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ABSTRACT 
 

The homotopy theory of modules was developed by Peter Hilton in the 1950s, as a 

natural analog to the existing homotopy theory in algebraic topology.  One of the 

reasons that the study of the subject grew out of fashion in the late 1960s was that, 

while the concept of a fibration in module theory seemed intuitive and did induce a 

homotopy exact sequence, the ‘expected’ sequence - one that is parallel to and carries 

the same character as the homotopy exact sequence of a fibration in topology - failed 

to be discovered. 

 

Our search shows that in module theory a fibration induces not just one, but three 

homotopy exact sequences - the first, the expected, and the automatic homotopy exact 

sequences of a fibration in module theory, respectively.  Each sequence carries 

different features.  The first and original sequence displays an isomorphism between 

the relative homotopy groups and the homotopy groups of the ‘fiber’.  The expected 

sequence both displays an analogous appearance to the homotopy exact sequence of a 

fibration in topology and inherits the characteristic isomorphism between the relative 

homotopy groups and the homotopy groups of the induced ‘base space’. 

 

In this talk, we discuss the third of the three homotopy sequences - the automatic 

homotopy exact sequence of a fibration - which takes place in the projective 

homotopy theory of modules, whereas the other two sequences took place in the 

injective homotopy theory of modules.  It turns out that the automatic sequence 

displays an isomorphism between the relative homotopy groups and the ‘strong’ 

homotopy groups of the fiber. 

 



INTRODUCTION 
 

The homotopy theory of modules was developed by Peter 

Hilton in the 1950s as a result of his trip to Warsaw, 

Poland, to work with Karol Borsuk, and to Zurich, 

Switzerland, to work with Beno Eckmann.  It produced a 

natural analog to the existing homotopy theory in 

algebraic topology.  Compared and parallel to topological 

spaces and continuous maps in topology, in module theory 

the categorical objects are Λ-modules, where Λ is a 

unitary ring, and the morphisms are Λ-module 

homomorphisms (Λ-maps). 



: a unitary ring 

A, B: right -modules 

: A  B: a -module homomorphism 
 

 nullhomotopy:  is i-nullhomotopic if  can be 

extended to an injective module, CA, containing A. 
 

 homotopy: two maps are i-homotopic if their difference 

is i-nullhomotopic. 
 

 suspension: A  CA  CA/A = A (the suspension of 

A.) 
 

 homotopy group: the (injective) homotopy group of 

maps of A to B is               =                                           , 

where                     is the set of i-nullhomotopic maps. 
 

 nth homotopy group: the nth i-homotopy group of  A  to  

B  is                 =                  . 

 



REMARK 
 

Unlike the homotopy theory in topology, there are two 

homotopy theories in module theory - the injective 

homotopy theory and the projective homotopy theory.  

The two theories are dual to each other, but not 

isomorphic. 



Back in the 1950s and 1960s when the study of the 

subject was much in fashion, after one discovered a 

theorem in one theory, one knew that there would be a 

dual result in the other theory.  However, one would need 

to produce a separate proof for the dual theorem.  Even 

though these dual proofs seemed duplicative to the 

originals, they were necessary to ensure that the dual 

results indeed held true. 



During our study and search within this subject of 

homotopy theory of modules, we developed a way of 

delivering proofs without use of any elements of sets in 

the arguments. 

 

Precisely, instead of tracing the elements through maps 

and commutative diagrams, we exploit only the maps 

themselves and trace them through the commutative 

diagrams in question. 



Since our arguments do not involve any elements of sets, 

by duality we can proceed and state the dual theorems in 

the other theory without further derivations. 

 

Not only does this method avoid the need of those 

duplicative, separate proofs for the dual theorems, but 

also these original proofs seem surprisingly intuitive and 

simple, once they are found. 



FIBRATION 

In Topology 

• E, B, X: topological spaces 

• I: unit interval 

 

• A surjection p:EB is a 

fibration if it has the 

homotopy lifting property 

with respect to every X. 

 

 

In Module Theory 

• E, B, X: right -modules 

• I: nonzero injective right -

module 

• An epimorphism p:EB is 

a fibration if it has the 

homotopy lifting property 

with respect to every X. 

 



In Topology 

• A map p:EB is said to have 

the homotopy lifting property 

with respect to X if 

 

 

In Module Theory 

• A map p:EB is said to have 

the homotopy lifting property 

with respect to X if 

 



Definition: Let  be a unitary ring and E, B be right - 

modules.  We say that a -module homomorphism (-

map)             has the homotopy lifting property with 

respect to I, a non-zero injective right -module, if for 

every  -map                    there  exists  a  -map           

such that               . 

 

 

 

 

 

 

An  epimorphism                 is  said  to  be a  fibration  if  

it has the homotopy lifting property with respect to every 

injective I. 
        



HOMOTOPY EXACT SEQUENCE OF A FIBRATION 

In Topology 

p: E  B is a fibration 

E, B: topological spaces 

In Module Theory 

p: E  B is a fibration 

E, B: right -modules 

A: arbitrary right -module 



In Topology 
 

The relative homotopy group                      IS isomorphic 

to the homotopy group of the base space                  , n ≥1. 

 

 

In Module Theory 
 

The  relative  homotopy  group                 IS  NOT 

isomorphic to the homotopy group of the ‘base’              , 

n ≥1. 

 



A SUBTLE & CRUCIAL TWIST 

 

• Given a -map p: E  B. 
 

• Since a fibration needs to be an epimorphism, we apply 

the mapping cylinder of p in order to produce an 

epimorphism κ in its resulting short exact sequence 

 

 

 

(CE is an injective container of E with the inclusion map 

ι: E  CE,  κ is the quotient map, and                             .) 



• We then say that the map p induces a fibration if its 

induced epimorphism κ is a fibration. 

 

• As we shift the emphasis from p to κ, that is, if p induces 

a fibration, there arises the expected homotopy exact 

sequence of a fibration in module theory: 

 

 

 

 

 

This is the long-sought-for sequence. 



The Expected Homotopy Exact Sequence of a 

Fibration in Module Theory 

 

 

 

 

• It displays an analogous appearance to the homotopy 

exact sequence of a fibration in topology. 

 

• It demonstrates the desired characteristic isomorphism 

between the relative homotopy group         and the 

homotopy group of the newly induced ‘base space’              

,              , n ≥ 1. 



Our study shows that in module theory a fibration 

induces not just one, but three homotopy exact 

sequences. 



Based on the character of each individual, they are 

named as the first, the expected, and the automatic 

homotopy exact sequences of a fibration in module 

theory, respectively. 



HOMOTOPY EXACT SEQUENCE OF A FIBRATION 

In Topology 

p: E  B is a fibration 

E, B: topological spaces 

In Module Theory 

p: E  B is a fibration 

E, B: right -modules 

A: arbitrary right -module 



The First and the Original Homotopy Exact Sequence 

of a Fibration in Module Theory 

 

 

 

 

 

• This sequence features an interesting phenomenon that 

the  relative  homotopy  group                 is  isomorphic to 

the  homotopy  group  of  the  ‘fiber’                  , n ≥ 1, 

where  F is the kernel/fiber of the fibration                  .  



These two sequences take place in the injective homotopy 

theory of modules. 

 

 

The third of the three homotopy sequences - the 

automatic homotopy exact sequence of a fibration in 

module theory - takes place in the projective homotopy 

theory of modules. 



FIBRATION 

In the Injective Theory 

• E, B, X: right -modules 

• I: nonzero injective right -

module 

• An epimorphism p:EB is 

a fibration if it has the 

homotopy lifting property 

with respect to every X. 

 

 

In the Projective Theory 

• E, B, X: left -modules 

• P: nonzero projective left -

module 

• An epimorphism p:EB is 

a fibration if it has the 

homotopy lifting property 

with respect to every X. 

 



In the Injective Theory 

• A map p:EB is said to have 

the homotopy lifting property 

with respect to X if 

 

 

In the Projective Theory 

• A map p:EB is said to have 

the homotopy lifting property 

with respect to X if 

 



Proposition: Let  be a unitary ring and E, B, X be left 

-modules. 

 

Every  -map                holds  the  homotopy  lifting 

property with respect to every X.              

 

Thus, every epimorphism         is automatically a 

fibration.      



• Given an epimorphism                 .           

 

• It is automatically a fibration. 

 

• Expand                   to the short exact sequence 

  

      

  

where  F is the fiber/kernel of the fibration p. 



The Automatic Homotopy Exact Sequence of a 

Fibration in Module Theory 

 

 

 

 

• This sequence features an isomorphism between the 

relative  homotopy  group            and  the  ‘strong’ 

homotopy group                   of the fiber    , n ≥ 1. 



           The ‘Strong’ Homotopy Group                                   

of the Fiber 

 

• It has very special double-features. 

 

• It inherits all the properties of a relative homotopy group 

               . 

 

• It is isomorphic to a subgroup of the homotopy group of 

the fiber                . 

 

• It carries the characteristics of an absolute p-homotopy 

group. 



FINAL NOTE 

 

Since our arguments do not involve any elements of sets, 

by duality we can proceed and state the dual theorems in 

the other theory without further derivations. 

 

Not only does this method avoid the need of those 

duplicative, separate proofs for the dual theorems, but 

also these original proofs seem surprisingly intuitive and 

simple, once they are found. 

 

Now apply the duality!  


