DG homological algebra and solution to a question of Vasconcelos

Saeed Nasseh Sean Sather-Wagstaff

Department of Mathematics North Dakota State University

January 11, 2013 AMS Special Session on Homotopy Theory and Commutative Algebra, San Diego

イロト イヨト イヨト イ

Assumption

 (R, \mathfrak{m}, k) is a local commutative noetherian ring with unity.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Assumption

 (R, \mathfrak{m}, k) is a local commutative noetherian ring with unity.

イロト イポト イヨト イヨト

3

Definition (Foxby 1972)

A finitely generated *R*-module *C* is semidualizing if $R \cong \text{Hom}_R(C, C)$ and $\text{Ext}_R^i(C, C) = 0$ for all i > 0.

Assumption

 (R, \mathfrak{m}, k) is a local commutative noetherian ring with unity.

イロト イポト イヨト イヨト

Definition (Foxby 1972)

A finitely generated *R*-module *C* is semidualizing if $R \cong \text{Hom}_R(C, C)$ and $\text{Ext}_R^i(C, C) = 0$ for all i > 0.

Example

R is a semidualizing *R*-module

Assumption

 (R, \mathfrak{m}, k) is a local commutative noetherian ring with unity.

Definition (Foxby 1972)

A finitely generated *R*-module *C* is semidualizing if $R \cong \text{Hom}_R(C, C)$ and $\text{Ext}_R^i(C, C) = 0$ for all i > 0.

Example

- R is a semidualizing *R*-module
- ② *D* is dualizing for *R* if and only if it is semidualizing and $\mathrm{id}_R(D) < \infty$

イロト イポト イヨト イヨト

Assumption

 (R, \mathfrak{m}, k) is a local commutative noetherian ring with unity.

Definition (Foxby 1972)

A finitely generated *R*-module *C* is semidualizing if $R \cong \text{Hom}_R(C, C)$ and $\text{Ext}_R^i(C, C) = 0$ for all i > 0.

Example

- R is a semidualizing *R*-module
- ② *D* is dualizing for *R* if and only if it is semidualizing and $id_R(D) < \infty$

Notation

 $\mathfrak{S}(R) = \{ \text{isomorphism classes of semidualizing } R \text{-modules} \}.$

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

イロト イポト イヨト イヨト 二日

Conjecture (Vasconcelos, 1974)

If R is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

イロト イポト イヨト イヨト

Conjecture (Vasconcelos, 1974)

If R is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff, 2008)

If R is CM and equicharacteristic, then $\mathfrak{S}(R)$ is finite.

Fact (Base-change)

If $R \to S$ is a local homomorphism of finite flat dimension, then $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(S)$ by $C \mapsto S \otimes_R C$.

Conjecture (Vasconcelos, 1974)

If R is Cohen-Macaulay, then $\mathfrak{S}(R)$ is finite.

Theorem (Christensen and Sather-Wagstaff, 2008)

If R is CM and equicharacteristic, then $\mathfrak{S}(R)$ is finite.

Outline of proof

There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$. Let $\mathbf{x} \in \mathfrak{m}R'$ be a maximal R'-sequence. Then $R'/\mathbf{x}R'$ is artinian and $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}(R') \hookrightarrow \mathfrak{S}(R'/\mathbf{x}R')$. A result of Happel shows that $\mathfrak{S}(R'/\mathbf{x}R')$ is finite.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト 不得 とくほとく ほとう

Definition

A commutative differential graded (DG) *R*-algebra is

- a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
- ② a differential ∂^A (i.e., a sequence of *R*-linear maps ∂_i^A : $A_i \rightarrow A_{i-1}$ such that $\partial_{i-1}^A \partial_i^A = 0$ for all *i*) such that ∂^A satisfies the Leibniz Rule: for all $a_i \in A_i$ and $a_i \in A_i$

$$\partial_{i+j}^{\mathcal{A}}(a_ia_j) = \partial_i^{\mathcal{A}}(a_i)a_j + (-1)^i a_i \partial_j^{\mathcal{A}}(a_j).$$

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

< ロ > < 同 > < 回 > < 回 > .

Definition

A commutative differential graded (DG) *R*-algebra is

- a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
- ② a differential ∂^A (i.e., a sequence of *R*-linear maps ∂_i^A : $A_i \rightarrow A_{i-1}$ such that $\partial_{i-1}^A \partial_i^A = 0$ for all *i*) such that ∂^A satisfies the Leibniz Rule: for all $a_i \in A_i$ and $a_i \in A_i$

$$\partial_{i+j}^{\mathcal{A}}(a_ia_j) = \partial_i^{\mathcal{A}}(a_i)a_j + (-1)^i a_i \partial_j^{\mathcal{A}}(a_j).$$

Example (The ground ring)

R is a DG R-algebra.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

ヘロト 人間 とくほ とくほう

Definition

A commutative differential graded (DG) *R*-algebra is

- a graded commutative *R*-algebra $A = \bigoplus_{i=0}^{\infty} A_i$ with
- ② a differential ∂^A (i.e., a sequence of *R*-linear maps ∂_i^A : $A_i \rightarrow A_{i-1}$ such that $\partial_{i-1}^A \partial_i^A = 0$ for all *i*) such that ∂^A satisfies the Leibniz Rule: for all $a_i \in A_i$ and $a_i \in A_i$

$$\partial_{i+j}^{\mathcal{A}}(a_ia_j) = \partial_i^{\mathcal{A}}(a_i)a_j + (-1)^i a_i \partial_j^{\mathcal{A}}(a_j).$$

Example (The ground ring)

R is a DG R-algebra.

Example (The Koszul complex)

 $K = K^{R}(\mathbf{x})$ is a DG *R*-algebra for each sequence $\mathbf{x} \in R$.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イボト イヨト イヨト

æ

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module is a graded *R*-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential ∂^M that satisfies the Leibniz Rule.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イボト イヨト イヨト

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module is a graded *R*-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential ∂^M that satisfies the Leibniz Rule.

Example (The ground ring)

The DG *R*-modules are bounded below *R*-complexes, e.g., a projective resolution of an *R*-module.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イボト イヨト イヨト

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module is a graded *R*-module $M = \bigoplus_{i=i_0}^{\infty} M_i$ with a differential ∂^M that satisfies the Leibniz Rule.

Example (The ground ring)

The DG *R*-modules are bounded below *R*-complexes, e.g., a projective resolution of an *R*-module.

Example (The Koszul complex)

 $K \otimes_R M$ is a DG *K*-module for each DG *R*-module *M*.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イボト イヨト イヨト

э

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module *M* is semi-free if the underlying A^{\natural} -module M^{\natural} has a graded basis.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イボト イヨト イヨト

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module *M* is semi-free if the underlying A^{\natural} -module M^{\natural} has a graded basis.

Example (The ground ring)

A semi-free DG *R*-module is a bounded below complex of free *R*-modules.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イボト イヨト イヨト

Definition

Let *A* be a DG *R*-algebra. A DG *A*-module *M* is semi-free if the underlying A^{\natural} -module M^{\natural} has a graded basis.

Example (The ground ring)

A semi-free DG *R*-module is a bounded below complex of free *R*-modules.

Example (The Koszul complex)

 $K \otimes_R M$ is a semi-free DG *K*-module for each semi-free DG *R*-module *M*.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

< ロ > < 同 > < 回 > < 回 > .

æ

Definition

Let *A* be a DG *R*-algebra. A semi-free DG *A*-module *C* is semidualizing if it is homologically finite and the natural map $A \rightarrow \text{Hom}_A(C, C)$ is a quasiisomorphism.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イポト イヨト イヨト

Definition

Let *A* be a DG *R*-algebra. A semi-free DG *A*-module *C* is semidualizing if it is homologically finite and the natural map $A \rightarrow \text{Hom}_A(C, C)$ is a quasiisomorphism.

Notation

 $\mathfrak{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG A-modules.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト 不得 とくほとくほと

Definition

Let *A* be a DG *R*-algebra. A semi-free DG *A*-module *C* is semidualizing if it is homologically finite and the natural map $A \rightarrow \text{Hom}_A(C, C)$ is a quasiisomorphism.

Notation

 $\mathfrak{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG A-modules.

Example (The ground ring)

A projective resolution of a semidualizing *R*-module is a semidualizing DG *R*-module: $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

Definition

Let *A* be a DG *R*-algebra. A semi-free DG *A*-module *C* is semidualizing if it is homologically finite and the natural map $A \rightarrow \text{Hom}_A(C, C)$ is a quasiisomorphism.

Notation

 $\mathfrak{S}_{dg}(A)$ is the set of shift-quasiisomorphism classes of semidualizing DG A-modules.

Example (The ground ring)

A projective resolution of a semidualizing *R*-module is a semidualizing DG *R*-module: $\mathfrak{S}(R) \hookrightarrow \mathfrak{S}_{dg}(R)$.

Example (The Koszul complex)

 $K \otimes_R C$ is a semidualizing DG *K*-module for each semidualizing DG *R*-module $C: \mathfrak{S}_{dg}(R) \hookrightarrow \mathfrak{S}_{dg}(K)$.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト 不得 トイヨト イヨト

= 990

Theorem (Nasseh, Sather-Wagstaff)

The set $\mathfrak{S}(R)$ is finite.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト 不得 トイヨト イヨト

3

Theorem (Nasseh, Sather-Wagstaff)

The set $\mathfrak{S}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathfrak{S}_{dg}(R)$ is finite.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イボト イヨト イヨト

Theorem (Nasseh, Sather-Wagstaff)

The set $\mathfrak{S}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathfrak{S}_{dg}(R)$ is finite. 1. There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

イロト イポト イヨト イヨト

Theorem (Nasseh, Sather-Wagstaff)

The set $\mathfrak{S}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathfrak{S}_{dg}(R)$ is finite.

1. There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

2. Let $\mathbf{x} \in \mathfrak{m}R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Now, there exists a finite dimensional DG algebra U over \overline{k} such that

$$R \to R' \to K \xrightarrow{\simeq} U.$$

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

ヘロト 人間 ト 人注 ト 人注 ト

Theorem (Nasseh, Sather-Wagstaff)

The set $\mathfrak{S}(R)$ is finite.

Sketch of Proof. It suffices to show that $\mathfrak{S}_{dg}(R)$ is finite.

1. There is a flat local ring homomorphism $R \to (R', \mathfrak{m}R', \overline{k})$ such that R' is complete.

2. Let $\mathbf{x} \in \mathfrak{m}R'$ be minimal generating sequence and $K = K^{R'}(\mathbf{x})$. Now, there exists a finite dimensional DG algebra U over \overline{k} such that

$$R \to R' \to K \xrightarrow{\simeq} U.$$

3. This diagram and the lifting result imply that

$$\mathfrak{S}_{\mathsf{dg}}(R) \hookrightarrow \mathfrak{S}_{\mathsf{dg}}(R') \simeq \mathfrak{S}_{\mathsf{dg}}(K) \simeq \mathfrak{S}_{\mathsf{dg}}(U).$$

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

ヘロト ヘヨト ヘヨト ヘ

4. We parametrize the set of all DG *U*-modules with fixed underlying graded \overline{k} -vector space by an algebraic scheme.

DG Algebras and DG Modules Semi-free DG Modules Semidualizing DG Modules Solution to Vasconcelos' Conjecture

ヘロト ヘヨト ヘヨト

4. We parametrize the set of all DG *U*-modules with fixed underlying graded k-vector space by an algebraic scheme.
5. A general linear group acts on this scheme so that orbits are exactly elements of S_{dg}(U).

イロト イヨト イヨト

4. We parametrize the set of all DG *U*-modules with fixed underlying graded k-vector space by an algebraic scheme.
5. A general linear group acts on this scheme so that orbits are exactly elements of G_{dg}(U).

6. On the other hand, Ext vanishing implies that every semidualizing DG *U*-module has an open orbit.

イロト イヨト イヨト

4. We parametrize the set of all DG *U*-modules with fixed underlying graded k-vector space by an algebraic scheme.
5. A general linear group acts on this scheme so that orbits are

- exactly elements of $\mathfrak{S}_{dg}(U)$.
- 6. On the other hand, Ext vanishing implies that every semidualizing DG *U*-module has an open orbit.
- * DG Ext is different from Yoneda Ext!

イロト イヨト イヨト イ

4. We parametrize the set of all DG *U*-modules with fixed underlying graded \overline{k} -vector space by an algebraic scheme.

- 5. A general linear group acts on this scheme so that orbits are exactly elements of $\mathfrak{S}_{dg}(U)$.
- 6. On the other hand, Ext vanishing implies that every semidualizing DG *U*-module has an open orbit.
- * DG Ext is different from Yoneda Ext!

7. We prove that there can only be finitely many open orbits, so $\mathfrak{S}_{dg}(U)$ is finite.