
MATH 010B - Spring 2018

Worked Problems - Section 7.5

1. Evaluate ∫∫
S

x+ y ds

where S is the surface parameterized by T(u, v) = (2u cos(v), 2u sin(v), u) for u ∈ [0, 4]
and v ∈ [0, π].

Solution : Recall that the formula for scalar functions over surfaces is given by∫∫
S

f(x, y, z) ds =

∫∫
D

f(T(u, v))||Tu ×Tv|| du dv

Now we must compute all of the pieces. They are given as

Tu = (2 cos(v), 2 sin(v), 1)

Tv = (−2u sin(v), 2u cos(v), 0)

||Tu ×Tv|| =
√

4u2 cos2(v) + 4u2 sin2(v) + 16u2 =
√

20u2 = 2
√

5u

f(T(u, v)) = 2u(sin(v) + cos(v))

Now insert all of the pieces into the formula to get∫∫
S

x+ y ds =

∫ π

0

∫ 4

0

(2u(sin(v) + cos(v))) 2
√

5u du dv

= 4
√

5

∫ π

0

∫ 4

0

(u2(sin(v) + cos(v))) dudv

= 4
√

5

(∫ π

0

(sin(v) + cos(v))) dv

)(∫ 4

0

u2 du

)
= 4
√

5 (− cos(v) + sin(v)|π0 )

(
u3

3

∣∣∣∣4
0

)

= 4
√

5(2)

(
64

3

)
=

512
√

5

3

�

2. Find the average value of f(x, y, z) = x + z2 on the surface S for the truncated cone
z2 = x2 + y2, with 1 ≤ z ≤ 9.

Solution : To find the average value, we need to compute two integrals, one where
f(x, y, z) = 1 and the other where f(x, y, z) = x + z2. To do both, we need to compute
the components in the formula for scalar functions given in the previous question. These
pieces are the parameterization T(u, v), and its derivatives, and its norm.

T(u, v) = (u cos(v), u sin(v), u)

Tu = (cos(v), sin(v), 1)

Tv = (−u sin(v), u cos(v), 0)

Tu ×Tv = (−u cos(v),−u sin(v), u(cos2(v) + sin2(v)))

||Tu ×Tv|| =
√
u2 cos2(v) + u2 sin2(v) + u2 =

√
2u2 =

√
2u



where u ∈ [1, 9] and [0, 2π]. Now, first we compute where f(x, y, z) = 1. So insert all of
the pieces into the formula to get∫∫

S

1 ds =

∫ 2π

0

∫ 9

1

√
2u du dv

= 2π

(
√

2
u2

2

∣∣∣∣9
1

)
= 80π

√
2

Now we do the computation for f(x, y, z) = x+ z2. We then have∫∫
S

x+ z2 ds =

∫ 2π

0

∫ 9

1

(u cos(v) + u2)
√

2u du dv

=
√

2

∫ 2π

0

∫ 9

1

(u2 cos(v) + u3) du dv

= 3280π
√

2

To find the average value, we just take the ratio of the two solutions we got above

Average Value =
3280π

√
2

80π
√

2
= 41

�

3. Evaluate ∫∫
S

x+ z ds

where S is the is the part of the cylinder y2 + z2 = 4 with x ∈ [0, 2].

Solution : Again, we follow the same procedure in number 1.

T(u, v) = (u, 2 cos(v), 2 sin(v))

Tu = (1, 0, 0)

Tv = (0,−2 sin(v), 2 cos(v))

Tu ×Tv = (0,−2 cos(v),−2 sin(v))

||Tu ×Tv|| =
√

4 cos2(v) + 4 sin2(v) =
√

4 = 2

f(T(u, v)) = u+ 2 sin(v)

where u ∈ [0, 2] and v ∈ [0, 2π]. Now insert all of the pieces into the formula to get∫∫
S

x+ z ds =

∫ 2π

0

∫ 2

0

(u+ 2 sin(v)) 2 du dv

= 2

∫ 2π

0

∫ 2

0

(
u2

2
+ 2u sin(v)

)∣∣∣∣2
0

dv

= 2

∫ 2π

0

(2 + 4 sin(v)) dv

= 4 (v − 2 cos(v))|2π0
= 4(2π − 2 + 2) = 8π

�

2



4. Evaluate ∫∫
S

9xy ds

where S is the surface of the tetrahedron with sides y = 0, z = 0, x+ z = 1, and x = y.

Solution : For this problem, consider the four sides of the tetrahedron as: S1 being
y = 0, C2 being z = 0, S3 being x + z = 1, and S4 being x = y. We can then compute
the pieces individually, as∫∫

S

9xy ds =

∫∫
S1

9xy ds+

∫∫
S2

9xy ds+

∫∫
S3

9xy ds+

∫∫
S4

9xy ds

For the first face, S1, note that y ≡ 0 on this face, so then we simply get∫∫
S1

9xy ds = 0

On the second face, S2, note that on the plane z = 0, is a triangular region that is given
in the xy-plane by the equations x = 1, y = 0, and x = y. Therefore, we have the
integration over S2 is ∫∫

S2

9xy ds =

∫ 1

0

∫ 1

y

9xy dx dy

= 9

∫ 1

0

(
1

2
x2y

)∣∣∣∣x=1

x=y

dy

=
9

2

∫ 1

0

(
y − y3

)
dy

=
9

2

(
1

2
y2 − 1

4
y4
)∣∣∣∣1

0

=
9

8

On the third face, S3 note that x+ z = 1 implies that z = 1−x. So we take the following
parameterization

T(u, v) = (u, v, 1− u)

Tu = (1, 0,−1)

Tv = (0, 1, 0)

Tu ×Tv = (1, 0, 1)

||Tu ×Tv|| =
√

2

f(T(u, v)) = 9uv

for u ∈ [v, 1], and v ∈ [0, 1]. Now insert all of the pieces into the formula to get∫∫
S3

9xy ds =

∫ 1

0

∫ 1

v

9
√

2uv du dv

= 9
√

2

∫ 1

0

(
1

2
u2v

)∣∣∣∣u=1

u=v

dv

=
9
√

2

2

∫ 1

0

(
v − v3

)
dv

=
9
√

2

2

(
1

2
v2 − 1

4
v4
)∣∣∣∣1

0

=
9
√

2

8

3



On the fourth face, S4 note that x = y, and x+ z = 1 implies that x = 1− z. So we take
the following parameterization

T(u, v) = (u, u, v)

Tu = (1, 1, 0)

Tv = (0, 0, 1)

Tu ×Tv = (1,−1, 0)

||Tu ×Tv|| =
√

2

f(T(u, v)) = 9u2

for u ∈ [0, x] = [0, 1− z] = [0, 1− v], and v ∈ [0, 1]. Now insert all of the pieces into the
formula to get ∫∫

S3

9xy ds =

∫ 1

0

∫ 1−v

0

9
√

2u2 du dv

= 9
√

2

∫ 1

0

(
1

3
u3
)∣∣∣∣u=1−v

u=0

dv

=
9
√

2

3

∫ 1

0

(1− v)3 dv

= 3
√

2

(
−1

4
(1− v)4

)∣∣∣∣1
0

=
3
√

2

4

Putting all the pieces together, we have∫∫
S

9xy ds =

∫∫
S1

9xy ds+

∫∫
S2

9xy ds+

∫∫
S3

9xy ds+

∫∫
S4

9xy ds

= 0 +
9

8
+

9
√

2

8
+

3
√

2

4

=
15
√

2 + 9

8

�

5. (a) Compute the area of the portion of the cone x2 + y2 = z2 with z ≥ 0 that is inside
the sphere x2 + y2 + z2 = 2Rz, where R is a positive constant.
(b) What is the area of that portion of the sphere that is inside the cone?

Solution : (a) For this problem, we use the formula for surface area over a graph given
by ∫∫

S

f(x, y, z) ds =

∫∫
D

f(x, y, g(x, y))

√
1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dx dy

For the area of the region, we take f(x, y, z) = 1. Note that x2 + y2 = z2 is equal to
z =

√
x2 + y2, since we only consider z ≥ 0. Now, we take g(x, y) =

√
x2 + y2. Also note

that the region D is the intersection of the surfaces in the problem, which implies

x2 + y2 + z2 = 2Rz

z2 + z2 = 2Rz

z = R

4



So the D is the circle with radius R. Therefore, we get the integral

∫∫
S

f(x, y, z) ds =

∫∫
D

f(x, y, g(x, y))

√
1 +

(
∂g

∂x

)2

+

(
∂g

∂y

)2

dx dy

=

∫∫
D

√√√√1 +

(
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

dx dy

=

∫∫
D

√
1 +

x2

x2 + y2
+

y2

x2 + y2
dx dy

=
√

2

∫∫
D

dx dy

=
√

2(Area of circle with radius R)

=
√

2πR2

(b) For this part, see the diagram in the class notes. The part of the sphere that is inside
the cone is exactly the upper hemisphere. From geometry, the surface area of a sphere is
4πR2, but since we only consider the upper hemisphere, we get exactly half this region,
which gives A = 2πR2. Alternatively, you could set up the surface integral in cylindrical
or spherical coordinates to compute the surface area of the upper hemisphere, and you
will get the same solution. �
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