
MATH 010B - Spring 2018

Worked Problems - Section 6.2

1. Compute the following double integral∫∫∫
x2+y2≤9
2≤z≤3

zex
2+y2 dV

Solution : Here, we can’t hope to integrate this directly in Cartesian coordinates, since
the the exponential function poses problems. Therefore, we will switch to cylindrical
coordinates, as the region described is a cylinder. For the bounds given in terms of x, y,
and z, we convert everything to cylindrical coordinates as the following:

dV = r drdθdz

0 ≤ r ≤ 3

0 ≤ θ ≤ 2π

2 ≤ z ≤ 3

From here we can set up the integral. We then get∫∫∫
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2. Compute the following double integral∫∫∫
W

e
√

(x2+y2+z2)3 dV

where W = {(x, y, z) | x2 + y2 + z2 = 1}.

Solution : Here, we can’t hope to integrate this directly in Cartesian coordinates, since
the the exponential function poses problems. Therefore, we will switch to spherical coor-
dinates, as the region described is exactly the sphere centered at the origin with radius
1. For the bounds given in terms of x, y, and z, we convert everything to cylindrical
coordinates as the following:

x = r sin(φ) cos(θ)

y = r sin(φ) sin(θ)

z = r cos(φ)

dV = r2 sin(φ) drdφdθ

0 ≤ r ≤ 1

0 ≤ θ ≤ 2π

0 ≤ φ ≤ π



From here we can set up the integral. We then get∫∫∫
W

e
√

(x2+y2+z2)3 dV =

∫ 2π

0

∫ π

0

∫ 1

0

r2er
3

sin(φ) drdφdθ

=

(∫ 1

0

r2er
3

dr

)(∫ 2π

0

dθ

)(∫ π

0

sin(φ) dφ

)

=

 er
3

3

∣∣∣∣∣
1

0

dz

 (2π) (− cos(φ)|π0 )

=
4

3
π(e− 1)

�

3. Find the solid enclosed by the hyperboloid −x2 − y2 + z2 = 1 and the plane z = 2.

Solution : Note the the hyperboloid piece is the one in the upper half space, and opens
upwards from z = 1. First, we write out the integral in Cartesian coordinates. Note that
the cross-sections of the region in the xy-plane are circles. We can determine this by some
algebra

z =
√
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4 = 1 + x2 + y2

3 = x2 + y2

So the largest circle (that sits on the plane z = 2) is given by the above formula, so the
radius is r =

√
3. So we write the volume integral as∫∫∫
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This computation will not be very clean if we do this in Cartesian coordinates. Using
cylindrical coordinates, we have that

x = r cos(θ)

y = r sin(θ)

z = z

dV = r dzdrdθ
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4. Evaluate the following by using cylindrical coordinates.∫∫∫
W

(x2 + y2 + z2)−1/2 dxdydz

where W =

{
(x, y, z)

∣∣∣∣14 ≤ z ≤ 1, x2 + y2 + z2 ≤ 1

}
.

Solution : Note that the region W being described is the upper hemisphere of the unit
sphere. To use cylindrical coordinates we use

x = r cos(θ)

y = r sin(θ)

z = z

Also, the key to this problem is rewriting the r bounds. Since z = z, then 1
4
≤ z ≤ 1.

Since we are using the whole hemisphere, we take 0 ≤ θ ≤ 2π. Now notice that the
sphere is given by x2 + y2 + z2 = 1, or in cylindrical coordinates, r2 + z2 = 1. Solving
this for r, we get that r =

√
1− z2, where we have taken the positive one, as we are

concerned with the top hemisphere. Therefore, in cylindrical coordinates, r gives the
distance from the z-axis, so it is changing as you increase z from 1

4
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1− z2. Note that when writing the bounds for r you need the function
to be of some other variable, so in this case r = f(z). Now we put the pieces together∫∫∫
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5. Evaluate ∫∫∫
W

1

(x2 + y2 + z2)3/2
dx dy dz

where W is the solid bounded by the two spheres x2 + y2 + z2 = a2 and x2 + y2 + z2 = b2,
where 0 < b < a.

Solution : Note that the region W being described is region that is in between the two
spheres of different radii. We can use spherical coordinates, and we can describe the
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region with the inequalities

x = r sin(φ) cos(θ)

y = r sin(φ) sin(θ)

z = r cos(φ)

dV = r2 sin(φ) dr dφ dθ

b ≤ r ≤ a

0 ≤ φ ≤ π

0 ≤ θ ≤ 2π

where the bounds follow since we have the whole sphere, with radii bounded between b
and a, as the directions state. Now we put the pieces together∫∫∫
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6. Using spherical coordinates, compute the integral of f(ρ, φ, θ) = 1
rho

over the region in

the first octant of R3, which is bounded by the cones φ =
π

4
, φ = arctan(2), and the

sphere ρ =
√

2.

Solution : We can use spherical coordinates, and we can describe the region with the
inequalities

x = ρ sin(φ) cos(θ)

y = ρ sin(φ) sin(θ)

z = ρ cos(φ)

dV = ρ2 sin(φ) dr dφ dθ

0 ≤ ρ ≤
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where the bounds follow since we have the whole sphere, with radii bounded between b
and a, as the directions state. Now we put the pieces together∫∫∫
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where we have deduced the value of cos(arctan(2)) by noting that
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