Test	Series Type	Convergence or Divergence	Required Conditions/Helpful Notes
Divergence Test	$\sum a_n$	divergent if $\lim_{n \to \infty} a_n \neq 0$	Test tells you nothing if $\lim_{n \to \infty} a_n = 0$, use another test.
Geometric Series	$\sum_{n=1}^{\infty} ar^{n-1} \text{ or } \sum_{n=0}^{\infty} ar^n$	$\begin{array}{c} \text{convergent to } \frac{a}{1-r} \text{ for } r < 1 \\ \text{divergent for } r \geq 1 \end{array}$	Use for the two comparison tests for choice of $\sum b_n$.
<i>p</i> -series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	$\begin{array}{c} \text{convergent for } p > 1\\ \text{divergent for } p \leq 1 \end{array}$	Use for the two comparison tests for choice of $\sum b_n$.
Integral Test	$\sum_{n=\alpha}^{\infty} a_n \alpha \in \mathbb{N}$	convergent if $\int_{\alpha}^{\infty} f(x)dx \text{ converges}$ divergent if $\int_{\alpha}^{\infty} f(x)dx \text{ diverges}$	Must have $a_n = f(n)$, and f must be positive, continuous, and decreasing for $x \ge \alpha$, where α is a positive integer. You must also be able to integrate $f(x)$.
Comparison Test	$\sum_{a_n > 0 \text{ and } b_n > 0} \sum_{a_n > 0} b_n$	$ \begin{array}{c} \text{If } a_n \leq b_n \text{ and} \\ \sum b_n \text{ converges} \Rightarrow \sum a_n \text{ converges} \\ \text{If } a_n \geq b_n \text{ and} \\ \sum b_n \text{ diverges} \Rightarrow \sum a_n \text{ diverges} \end{array} $	Try geometric or <i>p</i> -series for choice of $\sum b_n$. You must prove the inequality, and state why $\sum b_n$ is convergent or divergent.
Limit Comparison Test	$\sum_{a_n > 0 \text{ and } b_n > 0} b_n$	$\lim_{n \to \infty} \frac{a_n}{b_n} = c$	If $c > 0$, then both series converge or both series diverge. If $\sum b_n$ converges and $c = 0$, then $\sum a_n$ converges. If $\sum b_n$ diverges and $c = \infty$, then $\sum a_n$ diverges.
Ratio Test	$\left \begin{array}{c} \sum a_n \text{ and} \\ \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L \end{array} \right $	convergent for $L < 1$ divergent for $L > 1$ inconclusive for $L = 1$	Use when a_n has factorials or powers of n . Use for power series problems for radius of conver- gence.
Root Test	$\sum_{\substack{n \to \infty \\ n \to \infty}} a_n \text{ and}$	convergent for $L < 1$ divergent for $L > 1$ inconclusive for $L = 1$	Use when a_n has powers or functions of n .
Alternating Series Test	$\sum_{\substack{n=1\\\text{with }b_n>0}}^{\infty} (-1)^{n+1} b_n$	convergent if a_n is decreasing, and $\lim_{n \to \infty} b_n = 0$	Use only for alternating series, must have $(-1)^n$, $(-1)^{n-1}$, or $(-1)^{n+1}$.

MATH 009C - Summer 2018 - Table for Infinite Series Tes
