
MATH 010B - Spring 2018

Worked Problems - Section 5.5

1. Evaluate the integral. ∫∫∫
R

2x2 dx dy dz

where R = [0, 2]× [0, 2]× [0, 2].

Solution : Note that the region R is just a cube in the first octant with sides of length
2. Therefore, we have∫∫∫
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2. Evaluate the integral. ∫∫∫
R

= (3x+ 6y + z) dx dy dz

where R = [0, 3]× [−1, 1]× [0, 2].

Solution : We compute the integral given the bounds above∫∫∫
R
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3. Find the volume of the region bounded by z = x2 + y2 and z = 10− x2 − 2y2.

Solution : The graph of z = x2 + y2 is a (circular cross-section) paraboloid that opens
upward, and z = 10− x2 − 2y2 is an elliptic paraboloid that opens downward. Note that
in the first line below we can represent the volume as a triple integral, or equivalently as
a double integral. As a double integral, we must figure out what the region R is. The
region R is the projection into the xy-plane, which can be determined by:

x2 + y2 = 10− x2 − 2y2

x2

5
+

3y2

10
= 1

which gives us an equation for an ellipse. Therefore, we have the bounds −
√

5 ≤ x ≤
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3
x2 for the region R. As you can see below, this

does not look like a very nice integral to compute. If use a modified version of polar

coordinates: x =
√

5r cos(θ) and y =
10

3
r sin(θ), then we are mapping the ellipse to the

unit disk (the circle centered at the origin, with radius 1 and its interior). Therefore,

dA = r

√
50

3
dr dθ by computing the Jacobian of our substitution above. Thus we only

need to find the bounds for the unit disk, which are easy: 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.∫∫∫
W
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4. Evaluate the integral. ∫∫∫
W

z dx dy dz

where W is the region bounded by the planes x = 0, y = 0, z = 0, z = 1, and the cylinder
x2 + y2 = 9, with x ≥ 0 and y ≥ 0.

Solution : Note that we are integrating over a quarter of the cylinder, the part that is
in the first octant. The first octant is determined as we have the restriction by the planes
x = 0, y = 0, z = 0. The cylinder goes from a base at z = 0 to the top at z = 1. The
cylinder has radius 3, as the cross sections are given by the circles x2 +y2 = 9. Therefore,
the bounds are 0 ≤ z ≤ 1, 0 ≤ y ≤ 3, and 0 ≤ x ≤

√
9− y2. So the integral becomes

∫∫∫
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z dx dy dz =
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where we have used the fact that the double integral in parenthesis in the second line is

just the area of
1

4
of the circle x2 + y2 = 9. The whole circle has area A = πr2 = 9π, and

one quarter of that area is
9π

4
. This saves us from doing the integration. �

5. Evaluate the integral ∫ 1

0

∫ 2x

0

∫ x+y

x2+y2
dz dy dx

Solution : We compute the integral directly∫ 1
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6. Evaluate the integral ∫∫∫
W

(x2 + y2) dx dy dz

whereW is the pyramid with the top vertex at (0, 0, 1) and the base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0),
and (1, 1, 0).

Solution : Note that the horizontal cross-sections of a pyramid with square base are
squares. When we are at the height z, the square has one corner at (0, 0, z) and side
length 1− z. So then, we have the bounds 0 ≤ x ≤ 1− z and 0 ≤ y ≤ 1− z. Now we can
compute the integral∫∫∫

W

(x2 + y2) dx dy dz =
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=
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