1. Let $X_1, X_2, \ldots, X_{100}$ be independent variables, each drawn from a Gamma distribution with $\alpha = 2$ and $\beta = 4$. What is the approximate probability that $7 \le \overline{X} \le 9$?

Solution: We have $\mu = E(X) = \alpha\beta = 8$, and $\sigma^2 = Var(X) = \alpha\beta^2 = 32$. It follows from the Central Limit Theorem that if

$$Z = \left(\overline{X} - 8\right) \frac{\sqrt{100}}{\sqrt{32}} \approx \left(\overline{X} - 8\right) 1.7678$$

then Z is approximately equal to a standard N(0,1) variable. In particular, we have

$$P(7 \le \overline{X} \le 9) = P(-1.7678 \le (\overline{X} - 8)(1.7678) \le 1.7678)$$

$$\approx \Phi(1.7678) - \Phi(-1.7678)$$

$$= \Phi(1.7678) - (1 - \Phi(1.7678))$$

$$\approx 0.9616 - (1 - 0.9616) \approx 0.923$$

2. Let X_1, \ldots, X_{100} be independent variables, each with a $\chi^2(50)$ distribution. What, approximately, i sthe probability that their average is between 49 and 51?

Solution: We have $\mu = E(X) = 50$, and $\sigma^2 = Var(X) = 100$. It follows from the Central Limit Theorem that if

$$Z = \left(\overline{X} - 50\right) \frac{\sqrt{100}}{10} = \overline{X} - 50,$$

then Z is approximately equal to a standard N(0,1) variable. In particular, we have

$$P(49 \le \overline{X} \le 51) = P(-1 \le \overline{X} - 50) \le 1)$$

$$\approx \Phi(1) - \Phi(-1)$$

$$\approx 0.8413 - (1 - 0.8413) \approx 0.683$$

3. Let Y be Binomial with parameters n = 72 and p = 1/3. Compute, approximately, the probability that $22 \le Y \le 28$, using a continuity correction if appropriate.

Solution: Here a continuity correction is appropriate, since we're approximating an integer-valued Binomial distribution by a continuous Normal distribution. Think of X as $X_1 + \cdots + X_{72}$, where each X_i is independently 1 with probability 1/3 and 0 with probability 2/3. We have

$$E(X_i) = (1/3)(1) + (2/3)(0) = 1/3$$

$$E(X_i^2) = (1/3)(1^2) + (2/3)(0^2) = 1/3$$

$$Var(X_i) = 1/3 - (1/3)^2 = 2/9$$

It follows from the Central Limit Theorem (sum form), that if

$$Z = \frac{Y - (72)(1/3)}{\sqrt{2/9}\sqrt{72}} = \frac{Y - 24}{4},$$

then Z is approximately equal to a standard N(0,1). In particular, we have

$$P(22 \le Y \le 28) = P(21.5 \le Y \le 28.5) \text{(the continuity correction)}$$

= $P(-0.625 \le \frac{Y - 24}{4} \le 1.125)$
= $\Phi(1.125) - \Phi(-0.625)$
= $\Phi(1.125) - (1 - \Phi(0.625))$
 $\approx 0.87 - (1 - 0.73) = 0.60$

Note that we did **not** use a continuity correction on the first two problems – the Gamma and Chi-Square distributions are already continuous, so it doesn't apply.

4. Bob flips 60 fair coins and Alice flips 50 coins. Let B be the number of heads Bob gets, and A be the number of heads Alice gets.

Part a: If I were to approximate B by a normal distribution, what would be the mean and variance of that distribution? Repeat for Alice.

Solution: We have E(B) = (60)(1/2) = 30 and Var(B) = (60)(1/2)(1 - 1/2) = 15. When we approximate B by a normal distribution using the CLT, the approximating distribution has the same mean and variance. So we're approximating B by N(30, 15). Similarly, we're approximating A by N(25, 12.5).

Part b: As suggested by the hint, if *B* is approximately normal and *A* is approximately normal, than B - A is also approximately normal, with mean E(B) - E(A) = 5 and Variance equal to Var(B) + Var(A) = 27.5 (convince yourself that that plus sign isn't a typo!). So if X = B - A, then

$$Z = \frac{X-5}{\sqrt{27.5}} \approx N(0,1)$$

The probability that Alice gets at least as many heads as Bob is the probability that $X \leq 0$ (saying $B \leq A$ is equivalent to saying B - A is at most 0). We have

$$P(X \le 0) = P(X \le 0.5) \text{ (continuity correction)} \\ = P(\frac{X-5}{\sqrt{27.5}} \le \frac{0.5-5}{\sqrt{27.5}}) \\ \approx P(Z \le -0.8581) \\ = \Phi(-0.8581) = 1 - \Phi(0.8581) \approx 0.195$$