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Algebraic Theories

Definition 1. An algebraic theory is a small category
with objects T0, T1, T2, . . . such that each Tn can be
written as the product (T1)n.

Proposition 2. (Lawvere) Given an algebraic category
C with free objects, there is an algebraic theory T such
that the category of product-preserving functors
T → Sets is equivalent to C.
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Example 3. Let M be the category of monoids.
Consider the full subcategory of M whose objects are
the finitely generated free monoids. Denote by TM the
opposite of this category. The category of
product-preserving functors TM → Sets is equivalent to
M. Hence, we call TM the theory of monoids.

We can also consider product-preserving functors
TM → Spaces. The category of such functors is
equivalent to the category of topological monoids.
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Definition 4. Let T be an algebraic theory. A (strict)
T -algebra is a product-preserving functor
A : T → Spaces.

One might ask, however, about the case when we only
have products preserved up to homotopy.

Definition 5. A homotopy T -algebra is a functor
X : T → Spaces which preserves products up to
homotopy. In other words, X(Tn) ' X(T1)n is a weak
equivalence.
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There is a model category structure AlgT on the
category of all T -algebras. There is also a homotopy
T -algebra model category structure hAlgT .

We can use the following result to “rigidify” any
homotopy T -algebra:

Theorem 6. (Badzioch) There is a Quillen equivalence
of model categories between AlgT and hAlgT .
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An Application

Consider again the theory of monoids TM . We have seen
that a topological monoid is equivalent to a strict
TM -algebra. By Theorem 6, we can consider it as a
homotopy TM -algebra.

Definition 7. A reduced Segal category is a simplicial
space X such that X0 is the space consisting of a single
point and such that for any n ≥ 2, the Segal maps

ϕk : Xk → (X1)k

are weak equivalences of spaces.
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There is a reduced Segal category model category
structure SeCat∗.

Theorem 8. (B) There is a Quillen equivalence of
model categories between hAlgTM and SeCat∗.

Therefore, we can consider topological monoids to be
equivalent, in some sense, to reduced Segal categories.
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Recall that a monoid is a category with one object.
Thus, a topological monoid is a topological category
with one object.

Definition 9. A topological category is a category with
a space of morphisms between any two objects.

We would like to generalize the above result to
topological categories, but we cannot use algebraic
theories because in a general category, not all
morphisms compose.
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Multi-Sorted Theories

Definition 10. A multi-sorted algebraic theory sorted
by a set S is a small category with objects Tαn where
αn =< α1, . . . , αn > for αi ∈ S such that

Tαn ∼=
n∏

i=1

Tαi

for each n ≥ 0 and αn ∈ Sn.

We will consider the example of the theory of categories
with object set O.
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Example 11. Let O be the set with two elements. The
theory TOCat has as objects the free categories with two
objects.
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We can define strict and homotopy T -algebras for a
multi-sorted theory T just as we did for ordinary
algebraic theories. Again, we have respective model
category structures AlgT and hAlgT .

Theorem 12. (B) Let T be a multi-sorted algebraic
theory. There is a Quillen equivalence of model
categories between AlgT and hAlgT .
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Definition 13. Let O be a set. A Segal O-category is a
simplicial space X such that X0 = O and such that for
each k ≥ 2 the Segal map ϕk : Xk → X1 ×O · · · ×O X1︸ ︷︷ ︸

k

is a weak equivalence.

Again, for a fixed set O, there is a model category
structure SeCatO.

Theorem 14. (B) Let O be a set. There is a Quillen
equivalence between hAlgTOCat and SeCatO.
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Therefore, we can think of topological categories as
being equivalent, in some sense, to Segal categories.

However, keeping the object set fixed is restrictive.
Hence, we consider a model category structure T C on
the category of all small topological categories and a
Segal category model category structure SeCat.

Theorem 15. (B) There is a Quillen equivalence of
model categories between T C and SeCat.
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