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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 123, Number 2, February 1995 

INDEFINITE ELLIPTIC BOUNDARY VALUE PROBLEMS 
ON IRREGULAR DOMAINS 

JACQUELINE FLECKINGER AND MICHEL L. LAPIDUS 

(Communicated by Palle E. T. Jorgensen) 

ABSTRACT. We establish estimates for the remainder term of the asymptotics 
of the Dirichlet or Neumann eigenvalue problem 

-Au(x) = Ar(x) u(x), x e Q2 c Rn 

defined on the bounded open set Q2 C Rn; here, the "weight" r is a real-valued 
function on Q2 which is allowed to change sign in Q2 and the boundary A2 is 
irregular. We even obtain error estimates when the boundary is "fractal". 

These results-which extend earlier work of the authors [particularly, 
J. Fleckinger & M. L. Lapidus, Arch. Rational Mech. Anal. 98 (1987), 329- 
356; M. L. Lapidus, Trans. Amer. Math. Soc. 325 (1991), 465-529]-are 
already of interest in the special case of positive weights. 

1. INTRODUCTION 

In this paper, we study the influence of the irregularity of the weight r and 
of the boundary aQ on the asymptotics of the eigenvalues for the following 
boundary value problem (in its variational formulation): 

(P) -Au =Aru in Q c R, 

with Dirichlet or Neumann homogeneous boundary conditions. 
Here, Q is a bounded open set and r is a real-valued function on Q that 

is allowed to change sign in Q (in which case it is called an "indefinite weight 
function") and may be discontinuous. Under suitable assumptions on r and 
Q ([P1], [BS], [FF], [LI], [FL1], ... ), there exists a countable sequence of 
positive [resp., negative] eigenvalues tending to +oo [resp., -o ]; furthermore, 
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the number of positive eigenvalues less than A for the above problem, denoted 
by Nj? (i; r, n) (where i = 0 [resp., i = 1 ] corresponds to the Dirichlet [resp., 
Neumann] problem) satisfies 

(1.1) N(A;r, Q) W(; r+, Q) :=(27r) ni7 n,/2 r'nl2 asA. +oo , 

where r+ = max (r, 0) and Rn is the volume of the unit ball in Rn. 

Of course, we also introduce N7 (i; r, Q), the number of negative eigenval- 
ues larger than A < 0. 

We study here the asymptotics of the "remainder term": 
(1.2) R-(A; r, Q) := NL(A; r, Q)- W(A; r?, Q) 
and extend (in the special case of the Dirichlet and Neumann Laplacians) earlier 
results of the authors. In particular, we obtain estimates for the "remainder 
term" of (P) valid when aQ is very irregular and even "fractal". We thereby 
obtain-as was suggested in [L2, Remark 3.5(c), p. 490]-the counterpart of 
[FL2, Theorem 2, p. 339] and [L2, Theorems 2.3 and 4.1, pp. 482-483 and 
pp. 510-511] for the Dirichlet and Neumann Laplacians with an "indefinite 
weight function" and on an open set with "rough boundary". In the former case 
[FL2], the weight function r is allowed to be indefinite and discontinuous but 
the boundary aQ is assumed to be (relatively) regular, whereas in the latter 
case [L2], the boundary is allowed to be "fractal" but r _1 . 

Our results show, in particular, that there is an interesting interplay between 
the singularities (or the oscillations) of the weight function r and the irregular- 
ities of the boundary aQ. (See esp. Theorem 2 and Remarks 3 and 4 below.) 
They are new and of (mathematical or physical) interest even when the weight 
function r is positive. They enable one, for example, to study the vibrations 
of "drums with fractal boundary" ([L2-4], [LF1,2]) and variable mass density. 
Other significant physical applications include the study of flows through porous 
media and of the vibrations of cracked bodies. 

"Indefinite elliptic problems" (i.e., involving an indefinite weight function) 
occur naturally by linearization of many semilinear elliptic equations and are 
of broad interest in applied mathematics, engineering, physics, and biology; 
for example, transport theory, hydrodynamics, crystal coloration, laser theory, 
reaction diffusion equations, ... . (See, e.g., [FL1,2] and the relevant references 
therein.) Recent mathematical works on these problems include [Be], [BS], 
[Fal-3], [FF], [FL1-3], [Hel-2], [HeKa], [KKZ], [KZ], [L1], [We]. 

The rest of this paper is organized as follows: 
In Section 2, we consider the Dirichlet problem studied in [FL2, Section 3]. 

There we assume only that Q4, the interior of Q? := {x E Q/ r(x) ; 0}, is 
"Jordan contented" (without the hypothesis of "segment property") and recover 
and strengthen the asymptotic estimate of [FL2, Theorem 2, p. 339]. 

In Section 3, by use of "Whitney-type coverings" (with dyadic cubes which 
become smaller near the boundary), we obtain a result for the Dirichlet problem 
without any condition on Q. For the Neumann problem, we recover Theorem 
2 of [FL2] (where an hypothesis was not made precise enough, as mentioned in 
[L2, Remark 3.5(d), p. 490] and [FL3], under some of the same conditions on 
Q as in [FM, Mtl,2] where r 1. 

The case when aQ is "fractal" is also studied in Section 3 and hence, in 
the special case of the Dirichlet and Neumann Laplacians, this paper extends 
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to indefinite weights some of the main results of [L2,3], esp. [L2, Theorems 
2.1 and 4.1, pp. 479 and 510-511], where r =1. (See also [LF1,2] where a 
special case of this result is announced for the Dirichlet Laplacian.) The proof 
of our main result (Theorem 2 from Section 3) combines techniques from both 
[FL2] and [L2] (as well as [Mt2]) in order to deal with the oscillations and/or 
discontinuities of the (possibly) indefinite weight function, as well as with the 
roughness of the boundary. 

2. THE DIRICHLET PROBLEM ON A "JORDAN CONTENTED SET" 

2.A. Hypotheses and results. (H1) Q is a nonempty bounded open set in R' 
which is "Jordan contented"; the weight function r belongs to L??(Q) and is 
allowed to change sign; furthermore IQ+ I > 0, where I 1 denotes the Lebesgue 
measure in R' and Q+ is the interior of Q+ = {x E Rn/ r(x) > O}. 
Remark 1. Recall that co c JR is said to be "Jordan contented" (in French, 
"quarrable au sens de Jordan") if it can be well approximated from within and 
without by a finite union of dyadic cubes (see, e.g., [LoSt, Chapter 6, ??6-7] or 
[RS, p. 271]). In that case, its boundary aow must have zero n-dimensional 
Lebesgue measure. 

We now consider a covering of Rn by disjoint open cubes (QW)EZn with 
side t7 (so that Rn = UEZ QC) and we set 

(2.1a) I(Q?) I E Zn/ QC =( U no ) C 
CEI(Q+) 

(2.1b) J(Q+) IC E Zn/ QC n Q :A o} 

and 

(2.1c) w=( U 

CEJ(!QO)\I(!iO) 

We next introduce two hypotheses (which were made in [FL2]): 
(H2) Q+ is "Jordan contented" and satisfies the "fl-condition": given fi > 

0, there exist two positive constants co and 'i such that, for all 7 E (0, i0], 

#(J(n+)\I(ni+)) 
<- co?7lA 

where #A denotes the number of elements in the finite set A. 
(H3) r+ satisfies the "y-condition on Q+ ": given y > n, there exists a 

positive constant cl, which does not depend on ', such that, for all 7 small 
enough and for all ' E I(Q+), 

(2.2a) pC(r) :=J Jr+ - r11lIn/2(Q) < ci Yf, 

with rC > 0 defined by 

(2.2b) r,'/2 := 1 jn rn/2 - F-nIIrlIn/2 

Moreover, r+ can be extended to a neighborhood of Q+ to a positive bounded 
function, still denoted by r+ . Then 
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Theorem 1. Under hypotheses (H1) to (H3), for all ( E [2(VE1) ] where 
v := min(/J, y - n), we have 

Rt+(A; r,Q)=OYi+), as - +oo. 

This result is nothing else than Theorem 2, p. 339, in [FL2] for the Dirichlet 
problem, but with weaker hypotheses. An analogous result could of course 
be obtained for negative eigenvalues under analogous hypotheses on Q_ and 
r_ . The exponent n 2-1 + ( depends on the regularity of the weight function r 
(the larger y, the "smoother" r) and of the boundary aQ (the larger fi, the 
"smoother" &Q9) so that for smooth data, this exponent is as close as we want 
from I , the best possible exponent. 

2.B. Proof of Theorem 1. We first note that for all p > 0, 

NO+(A; r, Q?+) < NO+(A; r, n) < No+(A; r+ + p, Q). 
Hence, by letting p tend to zero, exactly as in [LI], [FLi], ... , Theorem 1 when 
r changes sign can be derived from the case when r is positive. 

Thus from now on in this section, we assume that 
(H4) r is positive, so that Q = Q? and No-(A; r, Q) =O; 

in that case, we write in short 

(2.3) Ni(A; r, Q) Ni+(A; r, Q) 

and 

(2.4) I:= I(Q+, J:= J(Q.+) 

The monotonicity of No(A; r, Q) with respect to Q allows us to consider 
the problem on (Q' U Ki)O which is larger than Q; moreover, by use of the 
method of the Dirichlet-Neumann bracketing [CH, RS, Mtl, ... , FLI-2, L1-2, 
... ], we have 

No(A; r, Q') < No(A; r, Q) < No(A; r, (n'UK0)?) < NI(A; r, n')+N,(A; r, c()). 
Hence, by subtracting the "Weyl term" W(A; r, Q), we get 

(2.5) Ao < Ro(A; r, Q) < Al + A2 

where for i = 0 or 1, 

(2.6) Ai Ri(A; rC, QC) 
CEI 

and 

(2.7) A2 := N1,(; r, c) - W(A; r, Q\Q') < Ni(A; r, co). 

The "interior terms" Ao and AI can be handled exactly as the term A 
defined by Eq. (19.0) in [FL2], p. 342. (Note that in [FL2], the dimension is 
denoted by k instead of n .) Hence, for a given A > 0 large enough, we choose 
(as in [FL2, Eq. (24), p. 343]): 

(2.8) q = -a with a E (O,, ] 

and we deduce that there exists c > 0 such that the counterpart of Eq. (36) in 
[FL2, p. 345] holds: 
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In the same manner, we obtain an upper bound for AI, which follows from 
Eqs. (38) to (40) in [FL2, p. 346]: 

(2.10) {AIu < c)A +'. 

For the "boundary term" N1 (A; r, c) which appears in (2.7), we again use 
the Dirichlet-Neumann bracketing and the monotonicity of N1 (i; r, c) with 
respect to r: 

A2 ? NiQ(; r, c) < Ni(A; M, c) = Ni(AM; 1, c) 

(2.11) ~< E N, (AM; I1, QC) < C(#(jJI));n,An12 
CEJ\I 

where M < xo is an upper bound for r+; note that M exists by hypothesis 
(H3). The last inequality is well known since the problem corresponding to 
N1 (i; 1, QC) is the Laplacian on a cube "without weight", i.e., with r 1_ . 

By use of (HI), (H2), (2.4), and (2.8), there exists c > 0 such that 

(2.12) #(J\I) ? cia(nfl) with a E (0, (]. 

Hence, combining (2.11) with (2.12), we obtain as in [FL2, Eq. (28), p. 344]: 

(2.13) A2 ? C) -afl < c)Y , 

provided that we choose a positive number a such that 

I11 
(2.14) -( --() <a?<. 

Note that this choice of a is possible since by hypothesis of Theorem 1, 

2(v+1) - -2 

Theorem 1 for r > 0 follows from (2.5), (2.9), (2.10), and (2.13). 

3. IRREGULAR BOUNDARIES 

3.A. Introduction. In the previous section, the upper bound for No(A; r, Q) 
was very simple to establish since by use of the monotonicity of No(A; r, Q) 
with respect to Q, we could include Q in a (finite) union of cubes. But this 
is not possible for the Neumann problem. Hence for obtaining more precise 
estimates at the boundary, we consider a covering of Rn by dyadic cubes. This 
partition is used in particular in [CH] and by many authors (e.g., [Mt2], [L2], 
... ); it is sometimes referred to as a "Whitney-type covering". 

Let 0 be an open set in Rn . For a given t7c, > 0, we consider a covering of 
Rn by disjoint open cubes (QCq)CqEZn with side 

(3.1) ?1q = ;702q 5, q e N. 

Set 

(3.2) Io(O) = {4o E Zn/ QC0 C O}; ?= ( U Qco) 
CoEIo(O) 
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and 
00' = ?\?o; 

(3.3) Iq(O) = {Cq e Zn/ QUq C ?a-l}; 0s = (0q'- u ( U Qq)) 

CTqEIq(O) 

and 

Oq' = O\Oq, for q > 1. 

We now weaken the ",f-condition" which implies that Q? is a Jordan contented 
set; this enables us to deal with more irregular boundaries and even fractal 
boundaries, as in [L2-3]. 

3.B. Hypotheses and results. (H,) Q is a (nonempty) bounded open set in 
Rn with n > 1; the weight function r belongs to L? (Q) and is allowed to 
change sign; furthermore, IQ? I > 0 

(H2) Q+O is such that there exists d E [n - 1; n) satisfying 

X0*(d; aQn) := lim sup <-(n-d) 0, < x 

with 
FE :=FFn no and FE :={xERn/dist(x,a(QnO)) < }; 

here, dist ( , .) denotes the Euclidean distance in Rn. 
(H3) r+ satisfies the "y-condition" on Q+ (adapted to the covering Qcq) 

with y > d; i.e., there exists C2 > 0 which does not depend on Cq E Iq(Qno) 
and there exists i, > 0 such that for all ? E (0, t1j, for all q E N, 

pC(r) < C2i1 
where pC is defined as in (2.2a). 

(H4) For the Neumann problem, we assume that (H2) holds with fE re- 
placed by rF; we assume in addition that Q+ satisfies either the "extension 
property" (there exists a continuous linear extension of H1 (Q) onto HI (in), 
e.g., [L2, Definition 4.3, p. 510]) or the "(C') condition" ([Mt2, pp. 154-156]: 
there exists a finite covering of aQ by open sets (0j)j=I..,jo , with Ojc iRn; 
there are open sets Uj' in Rn- , positive numbers hi, upper semi-continuous 
functions ojo: (-hj, 2h1) - Uj, and C1 diffeomorphisms 6j: O n Q -* V1 
with 

Vj 4=(1 1 E Rn 4 E Uj; ipj(4l) < 4l < 2hjl. 
Furthermore, for all x and y in O n Q, there exists s > 0 such that the path 
Ys(x, y) associated to the reunion of segments 

[6j(x), Oj(x) + se,] U [6j(x) + se,, Oj(y) + se,] U [6j(y) + se,, Oj(y)] 

lies within O n Q (here, el denotes the first vector of the standard basis in 
Rn ). Moreover, if we denote by pj(x, y) the infimum of the lengths of all such 
$s (x, y) in Oj n Q, there exists ko such that for all j E {1, 2,..., Jo}, 

pj(x, y) < ko dist (x, y). 

Remark 2. (a) If the open set co satisfies the "segment property" [Ag, p. 11], 
then it satisfies the "(C') condition"; this is the case, for example, if aco is 
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Lipschitz. The "(C') condition" was first introduced in [FM, p. 914, ?3], and 
then used in [Mtl-2], [FL1-2], [L1-4]. Roughly, it means that the boundary &Q 
is not "too long": the Euclidean distance dist (x, y) is equivalent to do(x, y), 
the minimal length of continuous paths from x to y within Q. Note that if 
the "(C') condition" is not satisfied, then the usual Weyl asymptotic formula 
(1.1) may fail for the Neumann problem. (See, e.g., the counterexamples when 
i= 1 and r 1 in [FM] and [Mt2, ?VII.1, pp. 200-204].) 

(b) When n = 2, the simply connected domain co satisfies the "extension 
property" if and only if it is a quasidisk, i.e., the image of the unit disk under 
a quasiconformal mapping. (See, e.g., [L2, Example 4.2, p. 510] and the ref- 
erences therein.) The boundary &co is then a quasicircle (roughly, a distorted 
circle) and may be extremely irregular [L2, p. 510]. 

(c) Intuitively, the more "regular" the boundary OQn', the smaller we may 
choose d in hypothesis (H2) . Similarly, the more "regular" the weight function 
r, the larger we may choose y in hypothesis (H3) . For example, if r = 1, as 
in [L2], then clearly, any y > 0 is suitable. Further, it follows from (the 
argument provided in) [FL2, Example 2, p. 333] that if r is Holder continuous 
of order G E (0, 1) and bounded away from zero on Q+O, then it satisfies the 
"y-condition" on Qn with y = n + (n0/2); in particular, y > n in that case. 
Theorem 2. Under the above hypotheses, we have for i = 0 or 1: 

(i) If d E (n - 1, n) (the "fractal case") 

RtQ(; r, Q) := N+(A; r, Q) - W(A; r+, Q) = O(Qt/2), as)A -i +0, 

where t:= max (d, d+n-y). [Hence t=d if yin and t=d+n-y if 
y < n.] 

(ii) If d = n - 1 (the "nonfractal case"), 

{ I-lg~ when y >n, 
Rt (i; r, 1 = 

{ OQ.(Y2 
) 

2 when y < n. 

Theorem 2 extends to problems with indefinite weights earlier results ob- 
tained for r 1_ ([Mt 1-2], [L2-3]). It also makes more precise and extends to 
irregular boundaries results of [FL2] where an hypothesis needed to be com- 
pleted (see [L2, Remark 3.5(d), p. 490]). 

Remark 3. (a) Hypothesis (H2) which replaces in this section the "fl-condition" 
says that the (interior Bouligand-) Minkowski dimension D of &Q? is < d. 
(See, e.g., [L2, Definition 2.1 (b), pp. 474-475 and ?3]. For relationships between 
the ",8-condition" and the Minkowski dimension, see [L2, Corollary 3.3 and 
Remark 3.5, pp. 489-490].) When the weight r is "smooth enough" (compared 
with &Q), viz y > n, then t = d and we recover for d > n - 1 results of [L2-3] 
in the special case of the (Dirichlet or Neumann) Laplacian. (See Remark 2(c) 
above and [L2, Theorem 2.3, pp. 482-483].) Indeed, the irregularity (fractality) 
of the boundary of Q+ can be due to that of Q (oQ n 0(Q+)) or that of r 
(O(Q0)\OQ) : d < y < n. 

(b) The use of the Minkowski dimension D for rough boundaries (in a related 
context) was first made by Brossard and Carmona in [BrCa]. In [BrCa], the 
authors also obtained (pre-Tauberian) error estimates (expressed in terms of D ) 
for the short time asymptotics of the "partition function" Z(t) = Trace (etA), 
when A is the Dirichlet Laplacian and r-I . 
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(c) Strictly speaking and to be in keeping with the terminology used in [L2- 
4], the "fractal" (resp., "nonfractal") case is that when D 7 n - 1 (resp., D = 
n - 1). Recall from [L2] that we always have D E [n - 1, n] and that if 
O < A*(d; &Q.) < oo, then d = D, the (interior) Minkowski dimension of 

Q+. 
Of course, an analogous theorem holds for Ni-(A; r, Q) under analogous 

hypotheses. 
As in the previous section, we will prove Theorem 2 for r > 0; the case 

where r changes sign can be derived as indicated above. Therefore, from now 
on, we assume that 

(Hg) r is positive, hence Q = Q+j, and as above we set 

(3.4) Ni(A; r, Q) = Ni+(A; r, Q) 

We also let, in view of (3.3), 

(3.5a) Iq I(Q) 

and 

(3.5b) q := Q" 

3.C. A lower bound. We establish here a lower bound for Ri(A; r, Q) = 

N1(A; r, Q) - W(A; r, Q), i = 0 or 1, when r is positive. The numbers 
y and d are given, with y > d. Choose A > 1 and then i0 = A-a where 
a > n7) with qi small enough so that (H2) or (H4) for the Dirichlet or 
Neumann problem, respectively, implies that there exists c3 > 0 such that for 
all qeN, 

(3.6) (#(Iq)) In < C3 n-d 

where 11q is defined by (3.1) and Iq by (3.3) and (3.5a). 
Since r is bounded, there exists M > 0 such that for almost all x E 

Q, Ir(x)l < M, and hence, A being given, there exists P E N such that, 
for all q > P, 

(3.7) No(Q; r, QCq) = 0. 

We define 

(3.8) P:= max{q E N/ No(A; M, QCq) $ O}. 

Note that the integer P depends on A . By means of (3.3) and the usual in- 
equalities on N1(A; r, Q), we can write: 

NI (A; r, Ql) > No(A; r, Ql) > No(A; r, Up) 

(3.9) P 

>= 1:1 N A;r. C) q=0 Cq EIq 

Then, by subtracting the "Weyl term", we obtain 

(3.10) Ri(A; r, Q) = N1(A; r, Q) - W(A; r, Q) > Al +A2+A3+A4, 
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with 
p 

(3.1Oa) A1 := 1J (No(A; r, QCq) - No (; rCq, QCq)), 
q=O q EIq 

p 

(3.1Ob) A2 :=E E R(A; rCq, Qq), 
q=O qEIq 

P. 

(3.10Oc) A3 :=E E(W(A; rCq QCq) -W(A; r, QCq)), 
q=O qEIq 

and 

(3.O1 d) A4 -W(A; r, cop). 

We first note that, with pC defined as in (2.2a), 

(3.11) 1 Ni (A; r, QC) - Ni (A; rC . QC) I < Ni (A; I r - rC I QC) < pC (r)An,2. 

Therefore, by (H3), (3.1), (3.6), and (3.7), we have 

P P 

-A1 < c Z (#(Iq)) 71y,An/2 < Cn/2 E 1y-d 

(3.12) q=O q=O 

< C_nI2 y-d 2-q < C1A(n12)-a(y-d 
q=O 

We note that, when d < y < n, we have n-d > 1 and thus our choice of a y-d 
preceding Eq. (3.6) implies a > Thus, for d E [n - 1, n), 

(3.13) -A1 < CA/2, with t = max(d, d + n - y). 

We now consider A2 (which is negative); it can be handled as in [FL2, Eq. (21), 
p. 342]: we know from [CH, Section 6.4] (or [RS, Proposition 2, pp. 266-267]) 
that there exists co > 0 such that, for i = 0 or 1, for all A > 1 and all q E N, 

(3.14) jRj(A; 1, QCq)l < co[1 + (Al 2)(n-0/2i 

Consequently, 

p 

(3.15) 1A21 < Co E(#(Iq))[ 1 + q 
q=O 

We deduce from (3.8) that there exists c4 > 0 satisfying 

(3.16) 2c4 < 2P < c4V 

Hence, by combining (3.1), (3.6), (3.15), and (3.16), and since r is bounded 
by M, we obtain 

P P 

1A21 < c' E Q-d + CZA(n-1)12 E ,n-l-d 
q=O q=O 
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Therefore, 

(3.17i) IA2I < cAd/2 for d>n-1, 

(3.17ii) IA21 < cA(n-)12 In) for d=n-1. 
By definition of rCq in (2.2), it is obvious in view of (3. 1Oc) that 

(3.18) A3 = 0. 

Finally we deduce from (3.16), (H;), and (H2) or (H4) that 

(3.19) 1A41 = W(A; r, cp) = cf (Ar)nl2 ? CAnP212wpj < CAn/2 n-d < C.d/2. 
ZP~~~~~~i 

Hence it follows from (3.10), (3.13), and (3.17) to (3.19) that, for r regular 
enough, i.e., for y > d, we have: 

(i) When d = n - 1, 

(3.20a) Ri(A; r, Q) > -cA lnA if y>n 

(3.20b) >-,aY 2 if d < y < n. 
(ii) When d E (n- 1, n), 

(3.2 1a) Ri(A; r, Q) > _CA,12 

where 

(3.21b) t = max(d, d + n - y). 

Remark 4. (a) In particular, when r = 1, we have y > n [see Remark 2(c)]; 
if d E (n - 1, n), we then recover, in the special case of the Laplacian, the 
estimate Ri(A; r, n) > -cAd/2 which has been established in [L2, Theorem 
2.3, p. 482] and [L3]. As was shown in [L2], [L4], this estimate is sharp for 
every d e (n - 1, n) and for i = 0 or 1. 

(b) Note that when r is Holder continuous on n and bounded away from 
zero, then y > n (by Remark 2(c) above) and hence y > d is automatically 
fulfilled. 

(c) When n = 1 and 0 < d < 1 , the lower bound is of the form -CAd/2 ln A 
[resp. -CAd/2 ] when y > 1 [resp. < 1]. 

3.D. Upper bound. For the Dirichlet problem, we can simply include n in a 
finite union of cubes; up to a set with Lebesgue measure zero, we have 

p 
nc Op:= U U QCq u U QIP) 

q=O CqEIq CpEI'p 

where 
If = {p EZn/ Qcp n9&0}. 

We note that as for Iq in (3.6), we have 

(3.22) #(Ip) < c3q1,d. 

Therefore, we can write 
(3.23) 

p 

No(A; r, n) < No(A; r, Op) < Z E Ni(A; r, QCq) + Z Ni(; r, QCP). 
q=O CqEIq p 
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In (3.23), in order to extend r, we must assume A (and hence P) large 
enough. 

By subtracting the Weyl term, we obtain 
(3.24) 

p 

Ro(i; r, Q) < E E RiQ(; r, QCq)+ E NiQ(; r, QCp) < Bi +B2+B3+B4, 
q=O CqEIq pEIsp 

where 
p 

(3.25a) B1 := 1 (NI(A; r QCq) - Nl (; rCq, QCq)) 
q=O CqEIq 

p 

(3.25b) B2 :=E E (NI(A; rq, QCq) - W(A; rCq QCq)), 
q=O CqEIq 

p 

(3.25c) B3 :=: E E (W(A; rCq QCq) - Wo.; r,. QCq)), 
q=O CqEIq 

and 

(3.25d) B4 := : N, N(A;r, QCP) 
CpEIp 

The first three terms B1, B2, B3 can be handled exactly as A1, A2, A3 in the 
previous section (?3.C), and we obtain: 

(3.26) B1 < CAC/2 with t = max(d, d + n - y), 

(3.27a) B2 < cAd12 for d > n - 1, 

(3.27b) B2 < cA(n- )/2 ln A when d = n - 1, 
(3.28) B3 = 0. 

Since r is bounded, we have 

B4 < >j N1 (AM; 1, QC ) < CAnI2In(#(I' )) 
CpEIp 

so that, by (3.1), (3.16), and (3.22), 

(3.29) B4 < c)d/2 

Hence, by combining (3.26) to (3.29) with (3.24), we have for y > d, 
(3.30) 

RO(A;r,Q)<cA 2 lnA when d=n-land y>n, 

< cA 2 + 2 when d=n-I and d<y<n, 
<cAt/2 with t=max(d, d+n-'y), when dE(n-l,n). 

For the Neumann problem, we cannot write (3.23); we simply have by means 
of definition (3.5b): 

(3.31) RI(A; r, Q) < Bi +B2+B3 +B', 
where B1, B2, B3 are given by (3.25a-c) and 
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Since r is bounded, 

(3.33) B4 < N(iQ(M; 1, cop) 

We now have to study a Neumann problem (without weight function) on the 
boundary strip cop. We deal as in [FM], [Mtl-2] or [L2, pp. 496-497]. We 
denote by u- the extension of u to Ri with u E HI (Rn) . On each cube QCq 
we approximate ui by its mean value Uq . Set 

(3.34) v:= Z uyp IQcQp 
CpEIp 

where 

lQCP (X) 0 when x E QCp, 

By use of inequality (1) in [FM, p. 915] or inequality 5.2 in [Mtl], we obtain 

(3.35) |uv L2 (W,p) < 1 ||U IH(Q) 
(See also [L2].) We note that v defined by (3.34) lies in a (#(Ip))-dimensional 
subspace of H1 (Ri) . Hence in view of (3.22) and (3.35): 

(3.36) B4 < C)dA2 . 

It follows from (3.26) to (3.28) combined with (3.31) and (3.36) that the coun- 
terpart of (3.30) also holds for R1 (i; r, Q) [instead of Ro(A; r, Q) ], and hence 
Theorem 2 is proved. 

Remark 5. (a) Our results (Theorems 1 and 2) could be extended to more gen- 
eral elliptic operators, much as in [Mt 1-2], [FL2], and [L2-3], although we chose 
not do so in order to keep our arguments reasonably short and simple. 

(b) It would be interesting to investigate whether, under suitable hypotheses, 
the results of [LP 1,2]-that establish when n = 1 (and r- 1) the "modi- 
fied Weyl-Berry conjecture" of [L2] concerning the existence of a (monotonic) 
asymptotic second term for N(A)-can be extended to "fractal strings" ([L2], 
[L4], [LP1-2]) with variable mass density. 
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