THE STRONG VANISHING VISCOSITY LIMIT WITH DIRICHLET BOUNDARY CONDITIONS

JAMES P. KELLIHER

Abstract. We employ the simple corrector used by Tosio Kato in his seminal 1983 paper to establish necessary and sufficient conditions for the solutions to the Navier-Stokes equations to converge to a solution to the Euler equations in the presence of a boundary as the viscosity is taken to zero. We extend conditions developed by various authors for no-slip boundary conditions to allow non-homogeneous Dirichlet boundary conditions, establishing a few new conditions along the way. Finally, we make some speculations and conjectures on the strong vanishing viscosity limit.

Compiled on Saturday 29 February 2020 at 08:10

Contents

1. Introduction 2
2. Coordinates and integrating by parts 5
3. Kato’s corrector 8
4. Kato’s energy argument 10
5. Using the Kato layer 16
6. A little more with Kato’s layer 19
7. Using a Wang layer 20
8. Vortex sheet on the boundary 25
9. Well-posedness of \((\text{NS}_g)\) 26
10. How might convergence happen? 27
 10.1. A very special case 27
 10.2. Speculations and a conjecture 28
 10.3. An initial layer only 29
Appendix A. Proof of corrector estimates 30
References 33
1. Introduction

Let Ω be a bounded domain in \mathbb{R}^d, $d \geq 2$. We consider solutions to
\begin{equation}
\begin{aligned}
\begin{cases}
\partial_t u_g + u_g \cdot \nabla u_g + \nabla p_g = \nu \Delta u_g & \text{on } \Omega, \\
\text{div } u_g = 0 & \text{on } \Omega, \\
u u_g(0) = u^0 & \text{on } \Omega, \\
\partial_t u_g = g & \text{on } \partial \Omega.
\end{cases}
\end{aligned}
\end{equation}

Here, $\nu > 0$ is the constant viscosity and u^0 is the divergence-free initial velocity with $u^0 \cdot n = 0$ on the boundary, $\partial \Omega$, where n is the outward unit normal vector. The function g is defined on $\partial \Omega$, with $g \cdot n = 0$.

Minimal regularity requirements are not a topic of this paper, so for simplicity of presentation, we assume that $u^0 \in C^\infty(\Omega)$, $\partial \Omega$ is C^∞, and $g \in (C^\infty([0, \infty) \times \partial \Omega))^d$.

The vector field g induces a type of boundary forcing that influences the solution near the boundary, its effects spreading over time through the body of the fluid. A simple example would be a constant-magnitude g that describes the rotation of a circular boundary, as analyzed in [7, 8]. Our use of g, however, will be as a tool to try to better understand the key special case in which $g \equiv 0$. This yields the Navier-Stokes equations with their classical, no-slip boundary conditions, $u = 0$ on the boundary:
\begin{equation}
\begin{aligned}
\begin{cases}
\partial_t u_0 + u_0 \cdot \nabla u_0 + \nabla p_0 = \nu \Delta u_0 & \text{on } \Omega, \\
\text{div } u_0 = 0 & \text{on } \Omega, \\
u u_0(0) = u^0 & \text{on } \Omega, \\
\partial_t \tau = 0 & \text{on } \partial \Omega.
\end{cases}
\end{aligned}
\end{equation}

Note that u_0, like u_g, depends upon ν, though we suppress ν in our notation.

When $\nu = 0$, (NS_g), for any g, formally reduces to the Euler equations with no-penetration boundary conditions:
\begin{equation}
\begin{aligned}
\begin{cases}
\partial_t \tau + \tau \cdot \nabla \tau + \nabla \rho = 0 & \text{on } \Omega, \\
\text{div } \tau = 0 & \text{on } \Omega, \\
\tau(0) = u^0 & \text{on } \Omega, \\
\tau \cdot n = 0 & \text{on } \partial \Omega.
\end{cases}
\end{aligned}
\end{equation}

A longstanding open question in incompressible fluid mechanics is whether u_0 converges to τ as $\nu \to 0$ and, if so, in what manner. That u_0 has some weak limit in $L^2(0, T; L^2(\Omega))$ is assured by the uniform-in-ν bound in the space of weak solutions (as in (1.4)). Recently, the work of Constantin and Vicol in [6] and then in conjunction with Lopes Filho and Nussenzveig Lopes in [5] has brought renewed interest in weak convergence to weak solutions. In this paper, however, we will be restrict ourselves to the question of whether or not what we will call the strong vanishing viscosity limit,
\begin{equation}
\begin{aligned}
\|u_g(t) - \tau(t)\|^2 + \nu \int_0^t \|\nabla (u_g(s) - \tau(s))\|^2 \, ds \to 0 \text{ as } \nu \to 0,
\end{aligned}
\end{equation}
holds for all $t \in [0, T]$ for some fixed $T > 0$. Here and throughout,
\[\|\cdot\| := \|\cdot\|_{L^2(\Omega)}.
\]

\footnote{Most of the literature that follows in the tradition of Kato assumes $g \equiv 0$. A notable exception is Xiaoming Wang’s [31], whose setting is similar to the one we have here.}
We are most interested in (1.1) in the special case of no-slip boundary conditions, in which \(g \equiv 0 \). It was shown by Tosio Kato in [15] that when \(u \) is sufficiently regular, (1.1) is implied for \(g \equiv 0 \) by the weaker condition,
\[
 u_0 \to \bar{u} \text{ in } L^\infty(0,T;L^2(\Omega)) \text{ as } \nu \to 0, \tag{1.2}
\]
which is often referred to as the classical vanishing viscosity limit. This equivalence comes from the observation that if (1.2) holds it necessarily follows that
\[
 \limsup_{\nu \to 0} \nu \int_0^t \| \nabla u_0 \|^2 = 0. \tag{1.3}
\]
(If the limsup is positive, we say the sequence \((u_0)_{\nu > 0}\) has an energy defect.)

That (1.2) implies (1.3), and hence implies (when \(\bar{u} \) is sufficiently regular) (1.1), when \(g \equiv 0 \) is clear: if (1.2) is to hold, then the energy for \(u_0 \) must converge to the energy for \(\bar{u} \), which is conserved over time. By the classical energy equality for (NS) ((1.4), below) this can only happen if (1.3) holds. The situation for \(g \neq 0 \) is more complicated, as we will see, because of the more complicated energy bound in (1.5).

We require that the initial velocities be the same for all solutions, so that the vanishing viscosity limit has some chance to hold. (It is also possible to allow \(u_0(0) \to u^0 \) as \(\nu \to 0 \).) As a consequence, unless \(u^0|_{\partial \Omega} = g(0) \), \(u_0 \) has an initial boundary layer in that there is an immediate discrepancy in boundary values after the initial time.

We restrict our arguments to dimension \(d = 2 \), which yields four related simplifications. First, because we assume smooth data, all of our weak solutions (for all \(\nu \geq 0 \)) will actually be smooth, globally in time (being 2D), which makes it easy to justify all of our energy arguments. Second, the various energy equalities that we obtain would only be energy inequalities in higher dimension, which would require additional work to properly treat. Third, for \(d \geq 3 \), weak solutions would have only a type of weak continuity to time zero. Fourth, the vorticity, \(\omega_g = \text{curl}(u_g) := \partial_1 u^2_g - \partial_2 u^1_g \), is a scalar in 2D, which simplifies the form of certain expressions. We do not use the vorticity formulation of the equations, however, so this simplification is more cosmetic than fundamental, as vortex stretching would never be (directly) encountered.

Nonetheless, most of our analyses and results would apply to all \(d \geq 3 \) up to the time of existence of smooth solutions to the Euler equations, with only minor, technical adaptations.

The well-posedness of (NS) and (E) are classical (uniqueness being for short time in dimensions 3 and higher). We have, in particular, that \(\bar{u} \in C^1([0,T];C^\infty(\Omega)) \) for some \(T > 0 \), with any \(T < \infty \) in 2D. We have, as well, the basic energy equalities,
\[
 \| u_0(t) \|^2 + \nu \int_0^t \| \nabla u_0 \|^2 = \| u^0 \|^2, \tag{1.4}
\]
\[
 \| \bar{u}(t) \| = \| u^0 \|. \]

These equalities hold for weak solutions to (NS) and (E) in 2D and strong solutions to (E) for any dimension (up to the time of existence, of course). In 3D and higher, the equality for (NS) becomes an inequality (\(\leq \)).

For (NS\(g \)), we have well-posedness as stated in Proposition 1.2. Its proof is standard, but we include it in Section 9 because of the specific form of the energy inequality that we use. To obtain it, we need to extend \(g \) as in Lemma 1.1 (also proved in Section 9).

Lemma 1.1. There exists a divergence-free extension of \(g \) to \(C^\infty([0,\infty) \times \bar{\Omega}) \) (which we continue to call \(g \)). If \(u^0|_{\partial \Omega} = g(0) \) then we can have \(g(0) = u^0 \).
Proposition 1.2. There exists a (unique) smooth solution to \((\text{NS}_g)\) on some time interval, \([0, T)\) for some time \(T > 0\). In 2D, \(T = \infty\). Moreover, extending \(g\) as in Lemma 1.1, we have

\[
\|u_g(t)\|^2 + 2\nu \int_0^t \|\nabla u_g\|^2 \leq 2 \left(\|g(t)\|^2 + 2\nu \int_0^t \|\nabla g\|^2 \right) + 2 \left(2\|u_0\|^2 + C(\nu, t)\right) e^{t^2 + \int_0^t (\|\nabla g\|_{L^\infty})},
\]

where

\[
C(\nu, t) := 2\|g(0)\|^2 + \int_0^t \|F_g\|^2,
\]

\[
F_g := \nu\Delta g - \partial_t g - g \cdot \nabla g.
\]

Because \(g\) is independent of \(\nu\), both (1.4) and (1.5) yield an energy bound that is independent of the viscosity. When \(g \equiv 0\), the energy inequality in (1.5) reduces to the inequality arising from (1.4) with an additional factor of \(4e^t\). Hence, the bound is not optimal in terms of \(g\), an issue that we will find closely connected to the strong vanishing viscosity limit itself (see Section 10.3).

Although we focus on a bounded domain in 2D, our results apply as well to a half-plane, \(\{(x_1, x_2) : x_2 > 0\}\), or a channel periodic in the \(x_1\)-direction. (In particular, note that our only use of Poincaré’s inequality is through Lemma 2.6, which remains valid in these settings.)

The basic theme of this paper is that, as regards the strong vanishing viscosity limit for no-slip boundary conditions having no special symmetries, everything that has been learned about it fits neatly into Kato’s original approach using his original corrector. There have been refinements, most notably those of Xioaming Wang in [31] building on his work with Roger Temam in [30] (these two papers seem to have revived interest in [15]). See also [4, 2, 17, 18, 19, 20]. Nonetheless, none of these works can be said to push the envelope of Kato’s fundamental result very far—unsurprising, given the difficulty of this problem without added simplifications.

The main concrete thing we accomplish in this paper is to turn Kato’s energy argument using his original corrector—specifically in 2D with smooth data, where lessened technicalities make the structure of the argument clearer—into a tool, Theorem 4.3, that can be applied to obtain the various existing conditions for the strong vanishing viscosity limit to hold. In this, we have been greatly aided by a surprisingly recently discovered decomposition in [2] of one of the key terms appearing in Kato’s energy argument: this decomposition simplifies a number of arguments considerably. We then apply this tool to rederive the existing conditions in [31, 17, 18], and a few novel conditions along the way. Note that only [31] pertains to what we are calling \(u_g\), so in re-deriving the conditions from [17, 18], we are also extending them to non-homogeneous boundary conditions. (The conditions in [2] can also be simply derived using Theorem 4.3.)

Kato’s insight was to clearly identify the balance of the two, uncontrollable terms appearing in his energy argument and to understand that the only feasible thing to do was to create from them a single necessary and sufficient condition to control them both. Yet at its core, Kato’s argument is a simple energy argument that almost anyone exploring the vanishing viscosity limit for the first time would attempt. Hence, one cannot say that the use of energy arguments in the vanishing viscosity limit or related singular limits, natural as they are, necessarily means that the author is following in the tradition of Kato. But there is by now a fairly sizeable literature going beyond the study of the strong vanishing viscosity limit, the
topic of this paper, that is clearly very influenced by his approach, adapting his argument and philosophy to a greater or lesser extent.

This literature includes, to this author’s knowledge, papers where the boundary condition is (directly or indirectly) changed [32, 27], the domain is expanded to the whole space or shrunk to a point or points [21, 11], there is some special symmetry to the geometry and initial data [26, 19], or the argument is applied to slightly different equations with sometimes different boundary conditions [24, 28, 33, 1, 22, 23].

Organization of this paper. We begin in Section 2 by defining the coordinate system we will use in a boundary layer and give some lemmas we will find useful throughout the paper. We define Kato’s corrector in Section 3, using this corrector in Section 4 to develop a tool we use in subsequent sections to develop necessary and sufficient conditions for the strong vanishing viscosity limit to hold. In sections Sections 5 to 7 we apply this tool using Kato’s original layer and then using the infinitesimally wider layer to reproduce the result of Xiaoming Wang’s in [31]. We explain in Section 8 how the result from [18] on the formation of a vortex sheet on the boundary continues to hold for non-homogeneous boundary conditions. We give the proof of Lemma 1.1 and Proposition 1.2 in Section 9. Finally, in Section 10 we make a few speculations and conjectures on the strong vanishing viscosity limit. Appendix A proves the estimates on Kato’s corrector stated in Section 3.

2. Coordinates and integrating by parts

Let \(n, \tau \) be the outward unit normal, unit tangent vectors to \(\partial \Omega \) chosen so that \((n, \tau) \) is in the standard orientation of \((e_1, e_2)\). Since \(\partial \Omega \) is \(C^\infty \) there exists a tubular neighborhood (in \(\Omega \)) of width \(\delta > 0 \). For any \(\delta > 0 \) we define

\[
\Gamma_\delta = \{ x \in \Omega : \text{dist}(x, \partial \Omega) < \delta \}.
\]

Remark 2.1. Throughout this paper, we assume without comment that \(\delta \in (0, \min\{\delta/2, 1\}) \).

Each component of \(\partial \Omega \) has its own component of \(\Gamma_\delta \). We define coordinates on \(\Gamma_\delta \), and hence on each \(\Gamma_\delta \), component-by-component. Fix an arbitrary point \(b \) in a given component of \(\partial \Omega \) and let \(a \) be any point in the corresponding component of \(\Gamma_\delta \). Then let \(a' \) be the closest point to \(a \) on \(\partial \Omega \). We define coordinates \((x_1, x_2)\) for the point \(a \) by

\[
x_1 = \text{the arc length along } \partial \Omega \text{ from } b \text{ to } a' \text{ in the } \tau \text{ direction},
\]

\[
x_2 = |a - a'|.
\]

Another way of expressing this is that \((x_1, x_2)\) are coordinate values in the \((\tau, -n)\) coordinate frame with \((\tau, -n)\) extended from \(\partial \Omega \) to \(\Gamma_\delta \) in the natural way.

We will use coordinates and write vectors in component form only when working with functions or vector fields supported in a tubular neighborhood. Hence, \((x_1, x_2)\) never refers to Cartesian coordinates, but always to the coordinates we just defined, and

\[
\partial_j := \partial_j x_j, \; j = 1, 2 \text{ where } x_1, x_2 \text{ defined on } \Gamma_\delta.
\]

In these coordinates, the form of \(\nabla \), \(\text{div} \), and \(\Delta \) are distorted because of the curvature of the boundary, with \(\text{div} \) and \(\Delta \) also introducing a lower-order term. For most of our calculations, these will have only a minor effect, but they will impact some of the more delicate estimates. We give the form of these operators in Lemma 2.2, which can be derived either by using formulae for generalized curvilinear coordinates, or by using polar coordinates locally. Because the exact form is not so critical, we do not include the proof.
In Lemma 2.2, ∇^\perp is the operator ∇ rotated 90 degrees counterclockwise. In Cartesian coordinates, this is simply $(-\partial_2, \partial_1)$, but is complicated slightly in our coordinates on Γ_δ.

Lemma 2.2. In Γ_δ, with coordinates defined as above, let $f = f(x_1, x_2)$ be a scalar-valued function and

$$v = (v^1, v^2) := v^1\tau + v^2(-n) = v^1\tau - v^2n$$

a vector-valued function. Then

$$v^1 = (-v^2, v^1),$$

$$\nabla f = \gamma \partial_1 f \tau - \partial_2 f n = (\gamma \partial_1 f, \partial_2 f),$$

$$\nabla^\perp f = -\partial_2 f \tau - \gamma \partial_1 f n = (-\partial_2 f, \gamma \partial_1 f),$$

$$\text{div } v = \gamma \partial_1 v^1 + \partial_2 v^2 - \kappa \gamma v^2,$$

$$\text{curl } v = \gamma \partial_1 v^2 - \partial_2 v^1 + \kappa \gamma v^1$$

where

$$\kappa = \kappa(x_1) = \frac{1}{1 - \kappa x_2},$$

(2.1)

and $\kappa = \kappa(x_1)$ being curvature at $(x_1,0)$. If $u = (u^1, u^2)$ is also vector-valued in Γ_δ then

$$u \cdot v = u^j v^j,$$

where we use implicit summation notation. Using (x_1, x_2) coordinates,

$$u \cdot \nabla v = (\gamma u^1 \partial_1 v^1 + u^2 \partial_2 v^1, \gamma u^1 \partial_1 v^2 + u^2 \partial_2 v^2).$$

Finally, the Jacobian determinant for the map from Cartesian coordinates to (x_1, x_2) coordinates has the simple form,

$$J(x_1, x_2) = \gamma(x_1, x_2).$$

When integrating by parts in Γ_δ, we will use Lemma 2.3.

Lemma 2.3. Assume that f and g are smooth scalar-valued functions supported in Γ_δ. Then for $j = 1$ and also for $j = 2$ if fg vanishes on $\partial \Omega$,

$$(\partial_j f, g) = -(f, \partial_j g) + (f, \alpha_3 g)$$

where $\alpha_1 = x_2 \kappa' \gamma$, $\alpha_2 = \kappa \gamma$ (γ being as in (2.1)) are smooth and bounded above independently of δ. Here, as always, (\cdot, \cdot) is the L^2-inner product on Ω or, because of the supports, on $L^2(\Gamma)$.

Proof. Let Γ_δ^k be one of the finite number of components of Γ_δ, and let ℓ be the arc length of the boundary. Then we can write

$$\int_{\Gamma_\delta^k} \partial_1 f \ g = \int_0^\ell \int_0^\delta \partial_{x_1} f(x_1, x_2) g(x_1, x_2) \gamma(x_1, x_2) \, dx_1 \, dx_2.$$

Here, we used the expression for the Jacobian determinant in Lemma 2.2.

Integrating by parts in x_1, and noting that f and g are periodic in x_1 so there is no boundary term, we have

$$\int_{\Gamma_\delta^k} \partial_1 f \ g = - \int_0^\ell \int_0^\delta f(x_1, x_2) \partial_{x_1} (g(x_1, x_2) \gamma(x_1, x_2)) \, dx_1 \, dx_2$$
where $\alpha_1 = \partial_2 \gamma / \gamma = x_2 \gamma \kappa'$. Adding this expression over each component Γ^k_δ gives the result for $j = 1$. The argument for $j = 2$ is similar, using the vanishing of fg on $\partial \Gamma_\delta$. \hfill \Box

We will also integrate by parts over all of Ω on coordinate-free form. Since we are working with smooth functions, the most basic form is

$$
(u, \nabla f) + (\text{div } f, u) = \int_\Omega (u \cdot n) f.
$$

(2.2)

Here $(f, g) = \int_\Omega fg$ is the L^2-inner product; for vector fields u, v, the L^2-inner product is $(u, v) := \int_\Omega u \cdot v$. This form of integrating by parts leads to Lemmas 2.4 and 2.5.

Lemma 2.4. Let $w_1, w_2 \in H \cap H^2$ and set $\omega_j = \text{curl } w_j$, $j = 1, 2$. Then,

$$
(\nabla w_1, \nabla w_2) = (\omega_1, \omega_2) + \int_{\partial \Omega} (\omega_2 (w_1 \cdot \tau) - \kappa w_1 \cdot w_2),
$$

where κ is the curvature of the boundary.

Proof. We have,

$$
(\nabla w_1, \nabla w_2) = -(w_1, \Delta w_2) + \int_{\partial \Omega} (\nabla w_2 \cdot n) \cdot w_1 = -(w_1, \nabla^\perp \omega^2) + \int_{\partial \Omega} (\omega_2 (w_1 \cdot \tau) - \kappa w_1 \cdot w_2),
$$

where we used Lemma 4.1 of [16] for the boundary integrand. But,

$$
-(w_1, \nabla^\perp \omega^2) = (w_1^\perp, \nabla \omega^2) = -(\text{div } w_1^\perp, \omega^2) = (\omega_1, \omega_2).
$$

\hfill \Box

The following is adapted from Lemma A.4 of [17]:

Lemma 2.5. For all vector fields, $u \in H^1(\Omega), v \in H$,

$$
(u \cdot \nabla u, v) = (u^\perp \text{curl } u, v).
$$

Proof. We have,

$$
(u \cdot \nabla u, v) = (u \cdot (\nabla u - (\nabla u)^T), v) + (u \cdot (\nabla u)^T, v).
$$

But,

$$
(u \cdot (\nabla u)^T) \cdot v = (u^i \partial_j u^i, v^j) = \frac{1}{2} (v, \nabla |u|^2) = 0,
$$

so

$$
(v, u \cdot \nabla u) = (u^i (\partial_i u^j - \partial_j u^i), v^j) = (u^1 (\partial_1 u^2 - \partial_2 u^1), v^2) + (u^2 (\partial_2 u^1 - \partial_1 u^2), v^1)
$$

$$
= \int_\Omega (u^1 v^2 - u^2 v^1) \text{curl } u = (u^\perp \text{curl } u, v).
$$

\hfill \Box
We will make frequent use of the following version of Poincaré’s inequality, which is essentially the form that applies to a domain of given width vanishing on one component of the boundary:

Lemma 2.6. Fix $p \in [1, \infty]$ and assume that $f \in W^{1,p}(\Gamma_\delta)$ with $f = 0$ on $\partial\Omega$. Then

$$\|f\|_{L^p(\Gamma_\delta)} \leq C\delta \|\partial_2 f\|_{L^p(\Gamma_\delta)},$$

where the constant $C = C(\Omega)$ is independent of p and δ (recall Remark 2.1).

Corollary 2.7. For all $p \in [1, \infty]$,

$$\|u^1\|_{L^p(\Gamma_\delta)} \leq C\delta \|\partial_2 u^1\|_{L^p(\Gamma_\delta)} + C\delta^{\frac{1}{p}},$$

$$\|u^2\|_{L^p(\Gamma_\delta)} \leq C\delta \|\partial_2 u^2\|_{L^p(\Gamma_\delta)},$$

where the constant C is as in Lemma 2.6 and $C' = \|g\|_{W^{1,\infty}(\Omega)}$ is independent of p and δ.

Proof. Since $u^2 = -g \cdot n = 0$ on $\partial\Omega$, the inequality for $\|u^2\|_{L^p(U)}$ follows directly from Lemma 2.6. For the other inequality, we have

$$\|u^1\|_{L^p(\Gamma_\delta)} \leq \|u^1 - g^1\|_{L^p(\Gamma_\delta)} + \|g^1\|_{L^p(\Gamma_\delta)} \\
\leq C\delta \|\partial_2 (u^1 - g^1)\|_{L^p(\Gamma_\delta)} + C\delta^{\frac{1}{p}} \|g^1\|_{L^\infty(\Omega)} \\
\leq C\delta \|\partial_2 u^1\|_{L^p(\Gamma_\delta)} + C\delta^{1+\frac{1}{p}} \|\partial_2 g^1\|_{L^\infty(\Gamma_\delta)} + C\delta^{\frac{1}{p}} \|g^1\|_{L^\infty(\Omega)} \\
\leq C\delta \|\partial_2 u^1\|_{L^p(\Gamma_\delta)} + C \|g\|_{W^{1,\infty}} \delta^{\frac{1}{p}},$$

where we again applied Lemma 2.6, and used that Ω has finite measure. □

Lemma 2.8. Let v be divergence-free with $v \cdot n = 0$ on $\partial\Omega$ and let f be supported in Γ_δ, both v and f being smooth. Then

$$\|(v^2, f)\| \leq C\delta \|v^1\|_{L^2(\Gamma_\delta)} \|\partial_1 f - \alpha_1 f\|_{L^2(\Gamma_\delta)}.$$

Proof. Because v is divergence-free and tangential to the boundary, it has a stream function ψ, meaning that $v = \nabla^\perp \psi = (-\partial_2 \psi, \partial_1 \psi)$, with ψ constant on each boundary component. Write Σ_j, $j = 1, \ldots, N$ for the N components of $\partial\Omega$ and Γ_δ^j for the component of Γ_δ whose outer boundary is Σ_j. Let c_j be the value of ψ on Σ_j. Define a smooth function φ on Ω such that $\varphi \equiv c_j$ on Γ_δ^j. Then on Γ_δ, $v = \nabla^\perp (\psi - \varphi)$, so applying Lemmas 2.3 and 2.6,

$$(v^2, f) = (\partial_1 (\psi - \varphi), f) = - (\psi - \varphi, \partial_1 f - \alpha_1 f) \leq \|\psi - \varphi\|_{L^2(\Gamma_\delta)} \|\partial_1 f + \alpha_1 f\|_{L^2(\Gamma_\delta)} \\
\leq C\delta \|\partial_2 (\psi - \varphi)\|_{L^2(\Gamma_\delta)} \|\partial_1 f + \alpha_1 f\|_{L^2(\Gamma_\delta)} = C\delta \|v^1\|_{L^2(\Gamma_\delta)} \|\partial_1 f + \alpha_1 f\|_{L^2(\Gamma_\delta)}.$$

In the second inequality we used the vanishing of $\psi - \varphi$ on $\partial\Omega$ and in the last equality we used that $\partial_2 \psi = -v^1$ while $\partial_2 \varphi = 0$ in Γ_δ. □

3. Kato’s Corrector

We will find that the very simple corrector defined by Kato in [15] will be sufficient for all of our results. We describe it here and state the estimates, leaving the detailed derivation of these estimates to Appendix A.

Definition 3.1. Define $\varphi : [0, \infty) \to [0, 1]$ to be a C^∞ function with $\varphi \equiv 1$ on $[0, 1/2]$ and $\varphi \equiv 0$ on $[1, \infty]$. Define $\varphi_\delta(\cdot) = \varphi(\cdot/\delta)$.
Let g be as in Lemma 1.1. We define the corrector separately in each component of Γ_δ^\perp. Let ψ be the stream function for

$$v := g - \overline{u},$$

so that $v = \nabla^\perp \psi$ and chosen so that $\psi = 0$ on the given component of Γ_δ^\perp. Define

$$z(x_1, x_2) = z_\delta(x_1, x_2) := \nabla^\perp (\varphi_\delta(x_2) \psi(x_1, x_2)).$$

Kato defined his corrector to have a width δ that was constant in time, shrinking only in viscosity. We will also allow δ to vary with time. For clarity, we make an explicit definition:

Definition 3.2. Assume that either:

1. $\delta = \delta(\nu)$ is continuous at $\nu = 0$ with $\delta(0) = 0$ or
2. $\delta = \delta(t, \nu)$ is continuous at $\nu = 0$ with $\delta(t, 0) = 0$ and δ increasing in ν.

Remark 3.3. Definition 3.2 (2) is a generalization of (1), though only when we assume that $\delta(0, \nu) = 0$ does it extend (1) in a meaningful way. Also, we cannot assume in (2) any regularity of δ beyond continuity at $\nu = 0$, because we will find the need to construct a δ in a manner for which we cannot insure regularity, only monotonicity (see (7.10)). This will be sufficient to take time derivatives of δ, however, as we note in the derivation of (3.6), below. Although in practice one would typically choose δ to be increasing in ν, this is not strictly needed.

Remark 3.4. As mentioned in Remark 2.1, we always assume that $\delta(\nu)$ or $\delta(t, \nu)$ lies in $(0, \min\{\delta/2, 1\})$ without explicitly commenting on that fact. In practice, this means that ν must be sufficiently small, how small depending upon the choice of the δ function.

Theorem 3.5. Assume that δ is independent of time (though it may depend upon viscosity, for instance, as in Definition 3.2 (1)). We have the following estimates for the Kato corrector as defined in (3.2):

$$\|\partial_t^j \partial_x^k \partial_t^m z^1\|_{L^p(\Omega)} \leq C \delta^{\frac{j}{p} - k}, \quad \|\partial_t^j \partial_x^k \partial_t^m z^2\|_{L^p(\Omega)} \leq C \delta^{\frac{j}{p} + 1 - k}$$

for any $p \in [1, \infty]$, $j, k \geq 0$, $m = 0, 1$, any $t \in [0, T]$. The constants are independent of p and depend only upon the initial data, T, j, k, and m. On the boundary,

$$\|\nabla z\|_{L^p(\partial \Omega)} \leq C \text{ for all } p \in [1, \infty].$$

Let δ be as in Definition 3.2 (2). The estimates in (3.3) for $m = 0$ (no time derivative) continue to hold. We also have, for all $p \in [1, \infty]$ and $t \in [0, T]$,

$$\|\partial_t z^1\|_{L^p(\Omega)} \leq C \delta^{\frac{j}{p} + \frac{1}{p} + C \partial_t \delta \delta - \frac{j}{p} - 1}, \quad \|\partial_t z^2\|_{L^p(\Omega)} \leq C \delta^{\frac{j}{p} + 1} + C \partial_t \delta \delta,$$

$$\|\partial_t z\|_{L^p(\Omega)} \leq C \delta^{\frac{j}{p} - \frac{1}{p}} (\delta + \partial_t \delta).$$

Proof. The bound in (3.4) holds simply because $z = g - \overline{u}$ near the boundary and g and \overline{u} are smooth and independent of ν. We defer the proof of (3.3) and (3.5) to Appendix A. \qed

A few observations regarding Kato’s corrector are in order, as they will help guide our strategy in employing it:

1. Because z is supported on a set of Lebesgue measure $C \delta$, the bounds in L^p for $p < \infty$ follow from the bounds in L^∞.
2. Because z^2 vanishes on the boundary and grows linearly away from it, it is small compared to z^1, which is merely bounded.
(3) Derivatives in x_1 (tangential direction) are totally benign, having no effect on the estimates, while each derivative in x_2 (normal direction) increases the bound by a factor of δ^{-1}.

(4) Time derivatives have no effect when δ is independent of time, and even when δ varies, they are benign as long as we integrate the estimates in time.

As an application of observation (4), the final bound in (3.5) gives

$$\int_0^t \|\partial_s z(s, \nu)\| ds \leq C \int_0^t \delta(s, \nu)^{1/2} ds + C \int_0^t \partial_s (\delta(s, \nu)^{1/2}) ds$$

$$\leq C \delta(t, \nu)^{1/2} + C \left[\delta(t, \nu)^{1/2} - \delta(0, \nu)^{1/2} \right] \leq C(1 + t) \delta(t, \nu)^{1/2},$$

where we used that $\delta(\cdot, \nu)$ is increasing. We also used that for any increasing function, $f: [a, b] \to \mathbb{R}$, $f' \geq 0$ exists almost everywhere, and

$$\int_a^b f'(s) ds \leq f(b) - f(a).$$

The bound in (3.6), which we will apply in (4.9), is the only bound on $\partial_t z$ that we will need.

4. Kato’s energy argument

To streamline notation, we will drop the g subscript on u_g, writing

$$u = u_g.$$

We will return to writing u_g in Sections 9 and 10, where we will be treating u_g and u_0 at the same time.

The starting point for almost all of our analysis will be the energy inequality we obtain in Proposition 4.1 for

$$w := u - \overline{u}.$$

Proposition 4.1. Let δ be as in Definition 3.2 and let z be the Kato corrector as in (3.2). Then

$$\frac{1}{2} \|w(t)\|^2 + \frac{\nu}{2} \int_0^t \|\nabla w\|^2 = A(t, \nu) + B(t, \nu) + C \int_0^t \|w\|^2,$$

where

$$A(t, \nu) := -\int_0^t ((u_1 - g_1)(u_2 - g_2), \partial_2 z^1) + \nu \int_0^t (\nabla u, \nabla z)$$

and

$$B(t, \nu) \leq C(1 + t) \delta^{1/2}.$$

The constants C depend upon T, u_0, and g, though not ν.

Proof. Recalling Remark 3.3, we will assume that $\delta = \delta(t, \nu)$ is time varying as in (2) of Definition 3.2.

Let

$$\tilde{w} := w - z = u - \overline{u} - z,$$
and note that \(\text{div} \, \tilde{w} = 0 \) with \(\tilde{w} = 0 \) on \(\partial \Omega \). Observe that from (1.5) and Theorem 3.5, we know up front that at least
\[
\| \tilde{w}(t) \| , \| w(t) \| \leq C(T)
\]
for all \(t \in [0, T] \).

Subtracting the Euler equations from the Navier-Stokes equations gives
\[
\partial_t w + \nabla (p - \bar{p}) = \nu \Delta u - u \cdot \nabla w - w \cdot \nabla \bar{u}.
\]
Pairing with \(\tilde{w} \) and using
\[
\begin{align*}
\langle \partial_t w, \tilde{w} \rangle &= \frac{1}{2} \frac{d}{dt} \| w \|^2 - \langle \partial_t w, z \rangle, \\
\nu (\Delta u, \tilde{w}) &= -\nu (\nabla u, \nabla \tilde{w}) = -\nu (\nabla u, \nabla w) + \nu (\nabla u, \nabla z) \\
&= -\nu (\nabla w, \nabla w) - \nu (\nabla \bar{u}, \nabla w) + \nu (\nabla u, \nabla z) \\
&\leq -\nu \| \nabla w \|^2 + C \nu \| \nabla \bar{u} \|^2 + \frac{\nu}{4} \| \nabla w \|^2 + \nu (\nabla u, \nabla z) \\
&\leq C \nu - \frac{\nu}{2} \| \nabla w \|^2 + \nu (\nabla u, \nabla z),
\end{align*}
\]
\[
\langle \nabla (p - \bar{p}), \tilde{w} \rangle = 0,
\]
\[
-(u \cdot \nabla w, \tilde{w}) = -(u \cdot \nabla w, w) + (u \cdot \nabla w, z) = (u \cdot \nabla w, z)
\]
\[
= (u \cdot \nabla u, z) - (u \cdot \nabla \bar{u}, z)
\]
\[
= -(u \cdot \nabla z, u) - (u \cdot \nabla \bar{u}, z)
\]
\[
\leq -(u \cdot \nabla z, u) + \| \nabla \bar{u} \| \| u \| \| z \|
\]
\[
\leq -(u \cdot \nabla z, u) + C \| z \| \leq -(u \cdot \nabla z, u) + C \delta^{\frac{1}{2}},
\]
\[
-(w \cdot \nabla \bar{u}, \tilde{w}) = -(w \cdot \nabla \bar{u}, w) + (w \cdot \nabla \bar{u}, z)
\]
\[
\leq \| \nabla \bar{u} \| \| u \| \| z \| \leq C \| w \| ^2 + C \delta^{\frac{1}{2}},
\]
we have
\[
\frac{1}{2} \frac{d}{dt} \| w \|^2 + \frac{\nu}{2} \| \nabla w \|^2 \leq (\partial_t w, z) + C \nu + C \delta^{\frac{1}{2}} + C \| w \|^2
\]
\[
-(u \cdot \nabla z, u) + \nu (\nabla u, \nabla z).
\]

We now examine \(-(u \cdot \nabla z, u) \), a task that will occupy most of the remainder of the proof. Let \(\xi = u - g \), which we note vanishes on the boundary. Then
\[
-(u \cdot \nabla z, u) = -(\xi \cdot \nabla z, \xi) - (\xi \cdot \nabla z, g) - (g \cdot \nabla z, u).
\]

One term is easily bounded:
\[
-(\xi \cdot \nabla z, g) = (\xi \cdot \nabla g, z) \leq \| \nabla g \| \| \xi \| \| z \| \leq C \delta^{\frac{1}{2}}.
\]

For the other two terms, we apply Lemma 2.2 to divide them into parts, writing
\[
-(\xi \cdot \nabla z, \xi) = -((\xi \cdot \nabla z) \xi, \xi) - ((\xi \cdot \nabla z)^2, \xi^2)
\]
\[
= -\gamma (\xi^1 \partial_1 z^1 + \xi^2 \partial_2 z^1, \xi^1) - (\gamma (\xi^2 \partial_1 z^2 + \xi^2 \partial_2 z^2, \xi^2)
\]
\[
= -\gamma (\xi^1, \partial_1 z^1) - (\xi^1, \partial_2 z^1) - (\gamma (\xi^2, \partial_1 z^2 + \xi^2 \partial_2 z^2))
\]
\[
= -\gamma (\xi^1, \partial_1 z^1) + \xi^2 \partial_2 z^1) - (\gamma (\xi^2, \partial_1 z^2 + \xi^2 \partial_2 z^2, g^2)
\]
\[
= -\gamma (\xi^1, \partial_1 z^1) + \xi^2 \partial_2 z^1) - (\gamma (\xi^2, \partial_1 z^2 + \xi^2 \partial_2 z^2, g^2)
\]
Hence, for any \(\Theta = \text{div} \, z \) in Lemma 2.2, this becomes

\[
-(\xi \cdot \nabla z, \xi) = -(\gamma((\xi^1)^2 - (\xi^2)^2, \partial_1 z^1) - (\xi^1, \partial_1 z^1) - (\xi^2 g^2, \partial_2 z^2), \\
- (\gamma \xi^2, \partial_1 z^2) - ((\xi^2)^2, \kappa(x_2) z^2), \\
- (\xi \cdot \nabla g, z) = -(\gamma^1 g^1 - \xi^2 g^2, \partial_1 z^1) - (\xi^1 g^1, \partial_2 z^2) - (\gamma^1 g^2, \partial_1 z^2).
\]

(4.5)

Three of the terms in (4.5) we bound easily, as

\[
-(\gamma \xi^1 g^1, \partial_1 z^2) \leq C \|\partial_1 z^2\|_{L^\infty} \|\xi\|^2 \leq C \delta, \\
-(\gamma \xi^1 g^2, \partial_1 z^2) \leq C \|\partial_1 z^2\|_{L^\infty} \|\xi\| \|g\|_{L^2(\Gamma_3)} \leq C \delta^{\frac{3}{2}}, \\
(\gamma (\xi^1 g^1 - \xi^2 g^2, \partial_1 z^1) \leq C \|\partial_1 z^1\|_{L^\infty} \|\xi\| \|g\|_{L^2(\Gamma_3)} \leq C \delta^{\frac{3}{2}}.
\]

To bound \(-(\xi^2 g^1, \partial_2 z^1)\), we apply Lemma 2.8, giving

\[
-(\xi^2 g^1, \partial_2 z^1) \leq C \delta \|\xi\|_{L^2(\Gamma_3)} \|\partial_1(g^1 \partial_2 z^1) - \alpha_1 g^1 \partial_2 z^1\| \\
\leq C \delta \|\partial_1 g^1 \partial_2 z^1 + g^1 \partial_1 z^1 - \alpha_1 g^1 \partial_2 z^1\| \\
\leq C \delta \left(\|\partial_1 g^1\|_{L^\infty(\Gamma_3)} \|\partial_2 z^1\| + \|g^1\|_{L^\infty(\Gamma_3)} \|\partial_1 z^1\| + C \|g^1\|_{L^\infty(\Gamma_3)} \|\partial_2 z^1\| \right) \\
\leq C \delta \delta^{\frac{1}{2}} = C \delta^{\frac{3}{2}}.
\]

We are left with

\[
-(u \cdot \nabla z, u) \leq -(\gamma((\xi^1)^2 - (\xi^2)^2, \partial_1 z^1) - (\xi^1, \partial_1 z^1) + C \delta^{\frac{3}{2}}.
\]

(4.6)

For the first term in (4.6), let \(\eta = \overline{u} - g \), so that \(w = \xi - \eta \). Then

\[
w^i w^j = u^i u^j - \eta^i u^j - u^i \eta^j + \eta^i \eta^j
\]

so that

\[
u^i u^j = w^i w^j + \eta^i u^j + u^i \eta^j - \eta^i \eta^j.
\]

Hence, for any \(f \in C^\infty(\Omega) \),

\[
|f u^i w^j, \partial_1 z^1| \leq C \|\partial_1 z^1\|_{L^\infty} \|w\|^2 + C \|\partial_1 z^1\|_{L^\infty} \|u\| + C \|\eta\|^2_{L^\infty} \|\partial_1 z^1\|_{L^1} \\
\leq C \|w\|^2 + C \delta^{\frac{3}{2}} + C \delta \leq C \delta^{\frac{3}{2}} + C \|w\|^2.
\]

We see, then, that

\[
-(\gamma((\xi^1)^2 - (\xi^2)^2, \partial_1 z^1) \leq C \delta^{\frac{3}{2}} + C \|w\|^2.
\]

(4.7)

Hence, (4.6) becomes

\[
-(u \cdot \nabla z, u) \leq -(\xi^1, \partial_2 z^1) + C \delta^{\frac{3}{2}} + C \|w\|^2.
\]

(4.8)

Returning to (4.3), then, we have

\[
\frac{1}{2} \frac{d}{dt} \|w\|^2 + \nu \frac{\|\nabla w\|^2}{2} \leq (\partial_t w, z) + C \nu + C \delta^{\frac{3}{2}} + C \|w\|^2 - (\xi^1, \partial_2 z^1) + \nu(\nabla u, \nabla z).
\]

Integrating in time and using (3.6), we have

\[
\int_0^t (\partial_t w, z) = \int_0^t \int_\Omega \partial_t w \cdot z = \int_0^t \left[w(t) \cdot z(t) - \int_0^t w \partial_t z \right] \\
\leq \|w(t)\| \|z(t)\| + \int_0^t \|w\| \|\partial_t z\| \leq C \|z(t)\| + C \int_0^t \|\partial_t z\| \leq C \delta^{\frac{3}{2}}.
\]

(4.9)
Then,
\[
\frac{1}{2} \|w(t)\|^2 + \nu \int_0^t \|\nabla w\|^2 \leq C(1 + t)\delta^2(t) + C\nu t - \int_0^t (\xi^1, \partial_2 z^1) + \nu \int_0^t (\nabla u, \nabla z) + C \int_0^t \|w\|^2,
\]
which can be re-expressed in the form of (4.1). We used here that
\[
\int_0^t \delta^2(s, \nu) \, ds \leq \delta^2(t, \nu) t = \delta^2 t,
\]
since \(\delta(s, \nu)\) is increasing in \(s\).

Proposition 4.1 leads to Theorem 4.3, which gives general necessary and sufficient criteria for the vanishing viscosity limit to hold. But we will need first the following lemma, also useful in its own right:

Lemma 4.2. Assume that \(g \equiv 0\). If (1.2) holds then (1.1) holds—and hence,
\[
\nu \int_0^T \|\nabla u\|^2, \nu \int_0^T \|\nabla w\|^2 \to 0 \text{ as } \nu \to 0.
\]

Proof. This is proved in [15] using only the energy inequality for the Navier-Stokes equations. The argument in 2D, where the energy equality holds is slightly simpler: We have, from (1.4),
\[
\|u(t)\|^2 - \|\bar{u}(t)\|^2 + 2\nu \int_0^t \|\nabla u\|^2 = 0.
\]
If (1.2) then \(\|u(t)\|^2 - \|\bar{u}(t)\|^2 \to 0\), hence, \(\nu \int_0^t \|\nabla u\|^2 \to 0\). But also \(\nu \int_0^t \|\nabla u\|^2 \to 0\), and we conclude that \(\nu \int_0^t \|\nabla w\|^2 \to 0\). \(\square\)

Theorem 4.3. If there exists some \(\delta\) as in Definition 3.2 (1) or (2) for which \(A(\cdot, \nu) \to 0\) in \(L^\infty([0, T])\) as \(\nu \to 0\), with \(A\) as defined in (4.2), then the strong vanishing viscosity limit as in (1.1) holds.

Conversely, if (1.1) holds (when \(g \equiv 0\) we only require (1.2)) then \(A(\cdot, \nu) \to 0\) in \(L^\infty([0, T])\) as \(\nu \to 0\) for any \(\delta\) as in Definition 3.2 (1) or (2).

Furthermore, we can equivalently define \(A = A_1 + A_2\), where \(A_1\) is any one of
\[
A_1^1 := -\int_0^t (u^1 - g^1)(u^2 - g^2), \quad A_1^2 := -\int_0^t (u \cdot \nabla z, u),
\]
\[
A_1^3 := -\int_0^t (u^1 u^2, \partial_2 z^1),
\]
and \(A_2\) is either
\[
A_2^1 := \nu \int_0^t (\nabla u, \nabla z) \quad \text{or} \quad A_2^2 := \nu \int_0^t (\text{curl } u, \text{curl } z).
\]
Finally, we can add to \(A\) either
\[
a_1 \nu \int_0^t \|\nabla u\|^2 + a_2 \nu \|w\|^2 \quad \text{or} \quad a_1 \nu \int_0^t \|\nabla w\|^2 + a_2 \nu \|w\|^2
\]
for any \(a_1 < \frac{1}{2}\) and any \(a_2 \in \mathbb{R}\) without affecting the conclusions of the theorem.

Remark 4.4. The function \(\delta\) appears implicitly in this theorem through \(A\), which contains the \(\delta\)-dependent corrector, \(z\).
Proof of Theorem 4.3. Assume that $A(\cdot, \nu) \to 0$ in $L^\infty([0, T])$ as $\nu \to 0$, with A as defined in (4.2), for some choice of δ as in Definition 3.2. Applying Gronwall’s inequality to (4.1), we conclude that

$$
\frac{1}{2} \|w(t)\|^2 + \frac{\nu}{2} \int_0^t \|w\|^2 \leq \left[\|A(\cdot, \nu)_{L^\infty([0, T])}\| + C(1 + t)\delta^3 + C\nu t^2 \right] e^{Ct},
$$

which vanishes as $\nu \to 0$ since $\delta(\nu) \to 0$ or $\delta(t, \nu) \to 0$ as $\nu \to 0$. This gives (1.1).

Either of the terms in (4.10) can be added to A since they can be absorbed in the energy inequality in (4.1).

Conversely, assume that the vanishing viscosity limit holds. Then by Lemma 4.2 when $g \equiv 0$ or otherwise by assumption, $t \to \nu \int_0^t \|\nabla w\|^2 \to 0$ in $L^\infty([0, T])$. For any δ as in Definition 3.2, $B(\cdot, \nu) \to 0$ in $L^\infty([0, T])$, with B as in Proposition 4.1, since $\delta(t, \nu) \to 0$ or $\delta(t, \nu) \to 0$ as $\nu \to 0$. This leaves only the term $A(\cdot, \nu)$ in (4.1), which therefore must vanish as $\nu \to 0$ as well.

Note also that the terms in (4.10) also vanish if (1.2) holds by Lemma 4.2.

The equivalence of A_1^1, A_2^1, and A_3^1 follows from the bounds that started with (4.4). For the equivalence of A_2^2 and A_2^2, we apply Lemma 2.4, which gives

$$
\nu(\nabla u, \nabla z) = \nu(\text{curl } u, \text{curl } z) + \nu \int_{\partial \Omega} (\text{curl}(z)(\cdot - \kappa z) \cdot u).
$$

Then,

$$
\nu \int_{\partial \Omega} (\text{curl}(z)(\cdot - \kappa z) \cdot u) = -\nu \int_{\partial \Omega} (\text{curl}(g - \bar{u})(\cdot - \kappa(g - \bar{u}) \cdot g),
$$

which is bounded by $C\nu$, since $\text{curl } \bar{u}$, g, and \bar{u} are each bounded independently of ν on the boundary. Hence, A_2^1 and A_2^2 are interchangeable. \square

Remark 4.5. Since the converse in Theorem 4.3 holds for any δ it follows that so, too, does the forward direction of the theorem in the sense that if $A(\cdot, \nu) \to 0$ in $L^\infty([0, T])$ for any choice of δ then A vanishes in the same manner for any other choice of δ. (All δ’s must be as in Definition 3.2, of course.) A priori, however, the forward direction is stronger with “there exists δ” rather than “for all δ.”

Remark 4.6. Lemma 2.2 gives $\text{curl } z = \gamma \partial_1 z^2 - \partial_2 z^1 + \kappa \gamma z^1$. Now,

$$
\|\gamma \partial_1 z^2\|_{L^\infty} \leq C\delta,
$$

and when the boundary is flat, there is no $\kappa \gamma z^1$ term (and $\gamma \equiv 1$). We see, then, that in a half-plane or a periodic channel, A_1^1, A_2^1, and A_3^1 are also equivalent to

$$
A_1^4 := -\int_0^t ((u^1 - g^1)(u^2 - g^2), \text{curl } z) \text{ and } A_1^4 := -\int_0^t (u^1 u^2, \text{curl } z).
$$

It is not clear how to effectively bound $\kappa \gamma z^1$ with a curved boundary, however, making the equivalence of A_1^1 and A_1^4 uncertain.

In applying Theorem 4.3, the key is the control of the two terms A_1 and A_2 in A, regardless of which form is used. The term A_1 originates in the convective terms in the Navier-Stokes and Euler equations, A_2 from the effect of the boundary on the viscous term in the Navier-Stokes equations. Either term can be controlled individually: Without the convective term we have the Stokes equation (the Euler equations becoming stationary) and the vanishing viscosity limit holds as shown in [10]. Without the boundary, the vanishing viscosity limit holds as shown in many contexts ([29, 13, 14, 3, 25], for instance). Ideally, one could handle
the combined effect of these terms, but no such technique is currently available. We have little choice, then, but to handle the two terms separately.

Thus, if we wish to establish a sufficient condition for the vanishing viscosity limit to hold, we require that

$$\int_0^t (u^1 u^2, \partial_2 z^1) \to 0 \text{ as } \nu \to 0 \quad (4.11)$$

and

$$\nu \int_0^t (\nabla u, \nabla z) \to 0 \text{ as } \nu \to 0. \quad (4.12)$$

In his seminal paper [15], Tosio Kato chose to set (with $g \equiv 0$) $\delta = \nu$. In this case, (4.11) and (4.12) are both critical in the sense that they can be shown to be bounded by the basic energy inequality for the Navier-Stokes equations, but the energy inequality is insufficient to show that these integrals vanish with viscosity. Kato shows that both of these conditions (though not making the nice division of $(u \cdot \nabla z, u)$ into parts as in (4.5) that originated in [2], as we did above) can be replaced by

$$\nu \int_0^t \|\nabla u\|_{L^2(\Gamma^\nu)}^2 \to 0 \text{ as } \nu \to 0.$$

Following in this same spirit, [17] gives two other ways to find a common condition that applies to (4.11) and (4.12) (also not making the nice division of $(u \cdot \nabla z, u)$ into parts). These are the conditions in (5.1) and (5.2) that we discuss in Section 5, along with an improvement that comes from dividing $(u \cdot \nabla z, u)$ as in [2].

Definition 4.7. We call the boundary layer, Γ^ν, the Kato (boundary) layer and ν the Kato width.

Kato actually used $\Gamma^c\nu$, but there is no loss of generality in setting $c = 1$: only the rates of convergence change.

Alternately, we can allow δ to be infinitesimally larger than ν, though still vanishing as $\nu \to 0$. This approach, in the full generality in which we will use it (except for being time-independent), was first taken by Xiaoming Wang in [31] (see [30] for an earlier, less general version of this idea). We define it as follows:

Definition 4.8. Let δ be as in Definition 3.2 (2) with the additional property that

$$\int_0^T \frac{\nu}{\delta(s, \nu)} \, ds \to 0 \text{ as } \nu \to 0. \quad (4.13)$$

The resulting boundary layer, Γ^δ, we call a Wang (boundary) layer and such a δ we call a Wang width.

With a Wang layer, (4.12) follows very easily (see the proof of Theorem 7.1). This is because the factor of ν in (4.12) came from the diffusion term in the Navier-Stokes equations, while the bound on ∇z improves as δ increases. This leaves only the condition in (4.11) or an equivalent condition to be treated.

Although we use the Wang layer, we will employ it with the Kato corrector rather than the corrector employed by Wang in [31]. We do this in Section 7, but first we explore the Kato layer in Sections 5 and 6.
5. Using the Kato layer

The use of the Kato layer of width proportional to \(\nu \) leads naturally to Theorem 5.1, the result for (5.1) and (5.2) (for \(g \equiv 0 \)) appearing in [17].

Theorem 5.1. The strong vanishing viscosity limit in (1.1) holds if any of

\[
\nu \int_0^t \| \nabla u \|^2_{L^2(\Gamma_\nu)} \to 0 \quad \text{as} \quad \nu \to 0, \quad (5.1)
\]

\[
\frac{1}{\nu} \int_0^t \| u - g \|^2_{L^2(\Gamma_\nu)} \to 0 \quad \text{as} \quad \nu \to 0, \quad (5.2)
\]

\[
\frac{1}{\nu} \int_0^t \int_{\Gamma_\nu} ((u^1 - g^1)^2 + |(u^1 - g^1)(u^2 - g^2)|) \to 0 \quad \text{as} \quad \nu \to 0 \quad (5.3)
\]

holds. Conversely, if (1.1) holds (or simply (1.2) when \(g \equiv 0 \)) then (5.1) through (5.3) hold.

Proof. We prove first the converse. The simple bound,

\[
\nu \int_0^t \| \nabla u \|^2_{L^2(\Gamma_\nu)} \leq C \nu \int_0^t \| \nabla u \|^2_{L^2(\Gamma_\nu)} \leq C \nu \int_0^t \| \nabla u \|^2,
\]

shows the necessity of (5.1). The necessity of (5.2) follows from the bound,

\[
\frac{1}{\nu} \int_0^t \| u - g \|^2_{L^2(\Gamma_\nu)} \leq \frac{1}{\nu} \int_0^t C \nu^2 \| \partial_2 (u - g) \|^2_{L^2(\Gamma_\nu)} \leq C \nu \int_0^t \| \nabla u \|^2 + C \nu \int_0^t \| \nabla g \|^2,
\]

the two terms on the right vanishing as \(\nu \to 0 \) by (1.1) or (1.2) and by the independence of \(\nabla g \) on \(\nu \). In the second inequality, we applied Lemma 2.6, using that \(u - g = 0 \) on \(\partial \Omega \). Then the necessity of (5.3) follows immediately from

\[
(u^1 - g^1)^2 + |(u^1 - g^1)(u^2 - g^2)| \leq 2 |u - g|^2.
\]

For the sufficiency of the conditions, it is clear that (5.2) implies (5.3). It remains, then, to show the sufficiency of (5.1) and (5.3).

First assume (5.1). In place of (4.4), we bound \(A_1 = A_1^2 \) by

\[
\left| \int_0^t (u \cdot \nabla z, u) \right| = \left| \int_0^t (u \cdot \nabla u, z) \right| = \left| \int_0^t (u^1 \text{ curl } u, z) \right|
\]

\[
\leq \| z \|_{L^\infty([0,T] \times \Omega)} \int_0^t \| u \|_{L^2(\Gamma_\nu)} \| \text{ curl } u \|_{L^2(\Gamma_\nu)}
\]

\[
\leq C \nu \int_0^t \| \nabla u \|_{L^2(\Gamma_\nu)} \| \text{ curl } u \|_{L^2(\Gamma_\nu)} + C \nu^{\frac{1}{2}} \int_0^t \| \text{ curl } u \|_{L^2(\Gamma_\nu)}.
\]

In the second equality we applied Lemma 2.5 to exchange \(\nabla u \) for \(\text{ curl } u \), and in the last inequality we applied Corollary 2.7.

For the first term,

\[
C \nu \int_0^t \| \nabla u \|_{L^2(\Gamma_\nu)} \| \text{ curl } u \|_{L^2(\Gamma_\nu)} \leq C \left(\nu \int_0^t \| \nabla u \|^2_{L^2(\Omega)} \, ds \right)^{\frac{1}{2}} \left(\nu \int_0^t \| \text{ curl } u \|^2_{L^2(\Gamma_\nu)} \, ds \right)^{\frac{1}{2}}
\]

\[
\leq C(T) \left(\nu \int_0^t \| \text{ curl } u \|^2_{L^2(\Gamma_\nu)} \, ds \right)^{\frac{1}{2}}.
\]
In the last inequality we applied the energy inequality in (1.5). Also,
\[C \nu^{\frac{1}{2}} \int_0^t \| \text{curl} u \|_{L^2(\Gamma, \nu)} \leq \frac{1}{2} \left(\nu \int_0^t \| \text{curl} u \|_{L^2(\Gamma, \nu)}^2 \, ds \right)^{\frac{1}{2}}, \]
so
\[\left| \int_0^t (u \cdot \nabla z, u) \right| \leq C(T) \left(\nu \int_0^t \| \text{curl} u \|_{L^2(\Gamma, \nu)}^2 \, ds \right)^{\frac{1}{2}}. \]

We then bound \(A_2^2 \) by
\[\nu \left| \int_0^t (\text{curl} u, \text{curl} z) \right| \leq \nu \int_0^t \| \nabla z \| \| \text{curl} u \|_{L^2(\Gamma, \nu)}, \]
\[\leq C \nu^{\frac{1}{2}} \int_0^t \| \text{curl} u \|_{L^2(\Gamma, \nu)} \leq C t^{\frac{1}{2}} \left(\nu \int_0^t \| \text{curl} u \|_{L^2(\Gamma, \nu)}^2 \right)^{\frac{1}{2}}. \]

Then (1.1) follows from Theorem 4.3.

Assume now (5.3). First, observe that
\[\nu(\nabla u, \nabla z) = \nu(\nabla (u - g), \nabla z) + \nu(\nabla g, \nabla z), \]
with
\[\nu(\nabla g, \nabla z) \leq \nu \| \nabla g \|_{L^2(\Gamma, \nu)} \| \nabla z \| \leq C \nu \delta^\frac{1}{2} \delta^{-\frac{1}{2}} = C \nu. \]
Setting \(\xi = u - g \), which we note vanishes on \(\partial \Omega \), integrating by parts using (2.2), and then applying Lemma 2.2, we see that
\[\nu(\nabla (u - g), \nabla z) = -\nu(\xi, \Delta z) + \nu \int_{\partial \Omega} (\nabla z \cdot \mathbf{n}) g \]
\[= -\nu(\xi, \gamma^2 \partial_1^2 z) - \nu(\xi^1, \partial_\gamma^2 z^1) - \nu(\xi, (\partial_1^2 + \nu^{-1}) \nabla g), \]
\[+ \nu \int_{\partial \Omega} (\nabla z \cdot \mathbf{n}) g. \]
Using Theorem 3.5, we have
\[\nu(\xi, \gamma^2 \partial_1^2 z) \leq C \nu \| \xi \| \| \partial_1^2 z \| \leq C \nu \nu^\frac{1}{2} = C \nu^\frac{1}{2}, \]
\[\nu(\xi^1, \partial_\gamma^2 z^1) \leq \nu \| \xi^1 \| \| \partial_2 z^2 \| \leq C \nu \nu^{-\frac{1}{2}} = C \nu^\frac{1}{2}, \]
\[\nu(\xi, (\partial_1^2 + \nu^{-1}) \nabla g) \leq C \| \xi \| \| \nabla g \| \nu^{-\frac{1}{2}} = C \nu^\frac{1}{2}, \]
\[\nu \int_{\partial \Omega} (\nabla z \cdot \mathbf{n}) g \leq C \nu. \]

Therefore, we can write
\[A(t, \nu) = f(t, \nu) - \int_0^t \left(\langle \xi^1 \nabla^2, \partial_2 z^1 \rangle + \nu(\xi^1, \partial_\gamma^2 z^1) \right), \]
where \(f(\cdot, \nu) \to 0 \) in \(L^\infty(0, T; L^2(\Omega)) \) as \(\nu \to 0 \). But, applying Theorem 3.5 with \(\delta = \nu \),
\[-\langle \xi^1 \nabla^2, \partial_2 z^1 \rangle \leq \int_{\Gamma, \nu} \| \partial_2 z^1 \|_{L^\infty} \xi^1 \nabla^2 \int_{\Gamma, \nu} \frac{C}{\nu} |\xi^1 \xi^2|, \quad (5.4) \]
and
\[
\nu \left| \int_0^t (\xi^1, \partial_2^2 z^1) \right| \leq C \nu \int_0^t \| \xi^1 \|_{L^2(\Gamma_\nu)} \| \partial_2^2 z^1 \| \leq \frac{C}{\sqrt{\nu}} \int_0^t \| \xi^1 \|_{L^2(\Gamma_\nu)}
\]
\[
\leq C \left(\int_0^t 1 \right)^\frac{1}{2} \left(\frac{1}{\nu} \int_0^t \| \xi^1 \|_{L^2(\Gamma_\nu)}^2 \right)^\frac{1}{2}.
\]

Then (1.1) follows from Theorem 4.3. \(\square\)

We might hope to extend Kato’s conditions and the Kato-like conditions in Theorem 5.1 to use a layer of width \(\nu t\). We should expect the effect of the initial layer of vorticity forming at the boundary to take some time to move into the fluid, so the width of the layer should increase with time. The heat equation solution depends only upon \(\nu t\) with simple geometries for instance (though its weak boundary layer is of “width” \(\sqrt{\nu t}\)), so such a scaling would seem reasonable. It is not, however, possible.

To see this, let us consider the condition,
\[
\nu \int_0^t \| \text{curl } u \|_{L^2(\Gamma_\nu)}^2 \, ds \to 0 \text{ as } \nu \to 0 \tag{5.5}
\]

in place of (5.1). Certainly this is a necessary condition, being weaker than the condition in (5.1). To adapt the proof of sufficiency of (5.1) above, we need only change the width of the layer. Note that this brings powers of the time into the time integrals. For bounding the convective term in \(A\), we find (including only the key steps) that
\[
\left| \int_0^t (u \cdot \nabla z, u) \right| \leq \int_0^t \| u \|_{L^2(\Gamma_\nu)} \| \text{curl } u \|_{L^2(\Gamma_\nu)} \| z \|_{L^\infty} \, ds
\]
\[
\leq C \int_0^t \nu s \| \nabla u \|_{L^2(\Gamma_\nu)} \| \text{curl } u \|_{L^2(\Gamma_\nu)} \, ds + C \nu \frac{1}{2} \int_0^t s^{\frac{1}{2}} \| \text{curl } u \|_{L^2(\Gamma_\nu)} \, ds
\]
\[
\leq Ct \left(\nu \int_0^t \| \text{curl } u \|_{L^2([0,T]\times\Gamma_\nu)}^2 \, ds \right)^\frac{1}{2}.
\]

Here, Poincare’s inequality via Corollary 2.7 brings an additional factor of \(s\) into the integral, which we bound above by \(t\) and bring outside the integral. The end result is a harmless additional factor of \(t\).

The boundary term, however, has a significant problem. To see this, let us treat this term for a general \(\delta\) as in Definition 3.2, a bound we will find useful later in the proof of Theorem 7.1. We have, using \(A_2^2\),
\[
\nu \left| \int_0^t (\text{curl } u, \text{curl } z) \right| \leq \nu \int_0^t \| \text{curl } z \| \| \text{curl } u \|_{L^2(\Gamma_\nu)} \, ds
\]
\[
\leq C \nu \int_0^t \delta(s, \nu)^{-\frac{1}{2}} \| \text{curl } u \|_{L^2(\Gamma_\nu)} \, ds
\]
\[
\leq C \left(\int_0^t \frac{\nu}{\delta(s, \nu)} \, ds \right)^\frac{1}{2} \left(\nu \int_0^t \| \text{curl } u \|_{L^2(\Gamma_\nu)}^2 \right)^\frac{1}{2}.
\]

So the first time integral above must at least be finite for \(A(t, \nu)\) to have a chance to vanish with \(\nu\). When \(\delta(s, \nu) = \nu s\), however, the integral is infinite.

In estimating the convective term, we integrated by parts in the first step, removing the gradient on \(z = z_\delta\) (\(\delta = \nu\) or \(\nu s\), here). The estimate for \(\| z_\delta \|_{L^\infty}\) is independent of \(\delta\), so
In particular, \(\partial_t z^2 \), which dominates \(\nabla z \), seems unavoidable.

It is clear from these estimates that we could use a boundary layer of width \(\nu t^\alpha \) for any \(\alpha \in [0, 1) \) in (5.1). (For (5.2) and (5.3), however, the boundary term estimate scales in time even more severely, because of the factor of \(\delta^{-1} \) in (5.4) versus the factor of \(\delta^{-\frac{1}{2}} \) in (5.6).)

6. A little more with Kato’s layer

In [31], Wang gives necessary and sufficient conditions for the vanishing viscosity limit to hold based upon the magnitude of the tangential derivatives of either the tangential components of the velocity or the of the normal component of the velocity. The penalty is that the boundary layer considered must be infinitesimally larger than that of Kato (as in (4.13)).

We discuss [31] in detail in Section 7, but first we derive in a more simple manner a result using Kato’s original boundary layer. The conditions required are stronger than that of [31] in that they each involve a derivative normal to the boundary. They apply, however, to the thinner boundary layer of Kato.

Theorem 6.1. If

\[
(1) \quad \nu \int_0^T \| \partial_2 u \|_{L^2(\Gamma_\nu)}^2 = \nu \int_0^T \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)}^2 + \| \partial_2 u^2 \|_{L^2(\Gamma_\nu)}^2 \to 0 \quad \text{as} \quad \nu \to 0
\]

or

\[
(2) \quad \nu \int_0^T \| \nabla u \|_{L^2(\Gamma_\nu)}^2 = \nu \int_0^T \| \partial_1 u^1 \|_{L^2(\Gamma_\nu)}^2 + \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)}^2 \to 0 \quad \text{as} \quad \nu \to 0
\]

then the strong vanishing viscosity limit in (1.1) holds. Conversely, if (1.1) holds (or simply (1.2) when \(g \equiv 0 \)) then (1) and (2) hold.

Proof. First observe that (1) and (2) are equivalent since \(u \) is divergence-free, so by Lemma 2.2, \(\partial_2 u^2 = -\gamma \partial_1 u^1 + \kappa \gamma u^2 \), and \(\nu \| \kappa \gamma u^2 \|_{L^2(\Gamma_\nu)} \leq C\nu \).

That (1.2) when \(g \equiv 0 \implies (1), (2) \) follows from Lemma 4.2; when \(g \not\equiv 0 \) they follow directly from the stronger assumption in (1.1).

For the forward implications, assume (1). We will apply Theorem 4.3 to \(A \) using \(A_1^2 \).

Setting \(\delta = \nu \), we have,

\[
(u^1 u^2, \partial_2 z^1) \leq \| \partial_2 z^1 \|_{L^\infty} \| u^1 \|_{L^2(\Gamma_\nu)} \| u^2 \|_{L^2(\Gamma_\nu)} \leq \frac{C}{\nu} \left(\nu \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)} + \nu^\frac{1}{2} \right) \nu \| \partial_2 u^2 \|_{L^2(\Gamma_\nu)} = C\nu \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)} \| \partial_2 u^2 \|_{L^2(\Gamma_\nu)} + C\nu^\frac{1}{2} \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)} + C\nu^\frac{1}{2} \| \partial_2 u^2 \|_{L^2(\Gamma_\nu)}
\]

where we used Corollary 2.7.

Letting \(f_1(x_1, x_2) = \gamma, f_2(x_1, x_2) = 1 \), we can use Lemma 2.2 to write

\[
-\nu(\nabla u, \nabla z) = -\nu f_i \partial_i z^j f_j \partial_1 u^i \leq \nu \sum_{(i, j) \neq (2, 1)} \| f_i \partial_i z^j \|_{L^2(\Gamma_\nu)} \| f_j \partial_1 u^i \|_{L^2(\Gamma_\nu)} + \nu \| \partial_2 z^1 \|_{L^2(\Gamma_\nu)} \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)}
\]

\[
\leq C\nu \nu^\frac{1}{2} \| \nabla u \|_{L^2(\Gamma_\nu)} + C\nu\nu^{-\frac{1}{2}} \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)} \leq C\nu + \frac{\nu^2}{2} \| \nabla u \|^2 + C\nu^\frac{1}{2} \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)}.
\]
Integrating in time, we have
\[A(t, \nu) \leq C \nu \int_0^t \left(\| \partial_2 u^1 \|^2_{L^2(\Gamma_\nu)} + \| \partial_2 u^2 \|^2_{L^2(\Gamma_\nu)} \right) + C \nu^{\frac{1}{2}} \int_0^t \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)} \]
\[+ C t \nu \left(\nu \int_0^t \| \nabla u \|^2 \right) + C \nu^{\frac{1}{2}} \int_0^t \| \partial_2 u^1 \|_{L^2(\Gamma_\nu)} \]
\[\leq C \nu \int_0^t \sum_{j=1}^2 \| \partial_2 u^j \|^2_{L^2(\Gamma_\nu)} + C(T) \nu + \sum_{j=1}^2 t^{\frac{1}{2}} \left(\nu \int_0^t \| \partial_2 u^j \|^2_{L^2(\Gamma_\nu)} \right)^{\frac{1}{2}}, \]
where we used (1.5). The assumption (1) insures that \(A(t, \nu) \to 0 \) as \(\nu \to 0 \), which gives (1.1) by Theorem 4.3.

\[\square \]

7. Using a Wang Layer

Theorem 4.3 applied to a Wang layer easily yields sufficient conditions for the vanishing viscosity limit to hold for such a layer, leading to Theorem 7.1.

Theorem 7.1. Let \(\delta \) be a Wang width as in Definition 4.8. If
\[\int_0^t \int_{\Gamma_\delta} \frac{1}{\delta} |(u^1 - g^1)(u^2 - g^2)| \to 0 \text{ or } \int_0^t \int_{\Omega} ((u^1 - g^1)(u^2 - g^2), \partial_2 z^1) \to 0 \text{ as } \nu \to 0 \quad (7.1) \]
then (1.1) holds.

Proof. Since (7.1) holds, it follows from (5.6) that \(\nu \int_0^t |(\text{curl } u, \text{curl } z)| \to 0 \) as \(\nu \to 0 \). (Note that since \(\delta(\cdot, \nu) \) is increasing, \(\delta(\cdot, \nu) \to 0 \) in \(L^\infty(0,T) \).) Hence, by Theorem 4.3, if the vanishing viscosity limit holds then the second condition in (7.1) holds. But (5.4) shows that the second condition in (7.1) is bounded by the first condition; hence if either condition in (7.1) holds then the vanishing viscosity limit holds. \(\square \)

A simple and direct use of a Wang layer yields Theorem 7.2.

Theorem 7.2. Let \(\delta \) be a Wang width as in Definition 4.8. If
\[\frac{1}{\nu} \int_0^t \| u^1 - g^1 \|^2_{L^2(\Gamma_\delta)} \to 0 \text{ or } \frac{1}{\nu} \int_0^t \| u^2 - g^2 \|^2_{L^2(\Gamma_\delta)} \to 0 \text{ as } \nu \to 0 \quad (7.2) \]
then (1.1) holds.

Proof. Letting \(\xi = u - g \), we have,
\[|(\xi^1 \xi^2, \partial_2 z^1)| \leq \| \partial_2 z^1 \|_{L^\infty} \| \xi^1 \xi^2 \|_{L^1(\Gamma_\delta)} \leq \frac{C}{\delta} \| \xi^1 \xi^2 \|_{L^1(\Gamma_\delta)} \leq \frac{C}{\delta} \| \xi^1 \|_{L^2(\Gamma_\delta)} \| \xi^2 \|_{L^2(\Gamma_\delta)} \]
\[\leq \frac{C}{\delta} \| \xi^1 \|_{L^2(\Gamma_\delta)} C \delta \| \partial_2 \xi^2 \|_{L^2(\Gamma_\delta)} = C \| \xi^1 \|_{L^2(\Gamma_\delta)} \| \partial_1 \xi^1 \|_{L^2(\Gamma_\delta)}, \]
where we used (2.3) of Corollary 2.7. Hence,
\[\int_0^t (\xi^1 \xi^2, \partial_2 z^1) \leq C \left(\int_0^t \| \xi^1 \|^2_{L^2(\Gamma_\delta)} \right)^{\frac{1}{2}} \left(\int_0^t \| \partial_1 \xi^1 \|^2_{L^2(\Gamma_\delta)} \right)^{\frac{1}{2}} \]
\[= C \left(\nu^{-1} \int_0^t \| \xi^1 \|^2_{L^2(\Gamma_\delta)} \right)^{\frac{1}{2}} \left(\nu \int_0^t \| \partial_1 \xi^1 \|^2_{L^2(\Gamma_\delta)} \right)^{\frac{1}{2}}. \]
The second factor on the right-hand side is bounded by (1.4) or (1.5). The result for the first condition in (7.2) thus follows from Theorem 7.1.
For the second condition in (7.2), we interchange the roles of ξ^1 and ξ^2, which we see gives
\[
|\langle \xi^1 \xi^2, \partial z \rangle| \leq \frac{C}{\delta} \| \xi^2 \|_{L^2(\Gamma_s)} C \left(\delta \| \partial_2 \xi^1 \|_{L^2(\Gamma_s)} + \frac{\delta}{2} \right)
= C \| \xi^2 \|_{L^2(\Gamma_s)} \| \partial_2 \xi^1 \|_{L^2(\Gamma_s)} + C \delta^{-\frac{1}{2}} \| \xi^2 \|_{L^2(\Gamma_s)}.
\]
Hence,
\[
\int_0^t \langle \xi^1 \xi^2, \partial z \rangle \leq C \left(\frac{\nu^{-1}}{\delta} \int_0^t \| \xi^2 \|_{L^2(\Gamma_s)}^2 \right)^{\frac{1}{2}} \left(\nu \int_0^t \| \partial_1 \xi^2 \|_{L^2(\Gamma_s)}^2 \right)^{\frac{1}{2}} + C \int_0^t \frac{\| \xi^2 \|_{L^2(\Gamma_s)}}{\delta(s, \nu)^{\frac{3}{2}}} ds
\leq C \left(\frac{1}{\nu} \int_0^t \| \xi^2 \|_{L^2(\Gamma_s)}^2 \right)^{\frac{1}{2}} + C \left(\frac{1}{\nu} \nu \int_0^t \| \xi^2 \|_{L^2(\Gamma_s)} ds \right)^{\frac{1}{2}},
\]
which vanishes by the second condition in (7.2).

A more subtle use of the infinitesimally thicker boundary layer leads to the result of Xiaoming Wang [31] in Theorem 7.4, below. As does Wang, we restrict ourselves to a 2D channel periodic in the x_1 direction (we do, however, allow a time-varying boundary layer.) Hence, x_1 and x_2 reduce to Cartesian coordinates (though with opposite orientation), the usual formula for the divergence holds, and there is no lower-order term when integrating by parts, as there is in Lemma 2.3.

The proof of Theorem 7.4 is based upon the following estimates:

Lemma 7.3. Assume that Ω is a 2D channel periodic in the x_1 direction. Let δ as in Definition 3.2 be the width of a boundary layer. Then
\[
\left| \langle u^1 u^2, \partial_2 z \rangle \right| \leq \frac{\nu}{4} \| \nabla u \|_{L^2(\Gamma_s)}^2 + \frac{C \nu}{\delta} + C \left(\frac{1}{\nu} \nu \left\| \partial_1 u^1 \|_{L^2(\Gamma_s)} \right\|^2 \right)^{\frac{1}{2}} \left(\nu \left\| \partial_1 u^1 \|_{L^2(\Gamma_s)} \right\|^2 \right)^{\frac{1}{2}}
\]
and
\[
\left| \langle u^1 u^2, \partial_2 z \rangle \right| \leq \frac{\nu}{4} \| \nabla u \|_{L^2(\Gamma_s)}^2 + \| w \|_{L^2(\Gamma_s)}^2 + \frac{C \nu}{\delta} + \left(\frac{\delta}{\nu^4} \right)^{\frac{1}{2}} \left(\nu \left\| \partial_1 u^1 \|_{L^2(\Gamma_s)} \right\|^2 \right)^{\frac{1}{2}}
\]

Proof. To prove (7.3), we start with (5.4):
\[
\left| \langle u^1 u^2, \partial_2 z \rangle \right| \leq \frac{C}{\delta} \| \partial_2 \xi^1 \|_{L^2(\Gamma_s)} \| \partial_2 u^2 \|_{L^2(\Gamma_s)}
\leq \frac{C}{\delta} \left(\delta \| \partial_2 u^1 \|_{L^2(\Gamma_s)} + \frac{\delta}{2} \right) \| \partial_2 u^2 \|_{L^2(\Gamma_s)}
= C \nu^{\frac{1}{2}} \| \partial_2 u^1 \|_{L^2(\Gamma_s)} \frac{\delta}{\nu^4} \| \partial_1 u^1 \|_{L^2(\Gamma_s)} + C \nu^{\frac{1}{4}} \| \partial_1 u^1 \|_{L^2(\Gamma_s)}^2 + C \nu \frac{C}{\delta},
\]
where we paralleled the argument in (6.1), but using $\partial_2 u^2 = -\partial_1 u^1$ and applying Young’s inequality asymmetrically.

The proof of (7.4) is more involved. We first make the decomposition,
\[
-(u^1 u^2, \partial z^1) = (u^1 \partial_2 u^2, z^1) + (\partial_2 u^1 u^2, z^1),
\]
where we integrated by parts, using that \(u^2 = 0 \) on \(\partial \Omega \). For the first term in \(-(u^1 u^2, \partial_2 z^1)\), we use that \(\text{div} u = 0 \) to obtain
\[
(u^1 \partial_2 u^2, z^1) = -(u^1 \partial_1 u^1, z^1) = -\frac{1}{2}(\partial_1 (u^1)^2, z^1) = \frac{1}{2}(u^1)^2, \partial_1 z^1)
\]
\[
= \frac{1}{2}(u^1)^2, \partial_1 z^1) + (u^1 \partial_1, \partial_1 z^1) - \frac{1}{2}(u^1)^2, \partial_1 z^1),
\]
where, since we integrated by parts in the tangential variable, we needed no boundary condition. Hence,
\[
|u^1 \partial_2 u^2, z^1| \leq \frac{1}{2} \|u\| \|\partial_1 z^1\|_{L^\infty} + \|u\| \|\bar{u}\|_{L^\infty} \|\partial_1 z^1\| + \frac{1}{2} \|\bar{u}\|_{L^\infty} \|\bar{u}\| \|\partial_1 z^1\|
\]
\[
\leq C \|u\|^2 + C\delta^\frac{1}{2}.
\]
For the second term in \(-(u^1 u^2, \partial_2 z^1)\), we have
\[
|\partial_2 u^2, z^1| \leq \|\partial_2 u^1\|_{L^2(\Gamma_\delta)} \|u^2 z^1\|.
\] (7.5)
Defining \(\beta \) by
\[
\beta(t, x_1, x_2) := -\int_{x_2}^{\delta(t,x)} (z^1(t, x_1, y))^2 \, dy,
\] (7.6)
we see that
\[
\partial_2 \beta = (z^1)^2
\]
and
\[
\|\beta\|_{L^\infty(\Gamma_\delta)} \leq \delta \|z^1\|_{L^\infty} \leq C\delta,
\]
\[
\|\partial_1 \beta\|_{L^\infty(\Gamma_\delta)} \leq \delta \|z^1\|_{L^\infty} \leq C\delta.
\]
Then,
\[
\|u^2 z^1\|^2 = \int_{\Gamma_\delta} (u^2)^2 (z^1)^2 = \int_{\partial \Omega} \int_0^\delta (u^2(t, x_1, x_2))^2 \partial_2 \beta(t, x_1, y) \, dx_2 \, dx_1
\]
\[
= -\int_{\partial \Omega} \int_0^\delta \partial_2 (u^2(t, x_1, x_2))^2 \beta(t, x_1, x_2) \, dx_2 \, dx_1
\]
\[
= -\int_{\Gamma_\delta} (u^2)^2 \beta = -2 \int_{\Gamma_\delta} u^2 \partial_2 u^2 \beta = 2 \int_{\Gamma_\delta} u^2 \partial_1 u^1 \beta
\]
\[
= -2 \int_{\Gamma_\delta} u^1 \partial_1 u^1 \beta = -2 \int_{\Gamma_\delta} u^1 \partial_1 u^2 \beta - 2 \int_{\Gamma_\delta} u^1 u^2 \partial_1 \beta.
\]
In both integrations by parts, we used that \(u^2 = 0 \) on \(\partial \Omega \), the outer component of \(\partial \Gamma_\delta \), while \(\beta = 0 \) on the inner component of \(\partial \Gamma_\delta \).

Proceeding,
\[
-2 \int_{\Gamma_\delta} u^1 u^2 \partial_1 \beta \leq 2 \|u^1\| \|u^2\| \|\partial_1 \beta\|_{L^\infty(\Gamma_\delta)} \leq C\delta^2 \|\partial_2 u^2\|_{L^2(\Gamma_\delta)},
\]
\[
-2 \int_{\Gamma_\delta} u^1 \partial_1 u^2 \beta \leq 2 \|u^1\| \|\partial_1 u^2\|_{L^2(\Gamma_\delta)} \|\beta\|_{L^\infty(\Gamma_\delta)} \leq C\delta^2 \|\partial_2 u^1\|_{L^2(\Gamma_\delta)} \|\partial_1 u^2\|_{L^2(\Gamma_\delta)}.
\]
Thus,
\[\|u^2 z^1\| \leq C \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} \left(\|\partial_1 u^2\| L^2(\Gamma_s) + 1\right) \]
and therefore,
\[|(\partial_2 u^1 u^2, z^1)| \leq \|\partial_2 u^1\| L^2(\Gamma_s) \|u^2 z^1\| \leq C \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} \left(\|\partial_1 u^2\| L^2(\Gamma_s) + 1\right) \]
\[= C \|\nabla u\| L^2(\Gamma_s) \|\partial_1 u^2\| L^2(\Gamma_s) + C \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} . \]
Applying Young’s inequality,
\[C \|\nabla u\| L^2(\Gamma_s) \|\partial_1 u^2\| L^2(\Gamma_s) = C \left(\nu \frac{3}{8} \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} \right) \left(\frac{\delta}{\nu} \frac{1}{\nu^4} \|\partial_1 u^2\| L^2(\Gamma_s)^{\frac{3}{2}} \right) \]
\[\leq \frac{\nu}{8} \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} + \frac{\delta}{\nu^4} \left(\nu \|\partial_1 u^2\| L^2(\Gamma_s)^{\frac{3}{2}} \right) \]
and
\[C \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} = C \frac{\delta}{\nu^2} \nu^4 \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} \leq \frac{\nu}{8} \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} + C \frac{\delta}{\nu^4} . \]
Collecting these bounds gives (7.4).

Theorem 7.4. [Wang [31]] Assume that Ω is a 2D channel periodic in the x_1 direction. Let δ be a Wang width as in Definition 4.8 with
\[\nu \int_0^T \|\partial_1 u^1\| L^2(\Gamma_s(s,\nu)) ds \to 0 \text{ as } \nu \to 0 \quad (7.7) \]
or
\[\nu \int_0^T \|\partial_1 u^1\| L^2(\Gamma_s(s,\nu)) ds \to 0 \text{ as } \nu \to 0. \quad (7.8) \]
Then the strong vanishing viscosity limit in (1.1) holds. Conversely, if (1.1) holds (or simply (1.2) when $g \equiv 0$) then (7.7) and (7.8) hold for any Wang width.

Proof. For each of (7.7) and (7.8), the converse follows immediately from Lemma 4.2 or the assumption in (1.1), which implies (1.3).

For the forward direction, we know that (4.12) holds simply because δ is a Wang width (see the comment following Definition 4.8). It remains to show that (4.11) holds, for it will follow that $A \to 0$ as in Theorem 4.3.

Assume, first, that (7.7) holds. Integrating (7.3) over time gives
\[\int_0^T |(\partial_2 u^1 u^2, z^1)| \leq \frac{\nu}{4} \int_0^T \|\nabla u\| L^2(\Gamma_s)^{\frac{3}{2}} + C \nu \int_0^T \frac{ds}{\delta(s,\nu)} + C \frac{\delta^2}{\nu^2} F_\nu(\delta) \quad (7.9) \]
\[\text{(we used here that } \delta(s,\nu) \leq \delta(t,\nu), \text{ where) } \]
\[F_\nu(t, \delta) := \nu \int_0^t \|\partial_1 u^1\| L^2(\Gamma_s)^{\frac{3}{2}}. \]
Note that even in 2D, we cannot say that $F_\nu(t, \delta)$ is increasing in ν even for fixed δ; we would be hard pressed even to show that it is continuous.

Let us agree to call the function δ for which the condition in (7.7) is assumed to hold, δ_0; this means that we are given that $F_\nu(t, \delta_0(t, \nu)) \to 0$ as $\nu \to 0$. We will show that there exists
a possibly smaller Wang width, which we will relabel \(\delta \), for which
\[
\frac{\delta^2(t, \nu)}{\nu^2} F_\nu(t, \delta(t, \nu)) \to 0 \quad \text{as} \quad \nu \to 0.
\]

As long as \(\delta \leq \delta_0 \) (as functions of \(\nu \)), we will have
\[
\frac{\delta^2(t, \nu)}{\nu^2} F_\nu(t, \delta(t, \nu)) \to 0 \quad \text{as} \quad \nu \to 0.
\]

So let
\[
\delta(t, \nu) = \min \left\{ \delta_0(t, \nu), \inf_{s \in [t,T]} \frac{\nu}{F_\nu(s, \delta_0(s, \nu))^\frac{1}{4}} \right\},
\]
which we note is continuous at \(\nu = 0 \) with \(\delta(t, 0) = 0 \), and is increasing in \(t \). Then,
\[
\frac{\nu}{\delta(t, \nu)} \leq \max \left\{ \frac{\nu}{\delta_0(t, \nu)}, F_\nu(t, \delta_0(t, \nu))^\frac{1}{4} \right\} \to 0,
\]
\[
\frac{\delta^2(t, \nu)}{\nu^2} F_\nu(t, \delta(t, \nu)) \leq \frac{\delta^2(t, \nu)}{\nu^2} F_\nu(t, \delta_0(t, \nu)) \leq \frac{\nu^2}{\nu^2} F_\nu(t, \delta_0(t, \nu)) \to 0
\]
as \(\nu \to 0 \), and the convergence is uniform in time. Also,
\[
\int_0^T \frac{\nu}{\delta(t, \nu)} dt \leq \max \left\{ \int_0^T \frac{\nu}{\delta_0(t, \nu)} dt, \int_0^T F_\nu(\delta_0(t, \nu))^\frac{1}{4} dt \right\}.
\]

As \(\nu \to 0 \), the first integral on the right-hand side vanishes because \(\delta_0 \) is a Wang width, while
the second integral vanishes because \(F_\nu(\delta_0(t, \nu)) \leq F_\nu(\delta_0(T, \nu)) \to 0 \). Hence, we see that \(\delta \) is
a Wang width, so we can apply Theorem 4.3 to the bound in (7.9) using (4.10) to conclude
that (1.1) holds.

Now assume that (7.8) holds. Integrating (7.4) over time, we have
\[
\int_0^T |(\partial_2 u^1, u^2, z)| \leq \frac{\nu}{4} \int_0^T \|\nabla u\|^2_{L^2(\Gamma)} + C \left(\frac{\delta}{\nu^\frac{1}{4}} \right) \frac{T}{\nu^\frac{1}{4}} T + C \frac{\delta^4}{\nu} \int_0^T \nu \|\partial_1 u^2\|^2_{L^2(\Gamma)},
\]
We can absorb the first term above by virtue of (4.10), and, if needed, we can always
decrease \(\delta \) to be less than \(\nu^\frac{1}{4} \) while still keeping the conditions in (4.13) and in Definition 3.2
(2), insuring that the second term above vanishes with \(\nu \). The final term we treat in the same
manner as we treated the final term in (7.9), writing it in the form, \(C \frac{\delta^4}{\nu} F_\nu(\delta) \), where now
\[
F_\nu(\delta) := \nu \int_0^T \|\partial_1 u^2\|^2_{L^2(\Gamma)}.
\]

Applying Theorem 4.3 using (4.10) to conclude that (1.1) holds, the proof of sufficiency of
(7.8) is complete. \(\square \)

Remark 7.5. The construction in (7.10) is a little easier to understand when \(\delta \) is time-
independent. We set
\[
\delta(\nu) = \min \left\{ \delta_0(\nu), \frac{\nu}{F_\nu(T, \delta_0(\nu))^\frac{1}{4}} \right\}.
\]
Then δ is continuous at zero with δ(0) = 0. Then since $F_\nu(T, \delta_0(\nu)) \to 0$ by assumption, δ(ν) is a Wang width, and
\[
\frac{\delta(\nu)^2}{\nu^2} F_\nu(t, \delta(\nu)) \leq \frac{\delta(\nu)^2}{\nu^2} F_\nu(t, \delta_0(\nu)) \leq \frac{\nu^2}{\nu^2} F_\nu(t, \delta_0(\nu)) = \sqrt{F_\nu(t, \delta_0(\nu))} \leq \sqrt{F_\nu(T, \delta_0(\nu))} \to 0.
\]

Remark 7.6. In [31], Wang uses an energy argument that starts with the equation for what we are calling \tilde{w} (rather than w, as we did) then multiplies by \tilde{w} and integrates over time and space. The introduction of F_ν and the use of β, which are at the heart of the proof, are adopted from [31]. Also, Wang uses a different corrector, though all the necessary estimates hold for the Kato corrector we are using.

Remark 7.7. If we allowed a curved boundary in Theorem 7.4, the lower-order terms in Lemmas 2.2 and 2.3 would lead to the additional term,
\[
I_2 := 2(u^1 u^2, (-\kappa(x_2) + \alpha_2)\beta) + ((u^3)^2, \alpha_2 \beta),
\]
in the estimate of $\|u^2 z\|^2$ in the proof of Lemma 7.3. This, in turn would add the additional term,
\[
\|\partial_2 u^1\|_{L^2(\Gamma)} |I_2|^\frac{1}{2}
\]
to the bound in (7.4). The usual “trick” of forcing $w = u - \nu$ to appear in this estimate, as was done to obtain (4.7), is of no use here, and the direct estimate,
\[
|I_2| \leq C\|\nu\|^2 \|\beta\|_{L^\infty(\Gamma)} \leq C\delta
\]
is also insufficient. A more subtle definition of the function β in (7.6) perhaps might circumvent this difficulty, but that issue we leave unexplored.

8. Vortex sheet on the boundary

Let $\mathcal{M}(\Omega)$ be the space of finite Borel signed measures on $\overline{\Omega} = \mathcal{M}(\overline{\Omega})$ is the dual space of $C(\overline{\Omega})$. Let μ in $\mathcal{M}(\overline{\Omega})$ be the measure supported on Γ for which $\mu|_\Gamma$ corresponds to Lebesgue measure on Γ (arc length, since $d = 2$). Then μ is also a member of $H^1(\Omega)'$.

The proof of Theorem 8.1 for $g \equiv 0$ is given in [18]. Its proof for a general g requires only the trivial replacement of ν by $\nu - g$ in the arguments in [18]. Note that the presence or absence of an energy defect as in (1.3) does not affect the arguments in [18]. In some sense, this is because a corrector is not employed in [18].

Theorem 8.1. The following conditions are equivalent, when Ω is simply connected and δ is time-independent, as in (1) of Definition 3.2:

1. (1.1) holds,
2. $\omega \to \overline{\omega} + ((g - \overline{\nu}) \cdot \tau)\mu$ in $(H^1(\Omega))'$ uniformly on $[0, T],$
3. $\omega \to \overline{\omega}$ in $H^{-1}(\Omega)$ uniformly on $[0, T].$

In [7, 8] it is shown that for radially symmetric initial vorticity in a disk, (2) of Theorem 8.1 holds in the more classical sense of a vortex sheet, in that
\[
\omega \to \overline{\omega} + ((g - \overline{\nu}) \cdot \tau)\mu \text{ in } \mathcal{M}(\overline{\Omega}) \text{ uniformly on } [0, T].
\]

The following gives a simple condition for this type of convergence to hold:

Theorem 8.2. The convergence in (8.1) holds if and only if $\omega - \overline{\omega} - \text{curl } z \to 0$ in $\mathcal{M}(\overline{\Omega})$ uniformly on $[0, T]$, and both hold if $\omega - \text{curl } z \to \overline{\omega}$ in $L^\infty(0, T; L^1(\Omega)).$
Proof. Let \(\varphi \in C(\overline{\Omega}) \). Then by Proposition A.1,

\[
(g - \overline{\nabla} \cdot \tau) \varphi \quad \text{uniformly on } [0, T],
\]

meaning that \(\text{curl} \, z \to ((g - \overline{\nabla}) \cdot \tau) \mu \) in \(\mathcal{M}(\overline{\Omega}) \) uniformly on \([0, T] \). Hence, convergence in (8.1) holds if and only if \(\omega - \overline{\nabla} \cdot \text{curl} \, z \to 0 \) in \(\mathcal{M}(\overline{\Omega}) \) uniformly on \([0, T] \).

Now assume that \(\omega - \overline{\nabla} - \text{curl} \, z \to 0 \) in \(L^\infty(0, T; L^1(\Omega)) \). Then

\[
|\omega - \overline{\nabla} - \text{curl} \, z, \varphi| \leq \|\omega - \overline{\nabla} - \text{curl} \, z\|_L^\infty \|\varphi\|_L^\infty \to 0
\]

uniformly over time, meaning that \(\omega - \overline{\nabla} - \text{curl} \, z \to 0 \) in \(\mathcal{M}(\overline{\Omega}) \) uniformly on \([0, T] \). \(\square \)

9. WELL-POSEDNESS OF \((NS_g)\)

We now give the proof of Lemma 1.1 and use it to prove the existence of solutions to \((NS_g)\), Proposition 1.2. We return to writing \(u_g \) rather than simply \(u \), as we did in Sections 4 to 8.

Proof of Lemma 1.1. Let \(g \) solve the stationary Stokes problem,

\[
\begin{cases}
\nabla q = \Delta g & \text{in } \Omega, \\
\text{div} \, g = 0 & \text{in } \Omega, \\
\overline{g} = g & \text{on } \partial \Omega.
\end{cases}
\]

It follows that \(g \in C^\infty(\overline{\Omega}) \) (see, for instance, Theorem IV.7.1 of [9].) We see also that \(\partial_t g \) satisfies the stationary Stokes problem, \(\nabla \partial_t q = \Delta \partial_t g, \text{div} \, \partial_t g = 0 \) in \(\Omega \), \(\partial_t \overline{g} = \partial_t g \) on \(\partial \Omega \), so \(g \in C^\infty([0, \infty) \times \overline{\Omega}) \), is divergence-free, and equals \(g \) on \(\partial \Omega \).

If, in addition, \(u_0|_{\partial \Omega} = g(0) \), then \(\overline{g} + u_0 - \overline{g}(0) \in C^\infty([0, \infty) \times \overline{\Omega}) \), is divergence-free, equals \(g \) on \(\partial \Omega \) and equals \(u_0 \) at time zero.

Relabeling by setting \(g = \overline{g} \) or \(g = \overline{g} + u_0 - \overline{g}(0) \) completes the proof. \(\square \)

Proof of Proposition 1.2. With \(g \) as in Lemma 1.1, we can rewrite \((NS_g)\) as

\[
\partial_t r + \partial_t g + r \cdot \nabla r + r \cdot \nabla g + g \cdot \nabla r + \nabla g + \nabla p_g = \nu \Delta r + \nu \Delta g,
\]

where \(r := u_g - g \), noting that \(r = 0 \) on \(\partial \Omega \). Hence, we look for a weak solution to

\[
\begin{cases}
\partial_t r + r \cdot \nabla r + r \cdot \nabla g + g \cdot \nabla r + \nabla p_g = \nu \Delta r + F_g & \text{on } \Omega, \\
\text{div} \, r = 0 & \text{on } \Omega, \\
r(0) = u_0 - g(0) & \text{on } \Omega, \\
r = 0 & \text{on } \partial \Omega.
\end{cases}
\]

This is a linear perturbation of the Navier-Stokes equations with the forcing term, \(F_g \). Existence and, in 2D, uniqueness, is standard (see, for instance, [12], where a similar perturbation is worked out in detail).

The energy inequality that results we can derive formally by multiplying the equation for \(r \) by \(r \) and integrating over \(\Omega \):

\[
\frac{1}{2} \frac{d}{dt} \|r\|^2 + \nu \|\nabla r\|^2 = -(r \cdot \nabla g, r) + (F_g, r)
\]

\[
\leq \|\nabla g\|_{L^\infty} \|r\|^2 + \|F_g\| \|r\| \leq \frac{\|F_g\|^2}{2} + \left(\|\nabla g\|_{L^\infty} + \frac{1}{2} \right) \|r\|^2
\]

so that

\[
\frac{d}{dt} \|r\|^2 + 2\nu \|\nabla r\|^2 \leq \|F_g\|^2 + (2 \|\nabla g\|_{L^\infty} + 1) \|r\|^2.
\]
Integrating in time, we see that
\[\|r(t)\|^2 + 2\nu \int_0^t \|\nabla r\|^2 \leq \|r(0)\|^2 + \int_0^t \|F_g\|^2 + \int_0^t (2\|\nabla g\|_{L^\infty} + 1) \|r\|^2. \]
Applying Gronwall's lemma gives
\[\|r(t)\|^2 + 2\nu \int_0^t \|\nabla r\|^2 \leq \left(\|r(0)\|^2 + \int_0^t \|F_g\|^2 \right) e^{\int_0^t (2\|\nabla g\|_{L^\infty} + 1)}. \] (9.2)
Using (9.2) with \(\|r(0)\|^2 \leq 2\|u^0\|^2 + 2\|g_0\|^2 \) and
\[\|u_g(t)\|^2 + 2\nu \int_0^t \|\nabla u_g\|^2 \leq 2 \left(\|r(t)\|^2 + 2\nu \int_0^t \|\nabla r\|^2 + \|g(t)\|^2 + 2\nu \int_0^t \|\nabla g\|^2 \right) \]
yields the bound in (1.5). Moreover, the continuity in time and higher regularity properties of \(r \) follow from (9.2) in the standard way, which yield the corresponding properties for \(u_g = r + g \).

10. How might convergence happen?

10.1. A very special case. If we choose to set \(g = \bar{u}|_{\partial\Omega} \), we see that \(u_g = u_\pi = \bar{u} \) on \(\partial\Omega \). This eliminates the boundary term in the basic energy argument, giving \(u_\pi \to \bar{u} \) as in the boundary-free case (though only in the \(L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)) \)-norm, not in higher norms, since there is still no control of vorticity production of \(u_\pi \) on the boundary).
Thus, we easily obtain Theorem 10.1.

Theorem 10.1. We have
\[u_\pi \to \bar{u} \text{ in } L^\infty(0, T; L^2(\Omega)) \cap L^2(0, T; H^1(\Omega)) \]
with
\[\|u_\pi(t) - \bar{u}(t)\| \leq C\nu e^{Ct}, \quad \int_0^t \|\nabla (u_\pi(s) - \bar{u}(s))\|^2 \, ds \leq C\nu t^{\frac{1}{2}} e^{Ct}. \]
Proof. We can use \(g = \bar{u} \) on all of \(\Omega \) in constructing the corrector \(z \)—this gives \(z \equiv 0 \), as we can see from (3.2). But then any of various conditions in Theorem 4.3 give the vanishing viscosity limit. (Or one can make a direct energy argument, since the boundary integral disappears. It is easier to obtain the convergence rate that way.) \(\square \)

A simple corollary of Theorem 10.1 is the following:

Corollary 10.2. We have,
\[u_g \to \bar{u} \text{ in } L^\infty(0, T; L^2(\Omega)) \text{ as } \nu \to 0 \]
if and only if
\[u_g - u_\pi \to 0 \text{ in } L^\infty(0, T; L^2(\Omega)) \text{ as } \nu \to 0. \]
Proof. By the triangle inequality,
\[\|u_g - \bar{u}\| \leq \|u_g - u_\pi\| + \|u_\pi - \bar{u}\|, \]
\[\|u_g - u_\pi\| \leq \|u_g - \bar{u}\| + \|u_\pi - \bar{u}\|, \]
and the result follows from Theorem 10.1. \(\square \)
Now consider the issue of the convergence of $u_g - u_\pi$ to 0. Let $w = u_g - u_\pi$. Then

$$(\partial_t w, w) + (w \cdot \nabla u_\pi, w) + (u_g \cdot \nabla w, w) + (\nabla (p - q), w) = \nu (\Delta w, w).$$

The third and fourth terms on the left-hand side vanish after integrating by parts. We integrate the right-hand side by parts to obtain

$$\frac{1}{2} \frac{d}{dt} \|w\|^2 + \nu \int_0^T \|\nabla w\|^2 = -(w \cdot \nabla u_\pi, w) + \nu \int_{\partial \Omega} (\nabla w \cdot n) \cdot w - \nu \int_{\partial \Omega} (\nabla w \cdot n) \cdot (g - \bar{u}).$$

Now, to obtain convergence we need control both on ∇u_π in something close to $L^1(0, T; L^\infty)$, as well as control on the boundary term. So proving $u_g - u_\pi \to 0$ appears to be even more difficult than proving $u_g \to \bar{u}$.

10.2. Speculations and a conjecture. Moving into the realm of speculation, consider the following opposed possibilities:

- **Positive**: The vanishing viscosity limit in (1.1) holds for all smooth u_0 and smooth g.
- **Negative**: The vanishing viscosity limit in (1.1) fails to hold for generic u_0 and g.

The qualification “generic” is not meant in any precise technical way, but is to rule out, for instance, initial data for which \bar{u} vanishes on the boundary or which has some degree of analyticity.

Whether one or the other of these possibilities holds (they are not exhaustive, so neither may hold) is related to the question, “Is the solution to (NS) at low viscosity indifferent to the boundary value g, or is it sensitive to it?” Indifference would support the positive possibility, sensitivity would support the negative (or at least non-positive) possibility. We can give some support for each position:

Indifferent: As $\nu \to 0$, the imposition of $u = g$ on the boundary should become less important, since as the fluid becomes less viscous, the boundary forcing should have less effect on it, so less vorticity should be shed off the boundary and transported into the bulk of the fluid. Nonetheless, there is enough shedding of vorticity for a vortex sheet to form at the boundary. Indeed, this is shown to be the case for radially symmetric solutions in [7, 8], and is likely the case for other scenarios in which the non-linearity is weakened or eliminated (though such examples do not seem to have been worked out explicitly in the literature, since $g = 0$ is generally assumed).

Sensitive: Theorem 8.1 tells us that when $g = \bar{u}|_{\partial \Omega}$, the shedding of vorticity off the boundary is shut down, no vortex sheet forms on the boundary, and the vanishing viscosity limit holds. On the other hand, if $g \neq \bar{u}|_{\partial \Omega}$ then a vortex sheet must form on the boundary for the vanishing viscosity limit to hold. But perhaps as a vortex sheet begins to form, there is an underlying physical mechanism that pushes back against the convergence of the velocities, and hence also against the continued formation of the vortex sheet.

The key difficulty with using Theorem 8.1 as evidence for or against the vanishing viscosity limit is that its proof is simply a mathematical observation not based on any underlying physical mechanism. And the convergence of the vortex sheet in Theorem 8.1 is weak-* in a non-distribution space, complicating even its mathematical interpretation. An avenue of exploration here is to try to determine whether some stronger type of convergence is compatible with the vanishing viscosity limit. We know that convergence as a finite Borel
measure is compatible in certain cases by [7, 8] and we know that convergence in L^p for $p > 1$ is incompatible by [20]. But the former result is for very specialized initial data, and the second result is simply based upon the need for the L^p norms of the Navier-Stokes vorticity to blow up as $\nu \to 0$. Again, no (deep) physical mechanism is involved.

Weaker than either of the two positions is the following conjecture:

Conjecture 1. Generically, (1.1) holds for u_0 if and only if (1.1) holds for any function $g \in (C^\infty([0,T] \times \partial \Omega))^d$ with $g \cdot n = 0$ on $\partial \Omega$.

This conjecture is saying, in effect, that except in very special circumstances, the vanishing viscosity limit can hold only if the indifferent position is correct, though it takes no position on whether the vanishing viscosity limit holds generically at all. A motivation for this conjecture is that, as we have seen, the form of the Kato and Kato-like conditions are all indifferent to the choice of g (for those involving derivatives of the velocity fields; for those involving the velocity fields directly, we naturally subtract g).

10.3. An initial layer only.

In studying the vanishing viscosity limit for no-slip boundary conditions, one often assumes compatible initial data, meaning that (at least) u_0 vanishes on the boundary. This eliminates the added complication of dealing with an initial layer due to incompatible data, putting the focus on the nature of the development of layers for positive time as vorticity is shed from the boundary.

But we can do just the opposite, working only with an initial layer by considering the special case where $u^0 \equiv 0$, so $\overline{u} \equiv 0$ is a (stationary) solution to the Euler equations. There is an incompatibility in the boundary conditions for (NS_g) at time zero when $g \not\equiv 0$, so the solution to the Navier-Stokes equations does not vanish. This leads to a special case of the vanishing viscosity limit not included in the classical setting (where $g \equiv 0$ would trivialize to $u_0 \equiv \overline{u} \equiv 0$).

There are only two possibilities:

- **Positive:** $u_g \to 0$ as $\nu \to 0$ for all smooth g.
- **Negative:** there exists smooth g such that $u_g \not\to 0$ as $\nu \to 0$.

A route to a positive answer would be to find a more optimum bound on the energy of u_g than that in (1.5), one that would lead to $\|u_g(t)\| \to 0$ as $\nu \to 0$. But this is entirely equivalent, as we can see from Theorem 4.3, to obtaining a bound on $A(t,\nu)$ that insures it vanishes with ν. Even in simple geometries such as a disk with constant $g \cdot \tau$, then, even this simplified form of the vanishing viscosity limit question seems out of reach.

To gain a little insight, though, let us consider a linearized version of (NS_g) in which we drop the term $u_g \cdot \nabla u_g$ in (NS_g): that is, the time-dependent Stokes problem, $\partial_t u_g + \nabla p_g = \nu \Delta u_g$. We will assume, however, that g is time-independent. We begin by making the same energy argument as in the proof above of Proposition 1.2, but instead of using g itself, we use a “corrector,” z. We define z as in Section 3, using $v = g$ in place of (3.1), and with δ to be chosen below. (Hence, the corrector is “correcting” only the boundary value of g.) We can see from Lemma 1.1 and Theorem 3.5 that

$$\|z\| \leq C\delta^{\frac{1}{2}}, \quad \nu \|\nabla z\|^2 \leq C\nu^\delta.$$

Set $r = u_g - z$ and choose $\delta = \nu^{1/2}$. Because there are no nonlinear terms and $\partial_z z$ vanishes, in place of (9.1) we have

$$\partial_t r + \nabla p_g = \nu \Delta r + \nu \Delta z.$$
Multiplying by r and integrating over the domain, we have
\[
\frac{1}{2} \frac{d}{dt} \|r\|^2 + \nu \|\nabla r\|^2 = \nu (\nabla z, \nabla r) \leq \frac{\nu}{2} \|\nabla z\|^2 + \frac{\nu}{2} \|\nabla r\|^2.
\]
We conclude that
\[
\frac{d}{dt} \|r\|^2 + \nu \|\nabla r\|^2 \leq \nu \|\nabla z\|^2 \leq C \frac{\nu}{\delta}.
\]
Integrating in time, we see that
\[
\|r(t)\|^2 + \nu \int_0^t \|\nabla r\|^2 \leq \|r(0)\|^2 + C \frac{\nu}{\delta} t = \|z\|^2 + C \frac{\nu}{\delta} t \leq C(1 + t)\nu^{\frac{1}{2}},
\]
where in the last step we chose $\delta = \nu^{\frac{1}{2}}$ to balance the ν-dependence of the two terms.

Hence, for the linearized problem, at least in the special case in which the boundary data is constant in time, we obtain the positive possibility. Of course, this linear situation should not dominate our intuition: the question is whether the nonlinear, convective term disrupts this linear behavior sufficiently to obtain a negative answer.

Appendix A. Proof of corrector estimates

In the section, we give the proof of Theorem 3.5 and the state and prove Proposition A.1.

Proof of Theorem 3.5. Working on a single component of Γ_δ using Lemma 2.2, we have,
\[
z(x_1, x_2) = \nabla_\perp (\varphi_\delta(x_2) \psi(x_1, x_2)) = (-\partial_2 (\varphi_\delta(x_2) \psi(x_1, x_2)), \gamma \partial_1 (\varphi_\delta(x_2) \psi(x_1, x_2)))
\[
= - (\varphi_\delta'(x_2) \psi(x_1, x_2), 0) + (\varphi_\delta(x_2) \partial_2 \psi(x_1, x_2), \gamma \varphi_\delta(x_2) \partial_1 \psi(x_1, x_2))
\[
= - (\varphi_\delta'(x_2) \psi(x_1, x_2), 0) + \varphi_\delta(x_2) \nabla_\perp \psi(x_1, x_2)
\]
\[
= - (\varphi_\delta'(x_2) \psi(x_1, x_2), 0) + \varphi_\delta(x_2) \psi(x_1, x_2).
\]

Hence,
\[
\partial_1 z^1 = -\varphi_\delta'(x_2) \partial_1 \psi(x_1, x_2) + \varphi_\delta(x_2) \partial_1 v^1(x_1, x_2)
\]
\[
= -\varphi_\delta'(x_2) v^2(x_1, x_2) + \varphi_\delta(x_2) \partial_1 v^1(x_1, x_2),
\]
\[
\partial_2 z^1 = -\varphi_\delta'(x_2) \partial_2 \psi(x_1, x_2) - \varphi_\delta(x_2) \psi(x_1, x_2)
\]
\[
+ \varphi_\delta'(x_2) v^1(x_1, x_2) + \varphi_\delta(x_2) \partial_2 v^1(x_1, x_2)
\]
\[
= 2\varphi_\delta'(x_2) v^1 - \varphi_\delta''(x_2) \psi(x_1, x_2) + \varphi_\delta(x_2) \partial_2 v^1(x_1, x_2),
\]
\[
\partial_1 z^2 = \varphi_\delta(x_2) \partial_1 v^2(x_1, x_2),
\]
\[
\partial_2 z^2 = -\partial_1 z^1 + \kappa \gamma z^2.
\]
In the last equality, we used $\text{div } z = 0$ and the form of $\text{div } z$ given in Lemma 2.2.

Now,
\[
|\psi(x_1, x_2)| \leq \|v\|_{L^\infty} x_2 = C x_2,
\]
\[
|v^2(x_1, x_2)| \leq \|\partial_2 v^2\|_{L^\infty} x_2 \leq C x_2,
\]
\[
|\partial_1 v^2(x_1, x_2)| \leq \|\partial_2 \partial_1 v^2\|_{L^\infty} x_2 \leq C x_2,
\]
\[
|\varphi_\delta'(x_2)| \leq C, \quad |\varphi_\delta''(x_2)| \leq C \delta^{-1},
\]
so we have the pointwise bounds (for all \(\delta \leq \delta_0 \), for some fixed \(\delta_0 > 0 \)),

\[
|z^1(x_1, x_2)| \leq C, \quad |z^2(x_1, x_2)| \leq Cx_2, \\
|\partial_1 z^1(x_1, x_2)| \leq C, \quad |\partial_2 z^1(x_1, x_2)| \leq C\delta^{-1}, \\
|\partial_1 z^2(x_1, x_2)| \leq Cx_2, \quad |\partial_2 z^2(x_1, x_2)| \leq C
\]

(A.2)

with all quantities supported in \(\Gamma_\delta \). These bounds lead directly to the bounds in Theorem 3.5 given in (3.3). Because

\[
\partial_t z(x_1, x_2) = \nabla^\perp (\varphi_\delta(x_2) \partial_t \psi(x_1, x_2))
\]

and \(\partial_t \psi \) is bounded in the same manner as \(\psi \) (just with different constants), the estimates in (A.2) and so in (3.3) hold as well for \(\partial_t z \) in place of \(z \).

This establishes (3.3) for \(j, k = 0; j = 1, k = 0; j = 0, k = 1 \). Because additional derivatives in \(x_1 \) of \(z^1 \) or \(z^2 \) affect only \(\psi \) and \(v \), which are \(C^\infty \), we also obtain the result for any value of \(j \). Each additional derivative of \(z^1 \) or \(z^2 \) in \(x_2 \) has the same effect on \(\psi \) and \(v \), but also adds one additional derivative on \(\varphi_\delta \), introducing an additional factor of \(\delta \). This leads to an additional factor of \(\delta^{-k} \) for \(\partial_t^k \). Since, however, \(\partial_2 z^2 = -\partial_1 z^1 \), there is one less factor of \(\delta^{-1} \) for \(\partial_t^k z^2 \) than there is for \(\partial_t^k z^1 \). Similar considerations apply to \(\partial_1^j \partial_t^k \), completing the proof of (3.3).

We now turn to the proof of (3.5). The estimates in (3.3) continue to hold unchanged when \(m = 0 \). If \(\delta \) also varies with time, however, the cutoff function, \(\varphi_\delta \), has an additional dependence on time thorough \(\delta \), so that

\[
\partial_t \varphi_\delta(x_2) = \partial_t \varphi \left(\frac{x_2}{\delta} \right) = \varphi' \left(\frac{x_2}{\delta} \right) \frac{\partial}{\partial \delta} \frac{x_2}{\delta} = -x_2 \frac{\partial_t \delta}{\delta^2} \varphi' \left(\frac{x_2}{\delta} \right).
\]

Hence,

\[
\partial_t z(x_1, x_2) = \nabla^\perp (\varphi_\delta(x_2) \partial_t \psi(x_1, x_2)) - \nabla^\perp \left(x_2 \frac{\partial_t \delta}{\delta^2} \varphi' \left(\frac{x_2}{\delta} \right) \psi(x_1, x_2) \right)
\]

\[=: v_1 + v_2.\]

To obtain the estimates in (A.2) for \(\partial_t z \) in place of \(z \), \(v_1 \) is bounded as before, so that, in particular,

\[
\|v_1^1(x_1, x_2)\|_{L^p(\Omega)} \leq C\delta^{\frac{1}{p}}, \\
\|v_1^2(x_1, x_2)\|_{L^p(\Omega)} \leq C\delta^{\frac{1}{p} + 1}.
\]

In bounding \(v_2 \), \(- \varphi' (x_2/\delta)\) plays the role that \(\varphi_\delta(x_2) \) played in bounding \(z \), and is bounded in the same manner (the vanishing of \(\varphi' \) in a neighborhood of the boundary does not improve any estimates), but there is an additional factor of \(x_2 \frac{\partial_t \delta}{\delta^2} \) that is included in each of the corresponding bounds in (3.3) for \(v_2 \). We need only the first two bounds,

\[
|v_2^1(x_1, x_2)| \leq Cx_2 \frac{\partial_t \delta}{\delta^2}, \\
|v_2^2(x_1, x_2)| \leq Cx_2^2 \frac{\partial_t \delta}{\delta^2}.
\]

(A.3)

Hence (assuming that \(\partial_t \delta > 0 \)),

\[
\|v_2\|_{L^p(\Omega)} \leq C \frac{\partial_t \delta}{\delta^2} \left(\int_0^\delta x_2^p \right)^{\frac{1}{p}} \leq C \frac{\partial_t \delta}{\delta^2} \delta^{\frac{1}{p} + \frac{1}{p}}.
\]
\[\|v_2^2\|_{L^p(\Omega)} \leq C_{\delta, \delta} \left(\int_0^{\delta} x_2^{2p} \right)^{\frac{1}{p}} \leq C_{\delta, \delta} \delta^{2 + \frac{1}{p}}. \]

(We have suppressed the Jacobian in these integrals, which is bounded above as in the proof of Lemma 2.3, and so only changes the values of the constants.) From this, (3.5)\textsubscript{1,2} follow directly. Then

\[\|\partial_t z\|_{L^p(\Omega)} \leq C_{\delta, \delta} \frac{1}{\delta} (1 + \delta) + C_{\delta, \delta} \delta^{\frac{1}{p} - 1} (1 + \delta) \]

\[\leq C_{\delta, \delta} \delta^{\frac{1}{p} - 1} (\delta + \delta \delta) \]

for \(\delta \) less than any fixed \(\delta_0 > 0 \), which is (3.5)\textsubscript{3}.

Proposition A.1. Assuming that \(\delta \) is time-independent as in (1) of Definition 3.2,

curl \(z \to ((g - \bar{\nu}) \cdot \tau) \mu \) in \(M(\bar{\Omega}) \) uniformly on \([0, T]\) as \(\nu \to 0 \).

Proof. Let \(\phi \in C(\bar{\Omega}) \). Since \(v = g - \bar{\nu} \) on \(\partial \Omega \), what we must show is that

\[\int_{\Omega} \text{curl } z \phi = (\text{curl } z, \phi) \to \int_{\Gamma} (v \cdot \tau) \phi \text{ as } \nu \to 0 \text{ uniformly on } [0, T]. \]

(A.4)

Recalling the definition of \(\varphi_\delta \), \(z \), \(v \), and \(\psi \) in (3.1) and (3.2), since \(\varphi_\delta \psi \) is the stream function for \(z \), we have

\[\text{curl } z = \Delta (\varphi_\delta \psi) = \Delta \varphi_\delta \psi + \varphi_\delta \Delta \psi + 2 \nabla \varphi_\delta \cdot \nabla \psi \]

\[= (\varphi_\delta'(x_2) - \kappa \gamma \varphi_\delta'(x_2)) \psi + \varphi_\delta \text{curl } v - 2 \varphi_\delta'(x_2) v^1. \]

In switching to coordinates in the third equality, we used Lemma 2.2, noting in particular, that

\[\nabla \varphi_\delta \cdot \nabla \psi = \nabla^\perp \varphi_\delta \cdot \nabla^\perp \psi = (\varphi_\delta'(x_2), 0) \cdot (v^1, v^2) = -\varphi_\delta'(x_2) v^1. \]

One term in (curl \(z, \phi \)) can be easily bounded by

\[|(\varphi_\delta \text{curl } v, \phi)| \leq \int_{\Gamma_\delta} \|\text{curl } v\|_{L^\infty} \|\phi\|_{L^\infty} \leq C_{\delta}, \]

which vanishes in the limit as \(\nu \to 0 \), since \(\delta \to 0 \) by Definition 3.2. Using the definitions in the proof of Lemmas 2.3 and 2.8, to treat the other terms in (curl \(z, \phi \)), we integrate separately over each component of \(\Gamma_\delta \) (which allows us to assume that \(\psi \) vanishes on the intersection of the boundary of that component with \(\partial \Omega \)). We have,

\[\int_{\Gamma_\delta} (-2 \varphi_\delta'(x_2) v^1 - \kappa \gamma \varphi_\delta'(x_2)) \phi \]

\[= \frac{1}{\delta} \int_0^{\delta} \int_0^1 (-2v^1(x_1, x_2) - \kappa \gamma \psi(x_1, x_2)) \phi'(\frac{x_2}{\delta}) \phi(x_1, x_2) \gamma(x_1, x_2) dx_1 dx_2 \]

\[= \int_0^{\delta} \int_0^{\delta} (-2v^1(x_1, \delta y) - \kappa \gamma (\delta y) \psi(x_1, \delta y)) \phi'(y) \phi(x_1, \delta y) \gamma(x_1, \delta x_2) dx_1 dy \]

\[\to \int_0^{\delta} (-2v^1(x_1, 0) - \kappa \gamma (0) \psi(x_1, 0)) \phi(x_1, 0) \gamma(x_1, 0) dx_1 \int_0^1 \phi'(y) dy \]

\[= \int_0^{\delta} 2v^1(x_1, 0) \phi(x_1, 0) dx_1 = 2 \int_{\Sigma_{k}} (v \cdot \tau) \phi. \]
Convergence holds because v^1, γ, and ϕ are each continuous on $\overline{\Omega}$. The equality following convergence holds because
\[\int_0^1 \varphi'(y) \, dy = [\varphi(1) - \varphi(0)] = -1 \]
and because $\gamma(x_1,0) = 1$.

For the final term in $(\text{curl} \, z, \phi)$, we have
\[\int_{\Gamma^\delta} \varphi'' \psi \phi = \frac{1}{\delta^2} \int_{\ell} \int_0^\delta \varphi'' \left(\frac{x_2}{\delta} \right) \psi(x_1,x_2) \phi(x_1,x_2) \gamma(x_1,x_2) \, dx_1 \, dx_2 \]
\[= \int_0^\ell \int_0^1 \varphi''(y) \frac{\psi(x_1,\delta y)}{\delta} \phi(x_1,\delta y) \gamma(x_1,\delta y) \, dx_1 \, dy. \]

But,
\[\frac{\psi(x_1,\delta y)}{\delta} = y \frac{\psi(x_1,\delta y) - \psi(x_1,0)}{\delta y} \to y \partial_2 \psi(x_1,0) = -y v^1 \]
uniformly over y and time, since ψ' is uniformly continuous on $[0,T] \times \overline{\Omega}$. Here, we used that $v = \nabla \perp \psi = (\partial_2 \psi, \gamma \partial_1 \psi)$ in coordinates by Lemma 2.2, so $\partial_2 \psi = v^1$.

Again invoking uniform continuity (of γ, and ϕ) to obtain limits, we see that
\[\int_{\Gamma^\delta} \varphi'' \psi \phi \to -\int_0^\ell v^1(x_1,0) \phi(x_1,0) \gamma(x_1,0) \, dx_1 \int_0^1 y \varphi''(y) \, dy = -\int_{\Sigma_k} (v \cdot \tau) \phi, \]

since
\[\int_0^1 y \varphi''(y) \, dy = [y \varphi'(y)]_0^1 - \int_0^1 \varphi'(y) \, dy = [0 - 0] - (-1) = 1. \]

From these limits, we see that (A.4) follows. \qed

References

