Worked Problems - Chapter 1

1. Which of the functions below are solutions to the differential equation

$$y'' - 4y' + 4y = e^x$$
(a) $y(x) = e^x$ (b) $y(x) = e^{2x}$ (c) $y(x) = e^x + e^{2x}$ (d) $xe^{2x} + e^x$

Solution: All we have to do to check if a function is a solution to the differential equation is to plug it into the differential equation, and check that the left and right sides are equal.

For (a),

$$y'' - 4y' + 4y = e^x$$
$$e^x - 4e^x + 4e^x \stackrel{?}{=} e^x.$$
$$e^x = e^x$$

So $y(x) = e^x$ is a solution. For (b),

$$y'' - 4y' + 4y = e^x$$
$$4e^{2x} - 8e^{2x} + 4e^{2x} \stackrel{?}{=} e^x.$$
$$0 = e^x.$$

So $y(x) = e^{2x}$ is not a solution. For (c),

$$y'' - 4y' + 4y = e^{x}$$

$$(e^{x} + 4e^{2x}) - 4(e^{x} + 2e^{2x}) + 4(e^{x} + e^{2x}) \stackrel{?}{=} e^{x}$$

$$e^{x} + 4e^{2x} - 4e^{x} - 8e^{2x} + 4e^{x} + 4e^{2x} \stackrel{?}{=} e^{x}$$

$$e^{x} + 4e^{2x} - 8e^{2x} + 4e^{2x} \stackrel{?}{=} e^{x}$$

$$e^{x} + 4e^{2x} - 8e^{2x} + 4e^{2x} \stackrel{?}{=} e^{x}$$

$$e^{x} = e^{x}.$$

So $y(x) = e^x + e^{2x}$ is a solution. For (d),

$$y'' - 4y' + 4y = e^{x}$$

$$(4e^{2x} + 4xe^{2x} + e^{x}) - 4(e^{2x} + 2xe^{2x} + e^{x}) + 4(xe^{2x} + e^{x}) \stackrel{?}{=} e^{x}$$

$$4e^{2x} + 4xe^{2x} + e^{x} - 4e^{2x} - 8xe^{2x} - 4e^{x} + 4xe^{2x} + 4e^{x} \stackrel{?}{=} e^{x}$$

$$4e^{2x} + e^{x} - 4e^{2x} - 4e^{x} + 4e^{x} \stackrel{?}{=} e^{x}$$

$$e^{x} = e^{x}$$

So $y(x) = e^x + e^{2x}$ is a solution.

2. Find the value of c so that $y(x) = c(1 - x^2)$ satisfies the given initial condition.

$$y(2) = 1$$

Solution: For these types of questions, we evaluate y(x) at the point they give us, and set the function equal to the value given. Then solve for c.

$$y(x) = c(1 - x^{2})$$

$$y(2) = c(1 - 2^{2})$$

$$1 = -3c$$

$$c = -\frac{1}{3}.$$

3. Find c_1 and c_2 so that $y(x) = c_1 \sin(x) + c_2 \cos(x)$ will satisfy the conditions

$$y(0) = 1$$
 $y'(\pi) = 1$

Determine whether the given conditions are initial conditions or boundary conditions.

Solution: We can proceed in the same way as the previous problem, except now there are two constants. So using the first condition

$$y(x) = c_1 \sin(x) + c_2 \cos(x)$$

$$y(0) = c_1 \sin(0) + c_2 \cos(0)$$

$$1 = c_2.$$

So thus far, we must have that $y(x) = c_1 \sin(x) + \cos(x)$ in order to satisfy the first condition. To use the second condition we need the derivative of y(x), which is $y'(x) = c_1 \cos(x) - \sin(x)$. Now we proceed with the second condition

$$y'(x) = c_1 \cos(x) - \sin(x)$$

 $y'(\pi) = c_1 \cos(\pi) - \sin(\pi)$
 $1 = -c_1$
 $c_1 = -1.$

Therefore we have that $c_1 = -1$ and $c_2 = 1$ satisfy the conditions. These are boundary conditions, since we are evaluating the functions y(x) and y'(x) at different points. \Box

4. Find c_1 and c_2 so that $y(x) = c_1 \sin(x) + c_2 \cos(x)$ will satisfy the conditions

$$y(0) = 0 \qquad y'\left(\frac{\pi}{2}\right) = 1$$

Determine whether the given conditions are initial conditions or boundary conditions.

Solution: We can proceed in the same way as the previous problem, except now there are two constants. So using the first condition

$$y(x) = c_1 \sin(x) + c_2 \cos(x)$$

$$y(0) = c_1 \sin(0) + c_2 \cos(0)$$

$$0 = c_2.$$

So thus far, we must have that $y(x) = c_1 \sin(x)$ in order to satisfy the first condition. To use the second condition we need the derivative of y(x), which is $y'(x) = c_1 \cos(x)$. Now we proceed with the second condition

$$y'(x) = c_1 \cos(x)$$
$$y'\left(\frac{\pi}{2}\right) = c_1 \cos\left(\frac{\pi}{2}\right)$$
$$1 = 0.$$

The value of 1 cannot be equal to 0, so the conditions are satisfied for no values of c_1 and c_2 . These are boundary conditions, since we are evaluating the functions y(x) and y'(x) at different points.