MATH 010B - Spring 2018
Worked Problems - Section 5.4

1. Evaluate the integral.
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Solution: The bounds here are 0 < 0 < g, and 0 < r < cos(f). Note that r = cos(6)
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is the graph of a circle with center (0.5,0), with radius =, but since the values of § are

restricted we only have the top half of the circle. We compute
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To do this integral by changing the bounds, we would have the top half circle region
bounded by 0<r<1,and 0 <60 < cos !(r). We then compute
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where we have made a special substitution. Note that for 0 < r < 1, and § = cos™(r),
then 0 <6 < g, which is what we had originally. Now, sin(6) > 0 for 0 < 0 < g, SO we
take the positive root below, and we have that

sin(cos 1 (r)) = sin(f) = /1 — cos2(f) = V1 — r2

since we have the relation § = cos™'(r) <= r = cos(). O




2. Evaluate the integral.

20 05
/ / e’ dx dy
0 y/4

Solution: Note that we are integrating over the triangular region bounded by the z-
axis, x = 5, and the line z = Y <= y = 4x. We can rewrite the integral by using the
bounds 0 < x < 5 and 0 < y < 4x, which makes the integration easier
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3. Change the order of integration and evaluate.
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Solution: Note that we are integrating over the region bounded by the z-axis, © =1,
and the parabola v = \/y <= y = 22, We can rewrite the integral by using the bounds
0 <z <1and0 <y < a? which makes the integration easier
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