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Matrix factorizations

Let Q be a commutative ring and f an element of Q.

A matrix factorization of f consists of

free Q-modules G1,G0

maps (i.e., matrices) g1 : G1 → G0, g0 : G0 → G1

such that g1 ◦ g0 = f · 1G0 and g0 ◦ g1 = f · 1G1 .
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Example

Q = C[[x , y ]] and f = x3 + y 2.

A matrix factorization of f is given by setting G1 = G0 = Q2 and

g1 =

[
y x
x2 −y

]
g0 =

[
y x
x2 −y

]
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Matrix factorizations were introduced by Eisenbud in 1980. He
showed that if Q is a regular local ring, and we set R = Q/(f ),
then the free resolution of every finitely generated R-module is
determined after at most d = dim Q steps by a matrix
factorization of f .

Example: if R = C[[x , y ]]/(x3 + y 2), then the free resolution of
R/(x , y) has the form:

. . .→ R2

 y x
x2 −y


−−−−−−−−−→ R2

 y x
x2 −y


−−−−−−−−−→ R2

[
y x

]
−−−−−−→ R1 → 0
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Homotopy category of matrix factorizations

We can form a dg-category of matrix factorizations analogously to
the dg-category of chain complexes of a ring:

the objects are matrix factorizations G,H of f ∈ Q and we denote
the Hom-complexes as

HomMF (G,H).

The homotopy category of matrix factorizations, denoted
[MF (Q, f )], is the homotopy category of this dg-category.
Morphisms are given by:

Hom[MF ](G,H) = H0 HomMF (G,H).
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To say this more concretely, if

G = (G1
g1−→ G0

g0−→ G1)

H = (H1
h1−→ H0

h0−→ H1)

are matrix factorizations of f , then an element α of
Hom[MF ](G,H) is an equivalence class of a pair of maps

α1 : G1 → H1 α0 : G0 → H0

such that the following squares commute:

G1

α1

��

g1 // G0

α0

��

g0 // G1

α1

��
H1

h1 // H0
h0 // H1,

under the usual homotopy equivalence relation.
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As in the case of complexes, the homotopy category of matrix
factorizations is triangulated.
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Motivated in part by matrix factorizations, Buchweitz introduced
in 1986 the stable or singularity category of a ring R:

Dsg(R) = Db(R)/Perf(R),

where Db(R) is the bounded derived category of finitely generated
R-modules and Perf(R) is the full subcategory of complexes
quasi-isomorphic to a bounded complex of finitely generated
projective R-modules, i.e., perfect complexes.

Note that this category is trivial if and only if R has finite global
dimension, so it in some sense captures information on the
singularity of R.
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If G = (G1
g1−→ G0

g0−→ G1) is a matrix factorization of f ∈ Q, and
R = Q/(f ), then coker g1 is naturally an R-module.
(i.e., f · G0 ⊆ Image(g1).)

Buchweitz noted that in case Q is a regular local ring, the functor

[MF (Q, f )]
Ψ−→ Dsg(R)

which acts on objects by

G = (G1
g1−→ G0

g0−→ G1) 7→ coker g1 ∈ Dsg(R)

is a triangulated equivalence.
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An idea of why the functor

[MF (Q, f )]
Ψ−→ Dsg(R)

G = (G1
g1−→ G0

g0−→ G1) 7→ coker g1 ∈ Dsg(R)

is an equivalence:

The essential surjectivity of Ψ follows from Eisenbud’s theorem
that every R-module is determined up to syzygy by a matrix
factorization and by design the syzygy functor is invertible on the
category Dsg(R).

The kernel of Ψ is zero because if coker g1 = 0 ∈ Dsg(R), then
coker g1 is a projective R-module (easy Lemma) and one can use
the lifting property of projectives to find a null-homotopy of G.
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So when R = Q/(f ) for Q a regular local ring, we have a very
concrete description of the “stable” homological algebra: it is all
packaged in matrix factorizations.

This has led to results such as Polishchuk and Vaintrob’s theory of
Chern characters and Hirzebruch-Riemann-Roch theorem for
modules over such a hypersurface (as discussed in Mark’s talk).
These are very striking results motivated by physics that have
solved some open problems in commutative algebra.
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We want to consider the following generalization.

Let X be a regular closed subscheme of projective space over some
commutative Noetherian ring Q:

i : X ↪→ Pn
Q = Proj(Q[T1, . . . ,Tn]).

Let W ∈ Γ(X , i∗O(1)) be a nonzero global section, and let

Y = Proj(Q[T1, . . . ,Tc ]/(W )) ⊆ X

be the zero subscheme of W .

Example: If X = P0
Q
∼= Spec Q, W ∈ Γ(X ,O(1)) = Q, and

R = Q/(W ), then Y = Spec R ⊆ Spec Q = X .
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A matrix factorization of W consists of

locally free coherent sheaves E1, E0 on X

maps e1 : E1 → E0, e0 : E0 → E1 ⊗O(1)

such that

e0 ◦ e1 = 1⊗W : E1 → E1 ⊗O(1) and

(e1 ⊗ 1O(1)) ◦ e0 = 1⊗W : E0 → E0 ⊗O(1),

where we think of W as a map O → O(1).
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We are interested in these non-affine matrix factorizations because
of their relation to affine complete intersection rings (for details on
this see arXiv:1205.2552). Other people (Orlov,
Polischuk/Vaintrob, Positselski,. . . ) have studied non-affine matrix
factorizations motivated by homological mirror symmetry.

Our goal is to generalize the equivalence of Buchweitz by giving a
relation between the “homotopy category” of non-affine matrix
factorizations and the singularity category of Y ⊆ X (known in the
case X = P0

Q).

The singularity category of a scheme Y is

Dsg(Y ) = Db(coh Y )/Perf Y

where a complex of coherent sheaves on Y is perfect if it locally
quasi-isomorphic to a bounded complex of free modules.
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What is the “homotopy” category of non-affine matrix
factorizations?

First we naively mimic the affine case: to matrix factorizations E,F
of W , we associate a chain complex HomMF (E,F) of coherent
sheaves on X .

We define [MF (X ,O(1),W )]naive to be the category with
morphisms

Hom[MF ]naive
(E,F) = H0Γ(X ,HomMF (E,F)).
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To say this more concretely,

if

E = (E1
e1−→ E0

e0−→ E1(1))

F = (F1
f1−→ F0

f0−→ F1(1))

are matrix factorizations of W , then an element h of
Hom[MF ]naive

(E,F) is an equivalence class of a pair of maps

h1 : E1 → F1 h0 : E0 → F0

that make the obvious diagrams commute, under the usual
homotopy equivalence.

[MF (X ,O(1),W )]naive is a triangulated category.
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As in the affine case, if E = (E1
e1−→ E0

e0−→ E1(1)) is a matrix
factorization of W , then coker e1 has support contained in Y ⊆ X ,
i.e., is naturally a coherent sheaf on Y .

There is a triangulated functor

Ψ : [MF (X ,O(1),W )]naive → Dsg(Y )

E = (E1
e1−→ E0

e0−→ E1(1)) 7→ coker e1

and it’s not too hard to show that this functor is essentially
surjective.
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Have the essentially surjective functor:

Ψ : [MF (X ,O(1),W )]naive → Dsg(Y )

E = (E1
e1−→ E0

e0−→ E1(1)) 7→ coker e1

Unfortunately it is not always the case that the kernel of Ψ is zero:
if coker e1 = 0 ∈ Dsg(Y ), then coker e1 is locally free, and so E will
locally be null-homotopic, but there are examples which show that
E need not be null-homotopic.

Thus Ψ will not in general be an equivalence. To find an
equivalence between a category of matrix factorizations and
Dsg(Y ) we need to keep track of more data than is contained in
[MF (X ,O(1),W )]naive.

Jesse Burke (joint with Mark E. Walker) UCLA

Matrix factorizations over projective schemes



Have the essentially surjective functor:

Ψ : [MF (X ,O(1),W )]naive → Dsg(Y )

E = (E1
e1−→ E0

e0−→ E1(1)) 7→ coker e1

Unfortunately it is not always the case that the kernel of Ψ is zero:
if coker e1 = 0 ∈ Dsg(Y ), then coker e1 is locally free, and so E will
locally be null-homotopic, but there are examples which show that
E need not be null-homotopic.

Thus Ψ will not in general be an equivalence. To find an
equivalence between a category of matrix factorizations and
Dsg(Y ) we need to keep track of more data than is contained in
[MF (X ,O(1),W )]naive.

Jesse Burke (joint with Mark E. Walker) UCLA

Matrix factorizations over projective schemes



Have the essentially surjective functor:

Ψ : [MF (X ,O(1),W )]naive → Dsg(Y )

E = (E1
e1−→ E0

e0−→ E1(1)) 7→ coker e1

Unfortunately it is not always the case that the kernel of Ψ is zero:
if coker e1 = 0 ∈ Dsg(Y ), then coker e1 is locally free, and so E will
locally be null-homotopic, but there are examples which show that
E need not be null-homotopic.

Thus Ψ will not in general be an equivalence. To find an
equivalence between a category of matrix factorizations and
Dsg(Y ) we need to keep track of more data than is contained in
[MF (X ,O(1),W )]naive.

Jesse Burke (joint with Mark E. Walker) UCLA

Matrix factorizations over projective schemes



Recall that the definition of morphisms in [MF (X ,O(1),W )]naive is

Hom[MF ]naive
(E,F) = H0Γ(X ,HomMF (E,F)).

To remedy the deficiency of the “naive” homotopy category,
instead of taking global sections Γ(X ,−) we should take derived
global sections or hypercohomology

H0RΓ(X ,HomMF (E,F)).

Hypercohomology may be computed using a semi-injective
resolution (fibrant replacement) of Γ(X ,HomMF (E,F)) or the
total complex of the bicomplex which is the Cech complex on every
degree of HomMF (E,F).
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Define the homotopy category of matrix factorizations of W to be
the category [MF (X ,O(1),W )] with objects the same as those of
[MF (X ,O(1),W )]naive. Morphisms are given by

Hom[MF ](E,F) := H0RΓ(X ,HomMF (E,F)).

There is a natural transformation Γ(X ,−)→ RΓ(X ,−) which
gives rise to a functor

[MF (X ,O(1),W ]naive → [MF (X ,O(1),W )]

that is the identity on objects.
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Theorem ( -, Walker)

There is a triangulated equivalence

Φ : [MF (X ,O(1),W )]→ Dsg(Y ).

that fits into the following commutative diagram:

[MF (X ,O(1),W )]naive
Ψ //

��

Dsg(Y )

[MF (X ,O(1),W )]

Φ

66

In particular, for E = (E1
e1−→ E0

e0−→ E1(1),

Φ(E) = coker e1.
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Idea of proof: the functor Φ is essentially surjective, so we need to
show that it’s fully faithful.

Let E,F be objects of [MF (X ,O(1),W )]. For every m ∈ Z, we
have a commutative diagram

HmΓ(X ,HomMF (E,F))

��

// HomDsg(Y )(cokerE[−m], cokerF)

HmRΓ(X ,HomMF (E,F))

The vertical arrow is an isomorphism for m� 0 by Serre Vanishing
(uses that X is projective). The horizontal arrow is an isomorphism
for m� 0 by classical arguments for matrix factorizations.
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So for all m� 0 we have isomorphisms:

HmRΓ(X , Γ(X ,HomMF (E,F))→ HomDsg(Y )(cokerE[−m], cokerF)

Now we can use a totaling of the Koszul complex (also uses that X
is projective) and the fact that RΓ respects quasi-isomorphisms to
get an isomorphism in one degree less:

Hm−1RΓ(X , Γ(X ,HomMF (E,F))→ HomDsg(Y )(cokerE[−m+1], cokerF)

and by induction we have an isomorphism for m = 0.
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Polishchuk and Vaintrob proved a similar theorem (which was
posted before ours, works for smooth Deligne-Mumford stacks, and
does not require X to be projective). They showed that the
Verdier quotient of [MF ]naive by the locally nullhomotopic objects
is equivalent to Dsg(Y ).

Our version has two advantages:

The Hom-spaces in our category have a very explicit
description in terms of a Cech complex which gives rise to a
useful spectral sequence.

Our methods let us prove a relative version in which X is not
assumed to be regular.

Jesse Burke (joint with Mark E. Walker) UCLA

Matrix factorizations over projective schemes



Polishchuk and Vaintrob proved a similar theorem (which was
posted before ours, works for smooth Deligne-Mumford stacks, and
does not require X to be projective). They showed that the
Verdier quotient of [MF ]naive by the locally nullhomotopic objects
is equivalent to Dsg(Y ).

Our version has two advantages:

The Hom-spaces in our category have a very explicit
description in terms of a Cech complex which gives rise to a
useful spectral sequence.

Our methods let us prove a relative version in which X is not
assumed to be regular.

Jesse Burke (joint with Mark E. Walker) UCLA

Matrix factorizations over projective schemes



Polishchuk and Vaintrob proved a similar theorem (which was
posted before ours, works for smooth Deligne-Mumford stacks, and
does not require X to be projective). They showed that the
Verdier quotient of [MF ]naive by the locally nullhomotopic objects
is equivalent to Dsg(Y ).

Our version has two advantages:

The Hom-spaces in our category have a very explicit
description in terms of a Cech complex which gives rise to a
useful spectral sequence.

Our methods let us prove a relative version in which X is not
assumed to be regular.

Jesse Burke (joint with Mark E. Walker) UCLA

Matrix factorizations over projective schemes



References:

Ragnar-Olaf Buchweitz, “Maximal Cohen-Macaulay modules
and Tate cohomology over Gorenstein rings, ” 1986.
Unpublished manuscript.
Jesse Burke, Mark E. Walker, “Matrix factorizations over
projective schemes,” HHA, 2012.
David Eisenbud, “Homological algebra on a complete
intersection with applications to group representations,”
TAMS, 1980.
Dimitri Orlov, “Matrix factorizations for non-affine LG
models,” Math. Ann., 2012.
Alexander Polishchuk and Arkady Vaintrob, “Matrix
factorizations and singularity categories for stacks,”
arXiv:1011.4544.
Leonid Positselski, “Coherent analogues of matrix
factorizations and relative singularity categories,”
arXiv:1102.0261.

Jesse Burke (joint with Mark E. Walker) UCLA

Matrix factorizations over projective schemes


