
Homotopy theories in topology and algebra

Julie Bergner

Kansas State University

January 31 - February 1, 2008



Classical homotopy theory

Let X and Y be topological spaces, each with a specified
basepoint.

General theme in algebraic topology:

Assign to a space X an algebraic object (a group or ring) and to
any map of spaces X → Y an appropriate homomorphism.



Definition
The fundamental group of a pointed space X is

π1(X ) = [S1,X ]∗,

the group of homotopy classes of maps S1 → X which preserve
basepoints.



More generally, we have the following definition.

Definition
For any n ≥ 0, we can define the nth homotopy group

πn(X ) = [Sn,X ]∗.

For n = 0, this is just the set of path components of X .

For n ≥ 1, πn(X ) is a group, and for n ≥ 2, πn(X ) is an abelian
group.



Homotopy groups are also functorial in that, given any map
f : X → Y , we get a map

πn(f ) : πn(X ) → πn(Y )

which is a group homomorphism when n ≥ 1.

Definition
A map f : X → Y is a weak homotopy equivalence if the map

πn(f ) : πn(X ) → πn(Y )

is an isomorphism for all n.



Definition
A map f : X → Y is a homotopy equivalence if there exists a map
g : Y → X such that g ◦ f ' idX and f ◦ g ' idY .

Every homotopy equivalence is a weak homotopy equivalence, but
not conversely.

Theorem (Whitehead)

If X and Y are CW complexes, then a weak homotopy equivalence
f : X → Y is a homotopy equivalence.



Our goal is to study spaces up to weak homotopy equivalence.

In view of Whitehead’s Theorem, we can reduce to considering CW
complexes, by the following theorem.

Theorem (CW Approximation)

For any space Z, there exists a CW complex X together with a
weak homotopy equivalence X → Z.

Then, we can take homotopy classes of maps. Since homotopy
equivalences have inverses up to homotopy, their homotopy classes
have inverses on the nose.



Thus, we have formally inverted the weak homotopy equivalences
in a nice way.

The category of topological spaces (or CW complexes) with
homotopy classes of maps between them is called the homotopy
category of spaces.

We now turn to a similar situation in algebra.



Homological algebra

Consider non-negatively graded chain complexes of R-modules for
a fixed ring R. Such a chain complex M∗ looks like

0 M0
∂0oo M1

∂1oo M2
∂2oo · · · .

∂3oo

By the definition of chain complex, we have

∂n ◦ ∂n+1 = 0.

In other words,
im(∂n+1) ⊆ ker(∂n).



Definition
The nth homology group of M∗ is defined to be

Hn(M∗) =
ker(∂n)

im(∂n+1)
.

A map of chain complexes f : M∗ → N∗ is a collection of maps
fn : Mn → Nn making the diagram

0 M0
∂0oo

f0
²²

M1
∂1oo

f1
²²

M2
∂2oo

f2
²²

· · ·∂3oo

0 N0

∂′0oo N1

∂′1oo N2

∂′2oo · · ·∂′3oo

commute.



Such a map f induces a map Hn(f ) : Hn(M∗) → Hn(N∗).

Definition
A map f∗ : M∗ → N∗ is a homology equivalence if the map

Hn(f ) : Hn(M∗) → Hn(N∗)

is an isomorphism for all n ≥ 0.

These homology equivalences play the same role for chain
complexes that weak homotopy equivalences do for spaces, and we
would like to formally invert them.



For chain complexes, the “nice” objects that we can replace with
are the projective ones, or chain complexes made up of projective
modules.

If we replace with projectives and take homotopy classes of maps,
we get the derived category, which is the analogue of the
homotopy category in topology.

Can we do this same kind of thing more generally?



Abstract homotopy theory

Suppose we have a category of some kind of mathematical objects
and appropriate maps between them.

To discuss a homotopy theory in this setting, we first need some
notion of weak equivalence. These maps must satisfy

I the 2-out-of-3 property: if f and g are weak equivalences such
that gf is defined, then if any two of these maps is a weak
equivalence, then so is the third, and

I closed under retracts.

These are the maps we would like to formally invert (assuming
they are not all isomorphisms).



We could just formally invert the weak equivalences, by adding in
inverses to them and taking all possible composites of maps to get
a category.

However, in doing so, we could get into some set-theoretic
problems, in that we might be adding a proper class of maps.

We can instead provide the additional structure of a model
category, which enables you to define “nice” objects and a notion
of “homotopy classes of maps.”



Simplicial sets and homotopy theories

To give another example of a homotopy theory, we consider
simplicial sets, which are combinatorial models for spaces.

We begin with directed simplicial complexes, which can either be
drawn as spaces, or written as a diagram of sets with face maps
between them:

{0− simplices} ⇐ {1− simplices} W · · · .

We want to generalize simplicial complexes in two ways:

I Consider 0-simplices as “degenerate” 1-simplices, etc., and

I Allow non-triangles.



Thus, in addition to face maps, we get degeneracy maps as well

{0− simplices} → {1− simplices} ⇒ · · · .

Just as with simplicial complexes, we can geometrically realize
simplicial sets as topological spaces.

Definition
A map f : X → Y of simplicial sets is a weak equivalence if the
induced map after geometric realization is a weak homotopy
equivalence of spaces.



Theorem (Quillen)

The homotopy theory of spaces is equivalent to the homotopy
theory of simplicial sets.

Thus, from the viewpoint of homotopy theory, we often think of
simplicial sets as “spaces.”



But, what is a homotopy theory, anyway?

It could mean a model category, and that is how Quillen proved
this theorem.

However, it is often hard to show that a model category exists, so
often we just want to think of a category with weak equivalences
as a homotopy theory.

It would be nice to find a more concrete mathematical object that
we could justifiably call a homotopy theory.



Definition
A simplicial category is a category with a set of objects and a
simplicial set of morphisms between any two objects.

There is a natural notion of weak equivalence between simplicial
categories, called a Dwyer-Kan or simply DK-equivalence.

Theorem
(Dwyer-Kan) Any category with weak equivalences gives rise to a
simplicial category, and up to DK-equivalence, any simplicial
category arises in this way.

Thus, a simplicial category is a model for a homotopy theory.



But, notice that we have weak equivalences of simplicial categories,
and so we have a “homotopy theory of homotopy theories.”

Theorem
There is a model category structure on the category of (small)
simplicial categories.

Thus, we can talk about the homotopy theory of homotopy
theories precisely.

However, simplicial categories are difficult to work with, and the
weak equivalences are difficult to identify, so we’d like to find a
nicer model.



Complete Segal spaces as homotopy theories

To come up with another way to think about homotopy theories,
we begin with a standard construction for obtaining a space from a
category.

Associated to a category C is a space called its nerve.

I For every object of C, we take a 0-simplex.

I For every morphism of C, we take a 1-simplex.

I For every pair of composable morphisms, we take a 2-simplex,
etc.



The problem with the nerve is that we can have two categories
that are not equivalent but whose nerves are weakly equivalent.

This difficulty arises because the nerve construction does not
distinguish an isomorphism from any other morphism.

We can modify the nerve construction to get a simplicial space, or
simplicial diagram of spaces.



We use the following steps to get our modified nerve:

I The 0th space is the nerve of the subcategory of isomorphisms
of C, called iso(C).

I The 1st space is the nerve of the isomorphisms in the
morphism category of C, called iso(C[1]).

I The nth space is the nerve of iso(C[n]).



This classifying diagram, which we call NC, satisfies two important
properties:

I (NC)n ' (NC)1 ×(NC)0 · · · ×(NC)0 (NC)1, making it look like it
has composable maps, and

I thinking of (NC)1 as the space of maps, we can take the
subspace of “homotopy equivalences;” this space is weakly
equivalent to (NC)0.

A simplicial space satisfying these two conditions is called a
complete Segal space.



Theorem (Rezk)

There is a model category structure on the category of simplicial
spaces in which the “nice” objects are the complete Segal spaces.
The weak equivalences between complete Segal spaces are just
levelwise weak equivalences of spaces.

Theorem
The homotopy theory of simplicial categories is equivalent to the
homotopy theory of complete Segal spaces.



Theorem
The complete Segal space associated to a simplicial category can
be characterized up to weak equivalence.

The expected applications of these results include:

I derived Hall algebras in representation theory

I Floer homotopy theory


