
MATH 010B - Spring 2018

Worked Problems - Section 7.2

1. Evaluate ∫
C

F(x, y, z) ds

where F(x, y, z) = (x, y, z), and C is parameterized by x(t) = (2 cos(t), 2 sin(t), 0), for
0 ≤ t ≤ 2π.

Solution : Recall that the formula for the path integral of a vector field F is given as∫
C

F ds =

∫ b

a

F(x(t)) · x′(t) dt

So we must figure out the other pieces. They are computed as follows:

F(x(t)) = (2 cos(t), 2 sin(t), 0)

x′(t) = (−2 sin(t), 2 cos(t), 0)

F(x(t)) · x′(t) = (2 cos(t), 2 sin(t), 0) · (−2 sin(t), 2 cos(t), 0)

= −4 cos(t) sin(t) + 4 cos(t) sin(t)

= 0

Now we just compute by putting everything together∫
C

F ds =

∫ b

a

F(x(t)) · x′(t) dt

=

∫ 2π

0

0 dt

= 0
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2. Evaluate ∫
C

2xyz dx+ x2z dy + x2y dz

where C connects (1, 2, 4) to (1, 4, 16).

Solution : Use a parameterization for a straight line between the points for 0 ≤ t ≤ 1.
To do this, follow a similar procedure as the straight line in Section 7.1, number 1. Thus
we have

x(t) = (1, 2t+ 2, 12t+ 4)

x′(t) = (0, 2, 12)

Note that given x(t) = (x, y, z), then the derivative is given as x′(t) = (dx, dy, dz). Now
just substitute out∫

C

2xyz dx+ x2z dy + x2y dz =

∫ 1

0

(0 + (1)(12t+ 4)(2) + (1)(2t+ 2)(12)) dt

=

∫ 1

0

48t+ 32 dt

= 24t2 + 32
∣∣1
0

= 56

�

3. Evaluate ∫
C

x2 dx+ xy dy + dz

where C is the parabola z = x2 from (−2, 0, 4) to (2, 0, 4).

Solution : Note that the parabola z = x2 is a parabola in the xz-plane, where the y
component is always zero. If we let x = t for t ∈ [−2, 2], then z = t2. Therefore, we get

x(t) = (t, 0, t2)

x′(t) = (1, 0, 2t)

Note that given x(t) = (x, y, z), then the derivative is given as x′(t) = (dx, dy, dz). Now
just substitute out∫

C

x2 dx+ xy dy + dz =

∫ 2

−2
((t2)(1) + (1)(0)(0) + 2t) dt

=

∫ 2

−2
(t2 + 2t) dt

=
1

3
t3 + t2

∣∣∣∣2
−2

=
16

3

�
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4. Consider the force field F(x, y, z) = (x, y, z). Compute the work done in moving a particle
along the parabola y = x2, z = 0, from x = −1 to x = 3.

Solution : Note that the parabola y = x2 is a parabola in the xy-plane, where the z
component is always zero. If we let x = t for t ∈ [−1, 3], then y = t2. Therefore, we get

x(t) = (t, t2, 0)

x′(t) = (1, 2t, 0)

F(x(t)) = (t, t2, 0)

Now we just use the formula

W =

∫
C

F ds =

∫ b

a

F(x(t)) · x′(t) dt

=

∫ 3

−1
(t, t2, 0) · (1, 2t, 0) dt

=

∫ 3

−1
(t+ 2t3) dt

=
1

2
t2 +

1

2
t4
∣∣∣∣3
−1

=
9

2
+

81

2
− 1

2
− 1

2
=

88

2
= 44
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5. Given

∇f(x, y, z) = (2xyzex
2

, zex
2

, yex
2

)

and f(0, 0, 0) = 1, determine the value of f(3, 3, 2).

Solution : Recall that the gradient of f is defined as

∇f(x, y, z) =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (2xyzex

2

, zex
2

, yex
2

)

so we then know that the following equation holds

∂f

∂x
= 2xyzex

2

.

Now we can integrate both sides of the above equation to figure out what the general
f is, recalling that the integration “constant” can be a function y and z. Therefore, we
have that

f(x, y, z) = yzex
2

+ g(y, z)

Now taking partial derivatives of the general f with respect to y and z, we get

∂f

∂y
= zex

2

+ gy(y, z)

∂f

∂x
= yex

2

+ gz(y, z).
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If you match the terms above with the original gradient that was given in the problem,
we must have that

gy(y, z) = 0

gz(y, z) = 0

and by integrating, we get that

g(y, z) = h(z)

g(y, z) = h̃(y)

So the above condition states that g must be strictly a function of z and strictly a function
of y. The only way this is possible is if g(y, z) = C, where C is a constant. So we have
that

f(x, y, z) = yzex
2

+ C

Now we use the initial condition that is given to show that

f(0, 0, 0) = 1 = 0 + C

so that we find C = 1. Therefore, our function is f(x, y, z) = yzex
2

+ 1, and f(x, y, z) =
6e9 + 1. �
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