
MATH 009C PRACTICE FINAL August 11, 2018

Name: Score: / 100

Student ID:

DO NOT OPEN THE EXAM UNTIL YOU ARE TOLD TO DO SO

1 2 3 4 5 6 7 8 9 Total
X 80

Score

Pts. Possible 10 10 10 10 10 10 10 10 10 85

INSTRUCTIONS FOR STUDENTS

• Questions are on both sides of the paper. This is an 9 question exam.
• Students have 2 hours to complete the exam.
• The test will be out of 80 points (8 questions). You may attempt a 9th question, which will have a

maximum of 5 possible points. The highest possible score is therefore 85 points.
• In the row with the X, mark with a X the problems you want graded for credit, and EC for your

extra credit problem. If you do not mark the boxes, problems 1-8 will be graded for credit
regardless of which ones you complete, and 9 will be your extra credit.

• You may complete parts of problems, as partial credit will be given based on correctness, complete-
ness, and ideas that are leading to the correct solutions.

• PLEASE SHOW ALL WORK. Any unjustified claims will receive no credit. This
means you need to state which test you are using for series questions! Clearly box your
final answer.

• No notes, textbooks, phones, calculators, etc. are allowed for the exam.
• The back of the test can be used for scratch work.

GOOD LUCK!

FORMULAS:

Common Taylor Series Common Taylor Series
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1) (5 pts.) (a) Determine whether the sequence converges or diverges:
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(5 pts.) (b) Determine whether the sequence converges or diverges:
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2) (5 pts.) (a) Determine whether the series is convergent or divergent:
∞∑
n=1
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(5 pts.) (b) Determine whether the series is convergent or divergent:
∞∑
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3) (10 pts.) Determine whether the series is convergent or divergent
∞∑
n=1
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4) (10 pts.) Determine whether the series is convergent or divergent
∞∑
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5) (5 pts.) (a) Determine whether the series is absolutely convergent, conditionally
convergent, or divergent:

∞∑
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(5 pts.) (b) Determine whether the series is absolutely convergent, conditionally
convergent, or divergent:

∞∑
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6) (10 pts.) Determine whether the series is absolutely convergent, conditionally conver-
gent, or divergent:

∞∑
n=2
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7) (10 pts.) Find the radius of convergence and interval of convergence for the following
power series:

∞∑
n=0

(−1)n
(x− 2)n

3n + 1
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8) (10 pts.) Find the Taylor polynomial of degree 3, centered at the point a = 0 for
the function f(x) = e2x using the definition of Taylor series. Note: Do NOT use the
substitution method, as you will receive no credit. You must use the definition.
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9) (5 pts.) (a) Compute the following integral using Taylor series.∫
arctan(x2) dx

(5 pts.) (b) Find the Taylor series centered at a = 0 for

f(x) =
x− sin(x)

x2



11

THIS PAGE IS LEFT BLANK FOR ANY SCRATCH WORK

END OF TEST


