The Algebra of Grand Unified Theories

John Huerta

Department of Mathematics UC Riverside

Oral Exam Presentation

The Algebra of Grand Unified	Theories
Introduction	

This talk is an introduction to the representation theory used in

- ► The Standard Model of Particle Physics (SM);
- Certain extensions of the SM, called Grand Unified Theories (GUTs).

There's a lot I won't talk about:

- quantum field theory;
- spontaneous symmetry breaking;
- any sort of dynamics.

This stuff is *essential* to particle physics. What I discuss here is just one small piece.

There's a loose correspondence between particle physics and representation theory:

- Particles → basis vectors in a representation V of a Lie group G.
- ► Classification of particles → decomposition into irreps.
- ► Unification → G ← H; particles are "unified" into fewer irreps.
- ► Grand Unification → as above, but H is simple.
- ▶ The Standard Model \rightarrow a particular representation V_{SM} of a particular Lie group G_{SM} .

The Standard Model group is

$$G_{\text{SM}} = \text{U(1)} \times \text{SU(2)} \times \text{SU(3)}$$

- ► The factor U(1) × SU(2) corresponds to the electroweak force. It represents a unification of electromagnetism and the weak force.
- Spontaneous symmetry breaking makes the electromagnetic and weak forces look different; at high energies, they're the same.
- SU(3) corresponds to the strong force, which binds quarks together. No symmetry breaking here.

Standard Model Representation		
Name	Symbol	G _{SM} -representation
Left-handed leptons	$\left(egin{array}{c} u_{ extsf{L}} \ e_{ extsf{L}}^- \end{array} ight)$	$\mathbb{C}_{-1} \otimes \mathbb{C}^2 \! \otimes \! \mathbb{C}$
Left-handed quarks	$\left(\begin{array}{c} u_L^r, u_L^g, u_L^b \\ d_L^r, d_L^g, d_L^b \end{array}\right)$	$\mathbb{C}_{\frac{1}{3}} \ \otimes \mathbb{C}^2 \! \otimes \! \mathbb{C}^3$
Right-handed neutrino	ν_{R}	$\mathbb{C}_0 \ \otimes \mathbb{C} \ \otimes \mathbb{C}$
Right-handed electron	e_R^-	$\mathbb{C}_{-2} \otimes \mathbb{C} \otimes \mathbb{C}$
Right-handed up quarks	u_R^r, u_R^g, u_R^b	$\mathbb{C}_{rac{4}{3}} \; \otimes \mathbb{C} \; \otimes \mathbb{C}^3$
Right-handed down quarks	d_R^r, d_R^g, d_R^b	$\mathbb{C}_{-\frac{2}{3}} \otimes \mathbb{C} \ \otimes \mathbb{C}^3$

Here, we've written a bunch of $G_{SM} = U(1) \times SU(2) \times SU(3)$ irreps as $U \otimes V \otimes W$, where

▶ *U* is a U(1) irrep \mathbb{C}_Y , where $Y \in \frac{1}{3}\mathbb{Z}$. The underlying vector space is just \mathbb{C} , and the action is given by

$$\alpha \cdot z = \alpha^{3Y}z, \quad \alpha \in \mathrm{U}(1), z \in \mathbb{C}$$

- ▶ V is an SU(2) irrep, either \mathbb{C} or \mathbb{C}^2 .
- ▶ W is an SU(3) irrep, either \mathbb{C} or \mathbb{C}^3 .

Physicists use these irreps to classify the particles:

- ▶ The number Y in \mathbb{C}_Y is called the *hypercharge*.
- ▶ $\mathbb{C}^2 = \langle u, d \rangle$; *u* and *d* are called *isospin up* and *isospin down*.
- $ightharpoonup \mathbb{C}^3 = \langle r, g, b \rangle$; r, g, and b are called *red*, *green*, and *blue*.

For example:

- ▶ $u_L^r = 1 \otimes u \otimes r \in \mathbb{C}_{\frac{1}{3}} \otimes \mathbb{C}^2 \otimes \mathbb{C}^3$, say "the red left-handed up quark is the hypercharge $\frac{1}{3}$, isospin up, red particle."
- ▶ $e_R^- = 1 \otimes 1 \otimes 1 \in \mathbb{C}_{-2} \otimes \mathbb{C} \otimes \mathbb{C}$, say "the right-handed electron is the hypercharge -2 isospin singlet which is colorless."

☐ The Representation

 We take the direct sum of all these irreps, defining the reducible representation,

$$F=\mathbb{C}_{-1}\otimes\mathbb{C}^2\otimes\mathbb{C}\quad\oplus\quad\cdots\quad\oplus\quad\mathbb{C}_{-\frac{2}{3}}\otimes\mathbb{C}\otimes\mathbb{C}^3$$

which we'll call the fermions.

- ▶ We also have the antifermions, F*, which is just the dual of F.
- Direct summing these, we get the Standard Model representation

$$V_{\text{SM}} = F \oplus F^*$$

The GUTs Goal:

- $G_{SM} = U(1) \times SU(2) \times SU(3)$ is a mess!
- Explain the hypercharges!
- Explain other patterns:
 - dim $V_{SM} = 32 = 2^5$;
 - symmetry between quarks and leptons;
 - asymmetry between left and right.

The GUTs trick: if V is a representation of G and $G_{SM} \subseteq G$, then

- \triangleright V is also representation of G_{SM} ;
- V may break apart into more G_{SM}-irreps than G-irreps.

More precisely, we want:

- ▶ A homomorphism ϕ : $G_{SM} \rightarrow G$.
- ▶ A unitary representation ρ : $G \rightarrow U(V)$.
- ▶ An isomorphism of vector spaces $f: V_{SM} \rightarrow V$.
- Such that

$$G_{SM} \xrightarrow{\phi} G$$

$$\downarrow \qquad \qquad \downarrow^{\rho}$$

$$U(V_{SM}) \xrightarrow{U(f)} U(V)$$

commutes.

In short: V becomes isomorphic to $V_{\rm SM}$ when we restrict from G to $G_{\rm SM}$.

The SU(5) Theory

The SU(5) GUT, due to Georgi and Glashow, is all about "2 isospins + 3 colors = 5 things":

- ▶ Take $\mathbb{C}^5 = \langle u, d, r, g, b \rangle$.
- $ightharpoonup \mathbb{C}^5$ is a representation of $\mathrm{SU}(5)$, as is the 32-dimensional exterior algebra:

$$\Lambda\mathbb{C}^5 \cong \Lambda^0\mathbb{C}^5 \oplus \Lambda^1\mathbb{C}^5 \oplus \Lambda^2\mathbb{C}^5 \oplus \Lambda^3\mathbb{C}^5 \oplus \Lambda^4\mathbb{C}^5 \oplus \Lambda^5\mathbb{C}^5$$

▶ **Theorem** There's a homomorphism $\phi: G_{SM} \to SU(5)$ and a linear isomorphism $h: V_{SM} \to \Lambda\mathbb{C}^5$ making

$$G_{SM} \xrightarrow{\phi} SU(5)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(V_{SM}) \xrightarrow{U(h)} U(\Lambda \mathbb{C}^5)$$

commute.

Proof

- ▶ Let $S(U(2) \times U(3)) \subseteq SU(5)$ be the subgroup preserving the 2 + 3 splitting $\mathbb{C}^2 \oplus \mathbb{C}^3 \cong \mathbb{C}^5$.
- ▶ Can find ϕ : $G_{SM} \to S(U(2) \times U(3)) \subseteq SU(5)$.
- ▶ The representation $\Lambda \mathbb{C}^5$ of SU(5) is isomorphic to V_{SM} when pulled back to G_{SM} .

We define ϕ by

$$\phi \colon (\alpha, g, h) \in \mathrm{U}(1) \times \mathrm{SU}(2) \times \mathrm{SU}(3) \longmapsto \left(\begin{array}{cc} \alpha^3 g & 0 \\ 0 & \alpha^{-2} h \end{array} \right) \in \mathrm{SU}(5)$$

 ϕ maps G_{SM} onto $S(U(2) \times U(3))$, but it has a kernel:

$$\ker \phi = \{(\alpha, \alpha^{-3}, \alpha^2) | \alpha^6 = 1\} \cong \mathbb{Z}_6$$

Thus

$$\textit{G}_{\mbox{SM}}/\mathbb{Z}_{6}\cong S(\text{U(2)}\times \text{U(3)})$$

The subgroup $\mathbb{Z}_6 \subseteq G_{SM}$ acts trivially on V_{SM} .

Because G_{SM} respects the 2 + 3 splitting

$$\Lambda\mathbb{C}^5\cong\Lambda(\mathbb{C}^2\oplus\mathbb{C}^3)\cong\Lambda\mathbb{C}^2\otimes\Lambda\mathbb{C}^3$$

As a G_{SM} -representation,

$$\Lambda \mathbb{C}^2 \cong \mathbb{C}_0 \otimes \Lambda^0 \mathbb{C}^2 \quad \oplus \quad \mathbb{C}_1 \otimes \Lambda^1 \mathbb{C}^2 \quad \oplus \quad \mathbb{C}_2 \otimes \Lambda^2 \mathbb{C}^2$$

As a G_{SM} -representation,

$$\Lambda \mathbb{C}^3 \cong \mathbb{C}_0 \otimes \Lambda^0 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-\frac{2}{3}} \otimes \Lambda^1 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-\frac{4}{3}} \otimes \Lambda^2 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-2} \otimes \Lambda^3 \mathbb{C}^3$$

Then tensor them together, use $\mathbb{C}^2 \cong \mathbb{C}^{2*}$ and $\mathbb{C}_{Y_1} \otimes \mathbb{C}_{Y_2} \cong \mathbb{C}_{Y_1 + Y_2}$ to see how

$$V_{\text{SM}} \cong \Lambda \mathbb{C}^5$$

as G_{SM} -representations.

Thus there's a linear isomorphism $h: V_{SM} \to \Lambda \mathbb{C}^5$ making

$$G_{SM} \xrightarrow{\phi} SU(5)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(V_{SM}) \xrightarrow{U(h)} U(\Lambda \mathbb{C}^5)$$

commute.

The Pati-Salam Model

The idea of the Pati-Salam model, due to Pati and Salam:

- ▶ Unify the $\mathbb{C}^3 \oplus \mathbb{C}$ representation of SU(3) into the irrep \mathbb{C}^4 of SU(4).
- This creates explicit symmetry between quarks and leptons.
- ▶ Unify the $\mathbb{C}^2 \oplus \mathbb{C} \oplus \mathbb{C}$ representations of SU(2) into the representation $\mathbb{C}^2 \otimes \mathbb{C} \oplus \mathbb{C} \otimes \mathbb{C}^2$ of SU(2) × SU(2).
- ► This treats left and right more symmetrically.

Standard Model Representation		
Name	Symbol	G _{SM} -representation
Left-handed leptons	$\left(egin{array}{c} u_{\!L} \ e_{\!L}^- \end{array} ight)$	$\mathbb{C}_{-1} \otimes \mathbb{C}^2 \! \otimes \! \mathbb{C}$
Left-handed quarks	$\left(\begin{array}{c} u_L^r, u_L^g, u_L^b \\ d_L^r, d_L^g, d_L^b \end{array}\right)$	$\mathbb{C}_{\frac{1}{3}} \ \otimes \mathbb{C}^2 \! \otimes \! \mathbb{C}^3$
Right-handed neutrino	$ u_{R}$	$\mathbb{C}_0 \ \otimes \mathbb{C} \ \otimes \mathbb{C}$
Right-handed electron	e_R^-	$\mathbb{C}_{-2} \otimes \mathbb{C} \otimes \mathbb{C}$
Right-handed up quarks	u_R^r, u_R^g, u_R^b	$\mathbb{C}_{rac{4}{3}} \; \otimes \mathbb{C} \; \otimes \mathbb{C}^3$
Right-handed down quarks	d_R^r, d_R^g, d_R^b	$\mathbb{C}_{-\frac{2}{3}} \otimes \mathbb{C} \ \otimes \mathbb{C}^3$

The Pati-Salam Model

The Pati–Salam representation			
Name	Symbol	$SU(2) \times SU(2) \times SU(4)$ - representation	
Left-handed fermions	$ \left(\begin{array}{c} \nu_L, u_L^r, u_L^g, u_L^b \\ e_L^-, d_L^r, d_L^g, d_L^b \end{array} \right) $	$\mathbb{C}^2 \otimes \mathbb{C} \ \otimes \mathbb{C}^4$	
Right-handed fermions	$\left(\begin{array}{c} \nu_R, u_R^r, u_R^g, u_R^b \\ e_R^-, d_R^r, d_R^g, d_R^b \end{array}\right)$	$\mathbb{C} \otimes \mathbb{C}^2 \! \otimes \mathbb{C}^4$	

- ▶ Write $G_{PS} = SU(2) \times SU(2) \times SU(4)$.
- $\qquad \qquad \text{Write $V_{\hbox{\footnotesize{PS}}} = \mathbb{C}^2 \otimes \mathbb{C} \otimes \mathbb{C}^4$} \quad \oplus \quad \mathbb{C} \otimes \mathbb{C}^2 \otimes \mathbb{C}^4 \quad \oplus \quad \text{dual.}$

To make the Pati–Salam model work, we need to prove **Theorem** There exists maps $\theta \colon G_{SM} \to G_{PS}$ and $f \colon V_{SM} \to V_{PS}$ which make the diagram

$$G_{SM} \xrightarrow{\theta} G_{PS}$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(V_{SM}) \xrightarrow{U(f)} U(V_{PS})$$

commute.

☐ The Pati—Salam Model

Proof

- ▶ Want θ : $G_{SM} \rightarrow SU(2) \times SU(2) \times SU(4)$:
- ▶ Pick θ so G_{SM} maps to a subgroup of $SU(2) \times SU(2) \times SU(4)$ that preserves the 3 + 1 splitting

$$\mathbb{C}^4 \cong \mathbb{C}^3 \oplus \mathbb{C}$$

and the 1+1 splitting

$$\mathbb{C}\otimes\mathbb{C}^2\cong\mathbb{C}\oplus\mathbb{C}$$

The Pati-Salam Model

We need some facts:

- ▶ Spin(2*n*) has a representation $\Lambda \mathbb{C}^n$, called the *Dirac* spinors.
- ▶ $SU(2) \times SU(2) \cong Spin(4)$, and $\mathbb{C}^2 \otimes \mathbb{C} \oplus \mathbb{C} \otimes \mathbb{C}^2 \cong \Lambda \mathbb{C}^2$
- ▶ $SU(4) \cong Spin(6)$, and $\mathbb{C}^4 \oplus \mathbb{C}^{4*} \cong \Lambda \mathbb{C}^3$.
- ► $V_{PS} \cong \Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3$ as a representation of $G_{PS} \cong \text{Spin}(4) \times \text{Spin}(6)$.
- ▶ $\mathbb{C}^4 \cong \Lambda^{\text{odd}}\mathbb{C}^3 \cong \Lambda^1\mathbb{C}^3 \oplus \Lambda^3\mathbb{C}^3$ has a 3+1 splitting the grading!
- ▶ $\mathbb{C} \otimes \mathbb{C}^2 \cong \Lambda^{ev} \mathbb{C}^2 \cong \Lambda^0 \mathbb{C}^2 \oplus \Lambda^2 \mathbb{C}^2$ has a 1 + 1 splitting the grading!

Build θ so that

▶ θ maps G_{SM} onto the subgroup $S(U(3) \times U(1)) \subseteq Spin(6)$ that preserves the 3 + 1 splitting:

$$(\alpha, x, y) \in U(1) \times SU(2) \times SU(3) \mapsto \begin{pmatrix} \alpha y & 0 \\ 0 & \alpha^{-3} \end{pmatrix}$$

▶ θ maps G_{SM} onto the subgroup $SU(2) \times S(U(1) \times U(1)) \subseteq Spin(4)$ that preserves the 1+1 splitting:

$$(\alpha, x, y) \in U(1) \times SU(2) \times SU(3) \mapsto \left(x, \begin{pmatrix} \alpha^3 & 0 \\ 0 & \alpha^{-3} \end{pmatrix}\right)$$

The payoff:

As a G_{SM} -representation,

$$\Lambda \mathbb{C}^2 \cong \mathbb{C}_{-1} \otimes \Lambda^0 \mathbb{C}^2 \quad \oplus \quad \mathbb{C}_0 \otimes \Lambda^1 \mathbb{C}^2 \quad \oplus \quad \mathbb{C}_1 \otimes \Lambda^2 \mathbb{C}^2$$

Earlier, we had

$$\Lambda \mathbb{C}^2 \cong \mathbb{C}_0 \otimes \Lambda^0 \mathbb{C}^2 \quad \oplus \quad \mathbb{C}_1 \otimes \Lambda^1 \mathbb{C}^2 \quad \oplus \quad \mathbb{C}_2 \otimes \Lambda^2 \mathbb{C}^2$$

As a G_{SM} -representation,

$$\Lambda \mathbb{C}^3 \cong \mathbb{C}_1 \otimes \Lambda^0 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{\frac{1}{3}} \otimes \Lambda^1 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-\frac{1}{3}} \otimes \Lambda^2 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-1} \otimes \Lambda^3 \mathbb{C}^3$$

Earlier, we had

$$\Lambda \mathbb{C}^3 \cong \mathbb{C}_0 \otimes \Lambda^0 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-\frac{2}{3}} \otimes \Lambda^1 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-\frac{4}{3}} \otimes \Lambda^2 \mathbb{C}^3 \quad \oplus \quad \mathbb{C}_{-2} \otimes \Lambda^3 \mathbb{C}^3$$

We can recycle the fact that $V_{SM} \cong \Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3$ from the SU(5) theory.

Thus there's an isomorphism of vector spaces $f \colon V_{SM} \to \Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3$ such that

$$G_{\text{SM}} \xrightarrow{\theta} \text{Spin}(4) \times \text{Spin}(6)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(V_{\text{SM}}) \xrightarrow{U(f)} U(\Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3)$$

commutes.

Extend the SU(5) theory to get the Spin(10) theory, due to Georgi:

In general,

► Set *n* = 5:

$$SU(5) \xrightarrow{\psi} Spin(10)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(\Lambda \mathbb{C}^5) \xrightarrow{1} U(\Lambda \mathbb{C}^5)$$

Or extend the Pati-Salam model:

▶ In general,

$$Spin(2n) \times Spin(2m) \xrightarrow{\eta} Spin(2n + 2m)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(\Lambda \mathbb{C}^n \otimes \Lambda \mathbb{C}^m) \xrightarrow{U(g)} U(\Lambda \mathbb{C}^{n+m})$$

▶ Set n = 2 and m = 3:

$$Spin(4) \times Spin(6) \xrightarrow{\eta} Spin(10)$$

$$\downarrow \qquad \qquad \downarrow$$

$$U(\Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3) \xrightarrow{U(g)} U(\Lambda \mathbb{C}^5)$$

Theorem The cube of GUTs

commutes.

Proof

- The vertical faces of the cube commute.
- ▶ The two maps from G_{SM} to $U(\Lambda \mathbb{C}^5)$ are equal:

$$G_{SM} \xrightarrow{\phi} SU(5)$$

$$\downarrow^{\psi}$$

$$Spin(4) \times Spin(6) \xrightarrow{\eta} Spin(10) \longrightarrow U(\Lambda \mathbb{C}^{5})$$

$$G_{SM} \xrightarrow{\phi} SU(5)$$

$$\theta \downarrow \qquad \qquad \downarrow \psi$$

$$Spin(4) \times Spin(6) \xrightarrow{\eta} Spin(10)$$

The intertwiners commute:

► The bottom face commutes:

$$\begin{array}{c} \mathrm{U}(V_{\mbox{SM}}) \stackrel{\mathrm{U}(h)}{\longrightarrow} \mathrm{U}(\Lambda \mathbb{C}^5) \\ \mathrm{U}(f) \Big| & & \downarrow 1 \\ \mathrm{U}(\Lambda \mathbb{C}^2 \otimes \Lambda \mathbb{C}^3) \stackrel{\mathrm{U}(g)}{\longrightarrow} \mathrm{U}(\Lambda \mathbb{C}^5) \end{array}$$

Thus the cube

commutes.