MATH 010B - Spring 2018
Worked Problems - Section 5.5

1. Evaluate the integral.
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where R = [0,2] x [0,2] x [0, 2].

Solution: Note that the region R is just a cube in the first octant with sides of length
2. Therefore, we have
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2. Evaluate the integral.
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where R = [0,3] x [—1,1] x [0,2

Solution: We compute the integral given the bounds above
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3. Find the volume of the region bounded by z = 2% + y? and z = 10 — 22 — 2y°.
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Solution: The graph of z = 2% + y? is a (circular cross-section) paraboloid that opens
upward, and z = 10 — 2% — 2¢? is an elliptic paraboloid that opens downward. Note that
in the first line below we can represent the volume as a triple integral, or equivalently as
a double integral. As a double integral, we must figure out what the region R is. The
region R is the projection into the xy-plane, which can be determined by:
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which gives us an equation for an ellipse. Therefore, we have the bounds —v/5 < z < /5
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and — 3 ng <y < 3 §x2 for the region R. As you can see below, this

does not look like a very nice integral to compute. If use a modified version of polar
10
coordinates: x = v/5rcos(f) and y = 37 sin(f), then we are mapping the ellipse to the

unit disk (the circle centered at the origin, with radius 1 and its interior). Therefore,

50
dA =r 3 dr df by computing the Jacobian of our substitution above. Thus we only
need to find the bounds for the unit disk, which are easy: 0 <r <1 and 0 <0 < 27.
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4. Evaluate the integral.
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where W is the region bounded by the planes x = 0,y = 0,z = 0,2 = 1, and the cylinder
22 +9y? =9, with x > 0 and y > 0.

Solution: Note that we are integrating over a quarter of the cylinder, the part that is
in the first octant. The first octant is determined as we have the restriction by the planes
x =0,y =0,z =0. The cylinder goes from a base at z = 0 to the top at z = 1. The
cylinder has radius 3, as the cross sections are given by the circles 22+ y? = 9. Therefore,
the bounds are 0 < 2 <1, 0<y <3, and 0 <z < /9 — y2. So the integral becomes
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where we have used the fact that the double integral in parenthesis in the second line is

1
just the area of 1 of the circle 22 4+ y? = 9. The whole circle has area A = mr? = 97, and

one quarter of that area is Zﬂ This saves us from doing the integration. U
5. Evaluate the integral
1 2z z+y
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Solution: We compute the integral directly
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6. Evaluate the integral

///Vv(x2+y2) dx dy dz

where W is the pyramid with the top vertex at (0,0, 1) and the base vertices at (0, 0,0), (1,0, 0), (0, 1,
and (1,1,0).

Solution: Note that the horizontal cross-sections of a pyramid with square base are
squares. When we are at the height z, the square has one corner at (0,0, z) and side
length 1 — 2. So then, we have the bounds 0 < x <1—zand 0 <y <1-— 2. Now we can
compute the integral
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