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FRACTAL DRUM, INVERSE SPECTRAL PROBLEMS 
FOR ELLIPTIC OPERATORS AND A PARTIAL RESOLUTION 

OF THE WEYL-BERRY CONJECTURE 

MICHEL L. LAPIDUS 

Dedicated to Professor Gustave Choquet, with sincere respect and admiration 

ABSTRACT. Let QJ be a bounded open set of RDn (n > 1) with "fractal" bound- 
ary F. We extend Hermann Weyl's classical theorem by establishing a precise 
remainder estimate for the asymptotics of the eigenvalues of positive elliptic 
operators of order 2m (m > 1) on Q. We consider both Dirichlet and Neu- 
mann boundary conditions. Our estimate-which is expressed in terms of the 
Minkowski rather than the Hausdorff dimension of F-specifies and partially 
solves the Weyl-Berry conjecture for the eigenvalues of the Laplacian. Berry's 
conjecture-ivhich extends to "fractals" Weyl's conjecture-is closely related to 
Kac's question "Can one hear the shape of a drum?"; further, it has signifi- 
cant physical applications, for example to the scattering of waves by "fractal" 
surfaces or the study of porous media. We also deduce from our results new 
remainder estimates for the asymptotics of the associated "partition function" 
(or trace of the heat semigroup). In addition, we provide examples showing that 
our remainder estimates are sharp in every possible "fractal" (i.e., Minkowski) 
dimension. 

The techniques used in this paper belong to the theory of partial differential 
equations, the calculus of variations, approximation theory and-to a lesser 
extent-geometric measure theory. An interesting aspect of this work is that it 
establishes new connections between spectral and "fractal" geometry. 

1. INTRODUCTION 

The object of this paper is to provide a partial resolution of the Weyl-Berry 
conjecture for the eigenvalues of the Laplacian on a bounded domain with "frac- 
tal" boundary. This conjecture has many significant physical applications, in- 
cluding for example to the scattering of waves by "fractal" surfaces or to the 
study of porous media. 
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We shall consider in this work the cases of both Dirichlet and Neumann 
boundary conditions, as well as of higher order positive elliptic operators (with 
locally constant leading coefficients). For the sake of clarity, however, we will 
first discuss in this introduction the simpler and more familiar case of the 
Dirichlet Laplacian. 

Weyl's asymptotic formula for the Dirichlet Laplacian. Let Q be an arbitrary 
nonempty bounded open set in 1R' (n > 1), with boundary F := aQ. We 
consider the following eigenvalue problem: 

( -Au =Au in Q, 
U=O onF, 

where A = En=, a2/&X2 denotes the Dirichlet Laplacian in Q. 
We interpret (P) in the variational sense. More precisely, the scalar A is 

said to be an eigenvalue of the Dirichlet problem (P) if there exists u :$ 0 in 
Ho (Q) [the completion of CO (Q), the space of smooth functions with compact 
support in Q ,with respect to the Sobolev norm 11 IIH(n)] satisfying -Au = Au 
in the distributional sense. 

It is classical that the spectrum of (P) is discrete and is composed of an 
infinite sequence of positive eigenvalues, written in increasing order according 
to their multiplicity: 

(1.l)- ?<A1 <A2 < ... < Ai < .. 
,with Ai 

-- +oo as i -- oo. 

As is well known, problem (P) can be considered as a mathematical model 
for the study of the (steady-states) vibrations of a drum. Indeed, the natural 
frequencies (or "normal modes") of a vibrating membrane are proportional to 
the square root of the eigenvalues Ai; further, the lowest frequency is called 
the fundamental tone and the higher frequencies are called the overtones of the 
drum. In this paper, we shall be primarily interested in the case when F is very 
irregular; i.e., that of a "drum with fractal boundary". 

In 1911, Hermann Weyl [Wel, 2]-thereby solving an outstanding problem 
posed in 1905 by the physicist H. A. Lorentz about the asymptotics of the high 
frequency modes of musical instruments (see [Ka, pp. 3-4])-showed that 

(1.2) Ai Cn(i1Q1n) as i -+ oo 

where the "classical constant" Cn = (27r)2(n)-21n depends only on n. (See 
also [CoHi, Ka, ReSi, Si, Mt3, Ho2] etc.) [Here, JAIn denotes the n-dimensional 
Lebesgue measure or "volume" of A c iRn and Wn is the volume of the unit 
ball in 1R ; further, the symbol "-" means that the ratio of left and right sides 
of (1.2) tends to one.] 

The asymptotic behavior of the eigenvalues {Ai}l.1 can also be deduced 
from that of the "counting function" N(A), the number of positive eigenvalues 
(counted with multiplicity) < A: 
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In fact, since N(Ai) = i, Weyl's famous asymptotic formula (1.2) can be 
equivalently stated as follows: 

(1.4) N(A) , (27r) n 7nlAn/2 as A -- +oo. 

This result-initially obtained by Weyl for sufficiently regular domains-has 
since been generalized in many different ways. (See, e.g., [Ag, ReSi, Si, Ho2, 
Lal, 2, FlLal, 2, Ya] and the references therein.) In the present case of the 
Dirichlet Laplacian, it is now known to hold for an arbitrary bounded open set 
in 1Rn [Mtl-3]. 

Kac's inverse spectral problem. In a beautiful paper, entitled "Can one hear the 
shape of a drum?", Mark Kac [Ka] asked the following question: Can someone 
with perfect pitch recover the precise shape of a drum just by listening to its 
fundamental tone and all the overtones? This question-in conjunction with 
Weyl's result (1.4)-has motivated numerous works on the subject during the 
past twenty years. (See, e.g., the review papers [Pr and Ya, ?1].) Recently, 
Urakawa [Ur] has discovered two isospectral domains of 1Rn (n > 4) which are 
not isometric. Consequently, Kac's inverse problem does not have an affirmative 
answer in general. However, it is known that one can recover a lot of geometric 
information about Q from the spectrum of (P): for instance, the volume InIn 
[according to Weyl's formula (1.4)] and, for a smooth domain, the curvature 
of the boundary F [McKean and Singer [McSn]]. Accordingly, it is natural to 
wonder whether one could "hear" (some other) "shape(s)" of the boundary: for 
example, the "surface" 'lFn-1 (i.e., the (n - 1)-dimensional volume of F), or 
possibly, if the boundary is not smooth, the "fractal" dimension of F. We will 
now address certain aspects of this inverse spectral problem. 

The conjectures of Weyl and Berry. Actually, if the boundary F is smooth (i.e., 
of class C??), it is even known that Weyl's asymptotic formula (1.4) can be 
extended as follows: 

(1.5) N(I) = (2r)n n +n2 + 0((n-l1)2) as A - +oo. 

This result was first obtained (in this context) by Seeley [Se 1, 2] when n = 3 
and later generalized to arbitrary n > 1 by Pham The Lai [Ph]. Its proof (as 
well as aspects of that of [Ivl, 2] below) makes use of techniques from the 
theory of spectral transforms and of Fourier integral operators, originating in 
a closely related work of Hormander [Hol]. [See also [Ho2, Vol. III, ?XVII.5] 
and the relevant references therein.] 

The remainder estimate (1.5) constitutes an important step on the way to 
Weyl's conjecture [We3] which states that if F is sufficiently "smooth", then the 
asymptotic expansion of N(A) admits a second term, proportional to A (n-1)/2 

Recently, Ivrii [Ivl, 2] made great progress towards the resolution of this 
conjecture; he showed that if Q is a bounded domain with C?? boundary 
F (and if the manifold Q does not have too many multiply reflected closed 
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geodesics), then the following remarkable result holds: 

(1.6) N(A) = (27r) gnlnln 
n2 - Cn crl n_ (n-1)/2 + o(A(n- 1)/2 as - +oo, 

where cn is a positive constant depending only on n. [See also Kuznetsov 
[Ku] for a simple case of (1.6) and especially Melrose [Msl, 2]. Further, for an 
exposition of the proof of Ivrii's theorem, the reader may also wish to consult 
Hormander's treatise [Ho2, Vol. III, ?XVII.3 and Vol. IV, ?XXIX.3] where are 
combined Ivrii's wave equation method and Melrose's simplifications based on 
results on the propagation of singularities.] We note that Weyl's conjecture is 
known to fail in some cases. (See [Gr, Bd].) 

In 1979, the physicist Michael V. Berry [Bel, 2]-motivated in part by the 
study of the scattering of light by random surfaces-extended Weyl's conjecture 
to the "fractal" case. He conjectured that if Q has a "fractal" boundary F with 
Hausdorff dimension H E (n - 1, n], then 

(1.7) N(A) =(2) nl-lnn Cn,H (rF)2 + ? ) as A -i +oo, 
where cn H is a positive constant depending only on n and H, and X(F) 
denotes the H-dimensional Hausdorff measure of F. 

Observe that if F is sufficiently smooth (e.g., of class C1), then H = n - 1 
and (1.7) reduces to (1.6). In general, however, F may be extremely irregular 
and hence H is a real number > n - 1 . 

Actually, Berry's conjecture, as stated above in terms of the Hausdorff di- 
mension, is not correct. Indeed, in an important work, Brossard and Carmona 
[BrCa] have recently constructed a simple counterexample to (1.7) and suggested 
that H should be replaced by D, the Minkowski dimension of F. Under suit- 
able assumptions, they also obtained one and two-sided pre-Tauberian estimates 
(expressed in terms of D) for the second term in the asymptotic expansion of 
the "partition function" Z(t) := E"= e t , a well known regularization of 
the "counting function" N(A). (See [BrCa, ?3].) That the less familiar D 
(Minkowski) should be substituted for H (Hausdorff) in (1.7) is also clear a 
posteriori in light of the paper by Fleckinger and Lapidus [FlLa2] on eigenvalue 
problems with indefinite weights, in conjunction with the present work. [See 
especially ?3 below (in particular, Proposition 3.1 and its Corollaries 3.1 and 
3.3) where are provided several results connecting the Minkowski dimension of 
F and the "tessellations" of iRn into small cubes, as well as Examples 5.1-5.1' .] 

In this paper, we make a significant step towards the resolution of the (mod- 
ified) Weyl-Berry conjecture by obtaining a remainder estimate associated to 
Weyl's asymptotic formula (1.4), valid even if the boundary F is very irreg- 
ular. More precisely, we show that if F is "fractal" (i.e., if the Minkowski 
dimension D of F lies in (n - 1, n]), then, for all d > D, 

(1.8) N(A) = (27) nlQlnn2 + O(LdI2) as A -. +oo; 
furthermore, except possibly in the degenerate case when the upper Minkowski 
content OD of F is infinite, (1.8) also holds if d = D. (See Definition 1.1 
below and ?2.1 for the definitions of D and AD.) 
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Observe that this result is a counterpart in the "fractal case" of the remain- 
der estimate (1.5), valid in the "smooth case" and improved successively by 
H6rmander, Seeley, and Pham The Lai (among others). 

Moreover, we prove that the same result holds for the Neumann problem 
if, in addition, F satisfies the "(C') condition" (see Definition 2.2); this is the 
case, for example, if Q obeys a "segment condition" [Ag, p. 11] or, loosely 
speaking, if the boundary F is not "too long". Actually, if the "(C') condition" 
is not satisfied, then even the leading asymptotics of N(A) need not be given by 
Weyl's formula (1.4) [Mt3, ?VII] and hence the remainder estimate (1.8) cannot 
hold. 

We note that Ivrii's theorem (1.6) and the Weyl-Berry conjecture (1.7) do 
extend to the Neumann problem provided that the second term in the right- 
hand side of (1.6) and (1.7), respectively, is preceded by "+" rather than by 
"-". In the present case when F need not be smooth, however, proper care is 
required to formulate and establish the extension of ( 1.8) to Neumann boundary 
conditions: au/an = 0 on F (where 0/an denotes a "normal derivative" 
along F). In particular, we say that A is an eigenvalue of the (variational) 
Neumann problem if there exists a nonzero u in the Sobolev space Hl (Q) 
satisfying the distributional equation -Au = Au. 

Although it falls short of showing the existence of a second term, our remain- 
der estimate (1.8) is of the desired form and provides good evidence that the 
(appropriately modified) Weyl-Berry conjecture might be true. 

Remarks 1.1. (a) We stress that no assumption of "self-similarity" (or, more 
generally, "self-alikeness" of any kind), in the sense of Mandelbrot [Mdl, 2], 
has been made about F. 

(b) The larger D, the more irregular F. Further, we always have D E 
[n - 1, n] since F = a K? and Q c R n . We will say here that F is "fractal" if 
D E (n - 1, n]; this is the case in particular if D is noninteger. 

(c) Of course, if F is "smooth" enough (e.g., if F is (n - 1)-rectifiable 
[Fe, pp. 251 and 275] and hence, in particular, if F is of class Cl), then 
H = D = n - 1, the topological dimension of F. In general, however, we have 
n-1 <H<D<n. 

(d) Intuitively, the Hausdorff (resp., Minkowski) dimension can be under- 
stood as follows: for e > 0, let X(e) be the number of n-dimensional cubes 
(or balls) of diameter < e (resp., = e) needed to cover F; then, very roughly, if 

X(e) increases like X(e) cx e 
H 

(resp., e ), as e -? 0+, one says that F has 
Hausdorff (resp., Minkowski) dimension H (resp., D). (Further explanation 
of (b)-(d) is given in ?3.) 

(e) If D = n - I (i.e., if H = D = n - 1), then our proof shows that the 

above remainder estimate still holds provided that the error term O(Ld/2) is 
replaced by O(Ld/2 logL) in (1.8); this last result is a restatement and a slight 
extension of one obtained by Metivier in [Mt2, 3]. (See also Courant [Co] and 
Courant and Hilbert [CoHi, ?VI.5, pp. 443-445] for an early special case of this 
result.) 
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(f) We do not consider here, as was done in [Be 1, 2], the mathematically 
ill-defined case when Q itself is "fractal" (and hence not open). We intend to 
tackle this problem in a future work [La 1O]. 

The Weyl-Berry conjecture has many significant physical applications, includ- 
ing, for example [Be 1, 2], to the scattering of waves by "fractal" surfaces, the 
study of the vibrations of a "fractal drum" or of water in a lake [n = 2 and 
D E (1, 2)], the oscillations of the Earth or the acoustic modes of a concert hall 
with very irregular walls [n = 3 and D E (2, 3)]. (Of course, Berry was using 
H instead of D in [Bel, ?2, Class I, p. 51].) 

See also the examples of our results in ?5.1 which could apply, for instance, 
to the scattering of light from a "triadic Koch island" [Mdl, pp. 42-45] in the 
form of Koch's snowflake curve and to the high frequency modes of a "Koch 
drum" (n = 2 and D = H = log4/ log 3 = 1.2618... ). 

The Minkowski dimension. Next, we briefly recall the definition of the Min- 
kowski dimension. We note that the latter-which is sometimes called the 
Cantor-Minkowski-Bouligand dimension-is closely related to the entropy (or 
information) dimension of Kolmogorov occurring in the theory of dynamical 
systems and to the "box dimension" used by the practitioners of "fractal geom- 
etry". (See [Bo, KhSa, Fe, Mdl, 2, PiTo, Ce, MrVu] etc., as well as Definition 
2.1 and ?3.) 

Definition 1.1. For e > 0, let F,, the e-neighborhood of F, be the set of 
X E iRn within a distance < e from F. Let D = D(F) be the infimum of the 
positive numbers d such that 

(n d) I 
(1.9) d = dF) =limsupe"M - SFPn = 0? 

8o+ 

Then D (resp., OD) is called the Minkowski dimension [resp., (D-dimensional) 
upper Minkowski content] of F. 

We have 1 = 0 for d > D and Ad = +o? for d < D; moreover, fD 
may be infinite or finite (possibly zero). [For most usual "fractals", however, 
we have 0 < 9D < +oo.] Thus, by Remark 1.1(b), our partial solution of 
the Weyl-Berry conjecture [estimate (1.8)] is a direct corollary of the following 
result: 

Theorem 1.1. Let d E (n - 1, n] be such that Ad(F) < +oo. Then estimate 
(1.8) holds for this value of d. 

We point out that our remainder estimate (1.8) is in general "best possible". 
(See Examples 5.1 and 5.1', as well as 5.2.) 

Moreover, we also deduce corresponding results for the asymptotics as t - O+ 
of the "partition function" (or trace of the heat semigroup) 

Zt 00 00 
Z(t) :=] e-AtdN()L) e= 
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associated with this problem. In particular, we show for the Dirichlet Laplacian 
that if Q is an arbitrary bounded open set with "fractal" boundary F, then 

(1.10) Z(t) - (47r)-n12l 
t-n2 + 0(tD/2 ) as t -0, 

provided that 4(F) < +oo. [If X4(r) = +00, then we must replace D by 
d, with d > D arbitrarily close to D, in the right-hand side of (1.10).] (See 
Theorem 2.3 and-for the more general case considered below-Theorem 2.2. 
The special case of the Dirichlet Laplacian when OD(F) < +oo was already 
obtained (by different methods) in [BrCa].) 

Extension to higher order elliptic operators. We also obtain the counterpart of 
Theorem 1. 1 and estimate (1.8) for positive uniformly elliptic operators of order 
2m (m > 1): v = EZa<m,If I<m(-l)Ial D(aafi(x)Df) , with (locally) constant 
leading coefficients and with Dirichlet or Neumann (or more generally, mixed 
Dirichlet-Neumann) boundary conditions. Hence, in particular, we show how to 
extend our partial resolution of the Weyl-Berry conjecture-which corresponds 
to the Laplace operator-to higher order elliptic operators. We refer the reader 
to ?2 (particularly Theorem 2.1 and its corollaries) for a precise statement of 
our hypotheses and results in this general case. 

Remark 1.2. Actually, in the case of the Dirichlet problem, we prove a some- 
what sharper result. We introduce a slightly different notion of "fractal dimen- 
sion", denioted by D and called the Minkowski dimension of F := &Q, relative 
to Q. (See Definition 2.1.) It is obtained in the same way as D in Definition 
1.1 except that Fe is replaced by Fre := F n Q = {x E Q: d(x, F) < }, the 
(one-sided) e-neighborhood of F relative to Q. By construction, D < D; fur- 
ther, for the Dirichlet problem, Theorem 1.1 and estimates (1.8) and (1.10), as 
well as their counterpart for higher order operators, also hold with D replaced 
by D and Ad by the corresponding Ad . (See Theorems 2.1-2.3 and Corollary 
2.1.) 

It is noteworthy that, according to (the analogue of) Remark 1.1 (e), different 
estimates hold in the "fractal" case (D E (n - 1, n]) and the "nonfractal" case 
(D = H = n- 1, but F is not necessarily smooth). Somewhat paradoxically, this 
would seem to indicate (in the special case of the Laplacian) that a "drum with 
fractal boundary" usually plays more regularly than a more "standard drum" 
(one with "nonfractal" but yet irregular boundary). 

Our proof of Theorem 2.1 (the counterpart of Theorem 1.1) is purely analytic. 
In particular, we do not make use of probabilistic results. Partially motivated by 
[FlLa2], it extends to the "fractal" case that of [CoHi and Mt2, 3] . Variational 
techniques-based on the "max-min formula" for the ith eigenvalue and its 
consequences-play an essential role; among them, we mention the method of 
"i-width" in Sobolev spaces coming from approximation theory [Lo, BiSo, BG, 
Ek, Pn], and the method known by mathematical physicists as the "Dirichlet- 
Neumann bracketing" [CoHi, ReSi, Mt 1-3, La 1-3, FlLa 1, 2]. We use finer and 
finer "tessellations" of Rn into small cubes (Whitney-type coverings); more 
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precisely, we "exhaust" Q by cubes whose size tends to zero as you approach 
r. This enables us to detect-from the point of view of harmonic analysis 
and spectral theory-the influence of Q and especially of the irregularities 
(or "fractality") of its boundary r. Naturally, in order to keep the problem 
under firm control, it is crucial, in particular, to obtain precise estimates in 
terms of the Minkowski dimension of F for certain "counting functions" near 
the boundary. (See Proposition 4.6.) Curiously enough, in our present proof, 
the aforementioned dichotomy between the spectral behavior in the "fractal" 
and the "nonfractal" cases, respectively (see, especially, Theorem 2.1 as well as 
Corollaries 2.1 and 2.2), can be attributed to the following elementary fact: the 
partial sums of a geometric series of ratio 20 take different forms according to 
whether 0 : 0 or 0 = 0, respectively. [See Remarks 4.10 and 4.1 1 (b); here, 
0 := D - (n - 1) (resp., := D - (n - 1)) for the Dirichlet (resp., Neumann) 
problem.] 

In classical spectral geometry (e.g., [C, GuKz, Ivl, 2, Msl, 2, OsWi, Ph, Sel, 
2], and relevant references therein), one works mostly within the framework of 
smooth (Riemannian) manifolds. Furthermore, in geometric measure theory 
(e.g., [Al, Fe]), one extends the classical methods of the calculus of variations 
as well as parts of differential geometry in order to deal with generalized sur- 
faces (currents, varifolds, etc.) which need not be smooth but are essentially 
of integral (Hausdorff) dimension. An interesting aspect of the present paper is 
that it goes beyond the traditional areas of investigation and establishes in the 
process new connections between spectral and "fractal" geometry. 

Because our work draws on several fields of mathematics which may not 
be all familiar to the reader-elliptic partial differential equations, calculus of 
variations, spectral theory, approximation theory, as well as aspects of geometric 
measure theory and "fractal geometry"-we have endeavored to supply some 
background material whenever possible. 

We close this introduction by indicating how the rest of the paper is orga- 
nized: 

After having presented the necessary notation and definitions of ?2.1, we 
give precise statements of our hypotheses and main results (Theorems 2.1 and 
2.3 together with Corollaries 2.1 and 2.2) in ?2.2. Further, we deduce from 
our remainder estimates for the "counting function" N(A), as A -i +00, a 
corresponding one for the "partition function" (or trace of the heat semigroup) 
Z(t), as t -O+ 0. (See Theorems 2.2 and 2.3.) 

In ?3, we discuss some basic properties of the Minkowski dimension; we also 
briefly explain why the Minkowski dimension D should be better suited to the 
study of spectral theory or (aspects of) harmonic analysis than the more familiar 
Hausdorff dimension H. In addition, theoretical reasons for favoring D over 
H or other "fractal dimensions" are given throughout this paper. 

The proofs of our main results are given in ?4. After having provided some 
background and preliminary estimates, we establish Theorem 2.1 (the gener- 
alization of Theorem 1.1) in ?4.2, both for Dirichlet and Neumann boundary 
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conditions. The techniques and ideas developed here should be useful in later 
work dealing with both spectral and "fractal" geometry. We have tried to present 
a proof that was essentially self-contained, especially for the Dirichlet problem. 
However, some readers may wish to consult ?4 only briefly on a first reading. 

Towards the end of ?4, we also present some extensions of our results for 
the Neumann problem, valid, for example, for "quasidisks" and their higher 
dimensional analogues ("Jones domains"). (See Theorem 4. 1.) 

We illustrate our results in ? 5.1 by applying them to several concrete exam- 
ples of mathematical or of physical interest. This enables us, in particular, to 
show that-in the "fractal" case-our remainder estimates are optimal in every 
possible "fractal" (i.e., Minkowski) dimension; more precisely, we construct a 
one-parameter family of examples for which our remainder estimates are sharp 
and, as the parameter varies, the Minkowski dimension D of 17 takes on every 
value in (n - 1, n) whereas H n - 1 . (See Examples 5.1-5.1'.) [Berry's 
original conjecture-expressed in terms of the Hausdorff dimension H of 17 
obviously fails for Examples 5.1 and 5.1'.] Finally, we also propose several 
open problems and a conjecture; the latter-stated in ?5.2-extends and mod- 
ifies the Weyl-Berry conjecture. 

2. NOTATION AND MAIN RESULTS 

2.1. Notation and definitions. Throughout this paper, we shall use the following 
notation: 

Let m, n be integers > 1 . Let Q be an arbitrary (nonempty) bounded open 
subset of iRn , with (topological) boundary ]F= aQ. 

The interior (resp., closure, boundary) of A c iRn is denoted by Int A (resp., 
A, aA). If, in addition, A is (Lebesgue) measurable, we denote by IAIn-or 
simply JAl when no ambiguity will result-its n-dimensional Lebesgue measure 
or "volume". (See, e.g., [Cn, p. 21, or Fe].) 

For x E R n and A c iRn , d(x, A) = inf{Ix -yI : y E A} denotes the 
Euclidean distance from x to A; here, IxI = (n=- x 2)112 is the Euclidean 
norm of x = (xl, ..., xn). Given e > 0, Al denotes the e -neighborhood (or 
open tubular neighborhood of radius e) of A c R 

(2.1) A: {xER n: d(x, A) < e}. 
If I is a subset of J, J \ I stands for the complement of I in J. If J is 

a finite set, we let # J be its cardinality. 
Given a = (a,, ..., an) E N5, Da stands for the derivative of order IaI 

a1 + + an Da := dal'laXcl .. a Xcn ; moreover, for 4 4 n) E Rin 
we set 4 E 

` nn 
As usual, L 2(Q) is the space of all (complex-valued) functions u which 

are square-integrable with respect to n-dimensional Lebesgue measure I In 
(also denoted dx); the Hilbert space L2 (Q) is equipped with its natural norm 
11 IIL2(Q) and inner product (, )L2(Q). For p E N, Cp(Q) is the space of p 
times continuously differentiable functions on Q. 
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By Hm (Q) we mean the Sobolev space of all (complex-valued) functions 
u E L 2(Q) with distributional derivatives D'u also in L 2(Q) for IaI < m. 
Recall that Hm (Q) is a Hilbert space when endowed with the norm 

I/i ) ~~~~1/2 {1/2 

(2.2) IIUI( (tkE ID`u(x)I2d x I( D I 1D12 I2() 

Further, Hom(Q) is the closed subspace of Hm(Q) obtained by completing 
Co?(Q) with respect to this norm; of course, Hom(Q) is also a Hilbert space for 
11 IIH'(Q). (See, e.g., [Ad, Ag, LiMa].) Here, Co' (Q) stands for the space of 
infinitely differentiable functions with compact support contained in Q. [When 
necessary, similar notation will be used for functions defined on other open 
subsets of iR .] 

Let f, g be real-valued functions on (0, +oo), with g > 0. We write 
f (A) = O(g(A)), as i -+ +oc, if there exist positive constants C and AO such 
that If(A)I ? Cg(A) , VAI >OI Moreover, we write f(A) r g(A), as A -- +oo, 
whenever there exist positive constants cl, c2, and AO such that cl g(I() < 
f (A) < C2g(A) I VA > AO 

We shall use various constants throughout the text; they will be denoted 
by c, c0, c', C, etc. Often, the same letter will be used to represent different 
constants. 

In brder to state our results, we shall need the following definitions. The 
"fractal dimension" D (resp., D) defined below will be used to study Dirichlet 
(resp., Neumann or, more generally, mixed) boundary conditions. 

Definition 2.1. (a) Given e > 0, let 17 = {x E Rn: d(x, 17) < c} be the 
e-neighborhood of F, as in (2.1). For d > 0, let 

(2.3) d=Ax(r):=limsupc (nd) JIil 

be the d-dimensional upper Minkowski content of Ir. Then 

(2.4) D = D(F) = inf{d > 0: 1"d(r) = O} = sup{d > 0 :1d(Jr) = +oo} 

is called the Minkowski dimension of Ir. 
(b) Given e > 0, let 

(2.5) f :=rF,nQ={xeQ:d(x,Ir)<c} 
be the one-sided e-neighborhood (or one-sided tubular neighborhood) of Jr. 

For d > 0, let 

(2.6) Xd= '(dr) "limsupc (d)lj-In 

be the d-dimensional upper Minkowski content of Jr, relative to Q. Then 

(2.7) D = D(r) = inf{d > 0: kd(Ir) = O} = sup{d > 0: kd(Ir) = +oo} 

is called the Minkowski dimension of Jr, relative to Q. 
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Moreover, if in (a), 0 < 4rD < +00 and the upper limit in (2.3) can be 
replaced by a true limit (as e -+ 0+), with d := D, then 17 is said to be 
Minkowski "measurable" (or "contented") and ID is called the Minkowski 
"measure" (or "content") of F. [In (b), one defines similarly the Minkowski 
"measurability" and "measure" of r, relative to Q.] 

Remarks 2.1. (a) Clearly, I`6 and 17, are bounded open subsets of R' ; further, 
since fr c ]7 , we have D < D. Moreover, n - 1 < D < n. [The fact that 
D > n - 1 will be justified in Corollary 3.2 below.] 

(b) By construction, we have At = +00 if d < D and Ad = 0 < +00 if 
d > D. Moreover, O E [0, +00]. [For most of the classical "fractals" studied 
for instance in [Ce, Fa, Mdl, 2], however, we have 0 < #D < +00.] Further, if 
0 < Od < +00 for some d > 0, then we must have d = D. [The same remark 
holds with -d replaced by Ad and D by D.] 

(c) It is easy to check that the last equality in (2.4) holds. Indeed, given 
d < D, choose t E (d, D); by definition, t E (0, +oo] and thus, by (2.3), 

d = +?00 Similarly, given d > D, there exists t E (D, d) such that t = 0; 
and hence; by (2.3), Id = 0. [An identical argument applies to (2.7).] 

(d) The "critical exponent" D (resp., D) will serve as a measure of the 
roughness of the boundary F in the Dirichlet (resp., Neumann) problem: the 
larger D (resp., D), the more irregular 17. 

(e) The notion of Minkowski dimension was introduced by Bouligand in [Bo]; 
many of its properties can be found in [Ce, Fe, Mdl, 2, MrVu], as well as ?3 
below. Naturally, one can define-exactly as in Definition 2.1(a)-D(A) and 
,D(A) for any subset A c R ; clearly, D(A) increases with A and if A is 
bounded, 0 < D(A) < n. [One can also define-by analogy with Definition 
2.1(b) -the Minkowski dimension and content of A, relative to B c Rn; of 
course, if A or B is not (Lebesgue) measurable, we must interpret I In as 
denoting the outer Lebesgue measure.] 

In the following, unless otherwise specified, we shall use the notation of Def- 
inition 2.1 and write in particular: 

(2.8) D = D(F) and D = D(rF). 

The following definition will be needed only in the case of mixed Dirichlet- 
Neumann boundary conditions. For simplicity, we adopt the definition from 
[Mt2, p. 15] rather than the slightly different one from [Mt3, pp. 154 and 156]. 
(See, however, Remark 2.4(f) below.) 

Definition 2.2. The open set Q satisfies the "(C') condition" if there exist pos- 
itive constants e0, M, and to, with e0M < to, an open cover {Q1}Ni1 Of r-, 
and nonzero vectors hj (j = 1, ..., N) in Rn such that Vj = 1, ..., N, 
V(X, y) E QJ x xQ with Ix - yl <e0, and Vt E R with Mlx - yl < t < to, the 
line segments [x, x + thj], [y, y + thj], and [x + thj, y + thj] are all contained 
in Q. 
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Intuitively, Q satisfies the "(C') condition" if its boundary IF is not "too 
long". Next we recall two examples from [Mt2, pp. 15-16] (see also [Mt3, pp. 
154-156]). 

Example 2.1 (Segment and cone conditions). Q satisfies the "(C') condition" 
if it obeys the "segment condition". (I.e., if there exists an open cover _ 0 N 

of a Q = Ir and nonzero vectors hi (j = 1, ..., N) in 1Rn such that for all 
Xe n Q, we have [x, x + h1] c Q; see [Ag, p. 11].) This is the case, in 
particular, if Q is Lipschitz [Mt3, p. 155] or if it satisfies a "restricted cone 
condition" (in the sense of [Ag, p. 11]); in the latter case, it follows from [Fe, 
Theorem 3.2.39, p. 275 or Mt2, p. 16], respectively, that D (= H) = n - 1 and 

d9jD(F) <+00. 

Example 2.2 (Open sets with cusp). The "(C') condition" is also satisfied by 
open sets of the following form: Q = {x = (xo, x') E (O, 3) x R n-1: IXI < 
g(x0)}, where n > 2 and g is a continuous nondecreasing function on (0, 3s) . 
Observe that g is allowed to be flat near 0 and hence that Q may be pinched 
at the origin. (One may take, for instance, g(x) = exp(-x ).) Furthermore, 
note that g may be the Cantor singular function, for instance. (See e.g., [Cn, 
pp. 55-56 or Mdl, pp. 82-83].) Consequently, even though the graph of g is 
rectifiable and Ir may not be "fractal" in the standard sense, the boundary Ir 
can be quite irregular in this case. 

We conclude this subsection by providing some general references: for the 
theory of "fractals", we mention [Ce, Fa, PeRi, Mdl, 2], and for its applica- 
tions to physics, we point out [Mdl, 2, PiTo, SMR]. For the theory of elliptic 
boundary value problems, the reader may wish to consult [Ag, LiMa, Wb], and 
for the study of spectral asymptotics of elliptic operators, we refer to [CoHi, 
EdEv, Ho2, ReSi]. An interesting review of Weyl's problem (up to 1976) from 
a physicist's perspective is provided in [BaHi]. Finally, the basic facts about 
Sobolev spaces used in this paper can be found in [Ad, Ag]. 

2.2. Hypotheses and statements of the results. We can now state our hypotheses 
and present our problem in a precise form: 

(2.9) Let V be a closed subspace of Hm(Q) containing Ho7(Q): 

H (Q)c VcHm(c ). 

(2.10) Let v be a positive, uniformly elliptic and formally selfadjoint op- 
erator of order 2m (m > 1) defined on Q: 

Jv = E (- l)'c1Dc(a,,(x)Df) . 
iai<m 
,Bll<m 

We suppose that a = a E L?? (Q) for lal, II < m, ao > 0, and that the 
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associated bounded hermitian form 

a(u, v) IQI m aafi(x)DcuDlv, u, v E V, 
Qlcal<m 

flI?<m 

is coercive on V (in the sense of [Ag or LiMa]); i.e., there exists a positive 
constant cl such that c1 Iu2 <m(Q) a(u, u), VU E V. 

(2.11) We assume that v has locally constant leading coefficients on Q; 
i.e., for IaI = l,I/ = m, a.,i is constant on each connected component of Q. 

We consider the following eigenvalue problem: 

(P9V) _Vu= Au, UEV. 

We stress that (P ,,) is understood in the variational sense; hence, by definition 
the scalar A is said to be an eigenvalue of (P9) [or is in the "spectrum" of 
(P)] if there exists a nonzero u E V such that, with a defined as in (2.10), 

(2.12) a(u, v) =A(u, V)L2(Q) vV E V. 

When V = HYm(Q) [resp., V = Hm(Q)], (P9) provides a variational in- 
terpretation of the eigenvalue problem: Vu = Au in Q, with (linear homo- 
geneous) Dirichlet (resp., Neumann) boundary conditions; in this case, we re- 
fer to (P9) as the Dirichlet (resp., Neumann) problem. [For example, when 
m = 1-as is the case of the usual Laplace operator studied in the introduction 
and in Theorem 2.3 below-we have, in the variational sense, u = 0 (resp., 
aulan = 0) on F, where 0/On denotes a "normal derivative" along F.] 
Similarly, when Hj1(Q) c V c Hm(Q), (P) enables us to treat (linear ho- 
mogeneous) mixed boundary conditions on r. We then refer to (PA,) as the 
mixed (Dirichlet-Neumann) problem. (See [Ag, Chapter 10 or LiMa, Chapter 
9].) We note that it would be more accurate to refer to the general case when 
Ho (Q) c V c Hm(Q) as defining "abstract boundary conditions", which in- 
cludes, in particular, the case of mixed boundary conditions. (See, e.g., [Ag, p. 
142].) However, we shall continue throughout the text using instead the more 
suggestive expression "mixed Dirichlet-Neumann boundary conditions". 

(2.13) We assume that Q satisfies the "(C') condition" only for the Neumann 
or, more generally, the mixed Dirichlet-Neumann problem [i.e., when V : 

Ho7(Q)]. (See Definition 2.2 above.) 
We point out that for the Dirichlet problem, Q is assumed to be an arbitrary 

(nonempty) bounded open set in RX . 

Since Q is bounded, it is known that the spectrum of (P.,) is discrete 
and consists of an infinite sequence {fA}il of positive eigenvalues of finite 
multiplicity, written in increasing order (according to multiplicity) as follows: 

(2.14) ? < Al<2<''<i<' with Ai +oo as i -- oo. 

Moreover, these eigenvalues are given by the "max-min formula" (see, e.g., 
[Mt3 or FlLal, p. 314, in conjunction with 4.B, pp. 315-316]): 

(2.15) 1 =maxmin { ul2: a(u, u) < 1 
A~ F,EY,_UE F,jJ- 
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where, for i > 1 Y7 is the set of i-dimensional subspaces of V. 
Let N(A) denote the "counting function" for the variational problem (P,); 

that is, for A > 0, N(A) is the number of positive eigenvalues (counting mul- 
tiplicity) which do not exceed A: 

(2.16) N(A) = #{i > 1 :iAi <i}= El. 

The leading asymptotics of N(A) are provided by the analogue of Hermann 
Weyl's formula in the present more general situation (see, e.g., [Mtl, 2; Mt3, 
Theorems 5.1 and 5.2, p. 175]): 

(2.17) N(A) - 2g (,),n/2m as A -+o 

[Recall that (2.17) means that N(A) = ,l n/2m + O(An/2m), as A --? +oo.] 

Here, ,4 (Q), the "Browder-Garding measure" of Q, is a constant depending 
only on n, Q, and the leading coefficients of X: 

(2.18a) I1(Q) = f14(x) dx, 

where the "Browder-Garding density" is defined by 

(2. 18b) R? (x) = (27t) n l4E Rn : a'(x, ,)<l} , 

with- a'(x, 4)-the leading symbol of the quadratic form a associated with 
.v -given by 

(2.18c) a'(x, a) =, a(xW4+, (x, ,) E Q x Rn 

Remarks 2.2. (a) Of course, if sl is assumed to have constant leading coeffi- 
cients, then u4l (Q) = 14 , where ft (= 14 (x) in this case) is a constant 
depending only on the leading part of v . [For example, if v = -A + 1 , then 
- = (27trn .1 

(b) Recall that (for the Laplacian and) for the Neumann problem, if the "(C') 
condition" does not hold, then-according to [Mt3, ?VII. 1, pp. 200-204]-even 
the leading asymptotics of N(A) need not be given by Weyl's formula (2.17)- 
and hence our remainder estimate given in Corollary 2.2 (and Theorem 2.3) 
below could not possibly hold in this case. (See also [Mt 1, FlMt].) This is so 
even if the Neumann spectrum is assumed to be discrete, which is the case, 
of course, if the "(C') condition" is satisfied. (Naturally, the spectrum of the 
Dirichlet problem is always discrete because Q is bounded; see, e.g., [EdEv, 
?4.9, pp. 272-274, and Theorem 3.6, p. 227] as well as [M, ??4.10-4.1 1, pp. 
249-268].) 

We next state our main results, in which we obtain a remainder estimate 
associated with (2.17) and expressed in terms of the "fractal dimension" of 
the boundary F: the Minkowski dimension D or D, as in (2.7) or (2.4), 
respectively, according to whether we consider Dirichlet or Neumann boundary 
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conditions. This remainder estimate is provided in Corollaries 2.1 and 2.2 
below and will be deduced from the following theorem which-together with 
many of the results of this paper-is announced in [La9]. 

Theorem 2.1. Assume that the above hypotheses are satisfied. Let d E [n - 1, n] 
be such that 1d (F) < +oo (resp., _1d (F) < +oo) in the case of Dirichlet (resp., 
mixed Dirichlet-Neumann) boundary conditions. Then the following remainder 
estimate holds: 

(i) If de(n-1,n], then 

(2.19) N(A) = / , (Q)n + Q(d/2m) as A -i +oo. 

(ii) If d = n - 1, then 

(2.20 ) =' (,),nl2m + O(,Ad/2m log A) as i -+ ?oo. 

Here, the constant jIt'(Q) is defined by (2.18); further, d = 4d(jF) and 

=d =4d(F) are given by (2.3) and (2.6), respectively. 

Remarks 2.3. (a) Since, clearly, ed < Ad' #d is finite whenever ed is. 
Moreover, since for the same reason, D < D-as was noted in Remark 2.1 (a)- 
all the results stated for the Dirichlet problem in Corollary 2.1 and Theorems 
2.2-2.3 below still hold a fortiori if D and AD are replaced by D and -D ' 

respectively. (This justifies, in particular, the way we stated our results in the 
introduction; see Remark 1.2.) 

(b) Case (ii) of Theorem 2.1, in which d = n - 1, and with the additional 
assumption that J n1 [resp., 51 (17)] is finite, corresponds to a "nonfractal" 
(but possibly "nonsmooth") boundary F and was already obtained in [Mt3, 
Theorem 6.1, p. 195]. (See also [Mt2, Theorem, p. 16].) Note that in [Mt2,3], 
Metivier was not making explicit use of the notion of Minkowski dimension. 
Further, observe that since D > H > n - 1, the condition d = n - 1 with 

ed < +00 implies that D = H = n - 1, the topological dimension of F; 
here, D = D(F) [resp., H = H(F)] denotes the Minkowski [resp., Hausdorff] 
dimension of F. 

(c) In our proof of Theorem 2.1, we shall be able to treat cases (i) and (ii) 
in parallel. However, the derivation of case (i), where 17 may be "fractal", will 
be the most delicate one. 

Our main results are now direct consequences of Theorem 2.1. For the sake 
of clarity, we shall state them separately for Dirichlet and for mixed Dirichlet- 
Neumann boundary conditions. 

Corollary 2.1 (Dirichlet boundary conditions). Let Q be an arbitrary (nonempty) 
bounded open set in Ri, with boundary F, and let v be a positive elliptic op- 
erator of order 2m on Q satisfying hypotheses (2.9) through (2.1 1). Consider 
the variational Dirichlet problem (PA,) [i.e., V = Hom(Q)]. Let D = D(F) E 
[n - 1, n] be the Minkowski dimension of F, relative to Q. Then we have the 



480 M. L. LAPIDUS 

following remainder estimates: 
(i) If D E (n - 1, n] (i.e., if F is "fractal"), then estimate (2.19) holds for 

all d > D. 
(ii) If D = n - 1, then estimate (2.20) holds for all d > D. 

Furthermore, except possibly in the degenerate case when eD(F) is infinite, 
estimate (2.19) [resp., (2.20)] also holds with d = D in case (i) [resp., (ii)]. 

Here, Aj(F), as defined in (2.6), denotes the D-dimensional upper Minkowski 
content of F, relative to Q. 

Note that Corollary 2.1 follows from Theorem 2.1 since according to Defi- 
nition 2.1, d > D implies that ed < +oo. Since, similarly, ed is finite for 
d > D, Theorem 2.1 also yields the next corollary, which applies in particular 
to Neumann boundary conditions [i.e., V = Hm(Q)]. 

Corollary 2.2 (Mixed Dirichlet-Neumann boundary conditions). Let Q, 5s, 
and V satisfy hypotheses (2.9) through (2.1 1) and (2.13). Recall in particular 
that the bounded open set Q must obey the "(C') condition". Consider the vari- 
ational mixed Dirichlet-Neumann problem (Pg,) [i.e., Hom (Q) c V c Hm(Q)]. 
Let D = D(F) E [n - 1, n] be the Minkowski dimension of the boundary I. 
Then we have the following remainder estimates: 

(i) If D E (n - 1, n] (i.e., if Jr is "fractal"), then estimate (2.19) holds for 
all d > D. 

(ii) If D = n - 1, then estimate (2.20) holds for all d > D. 
Furthermore, except possibly in the degenerate case when eD(Ir) is infinite, 

estimate (2.19) [resp., (2.20)] also holds with d = D in case (i) [resp., (ii)]. 
Here, eD =vD(F), as defined in (2.3), denotes the D-dimensional upper 

Minkowski content of Jr. 

Remarks 2.4. (a) In some sense, D (resp., D) is related to the "intrinsic" 
(resp., "extrinsic") geometry of Q. Hence, from the point of view of partial 
differential equations, it is natural to use D (resp., D) to study Dirichlet (resp., 
Neumann) boundary conditions. 

(b) Assume that eD (resp., eD) = +oo. Then, clearly, in the conclusion 
of Corollary 2.1(i) [resp., 2.2(i)], we can substitute 0(A1d/2m) for Q(1dl2m) if 

d > D (resp., > D). [This follows since Q(Adl2m) = o(Ad /2m) Vd' > d.] 
Further, in the conclusion of Corollary 2.1 (ii) [resp., 2.2(ii)], we can substitute 
O(,d/2m) for Q(.d/2m log,) if d > n- 1 = D (resp., = D). [To see this, apply- 
for a fixed d > n- 1 -Corollary 2.1 (ii) [resp., 2.2(ii)] to d' E (n- 1, d) and note 
that O(Ad /2m log A) = 0((Adl2m) ] Finally, we point out that since D < D < n, 
we are really only interested in those d's such that d < n. [A similar remark 
applies to the remaining results of this section.] 

(c) The latter part of Corollary 2.1 (resp., 2.2) when AD (resp., `D) < +?? ' 
often applies in practice. [See Remark 2.1 (b).] 



FRACTAL DRUM AND THE WEYL-BERRY CONJECTURE 481 

(d) In the most "fractal" case when D = n (resp., D = n), the conclusion 
of Corollary 2.1 (resp., 2.2) is less informative than the (generalized) H. Weyl's 
formula (2.17). Further, we know that in this case, the asymptotics of N(A) 
need not have a second term of the conjectured form. (See [BrCa, Example 
1, p. 106] and Remark 5.5(b) below.) It would be interesting to find out what 
precisely happens in this situation. 

(e) By using more general definitions of D and D, based on a broader class 
of functions than the power functions or on a metric other than the Euclidean 
one, we could refine some of the results obtained in this paper. 

(f) In all our results concerning the Neumann problem, it would suffice to 
assume that the bounded open set Q is locally diffeomorphic (in the sense of 
[Mt3, p. 156]) to one that satisfies the "(C') condition". Intuitively, such a 
relaxed condition allows Q not to remain on just "one side of its boundary" 
F, in which case we may have D :$ D (i.e., D < D). [This generalization and 
that mentioned in the next comment hold true because Proposition 4.5' (and 
hence the counterpart of Proposition 4.6) extends to these situations.] 

Some further r'esults about the Neumann problem are given at the end of 
?4.2. (See Theorem 4.1.) We shall show, in particular, that the "(C') condition" 
can be replaced by the "extension property" (i.e., the existence of a continuous 
linear extension map from Hm(Q) to Hm(IRn)). (See Definition 4.3.) This 
hypothesis is satisfied, for example, by domains bounded by "quasicircles" (i.e., 
the image of circles under quasiconformal mappings). (See [VGL, Jn; M, pp. 
70-71].) We point out that in the latter case, the boundary F can be extremely 
irregular [GeVa]. This generalization is noteworthy in view of the interest of 
"quasidisks" (and their higher-dimensional analogues) in harmonic analysis. 

Next, we consider the "partition function" Z(t) associated with (P): 
00 

At 
~~~00 

(2.21) Z(t) : e dN(A) e ,e t; 

recall that Z (t) is nothing but the trace of the heat semigroup: Z (t) = Tr(etv ). 
(See, e.g., [Si] and, for smooth domains, [Gi].) By a simple Abelian argument 
(e.g., a refinement of [Si, Theorem 10.2, p. 107] given in Theorem A of Ap- 
pendix A), we deduce the following result from the analogue of Corollaries 2.1 
and 2.2. 

Theorem 2.2. Assume that hypotheses (2.9) through (2.11) and-only for the 
mixed problem-(2.13), are satisfied. Then, for the Dirichlet (resp., mixed 
Dirichlet-Neumann) problem (P9s), the following remainder estimate holds for 
all d > D (resp., all d > D): 

(2.22) Z(t) = i4,(0) (2n)! tn/2m + Q(t-d/2m) as t -+ 

where u4 (Q) is given by (2.18). Furthermore, if D E (n - 1, n] and AD(F) < 

+oo (resp., D E (n - 1, n] and ?D(F) < +oo), then (2.22) still holds with 
d = D (resp., d = D) . 
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Moreover, the present theorem applies without change to v := (-A)m, with 
m > 1; in this case, i (Q)(n/2m)! = (47') -n'2IQ(n/2m)!/(n/2)!. 

Theorem 2.2 follows from (but by Remark 2.5(a) below does not necessar- 
ily imply) Theorem 2.1 (as well as Corollaries 2.1-2.2) by application of the 
aforementioned Abelian argument. Theorem 2.1 will be established in ?4 while 
Theorem 2.2 will be proved in Appendix A. 

Remarks 2.5. (a) Beyond the leading term (for which a Tauberian theorem 
due to Karamata can be used [Ka, Si]), it is not known how to obtain precise 
information about the asymptotics of N(I) from that of Z(t). (See, e.g., [Ya, 
p. 114].) 

(b) We stress that for the Dirichlet problem, Theorem 2.1 does not require any 
regularity about the boundary F. Some further results about the asymptotics 
of the partition function Z(t) are given in [BrCa, ?3] under certain regularity 
assumptions. [When comparing the constants involved, the reader should be 
aware of thefact that some authors (e.g., [Ka, Si, and BrCa]) use the proba- 
bilistic (negative) Laplacian -(1 /2)A instead of -A; hence, with our notation, 
their partition function is equal to Z(t/2).] 

(c) The (pre-Tauberian) results about Z (t) obtained in [BrCa, ?3]-which are 
based on probabilistic methods-are stated in the case of the Dirichlet Laplacian 
and include Theorem 2.2 in this special case. On the other hand, our results are 
valid for positive elliptic operators of any order (as well as Neumann boundary 
conditions), as is seen from Theorem 2.2. 

We now consider the case of the Laplace operator A = En= 2/OX2 Hence 
we assume that v = -A, m = 1 , and simply write (P) instead of (P,,) -Au = 

AU, u E V, where Ho (Q) c V c H1 (Q), as in (2.9); further, (P) is understood 
in the variational sense and a(u, v) := fo VuVv . The only difference with 
the previous case is that -A is nonnegative instead of being (strictly) positive. 
[Recall that the Dirichlet problem (P) has only positive eigenvalues whereas 0 
is an eigenvalue of the Neumann problem (P); moreover, N(A) still denotes 
the number of (strictly) positive eigenvalues of (P) not exceeding A.] We thus 
obtain Theorem 2.3 below by applying Theorem 2.1 (and its corollaries) to the 
(strictly) positive operator JVT := -A + T, with T a positive constant, and then 

by letting z -> 0+; note that the implicit constants involved in the remainder 
term can be chosen to be independent of T since -A, the leading part of 

J,T 

does not depend on T. 

We now briefly summarize our results for the Laplacian: 

Theorem 2.3. Assume that := -A and that hypothesis (2.9) is satisfied with 
m = 1. Further, only for mixed Dirichlet-Neumann boundary conditions, we 
also suppose that (2.13) holds. For the Dirichlet problem, Q is allowed to be an 
arbitrary (nonempty) bounded subset of IRn. Let q = 7r'/2/(n/2)! denote the 
volume of the unit ball in R' . 
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Then, Theorems 2.1-2.2, as well as Corollaries 2.1-2.2, apply without change 
in this case. In particular, estimate (2.19) reads as follows: 

(2.23) N(A) = (27c) nl I n/2 + O(Ad/2) as A -) +oo; 

moreover, estimate (2.22) becomes 

(2.24) Z(t) (4 -n/2 
ll 

t-n/2 + O(td/2) as t -? 0. 

Remarks 2.6. (a) Since D < D, we recover the results concerning the Laplacian 
stated in the introduction [Theorem 1.1 as well as estimates (1.8) and (1.10)]. 

(b) The special case of estimate (2.23) for the Dirichlet Laplacian (with D 
instead of D), is announced in [LaFl]. 

(c) We could of course state the counterpart of Theorem 2.3 for the iterated 
Laplacian v := (-A)tm, with m > 1. 

(d) Our results are in some sense "best possible". Indeed, [BrCa, Example 
2] provides an instance where 0 < +o? and for the Dirichlet Laplacian, 

with n = 2, we have IN(A) - (27c) n I QI A,n/21 ,AD/2 as ,A -8 +oo; hence 

our remainder estimate (2.23) cannot be improved in this case. (See Example 
5.2 below.) We exhibit an even simpler example of this kind (with n = 1) 
in Example 5.1. Actually, for all n > 1, Examples 5.1 and 5.1' yield a one- 
parameter family of examples for which our remainder estimate is sharp and 
the Minkowski dimension D (equal to D in this case) takes on every value 
in (n - 1, n). Further, Berry's original conjecture-expressed in terms of the 
Hausdorff instead of the Minkowski dimension-obviously fails for any of these 
examples. 

(e) In this paper, we consider several facets of the problem of "fractality" in 
space. On the other hand, certain aspects of our recent work on the "Feynman- 
Kac formula with a Lebesgue-Stieltjes measure" [La4-7] (see also [JhLa]) are 
related to the problem of "fractality" in time. 

3. MINKOWSKI AND HAUSDORFF DIMENSIONS 

Generally, the Hausdorff dimension has been the preferred measure of "frac- 
tality" or irregularity; there are both historical and theoretical reasons for this. 
However, many practitioners-often without being fully aware of it-have been 
using the Minkowski dimension instead, in one disguised form or another. In 
this section, we shall briefly expand upon these remarks and review and compare 
some of the main properties of the Minkowski and Hausdorff dimensions. 

Many of the results of this section-that pertain among other fields to the 
area of geometric measure theory-are probably known to a few experts but 
are not easily accessible to most readers since they are scattered throughout the 
literature. 

For simplicity, we shall work in R n (n > 1), equipped with its Euclidean 
metric. Let A be a subset of Rn. 
Definition 3.1. Given d > 0, we set Xd(A) = lime_O+ {inf EZ I(ri)d}, where 
the infimum is taken over all (countable) coverings of A by open balls {B }C1 
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of radius ri < e. The number 5z(A) in [0, +oo] is called the d-dimensional 
Hausdorff (outer) measure of A and H(A) := inf{d > O: 0d (A) = O} = 

sup{d > 0: Xd(A) = +oo} is called the Hausdorff dimension of A. 

When d = H(A), we have d%(A) E [0, +oo]. For detailed information 
about the Hausdorff dimension, we refer to [Ro or Fa]. 

In Definition 3.1, the B 's can also be assumed to be cubes of side ri c e 
(or even arbitrary subsets of R' of diameter ri < e) . In any case, the ri's are 
allowed to vary between 0 and e. This is in contrast with the (alternative) 
definition of the Minkowski dimension provided by Corollary 3.1 below, where 
the radius of the balls (or the sides of the squares) must be exactly equal to e . 

The next results (Proposition 3.1 and its corollaries) illustrate this basic differ- 
ence between the Minkowski and Hausdorff dimensions. In addition, they have 
led us to reformulate our initial remainder estimate in terms of the Minkowski 
dimension and-as will be explained towards the end of this section-to estab- 
lish connections with our earlier (joint) work [FlLa2] on eigenvalue problems 
with indefinite weights. (See especially Corollaries 3.1 and 3.3.) Their proof 
should be useful in following that of our main results in the next section. 

Given e > 0, let f QCICEzn be a "tessellation" of Rn by a countable fam- 
ily of disjoint open (n-dimensional) cubes of side e and center x; such that 

U<EZn QC = R n. [In the following, we write I I instead of I In ] If A c Rn is 
boiinded, we set 

(3.1) K=K(e)=K(e;A):={ 'E7Zn :Q n A$0}. 

Proposition 3.1. There exist positive constants cl and c2-depending only on 
n-such that for all e > 0 and all bounded subsets A of iR, we have, with A. 
as in (2.1): 

(3.2) (#K(e))e < ACI J and 1AJ1 < c2(#K(e)),e'. 

Proof. For notational simplicity, we write K instead of K(e) . We first establish 
the first inequality in (3.2). Clearly, by (3.1), UCEKQC c A(1+,),; hence, 
since the cubes QC are disjoint, we have I UCEK QC = (#K)IQCI = (#K)en < 

IA(l+?|-n),I. The result follows with cl = 1 + /Ebi (or, more precisely, any cl > 

v n) - 
Next we prove the second inequality in (3.2). Observe that there exists p > 

1-depending only on n-such that Al C UCEK PQC * [Here, "pQ" denotes 
the cube of center x; and side pe; we can choose, for example, p = 3Vji.] 
Note that, by construction, the cubes {PQdCEK are not (pairwise) disjoint. We 
deduce that 

IAgI U Q E Z = (#K) p n 

CEK CEK 

The desired result follows with c2 = (3 nF)'1. 
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Remarks 3.1. (a) For simplicity, we do not consider here the notion of relative 
Minkowski dimension introduced in ?2. 1; hence, D(A) is given as in Definition 
2.1(a) [and Remark 2.1(e)]. 

(b) As we learned after having obtained this result, a special case of Propo- 
sition 3.1 is contained in [Bo]. 

(c) I wish to thank Dr. Joseph H. G. Fu for a conversation about geometric 
measure theory. 

We now state several consequences of Proposition 3.1: 

Corollary 3.1. Let A be a bounded subset of Rn . Then 

(3.3) D(A) = lim sup log(# K (e)) 

Proof. Let b denote the right-hand side of (3.3). We will deduce from the first 
inequality in (3.2) that b < D(A) and from the second one that b > D(A). 

Step 1: b < D(A). Clearly, it suffices to show that d > D(A) implies d > b. 
Hence, fix d > D(A). Since, by Definition 2.1, 4d (A) = 0 < +oo, there exist 

positive constants eo and C such that JAC, 
e < Cen-d, ye < eo. Now, we 

apply the first inequality in (3.2) and simplify by en to obtain # K(e) < Cg d, 

V8 < eo and conclude that 

8-+log(#K(,e)) b:= limsup l((/))<d 

as desired. 

Step 2: b > D(A). Equivalently, we prove that d > b implies that d > D(A) . 
Fix d > b. By definition of b, there exists eg E (0, 1) such that Ve < go 

we have log(#K(e)) < dlog(1/e); i.e., #K(e) < e d. Hence, by the second 

inequality in (3.2), e-(n-d)IAJI < c2, Ve < e0, and, by (2.3), jd(A) < c2 < 

+oc. Thus d > D(A), as required. O 

Remarks 3.2. (a) Related characterizations of D(A) can be found in [Tr2] and 

references therein (particularly [Bo], where the upper limit was omitted). (See, 

e.g., [Tr2, Corollary 2, p. 61].) Moreover, we note that the notion of Minkowski 

dimension can be linked with that of Whitney coverings, of frequent use in 

harmonic analysis (see [MrVu]). 

(b) When n = 1, further equivalent definitions of D(A) are given in [Tr]; 
these extend in particular the following useful criterion obtained (in part) in 

[Ha, Theorem 3.1, p. 707]: let A c IR be a compact set; write [inf A, sup A] \ A 

as a disjoint union of open intervals {Ii}'il ordered so that their respective 
lengths {li}l' form a nonincreasing sequence. Then D(A) is given by the 

following "Taylor-Besicovitch index": D(A) = inf{p > 0: EI (l)P < +00}. 

It follows from Corollary 3.1 (as well as [Tr2, Corollary 2, p. 61]) that the 

Minkowski dimension (in R') is nothing but the "metric dimension", the "en- 

tropy (or information) dimension" (Pontrjagin-Schnirelmann/Gelfand/Hawkes), 
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the "e-capacity dimension", the "logarithmic density", as well as the "box di- 
mension" frequently used by the practitioners of "fractal geometry". (See, for 
example, [Tr2 and Ce, especially the papers by S. Dubuc, pp. 16-38, and J. 
Peyriere, pp. 151-157] for precise references on these subjects.) 

Since it is defined in a constructive manner, D(A) can be measured "exper- 
imentally" (see, e.g., [Ce, p. 152]) and calculated with the help of a computer 
(see, e.g., [Ce, p. 31]); Corollary 3.1-that connects D(A) with "tessellations" 
of iR by cubes of equal size-is the most useful in this context. 

The next result (see, e.g., [Ce; MrVu, p. 26; Tr2, p. 60]) can easily be deduced 
from Corollary 3.1 (and its method of proof). 

Proposition 3.2. For every A c R ,we have H(A) < D(A). 

Proof. Let d > D(A). By (3.3), #K(e) < e7d for all e small enough. Since 
A C UCEK(e) QC, it follows from Definition 3.1 that 

Xd(A) < lim sup(# K(,6)(V'/i8)d) < n dI < +00 

and hence H(A) < d. Since d > D(A) is arbitrary, we conclude that D(A) < 
H(A). o 

This enables us in particular to justify an equality that was often used in ?2. 
(See Remark 2.1 (a).) 

Corollary 3.2. If A := ow, where w is a nonempty bounded open subset of R', 
then D(A) e [n- 1, n]. 

Proof. Recall from [HrWa, ?VII.4, p. 107] that H(A) > T(A), where T(A) 
denotes the topological dimension of A. Moreover, since the open set co is 
neither empty nor dense, we have according to [HrWa, Corollary 2, p. 46]: 
T(A) = T(aco) = T(w) - 1 = n - 1 . Since obviously D(A) < n, the conclusion 
follows from Proposition 3.2. [We note that the same argument shows that 
Corollary 3.2 extends to any nonempty open set c that is not dense in R n.] O 

Recall that d(.) is an outer measure and induces a (a-additive) measure 
on (the Borel subsets of) Rn. (See, e.g., [Fa, Chapter 1].) It follows from 
the first property that the Hausdorff dimension satisfies (*) H(U7'.l Ai) = 

supi>1 H(Ai). (See, e.g., [Tr2].) In particular, H(A) = 0 whenever A c iRn is 
countable. 

On the other hand, the upper Minkowski content Jd(.) is only a premeasure 
on iRn and thus (*) fails to hold (except for finite families); this follows since, 
according to Definition 2.1, 'd(A) = Od4(A) and hence D(A) = D(A). 

These properties of D(.) are certainly unpleasant from a theoretical point 
of view; however, as will be explained below and in ? 5.1, and as should be 
clear from the proof of Theorem 2.1 given in ?4.2, they enable us to extract 
information-essential in our context-which is otherwise "invisible" to H(.) 
or to other notions of "fractal" dimension. (See especially Examples 5.1-5.1' 
and Remarks 5.2(a),(b).) 
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We now give several examples of sets A c Rn for which H(A) $ D(A); 
the first three assume that n = 1 but similar examples can be obtained in R' 
(n > 2). 

Example 3.1. Let A be the set of rational numbers in [0, 1]. Then H(A) = 0 
and D(A) = 1. [In fact, A is countable and D(A) = D(A) = D([O, 1]) = 1.] 

Of course, the same conclusion holds if A is any countable dense subset of 
[0, 1]. 

The following simple example will be useful to illustrate our main results and 
develop further intuition for the relationship between "fractal" dimension(s) 
and spectral theory. (See Examples 5.1 and 5.1'.) 

Example 3.2. Fix a positive real number a. Let A = {ia i = 1,2, ...}. 

Then H(A) = 0 and D(A) = (a + 1)l. [In fact, H(A) = 0 since A is 
countable; further, 

D(A) - D(A) = D(A U {0}) = inf {p: (/I) < +o} 

=inf{p:p>(a?+1) }=(a+1Y1. 

Note that [0, 1] \ A = Ul=I((i + )-a, i-a) and hence we can apply the result 

recalled in Remark 3.2(b) with 1i := i (i + fy al)- as i -+ oo; for a 
different derivation, we refer to Appendix C (in conjunction with Remark 5.1).] 
Observe that as the parameter a varies in (0, +oc), D1(A) takes on every value 
in (0, 1). 

Example 3.3. Let A be a perfect symmetric set in [0, 1]: A = nF1 Ki, where 

Ki is the union of 2' disjoint intervals of length ai, such that ao = 1 and 
ai+1 < ai/2. Then 

log 2 . log 2' 
H(A) = lim inf 1 and D(A) = lim sup log( 1/a) 

(Cf. [KhSa, Chapters I and II; Tr2, Example 1, pp. 66-67].) In general, H(A) < 

D(A); for the triadic Cantor set, however, a1 = 3i and hence H(A) = D(A) = 

log 2/ log 3. [The latter fact can also be deduced from Lemma 3.1 (i) below; see 
Remark 3.4(b).] 

A higher-dimensional analogue of this example [Tr2, p. 69] shows that for 
every n > 1, there exists a "generalized Cantor set" A c R' such that D(A) - 
H(A) takes any preassigned value in [0, n]. 

Example 3.4. Let A c JR2 be the graph of a planar spiral. Then H(A) = 1, 
the topological dimension of A, whereas D(A) takes every value in [1, 2], 
as A runs through the family of spirals. (Cf. [DMT]; see also Example 5.3 
below in which these facts are used to illustrate our results.) Again, in this case, 
the Minkowski dimension is a more refined measure of "complexity" than the 
Hausdorff dimension. 
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Remarks 3.3. (a) An additional and instructive example is provided by [BrCa, 
Example 2]. (See Example 5.2 below; in [BrCa], it is shown that H < D, and 
whence H $ D, since D < D.) 

(b) Naturally, if A is sufficiently regular, we have H(A) = D(A). For in- 
stance, if A c R' (is closed and) k-rectifiable (i.e., is the image under a Lip- 
schitz map of a compact set B c IR k), then H = D = k. (See [Fe, Theorem 
3.2.39, p. 275].) 

Another case when the Minkowski and Hausdorff dimensions coincide is 
when A is "self-similar". (See, e.g., [Tr3, Lemma 5; MrVu] and Remark 3.4(a) 
below.) 

Lemma 3.1. (i) [Self-similar sets] Let N be an integer > 2. Assume that A c 
Rn is (strictly) "self-similar"; i.e., A is the union of N disjoint sets Ai (i = 
1, ... , N) each of which is similar to A with ratio r E (O, 1). Then D(A) = 
H(A) = logN/log(1/r). 

(ii) More generally, if the A 's above are similar to A with possibly differ- 
ent ratios ri E (0, 1), i = 1, ..., N, then D(A) is equal to the "similarity 
dimension" of A; i.e., D(A) is the unique positive real number d such that 

N7i (ri)d = 1. 

Remarks 3.4. (a) More generally, Lemma 3.1 (i) extends to "self-similar fractals" 
that satisfy the "open set condition" (in the sense of [Hu or Fa, ?8.3]); see, e.g., 
[MrVu, Theorem 4.19, p. 20]. In addition, in this case AtD(A) < +oo; see 
[MrVu, Remark 4.20, p. 29]. 

(b) Many classical "fractals" are "self-similar" in the above sense; for in- 
stance, if A is the triadic Cantor set [Ch; Mdl, pp. 80-81] , we have N = 
2, r = 1/3, and hence D(A) = H(A) = log2/log3. Further, if A is the clas- 
sical Koch curve (i.e., the "snowflake curve" [Mdl, pp. 42-43]), Lemma 3.1(i) 
[or rather, its extension given in (a)] also applies with N = 4, r = 1/3, and 
hence D(A) = H(A) = log 4/log 3; this last result will be used in Example 5.4. 

(c) In the present paper, we use the word "fractal" to convey the idea of 
"roughness", without any implication of "self-similarity"; this is in contrast with 
many authors for whom "fractal" means both "roughness" and "self-similarity" 
(or, more generally, "self-alikeness"). [In his beautiful recent essays [Mdl,2], 
Mandelbrot does distinguish between "fractals" and "self-similar" or "scaling" 
"fractals", although almost all of his examples are of the second kind.] In part of 
the literature, the various notions of "fractal" dimensions are often interchanged 
without proper justification and even sometimes erroneously. This is the source 
of much confusion and may be one reason why Berry's conjecture [Bel,2] was 
initially formulated in terms of the Hausdorff dimension. (See, in particular, 
Berry's informal scaling argument given in [Bel, p. 52].) Actually, it is only 
when we freed ourselves from the notion of "self-similarity" that we could see 
the situation much more clearly and eventually obtain our partial resolution of 
the Weyl-Berry conjecture. 
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Finally, we conclude this section by making explicit some connections with 
our former (joint) work [FlLa2], in which remainder estimates were obtained 
for eigenvalue problems involving indefinite weight functions; we mention that 
in [FlLa2], no use was made of the notion of Minkowski dimension. In order 
to derive Corollary 3.3 below, we shall use Proposition 3.1 one more time. 
The following definition is weaker than that of the "fl-condition" introduced in 
[FlLa2, Definition 1, p. 332]. (See Remark 3.5(a) below.) 

Definition 3.2. Given fi > 0, a bounded subset A of R'D is said to satisfy 
the (modified) "fl-condition" if #K(e) = 0(eg n), as e -* 0+, where K(e) = 
K(e; A) is given by (3.1). [Of course, we are only interested here in the case 
when fl E [0, n].] 

Corollary 3.3. Let A c R'D be bounded. Then A satisfies the (modified) ",B- 
condition" if and only if ln_f(A) < +oo. 

Hence, if A satisfies the (modified) "fl-condition", then D(A) > n - f,. Con- 
versely, if D(A) > n - f/ or if D(A) = n - f/ with XD(A) <+??, then A satisfies 
the (modified) "/4-condition". 

Proof. First, note that according to Definition 2.1, 

n_fl(A) := limsupe fIA.1 < +x 

if and only if D(A) > n - fl or D(A) = n - fl with .A(A)<+X . 

Now, if An,fl(A) < +x, there exist &0, c > 0 such that e&fIAeJ < c, 

Ve < go; thus, by the first inequality in (3.2), #K < c'efl n, Ve < 0, and so A 
satisfies the (modified) "fl-condition". 

Conversely, if A satisfies the (modified) "fl-condition", there exist e0, c > 0 
such that #K < ceA n, V8 < go ; hence, by the second inequality in (3.2), 

IAJ < c'ef, ye < %o and so A4fl(A) < +oo. O 

Remarks 3.5. (a) It is easy to check that if A c iRn obeys the "fl-condition" 
in the sense of [FlLa2, Definition 1, p. 332], then it satisfies the (modified) 
"fl-condition", in the sense of Definition 3.2 above, for the same value of f,. 
Moreover, all the results of [FlLa2] hold without change if the "fl-condition" 
is replaced by the weaker (modified) "fl-condition" in the hypotheses of the 
theorems. 

(b) Let A = 9w , where co is a bounded open subset of inR; this is the 
case considered in [FlLa2] and of interest to us in the present paper. Then, 
it follows from Corollaries 3.2 and 3.3 that if A satisfies the (modified) "fi- 
condition", we must have fi E [O, 1]. [In view of this fact and Corollary 
3.1, [FlLa2, Remark 3.1(a), p. 332] must be modified appropriately.] Further, 
the exponent 3 appearing in the conclusion of [FlLa2, Theorems 1 and 1', 
p. 337] is necessarily > 1/4m. Note that the smaller f,, the more "fractal" 
a&w. Moreover, with our present terminology, the "nonfractal" case considered 
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in [Mt3] corresponds to the case when fi = 1; i.e., D(Oco) = n - 1 with 
9 _I(&wco) < +0. [Indeed, by Corollary 3.2, A1 ,(&wco) < +? if and only if 

D(&co) = n - 1.] 
(c) In light of the above results and comments, we see a posteriori that some 

measure of "fractality" was allowed in the hypotheses of [FlLa2]. However, it is 
easily checked that the remainder estimates obtained in [FlLa2] (in the special 
case when the weight function is equal to one and the leading coefficients of 
v are locally constant) are much worse than the optimal ones obtained in the 
present paper. In view of ?4 below, it is clearly possible to extend our results 
to the case when the operator v has variable leading coefficients and/or the 
eigenvalue problem involves an indefinite weight function. However, in order 
to simplify the exposition, we have chosen to postpone the presentation of this 
extension to a later work. 

(d) For the Neumann problem, the derivation of estimate (41) in [FlLa2, p. 
346] should be changed. This could be done by using the techniques developed 
in ?4.2 below. We hope to explain this in more detail in the aforementioned 
paper. 

4. PROOF OF THE MAIN THEOREM 

The purpose of this section is to establish Theorem 2.1. As was explained 
in ?2.2, our main results-namely, the remainder estimates for the "counting 
functions" associated with the Dirichlet and Neumann problems (Corollaries 
2.1, 2.2, and Theorem 2.3)-all follow from Theorem 2.1. In addition, we 
shall see in Appendix A how to derive Theorem 2.2 from Theorem 2.1 and its 
corollaries. 

This section is divided into two parts: in ?4.1, we provide the necessary 
background and notation, while we prove Theorem 2.1 in ?4.2. The methods 
and ideas presented here may also be of interest in future work dealing with 
both spectral and "fractal" geometry. 

We have attempted to give a proof of Theorem 2.1 that was essentially self- 
contained, especially for the Dirichlet problem (and second-order operators). 
The reader who is mainly interested in the Dirichlet Laplacian may assume 
throughout this section that v = -A + 1, m = 1, V = Ho (Q), and a(u, u) = 

IllH1(0)l 

4.1. Preliminaries: i-widths and eigenvalues. In ??4.1 .A and 4.1 .B, we recall the 
connections between i-widths and eigenvalues, as well as their consequences 
for variational boundary value problems; further, in ?4.1 .C, we provide several 
technical estimates that will be needed in deriving Theorem 2.1. 

With the possible exception of ?4.1 .C, we suggest that the reader go over the 
material quickly and then return to it if and when necessary. 

4.1 .A. i-widths. We briefly present some of the basic properties of "i-widths". 
For further information about this subject and its relations with approximation 
theory, we refer to [Lo or Pn]. 
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Definition 4.1. Let (X, I I IIx) be a (real or complex) normed linear space and B 
a subset of X. Given any nonnegative integer i, the (Kolmogorov) i-width (or 
i-diameter) of B in X is given by di(B; X) := infx supXEB infYEX llx - Yllx, 
where the left-most infimum is taken over all i-dimensional subspaces Xi of 
X. 

Intuitively, the i-width di(B; X) measures the extent to which B can be 
approximated by i-dimensional subspaces of X. [Other notions of i-width 
have been considered in the literature: linear i-width, Gelfand i-width, etc.; see, 
e.g., [Pn, especially Chapters I, II, and IV]. It is noteworthy that in the context 
in which we shall work, all these definitions of i-width essentially coincide. (See 
[Pn, pp. 65-66].)] 

We note the following immediate properties (see, e.g., [Pn, Theorem 1.1 and 
Proposition 1.2, p. 10]). 

Lemma 4.1. (a) di(B; X) = di(B; X), where B is the closure of B in X. 
(b) di(B; X) increases (resp., decreases) with B (resp., X). 
(c) The sequence {di(B; X)} =o is nonincreasing. Further, if B is closed and 

bounded, then di(B; X) I 0 if and only if B is compact. 

We shall see in the next section how to relate the notion of "i-width" with 
the "counting function" of certain variational eigenvalue problems. 

4.1 .B. Variational problems and max-min formula. Let H be a (real or complex, 
infinite-dimensional) Hilbert space, with inner product (. )H and norm . IH' 

Let (W, H, b) be a "variational triple"; i.e., W is a dense subspace of H with 
continuous embedding and b is a bounded, hermitian and coercive form on 
W. (See, e.g., [LiMa, Wb, Mt3, ?11 or FlLal, ?4].) 

We consider the variational eigenvalue problem associated with (W, H, b): 

(E) b(u, v) = A(u, V)H Vv E W; 

here, the scalar A is an eigenvalue of (E) [or is in the "spectrum" of (E)] if there 
exists a nonzero u E W such that the latter equation holds. 

Example 4.1. We use the notation and hypotheses of ?2. If H L2(Q), W:= 
V, and b := a, then (E) is simply the variational eigenvalue problem (P.) 
defined in ?2.2; recall that by (2.9), Hom(Q) c V c Hm(Q). In particular, 
if W = V := Hom(Q) [resp., W = V := Hm(Q)], then (E) is the variational 
Dirichlet (resp., Neumann) problem (P,). 

The hermitian form b induces on W an inner product equivalent to (, *)H. 
Hence, by the Riesz representation theorem, we can define a bounded posi- 
tive selfadjoint operator T on the Hilbert space (W, b(., .)) by b(Tu, v) = 
(U, V)H, Vu, V E W. It follows that A is an eigenvalue of (E) if and only if 

,u:= A2 is an eigenvalue of T; i.e., Tu = ,uu, for some nonzero u in W. 
From now on, we assume that T is compact. This is the case if W is 

compactly embedded in H; this hypothesis holds in all the problems considered 
in this paper (including, of course, those of Example 4. 1). 
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Remarks 4.1. (a) It may be helpful to some readers to recall why T is compact 
under the hypotheses of Example 4.1. For the Dirichlet problem, this follows 
since the embedding of Ho (Q) into L2 (Q) is compact for any bounded open 

set Q; on the other hand, for the Neumann problem, this follows since Hl (Q) 
is compactly embedded into L 2(Q) if Q satisfies the "(C') condition" (a suffi- 
cient, but not necessary condition). (See, e.g., [EdEv, Theorem 3.6, p. 227, and 
?4.9, pp. 272-274] as well as [M, ??4.10-4.1 1, pp. 249-268].) 

(b) Instead of using T, one could work with the unbounded selfadjoint op- 
erator on L 2(Q) associated to the coercive form b through the Lax-Milgram 
lemma, as in [ReSi]. 

According to the classical theory of compact (positive) selfadjoint operators, 
the spectrum of (E) is discrete and consists of a sequence {uij}.j of (positive) 
eigenvalues, written in increasing order according to multiplicity: (0) < ',u < 

82 < *? < ?< * .. Further, for i > 1, Aiyl is given by the well known 
"max-min formula": 

(4.1) 1- = max minf {(u, U)H: b(u, u) < 1}, 

where 7 = F7(W) is the set of i-dimensional subspaces of W. In addi- 
tion, let {q$}.= be an orthormal basis of (W, b(., .)) of eigenvectors of 

(E) such that Tqi = ,i qi; then the "max-min" in (4.1) is achieved for 

Fi := span{q$, ... , Oi} and u := qi. 
We can now provide the basic connection between spectral theory and the 

notion of "i-width" from approximation theory. Set 

(4.2) Sb=Sb(W) = {u E W: b(u, u) < 1}. 

Then it results easily from the "max-min formula" (4.1) and the comment fol- 

lowing it that 

(4.3) d_l(Sb(J'V); H) = (,ui 1/2 Vi > 1( 

where di_ I (Sb( W); H) is given as in Definition 4.1. (See, e.g., [Pn, Theorems 

2.1 and 2.2, pp. 64-66, as well as Remark, p. 66].) Next, for A > 0, we set as 

in [Mtl-3]: 

(4.4) N(A; W, H, b)= 1 = #{i > 0: di(Sb(W); H) > A 1/2} 

Ad2_,SW; H)>l 

Then, in view of (4.3), we have obtained the following key result: 

Proposition 4.1. Let (W, H, b) be a "variational triple" as above. Then, VA > 0, 

(4.5) N(A; W,H,b)= L =#{i? 1 <Al. 
,u, <A 
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Hence N(A; W, H, b)-as defined in (4.4)-is finitefor all A > 0 and is noth- 
ing but the "counting function" (i.e., the number of eigenvalues < A counted 
according to multiplicity) of the variational eigenvalue problem (E). 

[Observe that, with the above notation as well as that of ?2 and Example 4.1, 
we have N(A) = N(A; V, L (Q), a).] The next result (see, e.g., [Mt3, ?2.2 or 
FlLal, Lemmas 4.2 and 4.3, p. 315]) is an immediate consequence of Lemma 
4.1 and Proposition 4.1-or equivalently, of the "max-min formula" (4.1). 

Proposition 4.2 (Monotonicity principles). With the obvious meaning: 
(i) N(A; W, H, b) increases with W and 
(ii) N(A; W, H, b) decreases with b. 

One also easily deduces from the definitions the following result (see, e.g., 
[Mt3, Proposition 2.8, pp. 141-142 or FlLal, 2]): 

Lemma 4.2. Let (Wj, Hj, bj), j = 1, 2, be variational triples. Set W = WI D 
W2, H = H1? H2 (Hilbert sums), and b = b, ?D b2. Then (W, H, b) is a 

variational triple'and N(A; W, H, b) = Z2> N(A; Wj, Hj, bj). 

Lemma 4.2 in conjunction with Proposition 4.2(i) above, constitutes the basis 
for the method of "Dirichlet-Neumann bracketing". (See, e.g., [CoHi, ReSi, 
Mt3, Lal and FlLal, 2].) Finally, we mention a refinement of this method (as 
well as-of Proposition 4.2(i) and Lemma 4.2) that will be used in the proof of 
Theorem 2.1. It will provide us with a very convenient tool to obtain upper 
estimates for the "counting function" on irregular open sets, both for Dirichlet 
and Neumann boundary conditions. (See [Mt2, Proposition 3, p. 18 or Mt3, 
Proposition 2.7, p. 138].) 

Proposition 4.3. Let (W, H, b) be a variational triple and let WO be a closed 
subspace of W. For A > O, let Z; := {u E W: b(u, v) = A(u, v)H, VV E WO} . 

Then N(A; W, H, b) = N(;, WO, H, b) + N(A; Z1, H, b) - dim(WJ n Z.). 
Hence, in particular: 
(4.6) 

N(A; WO, H, b) < N(A; W, H, b) < N(A; WO, H, b) + N(2; Zj, H, b). 

The idea of the proof of Proposition 4.3 consists in using an eigenbasis for 
b and noting the following fact (which results from the "max-min formula" 
and its equivalent dual form): if F is a closed subspace of W on which the 
quadratic form b(-, -) - A(, *)H is negative (resp., positive definite), then its 
dimension (resp., codimension in W) is < (resp., >) N(A; W, H, b). 

Remark 4.2. We illustrate Proposition 4.3 by the following instructive example: 
let W% := Hom(to) and W := Hm(Wo), with w c Q. Then, in essence, Proposi- 
tion 4.3 enables us in this context to take into account the contribution to the 
"counting function" due to the orthogonal complement of Hom(co) in Hm(co). 

4.1 .C. Technical estimates. We provide here some technical results that will be 
needed in the proof of Theorem 2.1. 
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Besides the classical Sobolev spaces Ho (Q) and Hm(Q), and since the 
boundary of the open set Q is allowed to be irregular, we shall use the fol- 
lowing (generalized) Sobolev space: 
(4.7) 

XOM(Q) := {u e Hm(Rn) : D'u(x) = 0 for II-a.e. x E Rn\Q, and for lal < m}. 

[As before, I I = 1 In denotes n-dimensional Lebesgue measure.] Naturally, in 
(4.7), D'u stands for the distributional (or "weak") derivative of u. Clearly, 
Hom(Q) c Zo (Q) c Hm(Q). More precisely, Xom(Q) is a closed subspace of 
Hm(Rin) that we identify with a closed subspace of Hm (Q) containing Hom (Q). 
[Note that the space RoZm (Q) enables us to give a precise meaning to the phrase: 
"extend the function u by 0 outside O." (Of course, other function spaces 
could also be used for this purpose.)] 

Let a' be the leading form associated with the leading part v' of X , and let 
a' be its restriction to co c Q (i.e., a'(u, u) := fa ZI=lI=m aaf(x)DuD u). 
The following result-the proof of which makes use of Proposition 4.3 (see 
Remark 4.2 abbve)-is obtained by combining [Mt3, Proposition 4.1, p. 162 
and FlLa2, Lemma 2, p. 352, and Appendix, p. 354]. It yields in particular 
a uniform remainder estimate on cubes of the same size, for the "counting 
functions" associated with the Dirichlet and Neumann problems. 

Proposition 4.4. Assume that hypotheses (2.9) through (2.11) hold (so that, in 
particular, Y' is a homogeneous operator of order 2m with (locally) constant 
coefficients on Q). Then there exists a positive constant c such that for all 
E > 0, all (open n-dimensional) cubes Q c Q of side E and all A, v > 0, we 
have: 

(i) IN(A; WQ, L 2(Q), a )_, (Q))An2m1 < c[l+en-A(n-1)/2m], where WQ 
denotes any one of the spaces Hom (Q), Xom (Q), or Hm (Q). 

(ii) N(v; Z (Q), L2(Q), a/) < c[l + 6n-1(A(n-1)12m + V(n-l)/2m)] where 

ZA(Q) *= {u e Hm(Q) : a'(u, v) = A((u, V)L2(Q), Vv e Ho (Q)}, by 
analogy with Proposition 4.3. 

Remarks 4.3. (a) Part (i) [for WQ equal to Ho (Q) or H1 (Q), respectively] is 
well known when v = S = -A; in this case, it is obtained by an explicit 
calculation of the eigenvalues on the cube Q for the Dirichlet or Neumann 
problem, respectively. (See, e.g., [CoHi, ?VI.1 and ReSi, Proposition 2, pp. 
266-267].) 

(b) The constant c in the conclusion of Proposition 4.4 depends only on 
M := maxIaQ=fll=M 1IafliLOO(n) and the constant of uniform ellipticity of a?; 

this follows since, according to hypothesis (2.1 1), the coefficients of a' lie in 
L' (?2) and are constant on each open cube Q c Q. 

The next result [Mt3, Lemma 3.3, p. 150] will be used in the proof of Propo- 
sition 4.5 below. 
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Lemma 4.3. Let U be a convex bounded open set in R1n of diameter diam U 
and let U,, U2 be measurable subsets of U. Then, for all f e H1 (U), we have: 

If(x) - f(y)I2 dydx < 2n l(1U 1I + IU21)[diam U]2IIf 1(u)1 . 
u,x U2 

Proof. By a density argument (see, e.g., [EdEv, Theorem 3.2, p. 221]), we may 
assume that f e H1(U) n Cl(U). Further, for (x, y) e U, x U2 and by the 
convexity of U, we can write 

f (y) - f (x) = (Vf (tx + (1 - t)y) , x - y) dt, 

where (., *) is the inner product in DRn and Vf the gradient of f; hence 
Holder's inequality yields 

If(x) - 2(y) 2< [diam U]2 1 IVf(tx + (1 - t)y)12 dt. 
(o 1) 

We now integrate this inequality over U1 x U2, break (0, 1) into (O, 1/2) and 
(1/2, 1), and perform the change of variables c(x, y, t) := (x, tx + (1 - t)y, t) 

[resp., := (tx + (1 - t)y, y, t)] for t < 1/2 [resp., > 1/2]; the conclusion then 
follows since IIVfI122(u) < IIf 112 * ? 

We shall use in Proposition 4.5 (resp., 4.5') the following abstract definition 
when W =o m(Q) [resp., = Hm(Q)], equipped with the usual Sobolev norm 

11I IIH'(n2) 

Definition 4.2. Let the (Hilbert) space W be continuously embedded in L 2(Q) 
and let co be an open subset of Q. Let S(W) be the closed unit ball of W 
(for its original norm) and S(W)I. the set of restrictions to co of elements of 

S(W). Let di(S(W)I,; L2(c) ), the i-width of S(W)I, in L2(w), be given 
as in Definition 4.1. Then, for A > 0, set [by analogy with (4.4)]: 

(4.8) N* (A; W, L ((L)) = #{i > 0: di(S(W)1 ; L2(wO)) > i-1/2} 

Remarks 4.4. (a) It follows from Proposition 4.1 that (with the notation of ??2 
and 4.1.B) when w := Q and W := V is equipped with the Hilbert norm 
a(., *) : N*(A; V, L 2(Q)) = N(A; V, L 2(Q), a) = N(A). 

(b) When W is one of the aforementioned Sobolev spaces, one deduces 
easily from the definitions and Lemma 4.1(b) that N* (A; W, L2(w)) increases 
with the space W, as well as with the open set w. (For this latter fact, see 
[Mt3, Eq. (3.3), p. 147].) 

The next result [Mt3, Proposition 3.4, p. 151 ] will enable us to obtain bound- 
ary estimates for the Dirichlet problem in the proof of Theorem 2.1; it will thus 
be of interest when ao n aQ :$ 0 . 
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Proposition 4.5. Let Q be an arbitrary bounded open set in R n and let w be 
an open subset of Q. Then there exists a positive constant C-depending only 
on n and m-such that for all A > 0: 

(4.9) N* (A; om(Q), L2(w)) < C 12mnii2m n /2m 

Here, we = {x E : d(x, w) < e} is given as in equation (2.1) and 
N* (A; o (Q), L (w)) is defined as in (4.8). 

As was pointed out in [Mt3], the proof relies on methods from approximation 
theory (i-widths estimates in Sobolev spaces) used, in particular, in [BiSo and 
Ek] (see also [Pn, Chapter VII]); we include it in the basic case when m = 1 in 
order to keep the derivation of Theorem 2.1 (essentially) self-contained for the 
Dirichlet problem. 

Proof of Proposition 4.5. Assume that m = 1. [The case when m > 2 is 
deduced from that when m = 1 by a bootstrap argument (and a suitable ex- 
tension of Green's formula); see [Mt3, Proposition 3.1, p. 148].] Given e > 0, 
let {Q<ICEzn be a tessellation of Rn by disjoint congruent open cubes of side E 

(and hence volume IQ, = en). Let K := {' e ZEn: Q,ncl $ 0} and let K' c K 
be defined by K' = {4 e K: IQ, n Ql ' IIQC I} . Set w' = Int[LJ KI(Qf n Q)]; 
then, clearly, wo c ' cwol, n aL and ,n (#K') < ja'l . Thus 

(4.10) i:= #K' < 2I1w,C nfl- n 

Let f E 41 (Q). Recall that by definition [see (4.7)], f extends to f E 

H I(R') such that J=0 and Vf = O 1 -Ia.e. in R' \ a. On each QC n LI 
we shall approximate f by the mean value of f on QC (for 4 e K'), and by 

0 (for 4 E K \ K'). More precisely, we set, for 4 E K', fc = pT 7fQ f(x) dx; 
then 

lIf <fjK2(Q:nQ) ? 
I 

f Qfx - i(y)12 dy dx. 

We now apply Lemma 4.3 (with U1 = U2 = U := QC) and note that IIfIIH'(Q) - 

If llHl(Q,nn) to obtain 

(4.1 1 ) lif - flIL2 (Q,nn) 
? 

n V< e K'. 

Similarly, with C = Rn \ Q2 and for 4 e K \ K', we write 

lIftilL2(Q,~ -n1 j ) - - dy dx; 
IQn Q, n nc nn I(Qx (QnnQ^) 

hence, by Lemma 4.3 (with U1 := Q, n n, U2 := Q, n Qc, and U Q) and 
since for 4 E K \ K', IQ, n QCI > IQ, n Ql, we have: 

(4.12) 2 2 < n2 lfil (Q n) V4V E K \ K. 
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By combining (4.1 1) and (4.12), we deduce that given any f e Xo I(Q), with 

If IHI() < 1, there exists g := 
ZEEK' flQ, such that 

(4.13) _l g112 2()(< n2 n,621|f,2 1(.,)) < n2 n 
. 

It now suffices to consider the i-dimensional subspace of L 
2(w') 

spanned by 
the characteristic functions I Q E K' (where i # K'), to infer from 
Definition 4.1 that 

(4. 14) d 2(S L 2)12 '< n2n E2 

Consequently, for 0 < A < n-12-nE -2 

(4.15) N*(A; X1(Q),L 2(w)) < N*(A; 1(Q) L2(Co')) <i 2Iw\,/nflQIe-. 

[The first inequality in (4.15) follows from Remark 4.4(b) since co c w'; the 
second results from (4.14) and Definition 4.2, while the third one is just (4.10).] 
By choosing, for a given A > 0, e = n- 122-n21/2,. we obtain (4.9) with 
m = 1, as desired. o 

The following result [Mt3, Proposition 3.8, p. 158] (see Remark 4.5(b))- 
which is the counterpart of Proposition 4.5 for the Sobolev space Hm(Q)-will 
be used-to obtain boundary estimates for the Neumann problem. 

Proposition 4.5'. Let Q be a bounded open set in R1n that satisfies the "(C') 
condition". Then there exist positive constants A4, c' and C such that for all 
E > 0 and all A > A: 

(4.16) N*(A; Hm(Q), L2 F8)) < cIr,+C,, t12 /2m.A 

Here, F= aQ, FT = {x e Q: d(x, F) <,e}, as in (2.5), and F = {x e i[: 
d(x, 1F) <5}, as in (2.1). 

Remarks 4.5. (a) Proposition 4.5' is proved in much the same way as Proposi- 
tion 4.5 by means of i-width estimates and (a variant of) Lemma 4.3 once an 
open cover adapted to the "(C') condition" (see Definition 2.2) is chosen. 

(b) Actually, according to the conclusion of [Mt3, Proposition 3.8, p. 158] 
(and with our notation), the right-hand side of (4.16) should be equal to Cl (e )61 

with 5 := c'7 1/2m. However, one easily checks (see the comment following 
(4.23a) below) that (I,), c F+,, from which (4.16)-in the form we have 
written it-follows immediately. 

4.2. Proof of Theorem 2.1. We now establish Theorem 2.1. We first consider 
the Dirichlet problem [i.e., V = Hom(Q)] in ?4.2.A and then the Neumann [i.e., 
V = Hm(Q)] (or, more generally, mixed) problem in ?4.2.B. In this latter case, 
the proof will follow similar lines except in a few significant instances which we 
will point out. 
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4.2.A. The Dirichlet problem. We suppose here that the hypotheses of Theorem 
2.1 for Dirichlet boundary conditions are satisfied. Hence hypotheses (2.10) 
and (2.11) hold with V = Hom (Q); further, Q is a nonempty bounded open 
set of R1n such that 4td(F) < +00 for some d E [n - 1, n]. [Recall that 
F = aQ denotes the boundary of Q and that Fd(r)-the d-dimensional 
upper Minkowski content of F, relative to Q-is defined in (2.6).] 

We now outline the main steps in the proof of Theorem 2.1: 
By using a refinement of the method of "Dirichlet-Neumann bracketing" for 

irregular open sets, we obtain an estimate for the "counting function" N(A) , that 
involves an "interior term" and a "boundary term". By localization on cubes, 
the "interior term" gives rise to the leading term +(A) in Weyl's asymptotic 
formula, and a "remainder term" R (); the latter one and the above "boundary 
term" can be estimated in function of the "fractality" of the boundary F. 

More precisely, by suitably choosing tessellations of Rn into small cubes 
whose size tends to zero as you approach F (and hence inducing Whitney- 
type coverings of Q), we show that the "boundary term" is O(AZd/2m), as A -* 

+oo, and that the same is true of R(A) except possibly when d = n - 1, the 
topological dimension of F; in this latter case, we show instead that R(A) is 
O(Ad /2m log A). 

We conclude, as desired, that Weyl's asymptotic formula holds with a remain- 
der-that is O(jtd/2m) in the "fractal" case when d > n - 1 , and Q(A d/2m log)A) 
when d = n - 1. 

Different versions of the proof of Theorem 2.1 can be adopted; however, in 
essence, they can all be described as above. 

It will be convenient to use the following notation: for A > 0 and co open, 
Cl c Q, we set 

(4.17) NO(A; c) = N(A; Ho (a)), L 2(Q), a). 
[We refer to Proposition 4.1 for the precise definition of the right-hand side 
of (4.17); see (4.4) and (4.5).] Note that, in particular, N(A) = NO(A; Q). 
(See Example 4.1.) Intuitively, NO(A; co) can be thought of as the "counting 
function" associated with a realization of the variational eigenvalue problem: 
_Vu = Au, on co, with Dirichlet boundary conditions. Moreover, we let 

N (A; w) =N* (A; Hj (Q), L2 (w)) and 
M 2 

Nl- (A.; v) :=N*(A,; otO (Q) m L2a). 
[Here, the right-hand side of each equality in (4.18) is given as in (4.8); see 
Definition 4.2. Further, om (Q) is the Sobolev space introduced in ?4.1.C; see 
(4.7).] If p4(co) is defined as in (2.18) [with Q replaced by w], we also set 

(4.19) ) ;) (>)),n/2m and +(i) = (A; Q). 
[Recall for later use that the (Browder-Garding) measure u, (.) is absolutely 
continuous with respect to Lebesgue measure j . In. (For example, if v = 

-A+ 1, then jt[f(w) = ( 27r) n )] 
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With these notations, the conclusion of Theorem 2.1 reads as follows: 

(4.20) IN(i) - +() I = O(Qdl2m) 

[resp., O(Qdl2m log)A)], as A -* +oo, when d > n - 1 [resp., = n - 1]. 
The proof of (4.20) [and hence of Theorem 2.1] is divided into four steps. 

STEP 1. The following key result holds: 

Proposition 4.6 (Estimate near the boundary). There exist positive constants 
g0, A0, and CO such that for all positive e < e0 and all A > A- 2m , we have 

(4.21) N (A; i 

Here, F6 = {x e n: d(x, F) <,} = Fr n Q denotes the open c-neighborhood 

of F, relative to Q, as in (2.5); further, N* (A; r6) is given as in (4.18). 

Proof. First, fix e > 0. Apply Proposition 4.5-which as we recall, relies on the 
method of i-width from approximation theory and Lemma 4.3-with w := Fe. 
Hence, in view of (4.18), we deduce that there exists a positive constant C such 
that 

(4.22) N*(.; r6) < CI(f.). n I21An/2m VA > 0, 

with 6 := VHJ l/2m and A = {x E n: d(x, A) < 6} defined as in (2.1). 
Now, we note that (F), n Q c F+ and hence 

(4.23a) I(r6), n Ql < 1F8+ 1. 

[Indeed, it easily follows from the definitions that for A c B c Rn, we have 
AE c B6 and (B,), c B,+,. Thus, since F, c F,, we obtain (F) c (F.) c 

F,+ and hence (F.). n Q c F, n Q = FE+ ] 
Next, since, by assumption, d7(F) := lim sup 0+ -(n-d)IFEI < +oo, we 

deduce that there exist positive constants eg and c such that 

(4.23b) ir6; < cn V8 < IC. 

Finally, we take any A > 0 and set 8 = c [I + v/i(2o) 1/2m]l ; then, for 
e < e0 and 

A 
> A ? -2m, we have e + := e + vlA-1/2m < [I + V (A 0)-1/2m]g < 

E9. Thus, we conclude from (4.22), (4.23a), and (4.23b) that Nf*(A; F6) < 

CIIl-861A n/2m < C_ n-d,An/2m, as desired. o 

Remark 4.6. The counterpart of Proposition 4.6-with the Sobolev space 
Htm (Q) instead of tom (Q) -still holds for the Neumann problem provided that 

hypothesis (2.13) [the "(C') condition"] is assumed. (See ?4.2.B.) We must then 
use Proposition 4.5' instead of Proposition 4.5 and require that X,d(1F) [and 

not just AFd ()] is finite. This is the place in the proof of Theorem 2.1 (and its 
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corollaries) where appears naturally the distinction between the Minkowski di- 
mension D (for the Neumann problem) and the relative Minkowski dimension 
D (for the Dirichlet problem). 

STEP 2. We construct as in [CoHi, ?VI.5, pp. 443-445 or Mt3, ?VI.3, pp. 
197-199] a sequence of tessellations {, Zn I p = 0, 1, 2, ... , having the 
following properties: 

For each nonnegative integer p, {Q; }'IEZn is a tessellation of Ri into a 
countable family of congruent and nonoverlapping open ( n-dimensional) cubes 
of side E := 2 P such that U,EZn QfP = in. Further, the cubes of the pth 
"generation" are obtained by halving the sides of each cube of the previous 
generation. 

We shall use these tessellations to approximate the open set Q as well as 
its boundary F. Hence, we define (by induction on p) the following index 
set 4p and open subsets Qp, w of Q: if Io :={C E Zn: Qr C Q}, we set 
01 = Q and w0 = Q\ QO' . Furthermore, I: {C e Zn: Qr C c0} = 

{C E Zn :Q c Q and C ? '0}, Q = (Q, :, and w1 := Q \ o; 
and so on. More precisely, if p > 1 and we have defined Iq' Ql', and w q for 
q < p - 1 , we let 

p-i 

(4.24a) Ip:={CE7Zn Q cwpi}= Ce =ZrE Q1 c Q and C ? U Iq 
q=l 

moreover, we set 

(4.24b) P = U (JQ) and o) = \ Q 

The reader may find it helpful to represent graphically some of the sets in- 
volved in this construction. [Obviously, Op, cop do not stand here for e- 
neighborhoods; this notation should not create any confusion since the subscript 
p will always be an integer.] 

Note that by construction, the Iq's are pairwise disjoint and hence the fol- 
lowing disjoint union holds for p > 1: 

(4.25) p U U Qq 
q=O CEIq 

Moreover, we observe that for all p > 1: 

(4.26) co p c rc T 

with cl =1+ aii (or, more precisely, any constant cl > Vii) and ep = 2-P. 
Indeed, let x E cop; then x E Qp for some C. Clearly, by (4.24b), QP n IF : 

0 and hence d(x, F) < c ep,; since also x E Q, we conclude that x E F . 
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Throughout the end of the present step and Step 3, we shall work with p 
fixed sufficiently large. Then, in the last step of the proof of Theorem 2.1, we 
shall make a particular choice of p in a function of A in order to optimize our 
estimates. 

Convention. In the rest of this section, positive real (resp., integral) constants 
will be denoted by A, c0, c1, C1, ... (resp., P , P2 , p , ... ; they will depend 
only on (all or possibly some of) n, d, m, Q, and v . 

Proposition 4.7. There exist positive constants AI > 1, C1, and p1 such that for 
all integers p > p1 and all A > AI (e p)2m, we have 

(4.27) IN(i) - (A) < Cl[(p) ndn/2m +Rp(A)], 

where 
p 

(4.28) Rp(A) := L(#Iq)[1 + (eq) n- IA(n- l)/2m] 
q=O 

Proof. Fix p > 2 and A > 0. For notational simplicity, we set n' = Qp and 
p 

co = co, where Q,p, w1p are given by (4.24b) above; recall that Q' and co are 
disjoint open subsets of Q. Intuitively, Q' (resp., wo) can be thought of as 
approximating the open set Q (resp., the boundary F) "from within" Q. 

We use a refinement of the method of "Dirichlet-Neumann bracketing" for 
irregular open sets (see, e.g., [Mt3; FlLa1, Lemma 5.2, p. 317; FlLa2], and in the 
classical case, [CoHi, Chapter VI or ReSi, Propositions 3 and 4, pp. 269-270]). 
Specifically, we apply Proposition 4.3, with WO := Ho7(Q') and W Hj1(K2) 

[as well as H:= L 2() and b := a], to deduce that 

(4.29) NO(A; Q') < N(A) < NO(A; Q') +YI(A; w) , 

where 

(4.30a) Y(A; w)) :N(A; ZA, L 2(), a) 

and 
m ~~~~~~~m / 

(4.30b) Z:={u E H (Q): a(u, v) = A(u, V)L2(Q), VV E Ho (0 )}; 

recall that N(A) NO(A; Q) and that, by (4.17), 

No(A, KY) = N(A; <o(92'), L 2(Q2), a). m / 2~~~m 

(See the comment following (4.34) below; of course, since Ho7(Q) c Ho7(?) 
because Q' c Q, one could also use the more familiar Proposition 4.2(i) to 
derive the first inequality of (4.29).) [Observe that, with the notation of Propo- 
sition 4.3, Z. in (4.30b) is the orthogonal complement of WO := Hom(Q') in 
W := Ho () , with respect to the inner product a-i.; this justifies, in particular, 
the use of the notation X(i; co) in (4.30a) since, by construction, Q = U w), 
up to a set of I sn-measure zero. We point out, however, that the notation for 
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X(A; w) is only suggestive and does not refer to a boundary value problem on 
0*.] 

As was indicated in the introduction of this section, we will have to compare 
with +(i) the "interior term" NO(A; Q'), as well as to estimate the "boundary 
term" X(Y ; co). In preparation for that, we note that since +(A) = q($; Q), 
(4.29) implies: 

(4.31) Al +A2< N(A)- ,(i) < Al +A2+ 

where we have set 

(4.32a) Al = NO(A; Q?) -)(A; Q'), 

(4.32b) A2 = q({; Q') CqA; f) 

and 

(4.32c) A3 = X(2; c))i 

We first estimate A, . In view of (4.25), Lemma 4.2 implies 

p 

(4.33a) NoA O(A; Qq); 
q=O 4EIq 

moreover, by (4.19), (4.25) and since ,u (.) is a measure, 

p 

(4.33b) O(A; Q ) = E(A; Qq). 
q=O CEIq 

Hence (4.32a) and (4.33) yield 

p 

(4.34) JAII <, EENO(A; Qq) _ O(A; Q:)| - 
q=O CEIq 

[The shorthand notation (for the "counting function") adopted here is quite 
convenient for our purpose; however, some care must be exerted in interpret- 
ing it and comparing it with the more cumbersome notation of ?4.1. For 
example, in (4.29), W% := Hon(Q') is considered as a (closed) subspace of 
W := Ho (Q) c L2 (Q), whereas, in (4.33a), it is considered as a (closed) sub- 

space of L2 (') and is identified with EEUP = HoI(Q ), the latter (Hilbert) 

sum being orthogonal both with respect to the L2 and a inner products; see 
[Mt3, ?V.2, especially pp. 180-182].] 

We may assume that v is equal to its leading part V'; i.e., that V' is a ho- 
mogeneous operator of order 2m (with locally constant coefficients). [Indeed, 
as will be seen in Lemma 4.4 (and Appendix B) below, the substitution of s' 
for v introduces a perturbation term that does not affect the outcome.] We 
can thus apply Proposition 4.4(i) [with WQ = Hom(Q)] to estimate (uniformly) 
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each summand in (4.34) and deduce that there exists a positive constant C 
such that for all p > 1 and A > 0: 

p 
(4.35) IAJ < C:(#Iq)[l + (eq )n-lA(n-l)/2m] CRP(= 

q=O 

note that for every open cube Q C Q2, the leading coefficients of v are constant 
[see Remark 4.3(b)]. Further, recall that the Iq's are disjoint and that for a given 
q, each cube Qq has the same size eq = 2-q. 

Next, we estimate A2 in terms of the remaining "boundary strip" co = Cp,. 
In view of (4.19) and (4.32b), we have successively: 

(4.36) IA = q$Q2C; Q) - CA; Q') = [u/(Q)- 
/iI(CO)A n/2m < cI )I,tn/2m. 

note that the third equality in (4.36) follows since, by (4.24b), co = Q \ Q' 
up to a set of [and hence u (.)]-measure zero. [We remark that since 
A2 = -o(0; C) < 0, we could have suppressed A2 in the right-hand side of 
(4.31).] Next we recall that by (4.26), 

(4.37) w0 =w crcE 

further, since -e = 2 l 0 and x4 (n) = limdsup)O+ p < +oo, we 
deduce from (4.37) as in (4.23b) that there exist cl and p' such that 

(4.38) lcl= wcjpl < Irc9PI < Cl(e)p) VP > PI 

Equations (4.36) and (4.38) imply that for all p > p' and A > 0: 

(4.39) 1 A21 < C?(e n-d,nl2m 

Finally, we estimate the "boundary term" A3 := Y(A; co)), defined by (4.30). 
By [Mt3, Lemma 5.8, p. 181]-which relies, in particular, on the definition 
of i-width and Proposition 4.4(ii)-and by taking into account our notation 
and simpler hypotheses on the (homogeneous) form a, there exists a positive 
constant c such that for all A > 0: 

(4.40) V(; co) < NO (cA; co) + cRp(A) 
where Rp(A) is given by (4.28). Next, we note that for all A > 0, 

(4.41) NO(A; co) < N* (A; c)) < NJ (A; rc 

Recall that for j = 0 or 1, N*(A; U)-that occurs in (4.40) and (4.41)- 
is defined by (4.18), and that, in view of Remark 4.4(b), N7*(A; U) increases 
with U and No*(A; U) < N1*(A; U) since Ho'(U) c X'm(U); hence, the first 
inequality in (4.41) is immediate while the second one follows from (4.37). 

We can thus apply Proposition 4.6 (from Step 1) [i.e., the "boundary es- 
timate" for N1*(A; rC E )] to deduce from (4.40) and (4.41) that there exist 



504 M. L. LAPIDUS 

positive constants A, > 1, Ci, and p1 >pl such that for all p > P1 and 

A?> A1(ep)-2m (> 1), wehave: 

(4.42) '(A; co) = A3 < C(e)nd An/2m + CRp(A) 
The conclusion of Proposition 4.7 now follows by combining (4.31), (4.32), 

(4.35), (4.39), and (4.42). n 

Remarks 4.7. (a) A great advantage of the above version of the method of 
"Dirichlet-Neumann bracketing" as well as of the method used to derive esti- 
mate (4.42) is that it will enable us to provide a uniform treatment of both the 
Dirichlet and Neumann problems, and, at the same time, to obtain sufficiently 
sharp estimates under minimal hypotheses. 

(b) For the Neumann problem considered in ?4.2.B, the condition 4(drF) < 
+oo, used to derive (4.38), will be automatically satisfied since ,rd(F) < A(d(F) 
and by assumption, A4d(F) < +oo, in that case. 

In the course of the proof of Proposition 4.7, we have used the following 
perturbation iesult, which is established in Appendix B: 

Lemma 4.4. If Proposition 4.7 holds for the leading part -V' of the operator X, 

then it also holds for -W. 

STEP 3. We now estimate the "remainder term" Rp (A), which as we shall see, 
is also of a boundary nature. 

In view of (4.28), we can write for A > 0 and p > 1: 

(4.43) Rp(A) = S A(n-l)/2m +T 

where 
P P 

(4.44) Sp :=L(#Iq)(eq)nf1 and Tp := 
q=O q=O 

observe that Sp and Tp are independent of A. 
In the following key estimate, the roughness of the boundary F will play an 

essential role. It will thus be convenient to introduce a coefficient which, in 
some sense, measures the "fractality" of F; set 

(4.45) 6=d-(n- 1). 

Since, by assumption, d E [n - 1, n], we have 0 E [0, 1]. Further, if F is 
"fractal" (i.e., D E (n - 1, n]), then 0 E (0, 1]; indeed, the hypothesis that 
4(r) < +oo implies that d > D, and whence d > n - 1 in this case. 

Proposition 4.8. There exist positive constants c2, C3, and P2-depending only 
on Q, n, and d-such that the following inequalities hold for all P > P2: 

(i) If 0 E (O, ] then Sp < C2 + C3(ep) c2+C32 
(ii) If 0 = 0, then Sp < C2 + C3p . 

Here, 0 E [0, 1] is defined by (4.45) and Sp by (4.44). 
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Remark 4.8. We stress that if F is "fractal"-which is the case of greatest 
interest to us-we must necessarily be in case (i); in particular, case (ii) 
which corresponds to the situation studied in [Mt2,3]-can only occur if F is 
"nonfractal". 

The difference between the "fractal" and the "nonfractal" case in the remain- 
der estimates obtained in Theorem 2.1 (and especially its corollaries) finds its 
origin in the dichotomy observed in the conclusion of Proposition 4.8. 

Proof of Proposition 4.8. Recall that by construction [see (4.24a) and (4.26)]: 

(4.46) u QCq CIc 1 C _ Vq > 25 

CEIq 

with c 1 + ve,b . Since A4d(F) < +oo, we can apply (4.23b) and deduce from 

(4.46) that there exist c, c' > 0 and P2 > 1 such that Vq > P2 

(4.47) (#Iq)(q) < FrCEq1 
< c (6q-1) =c(q) 

note that eq = 2 so that Cq-= 2Cq. 

According to (4.45) and (4.47), we have: 

(4.48) (#Iq)(q)eq1 < C(, (n- 1)-d =C(e )-0 q > P2 

Next, we fix p > p2 and break Sp [in (4.44)] into the two sums EP2O and 
p +1 ; hence we deduce that there exists a positive constant C2 such that 

(4.49) Sp < C2 + Ep, 

where q:= = Iq)(eq)n I. By (4.48), we have 

p 

(4.50) Ep < c E (gq)-. 
q=p2+1 

Case (ii) of Proposition 4.8 follows immediately from (4.49) and (4.50) since 
then 0 = 0 and hence Ep < cp. 

Assume now that we are in case (i); i.e., 0 :$ 0. By (4.50) and since eq = 2 , 
we have successively: 

Sp < c E (26)q = C2(P2+1)62(pP2)__- 1 < c2(p2+)o2(pP2) 

Ep 
<c L (20 2 6 - - 

<c 20- 1 
(4.51) q=p2+1 - 1 6 

- c2 2P =: c2 = c (eY ; 
26 1 3 - 1p 

note that since 0 :A O, we have 260$A 1 and also 20 - 1 > 0. 
Consequently, case (i) follows from (4.49) and (4.51). This completes the 

proof of Proposition 4.8. n 

We conclude Step 3 by obtaining an estimate for Tp , given by (4.44). 
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Lemma 4.5. There exist positive constants c2, C3, and P2 such that the following 
inequalities hold for all P > P2: 

(i) If d 0, then Tp< c2 + c3(p)d = C2 + c32Pd 
(ii) If d=O, then Tp <c2+C3p. 

Remarks 4.9. (a) If n > 2, then we are necessarily in case (i) since d > n - 1 > 
0. Moreover, case (ii) can only occur when n = 1 and F is "nonfractal" (i.e., 
D = n - 1 = 0). Hence-in contrast to Proposition 4.8 (and except in the 
one-dimensional case)-the dichotomy of Lemma 4.5 is only apparent. 

(b) In agreement with one's intuition, the more irregular the boundary F, 
the larger 0 = d - (n - 1) E [O, 1] and d E [n - 1, n], and hence the worse the 
estimate in case (i) of Proposition 4.8 and Lemma 4.5. 

Proof of Lemma 4.5. By (4.48) [or (4.47)], there exist c > 0 and P2 > 1 such 
that 

(4.52) #I < c(eq) d= c2qd Vq >p2 . 

We now proceed as in the second part of the proof of Proposition 4.8: if 
d = 0 [case (ii)], then clearly Sp < C2 + cp . On the other hand, if d :$ 0 [case 
(i)], we break Tp :=Z , (# Iq) into two sums and use (4.52) to conclude that: 

p p 

Tp<c2+ E (#Iq)<c2+c E (2 ) 
q=p2+1 q=P2+1 

2(p+1)d -d 
< c2 +cd =: C2 + c2 c + c3() 

as desired. El 

STEP 4. We now conclude the proof of Theorem 2.1. We must therefore es- 
tablish estimate (4.20). 

According to Proposition 4.7 (Step 2), there exist positive constants C1, P1 
and A1 > 1 such that Vp ?p1 and VA > AI(_P)-2m: 

(4.53) IN(A) - (A) < C [(ep) dn/2m + R(A)]. 

In light of Step 3, we have to distinguish two cases: 

Case 1 (Case (i) of Theorem 2.1). Assume that d E (n - 1, n]. Then 0 
d - (n - 1) E (0, 1] and d :$ 0; hence, by case (i) of Proposition 4.8 and 
Lemma 4.5 (Step 3), there exist positive constants cl , c2, and P2 such that 
Vp ? P2: 

(4.54) Rp () ? [CI + (p)_0] 
(n-l)/2m + c1 + c2(ep) 

-d 

we may as well assume that P2 > P1 . Combining (4.53) and (4.54), we deduce 
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that VP>P2 andp) 
(4.55) 

IN(A) - (A)l < C'?[( )n-dAnl2m + A%(n- 1)/2m + (6 ) 0A(n- 
1)/2m + + (.6 

-d 

C C[2-p(n-d)An/2m + A%(n- 1)/2m + 2p0,(n-1)/2m + 1 + 2Pd] 

Finally, we claim that if we choose p such that 

(4.56) 2 P = 
e, 1/2m and hence 2P = (ep 1 A1/2m as , +- o 

then for all A large enough, each term in the right-hand side of (4.55) has an 
upper bound of the form CAd2m , as desired. 

More explicitly, let p = p (A) be the largest integer so that 2P < (AI/ 1)/2m; 

i.e., 

(4.57) p = p(A):= [2Alog2 (+)] 

where [v] denotes the integer part of v. Since, by definition, we have 2P < 
(,& )1/2m and 2P+ > (/AI ,/2m there exist positive constants cl, c2 so that 

CIA/2m < 2P = (e < c2 1/2m. i.e., (4.56) holds. Now, let A2 be so large 
that A2 > A and p(22) ? * Then, for all (A> 2A we have with p = p(A) 
(e)n-dAnl2m < C/[-(n-d)+n]12m CAdl2m, ,(n-1)/2m < ?d/2m (since n- 1 < d 
and A- > 1), ( P)Y0j(n-l)I2m < =[/+(n-1)112m CAd/2m and (, )-d < CA d/2m 

Since, by construction, A > AI (eP)2m and p: p(A) > P2, we thus deduce 
from (4.55) that 

IN(i) - O(k)l < CAd/2m VA > A 

This yields estimate (4.20) in this case and concludes the proof of case (i) of 
Theorem 2.1. 

Remark 4.10. Let 0 = d - (n - 1), as before, and set O' = n - d; then 0, O' E 

[0, 1] and 0 + 0' = 1. Thus 0, 0' -which arose naturally in the proof of 
Theorem 2.1 -might be called the "conjugate fractional exponents" associated 
with the boundary F. 

Moreover, it is easy to see that the above choice of p is optimal; indeed, in 
view of (4.55), we must clearly have 

( n-d,nl2m = /0 n/2m -0 (n-l)/2m 

and hence e = (e)6+6 ,A- /2m as in (4.56). 

Case 2 (Case (ii) of Theorem 2.1). Assume that d = n - 1. Then 0 = 0 and, 
if n > 2, d :$ 0 while if n = 1, d = 0 = n - I. By case (ii) of Proposition 
4.8 and by Lemma 4.5 [see Remark 4.9(a)], we have VP > P2: 

(4.58) Rp (A) < (CI + C2P))n l)/2m + B, 

where B cl + c2(p )-(n-1) (resp., B = cl + c2p) if n > 2 (resp., n = 1) . 
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Clearly, in light of (4.53) and (4.58), the optimal choice for p is again given 
by (4.56). More precisely, we set, as in (4.57), p = [(1/2m) 1og2(A/l1)]. Then, 
the first term, A, in the right-hand side of (4.58) is the dominant one; indeed, 
since e ,-1/2m ()-(n-l) , An-1)/2m and thus in every case, B < cA 

for all A large enough. Since p < c' log A, we have Rp(A) < Ci(n 1)/2m log). 

and, since (e )n-d)nl2m = e ).n/2m ,(n-1)/2m = 0( (n-l)/2m log , we conclude 
from (4.53) as in Case 1 that there exists A2 such that 

IN(A) - (A)Il < Cp - 1)/2m log A VA. > A2 

This yields estimate (4.20) in this case and concludes the proof of Theorem 2.1 

for the Dirichlet problem. 

Remarks 4.11. (a) Case 2, in which d = n- I and r is necessarily "nonfractal", 
corresponds to the situation studied in [Mt3, ?VI.3, pp. 197-199] and-for 

the Laplacian and under much more restrictive assumptions on Q-in [CoHi, 
?VI.5, pp. 443-445]. [The (harmless) dichotomy of Lemma 4.5 does not seem 

to have been pointed out in [Mt2, 3].] The estimate Q(j(nf1)/2m logil) is the 

best one known for general open sets of this type. 

(b) The estimate Q(Adl2m) obtained in Case 1 is in general the "best possi- 

ble", as will be seen in ?5.1. Further, as was mentioned earlier, the somewhat 

surprising dichotomy observed in the conclusion of Theorem 2.1 is due to that 

obtained in Proposition 4.8; from a technical point of view, it has its origin in 

the following elementary fact: the partial sums of a geometric series of ratio 20 

have a different form according to whether 0 # 0 or 0 = 0. At present, we do 

not have a more conceptual explanation to offer although it would certainly be 

interesting to find one. 

(c) The relation "A > ce&2m, used throughout the proof of Theorem 2.1 

is very reminiscent of the "uncertainty principle" from quantum mechanics. 
[Strictly speaking, for the Laplacian (m = 1), for example, the relation "il > 

ce 2,, must hold for some positive constant c and all positive e small enough.] 
Indeed, heuristically, it can be thought of as being a precise mathematical coun- 

terpart of the following well known quantum physical fact: in order to probe the 

fine structure of microscopic "matter", the wavelength of the incoming "wave") 

must be (sufficiently) small. [One can imagine being in possession of a "fractal 

microscope" which at smaller and smaller scales e, requires larger and larger 

wavenumbers A1/2, and hence smaller and smaller wavelengths (proportional to) 

i 1/2 (< c'e, for the Laplacian). (Incidentally, this analogy helps understand 

why the fine details of the boundary F can only be "seen" in the high energy 

(or equivalently, frequency) limit.)] 
In a sense, our work can be viewed a posteriori as an attempt to extend 

"microlocal analysis"-which is traditionally valid in the "smooth" domain (see, 
e.g., [Ffl and references therein)-to the "fractal"' realm. 
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4.2.B. The Neumann problem. We explain here how to modify the proof of 
Theorem 2.1 in the case of Neumann boundary conditions. Towards the end of 
this section, we shall also give an extension of Theorem 2.1 for the Neumann 
problem valid, for example, for "quasidisks" and their higher-dimensional ana- 
logues. 

We now assume that the hypotheses of Theorem 2.1 for Neumann (or, more 
generally, mixed Dirichlet-Neumann) boundary conditions are satisfied. Hence, 
in particular, hypotheses (2.9)-(2. 11) hold and Q is a bounded open set of iRn 

satisfying the "(C') condition" [hypothesis (2.13)] with boundary F such that 
Od(F) < +oo, for some d E [n - 1, n] . 

In the present case, we set for co an open subset of Q, 

No(A; w):= N(A; H7m(w) ,L (Q), a) and 

N, (i; c0) N(A; H (ce) L2(Q) a). 

[Note that NO(A; w) in (4.59) is defined just as in (4.17) for the Dirichlet 
problem.] Further, we replace (4.18) by 

2( (4. 60) N* (A; co) := N* (A; Hm (Q) L ()) 

[Here, the right-hand side of (4.60) is given as in (4.8).] Since Ho7(Q) c V c 
Hm(Q) , by hypothesis (2.9), it follows from Proposition 4.2(i) that No(A; Q) < 

N(A) = N(A; V, L 2(Q), a) < N1 (A; Q); consequently-and because we have 
established Theorem 2.1 for the Dirichlet problem in ?4.2.A-it suffices to con- 
sider the Neumann problem. We thus assume from now on that V = Hm (Q) 
and hence N(A) = N1(A; Q) . (See Example 4.1.) 

Then, the counterpart of Proposition 4.6 for the Neumann problem still 
holds, but with N1 (A; IF) in (4.21) now given by (4.60) instead of (4.18). (In 
view of Proposition 4.5' [which can be applied since Q satisfies the "(C') con- 
dition" by hypothesis (2.13)] and the fact that tdk(rF) [and not simply Tk (r)] 

is assumed to be finite in this case, the proof parallels that of Proposition 4.6, 
as was indicated in Remark 4.6.) 

The statements of the remaining results in ?4.2.A stay unchanged. We now 
briefly indicate how to adapt the proof of Proposition 4.7 to the Neumann prob- 
lem: with the present notation and according to a refinement of the method 
of "Dirichlet-Neumann bracketing", (4.29) [and hence (4.31)] remains valid. 
More precisely, we apply Proposition 4.3, with W% := Hjm(a'), just as be- 
fore, and with W := Hm(Q) [instead of W := Ho7(0)] (as well as with 
H := L 2() and b := a). This yields (4.29) and hence (4.31); however, 
in (4.30), X(A; w) = N(A; ZA,, L2(Q), a), as before, but now, Z. := {u E 

Hm(Q): a(u, v) = A(u, V)L2(Q), VV E H0m(Q')} denotes the orthogonal com- 

plement of W% := Hom (Q') in W := Hm (), with respect to the scalar product 
a - A. Next, we note that the terms Al and A2 in (4.32a) and (4.32b), re- 
spectively, are exactly the same as for the Dirichlet problem. So estimate (4.35) 
follows from Proposition 4.4(i) [with WQ = Hom(Q)]. [Recall that Lemma 4.4 
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is established in Appendix B both for the Dirichlet and the Neumann problems.] 
Further, (4.38)-and hence estimate (4.39)-still holds because if At(F) is fi- 
nite, so is A (fj) . Finally, we obtain an upper estimate for the "boundary term" 
A3 := X(A; cl)), with co := wp . [Mt3, Lemma 5.8, p. 181] still yields the coun- 
terpart of (4.40): X(3; w) < N (cil; w) + cRp(A), where Nfl(A; U) is given 
by (4.60); further, by (4.37) and the monotonicity of Nl (i; U) with respect to 
U [see Remark 4.4(b)], the analogue of (4.41) reads: N1 (A; wo) < N1 (A; F-ce ) . 
We then apply the counterpart of Proposition 4.6 to deduce from the last two 
inequalities the analogue of (4.42). We can thus conclude the proof of Propo- 
sition 4.7 as in ?4.2.A. 

The proofs of Proposition 4.8, Lemma 4.5, as well as of Step 4, remain valid 
without change if we note-as was done earlier-that Ad(F) < +oo implies 

d(4F) < +oo. This completes the proof of Theorem 2.1 for the Neumann 
problem. 

We conclude this section by providing a generalization of Theorem 2.1 and 
of its corollaries in the case of Neumann boundary conditions. To do so, we 
shall need the following definition. 

Definition 4.3. Let V := Hm (Q) . An open set Q is said to satisfy the "exten- 
sion property" (for the space V) if there exists a continuous linear extension 
operator F: V -+ Hm(jRn) [so that every element u in V := Hm(Q) is the 
restriction to Q of an element Fu in Hm(R n)]. 

Example 4.2. Assume that V = H1 (Q) and n = 2. Then the simply connected 
domain Q satisfies the "extension property" if and only if Q is a quasidisk 
(i.e., is bounded by a quasicircle IF). (See [VGL] and, e.g., [M, ? 1.5.1].) [Recall 
that a quasicircle is the image of a circle under a quasiconformal map of the 
plane onto itself; for an equivalent characterization-due to Ahlfors-in terms 
of a chord-arc condition, see, e.g., [M, p. 70] and the references therein.] Such 
domains arise naturally, for instance, in harmonic analysis, complex analysis 
and approximation theory. For a concrete example, the reader may wish to 
consult [M, Example 1, pp. 70-71]. 

It is noteworthy that the boundary F can then be arbitrarily irregular; indeed, 
it is possible to construct-as is done in [GeVa]-a family of quasidisks for 
which H, the Hausdorff dimension of F, takes on every value in [1, 2). 

More generally, for V = Hm(Q) and n > 2, sufficient conditions for the 
domain Q to satisfy the "extension property" (for V) are obtained by Jones in 
[Jn]. This class of "Jones domains" contains that of strong Lipschitz domains 
(see, e.g., [M, ? 1.1.16]) and, when n = 2, coincides with that of quasidisks. 

We are now in a position to state the promised generalization of Theorem 
2.1: 

Theorem 4.1. Let Q be a bounded open subset of Riin. Then, for the Neumann 
problem, all the results of ?2.2 (namely, Theorems 2.1-2.3 as well as Corollary 
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2.2) still hold if in haypothesis (2.13), we replace the "(C') condition" by the 
"extension property" [ for the space V := Hm (Q)] . 

More generally, the present theorem extends to the Dirichlet-Neumann problem 
if in Definition 4.3, we replace the space Hm (Q) by V, with V as in hypothesis 
(2.9). 

Proof. This is established in the same way as Theorem 2.1 for the Neumann 
problem if we observe that Proposition 4.5' (and hence the counterpart of 
Proposition 4.6) remains valid if Q obeys the "extension property" instead of 
the "(C') condition", a consequence of [BiSo, Ek] and the method of proof of 
Proposition 4.5. c0 

Remarks 4.12. (a) When F is "nonfractal", a special case of Theorem 4.1 (or, 
more precisely, of the counterpart of Theorem 2.1 and Corollary 2.2) is obtained 
in [Mt2]. 

(b) I wish to thank Professors Alexander G. Ramm and Stephen William 
Semmes for pointing out references [M] and [Jn], respectively, after they heard 
me lecture on these results. 

(c) Of course, in Theorem 4.1, the Neumann spectrum is discrete. 

5. EXAMPLES, CONJECTURE AND OPEN PROBLEMS 

We now illustrate our results by considering various concrete examples (? 5. 1); 
this will show, in particular that our remainder estimates are in general "best 
possible". We also propose several open problems and a conjecture; the latter- 
stated in ?5.2-extends and modifies the Weyl-Berry conjecture. 

5.1. Examples. Let Q be a bounded open set of R' (n > 1) , with boundary F; 
as before, we denote by D = D(F) or H = H(F) the Minkowski or Hausdorff 
dimension of F, respectively; further, D = D(F) stands for the Minkowski 
dimension of F, relative to n.. (See Definitions 2.1 and 3.1.) 

Unless otherwise specified, we shall always work with the Dirichlet Lapla- 
cian in the following examples. (Recall that since we deal with the Dirichlet 
problem, Q is allowed to be an arbitrary bounded open set; of course, our 
results could also apply, under appropriate assumptions, to higher order oper- 
ators as well as Neumann boundary conditions.) It will be convenient to set 

(A) = (27) nnlln nI2 with .n = 7r 2/(n/2)!, the volume of the unit ball 

in In, as before. (Hence, /(A) = 7rQ|lAI/2or (47y) 1Q 2for n = 1 or2, 
respectively.) 

Our first example will show in particular that our remainder estimates are 
"best possible" and that the original Berry conjecture-expressed in terms of the 
Hausdorff instead of the Minkowski dimensions-fails in general. It will also 
provide us with further information about the relationships between "fractal" 
and spectral geometry. Moreover, Example 5.1 will easily be generalized to yield 
a one-parameter family of examples in in (n > 1) having similar features and 
for which the Minkowski dimension D (equal to D in this case) takes on every 
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value in (n - 1, n) whereas H n - 1. (See Example 5.1'.) 

Example 5.1. Fix an arbitrary positive real number a. Consider the following 
bounded open set Q c IR: 

00 

(5.1a) U= ((i + )-a, ia); 
i=l1 

then 

(5.1b) F=A=AU{O}, whereA:={ a:i= 1,2, ...}. 

Further, we claim that 

(5.2) H=O, D=D=(a+l)', and < ((I)<+oo; 

moreover, a direct computation yields 

(5.3) 0 (A) - N(A) 1--D A/2 as A -- +oc. 

[Recall that this means that there exist (strictly) positive constants c1, c2, and 

AO such that c1zD/2 ?< 4(A) - N(A) < C2,D/2 \ > 0 Here, A = 

since n = 1 and IQ 1 = 1, and ,AD/2 = ,A1/2(a+1) by (5.2). 
According to Theorem 2.3 (or, more precisely, the analogue of Corollary 2.1 

for the Dirichlet Laplacian) and since D5(F) < +0o by (5.2), we know (without 
any calculation) that 

(5.4) I b(A) - N(A) I = O(,A B2) as,A --* +oo. 

In view of (5.3), we conclude that our remainder estimate (5.4) [which also 
clearly follows from (5.3) in this situation] is sharp in this case. Moreover, 
since by (5.2), H = 0, Berry's conjecture-as formulated in [Bel , 2] in terms 
of the Hausdorff dimension-obviously fails here. 

We now briefly justify (5.2). (See Appendix C for a complete derivation.) 
Since F is countable, H = H(F) = 0. (See ?3.) Further, we have proved in 
Example 3.2 that D(A) = (a+ 1) 1; thus D = D(F) = D(A) = D(A) = (a+ 1) 1 . 
Moreover, a direct calculation-based on (2.6) of Definition 2.1 -shows that 
O < ID(F) < +oo. [Actually, we can show that 

a/(a+ 1) 1/(a+I) -a/(a+ 1) D I-DI( D(IF) = 2 (a + a )=a (2 /(1-D)); 

the interested reader will find a proof of this fact in Appendix C.] In view of 
Remark 2.1(b), this implies in particular that D = D = (a + 1) and thus 
yields (5.2). 

Remarks 5.1. (a) Actually, if we assume that estimate (5.3) has already been 
established, with D replaced by D = (a + 1)- , there is another instructive 
method for showing that D = D; it can also be used in similar situations. In 
view of Remark 2.1 (a), we always have D < D. Moreover, if D < D, then we 
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can choose d E (D, D); for this d, 10(A) - N(A)l = (Ad2), by Theorem 2.3, 
since d > D. (Observe that we do not use here the fact that B(IF) < +OOt) 
On the other hand, Io (A) - N(A) A D/2, by assumption; hence a contradiction 
since d < D. We thus conclude that D = D. 

(b) We note that the one-dimensional example associated with a given value 
of a could arise "physically" by studying the steady-states vibrations of a string 
with infinitely many nodes located at the points 0 and i-a (i = 1, 2, ...). 

We now indicate how to establish estimate (5.3). Recall that the eigenvalues 
of -d2/dx2 on the open interval I (a, ,B), with Dirichlet boundary con- 
ditions at a and ,B, are Aj = (7r/)2j2, for j = 1, 2, ..., where l := , - a. 
If N(A; I) denotes the associated "counting function", and if [v] denotes the 
integer part of v, it follows in particular that N(A; I) = 0 for A < 7r2/12 and 

(5.5) N(A; I) = #{j > 1: j < l(v7/7r)} = [l(v'A7/7r)] for A > 0. 

Set Ii = ((i + 1)a ia) and li = -a -(i +l)-a i-(a+l) as i-oo Let 

(5.6) i(A) = max{i > 1: li > 7r/Vl}; 

clearly, i(A) (7r/VA/)-l/(a+l) ,A1/2(a+1) = AD/2 as A - +oc, since D = 

1/(a + 1) . Furthermore, Lemma 4.2 and (5.5) yield 

i(A) () VA 
(5.7) N(A) = ZN(; Ii) li 

Consequently, since O(A) = xfX/T and 1 - 1 / = (iA) + )-a 

as A - +oo, because aD = a/(a + 1) = 1 - D, it easily follows that 

(5.8) -i= L 

= (i(A) + 1)-a -(112)-((l-D)12) D12 

as A +oo; hence (5.3) holds. [In order to justify the first sign in (5.8), 
one can use simple inequalities comparing the integer and "real" parts, as well 
as the aforementioned asymptotic behavior of i(A). More precisely, let f(A) 
[resp., g(A)] denote the second (resp., third) term in (5.8); then clearly, f(A) = 

g(A)+Ei(A)1l,(A/7/)} (where {v} : v-[v] E [0, 1) denotes the fractional part 
of v) and hence g(A) < f(A) < g(A) + i(A) or, equivalently, 1 < f(A)/g(A) < 
1 + (i(A)/g(A)); from which it follows that f(A) g((A) since by the second 
equality in (5.8), i(A)/g(A) D121D2= 1, a A + ] 

We have thus obtained a one-parameter family of (one-dimensional) exam- 
ples for which our remainder estimate is sharp and Berry's original conjecture 
fails; indeed, as a varies in (0, +oC), H 0_ whereas D takes on every value 
in (0, 1). 



514 M. L. LAPIDUS 

Remarks 5.2. (a) This simple example illustrates very clearly some of the basic 
differences between the Minkowski and Hausdorff dimensions mentioned in ?3. 
Indeed, the fact that H = H(F) = 0 because F is countable follows since Haus- 
dorff measure is induced by an outer measure and is, in particular, countably 
subadditive. On the other hand, the fact that the Minkowski content is only 
finitely subadditive and is thus a premeasure (or "content") but does not induce 
a measure, enables one to have D = D(F) 0 0 in this case. Consequently, the 
"bad" theoretical properties of the Minkowski dimension in this context are cru- 
cial for obtaining our results as well as for investigating the spectral properties 
of "fractals". 

(b) One might hope to replace the Minkowski dimension by a different type 
of fractional dimension having "better" theoretical properties. In particular, 
the notion of monotone "a-stable index" (or dimension) comes to mind. (The 
set function p: 9(Rin) __ (0, +oo) is said to be "a-stable" if p(U.=A1) = 

supi>1 p(Ai); see [Tr2, pp. 58-59]. Here, 9(Rin) denotes the power set of 
DRn.) Besides the Hausdorff dimension, a special case of a-stable index is 
the "packing dimension", Dim, recently introduced in [Tr2], and which is a 
sort of regularization of the Minkowski dimension; see also the review paper 
by J. Peyriere in [Ce, pp. 151-157]. [By [Tr2, Corollary 1, p. 60], we have 
H(A) < Dim(A) < D(A), for any A c R n, and hence Dim would have been 
a natural candidate for trying to improve our remainder estimates and possi- 
bly modify Berry's original conjecture accordingly.] However, once again, the 
above example rules out this class of "fractal" dimensions since, in particular, 
the a-stability implies that the dimension of a countable set-like that of a 
single point-must be equal to zerc. 

These considerations reinforce us in the belief that the modified Weyl-Berry 
conjecture-as stated in ?5.2 below-is properly formulated (especially for the 
Dirichlet problem). 

(c) In the process of checking that 0 < 4j(F) < +oo, one shows that j(IF) 
is the limit (and not just the upper limit) of e (n D)l JF , as e -* 0+ . [See The- 
orem C (as well as Remarks C) in Appendix C.] It follows that F is Minkowski 
measurable, relative to Q (in the sense of Definition 2.1). Hence, this sim- 
ple example is a good testing ground for verifying the (modified) Weyl-Berry 
conjecture. (See Remark 5.7(d).) 

(d) Identical calculations show that for Neumann boundary conditions and/or 
when v := (-A)m (with m > 1), our remainder estimates are also sharp in 
the counterpart of Example 5.1. [Note that our hypotheses for the Neumann 
problem are satisfied since, for instance, Q clearly satisfies the "extension prop- 
erty" for Hm(Q) (see Definition 4.3 and Theorem 4.1).] (Comments entirely 
similar to (c) and (d) apply to Example 5.1' below except that in (d), for the 
Neumann problem, one must substitute "N(A) - 0(A)" for ")(A) - N(A)" in (5.3) 
and its proof, when n > 2.) 

Example 5.1'. The previous example extends naturally to higher dimensions. 
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In fact, set Ui=(Ii x J), where J:= (0, )- andnh 
Q is the same open set as in Example 5.1.) Then Q c iRn and analogous 
statements hold in this case. In particular, D = D = (n - 1) + (a + 1) 1 and 
hence, as the parameter a runs through (0, +oo), D takes on every value in 
(n - 1, n) whereas H _ n - 1; further, 0 < 1#Y2(F) < +oo. [More precisely, 

we can show that 0:(F) = (2lD/(1 - D))a and that F is even Minkowski 
measurable.] (See Remarks C in Appendix C.) 

In this manner, we obtain a one-parameter family of examples for which 
our remainder estimate (5.4) is "best possible", in the sense that estimate (5.3) 
holds; in addition, for any of these examples, Berry's original conjecture clearly 
fails whereas our "modified Weyl-Berry conjecture"-stated in ?5.2 below-is 
quite likely to hold. 

Remarks 5.3. (a) Just as in Example 5.1, the "conjugate fractional exponents" 
of F-as defined in Remark 4.10 by 0 = D - (n - 1) = {D} and O' = n - D= 
1- -areequalto (a+1) l and a(a+1) l, respectively. (Since D E [n-i, n], 
O (resp., 0') could be called the fractional dimension (resp., codimension) of 
F.) Clearly, the symmetry a +-* a- exchanges 0 and 0'; it is therefore 
natural to call the case when 0 (= 0') = 1/2-which corresponds to the value 
a = 1 of the parameter-the "midfractal" case. (Recall that 0 + 0' = 1, with 
0, 0' E [0, 1].) Finally, we note that the smaller a, the larger 0 and D, and 
hence the more "fractal" the boundary F. 

(b) It would be interesting to slightly modify Example 5.1 'in order to ob- 
tain a connected (planar) open set Q (a "comb" with finer and finer teeth, for 
instance) for which the counterpart of both (5.2) and (5.3) can be established. 
Example 5.2. We now consider the main example in [BrCa]. Let Q c IR2 be the 
(disconnected) bounded open set studied in [BrCa, Example 2, pp. 107-112]; 
Q is the countable disjoint union of all the small open cubes belonging to the 
successive "generations" defined below. 

Let {Pi}l' be a nondecreasing sequence of positive integers. The 0th gen- 
eration contains one square of side 1, considered as being both small and large; 
the 1st generation contains four large squares, each of which has side 1/3 and 
is divided into (PI)2 congruent small squares, etc. Similarly, the ith genera- 
tion is composed of 4 x 5i1l large squares, each of which has side 3 ' and is 
divided into (Pi)2 congruent small squares; and so on. (See [BrCa, Figure 1, p. 
107].) 

It is shown in [BrCa, p. 108] that, irrespective of the sequence {Pi}, H = 

log 5/log 3 and 0 < XH(F) < +oo. Now, given any fixed real number a > 1, 
we let P' = [a'] for i = 1, 2, ... , in order to simplify the calculations. Then, 
according to [BrCa, (2.2) and (2.5), pp. 110 and 112], we have 

(5.9) D = log(5at)/log(3a) and ?< X < o2 

(5.9) FD= log(5a )/ log(3a) and < e51 <+0 



516 M. L. LAPIDUS 

note that H = D if and only if a = 1 and that H remains fixed whereas D 
takes on every value in [H, 2), as a varies in [1, +oo). Moreover, by [BrCa, 
(2.1), p. 1 10], estimate (5.3) holds with D given by (5.9); here, 0b(A) = (27r)-iA 
since IQI2 = 1 + 5EZ=1(9)i = 2. [Recall that we work here with v = -A 
and not with - = -2A, as in [BrCa]; see Remark 2.5(b).] Estimate (5.3) is 
obtained by explicit computation. 

Further, since 0j(F) < +oo by (5.9), Theorem 2.3 yields (without any cal- 
culation) estimate (5.4), with D as above. In view of (the counterpart of) (5.3) 
and (5.4), our remainder estimate is also sharp in this case. In addition, as 
was observed in [BrCa], Berry's original conjecture fails when a > 1 since then 
H < D and (5.3) holds. 

Let Z(t) = fo? e At dN(A) be the "partition function" associated with the 
present problem. Then the pre-Tauberian form of (5.3) is 

(5.10) (27r t) 1 _ Z(t t D/2 as t -*0+; 

this is deduced from (5.3) by means of an Abelian argument. (See the method 
of proof of Theorem A in Appendix A.) Moreover, Theorem 2.2 yields the 
counterpart of (5.4): 

(5.11) J(27rt)1 - Z(t)l = 0(t- /2 as t 0+. 

Hence, in light of (5. 10) and (5.1 1), our remainder estimate for the "partition 
function" is also sharp in this case. [Of course, an entirely analogous comment 
could be made about Examples 5.1 and 5.1' above.] 

Remarks 5.4. (a) In contrast to Examples 5.1 and 5.1', it is not known whether 
F is Minkowski measurable, relative to Q, in this case. (See [BrCa, p. 112].) 

(b) Even for this rather simple example, our results provide some additional 
information. Indeed, when {Pl} is an arbitrary nondecreasing sequence, it is 
not possible in general to compute D explicitly or to establish (5.3) [or even 
(5.4)] by a direct calculation. Nevertheless, Theorem 2.3 still yields (5.4), except 
for D replaced by d > D, with d arbitrarily close to D. 

(c) It is clear that H-which, as was recalled earlier, is independent of {Pi}- 
cannot take into account the fine scale structure of F as well as D does; intu- 
itively, as was stressed in ?3, this is due to the fact that the Hausdorff (resp., 
Minkowski) dimension is defined in terms of cubes of size < e (resp., = e), 
with E arbitrarily small. (See, in particular, Corollary 3.1.) 

In [BrCa, pp. 112-113], it is shown by means of a probabilistic argument 
how a slight change of Q yields a connected open set Q', with boundary F', 
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for which (I'12 = IQI2 = 2 and) 

(5.12) (27rt) Z'(t) -- t-D2 as t - 0+; 

however, it is mentioned there that the authors could not control the asymp- 
totics of N'(A) in the process. (Here, N'(1) [resp., Z'(t)] denotes the "count- 
ing [resp., partition] function" associated with the Dirichlet Laplacian on Q'. 
Further, Q' is obtained by slightly opening up the sides of the large squares in 
each generation involved in the definition of Q; see [BrCa, Figure 4, p. 112].) 

We now indicate how to use our results to obtain further information about 
this (modified) example. By construction, r' c F and Q c Q; hence, by 
a simple extension of Remark 2.1(e) and with the obvious notation, D' := 
D(J'; Q') < D(F; Q) =: D. Next, we claim that D = D'. To see this, we argue 
much as in Remark 5.1 (a): assume that D' < D and then choose d E (D', D); 
for this d, Theorem 2.3 (or 2.2) yields, since d > D': 1(27t) l- Z'(t)I = 
O(td/2), as t -- 0+. Since d < D, this contradicts (5.12). We thus conclude 
that D = D'. 

Now that we know that D = D', we can easily check that -(IF') is finite; 
indeed, since F' c F and by (5.9), we have -(F') < .X4(F) < +oo. 

Consequently, this enables us to apply Theorems 2.3 and 2.2 to deduce that 

(5.13) - (A) - N'Q(A)I = ( '/2 ) and (27rt)- - -(t)| = 0(t ), 

as A - +oc and t -* 0+, respectively. In view of (5.12) and (5.13) and 
since D' = D, this provides us with an example of a connected open set for 
which our remainder estimate for the "partition function" is sharp. It is very 
likely-although not proved here-that our remainder estimate for the "count- 
ing function" is also sharp in this case. 

Example 5.3 (Planar spirals). Given the importance of spirals for the descrip- 
tion of patterns occurring in Nature (see, e.g., [Th, especially Chapter VI]), 
the present example-which is inspired by [DMT] and supplements Example 
3.4-may be of interest in later applications. 

Let Q c R2 be a relatively compact domain bounded by the planar spiral 
A. Here, A is assumed to be bounded and to rotate around the origin while 
converging to it. More explicitly, let f be a decreasing continuous function on 
[0, +oo) such that f(6) - + 0, as 0 - +oc; then, the polar equation of the 
spiral A is given by r = f(O)). 

Strictly speaking, the boundary F = 9Q is the disjoint union of the graph 
of the spiral A, the origin 0 and the (open) horizontal line segment L con- 
necting the points (f(O), 0) and (f (27r), 0). However, this does not affect our 
discussion because F = A U L , with A = A U { 0}; whence 

D = D(F) = max(D(A), D(1{0X), D(L)) = D(A) 

and 
H = H(F) = max(H(A), H({O}), H(L)) = H(A), 
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since H({O}) = D({O}) = 0, D(L) = H(L) = 1 while D(A) > H(A) > 1. 
Now, it follows from Example 3.4 that H = 1, the topological dimension 

of F, whereas D can take any value in [1, 2]. Intuitively, the slower the 
convergence to the origin, the larger D; that is, the more "fractal" F. [The 
results about the dimensions of spirals used in this example are derived in 
[DMT].] 

Assume that f(o) = (1 + 6) a, with a > 0; then D = max(1, 2(1 + a)l 
and 0 < OD(F) < +oo. Hence, if a < 1 (resp., a > 1), Theorem 2.3 yields 
(since D > D) 

(5.14) I N(i) - (A)1 I= O(AD,2) [resp., o(AD12 logA)] as A w 

where +(i) = (27r)1 IQI212 and D = 2(1 + a)- E (1, 2) [resp., D = 1]. 

Remarks 5.5. (a) We do not know whether the remainder estimate (5.14) is 
sharp although we suspect that this is so, at least in the "fractal" case when 
D> 1. 

(b) If f(o) = exp(-0), then D = 1; on the other hand, if f(6) = 

(log(2 + 0))-1, then D = 2 since F tends to fill in a neighborhood of the 
origin, a situation reminiscent of the Peano curve. Of course, in the latter most 
extreme case-as was pointed out in Remark 2.4(d)-(5.14) cannot be sharp 
since A 

= aD/2 is not o(i) = o(Ai,2) whereas Weyl's asymptotic formula (2.17) 
holds. 

Example 5.4 (Koch drum). In our examples thus far, the boundary F was not 
assumed to be "self-similar". We now consider the case when F is one of the 
classical "self-similar fractals". It should naturally play an important role both 
as a mathematical and physical model. 

Let F be the triadic Koch curve, also called "snowflake curve" in the litera- 
ture. (See, e.g., [Kh and Mdl, pp. 42-45].) It follows from the self-similarity of 
F [see especially Remarks 3.4. and Lemma 3.1 (i)] that D = H = log 4/ log 3 = 
1.2618... and eD(F) < +oo. (This latter fact can also be checked directly.) 
Let Q c R2 be the bounded domain having for boundary F. Then, according 
to Theorems 2.3 and 2.2, IN(A) - q(A)I = O(A D/22), as A - +?oX; and similarly 
for the "partition function" Z(t). This example has many significant physical 
applications, including, in particular, to the study of the vibrations of a "Koch 
drum", the scattering of radio-waves by a "triadic Koch island" [Be 1, 2], as well 
as to the propagation of waves at the surface of a lake surrounded by a "triadic 
Koch coastline" [Mdl, pp. 40-45]. 

An interesting-albeit difficult-open problem is to determine whether "one 
can hear the fractal dimension of a Koch drum"; that is, whether the above 
remainder estimate for N(A) is best possible or, more ambitiously, whether the 
modified Weyl-Berry conjecture-as formulated in ?5.2 below-holds in this 
case. [We conjecture that our error estimates are sharp but that there is no 
second term proportional to AD/2 in this situation. Indeed, the hypotheses of 
Conjecture 5.1' below are satisfied, but not those of Conjecture 5.1.] 



FRACTAL DRUM AND THE WEYL-BERRY CONJECTURE 519 

Remarks 5.6. (a) Our present results are well out of reach of the methods of clas- 
sical spectral geometry (e.g., [C, GuKz, Ivl,2, Msl,2, OsWi, Ph, Sel,2], and rel- 
evant references therein) since the boundary F-considered as a parametrized 
curve-is nonrectifiable and nowhere differentiable. 

(b) Naturally, we could replace F by a more general "von Koch-Mandelbrot" 
curve of the kind considered in [Mdl, Chapter 6 or Ce, ?1.b and p. 30]; it is 
noteworthy that if such a (closed) curve is simple and self-similar, then D = 
H = log N/ log(l /r), as in Lemma 3.1 (i), and hence D takes on every value in 
[1, 2], as one varies the parameters N and r. (See, e.g., [Mdl, p. 39].) 

(c) We could also consider three-dimensional analogues of Example 5.4: for 
instance [Bel, 2], a "fractal resonator"; that is, in our case, a resonant cavity 
with "fractal" boundary. 

Example 5.5 (Cantor graph, combs, and quasidisks). Finally, we mention some 
other examples to which our results can be applied. For the Neumann Lapla- 
cian, our remainder estimates hold, for instance, in the following situations: 
open sets with cusp, bounded, in particular, by the graph of the Cantor singu- 
lar function (recall that Theorem 2.3 can be applied in this case since the "(C') 
condition" is satisfied; see Example 2.2); further, domains bounded by quasicir- 
cles (quasidisks) and their higher-dimensional analogues (Jones domains [Jn]); 
recall that Theorem 4.1 applies here because the "extension property" holds 
for H1 (Q)). (See Example 4.2.) A special case of interest is provided by the 
quasidisk described in [M, Example 1, pp. 70-71]. A related and physically 
significant example to which our results for the Neumann problem apply is pro- 
vided by the "Koch drum" studied in Example 5.4, since it can be shown as 
in [M, pp. 70-71] that the snowflake curve is a quasicircle. As was noted in 
Example 4.2, the boundary F of a quasidisk can be arbitrarily rough [GeVa] 
(as measured by means of the Hausdorff dimension). 

Of course, for the Dirichlet Laplacian, our results apply to any of the above 
open sets, since no restriction (besides boundedness) is then imposed upon 
Q. Moreover, still for the Dirichlet Laplacian, they also apply to the (planar) 
"combs" considered in [Mt3, ?VII. 1, pp. 200-204]; recall that some of the latter 
ones were used in [Mt3] to show that Weyl's asymptotic formula (2.17) need 
not hold for the Neumann Laplacian. It is then natural to wonder whether, for 
the Neumann problem, part of our results (and methods) can be extended to 
include those "combs" for which the Neumann spectrum is discrete but does not 
behave according to Weyl's classical asymptotic formula. We hope to investigate 
this question in a later work. 

We close ?5.1 by stating the following two problems: 

Problems. (a) For the Neumann Laplacian, find an alternative proof-based 
either on probabilistic or on heat equation methods-of our remainder estimate 
for the partition function Z (t), obtained in the "fractal" case in Theorem 2.2 
(or 4.1). (Recall that in this case, Q is assumed to satisfy either the "(C') 
condition" or the "extension property".) 
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(b) A related although certainly more challenging problem is to attempt using 
wave equation methods in order to obtain refined spectral information about 
Q . 

5.2. Modified Weyl-Berry conjecture. Recall from Definition 2.1 that F is said 
to be Minkowski measurable (or "contented"), relative to Q, if 

(nD) (5.15) o< (r)<+oc and 05(1)= limc (n - el. 

[Observe that we require here that a true limit-and not just an upper limit- 
holds in (5.15).] Of course, D is the Minkowski dimension of F, relative to 
Q, and IF is given as in (2.5). 

Similarly, F is said to be Minkowski measurable (or "contented") if 

(5.15') 0 < 4D(F) < +oc and ZD(F) = lim e-(n-D) lFJ; 

here, D is th,e Minkowski dimension of F and IF is defined as in (2.1). 
On the basis of this work and of the earlier work of Brossard and Carmona in 

[BrCa], we can now correct and refine in the following manner Berry's original 
conjecture [Bel, 2] for the asymptotic of the eigenvalues of the Laplacian on a 
bounded open set with "fractal" boundary: 

Conjecture 5.1 (Modified Weyl-Berry conjecture). (i) [Dirichlet problem] Let Q 
be a bounded open set of iRn (n > 1), with boundary F. Assume that F is 
Minkowski measurable, relative to Q (i.e., that (5.15) holds). Further, sup- 
pose that D belongs to the open interval (n - 1, n). Then, for the Dirichlet 
Laplacian, we have 

(5.16) N(A) = (27) GnDnA/ - cn B4(F)2 A + Q(1) as A -- +00, 

where cn D is a positive constant depending only on n and D. 
(ii) [Neumann problem] Let Q be a bounded open set of Rn (n > 2), with 

boundary F, satisfying either the "(C') condition" or the "extension property". 
(See Definition 2.2 or 4.3.) Assume, in addition, that F is Minkowski mea- 
surable (i.e., that (5.15') holds). Further, suppose that D belongs to the open 
interval (n - 1, n) . Then, for the Neumann Laplacian, we have 

(5.16') N(A) =(2) n l fln2 + Cn, DD(F)D/2 + o(D/) as A)+oo, 

where Cn D is a positive constant depending only on n and D. [When n = 1, 
we conjecture that (D = D and) estimate (5.16) [rather than (5.16')] holds in 
case (ii).] 

Remarks 5.7. (a) We stress that we deal here-as we have done throughout 
this work-with the variational Dirichlet (resp., Neumann) problem in case (i) 
[resp., (ii)]. Moreover, since in case (i) [resp., (ii)], D > n - 1 (resp., D > n - 1), 
the boundary F is assumed to be "fractal". 
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(b) [Conjecture 5.1'] Let 0/(A) = (27)n n n12 Then, in case (i) [resp., 
(ii)], a different form of Conjecture 5.1 would consist in replacing (5.16) [resp., 
(5.16')] by the weaker conclusion 

(i- N() t ,0D/2 [resp., N()) - ?(,A) ,D ] as i. + , 

and the hypothesis of "Minkowski measurability" by the weaker assumption 
0< <-* < O < +?o (resp., D < OD. < OD < +o). [Here, D. denotes 
the lower Minkowski content of F, defined by taking the lower (rather than 
the upper) limit in (2.3); and similarly for AD . Of course, iD =: 0D* still 
denotes the upper Minkowski content of F.] Our results and methods of proof 
(as well as Examples 5.1-5.1' and 5.2) provide good evidence for that. 

For simplicity, we have limited ourselves to the Laplacian in the above state- 
ments; however, in view of Corollaries 2.1 and 2.2, Conjecture 5.1' can easily 
be extended to the more general elliptic operators of order 2m considered in 
this paper. [Set O(A) = , (Q)An/2m , with ,>(Q) as in (2.18), and substitute in 
the conclusion A,d/2m for Aid/2, with d = D or D, respectively, further, assume 
that hypotheses (2.10) and (2.11) hold, with V = Hom (f) or Hm(Q), for the 
Dirichlet or the Neumann problem, respectively.] The case of the pluriharmonic 
operator v := (-A)m (m > 1) is of particular interest. 

(c) As a preliminary step, one can also consider the pre-Tauberian form of 
Conjectures 5.1 and 5. 1'-in which the estimate for the "counting function" 
N(A) is replaced by the corresponding one for the "partition function" Z(t). 
(For the Dirichlet Laplacian and under certain assumptions, aspects of this 
problem are examined in [BrCa, ?3].) 

(d) The examples studied in ?5.1 provide us with a variety of situations in 
which to test the modified Weyl-Berry conjecture, as well as its weaker forms 
mentioned in (b) and (c). (See especially Examples 5.1 and 5.1', in conjunction 
with Remark 5.2(c).) 

(e) In the statement of Conjectures 5.1 and 5.1', we may assume more gen- 
erally that (instead of being bounded) Q has finite volume. Indeed, all the 
results of this paper remain valid for such open sets. 

In the present work, we have obtained a partial resolution of the above modi- 
fied Weyl-Berry conjecture; in the process, we have learned new facts and devel- 
oped new intuition about this and related problems. Hence, further attempts to 
verify (or disprove) this conjecture should lead to an even better understanding 
of the relationships between spectral and "fractal" geometry. 

APPENDIX A: AsYMPTOTICS OF THE PARTITION FUNCTION 

We show here how to derive Theorem 2.2 from Theorem 2.1 and its corol- 
laries. To do so, we shall need the following simple refinement of the classical 
Abelian theorem. [This result is surely known but since we could not find a pre- 
cise reference for it, we include a proof below. The classical Abelian theorem, 
as stated, for example, in [Si, Theorem 10.2, p. 107], corresponds to case (ii) 
with 3 = y.] 
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Theorem A (Abelian theorem with remainder). Let v be a positive Borel mea- 
sure on [0, +oc) that is concentrated on [A, 2+oc), for some A, > 0. Set 
F(A) = v([O, A)), for A > 0. 

(i) Assume that for some real constants L, y, and ( with 0 < (5 < y, 

(A-1) F(A) = LAY + O(2) asA - +oc. 

Then, if G(t) := fo e-tX dv(x), for t > O, we have 

(A-2) G(t) = Ly! tFr + O(t ) as t-* 0+. 

(ii) Moreover, this theorem still holds if "O" is replaced by "o" both in hy- 
pothesis (A-1) and the conclusion (A-2). 

Proof of Theorem 2.2. Let v := E' I, where {2}l'= is the sequence of 
(positive) eigenvalues of (P9), repeated according to multiplicity and written 
in increasing order, as in (2.14); here, 6 a denotes the Dirac measure at point 
a. Obviously, v is concentrated on [A,, +oo). Further, F(A) = v([O, A]) = 

< 1 = N(4), the "counting function" of (P..) . Hence G(t) = f? e tx dv(x) 

= Z02= e it , the "partition function" associated with (P,). In view of Theo- 
rem A, the conclusion of Theorem 2.2 follows from Corollaries 2.1-2.2. Note 
that in this case, L:= u4/ (Q), y := n/2m, and c := d/2m. 0 

Proof-of Theorem A. (i) By (Lebesgue-Stieltjes) integration by parts, G(t) = 
t fo e txF(x) dx = fo7 e YF(y/t) dy. Set e(i) = )73(F(A) - LAY), for A > 0, 
so that F(A) = LAY + A e(A) . Then, since y! = foo7 e _y dy, we have 

(A-3) G(t) = Ly! t r + t (t), 

where ij(t) fo7? e yye(y/t) dy, for t > 0 . Next, we claim that the function e 

is bounded on (0, +oc). [Indeed, since F(A) = 0 for A < A(, e(i) = -LAY a 
for A < A (with y - (5 > 0) and thus e is bounded near 0; further, e is 
bounded on every compact interval [a, b] c (0, +oc) since F is nondecreas- 
ing. Hence the claim since, by assumption, e is bounded near +oc.] We now 
deduce from the claim that iLOO ? s < +oc and hence (A-3) yields 
(A-2). 

(ii) In this case, we know in addition that e(i) -* 0, as A -* +oo. Then the 
conclusion follows from the claim and the dominated convergence theorem. 0 

APPENDIX B: PERTURBATION LEMMA 

We establish here Lemma 4.4 that was used in the proof of Proposition 4.7. 
Let V denote Hom(Q) or Hm(Q) according to whether we work with the 

Dirichlet or the Neumann problem, respectively, as in ?4.2.A or 4.2.B. We pro- 
ceed as in [Mt3, pp. 178-179 or FlLa2, pp. 352-353] but also take into account 
our simpler hypotheses on v . We deduce from the interpolation inequalities 
(see, e.g., [Ag, p. 24]) that there exists a positive constant cl such that for all 
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z E (0, 1) and u E V, we have Ia(u, u)-a'(u, u)I < (z+ i)a(u, u)+tulH2(2), 

where t := c (Zl 2m + 1); here, a' is the leading form associated with a. It 

then follows from Proposition 4.2(ii) that N(A'; a') < N(A; a) < N(A"; a'), 
with A' := ( - T) - t and A": (3 + T)(A + t); naturally, N(A ; a) or N(A ; a') 

refers here to the "counting function" associated with the operator v or ', 
respectively, on all of Q. 

Next, choose T = C)-1/2m and A > C'(Ce)-2m (with c' and hence A large 

enough);then 
A 

> C//[(8 )-2m + T-2m]; further, ctA < A' < A < A' < c'A 

and 0 
< (A//)nl2m _ ,n/2m < C[,An/2m + ,A(n-l)/2m]. Since clearly, by (2.18), 

g/, (Q) = (), we can now conclude the proof of Lemma 4.4 by applying 

Proposition 4.7 to W' and choosing p sufficiently large. 

APPENDIX C: COMPUTATION OF MINKOWSKI CONTENT 

We show here, in particular, how to compute the (relative) Minkowski content 

4D(F) in Examples 5.1 and 5.1'. We note that in these examples, all we 

really needed to know was that 0 < 4'(F) < +oc; however, the more precise 

information obtained here should be useful in later work on the subject. 

Theorem C. Given a > 0, let Q = U'1 IIi c IR, with Ii = ((i + 1)a, i-a), for 

all i > 1, as in Example 5.1. Then IF & Q is Minkowski measurable, relative 

to Q (tn the sense of Definition 2.1) and we have 

(C-1) 

D = D(F) = a + 1 and l(F) - 2a/(a+) (a1/(a+I) -a/(a+ 1)) 21 D 

Proof. For i > 1, let li = bi - bi+1 denote the length of Ii, with bi = 

Fix e >0 less than 1/4. Clearly, F r= UI=(fi), and for each i> 1, (FI)l = 

min(li, 2e) . [Here, I stands for I and Fi denotes the boundary of Ii. 
Further, we work implicitly with A := F \ {0} = {ya: j = 1, 2, ... } in place 
of F; this does not affect the outcome since F= A and hence D = D(A) and 

05(F) = 05(A).] Thus, if we let 

(C-2) io = io(c) = min{i > 1: e > li/2} - 1, 

we have 
00 00 

(C-3) E= E( = 28io(8) + E li. 
i=l i=i(8)+l 

Since li = b it follows from (C-3) that for 0 < d < n =1, i= 0(8)+l i 0(8)+1 

(C-4) Ld(c) := E 
(n-d) 

= d 
(-1 | d(2i (C)) + 8-(1-d)b 

According to (C-4) and Definition 2.1, we have 

(C-5) D=inf{d> 0: lim Ld() = 0} and 05(F))=limsupLj(e). 
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Now, in the present case, = i-a _ (i+ l)a , aii(a+l), as i oo ; hence, as 

e -? 0+, io(c) - (2c/a)- /(a+l) and also, bi (e)+l = (io(c)+ 1)-a (28/a)a/(a+l) 

Consequently, 

ICd(2 io (8) 2al(a+l) a 1/(a+1) d-1/(a+1) 

(C-6) e(bi (Id) 2a/(a+l) a-1/(a+1) ,d-1/(a+l) 

as e - 0+. [We note that in the "midfractal" case when a = 1 , the right-hand 
sides of (C-6) coincide.] Thus, by (C-4) and (C-6), we have as e 0+, 

(C-7) Ld (8) 2a/(a+ 1) (a 11(a+1) + a -a/(a+l) ) d- I l(a+ 1) 

In light of (C-4), (C-5), and (C-7), we conclude that D = 1/(a + 1) and 

1-D 

(C-8) YD((F) = lim L(4e) = 2a/(a+l)(a 1/(a+1) + a -a/(a+l) 2 D 
D e-+O D= 

as desired; in particular, F is Minkowski measurable, relative to Q, since the 
limit in (C-8) exists and belongs to (0, +oc). 0 

Remarks C. (a) An entirely similar-although somewhat more involved-com- 
putation shows that in Example 5.1', D = (n - 1) + (a + 1) 1, F is Minkowski 
measurable, and 4'(F) is still given by the right side of (C-1). 

(b) According to Remark 5.1(a), we have D = D in Example 5.1 (as well 
as 5.1'). Of course, this fact can also be deduced from a direct calculation 
analogous to the above one; the latter would also show that 'd(F) = 45(F) in 
this case. 

(c) In Example 5. 1' where n > 1 , we can justify the fact that H = H(F) = 

n - 1 as follows: clearly, F = Uo1 A1, with A1 := {qi} x (0, 1)n1I for i > 0; 
here, qi : a (resp., = 0) if i > 1 (resp., = 0). Since obviously, H(Ad) 
n - 1, it thus follows from the properties of the Hausdorff dimension [see ?3 
and Remarks 5:2(a),(b)] that H = supi>0 H(Ai) = n - 1. 

Note added in proof. We indicate here some recent results obtained since this 
paper was written. In the one-dimensional case (i.e., when n = 1) , we have now 
established the "modified Weyl-Berry conjecture" (Conjecture 5.1) and obtained 
in the process some unexpected and intriguing connections with the Riemann 
zeta-function. As was suggested in particular in Remark 5.7(d) above, Example 
5. 1 played a key role in this situation. (See [ 1 ], M. L. Lapidus and C. Pomerance, 
The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for 
fractal drums, preprint, 1990, announced in [2], M. L. Lapidus and C. Pomer- 
ance, Fonction zeta de Riemann et conjecture de Weyl-Berry pour les tambours 
fractals, C. R. Acad. Sci. Paris Ser. I. Math. 310 (1990), 343-348.) More- 
over, when n > 2, Conjecture 5.1 was disproved in [3], M. L. Lapidus and C. 
Pomerance, Epstein zeta-functions and the n-dimensional Weyl-Berry conjecture 
for fractal drums (in preparation), and a further refinement of (the conclusion 
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of) Conjecture 5.1 was proposed in [3] and [4], M. L. Lapidus, Spectral and 
fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal 
drums to the Riemann zeta-function, Proc. UAB International Conference on 
Mathematical Physics and Differential Equations (Birmingham, March, 1990), 
(C. Bennewitz, et al., eds.), Academic Press, New York, 1990, pp. 171-201 
(in press). This new version of Conjecture 5.1 is expressed in terms of the 
"spectral zeta-function," which is further studied in [5], M. L. Lapidus, Spec- 
tral zeta-functions, vibrating fractal strings and the Dirichlet divisor problem (in 
preparation), and in [3]. In [1], the authors have also proved Conjecture 5.1' as 
well as its converse when n = 1. A suitable form of the converse of Conjecture 
5.1 when n = 1 has been shown to be closely connected with the Riemann hy- 
pothesis in [6], M. L. Lapidus and H. Maier, The Riemann hypothesis, vibrating 
fractal strings and the modified Weyl-Berry conjecture, to be announced in [7], 
M. L. Lapidus and H. Maier, Hypoth'ese de Riemann, cordes fractales vibrantes 
et conjecture de Weyl-Berry modifiee, C. R. Acad. Sci. Paris Ser. I Math. (to 
appear). 

Finally, we point out that explicit examples when the Minkowski dimensions 
D and D differ for the boundary F = &Q of a bounded open set, are given in 
[7], C. Tricot, Dimensions aux bords d'un ouvert, Ann. Sci. Math. Quebec 11 
(1987), 205-235. 
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