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What is a Cluster Category?

A quiver is an oriented graph, or a ‘category without
composition.’

A representation of Q is a diagram of finite-dimensional vector
spaces in the shape of Q.

A representation of A2 : 1→ 2 is a diagram of two
nite-dimensional vector spaces linked by one linear map
V : V1 → V2.
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What is a Cluster Category?

let rep(Q) denote the category of representations of Q and
DQ denote the bounded derived category of rep(Q).

Theorem (Happel ’86)

DQ admits a Serre functor, i.e. an autoequivalence S : DQ → DQ

such that DHom(X , ?) ∼= Hom(?, SX ) for all X ∈ DQ , where
D = Homk(?, k).
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What is a Cluster Category?

Let d be an integer and T be a triangulated category with
finite-dimensional Hom-spaces.

(Kontsevich) T is d-Calabi-Yau if it has a Serre functor S and
S ∼= Σd as triangle functors

The cluster category CQ is the universal 2-Calabi-Yau
category under the derived category DQ :

DQ
(F ,θ)

  
(P,π)

��

CQ
// T

CQ , T are 2-Calabi-Yau; P, F triangle functors;
π : P ◦ S → S ◦ P, θ : F ◦ S → S ◦ F
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Remarks:

Strictly speaking the definition should be formulated in the
homotopy category of enhanced triangulated categories, i.e.
DG -Categories.

(Keller, 2005) CQ is the orbit category of DQ under the
action of the automorphism S1 ◦Σ2. Objects of CQ/(S1 ◦Σ2)
are the same as those of DQ and

CQ(X ,Y ) =
⊕
p∈Z

DQ(X , (S1 ◦ Σ2)pY ).
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Triangulated Orbit Categories:

Given an additive category T and an endofunctor F : T → T
we have an explicit description of the orbit category or
skew category T/aut(F ) := T/F .

T/F has the same objects as T and morphisms
T/F (X ,Y ) =

⊕
n∈N T (X ,F nY ).

T/F is additive and there is a natural additive ’projection’
functor P : T → T/F such that P ◦ F ∼= P and P is
2-universal among additive functors with this property.

Now, suppose T is a triangulated category and F : T → T is
an autoequivalence. It still makes sense to construct an orbit
category T/F with the same objects as T , but it is not
usually the case that T/F is still a triangulated category or
that the projection P : T → T/F is a triangulated functor.
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Triangulated Orbit Categories:

Example

For an example of when T/F is not triangulated, consider the
following due to Neeman. Let A = k[x ]/(x2) then Db(A)/Σ2 is
not triangulated. To see this, note the following argument.
Consider 1 + u ∈ End(k) ∼= k[u]. Then 1 + u is a monomorphism
with no left inverse, but in a triangulated category all
monomorphisms admit a left inverse.
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Topological Triangulated Orbit Categories:

Keller in 2005 gave a sufficient set of conditions for a special
class of algebraic triangulated categories T and certain
functors F : T → T such that T/F would be triangulated.

We will say that a topological triangualted category T is a
triangulated category which is equivalent to the derived
category of a ring spectrum k.

So we will consider T as the homotopy category of k-module
spectra.
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Topological Triangulated Orbit Categories:

Let k be a commutative ring spectrum and let A be a
k-algebra (plus ‘finiteness’).

Let X be an A-A-bimodule (plus ‘finiteness’) and let
f = − ∧A X : mod − A→ mod − A such that
F = L(f ) = − ∧LA X : D(A)→ D(A) is an equivalence.

From here we can write down a description of D(A)/F , but
we don’t know if it is a triangulated category.
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Topological Triangulated Orbit Categories:

Further assume that for all A-modules L and M that
RHom(L,F nM) vanishes for all but finitely many n.

We can embed D(A)/T into a triangulated category
Ho(B −mod) for a different k-algebra B.

B = A⊕ X [−1] where multiplication is given by the trivial
extension.

One shows that D(B)/per(B) is the triangulated hull of the
orbit category D(A)/F .

Marcy RobertsonUniversity of Western Ontraio Constructing Examples of Topological Cluster Categories



Topological Triangulated Orbit Categories:

Further assume that for all A-modules L and M that
RHom(L,F nM) vanishes for all but finitely many n.

We can embed D(A)/T into a triangulated category
Ho(B −mod) for a different k-algebra B.

B = A⊕ X [−1] where multiplication is given by the trivial
extension.

One shows that D(B)/per(B) is the triangulated hull of the
orbit category D(A)/F .

Marcy RobertsonUniversity of Western Ontraio Constructing Examples of Topological Cluster Categories



Topological Triangulated Orbit Categories:

Further assume that for all A-modules L and M that
RHom(L,F nM) vanishes for all but finitely many n.

We can embed D(A)/T into a triangulated category
Ho(B −mod) for a different k-algebra B.

B = A⊕ X [−1] where multiplication is given by the trivial
extension.

One shows that D(B)/per(B) is the triangulated hull of the
orbit category D(A)/F .

Marcy RobertsonUniversity of Western Ontraio Constructing Examples of Topological Cluster Categories



Topological Triangulated Orbit Categories:

Further assume that for all A-modules L and M that
RHom(L,F nM) vanishes for all but finitely many n.

We can embed D(A)/T into a triangulated category
Ho(B −mod) for a different k-algebra B.

B = A⊕ X [−1] where multiplication is given by the trivial
extension.

One shows that D(B)/per(B) is the triangulated hull of the
orbit category D(A)/F .

Marcy RobertsonUniversity of Western Ontraio Constructing Examples of Topological Cluster Categories



What do we mean by finiteness?

For the k-algebra A this is easier to explain via example where
we let F = Idn.

Then we just need that π∗(A) is torsion free and is
concentrated in even dimensions.

For the A-A-bimodule X we are assuming that X is
2-Calabi-Yau as a bimodule.

This means that X satisfies duality properties, as a bimodule,
which are similar to Dwyer-Miller duality.
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