distinguishable particles to a gas of indistinguishable particles. It may seem
odd that indistinguishability would increase the entropy by 1 nat per particle, but don’t
be confused: as we’ve seen, it greatly reduces it. For a gas of distinguishable particles the
log of the number of accessible states, divided by the number of particles, is ln(𝑉∕Λ3).
When we switch to indistinguishable particles this drops to ln(𝑉∕𝑁Λ3) + 1.

Here is a rough heuristic explanation of what’s going on. For a single particle in a
box of volume 𝑉, the number of accessible states is 𝑉∕Λ3. In a gas of distinguishable free
particles, each roams independently around the whole volume 𝑉. Thus, the log of the
number of accessible states is ln(𝑉∕Λ3) per particle.

For a gas of indistinguishable particles, the story changes. For starters, we can crudely
pretend each particle is trapped in its own tiny box of volume 𝑉∕𝑁. After all, if it leaves
this tiny box by trading places with another particle in another tiny box, nothing really
changes. In this approximation, the log of the number of accessible states is ln(𝑉∕𝑁Λ3)
per particle.

But it’s not really true that each particle can only leave its tiny box by trading places
with another. We can have more than one particle in the same tiny box—or none. That
is, our gas can have density fluctuations. An exact treatment of the problem gives, not
ln(𝑉∕𝑁Λ3) nats per particle, but

ln(𝑉∕Λ3) − ln𝑁!

Stirling’s formula says this is approximately

ln(𝑉∕Λ3) − (ln𝑁 − 1) = ln(𝑉∕𝑁Λ3) + 1.

This explains the mysterious extra nat. The extra nat of entropy per particle is due to
density fluctuations!

As we’ve seen, even this is an oversimplification. A still better approximation, again
coming from Stirling’s formula, says

ln(𝑉∕Λ3) − ln𝑁! ≈ ln(𝑉∕𝑁Λ3) + 1 − 1

2
ln(2𝜋𝑁)∕𝑁.

But as we saw in Puzzle 47, this further correction is negligible for a mole of gas. It only
becomes interesting for microscopic systems.

Now let’s look at our second formula for the entropy of a gas of 𝑁 indistinguishable
classical free particles:

𝑆 ≈ 𝑘𝑁 (ln 𝑉𝑁 + 3
2 ln 𝑘𝑇 +

3
2 ln

2𝜋𝑚
ℎ2

+ 5
2) .

Not only is this harder to remember, it’s generally less friendly to physical intuition. First
of all, three of the terms involve the logarithm of dimensionful quantities. Thus, whenwe
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change units they change, not by rescaling in the usual way, but by addition or subtrac-
tion. Secondly, the important role of the thermal wavelength is concealed in this formula.

The main advantage of this formula is that it separates out three contributors to the
entropy per particle:

• The volume available per particle, 𝑉∕𝑁. The bigger this is, the more entropy the
gas has per particle.

• The temperature, 𝑇. The bigger this is, the more entropy per particle.

• The particle mass,𝑚. The bigger this is, the more entropy per particle.

The first two should be rather intuitive. But what about the third? We need to combine
𝑉∕𝑁 and 𝑇 with the particle mass𝑚 and some constants of nature to get a dimensionless
quantity, which we can then take the logarithm of. This leads us straight to the thermal
wavelength:

ln 𝑉𝑁 + 3
2 ln 𝑘𝑇 +

3
2 ln

2𝜋𝑚
ℎ2

= ln
𝑉(2𝜋𝑚𝑘𝑇)3∕2

𝑁ℎ3

= ln 𝑉
𝑁Λ3 .

Thus, my best explanation of why a gas of heavier particles has more entropy per particle
is that they have a shorter thermal wavelength, so we can specify their position more
accurately, and it takes more information to do so.
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WHERE AREWE NOW?

Themystery: why does eachmolecule of hydrogen have ∼𝟐𝟑 bits
of entropy at standard temperature and pressure?

The goal: derive and understand the formula for the entropy of
a classical ideal monatomic gas:

𝑺 = 𝒌𝑵 (𝐥𝐧 𝑽
𝑵 + 𝟑

𝟐 𝐥𝐧𝒌𝑻 + 𝜸)

including the mysterious constant 𝜸:

𝜸 = 𝟑
𝟐 𝐥𝐧

𝟐𝝅𝒎
𝒉𝟐

+ 𝟓
𝟐 ✓

The subgoal: compute the entropy of a single classical
particle in a 1-dimensional box:

𝑺 = 𝒌 (𝐥𝐧𝑳 + 𝟏
𝟐 𝐥𝐧𝒌𝑻 + 𝟏

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

+ 𝟏
𝟐) ✓

The sub-subgoal: explain entropy from the ground up, and
compute the entropy of a classical harmonic oscillator:

𝑺 = 𝒌 (𝐥𝐧 𝒌𝑻
ℏ𝝎

+ 𝟏) ✓

Okay, now we know the entropy of a classical ideal monatomic gas! We even know
what it means. Unfortunately we’re trying to figure out the entropy of hydrogen, which
is diatomic. But we can do helium, which is monatomic... and then we’ll do hydrogen.
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ENTROPY PERMOLE VERSUS BITS PERMOLECULE

A nat of unknown information is 𝟏.𝟑𝟖𝟎𝟔𝟒𝟗 ⋅ 𝟏𝟎−𝟐𝟑 joules/kelvin
of entropy: this is Boltzmann’s constant.

There are 𝟔.𝟎𝟐𝟐𝟏𝟒𝟎𝟕𝟔 ⋅ 𝟏𝟎𝟐𝟑 molecules per mole:
this is Avogadro’s number.

Thus, one nat of unknown information per molecule
corresponds to

𝟏.𝟑𝟖𝟎𝟔𝟒𝟗 ⋅ 𝟏𝟎−𝟐𝟑 × 𝟔.𝟎𝟐𝟐𝟏𝟒𝟎𝟕𝟔 ⋅ 𝟏𝟎𝟐𝟑 ≈ 𝟖.𝟑𝟏𝟒𝟒𝟔𝟑

joule/kelvin of entropy per mole.

A bit is 𝐥𝐧 𝟐 ≈ 𝟎.𝟔𝟗𝟑𝟏𝟓 nats, so one bit of unknown information
per molecule corresponds to about

𝟎.𝟔𝟗𝟑𝟏𝟓 × 𝟖.𝟑𝟏𝟒𝟒𝟔𝟑 ≈ 𝟓.𝟕𝟔𝟑𝟏𝟒𝟔

joule/kelvin of entropy per mole.

Here is a little fact we need now: one bit of Shannon entropy per molecule equals
about 5.76 joules/kelvin of Gibbs entropy per mole. I apologize for the oppressively large
number of decimal places above, but I want to compare our theoretical predictions of the
entropy of helium and hydrogen to experimental results, and it’s not clear yet how closely
our answers will match experiment, so it’s good to be prepared.

By theway, the values of Boltzmann’s constant andAvogadro’s number here are exact,
fixed by the definition of SI units. So there is no experimental uncertainty in any of the
numbers on this page.
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THE ENTROPY OF HELIUM: THEORY

The Sackur–Tetrode equation says that assuming helium is a
classical ideal monatomic gas, its entropy is

𝑺𝒊 ≈ 𝒌𝑵 (𝐥𝐧 𝑽
𝑵𝚲𝟑 +

𝟓
𝟐)

which corresponds to

𝐥𝐧 𝑽
𝑵𝚲𝟑 +

𝟓
𝟐

nats of unknown information per atom. At standard
temperature and pressure, this gives about 15.041 nats or

𝟏𝟓.𝟎𝟒𝟏
𝐥𝐧 𝟐

≈ 𝟐𝟏.𝟕𝟎𝟎

bits of unknown information per atom.

Now let’s calculate the entropy of helium in its gaseous state. NIST has tabulated its
entropy at standard temperature and pressure, specifically temperature𝑇 = 298.15K and
pressure 𝑃 = 1 bar, so that’s what we’ll try to calculate. An atom of helium has a mass of
𝑚 = 6.646477 ⋅ 10−27 kg, so at standard temperature its thermal wavelength is

Λ = ℎ
√
2𝜋𝑚𝑘𝑇

≈ 6.62607 ⋅ 10−34 J s
√
2𝜋 × 6.646477 ⋅ 10−27 kg × 1.380649 ⋅ 10−23 J∕K × 298.15K

≈ 5.053721 ⋅ 10−11m.

For a mole of an ideal gas we have 𝑁 = 6.02214076 ⋅ 1023 (this is Avogadro’s number),
and at standard temperature and pressure a mole of ideal gas has 𝑉 ≈ 0.0247896m3:
this is called its ‘molar volume’. The molar volume of helium is actually slightly different
from this, because helium is not an ideal gas: the atoms interact. But since we’re doing
a calculation assuming helium is a classical ideal gas, let’s ignore that for now. We then
get

𝑉
𝑁Λ3 ≈

0.0247896m3

6.02214076 ⋅ 1023 × (5.2799291 ⋅ 10−11m)3
≈ 279663.

We thus have
ln 𝑉
𝑁Λ3 ≈ ln 279663 ≈ 12.541.

As explained earlier, this means that the logarithm of the number of accessible states
of each helium atom would be 12.541 if it were trapped in its own small box of volume
𝑉∕𝑁. But density fluctuations contribute 1 extra nat of entropy per atom. Thus, the
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free energy part of the entropy per atom is 13.541 nats. On the other hand, the expected
energy part of the entropy per atom is 3

2
, coming from the atom’s 3 momentum degrees

of freedom. The total entropy per atom is thus

ln 𝑉
𝑁Λ3 + 1 + 3

2 ≈ 15.041

nats.
To impress our friends we can convert this to bits: we divide by ln 2 and get about

15.041
0.69315 ≈ 𝟐𝟏.𝟕𝟎𝟎

bits of unknown information per atom of helium.
I’ve kept only 5 significant figures in the later stages of these calculations, since that’s

how precise the experimental data is. Next let’s compare the final result to experiment!
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THE ENTROPY OF HELIUM: EXPERIMENT

The entropy of helium at standard temperature and pressure
has been measured to be

126.15 joules/kelvin per mole.

One bit of unknown information per atom corresponds to about
𝟓.𝟕𝟔𝟑𝟏 joule/kelvin of entropy per mole.

Thus, each atom of helium at standard temperature and
pressure carries about

𝟏𝟐𝟔.𝟏𝟓
𝟓.𝟕𝟔𝟑𝟏 ≈ 𝟐𝟏.𝟖𝟖𝟗

bits of unknown information.

Experimentally, the entropy of helium at standard temperature and pressure is 126.15
joules/kelvin per mole. Converting this to bits per atom we get 21.889, very close to our
theoretical result of 21.700, but about 0.9% higher.

There are a couple of possible reasons for this slight discrepancy. First, while our the-
oretical calculation assumed that helium is an ideal gas of noninteracting point particles,
this is not true. The helium atoms interact!

Second, our computation ignored quantum effects—except for using Planck’s con-
stant to determine the thermal wavelength. Even for an ideal gas, quantum effects be-
come important when 𝑉∕𝑁Λ3 ceases to be large. This happens at high densities 𝑁∕𝑉,
low temperatures𝑇, or for particles of smallmass𝑚. Heliumhas a lowmass asmolecules
of gas go—and our ultimate goal, hydrogen, is even worse.

Now let’s tackle the final summit: hydrogen. This is a diatomic gas, so it works dif-
ferently.
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THE IDEAL DIATOMIC GAS

In thermal equilibrium, a classical ideal diatomic gas of𝑵
indistinguishable molecules of mass𝒎 in a 3-dimensional box

of volume 𝑽 has expected energy

⟨𝑬⟩ = 𝟓
𝟐𝒌𝑵𝑻

and free energy

𝑭 = −𝒌𝑻 𝐥𝐧 ( 𝟏
𝑵!

𝑽𝑵

𝚲𝟑𝑵 )

where 𝚲 = 𝒉∕
√
𝟐𝝅𝒎𝒌𝑻 is the thermal wavelength.

Its entropy 𝑺 is (⟨𝑬⟩ − 𝑭)∕𝑻, so

𝑺 = 𝒌𝑵 (𝐥𝐧 𝑽
𝚲𝟑 + 𝟓

𝟐) − 𝒌 𝐥𝐧𝑵!

and using Stirling’s formula 𝐥𝐧𝑵! ≈ (𝐥𝐧𝑵 − 𝟏)𝑵 we get

𝑺 ≈ 𝒌𝑵 (𝐥𝐧 𝑽
𝑵𝚲𝟑 +

𝟕
𝟐)

It’s easy to repeat our computation of entropy for a diatomic gas if we recall that the
tumbling of the molecules add two degrees of freedom to the three for position, giving
⟨𝐸⟩ = 5

2
𝑘𝑁𝑇. Tracking the effects of this change we see the entropy is higher than for a

monatomic gas. To be precise, the entropy of a classical ideal diatomic gas is

𝑆 ≈ 𝑘𝑁 (ln 𝑉
𝑁Λ3 +

7
2) .

So, it has one more nat of Shannon entropy per molecule than an ideal monatomic gas!
Let’s see how this plays out for hydrogen.
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THE ENTROPY OF HYDROGEN: THEORY

Assuming hydrogen is a classical ideal diatomic gas, its entropy
is

𝑺 ≈ 𝒌𝑵 (𝐥𝐧 𝑽
𝑵𝚲𝟑 +

𝟕
𝟐)

which corresponds to

𝐥𝐧 𝑽
𝑵𝚲𝟑 +

𝟕
𝟐

nats of unknown information per molecule.
At standard temperature and pressure, this gives 15.144 nats or

𝟏𝟓.𝟏𝟒𝟒
𝐥𝐧 𝟐

≈ 𝟐𝟏.𝟖𝟒𝟖

bits of unknown information per molecule.

A hydrogen molecule has 𝑚 = 3.34706 ⋅ 10−27 kg, so at a temperature 𝑇 = 298.15 K
its thermal wavelength is

Λ = ℎ
√
2𝜋𝑚𝑘𝑇

≈ 6.62607 ⋅ 10−34J s
√
2𝜋 × 3.34706 ⋅ 10−27 kg × 1.380649 ⋅ 10−23 J∕K × 298.15K

≈ 7.12156 ⋅ 10−11m.

For a mole of an ideal gas at standard temperature and pressure, 𝑁 = 6.02214076 ⋅ 1023
and 𝑉 ≈ 0.0247896m3, so

𝑉
𝑁Λ3 ≈

0.0247896m3

6.02214076 ⋅ 1023 × (7.12156 ⋅ 10−11m)3
≈ 113971

We thus have
ln 𝑉
𝑁Λ3 ≈ ln 113971 ≈ 11.644

Thanks to our previous work we know this means that that the logarithm of the num-
ber of accessible states of eachmoleculewould be 11.644 if it were trapped in its own small
box of volume 𝑉∕𝑁. There is also a correction to this simplified picture due to density
fluctuations, which gives 1 extra nat of entropy. These add up to give the free energy con-
tribution to the entropy per molecule: 12.644 nats. This is less than we got for helium.
But the expected energy contribution to the entropy per molecule is larger: we again get
3

2
nats from the molecule’s 3 momentum degrees of freedom, but now we get 1 extra nat
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due to its 2 extra tumbling degrees of freedom. The total number of nats of unknown
information per hydrogen molecule is thus

11.644 + 1 + 1.5 + 1 ≈ 15.144.

Finally, the number of bits of unknown information per hydrogen molecule is

15.144
0.69315 ≈ 𝟐𝟏.𝟖𝟒𝟖.

This is slightly more than for helium, where the number was 21.700.
As a sanity check, let’s do this calculation a different way. A hydrogen molecule is

close to half the mass of a helium atom, so its thermal wavelength should be
√
2 times

as large. In our calculation we’re treating 𝑉∕𝑁 as the same for both gases, so hydrogen’s
𝑉∕𝑁Λ3 should be 2−3∕2 times as large as that for helium. Since ultimately we compute
bits by taking a logarithm in base 2, this reduces its entropy per molecule by 3∕2 bits.
However, hydrogen’s 2 tumbling degrees of freedom increase its entropy per molecule by
1 nat, or 1∕ ln 2 bits. We have

−32 +
1
ln 2

≈ −1.5 + 1.443 ≈ −0.057.

This suggests that each hydrogen molecule should carry 0.057 fewer bits of unknown
information than each helium atom. Why did our more careful calculation say hydrogen
should have about

21.848 − 21.700 ≈ 0.148

more bits of unknown information per molecule? What’s the mistake?
The slight discrepancy arises solely from the fact that a hydrogen molecule is not

exactly half the mass of a helium atom! It’s a bit heavier. It’s actually more like 0.50358
times the mass of a helium. This makes its thermal wavelength a bit smaller than our
estimate in the last paragraph, which boosts its entropy. It’s nice that such subtleties,
ultimately due to nuclear physics, are showing up here.

By the way, all our calculations have been for the most common isotopes of hydro-
gen and helium: hydrogen whose nucleus consists of a single proton, and helium whose
nucleus consists of two protons and two neutrons. Other isotopes have significantly dif-
ferent mass, and this changes the entropy values significantly.

Puzzle 48. Helium has a lighter isotope called helium-3, whose nucleus is made of two
protons and just one neutron. The mass of helium-3 is 5.00823 × 10−27 kg. If we repeat
our calculation of the entropy of helium at standard temperature and pressure, changing
only this mass, what value do we get for the bits of entropy per atom of helium-3?

Puzzle 49. Hydrogen has a heavier isotope called deuterium, whose nucleus is made of
one proton and one neutron. The mass of a hydrogen molecule made of two deuterium
atoms is 3.34449 × 10−27 kg. If we repeat our calculation of the entropy of hydrogen at
standard temperature and pressure, changing only this mass, what do we get for the bits
of entropy per molecule of this sort?
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THE ENTROPY OF HYDROGEN: EXPERIMENT

The entropy of hydrogen at standard temperature and pressure
has been measured to be

130.68 joules/kelvin per mole.

One bit of unknown information per molecule corresponds to
about 𝟓.𝟕𝟔𝟑𝟏 joule/kelvin of entropy per mole.

Thus, each molecule of hydrogen at standard temperature and
pressure has about

𝟏𝟑𝟎.𝟔𝟖
𝟓.𝟕𝟔𝟑𝟏 ≈ 𝟐𝟐.𝟔𝟕𝟓

bits of unknown information.

Okay, let’s compare our theoretical prediction to experiment.
The experimental figure for the entropy of hydrogen at standard temperature and

pressure is 130.68 joules/kelvin per mole, which translates into 22.675 bits per molecule.
This is larger than our theoretical prediction of 21.848 bits per molecule by about 3.8%.

That’s not bad. We can say we solved our original problem fairly well. But the per-
centage error here is about 4 times worse than it was for calculation for helium. Why is
it worse?

I haven’t studied this, but I can imagine two reasons. First, remember that quantum
effects kick in when 𝑉∕𝑁Λ3 ceases to be large. This quantity is a bit smaller for hydro-
gen than for helium. Remember, for helium it was 279663 at standard temperature and
pressure, while for hydrogen it’s 113971. But that’s still very large, so I imagine quantum
effects are still quite tiny.

Second, hydrogen molecules are not chemically inert like helium atoms, and they’re
larger, and diatomic rather thanmonatomic. So I’d expect them to interact more, making
the ideal gas approximation worse. This feels like a more plausible explanation for the
3.8% discrepancy.

Puzzle 50. Do research to find more accurate calculations of the entropy of hydrogen
gas. What are the main sources of error in the calculation we have done here?

115



WHERE DIDWE GO?

Themystery: why does eachmolecule of hydrogen have ∼𝟐𝟑 bits
of entropy at standard temperature and pressure?✓
The goal: derive and understand the formula for the entropy of
a classical ideal monatomic gas:

𝑺 = 𝒌𝑵 (𝐥𝐧 𝑽
𝑵 + 𝟑

𝟐 𝐥𝐧𝒌𝑻 + 𝜸)

including the mysterious constant 𝜸:

𝜸 = 𝟑
𝟐 𝐥𝐧

𝟐𝝅𝒎
𝒉𝟐

+ 𝟓
𝟐 ✓

The subgoal: compute the entropy of a single classical
particle in a 1-dimensional box:

𝑺 = 𝒌 (𝐥𝐧𝑳 + 𝟏
𝟐 𝐥𝐧𝒌𝑻 + 𝟏

𝟐 𝐥𝐧
𝟐𝝅𝒎
𝒉𝟐

+ 𝟏
𝟐) ✓

The sub-subgoal: explain entropy from the ground up, and
compute the entropy of a classical harmonic oscillator:

𝑺 = 𝒌 (𝐥𝐧 𝒌𝑻
ℏ𝝎

+ 𝟏) ✓

We’re done! Or at least we reached our stated goal. But there is a lot more to say about
entropy. In a way we’ve scarcely scratched the surface. For more on the mathematics of
entropy, I recommend these books:

• ThomasA.Cover and JoyA. Thomas,Elements of InformationTheory,Wiley-Interscience,
New York, 2006.

• Tom Leinster, Entropy and Diversity: the Axiomatic Approach, Cambridge U. Press,
Cambridge, 2021. Also free on the arXiv.

For classical and quantum statistical mechanics, I recommend these:

• Frederick Reif, Fundamentals of Statistical and Thermal Physics, Waveland Press,
Long Grove, Illinois, 2009.

• Dirk Ter Haar, Elements of Statistical Mechanics, Elsevier, Amsterdam, 1995.

The second one has an intense focus on our friend the box of gas. And for the principle
of maximum entropy, I again recommend this insightful and opinionated text:

• E. T. Jaynes, Probability Theory: the Logic of Science, Cambridge U. Press, Cam-
bridge, 2003.
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THE FIRST LAWOF THERMODYNAMICS

Suppose a system has somemeasure space 𝑿 of states
with functions called energy 𝑬 ∶ 𝑿 → ℝ

and volume 𝑽 ∶ 𝑿 → ℝ.

Consider probability distributions on 𝑿
maximizing the Gibbs entropy 𝑺 subject to constraints

on ⟨𝑬⟩ and ⟨𝑽⟩.

Then as we vary ⟨𝑬⟩ and ⟨𝑽⟩we have

𝒅⟨𝑬⟩ = 𝑻𝒅𝑺 − 𝑷𝒅⟨𝑽⟩

where 𝑻 is called temperature and 𝑷 is called pressure.

I said we were done. But what kind of course on entropy doesn’t cover the three laws
of thermodynamics? I talked a bit about the Third Law, but I haven’t evenmentioned the
other two yet.

Here’s why: this wasn’t a course on thermodynamics. In ‘classical thermodynamics’
there’s a tradition of taking concepts such as energy, work and heat as primitive, and
treating the laws of thermodynamics as axioms. I’ve instead been explaining a bit of
‘classical statistical mechanics’, where we start with probability theory and attempt to
derive classical thermodynamics. In this approach the laws of thermodynamics are not
fundamental. They actually look a bit odd: they become results that hold under various
conditions, so each one becomes a collection of theorems and conjectures.

I’ll state versions of the three laws of thermodynamics in the language we’ve devel-
oped here. But please be aware that my versions are idiosyncratic and will make some
people raise their eyebrows. I’m afraid you’ll have to go elsewhere, like Reif’s book, to
learn these laws in their traditional form!

We’ve been maximizing entropy subject to a constraint on the expected value of one
quantity. What if we do two—or more? Everything works the same way, but the funda-
mental relation between temperature, energy and entropy, 𝑑⟨𝐸⟩ = 𝑇𝑑𝑆, gets one extra
term for each constraint. The resulting equation is a version of the ‘First Law of Thermo-
dynamics’.

I’ll explain the case with one extra constraint. Suppose we’ve got a measure space
𝑋 whose points are states of some system. Choose two functions on it. They could be
anything, but let’s call them energy and volume and write them as 𝐸∶ 𝑋 → ℝ and
𝑉∶ 𝑋 → ℝ. These terms are favored because thermodynamics arose in part from the
study of steam engines, where you’ve got a cylinder of steamwith some energy and some
volume. For any probability distribution 𝑝∶ 𝑋 → [0,∞), we can write down a formula
for its Shannon entropy

𝐻 = −∫
𝑋
𝑝(𝑥) ln𝑝(𝑥)𝑑𝑥
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and also the expected values

⟨𝐸⟩ =∫
𝑋
𝐸(𝑥)𝑑𝑥, ⟨𝑉⟩ =∫

𝑋
𝑉(𝑥)𝑑𝑥.

Let’s not worry now about whether these integrals converge.
Suppose we only know ⟨𝐸⟩ and ⟨𝑉⟩, and we are trying to choose the ‘best’ probability

distribution 𝑝 with these expected values. What should we do? Following the principle
of maximum entropy, we seek the probability distribution 𝑝 that maximizes𝐻 subject to
our constraints on ⟨𝐸⟩ and ⟨𝑉⟩. If we do this, we are led to a Lagrange multipliers prob-
lem, much as in the the simpler case of one constraint. But now we need two Lagrange
multipliers: let’s call them 𝛽 and 𝛾. We get this equation:

𝑑𝐻 = 𝛽𝑑⟨𝐸⟩ + 𝛾𝑑⟨𝑉⟩.

This is the First Law!
But this isn’t the way physicists usually write it. To get the First Law in its usual form,

first let’s switch to using Gibbs entropy 𝑆 = 𝑘𝐻, and emphasize the role of energy by
solving for 𝑑⟨𝐸⟩:

𝑑⟨𝐸⟩ = 1
𝑘𝛽

𝑑𝑆 −
𝛾
𝛽
𝑑⟨𝑉⟩.

Then, to simplify the look of this equation, let’s introduce variables called temperature
and pressure:

𝑇 = 1
𝑘𝛽

, 𝑃 =
𝛾
𝛽
.

Now the First Law of Thermodynamics looks like this:

𝑑⟨𝐸⟩ = 𝑇𝑑𝑆 − 𝑃𝑑⟨𝑉⟩.

It says that as we move around among probability distributions that maximize entropy
subject to constraints on expected energy and volume, the change in expected energy is
the sum of two terms:

• heat, meaning 𝑇𝑑𝑆

• work, meaning −𝑃𝑑⟨𝑉⟩.
For example, if we have a cylinder of steam with pressure 𝑃 and we increase its expected
volume by a little bit ∆⟨𝑉⟩, its expected energy goes down by about 𝑃∆⟨𝑉⟩: that’s how
we understand the minus sign. In this situation the external world has done an amount
of work −𝑃∆⟨𝑉⟩ on the cylinder of steam, but most people say the cylinder of steam has
done an amount of work 𝑃∆⟨𝑉⟩ on the external world.

Here are a fewpuzzles if youwant to dig deeper. In the first two, I ask you to generalize
ideas from our earlier work on maximizing entropy subject to a single constraint.
Puzzle 51. Let 𝑋 = {1,… , 𝑛} and let 𝐸,𝑉∶ 𝑋 → ℝ be two functions whose values at
𝑖 ∈ 𝑋 we call 𝐸𝑖 and 𝑉𝑖. Suppose 𝑝 is a probability distribution maximizing the Shannon
entropy𝐻 on the surface where

⟨𝐸⟩ = 𝑒, ⟨𝑉⟩ = 𝑣,

and also suppose 𝑝1,… , 𝑝𝑛 > 0. Show that at 𝑝 we have

𝑑𝐻 = 𝛽𝑑⟨𝐸⟩ + 𝛾𝑑⟨𝑉⟩

for some 𝛽, 𝛾 ∈ ℝ. (Hint: first do the case where not all the 𝐸𝑖 are equal and not all the
𝑉𝑖 are equal. This guarantees that 𝑑⟨𝐸⟩ and 𝑑⟨𝑉⟩ are nonzero. You can handle the other
cases separately.)
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Puzzle 52. Under the conditions of Puzzle 51 show that

𝑝𝑖 =
exp(−𝛽𝐸𝑖 − 𝛾𝑉𝑖)
𝑛∑

𝑖=1
exp(−𝛽𝐸𝑖 − 𝛾𝑉𝑖)

.

Puzzle 53. Generalize the results of Puzzles 51 and 52 to the case of any finite number
of constraints.

Puzzle 54. Generalize the results of Puzzle 53 to the case of a systemwith a countable in-
finity of states, or an arbitrary measure space of states. You will need to add assumptions
to ensure that the sums or integrals converge.
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THE SECOND LAWOF THERMODYNAMICS

Suppose a system has somemeasure space 𝑿 of states
and at any time 𝒕 there is a probability distribution 𝒑(𝒕) on 𝑿.

We say the second law of thermodynamics holds if

𝒕𝟏 ≤ 𝒕𝟐 ⟹ 𝑺(𝒑(𝒕𝟏)) ≤ 𝑺(𝒑(𝒕𝟐))

This seems to be widely true, yet the conditions under which
it holds are subtle and much-argued.

The SecondLawofThermodynamics, as commonly stated, says that the entropy of
a closed system never decreases. This appears to be a profound fact about our universe. A
huge challenge to physics is to understand where this law comes from. Can it be derived
from some realistic assumptions? One problem is that the laws of classical mechanics
are invariant under time-reversal. Thus, if we evolve probability distributions on some
space of states according to these laws, for any probability distribution whose entropy is
nondecreasing, there is a time-reversed one whose entropy is nonincreasing.

This is called the problem of the arrow of time: briefly, why does the future look so
different from the past? Quantum mechanics makes the problem subtler, but does not
provide an easy resolution. The solution may be that we happen to live in a universe—a
particular solution of the laws of physics—where entropy was very low at the Big Bang,
making it easy for entropy to increase after that. But if you get ten physicists in a room
and ask them to explain the arrow of time, you are likely to hear ten different opinions.
Thus, I will not attempt to resolve it here. For more on that, I recommend this book:

• H. D. Zeh, The Physical Basis of The Direction of Time, Springer, Berlin, 2010.

Instead, let’s see how the Second Law sheds light on the meaning of temperature.
You’ll notice that in our course I never talked about systems evolving in time, and I never
talked about two systems interacting: always just a single system. Now let’s imagine two
systems, each in thermal equilibrium, but at possibly different temperatures. Say the first
has entropy 𝑆1, expected energy ⟨𝐸1⟩ and temperature 𝑇1. As usual, these are related by

𝑑𝑆1 =
𝑑⟨𝐸1⟩
𝑇1

.

Say the second system works similarly, with

𝑑𝑆2 =
𝑑⟨𝐸2⟩
𝑇2

.

We can define the total entropy of the two systems by

𝑆 = 𝑆1 + 𝑆2
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and the total expected energy by

⟨𝐸⟩ = ⟨𝐸1⟩ + ⟨𝐸2⟩.

Suppose now that the two systems can exchange energy with each other, but in a slow
and gentle way, so we can approximately treat each one as in thermal equilibrium at any
moment. If no energy flows in or out of the combined system, the total expected energy
is conserved, so

𝑑⟨𝐸⟩
𝑑𝑡

= 0

and thus
𝑑⟨𝐸1⟩
𝑑𝑡

= −
𝑑⟨𝐸2⟩
𝑑𝑡

.

What does the Second Law give us in this situation? It implies

𝑑𝑆
𝑑𝑡

≥ 0

or
𝑑𝑆1
𝑑𝑡

+
𝑑𝑆2
𝑑𝑡

≥ 0.

It follows that
1
𝑇1
𝑑⟨𝐸1⟩
𝑑𝑡

+ 1
𝑇2
𝑑⟨𝐸2⟩
𝑑𝑡

≥ 0

or
1
𝑇1
𝑑⟨𝐸1⟩
𝑑𝑡

− 1
𝑇2
𝑑⟨𝐸1⟩
𝑑𝑡

≥ 0.

We can rewrite this as
( 1𝑇1

− 1
𝑇2
)
𝑑⟨𝐸1⟩
𝑑𝑡

≥ 0.

Now suppose both𝑇1 and𝑇2 are positive. Thenwe get a remarkable consequence: as two
systems exchange energy, with each staying in thermal equilibrium at everymo-
ment, expected energy can only flow from the system with higher temperature
to the system with lower temperature!

Puzzle 55. Suppose one or both of the temperatures 𝑇1, 𝑇2 are negative. How does this
conclusion change?
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THE THIRD LAWOF THERMODYNAMICS: REVISITED

If a system has countably many states,
with just one of lowest energy,

and thermal equilibrium is possible for this system
for some temperature 𝑻 > 𝟎,

then its entropy in thermal equilibrium approaches zero
exponentially fast as a function of 𝟏∕𝑻
as 𝑻 approaches zero from above.

In our earlier work on the Third Law, we only studied systems with finitely many
states. Later we saw how to compute entropy from the free energy and expected energy.
This makes it a bit easier to handle systems with a countable infinity of states. In the
following puzzles, which are only for the most devoted readers, let’s use these ideas to
prove and improve the Third Law for systems with countably many states.

Earlier weworkedwith temperature, but it’s cooler to use coolness. For all the follow-
ing puzzles, let’s supposewehave a systemwith a countable infinity of states𝑛 = 1, 2, 3,…
with energies 𝐸𝑛. Also suppose thermal equilibrium is possible for some 𝛽0 > 0, i.e., the
sum

𝑍(𝛽0) =
∞∑

𝑛=1
exp(−𝛽0𝐸𝑛)

converges. (Our arguments also apply to systems with finitely many states, where this
convergence condition is automatic.)

Puzzle 56. Show that the system’s partition function, expected energy, free energy and
entropy are well-defined for all 𝛽 > 𝛽0.

Puzzle 57. Show that if we add some constant to the energy of each state

𝐸̃𝑛 = 𝐸𝑛 + 𝑐

we get a new ‘shifted’ system whose partition function, expected energy, free energy and
entropy are related to those of our original system by

𝑍̃ = exp(−𝛽𝑐)𝑍, ⟨𝐸̃⟩ = ⟨𝐸⟩ + 𝑐, 𝐹̃ = 𝐹 + 𝑐, 𝑆 = 𝑆

for all 𝛽 > 𝛽0.

Now further suppose that our original systemhas just one state of least energy. Earlier
we saw that we could reindex the states so that 𝐸1 < 𝐸2 ≤ 𝐸3 ≤ ⋯ and 𝐸𝑛 → +∞. The
same is true of our new shifted system, and let’s choose 𝑐 = −𝐸1 so that the lowest energy
of the shifted system is zero. With this shift we have

0 = 𝐸̃1 < 𝐸̃2 ≤ 𝐸̃3 ≤⋯

and 𝐸̃𝑛 → +∞.
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Puzzle 58. Show that for any coolness 𝛽 ≥ 𝛽0 we have

𝑍̃(𝛽) − 1 =
∞∑

𝑛=2
𝑒−𝛽𝐸̃𝑛 .

Using this equation show

|𝑍̃(𝛽) − 1| ≤ 𝑒−(𝛽−𝛽0)𝐸̃2|𝑍̃(𝛽0) − 1|

and thus
|𝑍̃(𝛽) − 1| < const 𝑒−(𝛽−𝛽0)𝐸̃2

for some constant independent of 𝛽. Use the fact that 𝐹̃(𝛽) = − 1

𝛽
ln 𝑍̃(𝛽) to show that for

large enough 𝛽,
|𝐹̃(𝛽)| < const 𝑒−(𝛽−𝛽0)𝐸̃2

possibly for a different constant independent of 𝛽. Using Puzzle 57, conclude that

|𝐹(𝛽) − 𝐸1| < const 𝑒−(𝛽−𝛽0)(𝐸2−𝐸1).

Voilà! This shows that for a system with countably many states and just one state
of lowest energy, if thermal equilibrium is possible at some positive temperature, then
the free energy must approach this lowest energy exponentially fast as 𝛽 → +∞. Now
let’s show something similar for the expected energy. Again we use the shifted system to
simplify the calculations. I’ll leave more work to you this time.

Puzzle 59. Show that at any coolness 𝛽 > 𝛽0 we have

𝑑
𝑑𝛽

𝑍̃(𝛽) = −
∑

𝑛=2
𝐸̃𝑛𝑒−𝛽𝐸̃𝑛 .

Use this to show that 𝑑

𝑑𝛽
𝑍̃(𝛽) goes to zero exponentially fast as 𝛽 → +∞. Using

⟨𝐸̃⟩(𝛽) = − 𝑑
𝑑𝛽

ln𝑍(𝛽) = − 1
𝑍(𝛽)

𝑑
𝑑𝛽

𝑍(𝛽)

and Puzzle 58, show that ⟨𝐸̃⟩(𝛽) goes to zero exponentially fast as 𝛽 → +∞. Using Puzzle
57, conclude that ⟨𝐸⟩(𝛽) approaches 𝐸1 exponentially fast as 𝛽 → +∞. Finally, since

𝑆 = 𝑘𝛽(𝐹 − ⟨𝐸⟩)

and both 𝐹 and ⟨𝐸⟩ approach 𝐸1 exponentially fast as 𝛽 → +∞, conclude that 𝑆 ap-
proaches 0 exponentially fast as 𝛽 → +∞.

Let’s summarize! Suppose we have a system with a countable infinity of states and
just one state of lowest energy. If thermal equilibrium is possible for this system for some
𝑇 > 0, the Third Law of Thermodynamics says its entropy in thermal equilibrium
goes to zero as 𝑇 approaches zero from above. But in fact we can say more: for some
𝑎, 𝑏 > 0 we have

|𝑆(𝛽)| < 𝑎𝑒−𝑏𝛽

for all large enough 𝛽.
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