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Abstract. We study the three-dimensional incompressible Navier-Stokes equations in a
smooth bounded domain Ω with initial velocity u0 square-integrable, divergence-free and
tangent to ∂Ω. We supplement the equations with the Navier friction boundary conditions
u · n = 0 and [(2Su)n + αu]tan = 0, where n is the unit exterior normal to ∂Ω, Su =
(Du+ (Du)t)/2, α ∈ C0(∂Ω) is the boundary friction coefficient and [·]tan is the projection
of its argument onto the tangent space of ∂Ω. We prove global existence of a weak Leray-
type solution to the resulting initial-boundary value problem and exponential decay in energy
norm of these solutions when friction is positive. We also prove exponential decay if friction
is non-negative and the domain is not a solid of revolution. These two results are well
known in the case of Dirichlet boundary condition, but, even if they have been implicitly
used for the Navier boundary conditions, the proofs are not available in the literature. After
carefully studying the Stokes semigroup for such a boundary condition, we use the Galerkin
method for existence, Poincaré-type inequalities, with suitable adaptations to account for
the differential geometry of the boundary, and a novel integral Gronwall-type inequality. In
addition, in the frictionless case α = 0, we prove convergence of the solution to a steady
rigid rotation, if the domain is a solid of revolution.
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1. Introduction

Let Ω ⊂ R3 be a bounded, connected, open set with smooth boundary ∂Ω. Fix ν > 0.
We consider the following initial-value problem for the incompressible Navier-Stokes equa-

tions with viscosity ν and Navier friction boundary conditions:
∂tu+ (u · ∇)u = −∇p+ ν∆u in (0,+∞)× Ω,
div u = 0 in [0,+∞)× Ω,
u · n = 0 and [(2Su)n+ αu]tan = 0 on (0,+∞)× ∂Ω,
u(0, ·) = u0 in Ω.

(1.1)

Date: Sunday 8th June, 2025.
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Above, u : [0,+∞)×Ω → R3 is the velocity field, p is the scalar pressure, Su := [Du+(Du)t]/2
is the symmetric part of the Jacobian of u, α : ∂Ω → R is a given material friction coefficient,
n refers to the outward unit normal vector to ∂Ω and the subscript ‘tan’ corresponds to the
orthogonal projection onto the tangent space to ∂Ω.

The Navier friction condition was first introduced in 1827 by C. Navier, see [24]. This
boundary condition is often considered in the presence of rough boundaries, see [14, 19]
and references therein, or in flows with a turbulent layer next to the boundary, see [20].
Physically, it expresses a rough balance between the rate of fluid slip and friction stress at
the boundary. In addition, allowing for slip may be regarded as a relaxation of the no-
slip boundary condition, which creates stiffness in computational modeling of high-Reynolds
number flows, see [15].

The standard no-slip boundary condition u = 0 corresponds to formally setting α = ∞
above. In this case, global-in-time existence of a weak Leray-Hopf solution, for initial data u0
divergence-free, tangent to the boundary and square-integrable, is due to J. Leray, see [23].
Additionally, the exponential decay of the solution in L2 follows from the energy inequality,
by using the Poincaré inequality.

In the case 0 < α <∞ the literature contains no complete proof of existence of weak (Leray-
Hopf) solutions or discussion of large time behavior, and the objective of the present work is
to fill this gap. Global existence of weak solutions was proved in the case α = 0 in [12,30]. A
sketch of a proof for 0 ⩽ α <∞ was given in [17]. The rigorous analysis for global existence
was presented for several boundaries conditions in [9] but the Navier boundary condition
is not covered. In [1, 3] local well-posedness of mild solutions, i.e. in which the equations
are written in integral form, was established using semigroup methods, under appropriate
regularity hypotheses on α. For two-dimensional domains, Clopeau, Mikelić and Robert
proved global well-posedness of weak solutions and convergence of the vanishing viscosity
limit in [10]. Their analysis is based on the vorticity ω := curlu and the stream function
ψ := ∆−1

0 ω (solution of the Laplace problem with the Dirichlet boundary condition) and
hence applied only to 2D, simply connected, smooth, bounded domains. Taking into account
harmonic vector fields and circulations, the first author extended their result to domains
with holes in [21]. The goal here is to present a complete and self-contained analysis for 3D
bounded domains.

More precisely, let L2
σ,tan(Ω) be the space of square-integrable solenoidal vector fields on Ω

which are tangent to ∂Ω. We prove existence of a weak solution to (1.1), assuming that the
initial velocity u0 ∈ L2

σ,tan(Ω), and that α ∈ C0(∂Ω) is a time-independent friction coefficient.
The precise notion of weak solution is one of the issues that must be addressed, and will be
discussed later. In addition, we establish exponential decay of the solution in energy norm
in two scenarios:

• The friction coefficient α is strictly positive.
• The friction coefficient α is non-negative and the domain Ω is such that Ker (S) = {0},
as an operator on L2

σ,tan(Ω).

Furthermore, if the friction coefficient vanishes identically, we prove that the weak solution
decays exponentially to the projection of the initial data onto the kernel of the operator S.
It is a well-known fact, which we prove for the sake of completeness, that Ker (S) consists of
vector fields which generate a rigid rotation of the domain.

In broad terms, we follow the general strategy developed for similar results when α = ∞.
Existence is tackled by passing to the limit in a Galerkin approximation and the exponential
decay is obtained by combining a Poincaré-type inequality with an integral Gronwall-type
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inequality. However, the Navier friction condition introduces a few technical hurdles that
must be addressed. Specifically, we must account for the various equivalent weak formulations
of the problem, the precise choice of basis for the Galerkin approximation, in a way that is
consistent with the Navier condition, and the influence of the geometry of the boundary.

In [2], H. Baba and M. Jazar studied the long-time behavior of a weak solution to the
Navier-Stokes system in a bounded 3D domain with Navier-type boundary conditions. In
their work, the friction condition [(2Su)n + αu]tan = 0 is replaced by assuming vorticity is
normal to the boundary. These types of boundary conditions are only equivalent in special
cases, namely, if Ω is a half-space, and α = 0, or if Ω is a sphere of radius r > 0 and α = 2/r.
Moreover, their result only applies to initial data which satisfies their boundary condition
and lies in the orthogonal complement of the kernel of the Stokes operator within that initial
data space. Furthermore, they only obtain algebraic decay of the solution in energy norm.
Recently a study on the long-time asymptotics of strong solutions with α = 0 has become
available, see [7], which rediscovers some of the details in the present work.

Additional related work on Navier-Stokes and Stokes with Navier-boundary conditions
include [6, 8, 28] and references therein.

One important aspect of the literature concerning the Navier friction condition is the
vanishing viscosity limit in domains with boundary. This is a classical open problem in the
no-slip case and we refer the reader to [5, 25] for recent accounts of the state-of-the art. In
contrast, the corresponding problem with Navier friction boundary conditions is much more
treatable, basically because the associated boundary layer is less singular. There is a large
literature connected with this problem, beginning with the work of Clopeau et al on the
vanishing viscosity limit in two-dimensional bounded domains, see [10]. Concerning three-
dimensional bounded domains, there is one result of particular interest here. In [18], Iftimie
and Planas proved convergence of the vanishing viscosity limit for Leray-type weak solutions
of (1.1) in energy norm, up to the time of existence of a strong solution of the Euler equations.
The authors of [18] omit the proof of global existence of these Leray-type weak solutions, thus
the existence result in the present work completes their analysis. The connection with the
geometry of the domain, a central concern in our work, is not discussed in [18].

The remainder of this work is organized as follows. In Section 2 we derive a weak formu-
lation for problem (1.1). In Section 3 we study the Stokes operator with Navier boundary
conditions and we prove a spectral theorem for this operator. Section 4 contains the state-
ment and proof of the existence result, including two formulations of the energy inequality. In
Section 5 we prove a Poincaré-type inequality in H1

σ,tan, in terms of the symmetric Jacobian of
the velocity. In Section 6 we establish exponential decay of weak solutions in the case where
α ⩾ 0 and Ker (S) = {0} and in the case α > 0 with no further restrictions on the domain.
In Section 7, we prove that velocity fields in Ker (S) are steady solutions of (1.1) and that
weak solutions with initial data u0 decay exponentially in time to the projection of u0 onto
Ker (S). We collect final remarks and conclusions in Section 8. Lastly, in an Appendix we
prove the integral Gronwall-type inequality applicable to the generalized energy inequalities
deduced in Section 4. This result is key to derive the exponential decay we claimed.

2. Weak formulation

In this section, we derive a weak formulation for (1.1). We begin by introducing nota-
tion for the function spaces we will be using. As mentioned in Section 1, we denote by
L2
σ,tan(Ω) the space of square-integrable solenoidal vector fields on Ω which are tangent to

∂Ω (note that square-integrable, solenoidal fields have a well-defined trace of the normal
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component in H−1/2(∂Ω), see, for example, [9, Equation (IV.10)]). The space H1
σ,tan(Ω) cor-

responds to the vector fields in L2
σ,tan(Ω) whose first-order weak derivatives are, additionally,

square-integrable. The notation C∞
σ,tan(Ω) refers to the C∞ solenoidal vector fields which

are tangent to ∂Ω. Finally, we use C([0, T );w − L2
σ,tan(Ω)) to denote functions which are

continuous from [0, T ) into L2
σ,tan(Ω) with the weak topology; Cloc([0,+∞);w − L2

σ,tan(Ω))

denotes functions continuous from [0,+∞) into L2
σ,tan(Ω) with the weak topology, and which

belong to L∞([0, T );L2) for every T > 0.
We will assume, throughout this paper, that α ∈ C0(∂Ω) is a nonnegative time-independent

friction coefficient.
We require some elementary information on differential geometry of surfaces, which we

recall below.
For each p ∈ ∂Ω let n = np be the outward unit normal to ∂Ω at p. This induces a map

n : ∂Ω → S2, where S2 is the unit sphere in R3, called the Gauss map. Its differential is
dnp : Tp(∂Ω) → Tp(∂Ω), using the natural identification Tn(p)(S

2) ∼ Tp(∂Ω). The map dnp,
the differential of the Gauss map, is called the shape operator of ∂Ω and, for each p, it is a
self-adjoint linear operator. See [11, Section 3.2, Proposition 1] for details. The eigenvalues
of −dnp are the principal curvatures of ∂Ω at p, denoted k1 = k1(p) and k2 = k2(p). Let λ
be defined as follows:

λ = λ(p) := max{|k1(p)|, |k2(p)|}. (2.1)

To obtain a weak formulation of (1.1) first assume that u is a smooth solution of the
system and let Φ ∈ C∞

c ([0,+∞);C∞
σ,tan(Ω)). Taking the inner product of (1.1) with Φ and

integrating by parts once yields:∫ +∞

0

∫
Ω
{∂tΦ · u + [(u · ∇)Φ] · u}dx dt+

∫
Ω
Φ(0, x) · u0(x) dx

= ν

(∫ +∞

0

∫
Ω
DΦ : Dudx dt−

∫ +∞

0

∫
∂Ω

Φ · (Dun) dS dt

)
. (2.2)

Above, the notation A : B stands for the trace of the matrix product AB and dS is the
2-dimensional Hausdorff measure on ∂Ω. We will now examine the boundary integral more
carefully, using the Navier boundary condition and the differential of the Gauss map.

Lemma 2.1. If Φ ∈ C∞
σ,tan(Ω) and if u ∈ C∞

σ,tan(Ω) satisfies [(2Su)n + αu]tan = 0 on ∂Ω
then it holds that, on ∂Ω,

Φ · (Dun) = Φ · [dn(u)− αu].

Proof. Fix p ∈ ∂Ω. Let τ ∈ Tp(∂Ω) and choose a curve γ : q = q(s) on ∂Ω such that q(0) = p
and q̇(0) = τ . Since we will be working with the outward unit normal vector to ∂Ω at q, for
different points q ∈ ∂Ω, it is convenient, in this proof, to make the dependence of n on q
explicit: n = nq.

Since u · nq = 0 for all q on the curve γ, and using the definition of the differential of the
Gauss map, we find

0 =
d

ds
(u · nq) = (Du q̇(s)) · nq + u · dnq(q̇(s)).

Recalling that dnq is self-adjoint and that u is tangent to ∂Ω, i.e. u ∈ Tq(∂Ω), we deduce
that

((Du)tnq) · q̇(s) = −dnq(u) · q̇(s). (2.3)



NAVIER BCS, 3D MULTIPLY CONNECTED 5

Next we add (Dunq) · q̇(s) to both sides above and, since 2Su = Du+(Du)t, we obtain that

(2Sunq) · q̇(s) = (Dunq) · q̇(s)− dnq(u) · q̇(s).
In particular, at q(0) = p, we find

(2Sunp) · τ = (Dunp) · τ − dnp(u) · τ,
and hence

(Dunp) · τ = [dnp(u) + (2Sunp)] · τ.
Recall that τ was chosen as an arbitrary vector in Tp(∂Ω). We use the Navier boundary

condition satisfied by u to deduce that

(Dunp)tan = [dnp(u)− αu]tan.

This identity is valid at any point p on ∂Ω, so we can now abandon the explicit mention
to p in dnp. Since the normal component of Φ vanishes on ∂Ω it follows that

Φ · (Dun) = Φtan(Dun)tan = Φtan[dn(u)− αu]tan = Φ · [dn(u)− αu],

as we wished.
□

In what follows we use (H1
σ,tan(Ω))

′ to denote the abstract dual space to H1
σ,tan(Ω).

We are now ready to introduce the definition of a weak solution to (1.1).

Definition 2.2. Fix α ∈ C0(∂Ω) and u0 ∈ L2
σ,tan(Ω). Let u ∈ Cloc([0,+∞);w−L2

σ,tan(Ω))∩
L2
loc((0,+∞);H1

σ,tan(Ω)). In addition, suppose that ∂tu ∈ L
4/3
loc ((0,+∞); (H1

σ,tan(Ω))
′). We

say u is a weak solution of (1.1) with initial data u0 if, for every test vector field Φ ∈
C∞
c ([0,+∞);C∞

σ,tan(Ω)), it holds that∫ +∞

0

∫
Ω
{∂tΦ · u + [(u · ∇)Φ] · u} dx dt+

∫
Ω
Φ(0, x) · u0(x) dx

= ν

∫ +∞

0

(∫
Ω
DΦ : Dudx+

∫
∂Ω

Φ · [αu− dn(u)] dS

)
dt. (2.4)

3. The Stokes operator

We denote by P the orthogonal projection of the space of square-integrable vector fields
in Ω onto L2

σ,tan(Ω), also known as the Leray projector. To eliminate the pressure from the
Navier-Stokes equations, one applies P to it. Clearly, we have P∂tu = ∂tPu = ∂tu, as u is
already divergence-free and tangent to the boundary. The nonlinear term becomes P[u · ∇u]
and the viscous term becomes νP∆u. As is well-known, the Laplacian does not commute
with the Leray projector, despite the fact that ∆u is divergence free, because the vector field
∆u is not, in general, tangent to ∂Ω.

The elliptic operator −P∆ is called the Stokes operator and the semigroup it generates is
called the Stokes semigroup. These objects play a key role in the analysis of the viscous flow
equations. For flows with no-slip boundary conditions, the natural phase space is H1

σ,0(Ω),
and the properties of the Stokes operator and associated semigroup acting on this space are
well-understood. For the present work, we require properties of the Stokes operator, when
acting on the space of vector fields satisfying the Navier boundary conditions. This is the
subject of the present section.

We return to the calculation performed to obtain (2.2) and we concentrate on the Laplacian
term. Since we are only concerned with spatial derivatives, we consider time-independent
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vector fields. More precisely, assume u is a time-independent, smooth, divergence-free vector
field on Ω, tangent to ∂Ω, and let Φ ∈ C∞

σ,tan(Ω). Integration by parts yields the identity

−
∫
Ω
Φ∆u =

∫
Ω
DΦ : Du−

∫
∂Ω

Φ · (Dun) dS.

Assume, further, that u satisfies the Navier boundary condition [(2Su)n+αu]tan = 0. Then,
using the result in Lemma 2.1 we obtain

−
∫
Ω
Φ∆u =

∫
Ω
DΦ : Du+

∫
∂Ω

Φ · [αu− dn(u)] dS. (3.1)

We see that the right-hand-side above is well-defined for u ∈ H1
σ,tan(Ω) and Φ ∈ H1

σ,tan(Ω). We
thus introduce the Stokes operator, acting on flows satisfying the Navier boundary conditions,
as

A : H1
σ,tan(Ω) → (H1

σ,tan(Ω))
′

u 7→ Au ,

where Au is defined through the duality relation

⟨Au, v⟩ :=
∫
Ω
Dv : Du+

∫
∂Ω
v · [αu− dn(u)] dS, v ∈ H1

σ,tan(Ω). (3.2)

Lemma 3.1. The right-hand-side of (3.2) gives rise to a bounded bilinear symmetric operator
B : H1

σ,tan(Ω)×H1
σ,tan(Ω) → R.

Proof. Let (u, v) ∈ H1
σ,tan(Ω)×H1

σ,tan(Ω) and define B : H1
σ,tan(Ω)×H1

σ,tan(Ω) → R by

B(u, v) =

∫
Ω
Dv : Du+

∫
∂Ω
v · [αu− dn(u)] dS.

Recall λ as introduced in (2.1). Then

|B(u, v)| =
∣∣∣∣∫

Ω
Dv : Du+

∫
∂Ω
v · [αu− dn(u)] dS

∣∣∣∣
⩽ C∥u∥H1∥v∥H1 +

(
∥λ∥L∞(∂Ω) + ∥α∥L∞(∂Ω)

)
∥u∥L2(∂Ω)∥v∥L2(∂Ω)

⩽ (C + ∥λ∥L∞(∂Ω) + ∥α∥L∞(∂Ω))∥u∥H1∥v∥H1 ,

where the last inequality is a consequence of the continuity of the trace of functions in H1(Ω)
onto L2(∂Ω). □

Recall the trace inequality (see, for instance, [9, Theorem III.2.19]),

∥u∥2L2(∂Ω) ≲ ∥u∥L2(Ω)∥u∥H1(Ω). (3.3)

Note, also, that a divergence-free vector field u on Ω, which is tangent to ∂Ω, has mean
zero for each of its components uj , j = 1, 2, 3. This follows easily by integrating by parts∫
Ω
u · ∇xj . Recall the Poincaré inequality for mean-free functions

∥u∥H1(Ω) ⩽ c∥Du∥L2(Ω). (3.4)

We claim that there exists β > 0 such that B̃ := B + βI, with I denoting the identity

operator, is coercive with respect to the H1-norm, i.e., there exists K > 0 such that B̃(u, u) ⩾
K∥u∥2H1 for all u ∈ H1

σ,tan(Ω). Indeed, this follows immediately from the estimate below:

B(u, u) =

∫
Ω
|Du|2 +

∫
∂Ω

(α|u|2 − dn(u) · u) dS
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⩾ ∥Du∥2L2 − (∥α∥L∞(∂Ω) + ∥λ∥L∞(∂Ω))∥u∥2L2(∂Ω)

⩾ ∥Du∥2L2 − (∥α∥L∞(∂Ω) + ∥λ∥L∞(∂Ω))C∥u∥L2(Ω)∥Du∥L2(Ω)

⩾
1

2
∥Du∥2L2 − β∥u∥2L2(Ω)

⩾ K∥u∥2H1 − β∥u∥2L2(Ω). (3.5)

Above, in the second inequality we used the trace inequality (3.3). In the third inequality we
used Young’s inequality with

β =
(∥α∥L∞(∂Ω) + ∥λ∥L∞(∂Ω))

2C2

2
.

Finally, in the fourth inequality we used the Poincaré inequality (3.4), where K = (2c2)−1.

It follows from (3.5) that B̃ is a positive-definite bilinear operator on H1
σ,tan(Ω), thus an

inner product. We use the notation

((u, v)) := B̃(u, v) (3.6)

for this inner product and we note that it gives rise to an equivalent norm on H1
σ,tan(Ω).

Proposition 3.2. There exists a sequence {vj}∞j=1 ⊂ H1
σ,tan(Ω) of eigenfunctions of A, with

corresponding eigenvalues {λj}∞j=1 ⊂ R, which form an orthonormal basis of L2
σ,tan(Ω) and,

also, a basis of H1
σ,tan(Ω) which is orthogonal with respect to the inner product ((·, ·)). The

eigenvalues, ordered increasingly, satisfy λj → ∞ as j → ∞.

Proof. Let us introduce Ã := A+ βI, where β is the constant from estimate (3.5). Consider

Dom(Ã) := {u ∈ H1
σ,tan(Ω) | Ãu ∈ L2

σ,tan(Ω)} and note that Dom(Ã) is compactly imbedded

in L2
σ,tan(Ω). Furthermore, it is easy to see that Dom(Ã) is dense in L2

σ,tan(Ω) with respect

to the L2-norm.
The coerciveness of B̃, together with the continuity and symmetry of B and the com-

pactness mentioned above, imply that the operator Ã has an inverse which is a self-adjoint

compact operator from L2
σ,tan(Ω) to Dom(Ã) ⊂ H1

σ,tan(Ω). Therefore it follows from the
spectral theory for compact self-adjoint operators that there exists an orthonormal basis of

L2
σ,tan(Ω) of eigenvectors of Ã, along with an increasing sequence of eigenvalues tending to

+∞, see [9, Section 6, Chapter II]. This basis is also orthogonal with respect to the ((·, ·))
inner product on H1

σ,tan(Ω), and it is a complete set, [9, Corollary II.3.8 and Theorem IV.5.5].

Clearly, an eigenvector vj of Ã is also an eigenvector of A, albeit with eigenvalue λj − β. □

4. Existence of weak solution

In this section we establish global existence of a weak solution to (1.1) with initial data
in L2

σ,tan, using a Galerkin approximation, and we derive two formulations of the energy
inequality.

Theorem 4.1. Let α ∈ C0(∂Ω) and u0 ∈ L2
σ,tan(Ω) be given. Then there exists u ∈

Cloc([0,+∞);w−L2
σ,tan(Ω))∩L2

loc((0,+∞);H1
σ,tan(Ω)), such that, ∂tu ∈ L

4/3
loc ((0,+∞); (H1

σ,tan(Ω))
′)

and, for any test vector field Φ ∈ C∞
c ([0,+∞);C∞

σ,tan(Ω)), the identity (2.4) holds true.

Remark 4.2. Theorem 4.1 is equivalent to the existence of a weak solution in the sense of
Definition 2.2.
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Proof. The proof is a slight adaptation of the well-known proof of existence of weak Leray
solutions. We outline the main steps and highlight only the differences with respect to the
standard argument.

The first step is to consider the orthonormal basis of L2
σ,tan(Ω) given by the eigenfunctions

of A, {vj}j ⊂ H1
σ,tan(Ω), obtained in Proposition 3.2. We use these vector fields to build finite

dimensional approximations uM through the Galerkin method, by projecting the (weak form
of the) PDE onto the space generated by the firstM vector fields in the basis, namely XM :=

span{v1, . . . , vM}. The approximations uM are given by uM =
∑M

j=1 g
M
j vj , with coefficients

gMj = gMj (t) which are solutions of a system of quadratic ODEs with constant coefficients.

Short-time existence is an easy consequence of Picard’s theorem. The resulting uM satisfy∫
Ω

{
(∂tu

M ) · vj + [(uM · ∇)uM ] · vj
}
dx

= −ν
(∫

Ω
DuM : Dvj dx+

∫
∂Ω

[αuM − dn(uM )] · vj dS
)
. (4.1)

Standard energy estimates for (4.1) give:

d

dt
∥uM∥2L2(Ω) ⩽ −2ν∥DuM∥2L2(Ω) + 2ν

(
∥λ∥L∞(∂Ω) + ∥α∥L∞(∂Ω)

)
∥uM∥2L2(∂Ω),

where λ was introduced in (2.1). We use the trace inequality (3.3) for uM , together with the
Poincaré inequality (3.4), since the mean of uM is zero, so that ∥uM∥H1(Ω) ≲ ∥DuM∥L2(Ω),
followed by Young’s inequality, to deduce that

d

dt
∥uM∥2L2(Ω) + ν∥DuM∥2L2(Ω) ⩽ Cν

(
∥λ∥L∞(∂Ω) + ∥α∥L∞(∂Ω)

)
∥uM∥2L2(Ω). (4.2)

The Grönwall lemma yields {uM} bounded in L∞
loc((0,+∞);L2

σ,tan(Ω))∩L2
loc((0,+∞);H1

σ,tan(Ω)),

from which we deduce global existence of uM for fixed M . Furthermore, the bounds on uM

are uniform with respect to M .

In order to obtain, from these bounds, the boundedness of {∂tuM} in L4/3
loc ((0,+∞); (H1

σ,tan(Ω))
′),

uniformly in M , we need to use the orthogonality of {vj} with respect to the inner product
((·, ·)) introduced in (3.6). Let PM denote the L2-orthogonal projection onto XM and note
that, for t > 0 fixed, both ∂tu

M and AuM belong to XM , since Avj = λjvj ∈ XM . Using
the notation from Section 3 we note that the right-hand-side of (4.1) is a weak formulation
of the right-hand-side of:

∂tu
M + PM [(uM · ∇)uM ] = −νAuM in Ω,

div uM = 0 in Ω,

uM · n = 0, [(2SuM )n+ αuM ]tan = 0 on ∂Ω.

(4.3)

Let W ∈ H1
σ,tan(Ω). Then W = PMW + Y , where Y is orthogonal to PMW with respect

to both the L2 inner product and the ((·, ·)) inner product. In particular, using the ((·, ·))
inner product and its induced, H1-equivalent, norm, it holds that

∥PMW∥H1 ⩽ C∥W∥H1 . (4.4)

Then, using the definition of A by duality, (3.2), we have

|⟨∂tuM ,W ⟩| = |⟨∂tuM ,PMW ⟩|

⩽

∣∣∣∣∫
Ω
[(uM · ∇)uM ] · PMW dx

∣∣∣∣
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+ ν

∣∣∣∣∫
Ω
DuM : DPMW dx

∣∣∣∣
+ ν

∣∣∣∣∫
∂Ω

[αuM − dn(uM )] · PMW dS

∣∣∣∣ .
Each of the three integrals above may be estimated in a standard way, using Hölder’s

inequality, interpolation, and the Sobolev imbedding H1 ⊂ L6 for the first term, Cauchy-
Schwartz for the second, and the trace theorem for the boundary term, to find:

|⟨∂tuM ,W ⟩| ⩽ C
(
∥uM∥1/2

L2 ∥uM∥3/2
H1 + ∥uM∥H1

)
∥PMW∥H1 .

It then follows from (4.4) that

∥∂tuM∥(H1
σ,tan)

′ ⩽ C
(
∥uM∥1/2

L2 ∥uM∥3/2
H1 + ∥uM∥H1

)
.

Now, recall that we showed, from the energy estimate (4.2), that uM is bounded in L∞
loc((0,+∞);L2

σ,tan(Ω))∩
L2
loc((0,+∞);H1

σ,tan(Ω)). In view of this we obtain, immediately, the desired bound: ∂tu
M is

bounded in L
4/3
loc ((0,+∞); (H1

σ,tan(Ω))
′), uniformly with respect to M .

To conclude the proof of existence, a standard compactness argument allows us to pass
to the limit M → +∞. Indeed, we may choose a subsequence, not relabeled, such that uM

converges weakly-∗ in L∞
loc((0,+∞);L2

σ,tan(Ω)), weakly in L2
loc((0,+∞);H1

σ,tan(Ω)), strongly

in L2
loc((0,+∞);L2

σ,tan(Ω)) to a limit u. In particular this implies, by the trace inequality

(3.3), that the trace of uM on ∂Ω converges strongly in L2
loc((0,+∞);L2

σ,tan(∂Ω)) to the
corresponding trace of u. Furthermore, the Aubin-Lions compactness theorem implies u ∈
Cloc([0,+∞);w − L2

σ,tan(Ω)).

Using Φ ∈ C∞
c ([0,+∞);C∞

σ,tan(Ω)) as test vector field in a weak formulation of (4.3), we
can pass to the limit M → ∞ and obtain the weak formulation (2.4). This concludes the
proof. □

Our next result concerns a different way of writing the term on the right hand side of (2.4),
under the time integral. This will be useful to write (2.4) in a different way, which will lead
to two sets of energy inequalities.

Proposition 4.3. Let u ∈ H1
σ,tan(Ω). Then, for every Φ ∈ C∞

σ,tan(Ω) it holds that∫
Ω
DΦ : Dudx+

∫
∂Ω

Φ · [αu−dn(u)] dS

=2

∫
Ω
SΦ : Sudx+

∫
∂Ω
αΦ · udS. (4.5)

Proof. First assume that u is smooth, divergence free and tangent to ∂Ω. Let Φ ∈ C∞
σ,tan(Ω).

Recall expression (2.3) deduced in the proof of Lemma 2.1. The same argument used there
yields

[(Du)tn]tan = −[dn(u)]tan.

We compute ∫
Ω
DΦ : Dudx =

∫
Ω
DΦ : 2Sudx−

∫
Ω
DΦ : (Du)t dx

=2

∫
Ω
SΦ : Sudx−

∫
Ω
DΦ : (Du)t dx.
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Next we observe that, since u is divergence free,

−
∫
Ω
DΦ : (Du)t dx = −

∫
∂Ω

Φ · [(Du)tn] dS =

∫
∂Ω

Φ · [dn(u)] dS.

This establishes (4.5) for smooth u. We conclude the proof by density. □

In view of Proposition 4.3 we have obtained an alternative weak formulation, equivalent
to (2.4), namely,∫ +∞

0

∫
Ω
{∂tΦ · u + [(u · ∇)Φ] · u} dx dt+

∫
Ω
Φ(0, x) · u0(x) dx

= ν

∫ +∞

0

(∫
Ω
2SΦ : Sudx+

∫
∂Ω
αΦ · udS

)
dt. (4.6)

We will now amend our existence theorem to include this new weak formulation and we
note that two different energy inequalities arise.

Theorem 4.4. Let α ∈ C0(∂Ω) and u0 ∈ L2
σ,tan(Ω) be given. Then there exists a weak solu-

tion u, according to Definition 2.2, such that, for any test vector field Φ ∈ C∞
c ([0,+∞);C∞

σ,tan(Ω)),
(4.6) holds, in addition to identity (2.4) holding true.

Moreover, for almost every s ⩾ 0 and for every t ⩾ s, u satisfies both of the following
energy inequalities:

∥u(t)∥2L2+2ν

∫ t

s
∥Du∥2L2 dτ

⩽ ∥u(s)∥2L2 + 2ν

∫ t

s

∫
∂Ω

(
∥λ∥L∞(∂Ω) − α

)
|u|2 dS dτ, (4.7)

and

∥u(t)∥2L2+4ν

∫ t

s
∥Su∥2L2 dτ ⩽ ∥u(s)∥2L2 − 2ν

∫ t

s

∫
∂Ω
α|u|2 dS dτ. (4.8)

Finally, both (4.7) and (4.8) are satisfied for s = 0.

Proof. The existence part is an easy consequence of the existence result, Theorem 4.1, to-
gether with the equivalence between the two weak formulations (2.4) and (4.6). All that
remains to prove are the energy inequalities.

To show (4.7) we revisit (4.1), multiplying by gMj and summing in j, bounding only the
shape operator, to find

d

dt
∥uM∥2L2(Ω) ⩽ −2ν∥DuM∥2L2(Ω) + 2ν

∫
∂Ω

(
∥λ∥L∞(∂Ω) − α

)
|uM |2 dS. (4.9)

Let r ⩾ s and integrate in time from s to r to obtain

∥uM (r, ·)∥2L2(Ω) ⩽ −2ν

∫ r

s
∥DuM (τ, ·)∥2L2(Ω) dτ

+ 2ν

∫ r

s

∫
∂Ω

(
∥λ∥L∞(∂Ω) − α

)
|uM |2 dS dτ + ∥uM (s, ·)∥2L2(Ω). (4.10)

Fix t ⩾ s. As is done in the case of no-slip boundary conditions, see [22, Proposition 14.1],
choose ϕ ∈ C∞

c (R+),
∫
R+

|ϕ|2dr = 1, suppϕ ⊂ (0, 1). Let ε > 0 and set ϕε = ϕε(r) ≡
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1√
ε
ϕ
(
r−t
ε

)
, r ∈ R+. We multiply (4.10) by |ϕε(r)|2, move the term with DuM to the left-

hand-side, and observe that ϕε vanishes if r ⩽ s. We may therefore integrate on R+ to deduce
that ∫ +∞

0
|ϕε|2(r)∥uM (r, ·)∥2L2(Ω) dt+ 2ν

∫ +∞

0
|ϕε|2(r)

∫ r

s
∥DuM (τ, ·)∥2L2(Ω) dτ dr

⩽ 2ν

∫ +∞

0
|ϕε|2(r)

∫ r

s

∫
∂Ω

(
∥λ∥L∞(∂Ω) − α

)
|uM |2 dS dτ dr + ∥uM (s, ·)∥2L2(Ω). (4.11)

Recall, from the proof of Theorem 4.1, that, passing to subsequences as needed, we may
assume uM converges to a weak solution u weakly in L2

loc((0,+∞);H1
σ,tan(Ω)) and strongly in

L2
loc((0,+∞);L2

σ,tan(Ω)) and the trace of uM on ∂Ω converges strongly in L2
loc((0,+∞);L2

σ,tan(∂Ω))
to the corresponding trace of u. Using these properties of convergence and passing to the
lim infM→+∞ in the inequality (4.11) yields∫ +∞

0
|ϕε|2(r)∥u(r, ·)∥2L2(Ω) dr + 2ν

∫ +∞

0
|ϕε|2(r)

∫ r

s
∥Du(τ, ·)∥2L2(Ω) dτ dr

⩽ 2ν

∫ +∞

0
|ϕε|2(r)

∫ r

s

∫
∂Ω

(
∥λ∥L∞(∂Ω) − α

)
|u|2 dS dτ dr

+ lim inf
M→+∞

∥uM (s, ·)∥2L2(Ω).

Assume now that t is a Lebesgue point of r 7→ ∥u(r, ·)∥2L2 . Then, passing to the limit ε → 0
we find

∥u(t, ·)∥2L2(Ω) + 2ν

∫ t

s
∥Du(τ, ·)∥2L2(Ω) dτ

⩽ 2ν

∫ t

s

∫
∂Ω

(
∥λ∥L∞(∂Ω) − α

)
|u|2 dS dτ + lim inf

M→+∞
∥uM (s, ·)∥2L2(Ω). (4.12)

Recall that u ∈ Cloc([0,+∞);w−L2
σ,tan(Ω)). This extra regularity enables us to deduce that

(4.12) holds true for all t ⩾ s. Finally, since uM converges to u strongly in L2
loc((0,+∞);L2

σ,tan(Ω))

it follows that, again passing to subsequences as needed, uM (s) converges to u(s) strongly in
L2
σ,tan(Ω) for almost every s. This concludes the proof of (4.7).

Next, we note that, by virtue of Proposition 4.3, we have that the sequence uM also satisfies∫
Ω

{
(∂tu

M ) · vj + [(uM · ∇)uM ] · vj
}
dx

= −ν
(∫

Ω
2SuM : Svj dx+

∫
∂Ω
αuM · vj dS

)
.

Once again we multiply this identity by gMj and sum in j to obtain

d

dt
∥uM∥2L2(Ω) ⩽ −4ν∥SuM∥2L2(Ω) − 2ν

∫
∂Ω
α|uM |2 dS. (4.13)

The differential inequality (4.13) is analogous to (4.9) and so we may proceed with the same
steps as in the proof of (4.7) to arrive at (4.8).

Finally, note that s = 0 is a distinguished time since, by construction, uM (0) converges
strongly to u(0) = u0 when M → +∞.

This concludes the proof.
□
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Definition 4.5. Fix α ∈ C0(∂Ω) and u0 ∈ L2
σ,tan(Ω). Let u ∈ Cloc([0,+∞);w−L2

σ,tan(Ω))∩
L2
loc((0,+∞);H1

σ,tan(Ω)), with ∂tu ∈ L
4/3
loc ((0,+∞); (H1

σ,tan(Ω))
′), be a weak solution of (1.1)

with initial data u0. We say u is a Leray-Hopf weak solution if, additionally, for almost every
s ⩾ 0, and for s = 0, and every t ⩾ s, u satisfies both energy inequalities (4.7) and (4.8).

Remark 4.6. Since ∂tu ∈ L
4/3
loc ((0,+∞); (H1

σ,tan(Ω))
′) it is standard to extend the definition

of weak solution so as to allow for time-independent test vector fields Φ ∈ C∞
σ,tan(Ω). For

such test vector fields the identity (4.6) should be substituted by∫ t

0

∫
Ω
[(u · ∇)Φ] · udx ds+

∫
Ω
Φ(x) · [u0(x)− u(t, x)] dx

= ν

∫ t

0

(∫
Ω
2SΦ : Sudx+

∫
∂Ω
αΦ · udS

)
ds. (4.14)

We will make use of this alternative formulation later in this work.

5. Symmetric Poincaré inequality

In Theorem 4.4 we obtained the existence of a weak solution to (1.1) which satisfies two
different energy inequalities. In the remainder of this article, we will be showing that, un-
der appropriate hypotheses on the friction coefficient α, we can prove exponential decay of
the weak solution in energy norm. A crucial tool to prove such results are Poincaré-type
inequalities. In this section we state and prove such an inequality in terms of the symmetric
part of the Jacobian of u; this is related to Korn’s inequality in H1

0 , see [9, Remark IV.7.3,
(IV.87)]. This result is already known, see [4, Lemma 3.3]; we include a proof for the sake of
completeness.

Recall the notation KerS := {u ∈ H1
σ,tan(Ω) |Su = 0} and (KerS)⊥ := {u ∈ H1

σ,tan(Ω) |
∫
Ω u·

v dx = 0 for all v ∈ KerS}.

Proposition 5.1. There exists a constant C = C(Ω) > 0 such that, for all u ∈ (KerS)⊥, it
holds that

∥u∥L2(Ω) ⩽ C∥Su∥L2(Ω). (5.1)

Proof. The proof proceeds in three steps.

Step 1. We claim that there is a constant K > 0 such that, for all u ∈ H1
σ,tan(Ω) it holds

that

∥Du∥L2(Ω) ⩽ 2∥Su∥L2(Ω) +K∥λ∥L∞(∂Ω)∥u∥L2(Ω).

To see this let u ∈ H1
σ,tan(Ω) and observe that, in (4.5), through a density argument, we can

use Φ = u. This eventually yields∫
Ω
|Du|2 dx = 2

∫
Ω
|Su|2 dx+

∫
∂Ω
u · dn(u) dS.

Therefore, using the trace inequality, followed by Young’s inequality, we obtain

∥Du∥2L2(Ω) ⩽ 2∥Su∥2L2(Ω) + ∥λ∥L∞(∂Ω)∥u∥2L2(∂Ω)

⩽ 2∥Su∥2L2(Ω) +K∥λ∥L∞(∂Ω)∥u∥L2(Ω)∥Du∥L2(Ω)

⩽ 2∥Su∥2L2(Ω) +

(
K∥λ∥L∞(∂Ω)

)2
2

∥u∥2L2(Ω) +
∥Du∥2L2(Ω)

2
.
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Hence,

∥Du∥2L2(Ω) ⩽ 4∥Su∥2L2(Ω) +
(
K∥λ∥L∞(∂Ω)

)2 ∥u∥2L2(Ω),

from which the claim follows easily.

Step 2. Next, we claim that there exists C > 0 such that, for all u ∈ (KerS)⊥, we have

∥u∥L2(Ω) ⩽ C∥Su∥L2(Ω) +
1

2K∥λ∥L∞(∂Ω)
∥Du∥L2(Ω),

where K is precisely the constant from Step 1. We argue by contradiction: assume it is not
so. Then, for every N ∈ N, there exists uN ∈ (KerS)⊥ such that

∥uN∥L2(Ω) > N∥SuN∥L2(Ω) +
1

2K∥λ∥L∞(∂Ω)
∥DuN∥L2(Ω).

Dividing the inequality above by ∥uN∥L2(Ω) we may assume, without loss of generality, that
∥uN∥L2(Ω) = 1, so that

1 > N∥SuN∥L2(Ω) +
1

2K∥λ∥L∞(∂Ω)
∥DuN∥L2(Ω)

⩾
1

2K∥λ∥L∞(∂Ω)
∥DuN∥L2(Ω).

In particular, this means that {uN} is a bounded sequence in H1
σ,tan(Ω). Thus, passing to a

subsequence as needed, we may assume that uN converges weakly in H1
σ,tan(Ω) to some u.

Since H1
σ,tan(Ω) is compactly imbedded in L2

σ,tan(Ω) it follows that ∥u∥L2(Ω) = 1. However,
since

1

N
> ∥SuN∥L2(Ω) +

1

2K∥λ∥L∞(∂Ω)N
∥DuN∥L2(Ω)

⩾ ∥SuN∥L2(Ω),

it follows that Su = 0. But originally we had uN ∈ (KerS)⊥ so, since (KerS)⊥ is a closed
subspace of H1

σ,tan(Ω) (and of L2
σ,tan(Ω)), it follows that u ∈ KerS ∩ KerS⊥, i.e. u = 0, a

contradiction with ∥u∥L2 = 1.

Step 3. We put together the results in Steps 1 and 2 to conclude:

∥u∥L2(Ω) ⩽ C∥Su∥L2(Ω) +
1

2K∥λ∥L∞(∂Ω)
∥Du∥L2(Ω)

⩽ C∥Su∥L2(Ω) +
1

2K∥λ∥L∞(∂Ω)

(
2∥Su∥L2(Ω) +K∥λ∥L∞(∂Ω)∥u∥L2(Ω)

)
⩽

(
C +

1

K∥λ∥L∞(∂Ω)

)
∥Su∥L2(Ω) +

∥u∥L2(Ω)

2
.

This yields the desired estimate and concludes the proof.
□
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6. Exponential decay – Part 1

In this section, we put together the energy inequalities in Theorem 4.4 and the symmetric
Poincaré-type inequality in Proposition 5.1 to obtain our first exponential decay results, using
both energy inequalities and following the path in which such estimates are obtained in the
no-slip case.

Theorem 6.1. Let Ω be a bounded, connected open set in R3, with smooth boundary. Con-
sider u0 ∈ L2

σ,tan(Ω) and let u be a Leray-Hopf weak solution of the incompressible Navier-
Stokes equations (1.1) with Navier boundary conditions and initial data u0, according to
Definition 4.5. Then we have:

(1) If Ω is such that KerS = {0} and if the friction coefficient α = α(x) ⩾ 0 for all
x ∈ ∂Ω, then u → 0 strongly in L2(Ω), exponentially fast, as t → +∞. More
precisely, there exists C > 0 such that ∥u(t)∥L2(Ω) ⩽ ∥u0∥L2(Ω) exp(−Cνt).

(2) If the friction coefficient α = α(x) > 0, x ∈ ∂Ω, then, with no further restrictions on
Ω, the same conclusion above holds true.

Proof. Let us begin by assuming that Ω is such that KerS = {0}. In this case we can use
the Poincaré-type inequality in Proposition 5.1. Recall the energy inequality (4.8), valid for
a.e. s ⩾ 0 and for s = 0 and for every t ⩾ s, which we rewrite as

∥u(t)∥2L2 ⩽ ∥u(s)∥2L2 − 4ν

∫ t

s
∥Su∥2L2 dτ − 2ν

∫ t

s

∫
∂Ω
α|u|2 dS dτ.

Now, under the additional assumption that α ⩾ 0 and using (5.1), it follows that

∥u(t)∥2L2 ⩽ ∥u(s)∥2L2 −
4ν

C

∫ t

s
∥u(τ)∥2L2 dτ.

Use the version of Grönwall’s inequality in Proposition A.1 with y(t) = ∥u(t)∥2L2 and K =
4ν/C to conclude the proof of item (1).

Next, assume only that α > 0. Let η ∈ (0, 1). Taking a convex combination of the energy
inequalities (4.7) and (4.8) produces the estimate

∥u(t)∥2L2 + 2νη

∫ t

s
∥Du∥2L2 dτ + 4ν(1− η)

∫ t

s
∥Su∥2L2 dτ

⩽ ∥u(s)∥2L2 + 2νη

∫ t

s

∫
∂Ω

(
∥λ∥L∞(∂Ω) − α

)
|u|2 dS dτ

− 2ν(1− η)

∫ t

s

∫
∂Ω
α|u|2 dS dτ

= ∥u(s)∥2L2 − 2ν

∫ t

s

∫
∂Ω

(
α− η∥λ∥L∞(∂Ω)

)
|u|2 dS dτ. (6.1)

Again, this is valid for a.e. s ⩾ 0 and for s = 0 and for every t ⩾ s.
Since α ∈ C0(∂Ω), with ∂Ω compact, and because α > 0, we can choose

0 < η = min

{
minx∈∂Ω α(x)

∥λ∥L∞(∂Ω)
,
1

2

}
< 1.

This allows us to discard the term with the boundary integral.
We may thus re-write (6.1) as

∥u(t)∥2L2 ⩽ ∥u(s)∥2L2 − 2νη

∫ t

s
∥Du∥2L2 dτ − 4ν(1− η)

∫ t

s
∥Su∥2L2 dτ,
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so that, discarding additionally the term with the symmetric derivative and using the classical
Poincaré inequality, valid since u has vanishing mean, we deduce that

∥u(t)∥2L2 ⩽ ∥u(s)∥2L2 −
2νη

C

∫ t

s
∥u(τ)∥2L2 dτ.

Using once more Proposition A.1 with y(t) = ∥u(t)∥2L2 and K = 2νη/C we establish item
(2).

This concludes the proof.
□

7. Exponential decay – Part 2

In this last section we will address the large time behavior of solutions of the incompressible
Navier-Stokes equations with Navier boundary conditions when the friction coefficient α
vanishes identically on the boundary of the domain. We have already considered this for
domains Ω such that KerS = {0}, so we now concentrate only on fluid domains for which
KerS ̸= {0}. Recall that KerS was defined as a subspace of H1

σ,tan(Ω) so, in particular,
vector fields in KerS must be tangent to ∂Ω. As usual we assume Ω is a bounded, smooth,
open set in R3, with smooth boundary and not necessarily simply connected.

We begin with a well-known elementary characterization of vector fields w = w(x) in R3

for which Sw = 0.

Lemma 7.1. Let w = w(x) ∈ H1(Ω) be a vector field such that Sw = 0 for all x ∈ Ω. Then
there exist constant vectors a, b ∈ R3 such that

w(x) = a+ b ∧ x.

Moreover,

∫
Ω
w dx = a and curlw = b.

The proof of Lemma 7.1 can be found in [9, Lemma IV.7.5]; see also [29, Chapter 1, Lemma
1.1].

Equivalently stated, the result in Lemma 7.1 is that an H1(Ω) vector field w for which
Sw = 0 is the infinitesimal generator of the motion of a rigid body; that is, translation
and rotation about an (at least one) axis. With this in mind it is intuitively clear that if,
additionally, such a vector field is non-zero and tangent to the boundary of a bounded domain
Ω, then Ω is a solid of revolution around an axis. In the following proposition we will formalize
this statement along with a partial converse.

Proposition 7.2. Assume that Ω is a bounded, smooth, connected domain in R3.

(1) Let b ∈ R3, b ̸= 0. If Ω is a solid of revolution with symmetry axis s 7→ a+ sb, s ∈ R,
then (b ∧ (x− a)) · n = 0 for every x ∈ ∂Ω, n = n(x).

(2) Conversely, let a, b ∈ R3, b ̸= 0, and consider the vector field w = w(x) = a+ b ∧ x.
Assume that w ·n = 0 for every x ∈ ∂Ω, n = n(x). Then w(x) = b∧ (x− c) for some
c ∈ R3 and Ω is a solid of revolution with symmetry axis s 7→ c+ sb, s ∈ R.

Proof. To see the first statement let us take, without loss of generality, a = (0, 0, 0) and
b = (0, 0, 1) = e3, otherwise change variables. Assume that Ω is a solid of revolution with
respect to the z-axis. Equivalently, we suppose that (the components of) ∂Ω is (are concentric

surfaces) given by f(
√
x21 + x22, x3) = 0, for some smooth real-valued function(s) f for which

0 is a regular value. The normal vector, at any point on ∂Ω, is, hence, a linear combination
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of xH := (x1, x2, 0) and e3. The desired conclusion follows once we observe that b ∧ x ≡
e3 ∧ x = (−x2, x1, 0).

We introduce the notation x⊥H := (−x2, x1, 0).
For the second statement let us, again, assume without loss of generality that b = e3,

otherwise we choose a different coordinate system.
Assume, first, that a · b = 0. In this case there exists c ∈ R3 such that a = b ∧ c and we

may translate our coordinate system so as to assume, again without loss of generality, that
a = 0. Summarizing, we wish to show that, if [e3 ∧ x] · n = 0 on ∂Ω, then Ω is invariant
under rotation around the z-axis. Since Ω is smooth it follows that (each component of) ∂Ω
is a level set of a smooth real-valued function f at a regular value of f ; this is a consequence
of the Collar Neighborhood theorem. In particular, ∇f ̸= 0 is smooth and parallel to n. Let

x̂H := xH/|xH | and x̂⊥H := x⊥H/|xH |. Then ∇f(x) may be decomposed uniquely as a linear

combination of x̂H , x̂⊥H and e3 and, if 0 = [e3 ∧ x] · n = x⊥H · n, it follows that ∇f · x̂⊥H = 0.

This means there is no azimuthal component of ∇f , that is, f(x) = f(
√
x21 + x22, x3). Thus

Ω is invariant under rotation around the z-axis, as desired.
Lastly, suppose a ·b ̸= 0. Writing a = aH +a3b and translating away c such that aH = b∧c

we can assume further, without loss of generality, that a = a3b = (0, 0, a3), with a3 ̸= 0.
From [a + b ∧ x] · n = 0 it follows that (a3e3 + x⊥H) · ∇f = 0. Hence a3∂x3f +∇f · x⊥H = 0
on ∂Ω. Since Ω was assumed to be bounded it follows that there are, at least, two points P1

and P2 on ∂Ω at which ∇f is parallel to b = e3. In particular, ∇f · x⊥H = 0 at P1 and P2. It
follows that a3∂x3f = 0 at P1 (and at P2) and, since a3 ̸= 0, ∂x3f vanishes at P1 (and at P2).
Since ∇f is parallel to e3 at P1 (and at P2) we conclude that ∇f(P1) = 0 (and ∇f(P2) = 0
as well), which is not possible. We deduce that this last case does not arise and, with this,
we conclude the proof.

□

The following result is an immediate consequence of Lemmas 7.1 and 7.2. This result may
also be found in [13, Theorem 1].

Corollary 7.3. Let Ω be a bounded, smooth, connected domain in R3. Then

(1) KerS = {0} if Ω is not invariant under rotation around an axis;
(2) dimKerS = 1 if Ω is invariant under rotation around a single axis;
(3) dimKerS = 3 if ∂Ω is a (are concentric) sphere(s).

We introduced KerS as a subspace of H1
σ,tan(Ω). We wish to consider the natural extension

of S to L2
σ,tan(Ω), with values in H−1(Ω); it’s kernel, a subspace of L2

σ,tan(Ω), will still be

denoted KerS. We consider the orthogonal decomposition L2
σ,tan(Ω) = (KerS)⊥ ⊕ KerS,

with respect to the L2-inner product. For each v ∈ L2
σ,tan(Ω) we denote the L2-projection of

v onto KerS by ProjKerSv.
The proposition below actually encompasses two facts in the case α = 0. The first one is

that infinitesimal generators of rigid rotations are stationary solutions of (1.1). This is not
surprising, given the physics of the problem. The second fact, which is not obvious, is that
for any weak solution v of (1.1), satisfying (4.14), we have that ProjKerSv is a conserved
quantity.

Proposition 7.4. Let u be a weak solution of the incompressible Navier-Stokes equations
with Navier boundary conditions, (1.1) with vanishing friction coefficient. Then the vector
field ProjKerSu is a stationary weak solution of (1.1).
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Proof. Let us assume that KerS ̸= {0}, otherwise the result is trivial.
By Proposition 7.2 this means that Ω is a rotationally invariant domain around some axis

of symmetry. From Corollary 7.3 we have KerS is either 1-dimensional or 3-dimensional.
Let us assume, first, that dimKerS = 1, so that Ω is invariant around a single axis.

Let b be a unit vector in the direction of the axis of symmetry of Ω. We may assume, as
usual, that b = e3. Recall Lemma 7.1, from which we deduce, together with the proof of
Proposition 7.2, that KerS = {βb∧(x−c), β ∈ R}.Wemay assume, without loss of generality,
that c = 0, by translating the coordinate system. In this case KerS = {βx⊥H , β ∈ R}. Let
C = CΩ := (∥x⊥H∥2L2(Ω))

−1. Then

ProjKerSu = C

(∫
Ω
u · x⊥H dx

)
x⊥H .

Let us denoteW := ProjKerSu. We will show thatW satisfies the weak formulation provided
in (4.14), with α = 0, and that W (t, ·) ≡ W0(·). In other words, for any Φ ∈ C∞

σ,tan(Ω), we
show that ∫ t

0

∫
Ω
[(W · ∇)Φ] ·W dx ds+

∫
Ω
Φ(x) · [W0(x)−W (t, x)] dx

= 2ν

∫ t

0

(∫
Ω
SΦ : SW

)
dx ds. (7.1)

We identify each of the three terms above.
First we observe that, since W ∈ KerS, it is immediate that the right-hand-side term of

(7.1) vanishes.
Next, because x⊥H is smooth and tangent to ∂Ω, it is possible to integrate by parts, in x,

the nonlinear term, obtaining:∫ t

0

∫
Ω
[(W · ∇)Φ] ·W dx ds = −

∫ t

0

∫
Ω
[(W · ∇)W ] · Φdx ds.

A direct calculation yields

x⊥H · ∇x⊥H = −xH = −∇
(
|xH |2

2

)
.

Therefore, since div Φ = 0 and Φ is tangent to ∂Ω, it follows that the nonlinear term in (7.1)
also vanishes.

Lastly, we will show that the second term on the left-hand-side of (7.1) vanishes, thereby
establishing (7.1).

Recall u is a weak solution of (1.1), thus it satisfies (4.14), with α = 0, for any test vector
field in C∞

σ,tan(Ω). We use Φ = x⊥H ∈ C∞
σ,tan(Ω) and we note that, just as for W , Sx⊥H = 0.

Additionally, it is straightforward to verify that the nonlinear term [(u ·∇)x⊥H ] ·u = 0. Using
this information in (4.14) leaves us with∫

Ω
x⊥H · [u0(x)− u(t, x)] dx = 0. (7.2)

Clearly, this implies that W (t, x) = W0(x), x ∈ Ω. Thus W is a stationary (weak) solution
of (1.1). This concludes the proof in the case dimKerS = 1.

The remaining case, dimKerS = 3, corresponds to ∂Ω being a sphere or concentric spheres.
Without loss of generality we assume, again, that the center of the sphere or concentric
spheres is c = 0. In this case all three unit vectors e1, e2 and e3 are directions of axes of
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symmetry of Ω and, using Lemma 7.1 and Proposition 7.2, we obtain that KerS is generated
by {e1 ∧ x, e2 ∧ x, e3 ∧ x}. Writing explicitly each of these vector products we have

KerS = {α(0,−x3, x2) + β(x3, 0,−x1) + γ(−x2, x1, 0), α, β, γ ∈ R}.
Let us introduce the notations Y1 := (0,−x3, x2), Y2 := (x3, 0,−x1) and Y3 := (−x2, x1, 0);

note that x⊥H = Y3. Furthermore, by symmetry, Yi and Yj are L2-orthogonal if i ̸= j. We
find, hence,

ProjKerSu =

3∑
i=1

1

∥Yi∥L2

(∫
Ω
u · Yi dx

)
Yi.

We want to show that ProjKerSu is a time-independent weak solution of (1.1) with α = 0.
As before, let W := ProjKerSu and consider identity (7.1), with Φ ∈ C∞

σ,tan(Ω). Clearly the
right-hand-side, once again, vanishes. To show that the nonlinear term vanishes it is enough
to show that, for any α = α(t), β = β(t), γ = γ(t),

[(αY1 + βY2 + γY3) · ∇](αY1 + βY2 + γY3)

is a gradient vector field, something which can be easily explicitly checked; we omit the
calculation. Lastly, we consider the second term on the left-hand-side of (7.1). To conclude
the proof that W is a stationary weak solution it is enough to show that(∫

Ω
u · Yi dx

)
Yi is time-independent, for i = 1, 2, 3. (7.3)

The proof of (7.3) is the same as the proof of (7.2) in the case dimKerS = 1, using, instead
of Φ = x⊥H , the test vector fields Φ = Yi ∈ C∞

σ,tan(Ω), i = 1, 2, 3.
□

Finally, still in the frictionless case α = 0, we prove decay of the weak solution with initial
data u0 to the steady rigid rotation given by ProjKerSu0.

Theorem 7.5. Let u be a Leray-Hopf weak solution of (1.1) with friction coefficient α = 0.
Then u→ ProjKerSu0 exponentially fast as t→ +∞. More precisely, there exist C > 0 such
that

∥u(t)− ProjKerSu0∥L2(Ω) ⩽ ∥u0 − ProjKerSu0∥L2(Ω) exp(−Cνt). (7.4)

Proof. We begin by recalling the energy inequality (4.8), substituting α = 0:

∥u(t)∥2L2 + 4ν

∫ t

s
∥Su∥2L2 dτ ⩽ ∥u(s)∥2L2 , (7.5)

for a.e. s ⩾ 0 and for s = 0 and for every t ⩾ s Next we note that, since u − ProjKerS u is
L2-orthogonal to ProjKerSu and because S (ProjKerSu) = 0, (7.5) can be re-written as

∥u(t)− ProjKerSu(t)∥2L2 + ∥ProjKerSu(t)∥2L2

+ 4ν

∫ t

s
∥S (u− ProjKerSu) ∥2L2 dτ

⩽ ∥u(s)− ProjKerSu(s)∥2L2 + ∥ProjKerSu(s)∥2L2 .

In view of Proposition 7.4 this inequality amounts to

∥u(t)− ProjKerSu(t)∥2L2 + 4ν

∫ t

s
∥S (u− ProjKerSu) ∥2L2 dτ

⩽ ∥u(s)− ProjKerSu(s)∥2L2 .
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Use the symmetric Poincaré-type inequality (5.1) to find

∥u(t)−ProjKerSu(t)∥2L2

⩽ ∥u(s)− ProjKerSu(s)∥2L2 − Cν

∫ t

s
∥u(τ)− ProjKerSu(τ)∥2L2 dτ.

Finally, using Proposition A.1 with y(t) = ∥u(t)−ProjKerSu(t)∥2L2 and K = Cν allows us to
deduce (7.4) and conclude the proof.

□

The result above was originally obtained in [30, Theorem 6.2], albeit with a different proof.
In particular, the aforementioned proof did not involve the result established in Proposition
7.4, namely, conservation of ProjKerSu(t).

8. Comments and conclusions

In this section we summarize what has been accomplished in this article, discuss the
connection with related work, formulate a few open problems and discuss directions for
future investigation.

Our main results are the existence of a Leray-type weak solution, with two versions of
the corresponding energy inequality, and three long-time exponential decay estimates. The
basic structure of the arguments are classical. Still, beyond closing a gap in the literature,
the main point of this work is to account for the influence of the differential geometry of the
boundary on this problem. This arises in several moments:

• We use Lemma 2.1 to obtain a weak formulation of the Navier boundary condition
using the shape operator of the boundary, see Definition 2.2.

• We again use Lemma 2.1 to define the Stokes operator A in (3.2) and we use estimates
on the principal curvatures of the boundary to prove its boundedness and coercivity,
and the self-adjointness of the shape operator to prove that A itself is self-adjoint.
This is needed for the construction of the basis of eigenfunctions in Proposition 3.2.

• Aside from the presence of the shape operator in Definition 2.2, used throughout
in Theorem 4.1, we again use the shape operator to express the dissipation term
in (1.1) in terms of the symmetric gradient in Proposition 4.3. This allows us to
rewrite identity (2.4) as (4.6), which does not depend explicitly on the geometry of
the boundary.

• The weak solutions obtained satisfy two energy inequalities, namely (4.7) and (4.8),
where only the former depends explicitly on the geometry of the boundary, through
the bound on the principal curvatures.

• The constant in the symmetric Poincaré inequality in Proposition 5.1 depends on the
bounds on the principal curvatures.

• The proof of the exponential decay in the case α > 0 uses both energy identities,
juggling one against the other.

• The decay to steady state for domains which are solids of revolution does not involve
the differential geometry of the boundary explicitly, as it relies on the energy identity
(4.8) for the decay, but it still uses the symmetric Poincaré inequality Proposition 5.1.
Furthermore, we make essential use of the geometry of the domain to characterize
the vector fields in Ker (S).

From the discussion above we conclude that the geometric identity expressed in Lemma 2.1
is a key part of the present work.
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Much of our analysis is inspired by the two-dimensional work done by Clopeau et al in [10].
Notably, the formulation of the Navier boundary conditions which makes explicit the influence
of the geometry of the boundary is already present: see [10, Lemma 2.1]. Furthermore,
their work depends on the construction of an appropriate Galerkin basis, which inspired the
corresponding construction presented here. We note that, in [12], an outline of the Galerkin
approximation was obtained in the case α = 0 and for three-dimensional Lipschitz domains.

We conclude this section with a discussion of future lines of research and open problems.
In a forthcoming paper, the authors study the two-dimensional problem, exploring exis-

tence of strong solutions and exponential decay in a higher norm. Our objective is to extend
previous analysis by Kelliher in [21], complementing the analysis done for domains with holes
and adding the discussion on exponential decay.

One interesting special case which we have left open in our analysis is exponential decay
for domains which are solids of revolution and with friction coefficient α ⩾ 0. Technically,
our work does not extend to this situation, so a new idea is needed.

Lastly, given that dissipation is, in general, due to a combination of boundary friction and
viscosity, it is natural to ask whether decay might still be true in situations where α is allowed
to be negative. This is a case which might arise in flows with an active boundary, see [16].

Appendix A.

In this Appendix we state and prove a version of Gronwall’s inequality which is key to our
exponential decay results. A special case of this result is implicitly contained in the proof of
[27, Theorem 3.5.1].

Proposition A.1. Let y ∈ L1
loc[0,+∞) be a nonnegative function and let K > 0. Assume

that, for almost every s ⩾ 0 and for every t ⩾ s, it holds that

y(t) ⩽ y(s)−K

∫ t

s
y(ξ) dξ. (A.1)

Assume, additionally, that (A.1) holds for s = 0.
Then

y(t) ⩽ y0 e
−Kt for all t ⩾ 0.

Proof. Let E ⊂ (0,+∞) be such that |E| = 0 and (A.1) holds for every s ∈ Ec. In particular
we have, for every s ∈ Ec and every t ⩾ s,

y(t) ⩽ y(s). (A.2)

Fix δ > 0.
Let X0 = [0, δ] ∩ Ec. Clearly |X0| = δ.
We define, recursively, the sets

Xn = {τ ∈ Xn−1 such that τ + nδ ∈ Ec}.
Observe that Xn = Xn−1 ∩ {ρ− nδ such that ρ ∈ Ec ∩ [nδ, (n+ 1)δ]}.

We have, inductively, that |Xn| = δ. Indeed, we already know |X0| = δ. Suppose now that
|Xn−1| = δ. Clearly, |Ec ∩ [nδ, (n + 1)δ]| = δ. It follows immediately that |Xn| = δ as the
intersection of two subsets of [0, δ] of total measure.

Next observe that the sets {Xn} are nested:

. . . Xn ⊂ Xn−1 ⊂ Xn−2 ⊂ . . . ⊂ X0.

Set
X∞ ≡ ∩∞

n=0Xn.
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Then |X∞| = limn→∞ |Xn| = δ. Consequently X∞ ̸= ∅.
It is easy to see that

X∞ = {τ ∈ [0, δ] such that τ + kδ ∈ Ec for all k = 0, 1, 2, . . .}.
Fix τ ∈ X∞. Let n ∈ {0, 1, 2, . . .}. Since τ + nδ ∈ Ec, it follows from our hypothesis (A.1)

that

y(τ + (n+ 1)δ) ⩽ y(τ + nδ)−K

∫ τ+(n+1)δ

τ+nδ
y(ξ) dξ. (A.3)

From (A.2) we obtain

y(τ + (n+ 1)δ) ⩽ y(ξ) for every ξ ∈ Ec ∩ [τ + nδ, τ + (n+ 1)δ]. (A.4)

Since the set {ξ ∈ [τ + nδ, τ + (n + 1)δ] such that (A.4) does not hold} is contained in E ∩
[τ + nδ, τ + (n+ 1)δ], which has measure zero, it follows that

−K
∫ τ+(n+1)δ

τ+nδ
y(ξ) dξ ⩽ −K δ y(τ + (n+ 1)δ). (A.5)

Inserting (A.5) into (A.3) and moving terms around we find

y(τ + (n+ 1)δ) ⩽
1

1 +Kδ
y(τ + nδ). (A.6)

Set

θ =
1

1 +Kδ
and iterate (A.6) backwards to deduce that

y(τ + (n+ 1)δ) ⩽ θn+1y(τ), n = 0, 1, 2, . . . . (A.7)

Of course (A.7) holds trivially for n = −1 so that

y(τ +mδ) ⩽ θmy(0), m = 0, 1, 2, . . . . (A.8)

where we used, additionally, (A.2) with s = 0 since 0 ∈ Ec.
Let t ⩾ τ . Then there exists m ∈ {0, 1, 2, . . .} such that

τ +mδ ⩽ t ⩽ τ + (m+ 1)δ.

Because 0 < θ < 1 we have θm ⩽ θ
t−τ
δ

−1. In addition, since τ +mδ ∈ Ec, y(t) ⩽ y(τ +mδ)
by (A.2). We use these estimates in (A.8) to get

y(t) ⩽ θ
t−τ
δ

−1y(0), for all t ⩾ τ.

We re-write this as

y(t) ⩽

(
1

1 +Kδ

)(t−τ)/δ

(1 +Kδ) y(0), for all t ⩾ τ. (A.9)

Recall that X∞ ⊂ [0, δ] is a set of full measure. Therefore there exists a sequence {τj} ⊂ X∞
such that τj → 0. Furthermore, the estimate (A.9) is true for τ = τj , t ⩾ τj , for all j.
Therefore, passing to the limit j → ∞ gives

y(t) ⩽ (1 +Kδ)−t/δ(1 +Kδ) y(0), for all t ⩾ 0. (A.10)

Letting δ → 0 in (A.10) we conclude that

y(t) ⩽ y(0)e−Kt for all t ⩾ 0,

as desired.
This concludes the proof.
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□

Second proof of Proposition A.1. Define the function x : [0,∞) → [0,∞) by

x(s) = sup{y(t) : t > s}.
Then x is decreasing (meaning non-increasing) by its definition, and we we will show that x
is right-continuous, x = y a.e., and x′(t) ⩽ −Kx(t) a.e..

We first show that x is right-continuous.
Let J be a set of full measure in [0,∞) for which (A.1) holds for every s ∈ J and for every

t ⩾ s. From (A.1),

s ∈ J, t ⩾ s =⇒ y(t) ⩽ y(s), (A.11)

which gives that for s ∈ J ,

x(s) = sup{y(t) : t ∈ J, t > s}. (A.12)

If s /∈ J and t > s then s < t′ < t for some t′ ∈ J , and y(t′) ⩾ y(t). This shows that (A.12)
holds also for s ∈ Jc, giving (A.12) for all s.

Then, for any t ∈ [0,∞),

x(s) = sup
t>s
t∈J

y(t) = sup
t>s
t∈J

sup
t′>t
t′∈J

y(t′) = sup
t>s
t∈J

x(t) = sup
t>s

x(t).

The final equality holds because x is decreasing. Then supt>s x(t) = limt→s+ x(t), meaning
that x is right-continuous.

We now show that x = y a.e..
It follows from the definition of x that

x(s) ⩾ y(t) for all 0 ⩽ s < t, (A.13)

and from (A.11) and (A.12) that

y(s) ⩾ x(s) for all s ∈ J (A.14)

and for all s, s′ ∈ J with s > 0 and 0 ⩽ s′ < s,

x(s′) ⩾ y(s) ⩾ x(s).

We see from this that x = y at every positive point of continuity of x. But being monotonic,
x has only a countable number of discontinuities, so x = y a.e.; hence, x = y on J ′ for some
full measure set J ′ ⊆ J . It follows that

x(t) ⩽ x(s)−K

∫ t

s
x(τ) dτ

for all (s, t) in

A := {(s, t) : s ∈ J ′, t ∈ J ′, t > s}.
Hence, for all (s, t) ∈ A,

x(t)− x(s)

t− s
⩽ −K 1

t− s

∫ t

s
x(τ) dτ. (A.15)

For any s ∈ J ′, we will take t→ s+, t ∈ J ′ for both sides of (A.15). For the left side,

lim
t→s+

t∈J ′

x(t)− x(s)

t− s
= lim

t→s+

x(t)− x(s)

t− s
= x′(s) a.e..



NAVIER BCS, 3D MULTIPLY CONNECTED 23

The first equality holds whenever the second limit exists, and the second limit, which is the
right-derivative of x(s), exists and equals x′(s) a.e., since x is monotonic.

For the right side of (A.15),

lim
t→s+

t∈J ′

1

t− s

∫ t

s
x(τ) dτ = lim

t→s+

1

t− s

∫ t

s
x(τ) dτ = x(s) everywhere,

where we used the right-continuity of x to obtain the limit everywhere.
We conclude that

x′(s) ⩽ −Kx(s) a.e..

Let s0 = inf{s ⩾ 0: x(s) = 0}, setting s0 = ∞ if x never vanishes. Because x is decreasing,
x(s) = 0 for all s ⩾ s0.

Let I = [0, s0 − ε] for arbitrary ε ∈ (0, s0). Then x is bounded away from zero on I, so for
almost all s ∈ I

(log x)′(s) ⩽ −K.

Now, log x is decreasing, so by Lemma A.2,

log x(t)− log x(0) ⩽
∫ t

0
(log x)′(s) ds ⩽ −Kt,

from which x(t) ⩽ x(0)e−Kt follows for all t ∈ I, and hence, in fact, for all t ∈ [0, s0) and
then for all t ⩾ 0.

Because 0 ∈ J , using (A.14), we have,

x(t) ⩽ x(0)e−Kt ⩽ y(0)e−Kt.

Then by (A.13), for 0 ⩽ s < t,

y(t) ⩽ x(s) ⩽ y(0)e−Ks.

Since this holds for all 0 ⩽ s < t it follows that y(t) ⩽ y(0)e−Kt for all t ⩾ 0. □

Lemma A.2. Let f be decreasing on [0, s0). Then for all [a, b] ⊆ [0, s0),

f(b)− f(a) ⩽
∫ b

a
f ′(s) ds.

Proof. See, for example, Theorem 3 Chapter 5 of [26], adapted to decreasing rather than
increasing functions. □

Acknowledgments

Part of this work was prepared while Kelliher was participating in a program hosted by the Simons Laufer Mathe-
matical Sciences Research Institute in Berkeley, California, in Spring 2021 and again in Summer 2023, supported by the
National Science Foundation under Grant No. DMS-1928930. The second author is partially supported by the French
National Research Agency in the framework of the project “BOURGEONS” (ANR-23-CE40-0014-01). The third and

fourth authors gratefully acknowledge the hospitality of the Department of Mathematics at the University of California,
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[28] V. A. Solonnikov and V. E. Ščadilov, A certain boundary value problem for the stationary system of
Navier-Stokes equations, Trudy Mat. Inst. Steklov. 125 (1973), 196–210, 235. Boundary value problems
of mathematical physics, 8. ↑3
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