The homotopy theory of coalgebras over a comonad

Kathryn Hess and Brooke Shipley*

EPFL and UIC

January 10, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

- Homotopic Hopf-Galois Extensions (Hess '09)
- Homotopic descent and codescent (Hess '10)

Want to form injective resolutions (fibrant replacements) in the category of coalgebras.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definitions

Let (K, Δ, ε) be a comonad on **C** with $K : \mathbf{D} \to \mathbf{D}$, $\Delta : K \to K \circ K$, and $\varepsilon : K \to Id_{\mathbf{C}}$.

 $C_{\mathcal{K}}$ is the category of *K*-coalgebras in **C** with objects (X, δ) with co-action $\delta : X \to KX$.

Let U_K be the forgetful functor

$$\mathsf{C}_{K} \stackrel{U_{K}}{\underset{F_{K}}{\rightleftharpoons}} \mathsf{C}$$

with right adjoint F_K the cofree K-coalgebra with $F_K(X) = KX$, and $KX \xrightarrow{\Delta} KKX$.

Goal

Construct a model structure on the category of K-coalgebras, \mathbf{M}_{K} , with weak equivalences and cofibrations determined in \mathbf{M} by the forgetful functor, U_{K} .

$$\mathbf{M}_{K} \stackrel{U_{K}}{\underset{F_{K}}{\rightleftharpoons}} \mathbf{M}$$

Call such a structure a *left-induced* model structure.

Many examples, almost all involve chain complexes over a field.

Could use ∞ -categories, wouldn't give explicit resolutions.

Postnikov Presentations

By adjunction, if a left-induced model structure exists, then K must take trivial fibrations to weak equivalences. Furthermore, pullbacks and inverse limits of such maps must also be weak equivalences.

Hess ('09) developed a theory of *Postnikov presentations* in model categories and used this to list general conditions for when such a model structure exists on $\mathbf{M}_{\mathcal{K}}$.

The main condition is that any map constructed via pullbacks and inverse limits from K applied to trivial fibrations is a weak equivalence.

Theorem

(Hess - S.) Let **M** be a model category with a Postnikov presentation. If K and **M** satisfy seven axioms then a left-induced model structure exists on \mathbf{M}_{K} .

- (K0) $\mathbf{M}_{\mathbb{K}}$ is complete.
- (K1) $\delta: D \to KD$ is a cofibration for all \mathbb{K} -coalgebras (D, δ) .
- (K2) K preserves cofibrations.
- (K3) Condition on products and cofibrations.
- (K4) Condition on pullbacks and weak equivalences.
- (K5) Condition on inverse limits and weak equivalences.
- (K6) Condition on pullbacks, pushouts and weak equivalences.

Monomorphsims

Proposition (Adámek)

Let (K, Δ, ε) be a comonad on a well-powered category **C**. If K preserves monomorphisms, then **C**_K is complete.

Proposition

Let **M** be a well-powered model category with cofibrations the monomorphisms. If K preserves monomorphisms, then axioms (K0) through (K2) hold.

Limits

Recall the later axioms all have to do with limits.

- (K3) Condition on products and cofibrations.
- (K4) Condition on pullbacks and weak equivalences.
- (K5) Condition on inverse limits and weak equivalences.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(K6) Condition on pullbacks, pushouts and weak equivalences.

Easiest when limits in M_K are created in M.

D.G. setting

Let R be a ring and A be a differential graded R-algebra.

Let \mathbf{M}_A be the category of right A-modules with cofibrations the monomorphisms and weak equivalences the quasi-isomorphisms.

Let V be an A co-ring (comonoid in A-bimodules).

Let M_A^V be the category of right V-comodules in \mathbf{M}_A .

$$\mathsf{M}^V_A \stackrel{U}{\underset{-\otimes_A V}{\rightleftharpoons}} \mathsf{M}_A$$

Semifree V

V is *semi-free* if $V_{\natural} \cong A_{\natural} \otimes X$ as an underlying *A*-module (without the differential). Here *X* is a graded *R*-module.

Proposition

Assume V is an A-co-ring that is semifree as a left A-module. Then $- \otimes_A V$ preserves monomorphisms.

Proposition

Assume V is an A-co-ring that is semifree as a left A-module on a generating graded R-module X such that X_n is R-free and finitely generated for all $n \ge 0$. Then all limits in \mathbf{M}_A^V are created in \mathbf{M}_A .

Limits

Proposition

Assume V is an A-co-ring that is semifree as a left A-module on a generating graded R-module X such that X_n is R-free and finitely generated for all $n \ge 0$. Then all limits in \mathbf{M}_A^V are created in \mathbf{M}_A .

Sketch of Proof:

Due to the semifree property, $-\otimes_A V$ preserves kernels; hence also pullbacks.

Due to the hypotheses on X, $- \otimes_A V$ commutes with arbitrary products.

(K4) Condition on pullbacks and weak equivalences

For every pullback diagram in ${\boldsymbol{\mathsf{M}}}$

the induced morphism $U_{\mathbb{K}}(F_{\mathbb{K}}E \times_{F_{\mathbb{K}}B} (D, \delta)) \to E \times_B D$ is an n + 1-equivalence.

For a "toy case," set B = 0 = D. Show if $F \xrightarrow{\sim n} 0$ then $F \otimes_A V \to F$ is an n + 1 equivalence.

(K4) Condition on pullbacks and weak equivalences.

For a "toy case," set B = 0 = D. Show if $F \xrightarrow{\sim n} 0$ then $F \otimes_A V \to F$ is an n + 1 equivalence.

Use flatness and connectivity conditions on $R \otimes_A V$ to ensure this result.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Use the toy case to prove the general pullback condition.

Theorem (Hess - S.)

Let R be a semihereditary commutative ring and A an augmented dg R-algebra such that $H_1A = 0$. If V is an A-co-ring that is semifree as a left A-module on a generating graded R-module X such that

1. $H_0(R \otimes_A V) = R$, $H_1(R \otimes_A V) = 0$, and

2. X_n is R-free and finitely generated for all $n \ge 0$,

then the category \mathcal{M}_{A}^{V} admits a model category structure left-induced from \mathcal{M}_{A} by the adjunction

$$\mathcal{M}_{A}^{V} \stackrel{U}{\underset{-\otimes_{A}V}{\rightleftharpoons}} \mathcal{M}_{A}.$$

Remarks on (K5) and (K6)

(K5) Condition on inverse limits and weak equivalences.

Basically follows by Mittag-Leffler condition.

(K6) Condition on pullbacks, pushouts and weak equivalences.

Basically follows from (K4) and stability.

References

- Jiří Adámek, *Colimits of algebras revisited*, Bull. Austral. Math. Soc. **17** (1977), no. 3, 433–450.
- Kathryn Hess, Homotopic Hopf-Galois extensions: Foundations and examples, Geometry and Topology Monographs (2009), 79–132.
- Kathryn Hess, *A general framework for homotopic descent and codescent*, available on the arXiv, 2010.

Kathryn Hess and Brooke Shipley, *The homotopy theory of coalgebras over a comonad*, available on the arXiv, 2012.