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Abstract. In 1990, Von Wahl and, independently, Borchers and Sohr showed that a
divergence-free vector field u in a 3D bounded domain that is tangential to the bound-
ary can be written as the curl of a vector field vanishing on the boundary of the domain.
We extend this result to higher dimension and to Lipschitz boundaries in a form suitable
for integration in flat space, showing that u can be written as the divergence of an antisym-
metric matrix field. We also demonstrate how obtaining a kernel for such a matrix field is
dual to obtaining a Biot-Savart kernel for the domain.
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1. Overview

Let u be a divergence-free vector field on a bounded Lipschitz domain Ω ⊆ Rd, d ≥ 2, that
is tangential to the boundary. For a simply connected domain, it is well known that in two
dimensions, u = ∇⊥ψ := (−∂2ψ, ∂1ψ) for a stream function, ψ, vanishing on the boundary.
It is also well known that in three dimensions, we can write u = curlψ, where now the vector
potential ψ is a divergence-free vector field tangential to the boundary. Perhaps somewhat
less well-known is that ψ can also be chosen (non-uniquely) to vanish on the boundary, though
sacrificing the divergence-free condition. This 3D form of the vector potential was developed
in [7, 20], where it is studied in Sobolev, Hölder spaces, for C1,1, C∞ boundaries, respectively.

In higher dimension, we can no longer use a vector field as the potential; instead, we will
use an antisymmetric matrix field A vanishing on the boundary, for which u = divA, the
divergence applied to A row-by-row. This was the manner it was utilized in [15], without,
however, the key antisymmetric condition.

Our main result is Theorem 1.1.

Theorem 1.1. Let H be the space of divergence-free vector fields on Ω that are tangential to
the boundary and that have L2 coefficients. Let Hc be the closed subspace of curl-free vector
fields (see (3.1)) in H, let H0 be its orthogonal complement in H, and let

X0 := {A ∈ H1
0 (Ω)d×d : A antisymmetric}.

Then H0 = divX0, and there exists a bounded linear map S : H0 → X0 with divSu = u.
Specializing to d = 2, 3, we can write

H0 =

{
∇⊥H1

0 (Ω), d = 2,

curl3H
1
0 (Ω)3, d = 3.

Because the term matrix potential is commonly used in the literature for other purposes,
we will adopt the 2D terminology for all dimensions, calling A the stream function for u.
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Closely connected to stream functions is the Hodge decomposition of L2-vector fields on
Ω. Indeed, one form of the Hodge decomposition in 3D is

H = Hc ⊕ curl(H ∩H1(Ω)3).

That is, each element of H0 := H⊥c is the image of a classical, divergence-free vector potential
tangential to the boundary. Moreover, for any u ∈ H0, the boundary value problem{

curlψ = u in Ω,

ψ = 0 on ∂Ω
(1.1)

is (non-uniquely) solvable, and gives the 3D form of the stream function in Theorem 1.1.
In fact, solving the analog of (1.1) in any dimension in the more general setting of an

oriented manifold with boundary was worked out by Schwarz in [17]. He shows that for such
a manifold with C1,1 boundary, given a 1-form α having L2-regularity and vanishing normal
component, the boundary value problem{

δβ = α on M,

β|∂M = 0 on ∂M

(δ is the codifferential) is solvable for a 2-form having H1-regularity if and only if∫
M
α ∧ ∗λ = 0 for all λ ∈ H1

N (Ω).

Here, H1
N (Ω) is the space of harmonic fields having vanishing normal component, the analog

of Hc, and the integral condition on α defines the analog of H0.
Schwarz’s result is not restricted to 1-forms, but holds for k-forms and also allows non-zero

boundary values. It is restricted, however, to C1,1 boundaries. For manifolds embedded in
Rd, this restriction is loosened in [16], which applies to boundaries even less regular than
Lipschitz. The authors show that, given an (`− 1)-form α for any 0 ≤ l ≤ d− 1, there exists
an `-form β having prescribed boundary value for which δβ = α. They assume, however,
that the (`− 1)-st Betti number vanishes. Since we need such a result for ` = 2, this means
that the first Betti number must vanish, which means that Ω must be simply connected, an
assumption we wish to avoid.

We present our derivation of a stream function here, therefore, because it applies to non-
simply connected domains having only a Lipschitz continuous boundary. Moreover, we obtain
the stream function non-constructively, using simple functional analytic arguments, avoiding
entirely the language of differential forms, making it more accessible and self-contained for
our intended primary audience of analysts working in flat space.

Central to our approach is the fact that the divergence operator maps vector fields in
H1

0 (Ω)d onto L2
0(Ω), the space of L2 functions with mean zero. For arbitrary domains, this

is a result of Bogovskĭi [5, 6] (see Lemma 2.5, below). Bogovskĭi produces an integral kernel
for solving the problem div u = f in a star-shaped domain. This kernel and adaptations
of it have been used in other approaches to Theorem 1.1 in 3D, such as [4] for star-shaped

domains, but we use Bogovskĭi’s result as a “black box,” for with it, we can easily obtain
Theorem 1.1 except for the key antisymmetric condition on the stream function.

We assume that Ω is a bounded, connected, open subset of Rd, d ≥ 2, with Lipschitz
boundary, ∂Ω. We define the L2-based Sobolev spaces, Hk(Ω) and Hk

0 (Ω), for nonnegative k
in the usual way (the boundary is regular enough that all standard definitions are equivalent).
Identifying L2 with its own dual, we also define the dual spaces, H−k(Ω) := Hk

0 (Ω)′.
We will work with the classical function spaces, H and V , of incompressible fluid mechanics:

H := {u ∈ L2(Ω)d : div u = 0, u · n = 0},
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V := {u ∈ H1
0 (Ω)d : div u = 0}.

The divergence here is defined in terms of weak derivatives, and u ·n is defined as an element

of H−
1
2 (∂Ω) in terms of a trace (see Lemma 2.2), n being the outward unit normal vector.

Both H and V are Hilbert spaces with norms and inner products as subspaces of L2 and H1
0 .

By virtue of the Poincaré inequality, we can use

(f, g)H1
0

:= (∇f,∇g)L2 , ‖f‖H1
0

:= ‖∇f‖L2 ,

(u, v)V := (∇u,∇v)L2 , ‖u‖V := ‖∇u‖L2 .

With these very cursory definitions out of the way, we give in Section 2 some further nec-
essary background material. In Section 3, we prove our main result, Theorem 1.1, extending
it to the space V in Section 4. In Section 5 we show how the classical 3D vector potentials
can be obtained from the stream function of Theorem 1.1.

In Section 6 we demonstrate that the Biot-Savart law, which recovers a vector field in
H0 from its vorticity (curl), is, in a precise way, dual to the problem of obtaining a stream
function from a velocity field in H0. We show that if there is an integral kernel associated
with one of these problems it is also the kernel associated with the other problem.

Throughout, we follow the convention that ‖·‖ := ‖·‖L2(Ω) or ‖·‖H .

We write (u, v) for the inner product in L2 or H. We write vi for the i-th coordinate of
a vector v; Ai

j for the element in the i-th row, j-th column of a matrix A; Ai for the i-th
row of A; Aj for the j-th column of A. We follow the convention that repeated indices are
implicitly summed, even when both indices are superscripts or both are subscripts.

2. Background material

We briefly present some necessary background results.

Definition 2.1. As in [19], we define the space

E(Ω) := {u ∈ L2(Ω)d : div u ∈ L2(Ω)},

endowed with the norm, ‖u‖+ ‖div u‖.

We frequently integrate by parts using Lemma 2.2 (see Theorem 2.5 and (2.17) of [13]):

Lemma 2.2. There exists a normal trace operator from E(Ω) to H−1/2(∂Ω) that continuously
extends u 7→ u ·n|∂Ω from C(Ω) to E(Ω). We will simply write u ·n rather than naming this
trace operator. For all u ∈ E(Ω), ϕ ∈ H1(Ω),

(u,∇ϕ) = −(div u, ϕ) +

∫
∂Ω

(u · n)ϕ,

where we have written (u · n, ϕ)H−1/2(∂Ω),H1/2(∂Ω) in the form of a boundary integral.

Poincaré’s inequality holds not just for V , but for the larger space H ∩H1(Ω)d:

Lemma 2.3. There exists a constant C = C(Ω) such that for all u ∈ H ∩H1(Ω)d,

‖u‖ ≤ C ‖∇u‖ .

Proof. For any u ∈ H,∫
Ω
uj =

∫
Ω
u · ∇xj = −

∫
Ω

div uxj +

∫
∂Ω

(u · n)xj = 0.

Hence, u has mean value zero, so Poincaré’s inequality holds in the form stated. �
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Key tools for us will be the decomposition of vector fields in H1
0 (Ω) given in Proposition 2.4

and the surjectivity of the divergence operator in Lemma 2.5. These results employ the space

L2
0(Ω) := {f ∈ L2(Ω):

∫
Ω
f = 0}.

Proposition 2.4. The orthogonal decomposition, H1
0 (Ω)d = V ⊕ V ⊥, holds with

V ⊥ = {z ∈ H1
0 (Ω)d : ∆z = ∇q for some q ∈ L2

0(Ω)},

and ‖PV ⊥ϕ‖ ≤ C ‖divϕ‖.

Proof. This decomposition is given in Corollary 2.3 p. 23 of [13] (also see Lemma 2.2 of [14]).
The bound ‖PV ⊥ϕ‖ ≤ C ‖divϕ‖ follows, for instance, from the Stokes problem bound in
Exercise IV.1.1 of [11]. �

Lemma 2.5. [Bogovskĭi [5, 6]] For any f ∈ L2
0(Ω) there exists v ∈ H1

0 (Ω)d for which div v =
f . We can choose the (non-unique) solutions in such a way as to define a bounded linear
operator R : L2

0(Ω) → H1
0 (Ω)d for which ‖∇Rf‖ ≤ C ‖f‖. Moreover, we can assume that R

maps into the space V ⊥.

Proof. For the proof of all but the last sentence, see Bogovskĭi [5, 6] or Theorem 2.4 of [7].
Then, for any f ∈ L2

0(Ω), div(PV ⊥Rf) = divRf = f and

‖∇(PV ⊥Rf)‖ = ‖PV ⊥Rf‖H1
0 (Ω)d ≤ ‖Rf‖H1

0 (Ω)d = ‖∇Rf‖ .

So because PV ⊥ is a continuous linear operator, we can replace R by PV ⊥R. �

In fact, Bogovskĭi in [5, 6] showed that the divergence is surjective for an arbitrary domain
in Rd. See, for instance, the historical comments on pages 208-209 of [2].

The difficult part of proving Lemma 2.5 is obtaining the surjectivity of the divergence as
a map from H1

0 (Ω)d to L2
0(Ω): once that is obtained (or even just that the range of div is

closed), the bounded linear (partial) inverse map R follows from basic functional analysis, by
arguing much as we do in the proof of Theorem 1.1 in Section 3. (And see Remark 3.6.)

Moreover, since PV ⊥ does not change the divergence of a vector field, the constant in the
inequality in Lemma 2.5 is at least as small as the constant in Proposition 2.4. (This is a little
misleading, however, as Lemma 2.5 is generally used to prove the estimates on the Stokes
problem that lead to the inequality in Proposition 2.4.)

From R of Lemma 2.5, we define a matrix-valued operator, which we continue to call R,
by applying R on each component of any vector in L2

0(Ω)d:

R : L2
0(Ω)d → H1

0 (Ω)d×d, (Ru)i := Rui. (2.1)

3. Proof of main result

In this section we prove our main result, Theorem 1.1. We present first some imporant
existing results then establish a series of lemmas and propositions we will use in the (short)
body of the proof of Theorem 1.1, with which we close the section.

Define the subspace

Hc := {u ∈ H : curlu = 0}

of H. Here, we use the curl operator on Rd in the form,

curlu := ∇u− (∇u)T . (3.1)

That is, curlu is twice the antisymmetric gradient, the d × d matrix-valued function with
(curlu)ij = ∂ju

i− ∂iuj . This form of the curl is convenient for integrating by parts (applying
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the divergence theorem) in flat space. In 2D, we can define curlu := ∂1u
2 − ∂2u

1, the scalar
curl, and in 3D we can define it as a vector in the usual way, denoting it curl3 for clarity.
Hc is clearly closed, so we can define

H0 := H⊥c ,

the orthogonal complement of Hc in H. Hence, H = H0 ⊕Hc.

Remark 3.1. Hc is finite-dimensional for a large class of domains for which ∂Ω has a finite
number of components. For smooth boundaries, this follows, for instance, from the discussion
in Section 4.1 of [12]. For special classes of 3D Lipschitz domains, Helmholtz domains of [3],
Hc (and H0) can be characterized by making “cuts” in Ω that leave the remaining domain
simply connected. This idea goes back to Helmholtz; see the historical comments in [9].

In [15] (Corollary 7.5), the simple tool in Lemma 3.2 was used to investigate conditions
under which solutions to the Navier-Stokes equation for incompressible fluids converge to a
solution to the Euler equations (the so-called vanishing viscosity limit).

Lemma 3.2. For any u ∈ H there exists (a non-unique) A ∈ H1
0 (Ω)d×d such that u = divA;

that is, such that ui = ∂jA
i
j.

The idea of the proof is that a simple integration by parts as in the proof of Lemma 2.3
shows that each component of any v ∈ H lies in L2

0(Ω). But by Lemma 2.5, div maps H1
0 (Ω)d

onto L2
0(Ω), so we can obtain each row of A independently. The proof of Lemma 3.2 is

therefore quite simple, but it relies on the powerful and deep result in Lemma 2.5.
Left open in [15] was whether it could be assured that A in Lemma 3.2 is antisymmetric.

In fact, such antisymmetry can be obtained, and was obtained in 3D by Borchers and Sohr
in Theorem 2.1, Corollary 2.2 of [7], whose lowest regularity result can be stated as follows:

Lemma 3.3. Assume that d = 3 and ∂Ω is C1,1. For any u ∈ H0 there exists v ∈ H1
0 (Ω)3

such that u = curl3 v and ∆ div v = 0. Moreover, one can choose the solutions in such a way
as to define a bounded linear operator S : H0 → H1

0 (Ω)3 with ‖∇Su‖ ≤ C ‖u‖.

To see that Lemma 3.3 provides a 3D form of an extension of Lemma 3.2 to antisymmetric
matrices, note that any 3× 3 antisymmetric matrix can be written in the form,

A =

 0 ψ3 −ψ2

−ψ3 0 ψ1

ψ2 −ψ1 0

 . (3.2)

We can define a bijection Q from a vector in R3 to an antisymmetric d×d matrix, by setting
Q(ψ) = Q(ψ1, ψ2, ψ3) to be the matrix in (3.2), and we can write that divQψ = curl3 ψ. The
claim in Theorem 1.1, then, is the natural extension of Lemma 3.3 to d ≥ 2.

The simple argument in Proposition 3.4 shows that divX0 is at least dense in H0:

Proposition 3.4. H0 = divX0.

Proof. First, we show that divX0 is a subspace of H. To see this, observe that if u ∈ divX0

then ui = divAi = ∂jA
i
j . Hence, div u = ∂ijA

i
j = −∂ijAj

i = −∂jiAi
j = −∂ijAi

j = −div u, so

div u = 0. (That div u = div divA = 0 is a reflection of δ2 = 0 when A is expressed as a
2-form.)

Moreover, since Ai
j is constant along the boundary, ∇Ai

j is normal to the boundary, so we

can write, ∇Ai
j = αi

jn, where

αi
j =

∂Ai
j

∂n
= −

∂Aj
i

∂n
= −αj

i .
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Then,

∂jA
i
j = ∇Ai

j · ej = αi
jn · ej = αi

jn
j

so, using that αi
j = −αj

i ,

u · n = divA · n = divAini = ∂jA
i
jn

i = αi
jn

jni = −αj
in

jni = −αi
jn

jni = −u · n,
so u · n = 0. We conclude that divX0 ⊆ H.

We now show that (divX0)⊥ = Hc. Let A ∈ X0 and v ∈ H be arbitrary. Then u := divA
is an arbitrary element of divX0. Applying Lemma 2.2 and using A = 0 on ∂Ω,

(u, v) = (divA, v) = −(A,∇v) = −(A,∇v − (∇v)T )− (A, (∇v)T )

= −(A, curl v)− (AT ,∇v) = −(A, curl v) + (A,∇v).

Hence, (A,∇v) = (1/2)(A, curl v), and because both A and curl v are antisymmetric,

(u, v) = −(A,∇v) = −1

2
(A, curl v) = −

∑
i<j

Ai
j(curl v)ij .

We can choose the components Ai
j independently for i < j, and H1

0 (Ω) is dense in L2(Ω), so we

conclude that (u, v) = 0 for all u ∈ divX0 if and only if curl v = 0; that is, if and only if v ∈ Hc.
It then follows that (divX0)⊥ = Hc so that, in fact, divX0 = ((divX0)⊥)⊥ = H⊥c = H0. �

The operator R of (2.1) allows us to easily establish that divX0 actually yields all of H0:

Proposition 3.5. H0 = divX0.

Proof. We have, divX0 = div(R divX0) = div Y , where Y = R divX0. It follows from
Proposition 3.4 that div Y is dense in H0. If we can show that it is closed, then we are done.

Let (un) be a sequence in div Y converging to u in H0. Then un = divBn with Bn = Run
in Y , and we have from Lemma 2.5 that ‖∇Bn‖ ≤ C ‖un‖. Since (un) converges, it is Cauchy
and hence (Bn) is Cauchy and so converges to some B ∈ Y with u = divB. This shows that
H0 = div Y = divX0. �

It remains only to obtain the bounded linear map S of Theorem 1.1. Examining the proof
of Proposition 3.5, we see that Bn = Run in Y has some Dn in X0 for which R divDn = Bn,
but the convergence of (Bn) does not mean the convergence of (Dn). To surmount this
difficulty, and obtain S, we restrict the domain of div to a subspace:

Proof of Theorem 1.1. Observe that divA = divB for A,B ∈ X0 if and only if B = A+E
for some E in V d ∩X0, a closed subspace of X0. Letting Y0 = (V d ∩X0)⊥, the orthogonal
complement of V d ∩ X0 in X0 as a Hilbert space, div : Y0 → H0 is a continuous bijection.
It follows from a corollary of the open mapping theorem (see, for instance, Corollary 2.7 of
[8]) that the inverse map, S := div |−1

Y0
, is also continuous. But this means that, ‖Su‖X0

=

‖Su‖Y0
≤ C ‖u‖H0

, giving us the bounded linear map of Theorem 1.1. �

The Baire category theorem appears through the proof of the corollary to the open mapping
theorem we applied. Hence, the constant we obtain in ‖∇Su‖ ≤ C ‖div u‖ is not effectively
computable, although we can see that C is no smaller than the constant in Lemma 2.5.

Remark 3.6. Although the adjoints to the two forms of div appearing in Lemma 2.5 and The-
orem 1.1 never appear explicitly, they are, in a sense, hiding in the proofs. It can be shown
that the adjoint of div : X0 → H0 is −(1/2) curl, whose null space is Hc. Since div is a closed
map, divX0 is closed if and only if it equals H⊥c =: H0. Similarly, it can be shown that
the adjoint of div : H1

0 (Ω)d → L2
0(Ω) is −∇, whose null space is trivial. Hence, divH1

0 (Ω)d

is closed if only if it equals all of L2
0(Rd). Proving that the range of either version of div
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is closed is the hard part of each proof, but we were able to leverage the powerful result in
Lemma 2.5 to obtain the hard part for Theorem 1.1 with minimal effort.

We avoided characterizing the space Y0 = (V d ∩X0)⊥ explicitly, but given that the adjoint
of div : X0 → H0 is −(1/2) curl, one can show that Y0 = {z ∈ X0 : ∆z = curl q for some q ∈
L2

0(Ω)d}, in analogy with Proposition 2.4. In 3D, this is Y0 = {z ∈ H1
0 (Ω)3 : ∆z = curl3 q, q ∈

L2
0(Ω)d}, which yields ∆ divSu = 0, as in Lemma 3.3.

4. Higher regularity

Bogovskĭi in [5, 6] showed more than what we stated in Lemma 2.5 (see Theorem 2.4 of [7]):

Lemma 4.1. [Bogovskĭi [5, 6]] Let p ∈ (1,∞) and m ≥ 0 be an integer. Define Hm,p
0,0 (Ω) to

be the functions in Hm,p
0 (Ω) having mean zero. There exists a bounded linear operator R =

Rm,p : Hm,p
0,0 (Ω)→ Hm+1,p

0 (Ω)d satisfying divRf = f with
∥∥∇m+1Rf

∥∥
Lp(Ω)

≤ C ‖∇mf‖Lp(Ω).

Restricting ourselves to p = 2, we define, as in (2.1), a matrix-valued operator Rm = Rm,2:

Rm : Hm
0 (Ω)d → Hm+1

0 (Ω)d×d, (Rmu)i := Rmu
i.

We will use Lemma 4.1 to study the stream function for an element of V .

Theorem 4.2. The map S of Theorem 1.1 also maps V ∩H0 continuously onto Y0∩H2
0 (Ω)d×d,

where Y0 = (V d ∩X0)⊥.

Proof. The space Y 2
0 := Y0 ∩ H2

0 (Ω)d×d is dense in Y0 and div : Y0 → H0 is a continuous
surjection, so div Y 2

0 is dense in H0. Moreover, div Y 2
0 ⊆ V ∩H0, so div Y 2

0 is dense in V ∩H0.
Then, arguing as in the proof of Proposition 3.5, div Y 2

0 = div(R1 div Y 2
0 ) is closed in V ∩H0

and hence div Y 2
0 = V ∩H0. Because div |Y0 is injective it also holds that div |Y 2

0
is injective.

Finally, arguing as in the proof of Theorem 1.1, the inverse map, div |−1
Y 2
0

, is continuous. But

this is the same map S as in Theorem 1.1, restricted to V ∩H0. �

Remark 4.3. Using Rm, one can extend Theorem 4.2 to S : H0∩Hm
0 (Ω)d → Y0∩Hm+1

0 (Ω)d×d,
though its utility is likely limited for m ≥ 2. Similarly, one can employ Lemma 4.1 to develop
Lp bounds in analog with Theorem 1.1.

5. 3D vector potentials

We can use Theorem 1.1 to obtain the more classical versions of 3D stream functions or
vector potentials of Propositions 5.1 and 5.2 (cf., Theorems 3.5 and 3.6 Chapter I of [13] or
Theorem 3.12 and 3.17 of [1]).

Proposition 5.1. Let u ∈ H0 for d = 3. There exists a vector potential ψ ∈ H for which
curl3 ψ = u. The vector potential is unique up to the addition of an arbitrary element in Hc;
or, equivalently, the vector potential is unique if we require it to lie in H0. If ∂Ω is C1,1 then
ψ ∈ H ∩H1(Ω)3.

Proof. First, we show existence. Let ψ be the 3D stream function given by Theorem 1.1 and
let p be the unique (up to an additive constant) solution to the Neumann problem,{

∆p = −divψ in Ω,

∇p · n = 0 on ∂Ω.
(5.1)
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If ∂Ω is Lipschitz, we can only conclude that p ∈ H1(Ω) so ∇p ∈ L2(Ω)3, but if ∂Ω is C1,1

then p ∈ H2(Ω) so ∇p ∈ H1(Ω)3. Letting ψ = ψ +∇p, we see that
curl3 ψ = u in Ω,

divψ = 0 in Ω,

ψ · n = 0 on ∂Ω.

(5.2)

Hence, ψ ∈ H with curl3 ψ = u, as required, with ψ ∈ H ∩H1(Ω)3 if ∂Ω is C1,1.
Adding any element of Hc to ψ clearly yields another vector potential for u, and the

difference of any two vector potentials for u lies in H and is curl-free; that is, it lies in Hc.
This proves the uniqueness statement. �

Define the space,

H̃ := {ψ ∈ L2(Ω)3 : divψ = 0, curlψ ∈ L2(Ω)3, ψ × n = 0 on ∂Ω}

with the norm ‖ψ‖
H̃

:= ‖ψ‖+ ‖curlψ‖. That ψ×n makes sense in terms of a trace is shown
in Theorem 2.11 of [13]. Also let

H̃c := {ψ ∈ H̃ : curlψ = 0}.

Proposition 5.2. Let u ∈ H0 for d = 3. There exists a vector potential ψ ∈ H̃ for which

curl3 ψ = u. The vector potential is unique up to the addition of an arbitrary element in H̃c.

If ∂Ω is C1,1 then ψ ∈ H̃ ∩H1(Ω)3.

Proof. The proof is the same as that of Proposition 5.1, but using the boundary condition
p = 0 on ∂Ω in (5.1), noting that then ∇p × n = 0. As in (5.2), this gives curl3 ψ = u and

divψ = 0 but with ψ×n = ψ×n+∇p×n = 0 on ∂Ω. Adding any element of H̃c to ψ clearly
yields another vector potential for u, and the difference of any two vector potentials for u lies

in H̃ and is curl-free; that is, it lies in H̃c. This proves the uniqueness statement. �

Suppose that Ω ⊆ R3 has a finite number of boundary components Γ0, · · · ,ΓN . Then the
vector potential ψ of Proposition 5.2 is unique if one imposes the condition

∫
Γi
ψ · n = 0 for

all i. This is shown in Theorem 3.6 Chapter I of [13] and 3.17 of [1]. The idea, in essence, is
to use the boundary condition p = ci on Γi instead of p = 0 on ∂Ω in (5.1), and show that,
fixing c0 = 0, there exists a unique choice of the ci such that

∫
Γi
∇p · n = −

∫
Γi
ψ · n for all

i. See, for instance, the argument on pages 49-50 of [13].

Remark 5.3. The boundary condition ψ×n = 0 in the definition of H̃ corresponds to An = 0
via the bijection given by (3.2). This suggests that Proposition 5.2 has a natural higher-
dimensional formulation. Indeed for smooth boundaries it does, as follows from Theorem
3.1.1 of [18], in which ψ becomes a co-closed 2-form.

6. A Biot-Savart kernel?

The Biot-Savart law is the classical method for obtaining a vector field in, say H0 ∩H1(Ω)d,
having a given vorticity in L2(Ω). But the existence of an integral representation for this
law, that is, of a Biot-Savart kernel, for a bounded domain is a largely open question: the
existence for all of Rd and for a bounded domain in R2 is quite classical, but only recently,
in [10], has a kernel for a 3D bounded domain been obtained, and that was for domains
with smooth boundary. In dimensions higher than 3 a kernel has not been obtained even for
smooth domains. (Also, see the introductory comments in [10].)

We can show, however, the conditional result in Theorem 6.1: a Biot-Savart kernel exists
if and only if a kernel for the stream function exists, and there is a duality between them.
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Theorem 6.1. We say that K ∈ L1(Ω2)d is a kernel for the Biot-Savart law on Ω if for all
antisymmetric B ∈ C(Ω)d×d,

ui(x) =

∫
Ω
Kj(x, y)Bi

j(y) dy (6.1)

lies in H0 with curlu = B. We say that T ∈ L1(Ω2)d is a kernel for the stream function on
Ω if for all v ∈ H0 ∩ C∞(Ω)d,

Ai
j(y) =

∫
Ω
Tj(x, y)vi(x) dx−

∫
Ω
Ti(x, y)vj(x) dx (6.2)

lies in X0 with divA = v. A kernel K exists if and only if a kernel T exists, and in such a
case, we can set K = T .

Proof. Assume that T exists. Let v ∈ H0 ∩ C∞(Ω)d and let A be as given in (6.2). Let
u ∈ H0 ∩ C∞(Ω)d with curlu = B. Then, applying Fubini’s theorem,

(2u, v) = 2(u,divA) = −2(∇u,A) = −(∇u,A)− ((∇u)T , AT )

= −(∇u,A) + ((∇u)T , A) = −(curlu,A) = −(B,A)

=

∫
Ω

∫
Ω
Bi

j(y)

[
Ti(x, y)vj(x) dx−

∫
Ω
Tj(x, y)vi(x) dx

]
dy

=

∫
Ω

∫
Ω
Bi

j(y)Ti(x, y)vj(x) dx−
∫

Ω

∫
Ω
Bi

j(y)Tj(x, y)vi(x) dx dy

=

∫
Ω

∫
Ω
Bi

j(y)Ti(x, y)vj(x) dx−
∫

Ω

∫
Ω
Bj

i (y)Ti(x, y)vj(x) dx dy

= 2

∫
Ω

∫
Ω
Bi

j(y)Ti(x, y)vj(x) dx dy = (2w, v),

where

w(x) =

∫
Ω
Ti(x, y)Bi

j(y) dy.

Since H0 ∩ C∞(Ω)d is dense in H0 it follows that we must have u = w. Examining (6.1),
then, we see that we can set K = T .

To show that the existence of K implies the existence of T , we reverse the order of the
integrations by parts. �
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