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1 multivariable calculus

1.1 vectors

We start with some definitions. A real number z is positive, zero, or negative and is
rational or irrational. We denote

R = set of all real numbers x (1)

The real numbers label the points on a line once we pick an origin and a unit of length.
Real numbers are also called scalars
Next define
R? = all pairs of real numbers x = (1, 75) (2)

The elements of R? label points in the plane once we pick an origin and a pair of
orthogonal axes. Elements of R? are also called (2-dimensional) vectors and can be
represented by arrows from the origin to the point represented.
Next define
R? = all triples of real numbers z = (z1, 79, 73) (3)

The elements of R? label points in space once we pick an origin and three orthogonal
axes. Elements of R? are (3-dimensional) vectors. Especially for R® one might em-
phasize that x is a vector by writing it in bold face x = (21,22, z3) or with an arrow
Z = (x1, x93, x3) but we refrain from doing this for the time being.

Generalizing still further we define

R™ = all n-tuples of real numbers z = (21, xo,...,2,) (4)

The elements of R™ are the points in n-dimensional space and are also called (n-
dimensional) vectors

Given a vector x = (z1,...,2,) in R” and a scalar o € R the product is the vector
axr = (axy,...,qx,) (5)

Another vector y = (y1,...,¥,) can to added to x to give a vector
Ty =(T1+Y,. . Tn+ Yn) (6)

Because elements of R™ can be multiplied by a scalar and added it is called a vector
space. We can also subtract vectors defining * —y = x + (—1)y and then

rT—y=(T1— Y1, Ty — Yn) (7)

For two or three dimensional vectors these operations have a geometric interpreta-
tion. ax is a vector in the same direction as = (opposite direction if o < 0) with length
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Figure 1: vector operations

increased by |a|. The vector x + y can be found by completing a parallelogram with
sides z,y and taking the diagonal, or by putting the tail of y on the head of x and
drawing the arrow from the tail of x to the head of y. The vector x — y is found by
drawing x 4 (—1)y. Alternatively if the tail of z —y put a the head of y then the arrow
goes from the head of y to the head of z. See figure 1.

A vector x = (x1,...,x,) has a length which is

|z| = length of x = \/2? + -+ + 22 (8)

Since x —y goes from the point y to the point x, the length of this vector is the distance
between the points:

|z — y| = distance between z and y = /(21 — y1)2 + - - - + (T — Yn)? (9)

One can also form the dot product of vectors z,y in R™. The result is a scalar given
by
Ty =Ty + Tay2 + -+ TpYn (10)

Then we have
r-r= |z (11)



1.2 functions of several variables

We are interested in functions f from R™ to R™ (or more generally from a subset
D C R" to R™ called the domain of the function). A function f assigns to each z € R”
a point y € R™ and we write
y = [(z) (12)
The set of all such points y is the range of the function.
Each component of y = (yi,...,¥yn) is real-valued function of x € R™ written
y; = fi(x) and the function can also be written as the collection of n functions

ylzfl(x>7"' ) ym:fm(x) (13)

If we also write out the components of x = (z1,...,x,), then are function can be
written as m functions of n variables each:

U1 Zfl(xh .. 7$n)

Yo :fQ(xlv"wxn) (14)

Ym =fm(T1, ..., Tp)
The graph of the function is all pairs (z,y) with y = f(x). It is a subset of R™*™.
special cases:
1. n=1,m =2 (or m = 3). The function has the form
y1 = fi(z) y2 = fa(x) (15)

In this case the range of the function is a curve in R2.

2. n=2,m = 1. Then function has the form

y = f(z1,22) (16)

The graph of the function is a surface in R3.

3. n =2, m = 3. The function has the form

y1 =f1(z1, 72)
Y2 =[2(w1, 72) (17)
Y3 =f3(z1,2)

The range of the function is a surface in R3.

4. n =3, m = 3. The function has the form

Y1 :f1(1’1,5172,$3)
Yo =fo(21, 22, x3) (18)
Ys :f3($1,$2.$3)

The function assigns a vector to each point in space and is called a vector field.



1.3 limits

Consider a function y = f(z) from R™ to R™ (or possibly a subset of R"). Let 2° =

(29,...2%) be a point in R" and let y° = (y?,...,9%) be a point in R™. We say that

y° is the limit of f as x goes to 20, written

lim f(z) =y (19)

z—x0

if for every € > 0 there exists a § > 0 so that if |z — 2° < § then |f(z) — %] < e. The
function is continuous at z° if

lim f(z) = f(2") (20)

z—20

The function is continuous if it is continuous at every point in its domain.

If f, g are continuous at z° then so are f 4 g. If f, g are scalars (i.e. if m = 1) then
the the product fg is defined and continuous at z°. If f, g are scalars and g(x°) # 0
then f/g is defined near 2 and and continuous at z°.

1.4 partial derivatives

At first suppose f is a function from R? to R written

2= f(z,y) (21)
We define the partial derivative of f with respect to x at (xo,yo) to be

£.(0. o) = lim 10+ 112 %0) = £ (w0, %)

h—0 h (22)

if the limit exists. It is the same as the ordinary derivative with y fixed at yq, i.e
L . 0) (23)
—f(z
daj ) yO _—

We also define the partial derivative of f with respect to y at (zo,yo) to be

£ (0, ) = lim LZ0 b0+ 1) = £ (@0, yo)

h—0 h (24)

if the limit exists. It is the same as the ordinary derivative with x fixed at xg, i.e

)] (25)

dy Y=¥o



We also use the notation

[z _az ( or g—f or zz>

Oz @

fy :g—; < or g—g or zy>

(26)

If we let (z9,yo) vary the partial derivatives are also functions and we can take
second partial derivatives like

, 9 [0z 0z
(fe)z = for also written B (%) =92 (27)

The four second partial derivatives are

0%z 0%z
Jew = 012 Joy = Oyox
(28)
.
YT 9xdy Y Oy2

Usually f,, = fyz for we have

Theorem 1 If f,, fy, fuy, fyz €exist and are continuous near (xo,yo) (i.e in a little disc
centered on (g, Yyo) ) then

fxy<x07y0) = fyx(xmyO) (29)

Example: Consider f(z,y) = 32y + 4zy>. Then

fo = 62y + 41° fy = 322 + 122>

30
fuy = 62 + 1297 fye = 61 + 12¢° (30)

We also have partial derivatives for a function f from R™ to R written y = f(z1,...2,).

0

The partial derivative with respect to z; at (z9,...22) is

f;pi(di(l),...xg) = lim fa@f ol +hyan) = faf . ay)
h—0 h

It is also written
y




1.5 derivatives

A function z = f(z,y) is said to be differentiable at (o, yo) if it can be well-approximated
by a linear function near that point. This means there should be constants a,b such
that

f(@,y) = f(20,90) + alz — x0) +b(y — yo) + €(z,y) (33)
where the error term €(z, y) is continuous at (2o, yo) and €(z,y) — 0 as (z,y) — (xo, yo)
faster than the distance between the points:

. e(x,y)
1m
(@)~ (@o.w0) | (,y) — (0, Yo)]

=0 (34)

Note that differentiable implies continuous.
Suppose it is true and take (x,y) = (xo + h,yo). Then

f(zo+h,y0) = f(20,y0) + ah + e(xo + h,yo) (35)
and so h "
[z + 790]3 — f(xo,%0) —at e(wo ﬂ;l ,Yo) (36)

Taking the limit A — 0 we see that f.(zo,yo) exists and equals a. Similarly if we take
(x,y) = (0, Yo + h) we find that f,(xo,yo) exists and equals b.
Thus if f is differentiable then

f(z,y) = f(xo,90) + fo(To, y0)(x — w0) + fy (@0, 0) (Y — yo) + €(x,y) (37)
where € satisfies the above condition. The linear approximation is the function

z = f(x0,%0) + [o(®0,y0)(x — 20) + fy (20, Y0) (¥ — vo) (38)

The graph of the linear approximation is a plane called the tangent plane. See figure 2
It is possible that the partial derivatives f,(zo,v0) and f,(xo, o) exist but still the
function is not differentiable as the following example shows

example. Define a function by

1 r=0o0ry=0
Hay) = { 0  otherwise (39)
Then
f2(0,0)=0 f,(0,0) =0 (40)

But the function cannot be differentiable at (0, 0) since it is not continuous there. It is
not continuous since for example

lim /(1) =0 f(0,0) =1 (41)

However the following is true:



7= :F(Xu\‘in) + -¥x&o|ﬂblwb
“"E,(*«MD “1'39

Figure 2: tangent plane

Theorem 2 If the partial derivatives f,, f, exist and are continuous near (o, yo) (i-e
in a little disc centered on (xo,yo)) then f is differentiable at (xq,yo).

problem: Show the function f(z,y) = y* + 3z%y?* is differentiable at any point and
find the linear approximation (tangent plane) at (1,1).

solution: This has partial derivatives

folw,y) =6zy®  fy(z,y) = 3y° + 62°y (42)
at any point and they are continuous. Thus the function is differentiable. The tangent
plane at (1,1) is

2=fL,D)+ (L)@ —-1)+ f,(1, 1)y — 1)

=44+6(x—1)+9(y—1) (43)

=6z + 9y — 11

Next consider a function from R™ to R written y = f(z) = f(xy1,...,x,). Wesay f
is differentiable at 2 = (29, ...2%) if there is a vector a = (ay, ..., a,) such that

f@)=f(@") +a- (z—a") +e(2) (44)
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where as before

e(x)

zllgclo |z — 20| - (49)
If it is true then we find as before that the vector must be
a=(fu(2°),..., fo, (2) = (V])(2”) (46)
also called the gradient of f at 2°. Thus we have
f@) = f@") + (V@) - (@ —2") + () (47)

Finally consider a function y = f(z) from R" to R™. We write the points and the
function as column vectors:

v fi(x) 3
y= : = : T = : (48)
Ym fm () Ln
The function is differentiable at 2 is there is an m x n matrix (m rows, n columns) A

such that
flx) = f(2°) + Az — 2°) + ¢(2) (49)

where the error €(x) € R™ satisfies
tim 1 (50)

z—x0 |[L' — 1’0| N

By considering each component separately we find that the " row of A must be the
the gradient of f; at 2. Thus

fl,xl(xo) e fon(fl?O)

A=Df(a") = (51)

fm,x;(xo) fm,zr;(xo)

This matrix D f(x°) made up of all the partial derivatives of f at x° is the derivative
of f at 2°. Thus we have

f(x) = f(xo) + Df(2°)(x — 2°) + e(x) (52)
The derivative is also written

ayl/aﬂfl T ayl/alEn
Df = : :
OYm /01 -+ OYpm/Oxy,

10



problem: Consider the function from R? to R? given by
1) = (B (e ) 5
Y2 fa(x) x1(zg + 3)

Find the linear approximation at (0, 0)

solution: The derivative is

o ayg/aﬂfl 8y2/6x2 N To + 3 1

The linear approximation is

y=f0)+Df(0)(z—0) (56)

hn o 1 2 2 T . 2371 + 21‘2 +1
(n)=Co)=(5o) () =(se) e
1.6 the chain rule

If f:R*" — R™ (ie. fis a function from R" to R™) and p : R* — R", then there is a
composite function h : R¥ — R™ defined by

h(z) = f(p(z)) (58)

and we also write h = f o p. We can represent the situation by the diagram:

or

RE P R™
\ f
Rm

The chain gives a formula for the derivatives of the composite function A in terms
of the derivatives of f and p. We start with some special cases.

k=1,n=2,m=1 ‘ In this case the functions have the form

u :f(xa y)
r=n(t) v =m0 o
and the composite is
u=h(t) = f(p:(t), pa(t)) (60)

11



Theorem 3 (chain rule) If f and p are differentiable, then so is the composite h = fop
and the deriwative is

W(t) = fo(pr(t), p2(£))p1(2) + fy (p1(2), pa(2))pi (t) (61)

The idea of the proof is as follows. Since f is differentiable

h(t + At) = h(t) =f((p1(t + At), pa(t + AL)) — f(pr(2), pa(1))
pa(t

p
£ 10 p2(8)) (p1 (¢ + A1) = pat) ) + £y (p1(8), 2() (ol + A1) = (1))

+e(pr (t + At), po(t + At))
(62)

Now divide by At and let At — 0. One has to show that the error term goes to zero
and the result follows.

This form of the chain rule can also be written in the concise form

du  Oudr Ou dy

@t ordt oyt (63)

But one must keep in mind that du/0x and 0u/0y are to be evaluated at © = py(t),y =
pa(t). Also note that on the left u stands for the function u = h(t) while on the right
it stands for the function u = f(z,y).

example: Suppose u = 22 + y? and x = cost , y = sint. Find du/dt. We have

du  Oudz 4 O ou dy

dt  ordt Ay dt
=2x(—sint) + 2y cost (64)
=2cost(—sint) + 2sintcost
=0

(This is to be expected since the composite is u = 1).

example: Suppose u = \/2+ 22+ 4% and z = €' , y = . Find du/dt at t = 0. At

t =0 we have z =1,y = 1 and so

du Oudx 4 Ou ou dy
dt oz dt dy dt

z t Y 2
V2+ 2%+ y? V2 + 2%+ P (65)
1 1 3
——.14-.9=2%
2 +2 2



k=1,n,m=1|In this case the functions have the form

u= f(xy,...2,)
€T = pl(t)v vy Ip = pn(t)
and the composite is
u=h(t) = f(pi(t), -, pa(t))

The chain rule says

W) = far(pr(8), -+ pa(O)PL(E) + -+ o (pr(E), -+, pa(8))D (2)

It can also be written

du ou dx ou dx,

@ omdat T T n

k=2,n=2,m=2|In this case the functions have the form

u= fi(r,y) v = fa(z,y)
z = pi(s,t) y = pa(s, 1)

and the composite is

U = h1(57t) = fl(pl(sat)vp2(3>t)) v = h?(svt) = fZ(pl(Svt)ap2(Sat))

(71)

Taking partial derivatives with respect to s,¢ we can use the formula from the case

k=1,n=2m=1 to obtain

ou_0uds  oudy
ds Oxds 0OyO0s
Oou Oudxr Oudy
ot “ozor ayor
ov_0vos  ovdy
Js Ox0s Oy0s
ov_ovor  ovdy
ot Ox ot 0Oyaot

Here derivatives with respect to x,y are to be evaluated at x = p;(s,t),y = pa(s, t).

This can also be written as a matrix product:

(G gu/on ) ((Gujoe duony ((9eos dajor)

13

(73)



These matrices are just the derivatives of the various functions and the last equation
can be written

(Dh)(s,t) = (Df)(p(s,1))(Dp)(s, ) (74)

The last form holds in the general case. If p : R* — R™ and f : R® — R™ are
differentiable then the composite function A = f o p : R¥ — R™ is differentiable and

(Dh)(x) = (Df)(p(x)) (Dp)(x) (75)
k matrix mXn matrix nxk matrix

In other words the derivative of a composite is the matrix product of the derivatives of
the two elements. All forms of the chain rule are special cases of this equation.

1.7 implicit function theorem -I

Suppose we have an equation of the form

fla,y,2) =0 (76)

Can we solve it for z?7. More precisely, is it the case that for each x,y in some domain
there is a unique z so that f(x,y,z) = 07 If so one can define an implicit function
by z = ¢(x,y). Geometrically points satisfying f(z,y,2) = 0 are a surface and we are
asking whether the surface is the graph of a function.

Suppose there is an implicit function. Then

[y, ¢(x,y)) =0 (77)

Assuming everything is differentiable we can take partial derivatives of this equation.
By the chain rule we have

1y 0] =Ll 0l 9) + f(o . 0, 1) (2,1) -
o=ggﬂ%%wawn=@@w¢@w»+ﬁ@w¢@w»%uw>

0=

Solve this for ¢,(x,y) and ¢,(z,y) and get

_ faly, 9(z,y)
P = ey () )

oy - Btz ol

Y ’ fz(x7y7 ¢(x7y>>

14



This can also be written in the form

9z Of/ox
dr ~ 0f/0z
0z  0f/0y (80)
oy 0f)oz

keeping in mind that the right side is evaluated at z = ¢(x,y).

For this to work we need that 0f/0z # 0. If this holds and if we restrict attention
to a small region then there always is an implicit function. This is the content of the
following

Theorem 4 (implicit function theorem) Let f(x,y,z) have continuous partial deriva-
tives near some point (o, Yo, z0). If

f(an Yo, ZO) =0

f(0, Y0, 20) #0 (81

Then for every (z,y) near (xo,yo) there is a unique z near zo such that f(z,y,z) = 0.
The implicit function z = ¢(x,y) satisfies zo = ¢(xo,Yyo) and has continuous partial
deriwatives near (xg,yo) which satisfy the equations (79).

The theorem does not tell you what ¢ is or how to find it, only that it exists.
However if we take the equations (79) at the special point (x¢,yo) we find

- fm(l‘07 Yo, ZO)

$2(To, Yo) =
(0. %0) f=(%0, Yo, 20)
fx(l'Ov Yo, ZO) (82)
¢z(Z0,Yo) = — T ———=
(z0: %0) f=(20, Yo, 20)
and these quantities can be computed.
example: Suppose the equation is
fley,2)=a*+y*+2°—1=0 (83)

which describes the surface of a sphere. Is there an implicit function z = ¢(x,y) near
a particular point (zg, Yo, 20) on the sphere?
We have the derivatives

fol,y,2) = 22 fy(@,y,2) =2y fw,y,2) =22 (84)

15



Then f,(z0, Y0, 20) = 220 is not zero if zg # 0. So by the theorem there is an implicit
function z = ¢(x,y) near a point with zy # 0 and

0z fo_ @
oxr  f. =z

85
92 _ _fy_ Y (85)
dy I z

This example is special in that we can find the implicit function exactly and so
check these results. The implicit function is

z=41—22—y? (86)

with the plus sign if z; > 0 and the minus sign if 2y < 0. In either case we have the
expected result

0z 1 _ x

gr =gl =o' =) = 2 (87)
87

9z 1 2 oon-1/2( o N _ Y

ay—i2(1 2" —y) T (=2y) = 7

If zy = 0 there is no implicit function near the point as figure 3 illustrates.
problem: Consider the equation
f@,y,2) =2 +yz+1=0 (88)

Note that (z,y,z) = (0,1, —1) is one solution. Is there an implicit function z = ¢(z,y)
near this point? What are the derivatives 0z/0z,0z/0y at (z,y) = (0,1)?

solution We have the derivatives

fo=¢€ fy =72 fe=we” +y (89)

Then f,(0,1,—1) = 1 is not zero so by the theorem there is an implicit function. The
derivatives at (0,1) are

%—_é— ez — 6_1
or  f,  zer+y
8,2__&_ z 1 (90)

dy  f.  wety

alternate solution: Once the existence of the implicit function is established we can
argue as follows. Take partial derivatives of xe* +yz+ 1 = 0 assuming z = ¢(x,y) and
obtain

ﬁ . Z_|_ 2%4_ % =0

or c e oz yax - (91)
9. xez% +z+ 0z =0
oy oy y@y B

16



Figure 3: There is an implicit function near points with zg # 0, but not near points

Now put in the point (z,y,2) = (0,1, —1) and get

0z

¢ ox

0z
—1+—=0

+ oy

Solving for the derivatives gives the same result.

Some remarks:

(92)

1. Why is the implicit function theorem true? Instead of solving f(z,y,z) = 0 for
z near (o, Yo, 20) one could make a linear approximation and try to solve that.

Taking into account that f(xg, 3o, 20) = 0 the linear approximation is

fo(20, Y0, 20)(x — 20) + fy (20, Yo, 20) (¥ — vo) + f=(Z0, Yo, 20) (2 — 20) = 0
If f.(x0,yo0,20) # 0 this can be solved by

fx (20, Yo, 20) (z — x0) — fy (20, Yo, 20)

2= Zy—
’ fz($o,y0,20) fz(ifo,yo,zo)

(v — wo)

17
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and this has the expected derivatives. To prove the theorem one has to argue
that since the actual function is near the linear approximation there is an implicit
function in that case as well.

2. Here are some variations of the implicit function theorem

(a) If f(x,y) = 0 one can solve for y = ¢(x) near any point where f, # 0 and
dy/dx = —f./ .

(b) If f(x,y,z) = 0 one can solve for z = ¢(y, z) near any point where f, # 0
and 0z /0y = —f,/f. and 0x/0z = —f./ fs

(¢) If f(z,y,z,w) = 0 one can solve for w = ¢(z,y, z) near any point where

fw # 0 and Ow/0x = —f,/ fu, etc.

3. One can also find higher derivatives of the implicit function. If f(z,y,z) = 0
defines z = ¢(z,y) and

fx(x7 y? d)(x? y))

¢ac xr,y)=— 95
A ATTIE) )
then one can find ¢,,, ¢4y by further differentiation.
example: f(x,y,2) =22+ y*> + 2?2 — 1 = 0 defines z = ¢(z, y) which satisfies
0z x
- - = 96
ox z (96)

Keeping in mind that z is a function of x,y further differentiation yields

P (smen) | (sele) _Eod

o2 22 22 23
Since #? 4+ y* + 22 = 1 this can also be written as (y? — 1)/2%. Similarly

9%z —wy
oxdy 23

1.8 implicit function theorem -II

We give another version of the implicit function theorem. Suppose we have a pair of
equations of the form

F(z,y,u,v) =0 (99)
G(z,y,u,v) =0
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Can we solve them for u,v as functions of z,y? More precisely is it the case that for
each x,y in some domain there is a unique u, v so that the equations are satisfied. If it
is so we can define implicit functions

(100)

If the implicit functions exist we have

F(z,y, f(z,y),9(z,y)) =0
G(z,y, f(z,y), g(z,y)) =0

Take partial derivatives with respect to x and y and get

(101)

F,+ F.fy + F,g9. =0
Ge+ Gufe +Guge =0
F,+ F.f, + F,g, =0
Gy + Gufy + Gygy =0

(102)

These equations can be written as the matrix equations

J(5)-(=) .
J(5)-(&)

Note that the matrix on the left is the derivative of the function

VRS
am
Qm Qm

(u,v) = (F(z,y,u,v),G(x,y,u,v)) (104)

for fixed (x,y). If the determinant of this matrix is not zero we can solve for the partial
derivatives fy, gz, fy, 9, One finds for example

—F, F,
det ( G, G, )

F, F,
det ( a. G, )

The determinant of the matrix is called the Jacobian determinant and is given a

special symbol
o(F,G) F, F,
= det
a(U,U) © ( Gu Gv

fz:

(105)
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With this notation the equations for the four partial derivatives can be written

Ou _ OF.G) 0(FG)
dr — 9(z,v)" d(u,v)
v _ _O(F,.G) (F.C)
r  O(u,z)’ O(u,v)
du_ _ 9(F,C) A(F,C) (107)
dy — Ay,v) ' u,v)
v O(F,G) ,0(F,G)

oy~ lwy) owv)

where u = f(z,y),v = g(z,y) on the right. This holds provided O(F,G)/0(u,v) # 0
and this is the key condition in the following theorem which guarantees the existence
of the implicit functions.

Theorem 5 (implicit function theorem) Let F,G have continuous partial derivatives
near some point (o, Yo, Uo, Vo). If

F<x0a Yo, Uo, Uo) =0
108
G<x07y07u071}0) :O ( )
and O(F.G)
[m} (20, Y0, u0,v0) # 0 (109)

Then for every (x,y) near (xg,yo) there is a unique (u,v) near (ug,vy) such that
F(z,y,u,v) =0 and G(z,y,u,v) = 0. The implicit functions v = f(z,y),v = g(z,y)
satisfy ug = f(xo,Y0),v0o = g(xo,yo) and have continuous partial derivative which satisfy
the equations (107).

problem: Consider the equations

F(z,y,u,v) = 2% — y* + 2uv — 2 =0

110
G(z,y,u,v) = 3z + 2zy + u? —v* =0 (110)

Note that (z,y,u,v) = (0,0,1,1) is a solution. Are there implicit functions v =
f(z,y),v = g(z,y) near (0,0)?7 What are the derivatives du/dx,v/0x at (z,y) =
(0,0)?

solution: First compute

oF,G) F, F,\ 20 2u | _ 2, 2\ _
A 0) =det ( a. G, ) = det < ou — ) = —4(u”+v*) = -8 (111)
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Since this is not zero the implicit functions exist by the theorem. We also compute

O(z,v) G, G, 3+2y —2v
(112)
and
T —aee (g )= 53, ) m B = 1y
Then % ) ___6 . _§ % ) _i ) § .
ox -8 4 or 8 4

alternate solution: Assuming the implicit functions exist differentiate the equations
F =0,G = 0 with respect to « assuming u = f(z,y),v = g(z,y). This gives
v

2x + 21)% + 2u— =0

ou ov
% + 2uts — 20 =
3+ 2y + uax Ué)x 0
Now put in the point (0,0,1,1) and get
PLACP L,
ox ox (116)

ou ov
2— —2— =0
3+ ox ox

This again has the solution du/dx = —3/4, Ov/dx = 3/4.

1.9 inverse functions
Suppose we have a function f from U C R? to V C R? which we write in the form

x =f1(u,v)

y =f2(u,v) o

Suppose further for every (x,y) in V' there is a unique (u,v) in U such that x =
fi(u,v),y = fa(u,v). (One says the function is one-to-one and onto.) Then there is a
an inverse function g from V' to U defined by

u=g1(x,y)

v =ga(.y) (118)

21



Figure 4: inverse function

So g sends every point back where it came from. See figure 4. We have

(g0 f)(u,v) =(u,v)

(F o 9)(a.1) =(.9) .
We write g = f~L.
example: Suppose the function is
x =au + bv (120)
Yy =cu + dv

defined on all of R2. This can also be written in matrix form

()= () )

This is invertible if we can solve the equation for (u,v) which is possible if and only if

det(“ Z):ad—bc#() (122)

C
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The inverse function is given by the inverse matrix

()-8 ()
(o0) = (0 -

example: Consider the function

where

x =rcosf
y =rsinf (125)
from
U={(r0):r>00<6<2r} (126)
to
V=A{(z,y) : (z,y) # 0} (127)

This function sends (r, ) to the point with polar coordinates (r,6). See figure 5. The
function is invertible since every point (z,y) in V' has unique polar coordinates (r,0)
in U. (It would not be invertible if we took U = R? since (r,6) and (r,0 + 27) are sent
to the same point ). For (z,y) in the first quadrant the inverse is

PV

0 =tan! (g> (128)

T

1.10 inverse function theorem

Continuing the discussion of the previous section suppose that f has an inverse function
g and that both are differentiable. Then differentiating (f o g)(z,vy) = (z,y) we find by
the chain rule

(D1){g(e,)) (Dg)(a,y) = 1 =(y ) (120

and so the derivative of the inverse function is the matrix inverse

(Dg)(x,y) = [(Df)(g(z, )] " (130)

It is not always easy to tell whether an inverse function exists. The following
theorem can be helpful.
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U . (r8)

A

Figure 5: inverse function for polar coordinates

Theorem 6 (inverse function theorem) Let x = fi(u,v),y = fo(u,v) have continuous
partial derivatives and suppose

xo = f1(uo, vo)

Yo =f2(uo, vo) (131)

and

(ggii;) (g, vo) % 0 (132)

Then there is an inverse function u = g1(x,y),v = go(x,y) defined near (xo,yo) which
satisfies

Ug :91(1’0: yo)

(133)
Vo 292(!700, yo)

and has a continuous derivative which satisfies (130). In particular Dg(xo,yo) =

(D f(ug,v0)]™t or

ou/0x Ou/dy _ ( 0z/0u Ox/0v - (134)
ov/0x Ov/dy (z0.90) dy/ou 0Oy/dv

(uo,v0)
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Proof. The inverse exists if for each (x,y) near (x, o) there is a unique (u,v) near
(uo, vg) such that
F(x,y,u,v) = fi(u,v) —x =0

G(% Y, u, U) = fQ(u, 2)) —y =0 (135)

This follows by the implicit functions theorem since (zg, o, uo, Vo) is one solution and
at this point

a(F7 G) _ Fu Fv _ fl,u fl,v _ 0(x,y)
0(u,v) = det ( Gu Gv ) _det< f2,u f2,v ) B a(“,”) 7é !

The differentiability of the inverse also follows from the implicit function theorem.

problem: Consider the function

z =u + v*
Y =u® +v (187)

which sends (u,v) = (1,2) to (z,y) = (5,3). Show that the function is invertible near
(1,2) and find the partial derivatives of the inverse function at (5, 3).

solution: We have
dz/ou dz/ov\ [ 1 20\ (1 4
( dy/Ou  dy/Ov ) - ( ou 1 ) - ( 2 1 ) at (1,2) (138)

ox,y) o L4y _ .
8(u,v)_dt(2 1) 7 at (1,2) (139)

This is not zero so the inverse exists by the theorem and sends (5, 3) to (1,2). We have
for the derivatives

Therefore

(8u/8x 8u/8y> _ ( Oz /0u Ox/0v >_1
ov/dx  Ov/dy (5.9) Jy/ou 0dy/ov 1.2)

-G )

alternate solution: Differentiate x = u + v?,y = u? 4+ v assuming u, v are functions
of z,y, then put in the point.

(140)
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1.11 maxima and minima

Let f(z) = f(z1,...,7,) be a function from R" to R and let 2° = (z9,...2%) be a point
in R". We say that f has a local mazimum at ° if f(z) < f(2") for all z near 2. We

say that f has a local minimum at z° if f(x) > f(2°) for all x near x°.

Theorem 7 If f is differentiable at 2° and f has a local mazimum or minimum at x°
then all partial deriwatives vanish at the point, i.e.

for(@) =+ = fo,(a%) = 0 (141)

Proof. For any h = (hy,...,h,) € R™ consider the function F(t) = f(z° + th) of
the single variable t. If f has a local maximum or minimum at x° then F has a local
maximum or minimum at ¢t = 0. By the chain rule F(¢) is differentiable and and it is
a result of elementary calculus that F’(0) = 0. But the chain rule says

n

fozz +th) St T die Hh Zfz 20 + th)h (142)

Thus .
0=F'0)=> fu(z")h; (143)

=1

Since this is true for any h it must be that f,,(z°) = 0.

A point z° with f,.(2%) = 0 is called a critical point for f. We have seen that if f
is has a local maximum or minimum at z° then it is a critical point. We are interested
whether the converse is true. If 2° is a critical point is it a local maximum or minimum
for f? Which is it?

To answer this question consider again F'(t) = f(z° + th) and suppose f is many
times differentiable. By Taylor’s theorem for one variable we have

+ L) (144)

1
_F//O
+SF(0)+ 2

F(1) = F(0) + F'(0) +

for some s between 0 and 1. But F’(t) is computed above, and similarly we have

F// _Zwaxj$ —l—th)hh

11]1

F/// ZZZ]‘IZIJ% €T +th>h h hy,

i=1 j=1 k=1

(145)
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Then the Taylor’s expansion becomes

n n

F(a+ h) = +§:ﬂhxfu+;§:§:ﬁm Vs + R(h)  (146)

i=1 j=1

This is an example of a multivariable Taylor’s theorem with remainder. The remainder
R(h) = F"(s)/6 is small if & is small and one can show that there is a constant C' such
that for h small |R(h)| < C|h|3.

Now suppose z° is a critical point so the first derivatives vanish. Also define a
matrix of second derivatives

Ja1,1 (IO) KRR (IO)
A= : : (147)

fxn,xl ($0) e fxn,xn ($0)

called the Hessian of f at 2. Then we can write our expansion as
1
f@®+h) = f(a°) + gh Ah+ R(h) (148)

We are interested in whether f(z°+ h) is greater than or less than f(x°) for |h| small.
Then idea is that since R(h) is much smaller than %h - Ah it is the latter term which
determines the answer.

A n xn matrix A is called positive definite if there is a constant M so h- Ah > M |h|?
for all h # 0. Tt is called negative definite if h - Ah < —M]|h|?* for all h # 0.

Theorem 8 Let 2° be a critical point for f and suppose the Hessian A has det A # 0.
1. If A is positive definite then f has a local minimum at z°.
2. If A is negative definite then f has a local maximum at 2°.

3. Otherwise f has a saddle point at 2°, i.e f increases in some directions and

decreases in other directions as you move away from x°.

Proof. We prove the first statement. We have h - Ah > M|h|*. If also |h] < M/4C.
then

1
IR < CIB* < MR (149)
Therefore | )
FG® 4 B) > F°) + 5 MIB? — MR (150)
or .
P4 h) > £ + MR (151)
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Thus f(2° + h) > f(2°) for 0 < |h| < M/4C which means we have a strict local
maximum at z°.

Thus our problem is to decide whether or not A is positive or negative definite.
For any symmetric matrix A one can show that A is positive definite if and only if
all eigenvalues are postive and A is negative definite if and only if all eigenvalues are
negative. Recall that ) is an eigenvalue if there is a vector v # 0 such that Av = \v.
One can find the eigenvalues by solving the equation

det(A—AI)=0 (152)
where [ is the identity matrix.
example: Consider the function
2 2
f(x.y) = exp (—% - %+x+y) (153)

The critical points are solutions of

x2 y2
fo =(—x+1)exp (—5—5+x+y) =0

2P (154)
fy=(—y+1)exp (—§—§+:B—I—y) =0

Thus the only critical point is (x,y) = (1,1). The second derivatives at this point are

2 2
fra =(a* = 22) exp (—% — % +x +y> = —¢
ZE2 y2
fay =(—z +1)(=y + 1) exp (—5— 3+x+y> =0 (155)

x? y2
fyy :(y2 - 23/) exp <_7 - 5 +x+y) = —e

a= ()= (0 ) (150

It has eigenvalues —e, —e which are negative. Hence A is negative definite and the
function has a local maximum at (1,1).

Thus the Hessian is

example: Consider the function

f(z,y) = zsiny (157)
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The critical points are solutions of

fe=siny =0

158
fy =xcosy =0 (158)
These are points with x = 0 and y = 0, £m, 27, - - -. The Hessian is
_ fx:ﬂ fxy _ 0 Cosy
A= ( Jyo [y ) \ cosy —wxsiny (159)
At points (0, %), (0, £37), ... this is
0 -1
A= ( 10 ) (160)
At points (0,0), (0, +27),... this is
01
A= ( 10 ) (161)
In either case the eigenvalues are solutions of
==
det(A—)\I)—det(il _)\)_)\2—1_0 (162)

Thus the eigenvalues are A = £1. Since they have both signs every critical point is a
saddle point.

1.12 differentiation under the integral sign

Theorem 9 If f(t,z), (0f/0t)(t,x) exist and are continuous

% [/ab f(t,x)dx} = /j%(ﬂ@ dx (163)

Proof. Form the difference quotient

Ju Ftz+h) = [7f(to) /b Ft,x+ h) — f(t,x)

- ; (164)

and take the limit A — 0. The only issue is whether we can take the limit under the
integral sign on the right. This can be justified under the hypotheses of the theorem.
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example:

d ! Lot
— log(2? + t?)d :/ —— d
dt [/0 og(a” + )4 L 2t

_ - (A 165
()] o
—2tan " (1>
t
problem: Find
1
-1
/ Vel (166)
o logz

solution: We solve a more general problem which is to evaluate

Lat—1
o(t) = /0 s (167)

Then ¢(1/2) is the answer to the original problem. Differentiating under the integral
sign and taking account that d(z')/dt = z'log x we have

, 1 . o177t 1
Hence
o(t) =log(t+1)+C (169)

for some constant C. But we know ¢(0) = 0 so we must have C' = 0. Thus ¢(t) =
log(t 4+ 1) and the answer is ¢(1/2) = log(3/2).

1.13 Leibniz’ rule

The following is a generalization of the previous result where we allow the endpoints
to be functions of t.

Theorem 10

a(t ()

d b(t) / / b0 g
al )f(t,x)dx]—f(t,b(t))b(t)—f(t,a(t))a(t)+/a S(ta)de (170)
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Proof. Let

b
F(b,a,t) :/ f(t,z) dx (171)
What we want is the derivative of F'(b(t),a(t),t) and by the chain rule this is
S ICORTON))
dt B, (172)
= Fy(0(1), a(t), )V'(t) + Fu(b(t), a(t), )a’(t) + Fy(b(t), a(t), )
But
b af
Fy(b,a,t) = f(t,b) F.(b,a,t) = —f(t,a) Fi(b,a,t) = E(t,x) dr (173)
which gives the result.
example:
d | 2 2
7 /t sin(t” + x*)dz
, d(t*
=sin(t* + 27)|—p Eit) sin(t? + %) .= t / 5 sin(t? 4 2%)dx (174)

2
=sin(t? 4 t*)2t — sin(2¢?) + Zt/ cos(t* + 2°)dx
t

example: (forced harmonic oscillator). Suppose we want to find a function z(¢) whose
derivatives x'(t), 2" (t) solve the ordinary differential equation

ma” + kx = f(t) (175)
with the inital conditions
z(0)=0 2'(0) =0 (176)

Here k, m are positive constants and f(t) is an arbitrary function.
We claim that a solution is

x(t) = —/0 sin(w(t — 7)) f(7)dr w= L3 (177)

mw m

To check this note first that x(0) = 0. Then take the first derivative using the
Leibniz rule and find

T'(t) = L[Sin(w(t — 7N f(T)] =t + L /0 wceos(w(t — 7)) f(r)dr (178)

mw mw
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The first term is zero and we also note that 2/(0) = 0. Taking one more derivative
yields

2(#) :%[cos(w(t B % /O (—?)sin(w(t — P f(r)dr  (179)
which is the same as
2(t) = £ (1) — wPo(t) (180)

Now multiply by m, use mw? = k and we recover the differential equation.

1.14 calculus of variations

We consider the problem of finding maximima and minima for a functional - i.e. for a
function of functions.

As an example consider the problem of finding the curve between two points (zo, yo)
and (x1,y;) which has the shortest length. We assume that there is such a curve and
that it it is the graph of a function y = y(z) with y(x¢) = yo and y(z;) = y;. The

length of such a curve is
1
I(y) = / V1+y(x)dx (181)
zo

and we seek to find the function y = y(z) which gives the minimum value.

More generally suppose we have a function F'(z,y,y’) of three real variables (z, y, /).
For any differentiable function y = y(z) satisfying y(xo) = yo and y(x1) = y; form the
integral

z1
1) = [ Flayle).@)is (182)
zo
The question is which function y = y(x) minimizes (or maximizes) the functional I(y).
We are looking for a local minimum (or maximum), that is we want to find a function
y such that I1(g) > I(y) for all functions § near to y in the sense that g(z) is close to
y(z) for all 29 <z < 2.

Theorem 11 Ify = y(z) is a local maximum or minimum for I(y) with fived endpoints

then it satisfies p
Ey(a,y(2),y' () = —(Ey(z,y(x),y'(z)) = 0 (183)

Remarks.

1. The equation is called Euler’s equation and is abreviated as
d

F, — %Fy, =0 (184)
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2. Note that y,y’ mean two different things in Euler’s equation. First one evaluates
the partial derivatives Fj, F, treating v,y as independent variables. Then in
computing d/dz one treats y,y" as a function and its derivative.

3. The converse may not be true, i.e solutions of Euler’s equation are not necessarily
maxima or minima. They are just candidates and one should decide by other
criteria.

proof: Suppose y = y(z) is a local minimum. Pick any differentiable function 7(x)
defined for xy < x < x7 and satisfying n(xo) = n(x;) = 0. Then for any real number ¢
the function

y(x) = y(x) + tn(z) (185)

is differentiable with respect to = and satisfies y.(z9) = yi(z1) = 0. Consider the
function

IO =10 = [ Flon(o).vie)ds (156)

x0

Since y; is near yo = y for ¢ small, and since yq is a local minimum for I, we have
J(t) = I(y:) = I(y0) = J(0) (187)

Thus ¢ = 0 is a local minimum for J(¢) and it follows that J’(0) = 0.
To see what this says we differentiate under the integral sign and compute

70 = [ 2P o) i)

N /’”1 (Fy (@, (), i (2))n () + Fy (2, ye(x), yi(2)f () dx

zo

Here in the second step we have used the chain rule. Now in the second term integrate
by parts taking the derivative off n(x) = (d/dx)n and putting it on Fy(z,y:(x), y,(x))
The term involving the endpoints vanishes because n(zg) = n(z1) = 0. Then we have

() = / " (Fy(x, (@), yl(x)) — %Fy/(x, yt<x>,yg<x>)> n(@)de  (189)

Now put ¢t = 0 and get

0= 70 = [ (Rleste) /) = T-Foeala). /o) ) nlads (190
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Since this is true for an arbitrary function 7 it follows that the expression in parentheses
must be zero which is our result. *

example: We return to the problem of finding the curve between two points with the
shortest length. That is we seek to minimize

z1
I(y) = / V14 (z)2dx (191)
zo
This has the form (182) with

Fz,y,y) =1+ () (192)

The minimizer must satisfy Euler’s equation. Since F, = 0 and F, = y'//1+ (¢/)?
this says

/

vy
1+ (y')?

E dF/:d

vty = o =0 (193)

Evaluating the derivatives yields

1+ ()% — () /1 + (y)? —0 (194)

1+ (y')?

Now multiple by (1 + (y/)?)*? and get

1+ W)y = W)y =0 (195)

which is the same as y” = 0. Thus the minimizer must have the form y = ax + b for
some constants a, b. So the shortest distance between two points is along a straight line
as expected.

example: The problem is to find the function y = y(z) with y(0) = 0 and y(1) =1
which minimizes the integral

1) =5 [ )+ /@))ds (196)

and again we assume there is such a minimizer. The integral has the form (182) with

1

Flz,y,9) = 5" + (4)") (197)

In general if f is a continuous function f: f(z)dz = 0 does not imply that f = 0. However it is
true if f(x) > 0. If f; f(z)n(z)dx = 0 for any continuous function n then we can take n(x) = f(x)

and get f; f(z)%dz = 0, hence f(z)? = 0, hence f(x) = 0. This is not quite the situation above since
we also restriced 7 to vanish at the endpoints. But the conclusion is stil valid.
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Then Euler’s equation says

d d
P ——(F,)) = — = —”:0 198
v )=y -y =y —y (198)
Thus we must solve the second order equation y — 3” = 0. Since the equation has

constant coefficients one can find solutions by trying y = €. One finds that 72 = 1
and so y = e are solutions The general solution is

y(z) = c1e” 4 cpe™® (199)
The constants ¢y, ¢y are fixed by the condition y(0) = 0 and y(1) = 1 and one finds

e v 2e .
y(x)zeQ_l(e —e )262_1smh:1: (200)

example : Suppose that an object moves on a line and its position at time ¢ is given
by a function z(t). Suppose also we know that z(ty) = zo and z(¢;) = 27 and that it is
moving in a force field F(x) = —dV/dx determined by some potential function V'(z).
What is the trajectory x(t)?

One way to proceed is to form a function called the Lagrangian by taking the
difference of the kinetic and potential energy:

Lz, a) = Zm(x')? = V(2) (201)

For any trajectory x = z(t) one forms the action

Ax) = / 1 L(x(t),«'(t))dt (202)

According to D’Alembert’s principle the actual trajectory is the one that minimizes the
action. This is also called the principle of least action.

To see what it says we observe that this problem has the form (182) with new names
for the variables. Euler’s equation says

d
L,——Ly=0 203
o (203)

But L, = —dV/dx = F and L,» = ma’ so this is
F—mz"=0 (204)

which is Newton’s second law. Thus the principle of least action is an alternative to
Newton’s second law. This turns out to be true for many dynamical problems.
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2 vector calculus

2.1 vectors

We continue our survey of multivariable caculus but now put special emphasis on R?
which is a model for physical space.

Vectors in R? will now be indicated by arrows or bold face type as in u = (uy, us, uz).
Any such vector can be written

u =(uy, ug, uz)
—u1(1,0,0) + us(0,1,0) + uz(0,0,1) (205)
=upi + uj + usk

where we have defined
i=(1,0,0) j=1(0,1,0) k =(0,0,1) (206)

Any vector can be written as a linear combination of the independent vectors i, j, k so
these form a basis for R? called the standard basis.

We consider several products of vectors:
dot product: The dot product is defined either by
UV = U0 + UgUy + U3V3 (207)

or by
u-v=|ul|v|cosf (208)

where 6 is the angle between u and v. Note that u-u = |ul?>. Also note that u is
orthogonal (perpendicular) to v if and only if u-v = 0.
The dot product has the properties

u-v=v-u
(cu)-v=a(u-v)=u-(av) (209)
(up+uy) - v=u-v+uy-v
Examples are
i-i= =1 =1
J-J J-J (210)
i-j=0 j-k=0 k-i=0

This says that i, j, k are orthogonal unit vectors. They are an example of an orthonormal
basis for R3.
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Figure 6: cross product

cross product: (only in R3) The cross product of u and v is a vector u x v which has
length
|lu x v| = |u||v|siné (211)

Here 6 is the positive angle between the vectors. The direction of u x v is specified by
requiring that it be perpendicular to u and v in such a way that u,v,u x v form a
right-handed system. (See figure 6)

The length |u x v| is interpreted as the area of the parallelogram spanned by u, v.
This follows since the parallelogram has base |u| and height |v|sin @ (See figure 6) and
o)

area = base X height
=|u| |v|sin6 (212)
=|u x v|
An alternate definition of the cross-product uses determinants. Recall that

ay az as
det | b1 by b3 | =agdet < b2 s > — ag det < lél bs ) + az det ( 1071 by )

Co C3 1 C3 1 C2
Ci1 Co C3

=aq (5203 — bgCg) + ag(bgcl — b163) -+ ag(blcg — bgcl)
(213)
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The other definition is

i j k
uxv=det | u uy uz | =i(ugvz —uzve)+jlusvy —uivs) + k(ujve — ugvy) (214)
V1 Uy U3

The cross product has the following properties

uxu=0
uxXv=—vxu (215)
(cu) X v =a(u xv) =ux (av)
(W +uy) X v=u3 Xv+uy XV
Examples are
ixj=k jxk=i kxi=]j (216)
triple product: The triple product of vectors w, u, v is defined by
W - (u X V) =w; (ugvs — uzvy) + wo(usvy — uv3) + ws(ugve — Ugvy )
wi w2 Ws (217)

=det | wy wus us
U V2 U3

The absolute value |w - (u x v)| is the volume of the parallelopiped spanned by
u, v, w (see figure 16). This is so because if ¢ is the angle between w and u x v then

volume = (area of base) x height

:(]u X V\) <|W] cos ¢) (218)

—fw - (ux V)|

problem: Find the volume of the parallelopiped spanned by i+ j, j, i+j+ k.
solution:

det (219)

_— O =
= =
—_ o O
|
—_
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Figure 7: triple product

Planes: A plane is determined by a particular point Ry = z¢i + yoj + 20k in the plane
and a vector N = Nji+ Nyj + N3k perpendicular to the plane, called a normal vector.
If R = xi+yj+ zk is any other point in the plane, then R — Ry lies in the plane, hence
it is orthogonal to N and hence (see figure 8)

N-(R—Rg) =0 (220)

In fact this is the equation of the plane. That is a point R lies on the plane if and only
if it satisfies the equation. Written out it says

Ni(z — x0) + Na(y — yo) + Na(220) = 0 (221)
problem: Find the plane determined by the three points a =1i,b = 2j,c = 3k.

solution: b —a = —i + 2j and ¢ — a = —i 4 3k both lie in the the plane. Their cross
product is orthogonal to both, hence to the plane, and can be take as a normal vector:

"
N=(b—-a)x(c—a)=det| —1 2 0 | =6i+3j+2k (222)
-1 0 3

For the particular point take Ry = a = i. Then the equation of the plane is

N-(R-Ry)=6(x—1)+3y+22=0 (223)
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Figure 8:

2.2 vector-valued functions

A vector-valued function is a function from R to R? (or more generally R"). It is written
R(t) = (z(t), y(1), 2(1)) = ()i + y(1)j + 2(D)k (224)

To say R(t) has limit

tll)r% R(t) =Ry (225)
means that
lim |[R(¢) — Ro| =0 (226)
t—to

If Ry = xoi + yoj + 20j then
IR(t) — Ro| = /(2(t) — m0) + (y(t) — y0)? + (2(t) — 20)? (227)

Hence lim;_,;, R(t) = Ry is the same as the three limits

lim x(t) = xo lim y(t) = yo lim z(t) = 2 (228)

t—to t—to t—to

The function R(t) is continuous if

lim R(t) = Ry (229)

t—to
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This is the same as saying that the components z(t), y(t), z(t) are all continuous.
The function R(t) is differentiable if

4R R(t+h) — R(t)

R/(t) = o }lllil(l) (230)
exists. Since
R(t + hf)L —R(?) _ x(t + h})L — a:(t)i n y(t + h})L — y(t)j N z(t + hf)L — z(t)k (231)

this is the same as saying that the components x(t),y(t), z(t) are all differentiable, in
which case the derivative is

R(t)=2'(t)i+y(t)j+ 2 (t)k (232)
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Figure 10: some examples

In other words you find the derivative by differentiating the components

The range of a continuous function R(¢) is a curve. The derivative R/(¢) has the
interpretation of being a tangent to the curve as figure 9 shows.

A common application is that R(t) is the location of some object at time ¢. Then
R/(t) is the velocity and the magnitude of the velocity |R/(¢)| is the speed. The second
derivative R”(t) is the acceleration.

Here are some examples illustrated in figure 10

example: straight line. Consider

R(t)=at+b (233)
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Then R(0) = b and R'(t) = a so it is a straight line through b in the direction a.

example: circle. Let R(t) be the point on a circle of radius a with polar angle ¢.
As t increases it travels around the circle at uniform speed. The point has Cartesian
coordinates x = acost,y = asint so

R(t) =acosti+asint j (234)

The velocity is
R/(t) = —asint i+ acost j (235)

and the speed is |R/| = a.

example: helix. To the previous example we add a constant velocity in the z-direction
R(t) = acost i+ asint j+ btk (236)

This describes a helix and we have

R/(t) = —asint i+ acost j+ bk (237)

2.3 other coordinate systems

We next describe vector valued functions using other coordinate systems.

A. Polar: First some general remarks about vectors and polar coordinates in R2.
Let R(r,0) be the point with polar coordinates r,6. This has Cartesian coordinates
x=rcost,y =rsinf so

R(r,0) = rcos6i+ rsin 6] (238)
If we vary r with 0 fixed we get an "r-line”. The tangent vector to this line is
%—I:(r, 6) = cos 0i + sin 0j (239)
If we vary 6 with r fixed we get an ”#-line”. The tangent vector to this line is
oR
W(r, 0) = —rsinbi + r cos 0j (240)
We also consider unit tangent vectors to these coordinate lines:
e (0) :3R—/@T = cos i + sin 0j
|OR/Or|
(241)
ey(0) _ORJO6 sin 0i + cos 0
") = 1or jo6] .

See figure 11.
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Figure 11: polar and cylindrical basis vectors

Note that
e, (0) - ep(f) = cosO(—sinf) + sinf cosf = 0 (242)

Thus for any 0 the vectors e, (), ey() form an orthonormal set of vectors in R? and
hence an orthonormal basis. Also note for future reference that

de,

do

deg
=—e,

a9

(243)

Now a curve is specified in polar coordinates by a pair of functions r(t),(t). The
Cartesian coordinates are x(t) = r(t) cos0(t) and y(t) = r(¢)sinf(t). So the curve is
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described in polar coordinates with polar basis vectors by

R(t) =x(t)i +y(t)j

=r(t)(cos O(t)i + sin 6(t)j) (244)
=r(t)e.(0(t))
The velocity is
RI(1) = ' (t)er (6(1)) + (1) e (0(1) (245)
but d d d
enl8(1) = T (0(0) 5 = 0 (De0(1)) (246)
and so
R/(t) =r'(t)e.(0(t)) + r(t)0' (t)eq(0(t)) (247)

By differentiating this we get a formula for the acceleration R”(#):

R/(t) = (() = 7' (0)(0'(1)*)e, (01) + (110" (1) + 207 (' (1) )ea(0(1))  (248)
We summarize in an abbreviated notation

R =re,
R' =r'e, +r0'eq (249)
R’ =" —r(0))e, + (10" +2r'0)ey

example: Consider the spiral described in polar coordinates by r = at and 6 = bt.
Then ' = a,0' = b and " = 0,0” = 0 and so

R =at e,
R' =a e, + abt ey (250)
R = — ab®t e, + 2ab ey

In these formulas e, = e,.(bt) = cos(bt)i+sin(bt)j and ey = ey(bt) = — sin(bt)i+cos(bt)j.

B. cylindrical: Cylindrical coordinates in R? replace z, y by polar coordinates r, § and
leave z alone. Thus

T =rcosf
y =rsinf (251)

z =z
A point with cylindrical coordinates r, 8, z is

R(r,0,z) =rcosfi+rsinf j+ 2z k (252)
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Unit tangent vectors to the coordinate lines are e,, ey as before and e, = k. See figure
11.
A curve in cylindrical coordinate is given by r(t),6(t), z(t) and we have

R(t) =r(t)e, (0(t)) + z(t)e, (253)
As before:
R =re, + ze,
R =r'e, +rfey + e, (254)

R” =(r" —r(0)*)e, + (10" + 210 ey + e,

C. spherical: Spherical coordinates p, ¢, 6 label a point by its distance to the origin,
the angle with the z-axis, and the polar angle when projected into the x,y plane. The
corresponding Cartesian coordinates are

x =psin ¢ cos 0

y =psin¢sinf (255)
2 =pcos ¢
The point with spherical coordinates p, ¢, 0 is
R(p,¢,0) = psingcosf i+ psingsind j+ pcos ¢ k (256)
Tangent vectors to the coordinate lines are
OoR
5, =sin¢cosf i+ singsinf j+ coso k
D
OoR . o .
a—qb:pcosgbcosH1+pcos¢81n95—p81n¢k (257)
JR
0= psingsinf i+ psin¢cost j

Divide by the length and get unit tangent vectors to the coordinate lines: (see figure
12)

e,(¢,0) =singcosh i+singsinh j+cos¢ k
€y(¢,0) =cospcosf i+ cosgsing j—sing k (258)
eg(¢,0) = —sinf i+ cosb j

A curve is spherical coordinates is specified by three functions r(t), ¢(t),0(t). The
corresponding vector-valued function is

R(t) =z(t)i+y(t)j+ 2(t)k
=p(t) ( sin ¢(t) cos 0(t)i + sin ¢(t) sin 6(t)j + cos ¢(t)k> (259)
=p(t)e,(o(1),0(1))
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Now we can take derivatives and we find

R =pe,
R’ =p'e, + p¢d' ey + pf'sin ¢ ey
nm_( AVEEE AV
R —(p p(¢")" — p(0")° sin ¢>ep (260)

+ <p¢" +2p'¢' — p(#')?* sin ¢ cos gb) es

+ <p9” sin ¢ + 2p'¢’ sin ¢ + 2p0’ ¢’ cos gb) ey

example: Suppose that p = 1,¢ = at,0 = bt with b much greater than a. This
represents a point on a sphere sprialing down from the north pole. Then p' = 0,¢ =
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a,0' =band p” =0,¢" =0,0" =0 and we have with e, = e,(at, bt), etc

R =e,
Rl =a €y + bsin at €y (261)

R :< — a* — b*sin? at) e, + ( — b?sin at cos at) ey + <2ab Cos at> €p

2.4 line integrals

We want to define the length of a curve C in R3. Suppose the curve is the range of a
vector valued function R(t) = z(t)i + y(¢)j + z(t)k, a < t < b. We say that R(?) is
a parametrization of C. There will be many parametrizations, but we pick one. We
divide up the interval [a, b] by picking points

a=ty <t <ty <---<t,=0b (262)

This gives a sequence of points on the curve R(ty), R(¢1), ... R(t,). (see figure 13). If
At; = t; 1 — t; is small then for any ¢ in the interval [t;, ;1]

R(tiv1) = R(t:) = (2(tiva) — x(t:)i+ (y(tivr) —y(0)j + (2(i1) — 2(t:))k
~ o ()AL Y ()AL + 2 (8) Atk (263)
- R/( i)Ati

(The mean value theorem says there is a point ¢} so that (x(t;11) — x(t;)) = o' (t]) At;.
Changing to an arbitrary point in the interval is second order small and negligible).
Let As; be the length of the straight line from R(¢;) to R(¢;41). Then

Then we have .
length of C = ) " As; ~ Z IR/ ()| At; (265)
i=0

This is a Riemann sum and as the division becomes increasingly fine, i.e as max; At;
tends to 0, this converges a Riemann integral which we take as the definition

b
length of C = / |R/(t)|dt (266)

One can show that this depends only on C and not on the particular parametrization.
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More generally we want to define the integral of a function f(R) = f(x,y, 2) over
the curve C. An approximation to what we want is

—_

n—

FR(tD))As; ~ Z FR(E)) IR/ (t7)|At; (267)

I
=)

i

As the division becomes fine this converges to a Riemann integral which we take as the
definition of the integral of f over C. It is denoted fc f(R)ds and is given by

/f ds—/ FR())[R(8)|dt (268)

This is also independent of parametrization. A short way to remember it is to replace
R by its parametrization R(t), replace C by the interval [a,b] and replace the formal
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symbol ds by

dR
ds = |—|dt 2
s ‘ o (269)
Note also that if f(R) = 1 we have
/ds = length of C (270)
c

The same formulas hold in R? but now R.(t) = z(t)i + y(t)j.

example: Consider the helix parametrized by

R(t) =acosti+asint j+ bt k (271)
with 0 < ¢ < 2x. Then
%:—asinti%—acost‘j%—bk (272)
and
dR
ds = E dt =va?+ b dt (273)

The length is then

2m
/ds = / Va2 + b dt = 2nva? + b? (274)
c 0

example: Suppose we have a thin semi-circular wire of radius a with uniform linear
density p (mass per unit of length). We want to find the y-component of the center of
mass. This is defined by dividing the wire up into segments of length As; and mass
Am; = pAs; and computing

_— ZZ YiAm; B ZZ yiAs;
a >l Amp 3 As

where y; is the y-coordinate of the " segment. As the division becomes fine this is
expressed as a ratio of line integrals over the semi-circle C

(275)

Jovds
= 276

To compute it parametrize the semi-circle by
R(0) = acosbi+ asinbj (277)
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with 0 < 0 < 7. Then
dR

@:—asmﬁl—i—acosej (278)

and

dR
= |[— == 2
ds ‘ 7 df = adb (279)

Then since y = asin 6

/Cy ds = /0 asinf adf = 2a* (280)

and -
/ds :/ adf = am (281)
c 0
Thus 02 9
g=24 _ 2 (282)
ar w

2.5 double integrals

Let R be a region in R? and let f(z,y) be a function defined on R. We want to define
the integral of f over R denoted by

/Rf(x,y)dA or /Rf(x,y)d:cdy or //Rf(x,y)dxdy (283)

It is supposed to be the sum of the values of the function weighted by area.

To define it put a rectangular grid over the region (see figure 14) and suppose the
rectangles are enumerated by some index 7. The i*" rectangle will have some dimensions
Az, Ay;. Let AA; = Ax;Ay; be the area of the i rectangle. Also let (z7,y;) be any
point in the i** rectangle. An approximation to what we want is the Riemann sum

Z Fryh)AA; (284)

If these expressions approach a definite number as the grid becomes fine then this is
the integral we want. The fineness of the grid can be measured by

h = max{Az;, Ay;} (285)
Here is an exact definition of the integral.

definition: If there is a number [ so that for any € > 0 there is a § > 0 such that for
any grid over R with h < § and any choice of points (z,y;) in the grid we have

1> F@h ) AA — I <€ (286)
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Figure 14: double integral

then f is integrable over R and we define

/Rf(a:, y)dA =1 (287)

For short one can write this as
| remia= jim > flatu)ad (255)

although it is not an ordinary limit since the right side is not a function of h.

One can show:

Theorem 12 Continuous functions are integrable.

Here are some applications of double integrals:
1. With f =1
/ dA = area of R (289)
R
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2. If R represents a thin plate and f(z,y) is the density of the plate (mass per unit
area) then f(z},y})AA; is the approximate mass of the i rectangle and so

/ f(z,y)dA = total mass of plate (290)
R

3. If f(z,y) > 0 then f(z},y)AA; is the approximate volume of the column above
the i*" rectangle and under the graph and so

/ f(z,y)dA = volume under the graph of z = f(z,y) above R (291)
R

Here are some properties of double integrals:

1. For any two functions fi, fo on R

[+ pia= [ faas [ pas

LgmAzaLﬁm

3. If R can be written as a disjoint union R = R; U R, then

2. If o is a constant

/ﬁM: fdA+ | fdA
R R1

Ro
To compute double integrals one writes them as iterated integrals in one variable
and then uses the fundamental theorem of calculus.
Theorem 13 Suppose the region R has the form
R={(z,y):a<z<b px) <y<qlr)} (292)

for some functions p,q. (See figure 15). Then

[ stenaa= [ ( pq(z)ﬂx,y)dy)dx (203)

(z)

This says fix © and integrate over the y values in the region for this value of x. This
gives you a function of x which you integrate over the x values for the region.
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Figure 15: iterated integral

example: Suppose the region R below the graph of y = —2? + 1 in the first quadrant.
Thus R is defined by 0 < 2z <1 and 0 <y < —2? + 1. We compute

1 —z2+1 1 N
/di:/ / xdy dx:/ [2yly—o” g
R o \Jo 0
1

1 1 1
= 3 dr = —— 4+ - ==
/O(x—l—:z:)x 4+2 1

Alternatively R can be regarded as the region 0 <y <1and 0 <z < /1 —y (draw a
picture). Then we can do the z integral first:

1 Vi—y Lr27= 1-y
/di :/ / xdx | dy :/ {—} dy
R 0 0 o L2]am0

/11—yd1 1 1
), 2 YT o1

(294)

(295)
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2.6 triple integrals

Now R be a region in R? and let f be a function defined on R. We want to define the
integral of f over R which will be denoted

/ f(z,y,2)dV or / f(z,y, z)dxdydz (296)
R R

To defined it divide the region R up into many small rectangular boxes. Suppose the
it" box has dimensions Az;, Ay;, Az and volume AV; = Az; Ay; Az and let (xf,yf, =F)
be an arbitrary point in the i** box. Also let

h = max(Ax;, Ay;, Az;) (297)

be the large dimension in the grid. Then we define
|ty - i 3 (a0, (298)

If f =1 then fR dV is interpreted as the volume of R. Another application is that
R could represent a solid object. If f(z,y, z) is the density at the point (z,y, z) (mass
per unit volume) then [, f(z,y,2)dV is the total mass of the object.

Suppose the region R is the region between the graphs of z = ¢(x, y) and z = (z, y)
with (z,y) restricted to some plane region F (see figure 16). Then we can write the
triple integral as a single integral followed by a double integral:

P(x,y)
y Y dV — s Y, d dA 299
/Rf(w y.2) /E</¢() f(z,y,2) ) (299)

If in addition the plane region E is the region between two curves y = p(z) and y = ¢(x)
with @ < z < b then the double integral can be written as an iterated in integral and

we have
b q(x) P(x,y)
/ f(2,y, 2)dV = / < / ( / f(a:,y,zmz) dy) dz (300)
R a p(x) o(z,y)

example: Suppose we are given the problem of finding the volume between the
paraboloid z = 2 — 22 — y? and the plane z = 1.

These surfaces intersect when 2% + y? = 1. The problem must be refering to the
region with 22 4+ 3% < 1 since the region with x? + 42 > 1 is infinite. Thus we want to
find the volume of the region R below z = 2 —x? —4? and above z = 1 with 2%+ < 1.

25



Figure 16:

[ ( [ dz) i
/ (1— 2% — y2)dA
/

/.3

It is

v
R

2+y2<1

( (1—2?— yg)dy) dx (301)
V1-z2 x2

4

3

1
1

(1 — 22 3/2dx

1

The last integral is left as an exercise. (An alternative is to evaluate the integral
fxzﬂlQSl(l — 2% — y?)dA in polar coordinates, a topic we take up later.)

example: Let R be the region bounded by the planes z = 0,y = 0,z = 0 and
r + 1y + z = 1 and suppose we want to write fR x dV as an interated integral.

The intersection of R with the plane z = 0 is the region E bounded by the lines
r=0,y =0,z +y = 1. In fact the region R lies between z =1 — 2z —y and z = 0 and
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above E. (draw a picture). Thus we have

/R v dV = /E < /0 l_x_y:pdz) (302)

But since E' lies between y = 0 and y = 1 — x with 0 < 2 <1 this can be expressed as

/Rx v = /01 (/le (/ley mdz) dy> dx (303)

The evaluation is left as an exercise.

2.7 parametrized surfaces

Consider a function from R C R? to R? which we write as
r = x(u,v) y =y(u,v) z = z(u,v) (304)

The range of this function is a surface S and the function is called a parametrization
of the surface. (A surface has many possible parametrizations, but we pick one). The
function can also be written

R(u,v) = z(u,v)i+ y(u,v)j + z(u,v)k (305)

example: Consider the function

x =asin ¢ cos
y =asin ¢ sin 6 (306)

2 =a cos ¢

with 0 < ¢ < 7 and 0 < 6 < 27w. Then S is the surface of a sphere of radius a, and it
is parametrized by spherical coordinates.

example: Suppose S is the graph of a function z = ¢(z,y) with (z,y) € R. Then S
can be parametrized by

r=u y=uv z = ¢(u,v) (307)

r=r  y=y  z2=¢(zy) (308)

with (z,y) € R.
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Figure 17:

Now suppose S is a surface parametrized by R(u,v). At (ug,vo) we fix v and vary
u we get a u-line in §. Then

JR
8—(u0, Vo) = tangent vector to u-line through R.(uqg, v)
u

OR
— (ug,v9) = tangent vector to v-line through R (ug, vp)

ov

Together these two tangent vectors determine the tangent plane to the surface at
R(uop,vp). A normal to this tangent plane is (see figure 17)

OR OR
N = %(Uo,ﬂo) X %(UO, UQ) (309)

With this N the equation of the tangent plane to the surface S at Ry = R(uo, vg) is
N-(R-Ryp)=0 (310)
example: Suppose we want to find the tangent plane to the surface

T=u+v y=u—v z = 2uv (311)
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at the point u = 1,v = 1. In this case
R(u,v) = (u+v)i+ (u—v)j + 2uvk

and the point is
Ro=R(1,1) =2i+ 2k

At this point

R
—i+j+ 2k =i+j+2k

u
a—R:i—j—l—2uk:i—j—i-2k
ov
so the normal is
i j k
N:a—Rxa—R:det 1 1 2 =41 -2k
ou ov 1 _1 9

(312)

(313)

(314)

(315)

The equation of the tangent plane at this point is N - (R — Ry) = 0. Since R — Rg =

(x —2)i+yj + (2 — 2)k this says
dr—2)—2(z2—-2)=0

which can also be written z = 22 — 2.

(316)

example: Suppose our surface is the graph of a function z = ¢(x,y). Then it can be

parametrized by
R(z,y) = zi+yj+ ¢(z,y)k

(317)

We want to find the normal and the tangent plane to the graph at (xo, o) This is the

point
Ry = R(zo, y0) = zoi + yoj + (20, yo)k

The derivatives at (xg, o) are

R .
O =i+ ¢, (20, o)k
R .
8_y =j + ¢y(x0, y0)k
and so the normal is
i j k
N= T8 TR et 10 6ulan )
o 4 0 1 ¢y(zo,v0)

29

(318)

(319)

(320)



which says

N = —¢. (20, y0)i — dy(20,40)j + k (321)
The equation of the tangent plane N - (R — Rg) = 0 is then
—¢2(20,Y0)(x — 20) — be(%, Yo)(y — %o) + (2 — ¢(x0,40)) = 0 (322)
This can also be written
2 = ¢(x0,Yo) + (0, Yo)(x — o) + Oy(z0, Y0) (¥ — Yo) (323)

which agrees with our earlier definition of the tangent plane.

2.8 surface area

Let S be a surface parametrized by a function R(u,v) with (u,v) € R. We assume the
function is one-to-one so it only covers S once. We want to define the area of S.

To do so we divide up R into a fine rectangular grid (see figure 18). The lines of
the grid are mapped to lines in the surface and this divides up the surface into little
pieces (no longer rectangles). Suppose the " rectangle has lower left corner (u;,v;)
and dimensions Aw;, Av;. The image of this rectangle is a patch with corners

].:{(U,i7 ’Ui), R(Ul + AUZ', UZ‘), R(U,“ U; + AUD, R(uz + Aui, (4 + Avl)
The area of this patch is approximated as the area of the parallelogram spanned by
a; :R<Uz + AUZ‘, Ui) — R(UZ, Ui)

324
bi :R<UZ, v; + AUZ) — R(U“ Ui) ( )

This area is
AO'Z' = |ai X bz| (325)

However since Au; and Aw; are assumed small we have the approximations

OR

a; %%(uz, v;) A,
R

bi %aa—v(ul, ’Ui)AUi

(326)

Hence
OR OR

AO'Z' =~ '—(ui,vi) X —(’LLZ',UZ')

ou ov

Now if h = max;{ Au;, Av;} is the maximum dimension in the grid we define

Area of S = }lll_r)% Z Ao;

OR OR
%(Ui, Ui) X %(Uu Ui)

= lim

),

OR OR

% X % dudv
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Figure 18:

This definition turns out to be independent of the particular parametrization we have
chosen.

example: Find the area of a spherical cap of radius a and angle «. In spherical
coordinates this is the surface described

r=a 0<op<a 0<0<2r
We parametrize with spherical coordinates and take

R(¢,0) = asin ¢ cos i + asin ¢ sin 0j + a cos gk (329)
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with 0 < ¢ < a,0 <0 < 27. Then we compute

i j k
aaR oR —det acos¢cost acospsinf —asin ¢
¢ —asin¢gsinf  asin ¢ cos 0 (330)
=a®sin® ¢ cos i + a® sin” ¢ sin 0 + a? cos ¢ sin ok
Then
‘ %1:; IR \/a4 sin ¢(cos? § + sin® §) + a* cos? ¢ sin® ¢
331
=a?sin ¢\/sin2 ¢ + cos? ¢ (331)
=a’sin ¢
and the area is
2m R R
Area = 8 8 do df

27r
_ 2 &
—/0 /0 a”sin ¢ d¢ do (332)

:aZ(/O%de)(/oasmgb d(b)

=27a*(1 — cos )

Note that if o = 7 the area is 4ma® which is what we expect for the whole sphere.

2.9 surface integrals

We continue to consider a surface S parametrized by a function R(u,v) with (u,v) € R.
Also let f(R) = f(x,y,2) be a function defined on S (and possibly elsewhere in R?).
We want to define the integral of f over S which will be written [ s f(R)do.

To define it we again divide up the parameter space into a rectangular grid. We
also let (u;,v;) be the corner point in the i*" rectangle. (see figure 18 again). Then we
define

S -
. R oR




For short one just has to remember

OR OR
= |— 4
do = ‘au S0 du dv (334)
A special case is with f(R) = 1 which gives
8R aR
da = — X —|du dv = Area of S (335)

example: Let S represent a thin hemispherical shell of uniform density which has
radius a and is centered on the orgin. We want to find the z-component of the center
of mass. Since it is a thin shell it is reasonable to represent in terms of surface integrals
and we take the definition

/. sz do

Jsdo

The hemisphere is parametrized as before by z = asin ¢ cos, y = asin ¢ sin 6, and
z=cos¢ with 0 < ¢ <7/2 and 0 < 0 < 2m. We also have as before

do = ‘8—R oR de¢ df = a*sin ¢ do db (337)

(336)

z =

9¢

Then we can compute

/ z do = /2Tr /ﬂ/Q(a cos ¢)a’sin ¢ do df
S o Jo
_aii(/:7r d&) </07r/2 cos ¢sin @ do > (338)

1
:a327r._
2

:7'('61,3

From our earlier calculation of area we have

/ do = 27a’ (339)
S
Thus 3
Ta a
A = — 4
: 2wa? 2 (340)

example: Suppose that the surface S is the graph of a function z = ¢(x,y) with
(z,y) € R. As noted previously we can parametrize S by

R(z,y) = zi+yj + o(x,y)k (r,y) € R (341)
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We also computed earlier

FoR £ —¢:i—¢,j+k (342)
Therefore
dU:‘a—Rxa—R dzdy = /1 + ¢2 + ¢2 dxdy (343)
Jor Oy
and so

[ fazdo = [ o)1+ 62+ 05 dady (344)
_ _ / 2 4 42
Area of § /Sda /R L+ ¢2 + ¢F drdy (345)

2.10 change of variables in R?

In particular

Consider a special case of the surface integral in which the surface S lies in the xy plane.
Then the parametrization has the form z = z(u,v),y = y(u,v),z = 0 for (u,v) € R.
In vector form

R(u,v) = z(u,v)i+ y(u,v)j (346)

In this case

Ty Yo (347)
— det ( Tu Ty ) _Oy),
Yu Yo 8(u,v)
and so 8R 5R oz, v)
T,y
= 4
do = 50 % 9o dudv = ‘8(u,v) dudv (348)
Then our surface integral is evaluated as
0(z,y)
= 4
/fxyda /f x(u, v) >>’8(uv) dudv (349)

However since S is flat the surface integral [ f s f(x,y)do is the same as the area integral
[of s f(z,y)dA. Tt has been divided up in an irregular fashion but the result is the same.
Thus we have demonstrated the following change of variables formula:

Theorem 14 Let a region S C R? be the image of a region R C R? under a differen-
tiable invertible function x = x(u,v),y = y(u,v). Then

/fxydA /f 2(u, ) M))’ggwi

64

dudv (350)




One can think of (u,v) as new coordinates for the region S. Then a short version
of the theorem is
Oz, y)

O(u,v)

expressing the area element in the new coordinates.

dA = ’ dudv (351)

As a special case consider polar coordinates z = rcosf,y = rsinf. Then
0(z,y) Ty Tg cosf —rsinf
o(r,0) = det Yr Yo ) det sinf rcos6 =T (352)

and so dA = rdrdf. The change of variables formula is

/f(x,y) dA :/ f(rcos@,rsind) rdrdf (353)
S R

Here R is all points (r,0) such that (x,y) = (rcos@,rsinf) is in S. Thus R is just S
described in polar coordinates.

example: Suppose S is the half-disc 22 + y?> < 4,y > 0 and we want to evaluate

/ (3— 22— y)dA (354)

In polar coordinates S becomes the region R defined by 0 < r < 2,0 < 6 < 7. Thus

/S (83— 2" —y*)dA = / (3 — r?)rdrdd

R
™ 2
:/ / (3r — r*)drdf
o Jo (355)
[37“2 7“4} 2
=TT _—
2 4,
=27

example: Let S be the region bounded by the lines x +y = -1,z +y =3,2x —y =
0,2z —y = 4. (see figure 19) We want to evaluate the integral

/ (x + y)dA (356)
S

We make a change of variables suggested by the boundary lines and set

=z +
ey (357)
v =2z —Yy
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N

Figure 19:

The lines © + y = c¢ are sent to the line v = ¢ and the lines 2x — y = ¢ are sent
to the lines v = ¢. Thus the region § is sent to the region R bounded by the lines
u=—1lu=3v=00v=4.

For the change of variables formula we need the inverse function

U+ v
T = 3

_2u—v (358)
y=73

which sends R back to S.

We compute
P Ow,y) _ g (13 13 Y _ 1 359
= et(2/3 —1/3)__5 (359)
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and then

4 3 1
= - — dud
/0/_1u3 udv (360)

2.11 change of variables in R?

In R? the change of variables formula is the following:

Theorem 15 Let a region V C R3 be the image of a region R C R? under a differen-
tiable invertible function x = x(u,v,w),y = y(u,v,w), z = z(u,v,w). Then

d(z,y, z)

/Vf(:z:,y,z)dV—/Rf(x(u,U,w),y(u,v,w),z(u,v,w))‘m dudvdw  (361)

For short we can write

oz, y, 2)

O(u, v, w

dV = ‘ dudvdw (362)

Also note that in the special case f(z,y,z) =1 we have

VolumeofV:/dV:/ Aw,y,2)
% r | 0(u, v, w)

Proof. Divide up the region R into a grid of small boxes. The i** box will have a
corner (u;, v;, w;) and dimensions (Au;, Av;, Aw;). The volume of this box is AV; =
Au; Av; Aw;.

Let AV be the volume of image of the i* box. The image has corners z; =
x(ug, vy, w;), yi = y(ug, v, w;), 2 = z(ug, v, w;) and curved sides. The volume is approx-
imately the volume of a parallelopiped spanned by vectors a;, b;, ¢; joining the corners.
(See figure 20). Thus

dudvdw (363)

If we write the the funtion as

R(u,v,w) = z(u,v,w)i+ y(u,v,w)j+ z(u,v,w)k (365)
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then

and similarly

Therefore

Figure 20:

a; = R(u; + Auy, viw;) — R(uy, viw;) ~ Z—R(ui,vi, w;) Au;
u

OR
(Uz', Uiawi)Avi C; =~ %(Uu 'Uiawz‘)Awi
ow
Yu Zu Ly Ty
Yo 2o |[[AVi=|det | yu Yo
Yw Rw Zu  Ru
AV,

So the Jacobian determinant tells how volumes increase.
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Then we have
Z f(xia Yi, Zi)AW

Bz, y, 2) (369)

= Z f(m(uzw Vi, W), y(ui7 (P wi)> Z(Ui, Vg, wz)) (s, i, wi) AV;

O(u,v,w)

Now taking the limit as the grid size goes to zero we obtain the result (although the
expression on the left is not the standard Riemann integral).

special cases:

1. cylindrical coordinates:

x =rcosf
y =rsinf (370)
z =z
In this case
de::‘éxfiylfz drdfdz = rdrdfdz (371)
a(r, 0, z)
and
/ flz,y,2)dV = / f(rcosf,rsind, z)rdrdfdz (372)
% R

where R is the region V described in cylindrical coordinates.
2. spherical coordinates:

x =psin ¢ cosf

y =psin ¢ sin 6 (373)
Z =pcos ¢
In this case (check it!)
dvzﬁﬁiﬁdmwmq%mwmwe (374)
Ap.¢,0)

and
/f(x,y,z)dV:/f(psingbcos@,psingbsin@,pcos¢)p2singz5dpd¢d6’ (375)
v R

where R is the region V described in spherical coordinates.
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example: Suppose we want to find the volume of the quarter-cone in a sphere ¥ which
is described in spherical coordinates by 0 < p < 1,0 < ¢ < 7/4, 0 < 6 < 7/2. We
compute

Volume = / dV
y

:/Om /Om/ol p?sin¢ dp do d
:< /0 1 Pde) ( /0 o sin ¢ dob ) ( /0 i de) (376)

. [—cos¢}g/4~7r/2

2.12 derivatives in R?

In R? we continue to use the notation
R=xi+yj+zk = (z,y,2) (377)
A scalar is a function from R? to R and has the form
u=u(R)=u(z,y,2) (378)

A scalar can be drawn (not very well) by shading points in R? proportional to the value
of u at that point. Examples of quantites that can be represented by scalars are density
and temperature.

A wector field is function from R? to R3 and has the form

v =v(R) =v1(R)i+ v»2(R)j + v3(R)k

379
:Ul(l’,y72)i+1}2($,y,2)j+U3<I,y72>k ( )

A vector field can be repesented by drawing a vector v(R) at the point R for some
representative points R. Examples of quantites that can be represented by scalars are
forces and the velocity of a fluid.

We want to define various derivatives of scalars and vector fields. These are specified
with the operator

0 0 0
V=i—+j—+k— 380
18x +J8y + 0z (380)
which is called del or nabla. If u is a scalar we define a vector field
ou .Ou ou

gradient of u = Vu = i% +']8_y + k% (381)
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If v = v1i+ vy + v3k is a vector field we define a scalar

81)1 81}2 81}3

divergence of v=V -v = s + oy + 5, (382)
and also a vector field
curl of v=V xv
i j k
=det | 9/0x 0/dy 0/0z (383)
(%1 (%) V3
. 81)3 (%2 . (9?]1 31)3 31}2 81}1
— _— _— k _—
1<8y 82>+‘](8z azv)+ (8:v 0y)
Finally if u is a scalar we define
2 2 2
Laplacian of u = Au =V -Vu = g;; + gyz + g;; (384)
example: If u = 2% + zy + y*> + yz + 22 + 22 then
Vu=Q2z+y+2)i+Q2u+ar+2)j+2:+2+yk (385)
Au=V -Vu=2+2+2=6
example: If v = y2%i + 22%j + (2zyz + 2)k then
V.v=2zy+1
i j k
Vxv=det| 9/0x 0/0y 0/0z (386)

yz> 1z (2zyz + 2)

=202 — 222)i + (2zy — 22y)j + (2 — 2k =0

The derivatives satisfy various identities some of which we list. These hold for any
scalar v and any vector field v, assuming only they are twice continuously differentiable.

1. VxVu=0

2.V (Vxv)=0

3. V- (uv) =Vu-v+u(V-v)

4. V-(vxw)=(Vxv)-w—v-(Vxw)
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5. Vx(uv)=u(Vxv)+Vuxv
6. Vx(Vxv)=V(V.-v)—-Av where Av = Avji + Avoj + Avsk

proof of (1.). We compute
i j K
VxVu=det| 0/0x 0/0y 0/0z
Ou/dxr Ou/dy Ou/0z

_( 0*u B 0%u >i+<82u B 82u>,+<82u B 0%*u >k (387)
S \Oydz 020y 0z0xr  0x0z . Oxdy  Oyox
=0
We also note that the chain rule
d
A CORTORG)
di (388)
=0 () (1), 2(0) S T (a0, (). 20) 2 4 O (1), 1), 2(0)) %
 Ox EAs dt 0y R dt 0z S dt
can be written in a vector notation as
d dR
EU(R@)) = Vu(R(t)) - T (389)

2.13 gradient

One of our goals is to interpret the gradient, divergence, and curl. Here we give three
interpretations of the gradient.

1. (Vu)(Ryp) is normal to the level surface u = constant through Ry, i.e the surface
u(R) = u(Ry).

To see this let R(t) be any curve in the surface with R(0) = Ry. Thus

u(R(t)) = u(Ro) (390)
Taking the derivative with respect to ¢ and using the chain rule gives
(Vu)(R(t)) - R(t) = 0 (391)
At t = 0 this says
(Vu)(Ryp) -R/(0) =0 (392)

Any tangent vector to the surface at R has the form R’(0) for some curve through
Ry. Thus (Vu)(Ryp) is normal to any tangent vector at Ry and hence is normal
to the surface. See figure 21.
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Figure 21:

2. If n is a unit vector, then (Vu)(Ry) - n is the rate of change of u at Rg in the
direction n, also called the directional derivative.

To see this use the chain rule to calculate the rate of change as

d d
uRo+m)| = (Vu)(Ro+m) - (Ro+tn)| = (Vu)(Ro)-n (393)

3. (Vu)(Ry) is the direction of greatest increase for u at Ry.

To see this consider that the direction of greatest increase is the unit vector n
which maximizes the directional derivative (Vu)(Ryg) - n. This occurs when n is
parallel to (Vu)(Ry).

problem Find the normal to the surface which is the graph of z = f(x,y)

solution The surface is

uw(x,y,z) = —f(z,y) +2=0 (394)
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A normal is
Vu=ui+uj+uk=—-fi-fj+k (395)

as before.

problem Find the direction of greatest change for u = 2% + 2zy + y? + 322 at the
point (1,1,1), i.e. find a unit vector.

solution The gradient at this point is
Vu = 2z +2y)i+ (2x + 2y)j + 62k = 4i + 4j + 6k (396)

A unit vector in this direction is

i 4j+ 6k
po vu AT (397)
Vul V68

2.14 divergence theorem

The divergence is important because it appears in the following theorem.

Theorem 16 (Divergence Theorem). Let R be a solid region in R with boundary sur-
face S. Let n be the unit outward normal on S. Then for any continuously differentiable

vector field v on R
/V-VdV:/V-nda (398)
R S

Proof. Suppose n = nyi 4+ noj + nsk. If suffices to show that

% dV = / vinido
S

r Ox

@1)2

92 gy = d 399
ay /31)2712 g ( )
9 gy~ / vsng do

32 S

Then adding them together gives the result.

We prove the last, the others are similar. To prove it suppose that R if the region
between the graphs of two functions. It is defined by ¢(z,y) < z < ¢(x,y) with with
(x,y) in some region F in the plane. Then we have

P(z,y)
/%dv /(/ 8U>dxdy
o(ay) 0%

(400)
= [ oy 0a9) = sl ) dady
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‘ Z= 70&.7)

Figure 22:

We need to show that f s U3ng do has the same expression. Now § has three parts
S1, 82, 83, see figure 22, and

/v3n3 do :/ v3N3 da—i—/ v3N3 da—i—/ v3ng do (401)
S 81 82 SS

The surface S is the graph of z = (2, y) and a normal vector is N = —¢,i—,j+k.
This is an upward normal since the third component is positive. On this surface upward
is outward and so the unit outward normal is

TN TF ezl
do = \/1+ 2+ 2 dxdy (403)
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Also on S; we have



Therefore

— ! / 2 2
/31 vU3ng do —/Evf%(xvyv'lvb(x?y))\/m 1 +77Dx +,¢}y dl’dy
:/EU?)(%?J»@ZJ(%?J)) dxdy

(404)

The surface S, is the graph of z = ¢(x,y) and an upward normal vector is N =
—¢z1 — ¢,j + k. On this surface upward is inward and so the unit outward normal is

N  ¢i+o,j—k

Nl Tr @+ 4R
do = \/1+ ¢3 + ¢2 dxdy (406)
Therefore

—1
/52 v3nz do Z/EU:&(%YJW(%Q))WVML% + ¢ dxdy

n—

(405)

Also on Sy we have

(407)
= - / vs(2,y, p(x,y)) dedy
E
On the surface S we have n3 = 0 and so f33 vgns do =0
Adding the contributions from the three surfaces gives the desired result
/ RIS do = / (03(x7 Y, 1/}<I7 y)) - 03(1:7 Y, Qb(ﬂ?, y)) dxdy (408)
S E

The divergence theorem can be used in various ways. Here we just offer a couple of
examples illustrating what it says.

example Let R be a sphere of radius a with surface S. Check the divergence theorem
for this region and the vector field v(R) = R = zi + yj + zk.
For the volume integral note that V- R = 3 so

4
/ V.vdV = 3/ dV =3 x volume of R =3 (gwa?)) = 47a’ (409)
R R

On the other hand for a sphere the unit normal to the surface S at R is n = R/|R|.
Hence on § we have v-n = R - R/|R| = |R| = a. Therefore

/ v -ndo = a/ do = a area of S = a (47a*) = 47a’ (410)
S S
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which agrees with the volume integral.

example Let R be the region defined by 0 < z < 1 — 22 — y? with 22 +y? < 1. Let
S be the boundary of R. Check the divergence theorem for this region and the vector
field v = 1(2? + y?)k.
The surface has two pieces. The top piece called §; is the graph of the function
2z =1—2% — y? above the disc 22 + y> < 1. A normal on this surface is
0z. 0z

N=——i——j+k=27z1i+2y1+k 411
B ayﬁ zi+ 2yj + (411)

This points upward which is outward for this surface. Thus the unit outward normal is

N 2xi+2yj + 'k

INT /14 422 + 492

and on the surface we have
22 4 42

1
2\/1+ 422 + 492

(413)

V-n=

Futhermore we have for this surface

do = /1 + 422 + 4y?dxdy (414)

Combining the above we have

1 2 2
/ v-nda:/ - Tty V14422 + 4y?dady
S r24+y2<1 2 A/ 1 + 41’2 —+ 4y2

1
:/ —(2* 4 y*)dxdy

2+y2S1 2

:/ 17“2 -rdrd0 (415)
r<1 2

The bottom piece is called S,. It is the disc 22 + y? < 1, z = 0. The unit outward
normal is n = —k, so we have

1
v-on= —5(952 + 4?) (416)
The surface is flat so do = dxdy and we have
1 9 s
v-ndo=— —(2* + y*)dady = —— (417)
So x2+y2§1 2 4
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Combining the two pieces we have for the surface integral

/V-ndO':/V'ndU—l—/V-ndU:E—ZZO (418)
s s S 4 4

For the volume integral we note that V- v = 8/82((m2 + yz)/2> =0 and so

/V-VdeO (419)
R

which agrees with the surface integral.

remark: In evaluating surface integrals we are frequently canceling awkward square
roots. We can avoid this as follows. If S is a surface with unit normal vector n define
a formal symbol dd = ndo and then

/v-ndaz/v-dﬁ (420)
S S

If S is parametrized by a function R(u,v) then

R, xR,

R, x R,|

do =|R, x R,| dudv
dd =+ (R, x R,) dudv

n==+
(421)

If S is the graph of a function z = f(z,y) then

:i_fxi_fyj+k

VIt 2+ 2

422
do =y/1+ f2+ f2 dvdy (422)

dd ==+ (—fui— f,j+k) dedy

In either case the square roots are gone from dg. The only difficulty is that one must
still think about which normal one wants to determine whether to take the plus sign
or the minus sign.

2.15 applications

We give some applications of the divergence theorem. In the first we answer the question
"what is divergence?”. The others are derivations of some basic partial differential
equations.
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Figure 23:

A. steady fluid fow The steady (i.e. time independent) flow of a fluid is discribed
by the following quantities:

v(R) = velocity of the fluid at R (ecm/sec)

p(R) = density of the fluid at R (gr/cm?)
u(R) = p(R)v(R) = mass flow density (gr/cm? - sec)

Also if S is a surface with unit normal n we define

/ u-ndo = flux of u over S in direction n
S

We want to interpret this flux and also the divergence of u. (They are related).
Pick a point R on the the surface S, let Ao be a small piece of surface around R.
Then (see figure 23)

mass through Ac in time At (g7)
~ density at R x volume through Ac in time At
~p(R) x Ao x (v(R)At) -n
=u(R) -n AcAt

(423)
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If we divide by At we get
rate of mass flow thru Ac = u(R) - n Ao (gr/sec)

Now sum over pieces Ag; covering the surface S and take the limit as the partition
becomes fine. This gives

rate of mass flow thru § = lim Z u(R;) ‘n; Acg; = / u(R) -n do (gr/sec)
- S

Thus we have an interpretation of the flux of u over §. It is the rate of mass flow
through S.

Now for the divergence of u at any point R let D, be a sphere of radius € around
R. let S, be the surface of that sphere with outward normal n. Then by the divergence
theorem

«—0 Vol D,

_ 1
= oD, (/Seu'nda>

This is the flux divided by the volume. Thus the divergence is the rate of outward mass
flow per unit volume (gr/ cm?- sec ). A large divergence at a point means a lot of fluid
is entering the system at that point.

(V-u)(R) =lim ! / V-udV
P (424)

B. fluid dynamics

Again we consider fluid flow, but now the velocity v(R,t), the density p(R.,t), and
the mass flow density u(R,t) = p(R,t)v(R,t) all depend on the time t.

In our fluid consider any region R with surface S and outward normal n. Conser-
vation of mass says that

rate of mass flow out of § = rate of decrease of mass in R (425)

/Su ‘ndo = —% (/Rp(R, ) dV) (426)

Use the divergence theorem on the left, and differentiate under the integral sign on the

right to obtain
/V-udV:—/%dV (427)

/R(V-u +%> dV =0 (428)
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Since this holds for an arbitrary region R it must be that

dp
. — =0 429
V-ou + oy (429)

which is also written 5
V- (pv) + a—f =0 (430)

This is the continuity equation which must be satisfied by any flow.

We can rewrite this as

0
pV v +Vp-v—|—a—/t):O (431)
Now define the total derivative of p to be
Dp  0p
_r_ = . 432
DL o +Vp-v (432)

Then the continuity equation can be written as

Dp
! Vv =0 433
Dt P M (433)

The total derivative has the interpretation

D

F’i = rate of change of the density at a test particle moving in the fluid (434)
To see that this is true let R(t) be the trajectory of the test particle. Moving with
the fluid means that dR/dt = v(R(t),t). The rate of change of the density at the test
particle is by the chain rule

SR, =Vp(R(0),0)- 5+ L(R(),0)
V(R 1) VIR(). 1) + L (R(1), 1) (435)
Dp
=20 1)1

as claimed.
The field is incompressible if the test particle sees no change in the density, that is

Dp/Dt =0 (436)
By the second form of the continuity equation this is the same as

V.v=0 (437)
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C. heat equation For any object let T(R,t) be the temperature of the object
at position R and time t. We want to derive an equation which describes how the
temperature evolves in time. For this we also need to consider the heat (energy) in the
system. The heat density (calories/ cm?®) at R,t is proportional to the temperature
there and has the form cpT'(R,t) where the specific heat ¢ is a constant depending on
the material and p is the mass density, assumed constant. We also need the heat flow
u(R,t) at R, ¢. This is analagous to the mass flow in the previous examples but is now
the flow of energy (calories/ cm?- sec).

In our object consider any region R with surface S and outward normal n. Con-
servation of energy says that

heat flow out of S = rate of decrease of heat in R (438)

which means that

/8 u-ndo= —% < /R cpT(R., ) dV) (439)

Again use the divergence theorem on the left, and differentiate under the integral sign
on the right to obtain

/V-udV:—/cpi;—TdV (440)
R r Ot

which is the same as

T
/ (V ‘u + cpa—> dV =0 (441)
R ot

Since this holds for any region R it must be that
oT
V. — =0 442
u +cp ot (442)

Now we need another fact. This is the thermal conduction law which says that the
heat flow is proportional to the negavtive gradient of the temperature:

u=—kVT (443)

Here k is a positive constant called the thermal conductivity . The law says that heat
flows in the direction of greatest temperature decrease. Inserting this in the above
equation gives

cpaa—z — kAT =0 (444)

This is called the heat equation . If the temperature is independent of time then this
becomes
AT =0 (445)

which is known as Laplace’s equation.
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2.16 more line integrals

We define a line integral of vector fields. Let C be a directed curve parametrized by

R(t), a <t <band let v(R) be a vector field defined on C. We define

b dR
/Cv-dR:/a v(R(t)) - o dt (446)

Thus we replace the curve by the parameter and interpret dR = (dR/dt)dt. This
definition turns out to be independent of parametrization as long as we respect the

direction of the curve.
Let

dR , dR
T=—/— 447
Al (447)

be a unit tangent vector to the curve. Then the the vector line integral is related to a

scalar line integral by
/V-dR:/V-TdS (448)
c c

Thus we are integrating the tangential component of v along the curve. To see that it
is true compute

b dR/dt
/CV -T ds :/a v(R(?)) - R /di] |dR/dt| dt

= / b v(R(t)) - dR/dt dt (449)

:/v-dR
c

problem Let C be a straight line from a = i+k to b = 2i+j+3k. Let v(R) = zi+yzk.
Evlauate fc v - dR.

solution: C can be parametrized by R(t) = (1 — t)a+ tb with 0 < ¢ < 1 which is the
same as

R(t)=(t+1)i+tj+ (2t+ 1Dk (450)
Then
dR .
Also
v(R(t)=(t+1i+t(2t+ 1k (452)
Then we compute
1 1 923
/v _dR :/ ((t+ 1)+ 2t(2t + 1)>dt :/ (1+3t +4t%)dt = = (453)
c 0 0
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We list some properties of line integrals

e For any vector fields v, w

/(V+W)-dR:/v-dR+/w-dR (454)
c c c
e For a constant a

/av-dR:a/v-dR (455)
c c

o Let Cy start where C; finishes and let C; + Cy be the curve which first traverses C;
and then traverses C5. Then

/ v-R= V-R+/V-R (456)
C1+Ca C1 C2

e Let —C be the curve C traversed in the opposite direction. Then

/CV-R:—/CV-R (457)

(For scalar integrals on the other hand we have [ . fds = [, fds)

application: Let F(R) be the force applied to an object at position R. Then the line
integral [, F(R)-dR is interpreted as the work done (energy expended) in moving the
object along C.

another notation If v = v1i + v9j 4+ v3k and dR = dxi + dyj + dzk then
v - dR = vidz + vody + vsdz (458)

This is called a differential form. For us it is just a formal symbol whose integral has
a meaning, but it can be given a separate precise meaning in higher mathematics. In
this notation our definition of the line integral of v along a curve C parametrized by
R(t) =xz(t)i+y(t)j+ z(H)k with a <t <bis

/Uldl‘ + Ugdy + vsdz
C

b ) i (459)
z/ (vl(:v(t),y(t), Z(t))cjz_t + va(z(t), y (1), z(t))% +u3(z(t), y(t), At))%) dt

In other words we interpret dz as (dx/dt)dt and so forth.
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Figure 24:

This notation is also used for R?. If the curve C is parametrized by = = z(t),y = y(t)
with a <t <band M(z,y) and N(x,y) are functions on C, then

/Cde + Ndy = /a (M(x(t), y(t))fl—j + N(z(t), y(t))%) dt (460)

definitions A curve C is simple if it does not intersect itself (except possibly at the
endpoints). A curve is closed if two endpoints are the same point. See figure 24 for
examples.

Theorem 17 (Green’s Theorem). Let C be a simple closed curve in the plane traversed
counterclockwise with interior R. If M, N are continuously differentiable everywhere

i R then OGN oM
M Ndy = —_— 461
/c dz + Ndy /R (81: oy ) dzdy (461)

Proof. Suppose the region R lies between the graphs of two functions y = p(x) and
y = q(z) with @ < 2 < b and p(x) < g(z). Call these two curves C; and Cy both
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Figure 25:

traversed in the direction of increasing x. Then C = C; — Co. (see figure 25). We

compute
oM b 9@ gM
——— dxdy = —/ / —(x,y)dy | dx
/R ay a [ p(x) ay ( )

= / (M(x,q(z)) — M(x,p(x))dx
=— | Mdz+ [ Mdx
C2 C1

= Mdl’:/Md:L’
C1—Co C

(462)

Here we have used that Cy can be parametrized by z = z,y = q(x),a < x < b and that
C, can be parametrized by z = z,y = p(z),a < x < b.

Similarly one shows that
ON
/ — dxdy = /Ndy (463)
r Oz c

Adding the two equations gives the result.
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Corollary: If ON/Jx = 0M /0y everywhere inside a simple closed curve C then

/ Mdz + Ndy = 0 (464)
C

Corollary: With M = —y/2 and N = z/2

1
- / —ydx + vdy = / dxdy = area of R (465)
2 Je R

problem Find the area inside the ellipse

IQ y2
St =1 (466)

solution: The ellipse can be parametrized by © = acost, y = bsint with 0 < ¢ < 2.
Then we have
dxr = —asintdt dy = bcostdt (467)

Hence

1
Area =— / —ydr + xdy
2 Je

1 27
=3 / (absin®t + abcos® t)dt (468)
0

1 27
=— / ab dt = mab
2 Jo

2.17 Stoke’s theorem

A surface S is orientable if there is a continuous family of unit normal vectors n. All the
surfaces we encounter will be orientable. An example of a surface that is not orientable
is the Mobius strip.

Theorem 18 (Stoke’s theorem). Let S be an orientable surface with continuous unit
normal n and boundary C which is a simple closed curve. Then for any continuously
differentiable vector field v on S

/S(VXV)-ndaz/v-dR (469)

C

provided C is traversed in a right-handed sense relative to n. (see figure 26)
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Figure 26:
Proof. We have
i J k
(Vxv)-n=det | 9/0x 0/0y 0/0z |- n
(1 U2 U3 (470)
. 81)3 (91)2 8?]1 61)3 81}2 81}1
_<8y 8z)n1+<8z 8:13>n2+(8x 0y>n3

We pick out the the v; part of this and show

81}1 81)1 .
A(ET@ - 8—yn3> do = /C?Jldl’ (471)

There will be similar equations for the v, part and the vz and when we add them
together we get the result.

Suppose that S is given as the graph of a function z = ¢(x,y) with (z,y) in E and
upward normal n. (see figure 27). Then

ndo = dé = (—¢ei — ¢,j + k) drdy (472)
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Figure 27:

and so

(%2 v bl ) =6 o) = 500, 0) 1) iy

= /E —%[vl(&y, ¢(x,y))] dady (473)
— [ vy ot

:/vl(x,y,z)dx
C

Here C’ is a boundary curve for E and the second to last step follows by Green’s
theorem. The last step follows since if (z,y) traverses C’' then (z,y, ¢(z,y)) traverses

C.
example: Let S be the graph of the paraboloid z = 1 — 22 — y? which lies above the

disc 22 + y? < 1 and let n be the the upward normal. Also let v = yi + zj + 2k. We
check Stokes theorem in this case.
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First for the surface integral we have

ndo = dd = (—%i — %j + k) dedy = (2xi + 2yj + k)dzdy (474)
or Oy
Also
i j k
Vxv=det| 9/0x 0/0y 0/0z | =—-i—j—k (475)
Yy 2 x
Therefore

/(V X V) -dd :/ (—2x — 2y — 1)dzdy
S x24y2<1

27 1
:/ / (—2rcosf — 2rsind — 1) rdrdf (476)
o Jo

—or /01(—1“)0[7" —

For the line line integral note that C, the boundary of S, is the circle 2% + y? =
1,2 = 0. We want to go around it counterclockwise so we parametrize by

R =costi-+sint j 0<t<2r (477)
Then
dR =(—sint i+ cost j) dt
(~sin ) (478)
v =sinti+cost k
and so

2m
/V -dR = / (—sin’t)dt = —7 (479)
c 0
as expected.

circulation: Suppose v(R) describes the velocity of a fluid at R, and C is a directed
simple closed curve. We define

circulation of v around C = /v -dR = /(V -T)ds (480)
c c

This tells how much the fluid is circulating around the curve. See figure 28.

what is curl? Now we can answer this question, still thinking of v(R) as the velocity
of a fluid at R. Given R and a unit vector n, let S. be the disc centered on R with
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Figure 28: circulation

radius € and normal n, and let C. be the circle which is the boundary of S.. Then we
have by Stoke’s theorem

(Vxv)R) n=lim ! /(va)-nda

«—0 area of S, Jg

—lim ;/ v-dR (481)

«—0 area of S,

= circulation density of v around n at R.

general remark: In thinking about the fundamental theorem of calculus, Green’s
theorem, Stoke’s theorem, and the divergence theore note that they all have the form

/ (derivative of function) = / (function) (482)
(region) (boundary of region)

This may help in remembering them. It also suggests that there is a more general
theorem of this form which holds in any dimension. This is true. It is also called
Stoke’s theorem and uses a general theory of differential forms.
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2.18 still more line integrals

We investigate when line integrals are independent of the path.

Theorem 19 If v = Vu and C is any curve from Ry to Ry then

/v “dR = /Vu “dR = u(Ry) — u(Ry) (483)
C C

So in this case the integral is independent of the path taken from Ry to R;. We
can write without ambiguity.
Rq
/ v-dR (484)
Ro
Another way to write this is to define the differential du by

0 e 9% gy 9 g — v ar (485)

du = o dy 0z

Then the theorem says that for any path C from Ry to R;

/du = u(Ry) — u(Ry) (486)

c

Proof. Suppose C is parametrized by R(¢) with @ < ¢t < b. Then R(a) = Ry and
R(b) = R; and we have by the chain rule

b
Vu-dR:/ Vu(R(t))-a;—R dt
C a t

_ / ’ % (u(R(t))>dt (487)
)

application: Suppose F(R) is the force applied to an object at R. As noted before
fc F - dR is the work done in moving the object along C. If C goes from Ry to R; and
F = Vu then the work is u(R;) — u(Ry) independent of C. In this case one says that
the force is conservative and wu is called the potential energy .

For example the electrostatic force around a charge at the origin has the form

R

(488)
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This is a conservative force with potential (check it)

W(R) = (489)

R

definition: A region R in R®is connected if any two points in R can be joined by
a continuous curve in R.

Theorem 20 Let v be a vector field in a connected region R in R3. Then the following
statements are equivalent (i.e. either they are all true or all false)

1. fc v - dR = 0 for any closed curve C in R.
2. J,v-dR =0 is independent of the path C in R (C with fived endpoints in R).

3. v = Vu for some function u in R.

Proof. First we show that (1.) implies (2.). If (1.) is true and C; and C, are any two
paths from Ry to Ry then C; — Cs is a closed curve and so

/V-dR— v-dR = v-dR =10 (490)
C1 Co C1—C2

Thus (2.) is true.

By a similar argument one can show that (2.) implies (1.). Thus (1.) and (2.) are
equivalent.

We already know that (3.) implies (2.). Thus we need only show that (2.) implies
(3.). Assuming (2.) we define for any point Ry in R

w(R) = / YR - dR (491)

Ro

Because R is connected there are paths from Ry to R and because integrals are inde-
pendent of path we do not have to specifiy which one.
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We have to show that the gradient of u is v. We compute

ou o1 .
U (R) = lim 7 (u(R + hi) — u(R)
1r R+hi R
—lim - / v(R) - dR’ —/ v(R) - dR’]
h—0 h L RO RO
1 - R-+hi Ro
= lim ~ / v(R') - dR' + / v(R') ~dR’}
h=0 h L Jg, R (492)
R+hi
_ - / /
= /R VIR dR]
1r h
:}LILI(I) 7 _/0 v (R+ tl)dt}
=u1(R)

Here in the second to last step we have chosen a particular path from R to R + hi,
namely R’ = R + ti with 0 <t¢ < h and dR’ = idt.

Similarly one shows that (0u/0dy)(R) = v2(R) and (0u/0z)(R) = v3(R) and hence
Vu(R) = v(R). This completes the proof.

example: Consider again the vector field
v =y2%i+ 2% + 2oyz + 2)k (493)

Are integrals fc v - dR independent of path in R3? According to the theorem this is
the same as asking whether v = Vu. If there is such a v it must satisfy

du

oz *

g—Z =12° (494)
% =2 +z

5, —20Y?

The first equation says that u = zyz? + h(y, z) for some function h. Taking derivatives
of this we have

ou , Oh
a— =xz° + 8_
Y y (495)
% =2xyz + 8_
0= T %
Comparing this with the second and third equations above yields
oh oh
i " = 496
y 8 - (496)
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The second equation says h(y, z) = $2° + g(y) for some function g. But then the first
equation implies that g(y) = C for some constant C. Thus h(y,z) = 32* + C for some
constant C'. Therefore

1
u = yz? + 52'2 +C (497)

is the function we are looking for and the answer is yes.

The theorem actually holds in any dimension. We state the theorem for R? in the
language of differential forms.

Theorem 21 Let M, N be functions in a connected region R in R%. Then the following
statements are equivalent

1. fc Mdx + Ndy = 0 for any closed curve C in R.
2. fC Mdx + Ndy = 0 is independent of the path C in R.

3. M = 0u/0x and N = 0u/dy for some function u in R, i.e. Mdx + Ndy = du.

definition: A region R is simply connected if it is connected and every simple closed
curve can be continuously shrunk to a point without leaving R. Figure 29 gives some
examples.

Theorem 22 If v is a continuously differentiable vector field in a simply connected
region R then the conditions (1.), (2.), (3.) of the last two theorems are equivalent to

(@) {va:o in R C R3 (498)

ON/Ox — M /oy =0 in R C R?

Proof. We give the proof for R3. (3.) says that v = Vu and we know that this implies
V x v =0 which is (4.).

On the other hand suppose that (4.) is true. Since R is simply connected every
simple closed curve C in R is the boundary of a surface § in R - the curves shrinking
down C sweep out the surface. Then by Stokes theorem

/CV-dR:/S(VXV)-nda:O (499)

Thus (1.) is true for simple closed curves. But closed curve that is not simple can be
broken up into pieces that are simple. Thus (1.) is true in general.
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example Let v = yi + 2xj + zk. Are line integrals fc v - dR independent of path in
R3? Since R? is simply connected we just have to check whether the curl is zero. We
have

i J k
Vxv=| 0/0x 0/0y 0/0z | =k (500)
Y 2x z

Since this is not zero the answer is no.

example Let M = —y/(2*+y?) and N = z/(2*4y?). Are line integrals [, Mdz+ Ndy
independent of path

1. in R?? Actually we cannot ask the question in R? since M, N are not defined at
the origin.
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2. in R? with the origin deleted? This is not simply connected so we cannot use the
test ON/Ox — OM /0y = 0. No conclusion.

3. in R? with the negative z-axis deleted? This is simply connected so we can apply
the test and if we do we find that ON/0x — OM /0y = 0 (check it). So the answer
is yes.

We can say more. Since we do have path independence there must be a u so that
M = 0u/0z and N = Ju/dy. By solving these equations one finds

u(z,y) = tan™! (%) = polar angle of (z,y) (501)

This works in the region (3.), but not in the region (2.) since the function is not
continuous across the negative z-axis. It takes the value 7w from above and —n from
below. In fact there is no function in the entire region (2.) and the answer to the
question is no.

definitions A vector field v is irrotational if V x v.= 0. We have seen that in a simply
connected region this occurs if and only if v = Vu for some scalar u. A vector field is
solenoidal is V - v = 0. One can show that in a simply connected region this occurs if
and only if v =V x w for some vector field w.

It is a theorem that in a simply connected region every vector field v can be written
in the form v = vy + v, where vy is solenoidal and vy is irrotational.

2.19 more applications

We discuss some applications to electromagnetism. The players in our drama are an
electric field E(R,t), a magnetic field B(R,t), a current density j(R,t) and a charge
density p(R,t). These are time dependent vector fields, except the charge density which
is a time dependent scalar.
The charge density and the current obey the charge conservation equation
dp
V-j+—=0 502

it (502)
This can be derived just as we derived the continuity equation for fluid flow. The fields
obey Mazwell’s equations:

V.- E =4mp
V-B =0
vxE—_L19B (503)
c Ot
10E  4m
B=——+—j
Vv x 08t+cJ
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Here ¢ is a constant of nature (3 x 10%m/sec).

We work out some special cases, assuming we are in a simply connected region.

1. Suppose B is constant in the time . Then third equation says that V x E = 0.
This means that E is the gradient of a scalar. We write

E=-Vo (504)

and @ is called the electromagnetic potential. Inserting this equation into the

first gives
—Ad =47p (505)

This known as Poisson’s equation. It is easier to solve than the full Maxwell
system and a great deal of mathematics is devoted to its solution. KEspecially
important is the case p = 0 in which case we again have Laplace’s equation:

AD =0 (506)

2. The second equation V - B = 0 implies that
B=VxA (507)

for some vector field A known as the magnetic potential. The potential can be
written A = A; + Ay where V- A; = 0 and V x Ay, = 0. However A, does
not contribute to B so we can take A = A; and still have B = V x A . Then
V-A=V-A; =0

If E is constant in time, then the last Maxwell equation becomes

VX (VxA) =] (508)
But by one of our vector identities
Vx(VxA)=V(V-A)—AA=-AA (509)
thus our equation becomes
_AA = 4773 (510)

Thus each component of A satisfies Poisson’s equation and so is amenable to
solution.

3. Now suppose both p and j are zero. Then the equations become

V- -E =0
V-B=0
VxE-_ 19B (511)
c Ot
10E
B—-_"
VX c Ot
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Taking the curl of the last equation, and using the third yields

10 1 0°B
B)=-— E)=——— 12
V x (V x B) Cat(Vx ) 2o (512)
But on the other hand
Vx(VxB)=V(V-B)—AB=-AB (513)
Comparing the last two gives
1 0’°B
——— —AB = 14
c? Ot? 0 (514)

This is called the wave equation and has also been studied at length. By a similar
argument we can also show the E obeys the same equation:

1 0’°E

A characteristic feature of solutions of these equations is that disturbances propa-
gate with speed c. But c is the speed of light. This makes it possible to interpret
light as waves in the electromagnetic field. This was one of the triumphs of
Maxwell’s equations.

2.20 general coordinate systems
Counsider a differentiable invertible function

x =x(u1, ug, u3)

y =y(u1, uz, usz) (516)
z =z(uq, us, us)

from some region R’ C R3 onto R C R®. Then u = (uy, us, uz) in R’ can be considered
as new coordinates for R. These were considered previously in our change of variables
formula for R?. In a vector notation we have

R(u) = z(uy, ug, us)i + y(uy, ug, ug)j + z(uq, uz, uz)k (517)

As before we let OR/0u; be the tangent vector to a u;-line. The length of these
vectors are called the scale factors:

We also consider | 9R
— a - 1
e, = e;(u) I o, (519)
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which are unit tangent vectors to the w;-lines.
Our assumption of invertibility implies that

d(z,y,2)

3(u1, Ua, U3> 7é 0 (520)

(This is a converse to the inverse function theorem). This is a determinant with columns
OR/0u;. It follows that OR/Juy, OR/Ous, OR/Ous are linearly independent. Hence
e, ey, es are linearly independent and so form a basis for R®. Any vector v in R? can
be uniquely written in the form

3
V = v1e] + 19ey + U3e3 = Zviei (521)
i=1

The new coordinates are said to be orthogonal if

OR JOR
— =0 for i # 7 522
aui au] or 1 7& J ( )
It is equivalent to say that
0 .,
ei-ejz{ 7 (523)
1 1=

and the e; form an orthonormal basis. Then v - e; = v; and we can write

3

v = Z(V -e;)e; (524)

=1

For the rest of this section we assume we have an orthogonal coordinate system.
We give some examples of orthogonal coordinate systems.

1. (cylindrical coordinates) These are defined by
R = rcosfi+ rsindj + zk (525)

We computed OR/9r, OR /06, OR/0z, saw that they were orthogonal, and com-
puted e,, ey, e.. The scale factors are
h, =|0R/0r| =1
he =|0OR/00] = r (526)
h, = |0R/0z| =1
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2. (spherical coordinates) These are defined by
R = psin ¢ cos#i + psin ¢ sin 0j + p cos ¢k (527)

We computed OR/0p, OR /¢, OR/IH. One can check that they are orthogonal.
Also we computed e,, e, €. The scale factors are

hy =|0R/0p| =1
ho =IOR/00] = o (528)
hg =|0R/00| = psin ¢

3. (parbolic coordinates) These are defined by
1
R = (ujug cosus)i+ (uyug sinug)j + 5(1@ —udk (529)

We compute

OR/0uy =ug cosusi + ug sinusj + ur k
OR/0uy =uy cosusi + ug sinugj — ugk (530)

OR/Ouz =uqug(— sin uz)i + ujus(cos us)j

These are orthogonal since for example

OR OR

— =~ = U1U2COS" U + U1U2 SiIl2 Uz — U1y = 0 531
3 3
8U1 6u2

The other pairs are similar. The scale factors are

hy =|0R/Ous| = \/uf + u}
hy =|OR /O] = +[u2 + u2 (532)

]’L3 :|8R/6U3| = U1U9

From the above one can compute ey, e, es.

Orthogonal coordinate systems are special; there are only a finite number of them.
A vector field v(R) in new coordinates R(u) is

v(u) = v(R(u)) (533)

The vector field in new coordinates and new basis e;(u) is

v(u) = Z v;(u)e;(u) v;(u) = v(u) - e;(u) (534)



example: Consider the vector field
v=yi+azj+zk (535)
In cylindrical coordinates this is
vV = rsinfi+ rcosbj + zk (536)
We want to express it in the cylindrical basis

e, =cos i+ sinfj

€9 = — sin 6i + cos 6] (537)
e, =k
It will have the form
V =v,.e, + vpey + v.€e, (538)
where
v, =V - €, = 2rcosfsinf = rsin(260)
vg =V - €y = —rsin®0 + rcos? § = rcos(26) (539)
vV, =V-€, =%
Thus

v = rsin(26)e, + rcos(20)ey + ze, (540)

Now suppose we are given a scalar function f(R) and a vector field v(R). We
consider the problem of expressing the derivatives Vf,V - v,V x v, Af in a general
orthogonal coordinate system R = R(u) with orthonormal basis e;(u).

We start with the gradient. In new coordinates f(u) = f(R(u)) The new gradient
is defined as

3

(grad f)(w) = (V)(R(w) = Y _[(V/)(R(w)) - e;(u)] - ei(u) (541)

i=1

But the derivatives are still in Cartesian coordinates. By the chain rule

L) = (VHRW) - 5 = (VHRW) - e (w)h(w) (51)
Therefore A
(VR (1) = s 22 (w) (543
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Substituting this into the expression for grad f we find that

Cerad ) = Y- 17 e (544

i=1 "

examples: In cylindrical coordinates

1 8fer + i%e + igez

df=—21
grad f =15 e+ 155+ 175,

. . . (545)
—a—fe + 1ge + ge
“or " ro0 ' 90
In spherical coordinates
. 10f 1 of 10f
df=—— A — )
gra f h,p apep + h¢ a¢e¢+ hg 8069 (546)
—a_fe + la_fAe + ;a_fe
Op " poo ¢ psin ¢ 00 ?
example . Consider the function
1 1
fR) = = = (547)

R| a2+ y? 122

We want to find the gradient. It is easiest to change to spherical coordinates by

F(pr6,0) = % (548)

Then since this function does not depend on ¢ or ¢

. of 1
df==2le,=—— 549
grad f 9, = T % (549)

(And since p = |[R| and e, = R/|R] this is —R/|R|* back in Cartesian coordinates.)

Next consider the divergence. Recall that a vector field v(R) is expressed in new
coordinates R(u) by v(u) = v(R(u)) and that in the new basis it has the form v =
>, vie; with v; = v - e;. The divergence of the vector field is defined by ( div v)(u) =
(V-v)(R(u)). Then one can show that (after a somewhat lengthy calculation)

1 a(hghg’ljl) i (9(h1h31)2) 4 8(h1h2v3)
h1h2h3 8u1 8u2 8u3

(550)

div v =
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For example consider spherical coordinates with h, = 1, hg = p, hg = psin¢. Then
we have

A

V =10,€, + V€4 + vgey (551)

and

.1 (8(p2 sin ¢v,) N J(p sinpuy) N 8(,01@))
op 19l0) 00

_ 1 0(p*vy) 1 /0(singvg) = Ovg

p2 Op +psin¢( 0¢ * 69)

(552)

For a general coordinate system the curl is ( curl 0)(u) = (V x v)(R(u)). One can
show that

h1e1 h2e2 h283
curl 0 = det | 0/0u; 0/Ous 0]0us (553)

h1h2h3 hl’Ul hQUQ ]’L3U3

Finally for a scalar if f(u) = f(R(u)) and (Af)(u) = (Af)(R(u)) then one can

show

s 1 O [ hohs Of O [ hihs Of d ([ hihs Of
Af = 4

f hlhghg <8u1 ( hl 8U1> + 3u2 < h2 aUQ + 8u3 h3 8u3 (55 )
For example in spherical coordinates

1 [0 of o of L of

Af = — —_ —J

/ p?sin ¢ <8p ( singg ) 6¢ ( ¢8¢> + <sm¢8 ))
(555)

109 [ ,0f 1 of 1 9%f
~Zop\" 3 +p2sm¢a¢ MO0 | T e 6 00

example Find all spherically symmetric solutions of Af = 0. Spherically symmet-
ric means that f(R) depends only on |[R|. In spherical coordinates it means that
f(p,®,0) = f(p). Then the equation is

. 10 of
Af=——|p?=L ] =
f 2 (p ap> (556)
This implies K
of
L= 557
p Bp 1 (557)
for some constant ¢;. Then )
af - C1
6_,0 = (558)



which has the general solution

- —c
o) =—=+e (559)
Back in Cartesian coordinates it says that
fR) = 5 + (560)
R
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3 complex variables

3.1 complex numbers

A complex number is a pair of real numbers, hence a vector in R2. It is written

2= (2,9) (561)
Define addition and multiplication by a scalar just as for vectors:

21+ 22 =(T1 + 2,41 + Y2) (562)
az =(ax, ay) aeR

We also define multiplication by
212 = (129 — Y1Y2, T1Ya2 + Y1T2) (563)
Then, as one can check, the ordinary rules of arithmetic apply:

21(2223) 2(2122)23
Z1R9 —Z9221 (564)

z1(22 + 23) =2120 + 2123
Two special complex numbers are
1=(1,0) i=(0,1) (565)
Then any complex z can be written
z=(z,y) =2(1,0) +y(0,1) = 21 + yi (566)
Consider complex numbers of the form z1. We have

(CCl].)(iCQ]_) :(Zlfl, 0)(33'2, O) = (l’l.fg, 0) = .I'll'z]_
$11 + ZEQl :(1‘1, 0) + (ZL’Q, O) = (ZB1 + Zo, 0) = (1’1 + 1'2)1 (567)
(1) (2", y) =(2,0)(«, ¢/) = (z2’, 2y) = x(2',y/)

These behave just like the real numbers. Hence we can identify the complex number

x1 = (z,0) with the real number
Now consider complex numbers of the from yi. We have

(119)(y21) = (0,41)(0,92) = (=11%2,0) = =11yl = —y192 (568)

In particular
(yi)? =—y*  ?=-1 (569)



These complex numbers have a square which is negative. They are called imaginary
numbers.
A general complex number z = (z,y) = 21 + yi can now written

z2=1x+1y (570)

Points in the plane can be labeled in this form . For example the point (3,2) could be
labeled 3 + 2i. Also in this form the multiplication law need not be remembered since
it follows from the relation 72 = —1. Indeed we have

2129 = (21 + iy1) (T2 + iy2)
=217y + iT1Ya + i1 T2 + Y1y (571)
=21T2 — Y1y2 + i(21y2 + y122)

3.2 definitions and properties

1. (definitions) For a complex number z = x + iy define

r =Re z = real part of z
. . (572)
y =Im z = imaginary part of z

We also define
|z| = V2?2 +y? (573)

called the ”length of z” or the "absolute value of z” or the "modulus of 2”7, and
arg z = polar angle for z (574)

and
Z=x—1y (575)

called the ”complex conjugate” of z. See figure 30 for the associated geometric picture.
The complex conjugate has the properties

21+ 29 251 + 22

Z1Zs =212 (576)
2] =]
2. (inverses) Note that
22 = (v +iy)(z —iy) = 2> +y* = |2|? (577)
If z 0 this can be written
2(2/12") =1 (578)
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Figure 30:

This says that z/|z|? is an inverse for z. We write
Ll # or (z+iy) " = r — 1y

Then we can divide by any z # 0 by defining
w -1

— = wz
z

= —j and
3—44 3 4
(344i) =2 :

examples: By the formula ¢~

__’l_

25 25 25

x? + y?

(579)

(580)

(581)

However one does not have to remember the formula. Instead just multiply in the

numerator and denominator by the complex conjugate. For example

11 3—4i 34
34+4i 3+4i 3—4i 25

3. (distances) Just as for vectors

|21 — 25| = distance from z; to 29
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The triangle inequality holds:
lz1] = Jz2ll < f21 £ 20 < 2] + |2 (582)

4. (exponentials) We want to define

e” ="t = ¢%el (582)

We know what e” means and we know that it can be expressed as a convergent series

1 1
e’ —1+x—i—§x +§x+ (582)

Suppose we try to define e?¥ in the same way ignoring questions of convergence. We
would have

eV =1+iy+ 21'( y)2—|—%(iy)3+...
:<1_21|y+i|y+ >+i<y_§ly+§|y+ ) (582)
=cosy +isiny
We take this as the definition, that is e¢? = cosy + isiny and more generally
e” = e = e"(cos y + isiny) (582)
This does obey the law of exponents:
eV e? =(cosy; +isiny;)(cosyy +isinys)
=(cosy; cos Yo — siny; sinys) + i(cosyy sin ys + sin y; cos ys)
=cos(y1 + y2) + isin(yr + y2) (582)
—ety1+y2)
and in general e*1e*2 = ¢*17*2. Also note
e =cosy + isiny = cosy — isiny = cos(—y) + isin(—y) = e ¥
%] =cos”y + s’y =1 (582)
. Y
(e)! —|:iy|2 =e Y
The last could also be deduced from the law of exponents.
examples:
e =1 /2 = e =1 BT = e =1 (582)
AT = e3(cos /4 + isin/4) = <7 +1 7) (582)

109



3.3 polar form

Points in the plane have polar coordinates (r,6) related to Cartesian coordinate by
x =rcosf,y =rsinf. A complex number can then be written in polar form by

z=x+iy =rcosf+irsinf = re® (582)

Every point z # 0 has a unique polar representation z = re? withr > 0and 0 < § < 2.
Now we have

2| =7 argz =0 (582)
If 21 = re® and 2z, = rye’® then the product is

2120 = rreeif1+02) (582)

This says that in complex multiplication we multiply lengths and add angles. Another
way to write it is

|le2’ =|Zl\|z2|

arg(z122) = arg(z) + arg(zq) (582)

The second equation only holds if both sides are in the interval [0, 27). For example if
21 = z9 = —i, then arg(z;) + arg(z2) = 37/2 + 37/2 = 37 but arg(z129) = arg(—1) =7
and the identity fails.

examples

1. To find the polar form of z = 1 + iv/3 note that the length is 2 and the angle is
tan—'(v/3) = 7/3 hence z = 2¢"/3,

2. To find the polar form of z = 1 + i note that the length is v/2 and the angle is
tan~'(1) = 7/4. Thus z = v/2¢™/4.

3. To find (1 +4)® write it in polar form and compute

(1414)% = (V2e™/*)® = 24 = 16 (582)

problem: Find all complex z such that 2% =1
solution: Try z = re? with r > 0 and 0 < # < 27. This is a solution if
riei? =1 (582)

Comparing lengths gives 7> = 1 and so r = 1. Then 6 must satisfy ¢ = 1 or

cos(30) = 1,sin(30) = 0. The solutions are

30 = 0, 2, +47, +67, . .. (582)
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or

0 =0,+2m/3, £47/3, £67/3, ... (582)
But the only solutions with 0 < 0 < 27 are § = 0,27/3,47/3. Thus the answer is

o , 1 3 1 3
107 6Z27r/37 €Z4ﬂ/3 - 1’ _5 + §Z7 _§ B gz (582)

Z =€

One of the uses of complex numbers is that every polynomial has complex roots. In
the problem we found the solutions of 2* — 1 = 0. Here are some more examples:

examples:
1. The equation z" = a (a real) has n solutions:

5 = al/n7 a]l/nei(%r/n)7 al/nei2(27r/n)7 o 7al/nei(n—l)(27r/n) (582)

2. The equation az® + bz + ¢ = 0 (a, b, ¢ real) has solutions

=bdvbi—dac W if b2 — dac >0

2= 3 if b2 — 4ac =0 (582)
=btiviac=b® i h2 — 4ac < 0

3.4 functions

Let C stand for the set of all complex numbers. Thus C is R? with a special multipli-
cation. We are interested in functions from C (or a subset) to C written w = f(z) with
both w, z complex. For example w = 22 or w = 1/(32 +2) or w = |z|.

If w=wu+1v and

f(z) = [z +iy) = u(z,y) + iv(z,y) (582)
then the equation w = f(z) can be written as the pair of equations
u=u(z,y) v =v(z,y) (582)

The function u(x,y) is called the real part and the function v(z,y) is called the imagi-
nary part.

examples
1. f w=e*=e"(cosy +isiny) then

u =€’ cosy v=e"siny (582)
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wW=2Z
)
-
\/ /,,/” -
4
U

Figure 31: mapping by the function w = 22

2. fw=1/z=(z —iy)/(x* + y*) then

x -y
U = o " v = o /2 (582)

To represent a function w = f(z) geometrically we show how it affects straight lines.

example: Consider the function w = 2% which takes the first quadrant to the upper
half plane. We have w = 22 = (z + 1y)? = (2? — y?) + 122y so it is equivalent to the
pair of functions

uw=az>—y? v =21y (582)

It maps the line x = ¢,y > 0 to the line u = ¢ — y?, v = 2cy which is the half

parabola
2

2 U
4c?’
2 2

It maps the line y = ¢, x > 0 to the line u = 2 — ¢*, v = 2xc which is the half parabola

u=c v>0 (582)

v?
U= 15 C v>0 (582)

This is represented in figure 31.
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3.5 special functions

(A.) trigonometric functions
If y is real so e = cosy +isiny and e”®¥ = cosy — isiny then

1, . . 1, . .
5(6”’ +e ) =cosy 5(6”’ —e W) =isiny (582)
Accordingly we define for complex z
_ 1( iz+ —iz) : _ 1 ( 1z —iz) (582)
cosz = (e e sinz = o-(e e

Other trig functions can be defined from these, for example

fanz = S0 ° (582)
Cos z
If z =i« is purely imaginary then
: L,
cos(ia) 25(6 4+ e%) = cosha
1 X (582)
sin(ia) :%(e_a —e%) = ié(ea —e “) =isinha

Thus the complex trig functions include both the usual trig functions and the hyperbolic
trig functions as special cases.

(B.) logarithm
We want to define the natural logarithm log z of a complex number z. If z # 0 and
such a log has the same properties as the log of positive numbers then we expect
log z = logre®” = logr + log ™ = logr + if (582)
Accordingly we take as the definition for z # 0
log z = log |z| + i arg z (582)

where 0 < arg z < 27. However sometimes we may want to make another choice of the
polar angle arg z. For example we could take —7 < arg z < 7 or more generally

c<argz <c+2m (582)

Each choice of ¢ gives a different log functions, called a branch of the logarithm. An
alternative is to take all possible values of arg z. If # is one possible value then these
would be the infinite sequence

ooy 0—=2m,0,0 + 271,60 4+ 47, ... (582)
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In this case we have a multi-valued function.

example: Take the branch of log z with 0 < arg 2z < 27. Then

. . . . NG
logi =log|i| +iargi=i—

2
log(—2) =log| — 2| + iarg(—2) = log2 + im
. L . 3 (582)
log(—3i) =log | — 3i| +iarg(—3i) = log3 + i
log(1+1i) =log |1 +i| +iarg(l+1) = log\/§+z'%
Is the logarithm the inverse of the exponential? We have the following result
Theorem 23
1. For any branch of the logarithm
elog? = » (582)

2. If log z is defined with ¢ < argz < c+ 2w and if z =x + 1y withc <y < c+ 2w
then
log(e®) = = (582)

Proof. For the first if 2 = re, then log z = logr + (6 + 27k) for some k. Then

elogz — elogr€i96i27rk — reie — (582)
For the second since the restriction on y matches the definition of arg

log(e®) = log(e®e) = loge” +iarge” = x + iy = z (582)

(C.) complex exponentials
Since z = €!°8% we can define for complex z, w

2 = evloe? (582)

Here we have to specify the branch of the logarithm we are using. An alternative is to
take all possible values of log z and get a multi-valued function z".
If w is a positive integer n then

2" (new) = e"'8% = (£!°8%)" = 2" (old) (582)
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is the same for any branch of the logarithm. But
Zl/n _ 6log;z/n (582)

will have n different values depending on the branch of the log. Each value does satisfy
(Zl/n)n — elogz = 2.

example Since log1 = ijarg 1

1 if argl =0
11/3 — g3logl _ pyargl _ J gizm/3 argl =27 (582)
/3 if argl = 4w

We find the solutions of 23 = 1 as z = 1'/3 with the different branches for the cube
root.

example Since logi =iarg:

e™/6 if argi =12
i3 = ealosl = e3arel = { oi5T/6if argj— 5% (582)
/0 if argi =%
example Since logi = iarg1 ‘ o .
= ezlogz — o~ a8l (582)
This takes infinitely many values
L, e82 TR oI/ oI/ (582)

3.6 derivatives

(A.) First consider functions from R to C written z = f(t) where z is complex and ¢t is
real. For example z = e or z = t? +ilogt. Such a function can always be written

2= (t) = a(t) + iy(t) (582)

and z(t) is called the real part of the function and y(t) is called the imaginary part of
the function. The derivative is defined just as for a vector valued function:

% =0 =0+ a0 (582)
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example: If '
z = " = cos(at) + isin(at) a real (582)

then
dz

- = sin(at) + ia cos(at) = ia(cos(at) + isin(at)) = iae' (582)

(B.) Now consider functions from C to C written w = f(z). We start with the definition
of a limit.

definition: lim, ., f(z) = wy means for every € > 0 there is a § > 0 so if |z — 29| < §
then |f(2) — wo| < e.

This says that f(z) — wg as z — zp from any direction.

Now write
z=x+1y Zo = To + 1Yo (582)
f(Z) :U(l',y)—’—lv(l‘,y) wOZUO_’—iUO
Then
| f(2) — wo| = \/(U(%y) —up)? + (v(z,y) — v9)? (582)
2 — 20| = /(& — 20)? + (y — w0)?
From this we deduce that lim,_,,, f(z) = wp is the same as
lim  w(z,y) =uo
(a:,y)—>(a:0,y0) (582)

lim v(z,y) =v
e By VB ) = 00

definition: w = f(z) is continuous at zq if lim,_,,, f(z) = f(20)

This is the same as the statement that u(z,y) and v(z,y) are continuous at (g, yo).
One can show that if f, g are continuous at zy then so are f+g, f-g, and f/g, the last
provided g(zg) # 0. Also if g is continuous at zg and f is continuous at g(zp) then the
composition f o g is continuous at z.

definition: w = f(z) is differentiable at z, if the derivative

f(z0 + Az) — f(20)

/ R T .

f(z0) = Algilo Ao exists (582)
Varying 2y it is also a function. We also write
dw ,

- = 582

= () (5%2)
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Theorem 24 If f is differentiable at zy, then it is continuous at z

Proof.
f(z) = f(20)

Z — 20

i () - £(:0) = I (

Z—r20 zZ—20

) (z—20) = f(20)-0=0 (582)

Theorem 25 If f,g are differentiable at z so are f £ g, f g, f/g (provided g(z) #0)
and

(582)

9

If g is differentiable at z and f is differentiable at g(z) then f o g is differentiable at z
and

(fog)(2) = f(9(2))d'(2) (582)
These are proved just as for real variables.
examples:
1. If f(2) = ¢ then f'(z) = 0.
2. If f(z) = z then

(z+Az)— 2

/ T 1 _
o) = fim S = = (82)
3. If f(z) = 22 then by the product rule
dz dz
/ = — —_— =
f(z) = 77 + - 2z (582)

4. If f(z) = 2™ then f'(z) = nz""1.
5. Any polynomial P(z) is differentiable.

6. Any rational function P(2)/Q(z) is differentiable except at points where Q(z) = 0.
(where it is not even defined)
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example Let f(z) = z. If it exists the derivative is

 ferAn S B
Al,lzrilo Az N Al,lzrilo Az (582)

The limit must be the same from any direction. But if Az = Ax is real then

. Az . Ax
e = A, ! o2
and Az = 1Ay is imaginary then
. Az . —iAy
lim — = lim —
Az—0 Az Ay—0 ZAy

=1 (582)

The limit depends on the direction which means there is no limit in the complex sense.
Thus the derivative does not exist. (Even though there are no kinks or discontinuities
in this function).

3.7 Cauchy-Riemann equations

Let f(z) be differentiable so lima,o(f(z 4+ Az) — f(2))/Az exists. What does this say
about the real and imaginary parts f(z) = u(x,y) + iv(z,y)? First let Az = Az be
real. Then

flz+Ax) - f(2)

F'(z) :Alalgglo Az
Az—0 Az Az—0 Ax
Oz ox
Now let Az = iAy be imaginary. Then
/ o f(Z+ZAy)_f(Z)
f(2) = Alzlglo 1Ay
1 Ay—0 Ay Ay—0 Ay
ou N Ov
= — 11— —_—
dy Oy

These two expressions must agree since the limit must be the same from any direction.
Thus we must have
du v ou v

dr Oy dy  Ox
These are the Cauchy-Riemann equations or CR equations.
Thus if f(z) is differentiable the the real and imaginary parts satisfy the CR equa-
tions. The converse is also true if we strengthen the hypotheses a bit.

(585)
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Theorem 26 If u(x,y),v(x,y) have continuous partial derivatives which satisfy the
CR equations near a point, then f(z) = u(z,y) + iv(z,y) is differentiable at that point

and ou B v D
=i = i (586)

f(z)_%+z%_8y dy

examples
1. Let f(z) = 2? so that u = 2* — y* and v = 2xy. We have

8u_2_8v 8u_ _@

T _gp =2 T g 587
ox . oy oy Y ox (587)
Thus the CR equations hold so f(z) is differentiable (which we already knew)
and 02 0 3
2 u v
= i — ooy =2
7 e + igs =20 +i2y = 22 (588)

(which we also knew)
2. Let f(z) =e* =e€"cosy +ie"siny so u = e” cosy,v = e*siny. Then

ou ov ou e . Ov
7~ ¢ COSy_a_y (3_3/__6 siny = (589)

Thus the CR equations hold so f(z) is differentiable and

d(e,Z)_au .U_:B .. _ z
7 _%4—@8—1‘_6 CoOsy +1e"siny =e (590)

We can use this result and the chain rule to find derivatives of trigonometric

functions
d(cosz) d [e¥ +e™* e’ —ije e —e 2 ,
= — g = — —_ — 1
dz dz [ 2 } 2 2 S (591)
Similarly
dlsi
(S;Zl ) = cos z (592)
3. Let f(2) =2 =2 —iy =u+dv. Then
ou ov
A VRPN 593
5 = 17 o (593)

Thus the CR equations fail everywhere and so the function is not differentiable
anywhere (which we already knew).
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4. Let f(2) = logz = log|z| + iargz. Consider only the right half plane with
—3m < argz < 3m. Then arg z = tan™'(y/z) so we have

1
u=log\/x?+y>= 5 log(z* + ) v =tan"!(y/x)

Then we compute

u_ @ v ou_ _y O (595)
or 22+y? Oy dy 12+ y? Ox
Thus the CR equations hold so f(z) is differentiable and
d(logz) Ou Ov x—1y z _1
_OQu Ov oy Z 596
dz or " oz 24 y? |z ‘ (596)

This result actually holds for any branch of the logarithm.

3.8 analyticity

A neighborhood of a point z; is a disc of some radius € centered on zy. It is written
{z€C:|z—2]| <e}. Aset D C C is defined to be open is every point zy € D has a
neighborhood entirely contained in D. For example the disc {z € C : |z — z| < r} is
open, but the disc {z € C: |z — 25| < r} is not open since any neighborhood of a point
with |z — zg| = r will have points outside the disc.

A function w = f(z) is analytic on an open set D if it is defined and differentiable
at every point in D. (We restrict to open sets so that if zg € D then zy + Az € D for
2o small enough, hence we can form the difference quotient (f(zo + Az) — f(20))/Az
and test the differentiability.)

Thus anayticity is essentially the same as differentiability, expect that the latter
refers to points and the former refers to regions. When we take up integration theory it
will be important to identify domains of analyticity for various functions. The following
examples give some practice at this.

examples:
1. A polynomial P(z) is analytic in the entire plane C.
2. The functions e?, cos z, sin z are analytic in plane.

3. The function 1/(2% + 1) is analytic in the plane with z = +i deleted. (It is not
defined at the deleted points.)

4. The function 1/(z® — 1) is analytic in the plane with z = 1,e?™/3 e4™/3 deleted.

5. A rational function P(z)/Q(z) is analytic in the plane with the roots of Q(z)
deleted.
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6. Consider log z = log|z| + i arg z with z # 0 and —7 < arg z < . This is analytic
in the cut plane with the negative real axis deleted. We could define it on the
whole plane with only z = 0 deleted if we specified say —m < arg z < w. But then
it would not be analytic because it would be discontinuous across the negative
real axis and hence not differentiable on the negative real axis.

3.9 complex line integrals

(A.) First consider functions f from (a subset of) R to C written z = f(t) = x(t)+iy(t).
We define

/a ’ F(t)dt = / b:):(t)dt +i / by(t)dt (597)

Then we have

w(0)) + ily(e): (598)
=[f()]"
example: - '
fonll-=2

(B.) Next consider functions f from (a subset of ) C to C written w = f(z). We could
consider integrals over regions in the plane, but the most interesting case turns out to
be line integrals.

Let C be a directed curve in the plane. Choose a sequence of points 2y, 21, ..., 2,
such that zy is the start point and z, is the finishing point. (see figure 32) Let z; be
a point on C between z; and z;41. Finally let Az; = 2,41 — 2z; and h = max; [6z;]. We
define the line integral of f over C by

n—1
/C Flede = 3 1(21)A (600)

Note that this involves complex multiplication, so it is different from the line integrals
we have considered previously.
Now suppose that C is parametrized by

z(t) = z(t) +iy(t) a<t<b (601)
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Figure 32:

Take points a = tg < t; <ty < --- < t, =b. Take z; = z(¢;) and for any points ¢} in
[ti7ti+1] let Z;k = Z(t;k) If Atz = tz’—i—l — tz then

1

Hence - .
/C F(a)de = T S F(a(00))2/(05) Aty = / F(0) (1)t (603)

This is the basic definition. It can also be written

/C feya: = [ Fa(t) (604)

and for short one can just remember dz = (dz/dt)dt. This integral is independent of
the choice of parametrization.

examples

1. We want to find fc zdz where C be the unit circle traversed counterclockwise.
The usual parametrization x = cost,y = sint with 0 < t < 27 becomes in the
complex form

z=x+iy =cost+isint =e" 0<t<2r (605)
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Then
dz = ie'dt (606)

27 27 2it 7 2™
/zdz—/ eliedt = / ie*dt = [21 =0 (607)

2. With the same curve C

2w 2w
/ Zdz = / e iedt = / idt = 2mi (608)
C 0 0

3. Let C = C; + Cy where C; is a straight line from 0 to 1 and C, is a straight line
from 1 to 1 + 4. We evaluate

/zdz:/ zdz+/ zdz (609)
C C1 Ca

The line C; is parametrized by z =¢, 0 <t < 1. Hence dz = dt and Z =t and

1
1
/Zdz:/ tdt = - (610)
Cy 0 2

The line Cy is parametrized by z = 1+it, 0 <t < 1. Hence dz = idt and Z = 1 —it
and

and so

1

1 1 t2 1
/zdz:/(l—z't)idt:/(z’th)dt:{z’t+—] it s (1)
C1 0 0 2 0 2

Thus fc zdz =1+ 1.

3.10 properties of line integrals
To estimate the size of a line integral we have:

Theorem 27 Suppose a curve C has length L and |f(z)| < M for all z on C. Then

/Cf(z)dz

Proof. Approximate the integral by a sum ) . f(27)Az;. By the triangle inequality
<Z £ (2]) Azl

= Z (D) Az| (613)
<M Z | Az
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Now take the limit as h = max; |Az;| — 0 and get the result.

example: Let C be a semi-circle of radius R in the upper half plane centered on the
origin. Suppose we want to estimate the size of [,(z 4+ 1)*dz. For z on C we have

2+ 13 =z +1P < (2| +1)* = (R+1)? (614)

The length of C is mR. Hence by the theorem
/ (z+1)°dz
c

Next we want to express our complex line integrals in terms of there real and
imaginary parts. Start with the definition

< (R+1)°mR (615)

b dz
[z = [ reenSar (616)
c a dt
where z(t),a <t < b is a parametrization of C. Then insert the expressions

f(z)

u(z,y) +iv(r,y)

2(t) =x(t) + iy(t) (617)
This gives
’ . dr .dy
[ ez = [ (utato)vto) + intetorue)) (G + %0 )at
’ dx dy
= [ (wtote). 00 % — (a0 w0) )t o

b X
i / (1wt w5+ olal), y(0) o )t

:(/cudx—vdy) —|—i</cudy+vdx>

For short one can think of making the substitutions f = u + iv and dz = dx + idy.

This formula expresses complex line integrals in terms of real line integrals. From
this we can deduce that the complex line integrals have all the properties of real line
integrals. In particular

/_ Sz = - /C f(2)dz (619)
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3.11 Cauchy’s theorem

Now we can prove:

Theorem 28 (Cauchy’s theorem) If f(z) is analytic everywhere inside a simple closed

curve C then
/f(z)dz =0 (620)
c

Proof. Let R be the region inside C. Then by Green’s theorem followed by the CR

equations:
/cf(z)dz :(/Cudac - vdy) +i(/cvdx + udy)

=L<—%—g—z>dxdy+z/ (%-%)dmg (621)

=0

examples: Let C be the unit circle traversed counterclockwise. Then we have

J
[0

/ez ~+cos(3z) dz =0
C
1
/ dz =0
crR— 2

since in each case the integrand is analytic inside the circle. But for integrals like

_ 1
e“dz / dz /logz dz (623)
/c cz—1/2 c

there is no conclusion since the integrand is not analytic inside the circle

2" dz =0 n=0,1,2,...

(622)

We define a region as a connected open set.

Corollary If f is analytic inside a simply connected region D then [ f o f(z)dz = 0 for
any closed curve in D.

Proof. Suppose C is a simple closed curve. Since D is simply connected the interior of
C is in D, hence f is analytic inside C and the result follows by Cauchy’s theorem. If
C is not simple break it up into pieces which are simple.
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n

Figure 33:

Corollary If f is analytic inside a simply connected region D then integrals |, o f(z)dz
are independent of path in D.

Proof. If C; and Cy are paths in D with the same endpoints then C; — Cy is a closed
curve in D and so [, f — [, f = [o,_c, [ =0 by the previous Corollary.

Corollary (deformation theorem) Let f be analytic in a region D and let C;,Cy be
simple closed curves in D such that C; can be continuously deformed to Cy in D. Then

/ f=117 (624)
C1 Ca

Proof. We prove the result in the case where Cy,Cy are simple closed curves and C; is
inside Cy. The hypotheses of the theorem imply that f is analytic in the region between
them.

Let C be a curve which traverses Cy, then jumps to Cy along a path ~, then traverses
—Cy, then jumps back to C; along —v. (see figure 33) Then C is a closed curve and f
is analytic inside it and so by Cauchy’s theorem

/le—/czfz/le+/7f+/_c2+/_7f=/cf:0 (625)
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3.12 Cauchy integral formula

We need formulas for the direct evaluation of complex line integrals, i.e. without making
a parametrization. The first is a generalization of the fundamental theorem of caculus.

Theorem 29 Let f be analytic in a region D. Then [, f'(2)dz is independent of path
in D and so can be written fzzl f'(z)dz. We have

/Z1 f'(2)dz = f(z1) = f(20) (626)

Proof. Given points zg, z; in D let C be any path from zy to z; and let z(t), a <t <b
be any parametrization of C with z(a) = 2y and z(b) = z;. Then by the chain rule

[sez= [ e
b d

= [ Gl (627)
—£(:(6)) = f((a)

=21 — 20

example:

144 47144 \4 im/4\4
1 2 ,
0

To use the theorem one still has to find an anti-derivative for the integrand. For
closed curves there is another formula which evaluates integrals with no work at all.

Theorem 30 (Cauchy Integral Formula) Let f(z) be analytic inside a simple closed
curve C traversed counterclockwise. Let zy be a point inside C. Then

RIC N F(z0) (629)

c?— 2o

Note that if 2y is outside C then f(z)/(z — 2p) is analytic inside C and so the integral
is zero by Cauchy’s theorem.
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Figure 34:

Proof. Let C’ be a little circle of radius r centered on zy. (see figure 34) Since f is
analytic between C and C’ we have by the deformation theorem

() 4, () 4, (630)
c R — R0 R X0
Now parametrize C' by
2 =29 + re'? 0<0<2r
o (631)
dz =ire”df
Then ) N )
SC) g [Tt [T p e a0 (632)

o 2 — 2o " ret B

This is true for any small » > 0. Thus it is also true in the limit » — 0 which gives

j /0 " Fz0) dO = 2mi f(z0) (633)
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examples: Let C be the circle |z| = 2 traversed counterclockwise. Then

/ © 4y = 2mile?],_, = 2mie
C

z—1
/ c dz =10 634
cZ— 3 - ( )
4 2
/ T 7dz = 2mi[42° + T),=1 = 22mi
C Z — 1

example: Let C be the square with corners ¢, —7,2 — 7,2 + ¢ traversed in that order.

We want to evaluate B B
e e

dz = | ————_ d 635

/622—12 /C(z+1)(z—1)z (635)

The integrand goes bad at both z = £1 but only z = 1 is inside C. Thus e*/(z + 1) is
analytic inside the curve and we can evaluate the integral as

/Mdz =2mile*/(z + 1)],=1 = mie (636)
c 2—1

example: Let C be the circle |z| = 2 traversed counterclockwise. We want to evaluate

/C z;—;dz - /C mdz (637)

The integrand goes bad at z = +¢ and this time both points are inside C. Thus we
cannot use the Cauchy integral formula as it stands. We give two methods to modify
the problem so that we can use it.

Solution (1). Break the denominator up using partial fractions We look for A, B such

that
! _ A + = (638)
(z+i)(z—i) z—i z+i

for all z. This is the same as

1=A(z+1i)+ B(z —1) (639)

Matching coefficients gives A+ B = 0 and Ai — Bi = 1. The solution is A = 1/2¢ and
B = —1/2i. Therefore

m%(i—zi) (640)

Inserting this into the integral it becomes

dz = 2ri <€ _2; ) = 2risin(1) (641)

1 e® 1 e

eyt Az — X
2t Joz—1 2t Joz 41
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Figure 35:

Solution (2). Deform the curve to a pair of little circles C; around z = ¢ and Cy around
z = —i. (see figure 35.) Then the integral is

/cl et /CQ e
=27 Li Z] + 2mi Le_ @]_ (642)

) = 2misin(1)

=21

]
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3.13 higher derivatives

Let f be analytic in a region D, let z be a point in D, and let C be a simple closed
curve enclosing z such that the interior is contained in D, for example C could be a

little circle around z. By the Cauchy integral formula

o L [1©

2w Jo -2

dg

The integrand here is a differentiable function of z since

%Liz] :<<—1z>2

One can differentiate under the integral sign obtain

R Y (S

Repeat the argument and conclude that f’(z) is differentiable and that

" _ 2 f(()

Repeat the argument and conclude that f”(z) is differentiable and that

" o 32 f(C)
6= 5 [

In fact f can be differentiated any number of times and

F(2) n! /C &dg

= o (( — z)n

(643)

(644)

(645)

(646)

(647)

(648)

This is a remarkable result: assuming only f is analytic, i.e. once differentiable, we
conclude that it is infinitely differentiable. This can certainly fail for functions of a real

variable.

The last formula can also be used to evaluate integrals. We replace z by 2y and (

by z and state it as follows.

Theorem 31 Let f be analytic inside a simple closed curve C traversed counterclock-

wise. Let zy be a point inside C. Then forn=0,1,2,...

/c f(Z) dz—% (n)(zo)

(z — zp)"t! B
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Notation: If C is a circle of radius r centered on zy traversed counterclockwise then

/f(z)dz can be written % f(z)d= (650)
¢ |z—zo|=r
examples
662
7{ dz =2m1 [66ZL_1 = 2mieb
|z]=2 # — B
6z omi T d
%l , (ze_—l)ZdZ :% |:£€62‘| = 127Ti€6 (651)
zZ|= : z=1
b 2mi [ d?
————dz =— | —e%| = 36mie’
ﬁIQ (z—1)3 “T {d226 L:l e
example
sin(sin z) d .. : . .
————dz = 2mi o sin(sin z) = 2mi [cos(sinz) cos z],_, = 2w (652)
|z|=1 z z 2=0

3.14 Cauchy inequalities

Let C be a circle of radius R around a point a. Suppose that f(z) is analytic inside the
circle and that on the circle we have the bound

f(z)l <M zeC (653)

The Cauchy integral formula says that

fla) = % ) %dz (654)

We use this to estimate |f(a)|. For z on C we have

fe) | &G _M
= — < _—
z—a |z — al R — R (655)
Then length of the curve is 27 R. Thus
1 M
lfla)| < —— 2rR=M (656)
2r R

We could take M to be the maximum of |f(z)| on the circle and then this says that |f|
at the center of a circle is less than or equal to the maximum of |f| on the circle.
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More generally we have

f™(a) = n /c (Ldz (657)

Now z on C we have

f(z) M
< 658
(Z _ a)n+1 - Rntl ( )
and so \ M
n n! n!
P < o ey 2R = (659)

We restate the result as a theorem.

Theorem 32 (Cauchy inequalities.) Let f be analytic inside a circle of radius R cen-
tered on a and suppose |f| < M on the circle. Then forn =0,1,2,...

n!M

1) < 2

(660)

This has some interesting consequences.
Theorem 33 (Liouville’s theorem) Suppose f is analytic in the entire plane and f is

bounded, that is | f(2)| < M for some M and all z. Then f is constant.

Proof. f is analytic inside any circle of radius R centered on any a, and is bounded
by M on the circle. By the n = 1 Cauchy inequality

M
|f'(a)| < = for all a, R (661)
Taking the limit R — oo gives
|f'(a)] <0 for all a (662)

Hence f’(a) = 0 for all @ and so f is a constant.

Theorem 34 (Fundamental theorem of algebra) Every polynomial P(z) of degreen > 1
has n roots (not necessarily distinct)

Proof. Suppose it is not true and P(z) # 0 for all z. Then 1/P(z) is analytic
everywhere. Furthermore if P(z) = a,2" + -+ - 4+ a1z + ag with a,, # 0 then

1
= lim
200 P(2)  zoo00apz™+ - 4+ a1z + ag

5N
= lim 663
2—00 (i, + CLn_l,Z_l R alz—”“ + agz™" ( )

0
:—:0
Qn
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From this and the fact that 1/P(z) is continuous one can deduce that it is bounded
Then by Liouville’s theorem 1/P(z) is constant and hence P(z) is constant. This is a
contradiction. Thus we must have P(z) = 0 for some z. The polynomial has at least
one root.

If we call the root a; then P(z) must have z — a; as a factor so

P(z) = (z —a1)Pi(2) (664)

where P;(z) is a polynomial of degree n — 1. Repeating the argument P; must have a
root as and hence a factor z — as. Then

P(z) = (z —a1)(z — ag) Pa(2) (665)

where P,(z) has degree n — 2. After n steps we are left with n factors z — a; and a
polynomial of degree 0 which is a constant ¢

P(z)=(z—a1)(z —az) - (2 —ay)c (666)

This exhibits the n roots.

3.15 real integrals

The Cauchy integral formula is so easy to use that it is worthwhile going to a lot of
trouble to mold other integrals into this form. In particular this can be done for certain
real integrals.

Consider first integrals of the form f'Z':l f(2)dz. Parametrizing the unit circle by

z=1¢€" 0<6<2rand dz = ie??df we have

f(2)dz = /0 ' f(e®)ie?do (667)

|z|=1

Now we reverse this process. Suppose we an integral of the form fo% F(cos@,sin0)db
for some real function F'. (Such integrals come up for example when computing Fourier
series.) Then we can write it a complex integral over the unit circle by

2T
/ F(cosf,sin6)do
0

_ /27{' F<e¢9 + e_w, o0 _.e—i(a) z'eféd@ (668)
0 2 2i et
[ p(F
|2]=1 2 21 1z
Thus the method is to make the substitutions
z+ 2zt z—2z71 dz

0= inf = df = — 669
Ccos 5 sin 5 = (669)
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and replace the integral over [0,27] by an integral over |z| = 1.
In evaluating integrals over the unit circle it is sometimes useful to keep in mind
that for any integer n

0 n>0
7{ 2Mdz =< 27 n=-—1 (670)
[=I=1 0 n< —2

This follows by Cauchy’s theorem for n > 0 and by the Cauchy integral formula in the
other cases.

example
2 _ -1 4
/ sin49d0:}{ (5—) =
0 I2]=1 21 1z
1 d
=— (2* — 4224+ 6— 4272 + 2_4)_—2
16 |z|=1 (4 (671)
1
=— (2 —4z+ 6271 — 4273+ 27°%) dz
162 |z|=1
3
- .6-2mi="=
6 0T
example
/2” o ]{ 1 dz
2+4cosh  J_g (2 + 221 iz
0 z|=1
Y o7
:Z fﬂ:l 22 + 4z + 1
The denominator vanishes when z? + 4z + 1 = 0 which occurs at
—4+ 16 -4
z= g =243 (673)
Hence the polynomial factors as
Pdz+1=(2+24+V3)(z+2-3) (674)

Put this into the integral and note that the only part not analytic inside the circle is
the factor (z + 2 — v/3)~!. Thus the integral can be evaluated as

1 2dz 1 ] 2 _2_7T
77{z|=1(z+2+¢§>(z+2_¢5>_Z'Qm[mL_Wg—ﬁ (675)
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There is another class of real integrals which can be treated by complex variable
techniques. These are integrals over the entire real line. We illustrate with an example.

example: Suppose we want to find the integral [* (1 + 2?)~'dz. We can proceed as
follows

/°° dzx ) R dx
= lim
o 1+ 22 Rooo ) p 1+ a2

. dz
= lim —_—
R—00 Ln 1+ 22

. / dz / dz
= lim -
R—00 Lr+Cr 1422 Cr 1422

Here we treat the real integral as a complex integral over the line Lp from —R to
R, then we turn it into a closed curve by adding a semi-circle C'z of radius R in the
upper half plane. (see figure 36) Of course we also have to substract the contribution
of the semi-circle. Now the idea is to evaluate the integral over Lg + Cg by the Cauchy
integral formula and show that the integral over Cr goes to zero as R — oo.

o0

(676)

We have for any R > 1

1
/ _dz s = / —'dz — = 274 [ } =T (677)
Lr+Cgr 1 + 2 Lr+Cr (2+Z)(Z _2) zZ+ z=1

Note that only z = i is inside the curve, not z = —i. The result is independent of R
and so the limit as R — oo is also 7.

For the other term note that if z is on Cg then |2 + 1] > ||2]* — 1| = R* — 1 and
therefore

1 1
< 678
1+22] — R?—1 (678)
Then since Cgr has length 7R we have
dz TR
0< < 679
_/C«Rl—I—ZQ_RQ—l (679)
But 7R/(R* — 1) goes to zero at R — oo. Therefore
d
lim F g (630)
R—o CR ]. + y4
Thus the answer is © g
x
= 1
/_ o 1+ 2?2 " (681)
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Figure 36:

3.16 Fourier and Laplace transforms

(A.) If f(r) is a function defined for —co < x < oo, the Fourier transform of f is a
new function f defined by

fi) = [ et pa) da (682)
The function can be recovered from its Fourier transform by the inversion formula
1 * —ikx
)= [ ) db (683)
T J -

Fourier transforms are useful for solving partial differential equations on the whole line,
among other things. Complex integration techniques are useful for computing Fourier
transforms.
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example: Suppose we want to find the Fourier transform of the function (1 + x?)~!.
We proceed as in the last example

oo eilm R eik:w
/ 5 dxr = lim 5 dx
— 0o 1 +x R—oo R 1 +x

eikz

dz (684)

= lim 5
R—oo Ln 1+2z

eikz eikz
= lim </ 2dz—/ 2dz>
R—o0 LR+CR 1 + VA CR 1 + ya

Suppose that £ > 0. Then for z = x + iy on the semi-circle Cr we have y > 0 and so

let**| = |etke||e=*| = e~*¥ < 1. From before |1 + 22| > R* — 1 and so on Cp
ez’kz 1
685
1+22] 7 R?—-1 (685)
Then "
e TR
dz| < —0as R — 686
/CR1+z2Z_R2—1 e (686)

There is no contribution from the integral over C.
On the other hand by the Cauchy integral formula since z = ¢ is inside the curve
and z = —i is not

6zkz ezkz ezkz
/ Sdz = / ———————dz = 2ri { } =me " (687)
Lpton L+ 2 LntCr (2 +1)(2 —1) z4+i],_,

This holds for any R > 1 and hence also in the limit R — oo and so

00 ik
/ 1€+ Sde=me ™t k>0 (688)

This analysis fails if k£ < 0 since then |e?**| = ¢™* grows exponentially in y and we
cannot argue that the contribution from Cr vanishes. Instead we close the curve with

a semi-circle C in the lower half plane. We have

e eikr eikz eikz
/ dr = lim / dz — / dz (689)
oo L2 Bvoo \ Jppren 1422 o 1+ 22

For z = x + iy on C we have y < 0 and so |[¢?**| = ¢7* < 1 for k < 0. Then again

ezkz TR
dz| < —+0as R — 690
/%1+Z2Z—R2—1 T (690)
and there is no contribution from C%.
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For the other term it is now the point z = —i¢ which is inside the closed curve
Li+ C}. We are going around the curve clockwise so when we use the Cauchy integral
formula there is an overall minus sign. We have

ezk’z ezk‘z ezkz
/ Sdz = / ————————dz = —2mi { ] =me®  (691)
ey TF 20 S, GG D) il

Therefore

/_ Z 1ik; dx = ek k<0 (692)
The results for the three cases k > 0,k = 0,k < 0 can be summarized by
/00 e dx = me ¥ (693)
U

(B.) If f(t) is a function defined for 0 < t < oo the Laplace transform of f is a new
function defined by
F(s) = / e St f(t)dt (694)
0
if the integral converges. The Laplace transform is useful for solving linear ordinary
differential equations.
Suppose there are constants K, ¢ such that

|f(t)] < Ke (695)

then
e f(t)| < Ke ) (696)

This is rapidly decreasing if s > ¢, in which case the integral converges. Thus F'(s) is
defined for s > c.

We could also let s be complex. Then |e~*t| = e~ (Re )t

and
|6—stf(t)| < Ke—((Re s)—c)t (697)

Then the integral converges and the Laplace transform is defined in the half plane
Re s > ¢. Furthermore on can show that it is analytic in this region (think of differen-
tiating under the integral sign).

There is also an inversion formula for the Laplace transform. If f(s) is analytic for
Re (s) > c and v > ¢, then for t > 0

£t = = / T etp(s) ds (698)

21 ) ino
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Figure 37:

Here the integral is over the verticle line Re (s) = 7. Such lines can be deformed to
each other in the region of analyticity, so it does not matter what v we take.

problem: Find the function whose Laplace tranform is (s — 2)~3

solution: The function is analytic for Re(s) > 2 so the function is is given by the
inversion formula with v > 2. We evaluate it by closing the curve in the left half plane:

1 Y+ic0 st
F(t) =— / C __ds
il

“omi ) (s—2)3
1 Y+iR st
R—o0 2mi | ;p (5 —2) (699)

1 st
= lim —/ _° ds
R—o0 21 Jp,,. (5 —2)3
1 est 1 est
=1 — ——ds — — —d
el (27rz' /LR+CR (s—29 " 2mi /CR (s —2)3 3)

Here L is the strait line from v —¢R to v + ¢R and Cf is the semi-circle of radius R
centered on 7, see figure 37.
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Now for s on Cr we have Re(s) < v and so |e*f| = eRe(®)t < €7 Also the point on
Cg closest to 2 is 7 — R and so |s — 2| > |2 — (7 — R)|. Therefore

1 est
— —d
o /CR (s—2)2 “

The integral over C'z does not contribute.
If R is large enough, then the point 2 is inside Lr + Cg and so by the higher
derivative Cauchy integral formula

1 et
<—— . 71R 0 R 700
S P (= B)F 7R —=0as R — oo (700)

1 et I 1
_— = —— s s= = —t2 2 70].
2mi )y e (=2 BT qigal e = 5t (7o)

This also holds in the limit R — oo and so this answer is f(t) = 3t%e*.
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