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God made the integers, all else is the work of man.

L eopold K ronecker, 1 8 8 6

(quoted in [Web], [Bell,p.477] and [Boy,p.617])

S tring theory carries the seeds of a basic change in ou r ideas

abou t spacetime and in other fu ndamental notions of p hy sics.

E dward W itten, 19 9 6 [Wit15 ,p.2 4]
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Preface

Hypocrite lecteur,—mon semblable,—mon frère!

[H y p o c rite re a d e r,— m y fe llo w c re a tu re ,— m y b ro th e r!]

C h arles B aud elaire, 1 8 6 1 , in : L es F leurs d u M al [B a u ,p .1 6 ]

T h is b o o k (o r e ssa y ) is th e re su lt o f m o re th a n fi fte e n y e a rs o f re fl e x io n a n d
re se a rch o n o r a ro u n d th e su b je c t m e n tio n e d in th e p rim a ry title , In S earch of th e

R iemann Z eros. W e fo c u s o n th e q u e st fo r th e u ltim a te m e a n in g a n d ju stifi c a tio n o f
th e c e le b ra te d R iemann Hypoth esis, p e rh a p s th e m o st v e x in g a n d d a u n tin g p ro b le m
in th e h isto ry o f M a th e m a tic s.

A s is w e ll k n o w n , th e R ie m a n n H y p o th e sis (o r R ie m a n n ’s C o n je c tu re ) sta te s
th a t th e c o m p le x z e ro s (a lso c a lle d th e R iemann zeros in th is b o o k ) o f th e R ie m a n n
z e ta fu n c tio n ζ = ζ(s) m u st a ll lie o n th e critical line R e s = 1

2
. T h is p ro b le m w a s

fu rtiv e ly fo rm u la te d in 1 8 5 9 in R ie m a n n ’s in a u g u ra l a d d re ss to th e B e rlin A c a d e m y
o f S c ie n c e s. T h e la tte r is c e rta in ly o n e o f R ie m a n n ’s m a ste rp ie c e s a s w e ll a s h is o n ly
p u b lish e d p a p e r d e a lin g w ith n u m b e r th e o ry , sp e c ifi c a lly , th e a sy m p to tic p ro p e rtie s
o f th e p rim e n u m b e rs.

R ie m a n n ’s C o n je c tu re h a s so m a n y d e sira b le a n d im p o rta n t c o n se q u e n c e s in
m a th e m a tic s a n d b e y o n d , a n d h a s b e c o m e so e n g ra v e d in o u r c o lle c tiv e p sy ch e ,
th a t fe w e x p e rts n o w d o u b t th a t it is tru e . F u rth e r, it h a s b e e n n u m e ric a lly v e rifi e d
u p to a stro n o m ic a l (a lb e it, fi n ite ) h e ig h ts; i.e ., fo r |Im s| < T , w ith T v e ry la rg e ,
n o le ss th a n tw o trillio n . In a d d itio n , c o u n te rp a rts o f th e R ie m a n n H y p o th e sis in
th e sim p le r re a lm o f fi n ite g e o m e trie s (te ch n ic a lly , c u rv e s a n d h ig h e r-d im e n sio n a l
v a rie tie s o v e r fi n ite fi e ld s) h a v e b e e n fi rm ly e sta b lish e d a b o u t 5 0 a n d 3 0 y e a rs a g o
b y A n d ré W e il a n d P ie rre D e lig n e , re sp e c tiv e ly , th e re b y p ro v id in g v a lu a b le in sig h t
in to w h a t m ig h t b e tru e a n d w h ich stru c tu re s sh o u ld b e e x p e c te d in th e m u ch m o re
c o m p le x a n d e lu siv e a rith m e tic re a lm o f th e o rig in a l c o n je c tu re . In p a rtic u la r,
th e o ld P ó ly a – H ilb e rt d re a m o f fi n d in g a su ita b le spectral interpretation fo r th e
R ie m a n n z e ro s h a s fo u n d a n a tu ra l p la c e in th is se ttin g . W h e th e r o r n o t it c a n b e
tu rn e d in to a su c c e ssfu l p ro o f o f th e R ie m a n n H y p o th e sis still re m a in s to b e se e n .

M o re re c e n tly , fu rth e r e v id e n c e to w a rd s su ch a sp e c tra l in te rp re ta tio n h a s b e e n
d isc o v e re d in a d iff e re n t a n d se e m in g ly u n re la te d c o n te x t. It re lie s o n in trig u in g
a n d still q u ite m y ste rio u s a n a lo g ie s b e tw e e n th e sta tistic s o f a to m ic o r m o le c u la r
(q u a n tu m m e ch a n ic a l) sp e c tra a n d th a t o f th e a v e ra g e sp a c in g b e tw e e n th e R ie -
m a n n z e ro s a lo n g th e c ritic a l lin e . T h is is n o w p a rt o f ra n d o m m a trix th e o ry , a
fa sc in a tin g su b je c t w h ich w ill n o t b e m u ch d isc u sse d h e re b u t a b o u t w h ich th e
in te re ste d re a d e r w ill b e a b le to fi n d se v e ra l re fe re n c e s in th e te x t.

F in a lly , a n d m o st im p o rta n tly , a s is o fte n th e c a se in m a th e m a tic s, th e sim -
p lic ity a n d a e sth e tic q u a lity o f R ie m a n n ’s C o n je c tu re is p e rh a p s th e m o st p o w e rfu l

x iii



xiv PREFACE

argument in its favor. Indeed, as is well known and will be further explained in the
introduction, the Riemann Hypothesis can be poetically (but rather accurately)
reformulated as stating that Q, the field of rational numbers, lies as harmoniously
as possible within the field of real numbers, R. Since the ring of integers, Z—
and hence, its field of fractions, Q—is arguably the most basic and fundamental
object of all of mathematics, because it is the natural receptacle for elementary
arithmetic, one may easily understand the centrality of the Riemann Hypothesis
in mathematics and surmise its possible relevance to other scientific disciplines,
especially physics. (We note that for some physicists, only Q truly exists. Y et, in
practice as well as in theory, all measurable quantities are given by real numbers,
not just by rational numbers.)

O ne of our original proposals in this book is that a helpful clue for unravelling
the Riemann Hypothesis may come from surprising and yet to be fully unearthed or
understood connections between different parts of contemporary mathematics and
physics. This may eventually result in a unification of aspects of seemingly disparate
areas of knowledge, from prime number theory to fractal geometry, noncommutative
geometry, arithmetic geometry and string theory.

A fil d’Ariane (or connecting thread) throughout our present search has been
provided by the striking analogies between the key symmetry of the Riemann zeta
function (and its many number theoretic counterparts), as expressed analytically
by a functional equation, and the various dualities exhibited by string theories in
theoretical physics. (For simplicity and due to our own limitations, we will focus
primarily in this book on only one such notion of duality, called T -duality.)

O ne of the author’s long-term dreams would be to use such analogies to deduce
something seemingly intractable—such as the conjectured location of the Riemann
zeros on the critical line—from a much simpler fact on the other side of the mirror
(say, from within the region Re s > 1, where both the series and the E uler product
defining ζ(s) converge). Similarly, string theoretic dualities, in their multiple forms,
are often used to transform an apparently impossible problem into one that is more
transparent and much simpler to solve within the dual (or mirror) string theory.

N ear the end of the main part of this book (Chapter 5), we will discuss a conjec-
tural flow (called the modular fl ow ) on the ‘moduli space of fractal membranes’—
along with its natural counterpart on the Riemann sphere, the fl ow of zeros—that
would help realize this idea in a more abstract and global context.1 In particular,
conjecturally, it would enable us to explain why the Riemann Hypothesis is true.
Moreover, it would show how seemingly very different fractal-like geometries and
arithmetic geometries are all part of a common continuum, namely, the orbits of
the modular flow. Accordingly, arithmetic geometries would represent the ultimate
evolution of the modular flow (and also correspond to its stable and attractive fixed
points). Similarly, the Riemann zeros would be the attractor of the flow of zeros (of
zeta functions)—and hence, because of the aforementioned connections between
symmetries and dualities, would have to lie on the critical line (or, equivalently,
on the E quator of the Riemann sphere), as stated by the Riemann Hypothesis.
Still conjecturally, an analogous reasoning would apply in order to understand and
establish the G eneralized Riemann Hypothesis, corresponding to other arithmetic
geometries and to the critical zeros of their associated zeta functions.

1As the subtitle of this book indicates, Strings, fractal membranes and noncommutative

spacetimes, a substantial am ount of p rep aration w ill be needed before w e can reach that p oint.
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We note that the cover of this book provides a symbolic depiction of the flows of
zeta functions and of their zeros induced by the modular flow on the moduli space
of fractal membranes. See also, respectively, Figures 1 and 2 near the beginning of
Section 5.5.2 .

As will be abundantly clear to the reader and is probably already apparent
from the preceding discussion, this book is not a traditional mathematical research
monograph.2 In particular, we absolutely do not claim to provide a complete solu-
tion to the original enigma, let alone full proofs or even partial justifications for our
main proposals and conjectures. At best, in many cases, we can only offer heuristic
arguments based on mathematical or physical analogies. It should be plainly un-
derstood from the context (either in the text itself or in the notes) whether a given
claim is a physical or heuristic statement, a reasonable expectation, a conjecture, a
mathematical theorem, or neither. For example, at this stage, the existence of the
modular flow and its expected properties are purely conjectural. They rely partly
on analogies with physical theories and constructs (string theories and dualities,
as reformulated in the language of vertex algebras and noncommutative geome-
try, conformal field theories, quantum statistical physics, renormalization group
flow) and on mathematical concepts and theories (moduli spaces of quantized frac-
tal strings, the author and his collaborators’ theory of complex fractal dimensions,
Deninger’s spectral interpretation program and heuristic notion of ‘arithmetic site’,
modular theory in operator algebras, and Connes’ noncommutative geometry). On
the other hand, as will be further discussed in the text (namely, in Section 4 .2 ), the
notion of a fractal membrane (or quantized fractal string) introduced in Chapter 3
of this book can now be put on a rigorous mathematical footing. As a result, other
statements in Chapter 3 have become true theorems.

In some sense, this book should be viewed partly as a research program to
pursue (rather than to complete) the above quest, and partly as a contribution to
a continuing dialogue between mathematicians, physicists and other geometers of
‘reality’. As such, it is written in multiple tongues, sometimes in mathematical
language and sometimes in physical language. Appeals to both rigor and intuition
alternate, in no particular order, without apparent rhyme or reason. J ust as im-
portantly, even within our more mathematical discussions, the boundaries between
the traditional research areas are often blurred. This is one reason we have found
it necessary to include a significant amount of background material, as evidenced
by the large number of appendices in the second part of this book. If nothing else,
and irrespective of our own specific goals, the reader may benefit from reading part
of that material, which she can choose according to her own tastes and needs.

In advance, we ask the reader’s indulgence and hope that she will approach
this book with an open and flexible mind. Above all, we wish that, whether or
not she agrees with the premises and primary message of the book, the reader will
have an eventful and pleasurable journey, contemplating along the way glimpses of
mathematical beauty and fruitfully interacting with its enduring reality.

Michel L . L apidus

December 2 006

2In fact, this is the primary reason why this author did not want it to be included in a regular

book series.
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Overview

In Chapter 1, we give a broad introduction to several of the main themes en-
countered in this work: arithmetic geometry, noncommutative geometry, q uantum
physics and string theory, prime number theory and the Riemann zeta function,
along with fractal and spectral geometry.

In Chapter 2, we explain how string theory on a circle (or on a finite-dimensional
torus)— considered from the point of view of Connes’ noncommutative geometry,
as in the work of F röhlich and Gawȩdzki, pursued by Liz z i and Szabo— can be
used as the starting point for a geometric and physical model of the Riemann zeta
function ζ and other arithmetic L-series. In particular, by analogy with the key role
played by the Poisson Summation F ormula in both the physical and the arithmetic
theory, we contend that the classic functional eq uation satisfied by ζ corresponds
to T -duality in string theory. T he latter, a key symmetry that is not present in
ordinary q uantum mechanics, allows one to identify physically and mathematically
two circular spacetimes with reciprocal radii. F urthermore, we suggest that the
Riemann H ypothesis may be related to the existence of a fundamental length in
string theory.

In Chapter 3, we first briefl y review some aspects of the author’s theory of
fractal strings (one-dimensional drums with fractal boundary) and of the associated
theory of complex dimensions, as developed in the research monograph [Lap-vF 2]
(joint with M. van F rankenhuysen) Fractal Geometry and Number Theory : C om-

p lex dimensions of fractal strings and zeros of zeta functions (B irkhäuser, B oston,
2000). [See also the new book [Lap-vF 9], Fractal Geometry, C omp lex D imensions

and Z eta Functions : Geometry and spectra of fractal strings (Springer-V erlag, N ew
Y ork, 2006 ).] We then introduce the new concept of a fractal membrane, a suitable
multiplicative (or q uantum) analogue of a fractal string. H euristically, a fractal
membrane can be thought of as a (noncommutative) Riemann surface with infinite
genus or as an (adelic) infinite dimensional torus. We show that the (spectral) par-
tition function of a fractal membrane is naturally given by an E uler product, which
reduces to the usual one for ζ in the case of the ‘prime membrane’ associated with
the Riemann zeta function (or, eq uivalently, with the field of rational numbers).
We thus obtain in this case a new mathematical model (diff erent from that of B ost
and Connes) for the notion of a ‘Riemann gas’ introduced by the physicist B . Julia
in the context of q uantum statistical physics. We point out, however, that our mo-
tivations and goals in developing the theory of fractal membranes are significantly
broader than in the latter work, as is discussed in parts of Chapters 4 and 5.

T owards the end of Chapter 3, we also introduce the new (but closely related)
concept of self-similar membrane, which corresponds to a diff erent choice of sta-
tistics than for a fractal membrane when q uantiz ing a fractal string. In a special
case, the spectral partition function of a fractal membrane is shown to coincide

xxv
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with the geometric zeta function of a self-similar fractal string. By comparing our
notions of fractal and self-similar membranes, we also develop a useful parallel be-
tween aspects of arithmetic and self-similar geometries. We strengthen this analogy
and close Chapter 3 by providing a dynamical interpretation of the partition func-
tions of fractal membranes and of self-similar membranes. In the former case, the
associated suspended flows may be called ‘Riemann– Beurling flows’. Indeed, the
logarithms of the underlying (generalized) primes coincide with the ‘weights’ (or
‘lengths’) of the corresponding primitive orbits. We note that in our context, the
‘Riemann flow’ is associated with the ‘prime fractal membrane’ (or, equivalently,
with the field of rational numbers).

In Chapter 4, we discuss various noncommutative and increasingly rich models
of fractal membranes. In particular, we briefly discuss some very recent work of the
author (joint with R. Nest) in which we show that fractal (and self-similar) mem-
branes are the second (or D irac) quantization of fractal strings. In this context, the
choice of Fermi– D irac—or Bose– Einstein, in a second and improved construction—
quantum (resp., Gibbs) statistics corresponds to fractal (resp., self-similar) mem-
branes. In short, it follows that fractal membranes (or their self-similar counter-
parts) can truly be considered as ‘quantum fractal strings’. O ne of the new heuristic
and mathematical insights provided by the latter work is that once fractal strings
have been quantized, their endpoints are no longer fixed on the real axis but are
allowed to move freely within suitable copies of the holomorphic disc in the com-
plex plane. This seems to be somewhat analogous to the role played by D-branes
in contemporary string theory or in M -theory.

As is explained earlier on in Chapter 3, one can associate a prime fractal mem-
brane to each type of arithmetic geometry, including algebraic number fields and
function fields (for example, curves or higher-dimensional varieties over finite fields).
Near the end of Chapter 4, we propose that a more geometric, algebraic and phys-
ical model of arithmetic geometries can be based on the ‘noncommutative stringy
spacetime’ corresponding to closed strings propagating in a fractal membrane—
viewed, for example, as an adelic infinite dimensional torus. Such a spacetime can
be thought of as a sheaf of ordinary noncommutative or quantum spaces—and thus,
in our framework, of vertex operator algebras along with dual (or ‘chiral’) pairs of
D irac operators. The functional equation satisfied by an arithmetic zeta function
such as ζ would then be the analytic counterpart of Poincaré duality at the coho-
mological level, and of T -duality, at the physical level. Accordingly, we conjecture
that a suitable spectral and cohomological interpretation of the (dynamical) com-
plex dimensions of fractal membranes—and, in particular, of the ‘Riemann zeros’,
i.e., the nontrivial zeros of ζ—can be obtained in this context, by means of the
associated sheaf of vertex algebras.

In Chapter 5, we suggest that the author’s moduli spaces of fractal strings
and of fractal membranes—viewed as highly noncommutative spaces significantly
generalizing the set of all Penrose tilings—should be a natural receptacle for zeta
functions and for a suitable extension of D eninger’s heuristic notion of ‘arithmetic
site’. We conclude by proposing a new geometric and dynamical interpretation of
the Riemann Hypothesis, expressed in terms of a suitable noncommutative flow of
zeta functions acting on the moduli space of fractal membranes, along with the
associated flow of zeros. (Each of these flows is referred to as a ‘modular flow’ or
as an ‘extended Frobenius flow’.)
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Accordingly, conjecturally, along the orbits of the modular flow of fractal mem-
branes, the associated generalized, noncommutative fractal geometries would be
‘continuously deformed’ (i.e., would ‘converge’) to arithmetic geometries—viewed
as stable, attractive ‘fixed points’ of this noncommutative flow. Consequently, the
truth of the Riemann Hypothesis (and of its natural extensions) would follow from
the convergence of the zeros of the corresponding zeta functions to the critical line—
or, equivalently, to the Equator of the Riemann sphere, both from within the lower
and upper hemispheres, using T -duality and the associated ‘generalized functional
equations’.

We close Chapter 5 by drawing analogies between our conjectural ‘modular
flows of zeta functions and of their associated zeros’ and other flows arising nat-
urally in contemporary mathematics and physics. These flows include Wilson’s
renormalization flow, the Ricci flow on three-dimensional manifolds, as well as the
‘K P-flow’ (viewed as a noncommutative, geodesic flow). Accordingly, our modular
flow of zeta functions could perhaps be viewed as a noncommutative and arith-
metic analogue of the Ricci flow. Similarly, the associated flow of zeros could be
thought of as an arithmetic, noncommutative K P-flow. In this chapter, we also
propose a model of our modular flows, which is called the ‘K MS-flow’ (for general-
ized Pólya-Hilbert operators) and is motivated in part by analogies with quantum
statistical physics (in the operator algebraic formalism), along with the Feynman
integral and renormalization flow (or group) approaches to quantum systems with
highly singular interactions.

It may be useful for the reader to be aware from the outset of the following
distinction between the various parts of this book. While Chapter 1 is intended for a
‘general’ scientific audience, Chapter 2 is more physics-oriented (but still accessible
to mathematicians not familiar with string theory), whereas the rest of the book
(Chapters 3–5) is clearly of a much more mathematical nature, even though in
various places it draws on the physical language, intuition and formalism discussed
in Chapter 2. Relevant background material is provided in several places within
the text, as well as in the six appendices, in order to make the book more easily
accessible and facilitate the transition between its various parts.

As was just mentioned, we have tried to write this book in such a way that
someone not familiar with all the subjects dealt with here can still understand
the main ideas and concepts involved. We should caution the reader, however,
that the mathematics underlying parts of the theory presented in this work is
rather formidable and, in fact, is often not yet fully developed or even precisely
formulated. We hope, nevertheless, that our proposed models may provide a useful
bridge between various aspects of noncommutative, string, arithmetic and fractal
geometry as well as, in the long term, motivate further investigations aimed at
understanding the elusive geometry underlying the prime numbers (or the integers)
and the Riemann zeros.
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The first figure appearing on the cover depicts the (noncommutative) flow of
the zeta functions of fractal membranes, condensing onto the core of ‘all’ arithmetic
zeta functions (including the Riemann zeta function ζ = ζ(s)), while the second
figure depicts the corresponding flow of their zeros (acting on the Riemann sphere)
condensing onto the Equator (which represents here the critical line Re s = 1

2
).

The first figure also describes the (noncommutative) ‘modular flow’ of noncom-
mutative spacetimes on the moduli space of fractal membranes; the latter modular
flow is pushing on ‘both sides’ towards (or condensing onto) the core of ‘all’ arith-
metic geometries, also known as the ‘arithmetic site’. (See, respectively, Figures 1
and 2 near the beginning of Section 5.5.2.)
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CHAPTER 1

Introduction

The recipes for quantization are a primitive manifestation of the
fact that the space of internal degrees of freedom “ at a single point”
in vacuo is already infinite dimensional because of the virtual gen-
eration of particles. Further understanding is blocked until we
relinquish the idea of space-time as the basis for all of physics.

Y uri I. M anin, 1979 [Mani1,p.94]

One would of course like to have a rigorous proof of this, but I
have put aside the search for such a proof after some fleeting vain
attempts because it is not necessary for the immediate objective
of my investigation.

B ernhard R iemann, 18 59 [Rie1], introducing his famous
“ Riemann Hypothesis” . (Translated in [Edw,p.301].)

1.1. Arithmetic and Spacetime Geometry

I believe that at its deepest level, the geometry underlying the integers—in the
old language, the ‘geometry of numbers’, and in modern terminology, ‘arithmetic
geometry’, including the twin mystical notions of the ‘arithmetic site’ [Den3,6;Har2]
and of the ‘field of one element’ [Mani4;So1,3]—would have to reflect the physical
and geometrical properties of what we traditionally call ‘spacetime’, for lack of a
better word.

I have held this belief, at least consciously, since the mid-198 0’s when I read
the beautiful paper by Yuri I. Manin [Mani2], entitled New Dimensions in Ge-

ometry1. It was later strengthened and turned into an intimate conviction by
my own reflections and research experiences in developing the theory of ‘fractal
strings’2 since the late 198 0’s and exploring its relationships with aspects of num-
ber theory, particularly the Riemann zeta function and the Riemann Hypothesis
[Lap1–4,LapPo1–3,LapMa1–2, HeLap1–2,Lap-vF1–5,9]. In July 1994, I was star-
tled to hear Alain Connes express a similar belief during a debate held at U NESCO
in Paris on the occasion of the International Congress of Mathematical Physicists.
From our ensuing conversations about this subject—and from our ongoing dialogue
(since the summer of 1993) about our respective approaches to the Riemann zeta

1I am grateful to Christophe Soulé for sharin g w ith me his en thusiasm for this paper an d for
A rak elov theory [SoA B K ] w hen I fi rst met him in B erk eley in A ugust 1 9 8 4 .

2or ‘fractal harps’, as sometimes referred to in [L ap-v F 2 ,9 ], n ot to b e mistak en w ith the
strin gs en coun tered in the c lassical strin g theory [D el3 ,G reSW it,G ree,K ak ,M an i3 ,P olc 3 – 4 ,Schw 1 ],

although part of the poin t of the presen t b ook is that the tw o theories can b e related , alb eit in
un ex pected w ay s.

1
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function ([BosCon1–2], surveyed in [Con6,§V.11], and [LapPo1–2,LapMa1–2,Lap2–
4,HeLap1–2], now pursued in [Lap-vF1–5,9])—it appears, however, that his vision
then (and probably still now in his new approach [Con9,10]) is quite different from
the model I am about to propose, although key aspects of noncommutative geom-
etry play an important role in both cases.3

1.2. Riemannian, Quantum and Noncommutative Geometry

During the course of the 20th century, and ever since the resounding success of
the application of Riemannian geometry to the study of gravity in Einstein’s theory
of general relativity, geometry has been a focal point for many mathematicians
and physicists interested in apprehending aspects of physical reality. As is well
known, symplectic geometry is well suited to and, in fact, largely motivated by
the study of phase space in classical mechanics. Furthermore, as was mentioned
just above, Riemannian geometry—in its Lorentzian version—is adopted in most
models of classical physics concerned with gravitational fields. More recently, the
geometry (and topology) of principal bundles over differentiable manifolds has been
found to be an ideal tool to explore gauge field theories. Note, however, that most
mathematically rigorous investigations of gauge theory to date have focused on
classical rather than quantum aspects.

It is much less clear, at the moment, how to determine what is “the” geometry
underlying quantum mechanics, let alone quantum field theory. More generally,
we do not understand what are the true mathematical foundations of quantum
field theory [Wit17,19]. Of course, this question has been the subject of much
speculation and controversy. In recent years, noncommutative geometry has arisen
in large part as a possible answer to such a question, although it is fair to say
that we still seem to be far from having resolved this crucial problem. Beginning
with the algebraic and functional analytic work of Murray and von Neumann [Mu-
vN,vN], as well as of Gel’fand and Naimark [GelfNai], noncommutative geometry
truly emerged and flourished as an independent subject with the deep work of Alain
Connes. (See, for example, the books [Con5] and [Con6]; see also [GraVarFi].) In
essence, the central objects of noncommutative geometry are no longer spaces of
points, as in ordinary geometry, but (typically noncommutative) operator algebras,
the elements of which can be thought of heuristically as representing quantum fields
on the underlying ‘noncommutative (or quantum) spaces’. In recent years, Connes
[Con7,8] has proposed a set of axioms for noncommutative geometry that requires
a much richer structure for a noncommutative space. It involves, in particular, the
existence of a suitable Dirac-type operator acting on the Hilbert space on which the
operator algebra is represented. (Intuitively, the noncommutative algebra itself can
be thought of as the ‘algebra of coordinate functions’ on the associated quantum
space.) This enables one, for example, to measure distances within a noncommuta-
tive space much as in a Riemannian manifold, using a formula in some sense dual to
the geodesic formula. (See [Con4] and [Con6,Chapter VI].) Under appropriate as-
sumptions, this also provides a noncommutative analogue of the de Rham complex
and of aspects of differential topology and geometry (see [Con2–8] and [GraVarFi]).
It is good to keep in mind, as is often stressed by Daniel Kastler [Kast2,3], that
the aforementioned axioms are largely motivated by models from quantum physics,
particularly the so-called ‘Standard Model’ for elementary particles (see [DV-K-M],

3See, however, the relevant discussion in §5 .4 for some possible connections.
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[ConLo], [Con5,6]), as well as by the long-standing problem of quantum gravity
(see, e.g., [ChaCon1,2]).

1.3. String Theory and Spacetime Geometry

Over the last twenty years, string theory, which originated as a theory of strong
interactions in the early 1970’s, soon to be superseded by quantum chromodynamics
(Q CD), has emerged as the best candidate for unifying the four known fundamental
forces (or interactions) of nature: the electromagnetic force, the weak force and
the strong force—all described by Yang–Mills gauge field theories—along with the
gravitational force, described by Einstein’s theory of general relativity. In this
sense, it may eventually provide a means of fully reconciling quantum mechanics
(or quantum field theory) with general relativity, and thereby resolve the riddle
posed by quantum gravity. Caution must be exercised, however, because despite
its great beauty and mathematical power, string theory is still far from being a
complete physical or mathematical theory. Moreover, due to the extremely high
energies (or, equivalently, the minuscule scales) involved, it has been notoriously
diffi cult in string theory to make predictions that can be verified experimentally
with the technology available at present or even in the foreseeable future. We
note, however, that although experiments involving high-energy accelerators seem
to be out of the question—except to verify some of the most basic assumptions of
(super)string theory, such as the existence of supersymmetry [Kan,Freu,Wein4]—
interesting large-scale astronomical experiments currently under way may provide
useful clues within the next ten to fifteen years. It is also worth mentioning that
very recently, low-energy experiments in nuclear and condensed matter physics
have confirmed the existence of the so-called ‘dynamical supersymmetry’ for heavy
nuclei (see [Is], [Jol]), but cannot be regarded as providing conclusive evidence for
supersymmetry in fundamental physics, while experimental tests for the existence
of extra dimensions of spacetime (as required by string theory) have been proposed
for the next generation of high-energy accelerators (see, e.g., [Ant]).

Roughly speaking, in string theory, point-particles are replaced with tiny strings
(i.e., one-dimensional open strings or else closed loops) vibrating in a (target) space-
time, which is assumed to be ten-dimensional in superstring theory. As it evolves
with time, a given string sweeps out a two-dimensional world-sheet, viewed math-
ematically as a Riemann surface. Hence, the Feynman path integral approach to
quantum mechanics ([Fey1], [FeyHi], see also [JohLap]) naturally extends to this
setting, with the path integral being replaced by an integral over all possible world-
sheets, or more precisely, with integrals over suitable moduli spaces of Riemann
surfaces (with a given finite genus and a given number of marked points). The re-
sulting heuristic Feynman-type integral is often referred to as a ‘Polyakov integral’
[Poly1–3] in the literature. (See, for example, [GreG,GreSWit,Kak,Polc3–4,Wit4],
along with [JohLap], Chapter 20, especially Section 20.2.B.) The associated Feyn-
man (or string) diagrams take a much simpler form than in quantum field theory
and their detailed analysis provides a good understanding of perturbative string
theory, at least at the physical level of rigor. The miracle is that the divergences
caused by the coincidence of points in spacetime (and hence the vanishing size of
point-particles) in standard quantum field theory now disappear because of the
extended size of the strings. In physical terms, superstring theory is said to be
renormalizable or, more precisely, “finite to all orders in perturbation theory.”
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In concluding his plenary lecture at the International Congress of Mathemati-
cians delivered in Berkeley in 1986, Edward Witten made the following statement
([Wit4,p.302],1987):

I have tried to make it plausible that path integrals on Rie-

mann surfaces can be used to formulate a generalization of

general relativity. W hat is more, the resulting generalization

is (especially in its supersymmetric forms) free of the ail-

ments that plague quantum general relativity. If the logic has

seemed a bit thin, it is at least in part because almost all we

know in string theory is a trial and error construction of a

perturbative expansion. [The Feynman–Polyakov path inte-
grals over moduli spaces of Riemann surfaces] are probably the

most beautiful formulas that we now know of in string the-

ory, yet these formulas are merely a perturbative expansion

... of some underlying structure. U ncovering that structure

is a vital problem if ever there was one.

Such was the situation up to the late 1980’s. However, during the 1990’s, signif-
icant progress was made towards developing a nonperturbative string theory, called
M-theory, in which (one-dimensional) strings are replaced with higher-dimensional
geometric objects, called ‘membranes’ or ‘D-branes’. The associated ‘dualities’ (in-
cluding the so-called ‘S-duality’ and ‘T-duality’) enable one to relate the five basic
types of string theory,4 and thereby to obtain a more unified picture of string the-
ory. (See, for example, [Wit15–17] and [GivePR,Gree,Polc1–4,Schw2–4,Va1–2].)
These recent developments are sometimes referred to as the “second superstring
revolution” [Schw2].

Edward Witten often begins his lectures on string theory—especially when
addressing a mathematical audience—by stressing a striking contrast between the
historical developments of string theory and general relativity (see also, for example,
the introduction of [Wit4]). In ([Wit13,pp.205–206],1994), he writes:

More fundamentally, I believe that the main obstacle [to fur-
ther progress] is that the core geometrical ideas— which must

underlie string theory the way Riemannian geometry under-

lies general relativity— have not yet been unearthed.

Whatever the true underlying geometric foundations of string theory (or of
M-theory), there seems to be an emerging consensus among theoretical and math-
ematical physicists that one needs to significantly revise the notion of spacetime,
from both geometrical and physical points of view. In particular, at extremely
small scales (typically, below the Planck scale5), the classical model of spacetime
as a smooth Riemannian (or Lorentzian) manifold is probably no longer valid. For

4One of these, the so-called (standard) superstring theory, lives in a ten-dimensional space-

time, consisting of three plus one extended space and time dimensions along with six ‘compactified’
(tiny) space dimensions.

5T he Planck length (or scale) is the fundamental scale of q uantum gravity. It is approximately
eq ual to 1.6 × 10−33 cm (in international units) and is expressed in terms of the following three

universal constants, � (Planck’s constant or q uantum of action), c (the speed of light), and G

(N ewton’s gravitational constant). It is also eq ual to the reciprocal of the Planck m ass, about

1.22×10 19 GeV , the natural mass (or energy) scale of q uantum gravity. (It may be useful to note—
as is freq uently stressed by physicists— that the Planck length is about 20 orders of magnitude
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example, the small-scale structure of spacetime may be discrete, or partly discrete
and partly smooth. Alternately, it may be of a fractal nature. In fact, in early
work on quantum gravity by Wheeler [Whe,WheFo], Hawking and others (see, for
example, [GibHaw,Haw,HawIs]), there were intriguing references to the existence of
some kind of ‘fractal foam’, sometimes also called ‘quantum foam’. (More recently,
see also [Not] in another context.) More radically, it has even been suggested that
we do away with the notion of spacetime altogether, at least as a primary con-
cept. (See, for instance, Witten’s article [Wit15] entitled Reflections on the Fate

of S pacetime, from which the second quote heading this book is excerpted. Also,
for a different perspective on a similar theme, see Manin’s quote from [Mani1]
heading the present introduction.) Perhaps an appropriate modification or exten-
sion of Connes’ noncommutative geometry [Con5,6] will provide clues as to how to
proceed in suitably altering or replacing the concept of spacetime. Indeed, there
has already been a number of attempts in this direction, several of which will be
key to aspects of our present work. (See, for example, [Wit3], and more recently,
[FroGa,ChaFro,Cha1–2,LiSz1–2,FroGrRe1–2] along with [ConDouSc,LanLiSz].)

Whatever the answers to these fundamental questions ultimately turn out to
be, the relationship between physics and geometry (in a broad sense) will continue
to be at the center of the ongoing dialogue between physicists and mathematicians
during the next few decades of the 21st century.

It may be helpful at this stage to briefly explain in physical terms the role played
by the vibrations of strings in superstring theory (the marriage of string theory and
supersymmetry). In quantum field theory (QFT), elementary particles—or rather
particle types, such as photons, electrons, quarks, etc.—are represented as quantum

fi elds (mathematically, suitable operator-valued distributions; physically, “bundles”
or quanta of “energy and momentum” [Wein5,pp.96–97]).6 In string theory, how-
ever, they appear as the diff erent modes of vibration of the (closed or open) strings

“that make-up the fabric of spacetime” [Wein5]. (See also [Gree].) At sufficiently
low energy, superstring theory can be shown to yield quantum field theory (which is
therefore referred to as an eff ective theory). More specifically, the Standard Model
of elementary particles [Wein1–5] can be recovered as a low-energy approximation
of superstring theory [Del3,Polc3-4]. For example, one of the modes of string vibra-
tion corresponds to a particle of spin 1 and zero mass, namely a photon, the carrier
(or quantum) of electromagnetic interactions in quantum electrodynamics (QED).
Moreover, another mode of string vibration corresponds to a particle of spin 2 and
zero mass, which is identified with the graviton, the (presumed) quantum of the
gravitational field. In this sense, superstring theory enables us to quantize general
relativity (Einstein’s theory of gravitational interactions). In fact, as is stressed by
Steven Weinberg in his stimulating essays [Wein1,5], “string theories not only unite

gravitation with the rest of elementary particle physics, they explain why gravitation

must exist” [Wein5,p.65].
In order for quantum gravity or the Standard Model to be well understood in

the context of string theory, we will still have to overcome formidable obstacles.

smaller than the size of a proton.) In much of this work, we will choose units so that the Planck
length (or rather, the string length, see §2.2.3) is equal to one.

6More accurately, in quantum field theory, quantum fields are the ‘primary concepts’, whereas
particles are only ‘d erived concepts’—see [Wein5] along with, e.g., [Wein2–4].
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For example, long-standing open questions such as understanding the specific nu-
merical values and the wide range of the masses of the elementary particles and
of the strengths (or ‘coupling constants’) of the fundamental interactions seem to
be completely out of reach for the time being (see, e.g., [Wit19]), and may remain
without any satisfactory answer for a long time to come. Fortunately, these are
problems beyond the scope of the present book.

1.4. The Riemann Hypothesis and the Geometry of the Primes

The theory of Numbers has always been regarded as one of the
most obviously useless branches of Pure Mathematics. The accu-
sation is one against which there is no valid defence; and it is never
more just than when directed against the parts of the theory which
are more particularly concerned with primes. A science is said to
be useful if its development tends to accentuate the existing in-
equalities in the distribution of wealth, or more directly promotes
the destruction of human life. The theory of prime numbers sat-
isfies no such criteria. Those who pursue it will, if they are wise,
make no attempt to justify their interest in a subject so trivial and
so remote, and will console themselves with the thought that the
greatest mathematicians of all ages have found in it a mysterious
attraction impossible to resist.

. . . Very different results are revealed when we turn to the sec-
ond principal branch of the modern theory, the theory of the av-

erage or asymptotic distribution of primes. This theory (though
one of its most famous problems is still unsolved) is in some ways
almost complete, and certainly represents one of the most remark-
able triumphs of modern analysis. The theory centres around one
theorem, the P rimzahlsatz or P rime Number Theorem; and it is to
the history of this theorem, which may almost be said to embody
the history of the whole subject, that I shall devote the remainder
of this lecture.

. . . The next great step was taken by Riemann in 1859, and it
is in Riemann’s famous memoir Ueber die A nzahl der P rimzahlen

unter einer gegebenen Grösse that we first find the ideas upon
which the theory has now been shown really to rest. Riemann did
not prove the Prime Number Theorem: it is remarkable, indeed,
that he never mentions it. His object was a different one, that of
finding an explicit expression for π(x) [the number of primes not
exceeding x, denoted by Π (x) in this book], or rather for another
closely associated function, as a sum of an infinite series. But
it was Riemann who first recognized that, if we are to solve any
of these problems, we must study the Z eta-function as a function
of the complex variable s = σ + it, and in particular study the
distribution of its zeros.

. . . To these propositions [Riemann] added certain others of
which he could produce no satisfactory proof. In particular he as-
serted that there is in fact an infinity of complex zeros, all naturally
situated in the ‘critical strip’ 0 ≤ σ ≤ 1; an assertion now known
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to be correct. Finally he asserted that it was ‘sehr wahrschein-
lich’ [very probable] that all these zeros have the real part 1

2
: the

notorious ‘Riemann hypothesis’, unsettled to this day.
We come now to the time when, a hundred years after the

conjectures of Gauss and Legendre [about the asymptotic distri-
bution of the primes], the theorem was finally proved. The way
was opened by the work of Hadamard on integral transcendental
functions. In 1893 Hadamard proved that the complex zeros of
Riemann actually exist; and in 1896 he and de la Vallée–Poussin
proved independently that none of them have the real part 1, and
deduced a proof of the Prime Number Theorem.

It is not possible for me now to give an adequate account of
the intricate and difficult reasoning by which these theorems are
established. But the general ideas which underlie the proofs are, I
think, such as should be intelligible to any mathematician.

. . . The arguments which I have advanced are not exact: I
have merely put forward a chain of reasoning which seems likely
to lead to the desired result. The achievement of Hadamard and
de la Vallée–Poussin was to replace these plausibilities by rigorous
proofs. It might be difficult for me to make clear to you how great
this achievement was. Some branches of pure mathematics have
the pleasant characteristic that what seems plausible at first sight
is generally true. In this theory anyone can make plausible conjec-
tures, and they are almost always false. Nothing short of absolute
rigour counts; and it is for this reason that the Analytic Theory
of Numbers, while hardly a subject for an amateur, provides the
finest possible discipline in accurate reasoning for anyone who will
make a real effort to understand its results.

Godfrey H . H ardy, 1915 [Hard2,pp.350–354],
in his lecture on Prime Numbers

The zeta-function is probably the most challenging and mysterious
object of modern mathematics, in spite of its utter simplicity.

. . . The main interest comes from trying to improve the Prime
Number Theorem, i.e., getting better estimates for the distribution
of the prime numbers. The secret to the success is assumed to lie in
proving a conjecture which Riemann stated in 1859 without much
fanfare, and whose proof has since then become the single most
desirable achievement for a mathematician.

Martin C. Gutwiller, 1990 [Gut2,p.308]

The Riemann Hypothesis would say that looking for primes is
rather like tossing a coin. [. . . ] Riemann predicted that the er-
ror term in [the Prime Number Theorem] is the same as the error
we expect to see when tossing coins, making primes look in some
sense like a random process. [This] distribution of the primes con-
jectured by Riemann is as nice as we could hope for.

M. du Sautoy, 1998 [dSa]
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It is perhaps fitting that the same mathematician who brought Riemannian
geometry to the world (with such an impact on physics, especially general relativity,
half a century later) also proposed what later came to be known as the most famous
open problem of mathematics, the so-called Riemann Hypothesis. In developing
his geometry, Georg Friedrich Bernhard Riemann (1826–1866) was motivated by
the work of his predecessors—including Karl Friedrich Gauss (1777–1855) and the
co-discoverers of non-Euclidean geometry, Nikolai Ivanovich Lobachevsky (1792–
1856) and Johann (or János) Bolyai (1802–1860)—as well as by philosophical and
physical considerations.7 On the other hand, Riemann’s Conjecture (or Hypothesis)
concerning the location of the critical zeros of the Riemann zeta function ζ = ζ(s)—
namely, ζ(s) = 0 with 0 ≤ Re s ≤ 1 implies that Re s = 1

2
—seems to have had

entirely different and purely ‘internal’ (hence, mathematical) motivations.
The Riemann Hypothesis has fascinated mathematicians since its introduction

by Riemann in his famous inaugural lecture to the Berlin Academy of Sciences
in 1859 (see [Rie1]). Curiously, it was presented almost as a passing remark or
conjecture within [Rie1], the only paper by Riemann devoted to number theory.
(See the second quote heading this introduction.) Although never stated overtly,
one of the main goals of Riemann in [Rie1] seems to have been to provide the tools
needed to establish the (then still unproven) ‘Prime Number Theorem’ conjectured
by Gauss and Legendre, according to which, in particular,

(1.4.1) Π(x) =
x

log x
(1 + o(1))

as x → ∞ , where the symbol o(1) denotes a function tending to zero as x → ∞

and Π(x) = Σ p≤x1 denotes the ‘prime number counting function’, equal to the
number of primes p not exceeding x > 0. The Prime Number Theorem8 was even-
tually proved almost forty years later in 1896, simultaneously and independently by
Jacques Hadamard [Had2] and Charles-Jean de la Vallée Poussin [dV1]. (See also
the earlier key papers [vM1,2] and [Had1], along with the later and more precise
error estimate obtained in [dV2].) We refer the interested reader to Edwards’ book
[Edw] or to W. Schwarz’s recent survey article [Schwa] for a detailed history of
the Prime Number Theorem. As is well known (see, for example, [Edw], [In], or
[Pat,§1.8]), the Riemann Hypothesis is equivalent to the statement that the prime
numbers are asymptotically distributed as ‘harmoniously’ as possible or, more pre-
cisely, that the error term in the statement of the Prime Number Theorem (in the
form given in the last footnote) is the best possible.9

Arguably, the most beautiful and useful result obtained by Riemann in [Rie1]
is the so-called Riemann ‘explicit formula’, connecting Π(x) (or related counting

7Referring, in particular, to Riemann’s groundbreaking Habilitationschrift—titled O n the

Hypotheses at the F ou ndations of G eometry and presented in 1854 to the U niversity of

Göttingen—Sir Arthur S. E ddington—the British astronomer whose observation of the 1919 total
eclipse of the Sun first confirmed the bending of light rays grazing a massive body (like the Sun),

as predicted by E instein’s theory of general relativity—made the following statement (quoted in
[Ac,p.19]): “ A geometer like R iemann might almost have foreseen the more important featu res of

the actu al w orld.”
8either in the form (1.4.1) or in the following (improved) form conjectured by Gauss,

Π (x) = L i(x)(1 + o(1))

as x → ∞, where L i(x) := lim
ε→0+(

∫ 1−ε

0
+

∫
x

1+ε
) 1
lo g t

dt d e n o te s th e lo g a rith m ic in te g ra l

9N a m e ly , fo r e v e ry δ > 0 , Π (x) = L i(x)+O(x
1

2
+δ) a s x → +∞; se e , e .g ., [P a t,§1 .8 a n d §5 .8 ].
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functions) and the zeros of the Riemann zeta function. Indeed, it expresses a deep
relationship b etw een the prime numb ers and the critical (or nontriv ial) zeros of
ζ. (S ee, e.g ., [E dw ,C hapter3 ], [In], [P at,C hapter3 ], [P arS ha1 ,§2 .5 ], [T eM eF ,§2 .4 ]
and [L ap-v F 2 ,p.4 and pp.7 5 – 7 6 ].) Riemann’s formula is sometimes referred to as
the Riemann– v on M ang oldt explicit formula (see, e.g ., [L ap-v F 2 ,§4 .5 ]) b ecause a
suitab le v ersion of it w as later prov ed rig orously b y v on M ang oldt [v M 1 ,2 ] in the
mid-1 8 9 0 ’s. (S ee E q uation (2 .4 .2 0 ) in S ection 2 .4 .1 b elow for a classic v ersion of
Riemann’s formula.) W e note that such an explicit formula— along w ith its later
g eneralizations to other parts of numb er theory — has recently b een extended to the
setting of fractal g eometry in [L ap-v F 1 ,2 ] in order to dev elop the theory of complex
dimensions of fractal string s and to precisely describ e the oscillations intrinsic to the
g eometry or the spectrum of fractals in terms of the underly ing complex dimensions.
(S ee [L ap-v F 2 ], C hapter 4 and the relev ant applications discussed in C hapters 5 – 9 ;
see also [L ap-v F 9 ] for further extensions and improv ements.) E arlier, in [L apM a1 ,2 ],
a g eometric reformulation of the Riemann H y pothesis w as ob tained in terms of a
natural inv erse spectral prob lem for the v ib rations of fractal string s. Rephrased in
a more pictorial lang uag e, the w ork of [L apM a1 ,2 ] can b e seen as demonstrating
that the q uestion (à la M ark K ac [K ac1 ]) Can one hear the shape of a fractal

d ru m ? — suitab ly interpreted as the aforementioned inv erse prob lem, connecting
the g eometric and spectral oscillations of a fractal string — is intimately connected
w ith and, in fact, eq uiv alent to the Riemann H y pothesis. T his characterization of
the Riemann H y pothesis w as extended and placed in a b roader context in [L ap-
v F 2 ], especially in C hapter 7 . In particular, the intuitiv e picture of the critical
strip 0 ≤ Re s ≤ 1 for ζ(s)— sug g ested b y the w ork in [L apP o1 ,2 ] (see especially
[L apP o2 ,§4 .4 b ], along w ith [L ap2 ,F ig ure 3 .1 and §5 ] and [L ap3 ,§2 .1 ,§2 .2 and p.1 5 0 ])
and corrob orated b y the results of [L apM a1 ,2 ]— has b een rig orously justifi ed in
[L ap-v F 1 ,2 ]. (S ee [L ap-v F 2 ,F ig ure 7 .1 ,p.1 6 5 ] and the discussion surrounding it.)

In my opinion, the importance of the Riemann H y pothesis does not lie solely
in the incredib le multiplicity of its eq uiv alent forms, b ut also in the cry ptic messag e
w hich it carries w ith it: one ab out the g eometry of a landscape thus far inaccessib le
to us, the landscape underly ing the prime numb ers, and hence the integ ers. O nce
w e w ill hav e found the clues needed to decode this messag e, w e should b e ab le
to discov er and unify larg e new areas of mathematics, ly ing at the confl uence of
arithmetic and g eometry .10

1.5. Motivations, Objectives and Organization of This Book

A t least from the phy sical point of v iew , our g oal in the present b ook is more
modest than the earlier discussion may hav e sug g ested. Indeed, w e w ill not attempt
to dev elop a g eometry w hich models phy sical reality at scales w here q uantum g rav -
ity play s an essential role. Instead, w e w ill propose a g eometric and phy sical model
that may help us to b etter understand aspects of numb er theory , particularly the set
of prime numb ers (or of integ ers) and the associated Riemann zeta function, along

10Along similar lines, one could perhaps consider the Riemann Hypothesis—together with the
related information concerning the statistical distrib ution of the prime numb ers (for ex ample, that

connecting the critical zeros of the Riemann zeta function and aspects of random matrix theory
[M on,B er3 – 4 ,O d1– 2 ,G ut2 ,RudS ar,K atS ar1– 2 ,B erK e, K eS n1– 2 ])—as a mathematical analogue of

the recent C O B E (and W M AP) ob servations regarding the ex traordinary uniformity (and the tiny
fl uctuations) of the Penz ias– W ilson cosmic b ack ground radiation ([T ri,PuG is] and [HuW ,S tra]).
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with their various generalizations for algebraic number fields and curves over finite
fields which arise naturally in arithmetic geometry (see, for example, [ParSha1,2]).

This new model is motivated in part by several mathematical and physical
sources, including the following ones:

(i) The theory of fractal strings [Lap1–4,LapPo1–3,LapMa1–2, HeLap1–2,
Lap-vF1–5,HamLap] (to be viewed here as ‘fractal membranes’, or equivalently, as
‘quantized fractal strings’) and the corresponding theory of (fractal or arithmetic)
complex dimensions recently developed in the author’s research monograph joint
with Machiel van Frankenhuysen and entitled F ractal G eometry and N umber T he-

ory : Complex dimensions of fractal strings and zeros of zeta functions [Lap-vF2].
(See also the new book [Lap-vF9], F ractal G eometry , Complex D imensions and Z eta

F unctions : G eometry and spectra of fractal strings, where the theory of complex
dimensions developed in [Lap-vF2] is much further expanded.)

(i′) More generally, the study of the vibrations of fractal drums, associated
with Laplacians (or, more general elliptic diff erential operators) on open sets with
fractal boundary or on suitable (self-similar) fractals themselves. (See, for instance,
[Lap1–6], [LapFl], [LapPo1–3], [LapMa1–2], [HeLap1–2], [KiLap1–2], [LapPan],
[LapN RG ], [G riLap], [Lap-vF1–5], [D auLap] and the relevant references therein
related to the so-called ‘Weyl–B erry Conjecture’ [Wey1–2,B er1–2].) We note that
fractal strings correspond to the one-dimensional case of ‘drums with fractal bound-
ary’ but also have certain features in common with the latter situation of Laplacians
on fractals.

(ii) String theory (from theoretical physics) and its striking dualities, espe-
cially the so-called ‘T -duality ’, a key symmetry not present in ordinary quantum
mechanics which enables us, for example, to identify physically two circular space-
times with reciprocal radii. (See, e.g., [Asp,EvaG ia,G ivePR,G ree,Polc1–4,Schw2
–4,V a1–2,Wit14,16–17].)

(iii) N oncommutative geometry and the recent attempts to connect it with
conformal field theory and string theory. (See, especially, [FroG a,ChaFro,Cha1–
2,LiSz1–2,FroG rRe1–2].)

(iv) Recent attempts to connect aspects of noncommutative geometry and
fractal geometry from several points of view. (See, especially, [ConSul], [Con6,
§IV .3]—particularly [Con6,§IV .3(ε)], motivated in part by [LapPo1–2]—as well as
[Lap3,Part II], [Lap5], [Lap6] and [KiLap2].)

(v) The intriguing work of D eninger [D en1–7] on a possible cohomological in-
terpretation of analytic number theory, as well as on the Extended Weil Conjectures
and, in particular, on the (Extended) Riemann Hypothesis.11

To avoid any possible misunderstanding, we note that because we will consider
here the vibrations of fractal membranes rather than of fractal strings, the roles
played by the Riemann zeta function and our proposed approach to the Riemann
Hypothesis will diff er significantly from their respective counterparts in the previ-
ous work of the author and of his collaborators, Carl Pomerance, Helmut Maier,
Christina He and Machiel van Frankenhuysen [Lap1-4,LapPo1–3,LapMa1–2,HeLap1

11See, e.g., Appendix B to the present work, especially §B.2 and §B.3, for a brief discussion

of the classic Weil Conjectures [Wei5] (and Theorem [Wei1–4], in the case of curves over fi nite
fi elds), along with some of their motivations.
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–2,Lap-vF1–5,9]. Nevertheless, the concepts, techniques and results of this earlier
theory will serve as an important motivation and a useful guide in a variety of ways.

The rest of this book is organized as follows:

In Chapter 2, we discuss the simple but important model of (closed) string
theory on a circle (or, more generally, on a finite-dimensional torus). We do so
both from the standard physical point of view (in Section 2.2) and—following the
work of Fröhlich and Gawȩdzki [FroGa], pursued by Lizzi and Szabo in [LiSz1,2]—
from the point of view of noncommutative geometry (in Section 2.3). T -duality is
presented from each perspective in Section 2.2 and Section 2.3, respectively. Recall
that this duality identifies the physics of string theory on two circles of reciprocal
radii (see §2.2.2). More generally, in higher dimension, T -duality identifies the
physics of two toroidal spacetimes associated with a pair of mutually dual lattices
(see Remark 2.2.2).

In Section 2.4, we suggest that in this context, the functional equation of the
Riemann zeta function ζ = ζ(s) is a natural counterpart of T -duality for string
theory on a circle (or, more generally, on a fractal membrane, in the sense of Chapter
3), while the Riemann Hypothesis may be connected, in particular, to the existence
of a fundamental (or minimum) length in string theory, itself a consequence of
T -duality. (We point out to the interested reader that in the first part of Section
2.4, we review some of the basic properties of ζ(s)—and of other number theoretic
zeta functions—which are used throughout much of this work; see Section 2.4.1 .)

In Chapter 3, we then propose an extension of this model to string theory on
an infinite dimensional (adelic) torus, or on a Riemann surface with infinite genus.
This yields a geometric model of the vibrations of a fractal membrane, viewed
as a multiplicative (or quantized) analogue of a fractal string.12 For a suitable
choice of data—directly expressed in terms of the sequence of prime numbers—the
quantum partition function of such a model then coincides with the Riemann zeta
function ζ(s). Thus, by analogy with statistical physics [Y aLe,LeY a,J ul1–2], the
complex zeros (and the pole) of ζ(s) may be interpreted as corresponding to phase
transitions. We therefore obtain an alternate mathematical answer to Bernard
J ulia’s question raised in [J ul1,2], apparently rather different from that provided
earlier by Bost and Connes in [BosCon1,2] (see also the exposition in [Con6,§V.11]).
(Recall that J ulia’s problem consists in finding a natural mathematical model for
a quantum statistical system, called a ‘Riemann gas’, whose partition function is
equal to the Riemann zeta function.) We point out, however, that our primary
motivations and objectives in developing the theory of fractal membranes are much
broader and more ambitious than in the latter work, as will be clear in Chapters 4
and 5 (especially, Sections 5.4 and 5.5).

More specifically, after having recalled in Section 3.1 some basic facts concern-
ing the theory of fractal strings (e.g., [Lap3,LapPo2–3,LapMa2,HeLap2,Lap-vF2,9])
and of their associated complex dimensions [Lap-vF2,9], we introduce the new no-
tion of a fractal membrane (in Section 3.2), along with its self-similar counterpart,
called a self-similar membrane (in Section 3.3). This enables us, in particular,

12Alternatively, rather than an (adelic) infinite torus, a fractal membrane can be thought of
as an adelic Hilbert cube, with opposite faces identified. By ‘adelic’, in this context, we mean

physically that each normal mode of vibration of such an object involves only finitely many circles
(or faces).
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to provide a mathematical model13 of many arithmetic geometries and to obtain a
natural interpretation of a standard Euler product of the associated zeta function—
defined as the (spectral) partition function Z(s) of the corresponding fractal mem-
brane. For example, the special case of the so-called prime membrane yields the
classic Riemann zeta function: Z(s) = ζ(s), as discussed in the previous para-
graph. Further, our constructions and results can be easily adapted to other ‘prime
membranes’, associated with arbitrary algebraic number fields or with curves (or
higher-dimensional varieties) over finite fields. In that case, Z(s) coincides with the
zeta function of the field or the zeta function of the curve, respectively. (See §3.2.1
and Example 3.2.14, along with §2.4.1 and §B.1 in Appendix B.) For a general
fractal membrane, we point out that the role of the ‘primes’ is played by the radii
lengths of the circles of the infinite dimensional torus associated with the mem-
brane. Our main result in Section 3.2.2 can then be interpreted as stating that the
partition function Z(s) of the membrane coincides with the corresponding Beurl-
ing zeta function [Beu1]. (See Theorem 3.2.8 and the comments following it.) As
was mentioned earlier, however, our primary goals and motivations in introducing
the notion of a fractal membrane and developing its theory go well beyond the
consideration of this particular problem. (See Chapters 4 and 5.)

In Section 3.3, we show that the partition function of a self-similar (rather than
fractal) membrane is no longer given by a standard Euler product but instead coin-
cides with the geometric zeta function of a self-similar string with infinitely many
scaling ratios, which now play the role of the generalized primes. (This naturally
extends earlier results in [Lap-vF1,2] obtained for standard self-similar strings with
finitely many scaling ratios; see §3.1, especially Example 3.1.2.) In the process,
we also develop and significantly deepen the analogy between arithmetic and self-
similar geometries pointed out in earlier work of the author and his collaborators,
particularly in [Lap3] and [Lap-vF2]. This analogy is used throughout much of the
rest of this book in order to transfer concepts or results from one subject to the
other.

We mention that near the end of Chapter 3 (more specifically, in Section 3.3.1),
we also show that the partition function of a fractal membrane coincides with the
(appropriately weighted) dynamical (or Ruelle) zeta function of a suitable ‘sus-
pended flow’ (introduced in passing in [Lap-vF3]). This yields, in particular, a dy-
namical interpretation of the Euler product expansion of the partition function—or,
equivalently, of the Beurling zeta function associated with the underlying general-
ized primes—in terms of the primitive (or ‘prime’) orbits of the flow. Accordingly,
this flow may be called a ‘R iemann– B eurling fl ow ’ because the weights (or ‘lengths’)
of its primitive orbits coincide with the logarithms of the underlying generalized
primes of the membrane. Furthermore, we obtain the analogue of these results
for self-similar flows (in the sense of [Lap-vF3,9]). In particular, we show that the
dynamical zeta function of a self-similar flow coincides with the partition function
of the associated self-similar membrane. We thereby extend to the case of infinitely
many scaling ratios the dynamical interpretation of the geometric zeta function of a
self-similar string that was obtained in [Lap-vF3] and [Lap-vF9,Chapter 7]. These
new results complete the aforementioned analogy between fractal and self-similar

13This was recently made rigorous in a joint work in preparation with Ryszard Nest [LapNe1],

where fractal membranes are shown to be, in a suitable sense, the second q uantization of fractal
strings. (See §4.2 for a brief account of these results.)
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membranes. They may also be potentially very useful in future work exploring
the possible spectral and cohomological interpretation of the dynamical complex
dimensions which is conjectured to exist in the latter part of Chapter 4 (see §4.4).

In Chapter 4, entitled Noncommutative models of fractal strings : fractal mem-

branes and beyond, we discuss increasingly rich and noncommutative models of
fractal strings and membranes. In particular, in Section 4.2, we provide a non-
commutative geometric and operator algebraic (as well as quantum field theoretic)
model of fractal membranes. (In this case, the underlying algebras of ‘quantum ob-
servables’ is noncommutative.) More specifically, we briefly discuss rigorous joint
work in preparation with Ryszard Nest [LapNe1] in which we show that fractal
membranes (in the sense of Section 3.2) can be precisely defined and are the sec-
ond quantization of fractal strings, corresponding to a suitable choice of quantum
statistics—namely, Fermi–Dirac statistics in the first construction of fractal mem-
branes presented in Section 4.2, and Bose–Einstein statistics in the second con-
struction, given in Section 4.2.1. Analogously, self-similar membranes (in the sense
of Section 3.3) are the second quantized version of fractal strings, associated this
time with the choice of Gibbs–Boltzmann statistics. In short, in agreement with
the author’s original intuition explained in Chapter 3, it follows from [LapNe1] that
fractal membranes (along with their self-similar counterparts) are truly quantized

fractal strings, but now in a very precise mathematical sense.
A significant advantage of the aforementioned second construction (see §4.2.1)

is that it enables one to define a fractal membrane as a true noncommutative geo-
metric space (in Connes’ sense, as discussed earlier in Section 1.2). Such a space
is given by a suitable ‘spectral triple’ (A,H, D), where A is a noncommutative
C∗-algebra represented on a complex Hilbert space H, and D is an unbounded,
self-adjoint operator on H viewed as the ‘Dirac operator’ on the underlying non-
commutative space. (See, e.g., [Con6].) Here, A plays the role of the ‘algebra of
quantum observables’, the noncommutative ‘algebra of coordinates’ or the algebra
of ‘Lipschitz functions’ on the underlying noncommutative space. Furthermore, the
Hilbert space H can be thought of as a suitable ‘Fock space’ on which the ‘Dirac-
type operator’ D acts. Additional desirable properties are satisfied by this spectral
triple, as is explained in Section 4.2.1 and [LapNe1]. A new insight provided by
this construction (from [LapNe1]) is that once a given fractal string has been ‘quan-
tized’, its endpoints are no longer fixed in the real line but are instead free to move
(or ‘float’) within a (holomorphic) disc in the complex plane. In hindsight, this is
in some sense analogous to ‘D-branes’ [Polc3,4] in nonperturbative string theory
and M -theory. Therefore, from this perspective, fractal membranes can perhaps be
viewed as ‘fractal D-branes ’.

In Section 4.3, we investigate an even richer physical, algebraic and noncommu-
tative geometric model of fractal membranes, inspired by our discussion in Chapters
2 and 3 (especially in Sections 2.2, 2.3 and 3.2). More specifically, we consider a
model of string theory in a fractal membrane, viewed alternatively as an adelic
Riemann surface with infinite genus or an adelic infinite dimensional torus. We
are thus led to introduce a vertex algebra and the corresponding Dirac operator(s)
associated with each hole (or ‘circle’) in the Riemann surface with infinite genus
(or the ‘adelic torus’)—see especially Section 2.3 from Chapter 2. In this context,
it is good to keep in mind that heuristically, the radius of each circle of the infinite
dimensional torus represents a (generalized) prime associated with the membrane.
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(Recall that vertex algebras are algebraic structures used to describe quantum fields
and their interactions in conformal field theory and in string theory. See the origi-
nal references [BelaPZ ], [Bor2], [FrenkLepM2]; see also, for instance, [Geb], [Kac-v]
or [Polc3], and in the context of noncommutative geometry, [FroGa] and [LiSz2].
Moreover, see Appendix A of the present work.) Mathematically, this yields a sheaf
of vertex algebras—or, more generally, of noncommutative spaces—providing an al-
gebraic and geometric model for the quantum geometry underlying string theory in
a fractal membrane. For a suitable choice of data, the resulting ‘noncommutative
stringy spacetime’ may be an interesting model for exploring and trying to under-
stand the geometry underlying the prime numbers, as well as the integers, which
viewed multiplicatively, coincide with the frequencies or ‘energy levels’ of the mem-
brane. Furthermore—since, as was mentioned above in our discussion of Chapter
3, our proposed construction can be extended to algebraic number fields as well
as to curves (or higher-dimensional varieties) over finite fields, for example14—the
resulting family (or ‘moduli space’) of quantum geometries may provide a natural
model for Deninger’s (heuristic) notion of an ‘arithmetic site’ [Den1,3,5–6,8]. (See
§5.4.1.) As is discussed in several places in Chapter 5, this should be closely related
to the notion of ‘moduli space of fractal strings’ introduced by the author in the
early 1990’s in order to provide a natural receptacle for many of the zeta func-
tions arising in arithmetic and fractal geometry and to classify the various types of
(one-dimensional) fractal geometries occurring in his theory of fractal strings and
of their vibrations.

In Section 4.4, several conjectures are proposed—regarding fractal membranes
and their (dynamical) complex dimensions15—that would yield new insights into
the nature of the Riemann zeros and into the possible algebraic and geometric
structures underlying the Riemann Hypothesis. In particular, we conjecture that a
suitable spectral and cohomological interpretation of the dynamical complex dimen-
sions of prime membranes—and notably, of the Riemann zeros—can be obtained
in this context, by means of the associated sheaf of vertex algebras (or, more gen-
erally, of noncommutative spaces). This is partly inspired by Deninger’s work on
‘cohomological number theory’ and the Extended Weil Conjectures (see §B.3 of
Appendix B in conjunction with §4.4).

In closing this overview of Chapter 4, we mention that in Section 4.4.1, we
very briefly discuss the possible connections between aspects of our work and Shai
Haran’s appealing approach to “The mysteries of the real prime” [Har2] and the
Riemann Hypothesis.

In Chapter 5, we introduce the moduli space of fractal strings Mfs—along
with its ‘quantization’, the moduli space of fractal membranes, Mfm —viewed as
highly noncommutative (quotient) spaces, in the spirit of Connes’ noncommuta-
tive geometry, and as a broad generalization of the set of all Penrose tilings (or of
all quasiperiodic tilings of the plane). We analyze the zeta functions (or spectral
partition functions) associated with these moduli spaces, and show that a signifi-
cant advantage of the moduli space of fractal membranes Mfm over that of fractal
strings Mfs is that both the poles and the zeros (rather than just the poles) of the
corresponding zeta functions are natural geometric invariants—see Sections 5.1 and
5.2. In Section 5.3, we propose that since the moduli space of fractal strings (or its

14as is the case for the fractal membranes discussed in §3.2 and §4.2
15 i.e., the poles and the zeros of the associated partition function
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quantization, Mfm) is a natural receptacle for zeta functions, it may be viewed as
a possible mathematical model for (and a suitable extension of) Deninger’s elusive
arithmetic site [Den1,3,5–6,8]. In short, from our perspective, this arithmetic site
can be thought of as a heuristic ‘space’ the ‘points’ of which are expected to be the
zeta functions of number fields, function fields, along with more general arithmetic
zeta functions. In Section 5.4.2, we begin by providing the necessary operator al-
gebraic background material on the beautiful theory of factors of von Neumann
algebras and the associated modular theory, which particularly enables one to con-
sider corresponding noncommutative flows such as the ‘modular flow ’ which, in its
various guises, plays a key role in the rest of this chapter. (See §§5.4.2a–c, along
with §5.5.) Then, in the latter part of Section 5.4.2 (§5.4.2d and §5.4.2e), building
upon results and ideas from the theory of operator algebras and noncommutative
geometry [Con5,6] as well as aspects of Connes’ recent noncommutative geomet-
ric approach to the Riemann Hypothesis (as developed in [Con10] and announced
in [Con9]), we state a conjecture about the nature of Mfm and of the associated
(continuous, noncommutative) modular flow. It would follow that, in some sense,
the modular flow itself can be viewed as a suitable substitute for and extension of
the so-called Frobenius flow on the arithmetic site, arguably one of the Holy Grails
of modern arithmetic geometry.

In Section 5.5, we conclude the main part of this book by proposing a geomet-
ric and dynamical interpretation of the Riemann Hypothesis. This is formulated
in terms of the modular flow on Mfm—thought of as a (noncommutative) flow of
zeta functions or, equivalently, as a flow of the (generalized) primes of the under-
lying membranes—and its counterpart on the Riemann sphere, a Hamiltonian flow
on the space of associated ‘complex dimensions’ (i.e., of the corresponding poles
and, especially, zeros). In particular, we conjecture that the ‘self-duality ’ of the
functional equations satisfied by arithmetic zeta functions (such as the Riemann
zeta function and other L-series) forces the flow of (critical) zeros to ‘land’ on the
Equator of the Riemann sphere,16 which in this picture corresponds to the critical
line Re s = 1

2
. (See, especially, Figures 1 and 2 near the beginning of §5.5.2, along

with the cover of this book.) Accordingly, the truth of the Riemann Hypothesis
would be due to the intrinsic (dynamical) stability of ‘arithmetic geometries’ or
‘self-dual geometries’ (as forming the ‘arithmetic site’) within the moduli space
of fractal membranes. Therefore, our proposed approach would not only explain
why the Riemann Hypothesis must be true but also provide a new geometric and
dynamical framework within which to attempt to prove it.

More precisely, we conjecture that along the orbits of the flow of fractal mem-
branes (on the ‘effective part’ of Mfm), the corresponding generalized fractal ge-
ometries (viewed as noncommutative spaces) are continuously deformed (i.e., ‘con-
verge’) to arithmetic geometries.17 This implies that along a given orbit, the zeta
functions (i.e., spectral partition functions) of the fractal membranes converge to
the arithmetic zeta function associated with the limiting ‘arithmetic geometry’.

16Recall that via stereographic projection, the Riemann sphere—defined as the complex plane
completed by a point at infinity—can be identified with S2, the unit sphere of the 3-dimensional

Euclidean space R
3.

17 Arithmetic geometries—which form the ‘core’ of Mfm—are thus the ‘stable attractive

fixed points’ of the noncommutative flow. F urther, they are viewed here as ‘self-dual geometries’
(relative to a suitable counterpart of ‘T -duality’).
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In particular, these zeta functions18 become increasingly ‘self-dual’. Furthermore,
also by ‘T -duality’, it follows that their zeros are attracted by the Equator of the
Riemann sphere (i.e., converge to some discrete subset of the ‘critical line’), both
within the lower and the upper hemispheres. Consequently, the critical zeros of
the limiting arithmetic zeta function—towards which the aforementioned (orbit of)
zeros must also converge—naturally satisfy the (Extended) Riemann Hypothesis.
In other words, the ‘core’ of Mfm—viewed as the site of arithmetic geometries and
hence, as a possible realization in our context of Deninger’s arithmetic site—is the
attractor of the modular flow of fractal membranes. Similarly, the ‘critical line’
(i.e., the Equator) is (or rather, contains) the attractor of the corresponding flow
of zeros on the Riemann sphere. In a nutshell, this is the essence of the conjectural
picture which we are proposing near the end of Chapter 5. (See Sections 5.5.1 and
5.5.2, including Figures 1 and 2; see also Section 5.4.2, particularly §5.4.2d and
§5.4.2e.)

We close this description of the main contents of the book by mentioning that
in the last subsection of Chapter 5 (§5.5.3), we discuss some analogies and possible
connections between our proposed approach to the Riemann Hypothesis via mod-
ular flows of zeta functions (and their associated noncommutative geometries) and
several types of geometric, analytic or physical flows encountered in (or inspired
by) various aspects of contemporary mathematics and physics. In particular, in
§5.5.3b, we propose a model—called the ‘KMS-flow for (generalized) Pólya–Hilbert
operators’—of the modular flow of zeta functions and their zeros. This model is
inspired in part by the operator algebraic approach to quantum statistical physics
(see §5.4.2b, along with §5.5.3b) and by analogies with two different but complemen-
tary approaches (discussed in §5.5.3a) to the Schrödinger equation19 with a highly
singular potential. Namely, these are the approaches via analytic continuation (in
‘mass’ or in the ‘diffusion constant’) of a suitable Feynman path integral, or else via
Wilson’s renormalization flow (or group); see §5.5.3a. Furthermore, in §5.5.3c, we
discuss possible analogies with the Ricci (–Hamilton) flow on (three-dimensional)
manifolds, acting as a renormalization-type flow, as in the recent groundbreaking
(and entirely independent) work of Perelman on Thurston’s Geometrization Con-
jecture and, in particular, on the Poincaré Conjecture. Finally, whereas in §5.5.3c,
the modular flow of zeta functions and the associated noncommutative geometries
is suggested to be a suitable arithmetic and noncommutative counterpart of the
Ricci flow, the corresponding flow of zeros is briefly viewed in §5.5.3d as a ‘non-
commutative, arithmetic and KP (or KdV) flow’ acting as a geodesic flow on a
certain noncommutative manifold. Although, admittedly, all of these flows arise in
very different contexts, the analogies drawn in the various parts of Section 5.5.3
should provide a useful guide in future explorations of our proposed approach to
the Riemann Hypothesis.

It may be helpful from the outset for the reader to be aware of the progression
followed in this text and of the different nature of the various parts of this book
(while also keeping in mind the intimate connections between them, as explained
earlier). While the present introduction, Chapter 1, is aimed at a ‘general’ scientific
audience (with a strong interest in mathematics and physics), Chapter 2 is more
physics oriented and requires a certain familiarity with some of the basic aspects

18or rather, the ‘generalized functional equations’ which they satisfy
19viewed as a time-evolution equation
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of quantum mechanics (and its modern incarnations). It has been written, how-
ever, with the mathematical reader in mind, and does not really require previous
knowledge of string theory. The end of Section 2.3 (more specifically, the latter
part of §2.3.2) is more technical and mathematical, and should perhaps be omitted
upon a first reading. Suitable references to the relevant physics and mathematics
literature (along with an appendix on the definition and properties of vertex alge-
bras, Appendix A) are provided to facilitate the task of finding out more about the
many fascinating subjects only touched upon in this chapter. It should be stressed
that because string theory (or its recent nonperturbative extensions) is very far
from having been experimentally verified, as was discussed towards the beginning
of this introduction (see §1.3), our use of the term ‘physical’ in this context should
be taken with a grain of salt. It is our point of view, however, that the beautiful
mathematical structures revealed by string theory should have an important role
to play in our future understanding of mathematical reality and in particular, of
aspects of number theory and of arithmetic geometry.

The second part of this book, composed of Chapters 3 through 5, is of a more
overtly mathematical nature than either Chapter 1 or 2. Chapter 3, for example,
contains the statement of several definitions, theorems and proofs, more in the
style of a traditional mathematical research monograph. Even then, however, some
of the ‘definitions’ provided in Chapter 3 (in Sections 3.2 and 3.3) are only fully
justified by rigorous joint research work in preparation [LapNe1] (motivated by the
theory developed in this book and briefly discussed in Section 4.2). Large parts
of Chapters 4 and 5 (with the exception of Sections 4.1 and 4.2) are certainly of
a more speculative nature than most of Chapter 3. They build upon the material
of Chapter 3 but also use or at least refer to a large amount of contemporary
mathematics, as well as draw on the physical language and formalism introduced
in Chapter 2. They also contain a number of conjectures, open problems and
hypothetical statements suggested by our physical or mathematical discussion in
Chapter 2 or 3. We hope that the reader will be able to adjust without too much
diffi culty to the different styles encountered in this book and to switch from one
type of discourse to another—mathematical, physical, or speculative—sometimes
within the same chapter or section, especially towards the end.

In order to facilitate this transition and make the book more readily accessible
to a broader audience, we have included some relevant background material at
various points in the text or in the appendices. See, in particular, Section 2.4.1 (on
the Riemann and other arithmetic zeta functions), Section 3.1 (on fractal strings
and their complex dimensions), Section 5.4.2 (which includes a review of modular
theory and noncommutative flows on von Neumann algebras), as well as Appendix
A (on vertex algebras) and Appendix B (on the classical Weil Conjectures and the
Riemann Hypothesis for varieties over finite fields).

Vertex algebras provide an elegant algebraic language to describe the quantum
interactions between point-particles or strings in conformal field theories (CFT’s)
or string theories, respectively, while the Weil Conjectures (for ‘finite geometries’)
have served as a useful guide in the search for an appropriate strategy to tackle
the original Riemann Hypothesis (within the context of a conjectural ‘arithmetic
geometry’ associated with the Riemann zeta function, say) and its various exten-
sions. The Weil Conjectures also partly motivate aspects of our discussion near the
end of Chapters 2, 4 and 5.



18 1. INTRODUCTION

Moreover, Appendix C gives a precise statement and proof of the general Pois-
son Summation Formula (PSF, in short) for a pair of dual lattices, along with some
of its consequences. This formula plays a key role both in the physical and in the
arithmetic situations discussed in Chapter 2. It also partly motivates several state-
ments (or conjectures) made in Chapters 4 and 5. We note that the second part of
Appendix C reviews aspects of the theory of modular forms and their associated
L-series, whose functional equations are established by using the Poisson Summa-
tion Formula, and which are central to much of number theory and its various
applications to other areas of mathematics and physics.20

Appendix D is devoted to a discussion of some of the most relevant analytic
properties of Beurling zeta functions associated with systems of generalized primes
(g-primes, in short). These zeta functions and the corresponding g-prime systems
play an important role in Chapter 3 (especially, Section 3.2) and in parts of Chapters
4 and 5. Recall from our earlier discussion (and §3.2) that the spectral zeta function
of a fractal membrane coincides with the Beurling zeta function of a g-prime system
naturally associated with the membrane.

Furthermore, Appendix E on the ‘Selberg Class of zeta functions’ gives an
overview of the basic properties of this class of arithmetic-like meromorphic func-
tions. Some of these properties are already established, while others are merely
conjectured at this point. The relevance of the Selberg Class to our work stems
from our expectation that the notion of a fractal membrane and the corresponding
moduli space of fractal membranes introduced in Chapters 3 and 5, respectively, can
naturally be extended to include this family of meromorphic functions as associated
spectral partition functions (or ‘zeta functions’).

Finally, in Appendix F, we give a more detailed and mathematical descrip-
tion of the noncommutative space of Penrose tilings considered in Section 5.1, via
the notion of ‘groupoid C∗-algebra’ associated with the underlying singular (and,
in particular, non-Hausdorff) quotient space. We also discuss extensions of this
construction that can be used to associate suitable noncommutative spaces to qua-
sicrystals (and to corresponding nonperiodic tilings). In the process, we review
at some length several notions of mathematical quasicrystals and related concepts.
The material and the constructions provided in this appendix should play an impor-
tant role in the formalization of the notion of ‘generalized fractal membrane’ (viewed
heuristically as some kind of generalized quasicrystal) and of the associated moduli
spaces that are discussed or alluded to in Chapter 5 (especially, Sections 5.4 and
5.5), Appendix E and earlier places in the book.

For an introduction to the origins of the theory developed in this book, see
[Lap8], the text from which the project of this book emerged, the content of which
is based on the author’s ideas and intuitions extending over many years.

It should be made clear to the reader that the research program outlined in this
book is still at an early stage and that some of the mathematics involved or implied
is rather formidable or even not yet formulated in a precise manner. Nevertheless,
we hope that the ideas and models that we propose here can be suitably modified
and/ or extended in order to build a useful bridge between noncommutative, string,

20We note that modular forms—along with their higher-degree counterparts, automorphic
forms, briefly considered in §E.4 of Appendix E—play an important role in our discussion of the

‘arithmetic site’, viewed as the ‘core’ of the moduli space of ‘generalized fractal membranes’. (See
esp. §5.4.2e.)
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arithmetic and fractal geometry. We also hope that readers will be motivated by
this book to further investigate the mysterious and elusive geometry underlying the
prime numbers (thereby, the integers) and, of course, the Riemann zeros.




