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Gorenstein projective modules

Let R be any ring.

R-Mod = Category of R-modules.

Ch(R) = Category of chain complexes of R-modules.

Definition: An R-module M is called Gorenstein projective if
there exists an exact complex of projectives

· · · −→ P1 −→ P0 −→ P0 −→ P1 −→ · · ·

with M = ker (P0 −→ P1) and which remains exact after applying
HomR(−,P) for any projective module P.
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Gorenstein projective modules

Set GP = Class of all Gorenstein projective modules.

Set V = GP⊥ = {V ∈ R-Mod |Ext1R(M,V ) = 0 ∀M ∈ GP}.

Question: For what rings R is (GP,V) a complete cotorsion pair?

I To be a cotorsion pair means V = GP⊥ and GP = ⊥V.

I To be a complete cotorsion pair means that in addition the
following condition (and its dual) holds: For any R-module N
there exists a short exact sequence

0 −→ V −→ M −→ N −→ 0 with M ∈ GP and V ∈ V.
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Why is this interesting?

Proposition: If (GP,V) is a complete cotorsion pair then there is
a Quillen model structure on R-Mod with:

1. Cofibrant objects = GP.

2. Fibrant objects = All R-modules.

3. Trivial objects = V = GP⊥.

4. Trivially cofibrant objects = All projective modules.
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Illustration: The stable module category of R

Special Case: Assume R is quasi-Frobenius.

Then (GP,V) = (All modules, Projective-injective modules).

The corresponding model structure on R-Mod has

Ho(R-Mod) = R-Mod/ ∼

where f ∼ g iff f − g factors through a projective-injective module.

Generalization (Hovey 2001): If R is a Gorenstein ring then
(GP,V) is a complete cotorsion pair.
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Totally acyclic complexes of projectives

IDEA: Gorenstein projective modules are the 0-cycles of certain
complexes. Focus on those complexes instead.

Definition: A chain complex of projectives

· · · −→ P1 −→ P0 −→ P0 −→ P1 −→ · · ·

is called a totally acyclic complex of projectives if it is exact
(acyclic) and remains exact after applying HomR(−,P) for any
projective module P.
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Constructing projective model structures on Ch(R)

Main Theorem: Suppose we have the following setup in Ch(R):

I C is some class of chain complexes of projectives.

I W = C⊥ = {W ∈ Ch(R) | Ext1Ch(R)(C ,W ) = 0 ∀C ∈ C }.
I There is a “test module” A satisfying the following:

A complex C of projectives is in C iff A⊗R C is exact.

Then there is a cofibrantly generated abelian model structure on
Ch(R) described as follows:

1. Cofibrant objects = C.

2. Fibrant objects = All complexes.

3. Trivial objects = W = C⊥.

4. Trivially cofibrant objects = All projective complexes.
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The Proj model structure on Ch(R)

Corollary 1: In the Main Theorem...

I Take C to be the class of ALL complexes of projectives.

I Then A = 0 serves as a “test module”. That is,
A complex of projectives C is in C iff 0⊗R C is exact.

We call the corresponding model structure on Ch(R) the Proj
model structure. It is cofibrantly generated and satisfies:

1. Cofibrant objects = C = All complexes of projectives.

2. Fibrant objects = All complexes.

3. Trivial objects = W = C⊥

4. Trivially cofibrant objects = All projective complexes.

Daniel Bravo, James Gillespie*, Mark Hovey Completeness of the Gorenstein projective cotorsion pair.



The exact Proj model structure on Ch(R)

Corollary 2: In the Main Theorem...

I Take C to be the class of all exact complexes of projectives.

I Then A = R serves as a “test module”. That is,
A complex of projectives C is in C iff R ⊗R C is exact.

We call the corresponding model structure on Ch(R) the exact
Proj model structure. It is cofibrantly generated and satisfies:

1. Cofibrant objects = C = All exact complexes of projectives.

2. Fibrant objects = All complexes.

3. Trivial objects = W = C⊥

4. Trivially cofibrant objects = All projective complexes.

Daniel Bravo, James Gillespie*, Mark Hovey Completeness of the Gorenstein projective cotorsion pair.



How to construct a “totally acyclic Proj model structure”?

Question: Is there a “test module” A for the class C of totally
acyclic complexes of projectives so that we get a “totally acyclic
Proj model structure” on Ch(R)?

Answer: Yes, but...

1. Need R to be a coherent ring and to satisfy the condition that
all flat modules have finite projective dimension.

2. The solution points to a similar model structure that exists for
ANY coherent ring!

I Strengthen “totally acyclic” to “steadfastly acyclic” complexes.
I Analog: “Gorenstein projective” to “Ding projective” modules.
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Ding projective modules

I A steadfastly acyclic complex of projectives is an exact
sequence of projective modules

· · · −→ P1 −→ P0 −→ P0 −→ P1 −→ · · ·

which remains exact after applying HomR(−,F ) for any flat
module F .

I We call an R-module M Ding projective if there exists a
steadfastly acyclic complex of projectives

· · · −→ P1 −→ P0 −→ P0 −→ P1 −→ · · ·

with M = ker (P0 −→ P1).
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Equivalence of Ding projective and Gorenstein projective

Proposition: Let R be any ring satisfying the condition that all
flat modules have finite projective dimension. Then

1. A complex of projectives is totally acyclic if and only if it is
steadfastly acyclic.

2. An R-module is Gorenstein projective iff it is Ding projective.
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The steadfastly acyclic Proj model structure on Ch(R)

Corollary 3: Assume R is coherent. In the Main Theorem...

I Take C = class of steadfastly acyclic complexes of projectives.

I Let κ > |R| be a regular cardinal and {Eα}α∈I be the “set” of
all FP-injectives modules with |Eα| ≤ κ.

Lemmas: A = R ⊕ (⊕α∈IEα) serves as a “test module” for C.

So there is a projective model structure on Ch(R) having C as the
class of cofibrant objects. We call this the steadfastly acyclic
Proj model structure on Ch(R).

But if R satisfies the condition that all flat modules have finite
projective dimension then we may call it the totally acyclic Proj
model structure on Ch(R).
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The Ding projective model structure on R-Mod

Corollary 3’ (Module version of Corollary 3): R any coherent ring.
Let DP = The class of all Ding projective R-modules. Then
(DP,DP⊥) is a complete cotorsion pair and gives rise to a
cofibrantly generated abelian model structure on R-Mod. We call
this the Ding projective model structure on R-Mod.

If R satisfies the condition that all flat modules have finite
projective dimension then DP = GP and we call it the Gorenstein
projective model structure on R-Mod.

FACT: The Ding projective model structure on R-Mod is Quillen
equivalent to the steadfastly acyclic Proj model on Ch(R).
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Examples of these rings

There is an abundance of rings having the property that all flat
modules have finite projective dimension!

Examples: Let R be any ring.

1. (Simson 1974) If |R| ≤ ℵn then pd(F ) ≤ n + 1 for all flat F .

2. Enochs, Jenda and López-Ramos have studied n-perfect rings:
pd(F ) ≤ n for all flat F .

I A perfect ring is 0-perfect.
I An n-Gorenstein ring is n-perfect.

3. (Jorgensen 2005) Any Noetherian ring of finite Krull
dimension has the property that all flat modules have finite
projective dimension.
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Thank You!
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