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MATH 009C - Summer 2018

Worksheet 1: June 26, 2018

1. Compute the following limit:
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Solution:

Note that if we “plug in” infinity, we get the result of 1∞, which is indeterminate.
Therefore, since we have this indeterminate form, and the limit is of a function to the
power of a function, we use the exponential/logarithm trick
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2. Compute the following limit:

lim
n→∞

n

1

1 + ln(n)

Solution:

Note that if we “plug in” infinity, we get the result of ∞0, which is indeterminate.
Therefore, since we have this indeterminate form, and the limit is of a function to the
power of a function, we use the exponential/logarithm trick
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Please, show all work.



3. Determine if the integral is convergent or divergent:∫ ∞

1

1√
x6 + 1

dx

Solution:

Use the (Direct or Limit) Comparison Test for Improper Integrals. Note that

0 < x6 < x6 + 1 ⇒
√
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√
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for all x > 1

So,
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∫ ∞
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The improper integral is convergent by the Direct Comparison Test.

Please, show all work.
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4. Eliminate the parameter for the following parameterized curve. Sketch the curve and
use arrows to denote the direction.

x = 1 + 4 sin(t), y = 4 cos(t), 0 < t < 2π

Solution:

Notice that we can do some algebra and trigonometric identities to eliminate the
parameter:

x = 1 + 4 sin(t)

x− 1 = 4 sin(t)

⇒ (x− 1)2 + y2 = 16 sin2(t) + 16 cos2(t)

⇒ (x− 1)2 + y2 = 16

which gives us a circle with radius 4, centered at the point (1, 0). The restriction of
0 < t < 2π tells us we go around the circle 1 time. The direction is clockwise, as at

t = 0, we are at (1, 4); then at t =
π

2
, we are at (5, 0). The arrow designates the

direction of motion.

Please, show all work.
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