
MATH 010B - Spring 2018

Worked Problems - Section 8.2

For these questions, recall what Stokes’ Theorem states:∫∫
S

(∇× F) · dS =

∫
∂S

F · dS∫∫
S

(∇× F) · dS =

∫∫
D

(∇× F) (T(u, v)) · (Tu ×Tv) du dv =

∫
∂S

F · dS

which allows us to compute either a surface integral of the curl of the vector field F, or
the line integral over the boundary of the surface, ∂S. The second formula allows us to
compute the surface integral using a parameterization T(u, v). Finally, we may use the
following helpful formula∫∫

S

G · dS =

∫∫
D

(
G1

(
−∂z
∂x

)
+G2

(
−∂z
∂y

)
+G3

)
dx dy

for some graph z = f(x, y).

1. Let S be the portion of the plane 2x+3y+z = 6 lying between the points (−1, 1, 5),
(2, 1,−1), (2, 3,−7), and (−1, 3,−1). Find parameterizations for both the surface
S and its boundary ∂S. Be sure that their respective orientations are compatible
with Stokes’ theorem.

Solution : Just construct linear pieces for each component using a table.

For the line from (−1, 1, 5) to (2, 1,−1), and for t ∈ [0, 1], use the table

t x(t) y(t) z(t)
0 -1 1 5
1 2 1 -1

which gives us the first component as S1(t) = (x(t), y(t), z(t)) = (3t−1, 1,−6t+5).
We do the same for (2, 1,−1) to (2, 3,−7), and for t ∈ [1, 2]

t x(t) y(t) z(t)
1 2 1 -1
2 2 3 -7

which gives us the second component as S2(t) = (x(t), y(t), z(t)) = (2, 2t− 1,−6t+
5). We do the same for (2, 3,−7) to (−1, 3,−1), and for t ∈ [2, 3]

t x(t) y(t) z(t)
2 2 3 -7
3 -1 3 -1

which gives us the third component as S3(t) = (x(t), y(t), z(t)) = (−3t+8, 3, 6t−19).
We do the same for (−1, 3,−1) to (−1, 1, 5), and for t ∈ [3, 4]



t x(t) y(t) z(t)
3 -1 3 -1
4 -1 1 5

which gives us the fourth component as S4(t) = (x(t), y(t), z(t)) = (−1,−2t+9, 6t−
19). Therefore, the boundary ∂S can be given as the piecewise curve defined as

f(t) =


S1(t) = (3t− 1, 1,−6t+ 5) for t ∈ [0, 1]

S2(t) = (2, 2t− 1,−6t+ 5) for t ∈ [1, 2]

S3(t) = (−3t+ 8, 3, 6t− 19) for t ∈ [2, 3]

S4(t) = (−3t+ 8, 3, 6t− 19) for t ∈ [3, 4]

Now the S is the portion of the plane 2x + 3y + z = 6 lying between the points
given. Note that we can write the surface as z = 6 − 2x − 3y. The most natural
parametrization to choose would be to let x = u and y = v, where x = u ∈ [−1, 2]
and y = v ∈ [1, 3]. The bounds come from looking at the range of the x and y
coordinates of the points, which corresponds to the projection of the region in the
xy-plane. Plugging this into the equation for z, we get the parameterization of the
surface as

T(u, v) = (u, v, 6− 2u− 3v)
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2. Verify Stokes’ theorem for the given surface S and boundary ∂S, and vector field
F.

S = {(x, y, z) | z = 1− x2 − y2, z ≥ 0},
∂S = {(x, y) | x2 + y2 = 1}
F = (z, x, 5zx+ 4xy)

Solution : Note that the surface S is a paraboloid that opens down, with ∂S
being the base of the surface on the z = 0 plane, which is a circle of radius 1. First
we compute the left hand side of Stokes’ theorem. We compute the cross product
first

∇× F =

∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z
z x 5zx+ 4xy

∣∣∣∣∣∣∣∣ = (4x,−(5z − 4y − 1), 1)

Then we use the formula from page 1, where we let G = (4x,−(5z − 4y − 1), 1),
and D is the unit disk. Thus∫∫

S

(∇× F) · dS =

∫∫
S

G · dS

=

∫∫
D

(
G1

(
−∂z
∂x

)
+G2

(
−∂z
∂y

)
+G3

)
dx dy

=

∫∫
D

((4x)(2x)− (5z − 4y − 1)(2y) + 1) dx dy

=

∫∫
D

(8x2 − 10yz − 8y2 + 2y + 1) dx dy

=

∫∫
D

(8x2 − 8y2 + 2y + 1) dx dy z = 0 on the disk D

=

∫ 2π

0

∫ 1

0

(8 cos2(θ)− 8 sin2(θ) + 2 sin(θ) + 1)r dr dθ

use the identity cos2(t)− sin2(t) = cos(2t)

=

(∫ 1

0

r dr

)(∫ 2π

0

(8 cos(2θ) + 2 sin(θ) + 1) dθ

)
=

(
r2

2

∣∣∣∣1
0

)(
t+ (8 sin(θ)− 2) cos(θ)|2π0

)
=

1

2
(2π) = π

For the line integral, we need the parameterization for the unit circle on the plane
z = 0, thus

x(t) = (cos(θ), sin(θ), 0) for t ∈ [0, 2π]

x′(t) = (− sin(θ), cos(θ), 0) for t ∈ [0, 2π]

Then we have that

F(x(t)) = (0, cos(t), 4 sin(t) cos(t))
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Using the line integral formula∫
∂S

F · dS =

∫ 2π

0

F(x(t)) · x′(t) dt

=

∫ 2π

0

(0, cos(t), 4 sin(t) cos(t)) · (− sin(θ), cos(θ), 0) dt

=

∫ 2π

0

cos2(t) dt

=

(
1

2
(t+ sin(t) cos(t))

)∣∣∣∣2π
0

=
1

2
(2π)

= π

Both answers are the same, so Stokes’ theorem is satisfied. �
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3. Let F = (x2, 5xy + x, z). Let C be the circle x2 + y2 = 81, and S be the disk
x2 + y2 ≤ 81 within the plane z = 0.

(a) Determine

∫∫
S

F · dS

(b) Determine

∫∫
C

F · dS

(c) Determine

∫∫
S

(∇× F) · dS

Note that (b) and (c) are the two sides of Stokes’ theorem.

Solution : (a) Recall that the formula for integrals for vector fields over surfaces
is given by ∫∫

S

F · dS =

∫∫
D

F(T(u, v)) · (Tu ×Tv) du dv

Now we must compute all of the pieces. We parameterize the disk on the plane
z = 0 by

T(u, v) = (u cos(v), u sin(v), 0)

Tu = (cos(v), sin(v), 0)

Tv = (−u sin(v), u cos(v), 0)

Tu ×Tv = (0, 0, u)

F(T(u, v)) · (Tu ×Tv) = (u2 cos2(v), 5u2 cos(v) sin(v) + u cos(v), 0) · (0, 0, u) = 0

for u ∈ [0, 9] and v ∈ [0, 2π]. So then the problem becomes∫∫
S

F · dS =

∫∫
D

0 du dv = 0

(b) Recall that the formula for integrals for vector fields over paths is given by∫
C

F · dS =

∫ b

a

F(x(t)) · (x′(t)) dt

Now we must compute all of the pieces. We parameterize the circle on the plane
z = 0 by

x(t) = (9 cos(t), 9 sin(t), 0)

x′(t) = (−9 sin(t), 9 cos(t), 0)

F(x(t)) · (x′(t)) = (cos2(t), 405 cos(t) sin(t) + 9 cos(t), 0) · (−9 sin(t), 9 cos(t), 0)

= 3636 cos2(t) sin(t) + 81 cos2(t)

for t ∈ [0, 2π]. So then the problem becomes∫
C

F · dS =

∫ b

a

F(x(t)) · (x′(t)) dt

=

∫ 2π

0

(3636 cos2(t) sin(t) + 81 cos2(t)) dt

=

(
−1212 cos3(t) +

81

2
(t+ sin(t) cos(t))

)∣∣∣∣2π
0

= 81π
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(c) Compute the cross product first

∇× F =

∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z
x2 5xy + x z

∣∣∣∣∣∣∣∣ = (0, 0, 5y + 1)

Then we use the formula from page 1, the parameterization from (a) (plug param-
eterization into the curl), and the region D as the disk, we have∫∫

S

(∇× F) · dS =

∫∫
D

(∇× F) (T(u, v)) · (Tu ×Tv) du dv

=

∫∫
D

(0, 0, 5u sin(v) + 1) · (0, 0, u) du dv

=

∫ 2π

0

∫ 9

0

(5u2 sin(v) + u) du dv

=

∫ 2π

0

(
5

93

3
sin(v) +

81

2

)
dv

=

(
−5

93

3
cos(v) +

81

2
v

)∣∣∣∣2π
0

=
81

2
(2π) = 81π

�
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4. Let C be the closed, piecewise smooth curve formed by traveling in straight lines
between the points (0, 0, 0), (2, 0, 18), (3, 2, 27), (1, 2, 9), and back to the origin, in
that order. (Thus the surface S lying interior to C is contained in the plane z = 9x.)
Use Stokes’ theorem to evaluate the following integral.∫

C

(z cos(x)) dx+ (x2yz) dy + (yz) dz

Solution : Note that we can reconstruct the vector field F by taking the pieces
inside the integral, thus F = (z cos(x), x2yz, yz). Compute the cross product first

∇× F =

∣∣∣∣∣∣∣∣
i j k

∂

∂x

∂

∂y

∂

∂z
z cos(x) x2yz yz

∣∣∣∣∣∣∣∣ = (z − x2y, cos(x), 2xyz)

Now we need the parameterization of the region described in the problem. Note
that the region lies in the plane z = 9x, thus if we take x = u, y = v, and z = 9u,
we have

T(u, v) = (u, v, 9u)

Tu = (1, 0, 9)

Tv = (0, 1, 0)

Tu ×Tv = (−9, 0, 1)

F(T(u, v)) · (Tu ×Tv) = (9u− u2v, cos(u), 18u2v) · (−9, 0, 1)

= (27u2v − 81u)

for u ∈
[
v
2
, v+4

2

]
and v ∈ [0, 2]. To determine those bounds, take the projection

of the surface into the xy-plane, and you will see it is a parallelogram which is
bounded by the lines y = 0, y = 2, y = 2x, and y = 2x − 4. This then gives the
bounds when we use u and v.

Now we use the formula from page 1, the parameterization above, and the region
D as the parallelogram, we have∫∫

S

(∇× F) · dS =

∫∫
D

(∇× F) (T(u, v)) · (Tu ×Tv) du dv

=

∫∫
D

(27u2v − 81u) du dv

=

∫ 2

0

∫ v+4
2

v
2

(27u2v − 81u) du dv

=

∫ 2

0

(
9u3v − 81uv

)∣∣u= v+4
2

u= v
2

dv

= −144
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