
MATH 046 - Spring 2018

Worked Problems - Chapter 10

1. Solve the following differential equation

y′′′ − 2y′′ − y′ + 2y = 0

Solution : Note that the ODE is homogeneous with constant coefficients, so we can use
the characteristic equation. Note that when we plug in λ = 1, we get 0 = 0, so λ = 1
is a root. Using polynomial long division or synthetic division, we can break down the
polynomial. Therefore, we get

y′′′ − 2y′′ − y′ + 2y = 0

λ3 − 2λ2 − λ+ 2 = 0

(λ− 1)(λ2 − λ− 2) = 0

(λ− 1)(λ+ 1)(λ− 2) = 0

λ = 1, 2,−1

So we have three distinct real roots, so then the general solution is

y(x) = c1e
−x + c2e

x + c3e
2x

�

2. Solve the following differential equation

y(4) + 2y′′ + y = 0

Solution : Note that the ODE is homogeneous with constant coefficients, so we can
use the characteristic equation. Here we do a substitution trick to reduce the 4th order
polynomial to a quadratic. Therefore, we get

y(4) + 2y′′ + y = 0

λ4 + 2λ2 + 1 = 0

µ2 + 2µ+ 1 = 0 use µ = λ2

(µ+ 1)(µ+ 1) = 0

(λ2 + 1)(λ2 + 1) = 0

λ = ±i,±i

So we have repeated complex roots, so then the general solution is

y(x) = (c1 + c2x) cos(x) + (c3 + c4x) sin(x)

where we have used the repeated roots factor (c1 + c2x), as we did for the case with real
repeated roots. �



3. Solve the following differential equation

y(4) − y = 0

Solution : Note that the ODE is homogeneous with constant coefficients, so we can use
the characteristic equation. Note that when we plug in λ = 1, we get 0 = 0, so λ = 1
is a root. Also note that λ = −1 also works, so it is also a root. Using polynomial long
division or synthetic division, we can break down the polynomial. Therefore, we get

y(4) − y = 0

λ4 − 1 = 0

(λ− 1)(λ3 + λ2 + λ+ 1) = 0

(λ− 1)(λ+ 1)(λ2 + 1) = 0

λ = 1,−1,±i

So we have two distinct real roots, and a pair of complex roots, so then the general
solution is

y(x) = c1e
−x + c2e

x + c3 cos(x) + c4 sin(x)

�

4. Solve the following differential equation

y(4) + 5y′′′ = 0

Solution : Note that the ODE is homogeneous with constant coefficients, so we can use
the characteristic equation. Note that when we plug in λ = 1, we get 0 = 0, so λ = 1
is a root. Also note that λ = −1 also works, so it is also a root. Using polynomial long
division or synthetic division, we can break down the polynomial. Therefore, we get

y(4) + 5y′′′ = 0

λ4 + 5λ3 = 0

λ3(λ+ 5) = 0

λ = 0, 0, 0,−5

So we have a real repeated root that appears 3 times, and another real root, so then the
general solution is

y(x) = c1 + c2x+ c3x
2 + c4e

−5x

�
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5. Consider a pendulum with length L (meters) and angle θ (radians) from the vertical
to the pendulum. By Newtons second law for rotation, we showed in class that θ as a
function of time satisfies the differential equation:

d2θ

dt2
+
g

L
sin(θ) = 0 (1)

where g = 10m/sec2 is the acceleration due to gravity. For small values of θ we can
use the approximation sin(θ) ≈ θ and with that substitution, the differential equation
becomes a linear equation:

d2θ

dt2
+
g

L
θ = 0 (2)

The linear equation (2) is called the linearized equation of the nonlinear equation (1).
Suppose the length is 0.4 meters, the initial angle 0.1 radians, and the initial angular
velocity dθ

dt
= 0.5 radians/sec. Use the linearized equation (2) to answer the questions

below.

(a) Find the function θ(t) which describes the motion of the pendulum with the given
initial conditions.

(b) What is the maximum angle (in radians) from vertical?

(c) What is the period of the pendulum, that is the time for one swing back and forth?

(d) How long after reaching its maximum angle until the pendulum reaches maximum
deflection in the other direction? (Hint: think about its relation with the period.)

Solution : (a) Note that the ODE is homogeneous with constant coefficients, so we
can use the characteristic equation. Therefore, we get

d2θ

dt2
+
g

L
θ = 0

λ2 +
g

L
= 0

λ = ±
√
− g
L

= ±
√
− 10

0.4

= ±5i

So we have a pair of complex roots, so then the general solution is

θ(t) = c1 cos(5t) + c2 sin(5t)

Using the initial conditions, we have θ(0) =
1

10
and

dθ

dt
(0) =

1

2
, which means that we

have

θ(0) = c1 cos(0) + c2 sin(0)

1

10
= c1

and

dθ

dt
(0) = −1

2
sin(0) + 5c2 cos(0)

1

2
= 5c2

1

10
= c2

3



So then the solution to the initial value problem is

θ(t) =
1

10
cos(5t) +

1

10
sin(5t)

(b) The maximum angle (in radians) from vertical is the maximum of the function θ(t).
So note that

θ(t) =
1

10
cos(5t) +

1

10
sin(5t)

θ′(t) = −1

2
sin(5t) +

1

2
cos(5t)

0 = −1

2
sin(5t) +

1

2
cos(5t)

tan(5t) = 1

t =
π

20
(4n+ 1)

where we have found the t values of the critical points. To find the value, we just evaluate

the function θ(t), so that we see a maximum is θ
( π

20

)
=

1

5
√

2
=

√
2

10
radians.

(c) Both trigonometric functions have the same frequency, ω = 5. The sum does not
change the period, so we use the period formula

T =
2π

ω
=

2π

5
=

2

5
π

So we get
2

5
π seconds.

(d) The hint says to think about its relation with the period. We know that the period
is the amount of time it takes for the pendulum to return to its initial position, so that

is
2

5
π. The question is essentially asking how much time passes between the maximum

and minimum of function θ(t). We already know the maximum occurs at t =
π

20
. Now

the time between the maximum and minimum over one period of a sine/cosine function

is one half the period, or
π

5
, but we can show this. So, the tmax which is the time where

the θ(t) function is maximum is at tmax =
π

20
, then we get that the minimum occurs at

tmin =
π

20
+

1

2

(
2

5
π

)
=

π

20
+

1

5
π =

5

20
π =

π
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This is just the result of taking n = 1 in the solution to part (b), which gives the t values
of the critical points. You can verify the answer by taking the difference between the tmin

and tmax, so

∆t = tmin − tmax =
π

4
− π

20
=
π

5

�
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