MATH 010B - Spring 2018

Worked Problems - Section 5.2

1. Compute the following integral if $R = [0, 1] \times [0, 1]$.

$$\iint_{R} 8(xy)^{2} \cos\left(x^{3}\right) dA$$

Solution: We can use the trick (Fubini's Theorem) here to do this integral.

$$\iint_{R} 8(xy)^{2} \cos(x^{3}) dA = \iint_{R} 8x^{2}y^{2} \cos(x^{3}) dA$$

$$= \int_{0}^{1} \int_{0}^{1} 8x^{2}y^{2} \cos(x^{3}) dx dy$$

$$= \left(8 \int_{0}^{1} x^{2} \cos(x^{3}) dx\right) \cdot \left(\int_{0}^{1} y^{2} dy\right)$$

$$= \left(\frac{8}{3} \sin(x^{3})\Big|_{0}^{1}\right) \cdot \left(\frac{1}{3}y^{3}\Big|_{0}^{1}\right)$$

$$= \frac{8}{3} \sin(1) \left(\frac{1}{3}\right)$$

$$= \frac{8 \sin(1)}{9}$$

2. Compute the following iterated integral if $R = [0, 1] \times [0, 1]$.

$$\iint_{R} 5\sin(x+y) \ dA$$

Solution: Here we just compute the iterated integral directly.

$$\int_{0}^{1} \int_{0}^{1} (5\sin(x+y)) dx dy = 5 \int_{0}^{1} \int_{0}^{1} \sin(x+y) dx dy$$

$$= 5 \int_{0}^{1} \int_{y}^{1+y} \sin(u) du dy \qquad u = x+y, du = dx$$

$$= 5 \int_{0}^{1} -\cos(u)|_{y}^{1+y} dy$$

$$= 5 \int_{0}^{1} (-\cos(1+y) + \cos(y)) dy$$

$$= 5 (-\sin(1+y) + \sin(y))|_{0}^{1}$$

$$= 5(-\sin(2) + \sin(1) - (-\sin(1) + 0))$$

$$= 10\sin(1) - 5\sin(2)$$

3. Compute the following iterated integral if $R = [0, 5] \times [-1, 1]$.

$$\iint_R \frac{yx^3}{y^2 + 2} \ dy \ dx$$

Solution: Here we can use Fubini's Theorem, then compute two single integrals

$$\iint_{R} \frac{yx^{3}}{y^{2} + 2} dy dx = \int_{0}^{5} \int_{-1}^{1} \frac{yx^{3}}{y^{2} + 2} dx dy$$

$$= \left(\int_{0}^{5} x^{3} dx \right) \cdot \left(\int_{-1}^{1} \frac{y}{y^{2} + 2} dy \right)$$

$$= \left(\frac{1}{4} x^{4} \Big|_{0}^{5} \right) \cdot \left(\frac{1}{2} \ln(y^{2} + 2) \Big|_{-1}^{1} \right)$$

$$= \frac{5^{4}}{4} \cdot \left(\frac{1}{2} (\ln(3) - \ln(3)) \right)$$

$$= 0$$

4. Compute the volume of the solid bounded by the xz-plane, the yz-plane, the xy-plane, the planes x=1 and y=1, and the surface $z=6x^2+7y^4$.

Solution: The first 3 restrictions tell us that the solid must be in the first octant, the region where x, y, and z are all positive. In addition, the planes x = 1 and y = 1 restrict us to the rectangle $R = [0, 1] \times [0, 1]$, and the solid is bounded above the rectangle by the surface $z = 6x^2 + 7y^4$. Therefore, we have all we need to compute the integral

$$\iint_{R} f(x,y) dA = \int_{0}^{1} \int_{0}^{1} 6x^{2} + 7y^{4} dx dy$$

$$= \int_{0}^{1} (2x^{3} + 7xy^{4} \Big|_{x=0}^{x=1}) dy$$

$$= \int_{0}^{1} (2 + 7y^{4}) dy$$

$$= \left(2y + \frac{7}{5}y^{5} \Big|_{0}^{1}\right)$$

$$= 2 + \frac{7}{5}$$

$$= \frac{17}{5}$$

5. Compute the volume of the solid bounded by the graph $z = x^2 + y$, the rectangle $R = [0, 1] \times [1, 3]$, and the "vertical sides" of R.

Solution: All of the relevant information is provided, R gives us the bounds on the integral, and the surface is given, thus we proceed as in the previous example

$$\iint_{R} f(x,y) \ dA = \int_{0}^{1} \int_{1}^{3} (x^{2} + y) \ dy \ dx$$

$$= \int_{0}^{1} \left(yx^{2} + \frac{1}{2}y^{2} \right) \Big|_{y=1}^{y=3} dx$$

$$= \int_{0}^{1} \left(3x^{2} + \frac{9}{2} - x^{2} - \frac{1}{2} \right) \ dx$$

$$= \int_{0}^{1} \left(2x^{2} + 4 \right) \ dx$$

$$= \left(\frac{2}{3}x^{3} + 4x \right) \Big|_{0}^{1}$$

$$= \frac{2}{3} + 4$$

$$= \frac{14}{3}$$