
Math 149A HW 2
Solutions

1. For each of the following functions, determine whether or not it is an actual probability
function. In particular, you should either explain why all three of the properties in the
definition are true (i.e. explain why it’s a probability function), or show that one of the
three properties is NOT true (which would show that it is not a probability function).

Part a: The sample space is {0, 1}. We have P (∅) = 0, P (0) = 0.6, P (1) = 0.3, and
P ({0, 1}) = 1.
Part b: The sample space is [0, 1]. We have P (S) = 1 if S contains 1, and P (S) = 0 if S
does not contain 1.
Part c: The sample space is [−2, 4]. The function P assigns to a set S the value

∫
S

1
6
x2− 1

3
dx

Solution: The first function is not a probability function. The sets {0} and {1} are disjoint,
but P ({0, 1}) = 1 6= P ({0}) + P ({1}).

The part b function is a probability function. The first property is true because all probabil-
ities are either 0 or 1. The second property is true because if C is the entire sample space,
then C contains 1, so P (C ) = 1. The third property is true because if A and B are two
disjoint sets, then either

• Neither contains 1, so P (A ∪B) = P (A) + P (B) = 0
• One set contains 1. Then that set has probability 1, the other set has probability 0

(since the sets are disjoint, they can’t both contain 1), and the union has probability
1 (it contains 1). So we have P (A ∪B) = P (A) + P (B) = 1

The same argument works when you consider more than two sets.

The part c function is not a probability function for multiple reasons (you only needed to
give one). One problem is that the probability of the whole space is∫ 4

−2

1

6
x2 − 1

3
dx = 2.

Another is that, because 1
6
x2 − 1

3
is negative in places, the function gives certain sets a

negative ”probability”. For example, the probability of [0, 1] is∫ 1

0

1

6
x2 − 1

3
dx = − 5
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2. (based on Exercise 1.3.5 from the text). Suppose that our sample space is C = [0,∞)
For a set S, we define

P(C) =

∫
C

e−x dx

As discussed in class, this sort of function will always satisfy the third part of the definition
of probability (probability of disjoint unions) just by the rules of calculus.

Part a: Explain why P (S) ≥ 0 for any S. (i.e. what specific property of e−x makes this
true?)

Solution: The important thing about e−x here is that it’s always non-negative. So when I
integrate it over an interval, I’ll always get a non-negative number.

Part b: Check if the remaining part of the definition of probability (that the probability of
the whole sample space is 1) holds.

Solution: This is a direct calculation. We have

P(C ) =

∫ ∞
0

e−x dx

= lim
t→∞

∫ t

0

e−x dx

= lim
t→∞
−e−x|t0

= lim
t→∞

1− e−t = 1

Part c: Let S = [4,∞). What is P(S)? What is P(SC)?

Solution: Since SC = [0, 4), we have

P(SC) =

∫ 4

0

e−x dx = −e−x|40 = 1− e−4

This implies that
P(S) = 1− (1− e−4) = e−4

Remark: You could also have computed P(S) directly first, then used that to get P(SC).
Or you could have integrated twice.

3. If the sample space is C = C1 ∪C2 and if P(C1) = 0.8 and P(C2) = 0.5, find P(C1 ∩C2).
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Solution: By inclusion-exclusion, we have P (C1 ∪ C2) = P (C1) + P (C2) − P (C1 ∩ C2).
In this case the union has probability 1 (its the whole sample space), and this implies
1 = 0.8 + 0.5− P (C1 ∩ C2). So the intersection has probability 0.3.

4. Let C1, C2, and C3 be three mutually disjoint subsets of the sample space C . Find
P[(C1 ∪ C2) ∩ C3] and P(Cc

1 ∪ Cc
2).

Solution: This is an exercise in untangling what the sets are. Since C1, C2, and C3 are
mutually disjoint, then there are no elements in (C1 ∪ C2) ∩ C3 (such an element would be
in both C3 and one of C1 and C2). So P [(C1 ∪ C2) ∩ C3] = 0.

On the other hand, Cc
1 ∪Cc

2 is the entire sample space. Anything not in Cc
1 (in other words,

anything in C1) must be in Cc
2 (since nothing is in both C1 and C2). So P (Cc

1 ∪ Cc
2) = 1.

5. A person has purchased 10 of 1000 tickets sold in a certain raffle. To determine the five
prize winners, five tickets are to be drawn at random and without replacement. Compute
the probability that this person wins at least one prize. Hint: First compute the probability
that the person does not win a prize.

Solution: This is an analogue of the ”Alice and Bob” warmup from lecture last week. We
start by computing the probability the person does not win a prize.

There’s
(
1000
5

)
ways to draw the prize winners, and

(
990
5

)
ways to draw 5 prize winners that

don’t include the person. So the probability they don’t win is(
990
5

)(
1000
5

)
Where we need to be a bit careful here is entering things in the calculator, or some calculators,
at least. If you try and type something like

1000!

995!5!
,

you may get an error message, because 1000! is enormous. So instead, we’ll do a bit of
manipulation before using a calculator, writing(

990
5

)(
1000
5

) =
(990)(989)(988)(987)(986)

5!
(1000)(999)(998)(997)(996)

5!

=
(990)(989)(988)(987)(986)

(1000)(999)(998)(997)(996)

≈ 0.9508

Subtracting, the probability they win at least one prize is 1− 0.9508 ≈ 0.0492.
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6. In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector examines five bulbs, which
are selected at random and without replacement.

Solution: This is similar to the previous problem. We start by computing the probability
of no defective bulbs, which is (

48
5

)(
50
5

)
for the exact same reasons as before. Either doing some fancy footwork like we did before or
just entering things in our calculator (the numbers are smaller now, so overflow isn’t as much
of a problem), we get 0.808. So the probability of detecting a bad bulb is 1− 0.808 = 0.192.

For part b, we’re essentially asking ”how large should k be so that picking k bulbs instead
of 5 leads to a detection probability of at least 0.5? This means the probability we fail to
find a bad bulb is at most 0.5. That probability is(

48
k

)(
50
k

)
At this point one option is just to try k until we get one that works. Another option is to
do a bit of manipulation, writing the probability as

48!
k!(48−k)!

50!
k!(50−k)!

=

48!
(48−k)!

50!
(50−k)!

=
48!

50!

(50− k)!

(48− k)!

Now, 50! = 50× 49× 48× · · · × 1 = 50× 49× 48!. So we can write

48!

50!
=

1

(50)(49)

Similarly, we have
(50− k)!

(48− k)!
= (50− k)(49− k)

So the entire expression is
(50− k)(49− k)

2450
We want this to be at most 1

2
, which is equivalent to (50−k)(49−k) being at most 2450

2
= 1225.

Direct calculation (or solving for k) gives that k = 14 is not enough, but k = 15 is.
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