
ON VANISHING VISCOSITY WITH INFLOW, OUTFLOW

MICHAEL A. GULAS AND JAMES P. KELLIHER

Abstract. We establish convergence as the viscosity vanishes of solutions of the Navier-
Stokes equations to a solution of the Euler equations for inflow, outflow boundary conditions.
We extend the approach of Temam and Wang 2002, allowing the tangential component on
outflow to be nonzero.
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We humbly dedicate this work to Roger Temam, from whom so many of us
have learned so much, in celebration of his 85th birthday.

1. Background

In [9], Roger Temam and Xiaoming Wang obtain a boundary layer expansion for the solution
to the Navier-Stokes equations in a 3D channel periodic in the horizontal directions, with
constant vertical inflow on the upper and constant vertical outflow on the lower boundary.
In [3], this result was extended to a three-dimensional curved domain with more general values
for inflow, outflow.

In both of these references, the tangential component of the outflow velocity was required
to vanish. In this paper, we remove this restriction.

First, let us define the problem we address more fully. We consider the Euler equations
(E) and the Navier-Stokes equations (NS) with inflow, outflow boundary conditions in a
domain Ω in Rd for d = 2 or 3, either a bounded domain with boundary Γ = ∂Ω or a periodic
channel, to which we will ultimately restrict our attention. Inflow will occur on a portion of
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the boundary, Γ+, and outflow on another portion of the boundary, Γ− (we discuss restrictions
on the portions below).

Letting Q := (0, T )× Ω, we write these systems of equations as

(NS)


∂tu+ u · ∇u+∇p = ν∆u+ f in Q,
div u = 0 in Q,
u(0) = u0 on Ω,

u = U on [0, T ]× Γ,

(E)



∂tu+ u · ∇u+∇p = f in Q,
div u = 0 in Q,
u(0) = u0 on Ω,

u · n = Un on [0, T ]× Γ,

u = U on [0, T ]× Γ+.

The initial velocities u0, u0, and external forces f , f , are given and we will assume to be
the same for both systems of equations. The vector field U is also given, and enters into the
equations only through its values on the boundary. The vector field n is the outward unit
normal vector and for any vector field v on Γ, vn := v · n and vτ := [v]tan, the tangential
component of v. We will also write vn for the outward normal component of v and, when
working in 2D, we define the unit tangential vector field τ so that (n, τ ) is in the standard
orientation of (e1, e2).

For (NS), the full velocity on the boundary is set equal to U on the boundary. For (E),
only the normal component of the velocity is set equal to Un = U · n on the full boundary,
though on the inflow boundary, Γ+, the full velocity is prescribed.

There are requirements on U. To explain these, we partition the (sufficiently smooth)
boundary Γ = ∂Ω into three portions, Γ+, Γ−, and Γ0, corresponding to inflow, outflow, and
impermeability, respectively. Each portion consists of a finite number of components. We fix
the vector field U on [0, T ]× Γ and assume that

Un < 0 on Γ+, Un > 0 on Γ−, Un = 0 on Γ0. (1.1)

We require divU = 0, which imposes on U the constraint that
∫
Γ+
Un = −

∫
Γ−
Un.

To obtain well-posedness of solutions to (E), Γ0 can be nonempty (in the classical case it
is the full boundary), but to obtain the vanishing viscosity limit ((V V ), defined below), we
require it to be empty.

To streamline the presentation and highlight the essential elements, we make three simpli-
fying assumptions:

(1) We work in a 2D rather than 3D channel, setting

Ω := [0, L]× (0, h), periodic in x1. (1.2)

(2) We assume that the inflow and outflow velocities are the same and time-independent,
which allows us to use a constant background flow,

U = (a,−U) for some a ∈ R, U > 0. (1.3)

(3) We restrict ourselves to only showing that the vanishing viscosity limit holds, leaving
a more complete boundary layer expansion to future work.

The essential points of our proofs, we note, apply in the settings of both [9] and [3], as well
as to time-varying inflow, outflow velocities.
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Let

H := {u ∈ (L2(Ω))d : div u = 0, u · n = 0},

V := {u ∈ (H1
0 (Ω))

d : div u = 0}.
The global-in-time well-posedness of (NS) follows from a perturbation of the classical well-
posedness for no-slip boundary conditions, leading to the following (cf., Theorem III.3.2 of
[10]):

Proposition 1.1. Let u0 ∈ H +U. In 2D, there exists a unique weak solution to (NS) in
C(0, T ;H +U) ∩ L2(0, T ;V +U).

The well-posedness for the Euler equations, however, is a far more complicated issue. It
requires compatibility conditions on the initial data to obtain unique short-time classical
solutions with u(t) having Ck,α(Ω)-regularity, k ⩾ 1. Such a need was alluded to in [9]
and [3], and were obtained for k = 1 in [1] (English translation in [2]). As in [3, 9], however,
we will require k > 1. The required compatibility conditions for higher regularity solutions
were only recently obtained in [4, 5].

The basic question we explore is whether or not the (classical) vanishing viscosity limit
(V V ) holds; that is, whether

(V V ) u→ u in L∞([0, T ];L2(Ω)) as ν → 0,

meaning

sup
t∈[0,T ]

∫
Ω
|u(t, x)− u(t, x)|2 dx→ 0 as ν → 0.

When U ≡ 0 (so Γ0 = Γ), we obtain impermeable boundary conditions for the Euler equa-
tions and no-slip boundary conditions for the Navier-Stokes equations. This is the classical
situation, and whether or not (V V ) holds in the general case has been a wide open problem
for many decades. It was first shown in [9], however, that (V V ) holds for nontrivial U (with
Γ0 = ∅), and was shown in [3] with U satisfying no further conditions than we have imposed—
with the critical exception, as also applies to [9], that [U]tan = 0 on Γ−. (In fact, [3, 9] show
a fair bit more than just that (V V ) holds, giving a more in-depth characterization of the
behavior of u near the boundary as the viscosity vanishes.)

Well-posedness of Euler. In [4, 5], existence for finite time of solutions to (E) along
with uniqueness is proven for a multiply connected bounded domain in 3D. To state the
assumptions, fix an integer N ⩾ 0. We say that the data has regularity N for an integer
N ⩾ 0 if

• Γ = ∂Ω is CN+2,α regular;
• f ∈ CN+1,α((0,∞)× Ω) ∩ C([0,∞);H);
• U ∈ CN+2,α

σ ((0,∞)× Ω), divU = 0, and (1.1) holds;
• Umin := min{|Un(t,x)| : (t,x) ∈ [0,∞)× Γ+} > 0;
• u0 ∈ CN+1,α

σ (Ω), uτ0 = Uτ
0 on Γ+,

where
CN+1,α
σ (Ω) := {u ∈ CN+1,α(Ω): div u = 0, u · n = Un(0) on Γ},

CN+1,α
σ (Q) := {u ∈ CN,α(Q) : curlu ∈ CN,α(Q), ∂N+1

t u ∈ L∞([0, T ];Cα(Ω)),

div u = 0, u · n = Un on [0, T ]× Γ},

∥u∥
CN+1,α

σ (Q)
:= ∥u∥CN,α(Q) + ∥curlu∥CN,α(Q) + ∥∂N+1

t u∥L∞([0,T ];Cα(Ω)).

(1.4)
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We have the following result from [5]:

Proposition 1.2. [ [2,5]] Let u0 ∈ CN+1,α
σ (Ω) and assume that the data has regularity N and

the compatibility conditions described in Appendix A are satisfied. There is a T > 0 such that
there exists a solution (u, p) to (E) with u ∈ CN+1,α

σ (Q) and ∇p in L∞([0, T ];CN,α(Ω)), which
is unique up to an additive constant for the pressure. If N ⩾ 1, ∇p is also in CN−1,α(Q).

Remark 1.3. In particular, the compatibility conditions described in Appendix A along with
the definition of the space CN+1,α

σ (Ω) require that u0 = U(0) on Γ+ and u0 ·n = U(0) ·n on
all of Γ. We will impose the stronger condition that u0 = U(0) on Γ− as well.

It is shown in [8] that rather than assuming compatibility conditions, one can instead
assume that the initial data is analytic, and obtain well-posedness.

Our main result is the following:

Theorem 1.4. Let Ω be a 2D channel as in (1.2) and U be as in (1.3). Make the assumptions
as in Proposition 1.2 with N ⩾ 1 and, further, assume that f = f on Q, u0 = u0 on Ω, and
u0|Γ = U(0)|Γ. Let u be the solution to (E) given by Proposition 1.2. Let u = uν be the
solution to (NS) given by Proposition 1.1. There exists T0 ∈ (0, T ) such that for all t ∈ [0, T0]
and ν ⩽ 1,

∥u(t)− u(t)∥L2(Ω) ⩽ C(νt)
1
2 e

Ct
2 + Cν

1
2 t. (1.5)

The constant C depends upon u0, U|Γ, and f .

Theorem 1.4 improves (for a 2D channel) the results in [3,9] by allowing a = [U]tan ̸≡ 0 on
the outflow boundary, Γ−.

The remainder of this paper is organized as follows: In Section 2 we give the proof of
Theorem 1.4 in the special case in which the tangential component on outflow vanishes (so
a = 0). This argument is that of [9] when specialized to 2D and to only obtaining the
vanishing viscosity limit. We extend the result to allow a nonzero tangential component on
outflow in Section 3—this is the main novelty of this paper. In the appendix, we describe the
compatibility conditions from [5] required to obtain well-posedness of solutions to the Euler
equations with inflow, outflow boundary conditions in the special case of (1.2).

2. Zero tangential component on outflow

In this section, we assume that the tangential component of the outflow velocity vanishes.
Since, for simplicity, we are assuming that U is constant on Ω, this means that

a = 0.

Thus, there is also no tangential component on inflow, but we note that the value on inflow
plays no significant role in the analysis.

To start, we “homogenize” the equations by setting

v := u−U and v := u−U

in (NS) and (E), yielding (using that u0 = u0 and f = f)

(NSh)



∂tv + v · ∇v + v · ∇U+U · ∇v +∇p
= ν∆v + ν∆U+ f − ∂tU−U · ∇U in Q,

div v = 0 in Q,
v(0) = u0 −U(0) on Ω,

v = 0 on [0, T ]× Γ,
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(Eh)



∂tv + v · ∇v + v · ∇U+U · ∇v +∇p̄
= f − ∂tU−U · ∇U in Q,

div v = 0 in Q,
v(0) = u0 −U(0) on Ω,

v · n = 0 on [0, T ]× Γ,

v = 0 on [0, T ]× Γ+.

Letting

w̃ = v − v, (2.1)

the difference of (NSh) and (Eh), gives

∂tw̃ +U · ∇w̃ + w̃ · ∇U+∇(p− p̄) = ν∆w̃ + ν∆v + ν∆U− (v · ∇v − v · ∇v). (2.2)

2.1. The corrector. Although w̃ · n = 0 on Γ, w̃ ̸= 0 on the outflow boundary. This makes
an energy argument based directly on (2.2) infeasible, because difficult-to-control boundary
terms would appear when integrating by parts. To get around this difficulty, we introduce a
corrector z, a vector field on [0, T ]× Ω which must, at a minimum, equal −v on the outflow
boundary, be divergence-free, compactly supported in a fixed layer near the outflow boundary,
and satisfy z = −v on Γ. We use z to form the corrected difference,

w = w̃ − z, (2.3)

which therefore vanishes on Γ.
We use essentially the same corrector as in [9], specialized to 2D. We let

ψ(t, x1, x2) := v1(t, x1, 0)
ν

U
(1− e

−Ux2
ν ),

z̃ := ∇⊥ψ =
(
− v1(x1, 0)e

−Ux2
ν ,

ν

U
(1− e

−Ux2
ν )∂1v

1(x1, 0)
)
,

(2.4)

noting that div z̃ = 0, while on the outflow boundary, ψ = 0 so

z̃ = (−∂2ψ, ∂1ψ) = (−v1(x1, 0), 0) = −v.

Thus, z̃ satisfies the minimal required properties of z, except that it is not supported near the
outflow boundary; indeed, it does not vanish even on the inflow boundary. To rectify this, we
cutoff ψ with a C∞ function ϕ that depends only upon x2, with ϕ ≡ 1 on [0, h/4], ϕ ≡ 0 on
[h/2, h]. We then let

z := ∇⊥(ϕψ),

which now satisfies all the minimal properties of a corrector.
It remains, however, to obtain various estimates on our corrector.
Since

z = ϕ∇⊥ψ + ψ∇⊥ϕ = ϕz̃ + ψ∇⊥ϕ = ϕz̃ − ψ(ϕ′, 0) = (ϕz̃1 − ϕ′ ψ, ϕz̃2), (2.5)

for any p ∈ [1,∞], using also that |ψ| ⩽ Cν,

∥z1∥p ⩽ ∥z̃1∥p + Cν ⩽ C∥z̃1∥p, ∥z2∥p ⩽ ∥z̃2∥p.
Moreover,

∂1z
1 = ∂1(ϕz̃

1 − ϕ′ ψ) = ϕ∂1z̃
1 − ϕ′∂1ψ = ϕ∂1z̃

1 − ϕ′z̃2,

∂2z
1 = ∂2(ϕz̃

1 − ϕ′ ψ) = ϕ∂2z̃
1 + ϕ′z̃1 − ϕ′∂2ψ − ϕ′′ψ
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= ϕ∂2z̃
1 + 2ϕ′z̃1 − ϕ′′ψ,

∂1z
2 = ϕ∂1z̃

2, ∂2z
2 = ϕ∂2z̃

2 + ϕ′z̃2,

or,

∇z =
[
∂1z

1 ∂2z
1

∂1z
2 ∂2z

2

]
= ϕ∇z̃ +

[
0 ϕ′z̃1

0 ϕ′z̃2

]
−
[
∂1(ϕ

′ψ) ∂2(ϕ
′ψ)

0 0

]
= ϕ∇z̃ +

[
0 ϕ′z̃1

0 ϕ′z̃2

]
−
[
ϕ′∂1ψ ϕ′∂2ψ + ψϕ′′

0 0

]
= ϕ∇z̃ +

[
0 ϕ′z̃1

0 ϕ′z̃2

]
−
[
ϕ′z̃2 −ϕ′z̃1 + ψϕ′′

0 0

]
= ϕ∇z̃ +

[
−ϕ′z̃2 2ϕ′z̃1 − ψϕ′′

0 ϕ′z̃2

]
.

(2.6)

A direct calculation gives,

∇z̃ =

[
−∂1v1(x1, 0)e

−Ux2
ν v1(x1, 0)

U
ν e

−Ux2
ν

ν
U (1− e

−Ux2
ν )∂21v

1(x1, 0) e
−Ux2

ν ∂1v
1(x1, 0)

]
. (2.7)

The expressions in (2.4) through (2.7) lead to the following estimates (identical estimates
hold for z̃):

∥z1∥2 ⩽ Cν
1
2 , ∥z2∥2 ⩽ Cν, ∥z∥2 ⩽ Cν

1
2 , ∥∂tz∥2 ⩽ Cν

1
2 ,

∥∂1z1∥2 ⩽ Cν
1
2 , ∥∂2z1∥2 ⩽ Cν−

1
2 , ∥∂1z2∥2 ⩽ Cν, ∥∂2z2∥2 ⩽ Cν

1
2 ,

∥z · ∇z∥2 ⩽ Cν
1
2 .

(2.8)

Moreover, because v|Γ− = 0 at t = 0 so also ∂1v|Γ− = 0, and v ∈ L∞([0, T ];C2(Ω)),

|v1(t, x1, 0)| ⩽ ∥∂tv1(x1, 0)∥L∞(0,T ]×Γ−)t ⩽ Ct,

|∂1v1(t, x1, 0)| ⩽ ∥∂t∂1v1(x1, 0)∥L∞(0,T ]×Γ−)t ⩽ Ct.

As a consequence, all the bounds in (2.8) can be improved by a factor of t. Only in one
instance, however, will this factor improve (up to a constant factor) the rate of convergence
in (V V ), where we will use that

∥z∥2 ⩽ Cν
1
2 t. (2.9)

Lemma 2.1. There exists a constant C depending only upon U , such that for all ν ⩽ 1,

∥x22∂2z1∥∞ ⩽ Cν∥v1(t)∥L∞(Γ−), ∥x2∂2z1∥2 ⩽ Cν
1
2 ∥v1(t)∥L∞(Γ−).

Proof. From (2.4) and (2.6),

∂2z
1 = ϕv1(x1, 0)

U

ν
e

−Ux2
ν − 2ϕ′v1(x1, 0)e

−Ux2
ν − ψϕ′′.

Along with the simple bound, |ψ| ⩽ C∥v1(t)∥L∞(Γ−)ν, we have

∥x22∂2z1∥∞ ⩽ ∥v1(t)∥L∞(Γ−)

[
∥x22(U/ν)e

−Ux2
ν ∥∞ + C∥x22e

−Ux2
ν ∥∞ + Cν

]
⩽ C(ν + ν2)∥v1(t)∥L∞(Γ−).

We used that ∥x2ce−cx∥∞ = 4e−2/c, so also ∥x2e−cx∥∞ = 4e−2/c2.
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This gives the first bound. For the second bound,

∥x2∂2z1∥22 ⩽ 3∥v1(t)∥2L∞(Γ−)

[
U2

ν2

∫ ∞

0
x22e

− 2Ux2
ν + C

∫ ∞

0
x22e

− 2Ux2
ν + Cν2

]
= 3∥v1(t)∥2L∞(Γ−)

[(
U2

ν2
+ C

)
ν3

4U3
+ Cν2

]
⩽ C∥v1(t)∥2L∞(Γ−)(ν + ν3 + ν2). □

In applying the corrector estimates, we will employ the following form of Hardy’s inequality
(see, for instance, Lemma II.1.10 [10]):

Lemma 2.2. For any f ∈ H1
0 (Ω),

∥∥∥∥ fx2
∥∥∥∥
L2(Ω)

⩽ CH∥∇f∥L2(Ω).

2.2. Energy argument. Written in terms of w, (2.2) becomes

∂tw+U · ∇w + w · ∇U+∇(p− p̄)

= ν∆w̃ + ν∆v + ν∆U− (v · ∇v − v · ∇v)− ∂tz −U · ∇z − z · ∇U.

Multiplying by w and integrating over Ω yields
1

2

d

dt
∥w∥22 =ν(∆w̃, w) + ν(∆v, w) + ν(∆U, w)− (U · ∇w,w)− (w · ∇U, w)

− (v · ∇v − v · ∇v, w)− (∂tz, w)− (U · ∇z, w)− (z · ∇U, w).

Integrating by parts gave (∇(p− p̄), w) = 0. Using that w̃ = w+ z, integrating by parts gives

ν(∆w̃, w) = −ν(∇w̃,∇w) = −ν(∇w,∇w)− ν(∇z,∇w)

= −ν∥∇w∥22 − ν(∇z,∇w),
since w = 0 on Γ. Bringing −ν∥∇w∥22 to the left hand side to set up an energy argument,

1

2

d

dt
∥w∥22 + ν∥∇w∥22 = −ν(∇z,∇w) + ν(∆v, w) + ν(∆U, w)− (U · ∇w,w)

− (w · ∇U, w)− (v · ∇v − v · ∇v, w)− (∂tz, w)− (U · ∇z, w)− (z · ∇U, w).
(2.10)

In what follows, we bound the nine terms on the right hand side of (2.10).

2.3. The easier terms. First, integrating by parts then applying the Cauchy-Schwarz and
Young’s inequalities,

ν(∆v, w) = −ν(∇v,∇w) ⩽ ν∥∇v∥2∥∇w∥2 ⩽ Cν∥∇v∥22 +
ν

6
∥∇w∥22. (2.11)

Since we must assume that U ∈ C2(Ω), we just estimate,

ν(∆U, w) ⩽ ν∥∆U∥2∥w∥2 ⩽ Cν2 + C∥w∥22. (2.12)

For −(∂tz, w), we have ∥∂tz∥2 ⩽ Cν
1
2 by (2.8), so

−(∂tz, w) ⩽ ∥∂tz∥2 ∥w∥2 ⩽ Cν
1
2 ∥w∥2 ⩽ Cν + C∥w∥22. (2.13)

Using that ∇w · w = 1
2∇|w|2, integrating by parts, we find

−(U · ∇w,w) = −1

2

∫
Ω
U · ∇|w|2 = 1

2

∫
Ω
divU|w|2 − 1

2

∫
Γ
Un|w|2 = 0, (2.14)

since w = 0 on Γ and U is divergence-free.
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For (w · ∇U, w) we simply apply Hölder’s inequality,

(w · ∇U, w) ⩽ ∥∇U∥∞∥w∥22 ⩽ C∥w∥22. (2.15)

The final easier term, −(z · ∇U, w) = (z · ∇w,U), we split into several terms to bound
individually:

(z · ∇w,U) =

∫
Ω
z1∂1w

1U1 +

∫
Ω
z1∂1w

2U2 +

∫
Ω
z2∂2w

1U1 +

∫
Ω
z2∂2w

2U2.

Since U1 = 0, the first and third integral vanish, and using the product rule, we obtain

(z · ∇w,U) =

∫
Ω
z1∂1(w

2U2)−
∫
Ω
z1∂1(U

2)w2 +

∫
Ω
z2∂2(w

2U2)−
∫
Ω
z2∂2(U

2)w2.

From here we can integrate the first and third integrals by parts, noticing the boundary term
vanishes since w2 = 0 on Γ:

(z · ∇w,U) = −
∫
Ω
∂1z

1(w2U2)−
∫
Ω
z1∂1(U

2)w2 −
∫
Ω
∂2z

2(w2U2)−
∫
Ω
z2∂2(U

2)w2.

We finish, using Hölder’s and Young’s inequalities,

(z · ∇w,U) ⩽ ∥∂1z1∥2 ∥w∥2∥U∥∞ + Cν
1
2 ∥w∥2 + ∥∂2z2∥2 ∥w∥2∥U∥∞ + Cν∥w∥2,

⩽ Cν
1
2 ∥w∥2∥U∥∞ + Cν

1
2 ∥w∥2 + Cν

1
2 ∥w∥2∥U∥∞ + Cν∥w∥2

⩽ Cν + Cν2 + C∥w∥22.

(2.16)

2.4. The nonlinear term. For the nonlinear term, (v · ∇v − v · ∇v, w), we use that v =
w + v + z, so

v · ∇v−v · ∇v = (w + v + z) · ∇(w + v + z)− v · ∇v,
= (w + v + z) · ∇w + (w + v + z) · ∇v + (w + v + z·)∇z − v · ∇v,
= v · ∇w + w · ∇v + v · ∇v + z · ∇v + w · ∇z + v · ∇z + z · ∇z − v · ∇v,
= v · ∇w + w · ∇v + z · ∇v + w · ∇z + v · ∇z + z · ∇z.

(2.17)

We must bound each of the six terms on the right hand side of (2.17) when paired with w.
The first of the six terms from (2.17) we integrate by parts, giving

(v · ∇w,w) =
∫
Ω
(v · ∇w) · w =

1

2

∫
Ω
v · ∇|w|2

= −1

2

∫
Ω
div v|w|2 + 1

2

∫
Γ
(v · n)|w|2 = 0,

(2.18)

since v · n = 0 on the boundary and v is divergence-free.
For the second term from (2.17), the (generalized) Hölder’s inequality gives

(w · ∇v, w) ⩽ ∥∇v∥∞ ∥w∥2 ∥w∥2 ⩽ C∥w∥22. (2.19)

For the third term from (2.17), Hölder’s inequality, (2.8), and Young’s inequality give

(z · ∇v, w) ⩽ ∥∇v∥∞ ∥z∥2 ∥w∥2 ⩽ Cν + C∥w∥22. (2.20)

For the sixth term from (2.17), we use the Cauchy-Schwarz inequality, (2.8), and Young’s
inequality, giving

(z · ∇z, w) ⩽ ∥z · ∇z∥2 ∥w∥2 ⩽ Cν
1
2 ∥w∥2 ⩽ Cν + C∥w∥22. (2.21)
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The remaining two terms, the fourth and fifth, from (2.17) are more delicate. We will
expand each of these terms using indices and we will find that terms involving ∂2z1 are the
most delicate because, as (2.8) indicates, ∂2z1 introduces a factor of ν−

1
2 .

The fourth term we write in terms of indices and treat each term individually:

(w · ∇z, w) =
∫
Ω
wi∂iz

jwj =

∫
Ω

(
w1∂1z

1w1 + w1∂1z
2w2 + w2∂2z

1w1 + w2∂2z
2w2

)
. (2.22)

Three of these terms are easy: using Hölder’s and (2.8), we find

(w1∂1z
1, w1) ⩽ ∥w1∥2∥∂1z1∥∞∥w1∥2 ⩽ C∥w∥22,

(w1∂1z
2, w2) ⩽ ∥w1∥2∥∂1z2∥∞∥w2∥2 ⩽ Cν∥w∥22,

(w2∂2z
2, w2) ⩽ ∥w2∥2∥∂2z2∥∞∥w2∥2 ⩽ C∥w∥22.

Remark 2.3. The final term in (2.22) to bound,
(
w2∂2z

1, w1
)
, is problematic, and will restrict

us to obtaining (1.5) for a time T0 possibly less than the existence time of the solution to the
Euler equations.

To bound
(
w2∂2z

1, w1
)
, we use Lemma 2.2 followed by Lemma 2.1,(

w2∂2z
1, w1

)
=

(
w2

x2
(x22∂2z

1),
w1

x2

)
⩽

∥∥∥∥w2

x2

∥∥∥∥
2

∥x22∂2z1∥∞
∥∥∥∥w1

x2

∥∥∥∥
2

⩽ ∥x22∂2z1∥∞C2
H∥∇w∥22 ⩽ C2

HCν∥v1(t)∥L∞(Γ−)∥∇w∥22.

Now, v1 = 0 on Γ at t = 0 (see Remark 1.3) or v1(0, x1, 0) = 0, and v is continuous on
[0, T ]× Ω. Therefore, given any C0 > 0 there exists a time T0 > 0 so that for all t ∈ [0, T0],

∥v1(t)∥L∞(Γ−) ⩽
1

C0
. (2.23)

Hence, for ν ⩽ 1 (
w2∂2z

1, w1
)
⩽
C2
H

C0
Cν∥∇w∥22 ⩽

ν

6
∥∇w∥22

by choosing C0 and hence T0 sufficiently small. This gives

(w · ∇z, w) ⩽ C∥w∥22 + Cν∥w∥22 +
ν

6
∥∇w∥22 ⩽ C∥w∥22 +

ν

6
∥∇w∥22. (2.24)

Finally, the fifth term from (2.17) we also write in terms of indices and treat each term
individually:

(v · ∇z, w) =
∫
Ω
vi∂iz

jwj = (v1∂1z
1, w1) + (v1∂1z

2, w2) + (v2∂2z
1, w1) + (v2∂2z

2, w2).

The first, second, and fourth terms are easily bounded:

(v1∂1z
1, w1) ⩽ ∥v1∥∞ ∥∂1z1∥2 ∥w1∥2 ⩽ Cν

1
2 ∥w∥2 ⩽ Cν + C∥w∥22,

(v1∂1z
2, w2) ⩽ ∥v1∥∞ ∥∂1z2∥2 ∥w2∥2 ⩽ Cν ∥w∥2 ⩽ Cν2 + C∥w∥22,

(v2∂2z
2, w2) ⩽ ∥v2∥∞ ∥∂2z2∥2 ∥w2∥2 ⩽ Cν

1
2 ∥w∥2 ⩽ Cν + C∥w∥22.

For the third term, we use the mean value theorem in x2 followed by Lemma 2.1, giving

(v2∂2z
1, w1) =

(
v2

x2
(x2∂2z

1), w1

)
⩽

∥∥∥∥v2x2
∥∥∥∥
∞
∥x2∂2z1∥2∥w∥2 ⩽ CCH∥∂2v2∥∞ν

1
2 ∥w∥2

⩽ Cν + C∥w∥22,
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by Young’s inequality. Thus, we have

(v · ∇z, w) ⩽ Cν + Cν2 + C∥w∥22. (2.25)

Collecting the estimates in (2.18) through (2.21), (2.24), and (2.25),

(v · ∇v−v · ∇v, w) ⩽ 0 + C∥w∥22 + (Cν + ∥w∥22) + (Cν + C∥w∥22)

+ (C∥w∥22 +
ν

6
∥∇w∥22) + (Cν + Cν2 + C∥w∥22)

⩽ Cν + C∥w∥22 +
ν

6
∥∇w∥22.

(2.26)

2.5. The heart of the matter. From (2.10), using eqs. (2.11) to (2.16) and (2.26), we have

1

2

d

dt
∥w∥22 + ν∥∇w∥22

⩽ −ν(∇z,∇w) + (Cν2 + C∥w∥22) + (Cν + C∥w∥22) + 0 + C∥w∥22
+ (Cν + Cν2 + C∥w∥22) + (Cν + Cν2 + C∥w∥22 +

ν

3
∥∇w∥22)− (U · ∇z, w)

⩽ Cν + Cν2 + C∥w∥22 +
ν

3
∥∇w∥22 − ν(∇z,∇w)− (U · ∇z, w).

(2.27)

Two terms in (2.10), −ν(∇z,∇w) and −(U ·∇z, w), remain to be bounded. The first of these
arises from the diffusive term in (NSh), while the second originates in the nonlinear terms of
(E) and (NS), from which it was separated as a consequence of treating (Eh) and (NSh) as
perturbations of (E) and (NS). Rather than bound these terms separately, we will bound
their sum: in doing that, we will see the central reason, at the heart of the innovation in [9],
that the vanishing viscosity limit can be obtained for inflow, outflow boundary conditions.

To better appreciate this innovation, let us let us briefly consider how the energy argument
we are making differs from the analogous argument in the classical case in which one enforces
no-slip conditions (u = 0 on Γ) on (NS) and impermeable conditions (u · n = 0 on Γ) on
(E). (The situation regarding the classical vanishing viscosity limit is perhaps most clearly
expressed in Tosio Kato’s [6].)

The classical analog of all the terms in (2.10) that we have so far bounded can still be
bounded—or they do not appear because, in effect, U = 0. (In particular,

(
w2∂2z

1, w1
)

of
Remark 2.3 can be controlled when u0 = 0 on Γ, much as was done here, for short time.)
The diffusive term, −ν(∇z,∇w), however, cannot be controlled—neither in the classical nor
in our setting.

The additional term, −(U · ∇z, w), absent in the classical case, also cannot be controlled.
This seeming disadvantage turns out to be an advantage, for we will find that the combined
terms,

I := −ν(∇z,∇w)− (U · ∇z, w),

can, in fact, be controlled, as long as U · n never vanishes on the outflow boundary.
The first step in bounding I is to observe that −(U · ∇z, w) = (U · ∇w, z) = (z ⊗U,∇w),

after integrating by parts, so

I = (ν∇z − z ⊗U,∇w).
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2.6. Bounding the inertial plus diffusive terms. From (2.7),

ν∇z̃ − z̃ ⊗U =

[
−ν∂1v1(x1, 0)e

−Ux2
ν − U1z̃1 νv1(x1, 0)

U
ν e

−Ux2
ν − U2z̃1

ν2

U (1− e
−Ux2

ν )∂21v
1(x1, 0)− U1z̃2 νe

−Ux2
ν ∂1v

1(x1, 0)− U2z̃2

]

=

[
O(ν

3
2 ) 0

O(ν2) O(ν)

]
in L2(Ω),

(2.28)

where we used that U1 = 0 and that U ̸= 0

ν∂2z̃
1 − U2z̃1 = νv1(x1, 0)

U

ν
e

−Ux2
ν − (−U)(−v1(x1, 0)e

−Ux2
ν ) = 0. (2.29)

Hence,

∥ν∇z̃ − z̃ ⊗U∥2 ⩽ Cν.

Remark 2.4. The term ∂2z̃
1 = v1(x1, 0)

U
ν e

−Ux2
ν cannot be controlled on its own; it is the

cancellation by U2z̃1 that allows control. This was a virtue of the corrector chosen in [9].

Then, from (2.5) and (2.6),

ν∇z − z ⊗U = ϕ(ν∇z̃ − z̃ ⊗U) + ν

[
−ϕ′z̃2 2ϕ′z̃1 − ψϕ′′

0 ϕ′z̃2

]
+ ψ(ϕ′, 0)⊗U.

Other than the first and last terms above, the largest magnitude term derives from z̃1,
which is, however, multiplied by ν. Hence, all the terms beyond the first have L2 norm no
larger than Cν, and we conclude that

∥ν∇z − z ⊗U∥2 ⩽ Cν.

Therefore, applying Hölder’s and Young’s inequality,

|I| ⩽ ∥ν∇z − z ⊗U∥2∥∇w∥2 ⩽ Cν +
ν

6
∥∇w∥22. (2.30)

2.7. Completing the energy argument. From (2.27) and (2.30), we have
1

2

d

dt
∥w∥22 + ν∥∇w∥22 ⩽ Cν + Cν2 + C∥w∥22 +

ν

2
∥∇w∥22

so
d

dt
∥w∥22 + ν∥∇w∥22 ⩽ Cν + C∥w∥22 + Cν∥∇w∥22,

since we have assumed that ν ⩽ 1. Then, integrating over time,

∥w(t)∥22 + ν

∫ t

0
∥∇w(s)∥22 ds ⩽ ∥w(0)∥22 + Cνt+

∫ t

0
C∥w(s)∥22 ds.

Because u0 = u0, w(0) = 0, and Grönwall’s inequality yields

∥w(t)∥22 + ν

∫ t

0
∥∇w(s)∥22 ds ⩽ CνteCt.

Thus,
∥w(t)∥2 ⩽ Cν

1
2 t

1
2 e

Ct
2 .

By virtue of (2.9), then,

∥u(t)− u(t)∥2 = ∥w̃∥2 = ∥w + z∥2 ⩽ ∥w∥2 + ∥z∥2 ⩽ C(νt)
1
2 e

Ct
2 + Cν

1
2 t

for all t ∈ [0, T0].
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This completes the proof of Theorem 1.4 when the tangential component of the outflow
velocity vanishes (a = 0).

3. Nonzero tangential component on outflow

In this section we allow a nonzero tangential component U = (a,−U) for some U > 0 and
a ∈ R in the proof of Theorem 1.4.

Remark 3.1. Key to our argument is that we use exactly the same form for the corrector
that we used when a = 0. This is because the corrector corrects for the value of v on the
boundary, which, even for a = 0, has a nonzero value on the outflow boundary. Hence, while
v1 incorporates in it the value of a, via v = u−U = u− (a,−U), the only properties of v that
we used in Section 2 were its regularity on [0, T ]× Ω, and that does not change.

We proceed by examining each of the terms in (2.10) and reporting on any differences. We
start with the easier terms bounded in Section 2.3.

There is no change in (2.11), (2.12), (2.14), and (2.15), but the last of these easier pieces
will be slightly different now. For −(z · ∇U, w) = (z · ∇w,U) we integrate by parts and find,
now allowing U1 = a, that

(z · ∇w,U) =

∫
Ω
z1∂1w

1a+

∫
Ω
z1∂1w

2U2 +

∫
Ω
z2∂2w

1a+

∫
Ω
z2∂2w

2U2.

There is no change to the second and fourth integrals. For the first term,∫
Ω
z1∂1w

1a = −a
∫
Ω
∂1z

1w1 ⩽ |a| ∥∂1z1∥2 ∥w1∥2 ⩽ Cν
1
2 ∥w∥2 ⩽ Cν + C∥w∥22.

This followed from integration by parts and the Cauchy-Schwarz and Young’s inequalities.
In a similar manner we find∫

Ω
z2∂2w

1a = −a
∫
Ω
∂2z

2w1 ⩽ |a| ∥∂2z2∥2 ∥w∥2 ⩽ Cν
1
2 ∥w∥2 ⩽ Cν + ∥w∥22.

Thus with nonzero tangential component we find:

−(z · ∇U, w) ⩽ Cν + Cν2 + C∥w∥22 + (Cν + C∥w∥22) + (Cν + C∥w∥22). (3.1)

There are no changes in the terms arising from the nonlinear term of Section 2.4.
Finally for I, akin to notation in (2.28) we find

ν∇z̃ − z̃ ⊗U =

[
O(ν

3
2 )− av1(x1, 0)e

−Ux2
ν 0

O(ν2) +O(ν) O(ν)

]
in L2(Ω).

We just have to handle the new exponentially decaying piece, −av1e−
Ux2
ν , which appears in

the energy argument as

(−av1e−
Ux2
ν , ∂1w

1) = (az̃1, ∂1w
1) = (−a∂1z̃1, w1).

Here, we integrated by parts in x1, there being no boundary term because the functions are
periodic in x1. Applying Hölder’s then Young’s inequality and using (2.8),

(a∂1v
1e−

Ux2
ν , w1) ⩽ |a|∥∂1z̃1∥2∥w∥2 ⩽ Cν

1
2 ∥w∥2 ⩽ Cν + C∥w∥22. (3.2)

We note that in obtaining this bound, the detailed structure of the corrector was not required,
only the bounds in (2.8). Other than the values of constants, our bounds are the same as in
Section 2, so we obtain Theorem 1.4 for a ̸= 0.
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4. Concluding Remarks

In this paper, we have assumed, as in [9], that the background flow U is constant throughout
Ω. This derives from the assumption that the boundary conditions themselves are constant
along each boundary, and hence, via the requirement in (1.1), Un|Γ+ = −Un|Γ− and both are
constant along their respective boundary components. Because of the simple geometry, this
allows for a background flow constant throughout the domain.

This requirement is dropped in [3], where the boundary conditions are allowed to vary along
the (curved) boundary, and leads to a background flow U which varies over the domain. This
requires an adaptation to the corrector, which nonetheless retains the same key bounds that
allow the convergence in Theorem 1.4.

We can gain an appreciation of why the adaptations in the [3] work by considering what
would happen if we allowed U to vary in our case of a 2D channel. First, observe that of
all the estimates we made, it is only in I = (ν∇z − z ⊗ U,∇w) that we used the detailed
structure of the corrector z, and that, only for the first row second column of ν∇z − z ⊗U
and ∇w. For all other terms, we needed only the bounds in (2.8).

So let us reexamine the key term in I, (ν∂2z̃1 − U2z̃1, ∂2w
1). As in (2.29), ν∂2z̃1 − U2z̃1

vanishes identically. This is a very special property that uses not only the special structure
of our corrector, but requires that U2 = −U be constant throughout the domain. (Because
U is divergence-free, ∂2U2 = −∂1U1, which means that both U1 and U2 must be constant,
at least along the boundary.)

Consider what happens to this key term if U2 varies over Ω. Proceeding as in (2.30), this
key term becomes, integrating by parts,

(ν∂2z̃
1−U2z̃1, ∂2w

1) = (ν∂22 z̃
1 − ∂2(U

2z̃1), w1)

= (ν∂22 z̃
1 − U2∂2z̃

1, w1) + (∂2U
2z̃1, w1) =: I1 + I2.

Applying Hölder’s and Youngs inequalities,

|I1| ⩽
1

2
∥ν∂22 z̃1 − U2∂2z̃

1∥22 +
1

2
∥w∥22,

|I2| ⩽
∥∂2U2∥L∞

2

[
∥z̃1∥22 + ∥w∥22

]
.

Both I1 and I2 vanish for constant U. For a varying U, I2 can be easily controlled, since it
only requires that ∥z̃1∥2 vanish with ν, which is required of any corrector. To control the first,
the authors of [3] choose their corrector so it solves the elliptic equation (see (4.4) of [3]),

ν
∂2z̃1

∂x22
− U2 ∂z̃

1

∂x2
= 0, (4.1)

which gives I2 = 0. Applied to constant U2 = −U , this leads to the expression for z̃1 in (2.4).
The authors of [3] are led to (4.1) in a different manner, more in sympathy with [9]. They

suppose a scaling of the variables like Prandtl, though with a layer of width ν rather than
√
ν,

identifying in the resulting Prandtl-like expansion the key terms that control the expansion.
Finally, we note that the corrector as used by Kato in [6] or see [7]—structureless in that

it simply involves cutting off the stream function for the solution u to the Euler equations—
satisfies all of the bounds in (2.8), and so requires one fewer derivative of regularity of u, and
hence less involved compatibility conditions to obtain well-posedness of the Euler equations.
Indeed, the well-posedness result of [1, 2] would suffice to obtain the vanishing visocity limit
using this simple corrector, except that the corrector’s lack of structure makes it incapable of
being used to bound the key term, (ν∂2z̃1 − U2z̃1, ∂2w

1).
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Appendix A. Compatibility conditions

We summarize in this appendix the compatibility conditions required to obtain a solution
to (E) as in Proposition 1.2. A more complete account is given in Section 4 of [5]. The
compatibility conditions are derived in [5] for a 3D bounded domain, but are of the same
form for a 2D bounded domain or periodic channel.

Recall that we use the notation uτ to be the tangential component of the velocity field
u along the boundary and we define the tangential vector field τ so that (n, τ ) is in the
standard orientation of (e1, e2). For our 2D channel, then, τ = (−1, 0) and uτ = −u1 along
the inflow boundary, while τ = (1, 0) and uτ = u1 along the outflow boundary.

Given u with data regularity N for some N ⩾ 0, we define the N th compatibility condition,

cond−1 : u
τ
0 = Uτ

0 on Γ+,

condN : condN−1 and ∂N+1
t Uτ |t=0 = ∂̃N+1

t uτ0 on Γ+.
(A.1)

For integers n ⩾ 0, we define ∂̃nt u0 inductively by setting ∂̃0t u0 = u0, while for n ⩾ 1, we take
the time derivative of ∂̃n−1

t u at time zero and replace each instance of ∂tu in the resulting
expression by −u0 · ∇u0 −∇p0 + f(0). Here, p0 is the value the pressure would have at time
zero if u actually solved (E); that is, p0 is the solution to{

∆p0 = −div(u0 · ∇u0) in Ω,

∇p0 · n = −∂tUn(0)− u0 · ∇u0 on Γ.
(A.2)

In other words, ∂̃nt u0 is the value that ∂nt u would have at time zero if u were a sufficiently
regular solution to the Euler equations.

For N = 0, (A.1) is the compatibility condition in (1.10), (1.11) of Chapter 4 of [2]:

cond0 : ∂tU
τ |t=0 = [−u0 · ∇u0 −∇p0 + f(0)]τ on Γ+.
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