Marcy Robertson University of Western Ontraio

joint work with Andrew Salch and Julie Bergner

January 10, 2013

Marcy RobertsonUniversity of Western Ontraio Topological Triangulated Orbit Categories

Constructing Examples of Topological Cluster Categories

Marcy Robertson University of Western Ontraio

joint work with Andrew Salch and Julie Bergner

January 10, 2013

• A **quiver** is an oriented graph, or a 'category without composition.'

- A **quiver** is an oriented graph, or a 'category without composition.'
- A representation of Q is a diagram of finite-dimensional vector spaces in the shape of Q.

- A **quiver** is an oriented graph, or a 'category without composition.'
- A representation of Q is a diagram of finite-dimensional vector spaces in the shape of Q.
- A representation of A₂ : 1 → 2 is a diagram of two nite-dimensional vector spaces linked by one linear map V : V₁ → V₂.

- A **quiver** is an oriented graph, or a 'category without composition.'
- A representation of Q is a diagram of finite-dimensional vector spaces in the shape of Q.
- A representation of A₂ : 1 → 2 is a diagram of two nite-dimensional vector spaces linked by one linear map V : V₁ → V₂.

• let rep(Q) denote the category of representations of Q and D_Q denote the bounded derived category of rep(Q).

• let rep(Q) denote the category of representations of Q and D_Q denote the bounded derived category of rep(Q).

Theorem (Happel '86)

 D_Q admits a Serre functor, i.e. an autoequivalence $S : D_Q \rightarrow D_Q$ such that $DHom(X,?) \cong Hom(?,SX)$ for all $X \in D_Q$, where $D = Hom_k(?,k)$.

What is a Cluster Category?

Let d be an integer and T be a triangulated category with finite-dimensional *Hom*-spaces.

What is a Cluster Category?

Let d be an integer and T be a triangulated category with finite-dimensional *Hom*-spaces.

• (Kontsevich) T is d-Calabi-Yau if it has a Serre functor S and $S \cong \Sigma^d$ as triangle functors

What is a Cluster Category?

Let d be an integer and T be a triangulated category with finite-dimensional *Hom*-spaces.

- (Kontsevich) T is *d*-Calabi-Yau if it has a Serre functor S and $S \cong \Sigma^d$ as triangle functors
- The **cluster category** C_Q is the universal 2-Calabi-Yau category under the derived category D_Q:

• C_Q , T are 2-Calabi-Yau; P, F triangle functors; $\pi: P \circ S \rightarrow S \circ P$, $\theta: F \circ S \rightarrow S \circ F$ • Strictly speaking the definition should be formulated in the homotopy category of enhanced triangulated categories, i.e. *DG*-Categories.

- Strictly speaking the definition should be formulated in the homotopy category of enhanced triangulated categories, i.e. *DG*-Categories.
- (Keller, 2005) C_Q is the **orbit category** of D_Q under the action of the automorphism $S^1 \circ \Sigma^2$. Objects of $C_Q/(S^1 \circ \Sigma^2)$ are the same as those of D_Q and

$$C_Q(X,Y) = \bigoplus_{p \in Z} D_Q(X, (S^1 \circ \Sigma^2)^p Y).$$

- Strictly speaking the definition should be formulated in the homotopy category of enhanced triangulated categories, i.e. *DG*-Categories.
- (Keller, 2005) C_Q is the **orbit category** of D_Q under the action of the automorphism $S^1 \circ \Sigma^2$. Objects of $C_Q/(S^1 \circ \Sigma^2)$ are the same as those of D_Q and

$$C_Q(X,Y) = \bigoplus_{p \in Z} D_Q(X, (S^1 \circ \Sigma^2)^p Y).$$

 Given an additive category T and an endofunctor F : T → T we have an explicit description of the orbit category or skew category T/aut(F) := T/F.

- Given an additive category T and an endofunctor F : T → T we have an explicit description of the orbit category or skew category T/aut(F) := T/F.
- T/F has the same objects as T and morphisms $T/F(X, Y) = \bigoplus_{n \in \mathbb{N}} T(X, F^n Y).$

- Given an additive category T and an endofunctor F : T → T we have an explicit description of the orbit category or skew category T/aut(F) := T/F.
- T/F has the same objects as T and morphisms $T/F(X, Y) = \bigoplus_{n \in \mathbb{N}} T(X, F^n Y).$
- T/F is additive and there is a natural additive 'projection' functor P : T → T/F such that P ∘ F ≅ P and P is 2-universal among additive functors with this property.

- Given an additive category T and an endofunctor F : T → T we have an explicit description of the orbit category or skew category T/aut(F) := T/F.
- T/F has the same objects as T and morphisms $T/F(X, Y) = \bigoplus_{n \in \mathbb{N}} T(X, F^n Y).$
- T/F is additive and there is a natural additive 'projection' functor P : T → T/F such that P ∘ F ≅ P and P is 2-universal among additive functors with this property.
- Now, suppose T is a triangulated category and F : T → T is an autoequivalence. It still makes sense to construct an orbit category T/F with the same objects as T, but it is not usually the case that T/F is still a triangulated category or that the projection P : T → T/F is a triangulated functor.

- Given an additive category T and an endofunctor F : T → T we have an explicit description of the orbit category or skew category T/aut(F) := T/F.
- T/F has the same objects as T and morphisms $T/F(X, Y) = \bigoplus_{n \in \mathbb{N}} T(X, F^n Y).$
- T/F is additive and there is a natural additive 'projection' functor P : T → T/F such that P ∘ F ≅ P and P is 2-universal among additive functors with this property.
- Now, suppose T is a triangulated category and F : T → T is an autoequivalence. It still makes sense to construct an orbit category T/F with the same objects as T, but it is not usually the case that T/F is still a triangulated category or that the projection P : T → T/F is a triangulated functor.

Example

For an example of when T/F is **not** triangulated, consider the following due to Neeman. Let $A = k[x]/(x^2)$ then $D^b(A)/\Sigma^2$ is not triangulated. To see this, note the following argument. Consider $1 + u \in End(k) \cong k[u]$. Then 1 + u is a monomorphism with no left inverse, but in a triangulated category all monomorphisms admit a left inverse.

 Keller in 2005 gave a sufficient set of conditions for a special class of algebraic triangulated categories T and certain functors F : T → T such that T/F would be triangulated.

- Keller in 2005 gave a sufficient set of conditions for a special class of algebraic triangulated categories T and certain functors F : T → T such that T/F would be triangulated.
- We will say that a topological triangualted category *T* is a triangulated category which is equivalent to the derived category of a ring spectrum *k*.

- Keller in 2005 gave a sufficient set of conditions for a special class of algebraic triangulated categories T and certain functors F : T → T such that T/F would be triangulated.
- We will say that a topological triangualted category *T* is a triangulated category which is equivalent to the derived category of a ring spectrum *k*.
- So we will consider *T* as the homotopy category of *k*-module spectra.

• Let k be a commutative ring spectrum and let A be a k-algebra (**plus 'finiteness'**).

- Let k be a commutative ring spectrum and let A be a k-algebra (**plus 'finiteness'**).
- Let X be an A-A-bimodule (**plus 'finiteness'**) and let $f = \wedge_A X : mod A \rightarrow mod A$ such that $F = L(f) = \wedge_A^L X : D(A) \rightarrow D(A)$ is an equivalence.

- Let k be a commutative ring spectrum and let A be a k-algebra (**plus 'finiteness'**).
- Let X be an A-A-bimodule (**plus 'finiteness'**) and let $f = \wedge_A X : mod A \to mod A$ such that $F = L(f) = \wedge_A^L X : D(A) \to D(A)$ is an equivalence.
- From here we can write down a description of D(A)/F, but we don't know if it is a triangulated category.

• Further assume that for all A-modules L and M that $RHom(L, F^nM)$ vanishes for all but finitely many n.

- Further assume that for all A-modules L and M that $RHom(L, F^nM)$ vanishes for all but finitely many n.
- We can embed D(A)/T into a triangulated category Ho(B - mod) for a different k-algebra B.

- Further assume that for all A-modules L and M that $RHom(L, F^nM)$ vanishes for all but finitely many n.
- We can embed D(A)/T into a triangulated category Ho(B - mod) for a different k-algebra B.
- B = A ⊕ X[-1] where multiplication is given by the trivial extension.

- Further assume that for all A-modules L and M that $RHom(L, F^nM)$ vanishes for all but finitely many n.
- We can embed D(A)/T into a triangulated category Ho(B - mod) for a different k-algebra B.
- B = A ⊕ X[-1] where multiplication is given by the trivial extension.
- One shows that D(B)/per(B) is the triangulated hull of the orbit category D(A)/F.

• For the *k*-algebra *A* this is easier to explain via example where we let *F* = *Idⁿ*.

What do we mean by finiteness?

- For the *k*-algebra *A* this is easier to explain via example where we let *F* = *Idⁿ*.
- Then we just need that π_{*}(A) is torsion free and is concentrated in even dimensions.

What do we mean by finiteness?

- For the *k*-algebra *A* this is easier to explain via example where we let *F* = *Idⁿ*.
- Then we just need that π_{*}(A) is torsion free and is concentrated in even dimensions.
- For the A-A-bimodule X we are assuming that X is 2-Calabi-Yau as a bimodule.

- For the k-algebra A this is easier to explain via example where we let $F = Id^n$.
- Then we just need that π_{*}(A) is torsion free and is concentrated in even dimensions.
- For the A-A-bimodule X we are assuming that X is 2-Calabi-Yau as a bimodule.
- This means that X satisfies duality properties, as a bimodule, which are similar to Dwyer-Miller duality.